sched/debug: Rename and move enqueue_sleeper()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
3273163c
MR
117/*
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
120 */
121unsigned int capacity_margin = 1280; /* ~20% */
122
8527632d
PG
123static inline void update_load_add(struct load_weight *lw, unsigned long inc)
124{
125 lw->weight += inc;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
130{
131 lw->weight -= dec;
132 lw->inv_weight = 0;
133}
134
135static inline void update_load_set(struct load_weight *lw, unsigned long w)
136{
137 lw->weight = w;
138 lw->inv_weight = 0;
139}
140
029632fb
PZ
141/*
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
146 * number of CPUs.
147 *
148 * This idea comes from the SD scheduler of Con Kolivas:
149 */
58ac93e4 150static unsigned int get_update_sysctl_factor(void)
029632fb 151{
58ac93e4 152 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
153 unsigned int factor;
154
155 switch (sysctl_sched_tunable_scaling) {
156 case SCHED_TUNABLESCALING_NONE:
157 factor = 1;
158 break;
159 case SCHED_TUNABLESCALING_LINEAR:
160 factor = cpus;
161 break;
162 case SCHED_TUNABLESCALING_LOG:
163 default:
164 factor = 1 + ilog2(cpus);
165 break;
166 }
167
168 return factor;
169}
170
171static void update_sysctl(void)
172{
173 unsigned int factor = get_update_sysctl_factor();
174
175#define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity);
178 SET_SYSCTL(sched_latency);
179 SET_SYSCTL(sched_wakeup_granularity);
180#undef SET_SYSCTL
181}
182
183void sched_init_granularity(void)
184{
185 update_sysctl();
186}
187
9dbdb155 188#define WMULT_CONST (~0U)
029632fb
PZ
189#define WMULT_SHIFT 32
190
9dbdb155
PZ
191static void __update_inv_weight(struct load_weight *lw)
192{
193 unsigned long w;
194
195 if (likely(lw->inv_weight))
196 return;
197
198 w = scale_load_down(lw->weight);
199
200 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
201 lw->inv_weight = 1;
202 else if (unlikely(!w))
203 lw->inv_weight = WMULT_CONST;
204 else
205 lw->inv_weight = WMULT_CONST / w;
206}
029632fb
PZ
207
208/*
9dbdb155
PZ
209 * delta_exec * weight / lw.weight
210 * OR
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
212 *
1c3de5e1 213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
216 *
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 219 */
9dbdb155 220static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 221{
9dbdb155
PZ
222 u64 fact = scale_load_down(weight);
223 int shift = WMULT_SHIFT;
029632fb 224
9dbdb155 225 __update_inv_weight(lw);
029632fb 226
9dbdb155
PZ
227 if (unlikely(fact >> 32)) {
228 while (fact >> 32) {
229 fact >>= 1;
230 shift--;
231 }
029632fb
PZ
232 }
233
9dbdb155
PZ
234 /* hint to use a 32x32->64 mul */
235 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 236
9dbdb155
PZ
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb 241
9dbdb155 242 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
243}
244
245
246const struct sched_class fair_sched_class;
a4c2f00f 247
bf0f6f24
IM
248/**************************************************************
249 * CFS operations on generic schedulable entities:
250 */
251
62160e3f 252#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 253
62160e3f 254/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
255static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
256{
62160e3f 257 return cfs_rq->rq;
bf0f6f24
IM
258}
259
62160e3f
IM
260/* An entity is a task if it doesn't "own" a runqueue */
261#define entity_is_task(se) (!se->my_q)
bf0f6f24 262
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
265#ifdef CONFIG_SCHED_DEBUG
266 WARN_ON_ONCE(!entity_is_task(se));
267#endif
268 return container_of(se, struct task_struct, se);
269}
270
b758149c
PZ
271/* Walk up scheduling entities hierarchy */
272#define for_each_sched_entity(se) \
273 for (; se; se = se->parent)
274
275static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
276{
277 return p->se.cfs_rq;
278}
279
280/* runqueue on which this entity is (to be) queued */
281static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
282{
283 return se->cfs_rq;
284}
285
286/* runqueue "owned" by this group */
287static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
288{
289 return grp->my_q;
290}
291
3d4b47b4
PZ
292static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (!cfs_rq->on_list) {
67e86250
PT
295 /*
296 * Ensure we either appear before our parent (if already
297 * enqueued) or force our parent to appear after us when it is
298 * enqueued. The fact that we always enqueue bottom-up
299 * reduces this to two cases.
300 */
301 if (cfs_rq->tg->parent &&
302 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
303 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 } else {
306 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 307 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 308 }
3d4b47b4
PZ
309
310 cfs_rq->on_list = 1;
311 }
312}
313
314static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
315{
316 if (cfs_rq->on_list) {
317 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
318 cfs_rq->on_list = 0;
319 }
320}
321
b758149c
PZ
322/* Iterate thr' all leaf cfs_rq's on a runqueue */
323#define for_each_leaf_cfs_rq(rq, cfs_rq) \
324 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
325
326/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 327static inline struct cfs_rq *
b758149c
PZ
328is_same_group(struct sched_entity *se, struct sched_entity *pse)
329{
330 if (se->cfs_rq == pse->cfs_rq)
fed14d45 331 return se->cfs_rq;
b758149c 332
fed14d45 333 return NULL;
b758149c
PZ
334}
335
336static inline struct sched_entity *parent_entity(struct sched_entity *se)
337{
338 return se->parent;
339}
340
464b7527
PZ
341static void
342find_matching_se(struct sched_entity **se, struct sched_entity **pse)
343{
344 int se_depth, pse_depth;
345
346 /*
347 * preemption test can be made between sibling entities who are in the
348 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
349 * both tasks until we find their ancestors who are siblings of common
350 * parent.
351 */
352
353 /* First walk up until both entities are at same depth */
fed14d45
PZ
354 se_depth = (*se)->depth;
355 pse_depth = (*pse)->depth;
464b7527
PZ
356
357 while (se_depth > pse_depth) {
358 se_depth--;
359 *se = parent_entity(*se);
360 }
361
362 while (pse_depth > se_depth) {
363 pse_depth--;
364 *pse = parent_entity(*pse);
365 }
366
367 while (!is_same_group(*se, *pse)) {
368 *se = parent_entity(*se);
369 *pse = parent_entity(*pse);
370 }
371}
372
8f48894f
PZ
373#else /* !CONFIG_FAIR_GROUP_SCHED */
374
375static inline struct task_struct *task_of(struct sched_entity *se)
376{
377 return container_of(se, struct task_struct, se);
378}
bf0f6f24 379
62160e3f
IM
380static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
381{
382 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
383}
384
385#define entity_is_task(se) 1
386
b758149c
PZ
387#define for_each_sched_entity(se) \
388 for (; se; se = NULL)
bf0f6f24 389
b758149c 390static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 391{
b758149c 392 return &task_rq(p)->cfs;
bf0f6f24
IM
393}
394
b758149c
PZ
395static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
396{
397 struct task_struct *p = task_of(se);
398 struct rq *rq = task_rq(p);
399
400 return &rq->cfs;
401}
402
403/* runqueue "owned" by this group */
404static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
405{
406 return NULL;
407}
408
3d4b47b4
PZ
409static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
410{
411}
412
413static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
414{
415}
416
b758149c
PZ
417#define for_each_leaf_cfs_rq(rq, cfs_rq) \
418 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
419
b758149c
PZ
420static inline struct sched_entity *parent_entity(struct sched_entity *se)
421{
422 return NULL;
423}
424
464b7527
PZ
425static inline void
426find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427{
428}
429
b758149c
PZ
430#endif /* CONFIG_FAIR_GROUP_SCHED */
431
6c16a6dc 432static __always_inline
9dbdb155 433void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
434
435/**************************************************************
436 * Scheduling class tree data structure manipulation methods:
437 */
438
1bf08230 439static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 440{
1bf08230 441 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 442 if (delta > 0)
1bf08230 443 max_vruntime = vruntime;
02e0431a 444
1bf08230 445 return max_vruntime;
02e0431a
PZ
446}
447
0702e3eb 448static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
449{
450 s64 delta = (s64)(vruntime - min_vruntime);
451 if (delta < 0)
452 min_vruntime = vruntime;
453
454 return min_vruntime;
455}
456
54fdc581
FC
457static inline int entity_before(struct sched_entity *a,
458 struct sched_entity *b)
459{
460 return (s64)(a->vruntime - b->vruntime) < 0;
461}
462
1af5f730
PZ
463static void update_min_vruntime(struct cfs_rq *cfs_rq)
464{
465 u64 vruntime = cfs_rq->min_vruntime;
466
1af5f730
PZ
467 if (cfs_rq->rb_leftmost) {
468 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
469 struct sched_entity,
470 run_node);
471
97a7142f 472 vruntime = se->vruntime;
1af5f730
PZ
473 }
474
97a7142f
BP
475 if (cfs_rq->curr)
476 vruntime = min_vruntime(vruntime, cfs_rq->curr->vruntime);
477
1bf08230 478 /* ensure we never gain time by being placed backwards. */
1af5f730 479 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
480#ifndef CONFIG_64BIT
481 smp_wmb();
482 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
483#endif
1af5f730
PZ
484}
485
bf0f6f24
IM
486/*
487 * Enqueue an entity into the rb-tree:
488 */
0702e3eb 489static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
490{
491 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
492 struct rb_node *parent = NULL;
493 struct sched_entity *entry;
bf0f6f24
IM
494 int leftmost = 1;
495
496 /*
497 * Find the right place in the rbtree:
498 */
499 while (*link) {
500 parent = *link;
501 entry = rb_entry(parent, struct sched_entity, run_node);
502 /*
503 * We dont care about collisions. Nodes with
504 * the same key stay together.
505 */
2bd2d6f2 506 if (entity_before(se, entry)) {
bf0f6f24
IM
507 link = &parent->rb_left;
508 } else {
509 link = &parent->rb_right;
510 leftmost = 0;
511 }
512 }
513
514 /*
515 * Maintain a cache of leftmost tree entries (it is frequently
516 * used):
517 */
1af5f730 518 if (leftmost)
57cb499d 519 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
520
521 rb_link_node(&se->run_node, parent, link);
522 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
523}
524
0702e3eb 525static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 526{
3fe69747
PZ
527 if (cfs_rq->rb_leftmost == &se->run_node) {
528 struct rb_node *next_node;
3fe69747
PZ
529
530 next_node = rb_next(&se->run_node);
531 cfs_rq->rb_leftmost = next_node;
3fe69747 532 }
e9acbff6 533
bf0f6f24 534 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
535}
536
029632fb 537struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 538{
f4b6755f
PZ
539 struct rb_node *left = cfs_rq->rb_leftmost;
540
541 if (!left)
542 return NULL;
543
544 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
545}
546
ac53db59
RR
547static struct sched_entity *__pick_next_entity(struct sched_entity *se)
548{
549 struct rb_node *next = rb_next(&se->run_node);
550
551 if (!next)
552 return NULL;
553
554 return rb_entry(next, struct sched_entity, run_node);
555}
556
557#ifdef CONFIG_SCHED_DEBUG
029632fb 558struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 559{
7eee3e67 560 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 561
70eee74b
BS
562 if (!last)
563 return NULL;
7eee3e67
IM
564
565 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
566}
567
bf0f6f24
IM
568/**************************************************************
569 * Scheduling class statistics methods:
570 */
571
acb4a848 572int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 573 void __user *buffer, size_t *lenp,
b2be5e96
PZ
574 loff_t *ppos)
575{
8d65af78 576 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 577 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
578
579 if (ret || !write)
580 return ret;
581
582 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
583 sysctl_sched_min_granularity);
584
acb4a848
CE
585#define WRT_SYSCTL(name) \
586 (normalized_sysctl_##name = sysctl_##name / (factor))
587 WRT_SYSCTL(sched_min_granularity);
588 WRT_SYSCTL(sched_latency);
589 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
590#undef WRT_SYSCTL
591
b2be5e96
PZ
592 return 0;
593}
594#endif
647e7cac 595
a7be37ac 596/*
f9c0b095 597 * delta /= w
a7be37ac 598 */
9dbdb155 599static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 600{
f9c0b095 601 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 602 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
603
604 return delta;
605}
606
647e7cac
IM
607/*
608 * The idea is to set a period in which each task runs once.
609 *
532b1858 610 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
611 * this period because otherwise the slices get too small.
612 *
613 * p = (nr <= nl) ? l : l*nr/nl
614 */
4d78e7b6
PZ
615static u64 __sched_period(unsigned long nr_running)
616{
8e2b0bf3
BF
617 if (unlikely(nr_running > sched_nr_latency))
618 return nr_running * sysctl_sched_min_granularity;
619 else
620 return sysctl_sched_latency;
4d78e7b6
PZ
621}
622
647e7cac
IM
623/*
624 * We calculate the wall-time slice from the period by taking a part
625 * proportional to the weight.
626 *
f9c0b095 627 * s = p*P[w/rw]
647e7cac 628 */
6d0f0ebd 629static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 630{
0a582440 631 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 632
0a582440 633 for_each_sched_entity(se) {
6272d68c 634 struct load_weight *load;
3104bf03 635 struct load_weight lw;
6272d68c
LM
636
637 cfs_rq = cfs_rq_of(se);
638 load = &cfs_rq->load;
f9c0b095 639
0a582440 640 if (unlikely(!se->on_rq)) {
3104bf03 641 lw = cfs_rq->load;
0a582440
MG
642
643 update_load_add(&lw, se->load.weight);
644 load = &lw;
645 }
9dbdb155 646 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
647 }
648 return slice;
bf0f6f24
IM
649}
650
647e7cac 651/*
660cc00f 652 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 653 *
f9c0b095 654 * vs = s/w
647e7cac 655 */
f9c0b095 656static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 657{
f9c0b095 658 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
659}
660
a75cdaa9 661#ifdef CONFIG_SMP
772bd008 662static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
663static unsigned long task_h_load(struct task_struct *p);
664
9d89c257
YD
665/*
666 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
667 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
668 * dependent on this value.
9d89c257
YD
669 */
670#define LOAD_AVG_PERIOD 32
671#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 672#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 673
540247fb
YD
674/* Give new sched_entity start runnable values to heavy its load in infant time */
675void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 676{
540247fb 677 struct sched_avg *sa = &se->avg;
a75cdaa9 678
9d89c257
YD
679 sa->last_update_time = 0;
680 /*
681 * sched_avg's period_contrib should be strictly less then 1024, so
682 * we give it 1023 to make sure it is almost a period (1024us), and
683 * will definitely be update (after enqueue).
684 */
685 sa->period_contrib = 1023;
540247fb 686 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 687 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
688 /*
689 * At this point, util_avg won't be used in select_task_rq_fair anyway
690 */
691 sa->util_avg = 0;
692 sa->util_sum = 0;
9d89c257 693 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 694}
7ea241af 695
7dc603c9
PZ
696static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
697static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 698static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
699static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
700
2b8c41da
YD
701/*
702 * With new tasks being created, their initial util_avgs are extrapolated
703 * based on the cfs_rq's current util_avg:
704 *
705 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
706 *
707 * However, in many cases, the above util_avg does not give a desired
708 * value. Moreover, the sum of the util_avgs may be divergent, such
709 * as when the series is a harmonic series.
710 *
711 * To solve this problem, we also cap the util_avg of successive tasks to
712 * only 1/2 of the left utilization budget:
713 *
714 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
715 *
716 * where n denotes the nth task.
717 *
718 * For example, a simplest series from the beginning would be like:
719 *
720 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
721 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
722 *
723 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
724 * if util_avg > util_avg_cap.
725 */
726void post_init_entity_util_avg(struct sched_entity *se)
727{
728 struct cfs_rq *cfs_rq = cfs_rq_of(se);
729 struct sched_avg *sa = &se->avg;
172895e6 730 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 731 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
732
733 if (cap > 0) {
734 if (cfs_rq->avg.util_avg != 0) {
735 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
736 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
737
738 if (sa->util_avg > cap)
739 sa->util_avg = cap;
740 } else {
741 sa->util_avg = cap;
742 }
743 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
744 }
7dc603c9
PZ
745
746 if (entity_is_task(se)) {
747 struct task_struct *p = task_of(se);
748 if (p->sched_class != &fair_sched_class) {
749 /*
750 * For !fair tasks do:
751 *
752 update_cfs_rq_load_avg(now, cfs_rq, false);
753 attach_entity_load_avg(cfs_rq, se);
754 switched_from_fair(rq, p);
755 *
756 * such that the next switched_to_fair() has the
757 * expected state.
758 */
759 se->avg.last_update_time = now;
760 return;
761 }
762 }
763
7c3edd2c 764 update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 765 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 766 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
767}
768
7dc603c9 769#else /* !CONFIG_SMP */
540247fb 770void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
771{
772}
2b8c41da
YD
773void post_init_entity_util_avg(struct sched_entity *se)
774{
775}
3d30544f
PZ
776static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
777{
778}
7dc603c9 779#endif /* CONFIG_SMP */
a75cdaa9 780
bf0f6f24 781/*
9dbdb155 782 * Update the current task's runtime statistics.
bf0f6f24 783 */
b7cc0896 784static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 785{
429d43bc 786 struct sched_entity *curr = cfs_rq->curr;
78becc27 787 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 788 u64 delta_exec;
bf0f6f24
IM
789
790 if (unlikely(!curr))
791 return;
792
9dbdb155
PZ
793 delta_exec = now - curr->exec_start;
794 if (unlikely((s64)delta_exec <= 0))
34f28ecd 795 return;
bf0f6f24 796
8ebc91d9 797 curr->exec_start = now;
d842de87 798
9dbdb155
PZ
799 schedstat_set(curr->statistics.exec_max,
800 max(delta_exec, curr->statistics.exec_max));
801
802 curr->sum_exec_runtime += delta_exec;
803 schedstat_add(cfs_rq, exec_clock, delta_exec);
804
805 curr->vruntime += calc_delta_fair(delta_exec, curr);
806 update_min_vruntime(cfs_rq);
807
d842de87
SV
808 if (entity_is_task(curr)) {
809 struct task_struct *curtask = task_of(curr);
810
f977bb49 811 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 812 cpuacct_charge(curtask, delta_exec);
f06febc9 813 account_group_exec_runtime(curtask, delta_exec);
d842de87 814 }
ec12cb7f
PT
815
816 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
817}
818
6e998916
SG
819static void update_curr_fair(struct rq *rq)
820{
821 update_curr(cfs_rq_of(&rq->curr->se));
822}
823
3ea94de1 824#ifdef CONFIG_SCHEDSTATS
bf0f6f24 825static inline void
5870db5b 826update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 827{
3ea94de1
JP
828 u64 wait_start = rq_clock(rq_of(cfs_rq));
829
830 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
831 likely(wait_start > se->statistics.wait_start))
832 wait_start -= se->statistics.wait_start;
833
834 se->statistics.wait_start = wait_start;
bf0f6f24
IM
835}
836
3ea94de1
JP
837static void
838update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
839{
840 struct task_struct *p;
cb251765
MG
841 u64 delta;
842
843 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
844
845 if (entity_is_task(se)) {
846 p = task_of(se);
847 if (task_on_rq_migrating(p)) {
848 /*
849 * Preserve migrating task's wait time so wait_start
850 * time stamp can be adjusted to accumulate wait time
851 * prior to migration.
852 */
853 se->statistics.wait_start = delta;
854 return;
855 }
856 trace_sched_stat_wait(p, delta);
857 }
858
859 se->statistics.wait_max = max(se->statistics.wait_max, delta);
860 se->statistics.wait_count++;
861 se->statistics.wait_sum += delta;
862 se->statistics.wait_start = 0;
863}
3ea94de1 864
1a3d027c
JP
865static void
866update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
867{
868 struct task_struct *tsk = NULL;
869
870 if (entity_is_task(se))
871 tsk = task_of(se);
872
873 if (se->statistics.sleep_start) {
874 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
875
876 if ((s64)delta < 0)
877 delta = 0;
878
879 if (unlikely(delta > se->statistics.sleep_max))
880 se->statistics.sleep_max = delta;
881
882 se->statistics.sleep_start = 0;
883 se->statistics.sum_sleep_runtime += delta;
884
885 if (tsk) {
886 account_scheduler_latency(tsk, delta >> 10, 1);
887 trace_sched_stat_sleep(tsk, delta);
888 }
889 }
890 if (se->statistics.block_start) {
891 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
892
893 if ((s64)delta < 0)
894 delta = 0;
895
896 if (unlikely(delta > se->statistics.block_max))
897 se->statistics.block_max = delta;
898
899 se->statistics.block_start = 0;
900 se->statistics.sum_sleep_runtime += delta;
901
902 if (tsk) {
903 if (tsk->in_iowait) {
904 se->statistics.iowait_sum += delta;
905 se->statistics.iowait_count++;
906 trace_sched_stat_iowait(tsk, delta);
907 }
908
909 trace_sched_stat_blocked(tsk, delta);
910
911 /*
912 * Blocking time is in units of nanosecs, so shift by
913 * 20 to get a milliseconds-range estimation of the
914 * amount of time that the task spent sleeping:
915 */
916 if (unlikely(prof_on == SLEEP_PROFILING)) {
917 profile_hits(SLEEP_PROFILING,
918 (void *)get_wchan(tsk),
919 delta >> 20);
920 }
921 account_scheduler_latency(tsk, delta >> 10, 0);
922 }
923 }
924}
925
bf0f6f24
IM
926/*
927 * Task is being enqueued - update stats:
928 */
cb251765 929static inline void
1a3d027c 930update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 931{
bf0f6f24
IM
932 /*
933 * Are we enqueueing a waiting task? (for current tasks
934 * a dequeue/enqueue event is a NOP)
935 */
429d43bc 936 if (se != cfs_rq->curr)
5870db5b 937 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
938
939 if (flags & ENQUEUE_WAKEUP)
940 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
941}
942
bf0f6f24 943static inline void
cb251765 944update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 945{
bf0f6f24
IM
946 /*
947 * Mark the end of the wait period if dequeueing a
948 * waiting task:
949 */
429d43bc 950 if (se != cfs_rq->curr)
9ef0a961 951 update_stats_wait_end(cfs_rq, se);
cb251765
MG
952
953 if (flags & DEQUEUE_SLEEP) {
954 if (entity_is_task(se)) {
955 struct task_struct *tsk = task_of(se);
956
957 if (tsk->state & TASK_INTERRUPTIBLE)
958 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
959 if (tsk->state & TASK_UNINTERRUPTIBLE)
960 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
961 }
962 }
963
964}
965#else
966static inline void
967update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
968{
969}
970
971static inline void
972update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
973{
974}
975
976static inline void
1a3d027c
JP
977update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
978{
979}
980
981static inline void
982update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
cb251765
MG
983{
984}
985
986static inline void
987update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
988{
bf0f6f24 989}
cb251765 990#endif
bf0f6f24
IM
991
992/*
993 * We are picking a new current task - update its stats:
994 */
995static inline void
79303e9e 996update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
997{
998 /*
999 * We are starting a new run period:
1000 */
78becc27 1001 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1002}
1003
bf0f6f24
IM
1004/**************************************************
1005 * Scheduling class queueing methods:
1006 */
1007
cbee9f88
PZ
1008#ifdef CONFIG_NUMA_BALANCING
1009/*
598f0ec0
MG
1010 * Approximate time to scan a full NUMA task in ms. The task scan period is
1011 * calculated based on the tasks virtual memory size and
1012 * numa_balancing_scan_size.
cbee9f88 1013 */
598f0ec0
MG
1014unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1015unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1016
1017/* Portion of address space to scan in MB */
1018unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1019
4b96a29b
PZ
1020/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1021unsigned int sysctl_numa_balancing_scan_delay = 1000;
1022
598f0ec0
MG
1023static unsigned int task_nr_scan_windows(struct task_struct *p)
1024{
1025 unsigned long rss = 0;
1026 unsigned long nr_scan_pages;
1027
1028 /*
1029 * Calculations based on RSS as non-present and empty pages are skipped
1030 * by the PTE scanner and NUMA hinting faults should be trapped based
1031 * on resident pages
1032 */
1033 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1034 rss = get_mm_rss(p->mm);
1035 if (!rss)
1036 rss = nr_scan_pages;
1037
1038 rss = round_up(rss, nr_scan_pages);
1039 return rss / nr_scan_pages;
1040}
1041
1042/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1043#define MAX_SCAN_WINDOW 2560
1044
1045static unsigned int task_scan_min(struct task_struct *p)
1046{
316c1608 1047 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1048 unsigned int scan, floor;
1049 unsigned int windows = 1;
1050
64192658
KT
1051 if (scan_size < MAX_SCAN_WINDOW)
1052 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1053 floor = 1000 / windows;
1054
1055 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1056 return max_t(unsigned int, floor, scan);
1057}
1058
1059static unsigned int task_scan_max(struct task_struct *p)
1060{
1061 unsigned int smin = task_scan_min(p);
1062 unsigned int smax;
1063
1064 /* Watch for min being lower than max due to floor calculations */
1065 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1066 return max(smin, smax);
1067}
1068
0ec8aa00
PZ
1069static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1070{
1071 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1072 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1073}
1074
1075static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1076{
1077 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1078 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1079}
1080
8c8a743c
PZ
1081struct numa_group {
1082 atomic_t refcount;
1083
1084 spinlock_t lock; /* nr_tasks, tasks */
1085 int nr_tasks;
e29cf08b 1086 pid_t gid;
4142c3eb 1087 int active_nodes;
8c8a743c
PZ
1088
1089 struct rcu_head rcu;
989348b5 1090 unsigned long total_faults;
4142c3eb 1091 unsigned long max_faults_cpu;
7e2703e6
RR
1092 /*
1093 * Faults_cpu is used to decide whether memory should move
1094 * towards the CPU. As a consequence, these stats are weighted
1095 * more by CPU use than by memory faults.
1096 */
50ec8a40 1097 unsigned long *faults_cpu;
989348b5 1098 unsigned long faults[0];
8c8a743c
PZ
1099};
1100
be1e4e76
RR
1101/* Shared or private faults. */
1102#define NR_NUMA_HINT_FAULT_TYPES 2
1103
1104/* Memory and CPU locality */
1105#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1106
1107/* Averaged statistics, and temporary buffers. */
1108#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1109
e29cf08b
MG
1110pid_t task_numa_group_id(struct task_struct *p)
1111{
1112 return p->numa_group ? p->numa_group->gid : 0;
1113}
1114
44dba3d5
IM
1115/*
1116 * The averaged statistics, shared & private, memory & cpu,
1117 * occupy the first half of the array. The second half of the
1118 * array is for current counters, which are averaged into the
1119 * first set by task_numa_placement.
1120 */
1121static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1122{
44dba3d5 1123 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1124}
1125
1126static inline unsigned long task_faults(struct task_struct *p, int nid)
1127{
44dba3d5 1128 if (!p->numa_faults)
ac8e895b
MG
1129 return 0;
1130
44dba3d5
IM
1131 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1132 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1133}
1134
83e1d2cd
MG
1135static inline unsigned long group_faults(struct task_struct *p, int nid)
1136{
1137 if (!p->numa_group)
1138 return 0;
1139
44dba3d5
IM
1140 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1141 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1142}
1143
20e07dea
RR
1144static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1145{
44dba3d5
IM
1146 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1147 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1148}
1149
4142c3eb
RR
1150/*
1151 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1152 * considered part of a numa group's pseudo-interleaving set. Migrations
1153 * between these nodes are slowed down, to allow things to settle down.
1154 */
1155#define ACTIVE_NODE_FRACTION 3
1156
1157static bool numa_is_active_node(int nid, struct numa_group *ng)
1158{
1159 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1160}
1161
6c6b1193
RR
1162/* Handle placement on systems where not all nodes are directly connected. */
1163static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1164 int maxdist, bool task)
1165{
1166 unsigned long score = 0;
1167 int node;
1168
1169 /*
1170 * All nodes are directly connected, and the same distance
1171 * from each other. No need for fancy placement algorithms.
1172 */
1173 if (sched_numa_topology_type == NUMA_DIRECT)
1174 return 0;
1175
1176 /*
1177 * This code is called for each node, introducing N^2 complexity,
1178 * which should be ok given the number of nodes rarely exceeds 8.
1179 */
1180 for_each_online_node(node) {
1181 unsigned long faults;
1182 int dist = node_distance(nid, node);
1183
1184 /*
1185 * The furthest away nodes in the system are not interesting
1186 * for placement; nid was already counted.
1187 */
1188 if (dist == sched_max_numa_distance || node == nid)
1189 continue;
1190
1191 /*
1192 * On systems with a backplane NUMA topology, compare groups
1193 * of nodes, and move tasks towards the group with the most
1194 * memory accesses. When comparing two nodes at distance
1195 * "hoplimit", only nodes closer by than "hoplimit" are part
1196 * of each group. Skip other nodes.
1197 */
1198 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1199 dist > maxdist)
1200 continue;
1201
1202 /* Add up the faults from nearby nodes. */
1203 if (task)
1204 faults = task_faults(p, node);
1205 else
1206 faults = group_faults(p, node);
1207
1208 /*
1209 * On systems with a glueless mesh NUMA topology, there are
1210 * no fixed "groups of nodes". Instead, nodes that are not
1211 * directly connected bounce traffic through intermediate
1212 * nodes; a numa_group can occupy any set of nodes.
1213 * The further away a node is, the less the faults count.
1214 * This seems to result in good task placement.
1215 */
1216 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1217 faults *= (sched_max_numa_distance - dist);
1218 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1219 }
1220
1221 score += faults;
1222 }
1223
1224 return score;
1225}
1226
83e1d2cd
MG
1227/*
1228 * These return the fraction of accesses done by a particular task, or
1229 * task group, on a particular numa node. The group weight is given a
1230 * larger multiplier, in order to group tasks together that are almost
1231 * evenly spread out between numa nodes.
1232 */
7bd95320
RR
1233static inline unsigned long task_weight(struct task_struct *p, int nid,
1234 int dist)
83e1d2cd 1235{
7bd95320 1236 unsigned long faults, total_faults;
83e1d2cd 1237
44dba3d5 1238 if (!p->numa_faults)
83e1d2cd
MG
1239 return 0;
1240
1241 total_faults = p->total_numa_faults;
1242
1243 if (!total_faults)
1244 return 0;
1245
7bd95320 1246 faults = task_faults(p, nid);
6c6b1193
RR
1247 faults += score_nearby_nodes(p, nid, dist, true);
1248
7bd95320 1249 return 1000 * faults / total_faults;
83e1d2cd
MG
1250}
1251
7bd95320
RR
1252static inline unsigned long group_weight(struct task_struct *p, int nid,
1253 int dist)
83e1d2cd 1254{
7bd95320
RR
1255 unsigned long faults, total_faults;
1256
1257 if (!p->numa_group)
1258 return 0;
1259
1260 total_faults = p->numa_group->total_faults;
1261
1262 if (!total_faults)
83e1d2cd
MG
1263 return 0;
1264
7bd95320 1265 faults = group_faults(p, nid);
6c6b1193
RR
1266 faults += score_nearby_nodes(p, nid, dist, false);
1267
7bd95320 1268 return 1000 * faults / total_faults;
83e1d2cd
MG
1269}
1270
10f39042
RR
1271bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1272 int src_nid, int dst_cpu)
1273{
1274 struct numa_group *ng = p->numa_group;
1275 int dst_nid = cpu_to_node(dst_cpu);
1276 int last_cpupid, this_cpupid;
1277
1278 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1279
1280 /*
1281 * Multi-stage node selection is used in conjunction with a periodic
1282 * migration fault to build a temporal task<->page relation. By using
1283 * a two-stage filter we remove short/unlikely relations.
1284 *
1285 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1286 * a task's usage of a particular page (n_p) per total usage of this
1287 * page (n_t) (in a given time-span) to a probability.
1288 *
1289 * Our periodic faults will sample this probability and getting the
1290 * same result twice in a row, given these samples are fully
1291 * independent, is then given by P(n)^2, provided our sample period
1292 * is sufficiently short compared to the usage pattern.
1293 *
1294 * This quadric squishes small probabilities, making it less likely we
1295 * act on an unlikely task<->page relation.
1296 */
1297 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1298 if (!cpupid_pid_unset(last_cpupid) &&
1299 cpupid_to_nid(last_cpupid) != dst_nid)
1300 return false;
1301
1302 /* Always allow migrate on private faults */
1303 if (cpupid_match_pid(p, last_cpupid))
1304 return true;
1305
1306 /* A shared fault, but p->numa_group has not been set up yet. */
1307 if (!ng)
1308 return true;
1309
1310 /*
4142c3eb
RR
1311 * Destination node is much more heavily used than the source
1312 * node? Allow migration.
10f39042 1313 */
4142c3eb
RR
1314 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1315 ACTIVE_NODE_FRACTION)
10f39042
RR
1316 return true;
1317
1318 /*
4142c3eb
RR
1319 * Distribute memory according to CPU & memory use on each node,
1320 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1321 *
1322 * faults_cpu(dst) 3 faults_cpu(src)
1323 * --------------- * - > ---------------
1324 * faults_mem(dst) 4 faults_mem(src)
10f39042 1325 */
4142c3eb
RR
1326 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1327 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1328}
1329
e6628d5b 1330static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1331static unsigned long source_load(int cpu, int type);
1332static unsigned long target_load(int cpu, int type);
ced549fa 1333static unsigned long capacity_of(int cpu);
58d081b5
MG
1334static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1335
fb13c7ee 1336/* Cached statistics for all CPUs within a node */
58d081b5 1337struct numa_stats {
fb13c7ee 1338 unsigned long nr_running;
58d081b5 1339 unsigned long load;
fb13c7ee
MG
1340
1341 /* Total compute capacity of CPUs on a node */
5ef20ca1 1342 unsigned long compute_capacity;
fb13c7ee
MG
1343
1344 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1345 unsigned long task_capacity;
1b6a7495 1346 int has_free_capacity;
58d081b5 1347};
e6628d5b 1348
fb13c7ee
MG
1349/*
1350 * XXX borrowed from update_sg_lb_stats
1351 */
1352static void update_numa_stats(struct numa_stats *ns, int nid)
1353{
83d7f242
RR
1354 int smt, cpu, cpus = 0;
1355 unsigned long capacity;
fb13c7ee
MG
1356
1357 memset(ns, 0, sizeof(*ns));
1358 for_each_cpu(cpu, cpumask_of_node(nid)) {
1359 struct rq *rq = cpu_rq(cpu);
1360
1361 ns->nr_running += rq->nr_running;
1362 ns->load += weighted_cpuload(cpu);
ced549fa 1363 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1364
1365 cpus++;
fb13c7ee
MG
1366 }
1367
5eca82a9
PZ
1368 /*
1369 * If we raced with hotplug and there are no CPUs left in our mask
1370 * the @ns structure is NULL'ed and task_numa_compare() will
1371 * not find this node attractive.
1372 *
1b6a7495
NP
1373 * We'll either bail at !has_free_capacity, or we'll detect a huge
1374 * imbalance and bail there.
5eca82a9
PZ
1375 */
1376 if (!cpus)
1377 return;
1378
83d7f242
RR
1379 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1380 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1381 capacity = cpus / smt; /* cores */
1382
1383 ns->task_capacity = min_t(unsigned, capacity,
1384 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1385 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1386}
1387
58d081b5
MG
1388struct task_numa_env {
1389 struct task_struct *p;
e6628d5b 1390
58d081b5
MG
1391 int src_cpu, src_nid;
1392 int dst_cpu, dst_nid;
e6628d5b 1393
58d081b5 1394 struct numa_stats src_stats, dst_stats;
e6628d5b 1395
40ea2b42 1396 int imbalance_pct;
7bd95320 1397 int dist;
fb13c7ee
MG
1398
1399 struct task_struct *best_task;
1400 long best_imp;
58d081b5
MG
1401 int best_cpu;
1402};
1403
fb13c7ee
MG
1404static void task_numa_assign(struct task_numa_env *env,
1405 struct task_struct *p, long imp)
1406{
1407 if (env->best_task)
1408 put_task_struct(env->best_task);
bac78573
ON
1409 if (p)
1410 get_task_struct(p);
fb13c7ee
MG
1411
1412 env->best_task = p;
1413 env->best_imp = imp;
1414 env->best_cpu = env->dst_cpu;
1415}
1416
28a21745 1417static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1418 struct task_numa_env *env)
1419{
e4991b24
RR
1420 long imb, old_imb;
1421 long orig_src_load, orig_dst_load;
28a21745
RR
1422 long src_capacity, dst_capacity;
1423
1424 /*
1425 * The load is corrected for the CPU capacity available on each node.
1426 *
1427 * src_load dst_load
1428 * ------------ vs ---------
1429 * src_capacity dst_capacity
1430 */
1431 src_capacity = env->src_stats.compute_capacity;
1432 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1433
1434 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1435 if (dst_load < src_load)
1436 swap(dst_load, src_load);
e63da036
RR
1437
1438 /* Is the difference below the threshold? */
e4991b24
RR
1439 imb = dst_load * src_capacity * 100 -
1440 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1441 if (imb <= 0)
1442 return false;
1443
1444 /*
1445 * The imbalance is above the allowed threshold.
e4991b24 1446 * Compare it with the old imbalance.
e63da036 1447 */
28a21745 1448 orig_src_load = env->src_stats.load;
e4991b24 1449 orig_dst_load = env->dst_stats.load;
28a21745 1450
e4991b24
RR
1451 if (orig_dst_load < orig_src_load)
1452 swap(orig_dst_load, orig_src_load);
e63da036 1453
e4991b24
RR
1454 old_imb = orig_dst_load * src_capacity * 100 -
1455 orig_src_load * dst_capacity * env->imbalance_pct;
1456
1457 /* Would this change make things worse? */
1458 return (imb > old_imb);
e63da036
RR
1459}
1460
fb13c7ee
MG
1461/*
1462 * This checks if the overall compute and NUMA accesses of the system would
1463 * be improved if the source tasks was migrated to the target dst_cpu taking
1464 * into account that it might be best if task running on the dst_cpu should
1465 * be exchanged with the source task
1466 */
887c290e
RR
1467static void task_numa_compare(struct task_numa_env *env,
1468 long taskimp, long groupimp)
fb13c7ee
MG
1469{
1470 struct rq *src_rq = cpu_rq(env->src_cpu);
1471 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1472 struct task_struct *cur;
28a21745 1473 long src_load, dst_load;
fb13c7ee 1474 long load;
1c5d3eb3 1475 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1476 long moveimp = imp;
7bd95320 1477 int dist = env->dist;
fb13c7ee
MG
1478
1479 rcu_read_lock();
bac78573
ON
1480 cur = task_rcu_dereference(&dst_rq->curr);
1481 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1482 cur = NULL;
1483
7af68335
PZ
1484 /*
1485 * Because we have preemption enabled we can get migrated around and
1486 * end try selecting ourselves (current == env->p) as a swap candidate.
1487 */
1488 if (cur == env->p)
1489 goto unlock;
1490
fb13c7ee
MG
1491 /*
1492 * "imp" is the fault differential for the source task between the
1493 * source and destination node. Calculate the total differential for
1494 * the source task and potential destination task. The more negative
1495 * the value is, the more rmeote accesses that would be expected to
1496 * be incurred if the tasks were swapped.
1497 */
1498 if (cur) {
1499 /* Skip this swap candidate if cannot move to the source cpu */
1500 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1501 goto unlock;
1502
887c290e
RR
1503 /*
1504 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1505 * in any group then look only at task weights.
887c290e 1506 */
ca28aa53 1507 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1508 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1509 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1510 /*
1511 * Add some hysteresis to prevent swapping the
1512 * tasks within a group over tiny differences.
1513 */
1514 if (cur->numa_group)
1515 imp -= imp/16;
887c290e 1516 } else {
ca28aa53
RR
1517 /*
1518 * Compare the group weights. If a task is all by
1519 * itself (not part of a group), use the task weight
1520 * instead.
1521 */
ca28aa53 1522 if (cur->numa_group)
7bd95320
RR
1523 imp += group_weight(cur, env->src_nid, dist) -
1524 group_weight(cur, env->dst_nid, dist);
ca28aa53 1525 else
7bd95320
RR
1526 imp += task_weight(cur, env->src_nid, dist) -
1527 task_weight(cur, env->dst_nid, dist);
887c290e 1528 }
fb13c7ee
MG
1529 }
1530
0132c3e1 1531 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1532 goto unlock;
1533
1534 if (!cur) {
1535 /* Is there capacity at our destination? */
b932c03c 1536 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1537 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1538 goto unlock;
1539
1540 goto balance;
1541 }
1542
1543 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1544 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1545 dst_rq->nr_running == 1)
fb13c7ee
MG
1546 goto assign;
1547
1548 /*
1549 * In the overloaded case, try and keep the load balanced.
1550 */
1551balance:
e720fff6
PZ
1552 load = task_h_load(env->p);
1553 dst_load = env->dst_stats.load + load;
1554 src_load = env->src_stats.load - load;
fb13c7ee 1555
0132c3e1
RR
1556 if (moveimp > imp && moveimp > env->best_imp) {
1557 /*
1558 * If the improvement from just moving env->p direction is
1559 * better than swapping tasks around, check if a move is
1560 * possible. Store a slightly smaller score than moveimp,
1561 * so an actually idle CPU will win.
1562 */
1563 if (!load_too_imbalanced(src_load, dst_load, env)) {
1564 imp = moveimp - 1;
1565 cur = NULL;
1566 goto assign;
1567 }
1568 }
1569
1570 if (imp <= env->best_imp)
1571 goto unlock;
1572
fb13c7ee 1573 if (cur) {
e720fff6
PZ
1574 load = task_h_load(cur);
1575 dst_load -= load;
1576 src_load += load;
fb13c7ee
MG
1577 }
1578
28a21745 1579 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1580 goto unlock;
1581
ba7e5a27
RR
1582 /*
1583 * One idle CPU per node is evaluated for a task numa move.
1584 * Call select_idle_sibling to maybe find a better one.
1585 */
1586 if (!cur)
772bd008
MR
1587 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1588 env->dst_cpu);
ba7e5a27 1589
fb13c7ee
MG
1590assign:
1591 task_numa_assign(env, cur, imp);
1592unlock:
1593 rcu_read_unlock();
1594}
1595
887c290e
RR
1596static void task_numa_find_cpu(struct task_numa_env *env,
1597 long taskimp, long groupimp)
2c8a50aa
MG
1598{
1599 int cpu;
1600
1601 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1602 /* Skip this CPU if the source task cannot migrate */
1603 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1604 continue;
1605
1606 env->dst_cpu = cpu;
887c290e 1607 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1608 }
1609}
1610
6f9aad0b
RR
1611/* Only move tasks to a NUMA node less busy than the current node. */
1612static bool numa_has_capacity(struct task_numa_env *env)
1613{
1614 struct numa_stats *src = &env->src_stats;
1615 struct numa_stats *dst = &env->dst_stats;
1616
1617 if (src->has_free_capacity && !dst->has_free_capacity)
1618 return false;
1619
1620 /*
1621 * Only consider a task move if the source has a higher load
1622 * than the destination, corrected for CPU capacity on each node.
1623 *
1624 * src->load dst->load
1625 * --------------------- vs ---------------------
1626 * src->compute_capacity dst->compute_capacity
1627 */
44dcb04f
SD
1628 if (src->load * dst->compute_capacity * env->imbalance_pct >
1629
1630 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1631 return true;
1632
1633 return false;
1634}
1635
58d081b5
MG
1636static int task_numa_migrate(struct task_struct *p)
1637{
58d081b5
MG
1638 struct task_numa_env env = {
1639 .p = p,
fb13c7ee 1640
58d081b5 1641 .src_cpu = task_cpu(p),
b32e86b4 1642 .src_nid = task_node(p),
fb13c7ee
MG
1643
1644 .imbalance_pct = 112,
1645
1646 .best_task = NULL,
1647 .best_imp = 0,
4142c3eb 1648 .best_cpu = -1,
58d081b5
MG
1649 };
1650 struct sched_domain *sd;
887c290e 1651 unsigned long taskweight, groupweight;
7bd95320 1652 int nid, ret, dist;
887c290e 1653 long taskimp, groupimp;
e6628d5b 1654
58d081b5 1655 /*
fb13c7ee
MG
1656 * Pick the lowest SD_NUMA domain, as that would have the smallest
1657 * imbalance and would be the first to start moving tasks about.
1658 *
1659 * And we want to avoid any moving of tasks about, as that would create
1660 * random movement of tasks -- counter the numa conditions we're trying
1661 * to satisfy here.
58d081b5
MG
1662 */
1663 rcu_read_lock();
fb13c7ee 1664 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1665 if (sd)
1666 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1667 rcu_read_unlock();
1668
46a73e8a
RR
1669 /*
1670 * Cpusets can break the scheduler domain tree into smaller
1671 * balance domains, some of which do not cross NUMA boundaries.
1672 * Tasks that are "trapped" in such domains cannot be migrated
1673 * elsewhere, so there is no point in (re)trying.
1674 */
1675 if (unlikely(!sd)) {
de1b301a 1676 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1677 return -EINVAL;
1678 }
1679
2c8a50aa 1680 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1681 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1682 taskweight = task_weight(p, env.src_nid, dist);
1683 groupweight = group_weight(p, env.src_nid, dist);
1684 update_numa_stats(&env.src_stats, env.src_nid);
1685 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1686 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1687 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1688
a43455a1 1689 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1690 if (numa_has_capacity(&env))
1691 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1692
9de05d48
RR
1693 /*
1694 * Look at other nodes in these cases:
1695 * - there is no space available on the preferred_nid
1696 * - the task is part of a numa_group that is interleaved across
1697 * multiple NUMA nodes; in order to better consolidate the group,
1698 * we need to check other locations.
1699 */
4142c3eb 1700 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1701 for_each_online_node(nid) {
1702 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1703 continue;
58d081b5 1704
7bd95320 1705 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1706 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1707 dist != env.dist) {
1708 taskweight = task_weight(p, env.src_nid, dist);
1709 groupweight = group_weight(p, env.src_nid, dist);
1710 }
7bd95320 1711
83e1d2cd 1712 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1713 taskimp = task_weight(p, nid, dist) - taskweight;
1714 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1715 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1716 continue;
1717
7bd95320 1718 env.dist = dist;
2c8a50aa
MG
1719 env.dst_nid = nid;
1720 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1721 if (numa_has_capacity(&env))
1722 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1723 }
1724 }
1725
68d1b02a
RR
1726 /*
1727 * If the task is part of a workload that spans multiple NUMA nodes,
1728 * and is migrating into one of the workload's active nodes, remember
1729 * this node as the task's preferred numa node, so the workload can
1730 * settle down.
1731 * A task that migrated to a second choice node will be better off
1732 * trying for a better one later. Do not set the preferred node here.
1733 */
db015dae 1734 if (p->numa_group) {
4142c3eb
RR
1735 struct numa_group *ng = p->numa_group;
1736
db015dae
RR
1737 if (env.best_cpu == -1)
1738 nid = env.src_nid;
1739 else
1740 nid = env.dst_nid;
1741
4142c3eb 1742 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1743 sched_setnuma(p, env.dst_nid);
1744 }
1745
1746 /* No better CPU than the current one was found. */
1747 if (env.best_cpu == -1)
1748 return -EAGAIN;
0ec8aa00 1749
04bb2f94
RR
1750 /*
1751 * Reset the scan period if the task is being rescheduled on an
1752 * alternative node to recheck if the tasks is now properly placed.
1753 */
1754 p->numa_scan_period = task_scan_min(p);
1755
fb13c7ee 1756 if (env.best_task == NULL) {
286549dc
MG
1757 ret = migrate_task_to(p, env.best_cpu);
1758 if (ret != 0)
1759 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1760 return ret;
1761 }
1762
1763 ret = migrate_swap(p, env.best_task);
286549dc
MG
1764 if (ret != 0)
1765 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1766 put_task_struct(env.best_task);
1767 return ret;
e6628d5b
MG
1768}
1769
6b9a7460
MG
1770/* Attempt to migrate a task to a CPU on the preferred node. */
1771static void numa_migrate_preferred(struct task_struct *p)
1772{
5085e2a3
RR
1773 unsigned long interval = HZ;
1774
2739d3ee 1775 /* This task has no NUMA fault statistics yet */
44dba3d5 1776 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1777 return;
1778
2739d3ee 1779 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1780 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1781 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1782
1783 /* Success if task is already running on preferred CPU */
de1b301a 1784 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1785 return;
1786
1787 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1788 task_numa_migrate(p);
6b9a7460
MG
1789}
1790
20e07dea 1791/*
4142c3eb 1792 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1793 * tracking the nodes from which NUMA hinting faults are triggered. This can
1794 * be different from the set of nodes where the workload's memory is currently
1795 * located.
20e07dea 1796 */
4142c3eb 1797static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1798{
1799 unsigned long faults, max_faults = 0;
4142c3eb 1800 int nid, active_nodes = 0;
20e07dea
RR
1801
1802 for_each_online_node(nid) {
1803 faults = group_faults_cpu(numa_group, nid);
1804 if (faults > max_faults)
1805 max_faults = faults;
1806 }
1807
1808 for_each_online_node(nid) {
1809 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1810 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1811 active_nodes++;
20e07dea 1812 }
4142c3eb
RR
1813
1814 numa_group->max_faults_cpu = max_faults;
1815 numa_group->active_nodes = active_nodes;
20e07dea
RR
1816}
1817
04bb2f94
RR
1818/*
1819 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1820 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1821 * period will be for the next scan window. If local/(local+remote) ratio is
1822 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1823 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1824 */
1825#define NUMA_PERIOD_SLOTS 10
a22b4b01 1826#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1827
1828/*
1829 * Increase the scan period (slow down scanning) if the majority of
1830 * our memory is already on our local node, or if the majority of
1831 * the page accesses are shared with other processes.
1832 * Otherwise, decrease the scan period.
1833 */
1834static void update_task_scan_period(struct task_struct *p,
1835 unsigned long shared, unsigned long private)
1836{
1837 unsigned int period_slot;
1838 int ratio;
1839 int diff;
1840
1841 unsigned long remote = p->numa_faults_locality[0];
1842 unsigned long local = p->numa_faults_locality[1];
1843
1844 /*
1845 * If there were no record hinting faults then either the task is
1846 * completely idle or all activity is areas that are not of interest
074c2381
MG
1847 * to automatic numa balancing. Related to that, if there were failed
1848 * migration then it implies we are migrating too quickly or the local
1849 * node is overloaded. In either case, scan slower
04bb2f94 1850 */
074c2381 1851 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1852 p->numa_scan_period = min(p->numa_scan_period_max,
1853 p->numa_scan_period << 1);
1854
1855 p->mm->numa_next_scan = jiffies +
1856 msecs_to_jiffies(p->numa_scan_period);
1857
1858 return;
1859 }
1860
1861 /*
1862 * Prepare to scale scan period relative to the current period.
1863 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1864 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1865 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1866 */
1867 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1868 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1869 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1870 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1871 if (!slot)
1872 slot = 1;
1873 diff = slot * period_slot;
1874 } else {
1875 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1876
1877 /*
1878 * Scale scan rate increases based on sharing. There is an
1879 * inverse relationship between the degree of sharing and
1880 * the adjustment made to the scanning period. Broadly
1881 * speaking the intent is that there is little point
1882 * scanning faster if shared accesses dominate as it may
1883 * simply bounce migrations uselessly
1884 */
2847c90e 1885 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1886 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1887 }
1888
1889 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1890 task_scan_min(p), task_scan_max(p));
1891 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1892}
1893
7e2703e6
RR
1894/*
1895 * Get the fraction of time the task has been running since the last
1896 * NUMA placement cycle. The scheduler keeps similar statistics, but
1897 * decays those on a 32ms period, which is orders of magnitude off
1898 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1899 * stats only if the task is so new there are no NUMA statistics yet.
1900 */
1901static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1902{
1903 u64 runtime, delta, now;
1904 /* Use the start of this time slice to avoid calculations. */
1905 now = p->se.exec_start;
1906 runtime = p->se.sum_exec_runtime;
1907
1908 if (p->last_task_numa_placement) {
1909 delta = runtime - p->last_sum_exec_runtime;
1910 *period = now - p->last_task_numa_placement;
1911 } else {
9d89c257
YD
1912 delta = p->se.avg.load_sum / p->se.load.weight;
1913 *period = LOAD_AVG_MAX;
7e2703e6
RR
1914 }
1915
1916 p->last_sum_exec_runtime = runtime;
1917 p->last_task_numa_placement = now;
1918
1919 return delta;
1920}
1921
54009416
RR
1922/*
1923 * Determine the preferred nid for a task in a numa_group. This needs to
1924 * be done in a way that produces consistent results with group_weight,
1925 * otherwise workloads might not converge.
1926 */
1927static int preferred_group_nid(struct task_struct *p, int nid)
1928{
1929 nodemask_t nodes;
1930 int dist;
1931
1932 /* Direct connections between all NUMA nodes. */
1933 if (sched_numa_topology_type == NUMA_DIRECT)
1934 return nid;
1935
1936 /*
1937 * On a system with glueless mesh NUMA topology, group_weight
1938 * scores nodes according to the number of NUMA hinting faults on
1939 * both the node itself, and on nearby nodes.
1940 */
1941 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1942 unsigned long score, max_score = 0;
1943 int node, max_node = nid;
1944
1945 dist = sched_max_numa_distance;
1946
1947 for_each_online_node(node) {
1948 score = group_weight(p, node, dist);
1949 if (score > max_score) {
1950 max_score = score;
1951 max_node = node;
1952 }
1953 }
1954 return max_node;
1955 }
1956
1957 /*
1958 * Finding the preferred nid in a system with NUMA backplane
1959 * interconnect topology is more involved. The goal is to locate
1960 * tasks from numa_groups near each other in the system, and
1961 * untangle workloads from different sides of the system. This requires
1962 * searching down the hierarchy of node groups, recursively searching
1963 * inside the highest scoring group of nodes. The nodemask tricks
1964 * keep the complexity of the search down.
1965 */
1966 nodes = node_online_map;
1967 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1968 unsigned long max_faults = 0;
81907478 1969 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1970 int a, b;
1971
1972 /* Are there nodes at this distance from each other? */
1973 if (!find_numa_distance(dist))
1974 continue;
1975
1976 for_each_node_mask(a, nodes) {
1977 unsigned long faults = 0;
1978 nodemask_t this_group;
1979 nodes_clear(this_group);
1980
1981 /* Sum group's NUMA faults; includes a==b case. */
1982 for_each_node_mask(b, nodes) {
1983 if (node_distance(a, b) < dist) {
1984 faults += group_faults(p, b);
1985 node_set(b, this_group);
1986 node_clear(b, nodes);
1987 }
1988 }
1989
1990 /* Remember the top group. */
1991 if (faults > max_faults) {
1992 max_faults = faults;
1993 max_group = this_group;
1994 /*
1995 * subtle: at the smallest distance there is
1996 * just one node left in each "group", the
1997 * winner is the preferred nid.
1998 */
1999 nid = a;
2000 }
2001 }
2002 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2003 if (!max_faults)
2004 break;
54009416
RR
2005 nodes = max_group;
2006 }
2007 return nid;
2008}
2009
cbee9f88
PZ
2010static void task_numa_placement(struct task_struct *p)
2011{
83e1d2cd
MG
2012 int seq, nid, max_nid = -1, max_group_nid = -1;
2013 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2014 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2015 unsigned long total_faults;
2016 u64 runtime, period;
7dbd13ed 2017 spinlock_t *group_lock = NULL;
cbee9f88 2018
7e5a2c17
JL
2019 /*
2020 * The p->mm->numa_scan_seq field gets updated without
2021 * exclusive access. Use READ_ONCE() here to ensure
2022 * that the field is read in a single access:
2023 */
316c1608 2024 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2025 if (p->numa_scan_seq == seq)
2026 return;
2027 p->numa_scan_seq = seq;
598f0ec0 2028 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2029
7e2703e6
RR
2030 total_faults = p->numa_faults_locality[0] +
2031 p->numa_faults_locality[1];
2032 runtime = numa_get_avg_runtime(p, &period);
2033
7dbd13ed
MG
2034 /* If the task is part of a group prevent parallel updates to group stats */
2035 if (p->numa_group) {
2036 group_lock = &p->numa_group->lock;
60e69eed 2037 spin_lock_irq(group_lock);
7dbd13ed
MG
2038 }
2039
688b7585
MG
2040 /* Find the node with the highest number of faults */
2041 for_each_online_node(nid) {
44dba3d5
IM
2042 /* Keep track of the offsets in numa_faults array */
2043 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2044 unsigned long faults = 0, group_faults = 0;
44dba3d5 2045 int priv;
745d6147 2046
be1e4e76 2047 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2048 long diff, f_diff, f_weight;
8c8a743c 2049
44dba3d5
IM
2050 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2051 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2052 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2053 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2054
ac8e895b 2055 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2056 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2057 fault_types[priv] += p->numa_faults[membuf_idx];
2058 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2059
7e2703e6
RR
2060 /*
2061 * Normalize the faults_from, so all tasks in a group
2062 * count according to CPU use, instead of by the raw
2063 * number of faults. Tasks with little runtime have
2064 * little over-all impact on throughput, and thus their
2065 * faults are less important.
2066 */
2067 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2068 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2069 (total_faults + 1);
44dba3d5
IM
2070 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2071 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2072
44dba3d5
IM
2073 p->numa_faults[mem_idx] += diff;
2074 p->numa_faults[cpu_idx] += f_diff;
2075 faults += p->numa_faults[mem_idx];
83e1d2cd 2076 p->total_numa_faults += diff;
8c8a743c 2077 if (p->numa_group) {
44dba3d5
IM
2078 /*
2079 * safe because we can only change our own group
2080 *
2081 * mem_idx represents the offset for a given
2082 * nid and priv in a specific region because it
2083 * is at the beginning of the numa_faults array.
2084 */
2085 p->numa_group->faults[mem_idx] += diff;
2086 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2087 p->numa_group->total_faults += diff;
44dba3d5 2088 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2089 }
ac8e895b
MG
2090 }
2091
688b7585
MG
2092 if (faults > max_faults) {
2093 max_faults = faults;
2094 max_nid = nid;
2095 }
83e1d2cd
MG
2096
2097 if (group_faults > max_group_faults) {
2098 max_group_faults = group_faults;
2099 max_group_nid = nid;
2100 }
2101 }
2102
04bb2f94
RR
2103 update_task_scan_period(p, fault_types[0], fault_types[1]);
2104
7dbd13ed 2105 if (p->numa_group) {
4142c3eb 2106 numa_group_count_active_nodes(p->numa_group);
60e69eed 2107 spin_unlock_irq(group_lock);
54009416 2108 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2109 }
2110
bb97fc31
RR
2111 if (max_faults) {
2112 /* Set the new preferred node */
2113 if (max_nid != p->numa_preferred_nid)
2114 sched_setnuma(p, max_nid);
2115
2116 if (task_node(p) != p->numa_preferred_nid)
2117 numa_migrate_preferred(p);
3a7053b3 2118 }
cbee9f88
PZ
2119}
2120
8c8a743c
PZ
2121static inline int get_numa_group(struct numa_group *grp)
2122{
2123 return atomic_inc_not_zero(&grp->refcount);
2124}
2125
2126static inline void put_numa_group(struct numa_group *grp)
2127{
2128 if (atomic_dec_and_test(&grp->refcount))
2129 kfree_rcu(grp, rcu);
2130}
2131
3e6a9418
MG
2132static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2133 int *priv)
8c8a743c
PZ
2134{
2135 struct numa_group *grp, *my_grp;
2136 struct task_struct *tsk;
2137 bool join = false;
2138 int cpu = cpupid_to_cpu(cpupid);
2139 int i;
2140
2141 if (unlikely(!p->numa_group)) {
2142 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2143 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2144
2145 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2146 if (!grp)
2147 return;
2148
2149 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2150 grp->active_nodes = 1;
2151 grp->max_faults_cpu = 0;
8c8a743c 2152 spin_lock_init(&grp->lock);
e29cf08b 2153 grp->gid = p->pid;
50ec8a40 2154 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2155 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2156 nr_node_ids;
8c8a743c 2157
be1e4e76 2158 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2159 grp->faults[i] = p->numa_faults[i];
8c8a743c 2160
989348b5 2161 grp->total_faults = p->total_numa_faults;
83e1d2cd 2162
8c8a743c
PZ
2163 grp->nr_tasks++;
2164 rcu_assign_pointer(p->numa_group, grp);
2165 }
2166
2167 rcu_read_lock();
316c1608 2168 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2169
2170 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2171 goto no_join;
8c8a743c
PZ
2172
2173 grp = rcu_dereference(tsk->numa_group);
2174 if (!grp)
3354781a 2175 goto no_join;
8c8a743c
PZ
2176
2177 my_grp = p->numa_group;
2178 if (grp == my_grp)
3354781a 2179 goto no_join;
8c8a743c
PZ
2180
2181 /*
2182 * Only join the other group if its bigger; if we're the bigger group,
2183 * the other task will join us.
2184 */
2185 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2186 goto no_join;
8c8a743c
PZ
2187
2188 /*
2189 * Tie-break on the grp address.
2190 */
2191 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2192 goto no_join;
8c8a743c 2193
dabe1d99
RR
2194 /* Always join threads in the same process. */
2195 if (tsk->mm == current->mm)
2196 join = true;
2197
2198 /* Simple filter to avoid false positives due to PID collisions */
2199 if (flags & TNF_SHARED)
2200 join = true;
8c8a743c 2201
3e6a9418
MG
2202 /* Update priv based on whether false sharing was detected */
2203 *priv = !join;
2204
dabe1d99 2205 if (join && !get_numa_group(grp))
3354781a 2206 goto no_join;
8c8a743c 2207
8c8a743c
PZ
2208 rcu_read_unlock();
2209
2210 if (!join)
2211 return;
2212
60e69eed
MG
2213 BUG_ON(irqs_disabled());
2214 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2215
be1e4e76 2216 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2217 my_grp->faults[i] -= p->numa_faults[i];
2218 grp->faults[i] += p->numa_faults[i];
8c8a743c 2219 }
989348b5
MG
2220 my_grp->total_faults -= p->total_numa_faults;
2221 grp->total_faults += p->total_numa_faults;
8c8a743c 2222
8c8a743c
PZ
2223 my_grp->nr_tasks--;
2224 grp->nr_tasks++;
2225
2226 spin_unlock(&my_grp->lock);
60e69eed 2227 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2228
2229 rcu_assign_pointer(p->numa_group, grp);
2230
2231 put_numa_group(my_grp);
3354781a
PZ
2232 return;
2233
2234no_join:
2235 rcu_read_unlock();
2236 return;
8c8a743c
PZ
2237}
2238
2239void task_numa_free(struct task_struct *p)
2240{
2241 struct numa_group *grp = p->numa_group;
44dba3d5 2242 void *numa_faults = p->numa_faults;
e9dd685c
SR
2243 unsigned long flags;
2244 int i;
8c8a743c
PZ
2245
2246 if (grp) {
e9dd685c 2247 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2248 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2249 grp->faults[i] -= p->numa_faults[i];
989348b5 2250 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2251
8c8a743c 2252 grp->nr_tasks--;
e9dd685c 2253 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2254 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2255 put_numa_group(grp);
2256 }
2257
44dba3d5 2258 p->numa_faults = NULL;
82727018 2259 kfree(numa_faults);
8c8a743c
PZ
2260}
2261
cbee9f88
PZ
2262/*
2263 * Got a PROT_NONE fault for a page on @node.
2264 */
58b46da3 2265void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2266{
2267 struct task_struct *p = current;
6688cc05 2268 bool migrated = flags & TNF_MIGRATED;
58b46da3 2269 int cpu_node = task_node(current);
792568ec 2270 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2271 struct numa_group *ng;
ac8e895b 2272 int priv;
cbee9f88 2273
2a595721 2274 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2275 return;
2276
9ff1d9ff
MG
2277 /* for example, ksmd faulting in a user's mm */
2278 if (!p->mm)
2279 return;
2280
f809ca9a 2281 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2282 if (unlikely(!p->numa_faults)) {
2283 int size = sizeof(*p->numa_faults) *
be1e4e76 2284 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2285
44dba3d5
IM
2286 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2287 if (!p->numa_faults)
f809ca9a 2288 return;
745d6147 2289
83e1d2cd 2290 p->total_numa_faults = 0;
04bb2f94 2291 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2292 }
cbee9f88 2293
8c8a743c
PZ
2294 /*
2295 * First accesses are treated as private, otherwise consider accesses
2296 * to be private if the accessing pid has not changed
2297 */
2298 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2299 priv = 1;
2300 } else {
2301 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2302 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2303 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2304 }
2305
792568ec
RR
2306 /*
2307 * If a workload spans multiple NUMA nodes, a shared fault that
2308 * occurs wholly within the set of nodes that the workload is
2309 * actively using should be counted as local. This allows the
2310 * scan rate to slow down when a workload has settled down.
2311 */
4142c3eb
RR
2312 ng = p->numa_group;
2313 if (!priv && !local && ng && ng->active_nodes > 1 &&
2314 numa_is_active_node(cpu_node, ng) &&
2315 numa_is_active_node(mem_node, ng))
792568ec
RR
2316 local = 1;
2317
cbee9f88 2318 task_numa_placement(p);
f809ca9a 2319
2739d3ee
RR
2320 /*
2321 * Retry task to preferred node migration periodically, in case it
2322 * case it previously failed, or the scheduler moved us.
2323 */
2324 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2325 numa_migrate_preferred(p);
2326
b32e86b4
IM
2327 if (migrated)
2328 p->numa_pages_migrated += pages;
074c2381
MG
2329 if (flags & TNF_MIGRATE_FAIL)
2330 p->numa_faults_locality[2] += pages;
b32e86b4 2331
44dba3d5
IM
2332 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2333 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2334 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2335}
2336
6e5fb223
PZ
2337static void reset_ptenuma_scan(struct task_struct *p)
2338{
7e5a2c17
JL
2339 /*
2340 * We only did a read acquisition of the mmap sem, so
2341 * p->mm->numa_scan_seq is written to without exclusive access
2342 * and the update is not guaranteed to be atomic. That's not
2343 * much of an issue though, since this is just used for
2344 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2345 * expensive, to avoid any form of compiler optimizations:
2346 */
316c1608 2347 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2348 p->mm->numa_scan_offset = 0;
2349}
2350
cbee9f88
PZ
2351/*
2352 * The expensive part of numa migration is done from task_work context.
2353 * Triggered from task_tick_numa().
2354 */
2355void task_numa_work(struct callback_head *work)
2356{
2357 unsigned long migrate, next_scan, now = jiffies;
2358 struct task_struct *p = current;
2359 struct mm_struct *mm = p->mm;
51170840 2360 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2361 struct vm_area_struct *vma;
9f40604c 2362 unsigned long start, end;
598f0ec0 2363 unsigned long nr_pte_updates = 0;
4620f8c1 2364 long pages, virtpages;
cbee9f88
PZ
2365
2366 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2367
2368 work->next = work; /* protect against double add */
2369 /*
2370 * Who cares about NUMA placement when they're dying.
2371 *
2372 * NOTE: make sure not to dereference p->mm before this check,
2373 * exit_task_work() happens _after_ exit_mm() so we could be called
2374 * without p->mm even though we still had it when we enqueued this
2375 * work.
2376 */
2377 if (p->flags & PF_EXITING)
2378 return;
2379
930aa174 2380 if (!mm->numa_next_scan) {
7e8d16b6
MG
2381 mm->numa_next_scan = now +
2382 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2383 }
2384
cbee9f88
PZ
2385 /*
2386 * Enforce maximal scan/migration frequency..
2387 */
2388 migrate = mm->numa_next_scan;
2389 if (time_before(now, migrate))
2390 return;
2391
598f0ec0
MG
2392 if (p->numa_scan_period == 0) {
2393 p->numa_scan_period_max = task_scan_max(p);
2394 p->numa_scan_period = task_scan_min(p);
2395 }
cbee9f88 2396
fb003b80 2397 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2398 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2399 return;
2400
19a78d11
PZ
2401 /*
2402 * Delay this task enough that another task of this mm will likely win
2403 * the next time around.
2404 */
2405 p->node_stamp += 2 * TICK_NSEC;
2406
9f40604c
MG
2407 start = mm->numa_scan_offset;
2408 pages = sysctl_numa_balancing_scan_size;
2409 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2410 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2411 if (!pages)
2412 return;
cbee9f88 2413
4620f8c1 2414
6e5fb223 2415 down_read(&mm->mmap_sem);
9f40604c 2416 vma = find_vma(mm, start);
6e5fb223
PZ
2417 if (!vma) {
2418 reset_ptenuma_scan(p);
9f40604c 2419 start = 0;
6e5fb223
PZ
2420 vma = mm->mmap;
2421 }
9f40604c 2422 for (; vma; vma = vma->vm_next) {
6b79c57b 2423 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2424 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2425 continue;
6b79c57b 2426 }
6e5fb223 2427
4591ce4f
MG
2428 /*
2429 * Shared library pages mapped by multiple processes are not
2430 * migrated as it is expected they are cache replicated. Avoid
2431 * hinting faults in read-only file-backed mappings or the vdso
2432 * as migrating the pages will be of marginal benefit.
2433 */
2434 if (!vma->vm_mm ||
2435 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2436 continue;
2437
3c67f474
MG
2438 /*
2439 * Skip inaccessible VMAs to avoid any confusion between
2440 * PROT_NONE and NUMA hinting ptes
2441 */
2442 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2443 continue;
4591ce4f 2444
9f40604c
MG
2445 do {
2446 start = max(start, vma->vm_start);
2447 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2448 end = min(end, vma->vm_end);
4620f8c1 2449 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2450
2451 /*
4620f8c1
RR
2452 * Try to scan sysctl_numa_balancing_size worth of
2453 * hpages that have at least one present PTE that
2454 * is not already pte-numa. If the VMA contains
2455 * areas that are unused or already full of prot_numa
2456 * PTEs, scan up to virtpages, to skip through those
2457 * areas faster.
598f0ec0
MG
2458 */
2459 if (nr_pte_updates)
2460 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2461 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2462
9f40604c 2463 start = end;
4620f8c1 2464 if (pages <= 0 || virtpages <= 0)
9f40604c 2465 goto out;
3cf1962c
RR
2466
2467 cond_resched();
9f40604c 2468 } while (end != vma->vm_end);
cbee9f88 2469 }
6e5fb223 2470
9f40604c 2471out:
6e5fb223 2472 /*
c69307d5
PZ
2473 * It is possible to reach the end of the VMA list but the last few
2474 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2475 * would find the !migratable VMA on the next scan but not reset the
2476 * scanner to the start so check it now.
6e5fb223
PZ
2477 */
2478 if (vma)
9f40604c 2479 mm->numa_scan_offset = start;
6e5fb223
PZ
2480 else
2481 reset_ptenuma_scan(p);
2482 up_read(&mm->mmap_sem);
51170840
RR
2483
2484 /*
2485 * Make sure tasks use at least 32x as much time to run other code
2486 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2487 * Usually update_task_scan_period slows down scanning enough; on an
2488 * overloaded system we need to limit overhead on a per task basis.
2489 */
2490 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2491 u64 diff = p->se.sum_exec_runtime - runtime;
2492 p->node_stamp += 32 * diff;
2493 }
cbee9f88
PZ
2494}
2495
2496/*
2497 * Drive the periodic memory faults..
2498 */
2499void task_tick_numa(struct rq *rq, struct task_struct *curr)
2500{
2501 struct callback_head *work = &curr->numa_work;
2502 u64 period, now;
2503
2504 /*
2505 * We don't care about NUMA placement if we don't have memory.
2506 */
2507 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2508 return;
2509
2510 /*
2511 * Using runtime rather than walltime has the dual advantage that
2512 * we (mostly) drive the selection from busy threads and that the
2513 * task needs to have done some actual work before we bother with
2514 * NUMA placement.
2515 */
2516 now = curr->se.sum_exec_runtime;
2517 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2518
25b3e5a3 2519 if (now > curr->node_stamp + period) {
4b96a29b 2520 if (!curr->node_stamp)
598f0ec0 2521 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2522 curr->node_stamp += period;
cbee9f88
PZ
2523
2524 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2525 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2526 task_work_add(curr, work, true);
2527 }
2528 }
2529}
2530#else
2531static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2532{
2533}
0ec8aa00
PZ
2534
2535static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2536{
2537}
2538
2539static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2540{
2541}
cbee9f88
PZ
2542#endif /* CONFIG_NUMA_BALANCING */
2543
30cfdcfc
DA
2544static void
2545account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2546{
2547 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2548 if (!parent_entity(se))
029632fb 2549 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2550#ifdef CONFIG_SMP
0ec8aa00
PZ
2551 if (entity_is_task(se)) {
2552 struct rq *rq = rq_of(cfs_rq);
2553
2554 account_numa_enqueue(rq, task_of(se));
2555 list_add(&se->group_node, &rq->cfs_tasks);
2556 }
367456c7 2557#endif
30cfdcfc 2558 cfs_rq->nr_running++;
30cfdcfc
DA
2559}
2560
2561static void
2562account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2563{
2564 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2565 if (!parent_entity(se))
029632fb 2566 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2567#ifdef CONFIG_SMP
0ec8aa00
PZ
2568 if (entity_is_task(se)) {
2569 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2570 list_del_init(&se->group_node);
0ec8aa00 2571 }
bfdb198c 2572#endif
30cfdcfc 2573 cfs_rq->nr_running--;
30cfdcfc
DA
2574}
2575
3ff6dcac
YZ
2576#ifdef CONFIG_FAIR_GROUP_SCHED
2577# ifdef CONFIG_SMP
ea1dc6fc 2578static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2579{
ea1dc6fc 2580 long tg_weight, load, shares;
cf5f0acf
PZ
2581
2582 /*
ea1dc6fc
PZ
2583 * This really should be: cfs_rq->avg.load_avg, but instead we use
2584 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2585 * the shares for small weight interactive tasks.
cf5f0acf 2586 */
ea1dc6fc 2587 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2588
ea1dc6fc 2589 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2590
ea1dc6fc
PZ
2591 /* Ensure tg_weight >= load */
2592 tg_weight -= cfs_rq->tg_load_avg_contrib;
2593 tg_weight += load;
3ff6dcac 2594
3ff6dcac 2595 shares = (tg->shares * load);
cf5f0acf
PZ
2596 if (tg_weight)
2597 shares /= tg_weight;
3ff6dcac
YZ
2598
2599 if (shares < MIN_SHARES)
2600 shares = MIN_SHARES;
2601 if (shares > tg->shares)
2602 shares = tg->shares;
2603
2604 return shares;
2605}
3ff6dcac 2606# else /* CONFIG_SMP */
6d5ab293 2607static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2608{
2609 return tg->shares;
2610}
3ff6dcac 2611# endif /* CONFIG_SMP */
ea1dc6fc 2612
2069dd75
PZ
2613static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2614 unsigned long weight)
2615{
19e5eebb
PT
2616 if (se->on_rq) {
2617 /* commit outstanding execution time */
2618 if (cfs_rq->curr == se)
2619 update_curr(cfs_rq);
2069dd75 2620 account_entity_dequeue(cfs_rq, se);
19e5eebb 2621 }
2069dd75
PZ
2622
2623 update_load_set(&se->load, weight);
2624
2625 if (se->on_rq)
2626 account_entity_enqueue(cfs_rq, se);
2627}
2628
82958366
PT
2629static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2630
6d5ab293 2631static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2632{
2633 struct task_group *tg;
2634 struct sched_entity *se;
3ff6dcac 2635 long shares;
2069dd75 2636
2069dd75
PZ
2637 tg = cfs_rq->tg;
2638 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2639 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2640 return;
3ff6dcac
YZ
2641#ifndef CONFIG_SMP
2642 if (likely(se->load.weight == tg->shares))
2643 return;
2644#endif
6d5ab293 2645 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2646
2647 reweight_entity(cfs_rq_of(se), se, shares);
2648}
2649#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2650static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2651{
2652}
2653#endif /* CONFIG_FAIR_GROUP_SCHED */
2654
141965c7 2655#ifdef CONFIG_SMP
5b51f2f8
PT
2656/* Precomputed fixed inverse multiplies for multiplication by y^n */
2657static const u32 runnable_avg_yN_inv[] = {
2658 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2659 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2660 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2661 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2662 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2663 0x85aac367, 0x82cd8698,
2664};
2665
2666/*
2667 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2668 * over-estimates when re-combining.
2669 */
2670static const u32 runnable_avg_yN_sum[] = {
2671 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2672 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2673 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2674};
2675
7b20b916
YD
2676/*
2677 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2678 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2679 * were generated:
2680 */
2681static const u32 __accumulated_sum_N32[] = {
2682 0, 23371, 35056, 40899, 43820, 45281,
2683 46011, 46376, 46559, 46650, 46696, 46719,
2684};
2685
9d85f21c
PT
2686/*
2687 * Approximate:
2688 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2689 */
2690static __always_inline u64 decay_load(u64 val, u64 n)
2691{
5b51f2f8
PT
2692 unsigned int local_n;
2693
2694 if (!n)
2695 return val;
2696 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2697 return 0;
2698
2699 /* after bounds checking we can collapse to 32-bit */
2700 local_n = n;
2701
2702 /*
2703 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2704 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2705 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2706 *
2707 * To achieve constant time decay_load.
2708 */
2709 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2710 val >>= local_n / LOAD_AVG_PERIOD;
2711 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2712 }
2713
9d89c257
YD
2714 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2715 return val;
5b51f2f8
PT
2716}
2717
2718/*
2719 * For updates fully spanning n periods, the contribution to runnable
2720 * average will be: \Sum 1024*y^n
2721 *
2722 * We can compute this reasonably efficiently by combining:
2723 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2724 */
2725static u32 __compute_runnable_contrib(u64 n)
2726{
2727 u32 contrib = 0;
2728
2729 if (likely(n <= LOAD_AVG_PERIOD))
2730 return runnable_avg_yN_sum[n];
2731 else if (unlikely(n >= LOAD_AVG_MAX_N))
2732 return LOAD_AVG_MAX;
2733
7b20b916
YD
2734 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2735 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2736 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2737 contrib = decay_load(contrib, n);
2738 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2739}
2740
54a21385 2741#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2742
9d85f21c
PT
2743/*
2744 * We can represent the historical contribution to runnable average as the
2745 * coefficients of a geometric series. To do this we sub-divide our runnable
2746 * history into segments of approximately 1ms (1024us); label the segment that
2747 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2748 *
2749 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2750 * p0 p1 p2
2751 * (now) (~1ms ago) (~2ms ago)
2752 *
2753 * Let u_i denote the fraction of p_i that the entity was runnable.
2754 *
2755 * We then designate the fractions u_i as our co-efficients, yielding the
2756 * following representation of historical load:
2757 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2758 *
2759 * We choose y based on the with of a reasonably scheduling period, fixing:
2760 * y^32 = 0.5
2761 *
2762 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2763 * approximately half as much as the contribution to load within the last ms
2764 * (u_0).
2765 *
2766 * When a period "rolls over" and we have new u_0`, multiplying the previous
2767 * sum again by y is sufficient to update:
2768 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2769 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2770 */
9d89c257
YD
2771static __always_inline int
2772__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2773 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2774{
e0f5f3af 2775 u64 delta, scaled_delta, periods;
9d89c257 2776 u32 contrib;
6115c793 2777 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2778 unsigned long scale_freq, scale_cpu;
9d85f21c 2779
9d89c257 2780 delta = now - sa->last_update_time;
9d85f21c
PT
2781 /*
2782 * This should only happen when time goes backwards, which it
2783 * unfortunately does during sched clock init when we swap over to TSC.
2784 */
2785 if ((s64)delta < 0) {
9d89c257 2786 sa->last_update_time = now;
9d85f21c
PT
2787 return 0;
2788 }
2789
2790 /*
2791 * Use 1024ns as the unit of measurement since it's a reasonable
2792 * approximation of 1us and fast to compute.
2793 */
2794 delta >>= 10;
2795 if (!delta)
2796 return 0;
9d89c257 2797 sa->last_update_time = now;
9d85f21c 2798
6f2b0452
DE
2799 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2800 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2801
9d85f21c 2802 /* delta_w is the amount already accumulated against our next period */
9d89c257 2803 delta_w = sa->period_contrib;
9d85f21c 2804 if (delta + delta_w >= 1024) {
9d85f21c
PT
2805 decayed = 1;
2806
9d89c257
YD
2807 /* how much left for next period will start over, we don't know yet */
2808 sa->period_contrib = 0;
2809
9d85f21c
PT
2810 /*
2811 * Now that we know we're crossing a period boundary, figure
2812 * out how much from delta we need to complete the current
2813 * period and accrue it.
2814 */
2815 delta_w = 1024 - delta_w;
54a21385 2816 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2817 if (weight) {
e0f5f3af
DE
2818 sa->load_sum += weight * scaled_delta_w;
2819 if (cfs_rq) {
2820 cfs_rq->runnable_load_sum +=
2821 weight * scaled_delta_w;
2822 }
13962234 2823 }
36ee28e4 2824 if (running)
006cdf02 2825 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2826
2827 delta -= delta_w;
2828
2829 /* Figure out how many additional periods this update spans */
2830 periods = delta / 1024;
2831 delta %= 1024;
2832
9d89c257 2833 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2834 if (cfs_rq) {
2835 cfs_rq->runnable_load_sum =
2836 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2837 }
9d89c257 2838 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2839
2840 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2841 contrib = __compute_runnable_contrib(periods);
54a21385 2842 contrib = cap_scale(contrib, scale_freq);
13962234 2843 if (weight) {
9d89c257 2844 sa->load_sum += weight * contrib;
13962234
YD
2845 if (cfs_rq)
2846 cfs_rq->runnable_load_sum += weight * contrib;
2847 }
36ee28e4 2848 if (running)
006cdf02 2849 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2850 }
2851
2852 /* Remainder of delta accrued against u_0` */
54a21385 2853 scaled_delta = cap_scale(delta, scale_freq);
13962234 2854 if (weight) {
e0f5f3af 2855 sa->load_sum += weight * scaled_delta;
13962234 2856 if (cfs_rq)
e0f5f3af 2857 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2858 }
36ee28e4 2859 if (running)
006cdf02 2860 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2861
9d89c257 2862 sa->period_contrib += delta;
9ee474f5 2863
9d89c257
YD
2864 if (decayed) {
2865 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2866 if (cfs_rq) {
2867 cfs_rq->runnable_load_avg =
2868 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2869 }
006cdf02 2870 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2871 }
aff3e498 2872
9d89c257 2873 return decayed;
9ee474f5
PT
2874}
2875
c566e8e9 2876#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2877/**
2878 * update_tg_load_avg - update the tg's load avg
2879 * @cfs_rq: the cfs_rq whose avg changed
2880 * @force: update regardless of how small the difference
2881 *
2882 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2883 * However, because tg->load_avg is a global value there are performance
2884 * considerations.
2885 *
2886 * In order to avoid having to look at the other cfs_rq's, we use a
2887 * differential update where we store the last value we propagated. This in
2888 * turn allows skipping updates if the differential is 'small'.
2889 *
2890 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2891 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2892 */
9d89c257 2893static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2894{
9d89c257 2895 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2896
aa0b7ae0
WL
2897 /*
2898 * No need to update load_avg for root_task_group as it is not used.
2899 */
2900 if (cfs_rq->tg == &root_task_group)
2901 return;
2902
9d89c257
YD
2903 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2904 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2905 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2906 }
8165e145 2907}
f5f9739d 2908
ad936d86
BP
2909/*
2910 * Called within set_task_rq() right before setting a task's cpu. The
2911 * caller only guarantees p->pi_lock is held; no other assumptions,
2912 * including the state of rq->lock, should be made.
2913 */
2914void set_task_rq_fair(struct sched_entity *se,
2915 struct cfs_rq *prev, struct cfs_rq *next)
2916{
2917 if (!sched_feat(ATTACH_AGE_LOAD))
2918 return;
2919
2920 /*
2921 * We are supposed to update the task to "current" time, then its up to
2922 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2923 * getting what current time is, so simply throw away the out-of-date
2924 * time. This will result in the wakee task is less decayed, but giving
2925 * the wakee more load sounds not bad.
2926 */
2927 if (se->avg.last_update_time && prev) {
2928 u64 p_last_update_time;
2929 u64 n_last_update_time;
2930
2931#ifndef CONFIG_64BIT
2932 u64 p_last_update_time_copy;
2933 u64 n_last_update_time_copy;
2934
2935 do {
2936 p_last_update_time_copy = prev->load_last_update_time_copy;
2937 n_last_update_time_copy = next->load_last_update_time_copy;
2938
2939 smp_rmb();
2940
2941 p_last_update_time = prev->avg.last_update_time;
2942 n_last_update_time = next->avg.last_update_time;
2943
2944 } while (p_last_update_time != p_last_update_time_copy ||
2945 n_last_update_time != n_last_update_time_copy);
2946#else
2947 p_last_update_time = prev->avg.last_update_time;
2948 n_last_update_time = next->avg.last_update_time;
2949#endif
2950 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2951 &se->avg, 0, 0, NULL);
2952 se->avg.last_update_time = n_last_update_time;
2953 }
2954}
6e83125c 2955#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2956static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2957#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2958
a2c6c91f
SM
2959static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2960{
2961 struct rq *rq = rq_of(cfs_rq);
2962 int cpu = cpu_of(rq);
2963
2964 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2965 unsigned long max = rq->cpu_capacity_orig;
2966
2967 /*
2968 * There are a few boundary cases this might miss but it should
2969 * get called often enough that that should (hopefully) not be
2970 * a real problem -- added to that it only calls on the local
2971 * CPU, so if we enqueue remotely we'll miss an update, but
2972 * the next tick/schedule should update.
2973 *
2974 * It will not get called when we go idle, because the idle
2975 * thread is a different class (!fair), nor will the utilization
2976 * number include things like RT tasks.
2977 *
2978 * As is, the util number is not freq-invariant (we'd have to
2979 * implement arch_scale_freq_capacity() for that).
2980 *
2981 * See cpu_util().
2982 */
2983 cpufreq_update_util(rq_clock(rq),
2984 min(cfs_rq->avg.util_avg, max), max);
2985 }
2986}
2987
89741892
PZ
2988/*
2989 * Unsigned subtract and clamp on underflow.
2990 *
2991 * Explicitly do a load-store to ensure the intermediate value never hits
2992 * memory. This allows lockless observations without ever seeing the negative
2993 * values.
2994 */
2995#define sub_positive(_ptr, _val) do { \
2996 typeof(_ptr) ptr = (_ptr); \
2997 typeof(*ptr) val = (_val); \
2998 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2999 res = var - val; \
3000 if (res > var) \
3001 res = 0; \
3002 WRITE_ONCE(*ptr, res); \
3003} while (0)
3004
3d30544f
PZ
3005/**
3006 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3007 * @now: current time, as per cfs_rq_clock_task()
3008 * @cfs_rq: cfs_rq to update
3009 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3010 *
3011 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3012 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3013 * post_init_entity_util_avg().
3014 *
3015 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3016 *
7c3edd2c
PZ
3017 * Returns true if the load decayed or we removed load.
3018 *
3019 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3020 * call update_tg_load_avg() when this function returns true.
3d30544f 3021 */
a2c6c91f
SM
3022static inline int
3023update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3024{
9d89c257 3025 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3026 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3027
9d89c257 3028 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3029 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3030 sub_positive(&sa->load_avg, r);
3031 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3032 removed_load = 1;
8165e145 3033 }
2dac754e 3034
9d89c257
YD
3035 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3036 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3037 sub_positive(&sa->util_avg, r);
3038 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3039 removed_util = 1;
9d89c257 3040 }
36ee28e4 3041
a2c6c91f 3042 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3043 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3044
9d89c257
YD
3045#ifndef CONFIG_64BIT
3046 smp_wmb();
3047 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3048#endif
36ee28e4 3049
a2c6c91f
SM
3050 if (update_freq && (decayed || removed_util))
3051 cfs_rq_util_change(cfs_rq);
21e96f88 3052
41e0d37f 3053 return decayed || removed_load;
21e96f88
SM
3054}
3055
3056/* Update task and its cfs_rq load average */
3057static inline void update_load_avg(struct sched_entity *se, int update_tg)
3058{
3059 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3060 u64 now = cfs_rq_clock_task(cfs_rq);
3061 struct rq *rq = rq_of(cfs_rq);
3062 int cpu = cpu_of(rq);
3063
3064 /*
3065 * Track task load average for carrying it to new CPU after migrated, and
3066 * track group sched_entity load average for task_h_load calc in migration
3067 */
3068 __update_load_avg(now, cpu, &se->avg,
3069 se->on_rq * scale_load_down(se->load.weight),
3070 cfs_rq->curr == se, NULL);
3071
a2c6c91f 3072 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 3073 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3074}
3075
3d30544f
PZ
3076/**
3077 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3078 * @cfs_rq: cfs_rq to attach to
3079 * @se: sched_entity to attach
3080 *
3081 * Must call update_cfs_rq_load_avg() before this, since we rely on
3082 * cfs_rq->avg.last_update_time being current.
3083 */
a05e8c51
BP
3084static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3085{
a9280514
PZ
3086 if (!sched_feat(ATTACH_AGE_LOAD))
3087 goto skip_aging;
3088
6efdb105
BP
3089 /*
3090 * If we got migrated (either between CPUs or between cgroups) we'll
3091 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3092 *
3093 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3094 */
3095 if (se->avg.last_update_time) {
3096 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3097 &se->avg, 0, 0, NULL);
3098
3099 /*
3100 * XXX: we could have just aged the entire load away if we've been
3101 * absent from the fair class for too long.
3102 */
3103 }
3104
a9280514 3105skip_aging:
a05e8c51
BP
3106 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3107 cfs_rq->avg.load_avg += se->avg.load_avg;
3108 cfs_rq->avg.load_sum += se->avg.load_sum;
3109 cfs_rq->avg.util_avg += se->avg.util_avg;
3110 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3111
3112 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3113}
3114
3d30544f
PZ
3115/**
3116 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3117 * @cfs_rq: cfs_rq to detach from
3118 * @se: sched_entity to detach
3119 *
3120 * Must call update_cfs_rq_load_avg() before this, since we rely on
3121 * cfs_rq->avg.last_update_time being current.
3122 */
a05e8c51
BP
3123static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3124{
3125 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3126 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3127 cfs_rq->curr == se, NULL);
3128
89741892
PZ
3129 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3130 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3131 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3132 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3133
3134 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3135}
3136
9d89c257
YD
3137/* Add the load generated by se into cfs_rq's load average */
3138static inline void
3139enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3140{
9d89c257
YD
3141 struct sched_avg *sa = &se->avg;
3142 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3143 int migrated, decayed;
9ee474f5 3144
a05e8c51
BP
3145 migrated = !sa->last_update_time;
3146 if (!migrated) {
9d89c257 3147 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3148 se->on_rq * scale_load_down(se->load.weight),
3149 cfs_rq->curr == se, NULL);
aff3e498 3150 }
c566e8e9 3151
a2c6c91f 3152 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3153
13962234
YD
3154 cfs_rq->runnable_load_avg += sa->load_avg;
3155 cfs_rq->runnable_load_sum += sa->load_sum;
3156
a05e8c51
BP
3157 if (migrated)
3158 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3159
9d89c257
YD
3160 if (decayed || migrated)
3161 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3162}
3163
13962234
YD
3164/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3165static inline void
3166dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3167{
3168 update_load_avg(se, 1);
3169
3170 cfs_rq->runnable_load_avg =
3171 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3172 cfs_rq->runnable_load_sum =
a05e8c51 3173 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3174}
3175
9d89c257 3176#ifndef CONFIG_64BIT
0905f04e
YD
3177static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3178{
9d89c257 3179 u64 last_update_time_copy;
0905f04e 3180 u64 last_update_time;
9ee474f5 3181
9d89c257
YD
3182 do {
3183 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3184 smp_rmb();
3185 last_update_time = cfs_rq->avg.last_update_time;
3186 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3187
3188 return last_update_time;
3189}
9d89c257 3190#else
0905f04e
YD
3191static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3192{
3193 return cfs_rq->avg.last_update_time;
3194}
9d89c257
YD
3195#endif
3196
0905f04e
YD
3197/*
3198 * Task first catches up with cfs_rq, and then subtract
3199 * itself from the cfs_rq (task must be off the queue now).
3200 */
3201void remove_entity_load_avg(struct sched_entity *se)
3202{
3203 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3204 u64 last_update_time;
3205
3206 /*
7dc603c9
PZ
3207 * tasks cannot exit without having gone through wake_up_new_task() ->
3208 * post_init_entity_util_avg() which will have added things to the
3209 * cfs_rq, so we can remove unconditionally.
3210 *
3211 * Similarly for groups, they will have passed through
3212 * post_init_entity_util_avg() before unregister_sched_fair_group()
3213 * calls this.
0905f04e 3214 */
0905f04e
YD
3215
3216 last_update_time = cfs_rq_last_update_time(cfs_rq);
3217
13962234 3218 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3219 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3220 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3221}
642dbc39 3222
7ea241af
YD
3223static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3224{
3225 return cfs_rq->runnable_load_avg;
3226}
3227
3228static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3229{
3230 return cfs_rq->avg.load_avg;
3231}
3232
6e83125c
PZ
3233static int idle_balance(struct rq *this_rq);
3234
38033c37
PZ
3235#else /* CONFIG_SMP */
3236
01011473
PZ
3237static inline int
3238update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3239{
3240 return 0;
3241}
3242
536bd00c
RW
3243static inline void update_load_avg(struct sched_entity *se, int not_used)
3244{
3245 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3246 struct rq *rq = rq_of(cfs_rq);
3247
3248 cpufreq_trigger_update(rq_clock(rq));
3249}
3250
9d89c257
YD
3251static inline void
3252enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3253static inline void
3254dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3255static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3256
a05e8c51
BP
3257static inline void
3258attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3259static inline void
3260detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3261
6e83125c
PZ
3262static inline int idle_balance(struct rq *rq)
3263{
3264 return 0;
3265}
3266
38033c37 3267#endif /* CONFIG_SMP */
9d85f21c 3268
ddc97297
PZ
3269static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3270{
3271#ifdef CONFIG_SCHED_DEBUG
3272 s64 d = se->vruntime - cfs_rq->min_vruntime;
3273
3274 if (d < 0)
3275 d = -d;
3276
3277 if (d > 3*sysctl_sched_latency)
3278 schedstat_inc(cfs_rq, nr_spread_over);
3279#endif
3280}
3281
aeb73b04
PZ
3282static void
3283place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3284{
1af5f730 3285 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3286
2cb8600e
PZ
3287 /*
3288 * The 'current' period is already promised to the current tasks,
3289 * however the extra weight of the new task will slow them down a
3290 * little, place the new task so that it fits in the slot that
3291 * stays open at the end.
3292 */
94dfb5e7 3293 if (initial && sched_feat(START_DEBIT))
f9c0b095 3294 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3295
a2e7a7eb 3296 /* sleeps up to a single latency don't count. */
5ca9880c 3297 if (!initial) {
a2e7a7eb 3298 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3299
a2e7a7eb
MG
3300 /*
3301 * Halve their sleep time's effect, to allow
3302 * for a gentler effect of sleepers:
3303 */
3304 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3305 thresh >>= 1;
51e0304c 3306
a2e7a7eb 3307 vruntime -= thresh;
aeb73b04
PZ
3308 }
3309
b5d9d734 3310 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3311 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3312}
3313
d3d9dc33
PT
3314static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3315
cb251765
MG
3316static inline void check_schedstat_required(void)
3317{
3318#ifdef CONFIG_SCHEDSTATS
3319 if (schedstat_enabled())
3320 return;
3321
3322 /* Force schedstat enabled if a dependent tracepoint is active */
3323 if (trace_sched_stat_wait_enabled() ||
3324 trace_sched_stat_sleep_enabled() ||
3325 trace_sched_stat_iowait_enabled() ||
3326 trace_sched_stat_blocked_enabled() ||
3327 trace_sched_stat_runtime_enabled()) {
eda8dca5 3328 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3329 "stat_blocked and stat_runtime require the "
3330 "kernel parameter schedstats=enabled or "
3331 "kernel.sched_schedstats=1\n");
3332 }
3333#endif
3334}
3335
b5179ac7
PZ
3336
3337/*
3338 * MIGRATION
3339 *
3340 * dequeue
3341 * update_curr()
3342 * update_min_vruntime()
3343 * vruntime -= min_vruntime
3344 *
3345 * enqueue
3346 * update_curr()
3347 * update_min_vruntime()
3348 * vruntime += min_vruntime
3349 *
3350 * this way the vruntime transition between RQs is done when both
3351 * min_vruntime are up-to-date.
3352 *
3353 * WAKEUP (remote)
3354 *
59efa0ba 3355 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3356 * vruntime -= min_vruntime
3357 *
3358 * enqueue
3359 * update_curr()
3360 * update_min_vruntime()
3361 * vruntime += min_vruntime
3362 *
3363 * this way we don't have the most up-to-date min_vruntime on the originating
3364 * CPU and an up-to-date min_vruntime on the destination CPU.
3365 */
3366
bf0f6f24 3367static void
88ec22d3 3368enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3369{
2f950354
PZ
3370 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3371 bool curr = cfs_rq->curr == se;
3372
88ec22d3 3373 /*
2f950354
PZ
3374 * If we're the current task, we must renormalise before calling
3375 * update_curr().
88ec22d3 3376 */
2f950354 3377 if (renorm && curr)
88ec22d3
PZ
3378 se->vruntime += cfs_rq->min_vruntime;
3379
2f950354
PZ
3380 update_curr(cfs_rq);
3381
bf0f6f24 3382 /*
2f950354
PZ
3383 * Otherwise, renormalise after, such that we're placed at the current
3384 * moment in time, instead of some random moment in the past. Being
3385 * placed in the past could significantly boost this task to the
3386 * fairness detriment of existing tasks.
bf0f6f24 3387 */
2f950354
PZ
3388 if (renorm && !curr)
3389 se->vruntime += cfs_rq->min_vruntime;
3390
9d89c257 3391 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3392 account_entity_enqueue(cfs_rq, se);
3393 update_cfs_shares(cfs_rq);
bf0f6f24 3394
1a3d027c 3395 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3396 place_entity(cfs_rq, se, 0);
bf0f6f24 3397
cb251765
MG
3398 check_schedstat_required();
3399 if (schedstat_enabled()) {
1a3d027c 3400 update_stats_enqueue(cfs_rq, se, flags);
cb251765
MG
3401 check_spread(cfs_rq, se);
3402 }
2f950354 3403 if (!curr)
83b699ed 3404 __enqueue_entity(cfs_rq, se);
2069dd75 3405 se->on_rq = 1;
3d4b47b4 3406
d3d9dc33 3407 if (cfs_rq->nr_running == 1) {
3d4b47b4 3408 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3409 check_enqueue_throttle(cfs_rq);
3410 }
bf0f6f24
IM
3411}
3412
2c13c919 3413static void __clear_buddies_last(struct sched_entity *se)
2002c695 3414{
2c13c919
RR
3415 for_each_sched_entity(se) {
3416 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3417 if (cfs_rq->last != se)
2c13c919 3418 break;
f1044799
PZ
3419
3420 cfs_rq->last = NULL;
2c13c919
RR
3421 }
3422}
2002c695 3423
2c13c919
RR
3424static void __clear_buddies_next(struct sched_entity *se)
3425{
3426 for_each_sched_entity(se) {
3427 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3428 if (cfs_rq->next != se)
2c13c919 3429 break;
f1044799
PZ
3430
3431 cfs_rq->next = NULL;
2c13c919 3432 }
2002c695
PZ
3433}
3434
ac53db59
RR
3435static void __clear_buddies_skip(struct sched_entity *se)
3436{
3437 for_each_sched_entity(se) {
3438 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3439 if (cfs_rq->skip != se)
ac53db59 3440 break;
f1044799
PZ
3441
3442 cfs_rq->skip = NULL;
ac53db59
RR
3443 }
3444}
3445
a571bbea
PZ
3446static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3447{
2c13c919
RR
3448 if (cfs_rq->last == se)
3449 __clear_buddies_last(se);
3450
3451 if (cfs_rq->next == se)
3452 __clear_buddies_next(se);
ac53db59
RR
3453
3454 if (cfs_rq->skip == se)
3455 __clear_buddies_skip(se);
a571bbea
PZ
3456}
3457
6c16a6dc 3458static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3459
bf0f6f24 3460static void
371fd7e7 3461dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3462{
a2a2d680
DA
3463 /*
3464 * Update run-time statistics of the 'current'.
3465 */
3466 update_curr(cfs_rq);
13962234 3467 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3468
cb251765
MG
3469 if (schedstat_enabled())
3470 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3471
2002c695 3472 clear_buddies(cfs_rq, se);
4793241b 3473
83b699ed 3474 if (se != cfs_rq->curr)
30cfdcfc 3475 __dequeue_entity(cfs_rq, se);
17bc14b7 3476 se->on_rq = 0;
30cfdcfc 3477 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3478
3479 /*
3480 * Normalize the entity after updating the min_vruntime because the
3481 * update can refer to the ->curr item and we need to reflect this
3482 * movement in our normalized position.
3483 */
371fd7e7 3484 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3485 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3486
d8b4986d
PT
3487 /* return excess runtime on last dequeue */
3488 return_cfs_rq_runtime(cfs_rq);
3489
1e876231 3490 update_min_vruntime(cfs_rq);
17bc14b7 3491 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3492}
3493
3494/*
3495 * Preempt the current task with a newly woken task if needed:
3496 */
7c92e54f 3497static void
2e09bf55 3498check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3499{
11697830 3500 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3501 struct sched_entity *se;
3502 s64 delta;
11697830 3503
6d0f0ebd 3504 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3505 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3506 if (delta_exec > ideal_runtime) {
8875125e 3507 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3508 /*
3509 * The current task ran long enough, ensure it doesn't get
3510 * re-elected due to buddy favours.
3511 */
3512 clear_buddies(cfs_rq, curr);
f685ceac
MG
3513 return;
3514 }
3515
3516 /*
3517 * Ensure that a task that missed wakeup preemption by a
3518 * narrow margin doesn't have to wait for a full slice.
3519 * This also mitigates buddy induced latencies under load.
3520 */
f685ceac
MG
3521 if (delta_exec < sysctl_sched_min_granularity)
3522 return;
3523
f4cfb33e
WX
3524 se = __pick_first_entity(cfs_rq);
3525 delta = curr->vruntime - se->vruntime;
f685ceac 3526
f4cfb33e
WX
3527 if (delta < 0)
3528 return;
d7d82944 3529
f4cfb33e 3530 if (delta > ideal_runtime)
8875125e 3531 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3532}
3533
83b699ed 3534static void
8494f412 3535set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3536{
83b699ed
SV
3537 /* 'current' is not kept within the tree. */
3538 if (se->on_rq) {
3539 /*
3540 * Any task has to be enqueued before it get to execute on
3541 * a CPU. So account for the time it spent waiting on the
3542 * runqueue.
3543 */
cb251765
MG
3544 if (schedstat_enabled())
3545 update_stats_wait_end(cfs_rq, se);
83b699ed 3546 __dequeue_entity(cfs_rq, se);
9d89c257 3547 update_load_avg(se, 1);
83b699ed
SV
3548 }
3549
79303e9e 3550 update_stats_curr_start(cfs_rq, se);
429d43bc 3551 cfs_rq->curr = se;
eba1ed4b
IM
3552#ifdef CONFIG_SCHEDSTATS
3553 /*
3554 * Track our maximum slice length, if the CPU's load is at
3555 * least twice that of our own weight (i.e. dont track it
3556 * when there are only lesser-weight tasks around):
3557 */
cb251765 3558 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3559 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3560 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3561 }
3562#endif
4a55b450 3563 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3564}
3565
3f3a4904
PZ
3566static int
3567wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3568
ac53db59
RR
3569/*
3570 * Pick the next process, keeping these things in mind, in this order:
3571 * 1) keep things fair between processes/task groups
3572 * 2) pick the "next" process, since someone really wants that to run
3573 * 3) pick the "last" process, for cache locality
3574 * 4) do not run the "skip" process, if something else is available
3575 */
678d5718
PZ
3576static struct sched_entity *
3577pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3578{
678d5718
PZ
3579 struct sched_entity *left = __pick_first_entity(cfs_rq);
3580 struct sched_entity *se;
3581
3582 /*
3583 * If curr is set we have to see if its left of the leftmost entity
3584 * still in the tree, provided there was anything in the tree at all.
3585 */
3586 if (!left || (curr && entity_before(curr, left)))
3587 left = curr;
3588
3589 se = left; /* ideally we run the leftmost entity */
f4b6755f 3590
ac53db59
RR
3591 /*
3592 * Avoid running the skip buddy, if running something else can
3593 * be done without getting too unfair.
3594 */
3595 if (cfs_rq->skip == se) {
678d5718
PZ
3596 struct sched_entity *second;
3597
3598 if (se == curr) {
3599 second = __pick_first_entity(cfs_rq);
3600 } else {
3601 second = __pick_next_entity(se);
3602 if (!second || (curr && entity_before(curr, second)))
3603 second = curr;
3604 }
3605
ac53db59
RR
3606 if (second && wakeup_preempt_entity(second, left) < 1)
3607 se = second;
3608 }
aa2ac252 3609
f685ceac
MG
3610 /*
3611 * Prefer last buddy, try to return the CPU to a preempted task.
3612 */
3613 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3614 se = cfs_rq->last;
3615
ac53db59
RR
3616 /*
3617 * Someone really wants this to run. If it's not unfair, run it.
3618 */
3619 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3620 se = cfs_rq->next;
3621
f685ceac 3622 clear_buddies(cfs_rq, se);
4793241b
PZ
3623
3624 return se;
aa2ac252
PZ
3625}
3626
678d5718 3627static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3628
ab6cde26 3629static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3630{
3631 /*
3632 * If still on the runqueue then deactivate_task()
3633 * was not called and update_curr() has to be done:
3634 */
3635 if (prev->on_rq)
b7cc0896 3636 update_curr(cfs_rq);
bf0f6f24 3637
d3d9dc33
PT
3638 /* throttle cfs_rqs exceeding runtime */
3639 check_cfs_rq_runtime(cfs_rq);
3640
cb251765
MG
3641 if (schedstat_enabled()) {
3642 check_spread(cfs_rq, prev);
3643 if (prev->on_rq)
3644 update_stats_wait_start(cfs_rq, prev);
3645 }
3646
30cfdcfc 3647 if (prev->on_rq) {
30cfdcfc
DA
3648 /* Put 'current' back into the tree. */
3649 __enqueue_entity(cfs_rq, prev);
9d85f21c 3650 /* in !on_rq case, update occurred at dequeue */
9d89c257 3651 update_load_avg(prev, 0);
30cfdcfc 3652 }
429d43bc 3653 cfs_rq->curr = NULL;
bf0f6f24
IM
3654}
3655
8f4d37ec
PZ
3656static void
3657entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3658{
bf0f6f24 3659 /*
30cfdcfc 3660 * Update run-time statistics of the 'current'.
bf0f6f24 3661 */
30cfdcfc 3662 update_curr(cfs_rq);
bf0f6f24 3663
9d85f21c
PT
3664 /*
3665 * Ensure that runnable average is periodically updated.
3666 */
9d89c257 3667 update_load_avg(curr, 1);
bf0bd948 3668 update_cfs_shares(cfs_rq);
9d85f21c 3669
8f4d37ec
PZ
3670#ifdef CONFIG_SCHED_HRTICK
3671 /*
3672 * queued ticks are scheduled to match the slice, so don't bother
3673 * validating it and just reschedule.
3674 */
983ed7a6 3675 if (queued) {
8875125e 3676 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3677 return;
3678 }
8f4d37ec
PZ
3679 /*
3680 * don't let the period tick interfere with the hrtick preemption
3681 */
3682 if (!sched_feat(DOUBLE_TICK) &&
3683 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3684 return;
3685#endif
3686
2c2efaed 3687 if (cfs_rq->nr_running > 1)
2e09bf55 3688 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3689}
3690
ab84d31e
PT
3691
3692/**************************************************
3693 * CFS bandwidth control machinery
3694 */
3695
3696#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3697
3698#ifdef HAVE_JUMP_LABEL
c5905afb 3699static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3700
3701static inline bool cfs_bandwidth_used(void)
3702{
c5905afb 3703 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3704}
3705
1ee14e6c 3706void cfs_bandwidth_usage_inc(void)
029632fb 3707{
1ee14e6c
BS
3708 static_key_slow_inc(&__cfs_bandwidth_used);
3709}
3710
3711void cfs_bandwidth_usage_dec(void)
3712{
3713 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3714}
3715#else /* HAVE_JUMP_LABEL */
3716static bool cfs_bandwidth_used(void)
3717{
3718 return true;
3719}
3720
1ee14e6c
BS
3721void cfs_bandwidth_usage_inc(void) {}
3722void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3723#endif /* HAVE_JUMP_LABEL */
3724
ab84d31e
PT
3725/*
3726 * default period for cfs group bandwidth.
3727 * default: 0.1s, units: nanoseconds
3728 */
3729static inline u64 default_cfs_period(void)
3730{
3731 return 100000000ULL;
3732}
ec12cb7f
PT
3733
3734static inline u64 sched_cfs_bandwidth_slice(void)
3735{
3736 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3737}
3738
a9cf55b2
PT
3739/*
3740 * Replenish runtime according to assigned quota and update expiration time.
3741 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3742 * additional synchronization around rq->lock.
3743 *
3744 * requires cfs_b->lock
3745 */
029632fb 3746void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3747{
3748 u64 now;
3749
3750 if (cfs_b->quota == RUNTIME_INF)
3751 return;
3752
3753 now = sched_clock_cpu(smp_processor_id());
3754 cfs_b->runtime = cfs_b->quota;
3755 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3756}
3757
029632fb
PZ
3758static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3759{
3760 return &tg->cfs_bandwidth;
3761}
3762
f1b17280
PT
3763/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3764static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3765{
3766 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3767 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3768
78becc27 3769 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3770}
3771
85dac906
PT
3772/* returns 0 on failure to allocate runtime */
3773static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3774{
3775 struct task_group *tg = cfs_rq->tg;
3776 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3777 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3778
3779 /* note: this is a positive sum as runtime_remaining <= 0 */
3780 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3781
3782 raw_spin_lock(&cfs_b->lock);
3783 if (cfs_b->quota == RUNTIME_INF)
3784 amount = min_amount;
58088ad0 3785 else {
77a4d1a1 3786 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3787
3788 if (cfs_b->runtime > 0) {
3789 amount = min(cfs_b->runtime, min_amount);
3790 cfs_b->runtime -= amount;
3791 cfs_b->idle = 0;
3792 }
ec12cb7f 3793 }
a9cf55b2 3794 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3795 raw_spin_unlock(&cfs_b->lock);
3796
3797 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3798 /*
3799 * we may have advanced our local expiration to account for allowed
3800 * spread between our sched_clock and the one on which runtime was
3801 * issued.
3802 */
3803 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3804 cfs_rq->runtime_expires = expires;
85dac906
PT
3805
3806 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3807}
3808
a9cf55b2
PT
3809/*
3810 * Note: This depends on the synchronization provided by sched_clock and the
3811 * fact that rq->clock snapshots this value.
3812 */
3813static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3814{
a9cf55b2 3815 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3816
3817 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3818 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3819 return;
3820
a9cf55b2
PT
3821 if (cfs_rq->runtime_remaining < 0)
3822 return;
3823
3824 /*
3825 * If the local deadline has passed we have to consider the
3826 * possibility that our sched_clock is 'fast' and the global deadline
3827 * has not truly expired.
3828 *
3829 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3830 * whether the global deadline has advanced. It is valid to compare
3831 * cfs_b->runtime_expires without any locks since we only care about
3832 * exact equality, so a partial write will still work.
a9cf55b2
PT
3833 */
3834
51f2176d 3835 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3836 /* extend local deadline, drift is bounded above by 2 ticks */
3837 cfs_rq->runtime_expires += TICK_NSEC;
3838 } else {
3839 /* global deadline is ahead, expiration has passed */
3840 cfs_rq->runtime_remaining = 0;
3841 }
3842}
3843
9dbdb155 3844static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3845{
3846 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3847 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3848 expire_cfs_rq_runtime(cfs_rq);
3849
3850 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3851 return;
3852
85dac906
PT
3853 /*
3854 * if we're unable to extend our runtime we resched so that the active
3855 * hierarchy can be throttled
3856 */
3857 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3858 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3859}
3860
6c16a6dc 3861static __always_inline
9dbdb155 3862void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3863{
56f570e5 3864 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3865 return;
3866
3867 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3868}
3869
85dac906
PT
3870static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3871{
56f570e5 3872 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3873}
3874
64660c86
PT
3875/* check whether cfs_rq, or any parent, is throttled */
3876static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3877{
56f570e5 3878 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3879}
3880
3881/*
3882 * Ensure that neither of the group entities corresponding to src_cpu or
3883 * dest_cpu are members of a throttled hierarchy when performing group
3884 * load-balance operations.
3885 */
3886static inline int throttled_lb_pair(struct task_group *tg,
3887 int src_cpu, int dest_cpu)
3888{
3889 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3890
3891 src_cfs_rq = tg->cfs_rq[src_cpu];
3892 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3893
3894 return throttled_hierarchy(src_cfs_rq) ||
3895 throttled_hierarchy(dest_cfs_rq);
3896}
3897
3898/* updated child weight may affect parent so we have to do this bottom up */
3899static int tg_unthrottle_up(struct task_group *tg, void *data)
3900{
3901 struct rq *rq = data;
3902 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3903
3904 cfs_rq->throttle_count--;
64660c86 3905 if (!cfs_rq->throttle_count) {
f1b17280 3906 /* adjust cfs_rq_clock_task() */
78becc27 3907 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3908 cfs_rq->throttled_clock_task;
64660c86 3909 }
64660c86
PT
3910
3911 return 0;
3912}
3913
3914static int tg_throttle_down(struct task_group *tg, void *data)
3915{
3916 struct rq *rq = data;
3917 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3918
82958366
PT
3919 /* group is entering throttled state, stop time */
3920 if (!cfs_rq->throttle_count)
78becc27 3921 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3922 cfs_rq->throttle_count++;
3923
3924 return 0;
3925}
3926
d3d9dc33 3927static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3928{
3929 struct rq *rq = rq_of(cfs_rq);
3930 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3931 struct sched_entity *se;
3932 long task_delta, dequeue = 1;
77a4d1a1 3933 bool empty;
85dac906
PT
3934
3935 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3936
f1b17280 3937 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3938 rcu_read_lock();
3939 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3940 rcu_read_unlock();
85dac906
PT
3941
3942 task_delta = cfs_rq->h_nr_running;
3943 for_each_sched_entity(se) {
3944 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3945 /* throttled entity or throttle-on-deactivate */
3946 if (!se->on_rq)
3947 break;
3948
3949 if (dequeue)
3950 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3951 qcfs_rq->h_nr_running -= task_delta;
3952
3953 if (qcfs_rq->load.weight)
3954 dequeue = 0;
3955 }
3956
3957 if (!se)
72465447 3958 sub_nr_running(rq, task_delta);
85dac906
PT
3959
3960 cfs_rq->throttled = 1;
78becc27 3961 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3962 raw_spin_lock(&cfs_b->lock);
d49db342 3963 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3964
c06f04c7
BS
3965 /*
3966 * Add to the _head_ of the list, so that an already-started
3967 * distribute_cfs_runtime will not see us
3968 */
3969 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3970
3971 /*
3972 * If we're the first throttled task, make sure the bandwidth
3973 * timer is running.
3974 */
3975 if (empty)
3976 start_cfs_bandwidth(cfs_b);
3977
85dac906
PT
3978 raw_spin_unlock(&cfs_b->lock);
3979}
3980
029632fb 3981void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3982{
3983 struct rq *rq = rq_of(cfs_rq);
3984 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3985 struct sched_entity *se;
3986 int enqueue = 1;
3987 long task_delta;
3988
22b958d8 3989 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3990
3991 cfs_rq->throttled = 0;
1a55af2e
FW
3992
3993 update_rq_clock(rq);
3994
671fd9da 3995 raw_spin_lock(&cfs_b->lock);
78becc27 3996 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3997 list_del_rcu(&cfs_rq->throttled_list);
3998 raw_spin_unlock(&cfs_b->lock);
3999
64660c86
PT
4000 /* update hierarchical throttle state */
4001 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4002
671fd9da
PT
4003 if (!cfs_rq->load.weight)
4004 return;
4005
4006 task_delta = cfs_rq->h_nr_running;
4007 for_each_sched_entity(se) {
4008 if (se->on_rq)
4009 enqueue = 0;
4010
4011 cfs_rq = cfs_rq_of(se);
4012 if (enqueue)
4013 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4014 cfs_rq->h_nr_running += task_delta;
4015
4016 if (cfs_rq_throttled(cfs_rq))
4017 break;
4018 }
4019
4020 if (!se)
72465447 4021 add_nr_running(rq, task_delta);
671fd9da
PT
4022
4023 /* determine whether we need to wake up potentially idle cpu */
4024 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4025 resched_curr(rq);
671fd9da
PT
4026}
4027
4028static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4029 u64 remaining, u64 expires)
4030{
4031 struct cfs_rq *cfs_rq;
c06f04c7
BS
4032 u64 runtime;
4033 u64 starting_runtime = remaining;
671fd9da
PT
4034
4035 rcu_read_lock();
4036 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4037 throttled_list) {
4038 struct rq *rq = rq_of(cfs_rq);
4039
4040 raw_spin_lock(&rq->lock);
4041 if (!cfs_rq_throttled(cfs_rq))
4042 goto next;
4043
4044 runtime = -cfs_rq->runtime_remaining + 1;
4045 if (runtime > remaining)
4046 runtime = remaining;
4047 remaining -= runtime;
4048
4049 cfs_rq->runtime_remaining += runtime;
4050 cfs_rq->runtime_expires = expires;
4051
4052 /* we check whether we're throttled above */
4053 if (cfs_rq->runtime_remaining > 0)
4054 unthrottle_cfs_rq(cfs_rq);
4055
4056next:
4057 raw_spin_unlock(&rq->lock);
4058
4059 if (!remaining)
4060 break;
4061 }
4062 rcu_read_unlock();
4063
c06f04c7 4064 return starting_runtime - remaining;
671fd9da
PT
4065}
4066
58088ad0
PT
4067/*
4068 * Responsible for refilling a task_group's bandwidth and unthrottling its
4069 * cfs_rqs as appropriate. If there has been no activity within the last
4070 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4071 * used to track this state.
4072 */
4073static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4074{
671fd9da 4075 u64 runtime, runtime_expires;
51f2176d 4076 int throttled;
58088ad0 4077
58088ad0
PT
4078 /* no need to continue the timer with no bandwidth constraint */
4079 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4080 goto out_deactivate;
58088ad0 4081
671fd9da 4082 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4083 cfs_b->nr_periods += overrun;
671fd9da 4084
51f2176d
BS
4085 /*
4086 * idle depends on !throttled (for the case of a large deficit), and if
4087 * we're going inactive then everything else can be deferred
4088 */
4089 if (cfs_b->idle && !throttled)
4090 goto out_deactivate;
a9cf55b2
PT
4091
4092 __refill_cfs_bandwidth_runtime(cfs_b);
4093
671fd9da
PT
4094 if (!throttled) {
4095 /* mark as potentially idle for the upcoming period */
4096 cfs_b->idle = 1;
51f2176d 4097 return 0;
671fd9da
PT
4098 }
4099
e8da1b18
NR
4100 /* account preceding periods in which throttling occurred */
4101 cfs_b->nr_throttled += overrun;
4102
671fd9da 4103 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4104
4105 /*
c06f04c7
BS
4106 * This check is repeated as we are holding onto the new bandwidth while
4107 * we unthrottle. This can potentially race with an unthrottled group
4108 * trying to acquire new bandwidth from the global pool. This can result
4109 * in us over-using our runtime if it is all used during this loop, but
4110 * only by limited amounts in that extreme case.
671fd9da 4111 */
c06f04c7
BS
4112 while (throttled && cfs_b->runtime > 0) {
4113 runtime = cfs_b->runtime;
671fd9da
PT
4114 raw_spin_unlock(&cfs_b->lock);
4115 /* we can't nest cfs_b->lock while distributing bandwidth */
4116 runtime = distribute_cfs_runtime(cfs_b, runtime,
4117 runtime_expires);
4118 raw_spin_lock(&cfs_b->lock);
4119
4120 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4121
4122 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4123 }
58088ad0 4124
671fd9da
PT
4125 /*
4126 * While we are ensured activity in the period following an
4127 * unthrottle, this also covers the case in which the new bandwidth is
4128 * insufficient to cover the existing bandwidth deficit. (Forcing the
4129 * timer to remain active while there are any throttled entities.)
4130 */
4131 cfs_b->idle = 0;
58088ad0 4132
51f2176d
BS
4133 return 0;
4134
4135out_deactivate:
51f2176d 4136 return 1;
58088ad0 4137}
d3d9dc33 4138
d8b4986d
PT
4139/* a cfs_rq won't donate quota below this amount */
4140static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4141/* minimum remaining period time to redistribute slack quota */
4142static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4143/* how long we wait to gather additional slack before distributing */
4144static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4145
db06e78c
BS
4146/*
4147 * Are we near the end of the current quota period?
4148 *
4149 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4150 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4151 * migrate_hrtimers, base is never cleared, so we are fine.
4152 */
d8b4986d
PT
4153static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4154{
4155 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4156 u64 remaining;
4157
4158 /* if the call-back is running a quota refresh is already occurring */
4159 if (hrtimer_callback_running(refresh_timer))
4160 return 1;
4161
4162 /* is a quota refresh about to occur? */
4163 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4164 if (remaining < min_expire)
4165 return 1;
4166
4167 return 0;
4168}
4169
4170static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4171{
4172 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4173
4174 /* if there's a quota refresh soon don't bother with slack */
4175 if (runtime_refresh_within(cfs_b, min_left))
4176 return;
4177
4cfafd30
PZ
4178 hrtimer_start(&cfs_b->slack_timer,
4179 ns_to_ktime(cfs_bandwidth_slack_period),
4180 HRTIMER_MODE_REL);
d8b4986d
PT
4181}
4182
4183/* we know any runtime found here is valid as update_curr() precedes return */
4184static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4185{
4186 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4187 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4188
4189 if (slack_runtime <= 0)
4190 return;
4191
4192 raw_spin_lock(&cfs_b->lock);
4193 if (cfs_b->quota != RUNTIME_INF &&
4194 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4195 cfs_b->runtime += slack_runtime;
4196
4197 /* we are under rq->lock, defer unthrottling using a timer */
4198 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4199 !list_empty(&cfs_b->throttled_cfs_rq))
4200 start_cfs_slack_bandwidth(cfs_b);
4201 }
4202 raw_spin_unlock(&cfs_b->lock);
4203
4204 /* even if it's not valid for return we don't want to try again */
4205 cfs_rq->runtime_remaining -= slack_runtime;
4206}
4207
4208static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4209{
56f570e5
PT
4210 if (!cfs_bandwidth_used())
4211 return;
4212
fccfdc6f 4213 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4214 return;
4215
4216 __return_cfs_rq_runtime(cfs_rq);
4217}
4218
4219/*
4220 * This is done with a timer (instead of inline with bandwidth return) since
4221 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4222 */
4223static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4224{
4225 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4226 u64 expires;
4227
4228 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4229 raw_spin_lock(&cfs_b->lock);
4230 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4231 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4232 return;
db06e78c 4233 }
d8b4986d 4234
c06f04c7 4235 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4236 runtime = cfs_b->runtime;
c06f04c7 4237
d8b4986d
PT
4238 expires = cfs_b->runtime_expires;
4239 raw_spin_unlock(&cfs_b->lock);
4240
4241 if (!runtime)
4242 return;
4243
4244 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4245
4246 raw_spin_lock(&cfs_b->lock);
4247 if (expires == cfs_b->runtime_expires)
c06f04c7 4248 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4249 raw_spin_unlock(&cfs_b->lock);
4250}
4251
d3d9dc33
PT
4252/*
4253 * When a group wakes up we want to make sure that its quota is not already
4254 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4255 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4256 */
4257static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4258{
56f570e5
PT
4259 if (!cfs_bandwidth_used())
4260 return;
4261
d3d9dc33
PT
4262 /* an active group must be handled by the update_curr()->put() path */
4263 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4264 return;
4265
4266 /* ensure the group is not already throttled */
4267 if (cfs_rq_throttled(cfs_rq))
4268 return;
4269
4270 /* update runtime allocation */
4271 account_cfs_rq_runtime(cfs_rq, 0);
4272 if (cfs_rq->runtime_remaining <= 0)
4273 throttle_cfs_rq(cfs_rq);
4274}
4275
55e16d30
PZ
4276static void sync_throttle(struct task_group *tg, int cpu)
4277{
4278 struct cfs_rq *pcfs_rq, *cfs_rq;
4279
4280 if (!cfs_bandwidth_used())
4281 return;
4282
4283 if (!tg->parent)
4284 return;
4285
4286 cfs_rq = tg->cfs_rq[cpu];
4287 pcfs_rq = tg->parent->cfs_rq[cpu];
4288
4289 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4290 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4291}
4292
d3d9dc33 4293/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4294static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4295{
56f570e5 4296 if (!cfs_bandwidth_used())
678d5718 4297 return false;
56f570e5 4298
d3d9dc33 4299 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4300 return false;
d3d9dc33
PT
4301
4302 /*
4303 * it's possible for a throttled entity to be forced into a running
4304 * state (e.g. set_curr_task), in this case we're finished.
4305 */
4306 if (cfs_rq_throttled(cfs_rq))
678d5718 4307 return true;
d3d9dc33
PT
4308
4309 throttle_cfs_rq(cfs_rq);
678d5718 4310 return true;
d3d9dc33 4311}
029632fb 4312
029632fb
PZ
4313static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4314{
4315 struct cfs_bandwidth *cfs_b =
4316 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4317
029632fb
PZ
4318 do_sched_cfs_slack_timer(cfs_b);
4319
4320 return HRTIMER_NORESTART;
4321}
4322
4323static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4324{
4325 struct cfs_bandwidth *cfs_b =
4326 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4327 int overrun;
4328 int idle = 0;
4329
51f2176d 4330 raw_spin_lock(&cfs_b->lock);
029632fb 4331 for (;;) {
77a4d1a1 4332 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4333 if (!overrun)
4334 break;
4335
4336 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4337 }
4cfafd30
PZ
4338 if (idle)
4339 cfs_b->period_active = 0;
51f2176d 4340 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4341
4342 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4343}
4344
4345void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4346{
4347 raw_spin_lock_init(&cfs_b->lock);
4348 cfs_b->runtime = 0;
4349 cfs_b->quota = RUNTIME_INF;
4350 cfs_b->period = ns_to_ktime(default_cfs_period());
4351
4352 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4353 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4354 cfs_b->period_timer.function = sched_cfs_period_timer;
4355 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4356 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4357}
4358
4359static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4360{
4361 cfs_rq->runtime_enabled = 0;
4362 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4363}
4364
77a4d1a1 4365void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4366{
4cfafd30 4367 lockdep_assert_held(&cfs_b->lock);
029632fb 4368
4cfafd30
PZ
4369 if (!cfs_b->period_active) {
4370 cfs_b->period_active = 1;
4371 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4372 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4373 }
029632fb
PZ
4374}
4375
4376static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4377{
7f1a169b
TH
4378 /* init_cfs_bandwidth() was not called */
4379 if (!cfs_b->throttled_cfs_rq.next)
4380 return;
4381
029632fb
PZ
4382 hrtimer_cancel(&cfs_b->period_timer);
4383 hrtimer_cancel(&cfs_b->slack_timer);
4384}
4385
0e59bdae
KT
4386static void __maybe_unused update_runtime_enabled(struct rq *rq)
4387{
4388 struct cfs_rq *cfs_rq;
4389
4390 for_each_leaf_cfs_rq(rq, cfs_rq) {
4391 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4392
4393 raw_spin_lock(&cfs_b->lock);
4394 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4395 raw_spin_unlock(&cfs_b->lock);
4396 }
4397}
4398
38dc3348 4399static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4400{
4401 struct cfs_rq *cfs_rq;
4402
4403 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4404 if (!cfs_rq->runtime_enabled)
4405 continue;
4406
4407 /*
4408 * clock_task is not advancing so we just need to make sure
4409 * there's some valid quota amount
4410 */
51f2176d 4411 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4412 /*
4413 * Offline rq is schedulable till cpu is completely disabled
4414 * in take_cpu_down(), so we prevent new cfs throttling here.
4415 */
4416 cfs_rq->runtime_enabled = 0;
4417
029632fb
PZ
4418 if (cfs_rq_throttled(cfs_rq))
4419 unthrottle_cfs_rq(cfs_rq);
4420 }
4421}
4422
4423#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4424static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4425{
78becc27 4426 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4427}
4428
9dbdb155 4429static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4430static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4431static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4432static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4433static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4434
4435static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4436{
4437 return 0;
4438}
64660c86
PT
4439
4440static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4441{
4442 return 0;
4443}
4444
4445static inline int throttled_lb_pair(struct task_group *tg,
4446 int src_cpu, int dest_cpu)
4447{
4448 return 0;
4449}
029632fb
PZ
4450
4451void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4452
4453#ifdef CONFIG_FAIR_GROUP_SCHED
4454static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4455#endif
4456
029632fb
PZ
4457static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4458{
4459 return NULL;
4460}
4461static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4462static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4463static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4464
4465#endif /* CONFIG_CFS_BANDWIDTH */
4466
bf0f6f24
IM
4467/**************************************************
4468 * CFS operations on tasks:
4469 */
4470
8f4d37ec
PZ
4471#ifdef CONFIG_SCHED_HRTICK
4472static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4473{
8f4d37ec
PZ
4474 struct sched_entity *se = &p->se;
4475 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4476
4477 WARN_ON(task_rq(p) != rq);
4478
b39e66ea 4479 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4480 u64 slice = sched_slice(cfs_rq, se);
4481 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4482 s64 delta = slice - ran;
4483
4484 if (delta < 0) {
4485 if (rq->curr == p)
8875125e 4486 resched_curr(rq);
8f4d37ec
PZ
4487 return;
4488 }
31656519 4489 hrtick_start(rq, delta);
8f4d37ec
PZ
4490 }
4491}
a4c2f00f
PZ
4492
4493/*
4494 * called from enqueue/dequeue and updates the hrtick when the
4495 * current task is from our class and nr_running is low enough
4496 * to matter.
4497 */
4498static void hrtick_update(struct rq *rq)
4499{
4500 struct task_struct *curr = rq->curr;
4501
b39e66ea 4502 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4503 return;
4504
4505 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4506 hrtick_start_fair(rq, curr);
4507}
55e12e5e 4508#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4509static inline void
4510hrtick_start_fair(struct rq *rq, struct task_struct *p)
4511{
4512}
a4c2f00f
PZ
4513
4514static inline void hrtick_update(struct rq *rq)
4515{
4516}
8f4d37ec
PZ
4517#endif
4518
bf0f6f24
IM
4519/*
4520 * The enqueue_task method is called before nr_running is
4521 * increased. Here we update the fair scheduling stats and
4522 * then put the task into the rbtree:
4523 */
ea87bb78 4524static void
371fd7e7 4525enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4526{
4527 struct cfs_rq *cfs_rq;
62fb1851 4528 struct sched_entity *se = &p->se;
bf0f6f24
IM
4529
4530 for_each_sched_entity(se) {
62fb1851 4531 if (se->on_rq)
bf0f6f24
IM
4532 break;
4533 cfs_rq = cfs_rq_of(se);
88ec22d3 4534 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4535
4536 /*
4537 * end evaluation on encountering a throttled cfs_rq
4538 *
4539 * note: in the case of encountering a throttled cfs_rq we will
4540 * post the final h_nr_running increment below.
e210bffd 4541 */
85dac906
PT
4542 if (cfs_rq_throttled(cfs_rq))
4543 break;
953bfcd1 4544 cfs_rq->h_nr_running++;
85dac906 4545
88ec22d3 4546 flags = ENQUEUE_WAKEUP;
bf0f6f24 4547 }
8f4d37ec 4548
2069dd75 4549 for_each_sched_entity(se) {
0f317143 4550 cfs_rq = cfs_rq_of(se);
953bfcd1 4551 cfs_rq->h_nr_running++;
2069dd75 4552
85dac906
PT
4553 if (cfs_rq_throttled(cfs_rq))
4554 break;
4555
9d89c257 4556 update_load_avg(se, 1);
17bc14b7 4557 update_cfs_shares(cfs_rq);
2069dd75
PZ
4558 }
4559
cd126afe 4560 if (!se)
72465447 4561 add_nr_running(rq, 1);
cd126afe 4562
a4c2f00f 4563 hrtick_update(rq);
bf0f6f24
IM
4564}
4565
2f36825b
VP
4566static void set_next_buddy(struct sched_entity *se);
4567
bf0f6f24
IM
4568/*
4569 * The dequeue_task method is called before nr_running is
4570 * decreased. We remove the task from the rbtree and
4571 * update the fair scheduling stats:
4572 */
371fd7e7 4573static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4574{
4575 struct cfs_rq *cfs_rq;
62fb1851 4576 struct sched_entity *se = &p->se;
2f36825b 4577 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4578
4579 for_each_sched_entity(se) {
4580 cfs_rq = cfs_rq_of(se);
371fd7e7 4581 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4582
4583 /*
4584 * end evaluation on encountering a throttled cfs_rq
4585 *
4586 * note: in the case of encountering a throttled cfs_rq we will
4587 * post the final h_nr_running decrement below.
4588 */
4589 if (cfs_rq_throttled(cfs_rq))
4590 break;
953bfcd1 4591 cfs_rq->h_nr_running--;
2069dd75 4592
bf0f6f24 4593 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4594 if (cfs_rq->load.weight) {
754bd598
KK
4595 /* Avoid re-evaluating load for this entity: */
4596 se = parent_entity(se);
2f36825b
VP
4597 /*
4598 * Bias pick_next to pick a task from this cfs_rq, as
4599 * p is sleeping when it is within its sched_slice.
4600 */
754bd598
KK
4601 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4602 set_next_buddy(se);
bf0f6f24 4603 break;
2f36825b 4604 }
371fd7e7 4605 flags |= DEQUEUE_SLEEP;
bf0f6f24 4606 }
8f4d37ec 4607
2069dd75 4608 for_each_sched_entity(se) {
0f317143 4609 cfs_rq = cfs_rq_of(se);
953bfcd1 4610 cfs_rq->h_nr_running--;
2069dd75 4611
85dac906
PT
4612 if (cfs_rq_throttled(cfs_rq))
4613 break;
4614
9d89c257 4615 update_load_avg(se, 1);
17bc14b7 4616 update_cfs_shares(cfs_rq);
2069dd75
PZ
4617 }
4618
cd126afe 4619 if (!se)
72465447 4620 sub_nr_running(rq, 1);
cd126afe 4621
a4c2f00f 4622 hrtick_update(rq);
bf0f6f24
IM
4623}
4624
e7693a36 4625#ifdef CONFIG_SMP
9fd81dd5 4626#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4627/*
4628 * per rq 'load' arrray crap; XXX kill this.
4629 */
4630
4631/*
d937cdc5 4632 * The exact cpuload calculated at every tick would be:
3289bdb4 4633 *
d937cdc5
PZ
4634 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4635 *
4636 * If a cpu misses updates for n ticks (as it was idle) and update gets
4637 * called on the n+1-th tick when cpu may be busy, then we have:
4638 *
4639 * load_n = (1 - 1/2^i)^n * load_0
4640 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4641 *
4642 * decay_load_missed() below does efficient calculation of
3289bdb4 4643 *
d937cdc5
PZ
4644 * load' = (1 - 1/2^i)^n * load
4645 *
4646 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4647 * This allows us to precompute the above in said factors, thereby allowing the
4648 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4649 * fixed_power_int())
3289bdb4 4650 *
d937cdc5 4651 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4652 */
4653#define DEGRADE_SHIFT 7
d937cdc5
PZ
4654
4655static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4656static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4657 { 0, 0, 0, 0, 0, 0, 0, 0 },
4658 { 64, 32, 8, 0, 0, 0, 0, 0 },
4659 { 96, 72, 40, 12, 1, 0, 0, 0 },
4660 { 112, 98, 75, 43, 15, 1, 0, 0 },
4661 { 120, 112, 98, 76, 45, 16, 2, 0 }
4662};
3289bdb4
PZ
4663
4664/*
4665 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4666 * would be when CPU is idle and so we just decay the old load without
4667 * adding any new load.
4668 */
4669static unsigned long
4670decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4671{
4672 int j = 0;
4673
4674 if (!missed_updates)
4675 return load;
4676
4677 if (missed_updates >= degrade_zero_ticks[idx])
4678 return 0;
4679
4680 if (idx == 1)
4681 return load >> missed_updates;
4682
4683 while (missed_updates) {
4684 if (missed_updates % 2)
4685 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4686
4687 missed_updates >>= 1;
4688 j++;
4689 }
4690 return load;
4691}
9fd81dd5 4692#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4693
59543275 4694/**
cee1afce 4695 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4696 * @this_rq: The rq to update statistics for
4697 * @this_load: The current load
4698 * @pending_updates: The number of missed updates
59543275 4699 *
3289bdb4 4700 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4701 * scheduler tick (TICK_NSEC).
4702 *
4703 * This function computes a decaying average:
4704 *
4705 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4706 *
4707 * Because of NOHZ it might not get called on every tick which gives need for
4708 * the @pending_updates argument.
4709 *
4710 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4711 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4712 * = A * (A * load[i]_n-2 + B) + B
4713 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4714 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4715 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4716 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4717 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4718 *
4719 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4720 * any change in load would have resulted in the tick being turned back on.
4721 *
4722 * For regular NOHZ, this reduces to:
4723 *
4724 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4725 *
4726 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4727 * term.
3289bdb4 4728 */
1f41906a
FW
4729static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4730 unsigned long pending_updates)
3289bdb4 4731{
9fd81dd5 4732 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4733 int i, scale;
4734
4735 this_rq->nr_load_updates++;
4736
4737 /* Update our load: */
4738 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4739 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4740 unsigned long old_load, new_load;
4741
4742 /* scale is effectively 1 << i now, and >> i divides by scale */
4743
7400d3bb 4744 old_load = this_rq->cpu_load[i];
9fd81dd5 4745#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4746 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4747 if (tickless_load) {
4748 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4749 /*
4750 * old_load can never be a negative value because a
4751 * decayed tickless_load cannot be greater than the
4752 * original tickless_load.
4753 */
4754 old_load += tickless_load;
4755 }
9fd81dd5 4756#endif
3289bdb4
PZ
4757 new_load = this_load;
4758 /*
4759 * Round up the averaging division if load is increasing. This
4760 * prevents us from getting stuck on 9 if the load is 10, for
4761 * example.
4762 */
4763 if (new_load > old_load)
4764 new_load += scale - 1;
4765
4766 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4767 }
4768
4769 sched_avg_update(this_rq);
4770}
4771
7ea241af
YD
4772/* Used instead of source_load when we know the type == 0 */
4773static unsigned long weighted_cpuload(const int cpu)
4774{
4775 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4776}
4777
3289bdb4 4778#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4779/*
4780 * There is no sane way to deal with nohz on smp when using jiffies because the
4781 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4782 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4783 *
4784 * Therefore we need to avoid the delta approach from the regular tick when
4785 * possible since that would seriously skew the load calculation. This is why we
4786 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4787 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4788 * loop exit, nohz_idle_balance, nohz full exit...)
4789 *
4790 * This means we might still be one tick off for nohz periods.
4791 */
4792
4793static void cpu_load_update_nohz(struct rq *this_rq,
4794 unsigned long curr_jiffies,
4795 unsigned long load)
be68a682
FW
4796{
4797 unsigned long pending_updates;
4798
4799 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4800 if (pending_updates) {
4801 this_rq->last_load_update_tick = curr_jiffies;
4802 /*
4803 * In the regular NOHZ case, we were idle, this means load 0.
4804 * In the NOHZ_FULL case, we were non-idle, we should consider
4805 * its weighted load.
4806 */
1f41906a 4807 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4808 }
4809}
4810
3289bdb4
PZ
4811/*
4812 * Called from nohz_idle_balance() to update the load ratings before doing the
4813 * idle balance.
4814 */
cee1afce 4815static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4816{
3289bdb4
PZ
4817 /*
4818 * bail if there's load or we're actually up-to-date.
4819 */
be68a682 4820 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4821 return;
4822
1f41906a 4823 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4824}
4825
4826/*
1f41906a
FW
4827 * Record CPU load on nohz entry so we know the tickless load to account
4828 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4829 * than other cpu_load[idx] but it should be fine as cpu_load readers
4830 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4831 */
1f41906a 4832void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4833{
4834 struct rq *this_rq = this_rq();
1f41906a
FW
4835
4836 /*
4837 * This is all lockless but should be fine. If weighted_cpuload changes
4838 * concurrently we'll exit nohz. And cpu_load write can race with
4839 * cpu_load_update_idle() but both updater would be writing the same.
4840 */
4841 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4842}
4843
4844/*
4845 * Account the tickless load in the end of a nohz frame.
4846 */
4847void cpu_load_update_nohz_stop(void)
4848{
316c1608 4849 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4850 struct rq *this_rq = this_rq();
4851 unsigned long load;
3289bdb4
PZ
4852
4853 if (curr_jiffies == this_rq->last_load_update_tick)
4854 return;
4855
1f41906a 4856 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4857 raw_spin_lock(&this_rq->lock);
b52fad2d 4858 update_rq_clock(this_rq);
1f41906a 4859 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4860 raw_spin_unlock(&this_rq->lock);
4861}
1f41906a
FW
4862#else /* !CONFIG_NO_HZ_COMMON */
4863static inline void cpu_load_update_nohz(struct rq *this_rq,
4864 unsigned long curr_jiffies,
4865 unsigned long load) { }
4866#endif /* CONFIG_NO_HZ_COMMON */
4867
4868static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4869{
9fd81dd5 4870#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4871 /* See the mess around cpu_load_update_nohz(). */
4872 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4873#endif
1f41906a
FW
4874 cpu_load_update(this_rq, load, 1);
4875}
3289bdb4
PZ
4876
4877/*
4878 * Called from scheduler_tick()
4879 */
cee1afce 4880void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4881{
7ea241af 4882 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4883
4884 if (tick_nohz_tick_stopped())
4885 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4886 else
4887 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4888}
4889
029632fb
PZ
4890/*
4891 * Return a low guess at the load of a migration-source cpu weighted
4892 * according to the scheduling class and "nice" value.
4893 *
4894 * We want to under-estimate the load of migration sources, to
4895 * balance conservatively.
4896 */
4897static unsigned long source_load(int cpu, int type)
4898{
4899 struct rq *rq = cpu_rq(cpu);
4900 unsigned long total = weighted_cpuload(cpu);
4901
4902 if (type == 0 || !sched_feat(LB_BIAS))
4903 return total;
4904
4905 return min(rq->cpu_load[type-1], total);
4906}
4907
4908/*
4909 * Return a high guess at the load of a migration-target cpu weighted
4910 * according to the scheduling class and "nice" value.
4911 */
4912static unsigned long target_load(int cpu, int type)
4913{
4914 struct rq *rq = cpu_rq(cpu);
4915 unsigned long total = weighted_cpuload(cpu);
4916
4917 if (type == 0 || !sched_feat(LB_BIAS))
4918 return total;
4919
4920 return max(rq->cpu_load[type-1], total);
4921}
4922
ced549fa 4923static unsigned long capacity_of(int cpu)
029632fb 4924{
ced549fa 4925 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4926}
4927
ca6d75e6
VG
4928static unsigned long capacity_orig_of(int cpu)
4929{
4930 return cpu_rq(cpu)->cpu_capacity_orig;
4931}
4932
029632fb
PZ
4933static unsigned long cpu_avg_load_per_task(int cpu)
4934{
4935 struct rq *rq = cpu_rq(cpu);
316c1608 4936 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4937 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4938
4939 if (nr_running)
b92486cb 4940 return load_avg / nr_running;
029632fb
PZ
4941
4942 return 0;
4943}
4944
bb3469ac 4945#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4946/*
4947 * effective_load() calculates the load change as seen from the root_task_group
4948 *
4949 * Adding load to a group doesn't make a group heavier, but can cause movement
4950 * of group shares between cpus. Assuming the shares were perfectly aligned one
4951 * can calculate the shift in shares.
cf5f0acf
PZ
4952 *
4953 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4954 * on this @cpu and results in a total addition (subtraction) of @wg to the
4955 * total group weight.
4956 *
4957 * Given a runqueue weight distribution (rw_i) we can compute a shares
4958 * distribution (s_i) using:
4959 *
4960 * s_i = rw_i / \Sum rw_j (1)
4961 *
4962 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4963 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4964 * shares distribution (s_i):
4965 *
4966 * rw_i = { 2, 4, 1, 0 }
4967 * s_i = { 2/7, 4/7, 1/7, 0 }
4968 *
4969 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4970 * task used to run on and the CPU the waker is running on), we need to
4971 * compute the effect of waking a task on either CPU and, in case of a sync
4972 * wakeup, compute the effect of the current task going to sleep.
4973 *
4974 * So for a change of @wl to the local @cpu with an overall group weight change
4975 * of @wl we can compute the new shares distribution (s'_i) using:
4976 *
4977 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4978 *
4979 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4980 * differences in waking a task to CPU 0. The additional task changes the
4981 * weight and shares distributions like:
4982 *
4983 * rw'_i = { 3, 4, 1, 0 }
4984 * s'_i = { 3/8, 4/8, 1/8, 0 }
4985 *
4986 * We can then compute the difference in effective weight by using:
4987 *
4988 * dw_i = S * (s'_i - s_i) (3)
4989 *
4990 * Where 'S' is the group weight as seen by its parent.
4991 *
4992 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4993 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4994 * 4/7) times the weight of the group.
f5bfb7d9 4995 */
2069dd75 4996static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4997{
4be9daaa 4998 struct sched_entity *se = tg->se[cpu];
f1d239f7 4999
9722c2da 5000 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5001 return wl;
5002
4be9daaa 5003 for_each_sched_entity(se) {
7dd49125
PZ
5004 struct cfs_rq *cfs_rq = se->my_q;
5005 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5006
7dd49125 5007 tg = cfs_rq->tg;
bb3469ac 5008
cf5f0acf
PZ
5009 /*
5010 * W = @wg + \Sum rw_j
5011 */
7dd49125
PZ
5012 W = wg + atomic_long_read(&tg->load_avg);
5013
5014 /* Ensure \Sum rw_j >= rw_i */
5015 W -= cfs_rq->tg_load_avg_contrib;
5016 W += w;
4be9daaa 5017
cf5f0acf
PZ
5018 /*
5019 * w = rw_i + @wl
5020 */
7dd49125 5021 w += wl;
940959e9 5022
cf5f0acf
PZ
5023 /*
5024 * wl = S * s'_i; see (2)
5025 */
5026 if (W > 0 && w < W)
32a8df4e 5027 wl = (w * (long)tg->shares) / W;
977dda7c
PT
5028 else
5029 wl = tg->shares;
940959e9 5030
cf5f0acf
PZ
5031 /*
5032 * Per the above, wl is the new se->load.weight value; since
5033 * those are clipped to [MIN_SHARES, ...) do so now. See
5034 * calc_cfs_shares().
5035 */
977dda7c
PT
5036 if (wl < MIN_SHARES)
5037 wl = MIN_SHARES;
cf5f0acf
PZ
5038
5039 /*
5040 * wl = dw_i = S * (s'_i - s_i); see (3)
5041 */
9d89c257 5042 wl -= se->avg.load_avg;
cf5f0acf
PZ
5043
5044 /*
5045 * Recursively apply this logic to all parent groups to compute
5046 * the final effective load change on the root group. Since
5047 * only the @tg group gets extra weight, all parent groups can
5048 * only redistribute existing shares. @wl is the shift in shares
5049 * resulting from this level per the above.
5050 */
4be9daaa 5051 wg = 0;
4be9daaa 5052 }
bb3469ac 5053
4be9daaa 5054 return wl;
bb3469ac
PZ
5055}
5056#else
4be9daaa 5057
58d081b5 5058static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5059{
83378269 5060 return wl;
bb3469ac 5061}
4be9daaa 5062
bb3469ac
PZ
5063#endif
5064
c58d25f3
PZ
5065static void record_wakee(struct task_struct *p)
5066{
5067 /*
5068 * Only decay a single time; tasks that have less then 1 wakeup per
5069 * jiffy will not have built up many flips.
5070 */
5071 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5072 current->wakee_flips >>= 1;
5073 current->wakee_flip_decay_ts = jiffies;
5074 }
5075
5076 if (current->last_wakee != p) {
5077 current->last_wakee = p;
5078 current->wakee_flips++;
5079 }
5080}
5081
63b0e9ed
MG
5082/*
5083 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5084 *
63b0e9ed 5085 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5086 * at a frequency roughly N times higher than one of its wakees.
5087 *
5088 * In order to determine whether we should let the load spread vs consolidating
5089 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5090 * partner, and a factor of lls_size higher frequency in the other.
5091 *
5092 * With both conditions met, we can be relatively sure that the relationship is
5093 * non-monogamous, with partner count exceeding socket size.
5094 *
5095 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5096 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5097 * socket size.
63b0e9ed 5098 */
62470419
MW
5099static int wake_wide(struct task_struct *p)
5100{
63b0e9ed
MG
5101 unsigned int master = current->wakee_flips;
5102 unsigned int slave = p->wakee_flips;
7d9ffa89 5103 int factor = this_cpu_read(sd_llc_size);
62470419 5104
63b0e9ed
MG
5105 if (master < slave)
5106 swap(master, slave);
5107 if (slave < factor || master < slave * factor)
5108 return 0;
5109 return 1;
62470419
MW
5110}
5111
772bd008
MR
5112static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5113 int prev_cpu, int sync)
098fb9db 5114{
e37b6a7b 5115 s64 this_load, load;
bd61c98f 5116 s64 this_eff_load, prev_eff_load;
772bd008 5117 int idx, this_cpu;
c88d5910 5118 struct task_group *tg;
83378269 5119 unsigned long weight;
b3137bc8 5120 int balanced;
098fb9db 5121
c88d5910
PZ
5122 idx = sd->wake_idx;
5123 this_cpu = smp_processor_id();
c88d5910
PZ
5124 load = source_load(prev_cpu, idx);
5125 this_load = target_load(this_cpu, idx);
098fb9db 5126
b3137bc8
MG
5127 /*
5128 * If sync wakeup then subtract the (maximum possible)
5129 * effect of the currently running task from the load
5130 * of the current CPU:
5131 */
83378269
PZ
5132 if (sync) {
5133 tg = task_group(current);
9d89c257 5134 weight = current->se.avg.load_avg;
83378269 5135
c88d5910 5136 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5137 load += effective_load(tg, prev_cpu, 0, -weight);
5138 }
b3137bc8 5139
83378269 5140 tg = task_group(p);
9d89c257 5141 weight = p->se.avg.load_avg;
b3137bc8 5142
71a29aa7
PZ
5143 /*
5144 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5145 * due to the sync cause above having dropped this_load to 0, we'll
5146 * always have an imbalance, but there's really nothing you can do
5147 * about that, so that's good too.
71a29aa7
PZ
5148 *
5149 * Otherwise check if either cpus are near enough in load to allow this
5150 * task to be woken on this_cpu.
5151 */
bd61c98f
VG
5152 this_eff_load = 100;
5153 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5154
bd61c98f
VG
5155 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5156 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5157
bd61c98f 5158 if (this_load > 0) {
e51fd5e2
PZ
5159 this_eff_load *= this_load +
5160 effective_load(tg, this_cpu, weight, weight);
5161
e51fd5e2 5162 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5163 }
e51fd5e2 5164
bd61c98f 5165 balanced = this_eff_load <= prev_eff_load;
098fb9db 5166
41acab88 5167 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5168
05bfb65f
VG
5169 if (!balanced)
5170 return 0;
098fb9db 5171
05bfb65f
VG
5172 schedstat_inc(sd, ttwu_move_affine);
5173 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5174
5175 return 1;
098fb9db
IM
5176}
5177
aaee1203
PZ
5178/*
5179 * find_idlest_group finds and returns the least busy CPU group within the
5180 * domain.
5181 */
5182static struct sched_group *
78e7ed53 5183find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5184 int this_cpu, int sd_flag)
e7693a36 5185{
b3bd3de6 5186 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5187 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5188 int load_idx = sd->forkexec_idx;
aaee1203 5189 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5190
c44f2a02
VG
5191 if (sd_flag & SD_BALANCE_WAKE)
5192 load_idx = sd->wake_idx;
5193
aaee1203
PZ
5194 do {
5195 unsigned long load, avg_load;
5196 int local_group;
5197 int i;
e7693a36 5198
aaee1203
PZ
5199 /* Skip over this group if it has no CPUs allowed */
5200 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5201 tsk_cpus_allowed(p)))
aaee1203
PZ
5202 continue;
5203
5204 local_group = cpumask_test_cpu(this_cpu,
5205 sched_group_cpus(group));
5206
5207 /* Tally up the load of all CPUs in the group */
5208 avg_load = 0;
5209
5210 for_each_cpu(i, sched_group_cpus(group)) {
5211 /* Bias balancing toward cpus of our domain */
5212 if (local_group)
5213 load = source_load(i, load_idx);
5214 else
5215 load = target_load(i, load_idx);
5216
5217 avg_load += load;
5218 }
5219
63b2ca30 5220 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5221 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5222
5223 if (local_group) {
5224 this_load = avg_load;
aaee1203
PZ
5225 } else if (avg_load < min_load) {
5226 min_load = avg_load;
5227 idlest = group;
5228 }
5229 } while (group = group->next, group != sd->groups);
5230
5231 if (!idlest || 100*this_load < imbalance*min_load)
5232 return NULL;
5233 return idlest;
5234}
5235
5236/*
5237 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5238 */
5239static int
5240find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5241{
5242 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5243 unsigned int min_exit_latency = UINT_MAX;
5244 u64 latest_idle_timestamp = 0;
5245 int least_loaded_cpu = this_cpu;
5246 int shallowest_idle_cpu = -1;
aaee1203
PZ
5247 int i;
5248
eaecf41f
MR
5249 /* Check if we have any choice: */
5250 if (group->group_weight == 1)
5251 return cpumask_first(sched_group_cpus(group));
5252
aaee1203 5253 /* Traverse only the allowed CPUs */
fa17b507 5254 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5255 if (idle_cpu(i)) {
5256 struct rq *rq = cpu_rq(i);
5257 struct cpuidle_state *idle = idle_get_state(rq);
5258 if (idle && idle->exit_latency < min_exit_latency) {
5259 /*
5260 * We give priority to a CPU whose idle state
5261 * has the smallest exit latency irrespective
5262 * of any idle timestamp.
5263 */
5264 min_exit_latency = idle->exit_latency;
5265 latest_idle_timestamp = rq->idle_stamp;
5266 shallowest_idle_cpu = i;
5267 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5268 rq->idle_stamp > latest_idle_timestamp) {
5269 /*
5270 * If equal or no active idle state, then
5271 * the most recently idled CPU might have
5272 * a warmer cache.
5273 */
5274 latest_idle_timestamp = rq->idle_stamp;
5275 shallowest_idle_cpu = i;
5276 }
9f96742a 5277 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5278 load = weighted_cpuload(i);
5279 if (load < min_load || (load == min_load && i == this_cpu)) {
5280 min_load = load;
5281 least_loaded_cpu = i;
5282 }
e7693a36
GH
5283 }
5284 }
5285
83a0a96a 5286 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5287}
e7693a36 5288
a50bde51
PZ
5289/*
5290 * Try and locate an idle CPU in the sched_domain.
5291 */
772bd008 5292static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5293{
99bd5e2f 5294 struct sched_domain *sd;
37407ea7 5295 struct sched_group *sg;
a50bde51 5296
e0a79f52
MG
5297 if (idle_cpu(target))
5298 return target;
99bd5e2f
SS
5299
5300 /*
e0a79f52 5301 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5302 */
772bd008
MR
5303 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5304 return prev;
a50bde51
PZ
5305
5306 /*
d4335581
MF
5307 * Otherwise, iterate the domains and find an eligible idle cpu.
5308 *
5309 * A completely idle sched group at higher domains is more
5310 * desirable than an idle group at a lower level, because lower
5311 * domains have smaller groups and usually share hardware
5312 * resources which causes tasks to contend on them, e.g. x86
5313 * hyperthread siblings in the lowest domain (SMT) can contend
5314 * on the shared cpu pipeline.
5315 *
5316 * However, while we prefer idle groups at higher domains
5317 * finding an idle cpu at the lowest domain is still better than
5318 * returning 'target', which we've already established, isn't
5319 * idle.
a50bde51 5320 */
518cd623 5321 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5322 for_each_lower_domain(sd) {
37407ea7
LT
5323 sg = sd->groups;
5324 do {
772bd008
MR
5325 int i;
5326
37407ea7
LT
5327 if (!cpumask_intersects(sched_group_cpus(sg),
5328 tsk_cpus_allowed(p)))
5329 goto next;
5330
d4335581 5331 /* Ensure the entire group is idle */
37407ea7 5332 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5333 if (i == target || !idle_cpu(i))
37407ea7
LT
5334 goto next;
5335 }
970e1789 5336
d4335581
MF
5337 /*
5338 * It doesn't matter which cpu we pick, the
5339 * whole group is idle.
5340 */
37407ea7
LT
5341 target = cpumask_first_and(sched_group_cpus(sg),
5342 tsk_cpus_allowed(p));
5343 goto done;
5344next:
5345 sg = sg->next;
5346 } while (sg != sd->groups);
5347 }
5348done:
a50bde51
PZ
5349 return target;
5350}
231678b7 5351
8bb5b00c 5352/*
9e91d61d 5353 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5354 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5355 * compare the utilization with the capacity of the CPU that is available for
5356 * CFS task (ie cpu_capacity).
231678b7
DE
5357 *
5358 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5359 * recent utilization of currently non-runnable tasks on a CPU. It represents
5360 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5361 * capacity_orig is the cpu_capacity available at the highest frequency
5362 * (arch_scale_freq_capacity()).
5363 * The utilization of a CPU converges towards a sum equal to or less than the
5364 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5365 * the running time on this CPU scaled by capacity_curr.
5366 *
5367 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5368 * higher than capacity_orig because of unfortunate rounding in
5369 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5370 * the average stabilizes with the new running time. We need to check that the
5371 * utilization stays within the range of [0..capacity_orig] and cap it if
5372 * necessary. Without utilization capping, a group could be seen as overloaded
5373 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5374 * available capacity. We allow utilization to overshoot capacity_curr (but not
5375 * capacity_orig) as it useful for predicting the capacity required after task
5376 * migrations (scheduler-driven DVFS).
8bb5b00c 5377 */
9e91d61d 5378static int cpu_util(int cpu)
8bb5b00c 5379{
9e91d61d 5380 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5381 unsigned long capacity = capacity_orig_of(cpu);
5382
231678b7 5383 return (util >= capacity) ? capacity : util;
8bb5b00c 5384}
a50bde51 5385
3273163c
MR
5386static inline int task_util(struct task_struct *p)
5387{
5388 return p->se.avg.util_avg;
5389}
5390
5391/*
5392 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5393 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5394 *
5395 * In that case WAKE_AFFINE doesn't make sense and we'll let
5396 * BALANCE_WAKE sort things out.
5397 */
5398static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5399{
5400 long min_cap, max_cap;
5401
5402 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5403 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5404
5405 /* Minimum capacity is close to max, no need to abort wake_affine */
5406 if (max_cap - min_cap < max_cap >> 3)
5407 return 0;
5408
5409 return min_cap * 1024 < task_util(p) * capacity_margin;
5410}
5411
aaee1203 5412/*
de91b9cb
MR
5413 * select_task_rq_fair: Select target runqueue for the waking task in domains
5414 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5415 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5416 *
de91b9cb
MR
5417 * Balances load by selecting the idlest cpu in the idlest group, or under
5418 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5419 *
de91b9cb 5420 * Returns the target cpu number.
aaee1203
PZ
5421 *
5422 * preempt must be disabled.
5423 */
0017d735 5424static int
ac66f547 5425select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5426{
29cd8bae 5427 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5428 int cpu = smp_processor_id();
63b0e9ed 5429 int new_cpu = prev_cpu;
99bd5e2f 5430 int want_affine = 0;
5158f4e4 5431 int sync = wake_flags & WF_SYNC;
c88d5910 5432
c58d25f3
PZ
5433 if (sd_flag & SD_BALANCE_WAKE) {
5434 record_wakee(p);
3273163c
MR
5435 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5436 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5437 }
aaee1203 5438
dce840a0 5439 rcu_read_lock();
aaee1203 5440 for_each_domain(cpu, tmp) {
e4f42888 5441 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5442 break;
e4f42888 5443
fe3bcfe1 5444 /*
99bd5e2f
SS
5445 * If both cpu and prev_cpu are part of this domain,
5446 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5447 */
99bd5e2f
SS
5448 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5449 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5450 affine_sd = tmp;
29cd8bae 5451 break;
f03542a7 5452 }
29cd8bae 5453
f03542a7 5454 if (tmp->flags & sd_flag)
29cd8bae 5455 sd = tmp;
63b0e9ed
MG
5456 else if (!want_affine)
5457 break;
29cd8bae
PZ
5458 }
5459
63b0e9ed
MG
5460 if (affine_sd) {
5461 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5462 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5463 new_cpu = cpu;
8b911acd 5464 }
e7693a36 5465
63b0e9ed
MG
5466 if (!sd) {
5467 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5468 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5469
5470 } else while (sd) {
aaee1203 5471 struct sched_group *group;
c88d5910 5472 int weight;
098fb9db 5473
0763a660 5474 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5475 sd = sd->child;
5476 continue;
5477 }
098fb9db 5478
c44f2a02 5479 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5480 if (!group) {
5481 sd = sd->child;
5482 continue;
5483 }
4ae7d5ce 5484
d7c33c49 5485 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5486 if (new_cpu == -1 || new_cpu == cpu) {
5487 /* Now try balancing at a lower domain level of cpu */
5488 sd = sd->child;
5489 continue;
e7693a36 5490 }
aaee1203
PZ
5491
5492 /* Now try balancing at a lower domain level of new_cpu */
5493 cpu = new_cpu;
669c55e9 5494 weight = sd->span_weight;
aaee1203
PZ
5495 sd = NULL;
5496 for_each_domain(cpu, tmp) {
669c55e9 5497 if (weight <= tmp->span_weight)
aaee1203 5498 break;
0763a660 5499 if (tmp->flags & sd_flag)
aaee1203
PZ
5500 sd = tmp;
5501 }
5502 /* while loop will break here if sd == NULL */
e7693a36 5503 }
dce840a0 5504 rcu_read_unlock();
e7693a36 5505
c88d5910 5506 return new_cpu;
e7693a36 5507}
0a74bef8
PT
5508
5509/*
5510 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5511 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5512 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5513 */
5a4fd036 5514static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5515{
59efa0ba
PZ
5516 /*
5517 * As blocked tasks retain absolute vruntime the migration needs to
5518 * deal with this by subtracting the old and adding the new
5519 * min_vruntime -- the latter is done by enqueue_entity() when placing
5520 * the task on the new runqueue.
5521 */
5522 if (p->state == TASK_WAKING) {
5523 struct sched_entity *se = &p->se;
5524 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5525 u64 min_vruntime;
5526
5527#ifndef CONFIG_64BIT
5528 u64 min_vruntime_copy;
5529
5530 do {
5531 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5532 smp_rmb();
5533 min_vruntime = cfs_rq->min_vruntime;
5534 } while (min_vruntime != min_vruntime_copy);
5535#else
5536 min_vruntime = cfs_rq->min_vruntime;
5537#endif
5538
5539 se->vruntime -= min_vruntime;
5540 }
5541
aff3e498 5542 /*
9d89c257
YD
5543 * We are supposed to update the task to "current" time, then its up to date
5544 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5545 * what current time is, so simply throw away the out-of-date time. This
5546 * will result in the wakee task is less decayed, but giving the wakee more
5547 * load sounds not bad.
aff3e498 5548 */
9d89c257
YD
5549 remove_entity_load_avg(&p->se);
5550
5551 /* Tell new CPU we are migrated */
5552 p->se.avg.last_update_time = 0;
3944a927
BS
5553
5554 /* We have migrated, no longer consider this task hot */
9d89c257 5555 p->se.exec_start = 0;
0a74bef8 5556}
12695578
YD
5557
5558static void task_dead_fair(struct task_struct *p)
5559{
5560 remove_entity_load_avg(&p->se);
5561}
e7693a36
GH
5562#endif /* CONFIG_SMP */
5563
e52fb7c0
PZ
5564static unsigned long
5565wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5566{
5567 unsigned long gran = sysctl_sched_wakeup_granularity;
5568
5569 /*
e52fb7c0
PZ
5570 * Since its curr running now, convert the gran from real-time
5571 * to virtual-time in his units.
13814d42
MG
5572 *
5573 * By using 'se' instead of 'curr' we penalize light tasks, so
5574 * they get preempted easier. That is, if 'se' < 'curr' then
5575 * the resulting gran will be larger, therefore penalizing the
5576 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5577 * be smaller, again penalizing the lighter task.
5578 *
5579 * This is especially important for buddies when the leftmost
5580 * task is higher priority than the buddy.
0bbd3336 5581 */
f4ad9bd2 5582 return calc_delta_fair(gran, se);
0bbd3336
PZ
5583}
5584
464b7527
PZ
5585/*
5586 * Should 'se' preempt 'curr'.
5587 *
5588 * |s1
5589 * |s2
5590 * |s3
5591 * g
5592 * |<--->|c
5593 *
5594 * w(c, s1) = -1
5595 * w(c, s2) = 0
5596 * w(c, s3) = 1
5597 *
5598 */
5599static int
5600wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5601{
5602 s64 gran, vdiff = curr->vruntime - se->vruntime;
5603
5604 if (vdiff <= 0)
5605 return -1;
5606
e52fb7c0 5607 gran = wakeup_gran(curr, se);
464b7527
PZ
5608 if (vdiff > gran)
5609 return 1;
5610
5611 return 0;
5612}
5613
02479099
PZ
5614static void set_last_buddy(struct sched_entity *se)
5615{
69c80f3e
VP
5616 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5617 return;
5618
5619 for_each_sched_entity(se)
5620 cfs_rq_of(se)->last = se;
02479099
PZ
5621}
5622
5623static void set_next_buddy(struct sched_entity *se)
5624{
69c80f3e
VP
5625 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5626 return;
5627
5628 for_each_sched_entity(se)
5629 cfs_rq_of(se)->next = se;
02479099
PZ
5630}
5631
ac53db59
RR
5632static void set_skip_buddy(struct sched_entity *se)
5633{
69c80f3e
VP
5634 for_each_sched_entity(se)
5635 cfs_rq_of(se)->skip = se;
ac53db59
RR
5636}
5637
bf0f6f24
IM
5638/*
5639 * Preempt the current task with a newly woken task if needed:
5640 */
5a9b86f6 5641static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5642{
5643 struct task_struct *curr = rq->curr;
8651a86c 5644 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5645 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5646 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5647 int next_buddy_marked = 0;
bf0f6f24 5648
4ae7d5ce
IM
5649 if (unlikely(se == pse))
5650 return;
5651
5238cdd3 5652 /*
163122b7 5653 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5654 * unconditionally check_prempt_curr() after an enqueue (which may have
5655 * lead to a throttle). This both saves work and prevents false
5656 * next-buddy nomination below.
5657 */
5658 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5659 return;
5660
2f36825b 5661 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5662 set_next_buddy(pse);
2f36825b
VP
5663 next_buddy_marked = 1;
5664 }
57fdc26d 5665
aec0a514
BR
5666 /*
5667 * We can come here with TIF_NEED_RESCHED already set from new task
5668 * wake up path.
5238cdd3
PT
5669 *
5670 * Note: this also catches the edge-case of curr being in a throttled
5671 * group (e.g. via set_curr_task), since update_curr() (in the
5672 * enqueue of curr) will have resulted in resched being set. This
5673 * prevents us from potentially nominating it as a false LAST_BUDDY
5674 * below.
aec0a514
BR
5675 */
5676 if (test_tsk_need_resched(curr))
5677 return;
5678
a2f5c9ab
DH
5679 /* Idle tasks are by definition preempted by non-idle tasks. */
5680 if (unlikely(curr->policy == SCHED_IDLE) &&
5681 likely(p->policy != SCHED_IDLE))
5682 goto preempt;
5683
91c234b4 5684 /*
a2f5c9ab
DH
5685 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5686 * is driven by the tick):
91c234b4 5687 */
8ed92e51 5688 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5689 return;
bf0f6f24 5690
464b7527 5691 find_matching_se(&se, &pse);
9bbd7374 5692 update_curr(cfs_rq_of(se));
002f128b 5693 BUG_ON(!pse);
2f36825b
VP
5694 if (wakeup_preempt_entity(se, pse) == 1) {
5695 /*
5696 * Bias pick_next to pick the sched entity that is
5697 * triggering this preemption.
5698 */
5699 if (!next_buddy_marked)
5700 set_next_buddy(pse);
3a7e73a2 5701 goto preempt;
2f36825b 5702 }
464b7527 5703
3a7e73a2 5704 return;
a65ac745 5705
3a7e73a2 5706preempt:
8875125e 5707 resched_curr(rq);
3a7e73a2
PZ
5708 /*
5709 * Only set the backward buddy when the current task is still
5710 * on the rq. This can happen when a wakeup gets interleaved
5711 * with schedule on the ->pre_schedule() or idle_balance()
5712 * point, either of which can * drop the rq lock.
5713 *
5714 * Also, during early boot the idle thread is in the fair class,
5715 * for obvious reasons its a bad idea to schedule back to it.
5716 */
5717 if (unlikely(!se->on_rq || curr == rq->idle))
5718 return;
5719
5720 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5721 set_last_buddy(se);
bf0f6f24
IM
5722}
5723
606dba2e 5724static struct task_struct *
e7904a28 5725pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5726{
5727 struct cfs_rq *cfs_rq = &rq->cfs;
5728 struct sched_entity *se;
678d5718 5729 struct task_struct *p;
37e117c0 5730 int new_tasks;
678d5718 5731
6e83125c 5732again:
678d5718
PZ
5733#ifdef CONFIG_FAIR_GROUP_SCHED
5734 if (!cfs_rq->nr_running)
38033c37 5735 goto idle;
678d5718 5736
3f1d2a31 5737 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5738 goto simple;
5739
5740 /*
5741 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5742 * likely that a next task is from the same cgroup as the current.
5743 *
5744 * Therefore attempt to avoid putting and setting the entire cgroup
5745 * hierarchy, only change the part that actually changes.
5746 */
5747
5748 do {
5749 struct sched_entity *curr = cfs_rq->curr;
5750
5751 /*
5752 * Since we got here without doing put_prev_entity() we also
5753 * have to consider cfs_rq->curr. If it is still a runnable
5754 * entity, update_curr() will update its vruntime, otherwise
5755 * forget we've ever seen it.
5756 */
54d27365
BS
5757 if (curr) {
5758 if (curr->on_rq)
5759 update_curr(cfs_rq);
5760 else
5761 curr = NULL;
678d5718 5762
54d27365
BS
5763 /*
5764 * This call to check_cfs_rq_runtime() will do the
5765 * throttle and dequeue its entity in the parent(s).
5766 * Therefore the 'simple' nr_running test will indeed
5767 * be correct.
5768 */
5769 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5770 goto simple;
5771 }
678d5718
PZ
5772
5773 se = pick_next_entity(cfs_rq, curr);
5774 cfs_rq = group_cfs_rq(se);
5775 } while (cfs_rq);
5776
5777 p = task_of(se);
5778
5779 /*
5780 * Since we haven't yet done put_prev_entity and if the selected task
5781 * is a different task than we started out with, try and touch the
5782 * least amount of cfs_rqs.
5783 */
5784 if (prev != p) {
5785 struct sched_entity *pse = &prev->se;
5786
5787 while (!(cfs_rq = is_same_group(se, pse))) {
5788 int se_depth = se->depth;
5789 int pse_depth = pse->depth;
5790
5791 if (se_depth <= pse_depth) {
5792 put_prev_entity(cfs_rq_of(pse), pse);
5793 pse = parent_entity(pse);
5794 }
5795 if (se_depth >= pse_depth) {
5796 set_next_entity(cfs_rq_of(se), se);
5797 se = parent_entity(se);
5798 }
5799 }
5800
5801 put_prev_entity(cfs_rq, pse);
5802 set_next_entity(cfs_rq, se);
5803 }
5804
5805 if (hrtick_enabled(rq))
5806 hrtick_start_fair(rq, p);
5807
5808 return p;
5809simple:
5810 cfs_rq = &rq->cfs;
5811#endif
bf0f6f24 5812
36ace27e 5813 if (!cfs_rq->nr_running)
38033c37 5814 goto idle;
bf0f6f24 5815
3f1d2a31 5816 put_prev_task(rq, prev);
606dba2e 5817
bf0f6f24 5818 do {
678d5718 5819 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5820 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5821 cfs_rq = group_cfs_rq(se);
5822 } while (cfs_rq);
5823
8f4d37ec 5824 p = task_of(se);
678d5718 5825
b39e66ea
MG
5826 if (hrtick_enabled(rq))
5827 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5828
5829 return p;
38033c37
PZ
5830
5831idle:
cbce1a68
PZ
5832 /*
5833 * This is OK, because current is on_cpu, which avoids it being picked
5834 * for load-balance and preemption/IRQs are still disabled avoiding
5835 * further scheduler activity on it and we're being very careful to
5836 * re-start the picking loop.
5837 */
e7904a28 5838 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5839 new_tasks = idle_balance(rq);
e7904a28 5840 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5841 /*
5842 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5843 * possible for any higher priority task to appear. In that case we
5844 * must re-start the pick_next_entity() loop.
5845 */
e4aa358b 5846 if (new_tasks < 0)
37e117c0
PZ
5847 return RETRY_TASK;
5848
e4aa358b 5849 if (new_tasks > 0)
38033c37 5850 goto again;
38033c37
PZ
5851
5852 return NULL;
bf0f6f24
IM
5853}
5854
5855/*
5856 * Account for a descheduled task:
5857 */
31ee529c 5858static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5859{
5860 struct sched_entity *se = &prev->se;
5861 struct cfs_rq *cfs_rq;
5862
5863 for_each_sched_entity(se) {
5864 cfs_rq = cfs_rq_of(se);
ab6cde26 5865 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5866 }
5867}
5868
ac53db59
RR
5869/*
5870 * sched_yield() is very simple
5871 *
5872 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5873 */
5874static void yield_task_fair(struct rq *rq)
5875{
5876 struct task_struct *curr = rq->curr;
5877 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5878 struct sched_entity *se = &curr->se;
5879
5880 /*
5881 * Are we the only task in the tree?
5882 */
5883 if (unlikely(rq->nr_running == 1))
5884 return;
5885
5886 clear_buddies(cfs_rq, se);
5887
5888 if (curr->policy != SCHED_BATCH) {
5889 update_rq_clock(rq);
5890 /*
5891 * Update run-time statistics of the 'current'.
5892 */
5893 update_curr(cfs_rq);
916671c0
MG
5894 /*
5895 * Tell update_rq_clock() that we've just updated,
5896 * so we don't do microscopic update in schedule()
5897 * and double the fastpath cost.
5898 */
9edfbfed 5899 rq_clock_skip_update(rq, true);
ac53db59
RR
5900 }
5901
5902 set_skip_buddy(se);
5903}
5904
d95f4122
MG
5905static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5906{
5907 struct sched_entity *se = &p->se;
5908
5238cdd3
PT
5909 /* throttled hierarchies are not runnable */
5910 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5911 return false;
5912
5913 /* Tell the scheduler that we'd really like pse to run next. */
5914 set_next_buddy(se);
5915
d95f4122
MG
5916 yield_task_fair(rq);
5917
5918 return true;
5919}
5920
681f3e68 5921#ifdef CONFIG_SMP
bf0f6f24 5922/**************************************************
e9c84cb8
PZ
5923 * Fair scheduling class load-balancing methods.
5924 *
5925 * BASICS
5926 *
5927 * The purpose of load-balancing is to achieve the same basic fairness the
5928 * per-cpu scheduler provides, namely provide a proportional amount of compute
5929 * time to each task. This is expressed in the following equation:
5930 *
5931 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5932 *
5933 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5934 * W_i,0 is defined as:
5935 *
5936 * W_i,0 = \Sum_j w_i,j (2)
5937 *
5938 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5939 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5940 *
5941 * The weight average is an exponential decay average of the instantaneous
5942 * weight:
5943 *
5944 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5945 *
ced549fa 5946 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5947 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5948 * can also include other factors [XXX].
5949 *
5950 * To achieve this balance we define a measure of imbalance which follows
5951 * directly from (1):
5952 *
ced549fa 5953 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5954 *
5955 * We them move tasks around to minimize the imbalance. In the continuous
5956 * function space it is obvious this converges, in the discrete case we get
5957 * a few fun cases generally called infeasible weight scenarios.
5958 *
5959 * [XXX expand on:
5960 * - infeasible weights;
5961 * - local vs global optima in the discrete case. ]
5962 *
5963 *
5964 * SCHED DOMAINS
5965 *
5966 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5967 * for all i,j solution, we create a tree of cpus that follows the hardware
5968 * topology where each level pairs two lower groups (or better). This results
5969 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5970 * tree to only the first of the previous level and we decrease the frequency
5971 * of load-balance at each level inv. proportional to the number of cpus in
5972 * the groups.
5973 *
5974 * This yields:
5975 *
5976 * log_2 n 1 n
5977 * \Sum { --- * --- * 2^i } = O(n) (5)
5978 * i = 0 2^i 2^i
5979 * `- size of each group
5980 * | | `- number of cpus doing load-balance
5981 * | `- freq
5982 * `- sum over all levels
5983 *
5984 * Coupled with a limit on how many tasks we can migrate every balance pass,
5985 * this makes (5) the runtime complexity of the balancer.
5986 *
5987 * An important property here is that each CPU is still (indirectly) connected
5988 * to every other cpu in at most O(log n) steps:
5989 *
5990 * The adjacency matrix of the resulting graph is given by:
5991 *
97a7142f 5992 * log_2 n
e9c84cb8
PZ
5993 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5994 * k = 0
5995 *
5996 * And you'll find that:
5997 *
5998 * A^(log_2 n)_i,j != 0 for all i,j (7)
5999 *
6000 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6001 * The task movement gives a factor of O(m), giving a convergence complexity
6002 * of:
6003 *
6004 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6005 *
6006 *
6007 * WORK CONSERVING
6008 *
6009 * In order to avoid CPUs going idle while there's still work to do, new idle
6010 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6011 * tree itself instead of relying on other CPUs to bring it work.
6012 *
6013 * This adds some complexity to both (5) and (8) but it reduces the total idle
6014 * time.
6015 *
6016 * [XXX more?]
6017 *
6018 *
6019 * CGROUPS
6020 *
6021 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6022 *
6023 * s_k,i
6024 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6025 * S_k
6026 *
6027 * Where
6028 *
6029 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6030 *
6031 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6032 *
6033 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6034 * property.
6035 *
6036 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6037 * rewrite all of this once again.]
97a7142f 6038 */
bf0f6f24 6039
ed387b78
HS
6040static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6041
0ec8aa00
PZ
6042enum fbq_type { regular, remote, all };
6043
ddcdf6e7 6044#define LBF_ALL_PINNED 0x01
367456c7 6045#define LBF_NEED_BREAK 0x02
6263322c
PZ
6046#define LBF_DST_PINNED 0x04
6047#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6048
6049struct lb_env {
6050 struct sched_domain *sd;
6051
ddcdf6e7 6052 struct rq *src_rq;
85c1e7da 6053 int src_cpu;
ddcdf6e7
PZ
6054
6055 int dst_cpu;
6056 struct rq *dst_rq;
6057
88b8dac0
SV
6058 struct cpumask *dst_grpmask;
6059 int new_dst_cpu;
ddcdf6e7 6060 enum cpu_idle_type idle;
bd939f45 6061 long imbalance;
b9403130
MW
6062 /* The set of CPUs under consideration for load-balancing */
6063 struct cpumask *cpus;
6064
ddcdf6e7 6065 unsigned int flags;
367456c7
PZ
6066
6067 unsigned int loop;
6068 unsigned int loop_break;
6069 unsigned int loop_max;
0ec8aa00
PZ
6070
6071 enum fbq_type fbq_type;
163122b7 6072 struct list_head tasks;
ddcdf6e7
PZ
6073};
6074
029632fb
PZ
6075/*
6076 * Is this task likely cache-hot:
6077 */
5d5e2b1b 6078static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6079{
6080 s64 delta;
6081
e5673f28
KT
6082 lockdep_assert_held(&env->src_rq->lock);
6083
029632fb
PZ
6084 if (p->sched_class != &fair_sched_class)
6085 return 0;
6086
6087 if (unlikely(p->policy == SCHED_IDLE))
6088 return 0;
6089
6090 /*
6091 * Buddy candidates are cache hot:
6092 */
5d5e2b1b 6093 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6094 (&p->se == cfs_rq_of(&p->se)->next ||
6095 &p->se == cfs_rq_of(&p->se)->last))
6096 return 1;
6097
6098 if (sysctl_sched_migration_cost == -1)
6099 return 1;
6100 if (sysctl_sched_migration_cost == 0)
6101 return 0;
6102
5d5e2b1b 6103 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6104
6105 return delta < (s64)sysctl_sched_migration_cost;
6106}
6107
3a7053b3 6108#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6109/*
2a1ed24c
SD
6110 * Returns 1, if task migration degrades locality
6111 * Returns 0, if task migration improves locality i.e migration preferred.
6112 * Returns -1, if task migration is not affected by locality.
c1ceac62 6113 */
2a1ed24c 6114static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6115{
b1ad065e 6116 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6117 unsigned long src_faults, dst_faults;
3a7053b3
MG
6118 int src_nid, dst_nid;
6119
2a595721 6120 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6121 return -1;
6122
c3b9bc5b 6123 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6124 return -1;
7a0f3083
MG
6125
6126 src_nid = cpu_to_node(env->src_cpu);
6127 dst_nid = cpu_to_node(env->dst_cpu);
6128
83e1d2cd 6129 if (src_nid == dst_nid)
2a1ed24c 6130 return -1;
7a0f3083 6131
2a1ed24c
SD
6132 /* Migrating away from the preferred node is always bad. */
6133 if (src_nid == p->numa_preferred_nid) {
6134 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6135 return 1;
6136 else
6137 return -1;
6138 }
b1ad065e 6139
c1ceac62
RR
6140 /* Encourage migration to the preferred node. */
6141 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6142 return 0;
b1ad065e 6143
c1ceac62
RR
6144 if (numa_group) {
6145 src_faults = group_faults(p, src_nid);
6146 dst_faults = group_faults(p, dst_nid);
6147 } else {
6148 src_faults = task_faults(p, src_nid);
6149 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6150 }
6151
c1ceac62 6152 return dst_faults < src_faults;
7a0f3083
MG
6153}
6154
3a7053b3 6155#else
2a1ed24c 6156static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6157 struct lb_env *env)
6158{
2a1ed24c 6159 return -1;
7a0f3083 6160}
3a7053b3
MG
6161#endif
6162
1e3c88bd
PZ
6163/*
6164 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6165 */
6166static
8e45cb54 6167int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6168{
2a1ed24c 6169 int tsk_cache_hot;
e5673f28
KT
6170
6171 lockdep_assert_held(&env->src_rq->lock);
6172
1e3c88bd
PZ
6173 /*
6174 * We do not migrate tasks that are:
d3198084 6175 * 1) throttled_lb_pair, or
1e3c88bd 6176 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6177 * 3) running (obviously), or
6178 * 4) are cache-hot on their current CPU.
1e3c88bd 6179 */
d3198084
JK
6180 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6181 return 0;
6182
ddcdf6e7 6183 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6184 int cpu;
88b8dac0 6185
41acab88 6186 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6187
6263322c
PZ
6188 env->flags |= LBF_SOME_PINNED;
6189
88b8dac0
SV
6190 /*
6191 * Remember if this task can be migrated to any other cpu in
6192 * our sched_group. We may want to revisit it if we couldn't
6193 * meet load balance goals by pulling other tasks on src_cpu.
6194 *
6195 * Also avoid computing new_dst_cpu if we have already computed
6196 * one in current iteration.
6197 */
6263322c 6198 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6199 return 0;
6200
e02e60c1
JK
6201 /* Prevent to re-select dst_cpu via env's cpus */
6202 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6203 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6204 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6205 env->new_dst_cpu = cpu;
6206 break;
6207 }
88b8dac0 6208 }
e02e60c1 6209
1e3c88bd
PZ
6210 return 0;
6211 }
88b8dac0
SV
6212
6213 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6214 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6215
ddcdf6e7 6216 if (task_running(env->src_rq, p)) {
41acab88 6217 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6218 return 0;
6219 }
6220
6221 /*
6222 * Aggressive migration if:
3a7053b3
MG
6223 * 1) destination numa is preferred
6224 * 2) task is cache cold, or
6225 * 3) too many balance attempts have failed.
1e3c88bd 6226 */
2a1ed24c
SD
6227 tsk_cache_hot = migrate_degrades_locality(p, env);
6228 if (tsk_cache_hot == -1)
6229 tsk_cache_hot = task_hot(p, env);
3a7053b3 6230
2a1ed24c 6231 if (tsk_cache_hot <= 0 ||
7a96c231 6232 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6233 if (tsk_cache_hot == 1) {
3a7053b3
MG
6234 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6235 schedstat_inc(p, se.statistics.nr_forced_migrations);
6236 }
1e3c88bd
PZ
6237 return 1;
6238 }
6239
4e2dcb73
ZH
6240 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6241 return 0;
1e3c88bd
PZ
6242}
6243
897c395f 6244/*
163122b7
KT
6245 * detach_task() -- detach the task for the migration specified in env
6246 */
6247static void detach_task(struct task_struct *p, struct lb_env *env)
6248{
6249 lockdep_assert_held(&env->src_rq->lock);
6250
163122b7 6251 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6252 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6253 set_task_cpu(p, env->dst_cpu);
6254}
6255
897c395f 6256/*
e5673f28 6257 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6258 * part of active balancing operations within "domain".
897c395f 6259 *
e5673f28 6260 * Returns a task if successful and NULL otherwise.
897c395f 6261 */
e5673f28 6262static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6263{
6264 struct task_struct *p, *n;
897c395f 6265
e5673f28
KT
6266 lockdep_assert_held(&env->src_rq->lock);
6267
367456c7 6268 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6269 if (!can_migrate_task(p, env))
6270 continue;
897c395f 6271
163122b7 6272 detach_task(p, env);
e5673f28 6273
367456c7 6274 /*
e5673f28 6275 * Right now, this is only the second place where
163122b7 6276 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6277 * so we can safely collect stats here rather than
163122b7 6278 * inside detach_tasks().
367456c7
PZ
6279 */
6280 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6281 return p;
897c395f 6282 }
e5673f28 6283 return NULL;
897c395f
PZ
6284}
6285
eb95308e
PZ
6286static const unsigned int sched_nr_migrate_break = 32;
6287
5d6523eb 6288/*
163122b7
KT
6289 * detach_tasks() -- tries to detach up to imbalance weighted load from
6290 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6291 *
163122b7 6292 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6293 */
163122b7 6294static int detach_tasks(struct lb_env *env)
1e3c88bd 6295{
5d6523eb
PZ
6296 struct list_head *tasks = &env->src_rq->cfs_tasks;
6297 struct task_struct *p;
367456c7 6298 unsigned long load;
163122b7
KT
6299 int detached = 0;
6300
6301 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6302
bd939f45 6303 if (env->imbalance <= 0)
5d6523eb 6304 return 0;
1e3c88bd 6305
5d6523eb 6306 while (!list_empty(tasks)) {
985d3a4c
YD
6307 /*
6308 * We don't want to steal all, otherwise we may be treated likewise,
6309 * which could at worst lead to a livelock crash.
6310 */
6311 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6312 break;
6313
5d6523eb 6314 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6315
367456c7
PZ
6316 env->loop++;
6317 /* We've more or less seen every task there is, call it quits */
5d6523eb 6318 if (env->loop > env->loop_max)
367456c7 6319 break;
5d6523eb
PZ
6320
6321 /* take a breather every nr_migrate tasks */
367456c7 6322 if (env->loop > env->loop_break) {
eb95308e 6323 env->loop_break += sched_nr_migrate_break;
8e45cb54 6324 env->flags |= LBF_NEED_BREAK;
ee00e66f 6325 break;
a195f004 6326 }
1e3c88bd 6327
d3198084 6328 if (!can_migrate_task(p, env))
367456c7
PZ
6329 goto next;
6330
6331 load = task_h_load(p);
5d6523eb 6332
eb95308e 6333 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6334 goto next;
6335
bd939f45 6336 if ((load / 2) > env->imbalance)
367456c7 6337 goto next;
1e3c88bd 6338
163122b7
KT
6339 detach_task(p, env);
6340 list_add(&p->se.group_node, &env->tasks);
6341
6342 detached++;
bd939f45 6343 env->imbalance -= load;
1e3c88bd
PZ
6344
6345#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6346 /*
6347 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6348 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6349 * the critical section.
6350 */
5d6523eb 6351 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6352 break;
1e3c88bd
PZ
6353#endif
6354
ee00e66f
PZ
6355 /*
6356 * We only want to steal up to the prescribed amount of
6357 * weighted load.
6358 */
bd939f45 6359 if (env->imbalance <= 0)
ee00e66f 6360 break;
367456c7
PZ
6361
6362 continue;
6363next:
5d6523eb 6364 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6365 }
5d6523eb 6366
1e3c88bd 6367 /*
163122b7
KT
6368 * Right now, this is one of only two places we collect this stat
6369 * so we can safely collect detach_one_task() stats here rather
6370 * than inside detach_one_task().
1e3c88bd 6371 */
163122b7 6372 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6373
163122b7
KT
6374 return detached;
6375}
6376
6377/*
6378 * attach_task() -- attach the task detached by detach_task() to its new rq.
6379 */
6380static void attach_task(struct rq *rq, struct task_struct *p)
6381{
6382 lockdep_assert_held(&rq->lock);
6383
6384 BUG_ON(task_rq(p) != rq);
163122b7 6385 activate_task(rq, p, 0);
3ea94de1 6386 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6387 check_preempt_curr(rq, p, 0);
6388}
6389
6390/*
6391 * attach_one_task() -- attaches the task returned from detach_one_task() to
6392 * its new rq.
6393 */
6394static void attach_one_task(struct rq *rq, struct task_struct *p)
6395{
6396 raw_spin_lock(&rq->lock);
6397 attach_task(rq, p);
6398 raw_spin_unlock(&rq->lock);
6399}
6400
6401/*
6402 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6403 * new rq.
6404 */
6405static void attach_tasks(struct lb_env *env)
6406{
6407 struct list_head *tasks = &env->tasks;
6408 struct task_struct *p;
6409
6410 raw_spin_lock(&env->dst_rq->lock);
6411
6412 while (!list_empty(tasks)) {
6413 p = list_first_entry(tasks, struct task_struct, se.group_node);
6414 list_del_init(&p->se.group_node);
1e3c88bd 6415
163122b7
KT
6416 attach_task(env->dst_rq, p);
6417 }
6418
6419 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6420}
6421
230059de 6422#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6423static void update_blocked_averages(int cpu)
9e3081ca 6424{
9e3081ca 6425 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6426 struct cfs_rq *cfs_rq;
6427 unsigned long flags;
9e3081ca 6428
48a16753
PT
6429 raw_spin_lock_irqsave(&rq->lock, flags);
6430 update_rq_clock(rq);
9d89c257 6431
9763b67f
PZ
6432 /*
6433 * Iterates the task_group tree in a bottom up fashion, see
6434 * list_add_leaf_cfs_rq() for details.
6435 */
64660c86 6436 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6437 /* throttled entities do not contribute to load */
6438 if (throttled_hierarchy(cfs_rq))
6439 continue;
48a16753 6440
a2c6c91f 6441 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6442 update_tg_load_avg(cfs_rq, 0);
6443 }
48a16753 6444 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6445}
6446
9763b67f 6447/*
68520796 6448 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6449 * This needs to be done in a top-down fashion because the load of a child
6450 * group is a fraction of its parents load.
6451 */
68520796 6452static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6453{
68520796
VD
6454 struct rq *rq = rq_of(cfs_rq);
6455 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6456 unsigned long now = jiffies;
68520796 6457 unsigned long load;
a35b6466 6458
68520796 6459 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6460 return;
6461
68520796
VD
6462 cfs_rq->h_load_next = NULL;
6463 for_each_sched_entity(se) {
6464 cfs_rq = cfs_rq_of(se);
6465 cfs_rq->h_load_next = se;
6466 if (cfs_rq->last_h_load_update == now)
6467 break;
6468 }
a35b6466 6469
68520796 6470 if (!se) {
7ea241af 6471 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6472 cfs_rq->last_h_load_update = now;
6473 }
6474
6475 while ((se = cfs_rq->h_load_next) != NULL) {
6476 load = cfs_rq->h_load;
7ea241af
YD
6477 load = div64_ul(load * se->avg.load_avg,
6478 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6479 cfs_rq = group_cfs_rq(se);
6480 cfs_rq->h_load = load;
6481 cfs_rq->last_h_load_update = now;
6482 }
9763b67f
PZ
6483}
6484
367456c7 6485static unsigned long task_h_load(struct task_struct *p)
230059de 6486{
367456c7 6487 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6488
68520796 6489 update_cfs_rq_h_load(cfs_rq);
9d89c257 6490 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6491 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6492}
6493#else
48a16753 6494static inline void update_blocked_averages(int cpu)
9e3081ca 6495{
6c1d47c0
VG
6496 struct rq *rq = cpu_rq(cpu);
6497 struct cfs_rq *cfs_rq = &rq->cfs;
6498 unsigned long flags;
6499
6500 raw_spin_lock_irqsave(&rq->lock, flags);
6501 update_rq_clock(rq);
a2c6c91f 6502 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6503 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6504}
6505
367456c7 6506static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6507{
9d89c257 6508 return p->se.avg.load_avg;
1e3c88bd 6509}
230059de 6510#endif
1e3c88bd 6511
1e3c88bd 6512/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6513
6514enum group_type {
6515 group_other = 0,
6516 group_imbalanced,
6517 group_overloaded,
6518};
6519
1e3c88bd
PZ
6520/*
6521 * sg_lb_stats - stats of a sched_group required for load_balancing
6522 */
6523struct sg_lb_stats {
6524 unsigned long avg_load; /*Avg load across the CPUs of the group */
6525 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6526 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6527 unsigned long load_per_task;
63b2ca30 6528 unsigned long group_capacity;
9e91d61d 6529 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6530 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6531 unsigned int idle_cpus;
6532 unsigned int group_weight;
caeb178c 6533 enum group_type group_type;
ea67821b 6534 int group_no_capacity;
0ec8aa00
PZ
6535#ifdef CONFIG_NUMA_BALANCING
6536 unsigned int nr_numa_running;
6537 unsigned int nr_preferred_running;
6538#endif
1e3c88bd
PZ
6539};
6540
56cf515b
JK
6541/*
6542 * sd_lb_stats - Structure to store the statistics of a sched_domain
6543 * during load balancing.
6544 */
6545struct sd_lb_stats {
6546 struct sched_group *busiest; /* Busiest group in this sd */
6547 struct sched_group *local; /* Local group in this sd */
6548 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6549 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6550 unsigned long avg_load; /* Average load across all groups in sd */
6551
56cf515b 6552 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6553 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6554};
6555
147c5fc2
PZ
6556static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6557{
6558 /*
6559 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6560 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6561 * We must however clear busiest_stat::avg_load because
6562 * update_sd_pick_busiest() reads this before assignment.
6563 */
6564 *sds = (struct sd_lb_stats){
6565 .busiest = NULL,
6566 .local = NULL,
6567 .total_load = 0UL,
63b2ca30 6568 .total_capacity = 0UL,
147c5fc2
PZ
6569 .busiest_stat = {
6570 .avg_load = 0UL,
caeb178c
RR
6571 .sum_nr_running = 0,
6572 .group_type = group_other,
147c5fc2
PZ
6573 },
6574 };
6575}
6576
1e3c88bd
PZ
6577/**
6578 * get_sd_load_idx - Obtain the load index for a given sched domain.
6579 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6580 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6581 *
6582 * Return: The load index.
1e3c88bd
PZ
6583 */
6584static inline int get_sd_load_idx(struct sched_domain *sd,
6585 enum cpu_idle_type idle)
6586{
6587 int load_idx;
6588
6589 switch (idle) {
6590 case CPU_NOT_IDLE:
6591 load_idx = sd->busy_idx;
6592 break;
6593
6594 case CPU_NEWLY_IDLE:
6595 load_idx = sd->newidle_idx;
6596 break;
6597 default:
6598 load_idx = sd->idle_idx;
6599 break;
6600 }
6601
6602 return load_idx;
6603}
6604
ced549fa 6605static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6606{
6607 struct rq *rq = cpu_rq(cpu);
b5b4860d 6608 u64 total, used, age_stamp, avg;
cadefd3d 6609 s64 delta;
1e3c88bd 6610
b654f7de
PZ
6611 /*
6612 * Since we're reading these variables without serialization make sure
6613 * we read them once before doing sanity checks on them.
6614 */
316c1608
JL
6615 age_stamp = READ_ONCE(rq->age_stamp);
6616 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6617 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6618
cadefd3d
PZ
6619 if (unlikely(delta < 0))
6620 delta = 0;
6621
6622 total = sched_avg_period() + delta;
aa483808 6623
b5b4860d 6624 used = div_u64(avg, total);
1e3c88bd 6625
b5b4860d
VG
6626 if (likely(used < SCHED_CAPACITY_SCALE))
6627 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6628
b5b4860d 6629 return 1;
1e3c88bd
PZ
6630}
6631
ced549fa 6632static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6633{
8cd5601c 6634 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6635 struct sched_group *sdg = sd->groups;
6636
ca6d75e6 6637 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6638
ced549fa 6639 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6640 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6641
ced549fa
NP
6642 if (!capacity)
6643 capacity = 1;
1e3c88bd 6644
ced549fa
NP
6645 cpu_rq(cpu)->cpu_capacity = capacity;
6646 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6647}
6648
63b2ca30 6649void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6650{
6651 struct sched_domain *child = sd->child;
6652 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6653 unsigned long capacity;
4ec4412e
VG
6654 unsigned long interval;
6655
6656 interval = msecs_to_jiffies(sd->balance_interval);
6657 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6658 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6659
6660 if (!child) {
ced549fa 6661 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6662 return;
6663 }
6664
dc7ff76e 6665 capacity = 0;
1e3c88bd 6666
74a5ce20
PZ
6667 if (child->flags & SD_OVERLAP) {
6668 /*
6669 * SD_OVERLAP domains cannot assume that child groups
6670 * span the current group.
6671 */
6672
863bffc8 6673 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6674 struct sched_group_capacity *sgc;
9abf24d4 6675 struct rq *rq = cpu_rq(cpu);
863bffc8 6676
9abf24d4 6677 /*
63b2ca30 6678 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6679 * gets here before we've attached the domains to the
6680 * runqueues.
6681 *
ced549fa
NP
6682 * Use capacity_of(), which is set irrespective of domains
6683 * in update_cpu_capacity().
9abf24d4 6684 *
dc7ff76e 6685 * This avoids capacity from being 0 and
9abf24d4 6686 * causing divide-by-zero issues on boot.
9abf24d4
SD
6687 */
6688 if (unlikely(!rq->sd)) {
ced549fa 6689 capacity += capacity_of(cpu);
9abf24d4
SD
6690 continue;
6691 }
863bffc8 6692
63b2ca30 6693 sgc = rq->sd->groups->sgc;
63b2ca30 6694 capacity += sgc->capacity;
863bffc8 6695 }
74a5ce20
PZ
6696 } else {
6697 /*
6698 * !SD_OVERLAP domains can assume that child groups
6699 * span the current group.
97a7142f 6700 */
74a5ce20
PZ
6701
6702 group = child->groups;
6703 do {
63b2ca30 6704 capacity += group->sgc->capacity;
74a5ce20
PZ
6705 group = group->next;
6706 } while (group != child->groups);
6707 }
1e3c88bd 6708
63b2ca30 6709 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6710}
6711
9d5efe05 6712/*
ea67821b
VG
6713 * Check whether the capacity of the rq has been noticeably reduced by side
6714 * activity. The imbalance_pct is used for the threshold.
6715 * Return true is the capacity is reduced
9d5efe05
SV
6716 */
6717static inline int
ea67821b 6718check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6719{
ea67821b
VG
6720 return ((rq->cpu_capacity * sd->imbalance_pct) <
6721 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6722}
6723
30ce5dab
PZ
6724/*
6725 * Group imbalance indicates (and tries to solve) the problem where balancing
6726 * groups is inadequate due to tsk_cpus_allowed() constraints.
6727 *
6728 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6729 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6730 * Something like:
6731 *
6732 * { 0 1 2 3 } { 4 5 6 7 }
6733 * * * * *
6734 *
6735 * If we were to balance group-wise we'd place two tasks in the first group and
6736 * two tasks in the second group. Clearly this is undesired as it will overload
6737 * cpu 3 and leave one of the cpus in the second group unused.
6738 *
6739 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6740 * by noticing the lower domain failed to reach balance and had difficulty
6741 * moving tasks due to affinity constraints.
30ce5dab
PZ
6742 *
6743 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6744 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6745 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6746 * to create an effective group imbalance.
6747 *
6748 * This is a somewhat tricky proposition since the next run might not find the
6749 * group imbalance and decide the groups need to be balanced again. A most
6750 * subtle and fragile situation.
6751 */
6752
6263322c 6753static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6754{
63b2ca30 6755 return group->sgc->imbalance;
30ce5dab
PZ
6756}
6757
b37d9316 6758/*
ea67821b
VG
6759 * group_has_capacity returns true if the group has spare capacity that could
6760 * be used by some tasks.
6761 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6762 * smaller than the number of CPUs or if the utilization is lower than the
6763 * available capacity for CFS tasks.
ea67821b
VG
6764 * For the latter, we use a threshold to stabilize the state, to take into
6765 * account the variance of the tasks' load and to return true if the available
6766 * capacity in meaningful for the load balancer.
6767 * As an example, an available capacity of 1% can appear but it doesn't make
6768 * any benefit for the load balance.
b37d9316 6769 */
ea67821b
VG
6770static inline bool
6771group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6772{
ea67821b
VG
6773 if (sgs->sum_nr_running < sgs->group_weight)
6774 return true;
c61037e9 6775
ea67821b 6776 if ((sgs->group_capacity * 100) >
9e91d61d 6777 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6778 return true;
b37d9316 6779
ea67821b
VG
6780 return false;
6781}
6782
6783/*
6784 * group_is_overloaded returns true if the group has more tasks than it can
6785 * handle.
6786 * group_is_overloaded is not equals to !group_has_capacity because a group
6787 * with the exact right number of tasks, has no more spare capacity but is not
6788 * overloaded so both group_has_capacity and group_is_overloaded return
6789 * false.
6790 */
6791static inline bool
6792group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6793{
6794 if (sgs->sum_nr_running <= sgs->group_weight)
6795 return false;
b37d9316 6796
ea67821b 6797 if ((sgs->group_capacity * 100) <
9e91d61d 6798 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6799 return true;
b37d9316 6800
ea67821b 6801 return false;
b37d9316
PZ
6802}
6803
79a89f92
LY
6804static inline enum
6805group_type group_classify(struct sched_group *group,
6806 struct sg_lb_stats *sgs)
caeb178c 6807{
ea67821b 6808 if (sgs->group_no_capacity)
caeb178c
RR
6809 return group_overloaded;
6810
6811 if (sg_imbalanced(group))
6812 return group_imbalanced;
6813
6814 return group_other;
6815}
6816
1e3c88bd
PZ
6817/**
6818 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6819 * @env: The load balancing environment.
1e3c88bd 6820 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6821 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6822 * @local_group: Does group contain this_cpu.
1e3c88bd 6823 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6824 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6825 */
bd939f45
PZ
6826static inline void update_sg_lb_stats(struct lb_env *env,
6827 struct sched_group *group, int load_idx,
4486edd1
TC
6828 int local_group, struct sg_lb_stats *sgs,
6829 bool *overload)
1e3c88bd 6830{
30ce5dab 6831 unsigned long load;
a426f99c 6832 int i, nr_running;
1e3c88bd 6833
b72ff13c
PZ
6834 memset(sgs, 0, sizeof(*sgs));
6835
b9403130 6836 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6837 struct rq *rq = cpu_rq(i);
6838
1e3c88bd 6839 /* Bias balancing toward cpus of our domain */
6263322c 6840 if (local_group)
04f733b4 6841 load = target_load(i, load_idx);
6263322c 6842 else
1e3c88bd 6843 load = source_load(i, load_idx);
1e3c88bd
PZ
6844
6845 sgs->group_load += load;
9e91d61d 6846 sgs->group_util += cpu_util(i);
65fdac08 6847 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6848
a426f99c
WL
6849 nr_running = rq->nr_running;
6850 if (nr_running > 1)
4486edd1
TC
6851 *overload = true;
6852
0ec8aa00
PZ
6853#ifdef CONFIG_NUMA_BALANCING
6854 sgs->nr_numa_running += rq->nr_numa_running;
6855 sgs->nr_preferred_running += rq->nr_preferred_running;
6856#endif
1e3c88bd 6857 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6858 /*
6859 * No need to call idle_cpu() if nr_running is not 0
6860 */
6861 if (!nr_running && idle_cpu(i))
aae6d3dd 6862 sgs->idle_cpus++;
1e3c88bd
PZ
6863 }
6864
63b2ca30
NP
6865 /* Adjust by relative CPU capacity of the group */
6866 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6867 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6868
dd5feea1 6869 if (sgs->sum_nr_running)
38d0f770 6870 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6871
aae6d3dd 6872 sgs->group_weight = group->group_weight;
b37d9316 6873
ea67821b 6874 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6875 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6876}
6877
532cb4c4
MN
6878/**
6879 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6880 * @env: The load balancing environment.
532cb4c4
MN
6881 * @sds: sched_domain statistics
6882 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6883 * @sgs: sched_group statistics
532cb4c4
MN
6884 *
6885 * Determine if @sg is a busier group than the previously selected
6886 * busiest group.
e69f6186
YB
6887 *
6888 * Return: %true if @sg is a busier group than the previously selected
6889 * busiest group. %false otherwise.
532cb4c4 6890 */
bd939f45 6891static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6892 struct sd_lb_stats *sds,
6893 struct sched_group *sg,
bd939f45 6894 struct sg_lb_stats *sgs)
532cb4c4 6895{
caeb178c 6896 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6897
caeb178c 6898 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6899 return true;
6900
caeb178c
RR
6901 if (sgs->group_type < busiest->group_type)
6902 return false;
6903
6904 if (sgs->avg_load <= busiest->avg_load)
6905 return false;
6906
6907 /* This is the busiest node in its class. */
6908 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6909 return true;
6910
1f621e02
SD
6911 /* No ASYM_PACKING if target cpu is already busy */
6912 if (env->idle == CPU_NOT_IDLE)
6913 return true;
532cb4c4
MN
6914 /*
6915 * ASYM_PACKING needs to move all the work to the lowest
6916 * numbered CPUs in the group, therefore mark all groups
6917 * higher than ourself as busy.
6918 */
caeb178c 6919 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6920 if (!sds->busiest)
6921 return true;
6922
1f621e02
SD
6923 /* Prefer to move from highest possible cpu's work */
6924 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6925 return true;
6926 }
6927
6928 return false;
6929}
6930
0ec8aa00
PZ
6931#ifdef CONFIG_NUMA_BALANCING
6932static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6933{
6934 if (sgs->sum_nr_running > sgs->nr_numa_running)
6935 return regular;
6936 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6937 return remote;
6938 return all;
6939}
6940
6941static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6942{
6943 if (rq->nr_running > rq->nr_numa_running)
6944 return regular;
6945 if (rq->nr_running > rq->nr_preferred_running)
6946 return remote;
6947 return all;
6948}
6949#else
6950static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6951{
6952 return all;
6953}
6954
6955static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6956{
6957 return regular;
6958}
6959#endif /* CONFIG_NUMA_BALANCING */
6960
1e3c88bd 6961/**
461819ac 6962 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6963 * @env: The load balancing environment.
1e3c88bd
PZ
6964 * @sds: variable to hold the statistics for this sched_domain.
6965 */
0ec8aa00 6966static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6967{
bd939f45
PZ
6968 struct sched_domain *child = env->sd->child;
6969 struct sched_group *sg = env->sd->groups;
56cf515b 6970 struct sg_lb_stats tmp_sgs;
1e3c88bd 6971 int load_idx, prefer_sibling = 0;
4486edd1 6972 bool overload = false;
1e3c88bd
PZ
6973
6974 if (child && child->flags & SD_PREFER_SIBLING)
6975 prefer_sibling = 1;
6976
bd939f45 6977 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6978
6979 do {
56cf515b 6980 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6981 int local_group;
6982
bd939f45 6983 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6984 if (local_group) {
6985 sds->local = sg;
6986 sgs = &sds->local_stat;
b72ff13c
PZ
6987
6988 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6989 time_after_eq(jiffies, sg->sgc->next_update))
6990 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6991 }
1e3c88bd 6992
4486edd1
TC
6993 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6994 &overload);
1e3c88bd 6995
b72ff13c
PZ
6996 if (local_group)
6997 goto next_group;
6998
1e3c88bd
PZ
6999 /*
7000 * In case the child domain prefers tasks go to siblings
ea67821b 7001 * first, lower the sg capacity so that we'll try
75dd321d
NR
7002 * and move all the excess tasks away. We lower the capacity
7003 * of a group only if the local group has the capacity to fit
ea67821b
VG
7004 * these excess tasks. The extra check prevents the case where
7005 * you always pull from the heaviest group when it is already
7006 * under-utilized (possible with a large weight task outweighs
7007 * the tasks on the system).
1e3c88bd 7008 */
b72ff13c 7009 if (prefer_sibling && sds->local &&
ea67821b
VG
7010 group_has_capacity(env, &sds->local_stat) &&
7011 (sgs->sum_nr_running > 1)) {
7012 sgs->group_no_capacity = 1;
79a89f92 7013 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7014 }
1e3c88bd 7015
b72ff13c 7016 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7017 sds->busiest = sg;
56cf515b 7018 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7019 }
7020
b72ff13c
PZ
7021next_group:
7022 /* Now, start updating sd_lb_stats */
7023 sds->total_load += sgs->group_load;
63b2ca30 7024 sds->total_capacity += sgs->group_capacity;
b72ff13c 7025
532cb4c4 7026 sg = sg->next;
bd939f45 7027 } while (sg != env->sd->groups);
0ec8aa00
PZ
7028
7029 if (env->sd->flags & SD_NUMA)
7030 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7031
7032 if (!env->sd->parent) {
7033 /* update overload indicator if we are at root domain */
7034 if (env->dst_rq->rd->overload != overload)
7035 env->dst_rq->rd->overload = overload;
7036 }
7037
532cb4c4
MN
7038}
7039
532cb4c4
MN
7040/**
7041 * check_asym_packing - Check to see if the group is packed into the
7042 * sched doman.
7043 *
7044 * This is primarily intended to used at the sibling level. Some
7045 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7046 * case of POWER7, it can move to lower SMT modes only when higher
7047 * threads are idle. When in lower SMT modes, the threads will
7048 * perform better since they share less core resources. Hence when we
7049 * have idle threads, we want them to be the higher ones.
7050 *
7051 * This packing function is run on idle threads. It checks to see if
7052 * the busiest CPU in this domain (core in the P7 case) has a higher
7053 * CPU number than the packing function is being run on. Here we are
7054 * assuming lower CPU number will be equivalent to lower a SMT thread
7055 * number.
7056 *
e69f6186 7057 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7058 * this CPU. The amount of the imbalance is returned in *imbalance.
7059 *
cd96891d 7060 * @env: The load balancing environment.
532cb4c4 7061 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7062 */
bd939f45 7063static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7064{
7065 int busiest_cpu;
7066
bd939f45 7067 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7068 return 0;
7069
1f621e02
SD
7070 if (env->idle == CPU_NOT_IDLE)
7071 return 0;
7072
532cb4c4
MN
7073 if (!sds->busiest)
7074 return 0;
7075
7076 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7077 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7078 return 0;
7079
bd939f45 7080 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7081 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7082 SCHED_CAPACITY_SCALE);
bd939f45 7083
532cb4c4 7084 return 1;
1e3c88bd
PZ
7085}
7086
7087/**
7088 * fix_small_imbalance - Calculate the minor imbalance that exists
7089 * amongst the groups of a sched_domain, during
7090 * load balancing.
cd96891d 7091 * @env: The load balancing environment.
1e3c88bd 7092 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7093 */
bd939f45
PZ
7094static inline
7095void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7096{
63b2ca30 7097 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7098 unsigned int imbn = 2;
dd5feea1 7099 unsigned long scaled_busy_load_per_task;
56cf515b 7100 struct sg_lb_stats *local, *busiest;
1e3c88bd 7101
56cf515b
JK
7102 local = &sds->local_stat;
7103 busiest = &sds->busiest_stat;
1e3c88bd 7104
56cf515b
JK
7105 if (!local->sum_nr_running)
7106 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7107 else if (busiest->load_per_task > local->load_per_task)
7108 imbn = 1;
dd5feea1 7109
56cf515b 7110 scaled_busy_load_per_task =
ca8ce3d0 7111 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7112 busiest->group_capacity;
56cf515b 7113
3029ede3
VD
7114 if (busiest->avg_load + scaled_busy_load_per_task >=
7115 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7116 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7117 return;
7118 }
7119
7120 /*
7121 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7122 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7123 * moving them.
7124 */
7125
63b2ca30 7126 capa_now += busiest->group_capacity *
56cf515b 7127 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7128 capa_now += local->group_capacity *
56cf515b 7129 min(local->load_per_task, local->avg_load);
ca8ce3d0 7130 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7131
7132 /* Amount of load we'd subtract */
a2cd4260 7133 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7134 capa_move += busiest->group_capacity *
56cf515b 7135 min(busiest->load_per_task,
a2cd4260 7136 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7137 }
1e3c88bd
PZ
7138
7139 /* Amount of load we'd add */
63b2ca30 7140 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7141 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7142 tmp = (busiest->avg_load * busiest->group_capacity) /
7143 local->group_capacity;
56cf515b 7144 } else {
ca8ce3d0 7145 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7146 local->group_capacity;
56cf515b 7147 }
63b2ca30 7148 capa_move += local->group_capacity *
3ae11c90 7149 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7150 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7151
7152 /* Move if we gain throughput */
63b2ca30 7153 if (capa_move > capa_now)
56cf515b 7154 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7155}
7156
7157/**
7158 * calculate_imbalance - Calculate the amount of imbalance present within the
7159 * groups of a given sched_domain during load balance.
bd939f45 7160 * @env: load balance environment
1e3c88bd 7161 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7162 */
bd939f45 7163static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7164{
dd5feea1 7165 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7166 struct sg_lb_stats *local, *busiest;
7167
7168 local = &sds->local_stat;
56cf515b 7169 busiest = &sds->busiest_stat;
dd5feea1 7170
caeb178c 7171 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7172 /*
7173 * In the group_imb case we cannot rely on group-wide averages
7174 * to ensure cpu-load equilibrium, look at wider averages. XXX
7175 */
56cf515b
JK
7176 busiest->load_per_task =
7177 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7178 }
7179
1e3c88bd 7180 /*
885e542c
DE
7181 * Avg load of busiest sg can be less and avg load of local sg can
7182 * be greater than avg load across all sgs of sd because avg load
7183 * factors in sg capacity and sgs with smaller group_type are
7184 * skipped when updating the busiest sg:
1e3c88bd 7185 */
b1885550
VD
7186 if (busiest->avg_load <= sds->avg_load ||
7187 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7188 env->imbalance = 0;
7189 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7190 }
7191
9a5d9ba6
PZ
7192 /*
7193 * If there aren't any idle cpus, avoid creating some.
7194 */
7195 if (busiest->group_type == group_overloaded &&
7196 local->group_type == group_overloaded) {
1be0eb2a 7197 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7198 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7199 load_above_capacity -= busiest->group_capacity;
26656215 7200 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7201 load_above_capacity /= busiest->group_capacity;
7202 } else
ea67821b 7203 load_above_capacity = ~0UL;
dd5feea1
SS
7204 }
7205
7206 /*
7207 * We're trying to get all the cpus to the average_load, so we don't
7208 * want to push ourselves above the average load, nor do we wish to
7209 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7210 * we also don't want to reduce the group load below the group
7211 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7212 */
30ce5dab 7213 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7214
7215 /* How much load to actually move to equalise the imbalance */
56cf515b 7216 env->imbalance = min(
63b2ca30
NP
7217 max_pull * busiest->group_capacity,
7218 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7219 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7220
7221 /*
7222 * if *imbalance is less than the average load per runnable task
25985edc 7223 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7224 * a think about bumping its value to force at least one task to be
7225 * moved
7226 */
56cf515b 7227 if (env->imbalance < busiest->load_per_task)
bd939f45 7228 return fix_small_imbalance(env, sds);
1e3c88bd 7229}
fab47622 7230
1e3c88bd
PZ
7231/******* find_busiest_group() helpers end here *********************/
7232
7233/**
7234 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7235 * if there is an imbalance.
1e3c88bd
PZ
7236 *
7237 * Also calculates the amount of weighted load which should be moved
7238 * to restore balance.
7239 *
cd96891d 7240 * @env: The load balancing environment.
1e3c88bd 7241 *
e69f6186 7242 * Return: - The busiest group if imbalance exists.
1e3c88bd 7243 */
56cf515b 7244static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7245{
56cf515b 7246 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7247 struct sd_lb_stats sds;
7248
147c5fc2 7249 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7250
7251 /*
7252 * Compute the various statistics relavent for load balancing at
7253 * this level.
7254 */
23f0d209 7255 update_sd_lb_stats(env, &sds);
56cf515b
JK
7256 local = &sds.local_stat;
7257 busiest = &sds.busiest_stat;
1e3c88bd 7258
ea67821b 7259 /* ASYM feature bypasses nice load balance check */
1f621e02 7260 if (check_asym_packing(env, &sds))
532cb4c4
MN
7261 return sds.busiest;
7262
cc57aa8f 7263 /* There is no busy sibling group to pull tasks from */
56cf515b 7264 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7265 goto out_balanced;
7266
ca8ce3d0
NP
7267 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7268 / sds.total_capacity;
b0432d8f 7269
866ab43e
PZ
7270 /*
7271 * If the busiest group is imbalanced the below checks don't
30ce5dab 7272 * work because they assume all things are equal, which typically
866ab43e
PZ
7273 * isn't true due to cpus_allowed constraints and the like.
7274 */
caeb178c 7275 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7276 goto force_balance;
7277
cc57aa8f 7278 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7279 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7280 busiest->group_no_capacity)
fab47622
NR
7281 goto force_balance;
7282
cc57aa8f 7283 /*
9c58c79a 7284 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7285 * don't try and pull any tasks.
7286 */
56cf515b 7287 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7288 goto out_balanced;
7289
cc57aa8f
PZ
7290 /*
7291 * Don't pull any tasks if this group is already above the domain
7292 * average load.
7293 */
56cf515b 7294 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7295 goto out_balanced;
7296
bd939f45 7297 if (env->idle == CPU_IDLE) {
aae6d3dd 7298 /*
43f4d666
VG
7299 * This cpu is idle. If the busiest group is not overloaded
7300 * and there is no imbalance between this and busiest group
7301 * wrt idle cpus, it is balanced. The imbalance becomes
7302 * significant if the diff is greater than 1 otherwise we
7303 * might end up to just move the imbalance on another group
aae6d3dd 7304 */
43f4d666
VG
7305 if ((busiest->group_type != group_overloaded) &&
7306 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7307 goto out_balanced;
c186fafe
PZ
7308 } else {
7309 /*
7310 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7311 * imbalance_pct to be conservative.
7312 */
56cf515b
JK
7313 if (100 * busiest->avg_load <=
7314 env->sd->imbalance_pct * local->avg_load)
c186fafe 7315 goto out_balanced;
aae6d3dd 7316 }
1e3c88bd 7317
fab47622 7318force_balance:
1e3c88bd 7319 /* Looks like there is an imbalance. Compute it */
bd939f45 7320 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7321 return sds.busiest;
7322
7323out_balanced:
bd939f45 7324 env->imbalance = 0;
1e3c88bd
PZ
7325 return NULL;
7326}
7327
7328/*
7329 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7330 */
bd939f45 7331static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7332 struct sched_group *group)
1e3c88bd
PZ
7333{
7334 struct rq *busiest = NULL, *rq;
ced549fa 7335 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7336 int i;
7337
6906a408 7338 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7339 unsigned long capacity, wl;
0ec8aa00
PZ
7340 enum fbq_type rt;
7341
7342 rq = cpu_rq(i);
7343 rt = fbq_classify_rq(rq);
1e3c88bd 7344
0ec8aa00
PZ
7345 /*
7346 * We classify groups/runqueues into three groups:
7347 * - regular: there are !numa tasks
7348 * - remote: there are numa tasks that run on the 'wrong' node
7349 * - all: there is no distinction
7350 *
7351 * In order to avoid migrating ideally placed numa tasks,
7352 * ignore those when there's better options.
7353 *
7354 * If we ignore the actual busiest queue to migrate another
7355 * task, the next balance pass can still reduce the busiest
7356 * queue by moving tasks around inside the node.
7357 *
7358 * If we cannot move enough load due to this classification
7359 * the next pass will adjust the group classification and
7360 * allow migration of more tasks.
7361 *
7362 * Both cases only affect the total convergence complexity.
7363 */
7364 if (rt > env->fbq_type)
7365 continue;
7366
ced549fa 7367 capacity = capacity_of(i);
9d5efe05 7368
6e40f5bb 7369 wl = weighted_cpuload(i);
1e3c88bd 7370
6e40f5bb
TG
7371 /*
7372 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7373 * which is not scaled with the cpu capacity.
6e40f5bb 7374 */
ea67821b
VG
7375
7376 if (rq->nr_running == 1 && wl > env->imbalance &&
7377 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7378 continue;
7379
6e40f5bb
TG
7380 /*
7381 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7382 * the weighted_cpuload() scaled with the cpu capacity, so
7383 * that the load can be moved away from the cpu that is
7384 * potentially running at a lower capacity.
95a79b80 7385 *
ced549fa 7386 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7387 * multiplication to rid ourselves of the division works out
ced549fa
NP
7388 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7389 * our previous maximum.
6e40f5bb 7390 */
ced549fa 7391 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7392 busiest_load = wl;
ced549fa 7393 busiest_capacity = capacity;
1e3c88bd
PZ
7394 busiest = rq;
7395 }
7396 }
7397
7398 return busiest;
7399}
7400
7401/*
7402 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7403 * so long as it is large enough.
7404 */
7405#define MAX_PINNED_INTERVAL 512
7406
7407/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7408DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7409
bd939f45 7410static int need_active_balance(struct lb_env *env)
1af3ed3d 7411{
bd939f45
PZ
7412 struct sched_domain *sd = env->sd;
7413
7414 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7415
7416 /*
7417 * ASYM_PACKING needs to force migrate tasks from busy but
7418 * higher numbered CPUs in order to pack all tasks in the
7419 * lowest numbered CPUs.
7420 */
bd939f45 7421 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7422 return 1;
1af3ed3d
PZ
7423 }
7424
1aaf90a4
VG
7425 /*
7426 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7427 * It's worth migrating the task if the src_cpu's capacity is reduced
7428 * because of other sched_class or IRQs if more capacity stays
7429 * available on dst_cpu.
7430 */
7431 if ((env->idle != CPU_NOT_IDLE) &&
7432 (env->src_rq->cfs.h_nr_running == 1)) {
7433 if ((check_cpu_capacity(env->src_rq, sd)) &&
7434 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7435 return 1;
7436 }
7437
1af3ed3d
PZ
7438 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7439}
7440
969c7921
TH
7441static int active_load_balance_cpu_stop(void *data);
7442
23f0d209
JK
7443static int should_we_balance(struct lb_env *env)
7444{
7445 struct sched_group *sg = env->sd->groups;
7446 struct cpumask *sg_cpus, *sg_mask;
7447 int cpu, balance_cpu = -1;
7448
7449 /*
7450 * In the newly idle case, we will allow all the cpu's
7451 * to do the newly idle load balance.
7452 */
7453 if (env->idle == CPU_NEWLY_IDLE)
7454 return 1;
7455
7456 sg_cpus = sched_group_cpus(sg);
7457 sg_mask = sched_group_mask(sg);
7458 /* Try to find first idle cpu */
7459 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7460 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7461 continue;
7462
7463 balance_cpu = cpu;
7464 break;
7465 }
7466
7467 if (balance_cpu == -1)
7468 balance_cpu = group_balance_cpu(sg);
7469
7470 /*
7471 * First idle cpu or the first cpu(busiest) in this sched group
7472 * is eligible for doing load balancing at this and above domains.
7473 */
b0cff9d8 7474 return balance_cpu == env->dst_cpu;
23f0d209
JK
7475}
7476
1e3c88bd
PZ
7477/*
7478 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7479 * tasks if there is an imbalance.
7480 */
7481static int load_balance(int this_cpu, struct rq *this_rq,
7482 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7483 int *continue_balancing)
1e3c88bd 7484{
88b8dac0 7485 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7486 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7487 struct sched_group *group;
1e3c88bd
PZ
7488 struct rq *busiest;
7489 unsigned long flags;
4ba29684 7490 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7491
8e45cb54
PZ
7492 struct lb_env env = {
7493 .sd = sd,
ddcdf6e7
PZ
7494 .dst_cpu = this_cpu,
7495 .dst_rq = this_rq,
88b8dac0 7496 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7497 .idle = idle,
eb95308e 7498 .loop_break = sched_nr_migrate_break,
b9403130 7499 .cpus = cpus,
0ec8aa00 7500 .fbq_type = all,
163122b7 7501 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7502 };
7503
cfc03118
JK
7504 /*
7505 * For NEWLY_IDLE load_balancing, we don't need to consider
7506 * other cpus in our group
7507 */
e02e60c1 7508 if (idle == CPU_NEWLY_IDLE)
cfc03118 7509 env.dst_grpmask = NULL;
cfc03118 7510
1e3c88bd
PZ
7511 cpumask_copy(cpus, cpu_active_mask);
7512
1e3c88bd
PZ
7513 schedstat_inc(sd, lb_count[idle]);
7514
7515redo:
23f0d209
JK
7516 if (!should_we_balance(&env)) {
7517 *continue_balancing = 0;
1e3c88bd 7518 goto out_balanced;
23f0d209 7519 }
1e3c88bd 7520
23f0d209 7521 group = find_busiest_group(&env);
1e3c88bd
PZ
7522 if (!group) {
7523 schedstat_inc(sd, lb_nobusyg[idle]);
7524 goto out_balanced;
7525 }
7526
b9403130 7527 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7528 if (!busiest) {
7529 schedstat_inc(sd, lb_nobusyq[idle]);
7530 goto out_balanced;
7531 }
7532
78feefc5 7533 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7534
bd939f45 7535 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7536
1aaf90a4
VG
7537 env.src_cpu = busiest->cpu;
7538 env.src_rq = busiest;
7539
1e3c88bd
PZ
7540 ld_moved = 0;
7541 if (busiest->nr_running > 1) {
7542 /*
7543 * Attempt to move tasks. If find_busiest_group has found
7544 * an imbalance but busiest->nr_running <= 1, the group is
7545 * still unbalanced. ld_moved simply stays zero, so it is
7546 * correctly treated as an imbalance.
7547 */
8e45cb54 7548 env.flags |= LBF_ALL_PINNED;
c82513e5 7549 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7550
5d6523eb 7551more_balance:
163122b7 7552 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7553
7554 /*
7555 * cur_ld_moved - load moved in current iteration
7556 * ld_moved - cumulative load moved across iterations
7557 */
163122b7 7558 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7559
7560 /*
163122b7
KT
7561 * We've detached some tasks from busiest_rq. Every
7562 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7563 * unlock busiest->lock, and we are able to be sure
7564 * that nobody can manipulate the tasks in parallel.
7565 * See task_rq_lock() family for the details.
1e3c88bd 7566 */
163122b7
KT
7567
7568 raw_spin_unlock(&busiest->lock);
7569
7570 if (cur_ld_moved) {
7571 attach_tasks(&env);
7572 ld_moved += cur_ld_moved;
7573 }
7574
1e3c88bd 7575 local_irq_restore(flags);
88b8dac0 7576
f1cd0858
JK
7577 if (env.flags & LBF_NEED_BREAK) {
7578 env.flags &= ~LBF_NEED_BREAK;
7579 goto more_balance;
7580 }
7581
88b8dac0
SV
7582 /*
7583 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7584 * us and move them to an alternate dst_cpu in our sched_group
7585 * where they can run. The upper limit on how many times we
7586 * iterate on same src_cpu is dependent on number of cpus in our
7587 * sched_group.
7588 *
7589 * This changes load balance semantics a bit on who can move
7590 * load to a given_cpu. In addition to the given_cpu itself
7591 * (or a ilb_cpu acting on its behalf where given_cpu is
7592 * nohz-idle), we now have balance_cpu in a position to move
7593 * load to given_cpu. In rare situations, this may cause
7594 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7595 * _independently_ and at _same_ time to move some load to
7596 * given_cpu) causing exceess load to be moved to given_cpu.
7597 * This however should not happen so much in practice and
7598 * moreover subsequent load balance cycles should correct the
7599 * excess load moved.
7600 */
6263322c 7601 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7602
7aff2e3a
VD
7603 /* Prevent to re-select dst_cpu via env's cpus */
7604 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7605
78feefc5 7606 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7607 env.dst_cpu = env.new_dst_cpu;
6263322c 7608 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7609 env.loop = 0;
7610 env.loop_break = sched_nr_migrate_break;
e02e60c1 7611
88b8dac0
SV
7612 /*
7613 * Go back to "more_balance" rather than "redo" since we
7614 * need to continue with same src_cpu.
7615 */
7616 goto more_balance;
7617 }
1e3c88bd 7618
6263322c
PZ
7619 /*
7620 * We failed to reach balance because of affinity.
7621 */
7622 if (sd_parent) {
63b2ca30 7623 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7624
afdeee05 7625 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7626 *group_imbalance = 1;
6263322c
PZ
7627 }
7628
1e3c88bd 7629 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7630 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7631 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7632 if (!cpumask_empty(cpus)) {
7633 env.loop = 0;
7634 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7635 goto redo;
bbf18b19 7636 }
afdeee05 7637 goto out_all_pinned;
1e3c88bd
PZ
7638 }
7639 }
7640
7641 if (!ld_moved) {
7642 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7643 /*
7644 * Increment the failure counter only on periodic balance.
7645 * We do not want newidle balance, which can be very
7646 * frequent, pollute the failure counter causing
7647 * excessive cache_hot migrations and active balances.
7648 */
7649 if (idle != CPU_NEWLY_IDLE)
7650 sd->nr_balance_failed++;
1e3c88bd 7651
bd939f45 7652 if (need_active_balance(&env)) {
1e3c88bd
PZ
7653 raw_spin_lock_irqsave(&busiest->lock, flags);
7654
969c7921
TH
7655 /* don't kick the active_load_balance_cpu_stop,
7656 * if the curr task on busiest cpu can't be
7657 * moved to this_cpu
1e3c88bd
PZ
7658 */
7659 if (!cpumask_test_cpu(this_cpu,
fa17b507 7660 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7661 raw_spin_unlock_irqrestore(&busiest->lock,
7662 flags);
8e45cb54 7663 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7664 goto out_one_pinned;
7665 }
7666
969c7921
TH
7667 /*
7668 * ->active_balance synchronizes accesses to
7669 * ->active_balance_work. Once set, it's cleared
7670 * only after active load balance is finished.
7671 */
1e3c88bd
PZ
7672 if (!busiest->active_balance) {
7673 busiest->active_balance = 1;
7674 busiest->push_cpu = this_cpu;
7675 active_balance = 1;
7676 }
7677 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7678
bd939f45 7679 if (active_balance) {
969c7921
TH
7680 stop_one_cpu_nowait(cpu_of(busiest),
7681 active_load_balance_cpu_stop, busiest,
7682 &busiest->active_balance_work);
bd939f45 7683 }
1e3c88bd 7684
d02c0711 7685 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7686 sd->nr_balance_failed = sd->cache_nice_tries+1;
7687 }
7688 } else
7689 sd->nr_balance_failed = 0;
7690
7691 if (likely(!active_balance)) {
7692 /* We were unbalanced, so reset the balancing interval */
7693 sd->balance_interval = sd->min_interval;
7694 } else {
7695 /*
7696 * If we've begun active balancing, start to back off. This
7697 * case may not be covered by the all_pinned logic if there
7698 * is only 1 task on the busy runqueue (because we don't call
163122b7 7699 * detach_tasks).
1e3c88bd
PZ
7700 */
7701 if (sd->balance_interval < sd->max_interval)
7702 sd->balance_interval *= 2;
7703 }
7704
1e3c88bd
PZ
7705 goto out;
7706
7707out_balanced:
afdeee05
VG
7708 /*
7709 * We reach balance although we may have faced some affinity
7710 * constraints. Clear the imbalance flag if it was set.
7711 */
7712 if (sd_parent) {
7713 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7714
7715 if (*group_imbalance)
7716 *group_imbalance = 0;
7717 }
7718
7719out_all_pinned:
7720 /*
7721 * We reach balance because all tasks are pinned at this level so
7722 * we can't migrate them. Let the imbalance flag set so parent level
7723 * can try to migrate them.
7724 */
1e3c88bd
PZ
7725 schedstat_inc(sd, lb_balanced[idle]);
7726
7727 sd->nr_balance_failed = 0;
7728
7729out_one_pinned:
7730 /* tune up the balancing interval */
8e45cb54 7731 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7732 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7733 (sd->balance_interval < sd->max_interval))
7734 sd->balance_interval *= 2;
7735
46e49b38 7736 ld_moved = 0;
1e3c88bd 7737out:
1e3c88bd
PZ
7738 return ld_moved;
7739}
7740
52a08ef1
JL
7741static inline unsigned long
7742get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7743{
7744 unsigned long interval = sd->balance_interval;
7745
7746 if (cpu_busy)
7747 interval *= sd->busy_factor;
7748
7749 /* scale ms to jiffies */
7750 interval = msecs_to_jiffies(interval);
7751 interval = clamp(interval, 1UL, max_load_balance_interval);
7752
7753 return interval;
7754}
7755
7756static inline void
31851a98 7757update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
7758{
7759 unsigned long interval, next;
7760
31851a98
LY
7761 /* used by idle balance, so cpu_busy = 0 */
7762 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
7763 next = sd->last_balance + interval;
7764
7765 if (time_after(*next_balance, next))
7766 *next_balance = next;
7767}
7768
1e3c88bd
PZ
7769/*
7770 * idle_balance is called by schedule() if this_cpu is about to become
7771 * idle. Attempts to pull tasks from other CPUs.
7772 */
6e83125c 7773static int idle_balance(struct rq *this_rq)
1e3c88bd 7774{
52a08ef1
JL
7775 unsigned long next_balance = jiffies + HZ;
7776 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7777 struct sched_domain *sd;
7778 int pulled_task = 0;
9bd721c5 7779 u64 curr_cost = 0;
1e3c88bd 7780
6e83125c
PZ
7781 /*
7782 * We must set idle_stamp _before_ calling idle_balance(), such that we
7783 * measure the duration of idle_balance() as idle time.
7784 */
7785 this_rq->idle_stamp = rq_clock(this_rq);
7786
4486edd1
TC
7787 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7788 !this_rq->rd->overload) {
52a08ef1
JL
7789 rcu_read_lock();
7790 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7791 if (sd)
31851a98 7792 update_next_balance(sd, &next_balance);
52a08ef1
JL
7793 rcu_read_unlock();
7794
6e83125c 7795 goto out;
52a08ef1 7796 }
1e3c88bd 7797
f492e12e
PZ
7798 raw_spin_unlock(&this_rq->lock);
7799
48a16753 7800 update_blocked_averages(this_cpu);
dce840a0 7801 rcu_read_lock();
1e3c88bd 7802 for_each_domain(this_cpu, sd) {
23f0d209 7803 int continue_balancing = 1;
9bd721c5 7804 u64 t0, domain_cost;
1e3c88bd
PZ
7805
7806 if (!(sd->flags & SD_LOAD_BALANCE))
7807 continue;
7808
52a08ef1 7809 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 7810 update_next_balance(sd, &next_balance);
9bd721c5 7811 break;
52a08ef1 7812 }
9bd721c5 7813
f492e12e 7814 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7815 t0 = sched_clock_cpu(this_cpu);
7816
f492e12e 7817 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7818 sd, CPU_NEWLY_IDLE,
7819 &continue_balancing);
9bd721c5
JL
7820
7821 domain_cost = sched_clock_cpu(this_cpu) - t0;
7822 if (domain_cost > sd->max_newidle_lb_cost)
7823 sd->max_newidle_lb_cost = domain_cost;
7824
7825 curr_cost += domain_cost;
f492e12e 7826 }
1e3c88bd 7827
31851a98 7828 update_next_balance(sd, &next_balance);
39a4d9ca
JL
7829
7830 /*
7831 * Stop searching for tasks to pull if there are
7832 * now runnable tasks on this rq.
7833 */
7834 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7835 break;
1e3c88bd 7836 }
dce840a0 7837 rcu_read_unlock();
f492e12e
PZ
7838
7839 raw_spin_lock(&this_rq->lock);
7840
0e5b5337
JL
7841 if (curr_cost > this_rq->max_idle_balance_cost)
7842 this_rq->max_idle_balance_cost = curr_cost;
7843
e5fc6611 7844 /*
0e5b5337
JL
7845 * While browsing the domains, we released the rq lock, a task could
7846 * have been enqueued in the meantime. Since we're not going idle,
7847 * pretend we pulled a task.
e5fc6611 7848 */
0e5b5337 7849 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7850 pulled_task = 1;
e5fc6611 7851
52a08ef1
JL
7852out:
7853 /* Move the next balance forward */
7854 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7855 this_rq->next_balance = next_balance;
9bd721c5 7856
e4aa358b 7857 /* Is there a task of a high priority class? */
46383648 7858 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7859 pulled_task = -1;
7860
38c6ade2 7861 if (pulled_task)
6e83125c
PZ
7862 this_rq->idle_stamp = 0;
7863
3c4017c1 7864 return pulled_task;
1e3c88bd
PZ
7865}
7866
7867/*
969c7921
TH
7868 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7869 * running tasks off the busiest CPU onto idle CPUs. It requires at
7870 * least 1 task to be running on each physical CPU where possible, and
7871 * avoids physical / logical imbalances.
1e3c88bd 7872 */
969c7921 7873static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7874{
969c7921
TH
7875 struct rq *busiest_rq = data;
7876 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7877 int target_cpu = busiest_rq->push_cpu;
969c7921 7878 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7879 struct sched_domain *sd;
e5673f28 7880 struct task_struct *p = NULL;
969c7921
TH
7881
7882 raw_spin_lock_irq(&busiest_rq->lock);
7883
7884 /* make sure the requested cpu hasn't gone down in the meantime */
7885 if (unlikely(busiest_cpu != smp_processor_id() ||
7886 !busiest_rq->active_balance))
7887 goto out_unlock;
1e3c88bd
PZ
7888
7889 /* Is there any task to move? */
7890 if (busiest_rq->nr_running <= 1)
969c7921 7891 goto out_unlock;
1e3c88bd
PZ
7892
7893 /*
7894 * This condition is "impossible", if it occurs
7895 * we need to fix it. Originally reported by
7896 * Bjorn Helgaas on a 128-cpu setup.
7897 */
7898 BUG_ON(busiest_rq == target_rq);
7899
1e3c88bd 7900 /* Search for an sd spanning us and the target CPU. */
dce840a0 7901 rcu_read_lock();
1e3c88bd
PZ
7902 for_each_domain(target_cpu, sd) {
7903 if ((sd->flags & SD_LOAD_BALANCE) &&
7904 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7905 break;
7906 }
7907
7908 if (likely(sd)) {
8e45cb54
PZ
7909 struct lb_env env = {
7910 .sd = sd,
ddcdf6e7
PZ
7911 .dst_cpu = target_cpu,
7912 .dst_rq = target_rq,
7913 .src_cpu = busiest_rq->cpu,
7914 .src_rq = busiest_rq,
8e45cb54
PZ
7915 .idle = CPU_IDLE,
7916 };
7917
1e3c88bd
PZ
7918 schedstat_inc(sd, alb_count);
7919
e5673f28 7920 p = detach_one_task(&env);
d02c0711 7921 if (p) {
1e3c88bd 7922 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7923 /* Active balancing done, reset the failure counter. */
7924 sd->nr_balance_failed = 0;
7925 } else {
1e3c88bd 7926 schedstat_inc(sd, alb_failed);
d02c0711 7927 }
1e3c88bd 7928 }
dce840a0 7929 rcu_read_unlock();
969c7921
TH
7930out_unlock:
7931 busiest_rq->active_balance = 0;
e5673f28
KT
7932 raw_spin_unlock(&busiest_rq->lock);
7933
7934 if (p)
7935 attach_one_task(target_rq, p);
7936
7937 local_irq_enable();
7938
969c7921 7939 return 0;
1e3c88bd
PZ
7940}
7941
d987fc7f
MG
7942static inline int on_null_domain(struct rq *rq)
7943{
7944 return unlikely(!rcu_dereference_sched(rq->sd));
7945}
7946
3451d024 7947#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7948/*
7949 * idle load balancing details
83cd4fe2
VP
7950 * - When one of the busy CPUs notice that there may be an idle rebalancing
7951 * needed, they will kick the idle load balancer, which then does idle
7952 * load balancing for all the idle CPUs.
7953 */
1e3c88bd 7954static struct {
83cd4fe2 7955 cpumask_var_t idle_cpus_mask;
0b005cf5 7956 atomic_t nr_cpus;
83cd4fe2
VP
7957 unsigned long next_balance; /* in jiffy units */
7958} nohz ____cacheline_aligned;
1e3c88bd 7959
3dd0337d 7960static inline int find_new_ilb(void)
1e3c88bd 7961{
0b005cf5 7962 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7963
786d6dc7
SS
7964 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7965 return ilb;
7966
7967 return nr_cpu_ids;
1e3c88bd 7968}
1e3c88bd 7969
83cd4fe2
VP
7970/*
7971 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7972 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7973 * CPU (if there is one).
7974 */
0aeeeeba 7975static void nohz_balancer_kick(void)
83cd4fe2
VP
7976{
7977 int ilb_cpu;
7978
7979 nohz.next_balance++;
7980
3dd0337d 7981 ilb_cpu = find_new_ilb();
83cd4fe2 7982
0b005cf5
SS
7983 if (ilb_cpu >= nr_cpu_ids)
7984 return;
83cd4fe2 7985
cd490c5b 7986 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7987 return;
7988 /*
7989 * Use smp_send_reschedule() instead of resched_cpu().
7990 * This way we generate a sched IPI on the target cpu which
7991 * is idle. And the softirq performing nohz idle load balance
7992 * will be run before returning from the IPI.
7993 */
7994 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7995 return;
7996}
7997
20a5c8cc 7998void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7999{
8000 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8001 /*
8002 * Completely isolated CPUs don't ever set, so we must test.
8003 */
8004 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8005 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8006 atomic_dec(&nohz.nr_cpus);
8007 }
71325960
SS
8008 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8009 }
8010}
8011
69e1e811
SS
8012static inline void set_cpu_sd_state_busy(void)
8013{
8014 struct sched_domain *sd;
37dc6b50 8015 int cpu = smp_processor_id();
69e1e811 8016
69e1e811 8017 rcu_read_lock();
37dc6b50 8018 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
8019
8020 if (!sd || !sd->nohz_idle)
8021 goto unlock;
8022 sd->nohz_idle = 0;
8023
63b2ca30 8024 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8025unlock:
69e1e811
SS
8026 rcu_read_unlock();
8027}
8028
8029void set_cpu_sd_state_idle(void)
8030{
8031 struct sched_domain *sd;
37dc6b50 8032 int cpu = smp_processor_id();
69e1e811 8033
69e1e811 8034 rcu_read_lock();
37dc6b50 8035 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
8036
8037 if (!sd || sd->nohz_idle)
8038 goto unlock;
8039 sd->nohz_idle = 1;
8040
63b2ca30 8041 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8042unlock:
69e1e811
SS
8043 rcu_read_unlock();
8044}
8045
1e3c88bd 8046/*
c1cc017c 8047 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8048 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8049 */
c1cc017c 8050void nohz_balance_enter_idle(int cpu)
1e3c88bd 8051{
71325960
SS
8052 /*
8053 * If this cpu is going down, then nothing needs to be done.
8054 */
8055 if (!cpu_active(cpu))
8056 return;
8057
c1cc017c
AS
8058 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8059 return;
1e3c88bd 8060
d987fc7f
MG
8061 /*
8062 * If we're a completely isolated CPU, we don't play.
8063 */
8064 if (on_null_domain(cpu_rq(cpu)))
8065 return;
8066
c1cc017c
AS
8067 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8068 atomic_inc(&nohz.nr_cpus);
8069 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8070}
8071#endif
8072
8073static DEFINE_SPINLOCK(balancing);
8074
49c022e6
PZ
8075/*
8076 * Scale the max load_balance interval with the number of CPUs in the system.
8077 * This trades load-balance latency on larger machines for less cross talk.
8078 */
029632fb 8079void update_max_interval(void)
49c022e6
PZ
8080{
8081 max_load_balance_interval = HZ*num_online_cpus()/10;
8082}
8083
1e3c88bd
PZ
8084/*
8085 * It checks each scheduling domain to see if it is due to be balanced,
8086 * and initiates a balancing operation if so.
8087 *
b9b0853a 8088 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8089 */
f7ed0a89 8090static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8091{
23f0d209 8092 int continue_balancing = 1;
f7ed0a89 8093 int cpu = rq->cpu;
1e3c88bd 8094 unsigned long interval;
04f733b4 8095 struct sched_domain *sd;
1e3c88bd
PZ
8096 /* Earliest time when we have to do rebalance again */
8097 unsigned long next_balance = jiffies + 60*HZ;
8098 int update_next_balance = 0;
f48627e6
JL
8099 int need_serialize, need_decay = 0;
8100 u64 max_cost = 0;
1e3c88bd 8101
48a16753 8102 update_blocked_averages(cpu);
2069dd75 8103
dce840a0 8104 rcu_read_lock();
1e3c88bd 8105 for_each_domain(cpu, sd) {
f48627e6
JL
8106 /*
8107 * Decay the newidle max times here because this is a regular
8108 * visit to all the domains. Decay ~1% per second.
8109 */
8110 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8111 sd->max_newidle_lb_cost =
8112 (sd->max_newidle_lb_cost * 253) / 256;
8113 sd->next_decay_max_lb_cost = jiffies + HZ;
8114 need_decay = 1;
8115 }
8116 max_cost += sd->max_newidle_lb_cost;
8117
1e3c88bd
PZ
8118 if (!(sd->flags & SD_LOAD_BALANCE))
8119 continue;
8120
f48627e6
JL
8121 /*
8122 * Stop the load balance at this level. There is another
8123 * CPU in our sched group which is doing load balancing more
8124 * actively.
8125 */
8126 if (!continue_balancing) {
8127 if (need_decay)
8128 continue;
8129 break;
8130 }
8131
52a08ef1 8132 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8133
8134 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8135 if (need_serialize) {
8136 if (!spin_trylock(&balancing))
8137 goto out;
8138 }
8139
8140 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8141 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8142 /*
6263322c 8143 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8144 * env->dst_cpu, so we can't know our idle
8145 * state even if we migrated tasks. Update it.
1e3c88bd 8146 */
de5eb2dd 8147 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8148 }
8149 sd->last_balance = jiffies;
52a08ef1 8150 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8151 }
8152 if (need_serialize)
8153 spin_unlock(&balancing);
8154out:
8155 if (time_after(next_balance, sd->last_balance + interval)) {
8156 next_balance = sd->last_balance + interval;
8157 update_next_balance = 1;
8158 }
f48627e6
JL
8159 }
8160 if (need_decay) {
1e3c88bd 8161 /*
f48627e6
JL
8162 * Ensure the rq-wide value also decays but keep it at a
8163 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8164 */
f48627e6
JL
8165 rq->max_idle_balance_cost =
8166 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8167 }
dce840a0 8168 rcu_read_unlock();
1e3c88bd
PZ
8169
8170 /*
8171 * next_balance will be updated only when there is a need.
8172 * When the cpu is attached to null domain for ex, it will not be
8173 * updated.
8174 */
c5afb6a8 8175 if (likely(update_next_balance)) {
1e3c88bd 8176 rq->next_balance = next_balance;
c5afb6a8
VG
8177
8178#ifdef CONFIG_NO_HZ_COMMON
8179 /*
8180 * If this CPU has been elected to perform the nohz idle
8181 * balance. Other idle CPUs have already rebalanced with
8182 * nohz_idle_balance() and nohz.next_balance has been
8183 * updated accordingly. This CPU is now running the idle load
8184 * balance for itself and we need to update the
8185 * nohz.next_balance accordingly.
8186 */
8187 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8188 nohz.next_balance = rq->next_balance;
8189#endif
8190 }
1e3c88bd
PZ
8191}
8192
3451d024 8193#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8194/*
3451d024 8195 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8196 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8197 */
208cb16b 8198static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8199{
208cb16b 8200 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8201 struct rq *rq;
8202 int balance_cpu;
c5afb6a8
VG
8203 /* Earliest time when we have to do rebalance again */
8204 unsigned long next_balance = jiffies + 60*HZ;
8205 int update_next_balance = 0;
83cd4fe2 8206
1c792db7
SS
8207 if (idle != CPU_IDLE ||
8208 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8209 goto end;
83cd4fe2
VP
8210
8211 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8212 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8213 continue;
8214
8215 /*
8216 * If this cpu gets work to do, stop the load balancing
8217 * work being done for other cpus. Next load
8218 * balancing owner will pick it up.
8219 */
1c792db7 8220 if (need_resched())
83cd4fe2 8221 break;
83cd4fe2 8222
5ed4f1d9
VG
8223 rq = cpu_rq(balance_cpu);
8224
ed61bbc6
TC
8225 /*
8226 * If time for next balance is due,
8227 * do the balance.
8228 */
8229 if (time_after_eq(jiffies, rq->next_balance)) {
8230 raw_spin_lock_irq(&rq->lock);
8231 update_rq_clock(rq);
cee1afce 8232 cpu_load_update_idle(rq);
ed61bbc6
TC
8233 raw_spin_unlock_irq(&rq->lock);
8234 rebalance_domains(rq, CPU_IDLE);
8235 }
83cd4fe2 8236
c5afb6a8
VG
8237 if (time_after(next_balance, rq->next_balance)) {
8238 next_balance = rq->next_balance;
8239 update_next_balance = 1;
8240 }
83cd4fe2 8241 }
c5afb6a8
VG
8242
8243 /*
8244 * next_balance will be updated only when there is a need.
8245 * When the CPU is attached to null domain for ex, it will not be
8246 * updated.
8247 */
8248 if (likely(update_next_balance))
8249 nohz.next_balance = next_balance;
1c792db7
SS
8250end:
8251 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8252}
8253
8254/*
0b005cf5 8255 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8256 * of an idle cpu in the system.
0b005cf5 8257 * - This rq has more than one task.
1aaf90a4
VG
8258 * - This rq has at least one CFS task and the capacity of the CPU is
8259 * significantly reduced because of RT tasks or IRQs.
8260 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8261 * multiple busy cpu.
0b005cf5
SS
8262 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8263 * domain span are idle.
83cd4fe2 8264 */
1aaf90a4 8265static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8266{
8267 unsigned long now = jiffies;
0b005cf5 8268 struct sched_domain *sd;
63b2ca30 8269 struct sched_group_capacity *sgc;
4a725627 8270 int nr_busy, cpu = rq->cpu;
1aaf90a4 8271 bool kick = false;
83cd4fe2 8272
4a725627 8273 if (unlikely(rq->idle_balance))
1aaf90a4 8274 return false;
83cd4fe2 8275
1c792db7
SS
8276 /*
8277 * We may be recently in ticked or tickless idle mode. At the first
8278 * busy tick after returning from idle, we will update the busy stats.
8279 */
69e1e811 8280 set_cpu_sd_state_busy();
c1cc017c 8281 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8282
8283 /*
8284 * None are in tickless mode and hence no need for NOHZ idle load
8285 * balancing.
8286 */
8287 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8288 return false;
1c792db7
SS
8289
8290 if (time_before(now, nohz.next_balance))
1aaf90a4 8291 return false;
83cd4fe2 8292
0b005cf5 8293 if (rq->nr_running >= 2)
1aaf90a4 8294 return true;
83cd4fe2 8295
067491b7 8296 rcu_read_lock();
37dc6b50 8297 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8298 if (sd) {
63b2ca30
NP
8299 sgc = sd->groups->sgc;
8300 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8301
1aaf90a4
VG
8302 if (nr_busy > 1) {
8303 kick = true;
8304 goto unlock;
8305 }
8306
83cd4fe2 8307 }
37dc6b50 8308
1aaf90a4
VG
8309 sd = rcu_dereference(rq->sd);
8310 if (sd) {
8311 if ((rq->cfs.h_nr_running >= 1) &&
8312 check_cpu_capacity(rq, sd)) {
8313 kick = true;
8314 goto unlock;
8315 }
8316 }
37dc6b50 8317
1aaf90a4 8318 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8319 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8320 sched_domain_span(sd)) < cpu)) {
8321 kick = true;
8322 goto unlock;
8323 }
067491b7 8324
1aaf90a4 8325unlock:
067491b7 8326 rcu_read_unlock();
1aaf90a4 8327 return kick;
83cd4fe2
VP
8328}
8329#else
208cb16b 8330static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8331#endif
8332
8333/*
8334 * run_rebalance_domains is triggered when needed from the scheduler tick.
8335 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8336 */
1e3c88bd
PZ
8337static void run_rebalance_domains(struct softirq_action *h)
8338{
208cb16b 8339 struct rq *this_rq = this_rq();
6eb57e0d 8340 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8341 CPU_IDLE : CPU_NOT_IDLE;
8342
1e3c88bd 8343 /*
83cd4fe2 8344 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8345 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8346 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8347 * give the idle cpus a chance to load balance. Else we may
8348 * load balance only within the local sched_domain hierarchy
8349 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8350 */
208cb16b 8351 nohz_idle_balance(this_rq, idle);
d4573c3e 8352 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8353}
8354
1e3c88bd
PZ
8355/*
8356 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8357 */
7caff66f 8358void trigger_load_balance(struct rq *rq)
1e3c88bd 8359{
1e3c88bd 8360 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8361 if (unlikely(on_null_domain(rq)))
8362 return;
8363
8364 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8365 raise_softirq(SCHED_SOFTIRQ);
3451d024 8366#ifdef CONFIG_NO_HZ_COMMON
c726099e 8367 if (nohz_kick_needed(rq))
0aeeeeba 8368 nohz_balancer_kick();
83cd4fe2 8369#endif
1e3c88bd
PZ
8370}
8371
0bcdcf28
CE
8372static void rq_online_fair(struct rq *rq)
8373{
8374 update_sysctl();
0e59bdae
KT
8375
8376 update_runtime_enabled(rq);
0bcdcf28
CE
8377}
8378
8379static void rq_offline_fair(struct rq *rq)
8380{
8381 update_sysctl();
a4c96ae3
PB
8382
8383 /* Ensure any throttled groups are reachable by pick_next_task */
8384 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8385}
8386
55e12e5e 8387#endif /* CONFIG_SMP */
e1d1484f 8388
bf0f6f24
IM
8389/*
8390 * scheduler tick hitting a task of our scheduling class:
8391 */
8f4d37ec 8392static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8393{
8394 struct cfs_rq *cfs_rq;
8395 struct sched_entity *se = &curr->se;
8396
8397 for_each_sched_entity(se) {
8398 cfs_rq = cfs_rq_of(se);
8f4d37ec 8399 entity_tick(cfs_rq, se, queued);
bf0f6f24 8400 }
18bf2805 8401
b52da86e 8402 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8403 task_tick_numa(rq, curr);
bf0f6f24
IM
8404}
8405
8406/*
cd29fe6f
PZ
8407 * called on fork with the child task as argument from the parent's context
8408 * - child not yet on the tasklist
8409 * - preemption disabled
bf0f6f24 8410 */
cd29fe6f 8411static void task_fork_fair(struct task_struct *p)
bf0f6f24 8412{
4fc420c9
DN
8413 struct cfs_rq *cfs_rq;
8414 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8415 struct rq *rq = this_rq();
bf0f6f24 8416
e210bffd 8417 raw_spin_lock(&rq->lock);
861d034e
PZ
8418 update_rq_clock(rq);
8419
4fc420c9
DN
8420 cfs_rq = task_cfs_rq(current);
8421 curr = cfs_rq->curr;
e210bffd
PZ
8422 if (curr) {
8423 update_curr(cfs_rq);
b5d9d734 8424 se->vruntime = curr->vruntime;
e210bffd 8425 }
aeb73b04 8426 place_entity(cfs_rq, se, 1);
4d78e7b6 8427
cd29fe6f 8428 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8429 /*
edcb60a3
IM
8430 * Upon rescheduling, sched_class::put_prev_task() will place
8431 * 'current' within the tree based on its new key value.
8432 */
4d78e7b6 8433 swap(curr->vruntime, se->vruntime);
8875125e 8434 resched_curr(rq);
4d78e7b6 8435 }
bf0f6f24 8436
88ec22d3 8437 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8438 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8439}
8440
cb469845
SR
8441/*
8442 * Priority of the task has changed. Check to see if we preempt
8443 * the current task.
8444 */
da7a735e
PZ
8445static void
8446prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8447{
da0c1e65 8448 if (!task_on_rq_queued(p))
da7a735e
PZ
8449 return;
8450
cb469845
SR
8451 /*
8452 * Reschedule if we are currently running on this runqueue and
8453 * our priority decreased, or if we are not currently running on
8454 * this runqueue and our priority is higher than the current's
8455 */
da7a735e 8456 if (rq->curr == p) {
cb469845 8457 if (p->prio > oldprio)
8875125e 8458 resched_curr(rq);
cb469845 8459 } else
15afe09b 8460 check_preempt_curr(rq, p, 0);
cb469845
SR
8461}
8462
daa59407 8463static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8464{
8465 struct sched_entity *se = &p->se;
da7a735e
PZ
8466
8467 /*
daa59407
BP
8468 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8469 * the dequeue_entity(.flags=0) will already have normalized the
8470 * vruntime.
8471 */
8472 if (p->on_rq)
8473 return true;
8474
8475 /*
8476 * When !on_rq, vruntime of the task has usually NOT been normalized.
8477 * But there are some cases where it has already been normalized:
da7a735e 8478 *
daa59407
BP
8479 * - A forked child which is waiting for being woken up by
8480 * wake_up_new_task().
8481 * - A task which has been woken up by try_to_wake_up() and
8482 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8483 */
daa59407
BP
8484 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8485 return true;
8486
8487 return false;
8488}
8489
8490static void detach_task_cfs_rq(struct task_struct *p)
8491{
8492 struct sched_entity *se = &p->se;
8493 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8494 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8495
8496 if (!vruntime_normalized(p)) {
da7a735e
PZ
8497 /*
8498 * Fix up our vruntime so that the current sleep doesn't
8499 * cause 'unlimited' sleep bonus.
8500 */
8501 place_entity(cfs_rq, se, 0);
8502 se->vruntime -= cfs_rq->min_vruntime;
8503 }
9ee474f5 8504
9d89c257 8505 /* Catch up with the cfs_rq and remove our load when we leave */
7c3edd2c 8506 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8507 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8508 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8509}
8510
daa59407 8511static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8512{
f36c019c 8513 struct sched_entity *se = &p->se;
daa59407 8514 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8515 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8516
8517#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8518 /*
8519 * Since the real-depth could have been changed (only FAIR
8520 * class maintain depth value), reset depth properly.
8521 */
8522 se->depth = se->parent ? se->parent->depth + 1 : 0;
8523#endif
7855a35a 8524
6efdb105 8525 /* Synchronize task with its cfs_rq */
7c3edd2c 8526 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8527 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 8528 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8529
8530 if (!vruntime_normalized(p))
8531 se->vruntime += cfs_rq->min_vruntime;
8532}
6efdb105 8533
daa59407
BP
8534static void switched_from_fair(struct rq *rq, struct task_struct *p)
8535{
8536 detach_task_cfs_rq(p);
8537}
8538
8539static void switched_to_fair(struct rq *rq, struct task_struct *p)
8540{
8541 attach_task_cfs_rq(p);
7855a35a 8542
daa59407 8543 if (task_on_rq_queued(p)) {
7855a35a 8544 /*
daa59407
BP
8545 * We were most likely switched from sched_rt, so
8546 * kick off the schedule if running, otherwise just see
8547 * if we can still preempt the current task.
7855a35a 8548 */
daa59407
BP
8549 if (rq->curr == p)
8550 resched_curr(rq);
8551 else
8552 check_preempt_curr(rq, p, 0);
7855a35a 8553 }
cb469845
SR
8554}
8555
83b699ed
SV
8556/* Account for a task changing its policy or group.
8557 *
8558 * This routine is mostly called to set cfs_rq->curr field when a task
8559 * migrates between groups/classes.
8560 */
8561static void set_curr_task_fair(struct rq *rq)
8562{
8563 struct sched_entity *se = &rq->curr->se;
8564
ec12cb7f
PT
8565 for_each_sched_entity(se) {
8566 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8567
8568 set_next_entity(cfs_rq, se);
8569 /* ensure bandwidth has been allocated on our new cfs_rq */
8570 account_cfs_rq_runtime(cfs_rq, 0);
8571 }
83b699ed
SV
8572}
8573
029632fb
PZ
8574void init_cfs_rq(struct cfs_rq *cfs_rq)
8575{
8576 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8577 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8578#ifndef CONFIG_64BIT
8579 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8580#endif
141965c7 8581#ifdef CONFIG_SMP
9d89c257
YD
8582 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8583 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8584#endif
029632fb
PZ
8585}
8586
810b3817 8587#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8588static void task_set_group_fair(struct task_struct *p)
8589{
8590 struct sched_entity *se = &p->se;
8591
8592 set_task_rq(p, task_cpu(p));
8593 se->depth = se->parent ? se->parent->depth + 1 : 0;
8594}
8595
bc54da21 8596static void task_move_group_fair(struct task_struct *p)
810b3817 8597{
daa59407 8598 detach_task_cfs_rq(p);
b2b5ce02 8599 set_task_rq(p, task_cpu(p));
6efdb105
BP
8600
8601#ifdef CONFIG_SMP
8602 /* Tell se's cfs_rq has been changed -- migrated */
8603 p->se.avg.last_update_time = 0;
8604#endif
daa59407 8605 attach_task_cfs_rq(p);
810b3817 8606}
029632fb 8607
ea86cb4b
VG
8608static void task_change_group_fair(struct task_struct *p, int type)
8609{
8610 switch (type) {
8611 case TASK_SET_GROUP:
8612 task_set_group_fair(p);
8613 break;
8614
8615 case TASK_MOVE_GROUP:
8616 task_move_group_fair(p);
8617 break;
8618 }
8619}
8620
029632fb
PZ
8621void free_fair_sched_group(struct task_group *tg)
8622{
8623 int i;
8624
8625 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8626
8627 for_each_possible_cpu(i) {
8628 if (tg->cfs_rq)
8629 kfree(tg->cfs_rq[i]);
6fe1f348 8630 if (tg->se)
029632fb
PZ
8631 kfree(tg->se[i]);
8632 }
8633
8634 kfree(tg->cfs_rq);
8635 kfree(tg->se);
8636}
8637
8638int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8639{
029632fb 8640 struct sched_entity *se;
b7fa30c9
PZ
8641 struct cfs_rq *cfs_rq;
8642 struct rq *rq;
029632fb
PZ
8643 int i;
8644
8645 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8646 if (!tg->cfs_rq)
8647 goto err;
8648 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8649 if (!tg->se)
8650 goto err;
8651
8652 tg->shares = NICE_0_LOAD;
8653
8654 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8655
8656 for_each_possible_cpu(i) {
b7fa30c9
PZ
8657 rq = cpu_rq(i);
8658
029632fb
PZ
8659 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8660 GFP_KERNEL, cpu_to_node(i));
8661 if (!cfs_rq)
8662 goto err;
8663
8664 se = kzalloc_node(sizeof(struct sched_entity),
8665 GFP_KERNEL, cpu_to_node(i));
8666 if (!se)
8667 goto err_free_rq;
8668
8669 init_cfs_rq(cfs_rq);
8670 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8671 init_entity_runnable_average(se);
029632fb
PZ
8672 }
8673
8674 return 1;
8675
8676err_free_rq:
8677 kfree(cfs_rq);
8678err:
8679 return 0;
8680}
8681
8663e24d
PZ
8682void online_fair_sched_group(struct task_group *tg)
8683{
8684 struct sched_entity *se;
8685 struct rq *rq;
8686 int i;
8687
8688 for_each_possible_cpu(i) {
8689 rq = cpu_rq(i);
8690 se = tg->se[i];
8691
8692 raw_spin_lock_irq(&rq->lock);
8693 post_init_entity_util_avg(se);
55e16d30 8694 sync_throttle(tg, i);
8663e24d
PZ
8695 raw_spin_unlock_irq(&rq->lock);
8696 }
8697}
8698
6fe1f348 8699void unregister_fair_sched_group(struct task_group *tg)
029632fb 8700{
029632fb 8701 unsigned long flags;
6fe1f348
PZ
8702 struct rq *rq;
8703 int cpu;
029632fb 8704
6fe1f348
PZ
8705 for_each_possible_cpu(cpu) {
8706 if (tg->se[cpu])
8707 remove_entity_load_avg(tg->se[cpu]);
029632fb 8708
6fe1f348
PZ
8709 /*
8710 * Only empty task groups can be destroyed; so we can speculatively
8711 * check on_list without danger of it being re-added.
8712 */
8713 if (!tg->cfs_rq[cpu]->on_list)
8714 continue;
8715
8716 rq = cpu_rq(cpu);
8717
8718 raw_spin_lock_irqsave(&rq->lock, flags);
8719 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8720 raw_spin_unlock_irqrestore(&rq->lock, flags);
8721 }
029632fb
PZ
8722}
8723
8724void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8725 struct sched_entity *se, int cpu,
8726 struct sched_entity *parent)
8727{
8728 struct rq *rq = cpu_rq(cpu);
8729
8730 cfs_rq->tg = tg;
8731 cfs_rq->rq = rq;
029632fb
PZ
8732 init_cfs_rq_runtime(cfs_rq);
8733
8734 tg->cfs_rq[cpu] = cfs_rq;
8735 tg->se[cpu] = se;
8736
8737 /* se could be NULL for root_task_group */
8738 if (!se)
8739 return;
8740
fed14d45 8741 if (!parent) {
029632fb 8742 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8743 se->depth = 0;
8744 } else {
029632fb 8745 se->cfs_rq = parent->my_q;
fed14d45
PZ
8746 se->depth = parent->depth + 1;
8747 }
029632fb
PZ
8748
8749 se->my_q = cfs_rq;
0ac9b1c2
PT
8750 /* guarantee group entities always have weight */
8751 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8752 se->parent = parent;
8753}
8754
8755static DEFINE_MUTEX(shares_mutex);
8756
8757int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8758{
8759 int i;
8760 unsigned long flags;
8761
8762 /*
8763 * We can't change the weight of the root cgroup.
8764 */
8765 if (!tg->se[0])
8766 return -EINVAL;
8767
8768 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8769
8770 mutex_lock(&shares_mutex);
8771 if (tg->shares == shares)
8772 goto done;
8773
8774 tg->shares = shares;
8775 for_each_possible_cpu(i) {
8776 struct rq *rq = cpu_rq(i);
8777 struct sched_entity *se;
8778
8779 se = tg->se[i];
8780 /* Propagate contribution to hierarchy */
8781 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8782
8783 /* Possible calls to update_curr() need rq clock */
8784 update_rq_clock(rq);
17bc14b7 8785 for_each_sched_entity(se)
029632fb
PZ
8786 update_cfs_shares(group_cfs_rq(se));
8787 raw_spin_unlock_irqrestore(&rq->lock, flags);
8788 }
8789
8790done:
8791 mutex_unlock(&shares_mutex);
8792 return 0;
8793}
8794#else /* CONFIG_FAIR_GROUP_SCHED */
8795
8796void free_fair_sched_group(struct task_group *tg) { }
8797
8798int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8799{
8800 return 1;
8801}
8802
8663e24d
PZ
8803void online_fair_sched_group(struct task_group *tg) { }
8804
6fe1f348 8805void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8806
8807#endif /* CONFIG_FAIR_GROUP_SCHED */
8808
810b3817 8809
6d686f45 8810static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8811{
8812 struct sched_entity *se = &task->se;
0d721cea
PW
8813 unsigned int rr_interval = 0;
8814
8815 /*
8816 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8817 * idle runqueue:
8818 */
0d721cea 8819 if (rq->cfs.load.weight)
a59f4e07 8820 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8821
8822 return rr_interval;
8823}
8824
bf0f6f24
IM
8825/*
8826 * All the scheduling class methods:
8827 */
029632fb 8828const struct sched_class fair_sched_class = {
5522d5d5 8829 .next = &idle_sched_class,
bf0f6f24
IM
8830 .enqueue_task = enqueue_task_fair,
8831 .dequeue_task = dequeue_task_fair,
8832 .yield_task = yield_task_fair,
d95f4122 8833 .yield_to_task = yield_to_task_fair,
bf0f6f24 8834
2e09bf55 8835 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8836
8837 .pick_next_task = pick_next_task_fair,
8838 .put_prev_task = put_prev_task_fair,
8839
681f3e68 8840#ifdef CONFIG_SMP
4ce72a2c 8841 .select_task_rq = select_task_rq_fair,
0a74bef8 8842 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8843
0bcdcf28
CE
8844 .rq_online = rq_online_fair,
8845 .rq_offline = rq_offline_fair,
88ec22d3 8846
12695578 8847 .task_dead = task_dead_fair,
c5b28038 8848 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8849#endif
bf0f6f24 8850
83b699ed 8851 .set_curr_task = set_curr_task_fair,
bf0f6f24 8852 .task_tick = task_tick_fair,
cd29fe6f 8853 .task_fork = task_fork_fair,
cb469845
SR
8854
8855 .prio_changed = prio_changed_fair,
da7a735e 8856 .switched_from = switched_from_fair,
cb469845 8857 .switched_to = switched_to_fair,
810b3817 8858
0d721cea
PW
8859 .get_rr_interval = get_rr_interval_fair,
8860
6e998916
SG
8861 .update_curr = update_curr_fair,
8862
810b3817 8863#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 8864 .task_change_group = task_change_group_fair,
810b3817 8865#endif
bf0f6f24
IM
8866};
8867
8868#ifdef CONFIG_SCHED_DEBUG
029632fb 8869void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8870{
bf0f6f24
IM
8871 struct cfs_rq *cfs_rq;
8872
5973e5b9 8873 rcu_read_lock();
c3b64f1e 8874 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8875 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8876 rcu_read_unlock();
bf0f6f24 8877}
397f2378
SD
8878
8879#ifdef CONFIG_NUMA_BALANCING
8880void show_numa_stats(struct task_struct *p, struct seq_file *m)
8881{
8882 int node;
8883 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8884
8885 for_each_online_node(node) {
8886 if (p->numa_faults) {
8887 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8888 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8889 }
8890 if (p->numa_group) {
8891 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8892 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8893 }
8894 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8895 }
8896}
8897#endif /* CONFIG_NUMA_BALANCING */
8898#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8899
8900__init void init_sched_fair_class(void)
8901{
8902#ifdef CONFIG_SMP
8903 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8904
3451d024 8905#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8906 nohz.next_balance = jiffies;
029632fb 8907 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8908#endif
8909#endif /* SMP */
8910
8911}