sched/fair: Don't free p->numa_faults with concurrent readers
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
99 * The margin used when comparing utilization with CPU capacity:
100 * util * margin < capacity * 1024
101 *
102 * (default: ~20%)
103 */
104static unsigned int capacity_margin = 1280;
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
251static inline struct task_struct *task_of(struct sched_entity *se)
252{
9148a3a1 253 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
254 return container_of(se, struct task_struct, se);
255}
256
b758149c
PZ
257/* Walk up scheduling entities hierarchy */
258#define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262{
263 return p->se.cfs_rq;
264}
265
266/* runqueue on which this entity is (to be) queued */
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 return se->cfs_rq;
270}
271
272/* runqueue "owned" by this group */
273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274{
275 return grp->my_q;
276}
277
3c93a0c0
QY
278static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279{
280 if (!path)
281 return;
282
283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 autogroup_path(cfs_rq->tg, path, len);
285 else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 else
288 strlcpy(path, "(null)", len);
289}
290
f6783319 291static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 292{
5d299eab
PZ
293 struct rq *rq = rq_of(cfs_rq);
294 int cpu = cpu_of(rq);
295
296 if (cfs_rq->on_list)
f6783319 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
298
299 cfs_rq->on_list = 1;
300
301 /*
302 * Ensure we either appear before our parent (if already
303 * enqueued) or force our parent to appear after us when it is
304 * enqueued. The fact that we always enqueue bottom-up
305 * reduces this to two cases and a special case for the root
306 * cfs_rq. Furthermore, it also means that we will always reset
307 * tmp_alone_branch either when the branch is connected
308 * to a tree or when we reach the top of the tree
309 */
310 if (cfs_rq->tg->parent &&
311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 312 /*
5d299eab
PZ
313 * If parent is already on the list, we add the child
314 * just before. Thanks to circular linked property of
315 * the list, this means to put the child at the tail
316 * of the list that starts by parent.
67e86250 317 */
5d299eab
PZ
318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 /*
321 * The branch is now connected to its tree so we can
322 * reset tmp_alone_branch to the beginning of the
323 * list.
324 */
325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 326 return true;
5d299eab 327 }
3d4b47b4 328
5d299eab
PZ
329 if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the top of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 341 return true;
3d4b47b4 342 }
5d299eab
PZ
343
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the begin of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 /*
352 * update tmp_alone_branch to points to the new begin
353 * of the branch
354 */
355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 356 return false;
3d4b47b4
PZ
357}
358
359static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360{
361 if (cfs_rq->on_list) {
31bc6aea
VG
362 struct rq *rq = rq_of(cfs_rq);
363
364 /*
365 * With cfs_rq being unthrottled/throttled during an enqueue,
366 * it can happen the tmp_alone_branch points the a leaf that
367 * we finally want to del. In this case, tmp_alone_branch moves
368 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 * at the end of the enqueue.
370 */
371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373
3d4b47b4
PZ
374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 cfs_rq->on_list = 0;
376 }
377}
378
5d299eab
PZ
379static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380{
381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382}
383
039ae8bc
VG
384/* Iterate thr' all leaf cfs_rq's on a runqueue */
385#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 leaf_cfs_rq_list)
b758149c
PZ
388
389/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 390static inline struct cfs_rq *
b758149c
PZ
391is_same_group(struct sched_entity *se, struct sched_entity *pse)
392{
393 if (se->cfs_rq == pse->cfs_rq)
fed14d45 394 return se->cfs_rq;
b758149c 395
fed14d45 396 return NULL;
b758149c
PZ
397}
398
399static inline struct sched_entity *parent_entity(struct sched_entity *se)
400{
401 return se->parent;
402}
403
464b7527
PZ
404static void
405find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406{
407 int se_depth, pse_depth;
408
409 /*
410 * preemption test can be made between sibling entities who are in the
411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 * both tasks until we find their ancestors who are siblings of common
413 * parent.
414 */
415
416 /* First walk up until both entities are at same depth */
fed14d45
PZ
417 se_depth = (*se)->depth;
418 pse_depth = (*pse)->depth;
464b7527
PZ
419
420 while (se_depth > pse_depth) {
421 se_depth--;
422 *se = parent_entity(*se);
423 }
424
425 while (pse_depth > se_depth) {
426 pse_depth--;
427 *pse = parent_entity(*pse);
428 }
429
430 while (!is_same_group(*se, *pse)) {
431 *se = parent_entity(*se);
432 *pse = parent_entity(*pse);
433 }
434}
435
8f48894f
PZ
436#else /* !CONFIG_FAIR_GROUP_SCHED */
437
438static inline struct task_struct *task_of(struct sched_entity *se)
439{
440 return container_of(se, struct task_struct, se);
441}
bf0f6f24 442
b758149c
PZ
443#define for_each_sched_entity(se) \
444 for (; se; se = NULL)
bf0f6f24 445
b758149c 446static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 447{
b758149c 448 return &task_rq(p)->cfs;
bf0f6f24
IM
449}
450
b758149c
PZ
451static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452{
453 struct task_struct *p = task_of(se);
454 struct rq *rq = task_rq(p);
455
456 return &rq->cfs;
457}
458
459/* runqueue "owned" by this group */
460static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461{
462 return NULL;
463}
464
3c93a0c0
QY
465static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466{
467 if (path)
468 strlcpy(path, "(null)", len);
469}
470
f6783319 471static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 472{
f6783319 473 return true;
3d4b47b4
PZ
474}
475
476static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477{
478}
479
5d299eab
PZ
480static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481{
482}
483
039ae8bc
VG
484#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 486
b758149c
PZ
487static inline struct sched_entity *parent_entity(struct sched_entity *se)
488{
489 return NULL;
490}
491
464b7527
PZ
492static inline void
493find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494{
495}
496
b758149c
PZ
497#endif /* CONFIG_FAIR_GROUP_SCHED */
498
6c16a6dc 499static __always_inline
9dbdb155 500void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
501
502/**************************************************************
503 * Scheduling class tree data structure manipulation methods:
504 */
505
1bf08230 506static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 507{
1bf08230 508 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 509 if (delta > 0)
1bf08230 510 max_vruntime = vruntime;
02e0431a 511
1bf08230 512 return max_vruntime;
02e0431a
PZ
513}
514
0702e3eb 515static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
516{
517 s64 delta = (s64)(vruntime - min_vruntime);
518 if (delta < 0)
519 min_vruntime = vruntime;
520
521 return min_vruntime;
522}
523
54fdc581
FC
524static inline int entity_before(struct sched_entity *a,
525 struct sched_entity *b)
526{
527 return (s64)(a->vruntime - b->vruntime) < 0;
528}
529
1af5f730
PZ
530static void update_min_vruntime(struct cfs_rq *cfs_rq)
531{
b60205c7 532 struct sched_entity *curr = cfs_rq->curr;
bfb06889 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 534
1af5f730
PZ
535 u64 vruntime = cfs_rq->min_vruntime;
536
b60205c7
PZ
537 if (curr) {
538 if (curr->on_rq)
539 vruntime = curr->vruntime;
540 else
541 curr = NULL;
542 }
1af5f730 543
bfb06889
DB
544 if (leftmost) { /* non-empty tree */
545 struct sched_entity *se;
546 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 547
b60205c7 548 if (!curr)
1af5f730
PZ
549 vruntime = se->vruntime;
550 else
551 vruntime = min_vruntime(vruntime, se->vruntime);
552 }
553
1bf08230 554 /* ensure we never gain time by being placed backwards. */
1af5f730 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
556#ifndef CONFIG_64BIT
557 smp_wmb();
558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559#endif
1af5f730
PZ
560}
561
bf0f6f24
IM
562/*
563 * Enqueue an entity into the rb-tree:
564 */
0702e3eb 565static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 566{
bfb06889 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
568 struct rb_node *parent = NULL;
569 struct sched_entity *entry;
bfb06889 570 bool leftmost = true;
bf0f6f24
IM
571
572 /*
573 * Find the right place in the rbtree:
574 */
575 while (*link) {
576 parent = *link;
577 entry = rb_entry(parent, struct sched_entity, run_node);
578 /*
579 * We dont care about collisions. Nodes with
580 * the same key stay together.
581 */
2bd2d6f2 582 if (entity_before(se, entry)) {
bf0f6f24
IM
583 link = &parent->rb_left;
584 } else {
585 link = &parent->rb_right;
bfb06889 586 leftmost = false;
bf0f6f24
IM
587 }
588 }
589
bf0f6f24 590 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
591 rb_insert_color_cached(&se->run_node,
592 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
593}
594
0702e3eb 595static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 596{
bfb06889 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
598}
599
029632fb 600struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 601{
bfb06889 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
603
604 if (!left)
605 return NULL;
606
607 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
608}
609
ac53db59
RR
610static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611{
612 struct rb_node *next = rb_next(&se->run_node);
613
614 if (!next)
615 return NULL;
616
617 return rb_entry(next, struct sched_entity, run_node);
618}
619
620#ifdef CONFIG_SCHED_DEBUG
029632fb 621struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 622{
bfb06889 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 624
70eee74b
BS
625 if (!last)
626 return NULL;
7eee3e67
IM
627
628 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
629}
630
bf0f6f24
IM
631/**************************************************************
632 * Scheduling class statistics methods:
633 */
634
acb4a848 635int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 636 void __user *buffer, size_t *lenp,
b2be5e96
PZ
637 loff_t *ppos)
638{
8d65af78 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 640 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
641
642 if (ret || !write)
643 return ret;
644
645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 sysctl_sched_min_granularity);
647
acb4a848
CE
648#define WRT_SYSCTL(name) \
649 (normalized_sysctl_##name = sysctl_##name / (factor))
650 WRT_SYSCTL(sched_min_granularity);
651 WRT_SYSCTL(sched_latency);
652 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
653#undef WRT_SYSCTL
654
b2be5e96
PZ
655 return 0;
656}
657#endif
647e7cac 658
a7be37ac 659/*
f9c0b095 660 * delta /= w
a7be37ac 661 */
9dbdb155 662static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 663{
f9c0b095 664 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
666
667 return delta;
668}
669
647e7cac
IM
670/*
671 * The idea is to set a period in which each task runs once.
672 *
532b1858 673 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
674 * this period because otherwise the slices get too small.
675 *
676 * p = (nr <= nl) ? l : l*nr/nl
677 */
4d78e7b6
PZ
678static u64 __sched_period(unsigned long nr_running)
679{
8e2b0bf3
BF
680 if (unlikely(nr_running > sched_nr_latency))
681 return nr_running * sysctl_sched_min_granularity;
682 else
683 return sysctl_sched_latency;
4d78e7b6
PZ
684}
685
647e7cac
IM
686/*
687 * We calculate the wall-time slice from the period by taking a part
688 * proportional to the weight.
689 *
f9c0b095 690 * s = p*P[w/rw]
647e7cac 691 */
6d0f0ebd 692static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 693{
0a582440 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 695
0a582440 696 for_each_sched_entity(se) {
6272d68c 697 struct load_weight *load;
3104bf03 698 struct load_weight lw;
6272d68c
LM
699
700 cfs_rq = cfs_rq_of(se);
701 load = &cfs_rq->load;
f9c0b095 702
0a582440 703 if (unlikely(!se->on_rq)) {
3104bf03 704 lw = cfs_rq->load;
0a582440
MG
705
706 update_load_add(&lw, se->load.weight);
707 load = &lw;
708 }
9dbdb155 709 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
710 }
711 return slice;
bf0f6f24
IM
712}
713
647e7cac 714/*
660cc00f 715 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 716 *
f9c0b095 717 * vs = s/w
647e7cac 718 */
f9c0b095 719static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 720{
f9c0b095 721 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
722}
723
c0796298 724#include "pelt.h"
23127296 725#ifdef CONFIG_SMP
283e2ed3 726
772bd008 727static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 728static unsigned long task_h_load(struct task_struct *p);
3b1baa64 729static unsigned long capacity_of(int cpu);
fb13c7ee 730
540247fb
YD
731/* Give new sched_entity start runnable values to heavy its load in infant time */
732void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 733{
540247fb 734 struct sched_avg *sa = &se->avg;
a75cdaa9 735
f207934f
PZ
736 memset(sa, 0, sizeof(*sa));
737
b5a9b340 738 /*
dfcb245e 739 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 740 * they get a chance to stabilize to their real load level.
dfcb245e 741 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
1ea6c46a 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 746
f207934f
PZ
747 se->runnable_weight = se->load.weight;
748
9d89c257 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 750}
7ea241af 751
7dc603c9 752static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 753static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 754
2b8c41da
YD
755/*
756 * With new tasks being created, their initial util_avgs are extrapolated
757 * based on the cfs_rq's current util_avg:
758 *
759 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
760 *
761 * However, in many cases, the above util_avg does not give a desired
762 * value. Moreover, the sum of the util_avgs may be divergent, such
763 * as when the series is a harmonic series.
764 *
765 * To solve this problem, we also cap the util_avg of successive tasks to
766 * only 1/2 of the left utilization budget:
767 *
8fe5c5a9 768 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 769 *
8fe5c5a9 770 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 771 *
8fe5c5a9
QP
772 * For example, for a CPU with 1024 of capacity, a simplest series from
773 * the beginning would be like:
2b8c41da
YD
774 *
775 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
776 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
777 *
778 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
779 * if util_avg > util_avg_cap.
780 */
d0fe0b9c 781void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 782{
d0fe0b9c 783 struct sched_entity *se = &p->se;
2b8c41da
YD
784 struct cfs_rq *cfs_rq = cfs_rq_of(se);
785 struct sched_avg *sa = &se->avg;
8ec59c0f 786 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 787 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
788
789 if (cap > 0) {
790 if (cfs_rq->avg.util_avg != 0) {
791 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
792 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793
794 if (sa->util_avg > cap)
795 sa->util_avg = cap;
796 } else {
797 sa->util_avg = cap;
798 }
2b8c41da 799 }
7dc603c9 800
d0fe0b9c
DE
801 if (p->sched_class != &fair_sched_class) {
802 /*
803 * For !fair tasks do:
804 *
805 update_cfs_rq_load_avg(now, cfs_rq);
806 attach_entity_load_avg(cfs_rq, se, 0);
807 switched_from_fair(rq, p);
808 *
809 * such that the next switched_to_fair() has the
810 * expected state.
811 */
812 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
813 return;
7dc603c9
PZ
814 }
815
df217913 816 attach_entity_cfs_rq(se);
2b8c41da
YD
817}
818
7dc603c9 819#else /* !CONFIG_SMP */
540247fb 820void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
821{
822}
d0fe0b9c 823void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
824{
825}
3d30544f
PZ
826static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
827{
828}
7dc603c9 829#endif /* CONFIG_SMP */
a75cdaa9 830
bf0f6f24 831/*
9dbdb155 832 * Update the current task's runtime statistics.
bf0f6f24 833 */
b7cc0896 834static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 835{
429d43bc 836 struct sched_entity *curr = cfs_rq->curr;
78becc27 837 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 838 u64 delta_exec;
bf0f6f24
IM
839
840 if (unlikely(!curr))
841 return;
842
9dbdb155
PZ
843 delta_exec = now - curr->exec_start;
844 if (unlikely((s64)delta_exec <= 0))
34f28ecd 845 return;
bf0f6f24 846
8ebc91d9 847 curr->exec_start = now;
d842de87 848
9dbdb155
PZ
849 schedstat_set(curr->statistics.exec_max,
850 max(delta_exec, curr->statistics.exec_max));
851
852 curr->sum_exec_runtime += delta_exec;
ae92882e 853 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
854
855 curr->vruntime += calc_delta_fair(delta_exec, curr);
856 update_min_vruntime(cfs_rq);
857
d842de87
SV
858 if (entity_is_task(curr)) {
859 struct task_struct *curtask = task_of(curr);
860
f977bb49 861 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 862 cgroup_account_cputime(curtask, delta_exec);
f06febc9 863 account_group_exec_runtime(curtask, delta_exec);
d842de87 864 }
ec12cb7f
PT
865
866 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
867}
868
6e998916
SG
869static void update_curr_fair(struct rq *rq)
870{
871 update_curr(cfs_rq_of(&rq->curr->se));
872}
873
bf0f6f24 874static inline void
5870db5b 875update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 876{
4fa8d299
JP
877 u64 wait_start, prev_wait_start;
878
879 if (!schedstat_enabled())
880 return;
881
882 wait_start = rq_clock(rq_of(cfs_rq));
883 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
884
885 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
886 likely(wait_start > prev_wait_start))
887 wait_start -= prev_wait_start;
3ea94de1 888
2ed41a55 889 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
890}
891
4fa8d299 892static inline void
3ea94de1
JP
893update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
894{
895 struct task_struct *p;
cb251765
MG
896 u64 delta;
897
4fa8d299
JP
898 if (!schedstat_enabled())
899 return;
900
901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
902
903 if (entity_is_task(se)) {
904 p = task_of(se);
905 if (task_on_rq_migrating(p)) {
906 /*
907 * Preserve migrating task's wait time so wait_start
908 * time stamp can be adjusted to accumulate wait time
909 * prior to migration.
910 */
2ed41a55 911 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
912 return;
913 }
914 trace_sched_stat_wait(p, delta);
915 }
916
2ed41a55 917 __schedstat_set(se->statistics.wait_max,
4fa8d299 918 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
919 __schedstat_inc(se->statistics.wait_count);
920 __schedstat_add(se->statistics.wait_sum, delta);
921 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 922}
3ea94de1 923
4fa8d299 924static inline void
1a3d027c
JP
925update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926{
927 struct task_struct *tsk = NULL;
4fa8d299
JP
928 u64 sleep_start, block_start;
929
930 if (!schedstat_enabled())
931 return;
932
933 sleep_start = schedstat_val(se->statistics.sleep_start);
934 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
935
936 if (entity_is_task(se))
937 tsk = task_of(se);
938
4fa8d299
JP
939 if (sleep_start) {
940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
941
942 if ((s64)delta < 0)
943 delta = 0;
944
4fa8d299 945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 946 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 947
2ed41a55
PZ
948 __schedstat_set(se->statistics.sleep_start, 0);
949 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
950
951 if (tsk) {
952 account_scheduler_latency(tsk, delta >> 10, 1);
953 trace_sched_stat_sleep(tsk, delta);
954 }
955 }
4fa8d299
JP
956 if (block_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
958
959 if ((s64)delta < 0)
960 delta = 0;
961
4fa8d299 962 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 963 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 964
2ed41a55
PZ
965 __schedstat_set(se->statistics.block_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
967
968 if (tsk) {
969 if (tsk->in_iowait) {
2ed41a55
PZ
970 __schedstat_add(se->statistics.iowait_sum, delta);
971 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
972 trace_sched_stat_iowait(tsk, delta);
973 }
974
975 trace_sched_stat_blocked(tsk, delta);
976
977 /*
978 * Blocking time is in units of nanosecs, so shift by
979 * 20 to get a milliseconds-range estimation of the
980 * amount of time that the task spent sleeping:
981 */
982 if (unlikely(prof_on == SLEEP_PROFILING)) {
983 profile_hits(SLEEP_PROFILING,
984 (void *)get_wchan(tsk),
985 delta >> 20);
986 }
987 account_scheduler_latency(tsk, delta >> 10, 0);
988 }
989 }
3ea94de1 990}
3ea94de1 991
bf0f6f24
IM
992/*
993 * Task is being enqueued - update stats:
994 */
cb251765 995static inline void
1a3d027c 996update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 997{
4fa8d299
JP
998 if (!schedstat_enabled())
999 return;
1000
bf0f6f24
IM
1001 /*
1002 * Are we enqueueing a waiting task? (for current tasks
1003 * a dequeue/enqueue event is a NOP)
1004 */
429d43bc 1005 if (se != cfs_rq->curr)
5870db5b 1006 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1007
1008 if (flags & ENQUEUE_WAKEUP)
1009 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1010}
1011
bf0f6f24 1012static inline void
cb251765 1013update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1014{
4fa8d299
JP
1015
1016 if (!schedstat_enabled())
1017 return;
1018
bf0f6f24
IM
1019 /*
1020 * Mark the end of the wait period if dequeueing a
1021 * waiting task:
1022 */
429d43bc 1023 if (se != cfs_rq->curr)
9ef0a961 1024 update_stats_wait_end(cfs_rq, se);
cb251765 1025
4fa8d299
JP
1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 struct task_struct *tsk = task_of(se);
cb251765 1028
4fa8d299 1029 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1030 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1031 rq_clock(rq_of(cfs_rq)));
1032 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1033 __schedstat_set(se->statistics.block_start,
4fa8d299 1034 rq_clock(rq_of(cfs_rq)));
cb251765 1035 }
cb251765
MG
1036}
1037
bf0f6f24
IM
1038/*
1039 * We are picking a new current task - update its stats:
1040 */
1041static inline void
79303e9e 1042update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1043{
1044 /*
1045 * We are starting a new run period:
1046 */
78becc27 1047 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1048}
1049
bf0f6f24
IM
1050/**************************************************
1051 * Scheduling class queueing methods:
1052 */
1053
cbee9f88
PZ
1054#ifdef CONFIG_NUMA_BALANCING
1055/*
598f0ec0
MG
1056 * Approximate time to scan a full NUMA task in ms. The task scan period is
1057 * calculated based on the tasks virtual memory size and
1058 * numa_balancing_scan_size.
cbee9f88 1059 */
598f0ec0
MG
1060unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1061unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1062
1063/* Portion of address space to scan in MB */
1064unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1065
4b96a29b
PZ
1066/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1067unsigned int sysctl_numa_balancing_scan_delay = 1000;
1068
b5dd77c8 1069struct numa_group {
c45a7795 1070 refcount_t refcount;
b5dd77c8
RR
1071
1072 spinlock_t lock; /* nr_tasks, tasks */
1073 int nr_tasks;
1074 pid_t gid;
1075 int active_nodes;
1076
1077 struct rcu_head rcu;
1078 unsigned long total_faults;
1079 unsigned long max_faults_cpu;
1080 /*
1081 * Faults_cpu is used to decide whether memory should move
1082 * towards the CPU. As a consequence, these stats are weighted
1083 * more by CPU use than by memory faults.
1084 */
1085 unsigned long *faults_cpu;
1086 unsigned long faults[0];
1087};
1088
1089static inline unsigned long group_faults_priv(struct numa_group *ng);
1090static inline unsigned long group_faults_shared(struct numa_group *ng);
1091
598f0ec0
MG
1092static unsigned int task_nr_scan_windows(struct task_struct *p)
1093{
1094 unsigned long rss = 0;
1095 unsigned long nr_scan_pages;
1096
1097 /*
1098 * Calculations based on RSS as non-present and empty pages are skipped
1099 * by the PTE scanner and NUMA hinting faults should be trapped based
1100 * on resident pages
1101 */
1102 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1103 rss = get_mm_rss(p->mm);
1104 if (!rss)
1105 rss = nr_scan_pages;
1106
1107 rss = round_up(rss, nr_scan_pages);
1108 return rss / nr_scan_pages;
1109}
1110
1111/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1112#define MAX_SCAN_WINDOW 2560
1113
1114static unsigned int task_scan_min(struct task_struct *p)
1115{
316c1608 1116 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1117 unsigned int scan, floor;
1118 unsigned int windows = 1;
1119
64192658
KT
1120 if (scan_size < MAX_SCAN_WINDOW)
1121 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1122 floor = 1000 / windows;
1123
1124 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1125 return max_t(unsigned int, floor, scan);
1126}
1127
b5dd77c8
RR
1128static unsigned int task_scan_start(struct task_struct *p)
1129{
1130 unsigned long smin = task_scan_min(p);
1131 unsigned long period = smin;
1132
1133 /* Scale the maximum scan period with the amount of shared memory. */
1134 if (p->numa_group) {
1135 struct numa_group *ng = p->numa_group;
1136 unsigned long shared = group_faults_shared(ng);
1137 unsigned long private = group_faults_priv(ng);
1138
c45a7795 1139 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1140 period *= shared + 1;
1141 period /= private + shared + 1;
1142 }
1143
1144 return max(smin, period);
1145}
1146
598f0ec0
MG
1147static unsigned int task_scan_max(struct task_struct *p)
1148{
b5dd77c8
RR
1149 unsigned long smin = task_scan_min(p);
1150 unsigned long smax;
598f0ec0
MG
1151
1152 /* Watch for min being lower than max due to floor calculations */
1153 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1154
1155 /* Scale the maximum scan period with the amount of shared memory. */
1156 if (p->numa_group) {
1157 struct numa_group *ng = p->numa_group;
1158 unsigned long shared = group_faults_shared(ng);
1159 unsigned long private = group_faults_priv(ng);
1160 unsigned long period = smax;
1161
c45a7795 1162 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1163 period *= shared + 1;
1164 period /= private + shared + 1;
1165
1166 smax = max(smax, period);
1167 }
1168
598f0ec0
MG
1169 return max(smin, smax);
1170}
1171
13784475
MG
1172void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1173{
1174 int mm_users = 0;
1175 struct mm_struct *mm = p->mm;
1176
1177 if (mm) {
1178 mm_users = atomic_read(&mm->mm_users);
1179 if (mm_users == 1) {
1180 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1181 mm->numa_scan_seq = 0;
1182 }
1183 }
1184 p->node_stamp = 0;
1185 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1186 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1187 p->numa_work.next = &p->numa_work;
1188 p->numa_faults = NULL;
1189 p->numa_group = NULL;
1190 p->last_task_numa_placement = 0;
1191 p->last_sum_exec_runtime = 0;
1192
1193 /* New address space, reset the preferred nid */
1194 if (!(clone_flags & CLONE_VM)) {
98fa15f3 1195 p->numa_preferred_nid = NUMA_NO_NODE;
13784475
MG
1196 return;
1197 }
1198
1199 /*
1200 * New thread, keep existing numa_preferred_nid which should be copied
1201 * already by arch_dup_task_struct but stagger when scans start.
1202 */
1203 if (mm) {
1204 unsigned int delay;
1205
1206 delay = min_t(unsigned int, task_scan_max(current),
1207 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1208 delay += 2 * TICK_NSEC;
1209 p->node_stamp = delay;
1210 }
1211}
1212
0ec8aa00
PZ
1213static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1214{
98fa15f3 1215 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1216 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1217}
1218
1219static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1220{
98fa15f3 1221 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1222 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1223}
1224
be1e4e76
RR
1225/* Shared or private faults. */
1226#define NR_NUMA_HINT_FAULT_TYPES 2
1227
1228/* Memory and CPU locality */
1229#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1230
1231/* Averaged statistics, and temporary buffers. */
1232#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1233
e29cf08b
MG
1234pid_t task_numa_group_id(struct task_struct *p)
1235{
1236 return p->numa_group ? p->numa_group->gid : 0;
1237}
1238
44dba3d5 1239/*
97fb7a0a 1240 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1241 * occupy the first half of the array. The second half of the
1242 * array is for current counters, which are averaged into the
1243 * first set by task_numa_placement.
1244 */
1245static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1246{
44dba3d5 1247 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1248}
1249
1250static inline unsigned long task_faults(struct task_struct *p, int nid)
1251{
44dba3d5 1252 if (!p->numa_faults)
ac8e895b
MG
1253 return 0;
1254
44dba3d5
IM
1255 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1256 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1257}
1258
83e1d2cd
MG
1259static inline unsigned long group_faults(struct task_struct *p, int nid)
1260{
1261 if (!p->numa_group)
1262 return 0;
1263
44dba3d5
IM
1264 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1265 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1266}
1267
20e07dea
RR
1268static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1269{
44dba3d5
IM
1270 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1272}
1273
b5dd77c8
RR
1274static inline unsigned long group_faults_priv(struct numa_group *ng)
1275{
1276 unsigned long faults = 0;
1277 int node;
1278
1279 for_each_online_node(node) {
1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1281 }
1282
1283 return faults;
1284}
1285
1286static inline unsigned long group_faults_shared(struct numa_group *ng)
1287{
1288 unsigned long faults = 0;
1289 int node;
1290
1291 for_each_online_node(node) {
1292 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1293 }
1294
1295 return faults;
1296}
1297
4142c3eb
RR
1298/*
1299 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1300 * considered part of a numa group's pseudo-interleaving set. Migrations
1301 * between these nodes are slowed down, to allow things to settle down.
1302 */
1303#define ACTIVE_NODE_FRACTION 3
1304
1305static bool numa_is_active_node(int nid, struct numa_group *ng)
1306{
1307 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1308}
1309
6c6b1193
RR
1310/* Handle placement on systems where not all nodes are directly connected. */
1311static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1312 int maxdist, bool task)
1313{
1314 unsigned long score = 0;
1315 int node;
1316
1317 /*
1318 * All nodes are directly connected, and the same distance
1319 * from each other. No need for fancy placement algorithms.
1320 */
1321 if (sched_numa_topology_type == NUMA_DIRECT)
1322 return 0;
1323
1324 /*
1325 * This code is called for each node, introducing N^2 complexity,
1326 * which should be ok given the number of nodes rarely exceeds 8.
1327 */
1328 for_each_online_node(node) {
1329 unsigned long faults;
1330 int dist = node_distance(nid, node);
1331
1332 /*
1333 * The furthest away nodes in the system are not interesting
1334 * for placement; nid was already counted.
1335 */
1336 if (dist == sched_max_numa_distance || node == nid)
1337 continue;
1338
1339 /*
1340 * On systems with a backplane NUMA topology, compare groups
1341 * of nodes, and move tasks towards the group with the most
1342 * memory accesses. When comparing two nodes at distance
1343 * "hoplimit", only nodes closer by than "hoplimit" are part
1344 * of each group. Skip other nodes.
1345 */
1346 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1347 dist >= maxdist)
6c6b1193
RR
1348 continue;
1349
1350 /* Add up the faults from nearby nodes. */
1351 if (task)
1352 faults = task_faults(p, node);
1353 else
1354 faults = group_faults(p, node);
1355
1356 /*
1357 * On systems with a glueless mesh NUMA topology, there are
1358 * no fixed "groups of nodes". Instead, nodes that are not
1359 * directly connected bounce traffic through intermediate
1360 * nodes; a numa_group can occupy any set of nodes.
1361 * The further away a node is, the less the faults count.
1362 * This seems to result in good task placement.
1363 */
1364 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1365 faults *= (sched_max_numa_distance - dist);
1366 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1367 }
1368
1369 score += faults;
1370 }
1371
1372 return score;
1373}
1374
83e1d2cd
MG
1375/*
1376 * These return the fraction of accesses done by a particular task, or
1377 * task group, on a particular numa node. The group weight is given a
1378 * larger multiplier, in order to group tasks together that are almost
1379 * evenly spread out between numa nodes.
1380 */
7bd95320
RR
1381static inline unsigned long task_weight(struct task_struct *p, int nid,
1382 int dist)
83e1d2cd 1383{
7bd95320 1384 unsigned long faults, total_faults;
83e1d2cd 1385
44dba3d5 1386 if (!p->numa_faults)
83e1d2cd
MG
1387 return 0;
1388
1389 total_faults = p->total_numa_faults;
1390
1391 if (!total_faults)
1392 return 0;
1393
7bd95320 1394 faults = task_faults(p, nid);
6c6b1193
RR
1395 faults += score_nearby_nodes(p, nid, dist, true);
1396
7bd95320 1397 return 1000 * faults / total_faults;
83e1d2cd
MG
1398}
1399
7bd95320
RR
1400static inline unsigned long group_weight(struct task_struct *p, int nid,
1401 int dist)
83e1d2cd 1402{
7bd95320
RR
1403 unsigned long faults, total_faults;
1404
1405 if (!p->numa_group)
1406 return 0;
1407
1408 total_faults = p->numa_group->total_faults;
1409
1410 if (!total_faults)
83e1d2cd
MG
1411 return 0;
1412
7bd95320 1413 faults = group_faults(p, nid);
6c6b1193
RR
1414 faults += score_nearby_nodes(p, nid, dist, false);
1415
7bd95320 1416 return 1000 * faults / total_faults;
83e1d2cd
MG
1417}
1418
10f39042
RR
1419bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1420 int src_nid, int dst_cpu)
1421{
1422 struct numa_group *ng = p->numa_group;
1423 int dst_nid = cpu_to_node(dst_cpu);
1424 int last_cpupid, this_cpupid;
1425
1426 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1427 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1428
1429 /*
1430 * Allow first faults or private faults to migrate immediately early in
1431 * the lifetime of a task. The magic number 4 is based on waiting for
1432 * two full passes of the "multi-stage node selection" test that is
1433 * executed below.
1434 */
98fa15f3 1435 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1436 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1437 return true;
10f39042
RR
1438
1439 /*
1440 * Multi-stage node selection is used in conjunction with a periodic
1441 * migration fault to build a temporal task<->page relation. By using
1442 * a two-stage filter we remove short/unlikely relations.
1443 *
1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1445 * a task's usage of a particular page (n_p) per total usage of this
1446 * page (n_t) (in a given time-span) to a probability.
1447 *
1448 * Our periodic faults will sample this probability and getting the
1449 * same result twice in a row, given these samples are fully
1450 * independent, is then given by P(n)^2, provided our sample period
1451 * is sufficiently short compared to the usage pattern.
1452 *
1453 * This quadric squishes small probabilities, making it less likely we
1454 * act on an unlikely task<->page relation.
1455 */
10f39042
RR
1456 if (!cpupid_pid_unset(last_cpupid) &&
1457 cpupid_to_nid(last_cpupid) != dst_nid)
1458 return false;
1459
1460 /* Always allow migrate on private faults */
1461 if (cpupid_match_pid(p, last_cpupid))
1462 return true;
1463
1464 /* A shared fault, but p->numa_group has not been set up yet. */
1465 if (!ng)
1466 return true;
1467
1468 /*
4142c3eb
RR
1469 * Destination node is much more heavily used than the source
1470 * node? Allow migration.
10f39042 1471 */
4142c3eb
RR
1472 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1473 ACTIVE_NODE_FRACTION)
10f39042
RR
1474 return true;
1475
1476 /*
4142c3eb
RR
1477 * Distribute memory according to CPU & memory use on each node,
1478 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1479 *
1480 * faults_cpu(dst) 3 faults_cpu(src)
1481 * --------------- * - > ---------------
1482 * faults_mem(dst) 4 faults_mem(src)
10f39042 1483 */
4142c3eb
RR
1484 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1485 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1486}
1487
a3df0679 1488static unsigned long cpu_runnable_load(struct rq *rq);
58d081b5 1489
fb13c7ee 1490/* Cached statistics for all CPUs within a node */
58d081b5
MG
1491struct numa_stats {
1492 unsigned long load;
fb13c7ee
MG
1493
1494 /* Total compute capacity of CPUs on a node */
5ef20ca1 1495 unsigned long compute_capacity;
58d081b5 1496};
e6628d5b 1497
fb13c7ee
MG
1498/*
1499 * XXX borrowed from update_sg_lb_stats
1500 */
1501static void update_numa_stats(struct numa_stats *ns, int nid)
1502{
d90707eb 1503 int cpu;
fb13c7ee
MG
1504
1505 memset(ns, 0, sizeof(*ns));
1506 for_each_cpu(cpu, cpumask_of_node(nid)) {
1507 struct rq *rq = cpu_rq(cpu);
1508
a3df0679 1509 ns->load += cpu_runnable_load(rq);
ced549fa 1510 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1511 }
1512
fb13c7ee
MG
1513}
1514
58d081b5
MG
1515struct task_numa_env {
1516 struct task_struct *p;
e6628d5b 1517
58d081b5
MG
1518 int src_cpu, src_nid;
1519 int dst_cpu, dst_nid;
e6628d5b 1520
58d081b5 1521 struct numa_stats src_stats, dst_stats;
e6628d5b 1522
40ea2b42 1523 int imbalance_pct;
7bd95320 1524 int dist;
fb13c7ee
MG
1525
1526 struct task_struct *best_task;
1527 long best_imp;
58d081b5
MG
1528 int best_cpu;
1529};
1530
fb13c7ee
MG
1531static void task_numa_assign(struct task_numa_env *env,
1532 struct task_struct *p, long imp)
1533{
a4739eca
SD
1534 struct rq *rq = cpu_rq(env->dst_cpu);
1535
1536 /* Bail out if run-queue part of active NUMA balance. */
1537 if (xchg(&rq->numa_migrate_on, 1))
1538 return;
1539
1540 /*
1541 * Clear previous best_cpu/rq numa-migrate flag, since task now
1542 * found a better CPU to move/swap.
1543 */
1544 if (env->best_cpu != -1) {
1545 rq = cpu_rq(env->best_cpu);
1546 WRITE_ONCE(rq->numa_migrate_on, 0);
1547 }
1548
fb13c7ee
MG
1549 if (env->best_task)
1550 put_task_struct(env->best_task);
bac78573
ON
1551 if (p)
1552 get_task_struct(p);
fb13c7ee
MG
1553
1554 env->best_task = p;
1555 env->best_imp = imp;
1556 env->best_cpu = env->dst_cpu;
1557}
1558
28a21745 1559static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1560 struct task_numa_env *env)
1561{
e4991b24
RR
1562 long imb, old_imb;
1563 long orig_src_load, orig_dst_load;
28a21745
RR
1564 long src_capacity, dst_capacity;
1565
1566 /*
1567 * The load is corrected for the CPU capacity available on each node.
1568 *
1569 * src_load dst_load
1570 * ------------ vs ---------
1571 * src_capacity dst_capacity
1572 */
1573 src_capacity = env->src_stats.compute_capacity;
1574 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1575
5f95ba7a 1576 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1577
28a21745 1578 orig_src_load = env->src_stats.load;
e4991b24 1579 orig_dst_load = env->dst_stats.load;
28a21745 1580
5f95ba7a 1581 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1582
1583 /* Would this change make things worse? */
1584 return (imb > old_imb);
e63da036
RR
1585}
1586
6fd98e77
SD
1587/*
1588 * Maximum NUMA importance can be 1998 (2*999);
1589 * SMALLIMP @ 30 would be close to 1998/64.
1590 * Used to deter task migration.
1591 */
1592#define SMALLIMP 30
1593
fb13c7ee
MG
1594/*
1595 * This checks if the overall compute and NUMA accesses of the system would
1596 * be improved if the source tasks was migrated to the target dst_cpu taking
1597 * into account that it might be best if task running on the dst_cpu should
1598 * be exchanged with the source task
1599 */
887c290e 1600static void task_numa_compare(struct task_numa_env *env,
305c1fac 1601 long taskimp, long groupimp, bool maymove)
fb13c7ee 1602{
fb13c7ee
MG
1603 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1604 struct task_struct *cur;
28a21745 1605 long src_load, dst_load;
fb13c7ee 1606 long load;
1c5d3eb3 1607 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1608 long moveimp = imp;
7bd95320 1609 int dist = env->dist;
fb13c7ee 1610
a4739eca
SD
1611 if (READ_ONCE(dst_rq->numa_migrate_on))
1612 return;
1613
fb13c7ee 1614 rcu_read_lock();
bac78573
ON
1615 cur = task_rcu_dereference(&dst_rq->curr);
1616 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1617 cur = NULL;
1618
7af68335
PZ
1619 /*
1620 * Because we have preemption enabled we can get migrated around and
1621 * end try selecting ourselves (current == env->p) as a swap candidate.
1622 */
1623 if (cur == env->p)
1624 goto unlock;
1625
305c1fac 1626 if (!cur) {
6fd98e77 1627 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1628 goto assign;
1629 else
1630 goto unlock;
1631 }
1632
fb13c7ee
MG
1633 /*
1634 * "imp" is the fault differential for the source task between the
1635 * source and destination node. Calculate the total differential for
1636 * the source task and potential destination task. The more negative
305c1fac 1637 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1638 * be incurred if the tasks were swapped.
1639 */
305c1fac 1640 /* Skip this swap candidate if cannot move to the source cpu */
3bd37062 1641 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
305c1fac 1642 goto unlock;
fb13c7ee 1643
305c1fac
SD
1644 /*
1645 * If dst and source tasks are in the same NUMA group, or not
1646 * in any group then look only at task weights.
1647 */
1648 if (cur->numa_group == env->p->numa_group) {
1649 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1650 task_weight(cur, env->dst_nid, dist);
887c290e 1651 /*
305c1fac
SD
1652 * Add some hysteresis to prevent swapping the
1653 * tasks within a group over tiny differences.
887c290e 1654 */
305c1fac
SD
1655 if (cur->numa_group)
1656 imp -= imp / 16;
1657 } else {
1658 /*
1659 * Compare the group weights. If a task is all by itself
1660 * (not part of a group), use the task weight instead.
1661 */
1662 if (cur->numa_group && env->p->numa_group)
1663 imp += group_weight(cur, env->src_nid, dist) -
1664 group_weight(cur, env->dst_nid, dist);
1665 else
1666 imp += task_weight(cur, env->src_nid, dist) -
1667 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1668 }
1669
305c1fac 1670 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1671 imp = moveimp;
305c1fac 1672 cur = NULL;
fb13c7ee 1673 goto assign;
305c1fac 1674 }
fb13c7ee 1675
6fd98e77
SD
1676 /*
1677 * If the NUMA importance is less than SMALLIMP,
1678 * task migration might only result in ping pong
1679 * of tasks and also hurt performance due to cache
1680 * misses.
1681 */
1682 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1683 goto unlock;
1684
fb13c7ee
MG
1685 /*
1686 * In the overloaded case, try and keep the load balanced.
1687 */
305c1fac
SD
1688 load = task_h_load(env->p) - task_h_load(cur);
1689 if (!load)
1690 goto assign;
1691
e720fff6
PZ
1692 dst_load = env->dst_stats.load + load;
1693 src_load = env->src_stats.load - load;
fb13c7ee 1694
28a21745 1695 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1696 goto unlock;
1697
305c1fac 1698assign:
ba7e5a27
RR
1699 /*
1700 * One idle CPU per node is evaluated for a task numa move.
1701 * Call select_idle_sibling to maybe find a better one.
1702 */
10e2f1ac
PZ
1703 if (!cur) {
1704 /*
97fb7a0a 1705 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1706 * can be used from IRQ context.
1707 */
1708 local_irq_disable();
772bd008
MR
1709 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1710 env->dst_cpu);
10e2f1ac
PZ
1711 local_irq_enable();
1712 }
ba7e5a27 1713
fb13c7ee
MG
1714 task_numa_assign(env, cur, imp);
1715unlock:
1716 rcu_read_unlock();
1717}
1718
887c290e
RR
1719static void task_numa_find_cpu(struct task_numa_env *env,
1720 long taskimp, long groupimp)
2c8a50aa 1721{
305c1fac
SD
1722 long src_load, dst_load, load;
1723 bool maymove = false;
2c8a50aa
MG
1724 int cpu;
1725
305c1fac
SD
1726 load = task_h_load(env->p);
1727 dst_load = env->dst_stats.load + load;
1728 src_load = env->src_stats.load - load;
1729
1730 /*
1731 * If the improvement from just moving env->p direction is better
1732 * than swapping tasks around, check if a move is possible.
1733 */
1734 maymove = !load_too_imbalanced(src_load, dst_load, env);
1735
2c8a50aa
MG
1736 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1737 /* Skip this CPU if the source task cannot migrate */
3bd37062 1738 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1739 continue;
1740
1741 env->dst_cpu = cpu;
305c1fac 1742 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1743 }
1744}
1745
58d081b5
MG
1746static int task_numa_migrate(struct task_struct *p)
1747{
58d081b5
MG
1748 struct task_numa_env env = {
1749 .p = p,
fb13c7ee 1750
58d081b5 1751 .src_cpu = task_cpu(p),
b32e86b4 1752 .src_nid = task_node(p),
fb13c7ee
MG
1753
1754 .imbalance_pct = 112,
1755
1756 .best_task = NULL,
1757 .best_imp = 0,
4142c3eb 1758 .best_cpu = -1,
58d081b5
MG
1759 };
1760 struct sched_domain *sd;
a4739eca 1761 struct rq *best_rq;
887c290e 1762 unsigned long taskweight, groupweight;
7bd95320 1763 int nid, ret, dist;
887c290e 1764 long taskimp, groupimp;
e6628d5b 1765
58d081b5 1766 /*
fb13c7ee
MG
1767 * Pick the lowest SD_NUMA domain, as that would have the smallest
1768 * imbalance and would be the first to start moving tasks about.
1769 *
1770 * And we want to avoid any moving of tasks about, as that would create
1771 * random movement of tasks -- counter the numa conditions we're trying
1772 * to satisfy here.
58d081b5
MG
1773 */
1774 rcu_read_lock();
fb13c7ee 1775 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1776 if (sd)
1777 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1778 rcu_read_unlock();
1779
46a73e8a
RR
1780 /*
1781 * Cpusets can break the scheduler domain tree into smaller
1782 * balance domains, some of which do not cross NUMA boundaries.
1783 * Tasks that are "trapped" in such domains cannot be migrated
1784 * elsewhere, so there is no point in (re)trying.
1785 */
1786 if (unlikely(!sd)) {
8cd45eee 1787 sched_setnuma(p, task_node(p));
46a73e8a
RR
1788 return -EINVAL;
1789 }
1790
2c8a50aa 1791 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1792 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1793 taskweight = task_weight(p, env.src_nid, dist);
1794 groupweight = group_weight(p, env.src_nid, dist);
1795 update_numa_stats(&env.src_stats, env.src_nid);
1796 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1797 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1798 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1799
a43455a1 1800 /* Try to find a spot on the preferred nid. */
2d4056fa 1801 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1802
9de05d48
RR
1803 /*
1804 * Look at other nodes in these cases:
1805 * - there is no space available on the preferred_nid
1806 * - the task is part of a numa_group that is interleaved across
1807 * multiple NUMA nodes; in order to better consolidate the group,
1808 * we need to check other locations.
1809 */
4142c3eb 1810 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1811 for_each_online_node(nid) {
1812 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1813 continue;
58d081b5 1814
7bd95320 1815 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1816 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1817 dist != env.dist) {
1818 taskweight = task_weight(p, env.src_nid, dist);
1819 groupweight = group_weight(p, env.src_nid, dist);
1820 }
7bd95320 1821
83e1d2cd 1822 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1823 taskimp = task_weight(p, nid, dist) - taskweight;
1824 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1825 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1826 continue;
1827
7bd95320 1828 env.dist = dist;
2c8a50aa
MG
1829 env.dst_nid = nid;
1830 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1831 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1832 }
1833 }
1834
68d1b02a
RR
1835 /*
1836 * If the task is part of a workload that spans multiple NUMA nodes,
1837 * and is migrating into one of the workload's active nodes, remember
1838 * this node as the task's preferred numa node, so the workload can
1839 * settle down.
1840 * A task that migrated to a second choice node will be better off
1841 * trying for a better one later. Do not set the preferred node here.
1842 */
db015dae
RR
1843 if (p->numa_group) {
1844 if (env.best_cpu == -1)
1845 nid = env.src_nid;
1846 else
8cd45eee 1847 nid = cpu_to_node(env.best_cpu);
db015dae 1848
8cd45eee
SD
1849 if (nid != p->numa_preferred_nid)
1850 sched_setnuma(p, nid);
db015dae
RR
1851 }
1852
1853 /* No better CPU than the current one was found. */
1854 if (env.best_cpu == -1)
1855 return -EAGAIN;
0ec8aa00 1856
a4739eca 1857 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1858 if (env.best_task == NULL) {
286549dc 1859 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1860 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1861 if (ret != 0)
1862 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1863 return ret;
1864 }
1865
0ad4e3df 1866 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1867 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1868
286549dc
MG
1869 if (ret != 0)
1870 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1871 put_task_struct(env.best_task);
1872 return ret;
e6628d5b
MG
1873}
1874
6b9a7460
MG
1875/* Attempt to migrate a task to a CPU on the preferred node. */
1876static void numa_migrate_preferred(struct task_struct *p)
1877{
5085e2a3
RR
1878 unsigned long interval = HZ;
1879
2739d3ee 1880 /* This task has no NUMA fault statistics yet */
98fa15f3 1881 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
1882 return;
1883
2739d3ee 1884 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1885 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1886 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1887
1888 /* Success if task is already running on preferred CPU */
de1b301a 1889 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1890 return;
1891
1892 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1893 task_numa_migrate(p);
6b9a7460
MG
1894}
1895
20e07dea 1896/*
4142c3eb 1897 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1898 * tracking the nodes from which NUMA hinting faults are triggered. This can
1899 * be different from the set of nodes where the workload's memory is currently
1900 * located.
20e07dea 1901 */
4142c3eb 1902static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1903{
1904 unsigned long faults, max_faults = 0;
4142c3eb 1905 int nid, active_nodes = 0;
20e07dea
RR
1906
1907 for_each_online_node(nid) {
1908 faults = group_faults_cpu(numa_group, nid);
1909 if (faults > max_faults)
1910 max_faults = faults;
1911 }
1912
1913 for_each_online_node(nid) {
1914 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1915 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1916 active_nodes++;
20e07dea 1917 }
4142c3eb
RR
1918
1919 numa_group->max_faults_cpu = max_faults;
1920 numa_group->active_nodes = active_nodes;
20e07dea
RR
1921}
1922
04bb2f94
RR
1923/*
1924 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1925 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1926 * period will be for the next scan window. If local/(local+remote) ratio is
1927 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1928 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1929 */
1930#define NUMA_PERIOD_SLOTS 10
a22b4b01 1931#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1932
1933/*
1934 * Increase the scan period (slow down scanning) if the majority of
1935 * our memory is already on our local node, or if the majority of
1936 * the page accesses are shared with other processes.
1937 * Otherwise, decrease the scan period.
1938 */
1939static void update_task_scan_period(struct task_struct *p,
1940 unsigned long shared, unsigned long private)
1941{
1942 unsigned int period_slot;
37ec97de 1943 int lr_ratio, ps_ratio;
04bb2f94
RR
1944 int diff;
1945
1946 unsigned long remote = p->numa_faults_locality[0];
1947 unsigned long local = p->numa_faults_locality[1];
1948
1949 /*
1950 * If there were no record hinting faults then either the task is
1951 * completely idle or all activity is areas that are not of interest
074c2381
MG
1952 * to automatic numa balancing. Related to that, if there were failed
1953 * migration then it implies we are migrating too quickly or the local
1954 * node is overloaded. In either case, scan slower
04bb2f94 1955 */
074c2381 1956 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1957 p->numa_scan_period = min(p->numa_scan_period_max,
1958 p->numa_scan_period << 1);
1959
1960 p->mm->numa_next_scan = jiffies +
1961 msecs_to_jiffies(p->numa_scan_period);
1962
1963 return;
1964 }
1965
1966 /*
1967 * Prepare to scale scan period relative to the current period.
1968 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1969 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1970 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1971 */
1972 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1973 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1974 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1975
1976 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1977 /*
1978 * Most memory accesses are local. There is no need to
1979 * do fast NUMA scanning, since memory is already local.
1980 */
1981 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1982 if (!slot)
1983 slot = 1;
1984 diff = slot * period_slot;
1985 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1986 /*
1987 * Most memory accesses are shared with other tasks.
1988 * There is no point in continuing fast NUMA scanning,
1989 * since other tasks may just move the memory elsewhere.
1990 */
1991 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1992 if (!slot)
1993 slot = 1;
1994 diff = slot * period_slot;
1995 } else {
04bb2f94 1996 /*
37ec97de
RR
1997 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1998 * yet they are not on the local NUMA node. Speed up
1999 * NUMA scanning to get the memory moved over.
04bb2f94 2000 */
37ec97de
RR
2001 int ratio = max(lr_ratio, ps_ratio);
2002 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2003 }
2004
2005 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2006 task_scan_min(p), task_scan_max(p));
2007 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2008}
2009
7e2703e6
RR
2010/*
2011 * Get the fraction of time the task has been running since the last
2012 * NUMA placement cycle. The scheduler keeps similar statistics, but
2013 * decays those on a 32ms period, which is orders of magnitude off
2014 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2015 * stats only if the task is so new there are no NUMA statistics yet.
2016 */
2017static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2018{
2019 u64 runtime, delta, now;
2020 /* Use the start of this time slice to avoid calculations. */
2021 now = p->se.exec_start;
2022 runtime = p->se.sum_exec_runtime;
2023
2024 if (p->last_task_numa_placement) {
2025 delta = runtime - p->last_sum_exec_runtime;
2026 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2027
2028 /* Avoid time going backwards, prevent potential divide error: */
2029 if (unlikely((s64)*period < 0))
2030 *period = 0;
7e2703e6 2031 } else {
c7b50216 2032 delta = p->se.avg.load_sum;
9d89c257 2033 *period = LOAD_AVG_MAX;
7e2703e6
RR
2034 }
2035
2036 p->last_sum_exec_runtime = runtime;
2037 p->last_task_numa_placement = now;
2038
2039 return delta;
2040}
2041
54009416
RR
2042/*
2043 * Determine the preferred nid for a task in a numa_group. This needs to
2044 * be done in a way that produces consistent results with group_weight,
2045 * otherwise workloads might not converge.
2046 */
2047static int preferred_group_nid(struct task_struct *p, int nid)
2048{
2049 nodemask_t nodes;
2050 int dist;
2051
2052 /* Direct connections between all NUMA nodes. */
2053 if (sched_numa_topology_type == NUMA_DIRECT)
2054 return nid;
2055
2056 /*
2057 * On a system with glueless mesh NUMA topology, group_weight
2058 * scores nodes according to the number of NUMA hinting faults on
2059 * both the node itself, and on nearby nodes.
2060 */
2061 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2062 unsigned long score, max_score = 0;
2063 int node, max_node = nid;
2064
2065 dist = sched_max_numa_distance;
2066
2067 for_each_online_node(node) {
2068 score = group_weight(p, node, dist);
2069 if (score > max_score) {
2070 max_score = score;
2071 max_node = node;
2072 }
2073 }
2074 return max_node;
2075 }
2076
2077 /*
2078 * Finding the preferred nid in a system with NUMA backplane
2079 * interconnect topology is more involved. The goal is to locate
2080 * tasks from numa_groups near each other in the system, and
2081 * untangle workloads from different sides of the system. This requires
2082 * searching down the hierarchy of node groups, recursively searching
2083 * inside the highest scoring group of nodes. The nodemask tricks
2084 * keep the complexity of the search down.
2085 */
2086 nodes = node_online_map;
2087 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2088 unsigned long max_faults = 0;
81907478 2089 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2090 int a, b;
2091
2092 /* Are there nodes at this distance from each other? */
2093 if (!find_numa_distance(dist))
2094 continue;
2095
2096 for_each_node_mask(a, nodes) {
2097 unsigned long faults = 0;
2098 nodemask_t this_group;
2099 nodes_clear(this_group);
2100
2101 /* Sum group's NUMA faults; includes a==b case. */
2102 for_each_node_mask(b, nodes) {
2103 if (node_distance(a, b) < dist) {
2104 faults += group_faults(p, b);
2105 node_set(b, this_group);
2106 node_clear(b, nodes);
2107 }
2108 }
2109
2110 /* Remember the top group. */
2111 if (faults > max_faults) {
2112 max_faults = faults;
2113 max_group = this_group;
2114 /*
2115 * subtle: at the smallest distance there is
2116 * just one node left in each "group", the
2117 * winner is the preferred nid.
2118 */
2119 nid = a;
2120 }
2121 }
2122 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2123 if (!max_faults)
2124 break;
54009416
RR
2125 nodes = max_group;
2126 }
2127 return nid;
2128}
2129
cbee9f88
PZ
2130static void task_numa_placement(struct task_struct *p)
2131{
98fa15f3 2132 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2133 unsigned long max_faults = 0;
04bb2f94 2134 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2135 unsigned long total_faults;
2136 u64 runtime, period;
7dbd13ed 2137 spinlock_t *group_lock = NULL;
cbee9f88 2138
7e5a2c17
JL
2139 /*
2140 * The p->mm->numa_scan_seq field gets updated without
2141 * exclusive access. Use READ_ONCE() here to ensure
2142 * that the field is read in a single access:
2143 */
316c1608 2144 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2145 if (p->numa_scan_seq == seq)
2146 return;
2147 p->numa_scan_seq = seq;
598f0ec0 2148 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2149
7e2703e6
RR
2150 total_faults = p->numa_faults_locality[0] +
2151 p->numa_faults_locality[1];
2152 runtime = numa_get_avg_runtime(p, &period);
2153
7dbd13ed
MG
2154 /* If the task is part of a group prevent parallel updates to group stats */
2155 if (p->numa_group) {
2156 group_lock = &p->numa_group->lock;
60e69eed 2157 spin_lock_irq(group_lock);
7dbd13ed
MG
2158 }
2159
688b7585
MG
2160 /* Find the node with the highest number of faults */
2161 for_each_online_node(nid) {
44dba3d5
IM
2162 /* Keep track of the offsets in numa_faults array */
2163 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2164 unsigned long faults = 0, group_faults = 0;
44dba3d5 2165 int priv;
745d6147 2166
be1e4e76 2167 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2168 long diff, f_diff, f_weight;
8c8a743c 2169
44dba3d5
IM
2170 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2171 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2172 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2173 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2174
ac8e895b 2175 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2176 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2177 fault_types[priv] += p->numa_faults[membuf_idx];
2178 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2179
7e2703e6
RR
2180 /*
2181 * Normalize the faults_from, so all tasks in a group
2182 * count according to CPU use, instead of by the raw
2183 * number of faults. Tasks with little runtime have
2184 * little over-all impact on throughput, and thus their
2185 * faults are less important.
2186 */
2187 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2188 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2189 (total_faults + 1);
44dba3d5
IM
2190 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2191 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2192
44dba3d5
IM
2193 p->numa_faults[mem_idx] += diff;
2194 p->numa_faults[cpu_idx] += f_diff;
2195 faults += p->numa_faults[mem_idx];
83e1d2cd 2196 p->total_numa_faults += diff;
8c8a743c 2197 if (p->numa_group) {
44dba3d5
IM
2198 /*
2199 * safe because we can only change our own group
2200 *
2201 * mem_idx represents the offset for a given
2202 * nid and priv in a specific region because it
2203 * is at the beginning of the numa_faults array.
2204 */
2205 p->numa_group->faults[mem_idx] += diff;
2206 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2207 p->numa_group->total_faults += diff;
44dba3d5 2208 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2209 }
ac8e895b
MG
2210 }
2211
f03bb676
SD
2212 if (!p->numa_group) {
2213 if (faults > max_faults) {
2214 max_faults = faults;
2215 max_nid = nid;
2216 }
2217 } else if (group_faults > max_faults) {
2218 max_faults = group_faults;
688b7585
MG
2219 max_nid = nid;
2220 }
83e1d2cd
MG
2221 }
2222
7dbd13ed 2223 if (p->numa_group) {
4142c3eb 2224 numa_group_count_active_nodes(p->numa_group);
60e69eed 2225 spin_unlock_irq(group_lock);
f03bb676 2226 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2227 }
2228
bb97fc31
RR
2229 if (max_faults) {
2230 /* Set the new preferred node */
2231 if (max_nid != p->numa_preferred_nid)
2232 sched_setnuma(p, max_nid);
3a7053b3 2233 }
30619c89
SD
2234
2235 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2236}
2237
8c8a743c
PZ
2238static inline int get_numa_group(struct numa_group *grp)
2239{
c45a7795 2240 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2241}
2242
2243static inline void put_numa_group(struct numa_group *grp)
2244{
c45a7795 2245 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2246 kfree_rcu(grp, rcu);
2247}
2248
3e6a9418
MG
2249static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2250 int *priv)
8c8a743c
PZ
2251{
2252 struct numa_group *grp, *my_grp;
2253 struct task_struct *tsk;
2254 bool join = false;
2255 int cpu = cpupid_to_cpu(cpupid);
2256 int i;
2257
2258 if (unlikely(!p->numa_group)) {
2259 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2260 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2261
2262 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2263 if (!grp)
2264 return;
2265
c45a7795 2266 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2267 grp->active_nodes = 1;
2268 grp->max_faults_cpu = 0;
8c8a743c 2269 spin_lock_init(&grp->lock);
e29cf08b 2270 grp->gid = p->pid;
50ec8a40 2271 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2272 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2273 nr_node_ids;
8c8a743c 2274
be1e4e76 2275 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2276 grp->faults[i] = p->numa_faults[i];
8c8a743c 2277
989348b5 2278 grp->total_faults = p->total_numa_faults;
83e1d2cd 2279
8c8a743c
PZ
2280 grp->nr_tasks++;
2281 rcu_assign_pointer(p->numa_group, grp);
2282 }
2283
2284 rcu_read_lock();
316c1608 2285 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2286
2287 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2288 goto no_join;
8c8a743c
PZ
2289
2290 grp = rcu_dereference(tsk->numa_group);
2291 if (!grp)
3354781a 2292 goto no_join;
8c8a743c
PZ
2293
2294 my_grp = p->numa_group;
2295 if (grp == my_grp)
3354781a 2296 goto no_join;
8c8a743c
PZ
2297
2298 /*
2299 * Only join the other group if its bigger; if we're the bigger group,
2300 * the other task will join us.
2301 */
2302 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2303 goto no_join;
8c8a743c
PZ
2304
2305 /*
2306 * Tie-break on the grp address.
2307 */
2308 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2309 goto no_join;
8c8a743c 2310
dabe1d99
RR
2311 /* Always join threads in the same process. */
2312 if (tsk->mm == current->mm)
2313 join = true;
2314
2315 /* Simple filter to avoid false positives due to PID collisions */
2316 if (flags & TNF_SHARED)
2317 join = true;
8c8a743c 2318
3e6a9418
MG
2319 /* Update priv based on whether false sharing was detected */
2320 *priv = !join;
2321
dabe1d99 2322 if (join && !get_numa_group(grp))
3354781a 2323 goto no_join;
8c8a743c 2324
8c8a743c
PZ
2325 rcu_read_unlock();
2326
2327 if (!join)
2328 return;
2329
60e69eed
MG
2330 BUG_ON(irqs_disabled());
2331 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2332
be1e4e76 2333 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2334 my_grp->faults[i] -= p->numa_faults[i];
2335 grp->faults[i] += p->numa_faults[i];
8c8a743c 2336 }
989348b5
MG
2337 my_grp->total_faults -= p->total_numa_faults;
2338 grp->total_faults += p->total_numa_faults;
8c8a743c 2339
8c8a743c
PZ
2340 my_grp->nr_tasks--;
2341 grp->nr_tasks++;
2342
2343 spin_unlock(&my_grp->lock);
60e69eed 2344 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2345
2346 rcu_assign_pointer(p->numa_group, grp);
2347
2348 put_numa_group(my_grp);
3354781a
PZ
2349 return;
2350
2351no_join:
2352 rcu_read_unlock();
2353 return;
8c8a743c
PZ
2354}
2355
16d51a59
JH
2356/*
2357 * Get rid of NUMA staticstics associated with a task (either current or dead).
2358 * If @final is set, the task is dead and has reached refcount zero, so we can
2359 * safely free all relevant data structures. Otherwise, there might be
2360 * concurrent reads from places like load balancing and procfs, and we should
2361 * reset the data back to default state without freeing ->numa_faults.
2362 */
2363void task_numa_free(struct task_struct *p, bool final)
8c8a743c
PZ
2364{
2365 struct numa_group *grp = p->numa_group;
16d51a59 2366 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2367 unsigned long flags;
2368 int i;
8c8a743c 2369
16d51a59
JH
2370 if (!numa_faults)
2371 return;
2372
8c8a743c 2373 if (grp) {
e9dd685c 2374 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2375 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2376 grp->faults[i] -= p->numa_faults[i];
989348b5 2377 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2378
8c8a743c 2379 grp->nr_tasks--;
e9dd685c 2380 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2381 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2382 put_numa_group(grp);
2383 }
2384
16d51a59
JH
2385 if (final) {
2386 p->numa_faults = NULL;
2387 kfree(numa_faults);
2388 } else {
2389 p->total_numa_faults = 0;
2390 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2391 numa_faults[i] = 0;
2392 }
8c8a743c
PZ
2393}
2394
cbee9f88
PZ
2395/*
2396 * Got a PROT_NONE fault for a page on @node.
2397 */
58b46da3 2398void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2399{
2400 struct task_struct *p = current;
6688cc05 2401 bool migrated = flags & TNF_MIGRATED;
58b46da3 2402 int cpu_node = task_node(current);
792568ec 2403 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2404 struct numa_group *ng;
ac8e895b 2405 int priv;
cbee9f88 2406
2a595721 2407 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2408 return;
2409
9ff1d9ff
MG
2410 /* for example, ksmd faulting in a user's mm */
2411 if (!p->mm)
2412 return;
2413
f809ca9a 2414 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2415 if (unlikely(!p->numa_faults)) {
2416 int size = sizeof(*p->numa_faults) *
be1e4e76 2417 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2418
44dba3d5
IM
2419 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2420 if (!p->numa_faults)
f809ca9a 2421 return;
745d6147 2422
83e1d2cd 2423 p->total_numa_faults = 0;
04bb2f94 2424 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2425 }
cbee9f88 2426
8c8a743c
PZ
2427 /*
2428 * First accesses are treated as private, otherwise consider accesses
2429 * to be private if the accessing pid has not changed
2430 */
2431 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2432 priv = 1;
2433 } else {
2434 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2435 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2436 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2437 }
2438
792568ec
RR
2439 /*
2440 * If a workload spans multiple NUMA nodes, a shared fault that
2441 * occurs wholly within the set of nodes that the workload is
2442 * actively using should be counted as local. This allows the
2443 * scan rate to slow down when a workload has settled down.
2444 */
4142c3eb
RR
2445 ng = p->numa_group;
2446 if (!priv && !local && ng && ng->active_nodes > 1 &&
2447 numa_is_active_node(cpu_node, ng) &&
2448 numa_is_active_node(mem_node, ng))
792568ec
RR
2449 local = 1;
2450
2739d3ee 2451 /*
e1ff516a
YW
2452 * Retry to migrate task to preferred node periodically, in case it
2453 * previously failed, or the scheduler moved us.
2739d3ee 2454 */
b6a60cf3
SD
2455 if (time_after(jiffies, p->numa_migrate_retry)) {
2456 task_numa_placement(p);
6b9a7460 2457 numa_migrate_preferred(p);
b6a60cf3 2458 }
6b9a7460 2459
b32e86b4
IM
2460 if (migrated)
2461 p->numa_pages_migrated += pages;
074c2381
MG
2462 if (flags & TNF_MIGRATE_FAIL)
2463 p->numa_faults_locality[2] += pages;
b32e86b4 2464
44dba3d5
IM
2465 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2466 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2467 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2468}
2469
6e5fb223
PZ
2470static void reset_ptenuma_scan(struct task_struct *p)
2471{
7e5a2c17
JL
2472 /*
2473 * We only did a read acquisition of the mmap sem, so
2474 * p->mm->numa_scan_seq is written to without exclusive access
2475 * and the update is not guaranteed to be atomic. That's not
2476 * much of an issue though, since this is just used for
2477 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2478 * expensive, to avoid any form of compiler optimizations:
2479 */
316c1608 2480 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2481 p->mm->numa_scan_offset = 0;
2482}
2483
cbee9f88
PZ
2484/*
2485 * The expensive part of numa migration is done from task_work context.
2486 * Triggered from task_tick_numa().
2487 */
2488void task_numa_work(struct callback_head *work)
2489{
2490 unsigned long migrate, next_scan, now = jiffies;
2491 struct task_struct *p = current;
2492 struct mm_struct *mm = p->mm;
51170840 2493 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2494 struct vm_area_struct *vma;
9f40604c 2495 unsigned long start, end;
598f0ec0 2496 unsigned long nr_pte_updates = 0;
4620f8c1 2497 long pages, virtpages;
cbee9f88 2498
9148a3a1 2499 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2500
2501 work->next = work; /* protect against double add */
2502 /*
2503 * Who cares about NUMA placement when they're dying.
2504 *
2505 * NOTE: make sure not to dereference p->mm before this check,
2506 * exit_task_work() happens _after_ exit_mm() so we could be called
2507 * without p->mm even though we still had it when we enqueued this
2508 * work.
2509 */
2510 if (p->flags & PF_EXITING)
2511 return;
2512
930aa174 2513 if (!mm->numa_next_scan) {
7e8d16b6
MG
2514 mm->numa_next_scan = now +
2515 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2516 }
2517
cbee9f88
PZ
2518 /*
2519 * Enforce maximal scan/migration frequency..
2520 */
2521 migrate = mm->numa_next_scan;
2522 if (time_before(now, migrate))
2523 return;
2524
598f0ec0
MG
2525 if (p->numa_scan_period == 0) {
2526 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2527 p->numa_scan_period = task_scan_start(p);
598f0ec0 2528 }
cbee9f88 2529
fb003b80 2530 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2531 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2532 return;
2533
19a78d11
PZ
2534 /*
2535 * Delay this task enough that another task of this mm will likely win
2536 * the next time around.
2537 */
2538 p->node_stamp += 2 * TICK_NSEC;
2539
9f40604c
MG
2540 start = mm->numa_scan_offset;
2541 pages = sysctl_numa_balancing_scan_size;
2542 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2543 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2544 if (!pages)
2545 return;
cbee9f88 2546
4620f8c1 2547
8655d549
VB
2548 if (!down_read_trylock(&mm->mmap_sem))
2549 return;
9f40604c 2550 vma = find_vma(mm, start);
6e5fb223
PZ
2551 if (!vma) {
2552 reset_ptenuma_scan(p);
9f40604c 2553 start = 0;
6e5fb223
PZ
2554 vma = mm->mmap;
2555 }
9f40604c 2556 for (; vma; vma = vma->vm_next) {
6b79c57b 2557 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2558 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2559 continue;
6b79c57b 2560 }
6e5fb223 2561
4591ce4f
MG
2562 /*
2563 * Shared library pages mapped by multiple processes are not
2564 * migrated as it is expected they are cache replicated. Avoid
2565 * hinting faults in read-only file-backed mappings or the vdso
2566 * as migrating the pages will be of marginal benefit.
2567 */
2568 if (!vma->vm_mm ||
2569 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2570 continue;
2571
3c67f474
MG
2572 /*
2573 * Skip inaccessible VMAs to avoid any confusion between
2574 * PROT_NONE and NUMA hinting ptes
2575 */
2576 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2577 continue;
4591ce4f 2578
9f40604c
MG
2579 do {
2580 start = max(start, vma->vm_start);
2581 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2582 end = min(end, vma->vm_end);
4620f8c1 2583 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2584
2585 /*
4620f8c1
RR
2586 * Try to scan sysctl_numa_balancing_size worth of
2587 * hpages that have at least one present PTE that
2588 * is not already pte-numa. If the VMA contains
2589 * areas that are unused or already full of prot_numa
2590 * PTEs, scan up to virtpages, to skip through those
2591 * areas faster.
598f0ec0
MG
2592 */
2593 if (nr_pte_updates)
2594 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2595 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2596
9f40604c 2597 start = end;
4620f8c1 2598 if (pages <= 0 || virtpages <= 0)
9f40604c 2599 goto out;
3cf1962c
RR
2600
2601 cond_resched();
9f40604c 2602 } while (end != vma->vm_end);
cbee9f88 2603 }
6e5fb223 2604
9f40604c 2605out:
6e5fb223 2606 /*
c69307d5
PZ
2607 * It is possible to reach the end of the VMA list but the last few
2608 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2609 * would find the !migratable VMA on the next scan but not reset the
2610 * scanner to the start so check it now.
6e5fb223
PZ
2611 */
2612 if (vma)
9f40604c 2613 mm->numa_scan_offset = start;
6e5fb223
PZ
2614 else
2615 reset_ptenuma_scan(p);
2616 up_read(&mm->mmap_sem);
51170840
RR
2617
2618 /*
2619 * Make sure tasks use at least 32x as much time to run other code
2620 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2621 * Usually update_task_scan_period slows down scanning enough; on an
2622 * overloaded system we need to limit overhead on a per task basis.
2623 */
2624 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2625 u64 diff = p->se.sum_exec_runtime - runtime;
2626 p->node_stamp += 32 * diff;
2627 }
cbee9f88
PZ
2628}
2629
2630/*
2631 * Drive the periodic memory faults..
2632 */
b1546edc 2633static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2634{
2635 struct callback_head *work = &curr->numa_work;
2636 u64 period, now;
2637
2638 /*
2639 * We don't care about NUMA placement if we don't have memory.
2640 */
2641 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2642 return;
2643
2644 /*
2645 * Using runtime rather than walltime has the dual advantage that
2646 * we (mostly) drive the selection from busy threads and that the
2647 * task needs to have done some actual work before we bother with
2648 * NUMA placement.
2649 */
2650 now = curr->se.sum_exec_runtime;
2651 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2652
25b3e5a3 2653 if (now > curr->node_stamp + period) {
4b96a29b 2654 if (!curr->node_stamp)
b5dd77c8 2655 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2656 curr->node_stamp += period;
cbee9f88
PZ
2657
2658 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2659 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2660 task_work_add(curr, work, true);
2661 }
2662 }
2663}
3fed382b 2664
3f9672ba
SD
2665static void update_scan_period(struct task_struct *p, int new_cpu)
2666{
2667 int src_nid = cpu_to_node(task_cpu(p));
2668 int dst_nid = cpu_to_node(new_cpu);
2669
05cbdf4f
MG
2670 if (!static_branch_likely(&sched_numa_balancing))
2671 return;
2672
3f9672ba
SD
2673 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2674 return;
2675
05cbdf4f
MG
2676 if (src_nid == dst_nid)
2677 return;
2678
2679 /*
2680 * Allow resets if faults have been trapped before one scan
2681 * has completed. This is most likely due to a new task that
2682 * is pulled cross-node due to wakeups or load balancing.
2683 */
2684 if (p->numa_scan_seq) {
2685 /*
2686 * Avoid scan adjustments if moving to the preferred
2687 * node or if the task was not previously running on
2688 * the preferred node.
2689 */
2690 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2691 (p->numa_preferred_nid != NUMA_NO_NODE &&
2692 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2693 return;
2694 }
2695
2696 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2697}
2698
cbee9f88
PZ
2699#else
2700static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2701{
2702}
0ec8aa00
PZ
2703
2704static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2705{
2706}
2707
2708static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2709{
2710}
3fed382b 2711
3f9672ba
SD
2712static inline void update_scan_period(struct task_struct *p, int new_cpu)
2713{
2714}
2715
cbee9f88
PZ
2716#endif /* CONFIG_NUMA_BALANCING */
2717
30cfdcfc
DA
2718static void
2719account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2720{
2721 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2722#ifdef CONFIG_SMP
0ec8aa00
PZ
2723 if (entity_is_task(se)) {
2724 struct rq *rq = rq_of(cfs_rq);
2725
2726 account_numa_enqueue(rq, task_of(se));
2727 list_add(&se->group_node, &rq->cfs_tasks);
2728 }
367456c7 2729#endif
30cfdcfc 2730 cfs_rq->nr_running++;
30cfdcfc
DA
2731}
2732
2733static void
2734account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2735{
2736 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2737#ifdef CONFIG_SMP
0ec8aa00
PZ
2738 if (entity_is_task(se)) {
2739 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2740 list_del_init(&se->group_node);
0ec8aa00 2741 }
bfdb198c 2742#endif
30cfdcfc 2743 cfs_rq->nr_running--;
30cfdcfc
DA
2744}
2745
8d5b9025
PZ
2746/*
2747 * Signed add and clamp on underflow.
2748 *
2749 * Explicitly do a load-store to ensure the intermediate value never hits
2750 * memory. This allows lockless observations without ever seeing the negative
2751 * values.
2752 */
2753#define add_positive(_ptr, _val) do { \
2754 typeof(_ptr) ptr = (_ptr); \
2755 typeof(_val) val = (_val); \
2756 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2757 \
2758 res = var + val; \
2759 \
2760 if (val < 0 && res > var) \
2761 res = 0; \
2762 \
2763 WRITE_ONCE(*ptr, res); \
2764} while (0)
2765
2766/*
2767 * Unsigned subtract and clamp on underflow.
2768 *
2769 * Explicitly do a load-store to ensure the intermediate value never hits
2770 * memory. This allows lockless observations without ever seeing the negative
2771 * values.
2772 */
2773#define sub_positive(_ptr, _val) do { \
2774 typeof(_ptr) ptr = (_ptr); \
2775 typeof(*ptr) val = (_val); \
2776 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2777 res = var - val; \
2778 if (res > var) \
2779 res = 0; \
2780 WRITE_ONCE(*ptr, res); \
2781} while (0)
2782
b5c0ce7b
PB
2783/*
2784 * Remove and clamp on negative, from a local variable.
2785 *
2786 * A variant of sub_positive(), which does not use explicit load-store
2787 * and is thus optimized for local variable updates.
2788 */
2789#define lsub_positive(_ptr, _val) do { \
2790 typeof(_ptr) ptr = (_ptr); \
2791 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2792} while (0)
2793
8d5b9025 2794#ifdef CONFIG_SMP
8d5b9025
PZ
2795static inline void
2796enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2797{
1ea6c46a
PZ
2798 cfs_rq->runnable_weight += se->runnable_weight;
2799
2800 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2801 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2802}
2803
2804static inline void
2805dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2806{
1ea6c46a
PZ
2807 cfs_rq->runnable_weight -= se->runnable_weight;
2808
2809 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2810 sub_positive(&cfs_rq->avg.runnable_load_sum,
2811 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2812}
2813
2814static inline void
2815enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2816{
2817 cfs_rq->avg.load_avg += se->avg.load_avg;
2818 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2819}
2820
2821static inline void
2822dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2823{
2824 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2825 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2826}
2827#else
2828static inline void
2829enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2830static inline void
2831dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2832static inline void
2833enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2834static inline void
2835dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2836#endif
2837
9059393e 2838static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2839 unsigned long weight, unsigned long runnable)
9059393e
VG
2840{
2841 if (se->on_rq) {
2842 /* commit outstanding execution time */
2843 if (cfs_rq->curr == se)
2844 update_curr(cfs_rq);
2845 account_entity_dequeue(cfs_rq, se);
2846 dequeue_runnable_load_avg(cfs_rq, se);
2847 }
2848 dequeue_load_avg(cfs_rq, se);
2849
1ea6c46a 2850 se->runnable_weight = runnable;
9059393e
VG
2851 update_load_set(&se->load, weight);
2852
2853#ifdef CONFIG_SMP
1ea6c46a
PZ
2854 do {
2855 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2856
2857 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2858 se->avg.runnable_load_avg =
2859 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2860 } while (0);
9059393e
VG
2861#endif
2862
2863 enqueue_load_avg(cfs_rq, se);
2864 if (se->on_rq) {
2865 account_entity_enqueue(cfs_rq, se);
2866 enqueue_runnable_load_avg(cfs_rq, se);
2867 }
2868}
2869
2870void reweight_task(struct task_struct *p, int prio)
2871{
2872 struct sched_entity *se = &p->se;
2873 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2874 struct load_weight *load = &se->load;
2875 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2876
1ea6c46a 2877 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2878 load->inv_weight = sched_prio_to_wmult[prio];
2879}
2880
3ff6dcac 2881#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2882#ifdef CONFIG_SMP
cef27403
PZ
2883/*
2884 * All this does is approximate the hierarchical proportion which includes that
2885 * global sum we all love to hate.
2886 *
2887 * That is, the weight of a group entity, is the proportional share of the
2888 * group weight based on the group runqueue weights. That is:
2889 *
2890 * tg->weight * grq->load.weight
2891 * ge->load.weight = ----------------------------- (1)
2892 * \Sum grq->load.weight
2893 *
2894 * Now, because computing that sum is prohibitively expensive to compute (been
2895 * there, done that) we approximate it with this average stuff. The average
2896 * moves slower and therefore the approximation is cheaper and more stable.
2897 *
2898 * So instead of the above, we substitute:
2899 *
2900 * grq->load.weight -> grq->avg.load_avg (2)
2901 *
2902 * which yields the following:
2903 *
2904 * tg->weight * grq->avg.load_avg
2905 * ge->load.weight = ------------------------------ (3)
2906 * tg->load_avg
2907 *
2908 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2909 *
2910 * That is shares_avg, and it is right (given the approximation (2)).
2911 *
2912 * The problem with it is that because the average is slow -- it was designed
2913 * to be exactly that of course -- this leads to transients in boundary
2914 * conditions. In specific, the case where the group was idle and we start the
2915 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2916 * yielding bad latency etc..
2917 *
2918 * Now, in that special case (1) reduces to:
2919 *
2920 * tg->weight * grq->load.weight
17de4ee0 2921 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2922 * grp->load.weight
2923 *
2924 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2925 *
2926 * So what we do is modify our approximation (3) to approach (4) in the (near)
2927 * UP case, like:
2928 *
2929 * ge->load.weight =
2930 *
2931 * tg->weight * grq->load.weight
2932 * --------------------------------------------------- (5)
2933 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2934 *
17de4ee0
PZ
2935 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2936 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2937 *
2938 *
2939 * tg->weight * grq->load.weight
2940 * ge->load.weight = ----------------------------- (6)
2941 * tg_load_avg'
2942 *
2943 * Where:
2944 *
2945 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2946 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2947 *
2948 * And that is shares_weight and is icky. In the (near) UP case it approaches
2949 * (4) while in the normal case it approaches (3). It consistently
2950 * overestimates the ge->load.weight and therefore:
2951 *
2952 * \Sum ge->load.weight >= tg->weight
2953 *
2954 * hence icky!
2955 */
2c8e4dce 2956static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2957{
7c80cfc9
PZ
2958 long tg_weight, tg_shares, load, shares;
2959 struct task_group *tg = cfs_rq->tg;
2960
2961 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2962
3d4b60d3 2963 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2964
ea1dc6fc 2965 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2966
ea1dc6fc
PZ
2967 /* Ensure tg_weight >= load */
2968 tg_weight -= cfs_rq->tg_load_avg_contrib;
2969 tg_weight += load;
3ff6dcac 2970
7c80cfc9 2971 shares = (tg_shares * load);
cf5f0acf
PZ
2972 if (tg_weight)
2973 shares /= tg_weight;
3ff6dcac 2974
b8fd8423
DE
2975 /*
2976 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2977 * of a group with small tg->shares value. It is a floor value which is
2978 * assigned as a minimum load.weight to the sched_entity representing
2979 * the group on a CPU.
2980 *
2981 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2982 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2983 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2984 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2985 * instead of 0.
2986 */
7c80cfc9 2987 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2988}
2c8e4dce
JB
2989
2990/*
17de4ee0
PZ
2991 * This calculates the effective runnable weight for a group entity based on
2992 * the group entity weight calculated above.
2993 *
2994 * Because of the above approximation (2), our group entity weight is
2995 * an load_avg based ratio (3). This means that it includes blocked load and
2996 * does not represent the runnable weight.
2997 *
2998 * Approximate the group entity's runnable weight per ratio from the group
2999 * runqueue:
3000 *
3001 * grq->avg.runnable_load_avg
3002 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3003 * grq->avg.load_avg
3004 *
3005 * However, analogous to above, since the avg numbers are slow, this leads to
3006 * transients in the from-idle case. Instead we use:
3007 *
3008 * ge->runnable_weight = ge->load.weight *
3009 *
3010 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3011 * ----------------------------------------------------- (8)
3012 * max(grq->avg.load_avg, grq->load.weight)
3013 *
3014 * Where these max() serve both to use the 'instant' values to fix the slow
3015 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
3016 */
3017static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3018{
17de4ee0
PZ
3019 long runnable, load_avg;
3020
3021 load_avg = max(cfs_rq->avg.load_avg,
3022 scale_load_down(cfs_rq->load.weight));
3023
3024 runnable = max(cfs_rq->avg.runnable_load_avg,
3025 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
3026
3027 runnable *= shares;
3028 if (load_avg)
3029 runnable /= load_avg;
17de4ee0 3030
2c8e4dce
JB
3031 return clamp_t(long, runnable, MIN_SHARES, shares);
3032}
387f77cc 3033#endif /* CONFIG_SMP */
ea1dc6fc 3034
82958366
PT
3035static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3036
1ea6c46a
PZ
3037/*
3038 * Recomputes the group entity based on the current state of its group
3039 * runqueue.
3040 */
3041static void update_cfs_group(struct sched_entity *se)
2069dd75 3042{
1ea6c46a
PZ
3043 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3044 long shares, runnable;
2069dd75 3045
1ea6c46a 3046 if (!gcfs_rq)
89ee048f
VG
3047 return;
3048
1ea6c46a 3049 if (throttled_hierarchy(gcfs_rq))
2069dd75 3050 return;
89ee048f 3051
3ff6dcac 3052#ifndef CONFIG_SMP
1ea6c46a 3053 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3054
3055 if (likely(se->load.weight == shares))
3ff6dcac 3056 return;
7c80cfc9 3057#else
2c8e4dce
JB
3058 shares = calc_group_shares(gcfs_rq);
3059 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3060#endif
2069dd75 3061
1ea6c46a 3062 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3063}
89ee048f 3064
2069dd75 3065#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3066static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3067{
3068}
3069#endif /* CONFIG_FAIR_GROUP_SCHED */
3070
ea14b57e 3071static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3072{
43964409
LT
3073 struct rq *rq = rq_of(cfs_rq);
3074
ea14b57e 3075 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3076 /*
3077 * There are a few boundary cases this might miss but it should
3078 * get called often enough that that should (hopefully) not be
9783be2c 3079 * a real problem.
a030d738
VK
3080 *
3081 * It will not get called when we go idle, because the idle
3082 * thread is a different class (!fair), nor will the utilization
3083 * number include things like RT tasks.
3084 *
3085 * As is, the util number is not freq-invariant (we'd have to
3086 * implement arch_scale_freq_capacity() for that).
3087 *
3088 * See cpu_util().
3089 */
ea14b57e 3090 cpufreq_update_util(rq, flags);
a030d738
VK
3091 }
3092}
3093
141965c7 3094#ifdef CONFIG_SMP
c566e8e9 3095#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3096/**
3097 * update_tg_load_avg - update the tg's load avg
3098 * @cfs_rq: the cfs_rq whose avg changed
3099 * @force: update regardless of how small the difference
3100 *
3101 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3102 * However, because tg->load_avg is a global value there are performance
3103 * considerations.
3104 *
3105 * In order to avoid having to look at the other cfs_rq's, we use a
3106 * differential update where we store the last value we propagated. This in
3107 * turn allows skipping updates if the differential is 'small'.
3108 *
815abf5a 3109 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3110 */
9d89c257 3111static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3112{
9d89c257 3113 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3114
aa0b7ae0
WL
3115 /*
3116 * No need to update load_avg for root_task_group as it is not used.
3117 */
3118 if (cfs_rq->tg == &root_task_group)
3119 return;
3120
9d89c257
YD
3121 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3122 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3123 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3124 }
8165e145 3125}
f5f9739d 3126
ad936d86 3127/*
97fb7a0a 3128 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3129 * caller only guarantees p->pi_lock is held; no other assumptions,
3130 * including the state of rq->lock, should be made.
3131 */
3132void set_task_rq_fair(struct sched_entity *se,
3133 struct cfs_rq *prev, struct cfs_rq *next)
3134{
0ccb977f
PZ
3135 u64 p_last_update_time;
3136 u64 n_last_update_time;
3137
ad936d86
BP
3138 if (!sched_feat(ATTACH_AGE_LOAD))
3139 return;
3140
3141 /*
3142 * We are supposed to update the task to "current" time, then its up to
3143 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3144 * getting what current time is, so simply throw away the out-of-date
3145 * time. This will result in the wakee task is less decayed, but giving
3146 * the wakee more load sounds not bad.
3147 */
0ccb977f
PZ
3148 if (!(se->avg.last_update_time && prev))
3149 return;
ad936d86
BP
3150
3151#ifndef CONFIG_64BIT
0ccb977f 3152 {
ad936d86
BP
3153 u64 p_last_update_time_copy;
3154 u64 n_last_update_time_copy;
3155
3156 do {
3157 p_last_update_time_copy = prev->load_last_update_time_copy;
3158 n_last_update_time_copy = next->load_last_update_time_copy;
3159
3160 smp_rmb();
3161
3162 p_last_update_time = prev->avg.last_update_time;
3163 n_last_update_time = next->avg.last_update_time;
3164
3165 } while (p_last_update_time != p_last_update_time_copy ||
3166 n_last_update_time != n_last_update_time_copy);
0ccb977f 3167 }
ad936d86 3168#else
0ccb977f
PZ
3169 p_last_update_time = prev->avg.last_update_time;
3170 n_last_update_time = next->avg.last_update_time;
ad936d86 3171#endif
23127296 3172 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3173 se->avg.last_update_time = n_last_update_time;
ad936d86 3174}
09a43ace 3175
0e2d2aaa
PZ
3176
3177/*
3178 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3179 * propagate its contribution. The key to this propagation is the invariant
3180 * that for each group:
3181 *
3182 * ge->avg == grq->avg (1)
3183 *
3184 * _IFF_ we look at the pure running and runnable sums. Because they
3185 * represent the very same entity, just at different points in the hierarchy.
3186 *
a4c3c049
VG
3187 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3188 * sum over (but still wrong, because the group entity and group rq do not have
3189 * their PELT windows aligned).
0e2d2aaa
PZ
3190 *
3191 * However, update_tg_cfs_runnable() is more complex. So we have:
3192 *
3193 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3194 *
3195 * And since, like util, the runnable part should be directly transferable,
3196 * the following would _appear_ to be the straight forward approach:
3197 *
a4c3c049 3198 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3199 *
3200 * And per (1) we have:
3201 *
a4c3c049 3202 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3203 *
3204 * Which gives:
3205 *
3206 * ge->load.weight * grq->avg.load_avg
3207 * ge->avg.load_avg = ----------------------------------- (4)
3208 * grq->load.weight
3209 *
3210 * Except that is wrong!
3211 *
3212 * Because while for entities historical weight is not important and we
3213 * really only care about our future and therefore can consider a pure
3214 * runnable sum, runqueues can NOT do this.
3215 *
3216 * We specifically want runqueues to have a load_avg that includes
3217 * historical weights. Those represent the blocked load, the load we expect
3218 * to (shortly) return to us. This only works by keeping the weights as
3219 * integral part of the sum. We therefore cannot decompose as per (3).
3220 *
a4c3c049
VG
3221 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3222 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3223 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3224 * runnable section of these tasks overlap (or not). If they were to perfectly
3225 * align the rq as a whole would be runnable 2/3 of the time. If however we
3226 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3227 *
a4c3c049 3228 * So we'll have to approximate.. :/
0e2d2aaa 3229 *
a4c3c049 3230 * Given the constraint:
0e2d2aaa 3231 *
a4c3c049 3232 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3233 *
a4c3c049
VG
3234 * We can construct a rule that adds runnable to a rq by assuming minimal
3235 * overlap.
0e2d2aaa 3236 *
a4c3c049 3237 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3238 *
a4c3c049 3239 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3240 *
a4c3c049 3241 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3242 *
0e2d2aaa
PZ
3243 */
3244
09a43ace 3245static inline void
0e2d2aaa 3246update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3247{
09a43ace
VG
3248 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3249
3250 /* Nothing to update */
3251 if (!delta)
3252 return;
3253
a4c3c049
VG
3254 /*
3255 * The relation between sum and avg is:
3256 *
3257 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3258 *
3259 * however, the PELT windows are not aligned between grq and gse.
3260 */
3261
09a43ace
VG
3262 /* Set new sched_entity's utilization */
3263 se->avg.util_avg = gcfs_rq->avg.util_avg;
3264 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3265
3266 /* Update parent cfs_rq utilization */
3267 add_positive(&cfs_rq->avg.util_avg, delta);
3268 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3269}
3270
09a43ace 3271static inline void
0e2d2aaa 3272update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3273{
a4c3c049
VG
3274 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3275 unsigned long runnable_load_avg, load_avg;
3276 u64 runnable_load_sum, load_sum = 0;
3277 s64 delta_sum;
09a43ace 3278
0e2d2aaa
PZ
3279 if (!runnable_sum)
3280 return;
09a43ace 3281
0e2d2aaa 3282 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3283
a4c3c049
VG
3284 if (runnable_sum >= 0) {
3285 /*
3286 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3287 * the CPU is saturated running == runnable.
3288 */
3289 runnable_sum += se->avg.load_sum;
3290 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3291 } else {
3292 /*
3293 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3294 * assuming all tasks are equally runnable.
3295 */
3296 if (scale_load_down(gcfs_rq->load.weight)) {
3297 load_sum = div_s64(gcfs_rq->avg.load_sum,
3298 scale_load_down(gcfs_rq->load.weight));
3299 }
3300
3301 /* But make sure to not inflate se's runnable */
3302 runnable_sum = min(se->avg.load_sum, load_sum);
3303 }
3304
3305 /*
3306 * runnable_sum can't be lower than running_sum
23127296
VG
3307 * Rescale running sum to be in the same range as runnable sum
3308 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3309 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3310 */
23127296 3311 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3312 runnable_sum = max(runnable_sum, running_sum);
3313
0e2d2aaa
PZ
3314 load_sum = (s64)se_weight(se) * runnable_sum;
3315 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3316
a4c3c049
VG
3317 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3318 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3319
a4c3c049
VG
3320 se->avg.load_sum = runnable_sum;
3321 se->avg.load_avg = load_avg;
3322 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3323 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3324
1ea6c46a
PZ
3325 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3326 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3327 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3328 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3329
a4c3c049
VG
3330 se->avg.runnable_load_sum = runnable_sum;
3331 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3332
09a43ace 3333 if (se->on_rq) {
a4c3c049
VG
3334 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3335 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3336 }
3337}
3338
0e2d2aaa 3339static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3340{
0e2d2aaa
PZ
3341 cfs_rq->propagate = 1;
3342 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3343}
3344
3345/* Update task and its cfs_rq load average */
3346static inline int propagate_entity_load_avg(struct sched_entity *se)
3347{
0e2d2aaa 3348 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3349
3350 if (entity_is_task(se))
3351 return 0;
3352
0e2d2aaa
PZ
3353 gcfs_rq = group_cfs_rq(se);
3354 if (!gcfs_rq->propagate)
09a43ace
VG
3355 return 0;
3356
0e2d2aaa
PZ
3357 gcfs_rq->propagate = 0;
3358
09a43ace
VG
3359 cfs_rq = cfs_rq_of(se);
3360
0e2d2aaa 3361 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3362
0e2d2aaa
PZ
3363 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3364 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace 3365
ba19f51f 3366 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3367 trace_pelt_se_tp(se);
ba19f51f 3368
09a43ace
VG
3369 return 1;
3370}
3371
bc427898
VG
3372/*
3373 * Check if we need to update the load and the utilization of a blocked
3374 * group_entity:
3375 */
3376static inline bool skip_blocked_update(struct sched_entity *se)
3377{
3378 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3379
3380 /*
3381 * If sched_entity still have not zero load or utilization, we have to
3382 * decay it:
3383 */
3384 if (se->avg.load_avg || se->avg.util_avg)
3385 return false;
3386
3387 /*
3388 * If there is a pending propagation, we have to update the load and
3389 * the utilization of the sched_entity:
3390 */
0e2d2aaa 3391 if (gcfs_rq->propagate)
bc427898
VG
3392 return false;
3393
3394 /*
3395 * Otherwise, the load and the utilization of the sched_entity is
3396 * already zero and there is no pending propagation, so it will be a
3397 * waste of time to try to decay it:
3398 */
3399 return true;
3400}
3401
6e83125c 3402#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3403
9d89c257 3404static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3405
3406static inline int propagate_entity_load_avg(struct sched_entity *se)
3407{
3408 return 0;
3409}
3410
0e2d2aaa 3411static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3412
6e83125c 3413#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3414
3d30544f
PZ
3415/**
3416 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3417 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3418 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3419 *
3420 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3421 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3422 * post_init_entity_util_avg().
3423 *
3424 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3425 *
7c3edd2c
PZ
3426 * Returns true if the load decayed or we removed load.
3427 *
3428 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3429 * call update_tg_load_avg() when this function returns true.
3d30544f 3430 */
a2c6c91f 3431static inline int
3a123bbb 3432update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3433{
0e2d2aaa 3434 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3435 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3436 int decayed = 0;
2dac754e 3437
2a2f5d4e
PZ
3438 if (cfs_rq->removed.nr) {
3439 unsigned long r;
9a2dd585 3440 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3441
3442 raw_spin_lock(&cfs_rq->removed.lock);
3443 swap(cfs_rq->removed.util_avg, removed_util);
3444 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3445 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3446 cfs_rq->removed.nr = 0;
3447 raw_spin_unlock(&cfs_rq->removed.lock);
3448
2a2f5d4e 3449 r = removed_load;
89741892 3450 sub_positive(&sa->load_avg, r);
9a2dd585 3451 sub_positive(&sa->load_sum, r * divider);
2dac754e 3452
2a2f5d4e 3453 r = removed_util;
89741892 3454 sub_positive(&sa->util_avg, r);
9a2dd585 3455 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3456
0e2d2aaa 3457 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3458
3459 decayed = 1;
9d89c257 3460 }
36ee28e4 3461
23127296 3462 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3463
9d89c257
YD
3464#ifndef CONFIG_64BIT
3465 smp_wmb();
3466 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3467#endif
36ee28e4 3468
2a2f5d4e 3469 if (decayed)
ea14b57e 3470 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3471
2a2f5d4e 3472 return decayed;
21e96f88
SM
3473}
3474
3d30544f
PZ
3475/**
3476 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3477 * @cfs_rq: cfs_rq to attach to
3478 * @se: sched_entity to attach
882a78a9 3479 * @flags: migration hints
3d30544f
PZ
3480 *
3481 * Must call update_cfs_rq_load_avg() before this, since we rely on
3482 * cfs_rq->avg.last_update_time being current.
3483 */
ea14b57e 3484static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3485{
f207934f
PZ
3486 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3487
3488 /*
3489 * When we attach the @se to the @cfs_rq, we must align the decay
3490 * window because without that, really weird and wonderful things can
3491 * happen.
3492 *
3493 * XXX illustrate
3494 */
a05e8c51 3495 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3496 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3497
3498 /*
3499 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3500 * period_contrib. This isn't strictly correct, but since we're
3501 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3502 * _sum a little.
3503 */
3504 se->avg.util_sum = se->avg.util_avg * divider;
3505
3506 se->avg.load_sum = divider;
3507 if (se_weight(se)) {
3508 se->avg.load_sum =
3509 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3510 }
3511
3512 se->avg.runnable_load_sum = se->avg.load_sum;
3513
8d5b9025 3514 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3515 cfs_rq->avg.util_avg += se->avg.util_avg;
3516 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3517
3518 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3519
ea14b57e 3520 cfs_rq_util_change(cfs_rq, flags);
ba19f51f
QY
3521
3522 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3523}
3524
3d30544f
PZ
3525/**
3526 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3527 * @cfs_rq: cfs_rq to detach from
3528 * @se: sched_entity to detach
3529 *
3530 * Must call update_cfs_rq_load_avg() before this, since we rely on
3531 * cfs_rq->avg.last_update_time being current.
3532 */
a05e8c51
BP
3533static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3534{
8d5b9025 3535 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3536 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3537 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3538
3539 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3540
ea14b57e 3541 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3542
3543 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3544}
3545
b382a531
PZ
3546/*
3547 * Optional action to be done while updating the load average
3548 */
3549#define UPDATE_TG 0x1
3550#define SKIP_AGE_LOAD 0x2
3551#define DO_ATTACH 0x4
3552
3553/* Update task and its cfs_rq load average */
3554static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3555{
23127296 3556 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3557 int decayed;
3558
3559 /*
3560 * Track task load average for carrying it to new CPU after migrated, and
3561 * track group sched_entity load average for task_h_load calc in migration
3562 */
3563 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3564 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3565
3566 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3567 decayed |= propagate_entity_load_avg(se);
3568
3569 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3570
ea14b57e
PZ
3571 /*
3572 * DO_ATTACH means we're here from enqueue_entity().
3573 * !last_update_time means we've passed through
3574 * migrate_task_rq_fair() indicating we migrated.
3575 *
3576 * IOW we're enqueueing a task on a new CPU.
3577 */
3578 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3579 update_tg_load_avg(cfs_rq, 0);
3580
3581 } else if (decayed && (flags & UPDATE_TG))
3582 update_tg_load_avg(cfs_rq, 0);
3583}
3584
9d89c257 3585#ifndef CONFIG_64BIT
0905f04e
YD
3586static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3587{
9d89c257 3588 u64 last_update_time_copy;
0905f04e 3589 u64 last_update_time;
9ee474f5 3590
9d89c257
YD
3591 do {
3592 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3593 smp_rmb();
3594 last_update_time = cfs_rq->avg.last_update_time;
3595 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3596
3597 return last_update_time;
3598}
9d89c257 3599#else
0905f04e
YD
3600static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3601{
3602 return cfs_rq->avg.last_update_time;
3603}
9d89c257
YD
3604#endif
3605
104cb16d
MR
3606/*
3607 * Synchronize entity load avg of dequeued entity without locking
3608 * the previous rq.
3609 */
71b47eaf 3610static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3611{
3612 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3613 u64 last_update_time;
3614
3615 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3616 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3617}
3618
0905f04e
YD
3619/*
3620 * Task first catches up with cfs_rq, and then subtract
3621 * itself from the cfs_rq (task must be off the queue now).
3622 */
71b47eaf 3623static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3624{
3625 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3626 unsigned long flags;
0905f04e
YD
3627
3628 /*
7dc603c9
PZ
3629 * tasks cannot exit without having gone through wake_up_new_task() ->
3630 * post_init_entity_util_avg() which will have added things to the
3631 * cfs_rq, so we can remove unconditionally.
0905f04e 3632 */
0905f04e 3633
104cb16d 3634 sync_entity_load_avg(se);
2a2f5d4e
PZ
3635
3636 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3637 ++cfs_rq->removed.nr;
3638 cfs_rq->removed.util_avg += se->avg.util_avg;
3639 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3640 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3641 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3642}
642dbc39 3643
7ea241af
YD
3644static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3645{
1ea6c46a 3646 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3647}
3648
3649static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3650{
3651 return cfs_rq->avg.load_avg;
3652}
3653
46f69fa3 3654static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3655
7f65ea42
PB
3656static inline unsigned long task_util(struct task_struct *p)
3657{
3658 return READ_ONCE(p->se.avg.util_avg);
3659}
3660
3661static inline unsigned long _task_util_est(struct task_struct *p)
3662{
3663 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3664
92a801e5 3665 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3666}
3667
3668static inline unsigned long task_util_est(struct task_struct *p)
3669{
3670 return max(task_util(p), _task_util_est(p));
3671}
3672
3673static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3674 struct task_struct *p)
3675{
3676 unsigned int enqueued;
3677
3678 if (!sched_feat(UTIL_EST))
3679 return;
3680
3681 /* Update root cfs_rq's estimated utilization */
3682 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3683 enqueued += _task_util_est(p);
7f65ea42
PB
3684 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3685}
3686
3687/*
3688 * Check if a (signed) value is within a specified (unsigned) margin,
3689 * based on the observation that:
3690 *
3691 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3692 *
3693 * NOTE: this only works when value + maring < INT_MAX.
3694 */
3695static inline bool within_margin(int value, int margin)
3696{
3697 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3698}
3699
3700static void
3701util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3702{
3703 long last_ewma_diff;
3704 struct util_est ue;
10a35e68 3705 int cpu;
7f65ea42
PB
3706
3707 if (!sched_feat(UTIL_EST))
3708 return;
3709
3482d98b
VG
3710 /* Update root cfs_rq's estimated utilization */
3711 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3712 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3713 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3714
3715 /*
3716 * Skip update of task's estimated utilization when the task has not
3717 * yet completed an activation, e.g. being migrated.
3718 */
3719 if (!task_sleep)
3720 return;
3721
d519329f
PB
3722 /*
3723 * If the PELT values haven't changed since enqueue time,
3724 * skip the util_est update.
3725 */
3726 ue = p->se.avg.util_est;
3727 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3728 return;
3729
7f65ea42
PB
3730 /*
3731 * Skip update of task's estimated utilization when its EWMA is
3732 * already ~1% close to its last activation value.
3733 */
d519329f 3734 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3735 last_ewma_diff = ue.enqueued - ue.ewma;
3736 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3737 return;
3738
10a35e68
VG
3739 /*
3740 * To avoid overestimation of actual task utilization, skip updates if
3741 * we cannot grant there is idle time in this CPU.
3742 */
3743 cpu = cpu_of(rq_of(cfs_rq));
3744 if (task_util(p) > capacity_orig_of(cpu))
3745 return;
3746
7f65ea42
PB
3747 /*
3748 * Update Task's estimated utilization
3749 *
3750 * When *p completes an activation we can consolidate another sample
3751 * of the task size. This is done by storing the current PELT value
3752 * as ue.enqueued and by using this value to update the Exponential
3753 * Weighted Moving Average (EWMA):
3754 *
3755 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3756 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3757 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3758 * = w * ( last_ewma_diff ) + ewma(t-1)
3759 * = w * (last_ewma_diff + ewma(t-1) / w)
3760 *
3761 * Where 'w' is the weight of new samples, which is configured to be
3762 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3763 */
3764 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3765 ue.ewma += last_ewma_diff;
3766 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3767 WRITE_ONCE(p->se.avg.util_est, ue);
3768}
3769
3b1baa64
MR
3770static inline int task_fits_capacity(struct task_struct *p, long capacity)
3771{
3772 return capacity * 1024 > task_util_est(p) * capacity_margin;
3773}
3774
3775static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3776{
3777 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3778 return;
3779
3780 if (!p) {
3781 rq->misfit_task_load = 0;
3782 return;
3783 }
3784
3785 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3786 rq->misfit_task_load = 0;
3787 return;
3788 }
3789
3790 rq->misfit_task_load = task_h_load(p);
3791}
3792
38033c37
PZ
3793#else /* CONFIG_SMP */
3794
d31b1a66
VG
3795#define UPDATE_TG 0x0
3796#define SKIP_AGE_LOAD 0x0
b382a531 3797#define DO_ATTACH 0x0
d31b1a66 3798
88c0616e 3799static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3800{
ea14b57e 3801 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3802}
3803
9d89c257 3804static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3805
a05e8c51 3806static inline void
ea14b57e 3807attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3808static inline void
3809detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3810
46f69fa3 3811static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3812{
3813 return 0;
3814}
3815
7f65ea42
PB
3816static inline void
3817util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3818
3819static inline void
3820util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3821 bool task_sleep) {}
3b1baa64 3822static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3823
38033c37 3824#endif /* CONFIG_SMP */
9d85f21c 3825
ddc97297
PZ
3826static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3827{
3828#ifdef CONFIG_SCHED_DEBUG
3829 s64 d = se->vruntime - cfs_rq->min_vruntime;
3830
3831 if (d < 0)
3832 d = -d;
3833
3834 if (d > 3*sysctl_sched_latency)
ae92882e 3835 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3836#endif
3837}
3838
aeb73b04
PZ
3839static void
3840place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3841{
1af5f730 3842 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3843
2cb8600e
PZ
3844 /*
3845 * The 'current' period is already promised to the current tasks,
3846 * however the extra weight of the new task will slow them down a
3847 * little, place the new task so that it fits in the slot that
3848 * stays open at the end.
3849 */
94dfb5e7 3850 if (initial && sched_feat(START_DEBIT))
f9c0b095 3851 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3852
a2e7a7eb 3853 /* sleeps up to a single latency don't count. */
5ca9880c 3854 if (!initial) {
a2e7a7eb 3855 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3856
a2e7a7eb
MG
3857 /*
3858 * Halve their sleep time's effect, to allow
3859 * for a gentler effect of sleepers:
3860 */
3861 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3862 thresh >>= 1;
51e0304c 3863
a2e7a7eb 3864 vruntime -= thresh;
aeb73b04
PZ
3865 }
3866
b5d9d734 3867 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3868 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3869}
3870
d3d9dc33
PT
3871static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3872
cb251765
MG
3873static inline void check_schedstat_required(void)
3874{
3875#ifdef CONFIG_SCHEDSTATS
3876 if (schedstat_enabled())
3877 return;
3878
3879 /* Force schedstat enabled if a dependent tracepoint is active */
3880 if (trace_sched_stat_wait_enabled() ||
3881 trace_sched_stat_sleep_enabled() ||
3882 trace_sched_stat_iowait_enabled() ||
3883 trace_sched_stat_blocked_enabled() ||
3884 trace_sched_stat_runtime_enabled()) {
eda8dca5 3885 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3886 "stat_blocked and stat_runtime require the "
f67abed5 3887 "kernel parameter schedstats=enable or "
cb251765
MG
3888 "kernel.sched_schedstats=1\n");
3889 }
3890#endif
3891}
3892
b5179ac7
PZ
3893
3894/*
3895 * MIGRATION
3896 *
3897 * dequeue
3898 * update_curr()
3899 * update_min_vruntime()
3900 * vruntime -= min_vruntime
3901 *
3902 * enqueue
3903 * update_curr()
3904 * update_min_vruntime()
3905 * vruntime += min_vruntime
3906 *
3907 * this way the vruntime transition between RQs is done when both
3908 * min_vruntime are up-to-date.
3909 *
3910 * WAKEUP (remote)
3911 *
59efa0ba 3912 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3913 * vruntime -= min_vruntime
3914 *
3915 * enqueue
3916 * update_curr()
3917 * update_min_vruntime()
3918 * vruntime += min_vruntime
3919 *
3920 * this way we don't have the most up-to-date min_vruntime on the originating
3921 * CPU and an up-to-date min_vruntime on the destination CPU.
3922 */
3923
bf0f6f24 3924static void
88ec22d3 3925enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3926{
2f950354
PZ
3927 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3928 bool curr = cfs_rq->curr == se;
3929
88ec22d3 3930 /*
2f950354
PZ
3931 * If we're the current task, we must renormalise before calling
3932 * update_curr().
88ec22d3 3933 */
2f950354 3934 if (renorm && curr)
88ec22d3
PZ
3935 se->vruntime += cfs_rq->min_vruntime;
3936
2f950354
PZ
3937 update_curr(cfs_rq);
3938
bf0f6f24 3939 /*
2f950354
PZ
3940 * Otherwise, renormalise after, such that we're placed at the current
3941 * moment in time, instead of some random moment in the past. Being
3942 * placed in the past could significantly boost this task to the
3943 * fairness detriment of existing tasks.
bf0f6f24 3944 */
2f950354
PZ
3945 if (renorm && !curr)
3946 se->vruntime += cfs_rq->min_vruntime;
3947
89ee048f
VG
3948 /*
3949 * When enqueuing a sched_entity, we must:
3950 * - Update loads to have both entity and cfs_rq synced with now.
3951 * - Add its load to cfs_rq->runnable_avg
3952 * - For group_entity, update its weight to reflect the new share of
3953 * its group cfs_rq
3954 * - Add its new weight to cfs_rq->load.weight
3955 */
b382a531 3956 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3957 update_cfs_group(se);
b5b3e35f 3958 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3959 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3960
1a3d027c 3961 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3962 place_entity(cfs_rq, se, 0);
bf0f6f24 3963
cb251765 3964 check_schedstat_required();
4fa8d299
JP
3965 update_stats_enqueue(cfs_rq, se, flags);
3966 check_spread(cfs_rq, se);
2f950354 3967 if (!curr)
83b699ed 3968 __enqueue_entity(cfs_rq, se);
2069dd75 3969 se->on_rq = 1;
3d4b47b4 3970
d3d9dc33 3971 if (cfs_rq->nr_running == 1) {
3d4b47b4 3972 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3973 check_enqueue_throttle(cfs_rq);
3974 }
bf0f6f24
IM
3975}
3976
2c13c919 3977static void __clear_buddies_last(struct sched_entity *se)
2002c695 3978{
2c13c919
RR
3979 for_each_sched_entity(se) {
3980 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3981 if (cfs_rq->last != se)
2c13c919 3982 break;
f1044799
PZ
3983
3984 cfs_rq->last = NULL;
2c13c919
RR
3985 }
3986}
2002c695 3987
2c13c919
RR
3988static void __clear_buddies_next(struct sched_entity *se)
3989{
3990 for_each_sched_entity(se) {
3991 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3992 if (cfs_rq->next != se)
2c13c919 3993 break;
f1044799
PZ
3994
3995 cfs_rq->next = NULL;
2c13c919 3996 }
2002c695
PZ
3997}
3998
ac53db59
RR
3999static void __clear_buddies_skip(struct sched_entity *se)
4000{
4001 for_each_sched_entity(se) {
4002 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4003 if (cfs_rq->skip != se)
ac53db59 4004 break;
f1044799
PZ
4005
4006 cfs_rq->skip = NULL;
ac53db59
RR
4007 }
4008}
4009
a571bbea
PZ
4010static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4011{
2c13c919
RR
4012 if (cfs_rq->last == se)
4013 __clear_buddies_last(se);
4014
4015 if (cfs_rq->next == se)
4016 __clear_buddies_next(se);
ac53db59
RR
4017
4018 if (cfs_rq->skip == se)
4019 __clear_buddies_skip(se);
a571bbea
PZ
4020}
4021
6c16a6dc 4022static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4023
bf0f6f24 4024static void
371fd7e7 4025dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4026{
a2a2d680
DA
4027 /*
4028 * Update run-time statistics of the 'current'.
4029 */
4030 update_curr(cfs_rq);
89ee048f
VG
4031
4032 /*
4033 * When dequeuing a sched_entity, we must:
4034 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
4035 * - Subtract its load from the cfs_rq->runnable_avg.
4036 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4037 * - For group entity, update its weight to reflect the new share
4038 * of its group cfs_rq.
4039 */
88c0616e 4040 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4041 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4042
4fa8d299 4043 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4044
2002c695 4045 clear_buddies(cfs_rq, se);
4793241b 4046
83b699ed 4047 if (se != cfs_rq->curr)
30cfdcfc 4048 __dequeue_entity(cfs_rq, se);
17bc14b7 4049 se->on_rq = 0;
30cfdcfc 4050 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4051
4052 /*
b60205c7
PZ
4053 * Normalize after update_curr(); which will also have moved
4054 * min_vruntime if @se is the one holding it back. But before doing
4055 * update_min_vruntime() again, which will discount @se's position and
4056 * can move min_vruntime forward still more.
88ec22d3 4057 */
371fd7e7 4058 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4059 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4060
d8b4986d
PT
4061 /* return excess runtime on last dequeue */
4062 return_cfs_rq_runtime(cfs_rq);
4063
1ea6c46a 4064 update_cfs_group(se);
b60205c7
PZ
4065
4066 /*
4067 * Now advance min_vruntime if @se was the entity holding it back,
4068 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4069 * put back on, and if we advance min_vruntime, we'll be placed back
4070 * further than we started -- ie. we'll be penalized.
4071 */
9845c49c 4072 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4073 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4074}
4075
4076/*
4077 * Preempt the current task with a newly woken task if needed:
4078 */
7c92e54f 4079static void
2e09bf55 4080check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4081{
11697830 4082 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4083 struct sched_entity *se;
4084 s64 delta;
11697830 4085
6d0f0ebd 4086 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4087 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4088 if (delta_exec > ideal_runtime) {
8875125e 4089 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4090 /*
4091 * The current task ran long enough, ensure it doesn't get
4092 * re-elected due to buddy favours.
4093 */
4094 clear_buddies(cfs_rq, curr);
f685ceac
MG
4095 return;
4096 }
4097
4098 /*
4099 * Ensure that a task that missed wakeup preemption by a
4100 * narrow margin doesn't have to wait for a full slice.
4101 * This also mitigates buddy induced latencies under load.
4102 */
f685ceac
MG
4103 if (delta_exec < sysctl_sched_min_granularity)
4104 return;
4105
f4cfb33e
WX
4106 se = __pick_first_entity(cfs_rq);
4107 delta = curr->vruntime - se->vruntime;
f685ceac 4108
f4cfb33e
WX
4109 if (delta < 0)
4110 return;
d7d82944 4111
f4cfb33e 4112 if (delta > ideal_runtime)
8875125e 4113 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4114}
4115
83b699ed 4116static void
8494f412 4117set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4118{
83b699ed
SV
4119 /* 'current' is not kept within the tree. */
4120 if (se->on_rq) {
4121 /*
4122 * Any task has to be enqueued before it get to execute on
4123 * a CPU. So account for the time it spent waiting on the
4124 * runqueue.
4125 */
4fa8d299 4126 update_stats_wait_end(cfs_rq, se);
83b699ed 4127 __dequeue_entity(cfs_rq, se);
88c0616e 4128 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4129 }
4130
79303e9e 4131 update_stats_curr_start(cfs_rq, se);
429d43bc 4132 cfs_rq->curr = se;
4fa8d299 4133
eba1ed4b
IM
4134 /*
4135 * Track our maximum slice length, if the CPU's load is at
4136 * least twice that of our own weight (i.e. dont track it
4137 * when there are only lesser-weight tasks around):
4138 */
f2bedc47
DE
4139 if (schedstat_enabled() &&
4140 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4141 schedstat_set(se->statistics.slice_max,
4142 max((u64)schedstat_val(se->statistics.slice_max),
4143 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4144 }
4fa8d299 4145
4a55b450 4146 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4147}
4148
3f3a4904
PZ
4149static int
4150wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4151
ac53db59
RR
4152/*
4153 * Pick the next process, keeping these things in mind, in this order:
4154 * 1) keep things fair between processes/task groups
4155 * 2) pick the "next" process, since someone really wants that to run
4156 * 3) pick the "last" process, for cache locality
4157 * 4) do not run the "skip" process, if something else is available
4158 */
678d5718
PZ
4159static struct sched_entity *
4160pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4161{
678d5718
PZ
4162 struct sched_entity *left = __pick_first_entity(cfs_rq);
4163 struct sched_entity *se;
4164
4165 /*
4166 * If curr is set we have to see if its left of the leftmost entity
4167 * still in the tree, provided there was anything in the tree at all.
4168 */
4169 if (!left || (curr && entity_before(curr, left)))
4170 left = curr;
4171
4172 se = left; /* ideally we run the leftmost entity */
f4b6755f 4173
ac53db59
RR
4174 /*
4175 * Avoid running the skip buddy, if running something else can
4176 * be done without getting too unfair.
4177 */
4178 if (cfs_rq->skip == se) {
678d5718
PZ
4179 struct sched_entity *second;
4180
4181 if (se == curr) {
4182 second = __pick_first_entity(cfs_rq);
4183 } else {
4184 second = __pick_next_entity(se);
4185 if (!second || (curr && entity_before(curr, second)))
4186 second = curr;
4187 }
4188
ac53db59
RR
4189 if (second && wakeup_preempt_entity(second, left) < 1)
4190 se = second;
4191 }
aa2ac252 4192
f685ceac
MG
4193 /*
4194 * Prefer last buddy, try to return the CPU to a preempted task.
4195 */
4196 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4197 se = cfs_rq->last;
4198
ac53db59
RR
4199 /*
4200 * Someone really wants this to run. If it's not unfair, run it.
4201 */
4202 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4203 se = cfs_rq->next;
4204
f685ceac 4205 clear_buddies(cfs_rq, se);
4793241b
PZ
4206
4207 return se;
aa2ac252
PZ
4208}
4209
678d5718 4210static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4211
ab6cde26 4212static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4213{
4214 /*
4215 * If still on the runqueue then deactivate_task()
4216 * was not called and update_curr() has to be done:
4217 */
4218 if (prev->on_rq)
b7cc0896 4219 update_curr(cfs_rq);
bf0f6f24 4220
d3d9dc33
PT
4221 /* throttle cfs_rqs exceeding runtime */
4222 check_cfs_rq_runtime(cfs_rq);
4223
4fa8d299 4224 check_spread(cfs_rq, prev);
cb251765 4225
30cfdcfc 4226 if (prev->on_rq) {
4fa8d299 4227 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4228 /* Put 'current' back into the tree. */
4229 __enqueue_entity(cfs_rq, prev);
9d85f21c 4230 /* in !on_rq case, update occurred at dequeue */
88c0616e 4231 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4232 }
429d43bc 4233 cfs_rq->curr = NULL;
bf0f6f24
IM
4234}
4235
8f4d37ec
PZ
4236static void
4237entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4238{
bf0f6f24 4239 /*
30cfdcfc 4240 * Update run-time statistics of the 'current'.
bf0f6f24 4241 */
30cfdcfc 4242 update_curr(cfs_rq);
bf0f6f24 4243
9d85f21c
PT
4244 /*
4245 * Ensure that runnable average is periodically updated.
4246 */
88c0616e 4247 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4248 update_cfs_group(curr);
9d85f21c 4249
8f4d37ec
PZ
4250#ifdef CONFIG_SCHED_HRTICK
4251 /*
4252 * queued ticks are scheduled to match the slice, so don't bother
4253 * validating it and just reschedule.
4254 */
983ed7a6 4255 if (queued) {
8875125e 4256 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4257 return;
4258 }
8f4d37ec
PZ
4259 /*
4260 * don't let the period tick interfere with the hrtick preemption
4261 */
4262 if (!sched_feat(DOUBLE_TICK) &&
4263 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4264 return;
4265#endif
4266
2c2efaed 4267 if (cfs_rq->nr_running > 1)
2e09bf55 4268 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4269}
4270
ab84d31e
PT
4271
4272/**************************************************
4273 * CFS bandwidth control machinery
4274 */
4275
4276#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4277
e9666d10 4278#ifdef CONFIG_JUMP_LABEL
c5905afb 4279static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4280
4281static inline bool cfs_bandwidth_used(void)
4282{
c5905afb 4283 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4284}
4285
1ee14e6c 4286void cfs_bandwidth_usage_inc(void)
029632fb 4287{
ce48c146 4288 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4289}
4290
4291void cfs_bandwidth_usage_dec(void)
4292{
ce48c146 4293 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4294}
e9666d10 4295#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4296static bool cfs_bandwidth_used(void)
4297{
4298 return true;
4299}
4300
1ee14e6c
BS
4301void cfs_bandwidth_usage_inc(void) {}
4302void cfs_bandwidth_usage_dec(void) {}
e9666d10 4303#endif /* CONFIG_JUMP_LABEL */
029632fb 4304
ab84d31e
PT
4305/*
4306 * default period for cfs group bandwidth.
4307 * default: 0.1s, units: nanoseconds
4308 */
4309static inline u64 default_cfs_period(void)
4310{
4311 return 100000000ULL;
4312}
ec12cb7f
PT
4313
4314static inline u64 sched_cfs_bandwidth_slice(void)
4315{
4316 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4317}
4318
a9cf55b2
PT
4319/*
4320 * Replenish runtime according to assigned quota and update expiration time.
4321 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4322 * additional synchronization around rq->lock.
4323 *
4324 * requires cfs_b->lock
4325 */
029632fb 4326void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4327{
4328 u64 now;
4329
4330 if (cfs_b->quota == RUNTIME_INF)
4331 return;
4332
4333 now = sched_clock_cpu(smp_processor_id());
4334 cfs_b->runtime = cfs_b->quota;
4335 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4336 cfs_b->expires_seq++;
a9cf55b2
PT
4337}
4338
029632fb
PZ
4339static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4340{
4341 return &tg->cfs_bandwidth;
4342}
4343
f1b17280
PT
4344/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4345static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4346{
4347 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4348 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4349
78becc27 4350 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4351}
4352
85dac906
PT
4353/* returns 0 on failure to allocate runtime */
4354static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4355{
4356 struct task_group *tg = cfs_rq->tg;
4357 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4358 u64 amount = 0, min_amount, expires;
512ac999 4359 int expires_seq;
ec12cb7f
PT
4360
4361 /* note: this is a positive sum as runtime_remaining <= 0 */
4362 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4363
4364 raw_spin_lock(&cfs_b->lock);
4365 if (cfs_b->quota == RUNTIME_INF)
4366 amount = min_amount;
58088ad0 4367 else {
77a4d1a1 4368 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4369
4370 if (cfs_b->runtime > 0) {
4371 amount = min(cfs_b->runtime, min_amount);
4372 cfs_b->runtime -= amount;
4373 cfs_b->idle = 0;
4374 }
ec12cb7f 4375 }
512ac999 4376 expires_seq = cfs_b->expires_seq;
a9cf55b2 4377 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4378 raw_spin_unlock(&cfs_b->lock);
4379
4380 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4381 /*
4382 * we may have advanced our local expiration to account for allowed
4383 * spread between our sched_clock and the one on which runtime was
4384 * issued.
4385 */
512ac999
XP
4386 if (cfs_rq->expires_seq != expires_seq) {
4387 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4388 cfs_rq->runtime_expires = expires;
512ac999 4389 }
85dac906
PT
4390
4391 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4392}
4393
a9cf55b2
PT
4394/*
4395 * Note: This depends on the synchronization provided by sched_clock and the
4396 * fact that rq->clock snapshots this value.
4397 */
4398static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4399{
a9cf55b2 4400 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4401
4402 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4403 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4404 return;
4405
a9cf55b2
PT
4406 if (cfs_rq->runtime_remaining < 0)
4407 return;
4408
4409 /*
4410 * If the local deadline has passed we have to consider the
4411 * possibility that our sched_clock is 'fast' and the global deadline
4412 * has not truly expired.
4413 *
4414 * Fortunately we can check determine whether this the case by checking
512ac999 4415 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4416 */
512ac999 4417 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4418 /* extend local deadline, drift is bounded above by 2 ticks */
4419 cfs_rq->runtime_expires += TICK_NSEC;
4420 } else {
4421 /* global deadline is ahead, expiration has passed */
4422 cfs_rq->runtime_remaining = 0;
4423 }
4424}
4425
9dbdb155 4426static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4427{
4428 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4429 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4430 expire_cfs_rq_runtime(cfs_rq);
4431
4432 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4433 return;
4434
85dac906
PT
4435 /*
4436 * if we're unable to extend our runtime we resched so that the active
4437 * hierarchy can be throttled
4438 */
4439 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4440 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4441}
4442
6c16a6dc 4443static __always_inline
9dbdb155 4444void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4445{
56f570e5 4446 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4447 return;
4448
4449 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4450}
4451
85dac906
PT
4452static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4453{
56f570e5 4454 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4455}
4456
64660c86
PT
4457/* check whether cfs_rq, or any parent, is throttled */
4458static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4459{
56f570e5 4460 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4461}
4462
4463/*
4464 * Ensure that neither of the group entities corresponding to src_cpu or
4465 * dest_cpu are members of a throttled hierarchy when performing group
4466 * load-balance operations.
4467 */
4468static inline int throttled_lb_pair(struct task_group *tg,
4469 int src_cpu, int dest_cpu)
4470{
4471 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4472
4473 src_cfs_rq = tg->cfs_rq[src_cpu];
4474 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4475
4476 return throttled_hierarchy(src_cfs_rq) ||
4477 throttled_hierarchy(dest_cfs_rq);
4478}
4479
64660c86
PT
4480static int tg_unthrottle_up(struct task_group *tg, void *data)
4481{
4482 struct rq *rq = data;
4483 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4484
4485 cfs_rq->throttle_count--;
64660c86 4486 if (!cfs_rq->throttle_count) {
f1b17280 4487 /* adjust cfs_rq_clock_task() */
78becc27 4488 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4489 cfs_rq->throttled_clock_task;
31bc6aea
VG
4490
4491 /* Add cfs_rq with already running entity in the list */
4492 if (cfs_rq->nr_running >= 1)
4493 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4494 }
64660c86
PT
4495
4496 return 0;
4497}
4498
4499static int tg_throttle_down(struct task_group *tg, void *data)
4500{
4501 struct rq *rq = data;
4502 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4503
82958366 4504 /* group is entering throttled state, stop time */
31bc6aea 4505 if (!cfs_rq->throttle_count) {
78becc27 4506 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4507 list_del_leaf_cfs_rq(cfs_rq);
4508 }
64660c86
PT
4509 cfs_rq->throttle_count++;
4510
4511 return 0;
4512}
4513
d3d9dc33 4514static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4515{
4516 struct rq *rq = rq_of(cfs_rq);
4517 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4518 struct sched_entity *se;
4519 long task_delta, dequeue = 1;
77a4d1a1 4520 bool empty;
85dac906
PT
4521
4522 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4523
f1b17280 4524 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4525 rcu_read_lock();
4526 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4527 rcu_read_unlock();
85dac906
PT
4528
4529 task_delta = cfs_rq->h_nr_running;
4530 for_each_sched_entity(se) {
4531 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4532 /* throttled entity or throttle-on-deactivate */
4533 if (!se->on_rq)
4534 break;
4535
4536 if (dequeue)
4537 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4538 qcfs_rq->h_nr_running -= task_delta;
4539
4540 if (qcfs_rq->load.weight)
4541 dequeue = 0;
4542 }
4543
4544 if (!se)
72465447 4545 sub_nr_running(rq, task_delta);
85dac906
PT
4546
4547 cfs_rq->throttled = 1;
78becc27 4548 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4549 raw_spin_lock(&cfs_b->lock);
d49db342 4550 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4551
c06f04c7
BS
4552 /*
4553 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4554 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4555 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4556 */
baa9be4f
PA
4557 if (cfs_b->distribute_running)
4558 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4559 else
4560 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4561
4562 /*
4563 * If we're the first throttled task, make sure the bandwidth
4564 * timer is running.
4565 */
4566 if (empty)
4567 start_cfs_bandwidth(cfs_b);
4568
85dac906
PT
4569 raw_spin_unlock(&cfs_b->lock);
4570}
4571
029632fb 4572void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4573{
4574 struct rq *rq = rq_of(cfs_rq);
4575 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4576 struct sched_entity *se;
4577 int enqueue = 1;
4578 long task_delta;
4579
22b958d8 4580 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4581
4582 cfs_rq->throttled = 0;
1a55af2e
FW
4583
4584 update_rq_clock(rq);
4585
671fd9da 4586 raw_spin_lock(&cfs_b->lock);
78becc27 4587 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4588 list_del_rcu(&cfs_rq->throttled_list);
4589 raw_spin_unlock(&cfs_b->lock);
4590
64660c86
PT
4591 /* update hierarchical throttle state */
4592 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4593
671fd9da
PT
4594 if (!cfs_rq->load.weight)
4595 return;
4596
4597 task_delta = cfs_rq->h_nr_running;
4598 for_each_sched_entity(se) {
4599 if (se->on_rq)
4600 enqueue = 0;
4601
4602 cfs_rq = cfs_rq_of(se);
4603 if (enqueue)
4604 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4605 cfs_rq->h_nr_running += task_delta;
4606
4607 if (cfs_rq_throttled(cfs_rq))
4608 break;
4609 }
4610
31bc6aea
VG
4611 assert_list_leaf_cfs_rq(rq);
4612
671fd9da 4613 if (!se)
72465447 4614 add_nr_running(rq, task_delta);
671fd9da 4615
97fb7a0a 4616 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4617 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4618 resched_curr(rq);
671fd9da
PT
4619}
4620
4621static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4622 u64 remaining, u64 expires)
4623{
4624 struct cfs_rq *cfs_rq;
c06f04c7
BS
4625 u64 runtime;
4626 u64 starting_runtime = remaining;
671fd9da
PT
4627
4628 rcu_read_lock();
4629 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4630 throttled_list) {
4631 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4632 struct rq_flags rf;
671fd9da 4633
c0ad4aa4 4634 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4635 if (!cfs_rq_throttled(cfs_rq))
4636 goto next;
4637
4638 runtime = -cfs_rq->runtime_remaining + 1;
4639 if (runtime > remaining)
4640 runtime = remaining;
4641 remaining -= runtime;
4642
4643 cfs_rq->runtime_remaining += runtime;
4644 cfs_rq->runtime_expires = expires;
4645
4646 /* we check whether we're throttled above */
4647 if (cfs_rq->runtime_remaining > 0)
4648 unthrottle_cfs_rq(cfs_rq);
4649
4650next:
c0ad4aa4 4651 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4652
4653 if (!remaining)
4654 break;
4655 }
4656 rcu_read_unlock();
4657
c06f04c7 4658 return starting_runtime - remaining;
671fd9da
PT
4659}
4660
58088ad0
PT
4661/*
4662 * Responsible for refilling a task_group's bandwidth and unthrottling its
4663 * cfs_rqs as appropriate. If there has been no activity within the last
4664 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4665 * used to track this state.
4666 */
c0ad4aa4 4667static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4668{
671fd9da 4669 u64 runtime, runtime_expires;
51f2176d 4670 int throttled;
58088ad0 4671
58088ad0
PT
4672 /* no need to continue the timer with no bandwidth constraint */
4673 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4674 goto out_deactivate;
58088ad0 4675
671fd9da 4676 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4677 cfs_b->nr_periods += overrun;
671fd9da 4678
51f2176d
BS
4679 /*
4680 * idle depends on !throttled (for the case of a large deficit), and if
4681 * we're going inactive then everything else can be deferred
4682 */
4683 if (cfs_b->idle && !throttled)
4684 goto out_deactivate;
a9cf55b2
PT
4685
4686 __refill_cfs_bandwidth_runtime(cfs_b);
4687
671fd9da
PT
4688 if (!throttled) {
4689 /* mark as potentially idle for the upcoming period */
4690 cfs_b->idle = 1;
51f2176d 4691 return 0;
671fd9da
PT
4692 }
4693
e8da1b18
NR
4694 /* account preceding periods in which throttling occurred */
4695 cfs_b->nr_throttled += overrun;
4696
671fd9da 4697 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4698
4699 /*
c06f04c7
BS
4700 * This check is repeated as we are holding onto the new bandwidth while
4701 * we unthrottle. This can potentially race with an unthrottled group
4702 * trying to acquire new bandwidth from the global pool. This can result
4703 * in us over-using our runtime if it is all used during this loop, but
4704 * only by limited amounts in that extreme case.
671fd9da 4705 */
baa9be4f 4706 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4707 runtime = cfs_b->runtime;
baa9be4f 4708 cfs_b->distribute_running = 1;
c0ad4aa4 4709 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da
PT
4710 /* we can't nest cfs_b->lock while distributing bandwidth */
4711 runtime = distribute_cfs_runtime(cfs_b, runtime,
4712 runtime_expires);
c0ad4aa4 4713 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4714
baa9be4f 4715 cfs_b->distribute_running = 0;
671fd9da 4716 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4717
b5c0ce7b 4718 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4719 }
58088ad0 4720
671fd9da
PT
4721 /*
4722 * While we are ensured activity in the period following an
4723 * unthrottle, this also covers the case in which the new bandwidth is
4724 * insufficient to cover the existing bandwidth deficit. (Forcing the
4725 * timer to remain active while there are any throttled entities.)
4726 */
4727 cfs_b->idle = 0;
58088ad0 4728
51f2176d
BS
4729 return 0;
4730
4731out_deactivate:
51f2176d 4732 return 1;
58088ad0 4733}
d3d9dc33 4734
d8b4986d
PT
4735/* a cfs_rq won't donate quota below this amount */
4736static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4737/* minimum remaining period time to redistribute slack quota */
4738static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4739/* how long we wait to gather additional slack before distributing */
4740static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4741
db06e78c
BS
4742/*
4743 * Are we near the end of the current quota period?
4744 *
4745 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4746 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4747 * migrate_hrtimers, base is never cleared, so we are fine.
4748 */
d8b4986d
PT
4749static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4750{
4751 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4752 u64 remaining;
4753
4754 /* if the call-back is running a quota refresh is already occurring */
4755 if (hrtimer_callback_running(refresh_timer))
4756 return 1;
4757
4758 /* is a quota refresh about to occur? */
4759 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4760 if (remaining < min_expire)
4761 return 1;
4762
4763 return 0;
4764}
4765
4766static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4767{
4768 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4769
4770 /* if there's a quota refresh soon don't bother with slack */
4771 if (runtime_refresh_within(cfs_b, min_left))
4772 return;
4773
66567fcb 4774 /* don't push forwards an existing deferred unthrottle */
4775 if (cfs_b->slack_started)
4776 return;
4777 cfs_b->slack_started = true;
4778
4cfafd30
PZ
4779 hrtimer_start(&cfs_b->slack_timer,
4780 ns_to_ktime(cfs_bandwidth_slack_period),
4781 HRTIMER_MODE_REL);
d8b4986d
PT
4782}
4783
4784/* we know any runtime found here is valid as update_curr() precedes return */
4785static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4786{
4787 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4788 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4789
4790 if (slack_runtime <= 0)
4791 return;
4792
4793 raw_spin_lock(&cfs_b->lock);
4794 if (cfs_b->quota != RUNTIME_INF &&
4795 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4796 cfs_b->runtime += slack_runtime;
4797
4798 /* we are under rq->lock, defer unthrottling using a timer */
4799 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4800 !list_empty(&cfs_b->throttled_cfs_rq))
4801 start_cfs_slack_bandwidth(cfs_b);
4802 }
4803 raw_spin_unlock(&cfs_b->lock);
4804
4805 /* even if it's not valid for return we don't want to try again */
4806 cfs_rq->runtime_remaining -= slack_runtime;
4807}
4808
4809static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4810{
56f570e5
PT
4811 if (!cfs_bandwidth_used())
4812 return;
4813
fccfdc6f 4814 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4815 return;
4816
4817 __return_cfs_rq_runtime(cfs_rq);
4818}
4819
4820/*
4821 * This is done with a timer (instead of inline with bandwidth return) since
4822 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4823 */
4824static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4825{
4826 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4827 unsigned long flags;
d8b4986d
PT
4828 u64 expires;
4829
4830 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4831 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 4832 cfs_b->slack_started = false;
baa9be4f 4833 if (cfs_b->distribute_running) {
c0ad4aa4 4834 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4835 return;
4836 }
4837
db06e78c 4838 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4839 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4840 return;
db06e78c 4841 }
d8b4986d 4842
c06f04c7 4843 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4844 runtime = cfs_b->runtime;
c06f04c7 4845
d8b4986d 4846 expires = cfs_b->runtime_expires;
baa9be4f
PA
4847 if (runtime)
4848 cfs_b->distribute_running = 1;
4849
c0ad4aa4 4850 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4851
4852 if (!runtime)
4853 return;
4854
4855 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4856
c0ad4aa4 4857 raw_spin_lock_irqsave(&cfs_b->lock, flags);
d8b4986d 4858 if (expires == cfs_b->runtime_expires)
b5c0ce7b 4859 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4860 cfs_b->distribute_running = 0;
c0ad4aa4 4861 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4862}
4863
d3d9dc33
PT
4864/*
4865 * When a group wakes up we want to make sure that its quota is not already
4866 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4867 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4868 */
4869static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4870{
56f570e5
PT
4871 if (!cfs_bandwidth_used())
4872 return;
4873
d3d9dc33
PT
4874 /* an active group must be handled by the update_curr()->put() path */
4875 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4876 return;
4877
4878 /* ensure the group is not already throttled */
4879 if (cfs_rq_throttled(cfs_rq))
4880 return;
4881
4882 /* update runtime allocation */
4883 account_cfs_rq_runtime(cfs_rq, 0);
4884 if (cfs_rq->runtime_remaining <= 0)
4885 throttle_cfs_rq(cfs_rq);
4886}
4887
55e16d30
PZ
4888static void sync_throttle(struct task_group *tg, int cpu)
4889{
4890 struct cfs_rq *pcfs_rq, *cfs_rq;
4891
4892 if (!cfs_bandwidth_used())
4893 return;
4894
4895 if (!tg->parent)
4896 return;
4897
4898 cfs_rq = tg->cfs_rq[cpu];
4899 pcfs_rq = tg->parent->cfs_rq[cpu];
4900
4901 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4902 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4903}
4904
d3d9dc33 4905/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4906static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4907{
56f570e5 4908 if (!cfs_bandwidth_used())
678d5718 4909 return false;
56f570e5 4910
d3d9dc33 4911 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4912 return false;
d3d9dc33
PT
4913
4914 /*
4915 * it's possible for a throttled entity to be forced into a running
4916 * state (e.g. set_curr_task), in this case we're finished.
4917 */
4918 if (cfs_rq_throttled(cfs_rq))
678d5718 4919 return true;
d3d9dc33
PT
4920
4921 throttle_cfs_rq(cfs_rq);
678d5718 4922 return true;
d3d9dc33 4923}
029632fb 4924
029632fb
PZ
4925static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4926{
4927 struct cfs_bandwidth *cfs_b =
4928 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4929
029632fb
PZ
4930 do_sched_cfs_slack_timer(cfs_b);
4931
4932 return HRTIMER_NORESTART;
4933}
4934
2e8e1922
PA
4935extern const u64 max_cfs_quota_period;
4936
029632fb
PZ
4937static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4938{
4939 struct cfs_bandwidth *cfs_b =
4940 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4941 unsigned long flags;
029632fb
PZ
4942 int overrun;
4943 int idle = 0;
2e8e1922 4944 int count = 0;
029632fb 4945
c0ad4aa4 4946 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4947 for (;;) {
77a4d1a1 4948 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4949 if (!overrun)
4950 break;
4951
2e8e1922
PA
4952 if (++count > 3) {
4953 u64 new, old = ktime_to_ns(cfs_b->period);
4954
4955 new = (old * 147) / 128; /* ~115% */
4956 new = min(new, max_cfs_quota_period);
4957
4958 cfs_b->period = ns_to_ktime(new);
4959
4960 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4961 cfs_b->quota *= new;
4962 cfs_b->quota = div64_u64(cfs_b->quota, old);
4963
4964 pr_warn_ratelimited(
4965 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
4966 smp_processor_id(),
4967 div_u64(new, NSEC_PER_USEC),
4968 div_u64(cfs_b->quota, NSEC_PER_USEC));
4969
4970 /* reset count so we don't come right back in here */
4971 count = 0;
4972 }
4973
c0ad4aa4 4974 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 4975 }
4cfafd30
PZ
4976 if (idle)
4977 cfs_b->period_active = 0;
c0ad4aa4 4978 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
4979
4980 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4981}
4982
4983void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4984{
4985 raw_spin_lock_init(&cfs_b->lock);
4986 cfs_b->runtime = 0;
4987 cfs_b->quota = RUNTIME_INF;
4988 cfs_b->period = ns_to_ktime(default_cfs_period());
4989
4990 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4991 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4992 cfs_b->period_timer.function = sched_cfs_period_timer;
4993 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4994 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4995 cfs_b->distribute_running = 0;
66567fcb 4996 cfs_b->slack_started = false;
029632fb
PZ
4997}
4998
4999static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5000{
5001 cfs_rq->runtime_enabled = 0;
5002 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5003}
5004
77a4d1a1 5005void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5006{
f1d1be8a
XP
5007 u64 overrun;
5008
4cfafd30 5009 lockdep_assert_held(&cfs_b->lock);
029632fb 5010
f1d1be8a
XP
5011 if (cfs_b->period_active)
5012 return;
5013
5014 cfs_b->period_active = 1;
5015 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5016 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
5017 cfs_b->expires_seq++;
5018 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5019}
5020
5021static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5022{
7f1a169b
TH
5023 /* init_cfs_bandwidth() was not called */
5024 if (!cfs_b->throttled_cfs_rq.next)
5025 return;
5026
029632fb
PZ
5027 hrtimer_cancel(&cfs_b->period_timer);
5028 hrtimer_cancel(&cfs_b->slack_timer);
5029}
5030
502ce005 5031/*
97fb7a0a 5032 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5033 *
5034 * The race is harmless, since modifying bandwidth settings of unhooked group
5035 * bits doesn't do much.
5036 */
5037
5038/* cpu online calback */
0e59bdae
KT
5039static void __maybe_unused update_runtime_enabled(struct rq *rq)
5040{
502ce005 5041 struct task_group *tg;
0e59bdae 5042
502ce005
PZ
5043 lockdep_assert_held(&rq->lock);
5044
5045 rcu_read_lock();
5046 list_for_each_entry_rcu(tg, &task_groups, list) {
5047 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5048 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5049
5050 raw_spin_lock(&cfs_b->lock);
5051 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5052 raw_spin_unlock(&cfs_b->lock);
5053 }
502ce005 5054 rcu_read_unlock();
0e59bdae
KT
5055}
5056
502ce005 5057/* cpu offline callback */
38dc3348 5058static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5059{
502ce005
PZ
5060 struct task_group *tg;
5061
5062 lockdep_assert_held(&rq->lock);
5063
5064 rcu_read_lock();
5065 list_for_each_entry_rcu(tg, &task_groups, list) {
5066 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5067
029632fb
PZ
5068 if (!cfs_rq->runtime_enabled)
5069 continue;
5070
5071 /*
5072 * clock_task is not advancing so we just need to make sure
5073 * there's some valid quota amount
5074 */
51f2176d 5075 cfs_rq->runtime_remaining = 1;
0e59bdae 5076 /*
97fb7a0a 5077 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5078 * in take_cpu_down(), so we prevent new cfs throttling here.
5079 */
5080 cfs_rq->runtime_enabled = 0;
5081
029632fb
PZ
5082 if (cfs_rq_throttled(cfs_rq))
5083 unthrottle_cfs_rq(cfs_rq);
5084 }
502ce005 5085 rcu_read_unlock();
029632fb
PZ
5086}
5087
5088#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5089
5090static inline bool cfs_bandwidth_used(void)
5091{
5092 return false;
5093}
5094
f1b17280
PT
5095static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5096{
78becc27 5097 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
5098}
5099
9dbdb155 5100static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5101static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5102static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5103static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5104static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5105
5106static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5107{
5108 return 0;
5109}
64660c86
PT
5110
5111static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5112{
5113 return 0;
5114}
5115
5116static inline int throttled_lb_pair(struct task_group *tg,
5117 int src_cpu, int dest_cpu)
5118{
5119 return 0;
5120}
029632fb
PZ
5121
5122void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5123
5124#ifdef CONFIG_FAIR_GROUP_SCHED
5125static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5126#endif
5127
029632fb
PZ
5128static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5129{
5130 return NULL;
5131}
5132static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5133static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5134static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5135
5136#endif /* CONFIG_CFS_BANDWIDTH */
5137
bf0f6f24
IM
5138/**************************************************
5139 * CFS operations on tasks:
5140 */
5141
8f4d37ec
PZ
5142#ifdef CONFIG_SCHED_HRTICK
5143static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5144{
8f4d37ec
PZ
5145 struct sched_entity *se = &p->se;
5146 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5147
9148a3a1 5148 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5149
8bf46a39 5150 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5151 u64 slice = sched_slice(cfs_rq, se);
5152 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5153 s64 delta = slice - ran;
5154
5155 if (delta < 0) {
5156 if (rq->curr == p)
8875125e 5157 resched_curr(rq);
8f4d37ec
PZ
5158 return;
5159 }
31656519 5160 hrtick_start(rq, delta);
8f4d37ec
PZ
5161 }
5162}
a4c2f00f
PZ
5163
5164/*
5165 * called from enqueue/dequeue and updates the hrtick when the
5166 * current task is from our class and nr_running is low enough
5167 * to matter.
5168 */
5169static void hrtick_update(struct rq *rq)
5170{
5171 struct task_struct *curr = rq->curr;
5172
b39e66ea 5173 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5174 return;
5175
5176 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5177 hrtick_start_fair(rq, curr);
5178}
55e12e5e 5179#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5180static inline void
5181hrtick_start_fair(struct rq *rq, struct task_struct *p)
5182{
5183}
a4c2f00f
PZ
5184
5185static inline void hrtick_update(struct rq *rq)
5186{
5187}
8f4d37ec
PZ
5188#endif
5189
2802bf3c
MR
5190#ifdef CONFIG_SMP
5191static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5192
5193static inline bool cpu_overutilized(int cpu)
5194{
5195 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5196}
5197
5198static inline void update_overutilized_status(struct rq *rq)
5199{
f9f240f9 5200 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5201 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5202 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5203 }
2802bf3c
MR
5204}
5205#else
5206static inline void update_overutilized_status(struct rq *rq) { }
5207#endif
5208
bf0f6f24
IM
5209/*
5210 * The enqueue_task method is called before nr_running is
5211 * increased. Here we update the fair scheduling stats and
5212 * then put the task into the rbtree:
5213 */
ea87bb78 5214static void
371fd7e7 5215enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5216{
5217 struct cfs_rq *cfs_rq;
62fb1851 5218 struct sched_entity *se = &p->se;
bf0f6f24 5219
2539fc82
PB
5220 /*
5221 * The code below (indirectly) updates schedutil which looks at
5222 * the cfs_rq utilization to select a frequency.
5223 * Let's add the task's estimated utilization to the cfs_rq's
5224 * estimated utilization, before we update schedutil.
5225 */
5226 util_est_enqueue(&rq->cfs, p);
5227
8c34ab19
RW
5228 /*
5229 * If in_iowait is set, the code below may not trigger any cpufreq
5230 * utilization updates, so do it here explicitly with the IOWAIT flag
5231 * passed.
5232 */
5233 if (p->in_iowait)
674e7541 5234 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5235
bf0f6f24 5236 for_each_sched_entity(se) {
62fb1851 5237 if (se->on_rq)
bf0f6f24
IM
5238 break;
5239 cfs_rq = cfs_rq_of(se);
88ec22d3 5240 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5241
5242 /*
5243 * end evaluation on encountering a throttled cfs_rq
5244 *
5245 * note: in the case of encountering a throttled cfs_rq we will
5246 * post the final h_nr_running increment below.
e210bffd 5247 */
85dac906
PT
5248 if (cfs_rq_throttled(cfs_rq))
5249 break;
953bfcd1 5250 cfs_rq->h_nr_running++;
85dac906 5251
88ec22d3 5252 flags = ENQUEUE_WAKEUP;
bf0f6f24 5253 }
8f4d37ec 5254
2069dd75 5255 for_each_sched_entity(se) {
0f317143 5256 cfs_rq = cfs_rq_of(se);
953bfcd1 5257 cfs_rq->h_nr_running++;
2069dd75 5258
85dac906
PT
5259 if (cfs_rq_throttled(cfs_rq))
5260 break;
5261
88c0616e 5262 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5263 update_cfs_group(se);
2069dd75
PZ
5264 }
5265
2802bf3c 5266 if (!se) {
72465447 5267 add_nr_running(rq, 1);
2802bf3c
MR
5268 /*
5269 * Since new tasks are assigned an initial util_avg equal to
5270 * half of the spare capacity of their CPU, tiny tasks have the
5271 * ability to cross the overutilized threshold, which will
5272 * result in the load balancer ruining all the task placement
5273 * done by EAS. As a way to mitigate that effect, do not account
5274 * for the first enqueue operation of new tasks during the
5275 * overutilized flag detection.
5276 *
5277 * A better way of solving this problem would be to wait for
5278 * the PELT signals of tasks to converge before taking them
5279 * into account, but that is not straightforward to implement,
5280 * and the following generally works well enough in practice.
5281 */
5282 if (flags & ENQUEUE_WAKEUP)
5283 update_overutilized_status(rq);
5284
5285 }
cd126afe 5286
f6783319
VG
5287 if (cfs_bandwidth_used()) {
5288 /*
5289 * When bandwidth control is enabled; the cfs_rq_throttled()
5290 * breaks in the above iteration can result in incomplete
5291 * leaf list maintenance, resulting in triggering the assertion
5292 * below.
5293 */
5294 for_each_sched_entity(se) {
5295 cfs_rq = cfs_rq_of(se);
5296
5297 if (list_add_leaf_cfs_rq(cfs_rq))
5298 break;
5299 }
5300 }
5301
5d299eab
PZ
5302 assert_list_leaf_cfs_rq(rq);
5303
a4c2f00f 5304 hrtick_update(rq);
bf0f6f24
IM
5305}
5306
2f36825b
VP
5307static void set_next_buddy(struct sched_entity *se);
5308
bf0f6f24
IM
5309/*
5310 * The dequeue_task method is called before nr_running is
5311 * decreased. We remove the task from the rbtree and
5312 * update the fair scheduling stats:
5313 */
371fd7e7 5314static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5315{
5316 struct cfs_rq *cfs_rq;
62fb1851 5317 struct sched_entity *se = &p->se;
2f36825b 5318 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5319
5320 for_each_sched_entity(se) {
5321 cfs_rq = cfs_rq_of(se);
371fd7e7 5322 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5323
5324 /*
5325 * end evaluation on encountering a throttled cfs_rq
5326 *
5327 * note: in the case of encountering a throttled cfs_rq we will
5328 * post the final h_nr_running decrement below.
5329 */
5330 if (cfs_rq_throttled(cfs_rq))
5331 break;
953bfcd1 5332 cfs_rq->h_nr_running--;
2069dd75 5333
bf0f6f24 5334 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5335 if (cfs_rq->load.weight) {
754bd598
KK
5336 /* Avoid re-evaluating load for this entity: */
5337 se = parent_entity(se);
2f36825b
VP
5338 /*
5339 * Bias pick_next to pick a task from this cfs_rq, as
5340 * p is sleeping when it is within its sched_slice.
5341 */
754bd598
KK
5342 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5343 set_next_buddy(se);
bf0f6f24 5344 break;
2f36825b 5345 }
371fd7e7 5346 flags |= DEQUEUE_SLEEP;
bf0f6f24 5347 }
8f4d37ec 5348
2069dd75 5349 for_each_sched_entity(se) {
0f317143 5350 cfs_rq = cfs_rq_of(se);
953bfcd1 5351 cfs_rq->h_nr_running--;
2069dd75 5352
85dac906
PT
5353 if (cfs_rq_throttled(cfs_rq))
5354 break;
5355
88c0616e 5356 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5357 update_cfs_group(se);
2069dd75
PZ
5358 }
5359
cd126afe 5360 if (!se)
72465447 5361 sub_nr_running(rq, 1);
cd126afe 5362
7f65ea42 5363 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5364 hrtick_update(rq);
bf0f6f24
IM
5365}
5366
e7693a36 5367#ifdef CONFIG_SMP
10e2f1ac
PZ
5368
5369/* Working cpumask for: load_balance, load_balance_newidle. */
5370DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5371DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5372
9fd81dd5 5373#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5374
5375static struct {
5376 cpumask_var_t idle_cpus_mask;
5377 atomic_t nr_cpus;
f643ea22 5378 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5379 unsigned long next_balance; /* in jiffy units */
f643ea22 5380 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5381} nohz ____cacheline_aligned;
5382
9fd81dd5 5383#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5384
a3df0679 5385static unsigned long cpu_runnable_load(struct rq *rq)
7ea241af 5386{
c7132dd6 5387 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5388}
5389
ced549fa 5390static unsigned long capacity_of(int cpu)
029632fb 5391{
ced549fa 5392 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5393}
5394
5395static unsigned long cpu_avg_load_per_task(int cpu)
5396{
5397 struct rq *rq = cpu_rq(cpu);
316c1608 5398 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
a3df0679 5399 unsigned long load_avg = cpu_runnable_load(rq);
029632fb
PZ
5400
5401 if (nr_running)
b92486cb 5402 return load_avg / nr_running;
029632fb
PZ
5403
5404 return 0;
5405}
5406
c58d25f3
PZ
5407static void record_wakee(struct task_struct *p)
5408{
5409 /*
5410 * Only decay a single time; tasks that have less then 1 wakeup per
5411 * jiffy will not have built up many flips.
5412 */
5413 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5414 current->wakee_flips >>= 1;
5415 current->wakee_flip_decay_ts = jiffies;
5416 }
5417
5418 if (current->last_wakee != p) {
5419 current->last_wakee = p;
5420 current->wakee_flips++;
5421 }
5422}
5423
63b0e9ed
MG
5424/*
5425 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5426 *
63b0e9ed 5427 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5428 * at a frequency roughly N times higher than one of its wakees.
5429 *
5430 * In order to determine whether we should let the load spread vs consolidating
5431 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5432 * partner, and a factor of lls_size higher frequency in the other.
5433 *
5434 * With both conditions met, we can be relatively sure that the relationship is
5435 * non-monogamous, with partner count exceeding socket size.
5436 *
5437 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5438 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5439 * socket size.
63b0e9ed 5440 */
62470419
MW
5441static int wake_wide(struct task_struct *p)
5442{
63b0e9ed
MG
5443 unsigned int master = current->wakee_flips;
5444 unsigned int slave = p->wakee_flips;
7d9ffa89 5445 int factor = this_cpu_read(sd_llc_size);
62470419 5446
63b0e9ed
MG
5447 if (master < slave)
5448 swap(master, slave);
5449 if (slave < factor || master < slave * factor)
5450 return 0;
5451 return 1;
62470419
MW
5452}
5453
90001d67 5454/*
d153b153
PZ
5455 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5456 * soonest. For the purpose of speed we only consider the waking and previous
5457 * CPU.
90001d67 5458 *
7332dec0
MG
5459 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5460 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5461 *
5462 * wake_affine_weight() - considers the weight to reflect the average
5463 * scheduling latency of the CPUs. This seems to work
5464 * for the overloaded case.
90001d67 5465 */
3b76c4a3 5466static int
89a55f56 5467wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5468{
7332dec0
MG
5469 /*
5470 * If this_cpu is idle, it implies the wakeup is from interrupt
5471 * context. Only allow the move if cache is shared. Otherwise an
5472 * interrupt intensive workload could force all tasks onto one
5473 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5474 *
5475 * If the prev_cpu is idle and cache affine then avoid a migration.
5476 * There is no guarantee that the cache hot data from an interrupt
5477 * is more important than cache hot data on the prev_cpu and from
5478 * a cpufreq perspective, it's better to have higher utilisation
5479 * on one CPU.
7332dec0 5480 */
943d355d
RJ
5481 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5482 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5483
d153b153 5484 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5485 return this_cpu;
90001d67 5486
3b76c4a3 5487 return nr_cpumask_bits;
90001d67
PZ
5488}
5489
3b76c4a3 5490static int
f2cdd9cc
PZ
5491wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5492 int this_cpu, int prev_cpu, int sync)
90001d67 5493{
90001d67
PZ
5494 s64 this_eff_load, prev_eff_load;
5495 unsigned long task_load;
5496
a3df0679 5497 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
90001d67 5498
90001d67
PZ
5499 if (sync) {
5500 unsigned long current_load = task_h_load(current);
5501
f2cdd9cc 5502 if (current_load > this_eff_load)
3b76c4a3 5503 return this_cpu;
90001d67 5504
f2cdd9cc 5505 this_eff_load -= current_load;
90001d67
PZ
5506 }
5507
90001d67
PZ
5508 task_load = task_h_load(p);
5509
f2cdd9cc
PZ
5510 this_eff_load += task_load;
5511 if (sched_feat(WA_BIAS))
5512 this_eff_load *= 100;
5513 this_eff_load *= capacity_of(prev_cpu);
90001d67 5514
a3df0679 5515 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5516 prev_eff_load -= task_load;
5517 if (sched_feat(WA_BIAS))
5518 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5519 prev_eff_load *= capacity_of(this_cpu);
90001d67 5520
082f764a
MG
5521 /*
5522 * If sync, adjust the weight of prev_eff_load such that if
5523 * prev_eff == this_eff that select_idle_sibling() will consider
5524 * stacking the wakee on top of the waker if no other CPU is
5525 * idle.
5526 */
5527 if (sync)
5528 prev_eff_load += 1;
5529
5530 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5531}
5532
772bd008 5533static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5534 int this_cpu, int prev_cpu, int sync)
098fb9db 5535{
3b76c4a3 5536 int target = nr_cpumask_bits;
098fb9db 5537
89a55f56 5538 if (sched_feat(WA_IDLE))
3b76c4a3 5539 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5540
3b76c4a3
MG
5541 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5542 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5543
ae92882e 5544 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5545 if (target == nr_cpumask_bits)
5546 return prev_cpu;
098fb9db 5547
3b76c4a3
MG
5548 schedstat_inc(sd->ttwu_move_affine);
5549 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5550 return target;
098fb9db
IM
5551}
5552
c469933e 5553static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5554
c469933e 5555static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5556{
c469933e 5557 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5558}
5559
aaee1203
PZ
5560/*
5561 * find_idlest_group finds and returns the least busy CPU group within the
5562 * domain.
6fee85cc
BJ
5563 *
5564 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5565 */
5566static struct sched_group *
78e7ed53 5567find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5568 int this_cpu, int sd_flag)
e7693a36 5569{
b3bd3de6 5570 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5571 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5572 unsigned long min_runnable_load = ULONG_MAX;
5573 unsigned long this_runnable_load = ULONG_MAX;
5574 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5575 unsigned long most_spare = 0, this_spare = 0;
6b94780e
VG
5576 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5577 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5578 (sd->imbalance_pct-100) / 100;
e7693a36 5579
aaee1203 5580 do {
6b94780e
VG
5581 unsigned long load, avg_load, runnable_load;
5582 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5583 int local_group;
5584 int i;
e7693a36 5585
aaee1203 5586 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5587 if (!cpumask_intersects(sched_group_span(group),
3bd37062 5588 p->cpus_ptr))
aaee1203
PZ
5589 continue;
5590
5591 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5592 sched_group_span(group));
aaee1203 5593
6a0b19c0
MR
5594 /*
5595 * Tally up the load of all CPUs in the group and find
5596 * the group containing the CPU with most spare capacity.
5597 */
aaee1203 5598 avg_load = 0;
6b94780e 5599 runnable_load = 0;
6a0b19c0 5600 max_spare_cap = 0;
aaee1203 5601
ae4df9d6 5602 for_each_cpu(i, sched_group_span(group)) {
a3df0679 5603 load = cpu_runnable_load(cpu_rq(i));
6b94780e
VG
5604 runnable_load += load;
5605
5606 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5607
c469933e 5608 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5609
5610 if (spare_cap > max_spare_cap)
5611 max_spare_cap = spare_cap;
aaee1203
PZ
5612 }
5613
63b2ca30 5614 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5615 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5616 group->sgc->capacity;
5617 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5618 group->sgc->capacity;
aaee1203
PZ
5619
5620 if (local_group) {
6b94780e
VG
5621 this_runnable_load = runnable_load;
5622 this_avg_load = avg_load;
6a0b19c0
MR
5623 this_spare = max_spare_cap;
5624 } else {
6b94780e
VG
5625 if (min_runnable_load > (runnable_load + imbalance)) {
5626 /*
5627 * The runnable load is significantly smaller
97fb7a0a 5628 * so we can pick this new CPU:
6b94780e
VG
5629 */
5630 min_runnable_load = runnable_load;
5631 min_avg_load = avg_load;
5632 idlest = group;
5633 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5634 (100*min_avg_load > imbalance_scale*avg_load)) {
5635 /*
5636 * The runnable loads are close so take the
97fb7a0a 5637 * blocked load into account through avg_load:
6b94780e
VG
5638 */
5639 min_avg_load = avg_load;
6a0b19c0
MR
5640 idlest = group;
5641 }
5642
5643 if (most_spare < max_spare_cap) {
5644 most_spare = max_spare_cap;
5645 most_spare_sg = group;
5646 }
aaee1203
PZ
5647 }
5648 } while (group = group->next, group != sd->groups);
5649
6a0b19c0
MR
5650 /*
5651 * The cross-over point between using spare capacity or least load
5652 * is too conservative for high utilization tasks on partially
5653 * utilized systems if we require spare_capacity > task_util(p),
5654 * so we allow for some task stuffing by using
5655 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5656 *
5657 * Spare capacity can't be used for fork because the utilization has
5658 * not been set yet, we must first select a rq to compute the initial
5659 * utilization.
6a0b19c0 5660 */
f519a3f1
VG
5661 if (sd_flag & SD_BALANCE_FORK)
5662 goto skip_spare;
5663
6a0b19c0 5664 if (this_spare > task_util(p) / 2 &&
6b94780e 5665 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5666 return NULL;
6b94780e
VG
5667
5668 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5669 return most_spare_sg;
5670
f519a3f1 5671skip_spare:
6b94780e
VG
5672 if (!idlest)
5673 return NULL;
5674
2c833627
MG
5675 /*
5676 * When comparing groups across NUMA domains, it's possible for the
5677 * local domain to be very lightly loaded relative to the remote
5678 * domains but "imbalance" skews the comparison making remote CPUs
5679 * look much more favourable. When considering cross-domain, add
5680 * imbalance to the runnable load on the remote node and consider
5681 * staying local.
5682 */
5683 if ((sd->flags & SD_NUMA) &&
5684 min_runnable_load + imbalance >= this_runnable_load)
5685 return NULL;
5686
6b94780e 5687 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5688 return NULL;
6b94780e
VG
5689
5690 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5691 (100*this_avg_load < imbalance_scale*min_avg_load))
5692 return NULL;
5693
aaee1203
PZ
5694 return idlest;
5695}
5696
5697/*
97fb7a0a 5698 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5699 */
5700static int
18bd1b4b 5701find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5702{
5703 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5704 unsigned int min_exit_latency = UINT_MAX;
5705 u64 latest_idle_timestamp = 0;
5706 int least_loaded_cpu = this_cpu;
5707 int shallowest_idle_cpu = -1;
aaee1203
PZ
5708 int i;
5709
eaecf41f
MR
5710 /* Check if we have any choice: */
5711 if (group->group_weight == 1)
ae4df9d6 5712 return cpumask_first(sched_group_span(group));
eaecf41f 5713
aaee1203 5714 /* Traverse only the allowed CPUs */
3bd37062 5715 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
943d355d 5716 if (available_idle_cpu(i)) {
83a0a96a
NP
5717 struct rq *rq = cpu_rq(i);
5718 struct cpuidle_state *idle = idle_get_state(rq);
5719 if (idle && idle->exit_latency < min_exit_latency) {
5720 /*
5721 * We give priority to a CPU whose idle state
5722 * has the smallest exit latency irrespective
5723 * of any idle timestamp.
5724 */
5725 min_exit_latency = idle->exit_latency;
5726 latest_idle_timestamp = rq->idle_stamp;
5727 shallowest_idle_cpu = i;
5728 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5729 rq->idle_stamp > latest_idle_timestamp) {
5730 /*
5731 * If equal or no active idle state, then
5732 * the most recently idled CPU might have
5733 * a warmer cache.
5734 */
5735 latest_idle_timestamp = rq->idle_stamp;
5736 shallowest_idle_cpu = i;
5737 }
9f96742a 5738 } else if (shallowest_idle_cpu == -1) {
a3df0679 5739 load = cpu_runnable_load(cpu_rq(i));
18cec7e0 5740 if (load < min_load) {
83a0a96a
NP
5741 min_load = load;
5742 least_loaded_cpu = i;
5743 }
e7693a36
GH
5744 }
5745 }
5746
83a0a96a 5747 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5748}
e7693a36 5749
18bd1b4b
BJ
5750static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5751 int cpu, int prev_cpu, int sd_flag)
5752{
93f50f90 5753 int new_cpu = cpu;
18bd1b4b 5754
3bd37062 5755 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5756 return prev_cpu;
5757
c976a862 5758 /*
c469933e
PB
5759 * We need task's util for capacity_spare_without, sync it up to
5760 * prev_cpu's last_update_time.
c976a862
VK
5761 */
5762 if (!(sd_flag & SD_BALANCE_FORK))
5763 sync_entity_load_avg(&p->se);
5764
18bd1b4b
BJ
5765 while (sd) {
5766 struct sched_group *group;
5767 struct sched_domain *tmp;
5768 int weight;
5769
5770 if (!(sd->flags & sd_flag)) {
5771 sd = sd->child;
5772 continue;
5773 }
5774
5775 group = find_idlest_group(sd, p, cpu, sd_flag);
5776 if (!group) {
5777 sd = sd->child;
5778 continue;
5779 }
5780
5781 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5782 if (new_cpu == cpu) {
97fb7a0a 5783 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5784 sd = sd->child;
5785 continue;
5786 }
5787
97fb7a0a 5788 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5789 cpu = new_cpu;
5790 weight = sd->span_weight;
5791 sd = NULL;
5792 for_each_domain(cpu, tmp) {
5793 if (weight <= tmp->span_weight)
5794 break;
5795 if (tmp->flags & sd_flag)
5796 sd = tmp;
5797 }
18bd1b4b
BJ
5798 }
5799
5800 return new_cpu;
5801}
5802
10e2f1ac 5803#ifdef CONFIG_SCHED_SMT
ba2591a5 5804DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5805EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5806
5807static inline void set_idle_cores(int cpu, int val)
5808{
5809 struct sched_domain_shared *sds;
5810
5811 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5812 if (sds)
5813 WRITE_ONCE(sds->has_idle_cores, val);
5814}
5815
5816static inline bool test_idle_cores(int cpu, bool def)
5817{
5818 struct sched_domain_shared *sds;
5819
5820 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5821 if (sds)
5822 return READ_ONCE(sds->has_idle_cores);
5823
5824 return def;
5825}
5826
5827/*
5828 * Scans the local SMT mask to see if the entire core is idle, and records this
5829 * information in sd_llc_shared->has_idle_cores.
5830 *
5831 * Since SMT siblings share all cache levels, inspecting this limited remote
5832 * state should be fairly cheap.
5833 */
1b568f0a 5834void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5835{
5836 int core = cpu_of(rq);
5837 int cpu;
5838
5839 rcu_read_lock();
5840 if (test_idle_cores(core, true))
5841 goto unlock;
5842
5843 for_each_cpu(cpu, cpu_smt_mask(core)) {
5844 if (cpu == core)
5845 continue;
5846
943d355d 5847 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5848 goto unlock;
5849 }
5850
5851 set_idle_cores(core, 1);
5852unlock:
5853 rcu_read_unlock();
5854}
5855
5856/*
5857 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5858 * there are no idle cores left in the system; tracked through
5859 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5860 */
5861static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5862{
5863 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5864 int core, cpu;
10e2f1ac 5865
1b568f0a
PZ
5866 if (!static_branch_likely(&sched_smt_present))
5867 return -1;
5868
10e2f1ac
PZ
5869 if (!test_idle_cores(target, false))
5870 return -1;
5871
3bd37062 5872 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 5873
c743f0a5 5874 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5875 bool idle = true;
5876
5877 for_each_cpu(cpu, cpu_smt_mask(core)) {
c89d92ed 5878 __cpumask_clear_cpu(cpu, cpus);
943d355d 5879 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5880 idle = false;
5881 }
5882
5883 if (idle)
5884 return core;
5885 }
5886
5887 /*
5888 * Failed to find an idle core; stop looking for one.
5889 */
5890 set_idle_cores(target, 0);
5891
5892 return -1;
5893}
5894
5895/*
5896 * Scan the local SMT mask for idle CPUs.
5897 */
1b5500d7 5898static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5899{
5900 int cpu;
5901
1b568f0a
PZ
5902 if (!static_branch_likely(&sched_smt_present))
5903 return -1;
5904
10e2f1ac 5905 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 5906 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5907 continue;
943d355d 5908 if (available_idle_cpu(cpu))
10e2f1ac
PZ
5909 return cpu;
5910 }
5911
5912 return -1;
5913}
5914
5915#else /* CONFIG_SCHED_SMT */
5916
5917static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5918{
5919 return -1;
5920}
5921
1b5500d7 5922static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5923{
5924 return -1;
5925}
5926
5927#endif /* CONFIG_SCHED_SMT */
5928
5929/*
5930 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5931 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5932 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5933 */
10e2f1ac
PZ
5934static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5935{
9cfb38a7 5936 struct sched_domain *this_sd;
1ad3aaf3 5937 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5938 u64 time, cost;
5939 s64 delta;
1ad3aaf3 5940 int cpu, nr = INT_MAX;
8dc2d993 5941 int this = smp_processor_id();
10e2f1ac 5942
9cfb38a7
WL
5943 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5944 if (!this_sd)
5945 return -1;
5946
10e2f1ac
PZ
5947 /*
5948 * Due to large variance we need a large fuzz factor; hackbench in
5949 * particularly is sensitive here.
5950 */
1ad3aaf3
PZ
5951 avg_idle = this_rq()->avg_idle / 512;
5952 avg_cost = this_sd->avg_scan_cost + 1;
5953
5954 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5955 return -1;
5956
1ad3aaf3
PZ
5957 if (sched_feat(SIS_PROP)) {
5958 u64 span_avg = sd->span_weight * avg_idle;
5959 if (span_avg > 4*avg_cost)
5960 nr = div_u64(span_avg, avg_cost);
5961 else
5962 nr = 4;
5963 }
5964
8dc2d993 5965 time = cpu_clock(this);
10e2f1ac 5966
c743f0a5 5967 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
5968 if (!--nr)
5969 return -1;
3bd37062 5970 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5971 continue;
943d355d 5972 if (available_idle_cpu(cpu))
10e2f1ac
PZ
5973 break;
5974 }
5975
8dc2d993 5976 time = cpu_clock(this) - time;
10e2f1ac
PZ
5977 cost = this_sd->avg_scan_cost;
5978 delta = (s64)(time - cost) / 8;
5979 this_sd->avg_scan_cost += delta;
5980
5981 return cpu;
5982}
5983
5984/*
5985 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5986 */
772bd008 5987static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5988{
99bd5e2f 5989 struct sched_domain *sd;
32e839dd 5990 int i, recent_used_cpu;
a50bde51 5991
943d355d 5992 if (available_idle_cpu(target))
e0a79f52 5993 return target;
99bd5e2f
SS
5994
5995 /*
97fb7a0a 5996 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 5997 */
943d355d 5998 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 5999 return prev;
a50bde51 6000
97fb7a0a 6001 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6002 recent_used_cpu = p->recent_used_cpu;
6003 if (recent_used_cpu != prev &&
6004 recent_used_cpu != target &&
6005 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6006 available_idle_cpu(recent_used_cpu) &&
3bd37062 6007 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6008 /*
6009 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6010 * candidate for the next wake:
32e839dd
MG
6011 */
6012 p->recent_used_cpu = prev;
6013 return recent_used_cpu;
6014 }
6015
518cd623 6016 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6017 if (!sd)
6018 return target;
772bd008 6019
10e2f1ac
PZ
6020 i = select_idle_core(p, sd, target);
6021 if ((unsigned)i < nr_cpumask_bits)
6022 return i;
37407ea7 6023
10e2f1ac
PZ
6024 i = select_idle_cpu(p, sd, target);
6025 if ((unsigned)i < nr_cpumask_bits)
6026 return i;
6027
1b5500d7 6028 i = select_idle_smt(p, target);
10e2f1ac
PZ
6029 if ((unsigned)i < nr_cpumask_bits)
6030 return i;
970e1789 6031
a50bde51
PZ
6032 return target;
6033}
231678b7 6034
f9be3e59
PB
6035/**
6036 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6037 * @cpu: the CPU to get the utilization of
6038 *
6039 * The unit of the return value must be the one of capacity so we can compare
6040 * the utilization with the capacity of the CPU that is available for CFS task
6041 * (ie cpu_capacity).
231678b7
DE
6042 *
6043 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6044 * recent utilization of currently non-runnable tasks on a CPU. It represents
6045 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6046 * capacity_orig is the cpu_capacity available at the highest frequency
6047 * (arch_scale_freq_capacity()).
6048 * The utilization of a CPU converges towards a sum equal to or less than the
6049 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6050 * the running time on this CPU scaled by capacity_curr.
6051 *
f9be3e59
PB
6052 * The estimated utilization of a CPU is defined to be the maximum between its
6053 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6054 * currently RUNNABLE on that CPU.
6055 * This allows to properly represent the expected utilization of a CPU which
6056 * has just got a big task running since a long sleep period. At the same time
6057 * however it preserves the benefits of the "blocked utilization" in
6058 * describing the potential for other tasks waking up on the same CPU.
6059 *
231678b7
DE
6060 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6061 * higher than capacity_orig because of unfortunate rounding in
6062 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6063 * the average stabilizes with the new running time. We need to check that the
6064 * utilization stays within the range of [0..capacity_orig] and cap it if
6065 * necessary. Without utilization capping, a group could be seen as overloaded
6066 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6067 * available capacity. We allow utilization to overshoot capacity_curr (but not
6068 * capacity_orig) as it useful for predicting the capacity required after task
6069 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6070 *
6071 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6072 */
f9be3e59 6073static inline unsigned long cpu_util(int cpu)
8bb5b00c 6074{
f9be3e59
PB
6075 struct cfs_rq *cfs_rq;
6076 unsigned int util;
6077
6078 cfs_rq = &cpu_rq(cpu)->cfs;
6079 util = READ_ONCE(cfs_rq->avg.util_avg);
6080
6081 if (sched_feat(UTIL_EST))
6082 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6083
f9be3e59 6084 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6085}
a50bde51 6086
104cb16d 6087/*
c469933e
PB
6088 * cpu_util_without: compute cpu utilization without any contributions from *p
6089 * @cpu: the CPU which utilization is requested
6090 * @p: the task which utilization should be discounted
6091 *
6092 * The utilization of a CPU is defined by the utilization of tasks currently
6093 * enqueued on that CPU as well as tasks which are currently sleeping after an
6094 * execution on that CPU.
6095 *
6096 * This method returns the utilization of the specified CPU by discounting the
6097 * utilization of the specified task, whenever the task is currently
6098 * contributing to the CPU utilization.
104cb16d 6099 */
c469933e 6100static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6101{
f9be3e59
PB
6102 struct cfs_rq *cfs_rq;
6103 unsigned int util;
104cb16d
MR
6104
6105 /* Task has no contribution or is new */
f9be3e59 6106 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6107 return cpu_util(cpu);
6108
f9be3e59
PB
6109 cfs_rq = &cpu_rq(cpu)->cfs;
6110 util = READ_ONCE(cfs_rq->avg.util_avg);
6111
c469933e 6112 /* Discount task's util from CPU's util */
b5c0ce7b 6113 lsub_positive(&util, task_util(p));
104cb16d 6114
f9be3e59
PB
6115 /*
6116 * Covered cases:
6117 *
6118 * a) if *p is the only task sleeping on this CPU, then:
6119 * cpu_util (== task_util) > util_est (== 0)
6120 * and thus we return:
c469933e 6121 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6122 *
6123 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6124 * IDLE, then:
6125 * cpu_util >= task_util
6126 * cpu_util > util_est (== 0)
6127 * and thus we discount *p's blocked utilization to return:
c469933e 6128 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6129 *
6130 * c) if other tasks are RUNNABLE on that CPU and
6131 * util_est > cpu_util
6132 * then we use util_est since it returns a more restrictive
6133 * estimation of the spare capacity on that CPU, by just
6134 * considering the expected utilization of tasks already
6135 * runnable on that CPU.
6136 *
6137 * Cases a) and b) are covered by the above code, while case c) is
6138 * covered by the following code when estimated utilization is
6139 * enabled.
6140 */
c469933e
PB
6141 if (sched_feat(UTIL_EST)) {
6142 unsigned int estimated =
6143 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6144
6145 /*
6146 * Despite the following checks we still have a small window
6147 * for a possible race, when an execl's select_task_rq_fair()
6148 * races with LB's detach_task():
6149 *
6150 * detach_task()
6151 * p->on_rq = TASK_ON_RQ_MIGRATING;
6152 * ---------------------------------- A
6153 * deactivate_task() \
6154 * dequeue_task() + RaceTime
6155 * util_est_dequeue() /
6156 * ---------------------------------- B
6157 *
6158 * The additional check on "current == p" it's required to
6159 * properly fix the execl regression and it helps in further
6160 * reducing the chances for the above race.
6161 */
b5c0ce7b
PB
6162 if (unlikely(task_on_rq_queued(p) || current == p))
6163 lsub_positive(&estimated, _task_util_est(p));
6164
c469933e
PB
6165 util = max(util, estimated);
6166 }
f9be3e59
PB
6167
6168 /*
6169 * Utilization (estimated) can exceed the CPU capacity, thus let's
6170 * clamp to the maximum CPU capacity to ensure consistency with
6171 * the cpu_util call.
6172 */
6173 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6174}
6175
3273163c
MR
6176/*
6177 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6178 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6179 *
6180 * In that case WAKE_AFFINE doesn't make sense and we'll let
6181 * BALANCE_WAKE sort things out.
6182 */
6183static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6184{
6185 long min_cap, max_cap;
6186
df054e84
MR
6187 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6188 return 0;
6189
3273163c
MR
6190 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6191 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6192
6193 /* Minimum capacity is close to max, no need to abort wake_affine */
6194 if (max_cap - min_cap < max_cap >> 3)
6195 return 0;
6196
104cb16d
MR
6197 /* Bring task utilization in sync with prev_cpu */
6198 sync_entity_load_avg(&p->se);
6199
3b1baa64 6200 return !task_fits_capacity(p, min_cap);
3273163c
MR
6201}
6202
390031e4
QP
6203/*
6204 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6205 * to @dst_cpu.
6206 */
6207static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6208{
6209 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6210 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6211
6212 /*
6213 * If @p migrates from @cpu to another, remove its contribution. Or,
6214 * if @p migrates from another CPU to @cpu, add its contribution. In
6215 * the other cases, @cpu is not impacted by the migration, so the
6216 * util_avg should already be correct.
6217 */
6218 if (task_cpu(p) == cpu && dst_cpu != cpu)
6219 sub_positive(&util, task_util(p));
6220 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6221 util += task_util(p);
6222
6223 if (sched_feat(UTIL_EST)) {
6224 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6225
6226 /*
6227 * During wake-up, the task isn't enqueued yet and doesn't
6228 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6229 * so just add it (if needed) to "simulate" what will be
6230 * cpu_util() after the task has been enqueued.
6231 */
6232 if (dst_cpu == cpu)
6233 util_est += _task_util_est(p);
6234
6235 util = max(util, util_est);
6236 }
6237
6238 return min(util, capacity_orig_of(cpu));
6239}
6240
6241/*
6242 * compute_energy(): Estimates the energy that would be consumed if @p was
6243 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6244 * landscape of the * CPUs after the task migration, and uses the Energy Model
6245 * to compute what would be the energy if we decided to actually migrate that
6246 * task.
6247 */
6248static long
6249compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6250{
af24bde8
PB
6251 unsigned int max_util, util_cfs, cpu_util, cpu_cap;
6252 unsigned long sum_util, energy = 0;
6253 struct task_struct *tsk;
390031e4
QP
6254 int cpu;
6255
6256 for (; pd; pd = pd->next) {
af24bde8
PB
6257 struct cpumask *pd_mask = perf_domain_span(pd);
6258
6259 /*
6260 * The energy model mandates all the CPUs of a performance
6261 * domain have the same capacity.
6262 */
6263 cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
390031e4 6264 max_util = sum_util = 0;
af24bde8 6265
390031e4
QP
6266 /*
6267 * The capacity state of CPUs of the current rd can be driven by
6268 * CPUs of another rd if they belong to the same performance
6269 * domain. So, account for the utilization of these CPUs too
6270 * by masking pd with cpu_online_mask instead of the rd span.
6271 *
6272 * If an entire performance domain is outside of the current rd,
6273 * it will not appear in its pd list and will not be accounted
6274 * by compute_energy().
6275 */
af24bde8
PB
6276 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6277 util_cfs = cpu_util_next(cpu, p, dst_cpu);
6278
6279 /*
6280 * Busy time computation: utilization clamping is not
6281 * required since the ratio (sum_util / cpu_capacity)
6282 * is already enough to scale the EM reported power
6283 * consumption at the (eventually clamped) cpu_capacity.
6284 */
6285 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6286 ENERGY_UTIL, NULL);
6287
6288 /*
6289 * Performance domain frequency: utilization clamping
6290 * must be considered since it affects the selection
6291 * of the performance domain frequency.
6292 * NOTE: in case RT tasks are running, by default the
6293 * FREQUENCY_UTIL's utilization can be max OPP.
6294 */
6295 tsk = cpu == dst_cpu ? p : NULL;
6296 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6297 FREQUENCY_UTIL, tsk);
6298 max_util = max(max_util, cpu_util);
390031e4
QP
6299 }
6300
6301 energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6302 }
6303
6304 return energy;
6305}
6306
732cd75b
QP
6307/*
6308 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6309 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6310 * spare capacity in each performance domain and uses it as a potential
6311 * candidate to execute the task. Then, it uses the Energy Model to figure
6312 * out which of the CPU candidates is the most energy-efficient.
6313 *
6314 * The rationale for this heuristic is as follows. In a performance domain,
6315 * all the most energy efficient CPU candidates (according to the Energy
6316 * Model) are those for which we'll request a low frequency. When there are
6317 * several CPUs for which the frequency request will be the same, we don't
6318 * have enough data to break the tie between them, because the Energy Model
6319 * only includes active power costs. With this model, if we assume that
6320 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6321 * the maximum spare capacity in a performance domain is guaranteed to be among
6322 * the best candidates of the performance domain.
6323 *
6324 * In practice, it could be preferable from an energy standpoint to pack
6325 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6326 * but that could also hurt our chances to go cluster idle, and we have no
6327 * ways to tell with the current Energy Model if this is actually a good
6328 * idea or not. So, find_energy_efficient_cpu() basically favors
6329 * cluster-packing, and spreading inside a cluster. That should at least be
6330 * a good thing for latency, and this is consistent with the idea that most
6331 * of the energy savings of EAS come from the asymmetry of the system, and
6332 * not so much from breaking the tie between identical CPUs. That's also the
6333 * reason why EAS is enabled in the topology code only for systems where
6334 * SD_ASYM_CPUCAPACITY is set.
6335 *
6336 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6337 * they don't have any useful utilization data yet and it's not possible to
6338 * forecast their impact on energy consumption. Consequently, they will be
6339 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6340 * to be energy-inefficient in some use-cases. The alternative would be to
6341 * bias new tasks towards specific types of CPUs first, or to try to infer
6342 * their util_avg from the parent task, but those heuristics could hurt
6343 * other use-cases too. So, until someone finds a better way to solve this,
6344 * let's keep things simple by re-using the existing slow path.
6345 */
6346
6347static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6348{
6349 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6350 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6351 int cpu, best_energy_cpu = prev_cpu;
6352 struct perf_domain *head, *pd;
6353 unsigned long cpu_cap, util;
6354 struct sched_domain *sd;
6355
6356 rcu_read_lock();
6357 pd = rcu_dereference(rd->pd);
6358 if (!pd || READ_ONCE(rd->overutilized))
6359 goto fail;
6360 head = pd;
6361
6362 /*
6363 * Energy-aware wake-up happens on the lowest sched_domain starting
6364 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6365 */
6366 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6367 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6368 sd = sd->parent;
6369 if (!sd)
6370 goto fail;
6371
6372 sync_entity_load_avg(&p->se);
6373 if (!task_util_est(p))
6374 goto unlock;
6375
6376 for (; pd; pd = pd->next) {
6377 unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6378 int max_spare_cap_cpu = -1;
6379
6380 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6381 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6382 continue;
6383
6384 /* Skip CPUs that will be overutilized. */
6385 util = cpu_util_next(cpu, p, cpu);
6386 cpu_cap = capacity_of(cpu);
6387 if (cpu_cap * 1024 < util * capacity_margin)
6388 continue;
6389
6390 /* Always use prev_cpu as a candidate. */
6391 if (cpu == prev_cpu) {
6392 prev_energy = compute_energy(p, prev_cpu, head);
6393 best_energy = min(best_energy, prev_energy);
6394 continue;
6395 }
6396
6397 /*
6398 * Find the CPU with the maximum spare capacity in
6399 * the performance domain
6400 */
6401 spare_cap = cpu_cap - util;
6402 if (spare_cap > max_spare_cap) {
6403 max_spare_cap = spare_cap;
6404 max_spare_cap_cpu = cpu;
6405 }
6406 }
6407
6408 /* Evaluate the energy impact of using this CPU. */
6409 if (max_spare_cap_cpu >= 0) {
6410 cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6411 if (cur_energy < best_energy) {
6412 best_energy = cur_energy;
6413 best_energy_cpu = max_spare_cap_cpu;
6414 }
6415 }
6416 }
6417unlock:
6418 rcu_read_unlock();
6419
6420 /*
6421 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6422 * least 6% of the energy used by prev_cpu.
6423 */
6424 if (prev_energy == ULONG_MAX)
6425 return best_energy_cpu;
6426
6427 if ((prev_energy - best_energy) > (prev_energy >> 4))
6428 return best_energy_cpu;
6429
6430 return prev_cpu;
6431
6432fail:
6433 rcu_read_unlock();
6434
6435 return -1;
6436}
6437
aaee1203 6438/*
de91b9cb
MR
6439 * select_task_rq_fair: Select target runqueue for the waking task in domains
6440 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6441 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6442 *
97fb7a0a
IM
6443 * Balances load by selecting the idlest CPU in the idlest group, or under
6444 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6445 *
97fb7a0a 6446 * Returns the target CPU number.
aaee1203
PZ
6447 *
6448 * preempt must be disabled.
6449 */
0017d735 6450static int
ac66f547 6451select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6452{
f1d88b44 6453 struct sched_domain *tmp, *sd = NULL;
c88d5910 6454 int cpu = smp_processor_id();
63b0e9ed 6455 int new_cpu = prev_cpu;
99bd5e2f 6456 int want_affine = 0;
24d0c1d6 6457 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6458
c58d25f3
PZ
6459 if (sd_flag & SD_BALANCE_WAKE) {
6460 record_wakee(p);
732cd75b 6461
f8a696f2 6462 if (sched_energy_enabled()) {
732cd75b
QP
6463 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6464 if (new_cpu >= 0)
6465 return new_cpu;
6466 new_cpu = prev_cpu;
6467 }
6468
6469 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
3bd37062 6470 cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6471 }
aaee1203 6472
dce840a0 6473 rcu_read_lock();
aaee1203 6474 for_each_domain(cpu, tmp) {
e4f42888 6475 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6476 break;
e4f42888 6477
fe3bcfe1 6478 /*
97fb7a0a 6479 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6480 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6481 */
99bd5e2f
SS
6482 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6483 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6484 if (cpu != prev_cpu)
6485 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6486
6487 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6488 break;
f03542a7 6489 }
29cd8bae 6490
f03542a7 6491 if (tmp->flags & sd_flag)
29cd8bae 6492 sd = tmp;
63b0e9ed
MG
6493 else if (!want_affine)
6494 break;
29cd8bae
PZ
6495 }
6496
f1d88b44
VK
6497 if (unlikely(sd)) {
6498 /* Slow path */
18bd1b4b 6499 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6500 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6501 /* Fast path */
6502
6503 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6504
6505 if (want_affine)
6506 current->recent_used_cpu = cpu;
e7693a36 6507 }
dce840a0 6508 rcu_read_unlock();
e7693a36 6509
c88d5910 6510 return new_cpu;
e7693a36 6511}
0a74bef8 6512
144d8487
PZ
6513static void detach_entity_cfs_rq(struct sched_entity *se);
6514
0a74bef8 6515/*
97fb7a0a 6516 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6517 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6518 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6519 */
3f9672ba 6520static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6521{
59efa0ba
PZ
6522 /*
6523 * As blocked tasks retain absolute vruntime the migration needs to
6524 * deal with this by subtracting the old and adding the new
6525 * min_vruntime -- the latter is done by enqueue_entity() when placing
6526 * the task on the new runqueue.
6527 */
6528 if (p->state == TASK_WAKING) {
6529 struct sched_entity *se = &p->se;
6530 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6531 u64 min_vruntime;
6532
6533#ifndef CONFIG_64BIT
6534 u64 min_vruntime_copy;
6535
6536 do {
6537 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6538 smp_rmb();
6539 min_vruntime = cfs_rq->min_vruntime;
6540 } while (min_vruntime != min_vruntime_copy);
6541#else
6542 min_vruntime = cfs_rq->min_vruntime;
6543#endif
6544
6545 se->vruntime -= min_vruntime;
6546 }
6547
144d8487
PZ
6548 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6549 /*
6550 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6551 * rq->lock and can modify state directly.
6552 */
6553 lockdep_assert_held(&task_rq(p)->lock);
6554 detach_entity_cfs_rq(&p->se);
6555
6556 } else {
6557 /*
6558 * We are supposed to update the task to "current" time, then
6559 * its up to date and ready to go to new CPU/cfs_rq. But we
6560 * have difficulty in getting what current time is, so simply
6561 * throw away the out-of-date time. This will result in the
6562 * wakee task is less decayed, but giving the wakee more load
6563 * sounds not bad.
6564 */
6565 remove_entity_load_avg(&p->se);
6566 }
9d89c257
YD
6567
6568 /* Tell new CPU we are migrated */
6569 p->se.avg.last_update_time = 0;
3944a927
BS
6570
6571 /* We have migrated, no longer consider this task hot */
9d89c257 6572 p->se.exec_start = 0;
3f9672ba
SD
6573
6574 update_scan_period(p, new_cpu);
0a74bef8 6575}
12695578
YD
6576
6577static void task_dead_fair(struct task_struct *p)
6578{
6579 remove_entity_load_avg(&p->se);
6580}
e7693a36
GH
6581#endif /* CONFIG_SMP */
6582
a555e9d8 6583static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6584{
6585 unsigned long gran = sysctl_sched_wakeup_granularity;
6586
6587 /*
e52fb7c0
PZ
6588 * Since its curr running now, convert the gran from real-time
6589 * to virtual-time in his units.
13814d42
MG
6590 *
6591 * By using 'se' instead of 'curr' we penalize light tasks, so
6592 * they get preempted easier. That is, if 'se' < 'curr' then
6593 * the resulting gran will be larger, therefore penalizing the
6594 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6595 * be smaller, again penalizing the lighter task.
6596 *
6597 * This is especially important for buddies when the leftmost
6598 * task is higher priority than the buddy.
0bbd3336 6599 */
f4ad9bd2 6600 return calc_delta_fair(gran, se);
0bbd3336
PZ
6601}
6602
464b7527
PZ
6603/*
6604 * Should 'se' preempt 'curr'.
6605 *
6606 * |s1
6607 * |s2
6608 * |s3
6609 * g
6610 * |<--->|c
6611 *
6612 * w(c, s1) = -1
6613 * w(c, s2) = 0
6614 * w(c, s3) = 1
6615 *
6616 */
6617static int
6618wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6619{
6620 s64 gran, vdiff = curr->vruntime - se->vruntime;
6621
6622 if (vdiff <= 0)
6623 return -1;
6624
a555e9d8 6625 gran = wakeup_gran(se);
464b7527
PZ
6626 if (vdiff > gran)
6627 return 1;
6628
6629 return 0;
6630}
6631
02479099
PZ
6632static void set_last_buddy(struct sched_entity *se)
6633{
1da1843f 6634 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6635 return;
6636
c5ae366e
DA
6637 for_each_sched_entity(se) {
6638 if (SCHED_WARN_ON(!se->on_rq))
6639 return;
69c80f3e 6640 cfs_rq_of(se)->last = se;
c5ae366e 6641 }
02479099
PZ
6642}
6643
6644static void set_next_buddy(struct sched_entity *se)
6645{
1da1843f 6646 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6647 return;
6648
c5ae366e
DA
6649 for_each_sched_entity(se) {
6650 if (SCHED_WARN_ON(!se->on_rq))
6651 return;
69c80f3e 6652 cfs_rq_of(se)->next = se;
c5ae366e 6653 }
02479099
PZ
6654}
6655
ac53db59
RR
6656static void set_skip_buddy(struct sched_entity *se)
6657{
69c80f3e
VP
6658 for_each_sched_entity(se)
6659 cfs_rq_of(se)->skip = se;
ac53db59
RR
6660}
6661
bf0f6f24
IM
6662/*
6663 * Preempt the current task with a newly woken task if needed:
6664 */
5a9b86f6 6665static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6666{
6667 struct task_struct *curr = rq->curr;
8651a86c 6668 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6669 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6670 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6671 int next_buddy_marked = 0;
bf0f6f24 6672
4ae7d5ce
IM
6673 if (unlikely(se == pse))
6674 return;
6675
5238cdd3 6676 /*
163122b7 6677 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6678 * unconditionally check_prempt_curr() after an enqueue (which may have
6679 * lead to a throttle). This both saves work and prevents false
6680 * next-buddy nomination below.
6681 */
6682 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6683 return;
6684
2f36825b 6685 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6686 set_next_buddy(pse);
2f36825b
VP
6687 next_buddy_marked = 1;
6688 }
57fdc26d 6689
aec0a514
BR
6690 /*
6691 * We can come here with TIF_NEED_RESCHED already set from new task
6692 * wake up path.
5238cdd3
PT
6693 *
6694 * Note: this also catches the edge-case of curr being in a throttled
6695 * group (e.g. via set_curr_task), since update_curr() (in the
6696 * enqueue of curr) will have resulted in resched being set. This
6697 * prevents us from potentially nominating it as a false LAST_BUDDY
6698 * below.
aec0a514
BR
6699 */
6700 if (test_tsk_need_resched(curr))
6701 return;
6702
a2f5c9ab 6703 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6704 if (unlikely(task_has_idle_policy(curr)) &&
6705 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6706 goto preempt;
6707
91c234b4 6708 /*
a2f5c9ab
DH
6709 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6710 * is driven by the tick):
91c234b4 6711 */
8ed92e51 6712 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6713 return;
bf0f6f24 6714
464b7527 6715 find_matching_se(&se, &pse);
9bbd7374 6716 update_curr(cfs_rq_of(se));
002f128b 6717 BUG_ON(!pse);
2f36825b
VP
6718 if (wakeup_preempt_entity(se, pse) == 1) {
6719 /*
6720 * Bias pick_next to pick the sched entity that is
6721 * triggering this preemption.
6722 */
6723 if (!next_buddy_marked)
6724 set_next_buddy(pse);
3a7e73a2 6725 goto preempt;
2f36825b 6726 }
464b7527 6727
3a7e73a2 6728 return;
a65ac745 6729
3a7e73a2 6730preempt:
8875125e 6731 resched_curr(rq);
3a7e73a2
PZ
6732 /*
6733 * Only set the backward buddy when the current task is still
6734 * on the rq. This can happen when a wakeup gets interleaved
6735 * with schedule on the ->pre_schedule() or idle_balance()
6736 * point, either of which can * drop the rq lock.
6737 *
6738 * Also, during early boot the idle thread is in the fair class,
6739 * for obvious reasons its a bad idea to schedule back to it.
6740 */
6741 if (unlikely(!se->on_rq || curr == rq->idle))
6742 return;
6743
6744 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6745 set_last_buddy(se);
bf0f6f24
IM
6746}
6747
606dba2e 6748static struct task_struct *
d8ac8971 6749pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6750{
6751 struct cfs_rq *cfs_rq = &rq->cfs;
6752 struct sched_entity *se;
678d5718 6753 struct task_struct *p;
37e117c0 6754 int new_tasks;
678d5718 6755
6e83125c 6756again:
678d5718 6757 if (!cfs_rq->nr_running)
38033c37 6758 goto idle;
678d5718 6759
9674f5ca 6760#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6761 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6762 goto simple;
6763
6764 /*
6765 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6766 * likely that a next task is from the same cgroup as the current.
6767 *
6768 * Therefore attempt to avoid putting and setting the entire cgroup
6769 * hierarchy, only change the part that actually changes.
6770 */
6771
6772 do {
6773 struct sched_entity *curr = cfs_rq->curr;
6774
6775 /*
6776 * Since we got here without doing put_prev_entity() we also
6777 * have to consider cfs_rq->curr. If it is still a runnable
6778 * entity, update_curr() will update its vruntime, otherwise
6779 * forget we've ever seen it.
6780 */
54d27365
BS
6781 if (curr) {
6782 if (curr->on_rq)
6783 update_curr(cfs_rq);
6784 else
6785 curr = NULL;
678d5718 6786
54d27365
BS
6787 /*
6788 * This call to check_cfs_rq_runtime() will do the
6789 * throttle and dequeue its entity in the parent(s).
9674f5ca 6790 * Therefore the nr_running test will indeed
54d27365
BS
6791 * be correct.
6792 */
9674f5ca
VK
6793 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6794 cfs_rq = &rq->cfs;
6795
6796 if (!cfs_rq->nr_running)
6797 goto idle;
6798
54d27365 6799 goto simple;
9674f5ca 6800 }
54d27365 6801 }
678d5718
PZ
6802
6803 se = pick_next_entity(cfs_rq, curr);
6804 cfs_rq = group_cfs_rq(se);
6805 } while (cfs_rq);
6806
6807 p = task_of(se);
6808
6809 /*
6810 * Since we haven't yet done put_prev_entity and if the selected task
6811 * is a different task than we started out with, try and touch the
6812 * least amount of cfs_rqs.
6813 */
6814 if (prev != p) {
6815 struct sched_entity *pse = &prev->se;
6816
6817 while (!(cfs_rq = is_same_group(se, pse))) {
6818 int se_depth = se->depth;
6819 int pse_depth = pse->depth;
6820
6821 if (se_depth <= pse_depth) {
6822 put_prev_entity(cfs_rq_of(pse), pse);
6823 pse = parent_entity(pse);
6824 }
6825 if (se_depth >= pse_depth) {
6826 set_next_entity(cfs_rq_of(se), se);
6827 se = parent_entity(se);
6828 }
6829 }
6830
6831 put_prev_entity(cfs_rq, pse);
6832 set_next_entity(cfs_rq, se);
6833 }
6834
93824900 6835 goto done;
678d5718 6836simple:
678d5718 6837#endif
bf0f6f24 6838
3f1d2a31 6839 put_prev_task(rq, prev);
606dba2e 6840
bf0f6f24 6841 do {
678d5718 6842 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6843 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6844 cfs_rq = group_cfs_rq(se);
6845 } while (cfs_rq);
6846
8f4d37ec 6847 p = task_of(se);
678d5718 6848
13a453c2 6849done: __maybe_unused;
93824900
UR
6850#ifdef CONFIG_SMP
6851 /*
6852 * Move the next running task to the front of
6853 * the list, so our cfs_tasks list becomes MRU
6854 * one.
6855 */
6856 list_move(&p->se.group_node, &rq->cfs_tasks);
6857#endif
6858
b39e66ea
MG
6859 if (hrtick_enabled(rq))
6860 hrtick_start_fair(rq, p);
8f4d37ec 6861
3b1baa64
MR
6862 update_misfit_status(p, rq);
6863
8f4d37ec 6864 return p;
38033c37
PZ
6865
6866idle:
3b1baa64 6867 update_misfit_status(NULL, rq);
46f69fa3
MF
6868 new_tasks = idle_balance(rq, rf);
6869
37e117c0
PZ
6870 /*
6871 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6872 * possible for any higher priority task to appear. In that case we
6873 * must re-start the pick_next_entity() loop.
6874 */
e4aa358b 6875 if (new_tasks < 0)
37e117c0
PZ
6876 return RETRY_TASK;
6877
e4aa358b 6878 if (new_tasks > 0)
38033c37 6879 goto again;
38033c37 6880
23127296
VG
6881 /*
6882 * rq is about to be idle, check if we need to update the
6883 * lost_idle_time of clock_pelt
6884 */
6885 update_idle_rq_clock_pelt(rq);
6886
38033c37 6887 return NULL;
bf0f6f24
IM
6888}
6889
6890/*
6891 * Account for a descheduled task:
6892 */
31ee529c 6893static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6894{
6895 struct sched_entity *se = &prev->se;
6896 struct cfs_rq *cfs_rq;
6897
6898 for_each_sched_entity(se) {
6899 cfs_rq = cfs_rq_of(se);
ab6cde26 6900 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6901 }
6902}
6903
ac53db59
RR
6904/*
6905 * sched_yield() is very simple
6906 *
6907 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6908 */
6909static void yield_task_fair(struct rq *rq)
6910{
6911 struct task_struct *curr = rq->curr;
6912 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6913 struct sched_entity *se = &curr->se;
6914
6915 /*
6916 * Are we the only task in the tree?
6917 */
6918 if (unlikely(rq->nr_running == 1))
6919 return;
6920
6921 clear_buddies(cfs_rq, se);
6922
6923 if (curr->policy != SCHED_BATCH) {
6924 update_rq_clock(rq);
6925 /*
6926 * Update run-time statistics of the 'current'.
6927 */
6928 update_curr(cfs_rq);
916671c0
MG
6929 /*
6930 * Tell update_rq_clock() that we've just updated,
6931 * so we don't do microscopic update in schedule()
6932 * and double the fastpath cost.
6933 */
adcc8da8 6934 rq_clock_skip_update(rq);
ac53db59
RR
6935 }
6936
6937 set_skip_buddy(se);
6938}
6939
d95f4122
MG
6940static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6941{
6942 struct sched_entity *se = &p->se;
6943
5238cdd3
PT
6944 /* throttled hierarchies are not runnable */
6945 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6946 return false;
6947
6948 /* Tell the scheduler that we'd really like pse to run next. */
6949 set_next_buddy(se);
6950
d95f4122
MG
6951 yield_task_fair(rq);
6952
6953 return true;
6954}
6955
681f3e68 6956#ifdef CONFIG_SMP
bf0f6f24 6957/**************************************************
e9c84cb8
PZ
6958 * Fair scheduling class load-balancing methods.
6959 *
6960 * BASICS
6961 *
6962 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 6963 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
6964 * time to each task. This is expressed in the following equation:
6965 *
6966 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6967 *
97fb7a0a 6968 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
6969 * W_i,0 is defined as:
6970 *
6971 * W_i,0 = \Sum_j w_i,j (2)
6972 *
97fb7a0a 6973 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 6974 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6975 *
6976 * The weight average is an exponential decay average of the instantaneous
6977 * weight:
6978 *
6979 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6980 *
97fb7a0a 6981 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
6982 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6983 * can also include other factors [XXX].
6984 *
6985 * To achieve this balance we define a measure of imbalance which follows
6986 * directly from (1):
6987 *
ced549fa 6988 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6989 *
6990 * We them move tasks around to minimize the imbalance. In the continuous
6991 * function space it is obvious this converges, in the discrete case we get
6992 * a few fun cases generally called infeasible weight scenarios.
6993 *
6994 * [XXX expand on:
6995 * - infeasible weights;
6996 * - local vs global optima in the discrete case. ]
6997 *
6998 *
6999 * SCHED DOMAINS
7000 *
7001 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7002 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7003 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7004 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7005 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7006 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7007 * the groups.
7008 *
7009 * This yields:
7010 *
7011 * log_2 n 1 n
7012 * \Sum { --- * --- * 2^i } = O(n) (5)
7013 * i = 0 2^i 2^i
7014 * `- size of each group
97fb7a0a 7015 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7016 * | `- freq
7017 * `- sum over all levels
7018 *
7019 * Coupled with a limit on how many tasks we can migrate every balance pass,
7020 * this makes (5) the runtime complexity of the balancer.
7021 *
7022 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7023 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7024 *
7025 * The adjacency matrix of the resulting graph is given by:
7026 *
97a7142f 7027 * log_2 n
e9c84cb8
PZ
7028 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7029 * k = 0
7030 *
7031 * And you'll find that:
7032 *
7033 * A^(log_2 n)_i,j != 0 for all i,j (7)
7034 *
97fb7a0a 7035 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7036 * The task movement gives a factor of O(m), giving a convergence complexity
7037 * of:
7038 *
7039 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7040 *
7041 *
7042 * WORK CONSERVING
7043 *
7044 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7045 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7046 * tree itself instead of relying on other CPUs to bring it work.
7047 *
7048 * This adds some complexity to both (5) and (8) but it reduces the total idle
7049 * time.
7050 *
7051 * [XXX more?]
7052 *
7053 *
7054 * CGROUPS
7055 *
7056 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7057 *
7058 * s_k,i
7059 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7060 * S_k
7061 *
7062 * Where
7063 *
7064 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7065 *
97fb7a0a 7066 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7067 *
7068 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7069 * property.
7070 *
7071 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7072 * rewrite all of this once again.]
97a7142f 7073 */
bf0f6f24 7074
ed387b78
HS
7075static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7076
0ec8aa00
PZ
7077enum fbq_type { regular, remote, all };
7078
3b1baa64
MR
7079enum group_type {
7080 group_other = 0,
7081 group_misfit_task,
7082 group_imbalanced,
7083 group_overloaded,
7084};
7085
ddcdf6e7 7086#define LBF_ALL_PINNED 0x01
367456c7 7087#define LBF_NEED_BREAK 0x02
6263322c
PZ
7088#define LBF_DST_PINNED 0x04
7089#define LBF_SOME_PINNED 0x08
e022e0d3 7090#define LBF_NOHZ_STATS 0x10
f643ea22 7091#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7092
7093struct lb_env {
7094 struct sched_domain *sd;
7095
ddcdf6e7 7096 struct rq *src_rq;
85c1e7da 7097 int src_cpu;
ddcdf6e7
PZ
7098
7099 int dst_cpu;
7100 struct rq *dst_rq;
7101
88b8dac0
SV
7102 struct cpumask *dst_grpmask;
7103 int new_dst_cpu;
ddcdf6e7 7104 enum cpu_idle_type idle;
bd939f45 7105 long imbalance;
b9403130
MW
7106 /* The set of CPUs under consideration for load-balancing */
7107 struct cpumask *cpus;
7108
ddcdf6e7 7109 unsigned int flags;
367456c7
PZ
7110
7111 unsigned int loop;
7112 unsigned int loop_break;
7113 unsigned int loop_max;
0ec8aa00
PZ
7114
7115 enum fbq_type fbq_type;
cad68e55 7116 enum group_type src_grp_type;
163122b7 7117 struct list_head tasks;
ddcdf6e7
PZ
7118};
7119
029632fb
PZ
7120/*
7121 * Is this task likely cache-hot:
7122 */
5d5e2b1b 7123static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7124{
7125 s64 delta;
7126
e5673f28
KT
7127 lockdep_assert_held(&env->src_rq->lock);
7128
029632fb
PZ
7129 if (p->sched_class != &fair_sched_class)
7130 return 0;
7131
1da1843f 7132 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7133 return 0;
7134
7135 /*
7136 * Buddy candidates are cache hot:
7137 */
5d5e2b1b 7138 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7139 (&p->se == cfs_rq_of(&p->se)->next ||
7140 &p->se == cfs_rq_of(&p->se)->last))
7141 return 1;
7142
7143 if (sysctl_sched_migration_cost == -1)
7144 return 1;
7145 if (sysctl_sched_migration_cost == 0)
7146 return 0;
7147
5d5e2b1b 7148 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7149
7150 return delta < (s64)sysctl_sched_migration_cost;
7151}
7152
3a7053b3 7153#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7154/*
2a1ed24c
SD
7155 * Returns 1, if task migration degrades locality
7156 * Returns 0, if task migration improves locality i.e migration preferred.
7157 * Returns -1, if task migration is not affected by locality.
c1ceac62 7158 */
2a1ed24c 7159static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7160{
b1ad065e 7161 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7162 unsigned long src_weight, dst_weight;
7163 int src_nid, dst_nid, dist;
3a7053b3 7164
2a595721 7165 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7166 return -1;
7167
c3b9bc5b 7168 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7169 return -1;
7a0f3083
MG
7170
7171 src_nid = cpu_to_node(env->src_cpu);
7172 dst_nid = cpu_to_node(env->dst_cpu);
7173
83e1d2cd 7174 if (src_nid == dst_nid)
2a1ed24c 7175 return -1;
7a0f3083 7176
2a1ed24c
SD
7177 /* Migrating away from the preferred node is always bad. */
7178 if (src_nid == p->numa_preferred_nid) {
7179 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7180 return 1;
7181 else
7182 return -1;
7183 }
b1ad065e 7184
c1ceac62
RR
7185 /* Encourage migration to the preferred node. */
7186 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7187 return 0;
b1ad065e 7188
739294fb 7189 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7190 if (env->idle == CPU_IDLE)
739294fb
RR
7191 return -1;
7192
f35678b6 7193 dist = node_distance(src_nid, dst_nid);
c1ceac62 7194 if (numa_group) {
f35678b6
SD
7195 src_weight = group_weight(p, src_nid, dist);
7196 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7197 } else {
f35678b6
SD
7198 src_weight = task_weight(p, src_nid, dist);
7199 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7200 }
7201
f35678b6 7202 return dst_weight < src_weight;
7a0f3083
MG
7203}
7204
3a7053b3 7205#else
2a1ed24c 7206static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7207 struct lb_env *env)
7208{
2a1ed24c 7209 return -1;
7a0f3083 7210}
3a7053b3
MG
7211#endif
7212
1e3c88bd
PZ
7213/*
7214 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7215 */
7216static
8e45cb54 7217int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7218{
2a1ed24c 7219 int tsk_cache_hot;
e5673f28
KT
7220
7221 lockdep_assert_held(&env->src_rq->lock);
7222
1e3c88bd
PZ
7223 /*
7224 * We do not migrate tasks that are:
d3198084 7225 * 1) throttled_lb_pair, or
3bd37062 7226 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7227 * 3) running (obviously), or
7228 * 4) are cache-hot on their current CPU.
1e3c88bd 7229 */
d3198084
JK
7230 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7231 return 0;
7232
3bd37062 7233 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7234 int cpu;
88b8dac0 7235
ae92882e 7236 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7237
6263322c
PZ
7238 env->flags |= LBF_SOME_PINNED;
7239
88b8dac0 7240 /*
97fb7a0a 7241 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7242 * our sched_group. We may want to revisit it if we couldn't
7243 * meet load balance goals by pulling other tasks on src_cpu.
7244 *
65a4433a
JH
7245 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7246 * already computed one in current iteration.
88b8dac0 7247 */
65a4433a 7248 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7249 return 0;
7250
97fb7a0a 7251 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7252 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7253 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7254 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7255 env->new_dst_cpu = cpu;
7256 break;
7257 }
88b8dac0 7258 }
e02e60c1 7259
1e3c88bd
PZ
7260 return 0;
7261 }
88b8dac0
SV
7262
7263 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7264 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7265
ddcdf6e7 7266 if (task_running(env->src_rq, p)) {
ae92882e 7267 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7268 return 0;
7269 }
7270
7271 /*
7272 * Aggressive migration if:
3a7053b3
MG
7273 * 1) destination numa is preferred
7274 * 2) task is cache cold, or
7275 * 3) too many balance attempts have failed.
1e3c88bd 7276 */
2a1ed24c
SD
7277 tsk_cache_hot = migrate_degrades_locality(p, env);
7278 if (tsk_cache_hot == -1)
7279 tsk_cache_hot = task_hot(p, env);
3a7053b3 7280
2a1ed24c 7281 if (tsk_cache_hot <= 0 ||
7a96c231 7282 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7283 if (tsk_cache_hot == 1) {
ae92882e
JP
7284 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7285 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7286 }
1e3c88bd
PZ
7287 return 1;
7288 }
7289
ae92882e 7290 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7291 return 0;
1e3c88bd
PZ
7292}
7293
897c395f 7294/*
163122b7
KT
7295 * detach_task() -- detach the task for the migration specified in env
7296 */
7297static void detach_task(struct task_struct *p, struct lb_env *env)
7298{
7299 lockdep_assert_held(&env->src_rq->lock);
7300
5704ac0a 7301 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7302 set_task_cpu(p, env->dst_cpu);
7303}
7304
897c395f 7305/*
e5673f28 7306 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7307 * part of active balancing operations within "domain".
897c395f 7308 *
e5673f28 7309 * Returns a task if successful and NULL otherwise.
897c395f 7310 */
e5673f28 7311static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7312{
93824900 7313 struct task_struct *p;
897c395f 7314
e5673f28
KT
7315 lockdep_assert_held(&env->src_rq->lock);
7316
93824900
UR
7317 list_for_each_entry_reverse(p,
7318 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7319 if (!can_migrate_task(p, env))
7320 continue;
897c395f 7321
163122b7 7322 detach_task(p, env);
e5673f28 7323
367456c7 7324 /*
e5673f28 7325 * Right now, this is only the second place where
163122b7 7326 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7327 * so we can safely collect stats here rather than
163122b7 7328 * inside detach_tasks().
367456c7 7329 */
ae92882e 7330 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7331 return p;
897c395f 7332 }
e5673f28 7333 return NULL;
897c395f
PZ
7334}
7335
eb95308e
PZ
7336static const unsigned int sched_nr_migrate_break = 32;
7337
5d6523eb 7338/*
a3df0679 7339 * detach_tasks() -- tries to detach up to imbalance runnable load from
163122b7 7340 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7341 *
163122b7 7342 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7343 */
163122b7 7344static int detach_tasks(struct lb_env *env)
1e3c88bd 7345{
5d6523eb
PZ
7346 struct list_head *tasks = &env->src_rq->cfs_tasks;
7347 struct task_struct *p;
367456c7 7348 unsigned long load;
163122b7
KT
7349 int detached = 0;
7350
7351 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7352
bd939f45 7353 if (env->imbalance <= 0)
5d6523eb 7354 return 0;
1e3c88bd 7355
5d6523eb 7356 while (!list_empty(tasks)) {
985d3a4c
YD
7357 /*
7358 * We don't want to steal all, otherwise we may be treated likewise,
7359 * which could at worst lead to a livelock crash.
7360 */
7361 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7362 break;
7363
93824900 7364 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7365
367456c7
PZ
7366 env->loop++;
7367 /* We've more or less seen every task there is, call it quits */
5d6523eb 7368 if (env->loop > env->loop_max)
367456c7 7369 break;
5d6523eb
PZ
7370
7371 /* take a breather every nr_migrate tasks */
367456c7 7372 if (env->loop > env->loop_break) {
eb95308e 7373 env->loop_break += sched_nr_migrate_break;
8e45cb54 7374 env->flags |= LBF_NEED_BREAK;
ee00e66f 7375 break;
a195f004 7376 }
1e3c88bd 7377
d3198084 7378 if (!can_migrate_task(p, env))
367456c7
PZ
7379 goto next;
7380
7381 load = task_h_load(p);
5d6523eb 7382
eb95308e 7383 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7384 goto next;
7385
bd939f45 7386 if ((load / 2) > env->imbalance)
367456c7 7387 goto next;
1e3c88bd 7388
163122b7
KT
7389 detach_task(p, env);
7390 list_add(&p->se.group_node, &env->tasks);
7391
7392 detached++;
bd939f45 7393 env->imbalance -= load;
1e3c88bd
PZ
7394
7395#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7396 /*
7397 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7398 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7399 * the critical section.
7400 */
5d6523eb 7401 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7402 break;
1e3c88bd
PZ
7403#endif
7404
ee00e66f
PZ
7405 /*
7406 * We only want to steal up to the prescribed amount of
a3df0679 7407 * runnable load.
ee00e66f 7408 */
bd939f45 7409 if (env->imbalance <= 0)
ee00e66f 7410 break;
367456c7
PZ
7411
7412 continue;
7413next:
93824900 7414 list_move(&p->se.group_node, tasks);
1e3c88bd 7415 }
5d6523eb 7416
1e3c88bd 7417 /*
163122b7
KT
7418 * Right now, this is one of only two places we collect this stat
7419 * so we can safely collect detach_one_task() stats here rather
7420 * than inside detach_one_task().
1e3c88bd 7421 */
ae92882e 7422 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7423
163122b7
KT
7424 return detached;
7425}
7426
7427/*
7428 * attach_task() -- attach the task detached by detach_task() to its new rq.
7429 */
7430static void attach_task(struct rq *rq, struct task_struct *p)
7431{
7432 lockdep_assert_held(&rq->lock);
7433
7434 BUG_ON(task_rq(p) != rq);
5704ac0a 7435 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7436 check_preempt_curr(rq, p, 0);
7437}
7438
7439/*
7440 * attach_one_task() -- attaches the task returned from detach_one_task() to
7441 * its new rq.
7442 */
7443static void attach_one_task(struct rq *rq, struct task_struct *p)
7444{
8a8c69c3
PZ
7445 struct rq_flags rf;
7446
7447 rq_lock(rq, &rf);
5704ac0a 7448 update_rq_clock(rq);
163122b7 7449 attach_task(rq, p);
8a8c69c3 7450 rq_unlock(rq, &rf);
163122b7
KT
7451}
7452
7453/*
7454 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7455 * new rq.
7456 */
7457static void attach_tasks(struct lb_env *env)
7458{
7459 struct list_head *tasks = &env->tasks;
7460 struct task_struct *p;
8a8c69c3 7461 struct rq_flags rf;
163122b7 7462
8a8c69c3 7463 rq_lock(env->dst_rq, &rf);
5704ac0a 7464 update_rq_clock(env->dst_rq);
163122b7
KT
7465
7466 while (!list_empty(tasks)) {
7467 p = list_first_entry(tasks, struct task_struct, se.group_node);
7468 list_del_init(&p->se.group_node);
1e3c88bd 7469
163122b7
KT
7470 attach_task(env->dst_rq, p);
7471 }
7472
8a8c69c3 7473 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7474}
7475
b0c79224 7476#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7477static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7478{
7479 if (cfs_rq->avg.load_avg)
7480 return true;
7481
7482 if (cfs_rq->avg.util_avg)
7483 return true;
7484
7485 return false;
7486}
7487
91c27493 7488static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7489{
7490 if (READ_ONCE(rq->avg_rt.util_avg))
7491 return true;
7492
3727e0e1
VG
7493 if (READ_ONCE(rq->avg_dl.util_avg))
7494 return true;
7495
11d4afd4 7496#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7497 if (READ_ONCE(rq->avg_irq.util_avg))
7498 return true;
7499#endif
7500
371bf427
VG
7501 return false;
7502}
7503
b0c79224
VS
7504static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7505{
7506 rq->last_blocked_load_update_tick = jiffies;
7507
7508 if (!has_blocked)
7509 rq->has_blocked_load = 0;
7510}
7511#else
7512static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7513static inline bool others_have_blocked(struct rq *rq) { return false; }
7514static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7515#endif
7516
1936c53c
VG
7517#ifdef CONFIG_FAIR_GROUP_SCHED
7518
039ae8bc
VG
7519static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7520{
7521 if (cfs_rq->load.weight)
7522 return false;
7523
7524 if (cfs_rq->avg.load_sum)
7525 return false;
7526
7527 if (cfs_rq->avg.util_sum)
7528 return false;
7529
7530 if (cfs_rq->avg.runnable_load_sum)
7531 return false;
7532
7533 return true;
7534}
7535
48a16753 7536static void update_blocked_averages(int cpu)
9e3081ca 7537{
9e3081ca 7538 struct rq *rq = cpu_rq(cpu);
039ae8bc 7539 struct cfs_rq *cfs_rq, *pos;
12b04875 7540 const struct sched_class *curr_class;
8a8c69c3 7541 struct rq_flags rf;
f643ea22 7542 bool done = true;
9e3081ca 7543
8a8c69c3 7544 rq_lock_irqsave(rq, &rf);
48a16753 7545 update_rq_clock(rq);
9d89c257 7546
9763b67f
PZ
7547 /*
7548 * Iterates the task_group tree in a bottom up fashion, see
7549 * list_add_leaf_cfs_rq() for details.
7550 */
039ae8bc 7551 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7552 struct sched_entity *se;
7553
23127296 7554 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
9d89c257 7555 update_tg_load_avg(cfs_rq, 0);
4e516076 7556
bc427898
VG
7557 /* Propagate pending load changes to the parent, if any: */
7558 se = cfs_rq->tg->se[cpu];
7559 if (se && !skip_blocked_update(se))
88c0616e 7560 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7561
039ae8bc
VG
7562 /*
7563 * There can be a lot of idle CPU cgroups. Don't let fully
7564 * decayed cfs_rqs linger on the list.
7565 */
7566 if (cfs_rq_is_decayed(cfs_rq))
7567 list_del_leaf_cfs_rq(cfs_rq);
7568
1936c53c
VG
7569 /* Don't need periodic decay once load/util_avg are null */
7570 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7571 done = false;
9d89c257 7572 }
12b04875
VG
7573
7574 curr_class = rq->curr->sched_class;
23127296
VG
7575 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7576 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7577 update_irq_load_avg(rq, 0);
371bf427 7578 /* Don't need periodic decay once load/util_avg are null */
91c27493 7579 if (others_have_blocked(rq))
371bf427 7580 done = false;
e022e0d3 7581
b0c79224 7582 update_blocked_load_status(rq, !done);
8a8c69c3 7583 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7584}
7585
9763b67f 7586/*
68520796 7587 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7588 * This needs to be done in a top-down fashion because the load of a child
7589 * group is a fraction of its parents load.
7590 */
68520796 7591static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7592{
68520796
VD
7593 struct rq *rq = rq_of(cfs_rq);
7594 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7595 unsigned long now = jiffies;
68520796 7596 unsigned long load;
a35b6466 7597
68520796 7598 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7599 return;
7600
0e9f0245 7601 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7602 for_each_sched_entity(se) {
7603 cfs_rq = cfs_rq_of(se);
0e9f0245 7604 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7605 if (cfs_rq->last_h_load_update == now)
7606 break;
7607 }
a35b6466 7608
68520796 7609 if (!se) {
7ea241af 7610 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7611 cfs_rq->last_h_load_update = now;
7612 }
7613
0e9f0245 7614 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7615 load = cfs_rq->h_load;
7ea241af
YD
7616 load = div64_ul(load * se->avg.load_avg,
7617 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7618 cfs_rq = group_cfs_rq(se);
7619 cfs_rq->h_load = load;
7620 cfs_rq->last_h_load_update = now;
7621 }
9763b67f
PZ
7622}
7623
367456c7 7624static unsigned long task_h_load(struct task_struct *p)
230059de 7625{
367456c7 7626 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7627
68520796 7628 update_cfs_rq_h_load(cfs_rq);
9d89c257 7629 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7630 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7631}
7632#else
48a16753 7633static inline void update_blocked_averages(int cpu)
9e3081ca 7634{
6c1d47c0
VG
7635 struct rq *rq = cpu_rq(cpu);
7636 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7637 const struct sched_class *curr_class;
8a8c69c3 7638 struct rq_flags rf;
6c1d47c0 7639
8a8c69c3 7640 rq_lock_irqsave(rq, &rf);
6c1d47c0 7641 update_rq_clock(rq);
23127296 7642 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
12b04875
VG
7643
7644 curr_class = rq->curr->sched_class;
23127296
VG
7645 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7646 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7647 update_irq_load_avg(rq, 0);
b0c79224 7648 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
8a8c69c3 7649 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7650}
7651
367456c7 7652static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7653{
9d89c257 7654 return p->se.avg.load_avg;
1e3c88bd 7655}
230059de 7656#endif
1e3c88bd 7657
1e3c88bd 7658/********** Helpers for find_busiest_group ************************/
caeb178c 7659
1e3c88bd
PZ
7660/*
7661 * sg_lb_stats - stats of a sched_group required for load_balancing
7662 */
7663struct sg_lb_stats {
7664 unsigned long avg_load; /*Avg load across the CPUs of the group */
7665 unsigned long group_load; /* Total load over the CPUs of the group */
56cf515b 7666 unsigned long load_per_task;
63b2ca30 7667 unsigned long group_capacity;
9e91d61d 7668 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7669 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7670 unsigned int idle_cpus;
7671 unsigned int group_weight;
caeb178c 7672 enum group_type group_type;
ea67821b 7673 int group_no_capacity;
3b1baa64 7674 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7675#ifdef CONFIG_NUMA_BALANCING
7676 unsigned int nr_numa_running;
7677 unsigned int nr_preferred_running;
7678#endif
1e3c88bd
PZ
7679};
7680
56cf515b
JK
7681/*
7682 * sd_lb_stats - Structure to store the statistics of a sched_domain
7683 * during load balancing.
7684 */
7685struct sd_lb_stats {
7686 struct sched_group *busiest; /* Busiest group in this sd */
7687 struct sched_group *local; /* Local group in this sd */
90001d67 7688 unsigned long total_running;
56cf515b 7689 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7690 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7691 unsigned long avg_load; /* Average load across all groups in sd */
7692
56cf515b 7693 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7694 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7695};
7696
147c5fc2
PZ
7697static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7698{
7699 /*
7700 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7701 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7702 * We must however clear busiest_stat::avg_load because
7703 * update_sd_pick_busiest() reads this before assignment.
7704 */
7705 *sds = (struct sd_lb_stats){
7706 .busiest = NULL,
7707 .local = NULL,
90001d67 7708 .total_running = 0UL,
147c5fc2 7709 .total_load = 0UL,
63b2ca30 7710 .total_capacity = 0UL,
147c5fc2
PZ
7711 .busiest_stat = {
7712 .avg_load = 0UL,
caeb178c
RR
7713 .sum_nr_running = 0,
7714 .group_type = group_other,
147c5fc2
PZ
7715 },
7716 };
7717}
7718
287cdaac 7719static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7720{
7721 struct rq *rq = cpu_rq(cpu);
8ec59c0f 7722 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 7723 unsigned long used, free;
523e979d 7724 unsigned long irq;
b654f7de 7725
2e62c474 7726 irq = cpu_util_irq(rq);
cadefd3d 7727
523e979d
VG
7728 if (unlikely(irq >= max))
7729 return 1;
aa483808 7730
523e979d
VG
7731 used = READ_ONCE(rq->avg_rt.util_avg);
7732 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7733
523e979d
VG
7734 if (unlikely(used >= max))
7735 return 1;
1e3c88bd 7736
523e979d 7737 free = max - used;
2e62c474
VG
7738
7739 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7740}
7741
ced549fa 7742static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7743{
287cdaac 7744 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7745 struct sched_group *sdg = sd->groups;
7746
8ec59c0f 7747 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 7748
ced549fa
NP
7749 if (!capacity)
7750 capacity = 1;
1e3c88bd 7751
ced549fa
NP
7752 cpu_rq(cpu)->cpu_capacity = capacity;
7753 sdg->sgc->capacity = capacity;
bf475ce0 7754 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7755 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7756}
7757
63b2ca30 7758void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7759{
7760 struct sched_domain *child = sd->child;
7761 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7762 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7763 unsigned long interval;
7764
7765 interval = msecs_to_jiffies(sd->balance_interval);
7766 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7767 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7768
7769 if (!child) {
ced549fa 7770 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7771 return;
7772 }
7773
dc7ff76e 7774 capacity = 0;
bf475ce0 7775 min_capacity = ULONG_MAX;
e3d6d0cb 7776 max_capacity = 0;
1e3c88bd 7777
74a5ce20
PZ
7778 if (child->flags & SD_OVERLAP) {
7779 /*
7780 * SD_OVERLAP domains cannot assume that child groups
7781 * span the current group.
7782 */
7783
ae4df9d6 7784 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7785 struct sched_group_capacity *sgc;
9abf24d4 7786 struct rq *rq = cpu_rq(cpu);
863bffc8 7787
9abf24d4 7788 /*
63b2ca30 7789 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7790 * gets here before we've attached the domains to the
7791 * runqueues.
7792 *
ced549fa
NP
7793 * Use capacity_of(), which is set irrespective of domains
7794 * in update_cpu_capacity().
9abf24d4 7795 *
dc7ff76e 7796 * This avoids capacity from being 0 and
9abf24d4 7797 * causing divide-by-zero issues on boot.
9abf24d4
SD
7798 */
7799 if (unlikely(!rq->sd)) {
ced549fa 7800 capacity += capacity_of(cpu);
bf475ce0
MR
7801 } else {
7802 sgc = rq->sd->groups->sgc;
7803 capacity += sgc->capacity;
9abf24d4 7804 }
863bffc8 7805
bf475ce0 7806 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7807 max_capacity = max(capacity, max_capacity);
863bffc8 7808 }
74a5ce20
PZ
7809 } else {
7810 /*
7811 * !SD_OVERLAP domains can assume that child groups
7812 * span the current group.
97a7142f 7813 */
74a5ce20
PZ
7814
7815 group = child->groups;
7816 do {
bf475ce0
MR
7817 struct sched_group_capacity *sgc = group->sgc;
7818
7819 capacity += sgc->capacity;
7820 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7821 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7822 group = group->next;
7823 } while (group != child->groups);
7824 }
1e3c88bd 7825
63b2ca30 7826 sdg->sgc->capacity = capacity;
bf475ce0 7827 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 7828 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
7829}
7830
9d5efe05 7831/*
ea67821b
VG
7832 * Check whether the capacity of the rq has been noticeably reduced by side
7833 * activity. The imbalance_pct is used for the threshold.
7834 * Return true is the capacity is reduced
9d5efe05
SV
7835 */
7836static inline int
ea67821b 7837check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7838{
ea67821b
VG
7839 return ((rq->cpu_capacity * sd->imbalance_pct) <
7840 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7841}
7842
a0fe2cf0
VS
7843/*
7844 * Check whether a rq has a misfit task and if it looks like we can actually
7845 * help that task: we can migrate the task to a CPU of higher capacity, or
7846 * the task's current CPU is heavily pressured.
7847 */
7848static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7849{
7850 return rq->misfit_task_load &&
7851 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7852 check_cpu_capacity(rq, sd));
7853}
7854
30ce5dab
PZ
7855/*
7856 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 7857 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 7858 *
97fb7a0a
IM
7859 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7860 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7861 * Something like:
7862 *
2b4d5b25
IM
7863 * { 0 1 2 3 } { 4 5 6 7 }
7864 * * * * *
30ce5dab
PZ
7865 *
7866 * If we were to balance group-wise we'd place two tasks in the first group and
7867 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7868 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7869 *
7870 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7871 * by noticing the lower domain failed to reach balance and had difficulty
7872 * moving tasks due to affinity constraints.
30ce5dab
PZ
7873 *
7874 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7875 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7876 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7877 * to create an effective group imbalance.
7878 *
7879 * This is a somewhat tricky proposition since the next run might not find the
7880 * group imbalance and decide the groups need to be balanced again. A most
7881 * subtle and fragile situation.
7882 */
7883
6263322c 7884static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7885{
63b2ca30 7886 return group->sgc->imbalance;
30ce5dab
PZ
7887}
7888
b37d9316 7889/*
ea67821b
VG
7890 * group_has_capacity returns true if the group has spare capacity that could
7891 * be used by some tasks.
7892 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7893 * smaller than the number of CPUs or if the utilization is lower than the
7894 * available capacity for CFS tasks.
ea67821b
VG
7895 * For the latter, we use a threshold to stabilize the state, to take into
7896 * account the variance of the tasks' load and to return true if the available
7897 * capacity in meaningful for the load balancer.
7898 * As an example, an available capacity of 1% can appear but it doesn't make
7899 * any benefit for the load balance.
b37d9316 7900 */
ea67821b
VG
7901static inline bool
7902group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7903{
ea67821b
VG
7904 if (sgs->sum_nr_running < sgs->group_weight)
7905 return true;
c61037e9 7906
ea67821b 7907 if ((sgs->group_capacity * 100) >
9e91d61d 7908 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7909 return true;
b37d9316 7910
ea67821b
VG
7911 return false;
7912}
7913
7914/*
7915 * group_is_overloaded returns true if the group has more tasks than it can
7916 * handle.
7917 * group_is_overloaded is not equals to !group_has_capacity because a group
7918 * with the exact right number of tasks, has no more spare capacity but is not
7919 * overloaded so both group_has_capacity and group_is_overloaded return
7920 * false.
7921 */
7922static inline bool
7923group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7924{
7925 if (sgs->sum_nr_running <= sgs->group_weight)
7926 return false;
b37d9316 7927
ea67821b 7928 if ((sgs->group_capacity * 100) <
9e91d61d 7929 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7930 return true;
b37d9316 7931
ea67821b 7932 return false;
b37d9316
PZ
7933}
7934
9e0994c0 7935/*
e3d6d0cb 7936 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
7937 * per-CPU capacity than sched_group ref.
7938 */
7939static inline bool
e3d6d0cb 7940group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0
MR
7941{
7942 return sg->sgc->min_capacity * capacity_margin <
7943 ref->sgc->min_capacity * 1024;
7944}
7945
e3d6d0cb
MR
7946/*
7947 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7948 * per-CPU capacity_orig than sched_group ref.
7949 */
7950static inline bool
7951group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7952{
7953 return sg->sgc->max_capacity * capacity_margin <
7954 ref->sgc->max_capacity * 1024;
7955}
7956
79a89f92
LY
7957static inline enum
7958group_type group_classify(struct sched_group *group,
7959 struct sg_lb_stats *sgs)
caeb178c 7960{
ea67821b 7961 if (sgs->group_no_capacity)
caeb178c
RR
7962 return group_overloaded;
7963
7964 if (sg_imbalanced(group))
7965 return group_imbalanced;
7966
3b1baa64
MR
7967 if (sgs->group_misfit_task_load)
7968 return group_misfit_task;
7969
caeb178c
RR
7970 return group_other;
7971}
7972
63928384 7973static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
7974{
7975#ifdef CONFIG_NO_HZ_COMMON
7976 unsigned int cpu = rq->cpu;
7977
f643ea22
VG
7978 if (!rq->has_blocked_load)
7979 return false;
7980
e022e0d3 7981 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 7982 return false;
e022e0d3 7983
63928384 7984 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 7985 return true;
e022e0d3
PZ
7986
7987 update_blocked_averages(cpu);
f643ea22
VG
7988
7989 return rq->has_blocked_load;
7990#else
7991 return false;
e022e0d3
PZ
7992#endif
7993}
7994
1e3c88bd
PZ
7995/**
7996 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7997 * @env: The load balancing environment.
1e3c88bd 7998 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7999 * @sgs: variable to hold the statistics for this group.
630246a0 8000 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8001 */
bd939f45 8002static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8003 struct sched_group *group,
8004 struct sg_lb_stats *sgs,
8005 int *sg_status)
1e3c88bd 8006{
a426f99c 8007 int i, nr_running;
1e3c88bd 8008
b72ff13c
PZ
8009 memset(sgs, 0, sizeof(*sgs));
8010
ae4df9d6 8011 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8012 struct rq *rq = cpu_rq(i);
8013
63928384 8014 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8015 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8016
a3df0679 8017 sgs->group_load += cpu_runnable_load(rq);
9e91d61d 8018 sgs->group_util += cpu_util(i);
65fdac08 8019 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 8020
a426f99c
WL
8021 nr_running = rq->nr_running;
8022 if (nr_running > 1)
630246a0 8023 *sg_status |= SG_OVERLOAD;
4486edd1 8024
2802bf3c
MR
8025 if (cpu_overutilized(i))
8026 *sg_status |= SG_OVERUTILIZED;
4486edd1 8027
0ec8aa00
PZ
8028#ifdef CONFIG_NUMA_BALANCING
8029 sgs->nr_numa_running += rq->nr_numa_running;
8030 sgs->nr_preferred_running += rq->nr_preferred_running;
8031#endif
a426f99c
WL
8032 /*
8033 * No need to call idle_cpu() if nr_running is not 0
8034 */
8035 if (!nr_running && idle_cpu(i))
aae6d3dd 8036 sgs->idle_cpus++;
3b1baa64
MR
8037
8038 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8039 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8040 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8041 *sg_status |= SG_OVERLOAD;
757ffdd7 8042 }
1e3c88bd
PZ
8043 }
8044
63b2ca30
NP
8045 /* Adjust by relative CPU capacity of the group */
8046 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 8047 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 8048
dd5feea1 8049 if (sgs->sum_nr_running)
af75d1a9 8050 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
1e3c88bd 8051
aae6d3dd 8052 sgs->group_weight = group->group_weight;
b37d9316 8053
ea67821b 8054 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 8055 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
8056}
8057
532cb4c4
MN
8058/**
8059 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8060 * @env: The load balancing environment.
532cb4c4
MN
8061 * @sds: sched_domain statistics
8062 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8063 * @sgs: sched_group statistics
532cb4c4
MN
8064 *
8065 * Determine if @sg is a busier group than the previously selected
8066 * busiest group.
e69f6186
YB
8067 *
8068 * Return: %true if @sg is a busier group than the previously selected
8069 * busiest group. %false otherwise.
532cb4c4 8070 */
bd939f45 8071static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8072 struct sd_lb_stats *sds,
8073 struct sched_group *sg,
bd939f45 8074 struct sg_lb_stats *sgs)
532cb4c4 8075{
caeb178c 8076 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8077
cad68e55
MR
8078 /*
8079 * Don't try to pull misfit tasks we can't help.
8080 * We can use max_capacity here as reduction in capacity on some
8081 * CPUs in the group should either be possible to resolve
8082 * internally or be covered by avg_load imbalance (eventually).
8083 */
8084 if (sgs->group_type == group_misfit_task &&
8085 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8086 !group_has_capacity(env, &sds->local_stat)))
8087 return false;
8088
caeb178c 8089 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8090 return true;
8091
caeb178c
RR
8092 if (sgs->group_type < busiest->group_type)
8093 return false;
8094
8095 if (sgs->avg_load <= busiest->avg_load)
8096 return false;
8097
9e0994c0
MR
8098 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8099 goto asym_packing;
8100
8101 /*
8102 * Candidate sg has no more than one task per CPU and
8103 * has higher per-CPU capacity. Migrating tasks to less
8104 * capable CPUs may harm throughput. Maximize throughput,
8105 * power/energy consequences are not considered.
8106 */
8107 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 8108 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
8109 return false;
8110
cad68e55
MR
8111 /*
8112 * If we have more than one misfit sg go with the biggest misfit.
8113 */
8114 if (sgs->group_type == group_misfit_task &&
8115 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
8116 return false;
8117
8118asym_packing:
caeb178c
RR
8119 /* This is the busiest node in its class. */
8120 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8121 return true;
8122
97fb7a0a 8123 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
8124 if (env->idle == CPU_NOT_IDLE)
8125 return true;
532cb4c4 8126 /*
afe06efd
TC
8127 * ASYM_PACKING needs to move all the work to the highest
8128 * prority CPUs in the group, therefore mark all groups
8129 * of lower priority than ourself as busy.
532cb4c4 8130 */
afe06efd
TC
8131 if (sgs->sum_nr_running &&
8132 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
8133 if (!sds->busiest)
8134 return true;
8135
97fb7a0a 8136 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8137 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8138 sg->asym_prefer_cpu))
532cb4c4
MN
8139 return true;
8140 }
8141
8142 return false;
8143}
8144
0ec8aa00
PZ
8145#ifdef CONFIG_NUMA_BALANCING
8146static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8147{
8148 if (sgs->sum_nr_running > sgs->nr_numa_running)
8149 return regular;
8150 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8151 return remote;
8152 return all;
8153}
8154
8155static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8156{
8157 if (rq->nr_running > rq->nr_numa_running)
8158 return regular;
8159 if (rq->nr_running > rq->nr_preferred_running)
8160 return remote;
8161 return all;
8162}
8163#else
8164static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8165{
8166 return all;
8167}
8168
8169static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8170{
8171 return regular;
8172}
8173#endif /* CONFIG_NUMA_BALANCING */
8174
1e3c88bd 8175/**
461819ac 8176 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8177 * @env: The load balancing environment.
1e3c88bd
PZ
8178 * @sds: variable to hold the statistics for this sched_domain.
8179 */
0ec8aa00 8180static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8181{
bd939f45
PZ
8182 struct sched_domain *child = env->sd->child;
8183 struct sched_group *sg = env->sd->groups;
05b40e05 8184 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8185 struct sg_lb_stats tmp_sgs;
dbbad719 8186 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
630246a0 8187 int sg_status = 0;
1e3c88bd 8188
e022e0d3 8189#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8190 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8191 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8192#endif
8193
1e3c88bd 8194 do {
56cf515b 8195 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8196 int local_group;
8197
ae4df9d6 8198 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8199 if (local_group) {
8200 sds->local = sg;
05b40e05 8201 sgs = local;
b72ff13c
PZ
8202
8203 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8204 time_after_eq(jiffies, sg->sgc->next_update))
8205 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8206 }
1e3c88bd 8207
630246a0 8208 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8209
b72ff13c
PZ
8210 if (local_group)
8211 goto next_group;
8212
1e3c88bd
PZ
8213 /*
8214 * In case the child domain prefers tasks go to siblings
ea67821b 8215 * first, lower the sg capacity so that we'll try
75dd321d
NR
8216 * and move all the excess tasks away. We lower the capacity
8217 * of a group only if the local group has the capacity to fit
ea67821b
VG
8218 * these excess tasks. The extra check prevents the case where
8219 * you always pull from the heaviest group when it is already
8220 * under-utilized (possible with a large weight task outweighs
8221 * the tasks on the system).
1e3c88bd 8222 */
b72ff13c 8223 if (prefer_sibling && sds->local &&
05b40e05
SD
8224 group_has_capacity(env, local) &&
8225 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8226 sgs->group_no_capacity = 1;
79a89f92 8227 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8228 }
1e3c88bd 8229
b72ff13c 8230 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8231 sds->busiest = sg;
56cf515b 8232 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8233 }
8234
b72ff13c
PZ
8235next_group:
8236 /* Now, start updating sd_lb_stats */
90001d67 8237 sds->total_running += sgs->sum_nr_running;
b72ff13c 8238 sds->total_load += sgs->group_load;
63b2ca30 8239 sds->total_capacity += sgs->group_capacity;
b72ff13c 8240
532cb4c4 8241 sg = sg->next;
bd939f45 8242 } while (sg != env->sd->groups);
0ec8aa00 8243
f643ea22
VG
8244#ifdef CONFIG_NO_HZ_COMMON
8245 if ((env->flags & LBF_NOHZ_AGAIN) &&
8246 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8247
8248 WRITE_ONCE(nohz.next_blocked,
8249 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8250 }
8251#endif
8252
0ec8aa00
PZ
8253 if (env->sd->flags & SD_NUMA)
8254 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8255
8256 if (!env->sd->parent) {
2802bf3c
MR
8257 struct root_domain *rd = env->dst_rq->rd;
8258
4486edd1 8259 /* update overload indicator if we are at root domain */
2802bf3c
MR
8260 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8261
8262 /* Update over-utilization (tipping point, U >= 0) indicator */
8263 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8264 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8265 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8266 struct root_domain *rd = env->dst_rq->rd;
8267
8268 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8269 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8270 }
532cb4c4
MN
8271}
8272
532cb4c4
MN
8273/**
8274 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8275 * sched domain.
532cb4c4
MN
8276 *
8277 * This is primarily intended to used at the sibling level. Some
8278 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8279 * case of POWER7, it can move to lower SMT modes only when higher
8280 * threads are idle. When in lower SMT modes, the threads will
8281 * perform better since they share less core resources. Hence when we
8282 * have idle threads, we want them to be the higher ones.
8283 *
8284 * This packing function is run on idle threads. It checks to see if
8285 * the busiest CPU in this domain (core in the P7 case) has a higher
8286 * CPU number than the packing function is being run on. Here we are
8287 * assuming lower CPU number will be equivalent to lower a SMT thread
8288 * number.
8289 *
e69f6186 8290 * Return: 1 when packing is required and a task should be moved to
46123355 8291 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8292 *
cd96891d 8293 * @env: The load balancing environment.
532cb4c4 8294 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8295 */
bd939f45 8296static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8297{
8298 int busiest_cpu;
8299
bd939f45 8300 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8301 return 0;
8302
1f621e02
SD
8303 if (env->idle == CPU_NOT_IDLE)
8304 return 0;
8305
532cb4c4
MN
8306 if (!sds->busiest)
8307 return 0;
8308
afe06efd
TC
8309 busiest_cpu = sds->busiest->asym_prefer_cpu;
8310 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8311 return 0;
8312
4ad4e481 8313 env->imbalance = sds->busiest_stat.group_load;
bd939f45 8314
532cb4c4 8315 return 1;
1e3c88bd
PZ
8316}
8317
8318/**
8319 * fix_small_imbalance - Calculate the minor imbalance that exists
8320 * amongst the groups of a sched_domain, during
8321 * load balancing.
cd96891d 8322 * @env: The load balancing environment.
1e3c88bd 8323 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8324 */
bd939f45
PZ
8325static inline
8326void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8327{
63b2ca30 8328 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8329 unsigned int imbn = 2;
dd5feea1 8330 unsigned long scaled_busy_load_per_task;
56cf515b 8331 struct sg_lb_stats *local, *busiest;
1e3c88bd 8332
56cf515b
JK
8333 local = &sds->local_stat;
8334 busiest = &sds->busiest_stat;
1e3c88bd 8335
56cf515b
JK
8336 if (!local->sum_nr_running)
8337 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8338 else if (busiest->load_per_task > local->load_per_task)
8339 imbn = 1;
dd5feea1 8340
56cf515b 8341 scaled_busy_load_per_task =
ca8ce3d0 8342 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8343 busiest->group_capacity;
56cf515b 8344
3029ede3
VD
8345 if (busiest->avg_load + scaled_busy_load_per_task >=
8346 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8347 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8348 return;
8349 }
8350
8351 /*
8352 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8353 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8354 * moving them.
8355 */
8356
63b2ca30 8357 capa_now += busiest->group_capacity *
56cf515b 8358 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8359 capa_now += local->group_capacity *
56cf515b 8360 min(local->load_per_task, local->avg_load);
ca8ce3d0 8361 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8362
8363 /* Amount of load we'd subtract */
a2cd4260 8364 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8365 capa_move += busiest->group_capacity *
56cf515b 8366 min(busiest->load_per_task,
a2cd4260 8367 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8368 }
1e3c88bd
PZ
8369
8370 /* Amount of load we'd add */
63b2ca30 8371 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8372 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8373 tmp = (busiest->avg_load * busiest->group_capacity) /
8374 local->group_capacity;
56cf515b 8375 } else {
ca8ce3d0 8376 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8377 local->group_capacity;
56cf515b 8378 }
63b2ca30 8379 capa_move += local->group_capacity *
3ae11c90 8380 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8381 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8382
8383 /* Move if we gain throughput */
63b2ca30 8384 if (capa_move > capa_now)
56cf515b 8385 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8386}
8387
8388/**
8389 * calculate_imbalance - Calculate the amount of imbalance present within the
8390 * groups of a given sched_domain during load balance.
bd939f45 8391 * @env: load balance environment
1e3c88bd 8392 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8393 */
bd939f45 8394static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8395{
dd5feea1 8396 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8397 struct sg_lb_stats *local, *busiest;
8398
8399 local = &sds->local_stat;
56cf515b 8400 busiest = &sds->busiest_stat;
dd5feea1 8401
caeb178c 8402 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8403 /*
8404 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8405 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8406 */
56cf515b
JK
8407 busiest->load_per_task =
8408 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8409 }
8410
1e3c88bd 8411 /*
885e542c
DE
8412 * Avg load of busiest sg can be less and avg load of local sg can
8413 * be greater than avg load across all sgs of sd because avg load
8414 * factors in sg capacity and sgs with smaller group_type are
8415 * skipped when updating the busiest sg:
1e3c88bd 8416 */
cad68e55
MR
8417 if (busiest->group_type != group_misfit_task &&
8418 (busiest->avg_load <= sds->avg_load ||
8419 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8420 env->imbalance = 0;
8421 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8422 }
8423
9a5d9ba6 8424 /*
97fb7a0a 8425 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8426 */
8427 if (busiest->group_type == group_overloaded &&
8428 local->group_type == group_overloaded) {
1be0eb2a 8429 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8430 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8431 load_above_capacity -= busiest->group_capacity;
26656215 8432 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8433 load_above_capacity /= busiest->group_capacity;
8434 } else
ea67821b 8435 load_above_capacity = ~0UL;
dd5feea1
SS
8436 }
8437
8438 /*
97fb7a0a 8439 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8440 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8441 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8442 * we also don't want to reduce the group load below the group
8443 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8444 */
30ce5dab 8445 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8446
8447 /* How much load to actually move to equalise the imbalance */
56cf515b 8448 env->imbalance = min(
63b2ca30
NP
8449 max_pull * busiest->group_capacity,
8450 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8451 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8452
cad68e55
MR
8453 /* Boost imbalance to allow misfit task to be balanced. */
8454 if (busiest->group_type == group_misfit_task) {
8455 env->imbalance = max_t(long, env->imbalance,
8456 busiest->group_misfit_task_load);
8457 }
8458
1e3c88bd
PZ
8459 /*
8460 * if *imbalance is less than the average load per runnable task
25985edc 8461 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8462 * a think about bumping its value to force at least one task to be
8463 * moved
8464 */
56cf515b 8465 if (env->imbalance < busiest->load_per_task)
bd939f45 8466 return fix_small_imbalance(env, sds);
1e3c88bd 8467}
fab47622 8468
1e3c88bd
PZ
8469/******* find_busiest_group() helpers end here *********************/
8470
8471/**
8472 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8473 * if there is an imbalance.
1e3c88bd 8474 *
a3df0679 8475 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
8476 * to restore balance.
8477 *
cd96891d 8478 * @env: The load balancing environment.
1e3c88bd 8479 *
e69f6186 8480 * Return: - The busiest group if imbalance exists.
1e3c88bd 8481 */
56cf515b 8482static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8483{
56cf515b 8484 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8485 struct sd_lb_stats sds;
8486
147c5fc2 8487 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8488
8489 /*
8490 * Compute the various statistics relavent for load balancing at
8491 * this level.
8492 */
23f0d209 8493 update_sd_lb_stats(env, &sds);
2802bf3c 8494
f8a696f2 8495 if (sched_energy_enabled()) {
2802bf3c
MR
8496 struct root_domain *rd = env->dst_rq->rd;
8497
8498 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8499 goto out_balanced;
8500 }
8501
56cf515b
JK
8502 local = &sds.local_stat;
8503 busiest = &sds.busiest_stat;
1e3c88bd 8504
ea67821b 8505 /* ASYM feature bypasses nice load balance check */
1f621e02 8506 if (check_asym_packing(env, &sds))
532cb4c4
MN
8507 return sds.busiest;
8508
cc57aa8f 8509 /* There is no busy sibling group to pull tasks from */
56cf515b 8510 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8511 goto out_balanced;
8512
90001d67 8513 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8514 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8515 / sds.total_capacity;
b0432d8f 8516
866ab43e
PZ
8517 /*
8518 * If the busiest group is imbalanced the below checks don't
30ce5dab 8519 * work because they assume all things are equal, which typically
3bd37062 8520 * isn't true due to cpus_ptr constraints and the like.
866ab43e 8521 */
caeb178c 8522 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8523 goto force_balance;
8524
583ffd99
BJ
8525 /*
8526 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8527 * capacities from resulting in underutilization due to avg_load.
8528 */
8529 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8530 busiest->group_no_capacity)
fab47622
NR
8531 goto force_balance;
8532
cad68e55
MR
8533 /* Misfit tasks should be dealt with regardless of the avg load */
8534 if (busiest->group_type == group_misfit_task)
8535 goto force_balance;
8536
cc57aa8f 8537 /*
9c58c79a 8538 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8539 * don't try and pull any tasks.
8540 */
56cf515b 8541 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8542 goto out_balanced;
8543
cc57aa8f
PZ
8544 /*
8545 * Don't pull any tasks if this group is already above the domain
8546 * average load.
8547 */
56cf515b 8548 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8549 goto out_balanced;
8550
bd939f45 8551 if (env->idle == CPU_IDLE) {
aae6d3dd 8552 /*
97fb7a0a 8553 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8554 * and there is no imbalance between this and busiest group
97fb7a0a 8555 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8556 * significant if the diff is greater than 1 otherwise we
8557 * might end up to just move the imbalance on another group
aae6d3dd 8558 */
43f4d666
VG
8559 if ((busiest->group_type != group_overloaded) &&
8560 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8561 goto out_balanced;
c186fafe
PZ
8562 } else {
8563 /*
8564 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8565 * imbalance_pct to be conservative.
8566 */
56cf515b
JK
8567 if (100 * busiest->avg_load <=
8568 env->sd->imbalance_pct * local->avg_load)
c186fafe 8569 goto out_balanced;
aae6d3dd 8570 }
1e3c88bd 8571
fab47622 8572force_balance:
1e3c88bd 8573 /* Looks like there is an imbalance. Compute it */
cad68e55 8574 env->src_grp_type = busiest->group_type;
bd939f45 8575 calculate_imbalance(env, &sds);
bb3485c8 8576 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8577
8578out_balanced:
bd939f45 8579 env->imbalance = 0;
1e3c88bd
PZ
8580 return NULL;
8581}
8582
8583/*
97fb7a0a 8584 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8585 */
bd939f45 8586static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8587 struct sched_group *group)
1e3c88bd
PZ
8588{
8589 struct rq *busiest = NULL, *rq;
ced549fa 8590 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8591 int i;
8592
ae4df9d6 8593 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
a3df0679 8594 unsigned long capacity, load;
0ec8aa00
PZ
8595 enum fbq_type rt;
8596
8597 rq = cpu_rq(i);
8598 rt = fbq_classify_rq(rq);
1e3c88bd 8599
0ec8aa00
PZ
8600 /*
8601 * We classify groups/runqueues into three groups:
8602 * - regular: there are !numa tasks
8603 * - remote: there are numa tasks that run on the 'wrong' node
8604 * - all: there is no distinction
8605 *
8606 * In order to avoid migrating ideally placed numa tasks,
8607 * ignore those when there's better options.
8608 *
8609 * If we ignore the actual busiest queue to migrate another
8610 * task, the next balance pass can still reduce the busiest
8611 * queue by moving tasks around inside the node.
8612 *
8613 * If we cannot move enough load due to this classification
8614 * the next pass will adjust the group classification and
8615 * allow migration of more tasks.
8616 *
8617 * Both cases only affect the total convergence complexity.
8618 */
8619 if (rt > env->fbq_type)
8620 continue;
8621
cad68e55
MR
8622 /*
8623 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8624 * seek the "biggest" misfit task.
8625 */
8626 if (env->src_grp_type == group_misfit_task) {
8627 if (rq->misfit_task_load > busiest_load) {
8628 busiest_load = rq->misfit_task_load;
8629 busiest = rq;
8630 }
8631
8632 continue;
8633 }
8634
ced549fa 8635 capacity = capacity_of(i);
9d5efe05 8636
4ad3831a
CR
8637 /*
8638 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8639 * eventually lead to active_balancing high->low capacity.
8640 * Higher per-CPU capacity is considered better than balancing
8641 * average load.
8642 */
8643 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8644 capacity_of(env->dst_cpu) < capacity &&
8645 rq->nr_running == 1)
8646 continue;
8647
a3df0679 8648 load = cpu_runnable_load(rq);
1e3c88bd 8649
6e40f5bb 8650 /*
a3df0679 8651 * When comparing with imbalance, use cpu_runnable_load()
97fb7a0a 8652 * which is not scaled with the CPU capacity.
6e40f5bb 8653 */
ea67821b 8654
a3df0679 8655 if (rq->nr_running == 1 && load > env->imbalance &&
ea67821b 8656 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8657 continue;
8658
6e40f5bb 8659 /*
97fb7a0a 8660 * For the load comparisons with the other CPU's, consider
a3df0679 8661 * the cpu_runnable_load() scaled with the CPU capacity, so
97fb7a0a 8662 * that the load can be moved away from the CPU that is
ced549fa 8663 * potentially running at a lower capacity.
95a79b80 8664 *
a3df0679 8665 * Thus we're looking for max(load_i / capacity_i), crosswise
95a79b80 8666 * multiplication to rid ourselves of the division works out
a3df0679 8667 * to: load_i * capacity_j > load_j * capacity_i; where j is
ced549fa 8668 * our previous maximum.
6e40f5bb 8669 */
a3df0679
DE
8670 if (load * busiest_capacity > busiest_load * capacity) {
8671 busiest_load = load;
ced549fa 8672 busiest_capacity = capacity;
1e3c88bd
PZ
8673 busiest = rq;
8674 }
8675 }
8676
8677 return busiest;
8678}
8679
8680/*
8681 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8682 * so long as it is large enough.
8683 */
8684#define MAX_PINNED_INTERVAL 512
8685
46a745d9
VG
8686static inline bool
8687asym_active_balance(struct lb_env *env)
1af3ed3d 8688{
46a745d9
VG
8689 /*
8690 * ASYM_PACKING needs to force migrate tasks from busy but
8691 * lower priority CPUs in order to pack all tasks in the
8692 * highest priority CPUs.
8693 */
8694 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8695 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8696}
bd939f45 8697
46a745d9
VG
8698static inline bool
8699voluntary_active_balance(struct lb_env *env)
8700{
8701 struct sched_domain *sd = env->sd;
532cb4c4 8702
46a745d9
VG
8703 if (asym_active_balance(env))
8704 return 1;
1af3ed3d 8705
1aaf90a4
VG
8706 /*
8707 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8708 * It's worth migrating the task if the src_cpu's capacity is reduced
8709 * because of other sched_class or IRQs if more capacity stays
8710 * available on dst_cpu.
8711 */
8712 if ((env->idle != CPU_NOT_IDLE) &&
8713 (env->src_rq->cfs.h_nr_running == 1)) {
8714 if ((check_cpu_capacity(env->src_rq, sd)) &&
8715 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8716 return 1;
8717 }
8718
cad68e55
MR
8719 if (env->src_grp_type == group_misfit_task)
8720 return 1;
8721
46a745d9
VG
8722 return 0;
8723}
8724
8725static int need_active_balance(struct lb_env *env)
8726{
8727 struct sched_domain *sd = env->sd;
8728
8729 if (voluntary_active_balance(env))
8730 return 1;
8731
1af3ed3d
PZ
8732 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8733}
8734
969c7921
TH
8735static int active_load_balance_cpu_stop(void *data);
8736
23f0d209
JK
8737static int should_we_balance(struct lb_env *env)
8738{
8739 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8740 int cpu, balance_cpu = -1;
8741
024c9d2f
PZ
8742 /*
8743 * Ensure the balancing environment is consistent; can happen
8744 * when the softirq triggers 'during' hotplug.
8745 */
8746 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8747 return 0;
8748
23f0d209 8749 /*
97fb7a0a 8750 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8751 * to do the newly idle load balance.
8752 */
8753 if (env->idle == CPU_NEWLY_IDLE)
8754 return 1;
8755
97fb7a0a 8756 /* Try to find first idle CPU */
e5c14b1f 8757 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8758 if (!idle_cpu(cpu))
23f0d209
JK
8759 continue;
8760
8761 balance_cpu = cpu;
8762 break;
8763 }
8764
8765 if (balance_cpu == -1)
8766 balance_cpu = group_balance_cpu(sg);
8767
8768 /*
97fb7a0a 8769 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8770 * is eligible for doing load balancing at this and above domains.
8771 */
b0cff9d8 8772 return balance_cpu == env->dst_cpu;
23f0d209
JK
8773}
8774
1e3c88bd
PZ
8775/*
8776 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8777 * tasks if there is an imbalance.
8778 */
8779static int load_balance(int this_cpu, struct rq *this_rq,
8780 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8781 int *continue_balancing)
1e3c88bd 8782{
88b8dac0 8783 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8784 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8785 struct sched_group *group;
1e3c88bd 8786 struct rq *busiest;
8a8c69c3 8787 struct rq_flags rf;
4ba29684 8788 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8789
8e45cb54
PZ
8790 struct lb_env env = {
8791 .sd = sd,
ddcdf6e7
PZ
8792 .dst_cpu = this_cpu,
8793 .dst_rq = this_rq,
ae4df9d6 8794 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8795 .idle = idle,
eb95308e 8796 .loop_break = sched_nr_migrate_break,
b9403130 8797 .cpus = cpus,
0ec8aa00 8798 .fbq_type = all,
163122b7 8799 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8800 };
8801
65a4433a 8802 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8803
ae92882e 8804 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8805
8806redo:
23f0d209
JK
8807 if (!should_we_balance(&env)) {
8808 *continue_balancing = 0;
1e3c88bd 8809 goto out_balanced;
23f0d209 8810 }
1e3c88bd 8811
23f0d209 8812 group = find_busiest_group(&env);
1e3c88bd 8813 if (!group) {
ae92882e 8814 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8815 goto out_balanced;
8816 }
8817
b9403130 8818 busiest = find_busiest_queue(&env, group);
1e3c88bd 8819 if (!busiest) {
ae92882e 8820 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8821 goto out_balanced;
8822 }
8823
78feefc5 8824 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8825
ae92882e 8826 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8827
1aaf90a4
VG
8828 env.src_cpu = busiest->cpu;
8829 env.src_rq = busiest;
8830
1e3c88bd
PZ
8831 ld_moved = 0;
8832 if (busiest->nr_running > 1) {
8833 /*
8834 * Attempt to move tasks. If find_busiest_group has found
8835 * an imbalance but busiest->nr_running <= 1, the group is
8836 * still unbalanced. ld_moved simply stays zero, so it is
8837 * correctly treated as an imbalance.
8838 */
8e45cb54 8839 env.flags |= LBF_ALL_PINNED;
c82513e5 8840 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8841
5d6523eb 8842more_balance:
8a8c69c3 8843 rq_lock_irqsave(busiest, &rf);
3bed5e21 8844 update_rq_clock(busiest);
88b8dac0
SV
8845
8846 /*
8847 * cur_ld_moved - load moved in current iteration
8848 * ld_moved - cumulative load moved across iterations
8849 */
163122b7 8850 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8851
8852 /*
163122b7
KT
8853 * We've detached some tasks from busiest_rq. Every
8854 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8855 * unlock busiest->lock, and we are able to be sure
8856 * that nobody can manipulate the tasks in parallel.
8857 * See task_rq_lock() family for the details.
1e3c88bd 8858 */
163122b7 8859
8a8c69c3 8860 rq_unlock(busiest, &rf);
163122b7
KT
8861
8862 if (cur_ld_moved) {
8863 attach_tasks(&env);
8864 ld_moved += cur_ld_moved;
8865 }
8866
8a8c69c3 8867 local_irq_restore(rf.flags);
88b8dac0 8868
f1cd0858
JK
8869 if (env.flags & LBF_NEED_BREAK) {
8870 env.flags &= ~LBF_NEED_BREAK;
8871 goto more_balance;
8872 }
8873
88b8dac0
SV
8874 /*
8875 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8876 * us and move them to an alternate dst_cpu in our sched_group
8877 * where they can run. The upper limit on how many times we
97fb7a0a 8878 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
8879 * sched_group.
8880 *
8881 * This changes load balance semantics a bit on who can move
8882 * load to a given_cpu. In addition to the given_cpu itself
8883 * (or a ilb_cpu acting on its behalf where given_cpu is
8884 * nohz-idle), we now have balance_cpu in a position to move
8885 * load to given_cpu. In rare situations, this may cause
8886 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8887 * _independently_ and at _same_ time to move some load to
8888 * given_cpu) causing exceess load to be moved to given_cpu.
8889 * This however should not happen so much in practice and
8890 * moreover subsequent load balance cycles should correct the
8891 * excess load moved.
8892 */
6263322c 8893 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8894
97fb7a0a 8895 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 8896 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 8897
78feefc5 8898 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8899 env.dst_cpu = env.new_dst_cpu;
6263322c 8900 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8901 env.loop = 0;
8902 env.loop_break = sched_nr_migrate_break;
e02e60c1 8903
88b8dac0
SV
8904 /*
8905 * Go back to "more_balance" rather than "redo" since we
8906 * need to continue with same src_cpu.
8907 */
8908 goto more_balance;
8909 }
1e3c88bd 8910
6263322c
PZ
8911 /*
8912 * We failed to reach balance because of affinity.
8913 */
8914 if (sd_parent) {
63b2ca30 8915 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8916
afdeee05 8917 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8918 *group_imbalance = 1;
6263322c
PZ
8919 }
8920
1e3c88bd 8921 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8922 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 8923 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8924 /*
8925 * Attempting to continue load balancing at the current
8926 * sched_domain level only makes sense if there are
8927 * active CPUs remaining as possible busiest CPUs to
8928 * pull load from which are not contained within the
8929 * destination group that is receiving any migrated
8930 * load.
8931 */
8932 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8933 env.loop = 0;
8934 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8935 goto redo;
bbf18b19 8936 }
afdeee05 8937 goto out_all_pinned;
1e3c88bd
PZ
8938 }
8939 }
8940
8941 if (!ld_moved) {
ae92882e 8942 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8943 /*
8944 * Increment the failure counter only on periodic balance.
8945 * We do not want newidle balance, which can be very
8946 * frequent, pollute the failure counter causing
8947 * excessive cache_hot migrations and active balances.
8948 */
8949 if (idle != CPU_NEWLY_IDLE)
8950 sd->nr_balance_failed++;
1e3c88bd 8951
bd939f45 8952 if (need_active_balance(&env)) {
8a8c69c3
PZ
8953 unsigned long flags;
8954
1e3c88bd
PZ
8955 raw_spin_lock_irqsave(&busiest->lock, flags);
8956
97fb7a0a
IM
8957 /*
8958 * Don't kick the active_load_balance_cpu_stop,
8959 * if the curr task on busiest CPU can't be
8960 * moved to this_cpu:
1e3c88bd 8961 */
3bd37062 8962 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
8963 raw_spin_unlock_irqrestore(&busiest->lock,
8964 flags);
8e45cb54 8965 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8966 goto out_one_pinned;
8967 }
8968
969c7921
TH
8969 /*
8970 * ->active_balance synchronizes accesses to
8971 * ->active_balance_work. Once set, it's cleared
8972 * only after active load balance is finished.
8973 */
1e3c88bd
PZ
8974 if (!busiest->active_balance) {
8975 busiest->active_balance = 1;
8976 busiest->push_cpu = this_cpu;
8977 active_balance = 1;
8978 }
8979 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8980
bd939f45 8981 if (active_balance) {
969c7921
TH
8982 stop_one_cpu_nowait(cpu_of(busiest),
8983 active_load_balance_cpu_stop, busiest,
8984 &busiest->active_balance_work);
bd939f45 8985 }
1e3c88bd 8986
d02c0711 8987 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8988 sd->nr_balance_failed = sd->cache_nice_tries+1;
8989 }
8990 } else
8991 sd->nr_balance_failed = 0;
8992
46a745d9 8993 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
8994 /* We were unbalanced, so reset the balancing interval */
8995 sd->balance_interval = sd->min_interval;
8996 } else {
8997 /*
8998 * If we've begun active balancing, start to back off. This
8999 * case may not be covered by the all_pinned logic if there
9000 * is only 1 task on the busy runqueue (because we don't call
163122b7 9001 * detach_tasks).
1e3c88bd
PZ
9002 */
9003 if (sd->balance_interval < sd->max_interval)
9004 sd->balance_interval *= 2;
9005 }
9006
1e3c88bd
PZ
9007 goto out;
9008
9009out_balanced:
afdeee05
VG
9010 /*
9011 * We reach balance although we may have faced some affinity
9012 * constraints. Clear the imbalance flag if it was set.
9013 */
9014 if (sd_parent) {
9015 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9016
9017 if (*group_imbalance)
9018 *group_imbalance = 0;
9019 }
9020
9021out_all_pinned:
9022 /*
9023 * We reach balance because all tasks are pinned at this level so
9024 * we can't migrate them. Let the imbalance flag set so parent level
9025 * can try to migrate them.
9026 */
ae92882e 9027 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9028
9029 sd->nr_balance_failed = 0;
9030
9031out_one_pinned:
3f130a37
VS
9032 ld_moved = 0;
9033
9034 /*
9035 * idle_balance() disregards balance intervals, so we could repeatedly
9036 * reach this code, which would lead to balance_interval skyrocketting
9037 * in a short amount of time. Skip the balance_interval increase logic
9038 * to avoid that.
9039 */
9040 if (env.idle == CPU_NEWLY_IDLE)
9041 goto out;
9042
1e3c88bd 9043 /* tune up the balancing interval */
47b7aee1
VS
9044 if ((env.flags & LBF_ALL_PINNED &&
9045 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9046 sd->balance_interval < sd->max_interval)
1e3c88bd 9047 sd->balance_interval *= 2;
1e3c88bd 9048out:
1e3c88bd
PZ
9049 return ld_moved;
9050}
9051
52a08ef1
JL
9052static inline unsigned long
9053get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9054{
9055 unsigned long interval = sd->balance_interval;
9056
9057 if (cpu_busy)
9058 interval *= sd->busy_factor;
9059
9060 /* scale ms to jiffies */
9061 interval = msecs_to_jiffies(interval);
9062 interval = clamp(interval, 1UL, max_load_balance_interval);
9063
9064 return interval;
9065}
9066
9067static inline void
31851a98 9068update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9069{
9070 unsigned long interval, next;
9071
31851a98
LY
9072 /* used by idle balance, so cpu_busy = 0 */
9073 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9074 next = sd->last_balance + interval;
9075
9076 if (time_after(*next_balance, next))
9077 *next_balance = next;
9078}
9079
1e3c88bd 9080/*
97fb7a0a 9081 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9082 * running tasks off the busiest CPU onto idle CPUs. It requires at
9083 * least 1 task to be running on each physical CPU where possible, and
9084 * avoids physical / logical imbalances.
1e3c88bd 9085 */
969c7921 9086static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9087{
969c7921
TH
9088 struct rq *busiest_rq = data;
9089 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9090 int target_cpu = busiest_rq->push_cpu;
969c7921 9091 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9092 struct sched_domain *sd;
e5673f28 9093 struct task_struct *p = NULL;
8a8c69c3 9094 struct rq_flags rf;
969c7921 9095
8a8c69c3 9096 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9097 /*
9098 * Between queueing the stop-work and running it is a hole in which
9099 * CPUs can become inactive. We should not move tasks from or to
9100 * inactive CPUs.
9101 */
9102 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9103 goto out_unlock;
969c7921 9104
97fb7a0a 9105 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9106 if (unlikely(busiest_cpu != smp_processor_id() ||
9107 !busiest_rq->active_balance))
9108 goto out_unlock;
1e3c88bd
PZ
9109
9110 /* Is there any task to move? */
9111 if (busiest_rq->nr_running <= 1)
969c7921 9112 goto out_unlock;
1e3c88bd
PZ
9113
9114 /*
9115 * This condition is "impossible", if it occurs
9116 * we need to fix it. Originally reported by
97fb7a0a 9117 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9118 */
9119 BUG_ON(busiest_rq == target_rq);
9120
1e3c88bd 9121 /* Search for an sd spanning us and the target CPU. */
dce840a0 9122 rcu_read_lock();
1e3c88bd
PZ
9123 for_each_domain(target_cpu, sd) {
9124 if ((sd->flags & SD_LOAD_BALANCE) &&
9125 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9126 break;
9127 }
9128
9129 if (likely(sd)) {
8e45cb54
PZ
9130 struct lb_env env = {
9131 .sd = sd,
ddcdf6e7
PZ
9132 .dst_cpu = target_cpu,
9133 .dst_rq = target_rq,
9134 .src_cpu = busiest_rq->cpu,
9135 .src_rq = busiest_rq,
8e45cb54 9136 .idle = CPU_IDLE,
65a4433a
JH
9137 /*
9138 * can_migrate_task() doesn't need to compute new_dst_cpu
9139 * for active balancing. Since we have CPU_IDLE, but no
9140 * @dst_grpmask we need to make that test go away with lying
9141 * about DST_PINNED.
9142 */
9143 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9144 };
9145
ae92882e 9146 schedstat_inc(sd->alb_count);
3bed5e21 9147 update_rq_clock(busiest_rq);
1e3c88bd 9148
e5673f28 9149 p = detach_one_task(&env);
d02c0711 9150 if (p) {
ae92882e 9151 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9152 /* Active balancing done, reset the failure counter. */
9153 sd->nr_balance_failed = 0;
9154 } else {
ae92882e 9155 schedstat_inc(sd->alb_failed);
d02c0711 9156 }
1e3c88bd 9157 }
dce840a0 9158 rcu_read_unlock();
969c7921
TH
9159out_unlock:
9160 busiest_rq->active_balance = 0;
8a8c69c3 9161 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9162
9163 if (p)
9164 attach_one_task(target_rq, p);
9165
9166 local_irq_enable();
9167
969c7921 9168 return 0;
1e3c88bd
PZ
9169}
9170
af3fe03c
PZ
9171static DEFINE_SPINLOCK(balancing);
9172
9173/*
9174 * Scale the max load_balance interval with the number of CPUs in the system.
9175 * This trades load-balance latency on larger machines for less cross talk.
9176 */
9177void update_max_interval(void)
9178{
9179 max_load_balance_interval = HZ*num_online_cpus()/10;
9180}
9181
9182/*
9183 * It checks each scheduling domain to see if it is due to be balanced,
9184 * and initiates a balancing operation if so.
9185 *
9186 * Balancing parameters are set up in init_sched_domains.
9187 */
9188static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9189{
9190 int continue_balancing = 1;
9191 int cpu = rq->cpu;
9192 unsigned long interval;
9193 struct sched_domain *sd;
9194 /* Earliest time when we have to do rebalance again */
9195 unsigned long next_balance = jiffies + 60*HZ;
9196 int update_next_balance = 0;
9197 int need_serialize, need_decay = 0;
9198 u64 max_cost = 0;
9199
9200 rcu_read_lock();
9201 for_each_domain(cpu, sd) {
9202 /*
9203 * Decay the newidle max times here because this is a regular
9204 * visit to all the domains. Decay ~1% per second.
9205 */
9206 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9207 sd->max_newidle_lb_cost =
9208 (sd->max_newidle_lb_cost * 253) / 256;
9209 sd->next_decay_max_lb_cost = jiffies + HZ;
9210 need_decay = 1;
9211 }
9212 max_cost += sd->max_newidle_lb_cost;
9213
9214 if (!(sd->flags & SD_LOAD_BALANCE))
9215 continue;
9216
9217 /*
9218 * Stop the load balance at this level. There is another
9219 * CPU in our sched group which is doing load balancing more
9220 * actively.
9221 */
9222 if (!continue_balancing) {
9223 if (need_decay)
9224 continue;
9225 break;
9226 }
9227
9228 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9229
9230 need_serialize = sd->flags & SD_SERIALIZE;
9231 if (need_serialize) {
9232 if (!spin_trylock(&balancing))
9233 goto out;
9234 }
9235
9236 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9237 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9238 /*
9239 * The LBF_DST_PINNED logic could have changed
9240 * env->dst_cpu, so we can't know our idle
9241 * state even if we migrated tasks. Update it.
9242 */
9243 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9244 }
9245 sd->last_balance = jiffies;
9246 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9247 }
9248 if (need_serialize)
9249 spin_unlock(&balancing);
9250out:
9251 if (time_after(next_balance, sd->last_balance + interval)) {
9252 next_balance = sd->last_balance + interval;
9253 update_next_balance = 1;
9254 }
9255 }
9256 if (need_decay) {
9257 /*
9258 * Ensure the rq-wide value also decays but keep it at a
9259 * reasonable floor to avoid funnies with rq->avg_idle.
9260 */
9261 rq->max_idle_balance_cost =
9262 max((u64)sysctl_sched_migration_cost, max_cost);
9263 }
9264 rcu_read_unlock();
9265
9266 /*
9267 * next_balance will be updated only when there is a need.
9268 * When the cpu is attached to null domain for ex, it will not be
9269 * updated.
9270 */
9271 if (likely(update_next_balance)) {
9272 rq->next_balance = next_balance;
9273
9274#ifdef CONFIG_NO_HZ_COMMON
9275 /*
9276 * If this CPU has been elected to perform the nohz idle
9277 * balance. Other idle CPUs have already rebalanced with
9278 * nohz_idle_balance() and nohz.next_balance has been
9279 * updated accordingly. This CPU is now running the idle load
9280 * balance for itself and we need to update the
9281 * nohz.next_balance accordingly.
9282 */
9283 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9284 nohz.next_balance = rq->next_balance;
9285#endif
9286 }
9287}
9288
d987fc7f
MG
9289static inline int on_null_domain(struct rq *rq)
9290{
9291 return unlikely(!rcu_dereference_sched(rq->sd));
9292}
9293
3451d024 9294#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9295/*
9296 * idle load balancing details
83cd4fe2
VP
9297 * - When one of the busy CPUs notice that there may be an idle rebalancing
9298 * needed, they will kick the idle load balancer, which then does idle
9299 * load balancing for all the idle CPUs.
9b019acb
NP
9300 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9301 * anywhere yet.
83cd4fe2 9302 */
1e3c88bd 9303
3dd0337d 9304static inline int find_new_ilb(void)
1e3c88bd 9305{
9b019acb 9306 int ilb;
1e3c88bd 9307
9b019acb
NP
9308 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9309 housekeeping_cpumask(HK_FLAG_MISC)) {
9310 if (idle_cpu(ilb))
9311 return ilb;
9312 }
786d6dc7
SS
9313
9314 return nr_cpu_ids;
1e3c88bd 9315}
1e3c88bd 9316
83cd4fe2 9317/*
9b019acb
NP
9318 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9319 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 9320 */
a4064fb6 9321static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9322{
9323 int ilb_cpu;
9324
9325 nohz.next_balance++;
9326
3dd0337d 9327 ilb_cpu = find_new_ilb();
83cd4fe2 9328
0b005cf5
SS
9329 if (ilb_cpu >= nr_cpu_ids)
9330 return;
83cd4fe2 9331
a4064fb6 9332 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9333 if (flags & NOHZ_KICK_MASK)
1c792db7 9334 return;
4550487a 9335
1c792db7
SS
9336 /*
9337 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9338 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9339 * is idle. And the softirq performing nohz idle load balance
9340 * will be run before returning from the IPI.
9341 */
9342 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9343}
9344
9345/*
9f132742
VS
9346 * Current decision point for kicking the idle load balancer in the presence
9347 * of idle CPUs in the system.
4550487a
PZ
9348 */
9349static void nohz_balancer_kick(struct rq *rq)
9350{
9351 unsigned long now = jiffies;
9352 struct sched_domain_shared *sds;
9353 struct sched_domain *sd;
9354 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9355 unsigned int flags = 0;
4550487a
PZ
9356
9357 if (unlikely(rq->idle_balance))
9358 return;
9359
9360 /*
9361 * We may be recently in ticked or tickless idle mode. At the first
9362 * busy tick after returning from idle, we will update the busy stats.
9363 */
00357f5e 9364 nohz_balance_exit_idle(rq);
4550487a
PZ
9365
9366 /*
9367 * None are in tickless mode and hence no need for NOHZ idle load
9368 * balancing.
9369 */
9370 if (likely(!atomic_read(&nohz.nr_cpus)))
9371 return;
9372
f643ea22
VG
9373 if (READ_ONCE(nohz.has_blocked) &&
9374 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9375 flags = NOHZ_STATS_KICK;
9376
4550487a 9377 if (time_before(now, nohz.next_balance))
a4064fb6 9378 goto out;
4550487a 9379
a0fe2cf0 9380 if (rq->nr_running >= 2) {
a4064fb6 9381 flags = NOHZ_KICK_MASK;
4550487a
PZ
9382 goto out;
9383 }
9384
9385 rcu_read_lock();
4550487a
PZ
9386
9387 sd = rcu_dereference(rq->sd);
9388 if (sd) {
e25a7a94
VS
9389 /*
9390 * If there's a CFS task and the current CPU has reduced
9391 * capacity; kick the ILB to see if there's a better CPU to run
9392 * on.
9393 */
9394 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 9395 flags = NOHZ_KICK_MASK;
4550487a
PZ
9396 goto unlock;
9397 }
9398 }
9399
011b27bb 9400 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 9401 if (sd) {
b9a7b883
VS
9402 /*
9403 * When ASYM_PACKING; see if there's a more preferred CPU
9404 * currently idle; in which case, kick the ILB to move tasks
9405 * around.
9406 */
7edab78d 9407 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 9408 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9409 flags = NOHZ_KICK_MASK;
4550487a
PZ
9410 goto unlock;
9411 }
9412 }
9413 }
b9a7b883 9414
a0fe2cf0
VS
9415 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9416 if (sd) {
9417 /*
9418 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9419 * to run the misfit task on.
9420 */
9421 if (check_misfit_status(rq, sd)) {
9422 flags = NOHZ_KICK_MASK;
9423 goto unlock;
9424 }
b9a7b883
VS
9425
9426 /*
9427 * For asymmetric systems, we do not want to nicely balance
9428 * cache use, instead we want to embrace asymmetry and only
9429 * ensure tasks have enough CPU capacity.
9430 *
9431 * Skip the LLC logic because it's not relevant in that case.
9432 */
9433 goto unlock;
a0fe2cf0
VS
9434 }
9435
b9a7b883
VS
9436 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9437 if (sds) {
e25a7a94 9438 /*
b9a7b883
VS
9439 * If there is an imbalance between LLC domains (IOW we could
9440 * increase the overall cache use), we need some less-loaded LLC
9441 * domain to pull some load. Likewise, we may need to spread
9442 * load within the current LLC domain (e.g. packed SMT cores but
9443 * other CPUs are idle). We can't really know from here how busy
9444 * the others are - so just get a nohz balance going if it looks
9445 * like this LLC domain has tasks we could move.
e25a7a94 9446 */
b9a7b883
VS
9447 nr_busy = atomic_read(&sds->nr_busy_cpus);
9448 if (nr_busy > 1) {
9449 flags = NOHZ_KICK_MASK;
9450 goto unlock;
4550487a
PZ
9451 }
9452 }
9453unlock:
9454 rcu_read_unlock();
9455out:
a4064fb6
PZ
9456 if (flags)
9457 kick_ilb(flags);
83cd4fe2
VP
9458}
9459
00357f5e 9460static void set_cpu_sd_state_busy(int cpu)
71325960 9461{
00357f5e 9462 struct sched_domain *sd;
a22e47a4 9463
00357f5e
PZ
9464 rcu_read_lock();
9465 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9466
00357f5e
PZ
9467 if (!sd || !sd->nohz_idle)
9468 goto unlock;
9469 sd->nohz_idle = 0;
9470
9471 atomic_inc(&sd->shared->nr_busy_cpus);
9472unlock:
9473 rcu_read_unlock();
71325960
SS
9474}
9475
00357f5e
PZ
9476void nohz_balance_exit_idle(struct rq *rq)
9477{
9478 SCHED_WARN_ON(rq != this_rq());
9479
9480 if (likely(!rq->nohz_tick_stopped))
9481 return;
9482
9483 rq->nohz_tick_stopped = 0;
9484 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9485 atomic_dec(&nohz.nr_cpus);
9486
9487 set_cpu_sd_state_busy(rq->cpu);
9488}
9489
9490static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9491{
9492 struct sched_domain *sd;
69e1e811 9493
69e1e811 9494 rcu_read_lock();
0e369d75 9495 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9496
9497 if (!sd || sd->nohz_idle)
9498 goto unlock;
9499 sd->nohz_idle = 1;
9500
0e369d75 9501 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9502unlock:
69e1e811
SS
9503 rcu_read_unlock();
9504}
9505
1e3c88bd 9506/*
97fb7a0a 9507 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9508 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9509 */
c1cc017c 9510void nohz_balance_enter_idle(int cpu)
1e3c88bd 9511{
00357f5e
PZ
9512 struct rq *rq = cpu_rq(cpu);
9513
9514 SCHED_WARN_ON(cpu != smp_processor_id());
9515
97fb7a0a 9516 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9517 if (!cpu_active(cpu))
9518 return;
9519
387bc8b5 9520 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9521 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9522 return;
9523
f643ea22
VG
9524 /*
9525 * Can be set safely without rq->lock held
9526 * If a clear happens, it will have evaluated last additions because
9527 * rq->lock is held during the check and the clear
9528 */
9529 rq->has_blocked_load = 1;
9530
9531 /*
9532 * The tick is still stopped but load could have been added in the
9533 * meantime. We set the nohz.has_blocked flag to trig a check of the
9534 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9535 * of nohz.has_blocked can only happen after checking the new load
9536 */
00357f5e 9537 if (rq->nohz_tick_stopped)
f643ea22 9538 goto out;
1e3c88bd 9539
97fb7a0a 9540 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9541 if (on_null_domain(rq))
d987fc7f
MG
9542 return;
9543
00357f5e
PZ
9544 rq->nohz_tick_stopped = 1;
9545
c1cc017c
AS
9546 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9547 atomic_inc(&nohz.nr_cpus);
00357f5e 9548
f643ea22
VG
9549 /*
9550 * Ensures that if nohz_idle_balance() fails to observe our
9551 * @idle_cpus_mask store, it must observe the @has_blocked
9552 * store.
9553 */
9554 smp_mb__after_atomic();
9555
00357f5e 9556 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9557
9558out:
9559 /*
9560 * Each time a cpu enter idle, we assume that it has blocked load and
9561 * enable the periodic update of the load of idle cpus
9562 */
9563 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9564}
1e3c88bd 9565
1e3c88bd 9566/*
31e77c93
VG
9567 * Internal function that runs load balance for all idle cpus. The load balance
9568 * can be a simple update of blocked load or a complete load balance with
9569 * tasks movement depending of flags.
9570 * The function returns false if the loop has stopped before running
9571 * through all idle CPUs.
1e3c88bd 9572 */
31e77c93
VG
9573static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9574 enum cpu_idle_type idle)
83cd4fe2 9575{
c5afb6a8 9576 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9577 unsigned long now = jiffies;
9578 unsigned long next_balance = now + 60*HZ;
f643ea22 9579 bool has_blocked_load = false;
c5afb6a8 9580 int update_next_balance = 0;
b7031a02 9581 int this_cpu = this_rq->cpu;
b7031a02 9582 int balance_cpu;
31e77c93 9583 int ret = false;
b7031a02 9584 struct rq *rq;
83cd4fe2 9585
b7031a02 9586 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9587
f643ea22
VG
9588 /*
9589 * We assume there will be no idle load after this update and clear
9590 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9591 * set the has_blocked flag and trig another update of idle load.
9592 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9593 * setting the flag, we are sure to not clear the state and not
9594 * check the load of an idle cpu.
9595 */
9596 WRITE_ONCE(nohz.has_blocked, 0);
9597
9598 /*
9599 * Ensures that if we miss the CPU, we must see the has_blocked
9600 * store from nohz_balance_enter_idle().
9601 */
9602 smp_mb();
9603
83cd4fe2 9604 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9605 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9606 continue;
9607
9608 /*
97fb7a0a
IM
9609 * If this CPU gets work to do, stop the load balancing
9610 * work being done for other CPUs. Next load
83cd4fe2
VP
9611 * balancing owner will pick it up.
9612 */
f643ea22
VG
9613 if (need_resched()) {
9614 has_blocked_load = true;
9615 goto abort;
9616 }
83cd4fe2 9617
5ed4f1d9
VG
9618 rq = cpu_rq(balance_cpu);
9619
63928384 9620 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9621
ed61bbc6
TC
9622 /*
9623 * If time for next balance is due,
9624 * do the balance.
9625 */
9626 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9627 struct rq_flags rf;
9628
31e77c93 9629 rq_lock_irqsave(rq, &rf);
ed61bbc6 9630 update_rq_clock(rq);
31e77c93 9631 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9632
b7031a02
PZ
9633 if (flags & NOHZ_BALANCE_KICK)
9634 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9635 }
83cd4fe2 9636
c5afb6a8
VG
9637 if (time_after(next_balance, rq->next_balance)) {
9638 next_balance = rq->next_balance;
9639 update_next_balance = 1;
9640 }
83cd4fe2 9641 }
c5afb6a8 9642
31e77c93
VG
9643 /* Newly idle CPU doesn't need an update */
9644 if (idle != CPU_NEWLY_IDLE) {
9645 update_blocked_averages(this_cpu);
9646 has_blocked_load |= this_rq->has_blocked_load;
9647 }
9648
b7031a02
PZ
9649 if (flags & NOHZ_BALANCE_KICK)
9650 rebalance_domains(this_rq, CPU_IDLE);
9651
f643ea22
VG
9652 WRITE_ONCE(nohz.next_blocked,
9653 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9654
31e77c93
VG
9655 /* The full idle balance loop has been done */
9656 ret = true;
9657
f643ea22
VG
9658abort:
9659 /* There is still blocked load, enable periodic update */
9660 if (has_blocked_load)
9661 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9662
c5afb6a8
VG
9663 /*
9664 * next_balance will be updated only when there is a need.
9665 * When the CPU is attached to null domain for ex, it will not be
9666 * updated.
9667 */
9668 if (likely(update_next_balance))
9669 nohz.next_balance = next_balance;
b7031a02 9670
31e77c93
VG
9671 return ret;
9672}
9673
9674/*
9675 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9676 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9677 */
9678static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9679{
9680 int this_cpu = this_rq->cpu;
9681 unsigned int flags;
9682
9683 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9684 return false;
9685
9686 if (idle != CPU_IDLE) {
9687 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9688 return false;
9689 }
9690
80eb8657 9691 /* could be _relaxed() */
31e77c93
VG
9692 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9693 if (!(flags & NOHZ_KICK_MASK))
9694 return false;
9695
9696 _nohz_idle_balance(this_rq, flags, idle);
9697
b7031a02 9698 return true;
83cd4fe2 9699}
31e77c93
VG
9700
9701static void nohz_newidle_balance(struct rq *this_rq)
9702{
9703 int this_cpu = this_rq->cpu;
9704
9705 /*
9706 * This CPU doesn't want to be disturbed by scheduler
9707 * housekeeping
9708 */
9709 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9710 return;
9711
9712 /* Will wake up very soon. No time for doing anything else*/
9713 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9714 return;
9715
9716 /* Don't need to update blocked load of idle CPUs*/
9717 if (!READ_ONCE(nohz.has_blocked) ||
9718 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9719 return;
9720
9721 raw_spin_unlock(&this_rq->lock);
9722 /*
9723 * This CPU is going to be idle and blocked load of idle CPUs
9724 * need to be updated. Run the ilb locally as it is a good
9725 * candidate for ilb instead of waking up another idle CPU.
9726 * Kick an normal ilb if we failed to do the update.
9727 */
9728 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9729 kick_ilb(NOHZ_STATS_KICK);
9730 raw_spin_lock(&this_rq->lock);
9731}
9732
dd707247
PZ
9733#else /* !CONFIG_NO_HZ_COMMON */
9734static inline void nohz_balancer_kick(struct rq *rq) { }
9735
31e77c93 9736static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9737{
9738 return false;
9739}
31e77c93
VG
9740
9741static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9742#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9743
47ea5412
PZ
9744/*
9745 * idle_balance is called by schedule() if this_cpu is about to become
9746 * idle. Attempts to pull tasks from other CPUs.
9747 */
9748static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9749{
9750 unsigned long next_balance = jiffies + HZ;
9751 int this_cpu = this_rq->cpu;
9752 struct sched_domain *sd;
9753 int pulled_task = 0;
9754 u64 curr_cost = 0;
9755
9756 /*
9757 * We must set idle_stamp _before_ calling idle_balance(), such that we
9758 * measure the duration of idle_balance() as idle time.
9759 */
9760 this_rq->idle_stamp = rq_clock(this_rq);
9761
9762 /*
9763 * Do not pull tasks towards !active CPUs...
9764 */
9765 if (!cpu_active(this_cpu))
9766 return 0;
9767
9768 /*
9769 * This is OK, because current is on_cpu, which avoids it being picked
9770 * for load-balance and preemption/IRQs are still disabled avoiding
9771 * further scheduler activity on it and we're being very careful to
9772 * re-start the picking loop.
9773 */
9774 rq_unpin_lock(this_rq, rf);
9775
9776 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9777 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9778
47ea5412
PZ
9779 rcu_read_lock();
9780 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9781 if (sd)
9782 update_next_balance(sd, &next_balance);
9783 rcu_read_unlock();
9784
31e77c93
VG
9785 nohz_newidle_balance(this_rq);
9786
47ea5412
PZ
9787 goto out;
9788 }
9789
9790 raw_spin_unlock(&this_rq->lock);
9791
9792 update_blocked_averages(this_cpu);
9793 rcu_read_lock();
9794 for_each_domain(this_cpu, sd) {
9795 int continue_balancing = 1;
9796 u64 t0, domain_cost;
9797
9798 if (!(sd->flags & SD_LOAD_BALANCE))
9799 continue;
9800
9801 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9802 update_next_balance(sd, &next_balance);
9803 break;
9804 }
9805
9806 if (sd->flags & SD_BALANCE_NEWIDLE) {
9807 t0 = sched_clock_cpu(this_cpu);
9808
9809 pulled_task = load_balance(this_cpu, this_rq,
9810 sd, CPU_NEWLY_IDLE,
9811 &continue_balancing);
9812
9813 domain_cost = sched_clock_cpu(this_cpu) - t0;
9814 if (domain_cost > sd->max_newidle_lb_cost)
9815 sd->max_newidle_lb_cost = domain_cost;
9816
9817 curr_cost += domain_cost;
9818 }
9819
9820 update_next_balance(sd, &next_balance);
9821
9822 /*
9823 * Stop searching for tasks to pull if there are
9824 * now runnable tasks on this rq.
9825 */
9826 if (pulled_task || this_rq->nr_running > 0)
9827 break;
9828 }
9829 rcu_read_unlock();
9830
9831 raw_spin_lock(&this_rq->lock);
9832
9833 if (curr_cost > this_rq->max_idle_balance_cost)
9834 this_rq->max_idle_balance_cost = curr_cost;
9835
457be908 9836out:
47ea5412
PZ
9837 /*
9838 * While browsing the domains, we released the rq lock, a task could
9839 * have been enqueued in the meantime. Since we're not going idle,
9840 * pretend we pulled a task.
9841 */
9842 if (this_rq->cfs.h_nr_running && !pulled_task)
9843 pulled_task = 1;
9844
47ea5412
PZ
9845 /* Move the next balance forward */
9846 if (time_after(this_rq->next_balance, next_balance))
9847 this_rq->next_balance = next_balance;
9848
9849 /* Is there a task of a high priority class? */
9850 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9851 pulled_task = -1;
9852
9853 if (pulled_task)
9854 this_rq->idle_stamp = 0;
9855
9856 rq_repin_lock(this_rq, rf);
9857
9858 return pulled_task;
9859}
9860
83cd4fe2
VP
9861/*
9862 * run_rebalance_domains is triggered when needed from the scheduler tick.
9863 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9864 */
0766f788 9865static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9866{
208cb16b 9867 struct rq *this_rq = this_rq();
6eb57e0d 9868 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9869 CPU_IDLE : CPU_NOT_IDLE;
9870
1e3c88bd 9871 /*
97fb7a0a
IM
9872 * If this CPU has a pending nohz_balance_kick, then do the
9873 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9874 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9875 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9876 * load balance only within the local sched_domain hierarchy
9877 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9878 */
b7031a02
PZ
9879 if (nohz_idle_balance(this_rq, idle))
9880 return;
9881
9882 /* normal load balance */
9883 update_blocked_averages(this_rq->cpu);
d4573c3e 9884 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9885}
9886
1e3c88bd
PZ
9887/*
9888 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9889 */
7caff66f 9890void trigger_load_balance(struct rq *rq)
1e3c88bd 9891{
1e3c88bd 9892 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9893 if (unlikely(on_null_domain(rq)))
9894 return;
9895
9896 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9897 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
9898
9899 nohz_balancer_kick(rq);
1e3c88bd
PZ
9900}
9901
0bcdcf28
CE
9902static void rq_online_fair(struct rq *rq)
9903{
9904 update_sysctl();
0e59bdae
KT
9905
9906 update_runtime_enabled(rq);
0bcdcf28
CE
9907}
9908
9909static void rq_offline_fair(struct rq *rq)
9910{
9911 update_sysctl();
a4c96ae3
PB
9912
9913 /* Ensure any throttled groups are reachable by pick_next_task */
9914 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9915}
9916
55e12e5e 9917#endif /* CONFIG_SMP */
e1d1484f 9918
bf0f6f24 9919/*
d84b3131
FW
9920 * scheduler tick hitting a task of our scheduling class.
9921 *
9922 * NOTE: This function can be called remotely by the tick offload that
9923 * goes along full dynticks. Therefore no local assumption can be made
9924 * and everything must be accessed through the @rq and @curr passed in
9925 * parameters.
bf0f6f24 9926 */
8f4d37ec 9927static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9928{
9929 struct cfs_rq *cfs_rq;
9930 struct sched_entity *se = &curr->se;
9931
9932 for_each_sched_entity(se) {
9933 cfs_rq = cfs_rq_of(se);
8f4d37ec 9934 entity_tick(cfs_rq, se, queued);
bf0f6f24 9935 }
18bf2805 9936
b52da86e 9937 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9938 task_tick_numa(rq, curr);
3b1baa64
MR
9939
9940 update_misfit_status(curr, rq);
2802bf3c 9941 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
9942}
9943
9944/*
cd29fe6f
PZ
9945 * called on fork with the child task as argument from the parent's context
9946 * - child not yet on the tasklist
9947 * - preemption disabled
bf0f6f24 9948 */
cd29fe6f 9949static void task_fork_fair(struct task_struct *p)
bf0f6f24 9950{
4fc420c9
DN
9951 struct cfs_rq *cfs_rq;
9952 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9953 struct rq *rq = this_rq();
8a8c69c3 9954 struct rq_flags rf;
bf0f6f24 9955
8a8c69c3 9956 rq_lock(rq, &rf);
861d034e
PZ
9957 update_rq_clock(rq);
9958
4fc420c9
DN
9959 cfs_rq = task_cfs_rq(current);
9960 curr = cfs_rq->curr;
e210bffd
PZ
9961 if (curr) {
9962 update_curr(cfs_rq);
b5d9d734 9963 se->vruntime = curr->vruntime;
e210bffd 9964 }
aeb73b04 9965 place_entity(cfs_rq, se, 1);
4d78e7b6 9966
cd29fe6f 9967 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9968 /*
edcb60a3
IM
9969 * Upon rescheduling, sched_class::put_prev_task() will place
9970 * 'current' within the tree based on its new key value.
9971 */
4d78e7b6 9972 swap(curr->vruntime, se->vruntime);
8875125e 9973 resched_curr(rq);
4d78e7b6 9974 }
bf0f6f24 9975
88ec22d3 9976 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9977 rq_unlock(rq, &rf);
bf0f6f24
IM
9978}
9979
cb469845
SR
9980/*
9981 * Priority of the task has changed. Check to see if we preempt
9982 * the current task.
9983 */
da7a735e
PZ
9984static void
9985prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9986{
da0c1e65 9987 if (!task_on_rq_queued(p))
da7a735e
PZ
9988 return;
9989
cb469845
SR
9990 /*
9991 * Reschedule if we are currently running on this runqueue and
9992 * our priority decreased, or if we are not currently running on
9993 * this runqueue and our priority is higher than the current's
9994 */
da7a735e 9995 if (rq->curr == p) {
cb469845 9996 if (p->prio > oldprio)
8875125e 9997 resched_curr(rq);
cb469845 9998 } else
15afe09b 9999 check_preempt_curr(rq, p, 0);
cb469845
SR
10000}
10001
daa59407 10002static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10003{
10004 struct sched_entity *se = &p->se;
da7a735e
PZ
10005
10006 /*
daa59407
BP
10007 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10008 * the dequeue_entity(.flags=0) will already have normalized the
10009 * vruntime.
10010 */
10011 if (p->on_rq)
10012 return true;
10013
10014 /*
10015 * When !on_rq, vruntime of the task has usually NOT been normalized.
10016 * But there are some cases where it has already been normalized:
da7a735e 10017 *
daa59407
BP
10018 * - A forked child which is waiting for being woken up by
10019 * wake_up_new_task().
10020 * - A task which has been woken up by try_to_wake_up() and
10021 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10022 */
d0cdb3ce
SM
10023 if (!se->sum_exec_runtime ||
10024 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10025 return true;
10026
10027 return false;
10028}
10029
09a43ace
VG
10030#ifdef CONFIG_FAIR_GROUP_SCHED
10031/*
10032 * Propagate the changes of the sched_entity across the tg tree to make it
10033 * visible to the root
10034 */
10035static void propagate_entity_cfs_rq(struct sched_entity *se)
10036{
10037 struct cfs_rq *cfs_rq;
10038
10039 /* Start to propagate at parent */
10040 se = se->parent;
10041
10042 for_each_sched_entity(se) {
10043 cfs_rq = cfs_rq_of(se);
10044
10045 if (cfs_rq_throttled(cfs_rq))
10046 break;
10047
88c0616e 10048 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10049 }
10050}
10051#else
10052static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10053#endif
10054
df217913 10055static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10056{
daa59407
BP
10057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10058
9d89c257 10059 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10060 update_load_avg(cfs_rq, se, 0);
a05e8c51 10061 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10062 update_tg_load_avg(cfs_rq, false);
09a43ace 10063 propagate_entity_cfs_rq(se);
da7a735e
PZ
10064}
10065
df217913 10066static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10067{
daa59407 10068 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10069
10070#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10071 /*
10072 * Since the real-depth could have been changed (only FAIR
10073 * class maintain depth value), reset depth properly.
10074 */
10075 se->depth = se->parent ? se->parent->depth + 1 : 0;
10076#endif
7855a35a 10077
df217913 10078 /* Synchronize entity with its cfs_rq */
88c0616e 10079 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10080 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10081 update_tg_load_avg(cfs_rq, false);
09a43ace 10082 propagate_entity_cfs_rq(se);
df217913
VG
10083}
10084
10085static void detach_task_cfs_rq(struct task_struct *p)
10086{
10087 struct sched_entity *se = &p->se;
10088 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10089
10090 if (!vruntime_normalized(p)) {
10091 /*
10092 * Fix up our vruntime so that the current sleep doesn't
10093 * cause 'unlimited' sleep bonus.
10094 */
10095 place_entity(cfs_rq, se, 0);
10096 se->vruntime -= cfs_rq->min_vruntime;
10097 }
10098
10099 detach_entity_cfs_rq(se);
10100}
10101
10102static void attach_task_cfs_rq(struct task_struct *p)
10103{
10104 struct sched_entity *se = &p->se;
10105 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10106
10107 attach_entity_cfs_rq(se);
daa59407
BP
10108
10109 if (!vruntime_normalized(p))
10110 se->vruntime += cfs_rq->min_vruntime;
10111}
6efdb105 10112
daa59407
BP
10113static void switched_from_fair(struct rq *rq, struct task_struct *p)
10114{
10115 detach_task_cfs_rq(p);
10116}
10117
10118static void switched_to_fair(struct rq *rq, struct task_struct *p)
10119{
10120 attach_task_cfs_rq(p);
7855a35a 10121
daa59407 10122 if (task_on_rq_queued(p)) {
7855a35a 10123 /*
daa59407
BP
10124 * We were most likely switched from sched_rt, so
10125 * kick off the schedule if running, otherwise just see
10126 * if we can still preempt the current task.
7855a35a 10127 */
daa59407
BP
10128 if (rq->curr == p)
10129 resched_curr(rq);
10130 else
10131 check_preempt_curr(rq, p, 0);
7855a35a 10132 }
cb469845
SR
10133}
10134
83b699ed
SV
10135/* Account for a task changing its policy or group.
10136 *
10137 * This routine is mostly called to set cfs_rq->curr field when a task
10138 * migrates between groups/classes.
10139 */
10140static void set_curr_task_fair(struct rq *rq)
10141{
10142 struct sched_entity *se = &rq->curr->se;
10143
ec12cb7f
PT
10144 for_each_sched_entity(se) {
10145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10146
10147 set_next_entity(cfs_rq, se);
10148 /* ensure bandwidth has been allocated on our new cfs_rq */
10149 account_cfs_rq_runtime(cfs_rq, 0);
10150 }
83b699ed
SV
10151}
10152
029632fb
PZ
10153void init_cfs_rq(struct cfs_rq *cfs_rq)
10154{
bfb06889 10155 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10156 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10157#ifndef CONFIG_64BIT
10158 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10159#endif
141965c7 10160#ifdef CONFIG_SMP
2a2f5d4e 10161 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10162#endif
029632fb
PZ
10163}
10164
810b3817 10165#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10166static void task_set_group_fair(struct task_struct *p)
10167{
10168 struct sched_entity *se = &p->se;
10169
10170 set_task_rq(p, task_cpu(p));
10171 se->depth = se->parent ? se->parent->depth + 1 : 0;
10172}
10173
bc54da21 10174static void task_move_group_fair(struct task_struct *p)
810b3817 10175{
daa59407 10176 detach_task_cfs_rq(p);
b2b5ce02 10177 set_task_rq(p, task_cpu(p));
6efdb105
BP
10178
10179#ifdef CONFIG_SMP
10180 /* Tell se's cfs_rq has been changed -- migrated */
10181 p->se.avg.last_update_time = 0;
10182#endif
daa59407 10183 attach_task_cfs_rq(p);
810b3817 10184}
029632fb 10185
ea86cb4b
VG
10186static void task_change_group_fair(struct task_struct *p, int type)
10187{
10188 switch (type) {
10189 case TASK_SET_GROUP:
10190 task_set_group_fair(p);
10191 break;
10192
10193 case TASK_MOVE_GROUP:
10194 task_move_group_fair(p);
10195 break;
10196 }
10197}
10198
029632fb
PZ
10199void free_fair_sched_group(struct task_group *tg)
10200{
10201 int i;
10202
10203 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10204
10205 for_each_possible_cpu(i) {
10206 if (tg->cfs_rq)
10207 kfree(tg->cfs_rq[i]);
6fe1f348 10208 if (tg->se)
029632fb
PZ
10209 kfree(tg->se[i]);
10210 }
10211
10212 kfree(tg->cfs_rq);
10213 kfree(tg->se);
10214}
10215
10216int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10217{
029632fb 10218 struct sched_entity *se;
b7fa30c9 10219 struct cfs_rq *cfs_rq;
029632fb
PZ
10220 int i;
10221
6396bb22 10222 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10223 if (!tg->cfs_rq)
10224 goto err;
6396bb22 10225 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10226 if (!tg->se)
10227 goto err;
10228
10229 tg->shares = NICE_0_LOAD;
10230
10231 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10232
10233 for_each_possible_cpu(i) {
10234 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10235 GFP_KERNEL, cpu_to_node(i));
10236 if (!cfs_rq)
10237 goto err;
10238
10239 se = kzalloc_node(sizeof(struct sched_entity),
10240 GFP_KERNEL, cpu_to_node(i));
10241 if (!se)
10242 goto err_free_rq;
10243
10244 init_cfs_rq(cfs_rq);
10245 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10246 init_entity_runnable_average(se);
029632fb
PZ
10247 }
10248
10249 return 1;
10250
10251err_free_rq:
10252 kfree(cfs_rq);
10253err:
10254 return 0;
10255}
10256
8663e24d
PZ
10257void online_fair_sched_group(struct task_group *tg)
10258{
10259 struct sched_entity *se;
10260 struct rq *rq;
10261 int i;
10262
10263 for_each_possible_cpu(i) {
10264 rq = cpu_rq(i);
10265 se = tg->se[i];
10266
10267 raw_spin_lock_irq(&rq->lock);
4126bad6 10268 update_rq_clock(rq);
d0326691 10269 attach_entity_cfs_rq(se);
55e16d30 10270 sync_throttle(tg, i);
8663e24d
PZ
10271 raw_spin_unlock_irq(&rq->lock);
10272 }
10273}
10274
6fe1f348 10275void unregister_fair_sched_group(struct task_group *tg)
029632fb 10276{
029632fb 10277 unsigned long flags;
6fe1f348
PZ
10278 struct rq *rq;
10279 int cpu;
029632fb 10280
6fe1f348
PZ
10281 for_each_possible_cpu(cpu) {
10282 if (tg->se[cpu])
10283 remove_entity_load_avg(tg->se[cpu]);
029632fb 10284
6fe1f348
PZ
10285 /*
10286 * Only empty task groups can be destroyed; so we can speculatively
10287 * check on_list without danger of it being re-added.
10288 */
10289 if (!tg->cfs_rq[cpu]->on_list)
10290 continue;
10291
10292 rq = cpu_rq(cpu);
10293
10294 raw_spin_lock_irqsave(&rq->lock, flags);
10295 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10296 raw_spin_unlock_irqrestore(&rq->lock, flags);
10297 }
029632fb
PZ
10298}
10299
10300void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10301 struct sched_entity *se, int cpu,
10302 struct sched_entity *parent)
10303{
10304 struct rq *rq = cpu_rq(cpu);
10305
10306 cfs_rq->tg = tg;
10307 cfs_rq->rq = rq;
029632fb
PZ
10308 init_cfs_rq_runtime(cfs_rq);
10309
10310 tg->cfs_rq[cpu] = cfs_rq;
10311 tg->se[cpu] = se;
10312
10313 /* se could be NULL for root_task_group */
10314 if (!se)
10315 return;
10316
fed14d45 10317 if (!parent) {
029632fb 10318 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10319 se->depth = 0;
10320 } else {
029632fb 10321 se->cfs_rq = parent->my_q;
fed14d45
PZ
10322 se->depth = parent->depth + 1;
10323 }
029632fb
PZ
10324
10325 se->my_q = cfs_rq;
0ac9b1c2
PT
10326 /* guarantee group entities always have weight */
10327 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10328 se->parent = parent;
10329}
10330
10331static DEFINE_MUTEX(shares_mutex);
10332
10333int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10334{
10335 int i;
029632fb
PZ
10336
10337 /*
10338 * We can't change the weight of the root cgroup.
10339 */
10340 if (!tg->se[0])
10341 return -EINVAL;
10342
10343 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10344
10345 mutex_lock(&shares_mutex);
10346 if (tg->shares == shares)
10347 goto done;
10348
10349 tg->shares = shares;
10350 for_each_possible_cpu(i) {
10351 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10352 struct sched_entity *se = tg->se[i];
10353 struct rq_flags rf;
029632fb 10354
029632fb 10355 /* Propagate contribution to hierarchy */
8a8c69c3 10356 rq_lock_irqsave(rq, &rf);
71b1da46 10357 update_rq_clock(rq);
89ee048f 10358 for_each_sched_entity(se) {
88c0616e 10359 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10360 update_cfs_group(se);
89ee048f 10361 }
8a8c69c3 10362 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10363 }
10364
10365done:
10366 mutex_unlock(&shares_mutex);
10367 return 0;
10368}
10369#else /* CONFIG_FAIR_GROUP_SCHED */
10370
10371void free_fair_sched_group(struct task_group *tg) { }
10372
10373int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10374{
10375 return 1;
10376}
10377
8663e24d
PZ
10378void online_fair_sched_group(struct task_group *tg) { }
10379
6fe1f348 10380void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10381
10382#endif /* CONFIG_FAIR_GROUP_SCHED */
10383
810b3817 10384
6d686f45 10385static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10386{
10387 struct sched_entity *se = &task->se;
0d721cea
PW
10388 unsigned int rr_interval = 0;
10389
10390 /*
10391 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10392 * idle runqueue:
10393 */
0d721cea 10394 if (rq->cfs.load.weight)
a59f4e07 10395 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10396
10397 return rr_interval;
10398}
10399
bf0f6f24
IM
10400/*
10401 * All the scheduling class methods:
10402 */
029632fb 10403const struct sched_class fair_sched_class = {
5522d5d5 10404 .next = &idle_sched_class,
bf0f6f24
IM
10405 .enqueue_task = enqueue_task_fair,
10406 .dequeue_task = dequeue_task_fair,
10407 .yield_task = yield_task_fair,
d95f4122 10408 .yield_to_task = yield_to_task_fair,
bf0f6f24 10409
2e09bf55 10410 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10411
10412 .pick_next_task = pick_next_task_fair,
10413 .put_prev_task = put_prev_task_fair,
10414
681f3e68 10415#ifdef CONFIG_SMP
4ce72a2c 10416 .select_task_rq = select_task_rq_fair,
0a74bef8 10417 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10418
0bcdcf28
CE
10419 .rq_online = rq_online_fair,
10420 .rq_offline = rq_offline_fair,
88ec22d3 10421
12695578 10422 .task_dead = task_dead_fair,
c5b28038 10423 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10424#endif
bf0f6f24 10425
83b699ed 10426 .set_curr_task = set_curr_task_fair,
bf0f6f24 10427 .task_tick = task_tick_fair,
cd29fe6f 10428 .task_fork = task_fork_fair,
cb469845
SR
10429
10430 .prio_changed = prio_changed_fair,
da7a735e 10431 .switched_from = switched_from_fair,
cb469845 10432 .switched_to = switched_to_fair,
810b3817 10433
0d721cea
PW
10434 .get_rr_interval = get_rr_interval_fair,
10435
6e998916
SG
10436 .update_curr = update_curr_fair,
10437
810b3817 10438#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10439 .task_change_group = task_change_group_fair,
810b3817 10440#endif
982d9cdc
PB
10441
10442#ifdef CONFIG_UCLAMP_TASK
10443 .uclamp_enabled = 1,
10444#endif
bf0f6f24
IM
10445};
10446
10447#ifdef CONFIG_SCHED_DEBUG
029632fb 10448void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10449{
039ae8bc 10450 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10451
5973e5b9 10452 rcu_read_lock();
039ae8bc 10453 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10454 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10455 rcu_read_unlock();
bf0f6f24 10456}
397f2378
SD
10457
10458#ifdef CONFIG_NUMA_BALANCING
10459void show_numa_stats(struct task_struct *p, struct seq_file *m)
10460{
10461 int node;
10462 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10463
10464 for_each_online_node(node) {
10465 if (p->numa_faults) {
10466 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10467 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10468 }
10469 if (p->numa_group) {
10470 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10471 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10472 }
10473 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10474 }
10475}
10476#endif /* CONFIG_NUMA_BALANCING */
10477#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10478
10479__init void init_sched_fair_class(void)
10480{
10481#ifdef CONFIG_SMP
10482 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10483
3451d024 10484#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10485 nohz.next_balance = jiffies;
f643ea22 10486 nohz.next_blocked = jiffies;
029632fb 10487 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10488#endif
10489#endif /* SMP */
10490
10491}
3c93a0c0
QY
10492
10493/*
10494 * Helper functions to facilitate extracting info from tracepoints.
10495 */
10496
10497const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10498{
10499#ifdef CONFIG_SMP
10500 return cfs_rq ? &cfs_rq->avg : NULL;
10501#else
10502 return NULL;
10503#endif
10504}
10505EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10506
10507char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10508{
10509 if (!cfs_rq) {
10510 if (str)
10511 strlcpy(str, "(null)", len);
10512 else
10513 return NULL;
10514 }
10515
10516 cfs_rq_tg_path(cfs_rq, str, len);
10517 return str;
10518}
10519EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10520
10521int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10522{
10523 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10524}
10525EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10526
10527const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10528{
10529#ifdef CONFIG_SMP
10530 return rq ? &rq->avg_rt : NULL;
10531#else
10532 return NULL;
10533#endif
10534}
10535EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10536
10537const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10538{
10539#ifdef CONFIG_SMP
10540 return rq ? &rq->avg_dl : NULL;
10541#else
10542 return NULL;
10543#endif
10544}
10545EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10546
10547const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10548{
10549#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10550 return rq ? &rq->avg_irq : NULL;
10551#else
10552 return NULL;
10553#endif
10554}
10555EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10556
10557int sched_trace_rq_cpu(struct rq *rq)
10558{
10559 return rq ? cpu_of(rq) : -1;
10560}
10561EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10562
10563const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10564{
10565#ifdef CONFIG_SMP
10566 return rd ? rd->span : NULL;
10567#else
10568 return NULL;
10569#endif
10570}
10571EXPORT_SYMBOL_GPL(sched_trace_rd_span);