sched: Factor out code to should_we_balance()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9
AS
683#ifdef CONFIG_SMP
684static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686/* Give new task start runnable values to heavy its load in infant time */
687void init_task_runnable_average(struct task_struct *p)
688{
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696}
697#else
698void init_task_runnable_average(struct task_struct *p)
699{
700}
701#endif
702
bf0f6f24
IM
703/*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707static inline void
8ebc91d9
IM
708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
bf0f6f24 710{
bbdba7c0 711 unsigned long delta_exec_weighted;
bf0f6f24 712
41acab88
LDM
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
715
716 curr->sum_exec_runtime += delta_exec;
7a62eabc 717 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 719
e9acbff6 720 curr->vruntime += delta_exec_weighted;
1af5f730 721 update_min_vruntime(cfs_rq);
bf0f6f24
IM
722}
723
b7cc0896 724static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 725{
429d43bc 726 struct sched_entity *curr = cfs_rq->curr;
78becc27 727 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
8ebc91d9 738 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
739 if (!delta_exec)
740 return;
bf0f6f24 741
8ebc91d9
IM
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
d842de87
SV
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
f977bb49 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 749 cpuacct_charge(curtask, delta_exec);
f06febc9 750 account_group_exec_runtime(curtask, delta_exec);
d842de87 751 }
ec12cb7f
PT
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
754}
755
756static inline void
5870db5b 757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
78becc27 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
760}
761
bf0f6f24
IM
762/*
763 * Task is being enqueued - update stats:
764 */
d2417e5a 765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 766{
bf0f6f24
IM
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
429d43bc 771 if (se != cfs_rq->curr)
5870db5b 772 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
773}
774
bf0f6f24 775static void
9ef0a961 776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 777{
41acab88 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
783#ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
78becc27 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
787 }
788#endif
41acab88 789 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
790}
791
792static inline void
19b6a2e3 793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 794{
bf0f6f24
IM
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
429d43bc 799 if (se != cfs_rq->curr)
9ef0a961 800 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
801}
802
803/*
804 * We are picking a new current task - update its stats:
805 */
806static inline void
79303e9e 807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
808{
809 /*
810 * We are starting a new run period:
811 */
78becc27 812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
813}
814
bf0f6f24
IM
815/**************************************************
816 * Scheduling class queueing methods:
817 */
818
cbee9f88
PZ
819#ifdef CONFIG_NUMA_BALANCING
820/*
6e5fb223 821 * numa task sample period in ms
cbee9f88 822 */
6e5fb223 823unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
824unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
825unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
826
827/* Portion of address space to scan in MB */
828unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 829
4b96a29b
PZ
830/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831unsigned int sysctl_numa_balancing_scan_delay = 1000;
832
cbee9f88
PZ
833static void task_numa_placement(struct task_struct *p)
834{
2832bc19 835 int seq;
cbee9f88 836
2832bc19
HD
837 if (!p->mm) /* for example, ksmd faulting in a user's mm */
838 return;
839 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
840 if (p->numa_scan_seq == seq)
841 return;
842 p->numa_scan_seq = seq;
843
844 /* FIXME: Scheduling placement policy hints go here */
845}
846
847/*
848 * Got a PROT_NONE fault for a page on @node.
849 */
b8593bfd 850void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
851{
852 struct task_struct *p = current;
853
10e84b97 854 if (!numabalancing_enabled)
1a687c2e
MG
855 return;
856
cbee9f88
PZ
857 /* FIXME: Allocate task-specific structure for placement policy here */
858
fb003b80 859 /*
b8593bfd
MG
860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
fb003b80 862 */
b8593bfd
MG
863 if (!migrated)
864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
865 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 866
cbee9f88
PZ
867 task_numa_placement(p);
868}
869
6e5fb223
PZ
870static void reset_ptenuma_scan(struct task_struct *p)
871{
872 ACCESS_ONCE(p->mm->numa_scan_seq)++;
873 p->mm->numa_scan_offset = 0;
874}
875
cbee9f88
PZ
876/*
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
879 */
880void task_numa_work(struct callback_head *work)
881{
882 unsigned long migrate, next_scan, now = jiffies;
883 struct task_struct *p = current;
884 struct mm_struct *mm = p->mm;
6e5fb223 885 struct vm_area_struct *vma;
9f40604c
MG
886 unsigned long start, end;
887 long pages;
cbee9f88
PZ
888
889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
890
891 work->next = work; /* protect against double add */
892 /*
893 * Who cares about NUMA placement when they're dying.
894 *
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
898 * work.
899 */
900 if (p->flags & PF_EXITING)
901 return;
902
5bca2303
MG
903 /*
904 * We do not care about task placement until a task runs on a node
905 * other than the first one used by the address space. This is
906 * largely because migrations are driven by what CPU the task
907 * is running on. If it's never scheduled on another node, it'll
908 * not migrate so why bother trapping the fault.
909 */
910 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
911 mm->first_nid = numa_node_id();
912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
913 /* Are we running on a new node yet? */
914 if (numa_node_id() == mm->first_nid &&
915 !sched_feat_numa(NUMA_FORCE))
916 return;
917
918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
919 }
920
b8593bfd
MG
921 /*
922 * Reset the scan period if enough time has gone by. Objective is that
923 * scanning will be reduced if pages are properly placed. As tasks
924 * can enter different phases this needs to be re-examined. Lacking
925 * proper tracking of reference behaviour, this blunt hammer is used.
926 */
927 migrate = mm->numa_next_reset;
928 if (time_after(now, migrate)) {
929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
931 xchg(&mm->numa_next_reset, next_scan);
932 }
933
cbee9f88
PZ
934 /*
935 * Enforce maximal scan/migration frequency..
936 */
937 migrate = mm->numa_next_scan;
938 if (time_before(now, migrate))
939 return;
940
941 if (p->numa_scan_period == 0)
942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
943
fb003b80 944 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
946 return;
947
e14808b4
MG
948 /*
949 * Do not set pte_numa if the current running node is rate-limited.
950 * This loses statistics on the fault but if we are unwilling to
951 * migrate to this node, it is less likely we can do useful work
952 */
953 if (migrate_ratelimited(numa_node_id()))
954 return;
955
9f40604c
MG
956 start = mm->numa_scan_offset;
957 pages = sysctl_numa_balancing_scan_size;
958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
959 if (!pages)
960 return;
cbee9f88 961
6e5fb223 962 down_read(&mm->mmap_sem);
9f40604c 963 vma = find_vma(mm, start);
6e5fb223
PZ
964 if (!vma) {
965 reset_ptenuma_scan(p);
9f40604c 966 start = 0;
6e5fb223
PZ
967 vma = mm->mmap;
968 }
9f40604c 969 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
970 if (!vma_migratable(vma))
971 continue;
972
973 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
975 continue;
976
9f40604c
MG
977 do {
978 start = max(start, vma->vm_start);
979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
980 end = min(end, vma->vm_end);
981 pages -= change_prot_numa(vma, start, end);
6e5fb223 982
9f40604c
MG
983 start = end;
984 if (pages <= 0)
985 goto out;
986 } while (end != vma->vm_end);
cbee9f88 987 }
6e5fb223 988
9f40604c 989out:
6e5fb223
PZ
990 /*
991 * It is possible to reach the end of the VMA list but the last few VMAs are
992 * not guaranteed to the vma_migratable. If they are not, we would find the
993 * !migratable VMA on the next scan but not reset the scanner to the start
994 * so check it now.
995 */
996 if (vma)
9f40604c 997 mm->numa_scan_offset = start;
6e5fb223
PZ
998 else
999 reset_ptenuma_scan(p);
1000 up_read(&mm->mmap_sem);
cbee9f88
PZ
1001}
1002
1003/*
1004 * Drive the periodic memory faults..
1005 */
1006void task_tick_numa(struct rq *rq, struct task_struct *curr)
1007{
1008 struct callback_head *work = &curr->numa_work;
1009 u64 period, now;
1010
1011 /*
1012 * We don't care about NUMA placement if we don't have memory.
1013 */
1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1015 return;
1016
1017 /*
1018 * Using runtime rather than walltime has the dual advantage that
1019 * we (mostly) drive the selection from busy threads and that the
1020 * task needs to have done some actual work before we bother with
1021 * NUMA placement.
1022 */
1023 now = curr->se.sum_exec_runtime;
1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1025
1026 if (now - curr->node_stamp > period) {
4b96a29b
PZ
1027 if (!curr->node_stamp)
1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
1029 curr->node_stamp = now;
1030
1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1033 task_work_add(curr, work, true);
1034 }
1035 }
1036}
1037#else
1038static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1039{
1040}
1041#endif /* CONFIG_NUMA_BALANCING */
1042
30cfdcfc
DA
1043static void
1044account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1045{
1046 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1047 if (!parent_entity(se))
029632fb 1048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1049#ifdef CONFIG_SMP
1050 if (entity_is_task(se))
eb95308e 1051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1052#endif
30cfdcfc 1053 cfs_rq->nr_running++;
30cfdcfc
DA
1054}
1055
1056static void
1057account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1058{
1059 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1060 if (!parent_entity(se))
029632fb 1061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1062 if (entity_is_task(se))
b87f1724 1063 list_del_init(&se->group_node);
30cfdcfc 1064 cfs_rq->nr_running--;
30cfdcfc
DA
1065}
1066
3ff6dcac
YZ
1067#ifdef CONFIG_FAIR_GROUP_SCHED
1068# ifdef CONFIG_SMP
cf5f0acf
PZ
1069static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1070{
1071 long tg_weight;
1072
1073 /*
1074 * Use this CPU's actual weight instead of the last load_contribution
1075 * to gain a more accurate current total weight. See
1076 * update_cfs_rq_load_contribution().
1077 */
bf5b986e 1078 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1079 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1080 tg_weight += cfs_rq->load.weight;
1081
1082 return tg_weight;
1083}
1084
6d5ab293 1085static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1086{
cf5f0acf 1087 long tg_weight, load, shares;
3ff6dcac 1088
cf5f0acf 1089 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1090 load = cfs_rq->load.weight;
3ff6dcac 1091
3ff6dcac 1092 shares = (tg->shares * load);
cf5f0acf
PZ
1093 if (tg_weight)
1094 shares /= tg_weight;
3ff6dcac
YZ
1095
1096 if (shares < MIN_SHARES)
1097 shares = MIN_SHARES;
1098 if (shares > tg->shares)
1099 shares = tg->shares;
1100
1101 return shares;
1102}
3ff6dcac 1103# else /* CONFIG_SMP */
6d5ab293 1104static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1105{
1106 return tg->shares;
1107}
3ff6dcac 1108# endif /* CONFIG_SMP */
2069dd75
PZ
1109static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1110 unsigned long weight)
1111{
19e5eebb
PT
1112 if (se->on_rq) {
1113 /* commit outstanding execution time */
1114 if (cfs_rq->curr == se)
1115 update_curr(cfs_rq);
2069dd75 1116 account_entity_dequeue(cfs_rq, se);
19e5eebb 1117 }
2069dd75
PZ
1118
1119 update_load_set(&se->load, weight);
1120
1121 if (se->on_rq)
1122 account_entity_enqueue(cfs_rq, se);
1123}
1124
82958366
PT
1125static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1126
6d5ab293 1127static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1128{
1129 struct task_group *tg;
1130 struct sched_entity *se;
3ff6dcac 1131 long shares;
2069dd75 1132
2069dd75
PZ
1133 tg = cfs_rq->tg;
1134 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1135 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1136 return;
3ff6dcac
YZ
1137#ifndef CONFIG_SMP
1138 if (likely(se->load.weight == tg->shares))
1139 return;
1140#endif
6d5ab293 1141 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1142
1143 reweight_entity(cfs_rq_of(se), se, shares);
1144}
1145#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1146static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1147{
1148}
1149#endif /* CONFIG_FAIR_GROUP_SCHED */
1150
141965c7 1151#ifdef CONFIG_SMP
5b51f2f8
PT
1152/*
1153 * We choose a half-life close to 1 scheduling period.
1154 * Note: The tables below are dependent on this value.
1155 */
1156#define LOAD_AVG_PERIOD 32
1157#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1158#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1159
1160/* Precomputed fixed inverse multiplies for multiplication by y^n */
1161static const u32 runnable_avg_yN_inv[] = {
1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1167 0x85aac367, 0x82cd8698,
1168};
1169
1170/*
1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1172 * over-estimates when re-combining.
1173 */
1174static const u32 runnable_avg_yN_sum[] = {
1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1178};
1179
9d85f21c
PT
1180/*
1181 * Approximate:
1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1183 */
1184static __always_inline u64 decay_load(u64 val, u64 n)
1185{
5b51f2f8
PT
1186 unsigned int local_n;
1187
1188 if (!n)
1189 return val;
1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1191 return 0;
1192
1193 /* after bounds checking we can collapse to 32-bit */
1194 local_n = n;
1195
1196 /*
1197 * As y^PERIOD = 1/2, we can combine
1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1199 * With a look-up table which covers k^n (n<PERIOD)
1200 *
1201 * To achieve constant time decay_load.
1202 */
1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1204 val >>= local_n / LOAD_AVG_PERIOD;
1205 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1206 }
1207
5b51f2f8
PT
1208 val *= runnable_avg_yN_inv[local_n];
1209 /* We don't use SRR here since we always want to round down. */
1210 return val >> 32;
1211}
1212
1213/*
1214 * For updates fully spanning n periods, the contribution to runnable
1215 * average will be: \Sum 1024*y^n
1216 *
1217 * We can compute this reasonably efficiently by combining:
1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1219 */
1220static u32 __compute_runnable_contrib(u64 n)
1221{
1222 u32 contrib = 0;
1223
1224 if (likely(n <= LOAD_AVG_PERIOD))
1225 return runnable_avg_yN_sum[n];
1226 else if (unlikely(n >= LOAD_AVG_MAX_N))
1227 return LOAD_AVG_MAX;
1228
1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1230 do {
1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1233
1234 n -= LOAD_AVG_PERIOD;
1235 } while (n > LOAD_AVG_PERIOD);
1236
1237 contrib = decay_load(contrib, n);
1238 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1239}
1240
1241/*
1242 * We can represent the historical contribution to runnable average as the
1243 * coefficients of a geometric series. To do this we sub-divide our runnable
1244 * history into segments of approximately 1ms (1024us); label the segment that
1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1246 *
1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1248 * p0 p1 p2
1249 * (now) (~1ms ago) (~2ms ago)
1250 *
1251 * Let u_i denote the fraction of p_i that the entity was runnable.
1252 *
1253 * We then designate the fractions u_i as our co-efficients, yielding the
1254 * following representation of historical load:
1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1256 *
1257 * We choose y based on the with of a reasonably scheduling period, fixing:
1258 * y^32 = 0.5
1259 *
1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1261 * approximately half as much as the contribution to load within the last ms
1262 * (u_0).
1263 *
1264 * When a period "rolls over" and we have new u_0`, multiplying the previous
1265 * sum again by y is sufficient to update:
1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1268 */
1269static __always_inline int __update_entity_runnable_avg(u64 now,
1270 struct sched_avg *sa,
1271 int runnable)
1272{
5b51f2f8
PT
1273 u64 delta, periods;
1274 u32 runnable_contrib;
9d85f21c
PT
1275 int delta_w, decayed = 0;
1276
1277 delta = now - sa->last_runnable_update;
1278 /*
1279 * This should only happen when time goes backwards, which it
1280 * unfortunately does during sched clock init when we swap over to TSC.
1281 */
1282 if ((s64)delta < 0) {
1283 sa->last_runnable_update = now;
1284 return 0;
1285 }
1286
1287 /*
1288 * Use 1024ns as the unit of measurement since it's a reasonable
1289 * approximation of 1us and fast to compute.
1290 */
1291 delta >>= 10;
1292 if (!delta)
1293 return 0;
1294 sa->last_runnable_update = now;
1295
1296 /* delta_w is the amount already accumulated against our next period */
1297 delta_w = sa->runnable_avg_period % 1024;
1298 if (delta + delta_w >= 1024) {
1299 /* period roll-over */
1300 decayed = 1;
1301
1302 /*
1303 * Now that we know we're crossing a period boundary, figure
1304 * out how much from delta we need to complete the current
1305 * period and accrue it.
1306 */
1307 delta_w = 1024 - delta_w;
5b51f2f8
PT
1308 if (runnable)
1309 sa->runnable_avg_sum += delta_w;
1310 sa->runnable_avg_period += delta_w;
1311
1312 delta -= delta_w;
1313
1314 /* Figure out how many additional periods this update spans */
1315 periods = delta / 1024;
1316 delta %= 1024;
1317
1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1319 periods + 1);
1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1321 periods + 1);
1322
1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1324 runnable_contrib = __compute_runnable_contrib(periods);
1325 if (runnable)
1326 sa->runnable_avg_sum += runnable_contrib;
1327 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1328 }
1329
1330 /* Remainder of delta accrued against u_0` */
1331 if (runnable)
1332 sa->runnable_avg_sum += delta;
1333 sa->runnable_avg_period += delta;
1334
1335 return decayed;
1336}
1337
9ee474f5 1338/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1339static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1340{
1341 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1342 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1343
1344 decays -= se->avg.decay_count;
1345 if (!decays)
aff3e498 1346 return 0;
9ee474f5
PT
1347
1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1349 se->avg.decay_count = 0;
aff3e498
PT
1350
1351 return decays;
9ee474f5
PT
1352}
1353
c566e8e9
PT
1354#ifdef CONFIG_FAIR_GROUP_SCHED
1355static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1356 int force_update)
1357{
1358 struct task_group *tg = cfs_rq->tg;
bf5b986e 1359 long tg_contrib;
c566e8e9
PT
1360
1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1362 tg_contrib -= cfs_rq->tg_load_contrib;
1363
bf5b986e
AS
1364 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1365 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1366 cfs_rq->tg_load_contrib += tg_contrib;
1367 }
1368}
8165e145 1369
bb17f655
PT
1370/*
1371 * Aggregate cfs_rq runnable averages into an equivalent task_group
1372 * representation for computing load contributions.
1373 */
1374static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1375 struct cfs_rq *cfs_rq)
1376{
1377 struct task_group *tg = cfs_rq->tg;
1378 long contrib;
1379
1380 /* The fraction of a cpu used by this cfs_rq */
1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1382 sa->runnable_avg_period + 1);
1383 contrib -= cfs_rq->tg_runnable_contrib;
1384
1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1386 atomic_add(contrib, &tg->runnable_avg);
1387 cfs_rq->tg_runnable_contrib += contrib;
1388 }
1389}
1390
8165e145
PT
1391static inline void __update_group_entity_contrib(struct sched_entity *se)
1392{
1393 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1394 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1395 int runnable_avg;
1396
8165e145
PT
1397 u64 contrib;
1398
1399 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1400 se->avg.load_avg_contrib = div_u64(contrib,
1401 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1402
1403 /*
1404 * For group entities we need to compute a correction term in the case
1405 * that they are consuming <1 cpu so that we would contribute the same
1406 * load as a task of equal weight.
1407 *
1408 * Explicitly co-ordinating this measurement would be expensive, but
1409 * fortunately the sum of each cpus contribution forms a usable
1410 * lower-bound on the true value.
1411 *
1412 * Consider the aggregate of 2 contributions. Either they are disjoint
1413 * (and the sum represents true value) or they are disjoint and we are
1414 * understating by the aggregate of their overlap.
1415 *
1416 * Extending this to N cpus, for a given overlap, the maximum amount we
1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1418 * cpus that overlap for this interval and w_i is the interval width.
1419 *
1420 * On a small machine; the first term is well-bounded which bounds the
1421 * total error since w_i is a subset of the period. Whereas on a
1422 * larger machine, while this first term can be larger, if w_i is the
1423 * of consequential size guaranteed to see n_i*w_i quickly converge to
1424 * our upper bound of 1-cpu.
1425 */
1426 runnable_avg = atomic_read(&tg->runnable_avg);
1427 if (runnable_avg < NICE_0_LOAD) {
1428 se->avg.load_avg_contrib *= runnable_avg;
1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1430 }
8165e145 1431}
c566e8e9
PT
1432#else
1433static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1434 int force_update) {}
bb17f655
PT
1435static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1436 struct cfs_rq *cfs_rq) {}
8165e145 1437static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1438#endif
1439
8165e145
PT
1440static inline void __update_task_entity_contrib(struct sched_entity *se)
1441{
1442 u32 contrib;
1443
1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1446 contrib /= (se->avg.runnable_avg_period + 1);
1447 se->avg.load_avg_contrib = scale_load(contrib);
1448}
1449
2dac754e
PT
1450/* Compute the current contribution to load_avg by se, return any delta */
1451static long __update_entity_load_avg_contrib(struct sched_entity *se)
1452{
1453 long old_contrib = se->avg.load_avg_contrib;
1454
8165e145
PT
1455 if (entity_is_task(se)) {
1456 __update_task_entity_contrib(se);
1457 } else {
bb17f655 1458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1459 __update_group_entity_contrib(se);
1460 }
2dac754e
PT
1461
1462 return se->avg.load_avg_contrib - old_contrib;
1463}
1464
9ee474f5
PT
1465static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1466 long load_contrib)
1467{
1468 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1469 cfs_rq->blocked_load_avg -= load_contrib;
1470 else
1471 cfs_rq->blocked_load_avg = 0;
1472}
1473
f1b17280
PT
1474static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1475
9d85f21c 1476/* Update a sched_entity's runnable average */
9ee474f5
PT
1477static inline void update_entity_load_avg(struct sched_entity *se,
1478 int update_cfs_rq)
9d85f21c 1479{
2dac754e
PT
1480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1481 long contrib_delta;
f1b17280 1482 u64 now;
2dac754e 1483
f1b17280
PT
1484 /*
1485 * For a group entity we need to use their owned cfs_rq_clock_task() in
1486 * case they are the parent of a throttled hierarchy.
1487 */
1488 if (entity_is_task(se))
1489 now = cfs_rq_clock_task(cfs_rq);
1490 else
1491 now = cfs_rq_clock_task(group_cfs_rq(se));
1492
1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1494 return;
1495
1496 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1497
1498 if (!update_cfs_rq)
1499 return;
1500
2dac754e
PT
1501 if (se->on_rq)
1502 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1503 else
1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1505}
1506
1507/*
1508 * Decay the load contributed by all blocked children and account this so that
1509 * their contribution may appropriately discounted when they wake up.
1510 */
aff3e498 1511static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1512{
f1b17280 1513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1514 u64 decays;
1515
1516 decays = now - cfs_rq->last_decay;
aff3e498 1517 if (!decays && !force_update)
9ee474f5
PT
1518 return;
1519
2509940f
AS
1520 if (atomic_long_read(&cfs_rq->removed_load)) {
1521 unsigned long removed_load;
1522 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
1523 subtract_blocked_load_contrib(cfs_rq, removed_load);
1524 }
9ee474f5 1525
aff3e498
PT
1526 if (decays) {
1527 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1528 decays);
1529 atomic64_add(decays, &cfs_rq->decay_counter);
1530 cfs_rq->last_decay = now;
1531 }
c566e8e9
PT
1532
1533 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1534}
18bf2805
BS
1535
1536static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1537{
78becc27 1538 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1539 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1540}
2dac754e
PT
1541
1542/* Add the load generated by se into cfs_rq's child load-average */
1543static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1544 struct sched_entity *se,
1545 int wakeup)
2dac754e 1546{
aff3e498
PT
1547 /*
1548 * We track migrations using entity decay_count <= 0, on a wake-up
1549 * migration we use a negative decay count to track the remote decays
1550 * accumulated while sleeping.
a75cdaa9
AS
1551 *
1552 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1553 * are seen by enqueue_entity_load_avg() as a migration with an already
1554 * constructed load_avg_contrib.
aff3e498
PT
1555 */
1556 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1557 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1558 if (se->avg.decay_count) {
1559 /*
1560 * In a wake-up migration we have to approximate the
1561 * time sleeping. This is because we can't synchronize
1562 * clock_task between the two cpus, and it is not
1563 * guaranteed to be read-safe. Instead, we can
1564 * approximate this using our carried decays, which are
1565 * explicitly atomically readable.
1566 */
1567 se->avg.last_runnable_update -= (-se->avg.decay_count)
1568 << 20;
1569 update_entity_load_avg(se, 0);
1570 /* Indicate that we're now synchronized and on-rq */
1571 se->avg.decay_count = 0;
1572 }
9ee474f5
PT
1573 wakeup = 0;
1574 } else {
282cf499
AS
1575 /*
1576 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1577 * would have made count negative); we must be careful to avoid
1578 * double-accounting blocked time after synchronizing decays.
1579 */
1580 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1581 << 20;
9ee474f5
PT
1582 }
1583
aff3e498
PT
1584 /* migrated tasks did not contribute to our blocked load */
1585 if (wakeup) {
9ee474f5 1586 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1587 update_entity_load_avg(se, 0);
1588 }
9ee474f5 1589
2dac754e 1590 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1591 /* we force update consideration on load-balancer moves */
1592 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1593}
1594
9ee474f5
PT
1595/*
1596 * Remove se's load from this cfs_rq child load-average, if the entity is
1597 * transitioning to a blocked state we track its projected decay using
1598 * blocked_load_avg.
1599 */
2dac754e 1600static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1601 struct sched_entity *se,
1602 int sleep)
2dac754e 1603{
9ee474f5 1604 update_entity_load_avg(se, 1);
aff3e498
PT
1605 /* we force update consideration on load-balancer moves */
1606 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1607
2dac754e 1608 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1609 if (sleep) {
1610 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1611 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1612 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1613}
642dbc39
VG
1614
1615/*
1616 * Update the rq's load with the elapsed running time before entering
1617 * idle. if the last scheduled task is not a CFS task, idle_enter will
1618 * be the only way to update the runnable statistic.
1619 */
1620void idle_enter_fair(struct rq *this_rq)
1621{
1622 update_rq_runnable_avg(this_rq, 1);
1623}
1624
1625/*
1626 * Update the rq's load with the elapsed idle time before a task is
1627 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1628 * be the only way to update the runnable statistic.
1629 */
1630void idle_exit_fair(struct rq *this_rq)
1631{
1632 update_rq_runnable_avg(this_rq, 0);
1633}
1634
9d85f21c 1635#else
9ee474f5
PT
1636static inline void update_entity_load_avg(struct sched_entity *se,
1637 int update_cfs_rq) {}
18bf2805 1638static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1639static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1640 struct sched_entity *se,
1641 int wakeup) {}
2dac754e 1642static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1643 struct sched_entity *se,
1644 int sleep) {}
aff3e498
PT
1645static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1646 int force_update) {}
9d85f21c
PT
1647#endif
1648
2396af69 1649static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1650{
bf0f6f24 1651#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1652 struct task_struct *tsk = NULL;
1653
1654 if (entity_is_task(se))
1655 tsk = task_of(se);
1656
41acab88 1657 if (se->statistics.sleep_start) {
78becc27 1658 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1659
1660 if ((s64)delta < 0)
1661 delta = 0;
1662
41acab88
LDM
1663 if (unlikely(delta > se->statistics.sleep_max))
1664 se->statistics.sleep_max = delta;
bf0f6f24 1665
8c79a045 1666 se->statistics.sleep_start = 0;
41acab88 1667 se->statistics.sum_sleep_runtime += delta;
9745512c 1668
768d0c27 1669 if (tsk) {
e414314c 1670 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1671 trace_sched_stat_sleep(tsk, delta);
1672 }
bf0f6f24 1673 }
41acab88 1674 if (se->statistics.block_start) {
78becc27 1675 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1676
1677 if ((s64)delta < 0)
1678 delta = 0;
1679
41acab88
LDM
1680 if (unlikely(delta > se->statistics.block_max))
1681 se->statistics.block_max = delta;
bf0f6f24 1682
8c79a045 1683 se->statistics.block_start = 0;
41acab88 1684 se->statistics.sum_sleep_runtime += delta;
30084fbd 1685
e414314c 1686 if (tsk) {
8f0dfc34 1687 if (tsk->in_iowait) {
41acab88
LDM
1688 se->statistics.iowait_sum += delta;
1689 se->statistics.iowait_count++;
768d0c27 1690 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1691 }
1692
b781a602
AV
1693 trace_sched_stat_blocked(tsk, delta);
1694
e414314c
PZ
1695 /*
1696 * Blocking time is in units of nanosecs, so shift by
1697 * 20 to get a milliseconds-range estimation of the
1698 * amount of time that the task spent sleeping:
1699 */
1700 if (unlikely(prof_on == SLEEP_PROFILING)) {
1701 profile_hits(SLEEP_PROFILING,
1702 (void *)get_wchan(tsk),
1703 delta >> 20);
1704 }
1705 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1706 }
bf0f6f24
IM
1707 }
1708#endif
1709}
1710
ddc97297
PZ
1711static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1712{
1713#ifdef CONFIG_SCHED_DEBUG
1714 s64 d = se->vruntime - cfs_rq->min_vruntime;
1715
1716 if (d < 0)
1717 d = -d;
1718
1719 if (d > 3*sysctl_sched_latency)
1720 schedstat_inc(cfs_rq, nr_spread_over);
1721#endif
1722}
1723
aeb73b04
PZ
1724static void
1725place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1726{
1af5f730 1727 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1728
2cb8600e
PZ
1729 /*
1730 * The 'current' period is already promised to the current tasks,
1731 * however the extra weight of the new task will slow them down a
1732 * little, place the new task so that it fits in the slot that
1733 * stays open at the end.
1734 */
94dfb5e7 1735 if (initial && sched_feat(START_DEBIT))
f9c0b095 1736 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1737
a2e7a7eb 1738 /* sleeps up to a single latency don't count. */
5ca9880c 1739 if (!initial) {
a2e7a7eb 1740 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1741
a2e7a7eb
MG
1742 /*
1743 * Halve their sleep time's effect, to allow
1744 * for a gentler effect of sleepers:
1745 */
1746 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1747 thresh >>= 1;
51e0304c 1748
a2e7a7eb 1749 vruntime -= thresh;
aeb73b04
PZ
1750 }
1751
b5d9d734 1752 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1753 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1754}
1755
d3d9dc33
PT
1756static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1757
bf0f6f24 1758static void
88ec22d3 1759enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1760{
88ec22d3
PZ
1761 /*
1762 * Update the normalized vruntime before updating min_vruntime
0fc576d5 1763 * through calling update_curr().
88ec22d3 1764 */
371fd7e7 1765 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1766 se->vruntime += cfs_rq->min_vruntime;
1767
bf0f6f24 1768 /*
a2a2d680 1769 * Update run-time statistics of the 'current'.
bf0f6f24 1770 */
b7cc0896 1771 update_curr(cfs_rq);
f269ae04 1772 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1773 account_entity_enqueue(cfs_rq, se);
1774 update_cfs_shares(cfs_rq);
bf0f6f24 1775
88ec22d3 1776 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1777 place_entity(cfs_rq, se, 0);
2396af69 1778 enqueue_sleeper(cfs_rq, se);
e9acbff6 1779 }
bf0f6f24 1780
d2417e5a 1781 update_stats_enqueue(cfs_rq, se);
ddc97297 1782 check_spread(cfs_rq, se);
83b699ed
SV
1783 if (se != cfs_rq->curr)
1784 __enqueue_entity(cfs_rq, se);
2069dd75 1785 se->on_rq = 1;
3d4b47b4 1786
d3d9dc33 1787 if (cfs_rq->nr_running == 1) {
3d4b47b4 1788 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1789 check_enqueue_throttle(cfs_rq);
1790 }
bf0f6f24
IM
1791}
1792
2c13c919 1793static void __clear_buddies_last(struct sched_entity *se)
2002c695 1794{
2c13c919
RR
1795 for_each_sched_entity(se) {
1796 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1797 if (cfs_rq->last == se)
1798 cfs_rq->last = NULL;
1799 else
1800 break;
1801 }
1802}
2002c695 1803
2c13c919
RR
1804static void __clear_buddies_next(struct sched_entity *se)
1805{
1806 for_each_sched_entity(se) {
1807 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1808 if (cfs_rq->next == se)
1809 cfs_rq->next = NULL;
1810 else
1811 break;
1812 }
2002c695
PZ
1813}
1814
ac53db59
RR
1815static void __clear_buddies_skip(struct sched_entity *se)
1816{
1817 for_each_sched_entity(se) {
1818 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1819 if (cfs_rq->skip == se)
1820 cfs_rq->skip = NULL;
1821 else
1822 break;
1823 }
1824}
1825
a571bbea
PZ
1826static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1827{
2c13c919
RR
1828 if (cfs_rq->last == se)
1829 __clear_buddies_last(se);
1830
1831 if (cfs_rq->next == se)
1832 __clear_buddies_next(se);
ac53db59
RR
1833
1834 if (cfs_rq->skip == se)
1835 __clear_buddies_skip(se);
a571bbea
PZ
1836}
1837
6c16a6dc 1838static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1839
bf0f6f24 1840static void
371fd7e7 1841dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1842{
a2a2d680
DA
1843 /*
1844 * Update run-time statistics of the 'current'.
1845 */
1846 update_curr(cfs_rq);
17bc14b7 1847 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1848
19b6a2e3 1849 update_stats_dequeue(cfs_rq, se);
371fd7e7 1850 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1851#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1852 if (entity_is_task(se)) {
1853 struct task_struct *tsk = task_of(se);
1854
1855 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1856 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1857 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1858 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1859 }
db36cc7d 1860#endif
67e9fb2a
PZ
1861 }
1862
2002c695 1863 clear_buddies(cfs_rq, se);
4793241b 1864
83b699ed 1865 if (se != cfs_rq->curr)
30cfdcfc 1866 __dequeue_entity(cfs_rq, se);
17bc14b7 1867 se->on_rq = 0;
30cfdcfc 1868 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1869
1870 /*
1871 * Normalize the entity after updating the min_vruntime because the
1872 * update can refer to the ->curr item and we need to reflect this
1873 * movement in our normalized position.
1874 */
371fd7e7 1875 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1876 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1877
d8b4986d
PT
1878 /* return excess runtime on last dequeue */
1879 return_cfs_rq_runtime(cfs_rq);
1880
1e876231 1881 update_min_vruntime(cfs_rq);
17bc14b7 1882 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1883}
1884
1885/*
1886 * Preempt the current task with a newly woken task if needed:
1887 */
7c92e54f 1888static void
2e09bf55 1889check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1890{
11697830 1891 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1892 struct sched_entity *se;
1893 s64 delta;
11697830 1894
6d0f0ebd 1895 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1896 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1897 if (delta_exec > ideal_runtime) {
bf0f6f24 1898 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1899 /*
1900 * The current task ran long enough, ensure it doesn't get
1901 * re-elected due to buddy favours.
1902 */
1903 clear_buddies(cfs_rq, curr);
f685ceac
MG
1904 return;
1905 }
1906
1907 /*
1908 * Ensure that a task that missed wakeup preemption by a
1909 * narrow margin doesn't have to wait for a full slice.
1910 * This also mitigates buddy induced latencies under load.
1911 */
f685ceac
MG
1912 if (delta_exec < sysctl_sched_min_granularity)
1913 return;
1914
f4cfb33e
WX
1915 se = __pick_first_entity(cfs_rq);
1916 delta = curr->vruntime - se->vruntime;
f685ceac 1917
f4cfb33e
WX
1918 if (delta < 0)
1919 return;
d7d82944 1920
f4cfb33e
WX
1921 if (delta > ideal_runtime)
1922 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1923}
1924
83b699ed 1925static void
8494f412 1926set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1927{
83b699ed
SV
1928 /* 'current' is not kept within the tree. */
1929 if (se->on_rq) {
1930 /*
1931 * Any task has to be enqueued before it get to execute on
1932 * a CPU. So account for the time it spent waiting on the
1933 * runqueue.
1934 */
1935 update_stats_wait_end(cfs_rq, se);
1936 __dequeue_entity(cfs_rq, se);
1937 }
1938
79303e9e 1939 update_stats_curr_start(cfs_rq, se);
429d43bc 1940 cfs_rq->curr = se;
eba1ed4b
IM
1941#ifdef CONFIG_SCHEDSTATS
1942 /*
1943 * Track our maximum slice length, if the CPU's load is at
1944 * least twice that of our own weight (i.e. dont track it
1945 * when there are only lesser-weight tasks around):
1946 */
495eca49 1947 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1948 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1949 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1950 }
1951#endif
4a55b450 1952 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1953}
1954
3f3a4904
PZ
1955static int
1956wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1957
ac53db59
RR
1958/*
1959 * Pick the next process, keeping these things in mind, in this order:
1960 * 1) keep things fair between processes/task groups
1961 * 2) pick the "next" process, since someone really wants that to run
1962 * 3) pick the "last" process, for cache locality
1963 * 4) do not run the "skip" process, if something else is available
1964 */
f4b6755f 1965static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1966{
ac53db59 1967 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1968 struct sched_entity *left = se;
f4b6755f 1969
ac53db59
RR
1970 /*
1971 * Avoid running the skip buddy, if running something else can
1972 * be done without getting too unfair.
1973 */
1974 if (cfs_rq->skip == se) {
1975 struct sched_entity *second = __pick_next_entity(se);
1976 if (second && wakeup_preempt_entity(second, left) < 1)
1977 se = second;
1978 }
aa2ac252 1979
f685ceac
MG
1980 /*
1981 * Prefer last buddy, try to return the CPU to a preempted task.
1982 */
1983 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1984 se = cfs_rq->last;
1985
ac53db59
RR
1986 /*
1987 * Someone really wants this to run. If it's not unfair, run it.
1988 */
1989 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1990 se = cfs_rq->next;
1991
f685ceac 1992 clear_buddies(cfs_rq, se);
4793241b
PZ
1993
1994 return se;
aa2ac252
PZ
1995}
1996
d3d9dc33
PT
1997static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1998
ab6cde26 1999static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2000{
2001 /*
2002 * If still on the runqueue then deactivate_task()
2003 * was not called and update_curr() has to be done:
2004 */
2005 if (prev->on_rq)
b7cc0896 2006 update_curr(cfs_rq);
bf0f6f24 2007
d3d9dc33
PT
2008 /* throttle cfs_rqs exceeding runtime */
2009 check_cfs_rq_runtime(cfs_rq);
2010
ddc97297 2011 check_spread(cfs_rq, prev);
30cfdcfc 2012 if (prev->on_rq) {
5870db5b 2013 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2014 /* Put 'current' back into the tree. */
2015 __enqueue_entity(cfs_rq, prev);
9d85f21c 2016 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2017 update_entity_load_avg(prev, 1);
30cfdcfc 2018 }
429d43bc 2019 cfs_rq->curr = NULL;
bf0f6f24
IM
2020}
2021
8f4d37ec
PZ
2022static void
2023entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2024{
bf0f6f24 2025 /*
30cfdcfc 2026 * Update run-time statistics of the 'current'.
bf0f6f24 2027 */
30cfdcfc 2028 update_curr(cfs_rq);
bf0f6f24 2029
9d85f21c
PT
2030 /*
2031 * Ensure that runnable average is periodically updated.
2032 */
9ee474f5 2033 update_entity_load_avg(curr, 1);
aff3e498 2034 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 2035
8f4d37ec
PZ
2036#ifdef CONFIG_SCHED_HRTICK
2037 /*
2038 * queued ticks are scheduled to match the slice, so don't bother
2039 * validating it and just reschedule.
2040 */
983ed7a6
HH
2041 if (queued) {
2042 resched_task(rq_of(cfs_rq)->curr);
2043 return;
2044 }
8f4d37ec
PZ
2045 /*
2046 * don't let the period tick interfere with the hrtick preemption
2047 */
2048 if (!sched_feat(DOUBLE_TICK) &&
2049 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2050 return;
2051#endif
2052
2c2efaed 2053 if (cfs_rq->nr_running > 1)
2e09bf55 2054 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2055}
2056
ab84d31e
PT
2057
2058/**************************************************
2059 * CFS bandwidth control machinery
2060 */
2061
2062#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2063
2064#ifdef HAVE_JUMP_LABEL
c5905afb 2065static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2066
2067static inline bool cfs_bandwidth_used(void)
2068{
c5905afb 2069 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2070}
2071
2072void account_cfs_bandwidth_used(int enabled, int was_enabled)
2073{
2074 /* only need to count groups transitioning between enabled/!enabled */
2075 if (enabled && !was_enabled)
c5905afb 2076 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2077 else if (!enabled && was_enabled)
c5905afb 2078 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2079}
2080#else /* HAVE_JUMP_LABEL */
2081static bool cfs_bandwidth_used(void)
2082{
2083 return true;
2084}
2085
2086void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2087#endif /* HAVE_JUMP_LABEL */
2088
ab84d31e
PT
2089/*
2090 * default period for cfs group bandwidth.
2091 * default: 0.1s, units: nanoseconds
2092 */
2093static inline u64 default_cfs_period(void)
2094{
2095 return 100000000ULL;
2096}
ec12cb7f
PT
2097
2098static inline u64 sched_cfs_bandwidth_slice(void)
2099{
2100 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2101}
2102
a9cf55b2
PT
2103/*
2104 * Replenish runtime according to assigned quota and update expiration time.
2105 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2106 * additional synchronization around rq->lock.
2107 *
2108 * requires cfs_b->lock
2109 */
029632fb 2110void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2111{
2112 u64 now;
2113
2114 if (cfs_b->quota == RUNTIME_INF)
2115 return;
2116
2117 now = sched_clock_cpu(smp_processor_id());
2118 cfs_b->runtime = cfs_b->quota;
2119 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2120}
2121
029632fb
PZ
2122static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2123{
2124 return &tg->cfs_bandwidth;
2125}
2126
f1b17280
PT
2127/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2128static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2129{
2130 if (unlikely(cfs_rq->throttle_count))
2131 return cfs_rq->throttled_clock_task;
2132
78becc27 2133 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2134}
2135
85dac906
PT
2136/* returns 0 on failure to allocate runtime */
2137static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2138{
2139 struct task_group *tg = cfs_rq->tg;
2140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2141 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2142
2143 /* note: this is a positive sum as runtime_remaining <= 0 */
2144 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2145
2146 raw_spin_lock(&cfs_b->lock);
2147 if (cfs_b->quota == RUNTIME_INF)
2148 amount = min_amount;
58088ad0 2149 else {
a9cf55b2
PT
2150 /*
2151 * If the bandwidth pool has become inactive, then at least one
2152 * period must have elapsed since the last consumption.
2153 * Refresh the global state and ensure bandwidth timer becomes
2154 * active.
2155 */
2156 if (!cfs_b->timer_active) {
2157 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2158 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2159 }
58088ad0
PT
2160
2161 if (cfs_b->runtime > 0) {
2162 amount = min(cfs_b->runtime, min_amount);
2163 cfs_b->runtime -= amount;
2164 cfs_b->idle = 0;
2165 }
ec12cb7f 2166 }
a9cf55b2 2167 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2168 raw_spin_unlock(&cfs_b->lock);
2169
2170 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2171 /*
2172 * we may have advanced our local expiration to account for allowed
2173 * spread between our sched_clock and the one on which runtime was
2174 * issued.
2175 */
2176 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2177 cfs_rq->runtime_expires = expires;
85dac906
PT
2178
2179 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2180}
2181
a9cf55b2
PT
2182/*
2183 * Note: This depends on the synchronization provided by sched_clock and the
2184 * fact that rq->clock snapshots this value.
2185 */
2186static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2187{
a9cf55b2 2188 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2189
2190 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2191 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2192 return;
2193
a9cf55b2
PT
2194 if (cfs_rq->runtime_remaining < 0)
2195 return;
2196
2197 /*
2198 * If the local deadline has passed we have to consider the
2199 * possibility that our sched_clock is 'fast' and the global deadline
2200 * has not truly expired.
2201 *
2202 * Fortunately we can check determine whether this the case by checking
2203 * whether the global deadline has advanced.
2204 */
2205
2206 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2207 /* extend local deadline, drift is bounded above by 2 ticks */
2208 cfs_rq->runtime_expires += TICK_NSEC;
2209 } else {
2210 /* global deadline is ahead, expiration has passed */
2211 cfs_rq->runtime_remaining = 0;
2212 }
2213}
2214
2215static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2216 unsigned long delta_exec)
2217{
2218 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2219 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2220 expire_cfs_rq_runtime(cfs_rq);
2221
2222 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2223 return;
2224
85dac906
PT
2225 /*
2226 * if we're unable to extend our runtime we resched so that the active
2227 * hierarchy can be throttled
2228 */
2229 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2230 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2231}
2232
6c16a6dc
PZ
2233static __always_inline
2234void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2235{
56f570e5 2236 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2237 return;
2238
2239 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2240}
2241
85dac906
PT
2242static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2243{
56f570e5 2244 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2245}
2246
64660c86
PT
2247/* check whether cfs_rq, or any parent, is throttled */
2248static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2249{
56f570e5 2250 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2251}
2252
2253/*
2254 * Ensure that neither of the group entities corresponding to src_cpu or
2255 * dest_cpu are members of a throttled hierarchy when performing group
2256 * load-balance operations.
2257 */
2258static inline int throttled_lb_pair(struct task_group *tg,
2259 int src_cpu, int dest_cpu)
2260{
2261 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2262
2263 src_cfs_rq = tg->cfs_rq[src_cpu];
2264 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2265
2266 return throttled_hierarchy(src_cfs_rq) ||
2267 throttled_hierarchy(dest_cfs_rq);
2268}
2269
2270/* updated child weight may affect parent so we have to do this bottom up */
2271static int tg_unthrottle_up(struct task_group *tg, void *data)
2272{
2273 struct rq *rq = data;
2274 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2275
2276 cfs_rq->throttle_count--;
2277#ifdef CONFIG_SMP
2278 if (!cfs_rq->throttle_count) {
f1b17280 2279 /* adjust cfs_rq_clock_task() */
78becc27 2280 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2281 cfs_rq->throttled_clock_task;
64660c86
PT
2282 }
2283#endif
2284
2285 return 0;
2286}
2287
2288static int tg_throttle_down(struct task_group *tg, void *data)
2289{
2290 struct rq *rq = data;
2291 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2292
82958366
PT
2293 /* group is entering throttled state, stop time */
2294 if (!cfs_rq->throttle_count)
78becc27 2295 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2296 cfs_rq->throttle_count++;
2297
2298 return 0;
2299}
2300
d3d9dc33 2301static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2302{
2303 struct rq *rq = rq_of(cfs_rq);
2304 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2305 struct sched_entity *se;
2306 long task_delta, dequeue = 1;
2307
2308 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2309
f1b17280 2310 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2311 rcu_read_lock();
2312 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2313 rcu_read_unlock();
85dac906
PT
2314
2315 task_delta = cfs_rq->h_nr_running;
2316 for_each_sched_entity(se) {
2317 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2318 /* throttled entity or throttle-on-deactivate */
2319 if (!se->on_rq)
2320 break;
2321
2322 if (dequeue)
2323 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2324 qcfs_rq->h_nr_running -= task_delta;
2325
2326 if (qcfs_rq->load.weight)
2327 dequeue = 0;
2328 }
2329
2330 if (!se)
2331 rq->nr_running -= task_delta;
2332
2333 cfs_rq->throttled = 1;
78becc27 2334 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2335 raw_spin_lock(&cfs_b->lock);
2336 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2337 raw_spin_unlock(&cfs_b->lock);
2338}
2339
029632fb 2340void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2341{
2342 struct rq *rq = rq_of(cfs_rq);
2343 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2344 struct sched_entity *se;
2345 int enqueue = 1;
2346 long task_delta;
2347
22b958d8 2348 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2349
2350 cfs_rq->throttled = 0;
1a55af2e
FW
2351
2352 update_rq_clock(rq);
2353
671fd9da 2354 raw_spin_lock(&cfs_b->lock);
78becc27 2355 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2356 list_del_rcu(&cfs_rq->throttled_list);
2357 raw_spin_unlock(&cfs_b->lock);
2358
64660c86
PT
2359 /* update hierarchical throttle state */
2360 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2361
671fd9da
PT
2362 if (!cfs_rq->load.weight)
2363 return;
2364
2365 task_delta = cfs_rq->h_nr_running;
2366 for_each_sched_entity(se) {
2367 if (se->on_rq)
2368 enqueue = 0;
2369
2370 cfs_rq = cfs_rq_of(se);
2371 if (enqueue)
2372 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2373 cfs_rq->h_nr_running += task_delta;
2374
2375 if (cfs_rq_throttled(cfs_rq))
2376 break;
2377 }
2378
2379 if (!se)
2380 rq->nr_running += task_delta;
2381
2382 /* determine whether we need to wake up potentially idle cpu */
2383 if (rq->curr == rq->idle && rq->cfs.nr_running)
2384 resched_task(rq->curr);
2385}
2386
2387static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2388 u64 remaining, u64 expires)
2389{
2390 struct cfs_rq *cfs_rq;
2391 u64 runtime = remaining;
2392
2393 rcu_read_lock();
2394 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2395 throttled_list) {
2396 struct rq *rq = rq_of(cfs_rq);
2397
2398 raw_spin_lock(&rq->lock);
2399 if (!cfs_rq_throttled(cfs_rq))
2400 goto next;
2401
2402 runtime = -cfs_rq->runtime_remaining + 1;
2403 if (runtime > remaining)
2404 runtime = remaining;
2405 remaining -= runtime;
2406
2407 cfs_rq->runtime_remaining += runtime;
2408 cfs_rq->runtime_expires = expires;
2409
2410 /* we check whether we're throttled above */
2411 if (cfs_rq->runtime_remaining > 0)
2412 unthrottle_cfs_rq(cfs_rq);
2413
2414next:
2415 raw_spin_unlock(&rq->lock);
2416
2417 if (!remaining)
2418 break;
2419 }
2420 rcu_read_unlock();
2421
2422 return remaining;
2423}
2424
58088ad0
PT
2425/*
2426 * Responsible for refilling a task_group's bandwidth and unthrottling its
2427 * cfs_rqs as appropriate. If there has been no activity within the last
2428 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2429 * used to track this state.
2430 */
2431static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2432{
671fd9da
PT
2433 u64 runtime, runtime_expires;
2434 int idle = 1, throttled;
58088ad0
PT
2435
2436 raw_spin_lock(&cfs_b->lock);
2437 /* no need to continue the timer with no bandwidth constraint */
2438 if (cfs_b->quota == RUNTIME_INF)
2439 goto out_unlock;
2440
671fd9da
PT
2441 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2442 /* idle depends on !throttled (for the case of a large deficit) */
2443 idle = cfs_b->idle && !throttled;
e8da1b18 2444 cfs_b->nr_periods += overrun;
671fd9da 2445
a9cf55b2
PT
2446 /* if we're going inactive then everything else can be deferred */
2447 if (idle)
2448 goto out_unlock;
2449
2450 __refill_cfs_bandwidth_runtime(cfs_b);
2451
671fd9da
PT
2452 if (!throttled) {
2453 /* mark as potentially idle for the upcoming period */
2454 cfs_b->idle = 1;
2455 goto out_unlock;
2456 }
2457
e8da1b18
NR
2458 /* account preceding periods in which throttling occurred */
2459 cfs_b->nr_throttled += overrun;
2460
671fd9da
PT
2461 /*
2462 * There are throttled entities so we must first use the new bandwidth
2463 * to unthrottle them before making it generally available. This
2464 * ensures that all existing debts will be paid before a new cfs_rq is
2465 * allowed to run.
2466 */
2467 runtime = cfs_b->runtime;
2468 runtime_expires = cfs_b->runtime_expires;
2469 cfs_b->runtime = 0;
2470
2471 /*
2472 * This check is repeated as we are holding onto the new bandwidth
2473 * while we unthrottle. This can potentially race with an unthrottled
2474 * group trying to acquire new bandwidth from the global pool.
2475 */
2476 while (throttled && runtime > 0) {
2477 raw_spin_unlock(&cfs_b->lock);
2478 /* we can't nest cfs_b->lock while distributing bandwidth */
2479 runtime = distribute_cfs_runtime(cfs_b, runtime,
2480 runtime_expires);
2481 raw_spin_lock(&cfs_b->lock);
2482
2483 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2484 }
58088ad0 2485
671fd9da
PT
2486 /* return (any) remaining runtime */
2487 cfs_b->runtime = runtime;
2488 /*
2489 * While we are ensured activity in the period following an
2490 * unthrottle, this also covers the case in which the new bandwidth is
2491 * insufficient to cover the existing bandwidth deficit. (Forcing the
2492 * timer to remain active while there are any throttled entities.)
2493 */
2494 cfs_b->idle = 0;
58088ad0
PT
2495out_unlock:
2496 if (idle)
2497 cfs_b->timer_active = 0;
2498 raw_spin_unlock(&cfs_b->lock);
2499
2500 return idle;
2501}
d3d9dc33 2502
d8b4986d
PT
2503/* a cfs_rq won't donate quota below this amount */
2504static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2505/* minimum remaining period time to redistribute slack quota */
2506static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2507/* how long we wait to gather additional slack before distributing */
2508static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2509
2510/* are we near the end of the current quota period? */
2511static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2512{
2513 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2514 u64 remaining;
2515
2516 /* if the call-back is running a quota refresh is already occurring */
2517 if (hrtimer_callback_running(refresh_timer))
2518 return 1;
2519
2520 /* is a quota refresh about to occur? */
2521 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2522 if (remaining < min_expire)
2523 return 1;
2524
2525 return 0;
2526}
2527
2528static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2529{
2530 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2531
2532 /* if there's a quota refresh soon don't bother with slack */
2533 if (runtime_refresh_within(cfs_b, min_left))
2534 return;
2535
2536 start_bandwidth_timer(&cfs_b->slack_timer,
2537 ns_to_ktime(cfs_bandwidth_slack_period));
2538}
2539
2540/* we know any runtime found here is valid as update_curr() precedes return */
2541static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2542{
2543 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2544 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2545
2546 if (slack_runtime <= 0)
2547 return;
2548
2549 raw_spin_lock(&cfs_b->lock);
2550 if (cfs_b->quota != RUNTIME_INF &&
2551 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2552 cfs_b->runtime += slack_runtime;
2553
2554 /* we are under rq->lock, defer unthrottling using a timer */
2555 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2556 !list_empty(&cfs_b->throttled_cfs_rq))
2557 start_cfs_slack_bandwidth(cfs_b);
2558 }
2559 raw_spin_unlock(&cfs_b->lock);
2560
2561 /* even if it's not valid for return we don't want to try again */
2562 cfs_rq->runtime_remaining -= slack_runtime;
2563}
2564
2565static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2566{
56f570e5
PT
2567 if (!cfs_bandwidth_used())
2568 return;
2569
fccfdc6f 2570 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2571 return;
2572
2573 __return_cfs_rq_runtime(cfs_rq);
2574}
2575
2576/*
2577 * This is done with a timer (instead of inline with bandwidth return) since
2578 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2579 */
2580static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2581{
2582 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2583 u64 expires;
2584
2585 /* confirm we're still not at a refresh boundary */
2586 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2587 return;
2588
2589 raw_spin_lock(&cfs_b->lock);
2590 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2591 runtime = cfs_b->runtime;
2592 cfs_b->runtime = 0;
2593 }
2594 expires = cfs_b->runtime_expires;
2595 raw_spin_unlock(&cfs_b->lock);
2596
2597 if (!runtime)
2598 return;
2599
2600 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2601
2602 raw_spin_lock(&cfs_b->lock);
2603 if (expires == cfs_b->runtime_expires)
2604 cfs_b->runtime = runtime;
2605 raw_spin_unlock(&cfs_b->lock);
2606}
2607
d3d9dc33
PT
2608/*
2609 * When a group wakes up we want to make sure that its quota is not already
2610 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2611 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2612 */
2613static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2614{
56f570e5
PT
2615 if (!cfs_bandwidth_used())
2616 return;
2617
d3d9dc33
PT
2618 /* an active group must be handled by the update_curr()->put() path */
2619 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2620 return;
2621
2622 /* ensure the group is not already throttled */
2623 if (cfs_rq_throttled(cfs_rq))
2624 return;
2625
2626 /* update runtime allocation */
2627 account_cfs_rq_runtime(cfs_rq, 0);
2628 if (cfs_rq->runtime_remaining <= 0)
2629 throttle_cfs_rq(cfs_rq);
2630}
2631
2632/* conditionally throttle active cfs_rq's from put_prev_entity() */
2633static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2634{
56f570e5
PT
2635 if (!cfs_bandwidth_used())
2636 return;
2637
d3d9dc33
PT
2638 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2639 return;
2640
2641 /*
2642 * it's possible for a throttled entity to be forced into a running
2643 * state (e.g. set_curr_task), in this case we're finished.
2644 */
2645 if (cfs_rq_throttled(cfs_rq))
2646 return;
2647
2648 throttle_cfs_rq(cfs_rq);
2649}
029632fb 2650
029632fb
PZ
2651static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2652{
2653 struct cfs_bandwidth *cfs_b =
2654 container_of(timer, struct cfs_bandwidth, slack_timer);
2655 do_sched_cfs_slack_timer(cfs_b);
2656
2657 return HRTIMER_NORESTART;
2658}
2659
2660static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2661{
2662 struct cfs_bandwidth *cfs_b =
2663 container_of(timer, struct cfs_bandwidth, period_timer);
2664 ktime_t now;
2665 int overrun;
2666 int idle = 0;
2667
2668 for (;;) {
2669 now = hrtimer_cb_get_time(timer);
2670 overrun = hrtimer_forward(timer, now, cfs_b->period);
2671
2672 if (!overrun)
2673 break;
2674
2675 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2676 }
2677
2678 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2679}
2680
2681void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2682{
2683 raw_spin_lock_init(&cfs_b->lock);
2684 cfs_b->runtime = 0;
2685 cfs_b->quota = RUNTIME_INF;
2686 cfs_b->period = ns_to_ktime(default_cfs_period());
2687
2688 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2689 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2690 cfs_b->period_timer.function = sched_cfs_period_timer;
2691 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2692 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2693}
2694
2695static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2696{
2697 cfs_rq->runtime_enabled = 0;
2698 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2699}
2700
2701/* requires cfs_b->lock, may release to reprogram timer */
2702void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2703{
2704 /*
2705 * The timer may be active because we're trying to set a new bandwidth
2706 * period or because we're racing with the tear-down path
2707 * (timer_active==0 becomes visible before the hrtimer call-back
2708 * terminates). In either case we ensure that it's re-programmed
2709 */
2710 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2711 raw_spin_unlock(&cfs_b->lock);
2712 /* ensure cfs_b->lock is available while we wait */
2713 hrtimer_cancel(&cfs_b->period_timer);
2714
2715 raw_spin_lock(&cfs_b->lock);
2716 /* if someone else restarted the timer then we're done */
2717 if (cfs_b->timer_active)
2718 return;
2719 }
2720
2721 cfs_b->timer_active = 1;
2722 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2723}
2724
2725static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2726{
2727 hrtimer_cancel(&cfs_b->period_timer);
2728 hrtimer_cancel(&cfs_b->slack_timer);
2729}
2730
38dc3348 2731static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2732{
2733 struct cfs_rq *cfs_rq;
2734
2735 for_each_leaf_cfs_rq(rq, cfs_rq) {
2736 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2737
2738 if (!cfs_rq->runtime_enabled)
2739 continue;
2740
2741 /*
2742 * clock_task is not advancing so we just need to make sure
2743 * there's some valid quota amount
2744 */
2745 cfs_rq->runtime_remaining = cfs_b->quota;
2746 if (cfs_rq_throttled(cfs_rq))
2747 unthrottle_cfs_rq(cfs_rq);
2748 }
2749}
2750
2751#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2752static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2753{
78becc27 2754 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2755}
2756
2757static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2758 unsigned long delta_exec) {}
d3d9dc33
PT
2759static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2760static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2761static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2762
2763static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2764{
2765 return 0;
2766}
64660c86
PT
2767
2768static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2769{
2770 return 0;
2771}
2772
2773static inline int throttled_lb_pair(struct task_group *tg,
2774 int src_cpu, int dest_cpu)
2775{
2776 return 0;
2777}
029632fb
PZ
2778
2779void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2780
2781#ifdef CONFIG_FAIR_GROUP_SCHED
2782static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2783#endif
2784
029632fb
PZ
2785static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2786{
2787 return NULL;
2788}
2789static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2790static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2791
2792#endif /* CONFIG_CFS_BANDWIDTH */
2793
bf0f6f24
IM
2794/**************************************************
2795 * CFS operations on tasks:
2796 */
2797
8f4d37ec
PZ
2798#ifdef CONFIG_SCHED_HRTICK
2799static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2800{
8f4d37ec
PZ
2801 struct sched_entity *se = &p->se;
2802 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2803
2804 WARN_ON(task_rq(p) != rq);
2805
b39e66ea 2806 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2807 u64 slice = sched_slice(cfs_rq, se);
2808 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2809 s64 delta = slice - ran;
2810
2811 if (delta < 0) {
2812 if (rq->curr == p)
2813 resched_task(p);
2814 return;
2815 }
2816
2817 /*
2818 * Don't schedule slices shorter than 10000ns, that just
2819 * doesn't make sense. Rely on vruntime for fairness.
2820 */
31656519 2821 if (rq->curr != p)
157124c1 2822 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2823
31656519 2824 hrtick_start(rq, delta);
8f4d37ec
PZ
2825 }
2826}
a4c2f00f
PZ
2827
2828/*
2829 * called from enqueue/dequeue and updates the hrtick when the
2830 * current task is from our class and nr_running is low enough
2831 * to matter.
2832 */
2833static void hrtick_update(struct rq *rq)
2834{
2835 struct task_struct *curr = rq->curr;
2836
b39e66ea 2837 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2838 return;
2839
2840 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2841 hrtick_start_fair(rq, curr);
2842}
55e12e5e 2843#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2844static inline void
2845hrtick_start_fair(struct rq *rq, struct task_struct *p)
2846{
2847}
a4c2f00f
PZ
2848
2849static inline void hrtick_update(struct rq *rq)
2850{
2851}
8f4d37ec
PZ
2852#endif
2853
bf0f6f24
IM
2854/*
2855 * The enqueue_task method is called before nr_running is
2856 * increased. Here we update the fair scheduling stats and
2857 * then put the task into the rbtree:
2858 */
ea87bb78 2859static void
371fd7e7 2860enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2861{
2862 struct cfs_rq *cfs_rq;
62fb1851 2863 struct sched_entity *se = &p->se;
bf0f6f24
IM
2864
2865 for_each_sched_entity(se) {
62fb1851 2866 if (se->on_rq)
bf0f6f24
IM
2867 break;
2868 cfs_rq = cfs_rq_of(se);
88ec22d3 2869 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2870
2871 /*
2872 * end evaluation on encountering a throttled cfs_rq
2873 *
2874 * note: in the case of encountering a throttled cfs_rq we will
2875 * post the final h_nr_running increment below.
2876 */
2877 if (cfs_rq_throttled(cfs_rq))
2878 break;
953bfcd1 2879 cfs_rq->h_nr_running++;
85dac906 2880
88ec22d3 2881 flags = ENQUEUE_WAKEUP;
bf0f6f24 2882 }
8f4d37ec 2883
2069dd75 2884 for_each_sched_entity(se) {
0f317143 2885 cfs_rq = cfs_rq_of(se);
953bfcd1 2886 cfs_rq->h_nr_running++;
2069dd75 2887
85dac906
PT
2888 if (cfs_rq_throttled(cfs_rq))
2889 break;
2890
17bc14b7 2891 update_cfs_shares(cfs_rq);
9ee474f5 2892 update_entity_load_avg(se, 1);
2069dd75
PZ
2893 }
2894
18bf2805
BS
2895 if (!se) {
2896 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2897 inc_nr_running(rq);
18bf2805 2898 }
a4c2f00f 2899 hrtick_update(rq);
bf0f6f24
IM
2900}
2901
2f36825b
VP
2902static void set_next_buddy(struct sched_entity *se);
2903
bf0f6f24
IM
2904/*
2905 * The dequeue_task method is called before nr_running is
2906 * decreased. We remove the task from the rbtree and
2907 * update the fair scheduling stats:
2908 */
371fd7e7 2909static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2910{
2911 struct cfs_rq *cfs_rq;
62fb1851 2912 struct sched_entity *se = &p->se;
2f36825b 2913 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2914
2915 for_each_sched_entity(se) {
2916 cfs_rq = cfs_rq_of(se);
371fd7e7 2917 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2918
2919 /*
2920 * end evaluation on encountering a throttled cfs_rq
2921 *
2922 * note: in the case of encountering a throttled cfs_rq we will
2923 * post the final h_nr_running decrement below.
2924 */
2925 if (cfs_rq_throttled(cfs_rq))
2926 break;
953bfcd1 2927 cfs_rq->h_nr_running--;
2069dd75 2928
bf0f6f24 2929 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2930 if (cfs_rq->load.weight) {
2931 /*
2932 * Bias pick_next to pick a task from this cfs_rq, as
2933 * p is sleeping when it is within its sched_slice.
2934 */
2935 if (task_sleep && parent_entity(se))
2936 set_next_buddy(parent_entity(se));
9598c82d
PT
2937
2938 /* avoid re-evaluating load for this entity */
2939 se = parent_entity(se);
bf0f6f24 2940 break;
2f36825b 2941 }
371fd7e7 2942 flags |= DEQUEUE_SLEEP;
bf0f6f24 2943 }
8f4d37ec 2944
2069dd75 2945 for_each_sched_entity(se) {
0f317143 2946 cfs_rq = cfs_rq_of(se);
953bfcd1 2947 cfs_rq->h_nr_running--;
2069dd75 2948
85dac906
PT
2949 if (cfs_rq_throttled(cfs_rq))
2950 break;
2951
17bc14b7 2952 update_cfs_shares(cfs_rq);
9ee474f5 2953 update_entity_load_avg(se, 1);
2069dd75
PZ
2954 }
2955
18bf2805 2956 if (!se) {
85dac906 2957 dec_nr_running(rq);
18bf2805
BS
2958 update_rq_runnable_avg(rq, 1);
2959 }
a4c2f00f 2960 hrtick_update(rq);
bf0f6f24
IM
2961}
2962
e7693a36 2963#ifdef CONFIG_SMP
029632fb
PZ
2964/* Used instead of source_load when we know the type == 0 */
2965static unsigned long weighted_cpuload(const int cpu)
2966{
b92486cb 2967 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
2968}
2969
2970/*
2971 * Return a low guess at the load of a migration-source cpu weighted
2972 * according to the scheduling class and "nice" value.
2973 *
2974 * We want to under-estimate the load of migration sources, to
2975 * balance conservatively.
2976 */
2977static unsigned long source_load(int cpu, int type)
2978{
2979 struct rq *rq = cpu_rq(cpu);
2980 unsigned long total = weighted_cpuload(cpu);
2981
2982 if (type == 0 || !sched_feat(LB_BIAS))
2983 return total;
2984
2985 return min(rq->cpu_load[type-1], total);
2986}
2987
2988/*
2989 * Return a high guess at the load of a migration-target cpu weighted
2990 * according to the scheduling class and "nice" value.
2991 */
2992static unsigned long target_load(int cpu, int type)
2993{
2994 struct rq *rq = cpu_rq(cpu);
2995 unsigned long total = weighted_cpuload(cpu);
2996
2997 if (type == 0 || !sched_feat(LB_BIAS))
2998 return total;
2999
3000 return max(rq->cpu_load[type-1], total);
3001}
3002
3003static unsigned long power_of(int cpu)
3004{
3005 return cpu_rq(cpu)->cpu_power;
3006}
3007
3008static unsigned long cpu_avg_load_per_task(int cpu)
3009{
3010 struct rq *rq = cpu_rq(cpu);
3011 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3012 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3013
3014 if (nr_running)
b92486cb 3015 return load_avg / nr_running;
029632fb
PZ
3016
3017 return 0;
3018}
3019
098fb9db 3020
74f8e4b2 3021static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3022{
3023 struct sched_entity *se = &p->se;
3024 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3025 u64 min_vruntime;
3026
3027#ifndef CONFIG_64BIT
3028 u64 min_vruntime_copy;
88ec22d3 3029
3fe1698b
PZ
3030 do {
3031 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3032 smp_rmb();
3033 min_vruntime = cfs_rq->min_vruntime;
3034 } while (min_vruntime != min_vruntime_copy);
3035#else
3036 min_vruntime = cfs_rq->min_vruntime;
3037#endif
88ec22d3 3038
3fe1698b 3039 se->vruntime -= min_vruntime;
88ec22d3
PZ
3040}
3041
bb3469ac 3042#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3043/*
3044 * effective_load() calculates the load change as seen from the root_task_group
3045 *
3046 * Adding load to a group doesn't make a group heavier, but can cause movement
3047 * of group shares between cpus. Assuming the shares were perfectly aligned one
3048 * can calculate the shift in shares.
cf5f0acf
PZ
3049 *
3050 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3051 * on this @cpu and results in a total addition (subtraction) of @wg to the
3052 * total group weight.
3053 *
3054 * Given a runqueue weight distribution (rw_i) we can compute a shares
3055 * distribution (s_i) using:
3056 *
3057 * s_i = rw_i / \Sum rw_j (1)
3058 *
3059 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3060 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3061 * shares distribution (s_i):
3062 *
3063 * rw_i = { 2, 4, 1, 0 }
3064 * s_i = { 2/7, 4/7, 1/7, 0 }
3065 *
3066 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3067 * task used to run on and the CPU the waker is running on), we need to
3068 * compute the effect of waking a task on either CPU and, in case of a sync
3069 * wakeup, compute the effect of the current task going to sleep.
3070 *
3071 * So for a change of @wl to the local @cpu with an overall group weight change
3072 * of @wl we can compute the new shares distribution (s'_i) using:
3073 *
3074 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3075 *
3076 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3077 * differences in waking a task to CPU 0. The additional task changes the
3078 * weight and shares distributions like:
3079 *
3080 * rw'_i = { 3, 4, 1, 0 }
3081 * s'_i = { 3/8, 4/8, 1/8, 0 }
3082 *
3083 * We can then compute the difference in effective weight by using:
3084 *
3085 * dw_i = S * (s'_i - s_i) (3)
3086 *
3087 * Where 'S' is the group weight as seen by its parent.
3088 *
3089 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3090 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3091 * 4/7) times the weight of the group.
f5bfb7d9 3092 */
2069dd75 3093static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3094{
4be9daaa 3095 struct sched_entity *se = tg->se[cpu];
f1d239f7 3096
cf5f0acf 3097 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3098 return wl;
3099
4be9daaa 3100 for_each_sched_entity(se) {
cf5f0acf 3101 long w, W;
4be9daaa 3102
977dda7c 3103 tg = se->my_q->tg;
bb3469ac 3104
cf5f0acf
PZ
3105 /*
3106 * W = @wg + \Sum rw_j
3107 */
3108 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3109
cf5f0acf
PZ
3110 /*
3111 * w = rw_i + @wl
3112 */
3113 w = se->my_q->load.weight + wl;
940959e9 3114
cf5f0acf
PZ
3115 /*
3116 * wl = S * s'_i; see (2)
3117 */
3118 if (W > 0 && w < W)
3119 wl = (w * tg->shares) / W;
977dda7c
PT
3120 else
3121 wl = tg->shares;
940959e9 3122
cf5f0acf
PZ
3123 /*
3124 * Per the above, wl is the new se->load.weight value; since
3125 * those are clipped to [MIN_SHARES, ...) do so now. See
3126 * calc_cfs_shares().
3127 */
977dda7c
PT
3128 if (wl < MIN_SHARES)
3129 wl = MIN_SHARES;
cf5f0acf
PZ
3130
3131 /*
3132 * wl = dw_i = S * (s'_i - s_i); see (3)
3133 */
977dda7c 3134 wl -= se->load.weight;
cf5f0acf
PZ
3135
3136 /*
3137 * Recursively apply this logic to all parent groups to compute
3138 * the final effective load change on the root group. Since
3139 * only the @tg group gets extra weight, all parent groups can
3140 * only redistribute existing shares. @wl is the shift in shares
3141 * resulting from this level per the above.
3142 */
4be9daaa 3143 wg = 0;
4be9daaa 3144 }
bb3469ac 3145
4be9daaa 3146 return wl;
bb3469ac
PZ
3147}
3148#else
4be9daaa 3149
83378269
PZ
3150static inline unsigned long effective_load(struct task_group *tg, int cpu,
3151 unsigned long wl, unsigned long wg)
4be9daaa 3152{
83378269 3153 return wl;
bb3469ac 3154}
4be9daaa 3155
bb3469ac
PZ
3156#endif
3157
c88d5910 3158static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3159{
e37b6a7b 3160 s64 this_load, load;
c88d5910 3161 int idx, this_cpu, prev_cpu;
098fb9db 3162 unsigned long tl_per_task;
c88d5910 3163 struct task_group *tg;
83378269 3164 unsigned long weight;
b3137bc8 3165 int balanced;
098fb9db 3166
c88d5910
PZ
3167 idx = sd->wake_idx;
3168 this_cpu = smp_processor_id();
3169 prev_cpu = task_cpu(p);
3170 load = source_load(prev_cpu, idx);
3171 this_load = target_load(this_cpu, idx);
098fb9db 3172
b3137bc8
MG
3173 /*
3174 * If sync wakeup then subtract the (maximum possible)
3175 * effect of the currently running task from the load
3176 * of the current CPU:
3177 */
83378269
PZ
3178 if (sync) {
3179 tg = task_group(current);
3180 weight = current->se.load.weight;
3181
c88d5910 3182 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3183 load += effective_load(tg, prev_cpu, 0, -weight);
3184 }
b3137bc8 3185
83378269
PZ
3186 tg = task_group(p);
3187 weight = p->se.load.weight;
b3137bc8 3188
71a29aa7
PZ
3189 /*
3190 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3191 * due to the sync cause above having dropped this_load to 0, we'll
3192 * always have an imbalance, but there's really nothing you can do
3193 * about that, so that's good too.
71a29aa7
PZ
3194 *
3195 * Otherwise check if either cpus are near enough in load to allow this
3196 * task to be woken on this_cpu.
3197 */
e37b6a7b
PT
3198 if (this_load > 0) {
3199 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3200
3201 this_eff_load = 100;
3202 this_eff_load *= power_of(prev_cpu);
3203 this_eff_load *= this_load +
3204 effective_load(tg, this_cpu, weight, weight);
3205
3206 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3207 prev_eff_load *= power_of(this_cpu);
3208 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3209
3210 balanced = this_eff_load <= prev_eff_load;
3211 } else
3212 balanced = true;
b3137bc8 3213
098fb9db 3214 /*
4ae7d5ce
IM
3215 * If the currently running task will sleep within
3216 * a reasonable amount of time then attract this newly
3217 * woken task:
098fb9db 3218 */
2fb7635c
PZ
3219 if (sync && balanced)
3220 return 1;
098fb9db 3221
41acab88 3222 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3223 tl_per_task = cpu_avg_load_per_task(this_cpu);
3224
c88d5910
PZ
3225 if (balanced ||
3226 (this_load <= load &&
3227 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3228 /*
3229 * This domain has SD_WAKE_AFFINE and
3230 * p is cache cold in this domain, and
3231 * there is no bad imbalance.
3232 */
c88d5910 3233 schedstat_inc(sd, ttwu_move_affine);
41acab88 3234 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3235
3236 return 1;
3237 }
3238 return 0;
3239}
3240
aaee1203
PZ
3241/*
3242 * find_idlest_group finds and returns the least busy CPU group within the
3243 * domain.
3244 */
3245static struct sched_group *
78e7ed53 3246find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3247 int this_cpu, int load_idx)
e7693a36 3248{
b3bd3de6 3249 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3250 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3251 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3252
aaee1203
PZ
3253 do {
3254 unsigned long load, avg_load;
3255 int local_group;
3256 int i;
e7693a36 3257
aaee1203
PZ
3258 /* Skip over this group if it has no CPUs allowed */
3259 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3260 tsk_cpus_allowed(p)))
aaee1203
PZ
3261 continue;
3262
3263 local_group = cpumask_test_cpu(this_cpu,
3264 sched_group_cpus(group));
3265
3266 /* Tally up the load of all CPUs in the group */
3267 avg_load = 0;
3268
3269 for_each_cpu(i, sched_group_cpus(group)) {
3270 /* Bias balancing toward cpus of our domain */
3271 if (local_group)
3272 load = source_load(i, load_idx);
3273 else
3274 load = target_load(i, load_idx);
3275
3276 avg_load += load;
3277 }
3278
3279 /* Adjust by relative CPU power of the group */
9c3f75cb 3280 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3281
3282 if (local_group) {
3283 this_load = avg_load;
aaee1203
PZ
3284 } else if (avg_load < min_load) {
3285 min_load = avg_load;
3286 idlest = group;
3287 }
3288 } while (group = group->next, group != sd->groups);
3289
3290 if (!idlest || 100*this_load < imbalance*min_load)
3291 return NULL;
3292 return idlest;
3293}
3294
3295/*
3296 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3297 */
3298static int
3299find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3300{
3301 unsigned long load, min_load = ULONG_MAX;
3302 int idlest = -1;
3303 int i;
3304
3305 /* Traverse only the allowed CPUs */
fa17b507 3306 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3307 load = weighted_cpuload(i);
3308
3309 if (load < min_load || (load == min_load && i == this_cpu)) {
3310 min_load = load;
3311 idlest = i;
e7693a36
GH
3312 }
3313 }
3314
aaee1203
PZ
3315 return idlest;
3316}
e7693a36 3317
a50bde51
PZ
3318/*
3319 * Try and locate an idle CPU in the sched_domain.
3320 */
99bd5e2f 3321static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3322{
99bd5e2f 3323 struct sched_domain *sd;
37407ea7 3324 struct sched_group *sg;
e0a79f52 3325 int i = task_cpu(p);
a50bde51 3326
e0a79f52
MG
3327 if (idle_cpu(target))
3328 return target;
99bd5e2f
SS
3329
3330 /*
e0a79f52 3331 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3332 */
e0a79f52
MG
3333 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3334 return i;
a50bde51
PZ
3335
3336 /*
37407ea7 3337 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3338 */
518cd623 3339 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3340 for_each_lower_domain(sd) {
37407ea7
LT
3341 sg = sd->groups;
3342 do {
3343 if (!cpumask_intersects(sched_group_cpus(sg),
3344 tsk_cpus_allowed(p)))
3345 goto next;
3346
3347 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3348 if (i == target || !idle_cpu(i))
37407ea7
LT
3349 goto next;
3350 }
970e1789 3351
37407ea7
LT
3352 target = cpumask_first_and(sched_group_cpus(sg),
3353 tsk_cpus_allowed(p));
3354 goto done;
3355next:
3356 sg = sg->next;
3357 } while (sg != sd->groups);
3358 }
3359done:
a50bde51
PZ
3360 return target;
3361}
3362
aaee1203
PZ
3363/*
3364 * sched_balance_self: balance the current task (running on cpu) in domains
3365 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3366 * SD_BALANCE_EXEC.
3367 *
3368 * Balance, ie. select the least loaded group.
3369 *
3370 * Returns the target CPU number, or the same CPU if no balancing is needed.
3371 *
3372 * preempt must be disabled.
3373 */
0017d735 3374static int
7608dec2 3375select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3376{
29cd8bae 3377 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3378 int cpu = smp_processor_id();
3379 int prev_cpu = task_cpu(p);
3380 int new_cpu = cpu;
99bd5e2f 3381 int want_affine = 0;
5158f4e4 3382 int sync = wake_flags & WF_SYNC;
c88d5910 3383
29baa747 3384 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3385 return prev_cpu;
3386
0763a660 3387 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3388 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3389 want_affine = 1;
3390 new_cpu = prev_cpu;
3391 }
aaee1203 3392
dce840a0 3393 rcu_read_lock();
aaee1203 3394 for_each_domain(cpu, tmp) {
e4f42888
PZ
3395 if (!(tmp->flags & SD_LOAD_BALANCE))
3396 continue;
3397
fe3bcfe1 3398 /*
99bd5e2f
SS
3399 * If both cpu and prev_cpu are part of this domain,
3400 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3401 */
99bd5e2f
SS
3402 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3403 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3404 affine_sd = tmp;
29cd8bae 3405 break;
f03542a7 3406 }
29cd8bae 3407
f03542a7 3408 if (tmp->flags & sd_flag)
29cd8bae
PZ
3409 sd = tmp;
3410 }
3411
8b911acd 3412 if (affine_sd) {
f03542a7 3413 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3414 prev_cpu = cpu;
3415
3416 new_cpu = select_idle_sibling(p, prev_cpu);
3417 goto unlock;
8b911acd 3418 }
e7693a36 3419
aaee1203 3420 while (sd) {
5158f4e4 3421 int load_idx = sd->forkexec_idx;
aaee1203 3422 struct sched_group *group;
c88d5910 3423 int weight;
098fb9db 3424
0763a660 3425 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3426 sd = sd->child;
3427 continue;
3428 }
098fb9db 3429
5158f4e4
PZ
3430 if (sd_flag & SD_BALANCE_WAKE)
3431 load_idx = sd->wake_idx;
098fb9db 3432
5158f4e4 3433 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3434 if (!group) {
3435 sd = sd->child;
3436 continue;
3437 }
4ae7d5ce 3438
d7c33c49 3439 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3440 if (new_cpu == -1 || new_cpu == cpu) {
3441 /* Now try balancing at a lower domain level of cpu */
3442 sd = sd->child;
3443 continue;
e7693a36 3444 }
aaee1203
PZ
3445
3446 /* Now try balancing at a lower domain level of new_cpu */
3447 cpu = new_cpu;
669c55e9 3448 weight = sd->span_weight;
aaee1203
PZ
3449 sd = NULL;
3450 for_each_domain(cpu, tmp) {
669c55e9 3451 if (weight <= tmp->span_weight)
aaee1203 3452 break;
0763a660 3453 if (tmp->flags & sd_flag)
aaee1203
PZ
3454 sd = tmp;
3455 }
3456 /* while loop will break here if sd == NULL */
e7693a36 3457 }
dce840a0
PZ
3458unlock:
3459 rcu_read_unlock();
e7693a36 3460
c88d5910 3461 return new_cpu;
e7693a36 3462}
0a74bef8
PT
3463
3464/*
3465 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3466 * cfs_rq_of(p) references at time of call are still valid and identify the
3467 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3468 * other assumptions, including the state of rq->lock, should be made.
3469 */
3470static void
3471migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3472{
aff3e498
PT
3473 struct sched_entity *se = &p->se;
3474 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3475
3476 /*
3477 * Load tracking: accumulate removed load so that it can be processed
3478 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3479 * to blocked load iff they have a positive decay-count. It can never
3480 * be negative here since on-rq tasks have decay-count == 0.
3481 */
3482 if (se->avg.decay_count) {
3483 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
3484 atomic_long_add(se->avg.load_avg_contrib,
3485 &cfs_rq->removed_load);
aff3e498 3486 }
0a74bef8 3487}
e7693a36
GH
3488#endif /* CONFIG_SMP */
3489
e52fb7c0
PZ
3490static unsigned long
3491wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3492{
3493 unsigned long gran = sysctl_sched_wakeup_granularity;
3494
3495 /*
e52fb7c0
PZ
3496 * Since its curr running now, convert the gran from real-time
3497 * to virtual-time in his units.
13814d42
MG
3498 *
3499 * By using 'se' instead of 'curr' we penalize light tasks, so
3500 * they get preempted easier. That is, if 'se' < 'curr' then
3501 * the resulting gran will be larger, therefore penalizing the
3502 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3503 * be smaller, again penalizing the lighter task.
3504 *
3505 * This is especially important for buddies when the leftmost
3506 * task is higher priority than the buddy.
0bbd3336 3507 */
f4ad9bd2 3508 return calc_delta_fair(gran, se);
0bbd3336
PZ
3509}
3510
464b7527
PZ
3511/*
3512 * Should 'se' preempt 'curr'.
3513 *
3514 * |s1
3515 * |s2
3516 * |s3
3517 * g
3518 * |<--->|c
3519 *
3520 * w(c, s1) = -1
3521 * w(c, s2) = 0
3522 * w(c, s3) = 1
3523 *
3524 */
3525static int
3526wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3527{
3528 s64 gran, vdiff = curr->vruntime - se->vruntime;
3529
3530 if (vdiff <= 0)
3531 return -1;
3532
e52fb7c0 3533 gran = wakeup_gran(curr, se);
464b7527
PZ
3534 if (vdiff > gran)
3535 return 1;
3536
3537 return 0;
3538}
3539
02479099
PZ
3540static void set_last_buddy(struct sched_entity *se)
3541{
69c80f3e
VP
3542 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3543 return;
3544
3545 for_each_sched_entity(se)
3546 cfs_rq_of(se)->last = se;
02479099
PZ
3547}
3548
3549static void set_next_buddy(struct sched_entity *se)
3550{
69c80f3e
VP
3551 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3552 return;
3553
3554 for_each_sched_entity(se)
3555 cfs_rq_of(se)->next = se;
02479099
PZ
3556}
3557
ac53db59
RR
3558static void set_skip_buddy(struct sched_entity *se)
3559{
69c80f3e
VP
3560 for_each_sched_entity(se)
3561 cfs_rq_of(se)->skip = se;
ac53db59
RR
3562}
3563
bf0f6f24
IM
3564/*
3565 * Preempt the current task with a newly woken task if needed:
3566 */
5a9b86f6 3567static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3568{
3569 struct task_struct *curr = rq->curr;
8651a86c 3570 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3571 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3572 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3573 int next_buddy_marked = 0;
bf0f6f24 3574
4ae7d5ce
IM
3575 if (unlikely(se == pse))
3576 return;
3577
5238cdd3 3578 /*
ddcdf6e7 3579 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3580 * unconditionally check_prempt_curr() after an enqueue (which may have
3581 * lead to a throttle). This both saves work and prevents false
3582 * next-buddy nomination below.
3583 */
3584 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3585 return;
3586
2f36825b 3587 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3588 set_next_buddy(pse);
2f36825b
VP
3589 next_buddy_marked = 1;
3590 }
57fdc26d 3591
aec0a514
BR
3592 /*
3593 * We can come here with TIF_NEED_RESCHED already set from new task
3594 * wake up path.
5238cdd3
PT
3595 *
3596 * Note: this also catches the edge-case of curr being in a throttled
3597 * group (e.g. via set_curr_task), since update_curr() (in the
3598 * enqueue of curr) will have resulted in resched being set. This
3599 * prevents us from potentially nominating it as a false LAST_BUDDY
3600 * below.
aec0a514
BR
3601 */
3602 if (test_tsk_need_resched(curr))
3603 return;
3604
a2f5c9ab
DH
3605 /* Idle tasks are by definition preempted by non-idle tasks. */
3606 if (unlikely(curr->policy == SCHED_IDLE) &&
3607 likely(p->policy != SCHED_IDLE))
3608 goto preempt;
3609
91c234b4 3610 /*
a2f5c9ab
DH
3611 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3612 * is driven by the tick):
91c234b4 3613 */
8ed92e51 3614 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3615 return;
bf0f6f24 3616
464b7527 3617 find_matching_se(&se, &pse);
9bbd7374 3618 update_curr(cfs_rq_of(se));
002f128b 3619 BUG_ON(!pse);
2f36825b
VP
3620 if (wakeup_preempt_entity(se, pse) == 1) {
3621 /*
3622 * Bias pick_next to pick the sched entity that is
3623 * triggering this preemption.
3624 */
3625 if (!next_buddy_marked)
3626 set_next_buddy(pse);
3a7e73a2 3627 goto preempt;
2f36825b 3628 }
464b7527 3629
3a7e73a2 3630 return;
a65ac745 3631
3a7e73a2
PZ
3632preempt:
3633 resched_task(curr);
3634 /*
3635 * Only set the backward buddy when the current task is still
3636 * on the rq. This can happen when a wakeup gets interleaved
3637 * with schedule on the ->pre_schedule() or idle_balance()
3638 * point, either of which can * drop the rq lock.
3639 *
3640 * Also, during early boot the idle thread is in the fair class,
3641 * for obvious reasons its a bad idea to schedule back to it.
3642 */
3643 if (unlikely(!se->on_rq || curr == rq->idle))
3644 return;
3645
3646 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3647 set_last_buddy(se);
bf0f6f24
IM
3648}
3649
fb8d4724 3650static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3651{
8f4d37ec 3652 struct task_struct *p;
bf0f6f24
IM
3653 struct cfs_rq *cfs_rq = &rq->cfs;
3654 struct sched_entity *se;
3655
36ace27e 3656 if (!cfs_rq->nr_running)
bf0f6f24
IM
3657 return NULL;
3658
3659 do {
9948f4b2 3660 se = pick_next_entity(cfs_rq);
f4b6755f 3661 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3662 cfs_rq = group_cfs_rq(se);
3663 } while (cfs_rq);
3664
8f4d37ec 3665 p = task_of(se);
b39e66ea
MG
3666 if (hrtick_enabled(rq))
3667 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3668
3669 return p;
bf0f6f24
IM
3670}
3671
3672/*
3673 * Account for a descheduled task:
3674 */
31ee529c 3675static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3676{
3677 struct sched_entity *se = &prev->se;
3678 struct cfs_rq *cfs_rq;
3679
3680 for_each_sched_entity(se) {
3681 cfs_rq = cfs_rq_of(se);
ab6cde26 3682 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3683 }
3684}
3685
ac53db59
RR
3686/*
3687 * sched_yield() is very simple
3688 *
3689 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3690 */
3691static void yield_task_fair(struct rq *rq)
3692{
3693 struct task_struct *curr = rq->curr;
3694 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3695 struct sched_entity *se = &curr->se;
3696
3697 /*
3698 * Are we the only task in the tree?
3699 */
3700 if (unlikely(rq->nr_running == 1))
3701 return;
3702
3703 clear_buddies(cfs_rq, se);
3704
3705 if (curr->policy != SCHED_BATCH) {
3706 update_rq_clock(rq);
3707 /*
3708 * Update run-time statistics of the 'current'.
3709 */
3710 update_curr(cfs_rq);
916671c0
MG
3711 /*
3712 * Tell update_rq_clock() that we've just updated,
3713 * so we don't do microscopic update in schedule()
3714 * and double the fastpath cost.
3715 */
3716 rq->skip_clock_update = 1;
ac53db59
RR
3717 }
3718
3719 set_skip_buddy(se);
3720}
3721
d95f4122
MG
3722static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3723{
3724 struct sched_entity *se = &p->se;
3725
5238cdd3
PT
3726 /* throttled hierarchies are not runnable */
3727 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3728 return false;
3729
3730 /* Tell the scheduler that we'd really like pse to run next. */
3731 set_next_buddy(se);
3732
d95f4122
MG
3733 yield_task_fair(rq);
3734
3735 return true;
3736}
3737
681f3e68 3738#ifdef CONFIG_SMP
bf0f6f24 3739/**************************************************
e9c84cb8
PZ
3740 * Fair scheduling class load-balancing methods.
3741 *
3742 * BASICS
3743 *
3744 * The purpose of load-balancing is to achieve the same basic fairness the
3745 * per-cpu scheduler provides, namely provide a proportional amount of compute
3746 * time to each task. This is expressed in the following equation:
3747 *
3748 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3749 *
3750 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3751 * W_i,0 is defined as:
3752 *
3753 * W_i,0 = \Sum_j w_i,j (2)
3754 *
3755 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3756 * is derived from the nice value as per prio_to_weight[].
3757 *
3758 * The weight average is an exponential decay average of the instantaneous
3759 * weight:
3760 *
3761 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3762 *
3763 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3764 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3765 * can also include other factors [XXX].
3766 *
3767 * To achieve this balance we define a measure of imbalance which follows
3768 * directly from (1):
3769 *
3770 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3771 *
3772 * We them move tasks around to minimize the imbalance. In the continuous
3773 * function space it is obvious this converges, in the discrete case we get
3774 * a few fun cases generally called infeasible weight scenarios.
3775 *
3776 * [XXX expand on:
3777 * - infeasible weights;
3778 * - local vs global optima in the discrete case. ]
3779 *
3780 *
3781 * SCHED DOMAINS
3782 *
3783 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3784 * for all i,j solution, we create a tree of cpus that follows the hardware
3785 * topology where each level pairs two lower groups (or better). This results
3786 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3787 * tree to only the first of the previous level and we decrease the frequency
3788 * of load-balance at each level inv. proportional to the number of cpus in
3789 * the groups.
3790 *
3791 * This yields:
3792 *
3793 * log_2 n 1 n
3794 * \Sum { --- * --- * 2^i } = O(n) (5)
3795 * i = 0 2^i 2^i
3796 * `- size of each group
3797 * | | `- number of cpus doing load-balance
3798 * | `- freq
3799 * `- sum over all levels
3800 *
3801 * Coupled with a limit on how many tasks we can migrate every balance pass,
3802 * this makes (5) the runtime complexity of the balancer.
3803 *
3804 * An important property here is that each CPU is still (indirectly) connected
3805 * to every other cpu in at most O(log n) steps:
3806 *
3807 * The adjacency matrix of the resulting graph is given by:
3808 *
3809 * log_2 n
3810 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3811 * k = 0
3812 *
3813 * And you'll find that:
3814 *
3815 * A^(log_2 n)_i,j != 0 for all i,j (7)
3816 *
3817 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3818 * The task movement gives a factor of O(m), giving a convergence complexity
3819 * of:
3820 *
3821 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3822 *
3823 *
3824 * WORK CONSERVING
3825 *
3826 * In order to avoid CPUs going idle while there's still work to do, new idle
3827 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3828 * tree itself instead of relying on other CPUs to bring it work.
3829 *
3830 * This adds some complexity to both (5) and (8) but it reduces the total idle
3831 * time.
3832 *
3833 * [XXX more?]
3834 *
3835 *
3836 * CGROUPS
3837 *
3838 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3839 *
3840 * s_k,i
3841 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3842 * S_k
3843 *
3844 * Where
3845 *
3846 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3847 *
3848 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3849 *
3850 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3851 * property.
3852 *
3853 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3854 * rewrite all of this once again.]
3855 */
bf0f6f24 3856
ed387b78
HS
3857static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3858
ddcdf6e7 3859#define LBF_ALL_PINNED 0x01
367456c7 3860#define LBF_NEED_BREAK 0x02
88b8dac0 3861#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3862
3863struct lb_env {
3864 struct sched_domain *sd;
3865
ddcdf6e7 3866 struct rq *src_rq;
85c1e7da 3867 int src_cpu;
ddcdf6e7
PZ
3868
3869 int dst_cpu;
3870 struct rq *dst_rq;
3871
88b8dac0
SV
3872 struct cpumask *dst_grpmask;
3873 int new_dst_cpu;
ddcdf6e7 3874 enum cpu_idle_type idle;
bd939f45 3875 long imbalance;
b9403130
MW
3876 /* The set of CPUs under consideration for load-balancing */
3877 struct cpumask *cpus;
3878
ddcdf6e7 3879 unsigned int flags;
367456c7
PZ
3880
3881 unsigned int loop;
3882 unsigned int loop_break;
3883 unsigned int loop_max;
ddcdf6e7
PZ
3884};
3885
1e3c88bd 3886/*
ddcdf6e7 3887 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3888 * Both runqueues must be locked.
3889 */
ddcdf6e7 3890static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3891{
ddcdf6e7
PZ
3892 deactivate_task(env->src_rq, p, 0);
3893 set_task_cpu(p, env->dst_cpu);
3894 activate_task(env->dst_rq, p, 0);
3895 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3896}
3897
029632fb
PZ
3898/*
3899 * Is this task likely cache-hot:
3900 */
3901static int
3902task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3903{
3904 s64 delta;
3905
3906 if (p->sched_class != &fair_sched_class)
3907 return 0;
3908
3909 if (unlikely(p->policy == SCHED_IDLE))
3910 return 0;
3911
3912 /*
3913 * Buddy candidates are cache hot:
3914 */
3915 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3916 (&p->se == cfs_rq_of(&p->se)->next ||
3917 &p->se == cfs_rq_of(&p->se)->last))
3918 return 1;
3919
3920 if (sysctl_sched_migration_cost == -1)
3921 return 1;
3922 if (sysctl_sched_migration_cost == 0)
3923 return 0;
3924
3925 delta = now - p->se.exec_start;
3926
3927 return delta < (s64)sysctl_sched_migration_cost;
3928}
3929
1e3c88bd
PZ
3930/*
3931 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3932 */
3933static
8e45cb54 3934int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3935{
3936 int tsk_cache_hot = 0;
3937 /*
3938 * We do not migrate tasks that are:
d3198084 3939 * 1) throttled_lb_pair, or
1e3c88bd 3940 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
3941 * 3) running (obviously), or
3942 * 4) are cache-hot on their current CPU.
1e3c88bd 3943 */
d3198084
JK
3944 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3945 return 0;
3946
ddcdf6e7 3947 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 3948 int cpu;
88b8dac0 3949
41acab88 3950 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3951
3952 /*
3953 * Remember if this task can be migrated to any other cpu in
3954 * our sched_group. We may want to revisit it if we couldn't
3955 * meet load balance goals by pulling other tasks on src_cpu.
3956 *
3957 * Also avoid computing new_dst_cpu if we have already computed
3958 * one in current iteration.
3959 */
3960 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3961 return 0;
3962
e02e60c1
JK
3963 /* Prevent to re-select dst_cpu via env's cpus */
3964 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3965 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3966 env->flags |= LBF_SOME_PINNED;
3967 env->new_dst_cpu = cpu;
3968 break;
3969 }
88b8dac0 3970 }
e02e60c1 3971
1e3c88bd
PZ
3972 return 0;
3973 }
88b8dac0
SV
3974
3975 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3976 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3977
ddcdf6e7 3978 if (task_running(env->src_rq, p)) {
41acab88 3979 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3980 return 0;
3981 }
3982
3983 /*
3984 * Aggressive migration if:
3985 * 1) task is cache cold, or
3986 * 2) too many balance attempts have failed.
3987 */
3988
78becc27 3989 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 3990 if (!tsk_cache_hot ||
8e45cb54 3991 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 3992
1e3c88bd 3993 if (tsk_cache_hot) {
8e45cb54 3994 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3995 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 3996 }
4e2dcb73 3997
1e3c88bd
PZ
3998 return 1;
3999 }
4000
4e2dcb73
ZH
4001 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4002 return 0;
1e3c88bd
PZ
4003}
4004
897c395f
PZ
4005/*
4006 * move_one_task tries to move exactly one task from busiest to this_rq, as
4007 * part of active balancing operations within "domain".
4008 * Returns 1 if successful and 0 otherwise.
4009 *
4010 * Called with both runqueues locked.
4011 */
8e45cb54 4012static int move_one_task(struct lb_env *env)
897c395f
PZ
4013{
4014 struct task_struct *p, *n;
897c395f 4015
367456c7 4016 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4017 if (!can_migrate_task(p, env))
4018 continue;
897c395f 4019
367456c7
PZ
4020 move_task(p, env);
4021 /*
4022 * Right now, this is only the second place move_task()
4023 * is called, so we can safely collect move_task()
4024 * stats here rather than inside move_task().
4025 */
4026 schedstat_inc(env->sd, lb_gained[env->idle]);
4027 return 1;
897c395f 4028 }
897c395f
PZ
4029 return 0;
4030}
4031
367456c7
PZ
4032static unsigned long task_h_load(struct task_struct *p);
4033
eb95308e
PZ
4034static const unsigned int sched_nr_migrate_break = 32;
4035
5d6523eb 4036/*
bd939f45 4037 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4038 * this_rq, as part of a balancing operation within domain "sd".
4039 * Returns 1 if successful and 0 otherwise.
4040 *
4041 * Called with both runqueues locked.
4042 */
4043static int move_tasks(struct lb_env *env)
1e3c88bd 4044{
5d6523eb
PZ
4045 struct list_head *tasks = &env->src_rq->cfs_tasks;
4046 struct task_struct *p;
367456c7
PZ
4047 unsigned long load;
4048 int pulled = 0;
1e3c88bd 4049
bd939f45 4050 if (env->imbalance <= 0)
5d6523eb 4051 return 0;
1e3c88bd 4052
5d6523eb
PZ
4053 while (!list_empty(tasks)) {
4054 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4055
367456c7
PZ
4056 env->loop++;
4057 /* We've more or less seen every task there is, call it quits */
5d6523eb 4058 if (env->loop > env->loop_max)
367456c7 4059 break;
5d6523eb
PZ
4060
4061 /* take a breather every nr_migrate tasks */
367456c7 4062 if (env->loop > env->loop_break) {
eb95308e 4063 env->loop_break += sched_nr_migrate_break;
8e45cb54 4064 env->flags |= LBF_NEED_BREAK;
ee00e66f 4065 break;
a195f004 4066 }
1e3c88bd 4067
d3198084 4068 if (!can_migrate_task(p, env))
367456c7
PZ
4069 goto next;
4070
4071 load = task_h_load(p);
5d6523eb 4072
eb95308e 4073 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4074 goto next;
4075
bd939f45 4076 if ((load / 2) > env->imbalance)
367456c7 4077 goto next;
1e3c88bd 4078
ddcdf6e7 4079 move_task(p, env);
ee00e66f 4080 pulled++;
bd939f45 4081 env->imbalance -= load;
1e3c88bd
PZ
4082
4083#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4084 /*
4085 * NEWIDLE balancing is a source of latency, so preemptible
4086 * kernels will stop after the first task is pulled to minimize
4087 * the critical section.
4088 */
5d6523eb 4089 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4090 break;
1e3c88bd
PZ
4091#endif
4092
ee00e66f
PZ
4093 /*
4094 * We only want to steal up to the prescribed amount of
4095 * weighted load.
4096 */
bd939f45 4097 if (env->imbalance <= 0)
ee00e66f 4098 break;
367456c7
PZ
4099
4100 continue;
4101next:
5d6523eb 4102 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4103 }
5d6523eb 4104
1e3c88bd 4105 /*
ddcdf6e7
PZ
4106 * Right now, this is one of only two places move_task() is called,
4107 * so we can safely collect move_task() stats here rather than
4108 * inside move_task().
1e3c88bd 4109 */
8e45cb54 4110 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4111
5d6523eb 4112 return pulled;
1e3c88bd
PZ
4113}
4114
230059de 4115#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4116/*
4117 * update tg->load_weight by folding this cpu's load_avg
4118 */
48a16753 4119static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4120{
48a16753
PT
4121 struct sched_entity *se = tg->se[cpu];
4122 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4123
48a16753
PT
4124 /* throttled entities do not contribute to load */
4125 if (throttled_hierarchy(cfs_rq))
4126 return;
9e3081ca 4127
aff3e498 4128 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4129
82958366
PT
4130 if (se) {
4131 update_entity_load_avg(se, 1);
4132 /*
4133 * We pivot on our runnable average having decayed to zero for
4134 * list removal. This generally implies that all our children
4135 * have also been removed (modulo rounding error or bandwidth
4136 * control); however, such cases are rare and we can fix these
4137 * at enqueue.
4138 *
4139 * TODO: fix up out-of-order children on enqueue.
4140 */
4141 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4142 list_del_leaf_cfs_rq(cfs_rq);
4143 } else {
48a16753 4144 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4145 update_rq_runnable_avg(rq, rq->nr_running);
4146 }
9e3081ca
PZ
4147}
4148
48a16753 4149static void update_blocked_averages(int cpu)
9e3081ca 4150{
9e3081ca 4151 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4152 struct cfs_rq *cfs_rq;
4153 unsigned long flags;
9e3081ca 4154
48a16753
PT
4155 raw_spin_lock_irqsave(&rq->lock, flags);
4156 update_rq_clock(rq);
9763b67f
PZ
4157 /*
4158 * Iterates the task_group tree in a bottom up fashion, see
4159 * list_add_leaf_cfs_rq() for details.
4160 */
64660c86 4161 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4162 /*
4163 * Note: We may want to consider periodically releasing
4164 * rq->lock about these updates so that creating many task
4165 * groups does not result in continually extending hold time.
4166 */
4167 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4168 }
48a16753
PT
4169
4170 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4171}
4172
9763b67f
PZ
4173/*
4174 * Compute the cpu's hierarchical load factor for each task group.
4175 * This needs to be done in a top-down fashion because the load of a child
4176 * group is a fraction of its parents load.
4177 */
4178static int tg_load_down(struct task_group *tg, void *data)
4179{
4180 unsigned long load;
4181 long cpu = (long)data;
4182
4183 if (!tg->parent) {
a003a25b 4184 load = cpu_rq(cpu)->avg.load_avg_contrib;
9763b67f
PZ
4185 } else {
4186 load = tg->parent->cfs_rq[cpu]->h_load;
72a4cf20
AS
4187 load = div64_ul(load * tg->se[cpu]->avg.load_avg_contrib,
4188 tg->parent->cfs_rq[cpu]->runnable_load_avg + 1);
9763b67f
PZ
4189 }
4190
4191 tg->cfs_rq[cpu]->h_load = load;
4192
4193 return 0;
4194}
4195
4196static void update_h_load(long cpu)
4197{
a35b6466
PZ
4198 struct rq *rq = cpu_rq(cpu);
4199 unsigned long now = jiffies;
4200
4201 if (rq->h_load_throttle == now)
4202 return;
4203
4204 rq->h_load_throttle = now;
4205
367456c7 4206 rcu_read_lock();
9763b67f 4207 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4208 rcu_read_unlock();
9763b67f
PZ
4209}
4210
367456c7 4211static unsigned long task_h_load(struct task_struct *p)
230059de 4212{
367456c7 4213 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4214
a003a25b
AS
4215 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4216 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4217}
4218#else
48a16753 4219static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4220{
4221}
4222
367456c7 4223static inline void update_h_load(long cpu)
230059de 4224{
230059de 4225}
230059de 4226
367456c7 4227static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4228{
a003a25b 4229 return p->se.avg.load_avg_contrib;
1e3c88bd 4230}
230059de 4231#endif
1e3c88bd 4232
1e3c88bd
PZ
4233/********** Helpers for find_busiest_group ************************/
4234/*
4235 * sd_lb_stats - Structure to store the statistics of a sched_domain
4236 * during load balancing.
4237 */
4238struct sd_lb_stats {
4239 struct sched_group *busiest; /* Busiest group in this sd */
4240 struct sched_group *this; /* Local group in this sd */
4241 unsigned long total_load; /* Total load of all groups in sd */
4242 unsigned long total_pwr; /* Total power of all groups in sd */
4243 unsigned long avg_load; /* Average load across all groups in sd */
4244
4245 /** Statistics of this group */
4246 unsigned long this_load;
4247 unsigned long this_load_per_task;
4248 unsigned long this_nr_running;
fab47622 4249 unsigned long this_has_capacity;
aae6d3dd 4250 unsigned int this_idle_cpus;
1e3c88bd
PZ
4251
4252 /* Statistics of the busiest group */
aae6d3dd 4253 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4254 unsigned long max_load;
4255 unsigned long busiest_load_per_task;
4256 unsigned long busiest_nr_running;
dd5feea1 4257 unsigned long busiest_group_capacity;
fab47622 4258 unsigned long busiest_has_capacity;
aae6d3dd 4259 unsigned int busiest_group_weight;
1e3c88bd
PZ
4260
4261 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4262};
4263
4264/*
4265 * sg_lb_stats - stats of a sched_group required for load_balancing
4266 */
4267struct sg_lb_stats {
4268 unsigned long avg_load; /*Avg load across the CPUs of the group */
4269 unsigned long group_load; /* Total load over the CPUs of the group */
4270 unsigned long sum_nr_running; /* Nr tasks running in the group */
4271 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4272 unsigned long group_capacity;
aae6d3dd
SS
4273 unsigned long idle_cpus;
4274 unsigned long group_weight;
1e3c88bd 4275 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4276 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4277};
4278
1e3c88bd
PZ
4279/**
4280 * get_sd_load_idx - Obtain the load index for a given sched domain.
4281 * @sd: The sched_domain whose load_idx is to be obtained.
4282 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4283 */
4284static inline int get_sd_load_idx(struct sched_domain *sd,
4285 enum cpu_idle_type idle)
4286{
4287 int load_idx;
4288
4289 switch (idle) {
4290 case CPU_NOT_IDLE:
4291 load_idx = sd->busy_idx;
4292 break;
4293
4294 case CPU_NEWLY_IDLE:
4295 load_idx = sd->newidle_idx;
4296 break;
4297 default:
4298 load_idx = sd->idle_idx;
4299 break;
4300 }
4301
4302 return load_idx;
4303}
4304
15f803c9 4305static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4306{
1399fa78 4307 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4308}
4309
4310unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4311{
4312 return default_scale_freq_power(sd, cpu);
4313}
4314
15f803c9 4315static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4316{
669c55e9 4317 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4318 unsigned long smt_gain = sd->smt_gain;
4319
4320 smt_gain /= weight;
4321
4322 return smt_gain;
4323}
4324
4325unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4326{
4327 return default_scale_smt_power(sd, cpu);
4328}
4329
15f803c9 4330static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4331{
4332 struct rq *rq = cpu_rq(cpu);
b654f7de 4333 u64 total, available, age_stamp, avg;
1e3c88bd 4334
b654f7de
PZ
4335 /*
4336 * Since we're reading these variables without serialization make sure
4337 * we read them once before doing sanity checks on them.
4338 */
4339 age_stamp = ACCESS_ONCE(rq->age_stamp);
4340 avg = ACCESS_ONCE(rq->rt_avg);
4341
78becc27 4342 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4343
b654f7de 4344 if (unlikely(total < avg)) {
aa483808
VP
4345 /* Ensures that power won't end up being negative */
4346 available = 0;
4347 } else {
b654f7de 4348 available = total - avg;
aa483808 4349 }
1e3c88bd 4350
1399fa78
NR
4351 if (unlikely((s64)total < SCHED_POWER_SCALE))
4352 total = SCHED_POWER_SCALE;
1e3c88bd 4353
1399fa78 4354 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4355
4356 return div_u64(available, total);
4357}
4358
4359static void update_cpu_power(struct sched_domain *sd, int cpu)
4360{
669c55e9 4361 unsigned long weight = sd->span_weight;
1399fa78 4362 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4363 struct sched_group *sdg = sd->groups;
4364
1e3c88bd
PZ
4365 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4366 if (sched_feat(ARCH_POWER))
4367 power *= arch_scale_smt_power(sd, cpu);
4368 else
4369 power *= default_scale_smt_power(sd, cpu);
4370
1399fa78 4371 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4372 }
4373
9c3f75cb 4374 sdg->sgp->power_orig = power;
9d5efe05
SV
4375
4376 if (sched_feat(ARCH_POWER))
4377 power *= arch_scale_freq_power(sd, cpu);
4378 else
4379 power *= default_scale_freq_power(sd, cpu);
4380
1399fa78 4381 power >>= SCHED_POWER_SHIFT;
9d5efe05 4382
1e3c88bd 4383 power *= scale_rt_power(cpu);
1399fa78 4384 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4385
4386 if (!power)
4387 power = 1;
4388
e51fd5e2 4389 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4390 sdg->sgp->power = power;
1e3c88bd
PZ
4391}
4392
029632fb 4393void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4394{
4395 struct sched_domain *child = sd->child;
4396 struct sched_group *group, *sdg = sd->groups;
4397 unsigned long power;
4ec4412e
VG
4398 unsigned long interval;
4399
4400 interval = msecs_to_jiffies(sd->balance_interval);
4401 interval = clamp(interval, 1UL, max_load_balance_interval);
4402 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4403
4404 if (!child) {
4405 update_cpu_power(sd, cpu);
4406 return;
4407 }
4408
4409 power = 0;
4410
74a5ce20
PZ
4411 if (child->flags & SD_OVERLAP) {
4412 /*
4413 * SD_OVERLAP domains cannot assume that child groups
4414 * span the current group.
4415 */
4416
4417 for_each_cpu(cpu, sched_group_cpus(sdg))
4418 power += power_of(cpu);
4419 } else {
4420 /*
4421 * !SD_OVERLAP domains can assume that child groups
4422 * span the current group.
4423 */
4424
4425 group = child->groups;
4426 do {
4427 power += group->sgp->power;
4428 group = group->next;
4429 } while (group != child->groups);
4430 }
1e3c88bd 4431
c3decf0d 4432 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4433}
4434
9d5efe05
SV
4435/*
4436 * Try and fix up capacity for tiny siblings, this is needed when
4437 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4438 * which on its own isn't powerful enough.
4439 *
4440 * See update_sd_pick_busiest() and check_asym_packing().
4441 */
4442static inline int
4443fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4444{
4445 /*
1399fa78 4446 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4447 */
a6c75f2f 4448 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4449 return 0;
4450
4451 /*
4452 * If ~90% of the cpu_power is still there, we're good.
4453 */
9c3f75cb 4454 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4455 return 1;
4456
4457 return 0;
4458}
4459
1e3c88bd
PZ
4460/**
4461 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4462 * @env: The load balancing environment.
1e3c88bd 4463 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4464 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4465 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4466 * @sgs: variable to hold the statistics for this group.
4467 */
bd939f45
PZ
4468static inline void update_sg_lb_stats(struct lb_env *env,
4469 struct sched_group *group, int load_idx,
23f0d209 4470 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 4471{
e44bc5c5
PZ
4472 unsigned long nr_running, max_nr_running, min_nr_running;
4473 unsigned long load, max_cpu_load, min_cpu_load;
dd5feea1 4474 unsigned long avg_load_per_task = 0;
bd939f45 4475 int i;
1e3c88bd 4476
1e3c88bd 4477 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4478 max_cpu_load = 0;
4479 min_cpu_load = ~0UL;
2582f0eb 4480 max_nr_running = 0;
e44bc5c5 4481 min_nr_running = ~0UL;
1e3c88bd 4482
b9403130 4483 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4484 struct rq *rq = cpu_rq(i);
4485
e44bc5c5
PZ
4486 nr_running = rq->nr_running;
4487
1e3c88bd
PZ
4488 /* Bias balancing toward cpus of our domain */
4489 if (local_group) {
04f733b4 4490 load = target_load(i, load_idx);
1e3c88bd
PZ
4491 } else {
4492 load = source_load(i, load_idx);
e44bc5c5 4493 if (load > max_cpu_load)
1e3c88bd
PZ
4494 max_cpu_load = load;
4495 if (min_cpu_load > load)
4496 min_cpu_load = load;
e44bc5c5
PZ
4497
4498 if (nr_running > max_nr_running)
4499 max_nr_running = nr_running;
4500 if (min_nr_running > nr_running)
4501 min_nr_running = nr_running;
1e3c88bd
PZ
4502 }
4503
4504 sgs->group_load += load;
e44bc5c5 4505 sgs->sum_nr_running += nr_running;
1e3c88bd 4506 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4507 if (idle_cpu(i))
4508 sgs->idle_cpus++;
1e3c88bd
PZ
4509 }
4510
23f0d209
JK
4511 if (local_group && (env->idle != CPU_NEWLY_IDLE ||
4512 time_after_eq(jiffies, group->sgp->next_update)))
4513 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4514
4515 /* Adjust by relative CPU power of the group */
9c3f75cb 4516 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4517
1e3c88bd
PZ
4518 /*
4519 * Consider the group unbalanced when the imbalance is larger
866ab43e 4520 * than the average weight of a task.
1e3c88bd
PZ
4521 *
4522 * APZ: with cgroup the avg task weight can vary wildly and
4523 * might not be a suitable number - should we keep a
4524 * normalized nr_running number somewhere that negates
4525 * the hierarchy?
4526 */
dd5feea1
SS
4527 if (sgs->sum_nr_running)
4528 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4529
e44bc5c5
PZ
4530 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4531 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4532 sgs->group_imb = 1;
4533
9c3f75cb 4534 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4535 SCHED_POWER_SCALE);
9d5efe05 4536 if (!sgs->group_capacity)
bd939f45 4537 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4538 sgs->group_weight = group->group_weight;
fab47622
NR
4539
4540 if (sgs->group_capacity > sgs->sum_nr_running)
4541 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4542}
4543
532cb4c4
MN
4544/**
4545 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4546 * @env: The load balancing environment.
532cb4c4
MN
4547 * @sds: sched_domain statistics
4548 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4549 * @sgs: sched_group statistics
532cb4c4
MN
4550 *
4551 * Determine if @sg is a busier group than the previously selected
4552 * busiest group.
4553 */
bd939f45 4554static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4555 struct sd_lb_stats *sds,
4556 struct sched_group *sg,
bd939f45 4557 struct sg_lb_stats *sgs)
532cb4c4
MN
4558{
4559 if (sgs->avg_load <= sds->max_load)
4560 return false;
4561
4562 if (sgs->sum_nr_running > sgs->group_capacity)
4563 return true;
4564
4565 if (sgs->group_imb)
4566 return true;
4567
4568 /*
4569 * ASYM_PACKING needs to move all the work to the lowest
4570 * numbered CPUs in the group, therefore mark all groups
4571 * higher than ourself as busy.
4572 */
bd939f45
PZ
4573 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4574 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4575 if (!sds->busiest)
4576 return true;
4577
4578 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4579 return true;
4580 }
4581
4582 return false;
4583}
4584
1e3c88bd 4585/**
461819ac 4586 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4587 * @env: The load balancing environment.
1e3c88bd
PZ
4588 * @balance: Should we balance.
4589 * @sds: variable to hold the statistics for this sched_domain.
4590 */
bd939f45 4591static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 4592 struct sd_lb_stats *sds)
1e3c88bd 4593{
bd939f45
PZ
4594 struct sched_domain *child = env->sd->child;
4595 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4596 struct sg_lb_stats sgs;
4597 int load_idx, prefer_sibling = 0;
4598
4599 if (child && child->flags & SD_PREFER_SIBLING)
4600 prefer_sibling = 1;
4601
bd939f45 4602 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4603
4604 do {
4605 int local_group;
4606
bd939f45 4607 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4608 memset(&sgs, 0, sizeof(sgs));
23f0d209 4609 update_sg_lb_stats(env, sg, load_idx, local_group, &sgs);
1e3c88bd
PZ
4610
4611 sds->total_load += sgs.group_load;
9c3f75cb 4612 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4613
4614 /*
4615 * In case the child domain prefers tasks go to siblings
532cb4c4 4616 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4617 * and move all the excess tasks away. We lower the capacity
4618 * of a group only if the local group has the capacity to fit
4619 * these excess tasks, i.e. nr_running < group_capacity. The
4620 * extra check prevents the case where you always pull from the
4621 * heaviest group when it is already under-utilized (possible
4622 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4623 */
75dd321d 4624 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4625 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4626
4627 if (local_group) {
4628 sds->this_load = sgs.avg_load;
532cb4c4 4629 sds->this = sg;
1e3c88bd
PZ
4630 sds->this_nr_running = sgs.sum_nr_running;
4631 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4632 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4633 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4634 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4635 sds->max_load = sgs.avg_load;
532cb4c4 4636 sds->busiest = sg;
1e3c88bd 4637 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4638 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4639 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4640 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4641 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4642 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4643 sds->group_imb = sgs.group_imb;
4644 }
4645
532cb4c4 4646 sg = sg->next;
bd939f45 4647 } while (sg != env->sd->groups);
532cb4c4
MN
4648}
4649
532cb4c4
MN
4650/**
4651 * check_asym_packing - Check to see if the group is packed into the
4652 * sched doman.
4653 *
4654 * This is primarily intended to used at the sibling level. Some
4655 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4656 * case of POWER7, it can move to lower SMT modes only when higher
4657 * threads are idle. When in lower SMT modes, the threads will
4658 * perform better since they share less core resources. Hence when we
4659 * have idle threads, we want them to be the higher ones.
4660 *
4661 * This packing function is run on idle threads. It checks to see if
4662 * the busiest CPU in this domain (core in the P7 case) has a higher
4663 * CPU number than the packing function is being run on. Here we are
4664 * assuming lower CPU number will be equivalent to lower a SMT thread
4665 * number.
4666 *
b6b12294
MN
4667 * Returns 1 when packing is required and a task should be moved to
4668 * this CPU. The amount of the imbalance is returned in *imbalance.
4669 *
cd96891d 4670 * @env: The load balancing environment.
532cb4c4 4671 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4672 */
bd939f45 4673static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4674{
4675 int busiest_cpu;
4676
bd939f45 4677 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4678 return 0;
4679
4680 if (!sds->busiest)
4681 return 0;
4682
4683 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4684 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4685 return 0;
4686
bd939f45
PZ
4687 env->imbalance = DIV_ROUND_CLOSEST(
4688 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4689
532cb4c4 4690 return 1;
1e3c88bd
PZ
4691}
4692
4693/**
4694 * fix_small_imbalance - Calculate the minor imbalance that exists
4695 * amongst the groups of a sched_domain, during
4696 * load balancing.
cd96891d 4697 * @env: The load balancing environment.
1e3c88bd 4698 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4699 */
bd939f45
PZ
4700static inline
4701void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4702{
4703 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4704 unsigned int imbn = 2;
dd5feea1 4705 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4706
4707 if (sds->this_nr_running) {
4708 sds->this_load_per_task /= sds->this_nr_running;
4709 if (sds->busiest_load_per_task >
4710 sds->this_load_per_task)
4711 imbn = 1;
bd939f45 4712 } else {
1e3c88bd 4713 sds->this_load_per_task =
bd939f45
PZ
4714 cpu_avg_load_per_task(env->dst_cpu);
4715 }
1e3c88bd 4716
dd5feea1 4717 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4718 * SCHED_POWER_SCALE;
9c3f75cb 4719 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4720
4721 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4722 (scaled_busy_load_per_task * imbn)) {
bd939f45 4723 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4724 return;
4725 }
4726
4727 /*
4728 * OK, we don't have enough imbalance to justify moving tasks,
4729 * however we may be able to increase total CPU power used by
4730 * moving them.
4731 */
4732
9c3f75cb 4733 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4734 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4735 pwr_now += sds->this->sgp->power *
1e3c88bd 4736 min(sds->this_load_per_task, sds->this_load);
1399fa78 4737 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4738
4739 /* Amount of load we'd subtract */
1399fa78 4740 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4741 sds->busiest->sgp->power;
1e3c88bd 4742 if (sds->max_load > tmp)
9c3f75cb 4743 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4744 min(sds->busiest_load_per_task, sds->max_load - tmp);
4745
4746 /* Amount of load we'd add */
9c3f75cb 4747 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4748 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4749 tmp = (sds->max_load * sds->busiest->sgp->power) /
4750 sds->this->sgp->power;
1e3c88bd 4751 else
1399fa78 4752 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4753 sds->this->sgp->power;
4754 pwr_move += sds->this->sgp->power *
1e3c88bd 4755 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4756 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4757
4758 /* Move if we gain throughput */
4759 if (pwr_move > pwr_now)
bd939f45 4760 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4761}
4762
4763/**
4764 * calculate_imbalance - Calculate the amount of imbalance present within the
4765 * groups of a given sched_domain during load balance.
bd939f45 4766 * @env: load balance environment
1e3c88bd 4767 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4768 */
bd939f45 4769static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4770{
dd5feea1
SS
4771 unsigned long max_pull, load_above_capacity = ~0UL;
4772
4773 sds->busiest_load_per_task /= sds->busiest_nr_running;
4774 if (sds->group_imb) {
4775 sds->busiest_load_per_task =
4776 min(sds->busiest_load_per_task, sds->avg_load);
4777 }
4778
1e3c88bd
PZ
4779 /*
4780 * In the presence of smp nice balancing, certain scenarios can have
4781 * max load less than avg load(as we skip the groups at or below
4782 * its cpu_power, while calculating max_load..)
4783 */
4784 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4785 env->imbalance = 0;
4786 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4787 }
4788
dd5feea1
SS
4789 if (!sds->group_imb) {
4790 /*
4791 * Don't want to pull so many tasks that a group would go idle.
4792 */
4793 load_above_capacity = (sds->busiest_nr_running -
4794 sds->busiest_group_capacity);
4795
1399fa78 4796 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4797
9c3f75cb 4798 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4799 }
4800
4801 /*
4802 * We're trying to get all the cpus to the average_load, so we don't
4803 * want to push ourselves above the average load, nor do we wish to
4804 * reduce the max loaded cpu below the average load. At the same time,
4805 * we also don't want to reduce the group load below the group capacity
4806 * (so that we can implement power-savings policies etc). Thus we look
4807 * for the minimum possible imbalance.
4808 * Be careful of negative numbers as they'll appear as very large values
4809 * with unsigned longs.
4810 */
4811 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4812
4813 /* How much load to actually move to equalise the imbalance */
bd939f45 4814 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4815 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4816 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4817
4818 /*
4819 * if *imbalance is less than the average load per runnable task
25985edc 4820 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4821 * a think about bumping its value to force at least one task to be
4822 * moved
4823 */
bd939f45
PZ
4824 if (env->imbalance < sds->busiest_load_per_task)
4825 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4826
4827}
fab47622 4828
1e3c88bd
PZ
4829/******* find_busiest_group() helpers end here *********************/
4830
4831/**
4832 * find_busiest_group - Returns the busiest group within the sched_domain
4833 * if there is an imbalance. If there isn't an imbalance, and
4834 * the user has opted for power-savings, it returns a group whose
4835 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4836 * such a group exists.
4837 *
4838 * Also calculates the amount of weighted load which should be moved
4839 * to restore balance.
4840 *
cd96891d 4841 * @env: The load balancing environment.
1e3c88bd
PZ
4842 *
4843 * Returns: - the busiest group if imbalance exists.
4844 * - If no imbalance and user has opted for power-savings balance,
4845 * return the least loaded group whose CPUs can be
4846 * put to idle by rebalancing its tasks onto our group.
4847 */
4848static struct sched_group *
23f0d209 4849find_busiest_group(struct lb_env *env)
1e3c88bd
PZ
4850{
4851 struct sd_lb_stats sds;
4852
4853 memset(&sds, 0, sizeof(sds));
4854
4855 /*
4856 * Compute the various statistics relavent for load balancing at
4857 * this level.
4858 */
23f0d209 4859 update_sd_lb_stats(env, &sds);
1e3c88bd 4860
bd939f45
PZ
4861 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4862 check_asym_packing(env, &sds))
532cb4c4
MN
4863 return sds.busiest;
4864
cc57aa8f 4865 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4866 if (!sds.busiest || sds.busiest_nr_running == 0)
4867 goto out_balanced;
4868
1399fa78 4869 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4870
866ab43e
PZ
4871 /*
4872 * If the busiest group is imbalanced the below checks don't
4873 * work because they assumes all things are equal, which typically
4874 * isn't true due to cpus_allowed constraints and the like.
4875 */
4876 if (sds.group_imb)
4877 goto force_balance;
4878
cc57aa8f 4879 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4880 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4881 !sds.busiest_has_capacity)
4882 goto force_balance;
4883
cc57aa8f
PZ
4884 /*
4885 * If the local group is more busy than the selected busiest group
4886 * don't try and pull any tasks.
4887 */
1e3c88bd
PZ
4888 if (sds.this_load >= sds.max_load)
4889 goto out_balanced;
4890
cc57aa8f
PZ
4891 /*
4892 * Don't pull any tasks if this group is already above the domain
4893 * average load.
4894 */
1e3c88bd
PZ
4895 if (sds.this_load >= sds.avg_load)
4896 goto out_balanced;
4897
bd939f45 4898 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4899 /*
4900 * This cpu is idle. If the busiest group load doesn't
4901 * have more tasks than the number of available cpu's and
4902 * there is no imbalance between this and busiest group
4903 * wrt to idle cpu's, it is balanced.
4904 */
c186fafe 4905 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4906 sds.busiest_nr_running <= sds.busiest_group_weight)
4907 goto out_balanced;
c186fafe
PZ
4908 } else {
4909 /*
4910 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4911 * imbalance_pct to be conservative.
4912 */
bd939f45 4913 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4914 goto out_balanced;
aae6d3dd 4915 }
1e3c88bd 4916
fab47622 4917force_balance:
1e3c88bd 4918 /* Looks like there is an imbalance. Compute it */
bd939f45 4919 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4920 return sds.busiest;
4921
4922out_balanced:
bd939f45 4923 env->imbalance = 0;
1e3c88bd
PZ
4924 return NULL;
4925}
4926
4927/*
4928 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4929 */
bd939f45 4930static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4931 struct sched_group *group)
1e3c88bd
PZ
4932{
4933 struct rq *busiest = NULL, *rq;
95a79b80 4934 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
4935 int i;
4936
4937 for_each_cpu(i, sched_group_cpus(group)) {
4938 unsigned long power = power_of(i);
1399fa78
NR
4939 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4940 SCHED_POWER_SCALE);
1e3c88bd
PZ
4941 unsigned long wl;
4942
9d5efe05 4943 if (!capacity)
bd939f45 4944 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4945
b9403130 4946 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4947 continue;
4948
4949 rq = cpu_rq(i);
6e40f5bb 4950 wl = weighted_cpuload(i);
1e3c88bd 4951
6e40f5bb
TG
4952 /*
4953 * When comparing with imbalance, use weighted_cpuload()
4954 * which is not scaled with the cpu power.
4955 */
bd939f45 4956 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4957 continue;
4958
6e40f5bb
TG
4959 /*
4960 * For the load comparisons with the other cpu's, consider
4961 * the weighted_cpuload() scaled with the cpu power, so that
4962 * the load can be moved away from the cpu that is potentially
4963 * running at a lower capacity.
95a79b80
JK
4964 *
4965 * Thus we're looking for max(wl_i / power_i), crosswise
4966 * multiplication to rid ourselves of the division works out
4967 * to: wl_i * power_j > wl_j * power_i; where j is our
4968 * previous maximum.
6e40f5bb 4969 */
95a79b80
JK
4970 if (wl * busiest_power > busiest_load * power) {
4971 busiest_load = wl;
4972 busiest_power = power;
1e3c88bd
PZ
4973 busiest = rq;
4974 }
4975 }
4976
4977 return busiest;
4978}
4979
4980/*
4981 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4982 * so long as it is large enough.
4983 */
4984#define MAX_PINNED_INTERVAL 512
4985
4986/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 4987DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 4988
bd939f45 4989static int need_active_balance(struct lb_env *env)
1af3ed3d 4990{
bd939f45
PZ
4991 struct sched_domain *sd = env->sd;
4992
4993 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4994
4995 /*
4996 * ASYM_PACKING needs to force migrate tasks from busy but
4997 * higher numbered CPUs in order to pack all tasks in the
4998 * lowest numbered CPUs.
4999 */
bd939f45 5000 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5001 return 1;
1af3ed3d
PZ
5002 }
5003
5004 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5005}
5006
969c7921
TH
5007static int active_load_balance_cpu_stop(void *data);
5008
23f0d209
JK
5009static int should_we_balance(struct lb_env *env)
5010{
5011 struct sched_group *sg = env->sd->groups;
5012 struct cpumask *sg_cpus, *sg_mask;
5013 int cpu, balance_cpu = -1;
5014
5015 /*
5016 * In the newly idle case, we will allow all the cpu's
5017 * to do the newly idle load balance.
5018 */
5019 if (env->idle == CPU_NEWLY_IDLE)
5020 return 1;
5021
5022 sg_cpus = sched_group_cpus(sg);
5023 sg_mask = sched_group_mask(sg);
5024 /* Try to find first idle cpu */
5025 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5026 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5027 continue;
5028
5029 balance_cpu = cpu;
5030 break;
5031 }
5032
5033 if (balance_cpu == -1)
5034 balance_cpu = group_balance_cpu(sg);
5035
5036 /*
5037 * First idle cpu or the first cpu(busiest) in this sched group
5038 * is eligible for doing load balancing at this and above domains.
5039 */
5040 return balance_cpu != env->dst_cpu;
5041}
5042
1e3c88bd
PZ
5043/*
5044 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5045 * tasks if there is an imbalance.
5046 */
5047static int load_balance(int this_cpu, struct rq *this_rq,
5048 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5049 int *continue_balancing)
1e3c88bd 5050{
88b8dac0 5051 int ld_moved, cur_ld_moved, active_balance = 0;
1e3c88bd 5052 struct sched_group *group;
1e3c88bd
PZ
5053 struct rq *busiest;
5054 unsigned long flags;
e6252c3e 5055 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5056
8e45cb54
PZ
5057 struct lb_env env = {
5058 .sd = sd,
ddcdf6e7
PZ
5059 .dst_cpu = this_cpu,
5060 .dst_rq = this_rq,
88b8dac0 5061 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5062 .idle = idle,
eb95308e 5063 .loop_break = sched_nr_migrate_break,
b9403130 5064 .cpus = cpus,
8e45cb54
PZ
5065 };
5066
cfc03118
JK
5067 /*
5068 * For NEWLY_IDLE load_balancing, we don't need to consider
5069 * other cpus in our group
5070 */
e02e60c1 5071 if (idle == CPU_NEWLY_IDLE)
cfc03118 5072 env.dst_grpmask = NULL;
cfc03118 5073
1e3c88bd
PZ
5074 cpumask_copy(cpus, cpu_active_mask);
5075
1e3c88bd
PZ
5076 schedstat_inc(sd, lb_count[idle]);
5077
5078redo:
23f0d209
JK
5079 if (!should_we_balance(&env)) {
5080 *continue_balancing = 0;
1e3c88bd 5081 goto out_balanced;
23f0d209 5082 }
1e3c88bd 5083
23f0d209 5084 group = find_busiest_group(&env);
1e3c88bd
PZ
5085 if (!group) {
5086 schedstat_inc(sd, lb_nobusyg[idle]);
5087 goto out_balanced;
5088 }
5089
b9403130 5090 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5091 if (!busiest) {
5092 schedstat_inc(sd, lb_nobusyq[idle]);
5093 goto out_balanced;
5094 }
5095
78feefc5 5096 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5097
bd939f45 5098 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5099
5100 ld_moved = 0;
5101 if (busiest->nr_running > 1) {
5102 /*
5103 * Attempt to move tasks. If find_busiest_group has found
5104 * an imbalance but busiest->nr_running <= 1, the group is
5105 * still unbalanced. ld_moved simply stays zero, so it is
5106 * correctly treated as an imbalance.
5107 */
8e45cb54 5108 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5109 env.src_cpu = busiest->cpu;
5110 env.src_rq = busiest;
5111 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5112
a35b6466 5113 update_h_load(env.src_cpu);
5d6523eb 5114more_balance:
1e3c88bd 5115 local_irq_save(flags);
78feefc5 5116 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5117
5118 /*
5119 * cur_ld_moved - load moved in current iteration
5120 * ld_moved - cumulative load moved across iterations
5121 */
5122 cur_ld_moved = move_tasks(&env);
5123 ld_moved += cur_ld_moved;
78feefc5 5124 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5125 local_irq_restore(flags);
5126
5127 /*
5128 * some other cpu did the load balance for us.
5129 */
88b8dac0
SV
5130 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5131 resched_cpu(env.dst_cpu);
5132
f1cd0858
JK
5133 if (env.flags & LBF_NEED_BREAK) {
5134 env.flags &= ~LBF_NEED_BREAK;
5135 goto more_balance;
5136 }
5137
88b8dac0
SV
5138 /*
5139 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5140 * us and move them to an alternate dst_cpu in our sched_group
5141 * where they can run. The upper limit on how many times we
5142 * iterate on same src_cpu is dependent on number of cpus in our
5143 * sched_group.
5144 *
5145 * This changes load balance semantics a bit on who can move
5146 * load to a given_cpu. In addition to the given_cpu itself
5147 * (or a ilb_cpu acting on its behalf where given_cpu is
5148 * nohz-idle), we now have balance_cpu in a position to move
5149 * load to given_cpu. In rare situations, this may cause
5150 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5151 * _independently_ and at _same_ time to move some load to
5152 * given_cpu) causing exceess load to be moved to given_cpu.
5153 * This however should not happen so much in practice and
5154 * moreover subsequent load balance cycles should correct the
5155 * excess load moved.
5156 */
e02e60c1 5157 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
88b8dac0 5158
78feefc5 5159 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5160 env.dst_cpu = env.new_dst_cpu;
5161 env.flags &= ~LBF_SOME_PINNED;
5162 env.loop = 0;
5163 env.loop_break = sched_nr_migrate_break;
e02e60c1
JK
5164
5165 /* Prevent to re-select dst_cpu via env's cpus */
5166 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5167
88b8dac0
SV
5168 /*
5169 * Go back to "more_balance" rather than "redo" since we
5170 * need to continue with same src_cpu.
5171 */
5172 goto more_balance;
5173 }
1e3c88bd
PZ
5174
5175 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5176 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5177 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5178 if (!cpumask_empty(cpus)) {
5179 env.loop = 0;
5180 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5181 goto redo;
bbf18b19 5182 }
1e3c88bd
PZ
5183 goto out_balanced;
5184 }
5185 }
5186
5187 if (!ld_moved) {
5188 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5189 /*
5190 * Increment the failure counter only on periodic balance.
5191 * We do not want newidle balance, which can be very
5192 * frequent, pollute the failure counter causing
5193 * excessive cache_hot migrations and active balances.
5194 */
5195 if (idle != CPU_NEWLY_IDLE)
5196 sd->nr_balance_failed++;
1e3c88bd 5197
bd939f45 5198 if (need_active_balance(&env)) {
1e3c88bd
PZ
5199 raw_spin_lock_irqsave(&busiest->lock, flags);
5200
969c7921
TH
5201 /* don't kick the active_load_balance_cpu_stop,
5202 * if the curr task on busiest cpu can't be
5203 * moved to this_cpu
1e3c88bd
PZ
5204 */
5205 if (!cpumask_test_cpu(this_cpu,
fa17b507 5206 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5207 raw_spin_unlock_irqrestore(&busiest->lock,
5208 flags);
8e45cb54 5209 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5210 goto out_one_pinned;
5211 }
5212
969c7921
TH
5213 /*
5214 * ->active_balance synchronizes accesses to
5215 * ->active_balance_work. Once set, it's cleared
5216 * only after active load balance is finished.
5217 */
1e3c88bd
PZ
5218 if (!busiest->active_balance) {
5219 busiest->active_balance = 1;
5220 busiest->push_cpu = this_cpu;
5221 active_balance = 1;
5222 }
5223 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5224
bd939f45 5225 if (active_balance) {
969c7921
TH
5226 stop_one_cpu_nowait(cpu_of(busiest),
5227 active_load_balance_cpu_stop, busiest,
5228 &busiest->active_balance_work);
bd939f45 5229 }
1e3c88bd
PZ
5230
5231 /*
5232 * We've kicked active balancing, reset the failure
5233 * counter.
5234 */
5235 sd->nr_balance_failed = sd->cache_nice_tries+1;
5236 }
5237 } else
5238 sd->nr_balance_failed = 0;
5239
5240 if (likely(!active_balance)) {
5241 /* We were unbalanced, so reset the balancing interval */
5242 sd->balance_interval = sd->min_interval;
5243 } else {
5244 /*
5245 * If we've begun active balancing, start to back off. This
5246 * case may not be covered by the all_pinned logic if there
5247 * is only 1 task on the busy runqueue (because we don't call
5248 * move_tasks).
5249 */
5250 if (sd->balance_interval < sd->max_interval)
5251 sd->balance_interval *= 2;
5252 }
5253
1e3c88bd
PZ
5254 goto out;
5255
5256out_balanced:
5257 schedstat_inc(sd, lb_balanced[idle]);
5258
5259 sd->nr_balance_failed = 0;
5260
5261out_one_pinned:
5262 /* tune up the balancing interval */
8e45cb54 5263 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5264 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5265 (sd->balance_interval < sd->max_interval))
5266 sd->balance_interval *= 2;
5267
46e49b38 5268 ld_moved = 0;
1e3c88bd 5269out:
1e3c88bd
PZ
5270 return ld_moved;
5271}
5272
1e3c88bd
PZ
5273/*
5274 * idle_balance is called by schedule() if this_cpu is about to become
5275 * idle. Attempts to pull tasks from other CPUs.
5276 */
029632fb 5277void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5278{
5279 struct sched_domain *sd;
5280 int pulled_task = 0;
5281 unsigned long next_balance = jiffies + HZ;
5282
78becc27 5283 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5284
5285 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5286 return;
5287
f492e12e
PZ
5288 /*
5289 * Drop the rq->lock, but keep IRQ/preempt disabled.
5290 */
5291 raw_spin_unlock(&this_rq->lock);
5292
48a16753 5293 update_blocked_averages(this_cpu);
dce840a0 5294 rcu_read_lock();
1e3c88bd
PZ
5295 for_each_domain(this_cpu, sd) {
5296 unsigned long interval;
23f0d209 5297 int continue_balancing = 1;
1e3c88bd
PZ
5298
5299 if (!(sd->flags & SD_LOAD_BALANCE))
5300 continue;
5301
f492e12e 5302 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5303 /* If we've pulled tasks over stop searching: */
f492e12e 5304 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
5305 sd, CPU_NEWLY_IDLE,
5306 &continue_balancing);
f492e12e 5307 }
1e3c88bd
PZ
5308
5309 interval = msecs_to_jiffies(sd->balance_interval);
5310 if (time_after(next_balance, sd->last_balance + interval))
5311 next_balance = sd->last_balance + interval;
d5ad140b
NR
5312 if (pulled_task) {
5313 this_rq->idle_stamp = 0;
1e3c88bd 5314 break;
d5ad140b 5315 }
1e3c88bd 5316 }
dce840a0 5317 rcu_read_unlock();
f492e12e
PZ
5318
5319 raw_spin_lock(&this_rq->lock);
5320
1e3c88bd
PZ
5321 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5322 /*
5323 * We are going idle. next_balance may be set based on
5324 * a busy processor. So reset next_balance.
5325 */
5326 this_rq->next_balance = next_balance;
5327 }
5328}
5329
5330/*
969c7921
TH
5331 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5332 * running tasks off the busiest CPU onto idle CPUs. It requires at
5333 * least 1 task to be running on each physical CPU where possible, and
5334 * avoids physical / logical imbalances.
1e3c88bd 5335 */
969c7921 5336static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5337{
969c7921
TH
5338 struct rq *busiest_rq = data;
5339 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5340 int target_cpu = busiest_rq->push_cpu;
969c7921 5341 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5342 struct sched_domain *sd;
969c7921
TH
5343
5344 raw_spin_lock_irq(&busiest_rq->lock);
5345
5346 /* make sure the requested cpu hasn't gone down in the meantime */
5347 if (unlikely(busiest_cpu != smp_processor_id() ||
5348 !busiest_rq->active_balance))
5349 goto out_unlock;
1e3c88bd
PZ
5350
5351 /* Is there any task to move? */
5352 if (busiest_rq->nr_running <= 1)
969c7921 5353 goto out_unlock;
1e3c88bd
PZ
5354
5355 /*
5356 * This condition is "impossible", if it occurs
5357 * we need to fix it. Originally reported by
5358 * Bjorn Helgaas on a 128-cpu setup.
5359 */
5360 BUG_ON(busiest_rq == target_rq);
5361
5362 /* move a task from busiest_rq to target_rq */
5363 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5364
5365 /* Search for an sd spanning us and the target CPU. */
dce840a0 5366 rcu_read_lock();
1e3c88bd
PZ
5367 for_each_domain(target_cpu, sd) {
5368 if ((sd->flags & SD_LOAD_BALANCE) &&
5369 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5370 break;
5371 }
5372
5373 if (likely(sd)) {
8e45cb54
PZ
5374 struct lb_env env = {
5375 .sd = sd,
ddcdf6e7
PZ
5376 .dst_cpu = target_cpu,
5377 .dst_rq = target_rq,
5378 .src_cpu = busiest_rq->cpu,
5379 .src_rq = busiest_rq,
8e45cb54
PZ
5380 .idle = CPU_IDLE,
5381 };
5382
1e3c88bd
PZ
5383 schedstat_inc(sd, alb_count);
5384
8e45cb54 5385 if (move_one_task(&env))
1e3c88bd
PZ
5386 schedstat_inc(sd, alb_pushed);
5387 else
5388 schedstat_inc(sd, alb_failed);
5389 }
dce840a0 5390 rcu_read_unlock();
1e3c88bd 5391 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5392out_unlock:
5393 busiest_rq->active_balance = 0;
5394 raw_spin_unlock_irq(&busiest_rq->lock);
5395 return 0;
1e3c88bd
PZ
5396}
5397
3451d024 5398#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5399/*
5400 * idle load balancing details
83cd4fe2
VP
5401 * - When one of the busy CPUs notice that there may be an idle rebalancing
5402 * needed, they will kick the idle load balancer, which then does idle
5403 * load balancing for all the idle CPUs.
5404 */
1e3c88bd 5405static struct {
83cd4fe2 5406 cpumask_var_t idle_cpus_mask;
0b005cf5 5407 atomic_t nr_cpus;
83cd4fe2
VP
5408 unsigned long next_balance; /* in jiffy units */
5409} nohz ____cacheline_aligned;
1e3c88bd 5410
8e7fbcbc 5411static inline int find_new_ilb(int call_cpu)
1e3c88bd 5412{
0b005cf5 5413 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5414
786d6dc7
SS
5415 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5416 return ilb;
5417
5418 return nr_cpu_ids;
1e3c88bd 5419}
1e3c88bd 5420
83cd4fe2
VP
5421/*
5422 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5423 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5424 * CPU (if there is one).
5425 */
5426static void nohz_balancer_kick(int cpu)
5427{
5428 int ilb_cpu;
5429
5430 nohz.next_balance++;
5431
0b005cf5 5432 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5433
0b005cf5
SS
5434 if (ilb_cpu >= nr_cpu_ids)
5435 return;
83cd4fe2 5436
cd490c5b 5437 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5438 return;
5439 /*
5440 * Use smp_send_reschedule() instead of resched_cpu().
5441 * This way we generate a sched IPI on the target cpu which
5442 * is idle. And the softirq performing nohz idle load balance
5443 * will be run before returning from the IPI.
5444 */
5445 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5446 return;
5447}
5448
c1cc017c 5449static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5450{
5451 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5452 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5453 atomic_dec(&nohz.nr_cpus);
5454 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5455 }
5456}
5457
69e1e811
SS
5458static inline void set_cpu_sd_state_busy(void)
5459{
5460 struct sched_domain *sd;
69e1e811 5461
69e1e811 5462 rcu_read_lock();
424c93fe 5463 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5464
5465 if (!sd || !sd->nohz_idle)
5466 goto unlock;
5467 sd->nohz_idle = 0;
5468
5469 for (; sd; sd = sd->parent)
69e1e811 5470 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5471unlock:
69e1e811
SS
5472 rcu_read_unlock();
5473}
5474
5475void set_cpu_sd_state_idle(void)
5476{
5477 struct sched_domain *sd;
69e1e811 5478
69e1e811 5479 rcu_read_lock();
424c93fe 5480 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5481
5482 if (!sd || sd->nohz_idle)
5483 goto unlock;
5484 sd->nohz_idle = 1;
5485
5486 for (; sd; sd = sd->parent)
69e1e811 5487 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5488unlock:
69e1e811
SS
5489 rcu_read_unlock();
5490}
5491
1e3c88bd 5492/*
c1cc017c 5493 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5494 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5495 */
c1cc017c 5496void nohz_balance_enter_idle(int cpu)
1e3c88bd 5497{
71325960
SS
5498 /*
5499 * If this cpu is going down, then nothing needs to be done.
5500 */
5501 if (!cpu_active(cpu))
5502 return;
5503
c1cc017c
AS
5504 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5505 return;
1e3c88bd 5506
c1cc017c
AS
5507 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5508 atomic_inc(&nohz.nr_cpus);
5509 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5510}
71325960 5511
0db0628d 5512static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
5513 unsigned long action, void *hcpu)
5514{
5515 switch (action & ~CPU_TASKS_FROZEN) {
5516 case CPU_DYING:
c1cc017c 5517 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5518 return NOTIFY_OK;
5519 default:
5520 return NOTIFY_DONE;
5521 }
5522}
1e3c88bd
PZ
5523#endif
5524
5525static DEFINE_SPINLOCK(balancing);
5526
49c022e6
PZ
5527/*
5528 * Scale the max load_balance interval with the number of CPUs in the system.
5529 * This trades load-balance latency on larger machines for less cross talk.
5530 */
029632fb 5531void update_max_interval(void)
49c022e6
PZ
5532{
5533 max_load_balance_interval = HZ*num_online_cpus()/10;
5534}
5535
1e3c88bd
PZ
5536/*
5537 * It checks each scheduling domain to see if it is due to be balanced,
5538 * and initiates a balancing operation if so.
5539 *
b9b0853a 5540 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5541 */
5542static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5543{
23f0d209 5544 int continue_balancing = 1;
1e3c88bd
PZ
5545 struct rq *rq = cpu_rq(cpu);
5546 unsigned long interval;
04f733b4 5547 struct sched_domain *sd;
1e3c88bd
PZ
5548 /* Earliest time when we have to do rebalance again */
5549 unsigned long next_balance = jiffies + 60*HZ;
5550 int update_next_balance = 0;
5551 int need_serialize;
5552
48a16753 5553 update_blocked_averages(cpu);
2069dd75 5554
dce840a0 5555 rcu_read_lock();
1e3c88bd
PZ
5556 for_each_domain(cpu, sd) {
5557 if (!(sd->flags & SD_LOAD_BALANCE))
5558 continue;
5559
5560 interval = sd->balance_interval;
5561 if (idle != CPU_IDLE)
5562 interval *= sd->busy_factor;
5563
5564 /* scale ms to jiffies */
5565 interval = msecs_to_jiffies(interval);
49c022e6 5566 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5567
5568 need_serialize = sd->flags & SD_SERIALIZE;
5569
5570 if (need_serialize) {
5571 if (!spin_trylock(&balancing))
5572 goto out;
5573 }
5574
5575 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 5576 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 5577 /*
de5eb2dd
JK
5578 * The LBF_SOME_PINNED logic could have changed
5579 * env->dst_cpu, so we can't know our idle
5580 * state even if we migrated tasks. Update it.
1e3c88bd 5581 */
de5eb2dd 5582 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5583 }
5584 sd->last_balance = jiffies;
5585 }
5586 if (need_serialize)
5587 spin_unlock(&balancing);
5588out:
5589 if (time_after(next_balance, sd->last_balance + interval)) {
5590 next_balance = sd->last_balance + interval;
5591 update_next_balance = 1;
5592 }
5593
5594 /*
5595 * Stop the load balance at this level. There is another
5596 * CPU in our sched group which is doing load balancing more
5597 * actively.
5598 */
23f0d209 5599 if (!continue_balancing)
1e3c88bd
PZ
5600 break;
5601 }
dce840a0 5602 rcu_read_unlock();
1e3c88bd
PZ
5603
5604 /*
5605 * next_balance will be updated only when there is a need.
5606 * When the cpu is attached to null domain for ex, it will not be
5607 * updated.
5608 */
5609 if (likely(update_next_balance))
5610 rq->next_balance = next_balance;
5611}
5612
3451d024 5613#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5614/*
3451d024 5615 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5616 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5617 */
83cd4fe2
VP
5618static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5619{
5620 struct rq *this_rq = cpu_rq(this_cpu);
5621 struct rq *rq;
5622 int balance_cpu;
5623
1c792db7
SS
5624 if (idle != CPU_IDLE ||
5625 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5626 goto end;
83cd4fe2
VP
5627
5628 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5629 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5630 continue;
5631
5632 /*
5633 * If this cpu gets work to do, stop the load balancing
5634 * work being done for other cpus. Next load
5635 * balancing owner will pick it up.
5636 */
1c792db7 5637 if (need_resched())
83cd4fe2 5638 break;
83cd4fe2 5639
5ed4f1d9
VG
5640 rq = cpu_rq(balance_cpu);
5641
5642 raw_spin_lock_irq(&rq->lock);
5643 update_rq_clock(rq);
5644 update_idle_cpu_load(rq);
5645 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5646
5647 rebalance_domains(balance_cpu, CPU_IDLE);
5648
83cd4fe2
VP
5649 if (time_after(this_rq->next_balance, rq->next_balance))
5650 this_rq->next_balance = rq->next_balance;
5651 }
5652 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5653end:
5654 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5655}
5656
5657/*
0b005cf5
SS
5658 * Current heuristic for kicking the idle load balancer in the presence
5659 * of an idle cpu is the system.
5660 * - This rq has more than one task.
5661 * - At any scheduler domain level, this cpu's scheduler group has multiple
5662 * busy cpu's exceeding the group's power.
5663 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5664 * domain span are idle.
83cd4fe2
VP
5665 */
5666static inline int nohz_kick_needed(struct rq *rq, int cpu)
5667{
5668 unsigned long now = jiffies;
0b005cf5 5669 struct sched_domain *sd;
83cd4fe2 5670
1c792db7 5671 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5672 return 0;
5673
1c792db7
SS
5674 /*
5675 * We may be recently in ticked or tickless idle mode. At the first
5676 * busy tick after returning from idle, we will update the busy stats.
5677 */
69e1e811 5678 set_cpu_sd_state_busy();
c1cc017c 5679 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5680
5681 /*
5682 * None are in tickless mode and hence no need for NOHZ idle load
5683 * balancing.
5684 */
5685 if (likely(!atomic_read(&nohz.nr_cpus)))
5686 return 0;
1c792db7
SS
5687
5688 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5689 return 0;
5690
0b005cf5
SS
5691 if (rq->nr_running >= 2)
5692 goto need_kick;
83cd4fe2 5693
067491b7 5694 rcu_read_lock();
0b005cf5
SS
5695 for_each_domain(cpu, sd) {
5696 struct sched_group *sg = sd->groups;
5697 struct sched_group_power *sgp = sg->sgp;
5698 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5699
0b005cf5 5700 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5701 goto need_kick_unlock;
0b005cf5
SS
5702
5703 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5704 && (cpumask_first_and(nohz.idle_cpus_mask,
5705 sched_domain_span(sd)) < cpu))
067491b7 5706 goto need_kick_unlock;
0b005cf5
SS
5707
5708 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5709 break;
83cd4fe2 5710 }
067491b7 5711 rcu_read_unlock();
83cd4fe2 5712 return 0;
067491b7
PZ
5713
5714need_kick_unlock:
5715 rcu_read_unlock();
0b005cf5
SS
5716need_kick:
5717 return 1;
83cd4fe2
VP
5718}
5719#else
5720static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5721#endif
5722
5723/*
5724 * run_rebalance_domains is triggered when needed from the scheduler tick.
5725 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5726 */
1e3c88bd
PZ
5727static void run_rebalance_domains(struct softirq_action *h)
5728{
5729 int this_cpu = smp_processor_id();
5730 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5731 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5732 CPU_IDLE : CPU_NOT_IDLE;
5733
5734 rebalance_domains(this_cpu, idle);
5735
1e3c88bd 5736 /*
83cd4fe2 5737 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5738 * balancing on behalf of the other idle cpus whose ticks are
5739 * stopped.
5740 */
83cd4fe2 5741 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5742}
5743
5744static inline int on_null_domain(int cpu)
5745{
90a6501f 5746 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5747}
5748
5749/*
5750 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5751 */
029632fb 5752void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5753{
1e3c88bd
PZ
5754 /* Don't need to rebalance while attached to NULL domain */
5755 if (time_after_eq(jiffies, rq->next_balance) &&
5756 likely(!on_null_domain(cpu)))
5757 raise_softirq(SCHED_SOFTIRQ);
3451d024 5758#ifdef CONFIG_NO_HZ_COMMON
1c792db7 5759 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5760 nohz_balancer_kick(cpu);
5761#endif
1e3c88bd
PZ
5762}
5763
0bcdcf28
CE
5764static void rq_online_fair(struct rq *rq)
5765{
5766 update_sysctl();
5767}
5768
5769static void rq_offline_fair(struct rq *rq)
5770{
5771 update_sysctl();
a4c96ae3
PB
5772
5773 /* Ensure any throttled groups are reachable by pick_next_task */
5774 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5775}
5776
55e12e5e 5777#endif /* CONFIG_SMP */
e1d1484f 5778
bf0f6f24
IM
5779/*
5780 * scheduler tick hitting a task of our scheduling class:
5781 */
8f4d37ec 5782static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5783{
5784 struct cfs_rq *cfs_rq;
5785 struct sched_entity *se = &curr->se;
5786
5787 for_each_sched_entity(se) {
5788 cfs_rq = cfs_rq_of(se);
8f4d37ec 5789 entity_tick(cfs_rq, se, queued);
bf0f6f24 5790 }
18bf2805 5791
10e84b97 5792 if (numabalancing_enabled)
cbee9f88 5793 task_tick_numa(rq, curr);
3d59eebc 5794
18bf2805 5795 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5796}
5797
5798/*
cd29fe6f
PZ
5799 * called on fork with the child task as argument from the parent's context
5800 * - child not yet on the tasklist
5801 * - preemption disabled
bf0f6f24 5802 */
cd29fe6f 5803static void task_fork_fair(struct task_struct *p)
bf0f6f24 5804{
4fc420c9
DN
5805 struct cfs_rq *cfs_rq;
5806 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5807 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5808 struct rq *rq = this_rq();
5809 unsigned long flags;
5810
05fa785c 5811 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5812
861d034e
PZ
5813 update_rq_clock(rq);
5814
4fc420c9
DN
5815 cfs_rq = task_cfs_rq(current);
5816 curr = cfs_rq->curr;
5817
b0a0f667
PM
5818 if (unlikely(task_cpu(p) != this_cpu)) {
5819 rcu_read_lock();
cd29fe6f 5820 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5821 rcu_read_unlock();
5822 }
bf0f6f24 5823
7109c442 5824 update_curr(cfs_rq);
cd29fe6f 5825
b5d9d734
MG
5826 if (curr)
5827 se->vruntime = curr->vruntime;
aeb73b04 5828 place_entity(cfs_rq, se, 1);
4d78e7b6 5829
cd29fe6f 5830 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5831 /*
edcb60a3
IM
5832 * Upon rescheduling, sched_class::put_prev_task() will place
5833 * 'current' within the tree based on its new key value.
5834 */
4d78e7b6 5835 swap(curr->vruntime, se->vruntime);
aec0a514 5836 resched_task(rq->curr);
4d78e7b6 5837 }
bf0f6f24 5838
88ec22d3
PZ
5839 se->vruntime -= cfs_rq->min_vruntime;
5840
05fa785c 5841 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5842}
5843
cb469845
SR
5844/*
5845 * Priority of the task has changed. Check to see if we preempt
5846 * the current task.
5847 */
da7a735e
PZ
5848static void
5849prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5850{
da7a735e
PZ
5851 if (!p->se.on_rq)
5852 return;
5853
cb469845
SR
5854 /*
5855 * Reschedule if we are currently running on this runqueue and
5856 * our priority decreased, or if we are not currently running on
5857 * this runqueue and our priority is higher than the current's
5858 */
da7a735e 5859 if (rq->curr == p) {
cb469845
SR
5860 if (p->prio > oldprio)
5861 resched_task(rq->curr);
5862 } else
15afe09b 5863 check_preempt_curr(rq, p, 0);
cb469845
SR
5864}
5865
da7a735e
PZ
5866static void switched_from_fair(struct rq *rq, struct task_struct *p)
5867{
5868 struct sched_entity *se = &p->se;
5869 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5870
5871 /*
5872 * Ensure the task's vruntime is normalized, so that when its
5873 * switched back to the fair class the enqueue_entity(.flags=0) will
5874 * do the right thing.
5875 *
5876 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5877 * have normalized the vruntime, if it was !on_rq, then only when
5878 * the task is sleeping will it still have non-normalized vruntime.
5879 */
5880 if (!se->on_rq && p->state != TASK_RUNNING) {
5881 /*
5882 * Fix up our vruntime so that the current sleep doesn't
5883 * cause 'unlimited' sleep bonus.
5884 */
5885 place_entity(cfs_rq, se, 0);
5886 se->vruntime -= cfs_rq->min_vruntime;
5887 }
9ee474f5 5888
141965c7 5889#ifdef CONFIG_SMP
9ee474f5
PT
5890 /*
5891 * Remove our load from contribution when we leave sched_fair
5892 * and ensure we don't carry in an old decay_count if we
5893 * switch back.
5894 */
87e3c8ae
KT
5895 if (se->avg.decay_count) {
5896 __synchronize_entity_decay(se);
5897 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
5898 }
5899#endif
da7a735e
PZ
5900}
5901
cb469845
SR
5902/*
5903 * We switched to the sched_fair class.
5904 */
da7a735e 5905static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5906{
da7a735e
PZ
5907 if (!p->se.on_rq)
5908 return;
5909
cb469845
SR
5910 /*
5911 * We were most likely switched from sched_rt, so
5912 * kick off the schedule if running, otherwise just see
5913 * if we can still preempt the current task.
5914 */
da7a735e 5915 if (rq->curr == p)
cb469845
SR
5916 resched_task(rq->curr);
5917 else
15afe09b 5918 check_preempt_curr(rq, p, 0);
cb469845
SR
5919}
5920
83b699ed
SV
5921/* Account for a task changing its policy or group.
5922 *
5923 * This routine is mostly called to set cfs_rq->curr field when a task
5924 * migrates between groups/classes.
5925 */
5926static void set_curr_task_fair(struct rq *rq)
5927{
5928 struct sched_entity *se = &rq->curr->se;
5929
ec12cb7f
PT
5930 for_each_sched_entity(se) {
5931 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5932
5933 set_next_entity(cfs_rq, se);
5934 /* ensure bandwidth has been allocated on our new cfs_rq */
5935 account_cfs_rq_runtime(cfs_rq, 0);
5936 }
83b699ed
SV
5937}
5938
029632fb
PZ
5939void init_cfs_rq(struct cfs_rq *cfs_rq)
5940{
5941 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5942 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5943#ifndef CONFIG_64BIT
5944 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5945#endif
141965c7 5946#ifdef CONFIG_SMP
9ee474f5 5947 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 5948 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 5949#endif
029632fb
PZ
5950}
5951
810b3817 5952#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5953static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5954{
aff3e498 5955 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5956 /*
5957 * If the task was not on the rq at the time of this cgroup movement
5958 * it must have been asleep, sleeping tasks keep their ->vruntime
5959 * absolute on their old rq until wakeup (needed for the fair sleeper
5960 * bonus in place_entity()).
5961 *
5962 * If it was on the rq, we've just 'preempted' it, which does convert
5963 * ->vruntime to a relative base.
5964 *
5965 * Make sure both cases convert their relative position when migrating
5966 * to another cgroup's rq. This does somewhat interfere with the
5967 * fair sleeper stuff for the first placement, but who cares.
5968 */
7ceff013
DN
5969 /*
5970 * When !on_rq, vruntime of the task has usually NOT been normalized.
5971 * But there are some cases where it has already been normalized:
5972 *
5973 * - Moving a forked child which is waiting for being woken up by
5974 * wake_up_new_task().
62af3783
DN
5975 * - Moving a task which has been woken up by try_to_wake_up() and
5976 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5977 *
5978 * To prevent boost or penalty in the new cfs_rq caused by delta
5979 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5980 */
62af3783 5981 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5982 on_rq = 1;
5983
b2b5ce02
PZ
5984 if (!on_rq)
5985 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5986 set_task_rq(p, task_cpu(p));
aff3e498
PT
5987 if (!on_rq) {
5988 cfs_rq = cfs_rq_of(&p->se);
5989 p->se.vruntime += cfs_rq->min_vruntime;
5990#ifdef CONFIG_SMP
5991 /*
5992 * migrate_task_rq_fair() will have removed our previous
5993 * contribution, but we must synchronize for ongoing future
5994 * decay.
5995 */
5996 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5997 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5998#endif
5999 }
810b3817 6000}
029632fb
PZ
6001
6002void free_fair_sched_group(struct task_group *tg)
6003{
6004 int i;
6005
6006 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6007
6008 for_each_possible_cpu(i) {
6009 if (tg->cfs_rq)
6010 kfree(tg->cfs_rq[i]);
6011 if (tg->se)
6012 kfree(tg->se[i]);
6013 }
6014
6015 kfree(tg->cfs_rq);
6016 kfree(tg->se);
6017}
6018
6019int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6020{
6021 struct cfs_rq *cfs_rq;
6022 struct sched_entity *se;
6023 int i;
6024
6025 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6026 if (!tg->cfs_rq)
6027 goto err;
6028 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6029 if (!tg->se)
6030 goto err;
6031
6032 tg->shares = NICE_0_LOAD;
6033
6034 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6035
6036 for_each_possible_cpu(i) {
6037 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6038 GFP_KERNEL, cpu_to_node(i));
6039 if (!cfs_rq)
6040 goto err;
6041
6042 se = kzalloc_node(sizeof(struct sched_entity),
6043 GFP_KERNEL, cpu_to_node(i));
6044 if (!se)
6045 goto err_free_rq;
6046
6047 init_cfs_rq(cfs_rq);
6048 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6049 }
6050
6051 return 1;
6052
6053err_free_rq:
6054 kfree(cfs_rq);
6055err:
6056 return 0;
6057}
6058
6059void unregister_fair_sched_group(struct task_group *tg, int cpu)
6060{
6061 struct rq *rq = cpu_rq(cpu);
6062 unsigned long flags;
6063
6064 /*
6065 * Only empty task groups can be destroyed; so we can speculatively
6066 * check on_list without danger of it being re-added.
6067 */
6068 if (!tg->cfs_rq[cpu]->on_list)
6069 return;
6070
6071 raw_spin_lock_irqsave(&rq->lock, flags);
6072 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6073 raw_spin_unlock_irqrestore(&rq->lock, flags);
6074}
6075
6076void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6077 struct sched_entity *se, int cpu,
6078 struct sched_entity *parent)
6079{
6080 struct rq *rq = cpu_rq(cpu);
6081
6082 cfs_rq->tg = tg;
6083 cfs_rq->rq = rq;
029632fb
PZ
6084 init_cfs_rq_runtime(cfs_rq);
6085
6086 tg->cfs_rq[cpu] = cfs_rq;
6087 tg->se[cpu] = se;
6088
6089 /* se could be NULL for root_task_group */
6090 if (!se)
6091 return;
6092
6093 if (!parent)
6094 se->cfs_rq = &rq->cfs;
6095 else
6096 se->cfs_rq = parent->my_q;
6097
6098 se->my_q = cfs_rq;
6099 update_load_set(&se->load, 0);
6100 se->parent = parent;
6101}
6102
6103static DEFINE_MUTEX(shares_mutex);
6104
6105int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6106{
6107 int i;
6108 unsigned long flags;
6109
6110 /*
6111 * We can't change the weight of the root cgroup.
6112 */
6113 if (!tg->se[0])
6114 return -EINVAL;
6115
6116 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6117
6118 mutex_lock(&shares_mutex);
6119 if (tg->shares == shares)
6120 goto done;
6121
6122 tg->shares = shares;
6123 for_each_possible_cpu(i) {
6124 struct rq *rq = cpu_rq(i);
6125 struct sched_entity *se;
6126
6127 se = tg->se[i];
6128 /* Propagate contribution to hierarchy */
6129 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6130
6131 /* Possible calls to update_curr() need rq clock */
6132 update_rq_clock(rq);
17bc14b7 6133 for_each_sched_entity(se)
029632fb
PZ
6134 update_cfs_shares(group_cfs_rq(se));
6135 raw_spin_unlock_irqrestore(&rq->lock, flags);
6136 }
6137
6138done:
6139 mutex_unlock(&shares_mutex);
6140 return 0;
6141}
6142#else /* CONFIG_FAIR_GROUP_SCHED */
6143
6144void free_fair_sched_group(struct task_group *tg) { }
6145
6146int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6147{
6148 return 1;
6149}
6150
6151void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6152
6153#endif /* CONFIG_FAIR_GROUP_SCHED */
6154
810b3817 6155
6d686f45 6156static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6157{
6158 struct sched_entity *se = &task->se;
0d721cea
PW
6159 unsigned int rr_interval = 0;
6160
6161 /*
6162 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6163 * idle runqueue:
6164 */
0d721cea 6165 if (rq->cfs.load.weight)
a59f4e07 6166 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6167
6168 return rr_interval;
6169}
6170
bf0f6f24
IM
6171/*
6172 * All the scheduling class methods:
6173 */
029632fb 6174const struct sched_class fair_sched_class = {
5522d5d5 6175 .next = &idle_sched_class,
bf0f6f24
IM
6176 .enqueue_task = enqueue_task_fair,
6177 .dequeue_task = dequeue_task_fair,
6178 .yield_task = yield_task_fair,
d95f4122 6179 .yield_to_task = yield_to_task_fair,
bf0f6f24 6180
2e09bf55 6181 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6182
6183 .pick_next_task = pick_next_task_fair,
6184 .put_prev_task = put_prev_task_fair,
6185
681f3e68 6186#ifdef CONFIG_SMP
4ce72a2c 6187 .select_task_rq = select_task_rq_fair,
0a74bef8 6188 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6189
0bcdcf28
CE
6190 .rq_online = rq_online_fair,
6191 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6192
6193 .task_waking = task_waking_fair,
681f3e68 6194#endif
bf0f6f24 6195
83b699ed 6196 .set_curr_task = set_curr_task_fair,
bf0f6f24 6197 .task_tick = task_tick_fair,
cd29fe6f 6198 .task_fork = task_fork_fair,
cb469845
SR
6199
6200 .prio_changed = prio_changed_fair,
da7a735e 6201 .switched_from = switched_from_fair,
cb469845 6202 .switched_to = switched_to_fair,
810b3817 6203
0d721cea
PW
6204 .get_rr_interval = get_rr_interval_fair,
6205
810b3817 6206#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6207 .task_move_group = task_move_group_fair,
810b3817 6208#endif
bf0f6f24
IM
6209};
6210
6211#ifdef CONFIG_SCHED_DEBUG
029632fb 6212void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6213{
bf0f6f24
IM
6214 struct cfs_rq *cfs_rq;
6215
5973e5b9 6216 rcu_read_lock();
c3b64f1e 6217 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6218 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6219 rcu_read_unlock();
bf0f6f24
IM
6220}
6221#endif
029632fb
PZ
6222
6223__init void init_sched_fair_class(void)
6224{
6225#ifdef CONFIG_SMP
6226 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6227
3451d024 6228#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6229 nohz.next_balance = jiffies;
029632fb 6230 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6231 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6232#endif
6233#endif /* SMP */
6234
6235}