sched/core: Make policy-testing consistent
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables below are dependent on this value.
665 */
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
a75cdaa9 669
540247fb
YD
670/* Give new sched_entity start runnable values to heavy its load in infant time */
671void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 672{
540247fb 673 struct sched_avg *sa = &se->avg;
a75cdaa9 674
9d89c257
YD
675 sa->last_update_time = 0;
676 /*
677 * sched_avg's period_contrib should be strictly less then 1024, so
678 * we give it 1023 to make sure it is almost a period (1024us), and
679 * will definitely be update (after enqueue).
680 */
681 sa->period_contrib = 1023;
540247fb 682 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 685 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 687}
7ea241af
YD
688
689static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 691#else
540247fb 692void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
693{
694}
695#endif
696
bf0f6f24 697/*
9dbdb155 698 * Update the current task's runtime statistics.
bf0f6f24 699 */
b7cc0896 700static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 701{
429d43bc 702 struct sched_entity *curr = cfs_rq->curr;
78becc27 703 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 704 u64 delta_exec;
bf0f6f24
IM
705
706 if (unlikely(!curr))
707 return;
708
9dbdb155
PZ
709 delta_exec = now - curr->exec_start;
710 if (unlikely((s64)delta_exec <= 0))
34f28ecd 711 return;
bf0f6f24 712
8ebc91d9 713 curr->exec_start = now;
d842de87 714
9dbdb155
PZ
715 schedstat_set(curr->statistics.exec_max,
716 max(delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720
721 curr->vruntime += calc_delta_fair(delta_exec, curr);
722 update_min_vruntime(cfs_rq);
723
d842de87
SV
724 if (entity_is_task(curr)) {
725 struct task_struct *curtask = task_of(curr);
726
f977bb49 727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 728 cpuacct_charge(curtask, delta_exec);
f06febc9 729 account_group_exec_runtime(curtask, delta_exec);
d842de87 730 }
ec12cb7f
PT
731
732 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
733}
734
6e998916
SG
735static void update_curr_fair(struct rq *rq)
736{
737 update_curr(cfs_rq_of(&rq->curr->se));
738}
739
bf0f6f24 740static inline void
5870db5b 741update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 742{
78becc27 743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
744}
745
bf0f6f24
IM
746/*
747 * Task is being enqueued - update stats:
748 */
d2417e5a 749static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
bf0f6f24
IM
751 /*
752 * Are we enqueueing a waiting task? (for current tasks
753 * a dequeue/enqueue event is a NOP)
754 */
429d43bc 755 if (se != cfs_rq->curr)
5870db5b 756 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
757}
758
bf0f6f24 759static void
9ef0a961 760update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 761{
41acab88 762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767#ifdef CONFIG_SCHEDSTATS
768 if (entity_is_task(se)) {
769 trace_sched_stat_wait(task_of(se),
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771 }
772#endif
41acab88 773 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
774}
775
776static inline void
19b6a2e3 777update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 778{
bf0f6f24
IM
779 /*
780 * Mark the end of the wait period if dequeueing a
781 * waiting task:
782 */
429d43bc 783 if (se != cfs_rq->curr)
9ef0a961 784 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
785}
786
787/*
788 * We are picking a new current task - update its stats:
789 */
790static inline void
79303e9e 791update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
792{
793 /*
794 * We are starting a new run period:
795 */
78becc27 796 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
797}
798
bf0f6f24
IM
799/**************************************************
800 * Scheduling class queueing methods:
801 */
802
cbee9f88
PZ
803#ifdef CONFIG_NUMA_BALANCING
804/*
598f0ec0
MG
805 * Approximate time to scan a full NUMA task in ms. The task scan period is
806 * calculated based on the tasks virtual memory size and
807 * numa_balancing_scan_size.
cbee9f88 808 */
598f0ec0
MG
809unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
811
812/* Portion of address space to scan in MB */
813unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 814
4b96a29b
PZ
815/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
816unsigned int sysctl_numa_balancing_scan_delay = 1000;
817
598f0ec0
MG
818static unsigned int task_nr_scan_windows(struct task_struct *p)
819{
820 unsigned long rss = 0;
821 unsigned long nr_scan_pages;
822
823 /*
824 * Calculations based on RSS as non-present and empty pages are skipped
825 * by the PTE scanner and NUMA hinting faults should be trapped based
826 * on resident pages
827 */
828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 rss = get_mm_rss(p->mm);
830 if (!rss)
831 rss = nr_scan_pages;
832
833 rss = round_up(rss, nr_scan_pages);
834 return rss / nr_scan_pages;
835}
836
837/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
838#define MAX_SCAN_WINDOW 2560
839
840static unsigned int task_scan_min(struct task_struct *p)
841{
316c1608 842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
843 unsigned int scan, floor;
844 unsigned int windows = 1;
845
64192658
KT
846 if (scan_size < MAX_SCAN_WINDOW)
847 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
848 floor = 1000 / windows;
849
850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 return max_t(unsigned int, floor, scan);
852}
853
854static unsigned int task_scan_max(struct task_struct *p)
855{
856 unsigned int smin = task_scan_min(p);
857 unsigned int smax;
858
859 /* Watch for min being lower than max due to floor calculations */
860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 return max(smin, smax);
862}
863
0ec8aa00
PZ
864static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868}
869
870static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871{
872 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874}
875
8c8a743c
PZ
876struct numa_group {
877 atomic_t refcount;
878
879 spinlock_t lock; /* nr_tasks, tasks */
880 int nr_tasks;
e29cf08b 881 pid_t gid;
8c8a743c
PZ
882
883 struct rcu_head rcu;
20e07dea 884 nodemask_t active_nodes;
989348b5 885 unsigned long total_faults;
7e2703e6
RR
886 /*
887 * Faults_cpu is used to decide whether memory should move
888 * towards the CPU. As a consequence, these stats are weighted
889 * more by CPU use than by memory faults.
890 */
50ec8a40 891 unsigned long *faults_cpu;
989348b5 892 unsigned long faults[0];
8c8a743c
PZ
893};
894
be1e4e76
RR
895/* Shared or private faults. */
896#define NR_NUMA_HINT_FAULT_TYPES 2
897
898/* Memory and CPU locality */
899#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900
901/* Averaged statistics, and temporary buffers. */
902#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903
e29cf08b
MG
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
44dba3d5
IM
909/*
910 * The averaged statistics, shared & private, memory & cpu,
911 * occupy the first half of the array. The second half of the
912 * array is for current counters, which are averaged into the
913 * first set by task_numa_placement.
914 */
915static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 916{
44dba3d5 917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
918}
919
920static inline unsigned long task_faults(struct task_struct *p, int nid)
921{
44dba3d5 922 if (!p->numa_faults)
ac8e895b
MG
923 return 0;
924
44dba3d5
IM
925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
927}
928
83e1d2cd
MG
929static inline unsigned long group_faults(struct task_struct *p, int nid)
930{
931 if (!p->numa_group)
932 return 0;
933
44dba3d5
IM
934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
936}
937
20e07dea
RR
938static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939{
44dba3d5
IM
940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
942}
943
6c6b1193
RR
944/* Handle placement on systems where not all nodes are directly connected. */
945static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 int maxdist, bool task)
947{
948 unsigned long score = 0;
949 int node;
950
951 /*
952 * All nodes are directly connected, and the same distance
953 * from each other. No need for fancy placement algorithms.
954 */
955 if (sched_numa_topology_type == NUMA_DIRECT)
956 return 0;
957
958 /*
959 * This code is called for each node, introducing N^2 complexity,
960 * which should be ok given the number of nodes rarely exceeds 8.
961 */
962 for_each_online_node(node) {
963 unsigned long faults;
964 int dist = node_distance(nid, node);
965
966 /*
967 * The furthest away nodes in the system are not interesting
968 * for placement; nid was already counted.
969 */
970 if (dist == sched_max_numa_distance || node == nid)
971 continue;
972
973 /*
974 * On systems with a backplane NUMA topology, compare groups
975 * of nodes, and move tasks towards the group with the most
976 * memory accesses. When comparing two nodes at distance
977 * "hoplimit", only nodes closer by than "hoplimit" are part
978 * of each group. Skip other nodes.
979 */
980 if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 dist > maxdist)
982 continue;
983
984 /* Add up the faults from nearby nodes. */
985 if (task)
986 faults = task_faults(p, node);
987 else
988 faults = group_faults(p, node);
989
990 /*
991 * On systems with a glueless mesh NUMA topology, there are
992 * no fixed "groups of nodes". Instead, nodes that are not
993 * directly connected bounce traffic through intermediate
994 * nodes; a numa_group can occupy any set of nodes.
995 * The further away a node is, the less the faults count.
996 * This seems to result in good task placement.
997 */
998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 faults *= (sched_max_numa_distance - dist);
1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 }
1002
1003 score += faults;
1004 }
1005
1006 return score;
1007}
1008
83e1d2cd
MG
1009/*
1010 * These return the fraction of accesses done by a particular task, or
1011 * task group, on a particular numa node. The group weight is given a
1012 * larger multiplier, in order to group tasks together that are almost
1013 * evenly spread out between numa nodes.
1014 */
7bd95320
RR
1015static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 int dist)
83e1d2cd 1017{
7bd95320 1018 unsigned long faults, total_faults;
83e1d2cd 1019
44dba3d5 1020 if (!p->numa_faults)
83e1d2cd
MG
1021 return 0;
1022
1023 total_faults = p->total_numa_faults;
1024
1025 if (!total_faults)
1026 return 0;
1027
7bd95320 1028 faults = task_faults(p, nid);
6c6b1193
RR
1029 faults += score_nearby_nodes(p, nid, dist, true);
1030
7bd95320 1031 return 1000 * faults / total_faults;
83e1d2cd
MG
1032}
1033
7bd95320
RR
1034static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 int dist)
83e1d2cd 1036{
7bd95320
RR
1037 unsigned long faults, total_faults;
1038
1039 if (!p->numa_group)
1040 return 0;
1041
1042 total_faults = p->numa_group->total_faults;
1043
1044 if (!total_faults)
83e1d2cd
MG
1045 return 0;
1046
7bd95320 1047 faults = group_faults(p, nid);
6c6b1193
RR
1048 faults += score_nearby_nodes(p, nid, dist, false);
1049
7bd95320 1050 return 1000 * faults / total_faults;
83e1d2cd
MG
1051}
1052
10f39042
RR
1053bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 int src_nid, int dst_cpu)
1055{
1056 struct numa_group *ng = p->numa_group;
1057 int dst_nid = cpu_to_node(dst_cpu);
1058 int last_cpupid, this_cpupid;
1059
1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061
1062 /*
1063 * Multi-stage node selection is used in conjunction with a periodic
1064 * migration fault to build a temporal task<->page relation. By using
1065 * a two-stage filter we remove short/unlikely relations.
1066 *
1067 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068 * a task's usage of a particular page (n_p) per total usage of this
1069 * page (n_t) (in a given time-span) to a probability.
1070 *
1071 * Our periodic faults will sample this probability and getting the
1072 * same result twice in a row, given these samples are fully
1073 * independent, is then given by P(n)^2, provided our sample period
1074 * is sufficiently short compared to the usage pattern.
1075 *
1076 * This quadric squishes small probabilities, making it less likely we
1077 * act on an unlikely task<->page relation.
1078 */
1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 if (!cpupid_pid_unset(last_cpupid) &&
1081 cpupid_to_nid(last_cpupid) != dst_nid)
1082 return false;
1083
1084 /* Always allow migrate on private faults */
1085 if (cpupid_match_pid(p, last_cpupid))
1086 return true;
1087
1088 /* A shared fault, but p->numa_group has not been set up yet. */
1089 if (!ng)
1090 return true;
1091
1092 /*
1093 * Do not migrate if the destination is not a node that
1094 * is actively used by this numa group.
1095 */
1096 if (!node_isset(dst_nid, ng->active_nodes))
1097 return false;
1098
1099 /*
1100 * Source is a node that is not actively used by this
1101 * numa group, while the destination is. Migrate.
1102 */
1103 if (!node_isset(src_nid, ng->active_nodes))
1104 return true;
1105
1106 /*
1107 * Both source and destination are nodes in active
1108 * use by this numa group. Maximize memory bandwidth
1109 * by migrating from more heavily used groups, to less
1110 * heavily used ones, spreading the load around.
1111 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 */
1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114}
1115
e6628d5b 1116static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1117static unsigned long source_load(int cpu, int type);
1118static unsigned long target_load(int cpu, int type);
ced549fa 1119static unsigned long capacity_of(int cpu);
58d081b5
MG
1120static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121
fb13c7ee 1122/* Cached statistics for all CPUs within a node */
58d081b5 1123struct numa_stats {
fb13c7ee 1124 unsigned long nr_running;
58d081b5 1125 unsigned long load;
fb13c7ee
MG
1126
1127 /* Total compute capacity of CPUs on a node */
5ef20ca1 1128 unsigned long compute_capacity;
fb13c7ee
MG
1129
1130 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1131 unsigned long task_capacity;
1b6a7495 1132 int has_free_capacity;
58d081b5 1133};
e6628d5b 1134
fb13c7ee
MG
1135/*
1136 * XXX borrowed from update_sg_lb_stats
1137 */
1138static void update_numa_stats(struct numa_stats *ns, int nid)
1139{
83d7f242
RR
1140 int smt, cpu, cpus = 0;
1141 unsigned long capacity;
fb13c7ee
MG
1142
1143 memset(ns, 0, sizeof(*ns));
1144 for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 struct rq *rq = cpu_rq(cpu);
1146
1147 ns->nr_running += rq->nr_running;
1148 ns->load += weighted_cpuload(cpu);
ced549fa 1149 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1150
1151 cpus++;
fb13c7ee
MG
1152 }
1153
5eca82a9
PZ
1154 /*
1155 * If we raced with hotplug and there are no CPUs left in our mask
1156 * the @ns structure is NULL'ed and task_numa_compare() will
1157 * not find this node attractive.
1158 *
1b6a7495
NP
1159 * We'll either bail at !has_free_capacity, or we'll detect a huge
1160 * imbalance and bail there.
5eca82a9
PZ
1161 */
1162 if (!cpus)
1163 return;
1164
83d7f242
RR
1165 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 capacity = cpus / smt; /* cores */
1168
1169 ns->task_capacity = min_t(unsigned, capacity,
1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1172}
1173
58d081b5
MG
1174struct task_numa_env {
1175 struct task_struct *p;
e6628d5b 1176
58d081b5
MG
1177 int src_cpu, src_nid;
1178 int dst_cpu, dst_nid;
e6628d5b 1179
58d081b5 1180 struct numa_stats src_stats, dst_stats;
e6628d5b 1181
40ea2b42 1182 int imbalance_pct;
7bd95320 1183 int dist;
fb13c7ee
MG
1184
1185 struct task_struct *best_task;
1186 long best_imp;
58d081b5
MG
1187 int best_cpu;
1188};
1189
fb13c7ee
MG
1190static void task_numa_assign(struct task_numa_env *env,
1191 struct task_struct *p, long imp)
1192{
1193 if (env->best_task)
1194 put_task_struct(env->best_task);
1195 if (p)
1196 get_task_struct(p);
1197
1198 env->best_task = p;
1199 env->best_imp = imp;
1200 env->best_cpu = env->dst_cpu;
1201}
1202
28a21745 1203static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1204 struct task_numa_env *env)
1205{
e4991b24
RR
1206 long imb, old_imb;
1207 long orig_src_load, orig_dst_load;
28a21745
RR
1208 long src_capacity, dst_capacity;
1209
1210 /*
1211 * The load is corrected for the CPU capacity available on each node.
1212 *
1213 * src_load dst_load
1214 * ------------ vs ---------
1215 * src_capacity dst_capacity
1216 */
1217 src_capacity = env->src_stats.compute_capacity;
1218 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1219
1220 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1221 if (dst_load < src_load)
1222 swap(dst_load, src_load);
e63da036
RR
1223
1224 /* Is the difference below the threshold? */
e4991b24
RR
1225 imb = dst_load * src_capacity * 100 -
1226 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1227 if (imb <= 0)
1228 return false;
1229
1230 /*
1231 * The imbalance is above the allowed threshold.
e4991b24 1232 * Compare it with the old imbalance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
e4991b24 1235 orig_dst_load = env->dst_stats.load;
28a21745 1236
e4991b24
RR
1237 if (orig_dst_load < orig_src_load)
1238 swap(orig_dst_load, orig_src_load);
e63da036 1239
e4991b24
RR
1240 old_imb = orig_dst_load * src_capacity * 100 -
1241 orig_src_load * dst_capacity * env->imbalance_pct;
1242
1243 /* Would this change make things worse? */
1244 return (imb > old_imb);
e63da036
RR
1245}
1246
fb13c7ee
MG
1247/*
1248 * This checks if the overall compute and NUMA accesses of the system would
1249 * be improved if the source tasks was migrated to the target dst_cpu taking
1250 * into account that it might be best if task running on the dst_cpu should
1251 * be exchanged with the source task
1252 */
887c290e
RR
1253static void task_numa_compare(struct task_numa_env *env,
1254 long taskimp, long groupimp)
fb13c7ee
MG
1255{
1256 struct rq *src_rq = cpu_rq(env->src_cpu);
1257 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 struct task_struct *cur;
28a21745 1259 long src_load, dst_load;
fb13c7ee 1260 long load;
1c5d3eb3 1261 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1262 long moveimp = imp;
7bd95320 1263 int dist = env->dist;
fb13c7ee
MG
1264
1265 rcu_read_lock();
1effd9f1
KT
1266
1267 raw_spin_lock_irq(&dst_rq->lock);
1268 cur = dst_rq->curr;
1269 /*
1270 * No need to move the exiting task, and this ensures that ->curr
1271 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272 * is safe under RCU read lock.
1273 * Note that rcu_read_lock() itself can't protect from the final
1274 * put_task_struct() after the last schedule().
1275 */
1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1277 cur = NULL;
1effd9f1 1278 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1279
7af68335
PZ
1280 /*
1281 * Because we have preemption enabled we can get migrated around and
1282 * end try selecting ourselves (current == env->p) as a swap candidate.
1283 */
1284 if (cur == env->p)
1285 goto unlock;
1286
fb13c7ee
MG
1287 /*
1288 * "imp" is the fault differential for the source task between the
1289 * source and destination node. Calculate the total differential for
1290 * the source task and potential destination task. The more negative
1291 * the value is, the more rmeote accesses that would be expected to
1292 * be incurred if the tasks were swapped.
1293 */
1294 if (cur) {
1295 /* Skip this swap candidate if cannot move to the source cpu */
1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 goto unlock;
1298
887c290e
RR
1299 /*
1300 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1301 * in any group then look only at task weights.
887c290e 1302 */
ca28aa53 1303 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1304 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1306 /*
1307 * Add some hysteresis to prevent swapping the
1308 * tasks within a group over tiny differences.
1309 */
1310 if (cur->numa_group)
1311 imp -= imp/16;
887c290e 1312 } else {
ca28aa53
RR
1313 /*
1314 * Compare the group weights. If a task is all by
1315 * itself (not part of a group), use the task weight
1316 * instead.
1317 */
ca28aa53 1318 if (cur->numa_group)
7bd95320
RR
1319 imp += group_weight(cur, env->src_nid, dist) -
1320 group_weight(cur, env->dst_nid, dist);
ca28aa53 1321 else
7bd95320
RR
1322 imp += task_weight(cur, env->src_nid, dist) -
1323 task_weight(cur, env->dst_nid, dist);
887c290e 1324 }
fb13c7ee
MG
1325 }
1326
0132c3e1 1327 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1328 goto unlock;
1329
1330 if (!cur) {
1331 /* Is there capacity at our destination? */
b932c03c 1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1333 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1334 goto unlock;
1335
1336 goto balance;
1337 }
1338
1339 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1340 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 dst_rq->nr_running == 1)
fb13c7ee
MG
1342 goto assign;
1343
1344 /*
1345 * In the overloaded case, try and keep the load balanced.
1346 */
1347balance:
e720fff6
PZ
1348 load = task_h_load(env->p);
1349 dst_load = env->dst_stats.load + load;
1350 src_load = env->src_stats.load - load;
fb13c7ee 1351
0132c3e1
RR
1352 if (moveimp > imp && moveimp > env->best_imp) {
1353 /*
1354 * If the improvement from just moving env->p direction is
1355 * better than swapping tasks around, check if a move is
1356 * possible. Store a slightly smaller score than moveimp,
1357 * so an actually idle CPU will win.
1358 */
1359 if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 imp = moveimp - 1;
1361 cur = NULL;
1362 goto assign;
1363 }
1364 }
1365
1366 if (imp <= env->best_imp)
1367 goto unlock;
1368
fb13c7ee 1369 if (cur) {
e720fff6
PZ
1370 load = task_h_load(cur);
1371 dst_load -= load;
1372 src_load += load;
fb13c7ee
MG
1373 }
1374
28a21745 1375 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1376 goto unlock;
1377
ba7e5a27
RR
1378 /*
1379 * One idle CPU per node is evaluated for a task numa move.
1380 * Call select_idle_sibling to maybe find a better one.
1381 */
1382 if (!cur)
1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384
fb13c7ee
MG
1385assign:
1386 task_numa_assign(env, cur, imp);
1387unlock:
1388 rcu_read_unlock();
1389}
1390
887c290e
RR
1391static void task_numa_find_cpu(struct task_numa_env *env,
1392 long taskimp, long groupimp)
2c8a50aa
MG
1393{
1394 int cpu;
1395
1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397 /* Skip this CPU if the source task cannot migrate */
1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 continue;
1400
1401 env->dst_cpu = cpu;
887c290e 1402 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1403 }
1404}
1405
6f9aad0b
RR
1406/* Only move tasks to a NUMA node less busy than the current node. */
1407static bool numa_has_capacity(struct task_numa_env *env)
1408{
1409 struct numa_stats *src = &env->src_stats;
1410 struct numa_stats *dst = &env->dst_stats;
1411
1412 if (src->has_free_capacity && !dst->has_free_capacity)
1413 return false;
1414
1415 /*
1416 * Only consider a task move if the source has a higher load
1417 * than the destination, corrected for CPU capacity on each node.
1418 *
1419 * src->load dst->load
1420 * --------------------- vs ---------------------
1421 * src->compute_capacity dst->compute_capacity
1422 */
44dcb04f
SD
1423 if (src->load * dst->compute_capacity * env->imbalance_pct >
1424
1425 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1426 return true;
1427
1428 return false;
1429}
1430
58d081b5
MG
1431static int task_numa_migrate(struct task_struct *p)
1432{
58d081b5
MG
1433 struct task_numa_env env = {
1434 .p = p,
fb13c7ee 1435
58d081b5 1436 .src_cpu = task_cpu(p),
b32e86b4 1437 .src_nid = task_node(p),
fb13c7ee
MG
1438
1439 .imbalance_pct = 112,
1440
1441 .best_task = NULL,
1442 .best_imp = 0,
1443 .best_cpu = -1
58d081b5
MG
1444 };
1445 struct sched_domain *sd;
887c290e 1446 unsigned long taskweight, groupweight;
7bd95320 1447 int nid, ret, dist;
887c290e 1448 long taskimp, groupimp;
e6628d5b 1449
58d081b5 1450 /*
fb13c7ee
MG
1451 * Pick the lowest SD_NUMA domain, as that would have the smallest
1452 * imbalance and would be the first to start moving tasks about.
1453 *
1454 * And we want to avoid any moving of tasks about, as that would create
1455 * random movement of tasks -- counter the numa conditions we're trying
1456 * to satisfy here.
58d081b5
MG
1457 */
1458 rcu_read_lock();
fb13c7ee 1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1460 if (sd)
1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1462 rcu_read_unlock();
1463
46a73e8a
RR
1464 /*
1465 * Cpusets can break the scheduler domain tree into smaller
1466 * balance domains, some of which do not cross NUMA boundaries.
1467 * Tasks that are "trapped" in such domains cannot be migrated
1468 * elsewhere, so there is no point in (re)trying.
1469 */
1470 if (unlikely(!sd)) {
de1b301a 1471 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1472 return -EINVAL;
1473 }
1474
2c8a50aa 1475 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 taskweight = task_weight(p, env.src_nid, dist);
1478 groupweight = group_weight(p, env.src_nid, dist);
1479 update_numa_stats(&env.src_stats, env.src_nid);
1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1482 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1483
a43455a1 1484 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1485 if (numa_has_capacity(&env))
1486 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1487
9de05d48
RR
1488 /*
1489 * Look at other nodes in these cases:
1490 * - there is no space available on the preferred_nid
1491 * - the task is part of a numa_group that is interleaved across
1492 * multiple NUMA nodes; in order to better consolidate the group,
1493 * we need to check other locations.
1494 */
1495 if (env.best_cpu == -1 || (p->numa_group &&
1496 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1497 for_each_online_node(nid) {
1498 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 continue;
58d081b5 1500
7bd95320 1501 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1502 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 dist != env.dist) {
1504 taskweight = task_weight(p, env.src_nid, dist);
1505 groupweight = group_weight(p, env.src_nid, dist);
1506 }
7bd95320 1507
83e1d2cd 1508 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1509 taskimp = task_weight(p, nid, dist) - taskweight;
1510 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1511 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1512 continue;
1513
7bd95320 1514 env.dist = dist;
2c8a50aa
MG
1515 env.dst_nid = nid;
1516 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1517 if (numa_has_capacity(&env))
1518 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1519 }
1520 }
1521
68d1b02a
RR
1522 /*
1523 * If the task is part of a workload that spans multiple NUMA nodes,
1524 * and is migrating into one of the workload's active nodes, remember
1525 * this node as the task's preferred numa node, so the workload can
1526 * settle down.
1527 * A task that migrated to a second choice node will be better off
1528 * trying for a better one later. Do not set the preferred node here.
1529 */
db015dae
RR
1530 if (p->numa_group) {
1531 if (env.best_cpu == -1)
1532 nid = env.src_nid;
1533 else
1534 nid = env.dst_nid;
1535
1536 if (node_isset(nid, p->numa_group->active_nodes))
1537 sched_setnuma(p, env.dst_nid);
1538 }
1539
1540 /* No better CPU than the current one was found. */
1541 if (env.best_cpu == -1)
1542 return -EAGAIN;
0ec8aa00 1543
04bb2f94
RR
1544 /*
1545 * Reset the scan period if the task is being rescheduled on an
1546 * alternative node to recheck if the tasks is now properly placed.
1547 */
1548 p->numa_scan_period = task_scan_min(p);
1549
fb13c7ee 1550 if (env.best_task == NULL) {
286549dc
MG
1551 ret = migrate_task_to(p, env.best_cpu);
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1554 return ret;
1555 }
1556
1557 ret = migrate_swap(p, env.best_task);
286549dc
MG
1558 if (ret != 0)
1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1560 put_task_struct(env.best_task);
1561 return ret;
e6628d5b
MG
1562}
1563
6b9a7460
MG
1564/* Attempt to migrate a task to a CPU on the preferred node. */
1565static void numa_migrate_preferred(struct task_struct *p)
1566{
5085e2a3
RR
1567 unsigned long interval = HZ;
1568
2739d3ee 1569 /* This task has no NUMA fault statistics yet */
44dba3d5 1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1571 return;
1572
2739d3ee 1573 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1576
1577 /* Success if task is already running on preferred CPU */
de1b301a 1578 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1579 return;
1580
1581 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1582 task_numa_migrate(p);
6b9a7460
MG
1583}
1584
20e07dea
RR
1585/*
1586 * Find the nodes on which the workload is actively running. We do this by
1587 * tracking the nodes from which NUMA hinting faults are triggered. This can
1588 * be different from the set of nodes where the workload's memory is currently
1589 * located.
1590 *
1591 * The bitmask is used to make smarter decisions on when to do NUMA page
1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593 * are added when they cause over 6/16 of the maximum number of faults, but
1594 * only removed when they drop below 3/16.
1595 */
1596static void update_numa_active_node_mask(struct numa_group *numa_group)
1597{
1598 unsigned long faults, max_faults = 0;
1599 int nid;
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (faults > max_faults)
1604 max_faults = faults;
1605 }
1606
1607 for_each_online_node(nid) {
1608 faults = group_faults_cpu(numa_group, nid);
1609 if (!node_isset(nid, numa_group->active_nodes)) {
1610 if (faults > max_faults * 6 / 16)
1611 node_set(nid, numa_group->active_nodes);
1612 } else if (faults < max_faults * 3 / 16)
1613 node_clear(nid, numa_group->active_nodes);
1614 }
1615}
1616
04bb2f94
RR
1617/*
1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1620 * period will be for the next scan window. If local/(local+remote) ratio is
1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1623 */
1624#define NUMA_PERIOD_SLOTS 10
a22b4b01 1625#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1626
1627/*
1628 * Increase the scan period (slow down scanning) if the majority of
1629 * our memory is already on our local node, or if the majority of
1630 * the page accesses are shared with other processes.
1631 * Otherwise, decrease the scan period.
1632 */
1633static void update_task_scan_period(struct task_struct *p,
1634 unsigned long shared, unsigned long private)
1635{
1636 unsigned int period_slot;
1637 int ratio;
1638 int diff;
1639
1640 unsigned long remote = p->numa_faults_locality[0];
1641 unsigned long local = p->numa_faults_locality[1];
1642
1643 /*
1644 * If there were no record hinting faults then either the task is
1645 * completely idle or all activity is areas that are not of interest
074c2381
MG
1646 * to automatic numa balancing. Related to that, if there were failed
1647 * migration then it implies we are migrating too quickly or the local
1648 * node is overloaded. In either case, scan slower
04bb2f94 1649 */
074c2381 1650 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1651 p->numa_scan_period = min(p->numa_scan_period_max,
1652 p->numa_scan_period << 1);
1653
1654 p->mm->numa_next_scan = jiffies +
1655 msecs_to_jiffies(p->numa_scan_period);
1656
1657 return;
1658 }
1659
1660 /*
1661 * Prepare to scale scan period relative to the current period.
1662 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1663 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665 */
1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 if (!slot)
1671 slot = 1;
1672 diff = slot * period_slot;
1673 } else {
1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675
1676 /*
1677 * Scale scan rate increases based on sharing. There is an
1678 * inverse relationship between the degree of sharing and
1679 * the adjustment made to the scanning period. Broadly
1680 * speaking the intent is that there is little point
1681 * scanning faster if shared accesses dominate as it may
1682 * simply bounce migrations uselessly
1683 */
2847c90e 1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 }
1687
1688 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 task_scan_min(p), task_scan_max(p));
1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691}
1692
7e2703e6
RR
1693/*
1694 * Get the fraction of time the task has been running since the last
1695 * NUMA placement cycle. The scheduler keeps similar statistics, but
1696 * decays those on a 32ms period, which is orders of magnitude off
1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698 * stats only if the task is so new there are no NUMA statistics yet.
1699 */
1700static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701{
1702 u64 runtime, delta, now;
1703 /* Use the start of this time slice to avoid calculations. */
1704 now = p->se.exec_start;
1705 runtime = p->se.sum_exec_runtime;
1706
1707 if (p->last_task_numa_placement) {
1708 delta = runtime - p->last_sum_exec_runtime;
1709 *period = now - p->last_task_numa_placement;
1710 } else {
9d89c257
YD
1711 delta = p->se.avg.load_sum / p->se.load.weight;
1712 *period = LOAD_AVG_MAX;
7e2703e6
RR
1713 }
1714
1715 p->last_sum_exec_runtime = runtime;
1716 p->last_task_numa_placement = now;
1717
1718 return delta;
1719}
1720
54009416
RR
1721/*
1722 * Determine the preferred nid for a task in a numa_group. This needs to
1723 * be done in a way that produces consistent results with group_weight,
1724 * otherwise workloads might not converge.
1725 */
1726static int preferred_group_nid(struct task_struct *p, int nid)
1727{
1728 nodemask_t nodes;
1729 int dist;
1730
1731 /* Direct connections between all NUMA nodes. */
1732 if (sched_numa_topology_type == NUMA_DIRECT)
1733 return nid;
1734
1735 /*
1736 * On a system with glueless mesh NUMA topology, group_weight
1737 * scores nodes according to the number of NUMA hinting faults on
1738 * both the node itself, and on nearby nodes.
1739 */
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 unsigned long score, max_score = 0;
1742 int node, max_node = nid;
1743
1744 dist = sched_max_numa_distance;
1745
1746 for_each_online_node(node) {
1747 score = group_weight(p, node, dist);
1748 if (score > max_score) {
1749 max_score = score;
1750 max_node = node;
1751 }
1752 }
1753 return max_node;
1754 }
1755
1756 /*
1757 * Finding the preferred nid in a system with NUMA backplane
1758 * interconnect topology is more involved. The goal is to locate
1759 * tasks from numa_groups near each other in the system, and
1760 * untangle workloads from different sides of the system. This requires
1761 * searching down the hierarchy of node groups, recursively searching
1762 * inside the highest scoring group of nodes. The nodemask tricks
1763 * keep the complexity of the search down.
1764 */
1765 nodes = node_online_map;
1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 unsigned long max_faults = 0;
81907478 1768 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1769 int a, b;
1770
1771 /* Are there nodes at this distance from each other? */
1772 if (!find_numa_distance(dist))
1773 continue;
1774
1775 for_each_node_mask(a, nodes) {
1776 unsigned long faults = 0;
1777 nodemask_t this_group;
1778 nodes_clear(this_group);
1779
1780 /* Sum group's NUMA faults; includes a==b case. */
1781 for_each_node_mask(b, nodes) {
1782 if (node_distance(a, b) < dist) {
1783 faults += group_faults(p, b);
1784 node_set(b, this_group);
1785 node_clear(b, nodes);
1786 }
1787 }
1788
1789 /* Remember the top group. */
1790 if (faults > max_faults) {
1791 max_faults = faults;
1792 max_group = this_group;
1793 /*
1794 * subtle: at the smallest distance there is
1795 * just one node left in each "group", the
1796 * winner is the preferred nid.
1797 */
1798 nid = a;
1799 }
1800 }
1801 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1802 if (!max_faults)
1803 break;
54009416
RR
1804 nodes = max_group;
1805 }
1806 return nid;
1807}
1808
cbee9f88
PZ
1809static void task_numa_placement(struct task_struct *p)
1810{
83e1d2cd
MG
1811 int seq, nid, max_nid = -1, max_group_nid = -1;
1812 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1813 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1814 unsigned long total_faults;
1815 u64 runtime, period;
7dbd13ed 1816 spinlock_t *group_lock = NULL;
cbee9f88 1817
7e5a2c17
JL
1818 /*
1819 * The p->mm->numa_scan_seq field gets updated without
1820 * exclusive access. Use READ_ONCE() here to ensure
1821 * that the field is read in a single access:
1822 */
316c1608 1823 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1824 if (p->numa_scan_seq == seq)
1825 return;
1826 p->numa_scan_seq = seq;
598f0ec0 1827 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1828
7e2703e6
RR
1829 total_faults = p->numa_faults_locality[0] +
1830 p->numa_faults_locality[1];
1831 runtime = numa_get_avg_runtime(p, &period);
1832
7dbd13ed
MG
1833 /* If the task is part of a group prevent parallel updates to group stats */
1834 if (p->numa_group) {
1835 group_lock = &p->numa_group->lock;
60e69eed 1836 spin_lock_irq(group_lock);
7dbd13ed
MG
1837 }
1838
688b7585
MG
1839 /* Find the node with the highest number of faults */
1840 for_each_online_node(nid) {
44dba3d5
IM
1841 /* Keep track of the offsets in numa_faults array */
1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1843 unsigned long faults = 0, group_faults = 0;
44dba3d5 1844 int priv;
745d6147 1845
be1e4e76 1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1847 long diff, f_diff, f_weight;
8c8a743c 1848
44dba3d5
IM
1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1853
ac8e895b 1854 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 fault_types[priv] += p->numa_faults[membuf_idx];
1857 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1858
7e2703e6
RR
1859 /*
1860 * Normalize the faults_from, so all tasks in a group
1861 * count according to CPU use, instead of by the raw
1862 * number of faults. Tasks with little runtime have
1863 * little over-all impact on throughput, and thus their
1864 * faults are less important.
1865 */
1866 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1868 (total_faults + 1);
44dba3d5
IM
1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1871
44dba3d5
IM
1872 p->numa_faults[mem_idx] += diff;
1873 p->numa_faults[cpu_idx] += f_diff;
1874 faults += p->numa_faults[mem_idx];
83e1d2cd 1875 p->total_numa_faults += diff;
8c8a743c 1876 if (p->numa_group) {
44dba3d5
IM
1877 /*
1878 * safe because we can only change our own group
1879 *
1880 * mem_idx represents the offset for a given
1881 * nid and priv in a specific region because it
1882 * is at the beginning of the numa_faults array.
1883 */
1884 p->numa_group->faults[mem_idx] += diff;
1885 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1886 p->numa_group->total_faults += diff;
44dba3d5 1887 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1888 }
ac8e895b
MG
1889 }
1890
688b7585
MG
1891 if (faults > max_faults) {
1892 max_faults = faults;
1893 max_nid = nid;
1894 }
83e1d2cd
MG
1895
1896 if (group_faults > max_group_faults) {
1897 max_group_faults = group_faults;
1898 max_group_nid = nid;
1899 }
1900 }
1901
04bb2f94
RR
1902 update_task_scan_period(p, fault_types[0], fault_types[1]);
1903
7dbd13ed 1904 if (p->numa_group) {
20e07dea 1905 update_numa_active_node_mask(p->numa_group);
60e69eed 1906 spin_unlock_irq(group_lock);
54009416 1907 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1908 }
1909
bb97fc31
RR
1910 if (max_faults) {
1911 /* Set the new preferred node */
1912 if (max_nid != p->numa_preferred_nid)
1913 sched_setnuma(p, max_nid);
1914
1915 if (task_node(p) != p->numa_preferred_nid)
1916 numa_migrate_preferred(p);
3a7053b3 1917 }
cbee9f88
PZ
1918}
1919
8c8a743c
PZ
1920static inline int get_numa_group(struct numa_group *grp)
1921{
1922 return atomic_inc_not_zero(&grp->refcount);
1923}
1924
1925static inline void put_numa_group(struct numa_group *grp)
1926{
1927 if (atomic_dec_and_test(&grp->refcount))
1928 kfree_rcu(grp, rcu);
1929}
1930
3e6a9418
MG
1931static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 int *priv)
8c8a743c
PZ
1933{
1934 struct numa_group *grp, *my_grp;
1935 struct task_struct *tsk;
1936 bool join = false;
1937 int cpu = cpupid_to_cpu(cpupid);
1938 int i;
1939
1940 if (unlikely(!p->numa_group)) {
1941 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1942 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1943
1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 if (!grp)
1946 return;
1947
1948 atomic_set(&grp->refcount, 1);
1949 spin_lock_init(&grp->lock);
e29cf08b 1950 grp->gid = p->pid;
50ec8a40 1951 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 nr_node_ids;
8c8a743c 1954
20e07dea
RR
1955 node_set(task_node(current), grp->active_nodes);
1956
be1e4e76 1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1958 grp->faults[i] = p->numa_faults[i];
8c8a743c 1959
989348b5 1960 grp->total_faults = p->total_numa_faults;
83e1d2cd 1961
8c8a743c
PZ
1962 grp->nr_tasks++;
1963 rcu_assign_pointer(p->numa_group, grp);
1964 }
1965
1966 rcu_read_lock();
316c1608 1967 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1968
1969 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1970 goto no_join;
8c8a743c
PZ
1971
1972 grp = rcu_dereference(tsk->numa_group);
1973 if (!grp)
3354781a 1974 goto no_join;
8c8a743c
PZ
1975
1976 my_grp = p->numa_group;
1977 if (grp == my_grp)
3354781a 1978 goto no_join;
8c8a743c
PZ
1979
1980 /*
1981 * Only join the other group if its bigger; if we're the bigger group,
1982 * the other task will join us.
1983 */
1984 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1985 goto no_join;
8c8a743c
PZ
1986
1987 /*
1988 * Tie-break on the grp address.
1989 */
1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1991 goto no_join;
8c8a743c 1992
dabe1d99
RR
1993 /* Always join threads in the same process. */
1994 if (tsk->mm == current->mm)
1995 join = true;
1996
1997 /* Simple filter to avoid false positives due to PID collisions */
1998 if (flags & TNF_SHARED)
1999 join = true;
8c8a743c 2000
3e6a9418
MG
2001 /* Update priv based on whether false sharing was detected */
2002 *priv = !join;
2003
dabe1d99 2004 if (join && !get_numa_group(grp))
3354781a 2005 goto no_join;
8c8a743c 2006
8c8a743c
PZ
2007 rcu_read_unlock();
2008
2009 if (!join)
2010 return;
2011
60e69eed
MG
2012 BUG_ON(irqs_disabled());
2013 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2014
be1e4e76 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2016 my_grp->faults[i] -= p->numa_faults[i];
2017 grp->faults[i] += p->numa_faults[i];
8c8a743c 2018 }
989348b5
MG
2019 my_grp->total_faults -= p->total_numa_faults;
2020 grp->total_faults += p->total_numa_faults;
8c8a743c 2021
8c8a743c
PZ
2022 my_grp->nr_tasks--;
2023 grp->nr_tasks++;
2024
2025 spin_unlock(&my_grp->lock);
60e69eed 2026 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2027
2028 rcu_assign_pointer(p->numa_group, grp);
2029
2030 put_numa_group(my_grp);
3354781a
PZ
2031 return;
2032
2033no_join:
2034 rcu_read_unlock();
2035 return;
8c8a743c
PZ
2036}
2037
2038void task_numa_free(struct task_struct *p)
2039{
2040 struct numa_group *grp = p->numa_group;
44dba3d5 2041 void *numa_faults = p->numa_faults;
e9dd685c
SR
2042 unsigned long flags;
2043 int i;
8c8a743c
PZ
2044
2045 if (grp) {
e9dd685c 2046 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2048 grp->faults[i] -= p->numa_faults[i];
989348b5 2049 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2050
8c8a743c 2051 grp->nr_tasks--;
e9dd685c 2052 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2053 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2054 put_numa_group(grp);
2055 }
2056
44dba3d5 2057 p->numa_faults = NULL;
82727018 2058 kfree(numa_faults);
8c8a743c
PZ
2059}
2060
cbee9f88
PZ
2061/*
2062 * Got a PROT_NONE fault for a page on @node.
2063 */
58b46da3 2064void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2065{
2066 struct task_struct *p = current;
6688cc05 2067 bool migrated = flags & TNF_MIGRATED;
58b46da3 2068 int cpu_node = task_node(current);
792568ec 2069 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2070 int priv;
cbee9f88 2071
2a595721 2072 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2073 return;
2074
9ff1d9ff
MG
2075 /* for example, ksmd faulting in a user's mm */
2076 if (!p->mm)
2077 return;
2078
f809ca9a 2079 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2080 if (unlikely(!p->numa_faults)) {
2081 int size = sizeof(*p->numa_faults) *
be1e4e76 2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2083
44dba3d5
IM
2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 if (!p->numa_faults)
f809ca9a 2086 return;
745d6147 2087
83e1d2cd 2088 p->total_numa_faults = 0;
04bb2f94 2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2090 }
cbee9f88 2091
8c8a743c
PZ
2092 /*
2093 * First accesses are treated as private, otherwise consider accesses
2094 * to be private if the accessing pid has not changed
2095 */
2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 priv = 1;
2098 } else {
2099 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2100 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2101 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2102 }
2103
792568ec
RR
2104 /*
2105 * If a workload spans multiple NUMA nodes, a shared fault that
2106 * occurs wholly within the set of nodes that the workload is
2107 * actively using should be counted as local. This allows the
2108 * scan rate to slow down when a workload has settled down.
2109 */
2110 if (!priv && !local && p->numa_group &&
2111 node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 node_isset(mem_node, p->numa_group->active_nodes))
2113 local = 1;
2114
cbee9f88 2115 task_numa_placement(p);
f809ca9a 2116
2739d3ee
RR
2117 /*
2118 * Retry task to preferred node migration periodically, in case it
2119 * case it previously failed, or the scheduler moved us.
2120 */
2121 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2122 numa_migrate_preferred(p);
2123
b32e86b4
IM
2124 if (migrated)
2125 p->numa_pages_migrated += pages;
074c2381
MG
2126 if (flags & TNF_MIGRATE_FAIL)
2127 p->numa_faults_locality[2] += pages;
b32e86b4 2128
44dba3d5
IM
2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2131 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2132}
2133
6e5fb223
PZ
2134static void reset_ptenuma_scan(struct task_struct *p)
2135{
7e5a2c17
JL
2136 /*
2137 * We only did a read acquisition of the mmap sem, so
2138 * p->mm->numa_scan_seq is written to without exclusive access
2139 * and the update is not guaranteed to be atomic. That's not
2140 * much of an issue though, since this is just used for
2141 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142 * expensive, to avoid any form of compiler optimizations:
2143 */
316c1608 2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2145 p->mm->numa_scan_offset = 0;
2146}
2147
cbee9f88
PZ
2148/*
2149 * The expensive part of numa migration is done from task_work context.
2150 * Triggered from task_tick_numa().
2151 */
2152void task_numa_work(struct callback_head *work)
2153{
2154 unsigned long migrate, next_scan, now = jiffies;
2155 struct task_struct *p = current;
2156 struct mm_struct *mm = p->mm;
6e5fb223 2157 struct vm_area_struct *vma;
9f40604c 2158 unsigned long start, end;
598f0ec0 2159 unsigned long nr_pte_updates = 0;
9f40604c 2160 long pages;
cbee9f88
PZ
2161
2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163
2164 work->next = work; /* protect against double add */
2165 /*
2166 * Who cares about NUMA placement when they're dying.
2167 *
2168 * NOTE: make sure not to dereference p->mm before this check,
2169 * exit_task_work() happens _after_ exit_mm() so we could be called
2170 * without p->mm even though we still had it when we enqueued this
2171 * work.
2172 */
2173 if (p->flags & PF_EXITING)
2174 return;
2175
930aa174 2176 if (!mm->numa_next_scan) {
7e8d16b6
MG
2177 mm->numa_next_scan = now +
2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2179 }
2180
cbee9f88
PZ
2181 /*
2182 * Enforce maximal scan/migration frequency..
2183 */
2184 migrate = mm->numa_next_scan;
2185 if (time_before(now, migrate))
2186 return;
2187
598f0ec0
MG
2188 if (p->numa_scan_period == 0) {
2189 p->numa_scan_period_max = task_scan_max(p);
2190 p->numa_scan_period = task_scan_min(p);
2191 }
cbee9f88 2192
fb003b80 2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 return;
2196
19a78d11
PZ
2197 /*
2198 * Delay this task enough that another task of this mm will likely win
2199 * the next time around.
2200 */
2201 p->node_stamp += 2 * TICK_NSEC;
2202
9f40604c
MG
2203 start = mm->numa_scan_offset;
2204 pages = sysctl_numa_balancing_scan_size;
2205 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206 if (!pages)
2207 return;
cbee9f88 2208
6e5fb223 2209 down_read(&mm->mmap_sem);
9f40604c 2210 vma = find_vma(mm, start);
6e5fb223
PZ
2211 if (!vma) {
2212 reset_ptenuma_scan(p);
9f40604c 2213 start = 0;
6e5fb223
PZ
2214 vma = mm->mmap;
2215 }
9f40604c 2216 for (; vma; vma = vma->vm_next) {
6b79c57b 2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2219 continue;
6b79c57b 2220 }
6e5fb223 2221
4591ce4f
MG
2222 /*
2223 * Shared library pages mapped by multiple processes are not
2224 * migrated as it is expected they are cache replicated. Avoid
2225 * hinting faults in read-only file-backed mappings or the vdso
2226 * as migrating the pages will be of marginal benefit.
2227 */
2228 if (!vma->vm_mm ||
2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 continue;
2231
3c67f474
MG
2232 /*
2233 * Skip inaccessible VMAs to avoid any confusion between
2234 * PROT_NONE and NUMA hinting ptes
2235 */
2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 continue;
4591ce4f 2238
9f40604c
MG
2239 do {
2240 start = max(start, vma->vm_start);
2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 end = min(end, vma->vm_end);
598f0ec0
MG
2243 nr_pte_updates += change_prot_numa(vma, start, end);
2244
2245 /*
2246 * Scan sysctl_numa_balancing_scan_size but ensure that
2247 * at least one PTE is updated so that unused virtual
2248 * address space is quickly skipped.
2249 */
2250 if (nr_pte_updates)
2251 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2252
9f40604c
MG
2253 start = end;
2254 if (pages <= 0)
2255 goto out;
3cf1962c
RR
2256
2257 cond_resched();
9f40604c 2258 } while (end != vma->vm_end);
cbee9f88 2259 }
6e5fb223 2260
9f40604c 2261out:
6e5fb223 2262 /*
c69307d5
PZ
2263 * It is possible to reach the end of the VMA list but the last few
2264 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265 * would find the !migratable VMA on the next scan but not reset the
2266 * scanner to the start so check it now.
6e5fb223
PZ
2267 */
2268 if (vma)
9f40604c 2269 mm->numa_scan_offset = start;
6e5fb223
PZ
2270 else
2271 reset_ptenuma_scan(p);
2272 up_read(&mm->mmap_sem);
cbee9f88
PZ
2273}
2274
2275/*
2276 * Drive the periodic memory faults..
2277 */
2278void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280 struct callback_head *work = &curr->numa_work;
2281 u64 period, now;
2282
2283 /*
2284 * We don't care about NUMA placement if we don't have memory.
2285 */
2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 return;
2288
2289 /*
2290 * Using runtime rather than walltime has the dual advantage that
2291 * we (mostly) drive the selection from busy threads and that the
2292 * task needs to have done some actual work before we bother with
2293 * NUMA placement.
2294 */
2295 now = curr->se.sum_exec_runtime;
2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297
2298 if (now - curr->node_stamp > period) {
4b96a29b 2299 if (!curr->node_stamp)
598f0ec0 2300 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2301 curr->node_stamp += period;
cbee9f88
PZ
2302
2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305 task_work_add(curr, work, true);
2306 }
2307 }
2308}
2309#else
2310static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311{
2312}
0ec8aa00
PZ
2313
2314static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315{
2316}
2317
2318static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319{
2320}
cbee9f88
PZ
2321#endif /* CONFIG_NUMA_BALANCING */
2322
30cfdcfc
DA
2323static void
2324account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325{
2326 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2327 if (!parent_entity(se))
029632fb 2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2329#ifdef CONFIG_SMP
0ec8aa00
PZ
2330 if (entity_is_task(se)) {
2331 struct rq *rq = rq_of(cfs_rq);
2332
2333 account_numa_enqueue(rq, task_of(se));
2334 list_add(&se->group_node, &rq->cfs_tasks);
2335 }
367456c7 2336#endif
30cfdcfc 2337 cfs_rq->nr_running++;
30cfdcfc
DA
2338}
2339
2340static void
2341account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342{
2343 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2344 if (!parent_entity(se))
029632fb 2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2346 if (entity_is_task(se)) {
2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2348 list_del_init(&se->group_node);
0ec8aa00 2349 }
30cfdcfc 2350 cfs_rq->nr_running--;
30cfdcfc
DA
2351}
2352
3ff6dcac
YZ
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354# ifdef CONFIG_SMP
cf5f0acf
PZ
2355static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356{
2357 long tg_weight;
2358
2359 /*
9d89c257
YD
2360 * Use this CPU's real-time load instead of the last load contribution
2361 * as the updating of the contribution is delayed, and we will use the
2362 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2363 */
bf5b986e 2364 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2365 tg_weight -= cfs_rq->tg_load_avg_contrib;
7ea241af 2366 tg_weight += cfs_rq_load_avg(cfs_rq);
cf5f0acf
PZ
2367
2368 return tg_weight;
2369}
2370
6d5ab293 2371static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2372{
cf5f0acf 2373 long tg_weight, load, shares;
3ff6dcac 2374
cf5f0acf 2375 tg_weight = calc_tg_weight(tg, cfs_rq);
7ea241af 2376 load = cfs_rq_load_avg(cfs_rq);
3ff6dcac 2377
3ff6dcac 2378 shares = (tg->shares * load);
cf5f0acf
PZ
2379 if (tg_weight)
2380 shares /= tg_weight;
3ff6dcac
YZ
2381
2382 if (shares < MIN_SHARES)
2383 shares = MIN_SHARES;
2384 if (shares > tg->shares)
2385 shares = tg->shares;
2386
2387 return shares;
2388}
3ff6dcac 2389# else /* CONFIG_SMP */
6d5ab293 2390static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2391{
2392 return tg->shares;
2393}
3ff6dcac 2394# endif /* CONFIG_SMP */
2069dd75
PZ
2395static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 unsigned long weight)
2397{
19e5eebb
PT
2398 if (se->on_rq) {
2399 /* commit outstanding execution time */
2400 if (cfs_rq->curr == se)
2401 update_curr(cfs_rq);
2069dd75 2402 account_entity_dequeue(cfs_rq, se);
19e5eebb 2403 }
2069dd75
PZ
2404
2405 update_load_set(&se->load, weight);
2406
2407 if (se->on_rq)
2408 account_entity_enqueue(cfs_rq, se);
2409}
2410
82958366
PT
2411static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412
6d5ab293 2413static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2414{
2415 struct task_group *tg;
2416 struct sched_entity *se;
3ff6dcac 2417 long shares;
2069dd75 2418
2069dd75
PZ
2419 tg = cfs_rq->tg;
2420 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2421 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2422 return;
3ff6dcac
YZ
2423#ifndef CONFIG_SMP
2424 if (likely(se->load.weight == tg->shares))
2425 return;
2426#endif
6d5ab293 2427 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2428
2429 reweight_entity(cfs_rq_of(se), se, shares);
2430}
2431#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2432static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2433{
2434}
2435#endif /* CONFIG_FAIR_GROUP_SCHED */
2436
141965c7 2437#ifdef CONFIG_SMP
5b51f2f8
PT
2438/* Precomputed fixed inverse multiplies for multiplication by y^n */
2439static const u32 runnable_avg_yN_inv[] = {
2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 0x85aac367, 0x82cd8698,
2446};
2447
2448/*
2449 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2450 * over-estimates when re-combining.
2451 */
2452static const u32 runnable_avg_yN_sum[] = {
2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456};
2457
9d85f21c
PT
2458/*
2459 * Approximate:
2460 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2461 */
2462static __always_inline u64 decay_load(u64 val, u64 n)
2463{
5b51f2f8
PT
2464 unsigned int local_n;
2465
2466 if (!n)
2467 return val;
2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 return 0;
2470
2471 /* after bounds checking we can collapse to 32-bit */
2472 local_n = n;
2473
2474 /*
2475 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2476 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2478 *
2479 * To achieve constant time decay_load.
2480 */
2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 val >>= local_n / LOAD_AVG_PERIOD;
2483 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2484 }
2485
9d89c257
YD
2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 return val;
5b51f2f8
PT
2488}
2489
2490/*
2491 * For updates fully spanning n periods, the contribution to runnable
2492 * average will be: \Sum 1024*y^n
2493 *
2494 * We can compute this reasonably efficiently by combining:
2495 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2496 */
2497static u32 __compute_runnable_contrib(u64 n)
2498{
2499 u32 contrib = 0;
2500
2501 if (likely(n <= LOAD_AVG_PERIOD))
2502 return runnable_avg_yN_sum[n];
2503 else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 return LOAD_AVG_MAX;
2505
2506 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507 do {
2508 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510
2511 n -= LOAD_AVG_PERIOD;
2512 } while (n > LOAD_AVG_PERIOD);
2513
2514 contrib = decay_load(contrib, n);
2515 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2516}
2517
006cdf02
PZ
2518#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2519#error "load tracking assumes 2^10 as unit"
2520#endif
2521
54a21385 2522#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2523
9d85f21c
PT
2524/*
2525 * We can represent the historical contribution to runnable average as the
2526 * coefficients of a geometric series. To do this we sub-divide our runnable
2527 * history into segments of approximately 1ms (1024us); label the segment that
2528 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2529 *
2530 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2531 * p0 p1 p2
2532 * (now) (~1ms ago) (~2ms ago)
2533 *
2534 * Let u_i denote the fraction of p_i that the entity was runnable.
2535 *
2536 * We then designate the fractions u_i as our co-efficients, yielding the
2537 * following representation of historical load:
2538 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2539 *
2540 * We choose y based on the with of a reasonably scheduling period, fixing:
2541 * y^32 = 0.5
2542 *
2543 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2544 * approximately half as much as the contribution to load within the last ms
2545 * (u_0).
2546 *
2547 * When a period "rolls over" and we have new u_0`, multiplying the previous
2548 * sum again by y is sufficient to update:
2549 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2550 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2551 */
9d89c257
YD
2552static __always_inline int
2553__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2554 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2555{
e0f5f3af 2556 u64 delta, scaled_delta, periods;
9d89c257 2557 u32 contrib;
6115c793 2558 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2559 unsigned long scale_freq, scale_cpu;
9d85f21c 2560
9d89c257 2561 delta = now - sa->last_update_time;
9d85f21c
PT
2562 /*
2563 * This should only happen when time goes backwards, which it
2564 * unfortunately does during sched clock init when we swap over to TSC.
2565 */
2566 if ((s64)delta < 0) {
9d89c257 2567 sa->last_update_time = now;
9d85f21c
PT
2568 return 0;
2569 }
2570
2571 /*
2572 * Use 1024ns as the unit of measurement since it's a reasonable
2573 * approximation of 1us and fast to compute.
2574 */
2575 delta >>= 10;
2576 if (!delta)
2577 return 0;
9d89c257 2578 sa->last_update_time = now;
9d85f21c 2579
6f2b0452
DE
2580 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2581 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2582
9d85f21c 2583 /* delta_w is the amount already accumulated against our next period */
9d89c257 2584 delta_w = sa->period_contrib;
9d85f21c 2585 if (delta + delta_w >= 1024) {
9d85f21c
PT
2586 decayed = 1;
2587
9d89c257
YD
2588 /* how much left for next period will start over, we don't know yet */
2589 sa->period_contrib = 0;
2590
9d85f21c
PT
2591 /*
2592 * Now that we know we're crossing a period boundary, figure
2593 * out how much from delta we need to complete the current
2594 * period and accrue it.
2595 */
2596 delta_w = 1024 - delta_w;
54a21385 2597 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2598 if (weight) {
e0f5f3af
DE
2599 sa->load_sum += weight * scaled_delta_w;
2600 if (cfs_rq) {
2601 cfs_rq->runnable_load_sum +=
2602 weight * scaled_delta_w;
2603 }
13962234 2604 }
36ee28e4 2605 if (running)
006cdf02 2606 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2607
2608 delta -= delta_w;
2609
2610 /* Figure out how many additional periods this update spans */
2611 periods = delta / 1024;
2612 delta %= 1024;
2613
9d89c257 2614 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2615 if (cfs_rq) {
2616 cfs_rq->runnable_load_sum =
2617 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2618 }
9d89c257 2619 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2620
2621 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2622 contrib = __compute_runnable_contrib(periods);
54a21385 2623 contrib = cap_scale(contrib, scale_freq);
13962234 2624 if (weight) {
9d89c257 2625 sa->load_sum += weight * contrib;
13962234
YD
2626 if (cfs_rq)
2627 cfs_rq->runnable_load_sum += weight * contrib;
2628 }
36ee28e4 2629 if (running)
006cdf02 2630 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2631 }
2632
2633 /* Remainder of delta accrued against u_0` */
54a21385 2634 scaled_delta = cap_scale(delta, scale_freq);
13962234 2635 if (weight) {
e0f5f3af 2636 sa->load_sum += weight * scaled_delta;
13962234 2637 if (cfs_rq)
e0f5f3af 2638 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2639 }
36ee28e4 2640 if (running)
006cdf02 2641 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2642
9d89c257 2643 sa->period_contrib += delta;
9ee474f5 2644
9d89c257
YD
2645 if (decayed) {
2646 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2647 if (cfs_rq) {
2648 cfs_rq->runnable_load_avg =
2649 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2650 }
006cdf02 2651 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2652 }
aff3e498 2653
9d89c257 2654 return decayed;
9ee474f5
PT
2655}
2656
c566e8e9 2657#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2658/*
9d89c257
YD
2659 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2660 * and effective_load (which is not done because it is too costly).
bb17f655 2661 */
9d89c257 2662static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2663{
9d89c257 2664 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2665
9d89c257
YD
2666 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2667 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2668 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2669 }
8165e145 2670}
f5f9739d 2671
6e83125c 2672#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2673static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2674#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2675
9d89c257 2676static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2677
9d89c257
YD
2678/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2679static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2680{
9d89c257 2681 struct sched_avg *sa = &cfs_rq->avg;
a05e8c51 2682 int decayed;
2dac754e 2683
9d89c257
YD
2684 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2685 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2686 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2687 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
8165e145 2688 }
2dac754e 2689
9d89c257
YD
2690 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2691 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2692 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2693 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2694 }
36ee28e4 2695
9d89c257 2696 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2697 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2698
9d89c257
YD
2699#ifndef CONFIG_64BIT
2700 smp_wmb();
2701 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2702#endif
36ee28e4 2703
9d89c257 2704 return decayed;
9ee474f5
PT
2705}
2706
9d89c257
YD
2707/* Update task and its cfs_rq load average */
2708static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2709{
2dac754e 2710 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2711 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2712 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2713
f1b17280 2714 /*
9d89c257
YD
2715 * Track task load average for carrying it to new CPU after migrated, and
2716 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2717 */
9d89c257 2718 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2719 se->on_rq * scale_load_down(se->load.weight),
2720 cfs_rq->curr == se, NULL);
f1b17280 2721
9d89c257
YD
2722 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2723 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2724}
2725
a05e8c51
BP
2726static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2727{
a9280514
PZ
2728 if (!sched_feat(ATTACH_AGE_LOAD))
2729 goto skip_aging;
2730
6efdb105
BP
2731 /*
2732 * If we got migrated (either between CPUs or between cgroups) we'll
2733 * have aged the average right before clearing @last_update_time.
2734 */
2735 if (se->avg.last_update_time) {
2736 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2737 &se->avg, 0, 0, NULL);
2738
2739 /*
2740 * XXX: we could have just aged the entire load away if we've been
2741 * absent from the fair class for too long.
2742 */
2743 }
2744
a9280514 2745skip_aging:
a05e8c51
BP
2746 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2747 cfs_rq->avg.load_avg += se->avg.load_avg;
2748 cfs_rq->avg.load_sum += se->avg.load_sum;
2749 cfs_rq->avg.util_avg += se->avg.util_avg;
2750 cfs_rq->avg.util_sum += se->avg.util_sum;
2751}
2752
2753static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2754{
2755 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2756 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2757 cfs_rq->curr == se, NULL);
2758
2759 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2760 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2761 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2762 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2763}
2764
9d89c257
YD
2765/* Add the load generated by se into cfs_rq's load average */
2766static inline void
2767enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2768{
9d89c257
YD
2769 struct sched_avg *sa = &se->avg;
2770 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2771 int migrated, decayed;
9ee474f5 2772
a05e8c51
BP
2773 migrated = !sa->last_update_time;
2774 if (!migrated) {
9d89c257 2775 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2776 se->on_rq * scale_load_down(se->load.weight),
2777 cfs_rq->curr == se, NULL);
aff3e498 2778 }
c566e8e9 2779
9d89c257 2780 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2781
13962234
YD
2782 cfs_rq->runnable_load_avg += sa->load_avg;
2783 cfs_rq->runnable_load_sum += sa->load_sum;
2784
a05e8c51
BP
2785 if (migrated)
2786 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2787
9d89c257
YD
2788 if (decayed || migrated)
2789 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2790}
2791
13962234
YD
2792/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2793static inline void
2794dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2795{
2796 update_load_avg(se, 1);
2797
2798 cfs_rq->runnable_load_avg =
2799 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2800 cfs_rq->runnable_load_sum =
a05e8c51 2801 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2802}
2803
9ee474f5 2804/*
9d89c257
YD
2805 * Task first catches up with cfs_rq, and then subtract
2806 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2807 */
9d89c257 2808void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2809{
9d89c257
YD
2810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2811 u64 last_update_time;
2812
2813#ifndef CONFIG_64BIT
2814 u64 last_update_time_copy;
9ee474f5 2815
9d89c257
YD
2816 do {
2817 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2818 smp_rmb();
2819 last_update_time = cfs_rq->avg.last_update_time;
2820 } while (last_update_time != last_update_time_copy);
2821#else
2822 last_update_time = cfs_rq->avg.last_update_time;
2823#endif
2824
13962234 2825 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2826 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2827 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2828}
642dbc39
VG
2829
2830/*
2831 * Update the rq's load with the elapsed running time before entering
2832 * idle. if the last scheduled task is not a CFS task, idle_enter will
2833 * be the only way to update the runnable statistic.
2834 */
2835void idle_enter_fair(struct rq *this_rq)
2836{
642dbc39
VG
2837}
2838
2839/*
2840 * Update the rq's load with the elapsed idle time before a task is
2841 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2842 * be the only way to update the runnable statistic.
2843 */
2844void idle_exit_fair(struct rq *this_rq)
2845{
642dbc39
VG
2846}
2847
7ea241af
YD
2848static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2849{
2850 return cfs_rq->runnable_load_avg;
2851}
2852
2853static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2854{
2855 return cfs_rq->avg.load_avg;
2856}
2857
6e83125c
PZ
2858static int idle_balance(struct rq *this_rq);
2859
38033c37
PZ
2860#else /* CONFIG_SMP */
2861
9d89c257
YD
2862static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2863static inline void
2864enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2865static inline void
2866dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2867static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2868
a05e8c51
BP
2869static inline void
2870attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2871static inline void
2872detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2873
6e83125c
PZ
2874static inline int idle_balance(struct rq *rq)
2875{
2876 return 0;
2877}
2878
38033c37 2879#endif /* CONFIG_SMP */
9d85f21c 2880
2396af69 2881static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2882{
bf0f6f24 2883#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2884 struct task_struct *tsk = NULL;
2885
2886 if (entity_is_task(se))
2887 tsk = task_of(se);
2888
41acab88 2889 if (se->statistics.sleep_start) {
78becc27 2890 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2891
2892 if ((s64)delta < 0)
2893 delta = 0;
2894
41acab88
LDM
2895 if (unlikely(delta > se->statistics.sleep_max))
2896 se->statistics.sleep_max = delta;
bf0f6f24 2897
8c79a045 2898 se->statistics.sleep_start = 0;
41acab88 2899 se->statistics.sum_sleep_runtime += delta;
9745512c 2900
768d0c27 2901 if (tsk) {
e414314c 2902 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2903 trace_sched_stat_sleep(tsk, delta);
2904 }
bf0f6f24 2905 }
41acab88 2906 if (se->statistics.block_start) {
78becc27 2907 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2908
2909 if ((s64)delta < 0)
2910 delta = 0;
2911
41acab88
LDM
2912 if (unlikely(delta > se->statistics.block_max))
2913 se->statistics.block_max = delta;
bf0f6f24 2914
8c79a045 2915 se->statistics.block_start = 0;
41acab88 2916 se->statistics.sum_sleep_runtime += delta;
30084fbd 2917
e414314c 2918 if (tsk) {
8f0dfc34 2919 if (tsk->in_iowait) {
41acab88
LDM
2920 se->statistics.iowait_sum += delta;
2921 se->statistics.iowait_count++;
768d0c27 2922 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2923 }
2924
b781a602
AV
2925 trace_sched_stat_blocked(tsk, delta);
2926
e414314c
PZ
2927 /*
2928 * Blocking time is in units of nanosecs, so shift by
2929 * 20 to get a milliseconds-range estimation of the
2930 * amount of time that the task spent sleeping:
2931 */
2932 if (unlikely(prof_on == SLEEP_PROFILING)) {
2933 profile_hits(SLEEP_PROFILING,
2934 (void *)get_wchan(tsk),
2935 delta >> 20);
2936 }
2937 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2938 }
bf0f6f24
IM
2939 }
2940#endif
2941}
2942
ddc97297
PZ
2943static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2944{
2945#ifdef CONFIG_SCHED_DEBUG
2946 s64 d = se->vruntime - cfs_rq->min_vruntime;
2947
2948 if (d < 0)
2949 d = -d;
2950
2951 if (d > 3*sysctl_sched_latency)
2952 schedstat_inc(cfs_rq, nr_spread_over);
2953#endif
2954}
2955
aeb73b04
PZ
2956static void
2957place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2958{
1af5f730 2959 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2960
2cb8600e
PZ
2961 /*
2962 * The 'current' period is already promised to the current tasks,
2963 * however the extra weight of the new task will slow them down a
2964 * little, place the new task so that it fits in the slot that
2965 * stays open at the end.
2966 */
94dfb5e7 2967 if (initial && sched_feat(START_DEBIT))
f9c0b095 2968 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2969
a2e7a7eb 2970 /* sleeps up to a single latency don't count. */
5ca9880c 2971 if (!initial) {
a2e7a7eb 2972 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2973
a2e7a7eb
MG
2974 /*
2975 * Halve their sleep time's effect, to allow
2976 * for a gentler effect of sleepers:
2977 */
2978 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2979 thresh >>= 1;
51e0304c 2980
a2e7a7eb 2981 vruntime -= thresh;
aeb73b04
PZ
2982 }
2983
b5d9d734 2984 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2985 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2986}
2987
d3d9dc33
PT
2988static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2989
bf0f6f24 2990static void
88ec22d3 2991enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2992{
88ec22d3
PZ
2993 /*
2994 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2995 * through calling update_curr().
88ec22d3 2996 */
371fd7e7 2997 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2998 se->vruntime += cfs_rq->min_vruntime;
2999
bf0f6f24 3000 /*
a2a2d680 3001 * Update run-time statistics of the 'current'.
bf0f6f24 3002 */
b7cc0896 3003 update_curr(cfs_rq);
9d89c257 3004 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3005 account_entity_enqueue(cfs_rq, se);
3006 update_cfs_shares(cfs_rq);
bf0f6f24 3007
88ec22d3 3008 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3009 place_entity(cfs_rq, se, 0);
2396af69 3010 enqueue_sleeper(cfs_rq, se);
e9acbff6 3011 }
bf0f6f24 3012
d2417e5a 3013 update_stats_enqueue(cfs_rq, se);
ddc97297 3014 check_spread(cfs_rq, se);
83b699ed
SV
3015 if (se != cfs_rq->curr)
3016 __enqueue_entity(cfs_rq, se);
2069dd75 3017 se->on_rq = 1;
3d4b47b4 3018
d3d9dc33 3019 if (cfs_rq->nr_running == 1) {
3d4b47b4 3020 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3021 check_enqueue_throttle(cfs_rq);
3022 }
bf0f6f24
IM
3023}
3024
2c13c919 3025static void __clear_buddies_last(struct sched_entity *se)
2002c695 3026{
2c13c919
RR
3027 for_each_sched_entity(se) {
3028 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3029 if (cfs_rq->last != se)
2c13c919 3030 break;
f1044799
PZ
3031
3032 cfs_rq->last = NULL;
2c13c919
RR
3033 }
3034}
2002c695 3035
2c13c919
RR
3036static void __clear_buddies_next(struct sched_entity *se)
3037{
3038 for_each_sched_entity(se) {
3039 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3040 if (cfs_rq->next != se)
2c13c919 3041 break;
f1044799
PZ
3042
3043 cfs_rq->next = NULL;
2c13c919 3044 }
2002c695
PZ
3045}
3046
ac53db59
RR
3047static void __clear_buddies_skip(struct sched_entity *se)
3048{
3049 for_each_sched_entity(se) {
3050 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3051 if (cfs_rq->skip != se)
ac53db59 3052 break;
f1044799
PZ
3053
3054 cfs_rq->skip = NULL;
ac53db59
RR
3055 }
3056}
3057
a571bbea
PZ
3058static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3059{
2c13c919
RR
3060 if (cfs_rq->last == se)
3061 __clear_buddies_last(se);
3062
3063 if (cfs_rq->next == se)
3064 __clear_buddies_next(se);
ac53db59
RR
3065
3066 if (cfs_rq->skip == se)
3067 __clear_buddies_skip(se);
a571bbea
PZ
3068}
3069
6c16a6dc 3070static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3071
bf0f6f24 3072static void
371fd7e7 3073dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3074{
a2a2d680
DA
3075 /*
3076 * Update run-time statistics of the 'current'.
3077 */
3078 update_curr(cfs_rq);
13962234 3079 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3080
19b6a2e3 3081 update_stats_dequeue(cfs_rq, se);
371fd7e7 3082 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3083#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3084 if (entity_is_task(se)) {
3085 struct task_struct *tsk = task_of(se);
3086
3087 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3088 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3089 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3090 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3091 }
db36cc7d 3092#endif
67e9fb2a
PZ
3093 }
3094
2002c695 3095 clear_buddies(cfs_rq, se);
4793241b 3096
83b699ed 3097 if (se != cfs_rq->curr)
30cfdcfc 3098 __dequeue_entity(cfs_rq, se);
17bc14b7 3099 se->on_rq = 0;
30cfdcfc 3100 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3101
3102 /*
3103 * Normalize the entity after updating the min_vruntime because the
3104 * update can refer to the ->curr item and we need to reflect this
3105 * movement in our normalized position.
3106 */
371fd7e7 3107 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3108 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3109
d8b4986d
PT
3110 /* return excess runtime on last dequeue */
3111 return_cfs_rq_runtime(cfs_rq);
3112
1e876231 3113 update_min_vruntime(cfs_rq);
17bc14b7 3114 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3115}
3116
3117/*
3118 * Preempt the current task with a newly woken task if needed:
3119 */
7c92e54f 3120static void
2e09bf55 3121check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3122{
11697830 3123 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3124 struct sched_entity *se;
3125 s64 delta;
11697830 3126
6d0f0ebd 3127 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3128 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3129 if (delta_exec > ideal_runtime) {
8875125e 3130 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3131 /*
3132 * The current task ran long enough, ensure it doesn't get
3133 * re-elected due to buddy favours.
3134 */
3135 clear_buddies(cfs_rq, curr);
f685ceac
MG
3136 return;
3137 }
3138
3139 /*
3140 * Ensure that a task that missed wakeup preemption by a
3141 * narrow margin doesn't have to wait for a full slice.
3142 * This also mitigates buddy induced latencies under load.
3143 */
f685ceac
MG
3144 if (delta_exec < sysctl_sched_min_granularity)
3145 return;
3146
f4cfb33e
WX
3147 se = __pick_first_entity(cfs_rq);
3148 delta = curr->vruntime - se->vruntime;
f685ceac 3149
f4cfb33e
WX
3150 if (delta < 0)
3151 return;
d7d82944 3152
f4cfb33e 3153 if (delta > ideal_runtime)
8875125e 3154 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3155}
3156
83b699ed 3157static void
8494f412 3158set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3159{
83b699ed
SV
3160 /* 'current' is not kept within the tree. */
3161 if (se->on_rq) {
3162 /*
3163 * Any task has to be enqueued before it get to execute on
3164 * a CPU. So account for the time it spent waiting on the
3165 * runqueue.
3166 */
3167 update_stats_wait_end(cfs_rq, se);
3168 __dequeue_entity(cfs_rq, se);
9d89c257 3169 update_load_avg(se, 1);
83b699ed
SV
3170 }
3171
79303e9e 3172 update_stats_curr_start(cfs_rq, se);
429d43bc 3173 cfs_rq->curr = se;
eba1ed4b
IM
3174#ifdef CONFIG_SCHEDSTATS
3175 /*
3176 * Track our maximum slice length, if the CPU's load is at
3177 * least twice that of our own weight (i.e. dont track it
3178 * when there are only lesser-weight tasks around):
3179 */
495eca49 3180 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3181 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3182 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3183 }
3184#endif
4a55b450 3185 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3186}
3187
3f3a4904
PZ
3188static int
3189wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3190
ac53db59
RR
3191/*
3192 * Pick the next process, keeping these things in mind, in this order:
3193 * 1) keep things fair between processes/task groups
3194 * 2) pick the "next" process, since someone really wants that to run
3195 * 3) pick the "last" process, for cache locality
3196 * 4) do not run the "skip" process, if something else is available
3197 */
678d5718
PZ
3198static struct sched_entity *
3199pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3200{
678d5718
PZ
3201 struct sched_entity *left = __pick_first_entity(cfs_rq);
3202 struct sched_entity *se;
3203
3204 /*
3205 * If curr is set we have to see if its left of the leftmost entity
3206 * still in the tree, provided there was anything in the tree at all.
3207 */
3208 if (!left || (curr && entity_before(curr, left)))
3209 left = curr;
3210
3211 se = left; /* ideally we run the leftmost entity */
f4b6755f 3212
ac53db59
RR
3213 /*
3214 * Avoid running the skip buddy, if running something else can
3215 * be done without getting too unfair.
3216 */
3217 if (cfs_rq->skip == se) {
678d5718
PZ
3218 struct sched_entity *second;
3219
3220 if (se == curr) {
3221 second = __pick_first_entity(cfs_rq);
3222 } else {
3223 second = __pick_next_entity(se);
3224 if (!second || (curr && entity_before(curr, second)))
3225 second = curr;
3226 }
3227
ac53db59
RR
3228 if (second && wakeup_preempt_entity(second, left) < 1)
3229 se = second;
3230 }
aa2ac252 3231
f685ceac
MG
3232 /*
3233 * Prefer last buddy, try to return the CPU to a preempted task.
3234 */
3235 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3236 se = cfs_rq->last;
3237
ac53db59
RR
3238 /*
3239 * Someone really wants this to run. If it's not unfair, run it.
3240 */
3241 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3242 se = cfs_rq->next;
3243
f685ceac 3244 clear_buddies(cfs_rq, se);
4793241b
PZ
3245
3246 return se;
aa2ac252
PZ
3247}
3248
678d5718 3249static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3250
ab6cde26 3251static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3252{
3253 /*
3254 * If still on the runqueue then deactivate_task()
3255 * was not called and update_curr() has to be done:
3256 */
3257 if (prev->on_rq)
b7cc0896 3258 update_curr(cfs_rq);
bf0f6f24 3259
d3d9dc33
PT
3260 /* throttle cfs_rqs exceeding runtime */
3261 check_cfs_rq_runtime(cfs_rq);
3262
ddc97297 3263 check_spread(cfs_rq, prev);
30cfdcfc 3264 if (prev->on_rq) {
5870db5b 3265 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3266 /* Put 'current' back into the tree. */
3267 __enqueue_entity(cfs_rq, prev);
9d85f21c 3268 /* in !on_rq case, update occurred at dequeue */
9d89c257 3269 update_load_avg(prev, 0);
30cfdcfc 3270 }
429d43bc 3271 cfs_rq->curr = NULL;
bf0f6f24
IM
3272}
3273
8f4d37ec
PZ
3274static void
3275entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3276{
bf0f6f24 3277 /*
30cfdcfc 3278 * Update run-time statistics of the 'current'.
bf0f6f24 3279 */
30cfdcfc 3280 update_curr(cfs_rq);
bf0f6f24 3281
9d85f21c
PT
3282 /*
3283 * Ensure that runnable average is periodically updated.
3284 */
9d89c257 3285 update_load_avg(curr, 1);
bf0bd948 3286 update_cfs_shares(cfs_rq);
9d85f21c 3287
8f4d37ec
PZ
3288#ifdef CONFIG_SCHED_HRTICK
3289 /*
3290 * queued ticks are scheduled to match the slice, so don't bother
3291 * validating it and just reschedule.
3292 */
983ed7a6 3293 if (queued) {
8875125e 3294 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3295 return;
3296 }
8f4d37ec
PZ
3297 /*
3298 * don't let the period tick interfere with the hrtick preemption
3299 */
3300 if (!sched_feat(DOUBLE_TICK) &&
3301 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3302 return;
3303#endif
3304
2c2efaed 3305 if (cfs_rq->nr_running > 1)
2e09bf55 3306 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3307}
3308
ab84d31e
PT
3309
3310/**************************************************
3311 * CFS bandwidth control machinery
3312 */
3313
3314#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3315
3316#ifdef HAVE_JUMP_LABEL
c5905afb 3317static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3318
3319static inline bool cfs_bandwidth_used(void)
3320{
c5905afb 3321 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3322}
3323
1ee14e6c 3324void cfs_bandwidth_usage_inc(void)
029632fb 3325{
1ee14e6c
BS
3326 static_key_slow_inc(&__cfs_bandwidth_used);
3327}
3328
3329void cfs_bandwidth_usage_dec(void)
3330{
3331 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3332}
3333#else /* HAVE_JUMP_LABEL */
3334static bool cfs_bandwidth_used(void)
3335{
3336 return true;
3337}
3338
1ee14e6c
BS
3339void cfs_bandwidth_usage_inc(void) {}
3340void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3341#endif /* HAVE_JUMP_LABEL */
3342
ab84d31e
PT
3343/*
3344 * default period for cfs group bandwidth.
3345 * default: 0.1s, units: nanoseconds
3346 */
3347static inline u64 default_cfs_period(void)
3348{
3349 return 100000000ULL;
3350}
ec12cb7f
PT
3351
3352static inline u64 sched_cfs_bandwidth_slice(void)
3353{
3354 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3355}
3356
a9cf55b2
PT
3357/*
3358 * Replenish runtime according to assigned quota and update expiration time.
3359 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3360 * additional synchronization around rq->lock.
3361 *
3362 * requires cfs_b->lock
3363 */
029632fb 3364void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3365{
3366 u64 now;
3367
3368 if (cfs_b->quota == RUNTIME_INF)
3369 return;
3370
3371 now = sched_clock_cpu(smp_processor_id());
3372 cfs_b->runtime = cfs_b->quota;
3373 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3374}
3375
029632fb
PZ
3376static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3377{
3378 return &tg->cfs_bandwidth;
3379}
3380
f1b17280
PT
3381/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3382static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3383{
3384 if (unlikely(cfs_rq->throttle_count))
3385 return cfs_rq->throttled_clock_task;
3386
78becc27 3387 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3388}
3389
85dac906
PT
3390/* returns 0 on failure to allocate runtime */
3391static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3392{
3393 struct task_group *tg = cfs_rq->tg;
3394 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3395 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3396
3397 /* note: this is a positive sum as runtime_remaining <= 0 */
3398 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3399
3400 raw_spin_lock(&cfs_b->lock);
3401 if (cfs_b->quota == RUNTIME_INF)
3402 amount = min_amount;
58088ad0 3403 else {
77a4d1a1 3404 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3405
3406 if (cfs_b->runtime > 0) {
3407 amount = min(cfs_b->runtime, min_amount);
3408 cfs_b->runtime -= amount;
3409 cfs_b->idle = 0;
3410 }
ec12cb7f 3411 }
a9cf55b2 3412 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3413 raw_spin_unlock(&cfs_b->lock);
3414
3415 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3416 /*
3417 * we may have advanced our local expiration to account for allowed
3418 * spread between our sched_clock and the one on which runtime was
3419 * issued.
3420 */
3421 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3422 cfs_rq->runtime_expires = expires;
85dac906
PT
3423
3424 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3425}
3426
a9cf55b2
PT
3427/*
3428 * Note: This depends on the synchronization provided by sched_clock and the
3429 * fact that rq->clock snapshots this value.
3430 */
3431static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3432{
a9cf55b2 3433 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3434
3435 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3436 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3437 return;
3438
a9cf55b2
PT
3439 if (cfs_rq->runtime_remaining < 0)
3440 return;
3441
3442 /*
3443 * If the local deadline has passed we have to consider the
3444 * possibility that our sched_clock is 'fast' and the global deadline
3445 * has not truly expired.
3446 *
3447 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3448 * whether the global deadline has advanced. It is valid to compare
3449 * cfs_b->runtime_expires without any locks since we only care about
3450 * exact equality, so a partial write will still work.
a9cf55b2
PT
3451 */
3452
51f2176d 3453 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3454 /* extend local deadline, drift is bounded above by 2 ticks */
3455 cfs_rq->runtime_expires += TICK_NSEC;
3456 } else {
3457 /* global deadline is ahead, expiration has passed */
3458 cfs_rq->runtime_remaining = 0;
3459 }
3460}
3461
9dbdb155 3462static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3463{
3464 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3465 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3466 expire_cfs_rq_runtime(cfs_rq);
3467
3468 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3469 return;
3470
85dac906
PT
3471 /*
3472 * if we're unable to extend our runtime we resched so that the active
3473 * hierarchy can be throttled
3474 */
3475 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3476 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3477}
3478
6c16a6dc 3479static __always_inline
9dbdb155 3480void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3481{
56f570e5 3482 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3483 return;
3484
3485 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3486}
3487
85dac906
PT
3488static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3489{
56f570e5 3490 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3491}
3492
64660c86
PT
3493/* check whether cfs_rq, or any parent, is throttled */
3494static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3495{
56f570e5 3496 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3497}
3498
3499/*
3500 * Ensure that neither of the group entities corresponding to src_cpu or
3501 * dest_cpu are members of a throttled hierarchy when performing group
3502 * load-balance operations.
3503 */
3504static inline int throttled_lb_pair(struct task_group *tg,
3505 int src_cpu, int dest_cpu)
3506{
3507 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3508
3509 src_cfs_rq = tg->cfs_rq[src_cpu];
3510 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3511
3512 return throttled_hierarchy(src_cfs_rq) ||
3513 throttled_hierarchy(dest_cfs_rq);
3514}
3515
3516/* updated child weight may affect parent so we have to do this bottom up */
3517static int tg_unthrottle_up(struct task_group *tg, void *data)
3518{
3519 struct rq *rq = data;
3520 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3521
3522 cfs_rq->throttle_count--;
3523#ifdef CONFIG_SMP
3524 if (!cfs_rq->throttle_count) {
f1b17280 3525 /* adjust cfs_rq_clock_task() */
78becc27 3526 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3527 cfs_rq->throttled_clock_task;
64660c86
PT
3528 }
3529#endif
3530
3531 return 0;
3532}
3533
3534static int tg_throttle_down(struct task_group *tg, void *data)
3535{
3536 struct rq *rq = data;
3537 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3538
82958366
PT
3539 /* group is entering throttled state, stop time */
3540 if (!cfs_rq->throttle_count)
78becc27 3541 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3542 cfs_rq->throttle_count++;
3543
3544 return 0;
3545}
3546
d3d9dc33 3547static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3548{
3549 struct rq *rq = rq_of(cfs_rq);
3550 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3551 struct sched_entity *se;
3552 long task_delta, dequeue = 1;
77a4d1a1 3553 bool empty;
85dac906
PT
3554
3555 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3556
f1b17280 3557 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3558 rcu_read_lock();
3559 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3560 rcu_read_unlock();
85dac906
PT
3561
3562 task_delta = cfs_rq->h_nr_running;
3563 for_each_sched_entity(se) {
3564 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3565 /* throttled entity or throttle-on-deactivate */
3566 if (!se->on_rq)
3567 break;
3568
3569 if (dequeue)
3570 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3571 qcfs_rq->h_nr_running -= task_delta;
3572
3573 if (qcfs_rq->load.weight)
3574 dequeue = 0;
3575 }
3576
3577 if (!se)
72465447 3578 sub_nr_running(rq, task_delta);
85dac906
PT
3579
3580 cfs_rq->throttled = 1;
78becc27 3581 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3582 raw_spin_lock(&cfs_b->lock);
d49db342 3583 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3584
c06f04c7
BS
3585 /*
3586 * Add to the _head_ of the list, so that an already-started
3587 * distribute_cfs_runtime will not see us
3588 */
3589 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3590
3591 /*
3592 * If we're the first throttled task, make sure the bandwidth
3593 * timer is running.
3594 */
3595 if (empty)
3596 start_cfs_bandwidth(cfs_b);
3597
85dac906
PT
3598 raw_spin_unlock(&cfs_b->lock);
3599}
3600
029632fb 3601void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3602{
3603 struct rq *rq = rq_of(cfs_rq);
3604 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3605 struct sched_entity *se;
3606 int enqueue = 1;
3607 long task_delta;
3608
22b958d8 3609 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3610
3611 cfs_rq->throttled = 0;
1a55af2e
FW
3612
3613 update_rq_clock(rq);
3614
671fd9da 3615 raw_spin_lock(&cfs_b->lock);
78becc27 3616 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3617 list_del_rcu(&cfs_rq->throttled_list);
3618 raw_spin_unlock(&cfs_b->lock);
3619
64660c86
PT
3620 /* update hierarchical throttle state */
3621 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3622
671fd9da
PT
3623 if (!cfs_rq->load.weight)
3624 return;
3625
3626 task_delta = cfs_rq->h_nr_running;
3627 for_each_sched_entity(se) {
3628 if (se->on_rq)
3629 enqueue = 0;
3630
3631 cfs_rq = cfs_rq_of(se);
3632 if (enqueue)
3633 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3634 cfs_rq->h_nr_running += task_delta;
3635
3636 if (cfs_rq_throttled(cfs_rq))
3637 break;
3638 }
3639
3640 if (!se)
72465447 3641 add_nr_running(rq, task_delta);
671fd9da
PT
3642
3643 /* determine whether we need to wake up potentially idle cpu */
3644 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3645 resched_curr(rq);
671fd9da
PT
3646}
3647
3648static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3649 u64 remaining, u64 expires)
3650{
3651 struct cfs_rq *cfs_rq;
c06f04c7
BS
3652 u64 runtime;
3653 u64 starting_runtime = remaining;
671fd9da
PT
3654
3655 rcu_read_lock();
3656 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3657 throttled_list) {
3658 struct rq *rq = rq_of(cfs_rq);
3659
3660 raw_spin_lock(&rq->lock);
3661 if (!cfs_rq_throttled(cfs_rq))
3662 goto next;
3663
3664 runtime = -cfs_rq->runtime_remaining + 1;
3665 if (runtime > remaining)
3666 runtime = remaining;
3667 remaining -= runtime;
3668
3669 cfs_rq->runtime_remaining += runtime;
3670 cfs_rq->runtime_expires = expires;
3671
3672 /* we check whether we're throttled above */
3673 if (cfs_rq->runtime_remaining > 0)
3674 unthrottle_cfs_rq(cfs_rq);
3675
3676next:
3677 raw_spin_unlock(&rq->lock);
3678
3679 if (!remaining)
3680 break;
3681 }
3682 rcu_read_unlock();
3683
c06f04c7 3684 return starting_runtime - remaining;
671fd9da
PT
3685}
3686
58088ad0
PT
3687/*
3688 * Responsible for refilling a task_group's bandwidth and unthrottling its
3689 * cfs_rqs as appropriate. If there has been no activity within the last
3690 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3691 * used to track this state.
3692 */
3693static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3694{
671fd9da 3695 u64 runtime, runtime_expires;
51f2176d 3696 int throttled;
58088ad0 3697
58088ad0
PT
3698 /* no need to continue the timer with no bandwidth constraint */
3699 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3700 goto out_deactivate;
58088ad0 3701
671fd9da 3702 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3703 cfs_b->nr_periods += overrun;
671fd9da 3704
51f2176d
BS
3705 /*
3706 * idle depends on !throttled (for the case of a large deficit), and if
3707 * we're going inactive then everything else can be deferred
3708 */
3709 if (cfs_b->idle && !throttled)
3710 goto out_deactivate;
a9cf55b2
PT
3711
3712 __refill_cfs_bandwidth_runtime(cfs_b);
3713
671fd9da
PT
3714 if (!throttled) {
3715 /* mark as potentially idle for the upcoming period */
3716 cfs_b->idle = 1;
51f2176d 3717 return 0;
671fd9da
PT
3718 }
3719
e8da1b18
NR
3720 /* account preceding periods in which throttling occurred */
3721 cfs_b->nr_throttled += overrun;
3722
671fd9da 3723 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3724
3725 /*
c06f04c7
BS
3726 * This check is repeated as we are holding onto the new bandwidth while
3727 * we unthrottle. This can potentially race with an unthrottled group
3728 * trying to acquire new bandwidth from the global pool. This can result
3729 * in us over-using our runtime if it is all used during this loop, but
3730 * only by limited amounts in that extreme case.
671fd9da 3731 */
c06f04c7
BS
3732 while (throttled && cfs_b->runtime > 0) {
3733 runtime = cfs_b->runtime;
671fd9da
PT
3734 raw_spin_unlock(&cfs_b->lock);
3735 /* we can't nest cfs_b->lock while distributing bandwidth */
3736 runtime = distribute_cfs_runtime(cfs_b, runtime,
3737 runtime_expires);
3738 raw_spin_lock(&cfs_b->lock);
3739
3740 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3741
3742 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3743 }
58088ad0 3744
671fd9da
PT
3745 /*
3746 * While we are ensured activity in the period following an
3747 * unthrottle, this also covers the case in which the new bandwidth is
3748 * insufficient to cover the existing bandwidth deficit. (Forcing the
3749 * timer to remain active while there are any throttled entities.)
3750 */
3751 cfs_b->idle = 0;
58088ad0 3752
51f2176d
BS
3753 return 0;
3754
3755out_deactivate:
51f2176d 3756 return 1;
58088ad0 3757}
d3d9dc33 3758
d8b4986d
PT
3759/* a cfs_rq won't donate quota below this amount */
3760static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3761/* minimum remaining period time to redistribute slack quota */
3762static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3763/* how long we wait to gather additional slack before distributing */
3764static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3765
db06e78c
BS
3766/*
3767 * Are we near the end of the current quota period?
3768 *
3769 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3770 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3771 * migrate_hrtimers, base is never cleared, so we are fine.
3772 */
d8b4986d
PT
3773static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3774{
3775 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3776 u64 remaining;
3777
3778 /* if the call-back is running a quota refresh is already occurring */
3779 if (hrtimer_callback_running(refresh_timer))
3780 return 1;
3781
3782 /* is a quota refresh about to occur? */
3783 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3784 if (remaining < min_expire)
3785 return 1;
3786
3787 return 0;
3788}
3789
3790static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3791{
3792 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3793
3794 /* if there's a quota refresh soon don't bother with slack */
3795 if (runtime_refresh_within(cfs_b, min_left))
3796 return;
3797
4cfafd30
PZ
3798 hrtimer_start(&cfs_b->slack_timer,
3799 ns_to_ktime(cfs_bandwidth_slack_period),
3800 HRTIMER_MODE_REL);
d8b4986d
PT
3801}
3802
3803/* we know any runtime found here is valid as update_curr() precedes return */
3804static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3805{
3806 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3807 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3808
3809 if (slack_runtime <= 0)
3810 return;
3811
3812 raw_spin_lock(&cfs_b->lock);
3813 if (cfs_b->quota != RUNTIME_INF &&
3814 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3815 cfs_b->runtime += slack_runtime;
3816
3817 /* we are under rq->lock, defer unthrottling using a timer */
3818 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3819 !list_empty(&cfs_b->throttled_cfs_rq))
3820 start_cfs_slack_bandwidth(cfs_b);
3821 }
3822 raw_spin_unlock(&cfs_b->lock);
3823
3824 /* even if it's not valid for return we don't want to try again */
3825 cfs_rq->runtime_remaining -= slack_runtime;
3826}
3827
3828static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3829{
56f570e5
PT
3830 if (!cfs_bandwidth_used())
3831 return;
3832
fccfdc6f 3833 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3834 return;
3835
3836 __return_cfs_rq_runtime(cfs_rq);
3837}
3838
3839/*
3840 * This is done with a timer (instead of inline with bandwidth return) since
3841 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3842 */
3843static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3844{
3845 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3846 u64 expires;
3847
3848 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3849 raw_spin_lock(&cfs_b->lock);
3850 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3851 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3852 return;
db06e78c 3853 }
d8b4986d 3854
c06f04c7 3855 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3856 runtime = cfs_b->runtime;
c06f04c7 3857
d8b4986d
PT
3858 expires = cfs_b->runtime_expires;
3859 raw_spin_unlock(&cfs_b->lock);
3860
3861 if (!runtime)
3862 return;
3863
3864 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3865
3866 raw_spin_lock(&cfs_b->lock);
3867 if (expires == cfs_b->runtime_expires)
c06f04c7 3868 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3869 raw_spin_unlock(&cfs_b->lock);
3870}
3871
d3d9dc33
PT
3872/*
3873 * When a group wakes up we want to make sure that its quota is not already
3874 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3875 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3876 */
3877static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3878{
56f570e5
PT
3879 if (!cfs_bandwidth_used())
3880 return;
3881
d3d9dc33
PT
3882 /* an active group must be handled by the update_curr()->put() path */
3883 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3884 return;
3885
3886 /* ensure the group is not already throttled */
3887 if (cfs_rq_throttled(cfs_rq))
3888 return;
3889
3890 /* update runtime allocation */
3891 account_cfs_rq_runtime(cfs_rq, 0);
3892 if (cfs_rq->runtime_remaining <= 0)
3893 throttle_cfs_rq(cfs_rq);
3894}
3895
3896/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3897static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3898{
56f570e5 3899 if (!cfs_bandwidth_used())
678d5718 3900 return false;
56f570e5 3901
d3d9dc33 3902 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3903 return false;
d3d9dc33
PT
3904
3905 /*
3906 * it's possible for a throttled entity to be forced into a running
3907 * state (e.g. set_curr_task), in this case we're finished.
3908 */
3909 if (cfs_rq_throttled(cfs_rq))
678d5718 3910 return true;
d3d9dc33
PT
3911
3912 throttle_cfs_rq(cfs_rq);
678d5718 3913 return true;
d3d9dc33 3914}
029632fb 3915
029632fb
PZ
3916static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3917{
3918 struct cfs_bandwidth *cfs_b =
3919 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3920
029632fb
PZ
3921 do_sched_cfs_slack_timer(cfs_b);
3922
3923 return HRTIMER_NORESTART;
3924}
3925
3926static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3927{
3928 struct cfs_bandwidth *cfs_b =
3929 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3930 int overrun;
3931 int idle = 0;
3932
51f2176d 3933 raw_spin_lock(&cfs_b->lock);
029632fb 3934 for (;;) {
77a4d1a1 3935 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3936 if (!overrun)
3937 break;
3938
3939 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3940 }
4cfafd30
PZ
3941 if (idle)
3942 cfs_b->period_active = 0;
51f2176d 3943 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3944
3945 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3946}
3947
3948void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3949{
3950 raw_spin_lock_init(&cfs_b->lock);
3951 cfs_b->runtime = 0;
3952 cfs_b->quota = RUNTIME_INF;
3953 cfs_b->period = ns_to_ktime(default_cfs_period());
3954
3955 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3956 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3957 cfs_b->period_timer.function = sched_cfs_period_timer;
3958 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3959 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3960}
3961
3962static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3963{
3964 cfs_rq->runtime_enabled = 0;
3965 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3966}
3967
77a4d1a1 3968void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3969{
4cfafd30 3970 lockdep_assert_held(&cfs_b->lock);
029632fb 3971
4cfafd30
PZ
3972 if (!cfs_b->period_active) {
3973 cfs_b->period_active = 1;
3974 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3975 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3976 }
029632fb
PZ
3977}
3978
3979static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3980{
7f1a169b
TH
3981 /* init_cfs_bandwidth() was not called */
3982 if (!cfs_b->throttled_cfs_rq.next)
3983 return;
3984
029632fb
PZ
3985 hrtimer_cancel(&cfs_b->period_timer);
3986 hrtimer_cancel(&cfs_b->slack_timer);
3987}
3988
0e59bdae
KT
3989static void __maybe_unused update_runtime_enabled(struct rq *rq)
3990{
3991 struct cfs_rq *cfs_rq;
3992
3993 for_each_leaf_cfs_rq(rq, cfs_rq) {
3994 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3995
3996 raw_spin_lock(&cfs_b->lock);
3997 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3998 raw_spin_unlock(&cfs_b->lock);
3999 }
4000}
4001
38dc3348 4002static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4003{
4004 struct cfs_rq *cfs_rq;
4005
4006 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4007 if (!cfs_rq->runtime_enabled)
4008 continue;
4009
4010 /*
4011 * clock_task is not advancing so we just need to make sure
4012 * there's some valid quota amount
4013 */
51f2176d 4014 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4015 /*
4016 * Offline rq is schedulable till cpu is completely disabled
4017 * in take_cpu_down(), so we prevent new cfs throttling here.
4018 */
4019 cfs_rq->runtime_enabled = 0;
4020
029632fb
PZ
4021 if (cfs_rq_throttled(cfs_rq))
4022 unthrottle_cfs_rq(cfs_rq);
4023 }
4024}
4025
4026#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4027static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4028{
78becc27 4029 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4030}
4031
9dbdb155 4032static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4033static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4034static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4035static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4036
4037static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4038{
4039 return 0;
4040}
64660c86
PT
4041
4042static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4043{
4044 return 0;
4045}
4046
4047static inline int throttled_lb_pair(struct task_group *tg,
4048 int src_cpu, int dest_cpu)
4049{
4050 return 0;
4051}
029632fb
PZ
4052
4053void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4054
4055#ifdef CONFIG_FAIR_GROUP_SCHED
4056static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4057#endif
4058
029632fb
PZ
4059static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4060{
4061 return NULL;
4062}
4063static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4064static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4065static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4066
4067#endif /* CONFIG_CFS_BANDWIDTH */
4068
bf0f6f24
IM
4069/**************************************************
4070 * CFS operations on tasks:
4071 */
4072
8f4d37ec
PZ
4073#ifdef CONFIG_SCHED_HRTICK
4074static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4075{
8f4d37ec
PZ
4076 struct sched_entity *se = &p->se;
4077 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4078
4079 WARN_ON(task_rq(p) != rq);
4080
b39e66ea 4081 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4082 u64 slice = sched_slice(cfs_rq, se);
4083 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4084 s64 delta = slice - ran;
4085
4086 if (delta < 0) {
4087 if (rq->curr == p)
8875125e 4088 resched_curr(rq);
8f4d37ec
PZ
4089 return;
4090 }
31656519 4091 hrtick_start(rq, delta);
8f4d37ec
PZ
4092 }
4093}
a4c2f00f
PZ
4094
4095/*
4096 * called from enqueue/dequeue and updates the hrtick when the
4097 * current task is from our class and nr_running is low enough
4098 * to matter.
4099 */
4100static void hrtick_update(struct rq *rq)
4101{
4102 struct task_struct *curr = rq->curr;
4103
b39e66ea 4104 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4105 return;
4106
4107 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4108 hrtick_start_fair(rq, curr);
4109}
55e12e5e 4110#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4111static inline void
4112hrtick_start_fair(struct rq *rq, struct task_struct *p)
4113{
4114}
a4c2f00f
PZ
4115
4116static inline void hrtick_update(struct rq *rq)
4117{
4118}
8f4d37ec
PZ
4119#endif
4120
bf0f6f24
IM
4121/*
4122 * The enqueue_task method is called before nr_running is
4123 * increased. Here we update the fair scheduling stats and
4124 * then put the task into the rbtree:
4125 */
ea87bb78 4126static void
371fd7e7 4127enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4128{
4129 struct cfs_rq *cfs_rq;
62fb1851 4130 struct sched_entity *se = &p->se;
bf0f6f24
IM
4131
4132 for_each_sched_entity(se) {
62fb1851 4133 if (se->on_rq)
bf0f6f24
IM
4134 break;
4135 cfs_rq = cfs_rq_of(se);
88ec22d3 4136 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4137
4138 /*
4139 * end evaluation on encountering a throttled cfs_rq
4140 *
4141 * note: in the case of encountering a throttled cfs_rq we will
4142 * post the final h_nr_running increment below.
4143 */
4144 if (cfs_rq_throttled(cfs_rq))
4145 break;
953bfcd1 4146 cfs_rq->h_nr_running++;
85dac906 4147
88ec22d3 4148 flags = ENQUEUE_WAKEUP;
bf0f6f24 4149 }
8f4d37ec 4150
2069dd75 4151 for_each_sched_entity(se) {
0f317143 4152 cfs_rq = cfs_rq_of(se);
953bfcd1 4153 cfs_rq->h_nr_running++;
2069dd75 4154
85dac906
PT
4155 if (cfs_rq_throttled(cfs_rq))
4156 break;
4157
9d89c257 4158 update_load_avg(se, 1);
17bc14b7 4159 update_cfs_shares(cfs_rq);
2069dd75
PZ
4160 }
4161
cd126afe 4162 if (!se)
72465447 4163 add_nr_running(rq, 1);
cd126afe 4164
a4c2f00f 4165 hrtick_update(rq);
bf0f6f24
IM
4166}
4167
2f36825b
VP
4168static void set_next_buddy(struct sched_entity *se);
4169
bf0f6f24
IM
4170/*
4171 * The dequeue_task method is called before nr_running is
4172 * decreased. We remove the task from the rbtree and
4173 * update the fair scheduling stats:
4174 */
371fd7e7 4175static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4176{
4177 struct cfs_rq *cfs_rq;
62fb1851 4178 struct sched_entity *se = &p->se;
2f36825b 4179 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4180
4181 for_each_sched_entity(se) {
4182 cfs_rq = cfs_rq_of(se);
371fd7e7 4183 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4184
4185 /*
4186 * end evaluation on encountering a throttled cfs_rq
4187 *
4188 * note: in the case of encountering a throttled cfs_rq we will
4189 * post the final h_nr_running decrement below.
4190 */
4191 if (cfs_rq_throttled(cfs_rq))
4192 break;
953bfcd1 4193 cfs_rq->h_nr_running--;
2069dd75 4194
bf0f6f24 4195 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4196 if (cfs_rq->load.weight) {
4197 /*
4198 * Bias pick_next to pick a task from this cfs_rq, as
4199 * p is sleeping when it is within its sched_slice.
4200 */
4201 if (task_sleep && parent_entity(se))
4202 set_next_buddy(parent_entity(se));
9598c82d
PT
4203
4204 /* avoid re-evaluating load for this entity */
4205 se = parent_entity(se);
bf0f6f24 4206 break;
2f36825b 4207 }
371fd7e7 4208 flags |= DEQUEUE_SLEEP;
bf0f6f24 4209 }
8f4d37ec 4210
2069dd75 4211 for_each_sched_entity(se) {
0f317143 4212 cfs_rq = cfs_rq_of(se);
953bfcd1 4213 cfs_rq->h_nr_running--;
2069dd75 4214
85dac906
PT
4215 if (cfs_rq_throttled(cfs_rq))
4216 break;
4217
9d89c257 4218 update_load_avg(se, 1);
17bc14b7 4219 update_cfs_shares(cfs_rq);
2069dd75
PZ
4220 }
4221
cd126afe 4222 if (!se)
72465447 4223 sub_nr_running(rq, 1);
cd126afe 4224
a4c2f00f 4225 hrtick_update(rq);
bf0f6f24
IM
4226}
4227
e7693a36 4228#ifdef CONFIG_SMP
3289bdb4
PZ
4229
4230/*
4231 * per rq 'load' arrray crap; XXX kill this.
4232 */
4233
4234/*
4235 * The exact cpuload at various idx values, calculated at every tick would be
4236 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4237 *
4238 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4239 * on nth tick when cpu may be busy, then we have:
4240 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4241 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4242 *
4243 * decay_load_missed() below does efficient calculation of
4244 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4245 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4246 *
4247 * The calculation is approximated on a 128 point scale.
4248 * degrade_zero_ticks is the number of ticks after which load at any
4249 * particular idx is approximated to be zero.
4250 * degrade_factor is a precomputed table, a row for each load idx.
4251 * Each column corresponds to degradation factor for a power of two ticks,
4252 * based on 128 point scale.
4253 * Example:
4254 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4255 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4256 *
4257 * With this power of 2 load factors, we can degrade the load n times
4258 * by looking at 1 bits in n and doing as many mult/shift instead of
4259 * n mult/shifts needed by the exact degradation.
4260 */
4261#define DEGRADE_SHIFT 7
4262static const unsigned char
4263 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4264static const unsigned char
4265 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4266 {0, 0, 0, 0, 0, 0, 0, 0},
4267 {64, 32, 8, 0, 0, 0, 0, 0},
4268 {96, 72, 40, 12, 1, 0, 0},
4269 {112, 98, 75, 43, 15, 1, 0},
4270 {120, 112, 98, 76, 45, 16, 2} };
4271
4272/*
4273 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4274 * would be when CPU is idle and so we just decay the old load without
4275 * adding any new load.
4276 */
4277static unsigned long
4278decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4279{
4280 int j = 0;
4281
4282 if (!missed_updates)
4283 return load;
4284
4285 if (missed_updates >= degrade_zero_ticks[idx])
4286 return 0;
4287
4288 if (idx == 1)
4289 return load >> missed_updates;
4290
4291 while (missed_updates) {
4292 if (missed_updates % 2)
4293 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4294
4295 missed_updates >>= 1;
4296 j++;
4297 }
4298 return load;
4299}
4300
4301/*
4302 * Update rq->cpu_load[] statistics. This function is usually called every
4303 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4304 * every tick. We fix it up based on jiffies.
4305 */
4306static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4307 unsigned long pending_updates)
4308{
4309 int i, scale;
4310
4311 this_rq->nr_load_updates++;
4312
4313 /* Update our load: */
4314 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4315 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4316 unsigned long old_load, new_load;
4317
4318 /* scale is effectively 1 << i now, and >> i divides by scale */
4319
4320 old_load = this_rq->cpu_load[i];
4321 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4322 new_load = this_load;
4323 /*
4324 * Round up the averaging division if load is increasing. This
4325 * prevents us from getting stuck on 9 if the load is 10, for
4326 * example.
4327 */
4328 if (new_load > old_load)
4329 new_load += scale - 1;
4330
4331 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4332 }
4333
4334 sched_avg_update(this_rq);
4335}
4336
7ea241af
YD
4337/* Used instead of source_load when we know the type == 0 */
4338static unsigned long weighted_cpuload(const int cpu)
4339{
4340 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4341}
4342
3289bdb4
PZ
4343#ifdef CONFIG_NO_HZ_COMMON
4344/*
4345 * There is no sane way to deal with nohz on smp when using jiffies because the
4346 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4347 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4348 *
4349 * Therefore we cannot use the delta approach from the regular tick since that
4350 * would seriously skew the load calculation. However we'll make do for those
4351 * updates happening while idle (nohz_idle_balance) or coming out of idle
4352 * (tick_nohz_idle_exit).
4353 *
4354 * This means we might still be one tick off for nohz periods.
4355 */
4356
4357/*
4358 * Called from nohz_idle_balance() to update the load ratings before doing the
4359 * idle balance.
4360 */
4361static void update_idle_cpu_load(struct rq *this_rq)
4362{
316c1608 4363 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4364 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4365 unsigned long pending_updates;
4366
4367 /*
4368 * bail if there's load or we're actually up-to-date.
4369 */
4370 if (load || curr_jiffies == this_rq->last_load_update_tick)
4371 return;
4372
4373 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4374 this_rq->last_load_update_tick = curr_jiffies;
4375
4376 __update_cpu_load(this_rq, load, pending_updates);
4377}
4378
4379/*
4380 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4381 */
4382void update_cpu_load_nohz(void)
4383{
4384 struct rq *this_rq = this_rq();
316c1608 4385 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4386 unsigned long pending_updates;
4387
4388 if (curr_jiffies == this_rq->last_load_update_tick)
4389 return;
4390
4391 raw_spin_lock(&this_rq->lock);
4392 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4393 if (pending_updates) {
4394 this_rq->last_load_update_tick = curr_jiffies;
4395 /*
4396 * We were idle, this means load 0, the current load might be
4397 * !0 due to remote wakeups and the sort.
4398 */
4399 __update_cpu_load(this_rq, 0, pending_updates);
4400 }
4401 raw_spin_unlock(&this_rq->lock);
4402}
4403#endif /* CONFIG_NO_HZ */
4404
4405/*
4406 * Called from scheduler_tick()
4407 */
4408void update_cpu_load_active(struct rq *this_rq)
4409{
7ea241af 4410 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4411 /*
4412 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4413 */
4414 this_rq->last_load_update_tick = jiffies;
4415 __update_cpu_load(this_rq, load, 1);
4416}
4417
029632fb
PZ
4418/*
4419 * Return a low guess at the load of a migration-source cpu weighted
4420 * according to the scheduling class and "nice" value.
4421 *
4422 * We want to under-estimate the load of migration sources, to
4423 * balance conservatively.
4424 */
4425static unsigned long source_load(int cpu, int type)
4426{
4427 struct rq *rq = cpu_rq(cpu);
4428 unsigned long total = weighted_cpuload(cpu);
4429
4430 if (type == 0 || !sched_feat(LB_BIAS))
4431 return total;
4432
4433 return min(rq->cpu_load[type-1], total);
4434}
4435
4436/*
4437 * Return a high guess at the load of a migration-target cpu weighted
4438 * according to the scheduling class and "nice" value.
4439 */
4440static unsigned long target_load(int cpu, int type)
4441{
4442 struct rq *rq = cpu_rq(cpu);
4443 unsigned long total = weighted_cpuload(cpu);
4444
4445 if (type == 0 || !sched_feat(LB_BIAS))
4446 return total;
4447
4448 return max(rq->cpu_load[type-1], total);
4449}
4450
ced549fa 4451static unsigned long capacity_of(int cpu)
029632fb 4452{
ced549fa 4453 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4454}
4455
ca6d75e6
VG
4456static unsigned long capacity_orig_of(int cpu)
4457{
4458 return cpu_rq(cpu)->cpu_capacity_orig;
4459}
4460
029632fb
PZ
4461static unsigned long cpu_avg_load_per_task(int cpu)
4462{
4463 struct rq *rq = cpu_rq(cpu);
316c1608 4464 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4465 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4466
4467 if (nr_running)
b92486cb 4468 return load_avg / nr_running;
029632fb
PZ
4469
4470 return 0;
4471}
4472
62470419
MW
4473static void record_wakee(struct task_struct *p)
4474{
4475 /*
4476 * Rough decay (wiping) for cost saving, don't worry
4477 * about the boundary, really active task won't care
4478 * about the loss.
4479 */
2538d960 4480 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4481 current->wakee_flips >>= 1;
62470419
MW
4482 current->wakee_flip_decay_ts = jiffies;
4483 }
4484
4485 if (current->last_wakee != p) {
4486 current->last_wakee = p;
4487 current->wakee_flips++;
4488 }
4489}
098fb9db 4490
74f8e4b2 4491static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4492{
4493 struct sched_entity *se = &p->se;
4494 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4495 u64 min_vruntime;
4496
4497#ifndef CONFIG_64BIT
4498 u64 min_vruntime_copy;
88ec22d3 4499
3fe1698b
PZ
4500 do {
4501 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4502 smp_rmb();
4503 min_vruntime = cfs_rq->min_vruntime;
4504 } while (min_vruntime != min_vruntime_copy);
4505#else
4506 min_vruntime = cfs_rq->min_vruntime;
4507#endif
88ec22d3 4508
3fe1698b 4509 se->vruntime -= min_vruntime;
62470419 4510 record_wakee(p);
88ec22d3
PZ
4511}
4512
bb3469ac 4513#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4514/*
4515 * effective_load() calculates the load change as seen from the root_task_group
4516 *
4517 * Adding load to a group doesn't make a group heavier, but can cause movement
4518 * of group shares between cpus. Assuming the shares were perfectly aligned one
4519 * can calculate the shift in shares.
cf5f0acf
PZ
4520 *
4521 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4522 * on this @cpu and results in a total addition (subtraction) of @wg to the
4523 * total group weight.
4524 *
4525 * Given a runqueue weight distribution (rw_i) we can compute a shares
4526 * distribution (s_i) using:
4527 *
4528 * s_i = rw_i / \Sum rw_j (1)
4529 *
4530 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4531 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4532 * shares distribution (s_i):
4533 *
4534 * rw_i = { 2, 4, 1, 0 }
4535 * s_i = { 2/7, 4/7, 1/7, 0 }
4536 *
4537 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4538 * task used to run on and the CPU the waker is running on), we need to
4539 * compute the effect of waking a task on either CPU and, in case of a sync
4540 * wakeup, compute the effect of the current task going to sleep.
4541 *
4542 * So for a change of @wl to the local @cpu with an overall group weight change
4543 * of @wl we can compute the new shares distribution (s'_i) using:
4544 *
4545 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4546 *
4547 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4548 * differences in waking a task to CPU 0. The additional task changes the
4549 * weight and shares distributions like:
4550 *
4551 * rw'_i = { 3, 4, 1, 0 }
4552 * s'_i = { 3/8, 4/8, 1/8, 0 }
4553 *
4554 * We can then compute the difference in effective weight by using:
4555 *
4556 * dw_i = S * (s'_i - s_i) (3)
4557 *
4558 * Where 'S' is the group weight as seen by its parent.
4559 *
4560 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4561 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4562 * 4/7) times the weight of the group.
f5bfb7d9 4563 */
2069dd75 4564static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4565{
4be9daaa 4566 struct sched_entity *se = tg->se[cpu];
f1d239f7 4567
9722c2da 4568 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4569 return wl;
4570
4be9daaa 4571 for_each_sched_entity(se) {
cf5f0acf 4572 long w, W;
4be9daaa 4573
977dda7c 4574 tg = se->my_q->tg;
bb3469ac 4575
cf5f0acf
PZ
4576 /*
4577 * W = @wg + \Sum rw_j
4578 */
4579 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4580
cf5f0acf
PZ
4581 /*
4582 * w = rw_i + @wl
4583 */
7ea241af 4584 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4585
cf5f0acf
PZ
4586 /*
4587 * wl = S * s'_i; see (2)
4588 */
4589 if (W > 0 && w < W)
32a8df4e 4590 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4591 else
4592 wl = tg->shares;
940959e9 4593
cf5f0acf
PZ
4594 /*
4595 * Per the above, wl is the new se->load.weight value; since
4596 * those are clipped to [MIN_SHARES, ...) do so now. See
4597 * calc_cfs_shares().
4598 */
977dda7c
PT
4599 if (wl < MIN_SHARES)
4600 wl = MIN_SHARES;
cf5f0acf
PZ
4601
4602 /*
4603 * wl = dw_i = S * (s'_i - s_i); see (3)
4604 */
9d89c257 4605 wl -= se->avg.load_avg;
cf5f0acf
PZ
4606
4607 /*
4608 * Recursively apply this logic to all parent groups to compute
4609 * the final effective load change on the root group. Since
4610 * only the @tg group gets extra weight, all parent groups can
4611 * only redistribute existing shares. @wl is the shift in shares
4612 * resulting from this level per the above.
4613 */
4be9daaa 4614 wg = 0;
4be9daaa 4615 }
bb3469ac 4616
4be9daaa 4617 return wl;
bb3469ac
PZ
4618}
4619#else
4be9daaa 4620
58d081b5 4621static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4622{
83378269 4623 return wl;
bb3469ac 4624}
4be9daaa 4625
bb3469ac
PZ
4626#endif
4627
63b0e9ed
MG
4628/*
4629 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4630 * A waker of many should wake a different task than the one last awakened
4631 * at a frequency roughly N times higher than one of its wakees. In order
4632 * to determine whether we should let the load spread vs consolodating to
4633 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4634 * partner, and a factor of lls_size higher frequency in the other. With
4635 * both conditions met, we can be relatively sure that the relationship is
4636 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4637 * being client/server, worker/dispatcher, interrupt source or whatever is
4638 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4639 */
62470419
MW
4640static int wake_wide(struct task_struct *p)
4641{
63b0e9ed
MG
4642 unsigned int master = current->wakee_flips;
4643 unsigned int slave = p->wakee_flips;
7d9ffa89 4644 int factor = this_cpu_read(sd_llc_size);
62470419 4645
63b0e9ed
MG
4646 if (master < slave)
4647 swap(master, slave);
4648 if (slave < factor || master < slave * factor)
4649 return 0;
4650 return 1;
62470419
MW
4651}
4652
c88d5910 4653static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4654{
e37b6a7b 4655 s64 this_load, load;
bd61c98f 4656 s64 this_eff_load, prev_eff_load;
c88d5910 4657 int idx, this_cpu, prev_cpu;
c88d5910 4658 struct task_group *tg;
83378269 4659 unsigned long weight;
b3137bc8 4660 int balanced;
098fb9db 4661
c88d5910
PZ
4662 idx = sd->wake_idx;
4663 this_cpu = smp_processor_id();
4664 prev_cpu = task_cpu(p);
4665 load = source_load(prev_cpu, idx);
4666 this_load = target_load(this_cpu, idx);
098fb9db 4667
b3137bc8
MG
4668 /*
4669 * If sync wakeup then subtract the (maximum possible)
4670 * effect of the currently running task from the load
4671 * of the current CPU:
4672 */
83378269
PZ
4673 if (sync) {
4674 tg = task_group(current);
9d89c257 4675 weight = current->se.avg.load_avg;
83378269 4676
c88d5910 4677 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4678 load += effective_load(tg, prev_cpu, 0, -weight);
4679 }
b3137bc8 4680
83378269 4681 tg = task_group(p);
9d89c257 4682 weight = p->se.avg.load_avg;
b3137bc8 4683
71a29aa7
PZ
4684 /*
4685 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4686 * due to the sync cause above having dropped this_load to 0, we'll
4687 * always have an imbalance, but there's really nothing you can do
4688 * about that, so that's good too.
71a29aa7
PZ
4689 *
4690 * Otherwise check if either cpus are near enough in load to allow this
4691 * task to be woken on this_cpu.
4692 */
bd61c98f
VG
4693 this_eff_load = 100;
4694 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4695
bd61c98f
VG
4696 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4697 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4698
bd61c98f 4699 if (this_load > 0) {
e51fd5e2
PZ
4700 this_eff_load *= this_load +
4701 effective_load(tg, this_cpu, weight, weight);
4702
e51fd5e2 4703 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4704 }
e51fd5e2 4705
bd61c98f 4706 balanced = this_eff_load <= prev_eff_load;
098fb9db 4707
41acab88 4708 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4709
05bfb65f
VG
4710 if (!balanced)
4711 return 0;
098fb9db 4712
05bfb65f
VG
4713 schedstat_inc(sd, ttwu_move_affine);
4714 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4715
4716 return 1;
098fb9db
IM
4717}
4718
aaee1203
PZ
4719/*
4720 * find_idlest_group finds and returns the least busy CPU group within the
4721 * domain.
4722 */
4723static struct sched_group *
78e7ed53 4724find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4725 int this_cpu, int sd_flag)
e7693a36 4726{
b3bd3de6 4727 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4728 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4729 int load_idx = sd->forkexec_idx;
aaee1203 4730 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4731
c44f2a02
VG
4732 if (sd_flag & SD_BALANCE_WAKE)
4733 load_idx = sd->wake_idx;
4734
aaee1203
PZ
4735 do {
4736 unsigned long load, avg_load;
4737 int local_group;
4738 int i;
e7693a36 4739
aaee1203
PZ
4740 /* Skip over this group if it has no CPUs allowed */
4741 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4742 tsk_cpus_allowed(p)))
aaee1203
PZ
4743 continue;
4744
4745 local_group = cpumask_test_cpu(this_cpu,
4746 sched_group_cpus(group));
4747
4748 /* Tally up the load of all CPUs in the group */
4749 avg_load = 0;
4750
4751 for_each_cpu(i, sched_group_cpus(group)) {
4752 /* Bias balancing toward cpus of our domain */
4753 if (local_group)
4754 load = source_load(i, load_idx);
4755 else
4756 load = target_load(i, load_idx);
4757
4758 avg_load += load;
4759 }
4760
63b2ca30 4761 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4762 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4763
4764 if (local_group) {
4765 this_load = avg_load;
aaee1203
PZ
4766 } else if (avg_load < min_load) {
4767 min_load = avg_load;
4768 idlest = group;
4769 }
4770 } while (group = group->next, group != sd->groups);
4771
4772 if (!idlest || 100*this_load < imbalance*min_load)
4773 return NULL;
4774 return idlest;
4775}
4776
4777/*
4778 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4779 */
4780static int
4781find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4782{
4783 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4784 unsigned int min_exit_latency = UINT_MAX;
4785 u64 latest_idle_timestamp = 0;
4786 int least_loaded_cpu = this_cpu;
4787 int shallowest_idle_cpu = -1;
aaee1203
PZ
4788 int i;
4789
4790 /* Traverse only the allowed CPUs */
fa17b507 4791 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4792 if (idle_cpu(i)) {
4793 struct rq *rq = cpu_rq(i);
4794 struct cpuidle_state *idle = idle_get_state(rq);
4795 if (idle && idle->exit_latency < min_exit_latency) {
4796 /*
4797 * We give priority to a CPU whose idle state
4798 * has the smallest exit latency irrespective
4799 * of any idle timestamp.
4800 */
4801 min_exit_latency = idle->exit_latency;
4802 latest_idle_timestamp = rq->idle_stamp;
4803 shallowest_idle_cpu = i;
4804 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4805 rq->idle_stamp > latest_idle_timestamp) {
4806 /*
4807 * If equal or no active idle state, then
4808 * the most recently idled CPU might have
4809 * a warmer cache.
4810 */
4811 latest_idle_timestamp = rq->idle_stamp;
4812 shallowest_idle_cpu = i;
4813 }
9f96742a 4814 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4815 load = weighted_cpuload(i);
4816 if (load < min_load || (load == min_load && i == this_cpu)) {
4817 min_load = load;
4818 least_loaded_cpu = i;
4819 }
e7693a36
GH
4820 }
4821 }
4822
83a0a96a 4823 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4824}
e7693a36 4825
a50bde51
PZ
4826/*
4827 * Try and locate an idle CPU in the sched_domain.
4828 */
99bd5e2f 4829static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4830{
99bd5e2f 4831 struct sched_domain *sd;
37407ea7 4832 struct sched_group *sg;
e0a79f52 4833 int i = task_cpu(p);
a50bde51 4834
e0a79f52
MG
4835 if (idle_cpu(target))
4836 return target;
99bd5e2f
SS
4837
4838 /*
e0a79f52 4839 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4840 */
e0a79f52
MG
4841 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4842 return i;
a50bde51
PZ
4843
4844 /*
37407ea7 4845 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4846 */
518cd623 4847 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4848 for_each_lower_domain(sd) {
37407ea7
LT
4849 sg = sd->groups;
4850 do {
4851 if (!cpumask_intersects(sched_group_cpus(sg),
4852 tsk_cpus_allowed(p)))
4853 goto next;
4854
4855 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4856 if (i == target || !idle_cpu(i))
37407ea7
LT
4857 goto next;
4858 }
970e1789 4859
37407ea7
LT
4860 target = cpumask_first_and(sched_group_cpus(sg),
4861 tsk_cpus_allowed(p));
4862 goto done;
4863next:
4864 sg = sg->next;
4865 } while (sg != sd->groups);
4866 }
4867done:
a50bde51
PZ
4868 return target;
4869}
231678b7 4870
8bb5b00c 4871/*
9e91d61d 4872 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 4873 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
4874 * compare the utilization with the capacity of the CPU that is available for
4875 * CFS task (ie cpu_capacity).
231678b7
DE
4876 *
4877 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4878 * recent utilization of currently non-runnable tasks on a CPU. It represents
4879 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4880 * capacity_orig is the cpu_capacity available at the highest frequency
4881 * (arch_scale_freq_capacity()).
4882 * The utilization of a CPU converges towards a sum equal to or less than the
4883 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4884 * the running time on this CPU scaled by capacity_curr.
4885 *
4886 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4887 * higher than capacity_orig because of unfortunate rounding in
4888 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
4889 * the average stabilizes with the new running time. We need to check that the
4890 * utilization stays within the range of [0..capacity_orig] and cap it if
4891 * necessary. Without utilization capping, a group could be seen as overloaded
4892 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
4893 * available capacity. We allow utilization to overshoot capacity_curr (but not
4894 * capacity_orig) as it useful for predicting the capacity required after task
4895 * migrations (scheduler-driven DVFS).
8bb5b00c 4896 */
9e91d61d 4897static int cpu_util(int cpu)
8bb5b00c 4898{
9e91d61d 4899 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4900 unsigned long capacity = capacity_orig_of(cpu);
4901
231678b7 4902 return (util >= capacity) ? capacity : util;
8bb5b00c 4903}
a50bde51 4904
aaee1203 4905/*
de91b9cb
MR
4906 * select_task_rq_fair: Select target runqueue for the waking task in domains
4907 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4908 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4909 *
de91b9cb
MR
4910 * Balances load by selecting the idlest cpu in the idlest group, or under
4911 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4912 *
de91b9cb 4913 * Returns the target cpu number.
aaee1203
PZ
4914 *
4915 * preempt must be disabled.
4916 */
0017d735 4917static int
ac66f547 4918select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4919{
29cd8bae 4920 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4921 int cpu = smp_processor_id();
63b0e9ed 4922 int new_cpu = prev_cpu;
99bd5e2f 4923 int want_affine = 0;
5158f4e4 4924 int sync = wake_flags & WF_SYNC;
c88d5910 4925
a8edd075 4926 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4927 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4928
dce840a0 4929 rcu_read_lock();
aaee1203 4930 for_each_domain(cpu, tmp) {
e4f42888 4931 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4932 break;
e4f42888 4933
fe3bcfe1 4934 /*
99bd5e2f
SS
4935 * If both cpu and prev_cpu are part of this domain,
4936 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4937 */
99bd5e2f
SS
4938 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4939 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4940 affine_sd = tmp;
29cd8bae 4941 break;
f03542a7 4942 }
29cd8bae 4943
f03542a7 4944 if (tmp->flags & sd_flag)
29cd8bae 4945 sd = tmp;
63b0e9ed
MG
4946 else if (!want_affine)
4947 break;
29cd8bae
PZ
4948 }
4949
63b0e9ed
MG
4950 if (affine_sd) {
4951 sd = NULL; /* Prefer wake_affine over balance flags */
4952 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4953 new_cpu = cpu;
8b911acd 4954 }
e7693a36 4955
63b0e9ed
MG
4956 if (!sd) {
4957 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4958 new_cpu = select_idle_sibling(p, new_cpu);
4959
4960 } else while (sd) {
aaee1203 4961 struct sched_group *group;
c88d5910 4962 int weight;
098fb9db 4963
0763a660 4964 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4965 sd = sd->child;
4966 continue;
4967 }
098fb9db 4968
c44f2a02 4969 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4970 if (!group) {
4971 sd = sd->child;
4972 continue;
4973 }
4ae7d5ce 4974
d7c33c49 4975 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4976 if (new_cpu == -1 || new_cpu == cpu) {
4977 /* Now try balancing at a lower domain level of cpu */
4978 sd = sd->child;
4979 continue;
e7693a36 4980 }
aaee1203
PZ
4981
4982 /* Now try balancing at a lower domain level of new_cpu */
4983 cpu = new_cpu;
669c55e9 4984 weight = sd->span_weight;
aaee1203
PZ
4985 sd = NULL;
4986 for_each_domain(cpu, tmp) {
669c55e9 4987 if (weight <= tmp->span_weight)
aaee1203 4988 break;
0763a660 4989 if (tmp->flags & sd_flag)
aaee1203
PZ
4990 sd = tmp;
4991 }
4992 /* while loop will break here if sd == NULL */
e7693a36 4993 }
dce840a0 4994 rcu_read_unlock();
e7693a36 4995
c88d5910 4996 return new_cpu;
e7693a36 4997}
0a74bef8
PT
4998
4999/*
5000 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5001 * cfs_rq_of(p) references at time of call are still valid and identify the
5002 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5003 * other assumptions, including the state of rq->lock, should be made.
5004 */
9d89c257 5005static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 5006{
aff3e498 5007 /*
9d89c257
YD
5008 * We are supposed to update the task to "current" time, then its up to date
5009 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5010 * what current time is, so simply throw away the out-of-date time. This
5011 * will result in the wakee task is less decayed, but giving the wakee more
5012 * load sounds not bad.
aff3e498 5013 */
9d89c257
YD
5014 remove_entity_load_avg(&p->se);
5015
5016 /* Tell new CPU we are migrated */
5017 p->se.avg.last_update_time = 0;
3944a927
BS
5018
5019 /* We have migrated, no longer consider this task hot */
9d89c257 5020 p->se.exec_start = 0;
0a74bef8 5021}
12695578
YD
5022
5023static void task_dead_fair(struct task_struct *p)
5024{
5025 remove_entity_load_avg(&p->se);
5026}
e7693a36
GH
5027#endif /* CONFIG_SMP */
5028
e52fb7c0
PZ
5029static unsigned long
5030wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5031{
5032 unsigned long gran = sysctl_sched_wakeup_granularity;
5033
5034 /*
e52fb7c0
PZ
5035 * Since its curr running now, convert the gran from real-time
5036 * to virtual-time in his units.
13814d42
MG
5037 *
5038 * By using 'se' instead of 'curr' we penalize light tasks, so
5039 * they get preempted easier. That is, if 'se' < 'curr' then
5040 * the resulting gran will be larger, therefore penalizing the
5041 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5042 * be smaller, again penalizing the lighter task.
5043 *
5044 * This is especially important for buddies when the leftmost
5045 * task is higher priority than the buddy.
0bbd3336 5046 */
f4ad9bd2 5047 return calc_delta_fair(gran, se);
0bbd3336
PZ
5048}
5049
464b7527
PZ
5050/*
5051 * Should 'se' preempt 'curr'.
5052 *
5053 * |s1
5054 * |s2
5055 * |s3
5056 * g
5057 * |<--->|c
5058 *
5059 * w(c, s1) = -1
5060 * w(c, s2) = 0
5061 * w(c, s3) = 1
5062 *
5063 */
5064static int
5065wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5066{
5067 s64 gran, vdiff = curr->vruntime - se->vruntime;
5068
5069 if (vdiff <= 0)
5070 return -1;
5071
e52fb7c0 5072 gran = wakeup_gran(curr, se);
464b7527
PZ
5073 if (vdiff > gran)
5074 return 1;
5075
5076 return 0;
5077}
5078
02479099
PZ
5079static void set_last_buddy(struct sched_entity *se)
5080{
69c80f3e
VP
5081 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5082 return;
5083
5084 for_each_sched_entity(se)
5085 cfs_rq_of(se)->last = se;
02479099
PZ
5086}
5087
5088static void set_next_buddy(struct sched_entity *se)
5089{
69c80f3e
VP
5090 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5091 return;
5092
5093 for_each_sched_entity(se)
5094 cfs_rq_of(se)->next = se;
02479099
PZ
5095}
5096
ac53db59
RR
5097static void set_skip_buddy(struct sched_entity *se)
5098{
69c80f3e
VP
5099 for_each_sched_entity(se)
5100 cfs_rq_of(se)->skip = se;
ac53db59
RR
5101}
5102
bf0f6f24
IM
5103/*
5104 * Preempt the current task with a newly woken task if needed:
5105 */
5a9b86f6 5106static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5107{
5108 struct task_struct *curr = rq->curr;
8651a86c 5109 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5110 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5111 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5112 int next_buddy_marked = 0;
bf0f6f24 5113
4ae7d5ce
IM
5114 if (unlikely(se == pse))
5115 return;
5116
5238cdd3 5117 /*
163122b7 5118 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5119 * unconditionally check_prempt_curr() after an enqueue (which may have
5120 * lead to a throttle). This both saves work and prevents false
5121 * next-buddy nomination below.
5122 */
5123 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5124 return;
5125
2f36825b 5126 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5127 set_next_buddy(pse);
2f36825b
VP
5128 next_buddy_marked = 1;
5129 }
57fdc26d 5130
aec0a514
BR
5131 /*
5132 * We can come here with TIF_NEED_RESCHED already set from new task
5133 * wake up path.
5238cdd3
PT
5134 *
5135 * Note: this also catches the edge-case of curr being in a throttled
5136 * group (e.g. via set_curr_task), since update_curr() (in the
5137 * enqueue of curr) will have resulted in resched being set. This
5138 * prevents us from potentially nominating it as a false LAST_BUDDY
5139 * below.
aec0a514
BR
5140 */
5141 if (test_tsk_need_resched(curr))
5142 return;
5143
a2f5c9ab
DH
5144 /* Idle tasks are by definition preempted by non-idle tasks. */
5145 if (unlikely(curr->policy == SCHED_IDLE) &&
5146 likely(p->policy != SCHED_IDLE))
5147 goto preempt;
5148
91c234b4 5149 /*
a2f5c9ab
DH
5150 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5151 * is driven by the tick):
91c234b4 5152 */
8ed92e51 5153 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5154 return;
bf0f6f24 5155
464b7527 5156 find_matching_se(&se, &pse);
9bbd7374 5157 update_curr(cfs_rq_of(se));
002f128b 5158 BUG_ON(!pse);
2f36825b
VP
5159 if (wakeup_preempt_entity(se, pse) == 1) {
5160 /*
5161 * Bias pick_next to pick the sched entity that is
5162 * triggering this preemption.
5163 */
5164 if (!next_buddy_marked)
5165 set_next_buddy(pse);
3a7e73a2 5166 goto preempt;
2f36825b 5167 }
464b7527 5168
3a7e73a2 5169 return;
a65ac745 5170
3a7e73a2 5171preempt:
8875125e 5172 resched_curr(rq);
3a7e73a2
PZ
5173 /*
5174 * Only set the backward buddy when the current task is still
5175 * on the rq. This can happen when a wakeup gets interleaved
5176 * with schedule on the ->pre_schedule() or idle_balance()
5177 * point, either of which can * drop the rq lock.
5178 *
5179 * Also, during early boot the idle thread is in the fair class,
5180 * for obvious reasons its a bad idea to schedule back to it.
5181 */
5182 if (unlikely(!se->on_rq || curr == rq->idle))
5183 return;
5184
5185 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5186 set_last_buddy(se);
bf0f6f24
IM
5187}
5188
606dba2e
PZ
5189static struct task_struct *
5190pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5191{
5192 struct cfs_rq *cfs_rq = &rq->cfs;
5193 struct sched_entity *se;
678d5718 5194 struct task_struct *p;
37e117c0 5195 int new_tasks;
678d5718 5196
6e83125c 5197again:
678d5718
PZ
5198#ifdef CONFIG_FAIR_GROUP_SCHED
5199 if (!cfs_rq->nr_running)
38033c37 5200 goto idle;
678d5718 5201
3f1d2a31 5202 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5203 goto simple;
5204
5205 /*
5206 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5207 * likely that a next task is from the same cgroup as the current.
5208 *
5209 * Therefore attempt to avoid putting and setting the entire cgroup
5210 * hierarchy, only change the part that actually changes.
5211 */
5212
5213 do {
5214 struct sched_entity *curr = cfs_rq->curr;
5215
5216 /*
5217 * Since we got here without doing put_prev_entity() we also
5218 * have to consider cfs_rq->curr. If it is still a runnable
5219 * entity, update_curr() will update its vruntime, otherwise
5220 * forget we've ever seen it.
5221 */
54d27365
BS
5222 if (curr) {
5223 if (curr->on_rq)
5224 update_curr(cfs_rq);
5225 else
5226 curr = NULL;
678d5718 5227
54d27365
BS
5228 /*
5229 * This call to check_cfs_rq_runtime() will do the
5230 * throttle and dequeue its entity in the parent(s).
5231 * Therefore the 'simple' nr_running test will indeed
5232 * be correct.
5233 */
5234 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5235 goto simple;
5236 }
678d5718
PZ
5237
5238 se = pick_next_entity(cfs_rq, curr);
5239 cfs_rq = group_cfs_rq(se);
5240 } while (cfs_rq);
5241
5242 p = task_of(se);
5243
5244 /*
5245 * Since we haven't yet done put_prev_entity and if the selected task
5246 * is a different task than we started out with, try and touch the
5247 * least amount of cfs_rqs.
5248 */
5249 if (prev != p) {
5250 struct sched_entity *pse = &prev->se;
5251
5252 while (!(cfs_rq = is_same_group(se, pse))) {
5253 int se_depth = se->depth;
5254 int pse_depth = pse->depth;
5255
5256 if (se_depth <= pse_depth) {
5257 put_prev_entity(cfs_rq_of(pse), pse);
5258 pse = parent_entity(pse);
5259 }
5260 if (se_depth >= pse_depth) {
5261 set_next_entity(cfs_rq_of(se), se);
5262 se = parent_entity(se);
5263 }
5264 }
5265
5266 put_prev_entity(cfs_rq, pse);
5267 set_next_entity(cfs_rq, se);
5268 }
5269
5270 if (hrtick_enabled(rq))
5271 hrtick_start_fair(rq, p);
5272
5273 return p;
5274simple:
5275 cfs_rq = &rq->cfs;
5276#endif
bf0f6f24 5277
36ace27e 5278 if (!cfs_rq->nr_running)
38033c37 5279 goto idle;
bf0f6f24 5280
3f1d2a31 5281 put_prev_task(rq, prev);
606dba2e 5282
bf0f6f24 5283 do {
678d5718 5284 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5285 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5286 cfs_rq = group_cfs_rq(se);
5287 } while (cfs_rq);
5288
8f4d37ec 5289 p = task_of(se);
678d5718 5290
b39e66ea
MG
5291 if (hrtick_enabled(rq))
5292 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5293
5294 return p;
38033c37
PZ
5295
5296idle:
cbce1a68
PZ
5297 /*
5298 * This is OK, because current is on_cpu, which avoids it being picked
5299 * for load-balance and preemption/IRQs are still disabled avoiding
5300 * further scheduler activity on it and we're being very careful to
5301 * re-start the picking loop.
5302 */
5303 lockdep_unpin_lock(&rq->lock);
e4aa358b 5304 new_tasks = idle_balance(rq);
cbce1a68 5305 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5306 /*
5307 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5308 * possible for any higher priority task to appear. In that case we
5309 * must re-start the pick_next_entity() loop.
5310 */
e4aa358b 5311 if (new_tasks < 0)
37e117c0
PZ
5312 return RETRY_TASK;
5313
e4aa358b 5314 if (new_tasks > 0)
38033c37 5315 goto again;
38033c37
PZ
5316
5317 return NULL;
bf0f6f24
IM
5318}
5319
5320/*
5321 * Account for a descheduled task:
5322 */
31ee529c 5323static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5324{
5325 struct sched_entity *se = &prev->se;
5326 struct cfs_rq *cfs_rq;
5327
5328 for_each_sched_entity(se) {
5329 cfs_rq = cfs_rq_of(se);
ab6cde26 5330 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5331 }
5332}
5333
ac53db59
RR
5334/*
5335 * sched_yield() is very simple
5336 *
5337 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5338 */
5339static void yield_task_fair(struct rq *rq)
5340{
5341 struct task_struct *curr = rq->curr;
5342 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5343 struct sched_entity *se = &curr->se;
5344
5345 /*
5346 * Are we the only task in the tree?
5347 */
5348 if (unlikely(rq->nr_running == 1))
5349 return;
5350
5351 clear_buddies(cfs_rq, se);
5352
5353 if (curr->policy != SCHED_BATCH) {
5354 update_rq_clock(rq);
5355 /*
5356 * Update run-time statistics of the 'current'.
5357 */
5358 update_curr(cfs_rq);
916671c0
MG
5359 /*
5360 * Tell update_rq_clock() that we've just updated,
5361 * so we don't do microscopic update in schedule()
5362 * and double the fastpath cost.
5363 */
9edfbfed 5364 rq_clock_skip_update(rq, true);
ac53db59
RR
5365 }
5366
5367 set_skip_buddy(se);
5368}
5369
d95f4122
MG
5370static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5371{
5372 struct sched_entity *se = &p->se;
5373
5238cdd3
PT
5374 /* throttled hierarchies are not runnable */
5375 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5376 return false;
5377
5378 /* Tell the scheduler that we'd really like pse to run next. */
5379 set_next_buddy(se);
5380
d95f4122
MG
5381 yield_task_fair(rq);
5382
5383 return true;
5384}
5385
681f3e68 5386#ifdef CONFIG_SMP
bf0f6f24 5387/**************************************************
e9c84cb8
PZ
5388 * Fair scheduling class load-balancing methods.
5389 *
5390 * BASICS
5391 *
5392 * The purpose of load-balancing is to achieve the same basic fairness the
5393 * per-cpu scheduler provides, namely provide a proportional amount of compute
5394 * time to each task. This is expressed in the following equation:
5395 *
5396 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5397 *
5398 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5399 * W_i,0 is defined as:
5400 *
5401 * W_i,0 = \Sum_j w_i,j (2)
5402 *
5403 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5404 * is derived from the nice value as per prio_to_weight[].
5405 *
5406 * The weight average is an exponential decay average of the instantaneous
5407 * weight:
5408 *
5409 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5410 *
ced549fa 5411 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5412 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5413 * can also include other factors [XXX].
5414 *
5415 * To achieve this balance we define a measure of imbalance which follows
5416 * directly from (1):
5417 *
ced549fa 5418 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5419 *
5420 * We them move tasks around to minimize the imbalance. In the continuous
5421 * function space it is obvious this converges, in the discrete case we get
5422 * a few fun cases generally called infeasible weight scenarios.
5423 *
5424 * [XXX expand on:
5425 * - infeasible weights;
5426 * - local vs global optima in the discrete case. ]
5427 *
5428 *
5429 * SCHED DOMAINS
5430 *
5431 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5432 * for all i,j solution, we create a tree of cpus that follows the hardware
5433 * topology where each level pairs two lower groups (or better). This results
5434 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5435 * tree to only the first of the previous level and we decrease the frequency
5436 * of load-balance at each level inv. proportional to the number of cpus in
5437 * the groups.
5438 *
5439 * This yields:
5440 *
5441 * log_2 n 1 n
5442 * \Sum { --- * --- * 2^i } = O(n) (5)
5443 * i = 0 2^i 2^i
5444 * `- size of each group
5445 * | | `- number of cpus doing load-balance
5446 * | `- freq
5447 * `- sum over all levels
5448 *
5449 * Coupled with a limit on how many tasks we can migrate every balance pass,
5450 * this makes (5) the runtime complexity of the balancer.
5451 *
5452 * An important property here is that each CPU is still (indirectly) connected
5453 * to every other cpu in at most O(log n) steps:
5454 *
5455 * The adjacency matrix of the resulting graph is given by:
5456 *
5457 * log_2 n
5458 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5459 * k = 0
5460 *
5461 * And you'll find that:
5462 *
5463 * A^(log_2 n)_i,j != 0 for all i,j (7)
5464 *
5465 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5466 * The task movement gives a factor of O(m), giving a convergence complexity
5467 * of:
5468 *
5469 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5470 *
5471 *
5472 * WORK CONSERVING
5473 *
5474 * In order to avoid CPUs going idle while there's still work to do, new idle
5475 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5476 * tree itself instead of relying on other CPUs to bring it work.
5477 *
5478 * This adds some complexity to both (5) and (8) but it reduces the total idle
5479 * time.
5480 *
5481 * [XXX more?]
5482 *
5483 *
5484 * CGROUPS
5485 *
5486 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5487 *
5488 * s_k,i
5489 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5490 * S_k
5491 *
5492 * Where
5493 *
5494 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5495 *
5496 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5497 *
5498 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5499 * property.
5500 *
5501 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5502 * rewrite all of this once again.]
5503 */
bf0f6f24 5504
ed387b78
HS
5505static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5506
0ec8aa00
PZ
5507enum fbq_type { regular, remote, all };
5508
ddcdf6e7 5509#define LBF_ALL_PINNED 0x01
367456c7 5510#define LBF_NEED_BREAK 0x02
6263322c
PZ
5511#define LBF_DST_PINNED 0x04
5512#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5513
5514struct lb_env {
5515 struct sched_domain *sd;
5516
ddcdf6e7 5517 struct rq *src_rq;
85c1e7da 5518 int src_cpu;
ddcdf6e7
PZ
5519
5520 int dst_cpu;
5521 struct rq *dst_rq;
5522
88b8dac0
SV
5523 struct cpumask *dst_grpmask;
5524 int new_dst_cpu;
ddcdf6e7 5525 enum cpu_idle_type idle;
bd939f45 5526 long imbalance;
b9403130
MW
5527 /* The set of CPUs under consideration for load-balancing */
5528 struct cpumask *cpus;
5529
ddcdf6e7 5530 unsigned int flags;
367456c7
PZ
5531
5532 unsigned int loop;
5533 unsigned int loop_break;
5534 unsigned int loop_max;
0ec8aa00
PZ
5535
5536 enum fbq_type fbq_type;
163122b7 5537 struct list_head tasks;
ddcdf6e7
PZ
5538};
5539
029632fb
PZ
5540/*
5541 * Is this task likely cache-hot:
5542 */
5d5e2b1b 5543static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5544{
5545 s64 delta;
5546
e5673f28
KT
5547 lockdep_assert_held(&env->src_rq->lock);
5548
029632fb
PZ
5549 if (p->sched_class != &fair_sched_class)
5550 return 0;
5551
5552 if (unlikely(p->policy == SCHED_IDLE))
5553 return 0;
5554
5555 /*
5556 * Buddy candidates are cache hot:
5557 */
5d5e2b1b 5558 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5559 (&p->se == cfs_rq_of(&p->se)->next ||
5560 &p->se == cfs_rq_of(&p->se)->last))
5561 return 1;
5562
5563 if (sysctl_sched_migration_cost == -1)
5564 return 1;
5565 if (sysctl_sched_migration_cost == 0)
5566 return 0;
5567
5d5e2b1b 5568 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5569
5570 return delta < (s64)sysctl_sched_migration_cost;
5571}
5572
3a7053b3 5573#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5574/*
2a1ed24c
SD
5575 * Returns 1, if task migration degrades locality
5576 * Returns 0, if task migration improves locality i.e migration preferred.
5577 * Returns -1, if task migration is not affected by locality.
c1ceac62 5578 */
2a1ed24c 5579static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5580{
b1ad065e 5581 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5582 unsigned long src_faults, dst_faults;
3a7053b3
MG
5583 int src_nid, dst_nid;
5584
2a595721 5585 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5586 return -1;
5587
c3b9bc5b 5588 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5589 return -1;
7a0f3083
MG
5590
5591 src_nid = cpu_to_node(env->src_cpu);
5592 dst_nid = cpu_to_node(env->dst_cpu);
5593
83e1d2cd 5594 if (src_nid == dst_nid)
2a1ed24c 5595 return -1;
7a0f3083 5596
2a1ed24c
SD
5597 /* Migrating away from the preferred node is always bad. */
5598 if (src_nid == p->numa_preferred_nid) {
5599 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5600 return 1;
5601 else
5602 return -1;
5603 }
b1ad065e 5604
c1ceac62
RR
5605 /* Encourage migration to the preferred node. */
5606 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5607 return 0;
b1ad065e 5608
c1ceac62
RR
5609 if (numa_group) {
5610 src_faults = group_faults(p, src_nid);
5611 dst_faults = group_faults(p, dst_nid);
5612 } else {
5613 src_faults = task_faults(p, src_nid);
5614 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5615 }
5616
c1ceac62 5617 return dst_faults < src_faults;
7a0f3083
MG
5618}
5619
3a7053b3 5620#else
2a1ed24c 5621static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5622 struct lb_env *env)
5623{
2a1ed24c 5624 return -1;
7a0f3083 5625}
3a7053b3
MG
5626#endif
5627
1e3c88bd
PZ
5628/*
5629 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5630 */
5631static
8e45cb54 5632int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5633{
2a1ed24c 5634 int tsk_cache_hot;
e5673f28
KT
5635
5636 lockdep_assert_held(&env->src_rq->lock);
5637
1e3c88bd
PZ
5638 /*
5639 * We do not migrate tasks that are:
d3198084 5640 * 1) throttled_lb_pair, or
1e3c88bd 5641 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5642 * 3) running (obviously), or
5643 * 4) are cache-hot on their current CPU.
1e3c88bd 5644 */
d3198084
JK
5645 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5646 return 0;
5647
ddcdf6e7 5648 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5649 int cpu;
88b8dac0 5650
41acab88 5651 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5652
6263322c
PZ
5653 env->flags |= LBF_SOME_PINNED;
5654
88b8dac0
SV
5655 /*
5656 * Remember if this task can be migrated to any other cpu in
5657 * our sched_group. We may want to revisit it if we couldn't
5658 * meet load balance goals by pulling other tasks on src_cpu.
5659 *
5660 * Also avoid computing new_dst_cpu if we have already computed
5661 * one in current iteration.
5662 */
6263322c 5663 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5664 return 0;
5665
e02e60c1
JK
5666 /* Prevent to re-select dst_cpu via env's cpus */
5667 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5668 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5669 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5670 env->new_dst_cpu = cpu;
5671 break;
5672 }
88b8dac0 5673 }
e02e60c1 5674
1e3c88bd
PZ
5675 return 0;
5676 }
88b8dac0
SV
5677
5678 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5679 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5680
ddcdf6e7 5681 if (task_running(env->src_rq, p)) {
41acab88 5682 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5683 return 0;
5684 }
5685
5686 /*
5687 * Aggressive migration if:
3a7053b3
MG
5688 * 1) destination numa is preferred
5689 * 2) task is cache cold, or
5690 * 3) too many balance attempts have failed.
1e3c88bd 5691 */
2a1ed24c
SD
5692 tsk_cache_hot = migrate_degrades_locality(p, env);
5693 if (tsk_cache_hot == -1)
5694 tsk_cache_hot = task_hot(p, env);
3a7053b3 5695
2a1ed24c 5696 if (tsk_cache_hot <= 0 ||
7a96c231 5697 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5698 if (tsk_cache_hot == 1) {
3a7053b3
MG
5699 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5700 schedstat_inc(p, se.statistics.nr_forced_migrations);
5701 }
1e3c88bd
PZ
5702 return 1;
5703 }
5704
4e2dcb73
ZH
5705 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5706 return 0;
1e3c88bd
PZ
5707}
5708
897c395f 5709/*
163122b7
KT
5710 * detach_task() -- detach the task for the migration specified in env
5711 */
5712static void detach_task(struct task_struct *p, struct lb_env *env)
5713{
5714 lockdep_assert_held(&env->src_rq->lock);
5715
5716 deactivate_task(env->src_rq, p, 0);
5717 p->on_rq = TASK_ON_RQ_MIGRATING;
5718 set_task_cpu(p, env->dst_cpu);
5719}
5720
897c395f 5721/*
e5673f28 5722 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5723 * part of active balancing operations within "domain".
897c395f 5724 *
e5673f28 5725 * Returns a task if successful and NULL otherwise.
897c395f 5726 */
e5673f28 5727static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5728{
5729 struct task_struct *p, *n;
897c395f 5730
e5673f28
KT
5731 lockdep_assert_held(&env->src_rq->lock);
5732
367456c7 5733 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5734 if (!can_migrate_task(p, env))
5735 continue;
897c395f 5736
163122b7 5737 detach_task(p, env);
e5673f28 5738
367456c7 5739 /*
e5673f28 5740 * Right now, this is only the second place where
163122b7 5741 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5742 * so we can safely collect stats here rather than
163122b7 5743 * inside detach_tasks().
367456c7
PZ
5744 */
5745 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5746 return p;
897c395f 5747 }
e5673f28 5748 return NULL;
897c395f
PZ
5749}
5750
eb95308e
PZ
5751static const unsigned int sched_nr_migrate_break = 32;
5752
5d6523eb 5753/*
163122b7
KT
5754 * detach_tasks() -- tries to detach up to imbalance weighted load from
5755 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5756 *
163122b7 5757 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5758 */
163122b7 5759static int detach_tasks(struct lb_env *env)
1e3c88bd 5760{
5d6523eb
PZ
5761 struct list_head *tasks = &env->src_rq->cfs_tasks;
5762 struct task_struct *p;
367456c7 5763 unsigned long load;
163122b7
KT
5764 int detached = 0;
5765
5766 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5767
bd939f45 5768 if (env->imbalance <= 0)
5d6523eb 5769 return 0;
1e3c88bd 5770
5d6523eb 5771 while (!list_empty(tasks)) {
985d3a4c
YD
5772 /*
5773 * We don't want to steal all, otherwise we may be treated likewise,
5774 * which could at worst lead to a livelock crash.
5775 */
5776 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5777 break;
5778
5d6523eb 5779 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5780
367456c7
PZ
5781 env->loop++;
5782 /* We've more or less seen every task there is, call it quits */
5d6523eb 5783 if (env->loop > env->loop_max)
367456c7 5784 break;
5d6523eb
PZ
5785
5786 /* take a breather every nr_migrate tasks */
367456c7 5787 if (env->loop > env->loop_break) {
eb95308e 5788 env->loop_break += sched_nr_migrate_break;
8e45cb54 5789 env->flags |= LBF_NEED_BREAK;
ee00e66f 5790 break;
a195f004 5791 }
1e3c88bd 5792
d3198084 5793 if (!can_migrate_task(p, env))
367456c7
PZ
5794 goto next;
5795
5796 load = task_h_load(p);
5d6523eb 5797
eb95308e 5798 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5799 goto next;
5800
bd939f45 5801 if ((load / 2) > env->imbalance)
367456c7 5802 goto next;
1e3c88bd 5803
163122b7
KT
5804 detach_task(p, env);
5805 list_add(&p->se.group_node, &env->tasks);
5806
5807 detached++;
bd939f45 5808 env->imbalance -= load;
1e3c88bd
PZ
5809
5810#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5811 /*
5812 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5813 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5814 * the critical section.
5815 */
5d6523eb 5816 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5817 break;
1e3c88bd
PZ
5818#endif
5819
ee00e66f
PZ
5820 /*
5821 * We only want to steal up to the prescribed amount of
5822 * weighted load.
5823 */
bd939f45 5824 if (env->imbalance <= 0)
ee00e66f 5825 break;
367456c7
PZ
5826
5827 continue;
5828next:
5d6523eb 5829 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5830 }
5d6523eb 5831
1e3c88bd 5832 /*
163122b7
KT
5833 * Right now, this is one of only two places we collect this stat
5834 * so we can safely collect detach_one_task() stats here rather
5835 * than inside detach_one_task().
1e3c88bd 5836 */
163122b7 5837 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5838
163122b7
KT
5839 return detached;
5840}
5841
5842/*
5843 * attach_task() -- attach the task detached by detach_task() to its new rq.
5844 */
5845static void attach_task(struct rq *rq, struct task_struct *p)
5846{
5847 lockdep_assert_held(&rq->lock);
5848
5849 BUG_ON(task_rq(p) != rq);
5850 p->on_rq = TASK_ON_RQ_QUEUED;
5851 activate_task(rq, p, 0);
5852 check_preempt_curr(rq, p, 0);
5853}
5854
5855/*
5856 * attach_one_task() -- attaches the task returned from detach_one_task() to
5857 * its new rq.
5858 */
5859static void attach_one_task(struct rq *rq, struct task_struct *p)
5860{
5861 raw_spin_lock(&rq->lock);
5862 attach_task(rq, p);
5863 raw_spin_unlock(&rq->lock);
5864}
5865
5866/*
5867 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5868 * new rq.
5869 */
5870static void attach_tasks(struct lb_env *env)
5871{
5872 struct list_head *tasks = &env->tasks;
5873 struct task_struct *p;
5874
5875 raw_spin_lock(&env->dst_rq->lock);
5876
5877 while (!list_empty(tasks)) {
5878 p = list_first_entry(tasks, struct task_struct, se.group_node);
5879 list_del_init(&p->se.group_node);
1e3c88bd 5880
163122b7
KT
5881 attach_task(env->dst_rq, p);
5882 }
5883
5884 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5885}
5886
230059de 5887#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5888static void update_blocked_averages(int cpu)
9e3081ca 5889{
9e3081ca 5890 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5891 struct cfs_rq *cfs_rq;
5892 unsigned long flags;
9e3081ca 5893
48a16753
PT
5894 raw_spin_lock_irqsave(&rq->lock, flags);
5895 update_rq_clock(rq);
9d89c257 5896
9763b67f
PZ
5897 /*
5898 * Iterates the task_group tree in a bottom up fashion, see
5899 * list_add_leaf_cfs_rq() for details.
5900 */
64660c86 5901 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5902 /* throttled entities do not contribute to load */
5903 if (throttled_hierarchy(cfs_rq))
5904 continue;
48a16753 5905
9d89c257
YD
5906 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5907 update_tg_load_avg(cfs_rq, 0);
5908 }
48a16753 5909 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5910}
5911
9763b67f 5912/*
68520796 5913 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5914 * This needs to be done in a top-down fashion because the load of a child
5915 * group is a fraction of its parents load.
5916 */
68520796 5917static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5918{
68520796
VD
5919 struct rq *rq = rq_of(cfs_rq);
5920 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5921 unsigned long now = jiffies;
68520796 5922 unsigned long load;
a35b6466 5923
68520796 5924 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5925 return;
5926
68520796
VD
5927 cfs_rq->h_load_next = NULL;
5928 for_each_sched_entity(se) {
5929 cfs_rq = cfs_rq_of(se);
5930 cfs_rq->h_load_next = se;
5931 if (cfs_rq->last_h_load_update == now)
5932 break;
5933 }
a35b6466 5934
68520796 5935 if (!se) {
7ea241af 5936 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5937 cfs_rq->last_h_load_update = now;
5938 }
5939
5940 while ((se = cfs_rq->h_load_next) != NULL) {
5941 load = cfs_rq->h_load;
7ea241af
YD
5942 load = div64_ul(load * se->avg.load_avg,
5943 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5944 cfs_rq = group_cfs_rq(se);
5945 cfs_rq->h_load = load;
5946 cfs_rq->last_h_load_update = now;
5947 }
9763b67f
PZ
5948}
5949
367456c7 5950static unsigned long task_h_load(struct task_struct *p)
230059de 5951{
367456c7 5952 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5953
68520796 5954 update_cfs_rq_h_load(cfs_rq);
9d89c257 5955 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5956 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5957}
5958#else
48a16753 5959static inline void update_blocked_averages(int cpu)
9e3081ca 5960{
6c1d47c0
VG
5961 struct rq *rq = cpu_rq(cpu);
5962 struct cfs_rq *cfs_rq = &rq->cfs;
5963 unsigned long flags;
5964
5965 raw_spin_lock_irqsave(&rq->lock, flags);
5966 update_rq_clock(rq);
5967 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5968 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5969}
5970
367456c7 5971static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5972{
9d89c257 5973 return p->se.avg.load_avg;
1e3c88bd 5974}
230059de 5975#endif
1e3c88bd 5976
1e3c88bd 5977/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5978
5979enum group_type {
5980 group_other = 0,
5981 group_imbalanced,
5982 group_overloaded,
5983};
5984
1e3c88bd
PZ
5985/*
5986 * sg_lb_stats - stats of a sched_group required for load_balancing
5987 */
5988struct sg_lb_stats {
5989 unsigned long avg_load; /*Avg load across the CPUs of the group */
5990 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5991 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5992 unsigned long load_per_task;
63b2ca30 5993 unsigned long group_capacity;
9e91d61d 5994 unsigned long group_util; /* Total utilization of the group */
147c5fc2 5995 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5996 unsigned int idle_cpus;
5997 unsigned int group_weight;
caeb178c 5998 enum group_type group_type;
ea67821b 5999 int group_no_capacity;
0ec8aa00
PZ
6000#ifdef CONFIG_NUMA_BALANCING
6001 unsigned int nr_numa_running;
6002 unsigned int nr_preferred_running;
6003#endif
1e3c88bd
PZ
6004};
6005
56cf515b
JK
6006/*
6007 * sd_lb_stats - Structure to store the statistics of a sched_domain
6008 * during load balancing.
6009 */
6010struct sd_lb_stats {
6011 struct sched_group *busiest; /* Busiest group in this sd */
6012 struct sched_group *local; /* Local group in this sd */
6013 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6014 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6015 unsigned long avg_load; /* Average load across all groups in sd */
6016
56cf515b 6017 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6018 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6019};
6020
147c5fc2
PZ
6021static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6022{
6023 /*
6024 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6025 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6026 * We must however clear busiest_stat::avg_load because
6027 * update_sd_pick_busiest() reads this before assignment.
6028 */
6029 *sds = (struct sd_lb_stats){
6030 .busiest = NULL,
6031 .local = NULL,
6032 .total_load = 0UL,
63b2ca30 6033 .total_capacity = 0UL,
147c5fc2
PZ
6034 .busiest_stat = {
6035 .avg_load = 0UL,
caeb178c
RR
6036 .sum_nr_running = 0,
6037 .group_type = group_other,
147c5fc2
PZ
6038 },
6039 };
6040}
6041
1e3c88bd
PZ
6042/**
6043 * get_sd_load_idx - Obtain the load index for a given sched domain.
6044 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6045 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6046 *
6047 * Return: The load index.
1e3c88bd
PZ
6048 */
6049static inline int get_sd_load_idx(struct sched_domain *sd,
6050 enum cpu_idle_type idle)
6051{
6052 int load_idx;
6053
6054 switch (idle) {
6055 case CPU_NOT_IDLE:
6056 load_idx = sd->busy_idx;
6057 break;
6058
6059 case CPU_NEWLY_IDLE:
6060 load_idx = sd->newidle_idx;
6061 break;
6062 default:
6063 load_idx = sd->idle_idx;
6064 break;
6065 }
6066
6067 return load_idx;
6068}
6069
ced549fa 6070static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6071{
6072 struct rq *rq = cpu_rq(cpu);
b5b4860d 6073 u64 total, used, age_stamp, avg;
cadefd3d 6074 s64 delta;
1e3c88bd 6075
b654f7de
PZ
6076 /*
6077 * Since we're reading these variables without serialization make sure
6078 * we read them once before doing sanity checks on them.
6079 */
316c1608
JL
6080 age_stamp = READ_ONCE(rq->age_stamp);
6081 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6082 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6083
cadefd3d
PZ
6084 if (unlikely(delta < 0))
6085 delta = 0;
6086
6087 total = sched_avg_period() + delta;
aa483808 6088
b5b4860d 6089 used = div_u64(avg, total);
1e3c88bd 6090
b5b4860d
VG
6091 if (likely(used < SCHED_CAPACITY_SCALE))
6092 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6093
b5b4860d 6094 return 1;
1e3c88bd
PZ
6095}
6096
ced549fa 6097static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6098{
8cd5601c 6099 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6100 struct sched_group *sdg = sd->groups;
6101
ca6d75e6 6102 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6103
ced549fa 6104 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6105 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6106
ced549fa
NP
6107 if (!capacity)
6108 capacity = 1;
1e3c88bd 6109
ced549fa
NP
6110 cpu_rq(cpu)->cpu_capacity = capacity;
6111 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6112}
6113
63b2ca30 6114void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6115{
6116 struct sched_domain *child = sd->child;
6117 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6118 unsigned long capacity;
4ec4412e
VG
6119 unsigned long interval;
6120
6121 interval = msecs_to_jiffies(sd->balance_interval);
6122 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6123 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6124
6125 if (!child) {
ced549fa 6126 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6127 return;
6128 }
6129
dc7ff76e 6130 capacity = 0;
1e3c88bd 6131
74a5ce20
PZ
6132 if (child->flags & SD_OVERLAP) {
6133 /*
6134 * SD_OVERLAP domains cannot assume that child groups
6135 * span the current group.
6136 */
6137
863bffc8 6138 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6139 struct sched_group_capacity *sgc;
9abf24d4 6140 struct rq *rq = cpu_rq(cpu);
863bffc8 6141
9abf24d4 6142 /*
63b2ca30 6143 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6144 * gets here before we've attached the domains to the
6145 * runqueues.
6146 *
ced549fa
NP
6147 * Use capacity_of(), which is set irrespective of domains
6148 * in update_cpu_capacity().
9abf24d4 6149 *
dc7ff76e 6150 * This avoids capacity from being 0 and
9abf24d4 6151 * causing divide-by-zero issues on boot.
9abf24d4
SD
6152 */
6153 if (unlikely(!rq->sd)) {
ced549fa 6154 capacity += capacity_of(cpu);
9abf24d4
SD
6155 continue;
6156 }
863bffc8 6157
63b2ca30 6158 sgc = rq->sd->groups->sgc;
63b2ca30 6159 capacity += sgc->capacity;
863bffc8 6160 }
74a5ce20
PZ
6161 } else {
6162 /*
6163 * !SD_OVERLAP domains can assume that child groups
6164 * span the current group.
6165 */
6166
6167 group = child->groups;
6168 do {
63b2ca30 6169 capacity += group->sgc->capacity;
74a5ce20
PZ
6170 group = group->next;
6171 } while (group != child->groups);
6172 }
1e3c88bd 6173
63b2ca30 6174 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6175}
6176
9d5efe05 6177/*
ea67821b
VG
6178 * Check whether the capacity of the rq has been noticeably reduced by side
6179 * activity. The imbalance_pct is used for the threshold.
6180 * Return true is the capacity is reduced
9d5efe05
SV
6181 */
6182static inline int
ea67821b 6183check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6184{
ea67821b
VG
6185 return ((rq->cpu_capacity * sd->imbalance_pct) <
6186 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6187}
6188
30ce5dab
PZ
6189/*
6190 * Group imbalance indicates (and tries to solve) the problem where balancing
6191 * groups is inadequate due to tsk_cpus_allowed() constraints.
6192 *
6193 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6194 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6195 * Something like:
6196 *
6197 * { 0 1 2 3 } { 4 5 6 7 }
6198 * * * * *
6199 *
6200 * If we were to balance group-wise we'd place two tasks in the first group and
6201 * two tasks in the second group. Clearly this is undesired as it will overload
6202 * cpu 3 and leave one of the cpus in the second group unused.
6203 *
6204 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6205 * by noticing the lower domain failed to reach balance and had difficulty
6206 * moving tasks due to affinity constraints.
30ce5dab
PZ
6207 *
6208 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6209 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6210 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6211 * to create an effective group imbalance.
6212 *
6213 * This is a somewhat tricky proposition since the next run might not find the
6214 * group imbalance and decide the groups need to be balanced again. A most
6215 * subtle and fragile situation.
6216 */
6217
6263322c 6218static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6219{
63b2ca30 6220 return group->sgc->imbalance;
30ce5dab
PZ
6221}
6222
b37d9316 6223/*
ea67821b
VG
6224 * group_has_capacity returns true if the group has spare capacity that could
6225 * be used by some tasks.
6226 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6227 * smaller than the number of CPUs or if the utilization is lower than the
6228 * available capacity for CFS tasks.
ea67821b
VG
6229 * For the latter, we use a threshold to stabilize the state, to take into
6230 * account the variance of the tasks' load and to return true if the available
6231 * capacity in meaningful for the load balancer.
6232 * As an example, an available capacity of 1% can appear but it doesn't make
6233 * any benefit for the load balance.
b37d9316 6234 */
ea67821b
VG
6235static inline bool
6236group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6237{
ea67821b
VG
6238 if (sgs->sum_nr_running < sgs->group_weight)
6239 return true;
c61037e9 6240
ea67821b 6241 if ((sgs->group_capacity * 100) >
9e91d61d 6242 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6243 return true;
b37d9316 6244
ea67821b
VG
6245 return false;
6246}
6247
6248/*
6249 * group_is_overloaded returns true if the group has more tasks than it can
6250 * handle.
6251 * group_is_overloaded is not equals to !group_has_capacity because a group
6252 * with the exact right number of tasks, has no more spare capacity but is not
6253 * overloaded so both group_has_capacity and group_is_overloaded return
6254 * false.
6255 */
6256static inline bool
6257group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6258{
6259 if (sgs->sum_nr_running <= sgs->group_weight)
6260 return false;
b37d9316 6261
ea67821b 6262 if ((sgs->group_capacity * 100) <
9e91d61d 6263 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6264 return true;
b37d9316 6265
ea67821b 6266 return false;
b37d9316
PZ
6267}
6268
ea67821b
VG
6269static enum group_type group_classify(struct lb_env *env,
6270 struct sched_group *group,
6271 struct sg_lb_stats *sgs)
caeb178c 6272{
ea67821b 6273 if (sgs->group_no_capacity)
caeb178c
RR
6274 return group_overloaded;
6275
6276 if (sg_imbalanced(group))
6277 return group_imbalanced;
6278
6279 return group_other;
6280}
6281
1e3c88bd
PZ
6282/**
6283 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6284 * @env: The load balancing environment.
1e3c88bd 6285 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6286 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6287 * @local_group: Does group contain this_cpu.
1e3c88bd 6288 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6289 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6290 */
bd939f45
PZ
6291static inline void update_sg_lb_stats(struct lb_env *env,
6292 struct sched_group *group, int load_idx,
4486edd1
TC
6293 int local_group, struct sg_lb_stats *sgs,
6294 bool *overload)
1e3c88bd 6295{
30ce5dab 6296 unsigned long load;
bd939f45 6297 int i;
1e3c88bd 6298
b72ff13c
PZ
6299 memset(sgs, 0, sizeof(*sgs));
6300
b9403130 6301 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6302 struct rq *rq = cpu_rq(i);
6303
1e3c88bd 6304 /* Bias balancing toward cpus of our domain */
6263322c 6305 if (local_group)
04f733b4 6306 load = target_load(i, load_idx);
6263322c 6307 else
1e3c88bd 6308 load = source_load(i, load_idx);
1e3c88bd
PZ
6309
6310 sgs->group_load += load;
9e91d61d 6311 sgs->group_util += cpu_util(i);
65fdac08 6312 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6313
6314 if (rq->nr_running > 1)
6315 *overload = true;
6316
0ec8aa00
PZ
6317#ifdef CONFIG_NUMA_BALANCING
6318 sgs->nr_numa_running += rq->nr_numa_running;
6319 sgs->nr_preferred_running += rq->nr_preferred_running;
6320#endif
1e3c88bd 6321 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6322 if (idle_cpu(i))
6323 sgs->idle_cpus++;
1e3c88bd
PZ
6324 }
6325
63b2ca30
NP
6326 /* Adjust by relative CPU capacity of the group */
6327 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6328 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6329
dd5feea1 6330 if (sgs->sum_nr_running)
38d0f770 6331 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6332
aae6d3dd 6333 sgs->group_weight = group->group_weight;
b37d9316 6334
ea67821b
VG
6335 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6336 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6337}
6338
532cb4c4
MN
6339/**
6340 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6341 * @env: The load balancing environment.
532cb4c4
MN
6342 * @sds: sched_domain statistics
6343 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6344 * @sgs: sched_group statistics
532cb4c4
MN
6345 *
6346 * Determine if @sg is a busier group than the previously selected
6347 * busiest group.
e69f6186
YB
6348 *
6349 * Return: %true if @sg is a busier group than the previously selected
6350 * busiest group. %false otherwise.
532cb4c4 6351 */
bd939f45 6352static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6353 struct sd_lb_stats *sds,
6354 struct sched_group *sg,
bd939f45 6355 struct sg_lb_stats *sgs)
532cb4c4 6356{
caeb178c 6357 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6358
caeb178c 6359 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6360 return true;
6361
caeb178c
RR
6362 if (sgs->group_type < busiest->group_type)
6363 return false;
6364
6365 if (sgs->avg_load <= busiest->avg_load)
6366 return false;
6367
6368 /* This is the busiest node in its class. */
6369 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6370 return true;
6371
6372 /*
6373 * ASYM_PACKING needs to move all the work to the lowest
6374 * numbered CPUs in the group, therefore mark all groups
6375 * higher than ourself as busy.
6376 */
caeb178c 6377 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6378 if (!sds->busiest)
6379 return true;
6380
6381 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6382 return true;
6383 }
6384
6385 return false;
6386}
6387
0ec8aa00
PZ
6388#ifdef CONFIG_NUMA_BALANCING
6389static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6390{
6391 if (sgs->sum_nr_running > sgs->nr_numa_running)
6392 return regular;
6393 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6394 return remote;
6395 return all;
6396}
6397
6398static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6399{
6400 if (rq->nr_running > rq->nr_numa_running)
6401 return regular;
6402 if (rq->nr_running > rq->nr_preferred_running)
6403 return remote;
6404 return all;
6405}
6406#else
6407static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6408{
6409 return all;
6410}
6411
6412static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6413{
6414 return regular;
6415}
6416#endif /* CONFIG_NUMA_BALANCING */
6417
1e3c88bd 6418/**
461819ac 6419 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6420 * @env: The load balancing environment.
1e3c88bd
PZ
6421 * @sds: variable to hold the statistics for this sched_domain.
6422 */
0ec8aa00 6423static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6424{
bd939f45
PZ
6425 struct sched_domain *child = env->sd->child;
6426 struct sched_group *sg = env->sd->groups;
56cf515b 6427 struct sg_lb_stats tmp_sgs;
1e3c88bd 6428 int load_idx, prefer_sibling = 0;
4486edd1 6429 bool overload = false;
1e3c88bd
PZ
6430
6431 if (child && child->flags & SD_PREFER_SIBLING)
6432 prefer_sibling = 1;
6433
bd939f45 6434 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6435
6436 do {
56cf515b 6437 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6438 int local_group;
6439
bd939f45 6440 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6441 if (local_group) {
6442 sds->local = sg;
6443 sgs = &sds->local_stat;
b72ff13c
PZ
6444
6445 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6446 time_after_eq(jiffies, sg->sgc->next_update))
6447 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6448 }
1e3c88bd 6449
4486edd1
TC
6450 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6451 &overload);
1e3c88bd 6452
b72ff13c
PZ
6453 if (local_group)
6454 goto next_group;
6455
1e3c88bd
PZ
6456 /*
6457 * In case the child domain prefers tasks go to siblings
ea67821b 6458 * first, lower the sg capacity so that we'll try
75dd321d
NR
6459 * and move all the excess tasks away. We lower the capacity
6460 * of a group only if the local group has the capacity to fit
ea67821b
VG
6461 * these excess tasks. The extra check prevents the case where
6462 * you always pull from the heaviest group when it is already
6463 * under-utilized (possible with a large weight task outweighs
6464 * the tasks on the system).
1e3c88bd 6465 */
b72ff13c 6466 if (prefer_sibling && sds->local &&
ea67821b
VG
6467 group_has_capacity(env, &sds->local_stat) &&
6468 (sgs->sum_nr_running > 1)) {
6469 sgs->group_no_capacity = 1;
6470 sgs->group_type = group_overloaded;
cb0b9f24 6471 }
1e3c88bd 6472
b72ff13c 6473 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6474 sds->busiest = sg;
56cf515b 6475 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6476 }
6477
b72ff13c
PZ
6478next_group:
6479 /* Now, start updating sd_lb_stats */
6480 sds->total_load += sgs->group_load;
63b2ca30 6481 sds->total_capacity += sgs->group_capacity;
b72ff13c 6482
532cb4c4 6483 sg = sg->next;
bd939f45 6484 } while (sg != env->sd->groups);
0ec8aa00
PZ
6485
6486 if (env->sd->flags & SD_NUMA)
6487 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6488
6489 if (!env->sd->parent) {
6490 /* update overload indicator if we are at root domain */
6491 if (env->dst_rq->rd->overload != overload)
6492 env->dst_rq->rd->overload = overload;
6493 }
6494
532cb4c4
MN
6495}
6496
532cb4c4
MN
6497/**
6498 * check_asym_packing - Check to see if the group is packed into the
6499 * sched doman.
6500 *
6501 * This is primarily intended to used at the sibling level. Some
6502 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6503 * case of POWER7, it can move to lower SMT modes only when higher
6504 * threads are idle. When in lower SMT modes, the threads will
6505 * perform better since they share less core resources. Hence when we
6506 * have idle threads, we want them to be the higher ones.
6507 *
6508 * This packing function is run on idle threads. It checks to see if
6509 * the busiest CPU in this domain (core in the P7 case) has a higher
6510 * CPU number than the packing function is being run on. Here we are
6511 * assuming lower CPU number will be equivalent to lower a SMT thread
6512 * number.
6513 *
e69f6186 6514 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6515 * this CPU. The amount of the imbalance is returned in *imbalance.
6516 *
cd96891d 6517 * @env: The load balancing environment.
532cb4c4 6518 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6519 */
bd939f45 6520static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6521{
6522 int busiest_cpu;
6523
bd939f45 6524 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6525 return 0;
6526
6527 if (!sds->busiest)
6528 return 0;
6529
6530 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6531 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6532 return 0;
6533
bd939f45 6534 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6535 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6536 SCHED_CAPACITY_SCALE);
bd939f45 6537
532cb4c4 6538 return 1;
1e3c88bd
PZ
6539}
6540
6541/**
6542 * fix_small_imbalance - Calculate the minor imbalance that exists
6543 * amongst the groups of a sched_domain, during
6544 * load balancing.
cd96891d 6545 * @env: The load balancing environment.
1e3c88bd 6546 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6547 */
bd939f45
PZ
6548static inline
6549void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6550{
63b2ca30 6551 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6552 unsigned int imbn = 2;
dd5feea1 6553 unsigned long scaled_busy_load_per_task;
56cf515b 6554 struct sg_lb_stats *local, *busiest;
1e3c88bd 6555
56cf515b
JK
6556 local = &sds->local_stat;
6557 busiest = &sds->busiest_stat;
1e3c88bd 6558
56cf515b
JK
6559 if (!local->sum_nr_running)
6560 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6561 else if (busiest->load_per_task > local->load_per_task)
6562 imbn = 1;
dd5feea1 6563
56cf515b 6564 scaled_busy_load_per_task =
ca8ce3d0 6565 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6566 busiest->group_capacity;
56cf515b 6567
3029ede3
VD
6568 if (busiest->avg_load + scaled_busy_load_per_task >=
6569 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6570 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6571 return;
6572 }
6573
6574 /*
6575 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6576 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6577 * moving them.
6578 */
6579
63b2ca30 6580 capa_now += busiest->group_capacity *
56cf515b 6581 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6582 capa_now += local->group_capacity *
56cf515b 6583 min(local->load_per_task, local->avg_load);
ca8ce3d0 6584 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6585
6586 /* Amount of load we'd subtract */
a2cd4260 6587 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6588 capa_move += busiest->group_capacity *
56cf515b 6589 min(busiest->load_per_task,
a2cd4260 6590 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6591 }
1e3c88bd
PZ
6592
6593 /* Amount of load we'd add */
63b2ca30 6594 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6595 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6596 tmp = (busiest->avg_load * busiest->group_capacity) /
6597 local->group_capacity;
56cf515b 6598 } else {
ca8ce3d0 6599 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6600 local->group_capacity;
56cf515b 6601 }
63b2ca30 6602 capa_move += local->group_capacity *
3ae11c90 6603 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6604 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6605
6606 /* Move if we gain throughput */
63b2ca30 6607 if (capa_move > capa_now)
56cf515b 6608 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6609}
6610
6611/**
6612 * calculate_imbalance - Calculate the amount of imbalance present within the
6613 * groups of a given sched_domain during load balance.
bd939f45 6614 * @env: load balance environment
1e3c88bd 6615 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6616 */
bd939f45 6617static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6618{
dd5feea1 6619 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6620 struct sg_lb_stats *local, *busiest;
6621
6622 local = &sds->local_stat;
56cf515b 6623 busiest = &sds->busiest_stat;
dd5feea1 6624
caeb178c 6625 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6626 /*
6627 * In the group_imb case we cannot rely on group-wide averages
6628 * to ensure cpu-load equilibrium, look at wider averages. XXX
6629 */
56cf515b
JK
6630 busiest->load_per_task =
6631 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6632 }
6633
1e3c88bd
PZ
6634 /*
6635 * In the presence of smp nice balancing, certain scenarios can have
6636 * max load less than avg load(as we skip the groups at or below
ced549fa 6637 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6638 */
b1885550
VD
6639 if (busiest->avg_load <= sds->avg_load ||
6640 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6641 env->imbalance = 0;
6642 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6643 }
6644
9a5d9ba6
PZ
6645 /*
6646 * If there aren't any idle cpus, avoid creating some.
6647 */
6648 if (busiest->group_type == group_overloaded &&
6649 local->group_type == group_overloaded) {
ea67821b
VG
6650 load_above_capacity = busiest->sum_nr_running *
6651 SCHED_LOAD_SCALE;
6652 if (load_above_capacity > busiest->group_capacity)
6653 load_above_capacity -= busiest->group_capacity;
6654 else
6655 load_above_capacity = ~0UL;
dd5feea1
SS
6656 }
6657
6658 /*
6659 * We're trying to get all the cpus to the average_load, so we don't
6660 * want to push ourselves above the average load, nor do we wish to
6661 * reduce the max loaded cpu below the average load. At the same time,
6662 * we also don't want to reduce the group load below the group capacity
6663 * (so that we can implement power-savings policies etc). Thus we look
6664 * for the minimum possible imbalance.
dd5feea1 6665 */
30ce5dab 6666 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6667
6668 /* How much load to actually move to equalise the imbalance */
56cf515b 6669 env->imbalance = min(
63b2ca30
NP
6670 max_pull * busiest->group_capacity,
6671 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6672 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6673
6674 /*
6675 * if *imbalance is less than the average load per runnable task
25985edc 6676 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6677 * a think about bumping its value to force at least one task to be
6678 * moved
6679 */
56cf515b 6680 if (env->imbalance < busiest->load_per_task)
bd939f45 6681 return fix_small_imbalance(env, sds);
1e3c88bd 6682}
fab47622 6683
1e3c88bd
PZ
6684/******* find_busiest_group() helpers end here *********************/
6685
6686/**
6687 * find_busiest_group - Returns the busiest group within the sched_domain
6688 * if there is an imbalance. If there isn't an imbalance, and
6689 * the user has opted for power-savings, it returns a group whose
6690 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6691 * such a group exists.
6692 *
6693 * Also calculates the amount of weighted load which should be moved
6694 * to restore balance.
6695 *
cd96891d 6696 * @env: The load balancing environment.
1e3c88bd 6697 *
e69f6186 6698 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6699 * - If no imbalance and user has opted for power-savings balance,
6700 * return the least loaded group whose CPUs can be
6701 * put to idle by rebalancing its tasks onto our group.
6702 */
56cf515b 6703static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6704{
56cf515b 6705 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6706 struct sd_lb_stats sds;
6707
147c5fc2 6708 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6709
6710 /*
6711 * Compute the various statistics relavent for load balancing at
6712 * this level.
6713 */
23f0d209 6714 update_sd_lb_stats(env, &sds);
56cf515b
JK
6715 local = &sds.local_stat;
6716 busiest = &sds.busiest_stat;
1e3c88bd 6717
ea67821b 6718 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6719 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6720 check_asym_packing(env, &sds))
532cb4c4
MN
6721 return sds.busiest;
6722
cc57aa8f 6723 /* There is no busy sibling group to pull tasks from */
56cf515b 6724 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6725 goto out_balanced;
6726
ca8ce3d0
NP
6727 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6728 / sds.total_capacity;
b0432d8f 6729
866ab43e
PZ
6730 /*
6731 * If the busiest group is imbalanced the below checks don't
30ce5dab 6732 * work because they assume all things are equal, which typically
866ab43e
PZ
6733 * isn't true due to cpus_allowed constraints and the like.
6734 */
caeb178c 6735 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6736 goto force_balance;
6737
cc57aa8f 6738 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6739 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6740 busiest->group_no_capacity)
fab47622
NR
6741 goto force_balance;
6742
cc57aa8f 6743 /*
9c58c79a 6744 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6745 * don't try and pull any tasks.
6746 */
56cf515b 6747 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6748 goto out_balanced;
6749
cc57aa8f
PZ
6750 /*
6751 * Don't pull any tasks if this group is already above the domain
6752 * average load.
6753 */
56cf515b 6754 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6755 goto out_balanced;
6756
bd939f45 6757 if (env->idle == CPU_IDLE) {
aae6d3dd 6758 /*
43f4d666
VG
6759 * This cpu is idle. If the busiest group is not overloaded
6760 * and there is no imbalance between this and busiest group
6761 * wrt idle cpus, it is balanced. The imbalance becomes
6762 * significant if the diff is greater than 1 otherwise we
6763 * might end up to just move the imbalance on another group
aae6d3dd 6764 */
43f4d666
VG
6765 if ((busiest->group_type != group_overloaded) &&
6766 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6767 goto out_balanced;
c186fafe
PZ
6768 } else {
6769 /*
6770 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6771 * imbalance_pct to be conservative.
6772 */
56cf515b
JK
6773 if (100 * busiest->avg_load <=
6774 env->sd->imbalance_pct * local->avg_load)
c186fafe 6775 goto out_balanced;
aae6d3dd 6776 }
1e3c88bd 6777
fab47622 6778force_balance:
1e3c88bd 6779 /* Looks like there is an imbalance. Compute it */
bd939f45 6780 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6781 return sds.busiest;
6782
6783out_balanced:
bd939f45 6784 env->imbalance = 0;
1e3c88bd
PZ
6785 return NULL;
6786}
6787
6788/*
6789 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6790 */
bd939f45 6791static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6792 struct sched_group *group)
1e3c88bd
PZ
6793{
6794 struct rq *busiest = NULL, *rq;
ced549fa 6795 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6796 int i;
6797
6906a408 6798 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6799 unsigned long capacity, wl;
0ec8aa00
PZ
6800 enum fbq_type rt;
6801
6802 rq = cpu_rq(i);
6803 rt = fbq_classify_rq(rq);
1e3c88bd 6804
0ec8aa00
PZ
6805 /*
6806 * We classify groups/runqueues into three groups:
6807 * - regular: there are !numa tasks
6808 * - remote: there are numa tasks that run on the 'wrong' node
6809 * - all: there is no distinction
6810 *
6811 * In order to avoid migrating ideally placed numa tasks,
6812 * ignore those when there's better options.
6813 *
6814 * If we ignore the actual busiest queue to migrate another
6815 * task, the next balance pass can still reduce the busiest
6816 * queue by moving tasks around inside the node.
6817 *
6818 * If we cannot move enough load due to this classification
6819 * the next pass will adjust the group classification and
6820 * allow migration of more tasks.
6821 *
6822 * Both cases only affect the total convergence complexity.
6823 */
6824 if (rt > env->fbq_type)
6825 continue;
6826
ced549fa 6827 capacity = capacity_of(i);
9d5efe05 6828
6e40f5bb 6829 wl = weighted_cpuload(i);
1e3c88bd 6830
6e40f5bb
TG
6831 /*
6832 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6833 * which is not scaled with the cpu capacity.
6e40f5bb 6834 */
ea67821b
VG
6835
6836 if (rq->nr_running == 1 && wl > env->imbalance &&
6837 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6838 continue;
6839
6e40f5bb
TG
6840 /*
6841 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6842 * the weighted_cpuload() scaled with the cpu capacity, so
6843 * that the load can be moved away from the cpu that is
6844 * potentially running at a lower capacity.
95a79b80 6845 *
ced549fa 6846 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6847 * multiplication to rid ourselves of the division works out
ced549fa
NP
6848 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6849 * our previous maximum.
6e40f5bb 6850 */
ced549fa 6851 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6852 busiest_load = wl;
ced549fa 6853 busiest_capacity = capacity;
1e3c88bd
PZ
6854 busiest = rq;
6855 }
6856 }
6857
6858 return busiest;
6859}
6860
6861/*
6862 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6863 * so long as it is large enough.
6864 */
6865#define MAX_PINNED_INTERVAL 512
6866
6867/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6868DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6869
bd939f45 6870static int need_active_balance(struct lb_env *env)
1af3ed3d 6871{
bd939f45
PZ
6872 struct sched_domain *sd = env->sd;
6873
6874 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6875
6876 /*
6877 * ASYM_PACKING needs to force migrate tasks from busy but
6878 * higher numbered CPUs in order to pack all tasks in the
6879 * lowest numbered CPUs.
6880 */
bd939f45 6881 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6882 return 1;
1af3ed3d
PZ
6883 }
6884
1aaf90a4
VG
6885 /*
6886 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6887 * It's worth migrating the task if the src_cpu's capacity is reduced
6888 * because of other sched_class or IRQs if more capacity stays
6889 * available on dst_cpu.
6890 */
6891 if ((env->idle != CPU_NOT_IDLE) &&
6892 (env->src_rq->cfs.h_nr_running == 1)) {
6893 if ((check_cpu_capacity(env->src_rq, sd)) &&
6894 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6895 return 1;
6896 }
6897
1af3ed3d
PZ
6898 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6899}
6900
969c7921
TH
6901static int active_load_balance_cpu_stop(void *data);
6902
23f0d209
JK
6903static int should_we_balance(struct lb_env *env)
6904{
6905 struct sched_group *sg = env->sd->groups;
6906 struct cpumask *sg_cpus, *sg_mask;
6907 int cpu, balance_cpu = -1;
6908
6909 /*
6910 * In the newly idle case, we will allow all the cpu's
6911 * to do the newly idle load balance.
6912 */
6913 if (env->idle == CPU_NEWLY_IDLE)
6914 return 1;
6915
6916 sg_cpus = sched_group_cpus(sg);
6917 sg_mask = sched_group_mask(sg);
6918 /* Try to find first idle cpu */
6919 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6920 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6921 continue;
6922
6923 balance_cpu = cpu;
6924 break;
6925 }
6926
6927 if (balance_cpu == -1)
6928 balance_cpu = group_balance_cpu(sg);
6929
6930 /*
6931 * First idle cpu or the first cpu(busiest) in this sched group
6932 * is eligible for doing load balancing at this and above domains.
6933 */
b0cff9d8 6934 return balance_cpu == env->dst_cpu;
23f0d209
JK
6935}
6936
1e3c88bd
PZ
6937/*
6938 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6939 * tasks if there is an imbalance.
6940 */
6941static int load_balance(int this_cpu, struct rq *this_rq,
6942 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6943 int *continue_balancing)
1e3c88bd 6944{
88b8dac0 6945 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6946 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6947 struct sched_group *group;
1e3c88bd
PZ
6948 struct rq *busiest;
6949 unsigned long flags;
4ba29684 6950 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6951
8e45cb54
PZ
6952 struct lb_env env = {
6953 .sd = sd,
ddcdf6e7
PZ
6954 .dst_cpu = this_cpu,
6955 .dst_rq = this_rq,
88b8dac0 6956 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6957 .idle = idle,
eb95308e 6958 .loop_break = sched_nr_migrate_break,
b9403130 6959 .cpus = cpus,
0ec8aa00 6960 .fbq_type = all,
163122b7 6961 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6962 };
6963
cfc03118
JK
6964 /*
6965 * For NEWLY_IDLE load_balancing, we don't need to consider
6966 * other cpus in our group
6967 */
e02e60c1 6968 if (idle == CPU_NEWLY_IDLE)
cfc03118 6969 env.dst_grpmask = NULL;
cfc03118 6970
1e3c88bd
PZ
6971 cpumask_copy(cpus, cpu_active_mask);
6972
1e3c88bd
PZ
6973 schedstat_inc(sd, lb_count[idle]);
6974
6975redo:
23f0d209
JK
6976 if (!should_we_balance(&env)) {
6977 *continue_balancing = 0;
1e3c88bd 6978 goto out_balanced;
23f0d209 6979 }
1e3c88bd 6980
23f0d209 6981 group = find_busiest_group(&env);
1e3c88bd
PZ
6982 if (!group) {
6983 schedstat_inc(sd, lb_nobusyg[idle]);
6984 goto out_balanced;
6985 }
6986
b9403130 6987 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6988 if (!busiest) {
6989 schedstat_inc(sd, lb_nobusyq[idle]);
6990 goto out_balanced;
6991 }
6992
78feefc5 6993 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6994
bd939f45 6995 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6996
1aaf90a4
VG
6997 env.src_cpu = busiest->cpu;
6998 env.src_rq = busiest;
6999
1e3c88bd
PZ
7000 ld_moved = 0;
7001 if (busiest->nr_running > 1) {
7002 /*
7003 * Attempt to move tasks. If find_busiest_group has found
7004 * an imbalance but busiest->nr_running <= 1, the group is
7005 * still unbalanced. ld_moved simply stays zero, so it is
7006 * correctly treated as an imbalance.
7007 */
8e45cb54 7008 env.flags |= LBF_ALL_PINNED;
c82513e5 7009 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7010
5d6523eb 7011more_balance:
163122b7 7012 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7013
7014 /*
7015 * cur_ld_moved - load moved in current iteration
7016 * ld_moved - cumulative load moved across iterations
7017 */
163122b7 7018 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7019
7020 /*
163122b7
KT
7021 * We've detached some tasks from busiest_rq. Every
7022 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7023 * unlock busiest->lock, and we are able to be sure
7024 * that nobody can manipulate the tasks in parallel.
7025 * See task_rq_lock() family for the details.
1e3c88bd 7026 */
163122b7
KT
7027
7028 raw_spin_unlock(&busiest->lock);
7029
7030 if (cur_ld_moved) {
7031 attach_tasks(&env);
7032 ld_moved += cur_ld_moved;
7033 }
7034
1e3c88bd 7035 local_irq_restore(flags);
88b8dac0 7036
f1cd0858
JK
7037 if (env.flags & LBF_NEED_BREAK) {
7038 env.flags &= ~LBF_NEED_BREAK;
7039 goto more_balance;
7040 }
7041
88b8dac0
SV
7042 /*
7043 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7044 * us and move them to an alternate dst_cpu in our sched_group
7045 * where they can run. The upper limit on how many times we
7046 * iterate on same src_cpu is dependent on number of cpus in our
7047 * sched_group.
7048 *
7049 * This changes load balance semantics a bit on who can move
7050 * load to a given_cpu. In addition to the given_cpu itself
7051 * (or a ilb_cpu acting on its behalf where given_cpu is
7052 * nohz-idle), we now have balance_cpu in a position to move
7053 * load to given_cpu. In rare situations, this may cause
7054 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7055 * _independently_ and at _same_ time to move some load to
7056 * given_cpu) causing exceess load to be moved to given_cpu.
7057 * This however should not happen so much in practice and
7058 * moreover subsequent load balance cycles should correct the
7059 * excess load moved.
7060 */
6263322c 7061 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7062
7aff2e3a
VD
7063 /* Prevent to re-select dst_cpu via env's cpus */
7064 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7065
78feefc5 7066 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7067 env.dst_cpu = env.new_dst_cpu;
6263322c 7068 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7069 env.loop = 0;
7070 env.loop_break = sched_nr_migrate_break;
e02e60c1 7071
88b8dac0
SV
7072 /*
7073 * Go back to "more_balance" rather than "redo" since we
7074 * need to continue with same src_cpu.
7075 */
7076 goto more_balance;
7077 }
1e3c88bd 7078
6263322c
PZ
7079 /*
7080 * We failed to reach balance because of affinity.
7081 */
7082 if (sd_parent) {
63b2ca30 7083 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7084
afdeee05 7085 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7086 *group_imbalance = 1;
6263322c
PZ
7087 }
7088
1e3c88bd 7089 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7090 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7091 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7092 if (!cpumask_empty(cpus)) {
7093 env.loop = 0;
7094 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7095 goto redo;
bbf18b19 7096 }
afdeee05 7097 goto out_all_pinned;
1e3c88bd
PZ
7098 }
7099 }
7100
7101 if (!ld_moved) {
7102 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7103 /*
7104 * Increment the failure counter only on periodic balance.
7105 * We do not want newidle balance, which can be very
7106 * frequent, pollute the failure counter causing
7107 * excessive cache_hot migrations and active balances.
7108 */
7109 if (idle != CPU_NEWLY_IDLE)
7110 sd->nr_balance_failed++;
1e3c88bd 7111
bd939f45 7112 if (need_active_balance(&env)) {
1e3c88bd
PZ
7113 raw_spin_lock_irqsave(&busiest->lock, flags);
7114
969c7921
TH
7115 /* don't kick the active_load_balance_cpu_stop,
7116 * if the curr task on busiest cpu can't be
7117 * moved to this_cpu
1e3c88bd
PZ
7118 */
7119 if (!cpumask_test_cpu(this_cpu,
fa17b507 7120 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7121 raw_spin_unlock_irqrestore(&busiest->lock,
7122 flags);
8e45cb54 7123 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7124 goto out_one_pinned;
7125 }
7126
969c7921
TH
7127 /*
7128 * ->active_balance synchronizes accesses to
7129 * ->active_balance_work. Once set, it's cleared
7130 * only after active load balance is finished.
7131 */
1e3c88bd
PZ
7132 if (!busiest->active_balance) {
7133 busiest->active_balance = 1;
7134 busiest->push_cpu = this_cpu;
7135 active_balance = 1;
7136 }
7137 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7138
bd939f45 7139 if (active_balance) {
969c7921
TH
7140 stop_one_cpu_nowait(cpu_of(busiest),
7141 active_load_balance_cpu_stop, busiest,
7142 &busiest->active_balance_work);
bd939f45 7143 }
1e3c88bd
PZ
7144
7145 /*
7146 * We've kicked active balancing, reset the failure
7147 * counter.
7148 */
7149 sd->nr_balance_failed = sd->cache_nice_tries+1;
7150 }
7151 } else
7152 sd->nr_balance_failed = 0;
7153
7154 if (likely(!active_balance)) {
7155 /* We were unbalanced, so reset the balancing interval */
7156 sd->balance_interval = sd->min_interval;
7157 } else {
7158 /*
7159 * If we've begun active balancing, start to back off. This
7160 * case may not be covered by the all_pinned logic if there
7161 * is only 1 task on the busy runqueue (because we don't call
163122b7 7162 * detach_tasks).
1e3c88bd
PZ
7163 */
7164 if (sd->balance_interval < sd->max_interval)
7165 sd->balance_interval *= 2;
7166 }
7167
1e3c88bd
PZ
7168 goto out;
7169
7170out_balanced:
afdeee05
VG
7171 /*
7172 * We reach balance although we may have faced some affinity
7173 * constraints. Clear the imbalance flag if it was set.
7174 */
7175 if (sd_parent) {
7176 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7177
7178 if (*group_imbalance)
7179 *group_imbalance = 0;
7180 }
7181
7182out_all_pinned:
7183 /*
7184 * We reach balance because all tasks are pinned at this level so
7185 * we can't migrate them. Let the imbalance flag set so parent level
7186 * can try to migrate them.
7187 */
1e3c88bd
PZ
7188 schedstat_inc(sd, lb_balanced[idle]);
7189
7190 sd->nr_balance_failed = 0;
7191
7192out_one_pinned:
7193 /* tune up the balancing interval */
8e45cb54 7194 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7195 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7196 (sd->balance_interval < sd->max_interval))
7197 sd->balance_interval *= 2;
7198
46e49b38 7199 ld_moved = 0;
1e3c88bd 7200out:
1e3c88bd
PZ
7201 return ld_moved;
7202}
7203
52a08ef1
JL
7204static inline unsigned long
7205get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7206{
7207 unsigned long interval = sd->balance_interval;
7208
7209 if (cpu_busy)
7210 interval *= sd->busy_factor;
7211
7212 /* scale ms to jiffies */
7213 interval = msecs_to_jiffies(interval);
7214 interval = clamp(interval, 1UL, max_load_balance_interval);
7215
7216 return interval;
7217}
7218
7219static inline void
7220update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7221{
7222 unsigned long interval, next;
7223
7224 interval = get_sd_balance_interval(sd, cpu_busy);
7225 next = sd->last_balance + interval;
7226
7227 if (time_after(*next_balance, next))
7228 *next_balance = next;
7229}
7230
1e3c88bd
PZ
7231/*
7232 * idle_balance is called by schedule() if this_cpu is about to become
7233 * idle. Attempts to pull tasks from other CPUs.
7234 */
6e83125c 7235static int idle_balance(struct rq *this_rq)
1e3c88bd 7236{
52a08ef1
JL
7237 unsigned long next_balance = jiffies + HZ;
7238 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7239 struct sched_domain *sd;
7240 int pulled_task = 0;
9bd721c5 7241 u64 curr_cost = 0;
1e3c88bd 7242
6e83125c 7243 idle_enter_fair(this_rq);
0e5b5337 7244
6e83125c
PZ
7245 /*
7246 * We must set idle_stamp _before_ calling idle_balance(), such that we
7247 * measure the duration of idle_balance() as idle time.
7248 */
7249 this_rq->idle_stamp = rq_clock(this_rq);
7250
4486edd1
TC
7251 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7252 !this_rq->rd->overload) {
52a08ef1
JL
7253 rcu_read_lock();
7254 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7255 if (sd)
7256 update_next_balance(sd, 0, &next_balance);
7257 rcu_read_unlock();
7258
6e83125c 7259 goto out;
52a08ef1 7260 }
1e3c88bd 7261
f492e12e
PZ
7262 raw_spin_unlock(&this_rq->lock);
7263
48a16753 7264 update_blocked_averages(this_cpu);
dce840a0 7265 rcu_read_lock();
1e3c88bd 7266 for_each_domain(this_cpu, sd) {
23f0d209 7267 int continue_balancing = 1;
9bd721c5 7268 u64 t0, domain_cost;
1e3c88bd
PZ
7269
7270 if (!(sd->flags & SD_LOAD_BALANCE))
7271 continue;
7272
52a08ef1
JL
7273 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7274 update_next_balance(sd, 0, &next_balance);
9bd721c5 7275 break;
52a08ef1 7276 }
9bd721c5 7277
f492e12e 7278 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7279 t0 = sched_clock_cpu(this_cpu);
7280
f492e12e 7281 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7282 sd, CPU_NEWLY_IDLE,
7283 &continue_balancing);
9bd721c5
JL
7284
7285 domain_cost = sched_clock_cpu(this_cpu) - t0;
7286 if (domain_cost > sd->max_newidle_lb_cost)
7287 sd->max_newidle_lb_cost = domain_cost;
7288
7289 curr_cost += domain_cost;
f492e12e 7290 }
1e3c88bd 7291
52a08ef1 7292 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7293
7294 /*
7295 * Stop searching for tasks to pull if there are
7296 * now runnable tasks on this rq.
7297 */
7298 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7299 break;
1e3c88bd 7300 }
dce840a0 7301 rcu_read_unlock();
f492e12e
PZ
7302
7303 raw_spin_lock(&this_rq->lock);
7304
0e5b5337
JL
7305 if (curr_cost > this_rq->max_idle_balance_cost)
7306 this_rq->max_idle_balance_cost = curr_cost;
7307
e5fc6611 7308 /*
0e5b5337
JL
7309 * While browsing the domains, we released the rq lock, a task could
7310 * have been enqueued in the meantime. Since we're not going idle,
7311 * pretend we pulled a task.
e5fc6611 7312 */
0e5b5337 7313 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7314 pulled_task = 1;
e5fc6611 7315
52a08ef1
JL
7316out:
7317 /* Move the next balance forward */
7318 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7319 this_rq->next_balance = next_balance;
9bd721c5 7320
e4aa358b 7321 /* Is there a task of a high priority class? */
46383648 7322 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7323 pulled_task = -1;
7324
7325 if (pulled_task) {
7326 idle_exit_fair(this_rq);
6e83125c 7327 this_rq->idle_stamp = 0;
e4aa358b 7328 }
6e83125c 7329
3c4017c1 7330 return pulled_task;
1e3c88bd
PZ
7331}
7332
7333/*
969c7921
TH
7334 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7335 * running tasks off the busiest CPU onto idle CPUs. It requires at
7336 * least 1 task to be running on each physical CPU where possible, and
7337 * avoids physical / logical imbalances.
1e3c88bd 7338 */
969c7921 7339static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7340{
969c7921
TH
7341 struct rq *busiest_rq = data;
7342 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7343 int target_cpu = busiest_rq->push_cpu;
969c7921 7344 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7345 struct sched_domain *sd;
e5673f28 7346 struct task_struct *p = NULL;
969c7921
TH
7347
7348 raw_spin_lock_irq(&busiest_rq->lock);
7349
7350 /* make sure the requested cpu hasn't gone down in the meantime */
7351 if (unlikely(busiest_cpu != smp_processor_id() ||
7352 !busiest_rq->active_balance))
7353 goto out_unlock;
1e3c88bd
PZ
7354
7355 /* Is there any task to move? */
7356 if (busiest_rq->nr_running <= 1)
969c7921 7357 goto out_unlock;
1e3c88bd
PZ
7358
7359 /*
7360 * This condition is "impossible", if it occurs
7361 * we need to fix it. Originally reported by
7362 * Bjorn Helgaas on a 128-cpu setup.
7363 */
7364 BUG_ON(busiest_rq == target_rq);
7365
1e3c88bd 7366 /* Search for an sd spanning us and the target CPU. */
dce840a0 7367 rcu_read_lock();
1e3c88bd
PZ
7368 for_each_domain(target_cpu, sd) {
7369 if ((sd->flags & SD_LOAD_BALANCE) &&
7370 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7371 break;
7372 }
7373
7374 if (likely(sd)) {
8e45cb54
PZ
7375 struct lb_env env = {
7376 .sd = sd,
ddcdf6e7
PZ
7377 .dst_cpu = target_cpu,
7378 .dst_rq = target_rq,
7379 .src_cpu = busiest_rq->cpu,
7380 .src_rq = busiest_rq,
8e45cb54
PZ
7381 .idle = CPU_IDLE,
7382 };
7383
1e3c88bd
PZ
7384 schedstat_inc(sd, alb_count);
7385
e5673f28
KT
7386 p = detach_one_task(&env);
7387 if (p)
1e3c88bd
PZ
7388 schedstat_inc(sd, alb_pushed);
7389 else
7390 schedstat_inc(sd, alb_failed);
7391 }
dce840a0 7392 rcu_read_unlock();
969c7921
TH
7393out_unlock:
7394 busiest_rq->active_balance = 0;
e5673f28
KT
7395 raw_spin_unlock(&busiest_rq->lock);
7396
7397 if (p)
7398 attach_one_task(target_rq, p);
7399
7400 local_irq_enable();
7401
969c7921 7402 return 0;
1e3c88bd
PZ
7403}
7404
d987fc7f
MG
7405static inline int on_null_domain(struct rq *rq)
7406{
7407 return unlikely(!rcu_dereference_sched(rq->sd));
7408}
7409
3451d024 7410#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7411/*
7412 * idle load balancing details
83cd4fe2
VP
7413 * - When one of the busy CPUs notice that there may be an idle rebalancing
7414 * needed, they will kick the idle load balancer, which then does idle
7415 * load balancing for all the idle CPUs.
7416 */
1e3c88bd 7417static struct {
83cd4fe2 7418 cpumask_var_t idle_cpus_mask;
0b005cf5 7419 atomic_t nr_cpus;
83cd4fe2
VP
7420 unsigned long next_balance; /* in jiffy units */
7421} nohz ____cacheline_aligned;
1e3c88bd 7422
3dd0337d 7423static inline int find_new_ilb(void)
1e3c88bd 7424{
0b005cf5 7425 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7426
786d6dc7
SS
7427 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7428 return ilb;
7429
7430 return nr_cpu_ids;
1e3c88bd 7431}
1e3c88bd 7432
83cd4fe2
VP
7433/*
7434 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7435 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7436 * CPU (if there is one).
7437 */
0aeeeeba 7438static void nohz_balancer_kick(void)
83cd4fe2
VP
7439{
7440 int ilb_cpu;
7441
7442 nohz.next_balance++;
7443
3dd0337d 7444 ilb_cpu = find_new_ilb();
83cd4fe2 7445
0b005cf5
SS
7446 if (ilb_cpu >= nr_cpu_ids)
7447 return;
83cd4fe2 7448
cd490c5b 7449 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7450 return;
7451 /*
7452 * Use smp_send_reschedule() instead of resched_cpu().
7453 * This way we generate a sched IPI on the target cpu which
7454 * is idle. And the softirq performing nohz idle load balance
7455 * will be run before returning from the IPI.
7456 */
7457 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7458 return;
7459}
7460
c1cc017c 7461static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7462{
7463 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7464 /*
7465 * Completely isolated CPUs don't ever set, so we must test.
7466 */
7467 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7468 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7469 atomic_dec(&nohz.nr_cpus);
7470 }
71325960
SS
7471 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7472 }
7473}
7474
69e1e811
SS
7475static inline void set_cpu_sd_state_busy(void)
7476{
7477 struct sched_domain *sd;
37dc6b50 7478 int cpu = smp_processor_id();
69e1e811 7479
69e1e811 7480 rcu_read_lock();
37dc6b50 7481 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7482
7483 if (!sd || !sd->nohz_idle)
7484 goto unlock;
7485 sd->nohz_idle = 0;
7486
63b2ca30 7487 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7488unlock:
69e1e811
SS
7489 rcu_read_unlock();
7490}
7491
7492void set_cpu_sd_state_idle(void)
7493{
7494 struct sched_domain *sd;
37dc6b50 7495 int cpu = smp_processor_id();
69e1e811 7496
69e1e811 7497 rcu_read_lock();
37dc6b50 7498 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7499
7500 if (!sd || sd->nohz_idle)
7501 goto unlock;
7502 sd->nohz_idle = 1;
7503
63b2ca30 7504 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7505unlock:
69e1e811
SS
7506 rcu_read_unlock();
7507}
7508
1e3c88bd 7509/*
c1cc017c 7510 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7511 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7512 */
c1cc017c 7513void nohz_balance_enter_idle(int cpu)
1e3c88bd 7514{
71325960
SS
7515 /*
7516 * If this cpu is going down, then nothing needs to be done.
7517 */
7518 if (!cpu_active(cpu))
7519 return;
7520
c1cc017c
AS
7521 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7522 return;
1e3c88bd 7523
d987fc7f
MG
7524 /*
7525 * If we're a completely isolated CPU, we don't play.
7526 */
7527 if (on_null_domain(cpu_rq(cpu)))
7528 return;
7529
c1cc017c
AS
7530 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7531 atomic_inc(&nohz.nr_cpus);
7532 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7533}
71325960 7534
0db0628d 7535static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7536 unsigned long action, void *hcpu)
7537{
7538 switch (action & ~CPU_TASKS_FROZEN) {
7539 case CPU_DYING:
c1cc017c 7540 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7541 return NOTIFY_OK;
7542 default:
7543 return NOTIFY_DONE;
7544 }
7545}
1e3c88bd
PZ
7546#endif
7547
7548static DEFINE_SPINLOCK(balancing);
7549
49c022e6
PZ
7550/*
7551 * Scale the max load_balance interval with the number of CPUs in the system.
7552 * This trades load-balance latency on larger machines for less cross talk.
7553 */
029632fb 7554void update_max_interval(void)
49c022e6
PZ
7555{
7556 max_load_balance_interval = HZ*num_online_cpus()/10;
7557}
7558
1e3c88bd
PZ
7559/*
7560 * It checks each scheduling domain to see if it is due to be balanced,
7561 * and initiates a balancing operation if so.
7562 *
b9b0853a 7563 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7564 */
f7ed0a89 7565static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7566{
23f0d209 7567 int continue_balancing = 1;
f7ed0a89 7568 int cpu = rq->cpu;
1e3c88bd 7569 unsigned long interval;
04f733b4 7570 struct sched_domain *sd;
1e3c88bd
PZ
7571 /* Earliest time when we have to do rebalance again */
7572 unsigned long next_balance = jiffies + 60*HZ;
7573 int update_next_balance = 0;
f48627e6
JL
7574 int need_serialize, need_decay = 0;
7575 u64 max_cost = 0;
1e3c88bd 7576
48a16753 7577 update_blocked_averages(cpu);
2069dd75 7578
dce840a0 7579 rcu_read_lock();
1e3c88bd 7580 for_each_domain(cpu, sd) {
f48627e6
JL
7581 /*
7582 * Decay the newidle max times here because this is a regular
7583 * visit to all the domains. Decay ~1% per second.
7584 */
7585 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7586 sd->max_newidle_lb_cost =
7587 (sd->max_newidle_lb_cost * 253) / 256;
7588 sd->next_decay_max_lb_cost = jiffies + HZ;
7589 need_decay = 1;
7590 }
7591 max_cost += sd->max_newidle_lb_cost;
7592
1e3c88bd
PZ
7593 if (!(sd->flags & SD_LOAD_BALANCE))
7594 continue;
7595
f48627e6
JL
7596 /*
7597 * Stop the load balance at this level. There is another
7598 * CPU in our sched group which is doing load balancing more
7599 * actively.
7600 */
7601 if (!continue_balancing) {
7602 if (need_decay)
7603 continue;
7604 break;
7605 }
7606
52a08ef1 7607 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7608
7609 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7610 if (need_serialize) {
7611 if (!spin_trylock(&balancing))
7612 goto out;
7613 }
7614
7615 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7616 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7617 /*
6263322c 7618 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7619 * env->dst_cpu, so we can't know our idle
7620 * state even if we migrated tasks. Update it.
1e3c88bd 7621 */
de5eb2dd 7622 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7623 }
7624 sd->last_balance = jiffies;
52a08ef1 7625 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7626 }
7627 if (need_serialize)
7628 spin_unlock(&balancing);
7629out:
7630 if (time_after(next_balance, sd->last_balance + interval)) {
7631 next_balance = sd->last_balance + interval;
7632 update_next_balance = 1;
7633 }
f48627e6
JL
7634 }
7635 if (need_decay) {
1e3c88bd 7636 /*
f48627e6
JL
7637 * Ensure the rq-wide value also decays but keep it at a
7638 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7639 */
f48627e6
JL
7640 rq->max_idle_balance_cost =
7641 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7642 }
dce840a0 7643 rcu_read_unlock();
1e3c88bd
PZ
7644
7645 /*
7646 * next_balance will be updated only when there is a need.
7647 * When the cpu is attached to null domain for ex, it will not be
7648 * updated.
7649 */
c5afb6a8 7650 if (likely(update_next_balance)) {
1e3c88bd 7651 rq->next_balance = next_balance;
c5afb6a8
VG
7652
7653#ifdef CONFIG_NO_HZ_COMMON
7654 /*
7655 * If this CPU has been elected to perform the nohz idle
7656 * balance. Other idle CPUs have already rebalanced with
7657 * nohz_idle_balance() and nohz.next_balance has been
7658 * updated accordingly. This CPU is now running the idle load
7659 * balance for itself and we need to update the
7660 * nohz.next_balance accordingly.
7661 */
7662 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7663 nohz.next_balance = rq->next_balance;
7664#endif
7665 }
1e3c88bd
PZ
7666}
7667
3451d024 7668#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7669/*
3451d024 7670 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7671 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7672 */
208cb16b 7673static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7674{
208cb16b 7675 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7676 struct rq *rq;
7677 int balance_cpu;
c5afb6a8
VG
7678 /* Earliest time when we have to do rebalance again */
7679 unsigned long next_balance = jiffies + 60*HZ;
7680 int update_next_balance = 0;
83cd4fe2 7681
1c792db7
SS
7682 if (idle != CPU_IDLE ||
7683 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7684 goto end;
83cd4fe2
VP
7685
7686 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7687 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7688 continue;
7689
7690 /*
7691 * If this cpu gets work to do, stop the load balancing
7692 * work being done for other cpus. Next load
7693 * balancing owner will pick it up.
7694 */
1c792db7 7695 if (need_resched())
83cd4fe2 7696 break;
83cd4fe2 7697
5ed4f1d9
VG
7698 rq = cpu_rq(balance_cpu);
7699
ed61bbc6
TC
7700 /*
7701 * If time for next balance is due,
7702 * do the balance.
7703 */
7704 if (time_after_eq(jiffies, rq->next_balance)) {
7705 raw_spin_lock_irq(&rq->lock);
7706 update_rq_clock(rq);
7707 update_idle_cpu_load(rq);
7708 raw_spin_unlock_irq(&rq->lock);
7709 rebalance_domains(rq, CPU_IDLE);
7710 }
83cd4fe2 7711
c5afb6a8
VG
7712 if (time_after(next_balance, rq->next_balance)) {
7713 next_balance = rq->next_balance;
7714 update_next_balance = 1;
7715 }
83cd4fe2 7716 }
c5afb6a8
VG
7717
7718 /*
7719 * next_balance will be updated only when there is a need.
7720 * When the CPU is attached to null domain for ex, it will not be
7721 * updated.
7722 */
7723 if (likely(update_next_balance))
7724 nohz.next_balance = next_balance;
1c792db7
SS
7725end:
7726 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7727}
7728
7729/*
0b005cf5 7730 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7731 * of an idle cpu in the system.
0b005cf5 7732 * - This rq has more than one task.
1aaf90a4
VG
7733 * - This rq has at least one CFS task and the capacity of the CPU is
7734 * significantly reduced because of RT tasks or IRQs.
7735 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7736 * multiple busy cpu.
0b005cf5
SS
7737 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7738 * domain span are idle.
83cd4fe2 7739 */
1aaf90a4 7740static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7741{
7742 unsigned long now = jiffies;
0b005cf5 7743 struct sched_domain *sd;
63b2ca30 7744 struct sched_group_capacity *sgc;
4a725627 7745 int nr_busy, cpu = rq->cpu;
1aaf90a4 7746 bool kick = false;
83cd4fe2 7747
4a725627 7748 if (unlikely(rq->idle_balance))
1aaf90a4 7749 return false;
83cd4fe2 7750
1c792db7
SS
7751 /*
7752 * We may be recently in ticked or tickless idle mode. At the first
7753 * busy tick after returning from idle, we will update the busy stats.
7754 */
69e1e811 7755 set_cpu_sd_state_busy();
c1cc017c 7756 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7757
7758 /*
7759 * None are in tickless mode and hence no need for NOHZ idle load
7760 * balancing.
7761 */
7762 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7763 return false;
1c792db7
SS
7764
7765 if (time_before(now, nohz.next_balance))
1aaf90a4 7766 return false;
83cd4fe2 7767
0b005cf5 7768 if (rq->nr_running >= 2)
1aaf90a4 7769 return true;
83cd4fe2 7770
067491b7 7771 rcu_read_lock();
37dc6b50 7772 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7773 if (sd) {
63b2ca30
NP
7774 sgc = sd->groups->sgc;
7775 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7776
1aaf90a4
VG
7777 if (nr_busy > 1) {
7778 kick = true;
7779 goto unlock;
7780 }
7781
83cd4fe2 7782 }
37dc6b50 7783
1aaf90a4
VG
7784 sd = rcu_dereference(rq->sd);
7785 if (sd) {
7786 if ((rq->cfs.h_nr_running >= 1) &&
7787 check_cpu_capacity(rq, sd)) {
7788 kick = true;
7789 goto unlock;
7790 }
7791 }
37dc6b50 7792
1aaf90a4 7793 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7794 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7795 sched_domain_span(sd)) < cpu)) {
7796 kick = true;
7797 goto unlock;
7798 }
067491b7 7799
1aaf90a4 7800unlock:
067491b7 7801 rcu_read_unlock();
1aaf90a4 7802 return kick;
83cd4fe2
VP
7803}
7804#else
208cb16b 7805static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7806#endif
7807
7808/*
7809 * run_rebalance_domains is triggered when needed from the scheduler tick.
7810 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7811 */
1e3c88bd
PZ
7812static void run_rebalance_domains(struct softirq_action *h)
7813{
208cb16b 7814 struct rq *this_rq = this_rq();
6eb57e0d 7815 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7816 CPU_IDLE : CPU_NOT_IDLE;
7817
1e3c88bd 7818 /*
83cd4fe2 7819 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7820 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7821 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7822 * give the idle cpus a chance to load balance. Else we may
7823 * load balance only within the local sched_domain hierarchy
7824 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7825 */
208cb16b 7826 nohz_idle_balance(this_rq, idle);
d4573c3e 7827 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7828}
7829
1e3c88bd
PZ
7830/*
7831 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7832 */
7caff66f 7833void trigger_load_balance(struct rq *rq)
1e3c88bd 7834{
1e3c88bd 7835 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7836 if (unlikely(on_null_domain(rq)))
7837 return;
7838
7839 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7840 raise_softirq(SCHED_SOFTIRQ);
3451d024 7841#ifdef CONFIG_NO_HZ_COMMON
c726099e 7842 if (nohz_kick_needed(rq))
0aeeeeba 7843 nohz_balancer_kick();
83cd4fe2 7844#endif
1e3c88bd
PZ
7845}
7846
0bcdcf28
CE
7847static void rq_online_fair(struct rq *rq)
7848{
7849 update_sysctl();
0e59bdae
KT
7850
7851 update_runtime_enabled(rq);
0bcdcf28
CE
7852}
7853
7854static void rq_offline_fair(struct rq *rq)
7855{
7856 update_sysctl();
a4c96ae3
PB
7857
7858 /* Ensure any throttled groups are reachable by pick_next_task */
7859 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7860}
7861
55e12e5e 7862#endif /* CONFIG_SMP */
e1d1484f 7863
bf0f6f24
IM
7864/*
7865 * scheduler tick hitting a task of our scheduling class:
7866 */
8f4d37ec 7867static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7868{
7869 struct cfs_rq *cfs_rq;
7870 struct sched_entity *se = &curr->se;
7871
7872 for_each_sched_entity(se) {
7873 cfs_rq = cfs_rq_of(se);
8f4d37ec 7874 entity_tick(cfs_rq, se, queued);
bf0f6f24 7875 }
18bf2805 7876
2a595721 7877 if (!static_branch_unlikely(&sched_numa_balancing))
cbee9f88 7878 task_tick_numa(rq, curr);
bf0f6f24
IM
7879}
7880
7881/*
cd29fe6f
PZ
7882 * called on fork with the child task as argument from the parent's context
7883 * - child not yet on the tasklist
7884 * - preemption disabled
bf0f6f24 7885 */
cd29fe6f 7886static void task_fork_fair(struct task_struct *p)
bf0f6f24 7887{
4fc420c9
DN
7888 struct cfs_rq *cfs_rq;
7889 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7890 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7891 struct rq *rq = this_rq();
7892 unsigned long flags;
7893
05fa785c 7894 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7895
861d034e
PZ
7896 update_rq_clock(rq);
7897
4fc420c9
DN
7898 cfs_rq = task_cfs_rq(current);
7899 curr = cfs_rq->curr;
7900
6c9a27f5
DN
7901 /*
7902 * Not only the cpu but also the task_group of the parent might have
7903 * been changed after parent->se.parent,cfs_rq were copied to
7904 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7905 * of child point to valid ones.
7906 */
7907 rcu_read_lock();
7908 __set_task_cpu(p, this_cpu);
7909 rcu_read_unlock();
bf0f6f24 7910
7109c442 7911 update_curr(cfs_rq);
cd29fe6f 7912
b5d9d734
MG
7913 if (curr)
7914 se->vruntime = curr->vruntime;
aeb73b04 7915 place_entity(cfs_rq, se, 1);
4d78e7b6 7916
cd29fe6f 7917 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7918 /*
edcb60a3
IM
7919 * Upon rescheduling, sched_class::put_prev_task() will place
7920 * 'current' within the tree based on its new key value.
7921 */
4d78e7b6 7922 swap(curr->vruntime, se->vruntime);
8875125e 7923 resched_curr(rq);
4d78e7b6 7924 }
bf0f6f24 7925
88ec22d3
PZ
7926 se->vruntime -= cfs_rq->min_vruntime;
7927
05fa785c 7928 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7929}
7930
cb469845
SR
7931/*
7932 * Priority of the task has changed. Check to see if we preempt
7933 * the current task.
7934 */
da7a735e
PZ
7935static void
7936prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7937{
da0c1e65 7938 if (!task_on_rq_queued(p))
da7a735e
PZ
7939 return;
7940
cb469845
SR
7941 /*
7942 * Reschedule if we are currently running on this runqueue and
7943 * our priority decreased, or if we are not currently running on
7944 * this runqueue and our priority is higher than the current's
7945 */
da7a735e 7946 if (rq->curr == p) {
cb469845 7947 if (p->prio > oldprio)
8875125e 7948 resched_curr(rq);
cb469845 7949 } else
15afe09b 7950 check_preempt_curr(rq, p, 0);
cb469845
SR
7951}
7952
daa59407 7953static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
7954{
7955 struct sched_entity *se = &p->se;
da7a735e
PZ
7956
7957 /*
daa59407
BP
7958 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
7959 * the dequeue_entity(.flags=0) will already have normalized the
7960 * vruntime.
7961 */
7962 if (p->on_rq)
7963 return true;
7964
7965 /*
7966 * When !on_rq, vruntime of the task has usually NOT been normalized.
7967 * But there are some cases where it has already been normalized:
da7a735e 7968 *
daa59407
BP
7969 * - A forked child which is waiting for being woken up by
7970 * wake_up_new_task().
7971 * - A task which has been woken up by try_to_wake_up() and
7972 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 7973 */
daa59407
BP
7974 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
7975 return true;
7976
7977 return false;
7978}
7979
7980static void detach_task_cfs_rq(struct task_struct *p)
7981{
7982 struct sched_entity *se = &p->se;
7983 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7984
7985 if (!vruntime_normalized(p)) {
da7a735e
PZ
7986 /*
7987 * Fix up our vruntime so that the current sleep doesn't
7988 * cause 'unlimited' sleep bonus.
7989 */
7990 place_entity(cfs_rq, se, 0);
7991 se->vruntime -= cfs_rq->min_vruntime;
7992 }
9ee474f5 7993
9d89c257 7994 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 7995 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
7996}
7997
daa59407 7998static void attach_task_cfs_rq(struct task_struct *p)
cb469845 7999{
f36c019c 8000 struct sched_entity *se = &p->se;
daa59407 8001 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8002
8003#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8004 /*
8005 * Since the real-depth could have been changed (only FAIR
8006 * class maintain depth value), reset depth properly.
8007 */
8008 se->depth = se->parent ? se->parent->depth + 1 : 0;
8009#endif
7855a35a 8010
6efdb105 8011 /* Synchronize task with its cfs_rq */
daa59407
BP
8012 attach_entity_load_avg(cfs_rq, se);
8013
8014 if (!vruntime_normalized(p))
8015 se->vruntime += cfs_rq->min_vruntime;
8016}
6efdb105 8017
daa59407
BP
8018static void switched_from_fair(struct rq *rq, struct task_struct *p)
8019{
8020 detach_task_cfs_rq(p);
8021}
8022
8023static void switched_to_fair(struct rq *rq, struct task_struct *p)
8024{
8025 attach_task_cfs_rq(p);
7855a35a 8026
daa59407 8027 if (task_on_rq_queued(p)) {
7855a35a 8028 /*
daa59407
BP
8029 * We were most likely switched from sched_rt, so
8030 * kick off the schedule if running, otherwise just see
8031 * if we can still preempt the current task.
7855a35a 8032 */
daa59407
BP
8033 if (rq->curr == p)
8034 resched_curr(rq);
8035 else
8036 check_preempt_curr(rq, p, 0);
7855a35a 8037 }
cb469845
SR
8038}
8039
83b699ed
SV
8040/* Account for a task changing its policy or group.
8041 *
8042 * This routine is mostly called to set cfs_rq->curr field when a task
8043 * migrates between groups/classes.
8044 */
8045static void set_curr_task_fair(struct rq *rq)
8046{
8047 struct sched_entity *se = &rq->curr->se;
8048
ec12cb7f
PT
8049 for_each_sched_entity(se) {
8050 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8051
8052 set_next_entity(cfs_rq, se);
8053 /* ensure bandwidth has been allocated on our new cfs_rq */
8054 account_cfs_rq_runtime(cfs_rq, 0);
8055 }
83b699ed
SV
8056}
8057
029632fb
PZ
8058void init_cfs_rq(struct cfs_rq *cfs_rq)
8059{
8060 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8061 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8062#ifndef CONFIG_64BIT
8063 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8064#endif
141965c7 8065#ifdef CONFIG_SMP
9d89c257
YD
8066 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8067 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8068#endif
029632fb
PZ
8069}
8070
810b3817 8071#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8072static void task_move_group_fair(struct task_struct *p)
810b3817 8073{
daa59407 8074 detach_task_cfs_rq(p);
b2b5ce02 8075 set_task_rq(p, task_cpu(p));
6efdb105
BP
8076
8077#ifdef CONFIG_SMP
8078 /* Tell se's cfs_rq has been changed -- migrated */
8079 p->se.avg.last_update_time = 0;
8080#endif
daa59407 8081 attach_task_cfs_rq(p);
810b3817 8082}
029632fb
PZ
8083
8084void free_fair_sched_group(struct task_group *tg)
8085{
8086 int i;
8087
8088 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8089
8090 for_each_possible_cpu(i) {
8091 if (tg->cfs_rq)
8092 kfree(tg->cfs_rq[i]);
12695578
YD
8093 if (tg->se) {
8094 if (tg->se[i])
8095 remove_entity_load_avg(tg->se[i]);
029632fb 8096 kfree(tg->se[i]);
12695578 8097 }
029632fb
PZ
8098 }
8099
8100 kfree(tg->cfs_rq);
8101 kfree(tg->se);
8102}
8103
8104int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8105{
8106 struct cfs_rq *cfs_rq;
8107 struct sched_entity *se;
8108 int i;
8109
8110 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8111 if (!tg->cfs_rq)
8112 goto err;
8113 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8114 if (!tg->se)
8115 goto err;
8116
8117 tg->shares = NICE_0_LOAD;
8118
8119 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8120
8121 for_each_possible_cpu(i) {
8122 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8123 GFP_KERNEL, cpu_to_node(i));
8124 if (!cfs_rq)
8125 goto err;
8126
8127 se = kzalloc_node(sizeof(struct sched_entity),
8128 GFP_KERNEL, cpu_to_node(i));
8129 if (!se)
8130 goto err_free_rq;
8131
8132 init_cfs_rq(cfs_rq);
8133 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8134 init_entity_runnable_average(se);
029632fb
PZ
8135 }
8136
8137 return 1;
8138
8139err_free_rq:
8140 kfree(cfs_rq);
8141err:
8142 return 0;
8143}
8144
8145void unregister_fair_sched_group(struct task_group *tg, int cpu)
8146{
8147 struct rq *rq = cpu_rq(cpu);
8148 unsigned long flags;
8149
8150 /*
8151 * Only empty task groups can be destroyed; so we can speculatively
8152 * check on_list without danger of it being re-added.
8153 */
8154 if (!tg->cfs_rq[cpu]->on_list)
8155 return;
8156
8157 raw_spin_lock_irqsave(&rq->lock, flags);
8158 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8159 raw_spin_unlock_irqrestore(&rq->lock, flags);
8160}
8161
8162void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8163 struct sched_entity *se, int cpu,
8164 struct sched_entity *parent)
8165{
8166 struct rq *rq = cpu_rq(cpu);
8167
8168 cfs_rq->tg = tg;
8169 cfs_rq->rq = rq;
029632fb
PZ
8170 init_cfs_rq_runtime(cfs_rq);
8171
8172 tg->cfs_rq[cpu] = cfs_rq;
8173 tg->se[cpu] = se;
8174
8175 /* se could be NULL for root_task_group */
8176 if (!se)
8177 return;
8178
fed14d45 8179 if (!parent) {
029632fb 8180 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8181 se->depth = 0;
8182 } else {
029632fb 8183 se->cfs_rq = parent->my_q;
fed14d45
PZ
8184 se->depth = parent->depth + 1;
8185 }
029632fb
PZ
8186
8187 se->my_q = cfs_rq;
0ac9b1c2
PT
8188 /* guarantee group entities always have weight */
8189 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8190 se->parent = parent;
8191}
8192
8193static DEFINE_MUTEX(shares_mutex);
8194
8195int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8196{
8197 int i;
8198 unsigned long flags;
8199
8200 /*
8201 * We can't change the weight of the root cgroup.
8202 */
8203 if (!tg->se[0])
8204 return -EINVAL;
8205
8206 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8207
8208 mutex_lock(&shares_mutex);
8209 if (tg->shares == shares)
8210 goto done;
8211
8212 tg->shares = shares;
8213 for_each_possible_cpu(i) {
8214 struct rq *rq = cpu_rq(i);
8215 struct sched_entity *se;
8216
8217 se = tg->se[i];
8218 /* Propagate contribution to hierarchy */
8219 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8220
8221 /* Possible calls to update_curr() need rq clock */
8222 update_rq_clock(rq);
17bc14b7 8223 for_each_sched_entity(se)
029632fb
PZ
8224 update_cfs_shares(group_cfs_rq(se));
8225 raw_spin_unlock_irqrestore(&rq->lock, flags);
8226 }
8227
8228done:
8229 mutex_unlock(&shares_mutex);
8230 return 0;
8231}
8232#else /* CONFIG_FAIR_GROUP_SCHED */
8233
8234void free_fair_sched_group(struct task_group *tg) { }
8235
8236int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8237{
8238 return 1;
8239}
8240
8241void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8242
8243#endif /* CONFIG_FAIR_GROUP_SCHED */
8244
810b3817 8245
6d686f45 8246static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8247{
8248 struct sched_entity *se = &task->se;
0d721cea
PW
8249 unsigned int rr_interval = 0;
8250
8251 /*
8252 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8253 * idle runqueue:
8254 */
0d721cea 8255 if (rq->cfs.load.weight)
a59f4e07 8256 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8257
8258 return rr_interval;
8259}
8260
bf0f6f24
IM
8261/*
8262 * All the scheduling class methods:
8263 */
029632fb 8264const struct sched_class fair_sched_class = {
5522d5d5 8265 .next = &idle_sched_class,
bf0f6f24
IM
8266 .enqueue_task = enqueue_task_fair,
8267 .dequeue_task = dequeue_task_fair,
8268 .yield_task = yield_task_fair,
d95f4122 8269 .yield_to_task = yield_to_task_fair,
bf0f6f24 8270
2e09bf55 8271 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8272
8273 .pick_next_task = pick_next_task_fair,
8274 .put_prev_task = put_prev_task_fair,
8275
681f3e68 8276#ifdef CONFIG_SMP
4ce72a2c 8277 .select_task_rq = select_task_rq_fair,
0a74bef8 8278 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8279
0bcdcf28
CE
8280 .rq_online = rq_online_fair,
8281 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8282
8283 .task_waking = task_waking_fair,
12695578 8284 .task_dead = task_dead_fair,
c5b28038 8285 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8286#endif
bf0f6f24 8287
83b699ed 8288 .set_curr_task = set_curr_task_fair,
bf0f6f24 8289 .task_tick = task_tick_fair,
cd29fe6f 8290 .task_fork = task_fork_fair,
cb469845
SR
8291
8292 .prio_changed = prio_changed_fair,
da7a735e 8293 .switched_from = switched_from_fair,
cb469845 8294 .switched_to = switched_to_fair,
810b3817 8295
0d721cea
PW
8296 .get_rr_interval = get_rr_interval_fair,
8297
6e998916
SG
8298 .update_curr = update_curr_fair,
8299
810b3817 8300#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8301 .task_move_group = task_move_group_fair,
810b3817 8302#endif
bf0f6f24
IM
8303};
8304
8305#ifdef CONFIG_SCHED_DEBUG
029632fb 8306void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8307{
bf0f6f24
IM
8308 struct cfs_rq *cfs_rq;
8309
5973e5b9 8310 rcu_read_lock();
c3b64f1e 8311 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8312 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8313 rcu_read_unlock();
bf0f6f24 8314}
397f2378
SD
8315
8316#ifdef CONFIG_NUMA_BALANCING
8317void show_numa_stats(struct task_struct *p, struct seq_file *m)
8318{
8319 int node;
8320 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8321
8322 for_each_online_node(node) {
8323 if (p->numa_faults) {
8324 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8325 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8326 }
8327 if (p->numa_group) {
8328 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8329 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8330 }
8331 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8332 }
8333}
8334#endif /* CONFIG_NUMA_BALANCING */
8335#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8336
8337__init void init_sched_fair_class(void)
8338{
8339#ifdef CONFIG_SMP
8340 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8341
3451d024 8342#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8343 nohz.next_balance = jiffies;
029632fb 8344 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8345 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8346#endif
8347#endif /* SMP */
8348
8349}