sched/fair: Provide runnable_load_avg back to cfs_rq
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables below are dependent on this value.
665 */
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
a75cdaa9 669
540247fb
YD
670/* Give new sched_entity start runnable values to heavy its load in infant time */
671void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 672{
540247fb 673 struct sched_avg *sa = &se->avg;
a75cdaa9 674
9d89c257
YD
675 sa->last_update_time = 0;
676 /*
677 * sched_avg's period_contrib should be strictly less then 1024, so
678 * we give it 1023 to make sure it is almost a period (1024us), and
679 * will definitely be update (after enqueue).
680 */
681 sa->period_contrib = 1023;
540247fb 682 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 sa->util_sum = LOAD_AVG_MAX;
686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9
AS
687}
688#else
540247fb 689void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
690{
691}
692#endif
693
bf0f6f24 694/*
9dbdb155 695 * Update the current task's runtime statistics.
bf0f6f24 696 */
b7cc0896 697static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 698{
429d43bc 699 struct sched_entity *curr = cfs_rq->curr;
78becc27 700 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 701 u64 delta_exec;
bf0f6f24
IM
702
703 if (unlikely(!curr))
704 return;
705
9dbdb155
PZ
706 delta_exec = now - curr->exec_start;
707 if (unlikely((s64)delta_exec <= 0))
34f28ecd 708 return;
bf0f6f24 709
8ebc91d9 710 curr->exec_start = now;
d842de87 711
9dbdb155
PZ
712 schedstat_set(curr->statistics.exec_max,
713 max(delta_exec, curr->statistics.exec_max));
714
715 curr->sum_exec_runtime += delta_exec;
716 schedstat_add(cfs_rq, exec_clock, delta_exec);
717
718 curr->vruntime += calc_delta_fair(delta_exec, curr);
719 update_min_vruntime(cfs_rq);
720
d842de87
SV
721 if (entity_is_task(curr)) {
722 struct task_struct *curtask = task_of(curr);
723
f977bb49 724 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 725 cpuacct_charge(curtask, delta_exec);
f06febc9 726 account_group_exec_runtime(curtask, delta_exec);
d842de87 727 }
ec12cb7f
PT
728
729 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
730}
731
6e998916
SG
732static void update_curr_fair(struct rq *rq)
733{
734 update_curr(cfs_rq_of(&rq->curr->se));
735}
736
bf0f6f24 737static inline void
5870db5b 738update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
78becc27 740 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
741}
742
bf0f6f24
IM
743/*
744 * Task is being enqueued - update stats:
745 */
d2417e5a 746static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 747{
bf0f6f24
IM
748 /*
749 * Are we enqueueing a waiting task? (for current tasks
750 * a dequeue/enqueue event is a NOP)
751 */
429d43bc 752 if (se != cfs_rq->curr)
5870db5b 753 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
754}
755
bf0f6f24 756static void
9ef0a961 757update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
41acab88 759 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 760 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
761 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
762 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
764#ifdef CONFIG_SCHEDSTATS
765 if (entity_is_task(se)) {
766 trace_sched_stat_wait(task_of(se),
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
768 }
769#endif
41acab88 770 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
771}
772
773static inline void
19b6a2e3 774update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 775{
bf0f6f24
IM
776 /*
777 * Mark the end of the wait period if dequeueing a
778 * waiting task:
779 */
429d43bc 780 if (se != cfs_rq->curr)
9ef0a961 781 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
782}
783
784/*
785 * We are picking a new current task - update its stats:
786 */
787static inline void
79303e9e 788update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
789{
790 /*
791 * We are starting a new run period:
792 */
78becc27 793 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
794}
795
bf0f6f24
IM
796/**************************************************
797 * Scheduling class queueing methods:
798 */
799
cbee9f88
PZ
800#ifdef CONFIG_NUMA_BALANCING
801/*
598f0ec0
MG
802 * Approximate time to scan a full NUMA task in ms. The task scan period is
803 * calculated based on the tasks virtual memory size and
804 * numa_balancing_scan_size.
cbee9f88 805 */
598f0ec0
MG
806unsigned int sysctl_numa_balancing_scan_period_min = 1000;
807unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
808
809/* Portion of address space to scan in MB */
810unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 811
4b96a29b
PZ
812/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
813unsigned int sysctl_numa_balancing_scan_delay = 1000;
814
598f0ec0
MG
815static unsigned int task_nr_scan_windows(struct task_struct *p)
816{
817 unsigned long rss = 0;
818 unsigned long nr_scan_pages;
819
820 /*
821 * Calculations based on RSS as non-present and empty pages are skipped
822 * by the PTE scanner and NUMA hinting faults should be trapped based
823 * on resident pages
824 */
825 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
826 rss = get_mm_rss(p->mm);
827 if (!rss)
828 rss = nr_scan_pages;
829
830 rss = round_up(rss, nr_scan_pages);
831 return rss / nr_scan_pages;
832}
833
834/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
835#define MAX_SCAN_WINDOW 2560
836
837static unsigned int task_scan_min(struct task_struct *p)
838{
316c1608 839 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
840 unsigned int scan, floor;
841 unsigned int windows = 1;
842
64192658
KT
843 if (scan_size < MAX_SCAN_WINDOW)
844 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
845 floor = 1000 / windows;
846
847 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
848 return max_t(unsigned int, floor, scan);
849}
850
851static unsigned int task_scan_max(struct task_struct *p)
852{
853 unsigned int smin = task_scan_min(p);
854 unsigned int smax;
855
856 /* Watch for min being lower than max due to floor calculations */
857 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
858 return max(smin, smax);
859}
860
0ec8aa00
PZ
861static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
862{
863 rq->nr_numa_running += (p->numa_preferred_nid != -1);
864 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
865}
866
867static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
868{
869 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
870 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
871}
872
8c8a743c
PZ
873struct numa_group {
874 atomic_t refcount;
875
876 spinlock_t lock; /* nr_tasks, tasks */
877 int nr_tasks;
e29cf08b 878 pid_t gid;
8c8a743c
PZ
879
880 struct rcu_head rcu;
20e07dea 881 nodemask_t active_nodes;
989348b5 882 unsigned long total_faults;
7e2703e6
RR
883 /*
884 * Faults_cpu is used to decide whether memory should move
885 * towards the CPU. As a consequence, these stats are weighted
886 * more by CPU use than by memory faults.
887 */
50ec8a40 888 unsigned long *faults_cpu;
989348b5 889 unsigned long faults[0];
8c8a743c
PZ
890};
891
be1e4e76
RR
892/* Shared or private faults. */
893#define NR_NUMA_HINT_FAULT_TYPES 2
894
895/* Memory and CPU locality */
896#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
897
898/* Averaged statistics, and temporary buffers. */
899#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
900
e29cf08b
MG
901pid_t task_numa_group_id(struct task_struct *p)
902{
903 return p->numa_group ? p->numa_group->gid : 0;
904}
905
44dba3d5
IM
906/*
907 * The averaged statistics, shared & private, memory & cpu,
908 * occupy the first half of the array. The second half of the
909 * array is for current counters, which are averaged into the
910 * first set by task_numa_placement.
911 */
912static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 913{
44dba3d5 914 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
915}
916
917static inline unsigned long task_faults(struct task_struct *p, int nid)
918{
44dba3d5 919 if (!p->numa_faults)
ac8e895b
MG
920 return 0;
921
44dba3d5
IM
922 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
923 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
924}
925
83e1d2cd
MG
926static inline unsigned long group_faults(struct task_struct *p, int nid)
927{
928 if (!p->numa_group)
929 return 0;
930
44dba3d5
IM
931 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
932 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
933}
934
20e07dea
RR
935static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
936{
44dba3d5
IM
937 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
938 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
939}
940
6c6b1193
RR
941/* Handle placement on systems where not all nodes are directly connected. */
942static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
943 int maxdist, bool task)
944{
945 unsigned long score = 0;
946 int node;
947
948 /*
949 * All nodes are directly connected, and the same distance
950 * from each other. No need for fancy placement algorithms.
951 */
952 if (sched_numa_topology_type == NUMA_DIRECT)
953 return 0;
954
955 /*
956 * This code is called for each node, introducing N^2 complexity,
957 * which should be ok given the number of nodes rarely exceeds 8.
958 */
959 for_each_online_node(node) {
960 unsigned long faults;
961 int dist = node_distance(nid, node);
962
963 /*
964 * The furthest away nodes in the system are not interesting
965 * for placement; nid was already counted.
966 */
967 if (dist == sched_max_numa_distance || node == nid)
968 continue;
969
970 /*
971 * On systems with a backplane NUMA topology, compare groups
972 * of nodes, and move tasks towards the group with the most
973 * memory accesses. When comparing two nodes at distance
974 * "hoplimit", only nodes closer by than "hoplimit" are part
975 * of each group. Skip other nodes.
976 */
977 if (sched_numa_topology_type == NUMA_BACKPLANE &&
978 dist > maxdist)
979 continue;
980
981 /* Add up the faults from nearby nodes. */
982 if (task)
983 faults = task_faults(p, node);
984 else
985 faults = group_faults(p, node);
986
987 /*
988 * On systems with a glueless mesh NUMA topology, there are
989 * no fixed "groups of nodes". Instead, nodes that are not
990 * directly connected bounce traffic through intermediate
991 * nodes; a numa_group can occupy any set of nodes.
992 * The further away a node is, the less the faults count.
993 * This seems to result in good task placement.
994 */
995 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
996 faults *= (sched_max_numa_distance - dist);
997 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
998 }
999
1000 score += faults;
1001 }
1002
1003 return score;
1004}
1005
83e1d2cd
MG
1006/*
1007 * These return the fraction of accesses done by a particular task, or
1008 * task group, on a particular numa node. The group weight is given a
1009 * larger multiplier, in order to group tasks together that are almost
1010 * evenly spread out between numa nodes.
1011 */
7bd95320
RR
1012static inline unsigned long task_weight(struct task_struct *p, int nid,
1013 int dist)
83e1d2cd 1014{
7bd95320 1015 unsigned long faults, total_faults;
83e1d2cd 1016
44dba3d5 1017 if (!p->numa_faults)
83e1d2cd
MG
1018 return 0;
1019
1020 total_faults = p->total_numa_faults;
1021
1022 if (!total_faults)
1023 return 0;
1024
7bd95320 1025 faults = task_faults(p, nid);
6c6b1193
RR
1026 faults += score_nearby_nodes(p, nid, dist, true);
1027
7bd95320 1028 return 1000 * faults / total_faults;
83e1d2cd
MG
1029}
1030
7bd95320
RR
1031static inline unsigned long group_weight(struct task_struct *p, int nid,
1032 int dist)
83e1d2cd 1033{
7bd95320
RR
1034 unsigned long faults, total_faults;
1035
1036 if (!p->numa_group)
1037 return 0;
1038
1039 total_faults = p->numa_group->total_faults;
1040
1041 if (!total_faults)
83e1d2cd
MG
1042 return 0;
1043
7bd95320 1044 faults = group_faults(p, nid);
6c6b1193
RR
1045 faults += score_nearby_nodes(p, nid, dist, false);
1046
7bd95320 1047 return 1000 * faults / total_faults;
83e1d2cd
MG
1048}
1049
10f39042
RR
1050bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1051 int src_nid, int dst_cpu)
1052{
1053 struct numa_group *ng = p->numa_group;
1054 int dst_nid = cpu_to_node(dst_cpu);
1055 int last_cpupid, this_cpupid;
1056
1057 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1058
1059 /*
1060 * Multi-stage node selection is used in conjunction with a periodic
1061 * migration fault to build a temporal task<->page relation. By using
1062 * a two-stage filter we remove short/unlikely relations.
1063 *
1064 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1065 * a task's usage of a particular page (n_p) per total usage of this
1066 * page (n_t) (in a given time-span) to a probability.
1067 *
1068 * Our periodic faults will sample this probability and getting the
1069 * same result twice in a row, given these samples are fully
1070 * independent, is then given by P(n)^2, provided our sample period
1071 * is sufficiently short compared to the usage pattern.
1072 *
1073 * This quadric squishes small probabilities, making it less likely we
1074 * act on an unlikely task<->page relation.
1075 */
1076 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1077 if (!cpupid_pid_unset(last_cpupid) &&
1078 cpupid_to_nid(last_cpupid) != dst_nid)
1079 return false;
1080
1081 /* Always allow migrate on private faults */
1082 if (cpupid_match_pid(p, last_cpupid))
1083 return true;
1084
1085 /* A shared fault, but p->numa_group has not been set up yet. */
1086 if (!ng)
1087 return true;
1088
1089 /*
1090 * Do not migrate if the destination is not a node that
1091 * is actively used by this numa group.
1092 */
1093 if (!node_isset(dst_nid, ng->active_nodes))
1094 return false;
1095
1096 /*
1097 * Source is a node that is not actively used by this
1098 * numa group, while the destination is. Migrate.
1099 */
1100 if (!node_isset(src_nid, ng->active_nodes))
1101 return true;
1102
1103 /*
1104 * Both source and destination are nodes in active
1105 * use by this numa group. Maximize memory bandwidth
1106 * by migrating from more heavily used groups, to less
1107 * heavily used ones, spreading the load around.
1108 * Use a 1/4 hysteresis to avoid spurious page movement.
1109 */
1110 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1111}
1112
e6628d5b 1113static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1114static unsigned long source_load(int cpu, int type);
1115static unsigned long target_load(int cpu, int type);
ced549fa 1116static unsigned long capacity_of(int cpu);
58d081b5
MG
1117static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1118
fb13c7ee 1119/* Cached statistics for all CPUs within a node */
58d081b5 1120struct numa_stats {
fb13c7ee 1121 unsigned long nr_running;
58d081b5 1122 unsigned long load;
fb13c7ee
MG
1123
1124 /* Total compute capacity of CPUs on a node */
5ef20ca1 1125 unsigned long compute_capacity;
fb13c7ee
MG
1126
1127 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1128 unsigned long task_capacity;
1b6a7495 1129 int has_free_capacity;
58d081b5 1130};
e6628d5b 1131
fb13c7ee
MG
1132/*
1133 * XXX borrowed from update_sg_lb_stats
1134 */
1135static void update_numa_stats(struct numa_stats *ns, int nid)
1136{
83d7f242
RR
1137 int smt, cpu, cpus = 0;
1138 unsigned long capacity;
fb13c7ee
MG
1139
1140 memset(ns, 0, sizeof(*ns));
1141 for_each_cpu(cpu, cpumask_of_node(nid)) {
1142 struct rq *rq = cpu_rq(cpu);
1143
1144 ns->nr_running += rq->nr_running;
1145 ns->load += weighted_cpuload(cpu);
ced549fa 1146 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1147
1148 cpus++;
fb13c7ee
MG
1149 }
1150
5eca82a9
PZ
1151 /*
1152 * If we raced with hotplug and there are no CPUs left in our mask
1153 * the @ns structure is NULL'ed and task_numa_compare() will
1154 * not find this node attractive.
1155 *
1b6a7495
NP
1156 * We'll either bail at !has_free_capacity, or we'll detect a huge
1157 * imbalance and bail there.
5eca82a9
PZ
1158 */
1159 if (!cpus)
1160 return;
1161
83d7f242
RR
1162 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1163 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1164 capacity = cpus / smt; /* cores */
1165
1166 ns->task_capacity = min_t(unsigned, capacity,
1167 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1168 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1169}
1170
58d081b5
MG
1171struct task_numa_env {
1172 struct task_struct *p;
e6628d5b 1173
58d081b5
MG
1174 int src_cpu, src_nid;
1175 int dst_cpu, dst_nid;
e6628d5b 1176
58d081b5 1177 struct numa_stats src_stats, dst_stats;
e6628d5b 1178
40ea2b42 1179 int imbalance_pct;
7bd95320 1180 int dist;
fb13c7ee
MG
1181
1182 struct task_struct *best_task;
1183 long best_imp;
58d081b5
MG
1184 int best_cpu;
1185};
1186
fb13c7ee
MG
1187static void task_numa_assign(struct task_numa_env *env,
1188 struct task_struct *p, long imp)
1189{
1190 if (env->best_task)
1191 put_task_struct(env->best_task);
1192 if (p)
1193 get_task_struct(p);
1194
1195 env->best_task = p;
1196 env->best_imp = imp;
1197 env->best_cpu = env->dst_cpu;
1198}
1199
28a21745 1200static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1201 struct task_numa_env *env)
1202{
e4991b24
RR
1203 long imb, old_imb;
1204 long orig_src_load, orig_dst_load;
28a21745
RR
1205 long src_capacity, dst_capacity;
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1216
1217 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1218 if (dst_load < src_load)
1219 swap(dst_load, src_load);
e63da036
RR
1220
1221 /* Is the difference below the threshold? */
e4991b24
RR
1222 imb = dst_load * src_capacity * 100 -
1223 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1224 if (imb <= 0)
1225 return false;
1226
1227 /*
1228 * The imbalance is above the allowed threshold.
e4991b24 1229 * Compare it with the old imbalance.
e63da036 1230 */
28a21745 1231 orig_src_load = env->src_stats.load;
e4991b24 1232 orig_dst_load = env->dst_stats.load;
28a21745 1233
e4991b24
RR
1234 if (orig_dst_load < orig_src_load)
1235 swap(orig_dst_load, orig_src_load);
e63da036 1236
e4991b24
RR
1237 old_imb = orig_dst_load * src_capacity * 100 -
1238 orig_src_load * dst_capacity * env->imbalance_pct;
1239
1240 /* Would this change make things worse? */
1241 return (imb > old_imb);
e63da036
RR
1242}
1243
fb13c7ee
MG
1244/*
1245 * This checks if the overall compute and NUMA accesses of the system would
1246 * be improved if the source tasks was migrated to the target dst_cpu taking
1247 * into account that it might be best if task running on the dst_cpu should
1248 * be exchanged with the source task
1249 */
887c290e
RR
1250static void task_numa_compare(struct task_numa_env *env,
1251 long taskimp, long groupimp)
fb13c7ee
MG
1252{
1253 struct rq *src_rq = cpu_rq(env->src_cpu);
1254 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1255 struct task_struct *cur;
28a21745 1256 long src_load, dst_load;
fb13c7ee 1257 long load;
1c5d3eb3 1258 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1259 long moveimp = imp;
7bd95320 1260 int dist = env->dist;
fb13c7ee
MG
1261
1262 rcu_read_lock();
1effd9f1
KT
1263
1264 raw_spin_lock_irq(&dst_rq->lock);
1265 cur = dst_rq->curr;
1266 /*
1267 * No need to move the exiting task, and this ensures that ->curr
1268 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1269 * is safe under RCU read lock.
1270 * Note that rcu_read_lock() itself can't protect from the final
1271 * put_task_struct() after the last schedule().
1272 */
1273 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1274 cur = NULL;
1effd9f1 1275 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1276
7af68335
PZ
1277 /*
1278 * Because we have preemption enabled we can get migrated around and
1279 * end try selecting ourselves (current == env->p) as a swap candidate.
1280 */
1281 if (cur == env->p)
1282 goto unlock;
1283
fb13c7ee
MG
1284 /*
1285 * "imp" is the fault differential for the source task between the
1286 * source and destination node. Calculate the total differential for
1287 * the source task and potential destination task. The more negative
1288 * the value is, the more rmeote accesses that would be expected to
1289 * be incurred if the tasks were swapped.
1290 */
1291 if (cur) {
1292 /* Skip this swap candidate if cannot move to the source cpu */
1293 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1294 goto unlock;
1295
887c290e
RR
1296 /*
1297 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1298 * in any group then look only at task weights.
887c290e 1299 */
ca28aa53 1300 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1301 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1302 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1303 /*
1304 * Add some hysteresis to prevent swapping the
1305 * tasks within a group over tiny differences.
1306 */
1307 if (cur->numa_group)
1308 imp -= imp/16;
887c290e 1309 } else {
ca28aa53
RR
1310 /*
1311 * Compare the group weights. If a task is all by
1312 * itself (not part of a group), use the task weight
1313 * instead.
1314 */
ca28aa53 1315 if (cur->numa_group)
7bd95320
RR
1316 imp += group_weight(cur, env->src_nid, dist) -
1317 group_weight(cur, env->dst_nid, dist);
ca28aa53 1318 else
7bd95320
RR
1319 imp += task_weight(cur, env->src_nid, dist) -
1320 task_weight(cur, env->dst_nid, dist);
887c290e 1321 }
fb13c7ee
MG
1322 }
1323
0132c3e1 1324 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1325 goto unlock;
1326
1327 if (!cur) {
1328 /* Is there capacity at our destination? */
b932c03c 1329 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1330 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1331 goto unlock;
1332
1333 goto balance;
1334 }
1335
1336 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1337 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1338 dst_rq->nr_running == 1)
fb13c7ee
MG
1339 goto assign;
1340
1341 /*
1342 * In the overloaded case, try and keep the load balanced.
1343 */
1344balance:
e720fff6
PZ
1345 load = task_h_load(env->p);
1346 dst_load = env->dst_stats.load + load;
1347 src_load = env->src_stats.load - load;
fb13c7ee 1348
0132c3e1
RR
1349 if (moveimp > imp && moveimp > env->best_imp) {
1350 /*
1351 * If the improvement from just moving env->p direction is
1352 * better than swapping tasks around, check if a move is
1353 * possible. Store a slightly smaller score than moveimp,
1354 * so an actually idle CPU will win.
1355 */
1356 if (!load_too_imbalanced(src_load, dst_load, env)) {
1357 imp = moveimp - 1;
1358 cur = NULL;
1359 goto assign;
1360 }
1361 }
1362
1363 if (imp <= env->best_imp)
1364 goto unlock;
1365
fb13c7ee 1366 if (cur) {
e720fff6
PZ
1367 load = task_h_load(cur);
1368 dst_load -= load;
1369 src_load += load;
fb13c7ee
MG
1370 }
1371
28a21745 1372 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1373 goto unlock;
1374
ba7e5a27
RR
1375 /*
1376 * One idle CPU per node is evaluated for a task numa move.
1377 * Call select_idle_sibling to maybe find a better one.
1378 */
1379 if (!cur)
1380 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1381
fb13c7ee
MG
1382assign:
1383 task_numa_assign(env, cur, imp);
1384unlock:
1385 rcu_read_unlock();
1386}
1387
887c290e
RR
1388static void task_numa_find_cpu(struct task_numa_env *env,
1389 long taskimp, long groupimp)
2c8a50aa
MG
1390{
1391 int cpu;
1392
1393 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1394 /* Skip this CPU if the source task cannot migrate */
1395 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1396 continue;
1397
1398 env->dst_cpu = cpu;
887c290e 1399 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1400 }
1401}
1402
6f9aad0b
RR
1403/* Only move tasks to a NUMA node less busy than the current node. */
1404static bool numa_has_capacity(struct task_numa_env *env)
1405{
1406 struct numa_stats *src = &env->src_stats;
1407 struct numa_stats *dst = &env->dst_stats;
1408
1409 if (src->has_free_capacity && !dst->has_free_capacity)
1410 return false;
1411
1412 /*
1413 * Only consider a task move if the source has a higher load
1414 * than the destination, corrected for CPU capacity on each node.
1415 *
1416 * src->load dst->load
1417 * --------------------- vs ---------------------
1418 * src->compute_capacity dst->compute_capacity
1419 */
44dcb04f
SD
1420 if (src->load * dst->compute_capacity * env->imbalance_pct >
1421
1422 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1423 return true;
1424
1425 return false;
1426}
1427
58d081b5
MG
1428static int task_numa_migrate(struct task_struct *p)
1429{
58d081b5
MG
1430 struct task_numa_env env = {
1431 .p = p,
fb13c7ee 1432
58d081b5 1433 .src_cpu = task_cpu(p),
b32e86b4 1434 .src_nid = task_node(p),
fb13c7ee
MG
1435
1436 .imbalance_pct = 112,
1437
1438 .best_task = NULL,
1439 .best_imp = 0,
1440 .best_cpu = -1
58d081b5
MG
1441 };
1442 struct sched_domain *sd;
887c290e 1443 unsigned long taskweight, groupweight;
7bd95320 1444 int nid, ret, dist;
887c290e 1445 long taskimp, groupimp;
e6628d5b 1446
58d081b5 1447 /*
fb13c7ee
MG
1448 * Pick the lowest SD_NUMA domain, as that would have the smallest
1449 * imbalance and would be the first to start moving tasks about.
1450 *
1451 * And we want to avoid any moving of tasks about, as that would create
1452 * random movement of tasks -- counter the numa conditions we're trying
1453 * to satisfy here.
58d081b5
MG
1454 */
1455 rcu_read_lock();
fb13c7ee 1456 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1457 if (sd)
1458 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1459 rcu_read_unlock();
1460
46a73e8a
RR
1461 /*
1462 * Cpusets can break the scheduler domain tree into smaller
1463 * balance domains, some of which do not cross NUMA boundaries.
1464 * Tasks that are "trapped" in such domains cannot be migrated
1465 * elsewhere, so there is no point in (re)trying.
1466 */
1467 if (unlikely(!sd)) {
de1b301a 1468 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1469 return -EINVAL;
1470 }
1471
2c8a50aa 1472 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1473 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1474 taskweight = task_weight(p, env.src_nid, dist);
1475 groupweight = group_weight(p, env.src_nid, dist);
1476 update_numa_stats(&env.src_stats, env.src_nid);
1477 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1478 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1479 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1480
a43455a1 1481 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1482 if (numa_has_capacity(&env))
1483 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1484
9de05d48
RR
1485 /*
1486 * Look at other nodes in these cases:
1487 * - there is no space available on the preferred_nid
1488 * - the task is part of a numa_group that is interleaved across
1489 * multiple NUMA nodes; in order to better consolidate the group,
1490 * we need to check other locations.
1491 */
1492 if (env.best_cpu == -1 || (p->numa_group &&
1493 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1494 for_each_online_node(nid) {
1495 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1496 continue;
58d081b5 1497
7bd95320 1498 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1499 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1500 dist != env.dist) {
1501 taskweight = task_weight(p, env.src_nid, dist);
1502 groupweight = group_weight(p, env.src_nid, dist);
1503 }
7bd95320 1504
83e1d2cd 1505 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1506 taskimp = task_weight(p, nid, dist) - taskweight;
1507 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1508 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1509 continue;
1510
7bd95320 1511 env.dist = dist;
2c8a50aa
MG
1512 env.dst_nid = nid;
1513 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1514 if (numa_has_capacity(&env))
1515 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1516 }
1517 }
1518
68d1b02a
RR
1519 /*
1520 * If the task is part of a workload that spans multiple NUMA nodes,
1521 * and is migrating into one of the workload's active nodes, remember
1522 * this node as the task's preferred numa node, so the workload can
1523 * settle down.
1524 * A task that migrated to a second choice node will be better off
1525 * trying for a better one later. Do not set the preferred node here.
1526 */
db015dae
RR
1527 if (p->numa_group) {
1528 if (env.best_cpu == -1)
1529 nid = env.src_nid;
1530 else
1531 nid = env.dst_nid;
1532
1533 if (node_isset(nid, p->numa_group->active_nodes))
1534 sched_setnuma(p, env.dst_nid);
1535 }
1536
1537 /* No better CPU than the current one was found. */
1538 if (env.best_cpu == -1)
1539 return -EAGAIN;
0ec8aa00 1540
04bb2f94
RR
1541 /*
1542 * Reset the scan period if the task is being rescheduled on an
1543 * alternative node to recheck if the tasks is now properly placed.
1544 */
1545 p->numa_scan_period = task_scan_min(p);
1546
fb13c7ee 1547 if (env.best_task == NULL) {
286549dc
MG
1548 ret = migrate_task_to(p, env.best_cpu);
1549 if (ret != 0)
1550 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1551 return ret;
1552 }
1553
1554 ret = migrate_swap(p, env.best_task);
286549dc
MG
1555 if (ret != 0)
1556 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1557 put_task_struct(env.best_task);
1558 return ret;
e6628d5b
MG
1559}
1560
6b9a7460
MG
1561/* Attempt to migrate a task to a CPU on the preferred node. */
1562static void numa_migrate_preferred(struct task_struct *p)
1563{
5085e2a3
RR
1564 unsigned long interval = HZ;
1565
2739d3ee 1566 /* This task has no NUMA fault statistics yet */
44dba3d5 1567 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1568 return;
1569
2739d3ee 1570 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1571 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1572 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1573
1574 /* Success if task is already running on preferred CPU */
de1b301a 1575 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1576 return;
1577
1578 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1579 task_numa_migrate(p);
6b9a7460
MG
1580}
1581
20e07dea
RR
1582/*
1583 * Find the nodes on which the workload is actively running. We do this by
1584 * tracking the nodes from which NUMA hinting faults are triggered. This can
1585 * be different from the set of nodes where the workload's memory is currently
1586 * located.
1587 *
1588 * The bitmask is used to make smarter decisions on when to do NUMA page
1589 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1590 * are added when they cause over 6/16 of the maximum number of faults, but
1591 * only removed when they drop below 3/16.
1592 */
1593static void update_numa_active_node_mask(struct numa_group *numa_group)
1594{
1595 unsigned long faults, max_faults = 0;
1596 int nid;
1597
1598 for_each_online_node(nid) {
1599 faults = group_faults_cpu(numa_group, nid);
1600 if (faults > max_faults)
1601 max_faults = faults;
1602 }
1603
1604 for_each_online_node(nid) {
1605 faults = group_faults_cpu(numa_group, nid);
1606 if (!node_isset(nid, numa_group->active_nodes)) {
1607 if (faults > max_faults * 6 / 16)
1608 node_set(nid, numa_group->active_nodes);
1609 } else if (faults < max_faults * 3 / 16)
1610 node_clear(nid, numa_group->active_nodes);
1611 }
1612}
1613
04bb2f94
RR
1614/*
1615 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1616 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1617 * period will be for the next scan window. If local/(local+remote) ratio is
1618 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1619 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1620 */
1621#define NUMA_PERIOD_SLOTS 10
a22b4b01 1622#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1623
1624/*
1625 * Increase the scan period (slow down scanning) if the majority of
1626 * our memory is already on our local node, or if the majority of
1627 * the page accesses are shared with other processes.
1628 * Otherwise, decrease the scan period.
1629 */
1630static void update_task_scan_period(struct task_struct *p,
1631 unsigned long shared, unsigned long private)
1632{
1633 unsigned int period_slot;
1634 int ratio;
1635 int diff;
1636
1637 unsigned long remote = p->numa_faults_locality[0];
1638 unsigned long local = p->numa_faults_locality[1];
1639
1640 /*
1641 * If there were no record hinting faults then either the task is
1642 * completely idle or all activity is areas that are not of interest
074c2381
MG
1643 * to automatic numa balancing. Related to that, if there were failed
1644 * migration then it implies we are migrating too quickly or the local
1645 * node is overloaded. In either case, scan slower
04bb2f94 1646 */
074c2381 1647 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1648 p->numa_scan_period = min(p->numa_scan_period_max,
1649 p->numa_scan_period << 1);
1650
1651 p->mm->numa_next_scan = jiffies +
1652 msecs_to_jiffies(p->numa_scan_period);
1653
1654 return;
1655 }
1656
1657 /*
1658 * Prepare to scale scan period relative to the current period.
1659 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1660 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1661 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1662 */
1663 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1664 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1665 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1666 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1667 if (!slot)
1668 slot = 1;
1669 diff = slot * period_slot;
1670 } else {
1671 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1672
1673 /*
1674 * Scale scan rate increases based on sharing. There is an
1675 * inverse relationship between the degree of sharing and
1676 * the adjustment made to the scanning period. Broadly
1677 * speaking the intent is that there is little point
1678 * scanning faster if shared accesses dominate as it may
1679 * simply bounce migrations uselessly
1680 */
2847c90e 1681 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1682 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1683 }
1684
1685 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1686 task_scan_min(p), task_scan_max(p));
1687 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1688}
1689
7e2703e6
RR
1690/*
1691 * Get the fraction of time the task has been running since the last
1692 * NUMA placement cycle. The scheduler keeps similar statistics, but
1693 * decays those on a 32ms period, which is orders of magnitude off
1694 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1695 * stats only if the task is so new there are no NUMA statistics yet.
1696 */
1697static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1698{
1699 u64 runtime, delta, now;
1700 /* Use the start of this time slice to avoid calculations. */
1701 now = p->se.exec_start;
1702 runtime = p->se.sum_exec_runtime;
1703
1704 if (p->last_task_numa_placement) {
1705 delta = runtime - p->last_sum_exec_runtime;
1706 *period = now - p->last_task_numa_placement;
1707 } else {
9d89c257
YD
1708 delta = p->se.avg.load_sum / p->se.load.weight;
1709 *period = LOAD_AVG_MAX;
7e2703e6
RR
1710 }
1711
1712 p->last_sum_exec_runtime = runtime;
1713 p->last_task_numa_placement = now;
1714
1715 return delta;
1716}
1717
54009416
RR
1718/*
1719 * Determine the preferred nid for a task in a numa_group. This needs to
1720 * be done in a way that produces consistent results with group_weight,
1721 * otherwise workloads might not converge.
1722 */
1723static int preferred_group_nid(struct task_struct *p, int nid)
1724{
1725 nodemask_t nodes;
1726 int dist;
1727
1728 /* Direct connections between all NUMA nodes. */
1729 if (sched_numa_topology_type == NUMA_DIRECT)
1730 return nid;
1731
1732 /*
1733 * On a system with glueless mesh NUMA topology, group_weight
1734 * scores nodes according to the number of NUMA hinting faults on
1735 * both the node itself, and on nearby nodes.
1736 */
1737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1738 unsigned long score, max_score = 0;
1739 int node, max_node = nid;
1740
1741 dist = sched_max_numa_distance;
1742
1743 for_each_online_node(node) {
1744 score = group_weight(p, node, dist);
1745 if (score > max_score) {
1746 max_score = score;
1747 max_node = node;
1748 }
1749 }
1750 return max_node;
1751 }
1752
1753 /*
1754 * Finding the preferred nid in a system with NUMA backplane
1755 * interconnect topology is more involved. The goal is to locate
1756 * tasks from numa_groups near each other in the system, and
1757 * untangle workloads from different sides of the system. This requires
1758 * searching down the hierarchy of node groups, recursively searching
1759 * inside the highest scoring group of nodes. The nodemask tricks
1760 * keep the complexity of the search down.
1761 */
1762 nodes = node_online_map;
1763 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1764 unsigned long max_faults = 0;
81907478 1765 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1766 int a, b;
1767
1768 /* Are there nodes at this distance from each other? */
1769 if (!find_numa_distance(dist))
1770 continue;
1771
1772 for_each_node_mask(a, nodes) {
1773 unsigned long faults = 0;
1774 nodemask_t this_group;
1775 nodes_clear(this_group);
1776
1777 /* Sum group's NUMA faults; includes a==b case. */
1778 for_each_node_mask(b, nodes) {
1779 if (node_distance(a, b) < dist) {
1780 faults += group_faults(p, b);
1781 node_set(b, this_group);
1782 node_clear(b, nodes);
1783 }
1784 }
1785
1786 /* Remember the top group. */
1787 if (faults > max_faults) {
1788 max_faults = faults;
1789 max_group = this_group;
1790 /*
1791 * subtle: at the smallest distance there is
1792 * just one node left in each "group", the
1793 * winner is the preferred nid.
1794 */
1795 nid = a;
1796 }
1797 }
1798 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1799 if (!max_faults)
1800 break;
54009416
RR
1801 nodes = max_group;
1802 }
1803 return nid;
1804}
1805
cbee9f88
PZ
1806static void task_numa_placement(struct task_struct *p)
1807{
83e1d2cd
MG
1808 int seq, nid, max_nid = -1, max_group_nid = -1;
1809 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1810 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1811 unsigned long total_faults;
1812 u64 runtime, period;
7dbd13ed 1813 spinlock_t *group_lock = NULL;
cbee9f88 1814
7e5a2c17
JL
1815 /*
1816 * The p->mm->numa_scan_seq field gets updated without
1817 * exclusive access. Use READ_ONCE() here to ensure
1818 * that the field is read in a single access:
1819 */
316c1608 1820 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1821 if (p->numa_scan_seq == seq)
1822 return;
1823 p->numa_scan_seq = seq;
598f0ec0 1824 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1825
7e2703e6
RR
1826 total_faults = p->numa_faults_locality[0] +
1827 p->numa_faults_locality[1];
1828 runtime = numa_get_avg_runtime(p, &period);
1829
7dbd13ed
MG
1830 /* If the task is part of a group prevent parallel updates to group stats */
1831 if (p->numa_group) {
1832 group_lock = &p->numa_group->lock;
60e69eed 1833 spin_lock_irq(group_lock);
7dbd13ed
MG
1834 }
1835
688b7585
MG
1836 /* Find the node with the highest number of faults */
1837 for_each_online_node(nid) {
44dba3d5
IM
1838 /* Keep track of the offsets in numa_faults array */
1839 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1840 unsigned long faults = 0, group_faults = 0;
44dba3d5 1841 int priv;
745d6147 1842
be1e4e76 1843 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1844 long diff, f_diff, f_weight;
8c8a743c 1845
44dba3d5
IM
1846 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1847 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1848 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1849 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1850
ac8e895b 1851 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1852 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1853 fault_types[priv] += p->numa_faults[membuf_idx];
1854 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1855
7e2703e6
RR
1856 /*
1857 * Normalize the faults_from, so all tasks in a group
1858 * count according to CPU use, instead of by the raw
1859 * number of faults. Tasks with little runtime have
1860 * little over-all impact on throughput, and thus their
1861 * faults are less important.
1862 */
1863 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1864 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1865 (total_faults + 1);
44dba3d5
IM
1866 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1867 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1868
44dba3d5
IM
1869 p->numa_faults[mem_idx] += diff;
1870 p->numa_faults[cpu_idx] += f_diff;
1871 faults += p->numa_faults[mem_idx];
83e1d2cd 1872 p->total_numa_faults += diff;
8c8a743c 1873 if (p->numa_group) {
44dba3d5
IM
1874 /*
1875 * safe because we can only change our own group
1876 *
1877 * mem_idx represents the offset for a given
1878 * nid and priv in a specific region because it
1879 * is at the beginning of the numa_faults array.
1880 */
1881 p->numa_group->faults[mem_idx] += diff;
1882 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1883 p->numa_group->total_faults += diff;
44dba3d5 1884 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1885 }
ac8e895b
MG
1886 }
1887
688b7585
MG
1888 if (faults > max_faults) {
1889 max_faults = faults;
1890 max_nid = nid;
1891 }
83e1d2cd
MG
1892
1893 if (group_faults > max_group_faults) {
1894 max_group_faults = group_faults;
1895 max_group_nid = nid;
1896 }
1897 }
1898
04bb2f94
RR
1899 update_task_scan_period(p, fault_types[0], fault_types[1]);
1900
7dbd13ed 1901 if (p->numa_group) {
20e07dea 1902 update_numa_active_node_mask(p->numa_group);
60e69eed 1903 spin_unlock_irq(group_lock);
54009416 1904 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1905 }
1906
bb97fc31
RR
1907 if (max_faults) {
1908 /* Set the new preferred node */
1909 if (max_nid != p->numa_preferred_nid)
1910 sched_setnuma(p, max_nid);
1911
1912 if (task_node(p) != p->numa_preferred_nid)
1913 numa_migrate_preferred(p);
3a7053b3 1914 }
cbee9f88
PZ
1915}
1916
8c8a743c
PZ
1917static inline int get_numa_group(struct numa_group *grp)
1918{
1919 return atomic_inc_not_zero(&grp->refcount);
1920}
1921
1922static inline void put_numa_group(struct numa_group *grp)
1923{
1924 if (atomic_dec_and_test(&grp->refcount))
1925 kfree_rcu(grp, rcu);
1926}
1927
3e6a9418
MG
1928static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1929 int *priv)
8c8a743c
PZ
1930{
1931 struct numa_group *grp, *my_grp;
1932 struct task_struct *tsk;
1933 bool join = false;
1934 int cpu = cpupid_to_cpu(cpupid);
1935 int i;
1936
1937 if (unlikely(!p->numa_group)) {
1938 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1939 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1940
1941 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1942 if (!grp)
1943 return;
1944
1945 atomic_set(&grp->refcount, 1);
1946 spin_lock_init(&grp->lock);
e29cf08b 1947 grp->gid = p->pid;
50ec8a40 1948 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1949 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1950 nr_node_ids;
8c8a743c 1951
20e07dea
RR
1952 node_set(task_node(current), grp->active_nodes);
1953
be1e4e76 1954 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1955 grp->faults[i] = p->numa_faults[i];
8c8a743c 1956
989348b5 1957 grp->total_faults = p->total_numa_faults;
83e1d2cd 1958
8c8a743c
PZ
1959 grp->nr_tasks++;
1960 rcu_assign_pointer(p->numa_group, grp);
1961 }
1962
1963 rcu_read_lock();
316c1608 1964 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1965
1966 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1967 goto no_join;
8c8a743c
PZ
1968
1969 grp = rcu_dereference(tsk->numa_group);
1970 if (!grp)
3354781a 1971 goto no_join;
8c8a743c
PZ
1972
1973 my_grp = p->numa_group;
1974 if (grp == my_grp)
3354781a 1975 goto no_join;
8c8a743c
PZ
1976
1977 /*
1978 * Only join the other group if its bigger; if we're the bigger group,
1979 * the other task will join us.
1980 */
1981 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1982 goto no_join;
8c8a743c
PZ
1983
1984 /*
1985 * Tie-break on the grp address.
1986 */
1987 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1988 goto no_join;
8c8a743c 1989
dabe1d99
RR
1990 /* Always join threads in the same process. */
1991 if (tsk->mm == current->mm)
1992 join = true;
1993
1994 /* Simple filter to avoid false positives due to PID collisions */
1995 if (flags & TNF_SHARED)
1996 join = true;
8c8a743c 1997
3e6a9418
MG
1998 /* Update priv based on whether false sharing was detected */
1999 *priv = !join;
2000
dabe1d99 2001 if (join && !get_numa_group(grp))
3354781a 2002 goto no_join;
8c8a743c 2003
8c8a743c
PZ
2004 rcu_read_unlock();
2005
2006 if (!join)
2007 return;
2008
60e69eed
MG
2009 BUG_ON(irqs_disabled());
2010 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2011
be1e4e76 2012 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2013 my_grp->faults[i] -= p->numa_faults[i];
2014 grp->faults[i] += p->numa_faults[i];
8c8a743c 2015 }
989348b5
MG
2016 my_grp->total_faults -= p->total_numa_faults;
2017 grp->total_faults += p->total_numa_faults;
8c8a743c 2018
8c8a743c
PZ
2019 my_grp->nr_tasks--;
2020 grp->nr_tasks++;
2021
2022 spin_unlock(&my_grp->lock);
60e69eed 2023 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2024
2025 rcu_assign_pointer(p->numa_group, grp);
2026
2027 put_numa_group(my_grp);
3354781a
PZ
2028 return;
2029
2030no_join:
2031 rcu_read_unlock();
2032 return;
8c8a743c
PZ
2033}
2034
2035void task_numa_free(struct task_struct *p)
2036{
2037 struct numa_group *grp = p->numa_group;
44dba3d5 2038 void *numa_faults = p->numa_faults;
e9dd685c
SR
2039 unsigned long flags;
2040 int i;
8c8a743c
PZ
2041
2042 if (grp) {
e9dd685c 2043 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2044 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2045 grp->faults[i] -= p->numa_faults[i];
989348b5 2046 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2047
8c8a743c 2048 grp->nr_tasks--;
e9dd685c 2049 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2050 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2051 put_numa_group(grp);
2052 }
2053
44dba3d5 2054 p->numa_faults = NULL;
82727018 2055 kfree(numa_faults);
8c8a743c
PZ
2056}
2057
cbee9f88
PZ
2058/*
2059 * Got a PROT_NONE fault for a page on @node.
2060 */
58b46da3 2061void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2062{
2063 struct task_struct *p = current;
6688cc05 2064 bool migrated = flags & TNF_MIGRATED;
58b46da3 2065 int cpu_node = task_node(current);
792568ec 2066 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2067 int priv;
cbee9f88 2068
10e84b97 2069 if (!numabalancing_enabled)
1a687c2e
MG
2070 return;
2071
9ff1d9ff
MG
2072 /* for example, ksmd faulting in a user's mm */
2073 if (!p->mm)
2074 return;
2075
f809ca9a 2076 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2077 if (unlikely(!p->numa_faults)) {
2078 int size = sizeof(*p->numa_faults) *
be1e4e76 2079 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2080
44dba3d5
IM
2081 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2082 if (!p->numa_faults)
f809ca9a 2083 return;
745d6147 2084
83e1d2cd 2085 p->total_numa_faults = 0;
04bb2f94 2086 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2087 }
cbee9f88 2088
8c8a743c
PZ
2089 /*
2090 * First accesses are treated as private, otherwise consider accesses
2091 * to be private if the accessing pid has not changed
2092 */
2093 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2094 priv = 1;
2095 } else {
2096 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2097 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2098 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2099 }
2100
792568ec
RR
2101 /*
2102 * If a workload spans multiple NUMA nodes, a shared fault that
2103 * occurs wholly within the set of nodes that the workload is
2104 * actively using should be counted as local. This allows the
2105 * scan rate to slow down when a workload has settled down.
2106 */
2107 if (!priv && !local && p->numa_group &&
2108 node_isset(cpu_node, p->numa_group->active_nodes) &&
2109 node_isset(mem_node, p->numa_group->active_nodes))
2110 local = 1;
2111
cbee9f88 2112 task_numa_placement(p);
f809ca9a 2113
2739d3ee
RR
2114 /*
2115 * Retry task to preferred node migration periodically, in case it
2116 * case it previously failed, or the scheduler moved us.
2117 */
2118 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2119 numa_migrate_preferred(p);
2120
b32e86b4
IM
2121 if (migrated)
2122 p->numa_pages_migrated += pages;
074c2381
MG
2123 if (flags & TNF_MIGRATE_FAIL)
2124 p->numa_faults_locality[2] += pages;
b32e86b4 2125
44dba3d5
IM
2126 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2127 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2128 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2129}
2130
6e5fb223
PZ
2131static void reset_ptenuma_scan(struct task_struct *p)
2132{
7e5a2c17
JL
2133 /*
2134 * We only did a read acquisition of the mmap sem, so
2135 * p->mm->numa_scan_seq is written to without exclusive access
2136 * and the update is not guaranteed to be atomic. That's not
2137 * much of an issue though, since this is just used for
2138 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2139 * expensive, to avoid any form of compiler optimizations:
2140 */
316c1608 2141 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2142 p->mm->numa_scan_offset = 0;
2143}
2144
cbee9f88
PZ
2145/*
2146 * The expensive part of numa migration is done from task_work context.
2147 * Triggered from task_tick_numa().
2148 */
2149void task_numa_work(struct callback_head *work)
2150{
2151 unsigned long migrate, next_scan, now = jiffies;
2152 struct task_struct *p = current;
2153 struct mm_struct *mm = p->mm;
6e5fb223 2154 struct vm_area_struct *vma;
9f40604c 2155 unsigned long start, end;
598f0ec0 2156 unsigned long nr_pte_updates = 0;
9f40604c 2157 long pages;
cbee9f88
PZ
2158
2159 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2160
2161 work->next = work; /* protect against double add */
2162 /*
2163 * Who cares about NUMA placement when they're dying.
2164 *
2165 * NOTE: make sure not to dereference p->mm before this check,
2166 * exit_task_work() happens _after_ exit_mm() so we could be called
2167 * without p->mm even though we still had it when we enqueued this
2168 * work.
2169 */
2170 if (p->flags & PF_EXITING)
2171 return;
2172
930aa174 2173 if (!mm->numa_next_scan) {
7e8d16b6
MG
2174 mm->numa_next_scan = now +
2175 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2176 }
2177
cbee9f88
PZ
2178 /*
2179 * Enforce maximal scan/migration frequency..
2180 */
2181 migrate = mm->numa_next_scan;
2182 if (time_before(now, migrate))
2183 return;
2184
598f0ec0
MG
2185 if (p->numa_scan_period == 0) {
2186 p->numa_scan_period_max = task_scan_max(p);
2187 p->numa_scan_period = task_scan_min(p);
2188 }
cbee9f88 2189
fb003b80 2190 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2191 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2192 return;
2193
19a78d11
PZ
2194 /*
2195 * Delay this task enough that another task of this mm will likely win
2196 * the next time around.
2197 */
2198 p->node_stamp += 2 * TICK_NSEC;
2199
9f40604c
MG
2200 start = mm->numa_scan_offset;
2201 pages = sysctl_numa_balancing_scan_size;
2202 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2203 if (!pages)
2204 return;
cbee9f88 2205
6e5fb223 2206 down_read(&mm->mmap_sem);
9f40604c 2207 vma = find_vma(mm, start);
6e5fb223
PZ
2208 if (!vma) {
2209 reset_ptenuma_scan(p);
9f40604c 2210 start = 0;
6e5fb223
PZ
2211 vma = mm->mmap;
2212 }
9f40604c 2213 for (; vma; vma = vma->vm_next) {
6b79c57b 2214 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2215 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2216 continue;
6b79c57b 2217 }
6e5fb223 2218
4591ce4f
MG
2219 /*
2220 * Shared library pages mapped by multiple processes are not
2221 * migrated as it is expected they are cache replicated. Avoid
2222 * hinting faults in read-only file-backed mappings or the vdso
2223 * as migrating the pages will be of marginal benefit.
2224 */
2225 if (!vma->vm_mm ||
2226 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2227 continue;
2228
3c67f474
MG
2229 /*
2230 * Skip inaccessible VMAs to avoid any confusion between
2231 * PROT_NONE and NUMA hinting ptes
2232 */
2233 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2234 continue;
4591ce4f 2235
9f40604c
MG
2236 do {
2237 start = max(start, vma->vm_start);
2238 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2239 end = min(end, vma->vm_end);
598f0ec0
MG
2240 nr_pte_updates += change_prot_numa(vma, start, end);
2241
2242 /*
2243 * Scan sysctl_numa_balancing_scan_size but ensure that
2244 * at least one PTE is updated so that unused virtual
2245 * address space is quickly skipped.
2246 */
2247 if (nr_pte_updates)
2248 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2249
9f40604c
MG
2250 start = end;
2251 if (pages <= 0)
2252 goto out;
3cf1962c
RR
2253
2254 cond_resched();
9f40604c 2255 } while (end != vma->vm_end);
cbee9f88 2256 }
6e5fb223 2257
9f40604c 2258out:
6e5fb223 2259 /*
c69307d5
PZ
2260 * It is possible to reach the end of the VMA list but the last few
2261 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2262 * would find the !migratable VMA on the next scan but not reset the
2263 * scanner to the start so check it now.
6e5fb223
PZ
2264 */
2265 if (vma)
9f40604c 2266 mm->numa_scan_offset = start;
6e5fb223
PZ
2267 else
2268 reset_ptenuma_scan(p);
2269 up_read(&mm->mmap_sem);
cbee9f88
PZ
2270}
2271
2272/*
2273 * Drive the periodic memory faults..
2274 */
2275void task_tick_numa(struct rq *rq, struct task_struct *curr)
2276{
2277 struct callback_head *work = &curr->numa_work;
2278 u64 period, now;
2279
2280 /*
2281 * We don't care about NUMA placement if we don't have memory.
2282 */
2283 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2284 return;
2285
2286 /*
2287 * Using runtime rather than walltime has the dual advantage that
2288 * we (mostly) drive the selection from busy threads and that the
2289 * task needs to have done some actual work before we bother with
2290 * NUMA placement.
2291 */
2292 now = curr->se.sum_exec_runtime;
2293 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2294
2295 if (now - curr->node_stamp > period) {
4b96a29b 2296 if (!curr->node_stamp)
598f0ec0 2297 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2298 curr->node_stamp += period;
cbee9f88
PZ
2299
2300 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2301 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2302 task_work_add(curr, work, true);
2303 }
2304 }
2305}
2306#else
2307static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2308{
2309}
0ec8aa00
PZ
2310
2311static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2312{
2313}
2314
2315static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2316{
2317}
cbee9f88
PZ
2318#endif /* CONFIG_NUMA_BALANCING */
2319
30cfdcfc
DA
2320static void
2321account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2322{
2323 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2324 if (!parent_entity(se))
029632fb 2325 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2326#ifdef CONFIG_SMP
0ec8aa00
PZ
2327 if (entity_is_task(se)) {
2328 struct rq *rq = rq_of(cfs_rq);
2329
2330 account_numa_enqueue(rq, task_of(se));
2331 list_add(&se->group_node, &rq->cfs_tasks);
2332 }
367456c7 2333#endif
30cfdcfc 2334 cfs_rq->nr_running++;
30cfdcfc
DA
2335}
2336
2337static void
2338account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2339{
2340 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2341 if (!parent_entity(se))
029632fb 2342 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2343 if (entity_is_task(se)) {
2344 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2345 list_del_init(&se->group_node);
0ec8aa00 2346 }
30cfdcfc 2347 cfs_rq->nr_running--;
30cfdcfc
DA
2348}
2349
3ff6dcac
YZ
2350#ifdef CONFIG_FAIR_GROUP_SCHED
2351# ifdef CONFIG_SMP
cf5f0acf
PZ
2352static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2353{
2354 long tg_weight;
2355
2356 /*
9d89c257
YD
2357 * Use this CPU's real-time load instead of the last load contribution
2358 * as the updating of the contribution is delayed, and we will use the
2359 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2360 */
bf5b986e 2361 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257
YD
2362 tg_weight -= cfs_rq->tg_load_avg_contrib;
2363 tg_weight += cfs_rq->avg.load_avg;
cf5f0acf
PZ
2364
2365 return tg_weight;
2366}
2367
6d5ab293 2368static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2369{
cf5f0acf 2370 long tg_weight, load, shares;
3ff6dcac 2371
cf5f0acf 2372 tg_weight = calc_tg_weight(tg, cfs_rq);
9d89c257 2373 load = cfs_rq->avg.load_avg;
3ff6dcac 2374
3ff6dcac 2375 shares = (tg->shares * load);
cf5f0acf
PZ
2376 if (tg_weight)
2377 shares /= tg_weight;
3ff6dcac
YZ
2378
2379 if (shares < MIN_SHARES)
2380 shares = MIN_SHARES;
2381 if (shares > tg->shares)
2382 shares = tg->shares;
2383
2384 return shares;
2385}
3ff6dcac 2386# else /* CONFIG_SMP */
6d5ab293 2387static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2388{
2389 return tg->shares;
2390}
3ff6dcac 2391# endif /* CONFIG_SMP */
2069dd75
PZ
2392static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2393 unsigned long weight)
2394{
19e5eebb
PT
2395 if (se->on_rq) {
2396 /* commit outstanding execution time */
2397 if (cfs_rq->curr == se)
2398 update_curr(cfs_rq);
2069dd75 2399 account_entity_dequeue(cfs_rq, se);
19e5eebb 2400 }
2069dd75
PZ
2401
2402 update_load_set(&se->load, weight);
2403
2404 if (se->on_rq)
2405 account_entity_enqueue(cfs_rq, se);
2406}
2407
82958366
PT
2408static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2409
6d5ab293 2410static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2411{
2412 struct task_group *tg;
2413 struct sched_entity *se;
3ff6dcac 2414 long shares;
2069dd75 2415
2069dd75
PZ
2416 tg = cfs_rq->tg;
2417 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2418 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2419 return;
3ff6dcac
YZ
2420#ifndef CONFIG_SMP
2421 if (likely(se->load.weight == tg->shares))
2422 return;
2423#endif
6d5ab293 2424 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2425
2426 reweight_entity(cfs_rq_of(se), se, shares);
2427}
2428#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2429static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2430{
2431}
2432#endif /* CONFIG_FAIR_GROUP_SCHED */
2433
141965c7 2434#ifdef CONFIG_SMP
5b51f2f8
PT
2435/* Precomputed fixed inverse multiplies for multiplication by y^n */
2436static const u32 runnable_avg_yN_inv[] = {
2437 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2438 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2439 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2440 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2441 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2442 0x85aac367, 0x82cd8698,
2443};
2444
2445/*
2446 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2447 * over-estimates when re-combining.
2448 */
2449static const u32 runnable_avg_yN_sum[] = {
2450 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2451 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2452 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2453};
2454
9d85f21c
PT
2455/*
2456 * Approximate:
2457 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2458 */
2459static __always_inline u64 decay_load(u64 val, u64 n)
2460{
5b51f2f8
PT
2461 unsigned int local_n;
2462
2463 if (!n)
2464 return val;
2465 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2466 return 0;
2467
2468 /* after bounds checking we can collapse to 32-bit */
2469 local_n = n;
2470
2471 /*
2472 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2473 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2474 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2475 *
2476 * To achieve constant time decay_load.
2477 */
2478 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2479 val >>= local_n / LOAD_AVG_PERIOD;
2480 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2481 }
2482
9d89c257
YD
2483 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2484 return val;
5b51f2f8
PT
2485}
2486
2487/*
2488 * For updates fully spanning n periods, the contribution to runnable
2489 * average will be: \Sum 1024*y^n
2490 *
2491 * We can compute this reasonably efficiently by combining:
2492 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2493 */
2494static u32 __compute_runnable_contrib(u64 n)
2495{
2496 u32 contrib = 0;
2497
2498 if (likely(n <= LOAD_AVG_PERIOD))
2499 return runnable_avg_yN_sum[n];
2500 else if (unlikely(n >= LOAD_AVG_MAX_N))
2501 return LOAD_AVG_MAX;
2502
2503 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2504 do {
2505 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2506 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2507
2508 n -= LOAD_AVG_PERIOD;
2509 } while (n > LOAD_AVG_PERIOD);
2510
2511 contrib = decay_load(contrib, n);
2512 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2513}
2514
2515/*
2516 * We can represent the historical contribution to runnable average as the
2517 * coefficients of a geometric series. To do this we sub-divide our runnable
2518 * history into segments of approximately 1ms (1024us); label the segment that
2519 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2520 *
2521 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2522 * p0 p1 p2
2523 * (now) (~1ms ago) (~2ms ago)
2524 *
2525 * Let u_i denote the fraction of p_i that the entity was runnable.
2526 *
2527 * We then designate the fractions u_i as our co-efficients, yielding the
2528 * following representation of historical load:
2529 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2530 *
2531 * We choose y based on the with of a reasonably scheduling period, fixing:
2532 * y^32 = 0.5
2533 *
2534 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2535 * approximately half as much as the contribution to load within the last ms
2536 * (u_0).
2537 *
2538 * When a period "rolls over" and we have new u_0`, multiplying the previous
2539 * sum again by y is sufficient to update:
2540 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2541 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2542 */
9d89c257
YD
2543static __always_inline int
2544__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2545 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2546{
5b51f2f8 2547 u64 delta, periods;
9d89c257 2548 u32 contrib;
9d85f21c 2549 int delta_w, decayed = 0;
0c1dc6b2 2550 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c 2551
9d89c257 2552 delta = now - sa->last_update_time;
9d85f21c
PT
2553 /*
2554 * This should only happen when time goes backwards, which it
2555 * unfortunately does during sched clock init when we swap over to TSC.
2556 */
2557 if ((s64)delta < 0) {
9d89c257 2558 sa->last_update_time = now;
9d85f21c
PT
2559 return 0;
2560 }
2561
2562 /*
2563 * Use 1024ns as the unit of measurement since it's a reasonable
2564 * approximation of 1us and fast to compute.
2565 */
2566 delta >>= 10;
2567 if (!delta)
2568 return 0;
9d89c257 2569 sa->last_update_time = now;
9d85f21c
PT
2570
2571 /* delta_w is the amount already accumulated against our next period */
9d89c257 2572 delta_w = sa->period_contrib;
9d85f21c 2573 if (delta + delta_w >= 1024) {
9d85f21c
PT
2574 decayed = 1;
2575
9d89c257
YD
2576 /* how much left for next period will start over, we don't know yet */
2577 sa->period_contrib = 0;
2578
9d85f21c
PT
2579 /*
2580 * Now that we know we're crossing a period boundary, figure
2581 * out how much from delta we need to complete the current
2582 * period and accrue it.
2583 */
2584 delta_w = 1024 - delta_w;
13962234 2585 if (weight) {
9d89c257 2586 sa->load_sum += weight * delta_w;
13962234
YD
2587 if (cfs_rq)
2588 cfs_rq->runnable_load_sum += weight * delta_w;
2589 }
36ee28e4 2590 if (running)
9d89c257 2591 sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
5b51f2f8
PT
2592
2593 delta -= delta_w;
2594
2595 /* Figure out how many additional periods this update spans */
2596 periods = delta / 1024;
2597 delta %= 1024;
2598
9d89c257 2599 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2600 if (cfs_rq) {
2601 cfs_rq->runnable_load_sum =
2602 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2603 }
9d89c257 2604 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2605
2606 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2607 contrib = __compute_runnable_contrib(periods);
13962234 2608 if (weight) {
9d89c257 2609 sa->load_sum += weight * contrib;
13962234
YD
2610 if (cfs_rq)
2611 cfs_rq->runnable_load_sum += weight * contrib;
2612 }
36ee28e4 2613 if (running)
9d89c257 2614 sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
9d85f21c
PT
2615 }
2616
2617 /* Remainder of delta accrued against u_0` */
13962234 2618 if (weight) {
9d89c257 2619 sa->load_sum += weight * delta;
13962234
YD
2620 if (cfs_rq)
2621 cfs_rq->runnable_load_sum += weight * delta;
2622 }
36ee28e4 2623 if (running)
9d89c257 2624 sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
9ee474f5 2625
9d89c257 2626 sa->period_contrib += delta;
9ee474f5 2627
9d89c257
YD
2628 if (decayed) {
2629 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2630 if (cfs_rq) {
2631 cfs_rq->runnable_load_avg =
2632 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2633 }
9d89c257
YD
2634 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2635 }
aff3e498 2636
9d89c257 2637 return decayed;
9ee474f5
PT
2638}
2639
c566e8e9 2640#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2641/*
9d89c257
YD
2642 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2643 * and effective_load (which is not done because it is too costly).
bb17f655 2644 */
9d89c257 2645static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2646{
9d89c257 2647 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2648
9d89c257
YD
2649 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2650 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2651 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2652 }
8165e145 2653}
f5f9739d 2654
6e83125c 2655#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2656static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2657#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2658
9d89c257 2659static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2660
9d89c257
YD
2661/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2662static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2663{
9d89c257
YD
2664 int decayed;
2665 struct sched_avg *sa = &cfs_rq->avg;
2dac754e 2666
9d89c257
YD
2667 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2668 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2669 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2670 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
8165e145 2671 }
2dac754e 2672
9d89c257
YD
2673 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2674 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2675 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2676 sa->util_sum = max_t(s32, sa->util_sum -
2677 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2678 }
36ee28e4 2679
9d89c257 2680 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2681 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2682
9d89c257
YD
2683#ifndef CONFIG_64BIT
2684 smp_wmb();
2685 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2686#endif
36ee28e4 2687
9d89c257 2688 return decayed;
9ee474f5
PT
2689}
2690
9d89c257
YD
2691/* Update task and its cfs_rq load average */
2692static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2693{
2dac754e 2694 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0c1dc6b2 2695 int cpu = cpu_of(rq_of(cfs_rq));
9d89c257 2696 u64 now = cfs_rq_clock_task(cfs_rq);
2dac754e 2697
f1b17280 2698 /*
9d89c257
YD
2699 * Track task load average for carrying it to new CPU after migrated, and
2700 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2701 */
9d89c257 2702 __update_load_avg(now, cpu, &se->avg,
13962234 2703 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
f1b17280 2704
9d89c257
YD
2705 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2706 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2707}
2708
9d89c257
YD
2709/* Add the load generated by se into cfs_rq's load average */
2710static inline void
2711enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2712{
9d89c257
YD
2713 struct sched_avg *sa = &se->avg;
2714 u64 now = cfs_rq_clock_task(cfs_rq);
2715 int migrated = 0, decayed;
9ee474f5 2716
9d89c257
YD
2717 if (sa->last_update_time == 0) {
2718 sa->last_update_time = now;
2719 migrated = 1;
aff3e498 2720 }
9d89c257
YD
2721 else {
2722 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2723 se->on_rq * scale_load_down(se->load.weight),
2724 cfs_rq->curr == se, NULL);
aff3e498 2725 }
c566e8e9 2726
9d89c257 2727 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2728
13962234
YD
2729 cfs_rq->runnable_load_avg += sa->load_avg;
2730 cfs_rq->runnable_load_sum += sa->load_sum;
2731
9d89c257
YD
2732 if (migrated) {
2733 cfs_rq->avg.load_avg += sa->load_avg;
2734 cfs_rq->avg.load_sum += sa->load_sum;
2735 cfs_rq->avg.util_avg += sa->util_avg;
2736 cfs_rq->avg.util_sum += sa->util_sum;
9ee474f5
PT
2737 }
2738
9d89c257
YD
2739 if (decayed || migrated)
2740 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2741}
2742
13962234
YD
2743/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2744static inline void
2745dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2746{
2747 update_load_avg(se, 1);
2748
2749 cfs_rq->runnable_load_avg =
2750 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2751 cfs_rq->runnable_load_sum =
2752 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2753}
2754
9ee474f5 2755/*
9d89c257
YD
2756 * Task first catches up with cfs_rq, and then subtract
2757 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2758 */
9d89c257 2759void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2760{
9d89c257
YD
2761 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2762 u64 last_update_time;
2763
2764#ifndef CONFIG_64BIT
2765 u64 last_update_time_copy;
9ee474f5 2766
9d89c257
YD
2767 do {
2768 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2769 smp_rmb();
2770 last_update_time = cfs_rq->avg.last_update_time;
2771 } while (last_update_time != last_update_time_copy);
2772#else
2773 last_update_time = cfs_rq->avg.last_update_time;
2774#endif
2775
13962234 2776 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2777 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2778 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2779}
642dbc39
VG
2780
2781/*
2782 * Update the rq's load with the elapsed running time before entering
2783 * idle. if the last scheduled task is not a CFS task, idle_enter will
2784 * be the only way to update the runnable statistic.
2785 */
2786void idle_enter_fair(struct rq *this_rq)
2787{
642dbc39
VG
2788}
2789
2790/*
2791 * Update the rq's load with the elapsed idle time before a task is
2792 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2793 * be the only way to update the runnable statistic.
2794 */
2795void idle_exit_fair(struct rq *this_rq)
2796{
642dbc39
VG
2797}
2798
6e83125c
PZ
2799static int idle_balance(struct rq *this_rq);
2800
38033c37
PZ
2801#else /* CONFIG_SMP */
2802
9d89c257
YD
2803static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2804static inline void
2805enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2806static inline void
2807dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2808static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c
PZ
2809
2810static inline int idle_balance(struct rq *rq)
2811{
2812 return 0;
2813}
2814
38033c37 2815#endif /* CONFIG_SMP */
9d85f21c 2816
2396af69 2817static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2818{
bf0f6f24 2819#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2820 struct task_struct *tsk = NULL;
2821
2822 if (entity_is_task(se))
2823 tsk = task_of(se);
2824
41acab88 2825 if (se->statistics.sleep_start) {
78becc27 2826 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2827
2828 if ((s64)delta < 0)
2829 delta = 0;
2830
41acab88
LDM
2831 if (unlikely(delta > se->statistics.sleep_max))
2832 se->statistics.sleep_max = delta;
bf0f6f24 2833
8c79a045 2834 se->statistics.sleep_start = 0;
41acab88 2835 se->statistics.sum_sleep_runtime += delta;
9745512c 2836
768d0c27 2837 if (tsk) {
e414314c 2838 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2839 trace_sched_stat_sleep(tsk, delta);
2840 }
bf0f6f24 2841 }
41acab88 2842 if (se->statistics.block_start) {
78becc27 2843 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2844
2845 if ((s64)delta < 0)
2846 delta = 0;
2847
41acab88
LDM
2848 if (unlikely(delta > se->statistics.block_max))
2849 se->statistics.block_max = delta;
bf0f6f24 2850
8c79a045 2851 se->statistics.block_start = 0;
41acab88 2852 se->statistics.sum_sleep_runtime += delta;
30084fbd 2853
e414314c 2854 if (tsk) {
8f0dfc34 2855 if (tsk->in_iowait) {
41acab88
LDM
2856 se->statistics.iowait_sum += delta;
2857 se->statistics.iowait_count++;
768d0c27 2858 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2859 }
2860
b781a602
AV
2861 trace_sched_stat_blocked(tsk, delta);
2862
e414314c
PZ
2863 /*
2864 * Blocking time is in units of nanosecs, so shift by
2865 * 20 to get a milliseconds-range estimation of the
2866 * amount of time that the task spent sleeping:
2867 */
2868 if (unlikely(prof_on == SLEEP_PROFILING)) {
2869 profile_hits(SLEEP_PROFILING,
2870 (void *)get_wchan(tsk),
2871 delta >> 20);
2872 }
2873 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2874 }
bf0f6f24
IM
2875 }
2876#endif
2877}
2878
ddc97297
PZ
2879static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2880{
2881#ifdef CONFIG_SCHED_DEBUG
2882 s64 d = se->vruntime - cfs_rq->min_vruntime;
2883
2884 if (d < 0)
2885 d = -d;
2886
2887 if (d > 3*sysctl_sched_latency)
2888 schedstat_inc(cfs_rq, nr_spread_over);
2889#endif
2890}
2891
aeb73b04
PZ
2892static void
2893place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2894{
1af5f730 2895 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2896
2cb8600e
PZ
2897 /*
2898 * The 'current' period is already promised to the current tasks,
2899 * however the extra weight of the new task will slow them down a
2900 * little, place the new task so that it fits in the slot that
2901 * stays open at the end.
2902 */
94dfb5e7 2903 if (initial && sched_feat(START_DEBIT))
f9c0b095 2904 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2905
a2e7a7eb 2906 /* sleeps up to a single latency don't count. */
5ca9880c 2907 if (!initial) {
a2e7a7eb 2908 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2909
a2e7a7eb
MG
2910 /*
2911 * Halve their sleep time's effect, to allow
2912 * for a gentler effect of sleepers:
2913 */
2914 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2915 thresh >>= 1;
51e0304c 2916
a2e7a7eb 2917 vruntime -= thresh;
aeb73b04
PZ
2918 }
2919
b5d9d734 2920 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2921 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2922}
2923
d3d9dc33
PT
2924static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2925
bf0f6f24 2926static void
88ec22d3 2927enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2928{
88ec22d3
PZ
2929 /*
2930 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2931 * through calling update_curr().
88ec22d3 2932 */
371fd7e7 2933 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2934 se->vruntime += cfs_rq->min_vruntime;
2935
bf0f6f24 2936 /*
a2a2d680 2937 * Update run-time statistics of the 'current'.
bf0f6f24 2938 */
b7cc0896 2939 update_curr(cfs_rq);
9d89c257 2940 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
2941 account_entity_enqueue(cfs_rq, se);
2942 update_cfs_shares(cfs_rq);
bf0f6f24 2943
88ec22d3 2944 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2945 place_entity(cfs_rq, se, 0);
2396af69 2946 enqueue_sleeper(cfs_rq, se);
e9acbff6 2947 }
bf0f6f24 2948
d2417e5a 2949 update_stats_enqueue(cfs_rq, se);
ddc97297 2950 check_spread(cfs_rq, se);
83b699ed
SV
2951 if (se != cfs_rq->curr)
2952 __enqueue_entity(cfs_rq, se);
2069dd75 2953 se->on_rq = 1;
3d4b47b4 2954
d3d9dc33 2955 if (cfs_rq->nr_running == 1) {
3d4b47b4 2956 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2957 check_enqueue_throttle(cfs_rq);
2958 }
bf0f6f24
IM
2959}
2960
2c13c919 2961static void __clear_buddies_last(struct sched_entity *se)
2002c695 2962{
2c13c919
RR
2963 for_each_sched_entity(se) {
2964 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2965 if (cfs_rq->last != se)
2c13c919 2966 break;
f1044799
PZ
2967
2968 cfs_rq->last = NULL;
2c13c919
RR
2969 }
2970}
2002c695 2971
2c13c919
RR
2972static void __clear_buddies_next(struct sched_entity *se)
2973{
2974 for_each_sched_entity(se) {
2975 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2976 if (cfs_rq->next != se)
2c13c919 2977 break;
f1044799
PZ
2978
2979 cfs_rq->next = NULL;
2c13c919 2980 }
2002c695
PZ
2981}
2982
ac53db59
RR
2983static void __clear_buddies_skip(struct sched_entity *se)
2984{
2985 for_each_sched_entity(se) {
2986 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2987 if (cfs_rq->skip != se)
ac53db59 2988 break;
f1044799
PZ
2989
2990 cfs_rq->skip = NULL;
ac53db59
RR
2991 }
2992}
2993
a571bbea
PZ
2994static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2995{
2c13c919
RR
2996 if (cfs_rq->last == se)
2997 __clear_buddies_last(se);
2998
2999 if (cfs_rq->next == se)
3000 __clear_buddies_next(se);
ac53db59
RR
3001
3002 if (cfs_rq->skip == se)
3003 __clear_buddies_skip(se);
a571bbea
PZ
3004}
3005
6c16a6dc 3006static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3007
bf0f6f24 3008static void
371fd7e7 3009dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3010{
a2a2d680
DA
3011 /*
3012 * Update run-time statistics of the 'current'.
3013 */
3014 update_curr(cfs_rq);
13962234 3015 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3016
19b6a2e3 3017 update_stats_dequeue(cfs_rq, se);
371fd7e7 3018 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3019#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3020 if (entity_is_task(se)) {
3021 struct task_struct *tsk = task_of(se);
3022
3023 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3024 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3025 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3026 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3027 }
db36cc7d 3028#endif
67e9fb2a
PZ
3029 }
3030
2002c695 3031 clear_buddies(cfs_rq, se);
4793241b 3032
83b699ed 3033 if (se != cfs_rq->curr)
30cfdcfc 3034 __dequeue_entity(cfs_rq, se);
17bc14b7 3035 se->on_rq = 0;
30cfdcfc 3036 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3037
3038 /*
3039 * Normalize the entity after updating the min_vruntime because the
3040 * update can refer to the ->curr item and we need to reflect this
3041 * movement in our normalized position.
3042 */
371fd7e7 3043 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3044 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3045
d8b4986d
PT
3046 /* return excess runtime on last dequeue */
3047 return_cfs_rq_runtime(cfs_rq);
3048
1e876231 3049 update_min_vruntime(cfs_rq);
17bc14b7 3050 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3051}
3052
3053/*
3054 * Preempt the current task with a newly woken task if needed:
3055 */
7c92e54f 3056static void
2e09bf55 3057check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3058{
11697830 3059 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3060 struct sched_entity *se;
3061 s64 delta;
11697830 3062
6d0f0ebd 3063 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3064 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3065 if (delta_exec > ideal_runtime) {
8875125e 3066 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3067 /*
3068 * The current task ran long enough, ensure it doesn't get
3069 * re-elected due to buddy favours.
3070 */
3071 clear_buddies(cfs_rq, curr);
f685ceac
MG
3072 return;
3073 }
3074
3075 /*
3076 * Ensure that a task that missed wakeup preemption by a
3077 * narrow margin doesn't have to wait for a full slice.
3078 * This also mitigates buddy induced latencies under load.
3079 */
f685ceac
MG
3080 if (delta_exec < sysctl_sched_min_granularity)
3081 return;
3082
f4cfb33e
WX
3083 se = __pick_first_entity(cfs_rq);
3084 delta = curr->vruntime - se->vruntime;
f685ceac 3085
f4cfb33e
WX
3086 if (delta < 0)
3087 return;
d7d82944 3088
f4cfb33e 3089 if (delta > ideal_runtime)
8875125e 3090 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3091}
3092
83b699ed 3093static void
8494f412 3094set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3095{
83b699ed
SV
3096 /* 'current' is not kept within the tree. */
3097 if (se->on_rq) {
3098 /*
3099 * Any task has to be enqueued before it get to execute on
3100 * a CPU. So account for the time it spent waiting on the
3101 * runqueue.
3102 */
3103 update_stats_wait_end(cfs_rq, se);
3104 __dequeue_entity(cfs_rq, se);
9d89c257 3105 update_load_avg(se, 1);
83b699ed
SV
3106 }
3107
79303e9e 3108 update_stats_curr_start(cfs_rq, se);
429d43bc 3109 cfs_rq->curr = se;
eba1ed4b
IM
3110#ifdef CONFIG_SCHEDSTATS
3111 /*
3112 * Track our maximum slice length, if the CPU's load is at
3113 * least twice that of our own weight (i.e. dont track it
3114 * when there are only lesser-weight tasks around):
3115 */
495eca49 3116 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3117 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3118 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3119 }
3120#endif
4a55b450 3121 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3122}
3123
3f3a4904
PZ
3124static int
3125wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3126
ac53db59
RR
3127/*
3128 * Pick the next process, keeping these things in mind, in this order:
3129 * 1) keep things fair between processes/task groups
3130 * 2) pick the "next" process, since someone really wants that to run
3131 * 3) pick the "last" process, for cache locality
3132 * 4) do not run the "skip" process, if something else is available
3133 */
678d5718
PZ
3134static struct sched_entity *
3135pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3136{
678d5718
PZ
3137 struct sched_entity *left = __pick_first_entity(cfs_rq);
3138 struct sched_entity *se;
3139
3140 /*
3141 * If curr is set we have to see if its left of the leftmost entity
3142 * still in the tree, provided there was anything in the tree at all.
3143 */
3144 if (!left || (curr && entity_before(curr, left)))
3145 left = curr;
3146
3147 se = left; /* ideally we run the leftmost entity */
f4b6755f 3148
ac53db59
RR
3149 /*
3150 * Avoid running the skip buddy, if running something else can
3151 * be done without getting too unfair.
3152 */
3153 if (cfs_rq->skip == se) {
678d5718
PZ
3154 struct sched_entity *second;
3155
3156 if (se == curr) {
3157 second = __pick_first_entity(cfs_rq);
3158 } else {
3159 second = __pick_next_entity(se);
3160 if (!second || (curr && entity_before(curr, second)))
3161 second = curr;
3162 }
3163
ac53db59
RR
3164 if (second && wakeup_preempt_entity(second, left) < 1)
3165 se = second;
3166 }
aa2ac252 3167
f685ceac
MG
3168 /*
3169 * Prefer last buddy, try to return the CPU to a preempted task.
3170 */
3171 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3172 se = cfs_rq->last;
3173
ac53db59
RR
3174 /*
3175 * Someone really wants this to run. If it's not unfair, run it.
3176 */
3177 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3178 se = cfs_rq->next;
3179
f685ceac 3180 clear_buddies(cfs_rq, se);
4793241b
PZ
3181
3182 return se;
aa2ac252
PZ
3183}
3184
678d5718 3185static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3186
ab6cde26 3187static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3188{
3189 /*
3190 * If still on the runqueue then deactivate_task()
3191 * was not called and update_curr() has to be done:
3192 */
3193 if (prev->on_rq)
b7cc0896 3194 update_curr(cfs_rq);
bf0f6f24 3195
d3d9dc33
PT
3196 /* throttle cfs_rqs exceeding runtime */
3197 check_cfs_rq_runtime(cfs_rq);
3198
ddc97297 3199 check_spread(cfs_rq, prev);
30cfdcfc 3200 if (prev->on_rq) {
5870db5b 3201 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3202 /* Put 'current' back into the tree. */
3203 __enqueue_entity(cfs_rq, prev);
9d85f21c 3204 /* in !on_rq case, update occurred at dequeue */
9d89c257 3205 update_load_avg(prev, 0);
30cfdcfc 3206 }
429d43bc 3207 cfs_rq->curr = NULL;
bf0f6f24
IM
3208}
3209
8f4d37ec
PZ
3210static void
3211entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3212{
bf0f6f24 3213 /*
30cfdcfc 3214 * Update run-time statistics of the 'current'.
bf0f6f24 3215 */
30cfdcfc 3216 update_curr(cfs_rq);
bf0f6f24 3217
9d85f21c
PT
3218 /*
3219 * Ensure that runnable average is periodically updated.
3220 */
9d89c257 3221 update_load_avg(curr, 1);
bf0bd948 3222 update_cfs_shares(cfs_rq);
9d85f21c 3223
8f4d37ec
PZ
3224#ifdef CONFIG_SCHED_HRTICK
3225 /*
3226 * queued ticks are scheduled to match the slice, so don't bother
3227 * validating it and just reschedule.
3228 */
983ed7a6 3229 if (queued) {
8875125e 3230 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3231 return;
3232 }
8f4d37ec
PZ
3233 /*
3234 * don't let the period tick interfere with the hrtick preemption
3235 */
3236 if (!sched_feat(DOUBLE_TICK) &&
3237 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3238 return;
3239#endif
3240
2c2efaed 3241 if (cfs_rq->nr_running > 1)
2e09bf55 3242 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3243}
3244
ab84d31e
PT
3245
3246/**************************************************
3247 * CFS bandwidth control machinery
3248 */
3249
3250#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3251
3252#ifdef HAVE_JUMP_LABEL
c5905afb 3253static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3254
3255static inline bool cfs_bandwidth_used(void)
3256{
c5905afb 3257 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3258}
3259
1ee14e6c 3260void cfs_bandwidth_usage_inc(void)
029632fb 3261{
1ee14e6c
BS
3262 static_key_slow_inc(&__cfs_bandwidth_used);
3263}
3264
3265void cfs_bandwidth_usage_dec(void)
3266{
3267 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3268}
3269#else /* HAVE_JUMP_LABEL */
3270static bool cfs_bandwidth_used(void)
3271{
3272 return true;
3273}
3274
1ee14e6c
BS
3275void cfs_bandwidth_usage_inc(void) {}
3276void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3277#endif /* HAVE_JUMP_LABEL */
3278
ab84d31e
PT
3279/*
3280 * default period for cfs group bandwidth.
3281 * default: 0.1s, units: nanoseconds
3282 */
3283static inline u64 default_cfs_period(void)
3284{
3285 return 100000000ULL;
3286}
ec12cb7f
PT
3287
3288static inline u64 sched_cfs_bandwidth_slice(void)
3289{
3290 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3291}
3292
a9cf55b2
PT
3293/*
3294 * Replenish runtime according to assigned quota and update expiration time.
3295 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3296 * additional synchronization around rq->lock.
3297 *
3298 * requires cfs_b->lock
3299 */
029632fb 3300void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3301{
3302 u64 now;
3303
3304 if (cfs_b->quota == RUNTIME_INF)
3305 return;
3306
3307 now = sched_clock_cpu(smp_processor_id());
3308 cfs_b->runtime = cfs_b->quota;
3309 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3310}
3311
029632fb
PZ
3312static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3313{
3314 return &tg->cfs_bandwidth;
3315}
3316
f1b17280
PT
3317/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3318static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3319{
3320 if (unlikely(cfs_rq->throttle_count))
3321 return cfs_rq->throttled_clock_task;
3322
78becc27 3323 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3324}
3325
85dac906
PT
3326/* returns 0 on failure to allocate runtime */
3327static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3328{
3329 struct task_group *tg = cfs_rq->tg;
3330 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3331 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3332
3333 /* note: this is a positive sum as runtime_remaining <= 0 */
3334 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3335
3336 raw_spin_lock(&cfs_b->lock);
3337 if (cfs_b->quota == RUNTIME_INF)
3338 amount = min_amount;
58088ad0 3339 else {
77a4d1a1 3340 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3341
3342 if (cfs_b->runtime > 0) {
3343 amount = min(cfs_b->runtime, min_amount);
3344 cfs_b->runtime -= amount;
3345 cfs_b->idle = 0;
3346 }
ec12cb7f 3347 }
a9cf55b2 3348 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3349 raw_spin_unlock(&cfs_b->lock);
3350
3351 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3352 /*
3353 * we may have advanced our local expiration to account for allowed
3354 * spread between our sched_clock and the one on which runtime was
3355 * issued.
3356 */
3357 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3358 cfs_rq->runtime_expires = expires;
85dac906
PT
3359
3360 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3361}
3362
a9cf55b2
PT
3363/*
3364 * Note: This depends on the synchronization provided by sched_clock and the
3365 * fact that rq->clock snapshots this value.
3366 */
3367static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3368{
a9cf55b2 3369 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3370
3371 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3372 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3373 return;
3374
a9cf55b2
PT
3375 if (cfs_rq->runtime_remaining < 0)
3376 return;
3377
3378 /*
3379 * If the local deadline has passed we have to consider the
3380 * possibility that our sched_clock is 'fast' and the global deadline
3381 * has not truly expired.
3382 *
3383 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3384 * whether the global deadline has advanced. It is valid to compare
3385 * cfs_b->runtime_expires without any locks since we only care about
3386 * exact equality, so a partial write will still work.
a9cf55b2
PT
3387 */
3388
51f2176d 3389 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3390 /* extend local deadline, drift is bounded above by 2 ticks */
3391 cfs_rq->runtime_expires += TICK_NSEC;
3392 } else {
3393 /* global deadline is ahead, expiration has passed */
3394 cfs_rq->runtime_remaining = 0;
3395 }
3396}
3397
9dbdb155 3398static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3399{
3400 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3401 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3402 expire_cfs_rq_runtime(cfs_rq);
3403
3404 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3405 return;
3406
85dac906
PT
3407 /*
3408 * if we're unable to extend our runtime we resched so that the active
3409 * hierarchy can be throttled
3410 */
3411 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3412 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3413}
3414
6c16a6dc 3415static __always_inline
9dbdb155 3416void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3417{
56f570e5 3418 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3419 return;
3420
3421 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3422}
3423
85dac906
PT
3424static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3425{
56f570e5 3426 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3427}
3428
64660c86
PT
3429/* check whether cfs_rq, or any parent, is throttled */
3430static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3431{
56f570e5 3432 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3433}
3434
3435/*
3436 * Ensure that neither of the group entities corresponding to src_cpu or
3437 * dest_cpu are members of a throttled hierarchy when performing group
3438 * load-balance operations.
3439 */
3440static inline int throttled_lb_pair(struct task_group *tg,
3441 int src_cpu, int dest_cpu)
3442{
3443 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3444
3445 src_cfs_rq = tg->cfs_rq[src_cpu];
3446 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3447
3448 return throttled_hierarchy(src_cfs_rq) ||
3449 throttled_hierarchy(dest_cfs_rq);
3450}
3451
3452/* updated child weight may affect parent so we have to do this bottom up */
3453static int tg_unthrottle_up(struct task_group *tg, void *data)
3454{
3455 struct rq *rq = data;
3456 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3457
3458 cfs_rq->throttle_count--;
3459#ifdef CONFIG_SMP
3460 if (!cfs_rq->throttle_count) {
f1b17280 3461 /* adjust cfs_rq_clock_task() */
78becc27 3462 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3463 cfs_rq->throttled_clock_task;
64660c86
PT
3464 }
3465#endif
3466
3467 return 0;
3468}
3469
3470static int tg_throttle_down(struct task_group *tg, void *data)
3471{
3472 struct rq *rq = data;
3473 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3474
82958366
PT
3475 /* group is entering throttled state, stop time */
3476 if (!cfs_rq->throttle_count)
78becc27 3477 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3478 cfs_rq->throttle_count++;
3479
3480 return 0;
3481}
3482
d3d9dc33 3483static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3484{
3485 struct rq *rq = rq_of(cfs_rq);
3486 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3487 struct sched_entity *se;
3488 long task_delta, dequeue = 1;
77a4d1a1 3489 bool empty;
85dac906
PT
3490
3491 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3492
f1b17280 3493 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3494 rcu_read_lock();
3495 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3496 rcu_read_unlock();
85dac906
PT
3497
3498 task_delta = cfs_rq->h_nr_running;
3499 for_each_sched_entity(se) {
3500 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3501 /* throttled entity or throttle-on-deactivate */
3502 if (!se->on_rq)
3503 break;
3504
3505 if (dequeue)
3506 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3507 qcfs_rq->h_nr_running -= task_delta;
3508
3509 if (qcfs_rq->load.weight)
3510 dequeue = 0;
3511 }
3512
3513 if (!se)
72465447 3514 sub_nr_running(rq, task_delta);
85dac906
PT
3515
3516 cfs_rq->throttled = 1;
78becc27 3517 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3518 raw_spin_lock(&cfs_b->lock);
d49db342 3519 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3520
c06f04c7
BS
3521 /*
3522 * Add to the _head_ of the list, so that an already-started
3523 * distribute_cfs_runtime will not see us
3524 */
3525 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3526
3527 /*
3528 * If we're the first throttled task, make sure the bandwidth
3529 * timer is running.
3530 */
3531 if (empty)
3532 start_cfs_bandwidth(cfs_b);
3533
85dac906
PT
3534 raw_spin_unlock(&cfs_b->lock);
3535}
3536
029632fb 3537void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3538{
3539 struct rq *rq = rq_of(cfs_rq);
3540 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3541 struct sched_entity *se;
3542 int enqueue = 1;
3543 long task_delta;
3544
22b958d8 3545 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3546
3547 cfs_rq->throttled = 0;
1a55af2e
FW
3548
3549 update_rq_clock(rq);
3550
671fd9da 3551 raw_spin_lock(&cfs_b->lock);
78becc27 3552 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3553 list_del_rcu(&cfs_rq->throttled_list);
3554 raw_spin_unlock(&cfs_b->lock);
3555
64660c86
PT
3556 /* update hierarchical throttle state */
3557 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3558
671fd9da
PT
3559 if (!cfs_rq->load.weight)
3560 return;
3561
3562 task_delta = cfs_rq->h_nr_running;
3563 for_each_sched_entity(se) {
3564 if (se->on_rq)
3565 enqueue = 0;
3566
3567 cfs_rq = cfs_rq_of(se);
3568 if (enqueue)
3569 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3570 cfs_rq->h_nr_running += task_delta;
3571
3572 if (cfs_rq_throttled(cfs_rq))
3573 break;
3574 }
3575
3576 if (!se)
72465447 3577 add_nr_running(rq, task_delta);
671fd9da
PT
3578
3579 /* determine whether we need to wake up potentially idle cpu */
3580 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3581 resched_curr(rq);
671fd9da
PT
3582}
3583
3584static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3585 u64 remaining, u64 expires)
3586{
3587 struct cfs_rq *cfs_rq;
c06f04c7
BS
3588 u64 runtime;
3589 u64 starting_runtime = remaining;
671fd9da
PT
3590
3591 rcu_read_lock();
3592 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3593 throttled_list) {
3594 struct rq *rq = rq_of(cfs_rq);
3595
3596 raw_spin_lock(&rq->lock);
3597 if (!cfs_rq_throttled(cfs_rq))
3598 goto next;
3599
3600 runtime = -cfs_rq->runtime_remaining + 1;
3601 if (runtime > remaining)
3602 runtime = remaining;
3603 remaining -= runtime;
3604
3605 cfs_rq->runtime_remaining += runtime;
3606 cfs_rq->runtime_expires = expires;
3607
3608 /* we check whether we're throttled above */
3609 if (cfs_rq->runtime_remaining > 0)
3610 unthrottle_cfs_rq(cfs_rq);
3611
3612next:
3613 raw_spin_unlock(&rq->lock);
3614
3615 if (!remaining)
3616 break;
3617 }
3618 rcu_read_unlock();
3619
c06f04c7 3620 return starting_runtime - remaining;
671fd9da
PT
3621}
3622
58088ad0
PT
3623/*
3624 * Responsible for refilling a task_group's bandwidth and unthrottling its
3625 * cfs_rqs as appropriate. If there has been no activity within the last
3626 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3627 * used to track this state.
3628 */
3629static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3630{
671fd9da 3631 u64 runtime, runtime_expires;
51f2176d 3632 int throttled;
58088ad0 3633
58088ad0
PT
3634 /* no need to continue the timer with no bandwidth constraint */
3635 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3636 goto out_deactivate;
58088ad0 3637
671fd9da 3638 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3639 cfs_b->nr_periods += overrun;
671fd9da 3640
51f2176d
BS
3641 /*
3642 * idle depends on !throttled (for the case of a large deficit), and if
3643 * we're going inactive then everything else can be deferred
3644 */
3645 if (cfs_b->idle && !throttled)
3646 goto out_deactivate;
a9cf55b2
PT
3647
3648 __refill_cfs_bandwidth_runtime(cfs_b);
3649
671fd9da
PT
3650 if (!throttled) {
3651 /* mark as potentially idle for the upcoming period */
3652 cfs_b->idle = 1;
51f2176d 3653 return 0;
671fd9da
PT
3654 }
3655
e8da1b18
NR
3656 /* account preceding periods in which throttling occurred */
3657 cfs_b->nr_throttled += overrun;
3658
671fd9da 3659 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3660
3661 /*
c06f04c7
BS
3662 * This check is repeated as we are holding onto the new bandwidth while
3663 * we unthrottle. This can potentially race with an unthrottled group
3664 * trying to acquire new bandwidth from the global pool. This can result
3665 * in us over-using our runtime if it is all used during this loop, but
3666 * only by limited amounts in that extreme case.
671fd9da 3667 */
c06f04c7
BS
3668 while (throttled && cfs_b->runtime > 0) {
3669 runtime = cfs_b->runtime;
671fd9da
PT
3670 raw_spin_unlock(&cfs_b->lock);
3671 /* we can't nest cfs_b->lock while distributing bandwidth */
3672 runtime = distribute_cfs_runtime(cfs_b, runtime,
3673 runtime_expires);
3674 raw_spin_lock(&cfs_b->lock);
3675
3676 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3677
3678 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3679 }
58088ad0 3680
671fd9da
PT
3681 /*
3682 * While we are ensured activity in the period following an
3683 * unthrottle, this also covers the case in which the new bandwidth is
3684 * insufficient to cover the existing bandwidth deficit. (Forcing the
3685 * timer to remain active while there are any throttled entities.)
3686 */
3687 cfs_b->idle = 0;
58088ad0 3688
51f2176d
BS
3689 return 0;
3690
3691out_deactivate:
51f2176d 3692 return 1;
58088ad0 3693}
d3d9dc33 3694
d8b4986d
PT
3695/* a cfs_rq won't donate quota below this amount */
3696static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3697/* minimum remaining period time to redistribute slack quota */
3698static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3699/* how long we wait to gather additional slack before distributing */
3700static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3701
db06e78c
BS
3702/*
3703 * Are we near the end of the current quota period?
3704 *
3705 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3706 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3707 * migrate_hrtimers, base is never cleared, so we are fine.
3708 */
d8b4986d
PT
3709static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3710{
3711 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3712 u64 remaining;
3713
3714 /* if the call-back is running a quota refresh is already occurring */
3715 if (hrtimer_callback_running(refresh_timer))
3716 return 1;
3717
3718 /* is a quota refresh about to occur? */
3719 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3720 if (remaining < min_expire)
3721 return 1;
3722
3723 return 0;
3724}
3725
3726static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3727{
3728 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3729
3730 /* if there's a quota refresh soon don't bother with slack */
3731 if (runtime_refresh_within(cfs_b, min_left))
3732 return;
3733
4cfafd30
PZ
3734 hrtimer_start(&cfs_b->slack_timer,
3735 ns_to_ktime(cfs_bandwidth_slack_period),
3736 HRTIMER_MODE_REL);
d8b4986d
PT
3737}
3738
3739/* we know any runtime found here is valid as update_curr() precedes return */
3740static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3741{
3742 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3743 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3744
3745 if (slack_runtime <= 0)
3746 return;
3747
3748 raw_spin_lock(&cfs_b->lock);
3749 if (cfs_b->quota != RUNTIME_INF &&
3750 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3751 cfs_b->runtime += slack_runtime;
3752
3753 /* we are under rq->lock, defer unthrottling using a timer */
3754 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3755 !list_empty(&cfs_b->throttled_cfs_rq))
3756 start_cfs_slack_bandwidth(cfs_b);
3757 }
3758 raw_spin_unlock(&cfs_b->lock);
3759
3760 /* even if it's not valid for return we don't want to try again */
3761 cfs_rq->runtime_remaining -= slack_runtime;
3762}
3763
3764static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3765{
56f570e5
PT
3766 if (!cfs_bandwidth_used())
3767 return;
3768
fccfdc6f 3769 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3770 return;
3771
3772 __return_cfs_rq_runtime(cfs_rq);
3773}
3774
3775/*
3776 * This is done with a timer (instead of inline with bandwidth return) since
3777 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3778 */
3779static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3780{
3781 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3782 u64 expires;
3783
3784 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3785 raw_spin_lock(&cfs_b->lock);
3786 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3787 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3788 return;
db06e78c 3789 }
d8b4986d 3790
c06f04c7 3791 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3792 runtime = cfs_b->runtime;
c06f04c7 3793
d8b4986d
PT
3794 expires = cfs_b->runtime_expires;
3795 raw_spin_unlock(&cfs_b->lock);
3796
3797 if (!runtime)
3798 return;
3799
3800 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3801
3802 raw_spin_lock(&cfs_b->lock);
3803 if (expires == cfs_b->runtime_expires)
c06f04c7 3804 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3805 raw_spin_unlock(&cfs_b->lock);
3806}
3807
d3d9dc33
PT
3808/*
3809 * When a group wakes up we want to make sure that its quota is not already
3810 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3811 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3812 */
3813static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3814{
56f570e5
PT
3815 if (!cfs_bandwidth_used())
3816 return;
3817
d3d9dc33
PT
3818 /* an active group must be handled by the update_curr()->put() path */
3819 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3820 return;
3821
3822 /* ensure the group is not already throttled */
3823 if (cfs_rq_throttled(cfs_rq))
3824 return;
3825
3826 /* update runtime allocation */
3827 account_cfs_rq_runtime(cfs_rq, 0);
3828 if (cfs_rq->runtime_remaining <= 0)
3829 throttle_cfs_rq(cfs_rq);
3830}
3831
3832/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3833static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3834{
56f570e5 3835 if (!cfs_bandwidth_used())
678d5718 3836 return false;
56f570e5 3837
d3d9dc33 3838 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3839 return false;
d3d9dc33
PT
3840
3841 /*
3842 * it's possible for a throttled entity to be forced into a running
3843 * state (e.g. set_curr_task), in this case we're finished.
3844 */
3845 if (cfs_rq_throttled(cfs_rq))
678d5718 3846 return true;
d3d9dc33
PT
3847
3848 throttle_cfs_rq(cfs_rq);
678d5718 3849 return true;
d3d9dc33 3850}
029632fb 3851
029632fb
PZ
3852static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3853{
3854 struct cfs_bandwidth *cfs_b =
3855 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3856
029632fb
PZ
3857 do_sched_cfs_slack_timer(cfs_b);
3858
3859 return HRTIMER_NORESTART;
3860}
3861
3862static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3863{
3864 struct cfs_bandwidth *cfs_b =
3865 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3866 int overrun;
3867 int idle = 0;
3868
51f2176d 3869 raw_spin_lock(&cfs_b->lock);
029632fb 3870 for (;;) {
77a4d1a1 3871 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3872 if (!overrun)
3873 break;
3874
3875 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3876 }
4cfafd30
PZ
3877 if (idle)
3878 cfs_b->period_active = 0;
51f2176d 3879 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3880
3881 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3882}
3883
3884void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3885{
3886 raw_spin_lock_init(&cfs_b->lock);
3887 cfs_b->runtime = 0;
3888 cfs_b->quota = RUNTIME_INF;
3889 cfs_b->period = ns_to_ktime(default_cfs_period());
3890
3891 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3892 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3893 cfs_b->period_timer.function = sched_cfs_period_timer;
3894 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3895 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3896}
3897
3898static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3899{
3900 cfs_rq->runtime_enabled = 0;
3901 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3902}
3903
77a4d1a1 3904void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3905{
4cfafd30 3906 lockdep_assert_held(&cfs_b->lock);
029632fb 3907
4cfafd30
PZ
3908 if (!cfs_b->period_active) {
3909 cfs_b->period_active = 1;
3910 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3911 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3912 }
029632fb
PZ
3913}
3914
3915static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3916{
7f1a169b
TH
3917 /* init_cfs_bandwidth() was not called */
3918 if (!cfs_b->throttled_cfs_rq.next)
3919 return;
3920
029632fb
PZ
3921 hrtimer_cancel(&cfs_b->period_timer);
3922 hrtimer_cancel(&cfs_b->slack_timer);
3923}
3924
0e59bdae
KT
3925static void __maybe_unused update_runtime_enabled(struct rq *rq)
3926{
3927 struct cfs_rq *cfs_rq;
3928
3929 for_each_leaf_cfs_rq(rq, cfs_rq) {
3930 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3931
3932 raw_spin_lock(&cfs_b->lock);
3933 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3934 raw_spin_unlock(&cfs_b->lock);
3935 }
3936}
3937
38dc3348 3938static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3939{
3940 struct cfs_rq *cfs_rq;
3941
3942 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3943 if (!cfs_rq->runtime_enabled)
3944 continue;
3945
3946 /*
3947 * clock_task is not advancing so we just need to make sure
3948 * there's some valid quota amount
3949 */
51f2176d 3950 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3951 /*
3952 * Offline rq is schedulable till cpu is completely disabled
3953 * in take_cpu_down(), so we prevent new cfs throttling here.
3954 */
3955 cfs_rq->runtime_enabled = 0;
3956
029632fb
PZ
3957 if (cfs_rq_throttled(cfs_rq))
3958 unthrottle_cfs_rq(cfs_rq);
3959 }
3960}
3961
3962#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3963static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3964{
78becc27 3965 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3966}
3967
9dbdb155 3968static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3969static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3970static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3971static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3972
3973static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3974{
3975 return 0;
3976}
64660c86
PT
3977
3978static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3979{
3980 return 0;
3981}
3982
3983static inline int throttled_lb_pair(struct task_group *tg,
3984 int src_cpu, int dest_cpu)
3985{
3986 return 0;
3987}
029632fb
PZ
3988
3989void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3990
3991#ifdef CONFIG_FAIR_GROUP_SCHED
3992static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3993#endif
3994
029632fb
PZ
3995static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3996{
3997 return NULL;
3998}
3999static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4000static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4001static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4002
4003#endif /* CONFIG_CFS_BANDWIDTH */
4004
bf0f6f24
IM
4005/**************************************************
4006 * CFS operations on tasks:
4007 */
4008
8f4d37ec
PZ
4009#ifdef CONFIG_SCHED_HRTICK
4010static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4011{
8f4d37ec
PZ
4012 struct sched_entity *se = &p->se;
4013 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4014
4015 WARN_ON(task_rq(p) != rq);
4016
b39e66ea 4017 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4018 u64 slice = sched_slice(cfs_rq, se);
4019 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4020 s64 delta = slice - ran;
4021
4022 if (delta < 0) {
4023 if (rq->curr == p)
8875125e 4024 resched_curr(rq);
8f4d37ec
PZ
4025 return;
4026 }
31656519 4027 hrtick_start(rq, delta);
8f4d37ec
PZ
4028 }
4029}
a4c2f00f
PZ
4030
4031/*
4032 * called from enqueue/dequeue and updates the hrtick when the
4033 * current task is from our class and nr_running is low enough
4034 * to matter.
4035 */
4036static void hrtick_update(struct rq *rq)
4037{
4038 struct task_struct *curr = rq->curr;
4039
b39e66ea 4040 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4041 return;
4042
4043 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4044 hrtick_start_fair(rq, curr);
4045}
55e12e5e 4046#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4047static inline void
4048hrtick_start_fair(struct rq *rq, struct task_struct *p)
4049{
4050}
a4c2f00f
PZ
4051
4052static inline void hrtick_update(struct rq *rq)
4053{
4054}
8f4d37ec
PZ
4055#endif
4056
bf0f6f24
IM
4057/*
4058 * The enqueue_task method is called before nr_running is
4059 * increased. Here we update the fair scheduling stats and
4060 * then put the task into the rbtree:
4061 */
ea87bb78 4062static void
371fd7e7 4063enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4064{
4065 struct cfs_rq *cfs_rq;
62fb1851 4066 struct sched_entity *se = &p->se;
bf0f6f24
IM
4067
4068 for_each_sched_entity(se) {
62fb1851 4069 if (se->on_rq)
bf0f6f24
IM
4070 break;
4071 cfs_rq = cfs_rq_of(se);
88ec22d3 4072 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4073
4074 /*
4075 * end evaluation on encountering a throttled cfs_rq
4076 *
4077 * note: in the case of encountering a throttled cfs_rq we will
4078 * post the final h_nr_running increment below.
4079 */
4080 if (cfs_rq_throttled(cfs_rq))
4081 break;
953bfcd1 4082 cfs_rq->h_nr_running++;
85dac906 4083
88ec22d3 4084 flags = ENQUEUE_WAKEUP;
bf0f6f24 4085 }
8f4d37ec 4086
2069dd75 4087 for_each_sched_entity(se) {
0f317143 4088 cfs_rq = cfs_rq_of(se);
953bfcd1 4089 cfs_rq->h_nr_running++;
2069dd75 4090
85dac906
PT
4091 if (cfs_rq_throttled(cfs_rq))
4092 break;
4093
9d89c257 4094 update_load_avg(se, 1);
17bc14b7 4095 update_cfs_shares(cfs_rq);
2069dd75
PZ
4096 }
4097
cd126afe 4098 if (!se)
72465447 4099 add_nr_running(rq, 1);
cd126afe 4100
a4c2f00f 4101 hrtick_update(rq);
bf0f6f24
IM
4102}
4103
2f36825b
VP
4104static void set_next_buddy(struct sched_entity *se);
4105
bf0f6f24
IM
4106/*
4107 * The dequeue_task method is called before nr_running is
4108 * decreased. We remove the task from the rbtree and
4109 * update the fair scheduling stats:
4110 */
371fd7e7 4111static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4112{
4113 struct cfs_rq *cfs_rq;
62fb1851 4114 struct sched_entity *se = &p->se;
2f36825b 4115 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4116
4117 for_each_sched_entity(se) {
4118 cfs_rq = cfs_rq_of(se);
371fd7e7 4119 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4120
4121 /*
4122 * end evaluation on encountering a throttled cfs_rq
4123 *
4124 * note: in the case of encountering a throttled cfs_rq we will
4125 * post the final h_nr_running decrement below.
4126 */
4127 if (cfs_rq_throttled(cfs_rq))
4128 break;
953bfcd1 4129 cfs_rq->h_nr_running--;
2069dd75 4130
bf0f6f24 4131 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4132 if (cfs_rq->load.weight) {
4133 /*
4134 * Bias pick_next to pick a task from this cfs_rq, as
4135 * p is sleeping when it is within its sched_slice.
4136 */
4137 if (task_sleep && parent_entity(se))
4138 set_next_buddy(parent_entity(se));
9598c82d
PT
4139
4140 /* avoid re-evaluating load for this entity */
4141 se = parent_entity(se);
bf0f6f24 4142 break;
2f36825b 4143 }
371fd7e7 4144 flags |= DEQUEUE_SLEEP;
bf0f6f24 4145 }
8f4d37ec 4146
2069dd75 4147 for_each_sched_entity(se) {
0f317143 4148 cfs_rq = cfs_rq_of(se);
953bfcd1 4149 cfs_rq->h_nr_running--;
2069dd75 4150
85dac906
PT
4151 if (cfs_rq_throttled(cfs_rq))
4152 break;
4153
9d89c257 4154 update_load_avg(se, 1);
17bc14b7 4155 update_cfs_shares(cfs_rq);
2069dd75
PZ
4156 }
4157
cd126afe 4158 if (!se)
72465447 4159 sub_nr_running(rq, 1);
cd126afe 4160
a4c2f00f 4161 hrtick_update(rq);
bf0f6f24
IM
4162}
4163
e7693a36 4164#ifdef CONFIG_SMP
3289bdb4
PZ
4165
4166/*
4167 * per rq 'load' arrray crap; XXX kill this.
4168 */
4169
4170/*
4171 * The exact cpuload at various idx values, calculated at every tick would be
4172 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4173 *
4174 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4175 * on nth tick when cpu may be busy, then we have:
4176 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4177 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4178 *
4179 * decay_load_missed() below does efficient calculation of
4180 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4181 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4182 *
4183 * The calculation is approximated on a 128 point scale.
4184 * degrade_zero_ticks is the number of ticks after which load at any
4185 * particular idx is approximated to be zero.
4186 * degrade_factor is a precomputed table, a row for each load idx.
4187 * Each column corresponds to degradation factor for a power of two ticks,
4188 * based on 128 point scale.
4189 * Example:
4190 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4191 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4192 *
4193 * With this power of 2 load factors, we can degrade the load n times
4194 * by looking at 1 bits in n and doing as many mult/shift instead of
4195 * n mult/shifts needed by the exact degradation.
4196 */
4197#define DEGRADE_SHIFT 7
4198static const unsigned char
4199 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4200static const unsigned char
4201 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4202 {0, 0, 0, 0, 0, 0, 0, 0},
4203 {64, 32, 8, 0, 0, 0, 0, 0},
4204 {96, 72, 40, 12, 1, 0, 0},
4205 {112, 98, 75, 43, 15, 1, 0},
4206 {120, 112, 98, 76, 45, 16, 2} };
4207
4208/*
4209 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4210 * would be when CPU is idle and so we just decay the old load without
4211 * adding any new load.
4212 */
4213static unsigned long
4214decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4215{
4216 int j = 0;
4217
4218 if (!missed_updates)
4219 return load;
4220
4221 if (missed_updates >= degrade_zero_ticks[idx])
4222 return 0;
4223
4224 if (idx == 1)
4225 return load >> missed_updates;
4226
4227 while (missed_updates) {
4228 if (missed_updates % 2)
4229 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4230
4231 missed_updates >>= 1;
4232 j++;
4233 }
4234 return load;
4235}
4236
4237/*
4238 * Update rq->cpu_load[] statistics. This function is usually called every
4239 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4240 * every tick. We fix it up based on jiffies.
4241 */
4242static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4243 unsigned long pending_updates)
4244{
4245 int i, scale;
4246
4247 this_rq->nr_load_updates++;
4248
4249 /* Update our load: */
4250 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4251 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4252 unsigned long old_load, new_load;
4253
4254 /* scale is effectively 1 << i now, and >> i divides by scale */
4255
4256 old_load = this_rq->cpu_load[i];
4257 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4258 new_load = this_load;
4259 /*
4260 * Round up the averaging division if load is increasing. This
4261 * prevents us from getting stuck on 9 if the load is 10, for
4262 * example.
4263 */
4264 if (new_load > old_load)
4265 new_load += scale - 1;
4266
4267 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4268 }
4269
4270 sched_avg_update(this_rq);
4271}
4272
4273#ifdef CONFIG_NO_HZ_COMMON
4274/*
4275 * There is no sane way to deal with nohz on smp when using jiffies because the
4276 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4277 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4278 *
4279 * Therefore we cannot use the delta approach from the regular tick since that
4280 * would seriously skew the load calculation. However we'll make do for those
4281 * updates happening while idle (nohz_idle_balance) or coming out of idle
4282 * (tick_nohz_idle_exit).
4283 *
4284 * This means we might still be one tick off for nohz periods.
4285 */
4286
4287/*
4288 * Called from nohz_idle_balance() to update the load ratings before doing the
4289 * idle balance.
4290 */
4291static void update_idle_cpu_load(struct rq *this_rq)
4292{
316c1608 4293 unsigned long curr_jiffies = READ_ONCE(jiffies);
9d89c257 4294 unsigned long load = this_rq->cfs.avg.load_avg;
3289bdb4
PZ
4295 unsigned long pending_updates;
4296
4297 /*
4298 * bail if there's load or we're actually up-to-date.
4299 */
4300 if (load || curr_jiffies == this_rq->last_load_update_tick)
4301 return;
4302
4303 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4304 this_rq->last_load_update_tick = curr_jiffies;
4305
4306 __update_cpu_load(this_rq, load, pending_updates);
4307}
4308
4309/*
4310 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4311 */
4312void update_cpu_load_nohz(void)
4313{
4314 struct rq *this_rq = this_rq();
316c1608 4315 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4316 unsigned long pending_updates;
4317
4318 if (curr_jiffies == this_rq->last_load_update_tick)
4319 return;
4320
4321 raw_spin_lock(&this_rq->lock);
4322 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4323 if (pending_updates) {
4324 this_rq->last_load_update_tick = curr_jiffies;
4325 /*
4326 * We were idle, this means load 0, the current load might be
4327 * !0 due to remote wakeups and the sort.
4328 */
4329 __update_cpu_load(this_rq, 0, pending_updates);
4330 }
4331 raw_spin_unlock(&this_rq->lock);
4332}
4333#endif /* CONFIG_NO_HZ */
4334
4335/*
4336 * Called from scheduler_tick()
4337 */
4338void update_cpu_load_active(struct rq *this_rq)
4339{
9d89c257 4340 unsigned long load = this_rq->cfs.avg.load_avg;
3289bdb4
PZ
4341 /*
4342 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4343 */
4344 this_rq->last_load_update_tick = jiffies;
4345 __update_cpu_load(this_rq, load, 1);
4346}
4347
029632fb
PZ
4348/* Used instead of source_load when we know the type == 0 */
4349static unsigned long weighted_cpuload(const int cpu)
4350{
9d89c257 4351 return cpu_rq(cpu)->cfs.avg.load_avg;
029632fb
PZ
4352}
4353
4354/*
4355 * Return a low guess at the load of a migration-source cpu weighted
4356 * according to the scheduling class and "nice" value.
4357 *
4358 * We want to under-estimate the load of migration sources, to
4359 * balance conservatively.
4360 */
4361static unsigned long source_load(int cpu, int type)
4362{
4363 struct rq *rq = cpu_rq(cpu);
4364 unsigned long total = weighted_cpuload(cpu);
4365
4366 if (type == 0 || !sched_feat(LB_BIAS))
4367 return total;
4368
4369 return min(rq->cpu_load[type-1], total);
4370}
4371
4372/*
4373 * Return a high guess at the load of a migration-target cpu weighted
4374 * according to the scheduling class and "nice" value.
4375 */
4376static unsigned long target_load(int cpu, int type)
4377{
4378 struct rq *rq = cpu_rq(cpu);
4379 unsigned long total = weighted_cpuload(cpu);
4380
4381 if (type == 0 || !sched_feat(LB_BIAS))
4382 return total;
4383
4384 return max(rq->cpu_load[type-1], total);
4385}
4386
ced549fa 4387static unsigned long capacity_of(int cpu)
029632fb 4388{
ced549fa 4389 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4390}
4391
ca6d75e6
VG
4392static unsigned long capacity_orig_of(int cpu)
4393{
4394 return cpu_rq(cpu)->cpu_capacity_orig;
4395}
4396
029632fb
PZ
4397static unsigned long cpu_avg_load_per_task(int cpu)
4398{
4399 struct rq *rq = cpu_rq(cpu);
316c1608 4400 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
9d89c257 4401 unsigned long load_avg = rq->cfs.avg.load_avg;
029632fb
PZ
4402
4403 if (nr_running)
b92486cb 4404 return load_avg / nr_running;
029632fb
PZ
4405
4406 return 0;
4407}
4408
62470419
MW
4409static void record_wakee(struct task_struct *p)
4410{
4411 /*
4412 * Rough decay (wiping) for cost saving, don't worry
4413 * about the boundary, really active task won't care
4414 * about the loss.
4415 */
2538d960 4416 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4417 current->wakee_flips >>= 1;
62470419
MW
4418 current->wakee_flip_decay_ts = jiffies;
4419 }
4420
4421 if (current->last_wakee != p) {
4422 current->last_wakee = p;
4423 current->wakee_flips++;
4424 }
4425}
098fb9db 4426
74f8e4b2 4427static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4428{
4429 struct sched_entity *se = &p->se;
4430 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4431 u64 min_vruntime;
4432
4433#ifndef CONFIG_64BIT
4434 u64 min_vruntime_copy;
88ec22d3 4435
3fe1698b
PZ
4436 do {
4437 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4438 smp_rmb();
4439 min_vruntime = cfs_rq->min_vruntime;
4440 } while (min_vruntime != min_vruntime_copy);
4441#else
4442 min_vruntime = cfs_rq->min_vruntime;
4443#endif
88ec22d3 4444
3fe1698b 4445 se->vruntime -= min_vruntime;
62470419 4446 record_wakee(p);
88ec22d3
PZ
4447}
4448
bb3469ac 4449#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4450/*
4451 * effective_load() calculates the load change as seen from the root_task_group
4452 *
4453 * Adding load to a group doesn't make a group heavier, but can cause movement
4454 * of group shares between cpus. Assuming the shares were perfectly aligned one
4455 * can calculate the shift in shares.
cf5f0acf
PZ
4456 *
4457 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4458 * on this @cpu and results in a total addition (subtraction) of @wg to the
4459 * total group weight.
4460 *
4461 * Given a runqueue weight distribution (rw_i) we can compute a shares
4462 * distribution (s_i) using:
4463 *
4464 * s_i = rw_i / \Sum rw_j (1)
4465 *
4466 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4467 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4468 * shares distribution (s_i):
4469 *
4470 * rw_i = { 2, 4, 1, 0 }
4471 * s_i = { 2/7, 4/7, 1/7, 0 }
4472 *
4473 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4474 * task used to run on and the CPU the waker is running on), we need to
4475 * compute the effect of waking a task on either CPU and, in case of a sync
4476 * wakeup, compute the effect of the current task going to sleep.
4477 *
4478 * So for a change of @wl to the local @cpu with an overall group weight change
4479 * of @wl we can compute the new shares distribution (s'_i) using:
4480 *
4481 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4482 *
4483 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4484 * differences in waking a task to CPU 0. The additional task changes the
4485 * weight and shares distributions like:
4486 *
4487 * rw'_i = { 3, 4, 1, 0 }
4488 * s'_i = { 3/8, 4/8, 1/8, 0 }
4489 *
4490 * We can then compute the difference in effective weight by using:
4491 *
4492 * dw_i = S * (s'_i - s_i) (3)
4493 *
4494 * Where 'S' is the group weight as seen by its parent.
4495 *
4496 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4497 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4498 * 4/7) times the weight of the group.
f5bfb7d9 4499 */
2069dd75 4500static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4501{
4be9daaa 4502 struct sched_entity *se = tg->se[cpu];
f1d239f7 4503
9722c2da 4504 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4505 return wl;
4506
4be9daaa 4507 for_each_sched_entity(se) {
cf5f0acf 4508 long w, W;
4be9daaa 4509
977dda7c 4510 tg = se->my_q->tg;
bb3469ac 4511
cf5f0acf
PZ
4512 /*
4513 * W = @wg + \Sum rw_j
4514 */
4515 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4516
cf5f0acf
PZ
4517 /*
4518 * w = rw_i + @wl
4519 */
9d89c257 4520 w = se->my_q->avg.load_avg + wl;
940959e9 4521
cf5f0acf
PZ
4522 /*
4523 * wl = S * s'_i; see (2)
4524 */
4525 if (W > 0 && w < W)
32a8df4e 4526 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4527 else
4528 wl = tg->shares;
940959e9 4529
cf5f0acf
PZ
4530 /*
4531 * Per the above, wl is the new se->load.weight value; since
4532 * those are clipped to [MIN_SHARES, ...) do so now. See
4533 * calc_cfs_shares().
4534 */
977dda7c
PT
4535 if (wl < MIN_SHARES)
4536 wl = MIN_SHARES;
cf5f0acf
PZ
4537
4538 /*
4539 * wl = dw_i = S * (s'_i - s_i); see (3)
4540 */
9d89c257 4541 wl -= se->avg.load_avg;
cf5f0acf
PZ
4542
4543 /*
4544 * Recursively apply this logic to all parent groups to compute
4545 * the final effective load change on the root group. Since
4546 * only the @tg group gets extra weight, all parent groups can
4547 * only redistribute existing shares. @wl is the shift in shares
4548 * resulting from this level per the above.
4549 */
4be9daaa 4550 wg = 0;
4be9daaa 4551 }
bb3469ac 4552
4be9daaa 4553 return wl;
bb3469ac
PZ
4554}
4555#else
4be9daaa 4556
58d081b5 4557static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4558{
83378269 4559 return wl;
bb3469ac 4560}
4be9daaa 4561
bb3469ac
PZ
4562#endif
4563
63b0e9ed
MG
4564/*
4565 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4566 * A waker of many should wake a different task than the one last awakened
4567 * at a frequency roughly N times higher than one of its wakees. In order
4568 * to determine whether we should let the load spread vs consolodating to
4569 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4570 * partner, and a factor of lls_size higher frequency in the other. With
4571 * both conditions met, we can be relatively sure that the relationship is
4572 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4573 * being client/server, worker/dispatcher, interrupt source or whatever is
4574 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4575 */
62470419
MW
4576static int wake_wide(struct task_struct *p)
4577{
63b0e9ed
MG
4578 unsigned int master = current->wakee_flips;
4579 unsigned int slave = p->wakee_flips;
7d9ffa89 4580 int factor = this_cpu_read(sd_llc_size);
62470419 4581
63b0e9ed
MG
4582 if (master < slave)
4583 swap(master, slave);
4584 if (slave < factor || master < slave * factor)
4585 return 0;
4586 return 1;
62470419
MW
4587}
4588
c88d5910 4589static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4590{
e37b6a7b 4591 s64 this_load, load;
bd61c98f 4592 s64 this_eff_load, prev_eff_load;
c88d5910 4593 int idx, this_cpu, prev_cpu;
c88d5910 4594 struct task_group *tg;
83378269 4595 unsigned long weight;
b3137bc8 4596 int balanced;
098fb9db 4597
c88d5910
PZ
4598 idx = sd->wake_idx;
4599 this_cpu = smp_processor_id();
4600 prev_cpu = task_cpu(p);
4601 load = source_load(prev_cpu, idx);
4602 this_load = target_load(this_cpu, idx);
098fb9db 4603
b3137bc8
MG
4604 /*
4605 * If sync wakeup then subtract the (maximum possible)
4606 * effect of the currently running task from the load
4607 * of the current CPU:
4608 */
83378269
PZ
4609 if (sync) {
4610 tg = task_group(current);
9d89c257 4611 weight = current->se.avg.load_avg;
83378269 4612
c88d5910 4613 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4614 load += effective_load(tg, prev_cpu, 0, -weight);
4615 }
b3137bc8 4616
83378269 4617 tg = task_group(p);
9d89c257 4618 weight = p->se.avg.load_avg;
b3137bc8 4619
71a29aa7
PZ
4620 /*
4621 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4622 * due to the sync cause above having dropped this_load to 0, we'll
4623 * always have an imbalance, but there's really nothing you can do
4624 * about that, so that's good too.
71a29aa7
PZ
4625 *
4626 * Otherwise check if either cpus are near enough in load to allow this
4627 * task to be woken on this_cpu.
4628 */
bd61c98f
VG
4629 this_eff_load = 100;
4630 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4631
bd61c98f
VG
4632 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4633 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4634
bd61c98f 4635 if (this_load > 0) {
e51fd5e2
PZ
4636 this_eff_load *= this_load +
4637 effective_load(tg, this_cpu, weight, weight);
4638
e51fd5e2 4639 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4640 }
e51fd5e2 4641
bd61c98f 4642 balanced = this_eff_load <= prev_eff_load;
098fb9db 4643
41acab88 4644 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4645
05bfb65f
VG
4646 if (!balanced)
4647 return 0;
098fb9db 4648
05bfb65f
VG
4649 schedstat_inc(sd, ttwu_move_affine);
4650 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4651
4652 return 1;
098fb9db
IM
4653}
4654
aaee1203
PZ
4655/*
4656 * find_idlest_group finds and returns the least busy CPU group within the
4657 * domain.
4658 */
4659static struct sched_group *
78e7ed53 4660find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4661 int this_cpu, int sd_flag)
e7693a36 4662{
b3bd3de6 4663 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4664 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4665 int load_idx = sd->forkexec_idx;
aaee1203 4666 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4667
c44f2a02
VG
4668 if (sd_flag & SD_BALANCE_WAKE)
4669 load_idx = sd->wake_idx;
4670
aaee1203
PZ
4671 do {
4672 unsigned long load, avg_load;
4673 int local_group;
4674 int i;
e7693a36 4675
aaee1203
PZ
4676 /* Skip over this group if it has no CPUs allowed */
4677 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4678 tsk_cpus_allowed(p)))
aaee1203
PZ
4679 continue;
4680
4681 local_group = cpumask_test_cpu(this_cpu,
4682 sched_group_cpus(group));
4683
4684 /* Tally up the load of all CPUs in the group */
4685 avg_load = 0;
4686
4687 for_each_cpu(i, sched_group_cpus(group)) {
4688 /* Bias balancing toward cpus of our domain */
4689 if (local_group)
4690 load = source_load(i, load_idx);
4691 else
4692 load = target_load(i, load_idx);
4693
4694 avg_load += load;
4695 }
4696
63b2ca30 4697 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4698 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4699
4700 if (local_group) {
4701 this_load = avg_load;
aaee1203
PZ
4702 } else if (avg_load < min_load) {
4703 min_load = avg_load;
4704 idlest = group;
4705 }
4706 } while (group = group->next, group != sd->groups);
4707
4708 if (!idlest || 100*this_load < imbalance*min_load)
4709 return NULL;
4710 return idlest;
4711}
4712
4713/*
4714 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4715 */
4716static int
4717find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4718{
4719 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4720 unsigned int min_exit_latency = UINT_MAX;
4721 u64 latest_idle_timestamp = 0;
4722 int least_loaded_cpu = this_cpu;
4723 int shallowest_idle_cpu = -1;
aaee1203
PZ
4724 int i;
4725
4726 /* Traverse only the allowed CPUs */
fa17b507 4727 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4728 if (idle_cpu(i)) {
4729 struct rq *rq = cpu_rq(i);
4730 struct cpuidle_state *idle = idle_get_state(rq);
4731 if (idle && idle->exit_latency < min_exit_latency) {
4732 /*
4733 * We give priority to a CPU whose idle state
4734 * has the smallest exit latency irrespective
4735 * of any idle timestamp.
4736 */
4737 min_exit_latency = idle->exit_latency;
4738 latest_idle_timestamp = rq->idle_stamp;
4739 shallowest_idle_cpu = i;
4740 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4741 rq->idle_stamp > latest_idle_timestamp) {
4742 /*
4743 * If equal or no active idle state, then
4744 * the most recently idled CPU might have
4745 * a warmer cache.
4746 */
4747 latest_idle_timestamp = rq->idle_stamp;
4748 shallowest_idle_cpu = i;
4749 }
9f96742a 4750 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4751 load = weighted_cpuload(i);
4752 if (load < min_load || (load == min_load && i == this_cpu)) {
4753 min_load = load;
4754 least_loaded_cpu = i;
4755 }
e7693a36
GH
4756 }
4757 }
4758
83a0a96a 4759 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4760}
e7693a36 4761
a50bde51
PZ
4762/*
4763 * Try and locate an idle CPU in the sched_domain.
4764 */
99bd5e2f 4765static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4766{
99bd5e2f 4767 struct sched_domain *sd;
37407ea7 4768 struct sched_group *sg;
e0a79f52 4769 int i = task_cpu(p);
a50bde51 4770
e0a79f52
MG
4771 if (idle_cpu(target))
4772 return target;
99bd5e2f
SS
4773
4774 /*
e0a79f52 4775 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4776 */
e0a79f52
MG
4777 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4778 return i;
a50bde51
PZ
4779
4780 /*
37407ea7 4781 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4782 */
518cd623 4783 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4784 for_each_lower_domain(sd) {
37407ea7
LT
4785 sg = sd->groups;
4786 do {
4787 if (!cpumask_intersects(sched_group_cpus(sg),
4788 tsk_cpus_allowed(p)))
4789 goto next;
4790
4791 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4792 if (i == target || !idle_cpu(i))
37407ea7
LT
4793 goto next;
4794 }
970e1789 4795
37407ea7
LT
4796 target = cpumask_first_and(sched_group_cpus(sg),
4797 tsk_cpus_allowed(p));
4798 goto done;
4799next:
4800 sg = sg->next;
4801 } while (sg != sd->groups);
4802 }
4803done:
a50bde51
PZ
4804 return target;
4805}
8bb5b00c
VG
4806/*
4807 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4808 * tasks. The unit of the return value must be the one of capacity so we can
4809 * compare the usage with the capacity of the CPU that is available for CFS
4810 * task (ie cpu_capacity).
9d89c257 4811 * cfs.avg.util_avg is the sum of running time of runnable tasks on a
8bb5b00c
VG
4812 * CPU. It represents the amount of utilization of a CPU in the range
4813 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4814 * capacity of the CPU because it's about the running time on this CPU.
9d89c257
YD
4815 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4816 * because of unfortunate rounding in util_avg or just
8bb5b00c
VG
4817 * after migrating tasks until the average stabilizes with the new running
4818 * time. So we need to check that the usage stays into the range
4819 * [0..cpu_capacity_orig] and cap if necessary.
4820 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4821 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4822 */
4823static int get_cpu_usage(int cpu)
4824{
9d89c257 4825 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4826 unsigned long capacity = capacity_orig_of(cpu);
4827
4828 if (usage >= SCHED_LOAD_SCALE)
4829 return capacity;
4830
4831 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4832}
a50bde51 4833
aaee1203 4834/*
de91b9cb
MR
4835 * select_task_rq_fair: Select target runqueue for the waking task in domains
4836 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4837 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4838 *
de91b9cb
MR
4839 * Balances load by selecting the idlest cpu in the idlest group, or under
4840 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4841 *
de91b9cb 4842 * Returns the target cpu number.
aaee1203
PZ
4843 *
4844 * preempt must be disabled.
4845 */
0017d735 4846static int
ac66f547 4847select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4848{
29cd8bae 4849 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4850 int cpu = smp_processor_id();
63b0e9ed 4851 int new_cpu = prev_cpu;
99bd5e2f 4852 int want_affine = 0;
5158f4e4 4853 int sync = wake_flags & WF_SYNC;
c88d5910 4854
a8edd075 4855 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4856 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4857
dce840a0 4858 rcu_read_lock();
aaee1203 4859 for_each_domain(cpu, tmp) {
e4f42888 4860 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4861 break;
e4f42888 4862
fe3bcfe1 4863 /*
99bd5e2f
SS
4864 * If both cpu and prev_cpu are part of this domain,
4865 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4866 */
99bd5e2f
SS
4867 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4868 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4869 affine_sd = tmp;
29cd8bae 4870 break;
f03542a7 4871 }
29cd8bae 4872
f03542a7 4873 if (tmp->flags & sd_flag)
29cd8bae 4874 sd = tmp;
63b0e9ed
MG
4875 else if (!want_affine)
4876 break;
29cd8bae
PZ
4877 }
4878
63b0e9ed
MG
4879 if (affine_sd) {
4880 sd = NULL; /* Prefer wake_affine over balance flags */
4881 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4882 new_cpu = cpu;
8b911acd 4883 }
e7693a36 4884
63b0e9ed
MG
4885 if (!sd) {
4886 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4887 new_cpu = select_idle_sibling(p, new_cpu);
4888
4889 } else while (sd) {
aaee1203 4890 struct sched_group *group;
c88d5910 4891 int weight;
098fb9db 4892
0763a660 4893 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4894 sd = sd->child;
4895 continue;
4896 }
098fb9db 4897
c44f2a02 4898 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4899 if (!group) {
4900 sd = sd->child;
4901 continue;
4902 }
4ae7d5ce 4903
d7c33c49 4904 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4905 if (new_cpu == -1 || new_cpu == cpu) {
4906 /* Now try balancing at a lower domain level of cpu */
4907 sd = sd->child;
4908 continue;
e7693a36 4909 }
aaee1203
PZ
4910
4911 /* Now try balancing at a lower domain level of new_cpu */
4912 cpu = new_cpu;
669c55e9 4913 weight = sd->span_weight;
aaee1203
PZ
4914 sd = NULL;
4915 for_each_domain(cpu, tmp) {
669c55e9 4916 if (weight <= tmp->span_weight)
aaee1203 4917 break;
0763a660 4918 if (tmp->flags & sd_flag)
aaee1203
PZ
4919 sd = tmp;
4920 }
4921 /* while loop will break here if sd == NULL */
e7693a36 4922 }
dce840a0 4923 rcu_read_unlock();
e7693a36 4924
c88d5910 4925 return new_cpu;
e7693a36 4926}
0a74bef8
PT
4927
4928/*
4929 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4930 * cfs_rq_of(p) references at time of call are still valid and identify the
4931 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4932 * other assumptions, including the state of rq->lock, should be made.
4933 */
9d89c257 4934static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 4935{
aff3e498 4936 /*
9d89c257
YD
4937 * We are supposed to update the task to "current" time, then its up to date
4938 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4939 * what current time is, so simply throw away the out-of-date time. This
4940 * will result in the wakee task is less decayed, but giving the wakee more
4941 * load sounds not bad.
aff3e498 4942 */
9d89c257
YD
4943 remove_entity_load_avg(&p->se);
4944
4945 /* Tell new CPU we are migrated */
4946 p->se.avg.last_update_time = 0;
3944a927
BS
4947
4948 /* We have migrated, no longer consider this task hot */
9d89c257 4949 p->se.exec_start = 0;
0a74bef8 4950}
12695578
YD
4951
4952static void task_dead_fair(struct task_struct *p)
4953{
4954 remove_entity_load_avg(&p->se);
4955}
e7693a36
GH
4956#endif /* CONFIG_SMP */
4957
e52fb7c0
PZ
4958static unsigned long
4959wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4960{
4961 unsigned long gran = sysctl_sched_wakeup_granularity;
4962
4963 /*
e52fb7c0
PZ
4964 * Since its curr running now, convert the gran from real-time
4965 * to virtual-time in his units.
13814d42
MG
4966 *
4967 * By using 'se' instead of 'curr' we penalize light tasks, so
4968 * they get preempted easier. That is, if 'se' < 'curr' then
4969 * the resulting gran will be larger, therefore penalizing the
4970 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4971 * be smaller, again penalizing the lighter task.
4972 *
4973 * This is especially important for buddies when the leftmost
4974 * task is higher priority than the buddy.
0bbd3336 4975 */
f4ad9bd2 4976 return calc_delta_fair(gran, se);
0bbd3336
PZ
4977}
4978
464b7527
PZ
4979/*
4980 * Should 'se' preempt 'curr'.
4981 *
4982 * |s1
4983 * |s2
4984 * |s3
4985 * g
4986 * |<--->|c
4987 *
4988 * w(c, s1) = -1
4989 * w(c, s2) = 0
4990 * w(c, s3) = 1
4991 *
4992 */
4993static int
4994wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4995{
4996 s64 gran, vdiff = curr->vruntime - se->vruntime;
4997
4998 if (vdiff <= 0)
4999 return -1;
5000
e52fb7c0 5001 gran = wakeup_gran(curr, se);
464b7527
PZ
5002 if (vdiff > gran)
5003 return 1;
5004
5005 return 0;
5006}
5007
02479099
PZ
5008static void set_last_buddy(struct sched_entity *se)
5009{
69c80f3e
VP
5010 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5011 return;
5012
5013 for_each_sched_entity(se)
5014 cfs_rq_of(se)->last = se;
02479099
PZ
5015}
5016
5017static void set_next_buddy(struct sched_entity *se)
5018{
69c80f3e
VP
5019 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5020 return;
5021
5022 for_each_sched_entity(se)
5023 cfs_rq_of(se)->next = se;
02479099
PZ
5024}
5025
ac53db59
RR
5026static void set_skip_buddy(struct sched_entity *se)
5027{
69c80f3e
VP
5028 for_each_sched_entity(se)
5029 cfs_rq_of(se)->skip = se;
ac53db59
RR
5030}
5031
bf0f6f24
IM
5032/*
5033 * Preempt the current task with a newly woken task if needed:
5034 */
5a9b86f6 5035static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5036{
5037 struct task_struct *curr = rq->curr;
8651a86c 5038 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5039 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5040 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5041 int next_buddy_marked = 0;
bf0f6f24 5042
4ae7d5ce
IM
5043 if (unlikely(se == pse))
5044 return;
5045
5238cdd3 5046 /*
163122b7 5047 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5048 * unconditionally check_prempt_curr() after an enqueue (which may have
5049 * lead to a throttle). This both saves work and prevents false
5050 * next-buddy nomination below.
5051 */
5052 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5053 return;
5054
2f36825b 5055 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5056 set_next_buddy(pse);
2f36825b
VP
5057 next_buddy_marked = 1;
5058 }
57fdc26d 5059
aec0a514
BR
5060 /*
5061 * We can come here with TIF_NEED_RESCHED already set from new task
5062 * wake up path.
5238cdd3
PT
5063 *
5064 * Note: this also catches the edge-case of curr being in a throttled
5065 * group (e.g. via set_curr_task), since update_curr() (in the
5066 * enqueue of curr) will have resulted in resched being set. This
5067 * prevents us from potentially nominating it as a false LAST_BUDDY
5068 * below.
aec0a514
BR
5069 */
5070 if (test_tsk_need_resched(curr))
5071 return;
5072
a2f5c9ab
DH
5073 /* Idle tasks are by definition preempted by non-idle tasks. */
5074 if (unlikely(curr->policy == SCHED_IDLE) &&
5075 likely(p->policy != SCHED_IDLE))
5076 goto preempt;
5077
91c234b4 5078 /*
a2f5c9ab
DH
5079 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5080 * is driven by the tick):
91c234b4 5081 */
8ed92e51 5082 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5083 return;
bf0f6f24 5084
464b7527 5085 find_matching_se(&se, &pse);
9bbd7374 5086 update_curr(cfs_rq_of(se));
002f128b 5087 BUG_ON(!pse);
2f36825b
VP
5088 if (wakeup_preempt_entity(se, pse) == 1) {
5089 /*
5090 * Bias pick_next to pick the sched entity that is
5091 * triggering this preemption.
5092 */
5093 if (!next_buddy_marked)
5094 set_next_buddy(pse);
3a7e73a2 5095 goto preempt;
2f36825b 5096 }
464b7527 5097
3a7e73a2 5098 return;
a65ac745 5099
3a7e73a2 5100preempt:
8875125e 5101 resched_curr(rq);
3a7e73a2
PZ
5102 /*
5103 * Only set the backward buddy when the current task is still
5104 * on the rq. This can happen when a wakeup gets interleaved
5105 * with schedule on the ->pre_schedule() or idle_balance()
5106 * point, either of which can * drop the rq lock.
5107 *
5108 * Also, during early boot the idle thread is in the fair class,
5109 * for obvious reasons its a bad idea to schedule back to it.
5110 */
5111 if (unlikely(!se->on_rq || curr == rq->idle))
5112 return;
5113
5114 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5115 set_last_buddy(se);
bf0f6f24
IM
5116}
5117
606dba2e
PZ
5118static struct task_struct *
5119pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5120{
5121 struct cfs_rq *cfs_rq = &rq->cfs;
5122 struct sched_entity *se;
678d5718 5123 struct task_struct *p;
37e117c0 5124 int new_tasks;
678d5718 5125
6e83125c 5126again:
678d5718
PZ
5127#ifdef CONFIG_FAIR_GROUP_SCHED
5128 if (!cfs_rq->nr_running)
38033c37 5129 goto idle;
678d5718 5130
3f1d2a31 5131 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5132 goto simple;
5133
5134 /*
5135 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5136 * likely that a next task is from the same cgroup as the current.
5137 *
5138 * Therefore attempt to avoid putting and setting the entire cgroup
5139 * hierarchy, only change the part that actually changes.
5140 */
5141
5142 do {
5143 struct sched_entity *curr = cfs_rq->curr;
5144
5145 /*
5146 * Since we got here without doing put_prev_entity() we also
5147 * have to consider cfs_rq->curr. If it is still a runnable
5148 * entity, update_curr() will update its vruntime, otherwise
5149 * forget we've ever seen it.
5150 */
54d27365
BS
5151 if (curr) {
5152 if (curr->on_rq)
5153 update_curr(cfs_rq);
5154 else
5155 curr = NULL;
678d5718 5156
54d27365
BS
5157 /*
5158 * This call to check_cfs_rq_runtime() will do the
5159 * throttle and dequeue its entity in the parent(s).
5160 * Therefore the 'simple' nr_running test will indeed
5161 * be correct.
5162 */
5163 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5164 goto simple;
5165 }
678d5718
PZ
5166
5167 se = pick_next_entity(cfs_rq, curr);
5168 cfs_rq = group_cfs_rq(se);
5169 } while (cfs_rq);
5170
5171 p = task_of(se);
5172
5173 /*
5174 * Since we haven't yet done put_prev_entity and if the selected task
5175 * is a different task than we started out with, try and touch the
5176 * least amount of cfs_rqs.
5177 */
5178 if (prev != p) {
5179 struct sched_entity *pse = &prev->se;
5180
5181 while (!(cfs_rq = is_same_group(se, pse))) {
5182 int se_depth = se->depth;
5183 int pse_depth = pse->depth;
5184
5185 if (se_depth <= pse_depth) {
5186 put_prev_entity(cfs_rq_of(pse), pse);
5187 pse = parent_entity(pse);
5188 }
5189 if (se_depth >= pse_depth) {
5190 set_next_entity(cfs_rq_of(se), se);
5191 se = parent_entity(se);
5192 }
5193 }
5194
5195 put_prev_entity(cfs_rq, pse);
5196 set_next_entity(cfs_rq, se);
5197 }
5198
5199 if (hrtick_enabled(rq))
5200 hrtick_start_fair(rq, p);
5201
5202 return p;
5203simple:
5204 cfs_rq = &rq->cfs;
5205#endif
bf0f6f24 5206
36ace27e 5207 if (!cfs_rq->nr_running)
38033c37 5208 goto idle;
bf0f6f24 5209
3f1d2a31 5210 put_prev_task(rq, prev);
606dba2e 5211
bf0f6f24 5212 do {
678d5718 5213 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5214 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5215 cfs_rq = group_cfs_rq(se);
5216 } while (cfs_rq);
5217
8f4d37ec 5218 p = task_of(se);
678d5718 5219
b39e66ea
MG
5220 if (hrtick_enabled(rq))
5221 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5222
5223 return p;
38033c37
PZ
5224
5225idle:
cbce1a68
PZ
5226 /*
5227 * This is OK, because current is on_cpu, which avoids it being picked
5228 * for load-balance and preemption/IRQs are still disabled avoiding
5229 * further scheduler activity on it and we're being very careful to
5230 * re-start the picking loop.
5231 */
5232 lockdep_unpin_lock(&rq->lock);
e4aa358b 5233 new_tasks = idle_balance(rq);
cbce1a68 5234 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5235 /*
5236 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5237 * possible for any higher priority task to appear. In that case we
5238 * must re-start the pick_next_entity() loop.
5239 */
e4aa358b 5240 if (new_tasks < 0)
37e117c0
PZ
5241 return RETRY_TASK;
5242
e4aa358b 5243 if (new_tasks > 0)
38033c37 5244 goto again;
38033c37
PZ
5245
5246 return NULL;
bf0f6f24
IM
5247}
5248
5249/*
5250 * Account for a descheduled task:
5251 */
31ee529c 5252static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5253{
5254 struct sched_entity *se = &prev->se;
5255 struct cfs_rq *cfs_rq;
5256
5257 for_each_sched_entity(se) {
5258 cfs_rq = cfs_rq_of(se);
ab6cde26 5259 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5260 }
5261}
5262
ac53db59
RR
5263/*
5264 * sched_yield() is very simple
5265 *
5266 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5267 */
5268static void yield_task_fair(struct rq *rq)
5269{
5270 struct task_struct *curr = rq->curr;
5271 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5272 struct sched_entity *se = &curr->se;
5273
5274 /*
5275 * Are we the only task in the tree?
5276 */
5277 if (unlikely(rq->nr_running == 1))
5278 return;
5279
5280 clear_buddies(cfs_rq, se);
5281
5282 if (curr->policy != SCHED_BATCH) {
5283 update_rq_clock(rq);
5284 /*
5285 * Update run-time statistics of the 'current'.
5286 */
5287 update_curr(cfs_rq);
916671c0
MG
5288 /*
5289 * Tell update_rq_clock() that we've just updated,
5290 * so we don't do microscopic update in schedule()
5291 * and double the fastpath cost.
5292 */
9edfbfed 5293 rq_clock_skip_update(rq, true);
ac53db59
RR
5294 }
5295
5296 set_skip_buddy(se);
5297}
5298
d95f4122
MG
5299static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5300{
5301 struct sched_entity *se = &p->se;
5302
5238cdd3
PT
5303 /* throttled hierarchies are not runnable */
5304 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5305 return false;
5306
5307 /* Tell the scheduler that we'd really like pse to run next. */
5308 set_next_buddy(se);
5309
d95f4122
MG
5310 yield_task_fair(rq);
5311
5312 return true;
5313}
5314
681f3e68 5315#ifdef CONFIG_SMP
bf0f6f24 5316/**************************************************
e9c84cb8
PZ
5317 * Fair scheduling class load-balancing methods.
5318 *
5319 * BASICS
5320 *
5321 * The purpose of load-balancing is to achieve the same basic fairness the
5322 * per-cpu scheduler provides, namely provide a proportional amount of compute
5323 * time to each task. This is expressed in the following equation:
5324 *
5325 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5326 *
5327 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5328 * W_i,0 is defined as:
5329 *
5330 * W_i,0 = \Sum_j w_i,j (2)
5331 *
5332 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5333 * is derived from the nice value as per prio_to_weight[].
5334 *
5335 * The weight average is an exponential decay average of the instantaneous
5336 * weight:
5337 *
5338 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5339 *
ced549fa 5340 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5341 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5342 * can also include other factors [XXX].
5343 *
5344 * To achieve this balance we define a measure of imbalance which follows
5345 * directly from (1):
5346 *
ced549fa 5347 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5348 *
5349 * We them move tasks around to minimize the imbalance. In the continuous
5350 * function space it is obvious this converges, in the discrete case we get
5351 * a few fun cases generally called infeasible weight scenarios.
5352 *
5353 * [XXX expand on:
5354 * - infeasible weights;
5355 * - local vs global optima in the discrete case. ]
5356 *
5357 *
5358 * SCHED DOMAINS
5359 *
5360 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5361 * for all i,j solution, we create a tree of cpus that follows the hardware
5362 * topology where each level pairs two lower groups (or better). This results
5363 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5364 * tree to only the first of the previous level and we decrease the frequency
5365 * of load-balance at each level inv. proportional to the number of cpus in
5366 * the groups.
5367 *
5368 * This yields:
5369 *
5370 * log_2 n 1 n
5371 * \Sum { --- * --- * 2^i } = O(n) (5)
5372 * i = 0 2^i 2^i
5373 * `- size of each group
5374 * | | `- number of cpus doing load-balance
5375 * | `- freq
5376 * `- sum over all levels
5377 *
5378 * Coupled with a limit on how many tasks we can migrate every balance pass,
5379 * this makes (5) the runtime complexity of the balancer.
5380 *
5381 * An important property here is that each CPU is still (indirectly) connected
5382 * to every other cpu in at most O(log n) steps:
5383 *
5384 * The adjacency matrix of the resulting graph is given by:
5385 *
5386 * log_2 n
5387 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5388 * k = 0
5389 *
5390 * And you'll find that:
5391 *
5392 * A^(log_2 n)_i,j != 0 for all i,j (7)
5393 *
5394 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5395 * The task movement gives a factor of O(m), giving a convergence complexity
5396 * of:
5397 *
5398 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5399 *
5400 *
5401 * WORK CONSERVING
5402 *
5403 * In order to avoid CPUs going idle while there's still work to do, new idle
5404 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5405 * tree itself instead of relying on other CPUs to bring it work.
5406 *
5407 * This adds some complexity to both (5) and (8) but it reduces the total idle
5408 * time.
5409 *
5410 * [XXX more?]
5411 *
5412 *
5413 * CGROUPS
5414 *
5415 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5416 *
5417 * s_k,i
5418 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5419 * S_k
5420 *
5421 * Where
5422 *
5423 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5424 *
5425 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5426 *
5427 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5428 * property.
5429 *
5430 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5431 * rewrite all of this once again.]
5432 */
bf0f6f24 5433
ed387b78
HS
5434static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5435
0ec8aa00
PZ
5436enum fbq_type { regular, remote, all };
5437
ddcdf6e7 5438#define LBF_ALL_PINNED 0x01
367456c7 5439#define LBF_NEED_BREAK 0x02
6263322c
PZ
5440#define LBF_DST_PINNED 0x04
5441#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5442
5443struct lb_env {
5444 struct sched_domain *sd;
5445
ddcdf6e7 5446 struct rq *src_rq;
85c1e7da 5447 int src_cpu;
ddcdf6e7
PZ
5448
5449 int dst_cpu;
5450 struct rq *dst_rq;
5451
88b8dac0
SV
5452 struct cpumask *dst_grpmask;
5453 int new_dst_cpu;
ddcdf6e7 5454 enum cpu_idle_type idle;
bd939f45 5455 long imbalance;
b9403130
MW
5456 /* The set of CPUs under consideration for load-balancing */
5457 struct cpumask *cpus;
5458
ddcdf6e7 5459 unsigned int flags;
367456c7
PZ
5460
5461 unsigned int loop;
5462 unsigned int loop_break;
5463 unsigned int loop_max;
0ec8aa00
PZ
5464
5465 enum fbq_type fbq_type;
163122b7 5466 struct list_head tasks;
ddcdf6e7
PZ
5467};
5468
029632fb
PZ
5469/*
5470 * Is this task likely cache-hot:
5471 */
5d5e2b1b 5472static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5473{
5474 s64 delta;
5475
e5673f28
KT
5476 lockdep_assert_held(&env->src_rq->lock);
5477
029632fb
PZ
5478 if (p->sched_class != &fair_sched_class)
5479 return 0;
5480
5481 if (unlikely(p->policy == SCHED_IDLE))
5482 return 0;
5483
5484 /*
5485 * Buddy candidates are cache hot:
5486 */
5d5e2b1b 5487 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5488 (&p->se == cfs_rq_of(&p->se)->next ||
5489 &p->se == cfs_rq_of(&p->se)->last))
5490 return 1;
5491
5492 if (sysctl_sched_migration_cost == -1)
5493 return 1;
5494 if (sysctl_sched_migration_cost == 0)
5495 return 0;
5496
5d5e2b1b 5497 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5498
5499 return delta < (s64)sysctl_sched_migration_cost;
5500}
5501
3a7053b3 5502#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5503/*
2a1ed24c
SD
5504 * Returns 1, if task migration degrades locality
5505 * Returns 0, if task migration improves locality i.e migration preferred.
5506 * Returns -1, if task migration is not affected by locality.
c1ceac62 5507 */
2a1ed24c 5508static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5509{
b1ad065e 5510 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5511 unsigned long src_faults, dst_faults;
3a7053b3
MG
5512 int src_nid, dst_nid;
5513
44dba3d5 5514 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c
SD
5515 return -1;
5516
5517 if (!sched_feat(NUMA))
5518 return -1;
7a0f3083
MG
5519
5520 src_nid = cpu_to_node(env->src_cpu);
5521 dst_nid = cpu_to_node(env->dst_cpu);
5522
83e1d2cd 5523 if (src_nid == dst_nid)
2a1ed24c 5524 return -1;
7a0f3083 5525
2a1ed24c
SD
5526 /* Migrating away from the preferred node is always bad. */
5527 if (src_nid == p->numa_preferred_nid) {
5528 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5529 return 1;
5530 else
5531 return -1;
5532 }
b1ad065e 5533
c1ceac62
RR
5534 /* Encourage migration to the preferred node. */
5535 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5536 return 0;
b1ad065e 5537
c1ceac62
RR
5538 if (numa_group) {
5539 src_faults = group_faults(p, src_nid);
5540 dst_faults = group_faults(p, dst_nid);
5541 } else {
5542 src_faults = task_faults(p, src_nid);
5543 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5544 }
5545
c1ceac62 5546 return dst_faults < src_faults;
7a0f3083
MG
5547}
5548
3a7053b3 5549#else
2a1ed24c 5550static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5551 struct lb_env *env)
5552{
2a1ed24c 5553 return -1;
7a0f3083 5554}
3a7053b3
MG
5555#endif
5556
1e3c88bd
PZ
5557/*
5558 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5559 */
5560static
8e45cb54 5561int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5562{
2a1ed24c 5563 int tsk_cache_hot;
e5673f28
KT
5564
5565 lockdep_assert_held(&env->src_rq->lock);
5566
1e3c88bd
PZ
5567 /*
5568 * We do not migrate tasks that are:
d3198084 5569 * 1) throttled_lb_pair, or
1e3c88bd 5570 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5571 * 3) running (obviously), or
5572 * 4) are cache-hot on their current CPU.
1e3c88bd 5573 */
d3198084
JK
5574 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5575 return 0;
5576
ddcdf6e7 5577 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5578 int cpu;
88b8dac0 5579
41acab88 5580 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5581
6263322c
PZ
5582 env->flags |= LBF_SOME_PINNED;
5583
88b8dac0
SV
5584 /*
5585 * Remember if this task can be migrated to any other cpu in
5586 * our sched_group. We may want to revisit it if we couldn't
5587 * meet load balance goals by pulling other tasks on src_cpu.
5588 *
5589 * Also avoid computing new_dst_cpu if we have already computed
5590 * one in current iteration.
5591 */
6263322c 5592 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5593 return 0;
5594
e02e60c1
JK
5595 /* Prevent to re-select dst_cpu via env's cpus */
5596 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5597 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5598 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5599 env->new_dst_cpu = cpu;
5600 break;
5601 }
88b8dac0 5602 }
e02e60c1 5603
1e3c88bd
PZ
5604 return 0;
5605 }
88b8dac0
SV
5606
5607 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5608 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5609
ddcdf6e7 5610 if (task_running(env->src_rq, p)) {
41acab88 5611 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5612 return 0;
5613 }
5614
5615 /*
5616 * Aggressive migration if:
3a7053b3
MG
5617 * 1) destination numa is preferred
5618 * 2) task is cache cold, or
5619 * 3) too many balance attempts have failed.
1e3c88bd 5620 */
2a1ed24c
SD
5621 tsk_cache_hot = migrate_degrades_locality(p, env);
5622 if (tsk_cache_hot == -1)
5623 tsk_cache_hot = task_hot(p, env);
3a7053b3 5624
2a1ed24c 5625 if (tsk_cache_hot <= 0 ||
7a96c231 5626 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5627 if (tsk_cache_hot == 1) {
3a7053b3
MG
5628 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5629 schedstat_inc(p, se.statistics.nr_forced_migrations);
5630 }
1e3c88bd
PZ
5631 return 1;
5632 }
5633
4e2dcb73
ZH
5634 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5635 return 0;
1e3c88bd
PZ
5636}
5637
897c395f 5638/*
163122b7
KT
5639 * detach_task() -- detach the task for the migration specified in env
5640 */
5641static void detach_task(struct task_struct *p, struct lb_env *env)
5642{
5643 lockdep_assert_held(&env->src_rq->lock);
5644
5645 deactivate_task(env->src_rq, p, 0);
5646 p->on_rq = TASK_ON_RQ_MIGRATING;
5647 set_task_cpu(p, env->dst_cpu);
5648}
5649
897c395f 5650/*
e5673f28 5651 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5652 * part of active balancing operations within "domain".
897c395f 5653 *
e5673f28 5654 * Returns a task if successful and NULL otherwise.
897c395f 5655 */
e5673f28 5656static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5657{
5658 struct task_struct *p, *n;
897c395f 5659
e5673f28
KT
5660 lockdep_assert_held(&env->src_rq->lock);
5661
367456c7 5662 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5663 if (!can_migrate_task(p, env))
5664 continue;
897c395f 5665
163122b7 5666 detach_task(p, env);
e5673f28 5667
367456c7 5668 /*
e5673f28 5669 * Right now, this is only the second place where
163122b7 5670 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5671 * so we can safely collect stats here rather than
163122b7 5672 * inside detach_tasks().
367456c7
PZ
5673 */
5674 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5675 return p;
897c395f 5676 }
e5673f28 5677 return NULL;
897c395f
PZ
5678}
5679
eb95308e
PZ
5680static const unsigned int sched_nr_migrate_break = 32;
5681
5d6523eb 5682/*
163122b7
KT
5683 * detach_tasks() -- tries to detach up to imbalance weighted load from
5684 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5685 *
163122b7 5686 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5687 */
163122b7 5688static int detach_tasks(struct lb_env *env)
1e3c88bd 5689{
5d6523eb
PZ
5690 struct list_head *tasks = &env->src_rq->cfs_tasks;
5691 struct task_struct *p;
367456c7 5692 unsigned long load;
163122b7
KT
5693 int detached = 0;
5694
5695 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5696
bd939f45 5697 if (env->imbalance <= 0)
5d6523eb 5698 return 0;
1e3c88bd 5699
5d6523eb 5700 while (!list_empty(tasks)) {
985d3a4c
YD
5701 /*
5702 * We don't want to steal all, otherwise we may be treated likewise,
5703 * which could at worst lead to a livelock crash.
5704 */
5705 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5706 break;
5707
5d6523eb 5708 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5709
367456c7
PZ
5710 env->loop++;
5711 /* We've more or less seen every task there is, call it quits */
5d6523eb 5712 if (env->loop > env->loop_max)
367456c7 5713 break;
5d6523eb
PZ
5714
5715 /* take a breather every nr_migrate tasks */
367456c7 5716 if (env->loop > env->loop_break) {
eb95308e 5717 env->loop_break += sched_nr_migrate_break;
8e45cb54 5718 env->flags |= LBF_NEED_BREAK;
ee00e66f 5719 break;
a195f004 5720 }
1e3c88bd 5721
d3198084 5722 if (!can_migrate_task(p, env))
367456c7
PZ
5723 goto next;
5724
5725 load = task_h_load(p);
5d6523eb 5726
eb95308e 5727 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5728 goto next;
5729
bd939f45 5730 if ((load / 2) > env->imbalance)
367456c7 5731 goto next;
1e3c88bd 5732
163122b7
KT
5733 detach_task(p, env);
5734 list_add(&p->se.group_node, &env->tasks);
5735
5736 detached++;
bd939f45 5737 env->imbalance -= load;
1e3c88bd
PZ
5738
5739#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5740 /*
5741 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5742 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5743 * the critical section.
5744 */
5d6523eb 5745 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5746 break;
1e3c88bd
PZ
5747#endif
5748
ee00e66f
PZ
5749 /*
5750 * We only want to steal up to the prescribed amount of
5751 * weighted load.
5752 */
bd939f45 5753 if (env->imbalance <= 0)
ee00e66f 5754 break;
367456c7
PZ
5755
5756 continue;
5757next:
5d6523eb 5758 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5759 }
5d6523eb 5760
1e3c88bd 5761 /*
163122b7
KT
5762 * Right now, this is one of only two places we collect this stat
5763 * so we can safely collect detach_one_task() stats here rather
5764 * than inside detach_one_task().
1e3c88bd 5765 */
163122b7 5766 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5767
163122b7
KT
5768 return detached;
5769}
5770
5771/*
5772 * attach_task() -- attach the task detached by detach_task() to its new rq.
5773 */
5774static void attach_task(struct rq *rq, struct task_struct *p)
5775{
5776 lockdep_assert_held(&rq->lock);
5777
5778 BUG_ON(task_rq(p) != rq);
5779 p->on_rq = TASK_ON_RQ_QUEUED;
5780 activate_task(rq, p, 0);
5781 check_preempt_curr(rq, p, 0);
5782}
5783
5784/*
5785 * attach_one_task() -- attaches the task returned from detach_one_task() to
5786 * its new rq.
5787 */
5788static void attach_one_task(struct rq *rq, struct task_struct *p)
5789{
5790 raw_spin_lock(&rq->lock);
5791 attach_task(rq, p);
5792 raw_spin_unlock(&rq->lock);
5793}
5794
5795/*
5796 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5797 * new rq.
5798 */
5799static void attach_tasks(struct lb_env *env)
5800{
5801 struct list_head *tasks = &env->tasks;
5802 struct task_struct *p;
5803
5804 raw_spin_lock(&env->dst_rq->lock);
5805
5806 while (!list_empty(tasks)) {
5807 p = list_first_entry(tasks, struct task_struct, se.group_node);
5808 list_del_init(&p->se.group_node);
1e3c88bd 5809
163122b7
KT
5810 attach_task(env->dst_rq, p);
5811 }
5812
5813 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5814}
5815
230059de 5816#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5817static void update_blocked_averages(int cpu)
9e3081ca 5818{
9e3081ca 5819 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5820 struct cfs_rq *cfs_rq;
5821 unsigned long flags;
9e3081ca 5822
48a16753
PT
5823 raw_spin_lock_irqsave(&rq->lock, flags);
5824 update_rq_clock(rq);
9d89c257 5825
9763b67f
PZ
5826 /*
5827 * Iterates the task_group tree in a bottom up fashion, see
5828 * list_add_leaf_cfs_rq() for details.
5829 */
64660c86 5830 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5831 /* throttled entities do not contribute to load */
5832 if (throttled_hierarchy(cfs_rq))
5833 continue;
48a16753 5834
9d89c257
YD
5835 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5836 update_tg_load_avg(cfs_rq, 0);
5837 }
48a16753 5838 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5839}
5840
9763b67f 5841/*
68520796 5842 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5843 * This needs to be done in a top-down fashion because the load of a child
5844 * group is a fraction of its parents load.
5845 */
68520796 5846static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5847{
68520796
VD
5848 struct rq *rq = rq_of(cfs_rq);
5849 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5850 unsigned long now = jiffies;
68520796 5851 unsigned long load;
a35b6466 5852
68520796 5853 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5854 return;
5855
68520796
VD
5856 cfs_rq->h_load_next = NULL;
5857 for_each_sched_entity(se) {
5858 cfs_rq = cfs_rq_of(se);
5859 cfs_rq->h_load_next = se;
5860 if (cfs_rq->last_h_load_update == now)
5861 break;
5862 }
a35b6466 5863
68520796 5864 if (!se) {
9d89c257 5865 cfs_rq->h_load = cfs_rq->avg.load_avg;
68520796
VD
5866 cfs_rq->last_h_load_update = now;
5867 }
5868
5869 while ((se = cfs_rq->h_load_next) != NULL) {
5870 load = cfs_rq->h_load;
9d89c257 5871 load = div64_ul(load * se->avg.load_avg, cfs_rq->avg.load_avg + 1);
68520796
VD
5872 cfs_rq = group_cfs_rq(se);
5873 cfs_rq->h_load = load;
5874 cfs_rq->last_h_load_update = now;
5875 }
9763b67f
PZ
5876}
5877
367456c7 5878static unsigned long task_h_load(struct task_struct *p)
230059de 5879{
367456c7 5880 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5881
68520796 5882 update_cfs_rq_h_load(cfs_rq);
9d89c257
YD
5883 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5884 cfs_rq->avg.load_avg + 1);
230059de
PZ
5885}
5886#else
48a16753 5887static inline void update_blocked_averages(int cpu)
9e3081ca 5888{
6c1d47c0
VG
5889 struct rq *rq = cpu_rq(cpu);
5890 struct cfs_rq *cfs_rq = &rq->cfs;
5891 unsigned long flags;
5892
5893 raw_spin_lock_irqsave(&rq->lock, flags);
5894 update_rq_clock(rq);
5895 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5896 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5897}
5898
367456c7 5899static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5900{
9d89c257 5901 return p->se.avg.load_avg;
1e3c88bd 5902}
230059de 5903#endif
1e3c88bd 5904
1e3c88bd 5905/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5906
5907enum group_type {
5908 group_other = 0,
5909 group_imbalanced,
5910 group_overloaded,
5911};
5912
1e3c88bd
PZ
5913/*
5914 * sg_lb_stats - stats of a sched_group required for load_balancing
5915 */
5916struct sg_lb_stats {
5917 unsigned long avg_load; /*Avg load across the CPUs of the group */
5918 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5919 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5920 unsigned long load_per_task;
63b2ca30 5921 unsigned long group_capacity;
8bb5b00c 5922 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5923 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5924 unsigned int idle_cpus;
5925 unsigned int group_weight;
caeb178c 5926 enum group_type group_type;
ea67821b 5927 int group_no_capacity;
0ec8aa00
PZ
5928#ifdef CONFIG_NUMA_BALANCING
5929 unsigned int nr_numa_running;
5930 unsigned int nr_preferred_running;
5931#endif
1e3c88bd
PZ
5932};
5933
56cf515b
JK
5934/*
5935 * sd_lb_stats - Structure to store the statistics of a sched_domain
5936 * during load balancing.
5937 */
5938struct sd_lb_stats {
5939 struct sched_group *busiest; /* Busiest group in this sd */
5940 struct sched_group *local; /* Local group in this sd */
5941 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5942 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5943 unsigned long avg_load; /* Average load across all groups in sd */
5944
56cf515b 5945 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5946 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5947};
5948
147c5fc2
PZ
5949static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5950{
5951 /*
5952 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5953 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5954 * We must however clear busiest_stat::avg_load because
5955 * update_sd_pick_busiest() reads this before assignment.
5956 */
5957 *sds = (struct sd_lb_stats){
5958 .busiest = NULL,
5959 .local = NULL,
5960 .total_load = 0UL,
63b2ca30 5961 .total_capacity = 0UL,
147c5fc2
PZ
5962 .busiest_stat = {
5963 .avg_load = 0UL,
caeb178c
RR
5964 .sum_nr_running = 0,
5965 .group_type = group_other,
147c5fc2
PZ
5966 },
5967 };
5968}
5969
1e3c88bd
PZ
5970/**
5971 * get_sd_load_idx - Obtain the load index for a given sched domain.
5972 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5973 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5974 *
5975 * Return: The load index.
1e3c88bd
PZ
5976 */
5977static inline int get_sd_load_idx(struct sched_domain *sd,
5978 enum cpu_idle_type idle)
5979{
5980 int load_idx;
5981
5982 switch (idle) {
5983 case CPU_NOT_IDLE:
5984 load_idx = sd->busy_idx;
5985 break;
5986
5987 case CPU_NEWLY_IDLE:
5988 load_idx = sd->newidle_idx;
5989 break;
5990 default:
5991 load_idx = sd->idle_idx;
5992 break;
5993 }
5994
5995 return load_idx;
5996}
5997
26bc3c50 5998static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5999{
26bc3c50
VG
6000 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6001 return sd->smt_gain / sd->span_weight;
1e3c88bd 6002
26bc3c50 6003 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6004}
6005
26bc3c50 6006unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6007{
26bc3c50 6008 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6009}
6010
ced549fa 6011static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6012{
6013 struct rq *rq = cpu_rq(cpu);
b5b4860d 6014 u64 total, used, age_stamp, avg;
cadefd3d 6015 s64 delta;
1e3c88bd 6016
b654f7de
PZ
6017 /*
6018 * Since we're reading these variables without serialization make sure
6019 * we read them once before doing sanity checks on them.
6020 */
316c1608
JL
6021 age_stamp = READ_ONCE(rq->age_stamp);
6022 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6023 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6024
cadefd3d
PZ
6025 if (unlikely(delta < 0))
6026 delta = 0;
6027
6028 total = sched_avg_period() + delta;
aa483808 6029
b5b4860d 6030 used = div_u64(avg, total);
1e3c88bd 6031
b5b4860d
VG
6032 if (likely(used < SCHED_CAPACITY_SCALE))
6033 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6034
b5b4860d 6035 return 1;
1e3c88bd
PZ
6036}
6037
ced549fa 6038static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6039{
ca8ce3d0 6040 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6041 struct sched_group *sdg = sd->groups;
6042
26bc3c50
VG
6043 if (sched_feat(ARCH_CAPACITY))
6044 capacity *= arch_scale_cpu_capacity(sd, cpu);
6045 else
6046 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6047
26bc3c50 6048 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6049
ca6d75e6 6050 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6051
ced549fa 6052 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6053 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6054
ced549fa
NP
6055 if (!capacity)
6056 capacity = 1;
1e3c88bd 6057
ced549fa
NP
6058 cpu_rq(cpu)->cpu_capacity = capacity;
6059 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6060}
6061
63b2ca30 6062void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6063{
6064 struct sched_domain *child = sd->child;
6065 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6066 unsigned long capacity;
4ec4412e
VG
6067 unsigned long interval;
6068
6069 interval = msecs_to_jiffies(sd->balance_interval);
6070 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6071 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6072
6073 if (!child) {
ced549fa 6074 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6075 return;
6076 }
6077
dc7ff76e 6078 capacity = 0;
1e3c88bd 6079
74a5ce20
PZ
6080 if (child->flags & SD_OVERLAP) {
6081 /*
6082 * SD_OVERLAP domains cannot assume that child groups
6083 * span the current group.
6084 */
6085
863bffc8 6086 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6087 struct sched_group_capacity *sgc;
9abf24d4 6088 struct rq *rq = cpu_rq(cpu);
863bffc8 6089
9abf24d4 6090 /*
63b2ca30 6091 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6092 * gets here before we've attached the domains to the
6093 * runqueues.
6094 *
ced549fa
NP
6095 * Use capacity_of(), which is set irrespective of domains
6096 * in update_cpu_capacity().
9abf24d4 6097 *
dc7ff76e 6098 * This avoids capacity from being 0 and
9abf24d4 6099 * causing divide-by-zero issues on boot.
9abf24d4
SD
6100 */
6101 if (unlikely(!rq->sd)) {
ced549fa 6102 capacity += capacity_of(cpu);
9abf24d4
SD
6103 continue;
6104 }
863bffc8 6105
63b2ca30 6106 sgc = rq->sd->groups->sgc;
63b2ca30 6107 capacity += sgc->capacity;
863bffc8 6108 }
74a5ce20
PZ
6109 } else {
6110 /*
6111 * !SD_OVERLAP domains can assume that child groups
6112 * span the current group.
6113 */
6114
6115 group = child->groups;
6116 do {
63b2ca30 6117 capacity += group->sgc->capacity;
74a5ce20
PZ
6118 group = group->next;
6119 } while (group != child->groups);
6120 }
1e3c88bd 6121
63b2ca30 6122 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6123}
6124
9d5efe05 6125/*
ea67821b
VG
6126 * Check whether the capacity of the rq has been noticeably reduced by side
6127 * activity. The imbalance_pct is used for the threshold.
6128 * Return true is the capacity is reduced
9d5efe05
SV
6129 */
6130static inline int
ea67821b 6131check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6132{
ea67821b
VG
6133 return ((rq->cpu_capacity * sd->imbalance_pct) <
6134 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6135}
6136
30ce5dab
PZ
6137/*
6138 * Group imbalance indicates (and tries to solve) the problem where balancing
6139 * groups is inadequate due to tsk_cpus_allowed() constraints.
6140 *
6141 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6142 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6143 * Something like:
6144 *
6145 * { 0 1 2 3 } { 4 5 6 7 }
6146 * * * * *
6147 *
6148 * If we were to balance group-wise we'd place two tasks in the first group and
6149 * two tasks in the second group. Clearly this is undesired as it will overload
6150 * cpu 3 and leave one of the cpus in the second group unused.
6151 *
6152 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6153 * by noticing the lower domain failed to reach balance and had difficulty
6154 * moving tasks due to affinity constraints.
30ce5dab
PZ
6155 *
6156 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6157 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6158 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6159 * to create an effective group imbalance.
6160 *
6161 * This is a somewhat tricky proposition since the next run might not find the
6162 * group imbalance and decide the groups need to be balanced again. A most
6163 * subtle and fragile situation.
6164 */
6165
6263322c 6166static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6167{
63b2ca30 6168 return group->sgc->imbalance;
30ce5dab
PZ
6169}
6170
b37d9316 6171/*
ea67821b
VG
6172 * group_has_capacity returns true if the group has spare capacity that could
6173 * be used by some tasks.
6174 * We consider that a group has spare capacity if the * number of task is
6175 * smaller than the number of CPUs or if the usage is lower than the available
6176 * capacity for CFS tasks.
6177 * For the latter, we use a threshold to stabilize the state, to take into
6178 * account the variance of the tasks' load and to return true if the available
6179 * capacity in meaningful for the load balancer.
6180 * As an example, an available capacity of 1% can appear but it doesn't make
6181 * any benefit for the load balance.
b37d9316 6182 */
ea67821b
VG
6183static inline bool
6184group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6185{
ea67821b
VG
6186 if (sgs->sum_nr_running < sgs->group_weight)
6187 return true;
c61037e9 6188
ea67821b
VG
6189 if ((sgs->group_capacity * 100) >
6190 (sgs->group_usage * env->sd->imbalance_pct))
6191 return true;
b37d9316 6192
ea67821b
VG
6193 return false;
6194}
6195
6196/*
6197 * group_is_overloaded returns true if the group has more tasks than it can
6198 * handle.
6199 * group_is_overloaded is not equals to !group_has_capacity because a group
6200 * with the exact right number of tasks, has no more spare capacity but is not
6201 * overloaded so both group_has_capacity and group_is_overloaded return
6202 * false.
6203 */
6204static inline bool
6205group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6206{
6207 if (sgs->sum_nr_running <= sgs->group_weight)
6208 return false;
b37d9316 6209
ea67821b
VG
6210 if ((sgs->group_capacity * 100) <
6211 (sgs->group_usage * env->sd->imbalance_pct))
6212 return true;
b37d9316 6213
ea67821b 6214 return false;
b37d9316
PZ
6215}
6216
ea67821b
VG
6217static enum group_type group_classify(struct lb_env *env,
6218 struct sched_group *group,
6219 struct sg_lb_stats *sgs)
caeb178c 6220{
ea67821b 6221 if (sgs->group_no_capacity)
caeb178c
RR
6222 return group_overloaded;
6223
6224 if (sg_imbalanced(group))
6225 return group_imbalanced;
6226
6227 return group_other;
6228}
6229
1e3c88bd
PZ
6230/**
6231 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6232 * @env: The load balancing environment.
1e3c88bd 6233 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6234 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6235 * @local_group: Does group contain this_cpu.
1e3c88bd 6236 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6237 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6238 */
bd939f45
PZ
6239static inline void update_sg_lb_stats(struct lb_env *env,
6240 struct sched_group *group, int load_idx,
4486edd1
TC
6241 int local_group, struct sg_lb_stats *sgs,
6242 bool *overload)
1e3c88bd 6243{
30ce5dab 6244 unsigned long load;
bd939f45 6245 int i;
1e3c88bd 6246
b72ff13c
PZ
6247 memset(sgs, 0, sizeof(*sgs));
6248
b9403130 6249 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6250 struct rq *rq = cpu_rq(i);
6251
1e3c88bd 6252 /* Bias balancing toward cpus of our domain */
6263322c 6253 if (local_group)
04f733b4 6254 load = target_load(i, load_idx);
6263322c 6255 else
1e3c88bd 6256 load = source_load(i, load_idx);
1e3c88bd
PZ
6257
6258 sgs->group_load += load;
8bb5b00c 6259 sgs->group_usage += get_cpu_usage(i);
65fdac08 6260 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6261
6262 if (rq->nr_running > 1)
6263 *overload = true;
6264
0ec8aa00
PZ
6265#ifdef CONFIG_NUMA_BALANCING
6266 sgs->nr_numa_running += rq->nr_numa_running;
6267 sgs->nr_preferred_running += rq->nr_preferred_running;
6268#endif
1e3c88bd 6269 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6270 if (idle_cpu(i))
6271 sgs->idle_cpus++;
1e3c88bd
PZ
6272 }
6273
63b2ca30
NP
6274 /* Adjust by relative CPU capacity of the group */
6275 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6276 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6277
dd5feea1 6278 if (sgs->sum_nr_running)
38d0f770 6279 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6280
aae6d3dd 6281 sgs->group_weight = group->group_weight;
b37d9316 6282
ea67821b
VG
6283 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6284 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6285}
6286
532cb4c4
MN
6287/**
6288 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6289 * @env: The load balancing environment.
532cb4c4
MN
6290 * @sds: sched_domain statistics
6291 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6292 * @sgs: sched_group statistics
532cb4c4
MN
6293 *
6294 * Determine if @sg is a busier group than the previously selected
6295 * busiest group.
e69f6186
YB
6296 *
6297 * Return: %true if @sg is a busier group than the previously selected
6298 * busiest group. %false otherwise.
532cb4c4 6299 */
bd939f45 6300static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6301 struct sd_lb_stats *sds,
6302 struct sched_group *sg,
bd939f45 6303 struct sg_lb_stats *sgs)
532cb4c4 6304{
caeb178c 6305 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6306
caeb178c 6307 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6308 return true;
6309
caeb178c
RR
6310 if (sgs->group_type < busiest->group_type)
6311 return false;
6312
6313 if (sgs->avg_load <= busiest->avg_load)
6314 return false;
6315
6316 /* This is the busiest node in its class. */
6317 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6318 return true;
6319
6320 /*
6321 * ASYM_PACKING needs to move all the work to the lowest
6322 * numbered CPUs in the group, therefore mark all groups
6323 * higher than ourself as busy.
6324 */
caeb178c 6325 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6326 if (!sds->busiest)
6327 return true;
6328
6329 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6330 return true;
6331 }
6332
6333 return false;
6334}
6335
0ec8aa00
PZ
6336#ifdef CONFIG_NUMA_BALANCING
6337static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6338{
6339 if (sgs->sum_nr_running > sgs->nr_numa_running)
6340 return regular;
6341 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6342 return remote;
6343 return all;
6344}
6345
6346static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6347{
6348 if (rq->nr_running > rq->nr_numa_running)
6349 return regular;
6350 if (rq->nr_running > rq->nr_preferred_running)
6351 return remote;
6352 return all;
6353}
6354#else
6355static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6356{
6357 return all;
6358}
6359
6360static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6361{
6362 return regular;
6363}
6364#endif /* CONFIG_NUMA_BALANCING */
6365
1e3c88bd 6366/**
461819ac 6367 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6368 * @env: The load balancing environment.
1e3c88bd
PZ
6369 * @sds: variable to hold the statistics for this sched_domain.
6370 */
0ec8aa00 6371static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6372{
bd939f45
PZ
6373 struct sched_domain *child = env->sd->child;
6374 struct sched_group *sg = env->sd->groups;
56cf515b 6375 struct sg_lb_stats tmp_sgs;
1e3c88bd 6376 int load_idx, prefer_sibling = 0;
4486edd1 6377 bool overload = false;
1e3c88bd
PZ
6378
6379 if (child && child->flags & SD_PREFER_SIBLING)
6380 prefer_sibling = 1;
6381
bd939f45 6382 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6383
6384 do {
56cf515b 6385 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6386 int local_group;
6387
bd939f45 6388 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6389 if (local_group) {
6390 sds->local = sg;
6391 sgs = &sds->local_stat;
b72ff13c
PZ
6392
6393 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6394 time_after_eq(jiffies, sg->sgc->next_update))
6395 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6396 }
1e3c88bd 6397
4486edd1
TC
6398 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6399 &overload);
1e3c88bd 6400
b72ff13c
PZ
6401 if (local_group)
6402 goto next_group;
6403
1e3c88bd
PZ
6404 /*
6405 * In case the child domain prefers tasks go to siblings
ea67821b 6406 * first, lower the sg capacity so that we'll try
75dd321d
NR
6407 * and move all the excess tasks away. We lower the capacity
6408 * of a group only if the local group has the capacity to fit
ea67821b
VG
6409 * these excess tasks. The extra check prevents the case where
6410 * you always pull from the heaviest group when it is already
6411 * under-utilized (possible with a large weight task outweighs
6412 * the tasks on the system).
1e3c88bd 6413 */
b72ff13c 6414 if (prefer_sibling && sds->local &&
ea67821b
VG
6415 group_has_capacity(env, &sds->local_stat) &&
6416 (sgs->sum_nr_running > 1)) {
6417 sgs->group_no_capacity = 1;
6418 sgs->group_type = group_overloaded;
cb0b9f24 6419 }
1e3c88bd 6420
b72ff13c 6421 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6422 sds->busiest = sg;
56cf515b 6423 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6424 }
6425
b72ff13c
PZ
6426next_group:
6427 /* Now, start updating sd_lb_stats */
6428 sds->total_load += sgs->group_load;
63b2ca30 6429 sds->total_capacity += sgs->group_capacity;
b72ff13c 6430
532cb4c4 6431 sg = sg->next;
bd939f45 6432 } while (sg != env->sd->groups);
0ec8aa00
PZ
6433
6434 if (env->sd->flags & SD_NUMA)
6435 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6436
6437 if (!env->sd->parent) {
6438 /* update overload indicator if we are at root domain */
6439 if (env->dst_rq->rd->overload != overload)
6440 env->dst_rq->rd->overload = overload;
6441 }
6442
532cb4c4
MN
6443}
6444
532cb4c4
MN
6445/**
6446 * check_asym_packing - Check to see if the group is packed into the
6447 * sched doman.
6448 *
6449 * This is primarily intended to used at the sibling level. Some
6450 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6451 * case of POWER7, it can move to lower SMT modes only when higher
6452 * threads are idle. When in lower SMT modes, the threads will
6453 * perform better since they share less core resources. Hence when we
6454 * have idle threads, we want them to be the higher ones.
6455 *
6456 * This packing function is run on idle threads. It checks to see if
6457 * the busiest CPU in this domain (core in the P7 case) has a higher
6458 * CPU number than the packing function is being run on. Here we are
6459 * assuming lower CPU number will be equivalent to lower a SMT thread
6460 * number.
6461 *
e69f6186 6462 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6463 * this CPU. The amount of the imbalance is returned in *imbalance.
6464 *
cd96891d 6465 * @env: The load balancing environment.
532cb4c4 6466 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6467 */
bd939f45 6468static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6469{
6470 int busiest_cpu;
6471
bd939f45 6472 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6473 return 0;
6474
6475 if (!sds->busiest)
6476 return 0;
6477
6478 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6479 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6480 return 0;
6481
bd939f45 6482 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6483 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6484 SCHED_CAPACITY_SCALE);
bd939f45 6485
532cb4c4 6486 return 1;
1e3c88bd
PZ
6487}
6488
6489/**
6490 * fix_small_imbalance - Calculate the minor imbalance that exists
6491 * amongst the groups of a sched_domain, during
6492 * load balancing.
cd96891d 6493 * @env: The load balancing environment.
1e3c88bd 6494 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6495 */
bd939f45
PZ
6496static inline
6497void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6498{
63b2ca30 6499 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6500 unsigned int imbn = 2;
dd5feea1 6501 unsigned long scaled_busy_load_per_task;
56cf515b 6502 struct sg_lb_stats *local, *busiest;
1e3c88bd 6503
56cf515b
JK
6504 local = &sds->local_stat;
6505 busiest = &sds->busiest_stat;
1e3c88bd 6506
56cf515b
JK
6507 if (!local->sum_nr_running)
6508 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6509 else if (busiest->load_per_task > local->load_per_task)
6510 imbn = 1;
dd5feea1 6511
56cf515b 6512 scaled_busy_load_per_task =
ca8ce3d0 6513 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6514 busiest->group_capacity;
56cf515b 6515
3029ede3
VD
6516 if (busiest->avg_load + scaled_busy_load_per_task >=
6517 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6518 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6519 return;
6520 }
6521
6522 /*
6523 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6524 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6525 * moving them.
6526 */
6527
63b2ca30 6528 capa_now += busiest->group_capacity *
56cf515b 6529 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6530 capa_now += local->group_capacity *
56cf515b 6531 min(local->load_per_task, local->avg_load);
ca8ce3d0 6532 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6533
6534 /* Amount of load we'd subtract */
a2cd4260 6535 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6536 capa_move += busiest->group_capacity *
56cf515b 6537 min(busiest->load_per_task,
a2cd4260 6538 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6539 }
1e3c88bd
PZ
6540
6541 /* Amount of load we'd add */
63b2ca30 6542 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6543 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6544 tmp = (busiest->avg_load * busiest->group_capacity) /
6545 local->group_capacity;
56cf515b 6546 } else {
ca8ce3d0 6547 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6548 local->group_capacity;
56cf515b 6549 }
63b2ca30 6550 capa_move += local->group_capacity *
3ae11c90 6551 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6552 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6553
6554 /* Move if we gain throughput */
63b2ca30 6555 if (capa_move > capa_now)
56cf515b 6556 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6557}
6558
6559/**
6560 * calculate_imbalance - Calculate the amount of imbalance present within the
6561 * groups of a given sched_domain during load balance.
bd939f45 6562 * @env: load balance environment
1e3c88bd 6563 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6564 */
bd939f45 6565static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6566{
dd5feea1 6567 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6568 struct sg_lb_stats *local, *busiest;
6569
6570 local = &sds->local_stat;
56cf515b 6571 busiest = &sds->busiest_stat;
dd5feea1 6572
caeb178c 6573 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6574 /*
6575 * In the group_imb case we cannot rely on group-wide averages
6576 * to ensure cpu-load equilibrium, look at wider averages. XXX
6577 */
56cf515b
JK
6578 busiest->load_per_task =
6579 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6580 }
6581
1e3c88bd
PZ
6582 /*
6583 * In the presence of smp nice balancing, certain scenarios can have
6584 * max load less than avg load(as we skip the groups at or below
ced549fa 6585 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6586 */
b1885550
VD
6587 if (busiest->avg_load <= sds->avg_load ||
6588 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6589 env->imbalance = 0;
6590 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6591 }
6592
9a5d9ba6
PZ
6593 /*
6594 * If there aren't any idle cpus, avoid creating some.
6595 */
6596 if (busiest->group_type == group_overloaded &&
6597 local->group_type == group_overloaded) {
ea67821b
VG
6598 load_above_capacity = busiest->sum_nr_running *
6599 SCHED_LOAD_SCALE;
6600 if (load_above_capacity > busiest->group_capacity)
6601 load_above_capacity -= busiest->group_capacity;
6602 else
6603 load_above_capacity = ~0UL;
dd5feea1
SS
6604 }
6605
6606 /*
6607 * We're trying to get all the cpus to the average_load, so we don't
6608 * want to push ourselves above the average load, nor do we wish to
6609 * reduce the max loaded cpu below the average load. At the same time,
6610 * we also don't want to reduce the group load below the group capacity
6611 * (so that we can implement power-savings policies etc). Thus we look
6612 * for the minimum possible imbalance.
dd5feea1 6613 */
30ce5dab 6614 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6615
6616 /* How much load to actually move to equalise the imbalance */
56cf515b 6617 env->imbalance = min(
63b2ca30
NP
6618 max_pull * busiest->group_capacity,
6619 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6620 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6621
6622 /*
6623 * if *imbalance is less than the average load per runnable task
25985edc 6624 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6625 * a think about bumping its value to force at least one task to be
6626 * moved
6627 */
56cf515b 6628 if (env->imbalance < busiest->load_per_task)
bd939f45 6629 return fix_small_imbalance(env, sds);
1e3c88bd 6630}
fab47622 6631
1e3c88bd
PZ
6632/******* find_busiest_group() helpers end here *********************/
6633
6634/**
6635 * find_busiest_group - Returns the busiest group within the sched_domain
6636 * if there is an imbalance. If there isn't an imbalance, and
6637 * the user has opted for power-savings, it returns a group whose
6638 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6639 * such a group exists.
6640 *
6641 * Also calculates the amount of weighted load which should be moved
6642 * to restore balance.
6643 *
cd96891d 6644 * @env: The load balancing environment.
1e3c88bd 6645 *
e69f6186 6646 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6647 * - If no imbalance and user has opted for power-savings balance,
6648 * return the least loaded group whose CPUs can be
6649 * put to idle by rebalancing its tasks onto our group.
6650 */
56cf515b 6651static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6652{
56cf515b 6653 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6654 struct sd_lb_stats sds;
6655
147c5fc2 6656 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6657
6658 /*
6659 * Compute the various statistics relavent for load balancing at
6660 * this level.
6661 */
23f0d209 6662 update_sd_lb_stats(env, &sds);
56cf515b
JK
6663 local = &sds.local_stat;
6664 busiest = &sds.busiest_stat;
1e3c88bd 6665
ea67821b 6666 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6667 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6668 check_asym_packing(env, &sds))
532cb4c4
MN
6669 return sds.busiest;
6670
cc57aa8f 6671 /* There is no busy sibling group to pull tasks from */
56cf515b 6672 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6673 goto out_balanced;
6674
ca8ce3d0
NP
6675 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6676 / sds.total_capacity;
b0432d8f 6677
866ab43e
PZ
6678 /*
6679 * If the busiest group is imbalanced the below checks don't
30ce5dab 6680 * work because they assume all things are equal, which typically
866ab43e
PZ
6681 * isn't true due to cpus_allowed constraints and the like.
6682 */
caeb178c 6683 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6684 goto force_balance;
6685
cc57aa8f 6686 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6687 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6688 busiest->group_no_capacity)
fab47622
NR
6689 goto force_balance;
6690
cc57aa8f 6691 /*
9c58c79a 6692 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6693 * don't try and pull any tasks.
6694 */
56cf515b 6695 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6696 goto out_balanced;
6697
cc57aa8f
PZ
6698 /*
6699 * Don't pull any tasks if this group is already above the domain
6700 * average load.
6701 */
56cf515b 6702 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6703 goto out_balanced;
6704
bd939f45 6705 if (env->idle == CPU_IDLE) {
aae6d3dd 6706 /*
43f4d666
VG
6707 * This cpu is idle. If the busiest group is not overloaded
6708 * and there is no imbalance between this and busiest group
6709 * wrt idle cpus, it is balanced. The imbalance becomes
6710 * significant if the diff is greater than 1 otherwise we
6711 * might end up to just move the imbalance on another group
aae6d3dd 6712 */
43f4d666
VG
6713 if ((busiest->group_type != group_overloaded) &&
6714 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6715 goto out_balanced;
c186fafe
PZ
6716 } else {
6717 /*
6718 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6719 * imbalance_pct to be conservative.
6720 */
56cf515b
JK
6721 if (100 * busiest->avg_load <=
6722 env->sd->imbalance_pct * local->avg_load)
c186fafe 6723 goto out_balanced;
aae6d3dd 6724 }
1e3c88bd 6725
fab47622 6726force_balance:
1e3c88bd 6727 /* Looks like there is an imbalance. Compute it */
bd939f45 6728 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6729 return sds.busiest;
6730
6731out_balanced:
bd939f45 6732 env->imbalance = 0;
1e3c88bd
PZ
6733 return NULL;
6734}
6735
6736/*
6737 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6738 */
bd939f45 6739static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6740 struct sched_group *group)
1e3c88bd
PZ
6741{
6742 struct rq *busiest = NULL, *rq;
ced549fa 6743 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6744 int i;
6745
6906a408 6746 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6747 unsigned long capacity, wl;
0ec8aa00
PZ
6748 enum fbq_type rt;
6749
6750 rq = cpu_rq(i);
6751 rt = fbq_classify_rq(rq);
1e3c88bd 6752
0ec8aa00
PZ
6753 /*
6754 * We classify groups/runqueues into three groups:
6755 * - regular: there are !numa tasks
6756 * - remote: there are numa tasks that run on the 'wrong' node
6757 * - all: there is no distinction
6758 *
6759 * In order to avoid migrating ideally placed numa tasks,
6760 * ignore those when there's better options.
6761 *
6762 * If we ignore the actual busiest queue to migrate another
6763 * task, the next balance pass can still reduce the busiest
6764 * queue by moving tasks around inside the node.
6765 *
6766 * If we cannot move enough load due to this classification
6767 * the next pass will adjust the group classification and
6768 * allow migration of more tasks.
6769 *
6770 * Both cases only affect the total convergence complexity.
6771 */
6772 if (rt > env->fbq_type)
6773 continue;
6774
ced549fa 6775 capacity = capacity_of(i);
9d5efe05 6776
6e40f5bb 6777 wl = weighted_cpuload(i);
1e3c88bd 6778
6e40f5bb
TG
6779 /*
6780 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6781 * which is not scaled with the cpu capacity.
6e40f5bb 6782 */
ea67821b
VG
6783
6784 if (rq->nr_running == 1 && wl > env->imbalance &&
6785 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6786 continue;
6787
6e40f5bb
TG
6788 /*
6789 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6790 * the weighted_cpuload() scaled with the cpu capacity, so
6791 * that the load can be moved away from the cpu that is
6792 * potentially running at a lower capacity.
95a79b80 6793 *
ced549fa 6794 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6795 * multiplication to rid ourselves of the division works out
ced549fa
NP
6796 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6797 * our previous maximum.
6e40f5bb 6798 */
ced549fa 6799 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6800 busiest_load = wl;
ced549fa 6801 busiest_capacity = capacity;
1e3c88bd
PZ
6802 busiest = rq;
6803 }
6804 }
6805
6806 return busiest;
6807}
6808
6809/*
6810 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6811 * so long as it is large enough.
6812 */
6813#define MAX_PINNED_INTERVAL 512
6814
6815/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6816DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6817
bd939f45 6818static int need_active_balance(struct lb_env *env)
1af3ed3d 6819{
bd939f45
PZ
6820 struct sched_domain *sd = env->sd;
6821
6822 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6823
6824 /*
6825 * ASYM_PACKING needs to force migrate tasks from busy but
6826 * higher numbered CPUs in order to pack all tasks in the
6827 * lowest numbered CPUs.
6828 */
bd939f45 6829 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6830 return 1;
1af3ed3d
PZ
6831 }
6832
1aaf90a4
VG
6833 /*
6834 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6835 * It's worth migrating the task if the src_cpu's capacity is reduced
6836 * because of other sched_class or IRQs if more capacity stays
6837 * available on dst_cpu.
6838 */
6839 if ((env->idle != CPU_NOT_IDLE) &&
6840 (env->src_rq->cfs.h_nr_running == 1)) {
6841 if ((check_cpu_capacity(env->src_rq, sd)) &&
6842 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6843 return 1;
6844 }
6845
1af3ed3d
PZ
6846 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6847}
6848
969c7921
TH
6849static int active_load_balance_cpu_stop(void *data);
6850
23f0d209
JK
6851static int should_we_balance(struct lb_env *env)
6852{
6853 struct sched_group *sg = env->sd->groups;
6854 struct cpumask *sg_cpus, *sg_mask;
6855 int cpu, balance_cpu = -1;
6856
6857 /*
6858 * In the newly idle case, we will allow all the cpu's
6859 * to do the newly idle load balance.
6860 */
6861 if (env->idle == CPU_NEWLY_IDLE)
6862 return 1;
6863
6864 sg_cpus = sched_group_cpus(sg);
6865 sg_mask = sched_group_mask(sg);
6866 /* Try to find first idle cpu */
6867 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6868 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6869 continue;
6870
6871 balance_cpu = cpu;
6872 break;
6873 }
6874
6875 if (balance_cpu == -1)
6876 balance_cpu = group_balance_cpu(sg);
6877
6878 /*
6879 * First idle cpu or the first cpu(busiest) in this sched group
6880 * is eligible for doing load balancing at this and above domains.
6881 */
b0cff9d8 6882 return balance_cpu == env->dst_cpu;
23f0d209
JK
6883}
6884
1e3c88bd
PZ
6885/*
6886 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6887 * tasks if there is an imbalance.
6888 */
6889static int load_balance(int this_cpu, struct rq *this_rq,
6890 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6891 int *continue_balancing)
1e3c88bd 6892{
88b8dac0 6893 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6894 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6895 struct sched_group *group;
1e3c88bd
PZ
6896 struct rq *busiest;
6897 unsigned long flags;
4ba29684 6898 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6899
8e45cb54
PZ
6900 struct lb_env env = {
6901 .sd = sd,
ddcdf6e7
PZ
6902 .dst_cpu = this_cpu,
6903 .dst_rq = this_rq,
88b8dac0 6904 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6905 .idle = idle,
eb95308e 6906 .loop_break = sched_nr_migrate_break,
b9403130 6907 .cpus = cpus,
0ec8aa00 6908 .fbq_type = all,
163122b7 6909 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6910 };
6911
cfc03118
JK
6912 /*
6913 * For NEWLY_IDLE load_balancing, we don't need to consider
6914 * other cpus in our group
6915 */
e02e60c1 6916 if (idle == CPU_NEWLY_IDLE)
cfc03118 6917 env.dst_grpmask = NULL;
cfc03118 6918
1e3c88bd
PZ
6919 cpumask_copy(cpus, cpu_active_mask);
6920
1e3c88bd
PZ
6921 schedstat_inc(sd, lb_count[idle]);
6922
6923redo:
23f0d209
JK
6924 if (!should_we_balance(&env)) {
6925 *continue_balancing = 0;
1e3c88bd 6926 goto out_balanced;
23f0d209 6927 }
1e3c88bd 6928
23f0d209 6929 group = find_busiest_group(&env);
1e3c88bd
PZ
6930 if (!group) {
6931 schedstat_inc(sd, lb_nobusyg[idle]);
6932 goto out_balanced;
6933 }
6934
b9403130 6935 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6936 if (!busiest) {
6937 schedstat_inc(sd, lb_nobusyq[idle]);
6938 goto out_balanced;
6939 }
6940
78feefc5 6941 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6942
bd939f45 6943 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6944
1aaf90a4
VG
6945 env.src_cpu = busiest->cpu;
6946 env.src_rq = busiest;
6947
1e3c88bd
PZ
6948 ld_moved = 0;
6949 if (busiest->nr_running > 1) {
6950 /*
6951 * Attempt to move tasks. If find_busiest_group has found
6952 * an imbalance but busiest->nr_running <= 1, the group is
6953 * still unbalanced. ld_moved simply stays zero, so it is
6954 * correctly treated as an imbalance.
6955 */
8e45cb54 6956 env.flags |= LBF_ALL_PINNED;
c82513e5 6957 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6958
5d6523eb 6959more_balance:
163122b7 6960 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6961
6962 /*
6963 * cur_ld_moved - load moved in current iteration
6964 * ld_moved - cumulative load moved across iterations
6965 */
163122b7 6966 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6967
6968 /*
163122b7
KT
6969 * We've detached some tasks from busiest_rq. Every
6970 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6971 * unlock busiest->lock, and we are able to be sure
6972 * that nobody can manipulate the tasks in parallel.
6973 * See task_rq_lock() family for the details.
1e3c88bd 6974 */
163122b7
KT
6975
6976 raw_spin_unlock(&busiest->lock);
6977
6978 if (cur_ld_moved) {
6979 attach_tasks(&env);
6980 ld_moved += cur_ld_moved;
6981 }
6982
1e3c88bd 6983 local_irq_restore(flags);
88b8dac0 6984
f1cd0858
JK
6985 if (env.flags & LBF_NEED_BREAK) {
6986 env.flags &= ~LBF_NEED_BREAK;
6987 goto more_balance;
6988 }
6989
88b8dac0
SV
6990 /*
6991 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6992 * us and move them to an alternate dst_cpu in our sched_group
6993 * where they can run. The upper limit on how many times we
6994 * iterate on same src_cpu is dependent on number of cpus in our
6995 * sched_group.
6996 *
6997 * This changes load balance semantics a bit on who can move
6998 * load to a given_cpu. In addition to the given_cpu itself
6999 * (or a ilb_cpu acting on its behalf where given_cpu is
7000 * nohz-idle), we now have balance_cpu in a position to move
7001 * load to given_cpu. In rare situations, this may cause
7002 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7003 * _independently_ and at _same_ time to move some load to
7004 * given_cpu) causing exceess load to be moved to given_cpu.
7005 * This however should not happen so much in practice and
7006 * moreover subsequent load balance cycles should correct the
7007 * excess load moved.
7008 */
6263322c 7009 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7010
7aff2e3a
VD
7011 /* Prevent to re-select dst_cpu via env's cpus */
7012 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7013
78feefc5 7014 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7015 env.dst_cpu = env.new_dst_cpu;
6263322c 7016 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7017 env.loop = 0;
7018 env.loop_break = sched_nr_migrate_break;
e02e60c1 7019
88b8dac0
SV
7020 /*
7021 * Go back to "more_balance" rather than "redo" since we
7022 * need to continue with same src_cpu.
7023 */
7024 goto more_balance;
7025 }
1e3c88bd 7026
6263322c
PZ
7027 /*
7028 * We failed to reach balance because of affinity.
7029 */
7030 if (sd_parent) {
63b2ca30 7031 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7032
afdeee05 7033 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7034 *group_imbalance = 1;
6263322c
PZ
7035 }
7036
1e3c88bd 7037 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7038 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7039 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7040 if (!cpumask_empty(cpus)) {
7041 env.loop = 0;
7042 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7043 goto redo;
bbf18b19 7044 }
afdeee05 7045 goto out_all_pinned;
1e3c88bd
PZ
7046 }
7047 }
7048
7049 if (!ld_moved) {
7050 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7051 /*
7052 * Increment the failure counter only on periodic balance.
7053 * We do not want newidle balance, which can be very
7054 * frequent, pollute the failure counter causing
7055 * excessive cache_hot migrations and active balances.
7056 */
7057 if (idle != CPU_NEWLY_IDLE)
7058 sd->nr_balance_failed++;
1e3c88bd 7059
bd939f45 7060 if (need_active_balance(&env)) {
1e3c88bd
PZ
7061 raw_spin_lock_irqsave(&busiest->lock, flags);
7062
969c7921
TH
7063 /* don't kick the active_load_balance_cpu_stop,
7064 * if the curr task on busiest cpu can't be
7065 * moved to this_cpu
1e3c88bd
PZ
7066 */
7067 if (!cpumask_test_cpu(this_cpu,
fa17b507 7068 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7069 raw_spin_unlock_irqrestore(&busiest->lock,
7070 flags);
8e45cb54 7071 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7072 goto out_one_pinned;
7073 }
7074
969c7921
TH
7075 /*
7076 * ->active_balance synchronizes accesses to
7077 * ->active_balance_work. Once set, it's cleared
7078 * only after active load balance is finished.
7079 */
1e3c88bd
PZ
7080 if (!busiest->active_balance) {
7081 busiest->active_balance = 1;
7082 busiest->push_cpu = this_cpu;
7083 active_balance = 1;
7084 }
7085 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7086
bd939f45 7087 if (active_balance) {
969c7921
TH
7088 stop_one_cpu_nowait(cpu_of(busiest),
7089 active_load_balance_cpu_stop, busiest,
7090 &busiest->active_balance_work);
bd939f45 7091 }
1e3c88bd
PZ
7092
7093 /*
7094 * We've kicked active balancing, reset the failure
7095 * counter.
7096 */
7097 sd->nr_balance_failed = sd->cache_nice_tries+1;
7098 }
7099 } else
7100 sd->nr_balance_failed = 0;
7101
7102 if (likely(!active_balance)) {
7103 /* We were unbalanced, so reset the balancing interval */
7104 sd->balance_interval = sd->min_interval;
7105 } else {
7106 /*
7107 * If we've begun active balancing, start to back off. This
7108 * case may not be covered by the all_pinned logic if there
7109 * is only 1 task on the busy runqueue (because we don't call
163122b7 7110 * detach_tasks).
1e3c88bd
PZ
7111 */
7112 if (sd->balance_interval < sd->max_interval)
7113 sd->balance_interval *= 2;
7114 }
7115
1e3c88bd
PZ
7116 goto out;
7117
7118out_balanced:
afdeee05
VG
7119 /*
7120 * We reach balance although we may have faced some affinity
7121 * constraints. Clear the imbalance flag if it was set.
7122 */
7123 if (sd_parent) {
7124 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7125
7126 if (*group_imbalance)
7127 *group_imbalance = 0;
7128 }
7129
7130out_all_pinned:
7131 /*
7132 * We reach balance because all tasks are pinned at this level so
7133 * we can't migrate them. Let the imbalance flag set so parent level
7134 * can try to migrate them.
7135 */
1e3c88bd
PZ
7136 schedstat_inc(sd, lb_balanced[idle]);
7137
7138 sd->nr_balance_failed = 0;
7139
7140out_one_pinned:
7141 /* tune up the balancing interval */
8e45cb54 7142 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7143 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7144 (sd->balance_interval < sd->max_interval))
7145 sd->balance_interval *= 2;
7146
46e49b38 7147 ld_moved = 0;
1e3c88bd 7148out:
1e3c88bd
PZ
7149 return ld_moved;
7150}
7151
52a08ef1
JL
7152static inline unsigned long
7153get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7154{
7155 unsigned long interval = sd->balance_interval;
7156
7157 if (cpu_busy)
7158 interval *= sd->busy_factor;
7159
7160 /* scale ms to jiffies */
7161 interval = msecs_to_jiffies(interval);
7162 interval = clamp(interval, 1UL, max_load_balance_interval);
7163
7164 return interval;
7165}
7166
7167static inline void
7168update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7169{
7170 unsigned long interval, next;
7171
7172 interval = get_sd_balance_interval(sd, cpu_busy);
7173 next = sd->last_balance + interval;
7174
7175 if (time_after(*next_balance, next))
7176 *next_balance = next;
7177}
7178
1e3c88bd
PZ
7179/*
7180 * idle_balance is called by schedule() if this_cpu is about to become
7181 * idle. Attempts to pull tasks from other CPUs.
7182 */
6e83125c 7183static int idle_balance(struct rq *this_rq)
1e3c88bd 7184{
52a08ef1
JL
7185 unsigned long next_balance = jiffies + HZ;
7186 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7187 struct sched_domain *sd;
7188 int pulled_task = 0;
9bd721c5 7189 u64 curr_cost = 0;
1e3c88bd 7190
6e83125c 7191 idle_enter_fair(this_rq);
0e5b5337 7192
6e83125c
PZ
7193 /*
7194 * We must set idle_stamp _before_ calling idle_balance(), such that we
7195 * measure the duration of idle_balance() as idle time.
7196 */
7197 this_rq->idle_stamp = rq_clock(this_rq);
7198
4486edd1
TC
7199 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7200 !this_rq->rd->overload) {
52a08ef1
JL
7201 rcu_read_lock();
7202 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7203 if (sd)
7204 update_next_balance(sd, 0, &next_balance);
7205 rcu_read_unlock();
7206
6e83125c 7207 goto out;
52a08ef1 7208 }
1e3c88bd 7209
f492e12e
PZ
7210 raw_spin_unlock(&this_rq->lock);
7211
48a16753 7212 update_blocked_averages(this_cpu);
dce840a0 7213 rcu_read_lock();
1e3c88bd 7214 for_each_domain(this_cpu, sd) {
23f0d209 7215 int continue_balancing = 1;
9bd721c5 7216 u64 t0, domain_cost;
1e3c88bd
PZ
7217
7218 if (!(sd->flags & SD_LOAD_BALANCE))
7219 continue;
7220
52a08ef1
JL
7221 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7222 update_next_balance(sd, 0, &next_balance);
9bd721c5 7223 break;
52a08ef1 7224 }
9bd721c5 7225
f492e12e 7226 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7227 t0 = sched_clock_cpu(this_cpu);
7228
f492e12e 7229 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7230 sd, CPU_NEWLY_IDLE,
7231 &continue_balancing);
9bd721c5
JL
7232
7233 domain_cost = sched_clock_cpu(this_cpu) - t0;
7234 if (domain_cost > sd->max_newidle_lb_cost)
7235 sd->max_newidle_lb_cost = domain_cost;
7236
7237 curr_cost += domain_cost;
f492e12e 7238 }
1e3c88bd 7239
52a08ef1 7240 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7241
7242 /*
7243 * Stop searching for tasks to pull if there are
7244 * now runnable tasks on this rq.
7245 */
7246 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7247 break;
1e3c88bd 7248 }
dce840a0 7249 rcu_read_unlock();
f492e12e
PZ
7250
7251 raw_spin_lock(&this_rq->lock);
7252
0e5b5337
JL
7253 if (curr_cost > this_rq->max_idle_balance_cost)
7254 this_rq->max_idle_balance_cost = curr_cost;
7255
e5fc6611 7256 /*
0e5b5337
JL
7257 * While browsing the domains, we released the rq lock, a task could
7258 * have been enqueued in the meantime. Since we're not going idle,
7259 * pretend we pulled a task.
e5fc6611 7260 */
0e5b5337 7261 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7262 pulled_task = 1;
e5fc6611 7263
52a08ef1
JL
7264out:
7265 /* Move the next balance forward */
7266 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7267 this_rq->next_balance = next_balance;
9bd721c5 7268
e4aa358b 7269 /* Is there a task of a high priority class? */
46383648 7270 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7271 pulled_task = -1;
7272
7273 if (pulled_task) {
7274 idle_exit_fair(this_rq);
6e83125c 7275 this_rq->idle_stamp = 0;
e4aa358b 7276 }
6e83125c 7277
3c4017c1 7278 return pulled_task;
1e3c88bd
PZ
7279}
7280
7281/*
969c7921
TH
7282 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7283 * running tasks off the busiest CPU onto idle CPUs. It requires at
7284 * least 1 task to be running on each physical CPU where possible, and
7285 * avoids physical / logical imbalances.
1e3c88bd 7286 */
969c7921 7287static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7288{
969c7921
TH
7289 struct rq *busiest_rq = data;
7290 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7291 int target_cpu = busiest_rq->push_cpu;
969c7921 7292 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7293 struct sched_domain *sd;
e5673f28 7294 struct task_struct *p = NULL;
969c7921
TH
7295
7296 raw_spin_lock_irq(&busiest_rq->lock);
7297
7298 /* make sure the requested cpu hasn't gone down in the meantime */
7299 if (unlikely(busiest_cpu != smp_processor_id() ||
7300 !busiest_rq->active_balance))
7301 goto out_unlock;
1e3c88bd
PZ
7302
7303 /* Is there any task to move? */
7304 if (busiest_rq->nr_running <= 1)
969c7921 7305 goto out_unlock;
1e3c88bd
PZ
7306
7307 /*
7308 * This condition is "impossible", if it occurs
7309 * we need to fix it. Originally reported by
7310 * Bjorn Helgaas on a 128-cpu setup.
7311 */
7312 BUG_ON(busiest_rq == target_rq);
7313
1e3c88bd 7314 /* Search for an sd spanning us and the target CPU. */
dce840a0 7315 rcu_read_lock();
1e3c88bd
PZ
7316 for_each_domain(target_cpu, sd) {
7317 if ((sd->flags & SD_LOAD_BALANCE) &&
7318 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7319 break;
7320 }
7321
7322 if (likely(sd)) {
8e45cb54
PZ
7323 struct lb_env env = {
7324 .sd = sd,
ddcdf6e7
PZ
7325 .dst_cpu = target_cpu,
7326 .dst_rq = target_rq,
7327 .src_cpu = busiest_rq->cpu,
7328 .src_rq = busiest_rq,
8e45cb54
PZ
7329 .idle = CPU_IDLE,
7330 };
7331
1e3c88bd
PZ
7332 schedstat_inc(sd, alb_count);
7333
e5673f28
KT
7334 p = detach_one_task(&env);
7335 if (p)
1e3c88bd
PZ
7336 schedstat_inc(sd, alb_pushed);
7337 else
7338 schedstat_inc(sd, alb_failed);
7339 }
dce840a0 7340 rcu_read_unlock();
969c7921
TH
7341out_unlock:
7342 busiest_rq->active_balance = 0;
e5673f28
KT
7343 raw_spin_unlock(&busiest_rq->lock);
7344
7345 if (p)
7346 attach_one_task(target_rq, p);
7347
7348 local_irq_enable();
7349
969c7921 7350 return 0;
1e3c88bd
PZ
7351}
7352
d987fc7f
MG
7353static inline int on_null_domain(struct rq *rq)
7354{
7355 return unlikely(!rcu_dereference_sched(rq->sd));
7356}
7357
3451d024 7358#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7359/*
7360 * idle load balancing details
83cd4fe2
VP
7361 * - When one of the busy CPUs notice that there may be an idle rebalancing
7362 * needed, they will kick the idle load balancer, which then does idle
7363 * load balancing for all the idle CPUs.
7364 */
1e3c88bd 7365static struct {
83cd4fe2 7366 cpumask_var_t idle_cpus_mask;
0b005cf5 7367 atomic_t nr_cpus;
83cd4fe2
VP
7368 unsigned long next_balance; /* in jiffy units */
7369} nohz ____cacheline_aligned;
1e3c88bd 7370
3dd0337d 7371static inline int find_new_ilb(void)
1e3c88bd 7372{
0b005cf5 7373 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7374
786d6dc7
SS
7375 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7376 return ilb;
7377
7378 return nr_cpu_ids;
1e3c88bd 7379}
1e3c88bd 7380
83cd4fe2
VP
7381/*
7382 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7383 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7384 * CPU (if there is one).
7385 */
0aeeeeba 7386static void nohz_balancer_kick(void)
83cd4fe2
VP
7387{
7388 int ilb_cpu;
7389
7390 nohz.next_balance++;
7391
3dd0337d 7392 ilb_cpu = find_new_ilb();
83cd4fe2 7393
0b005cf5
SS
7394 if (ilb_cpu >= nr_cpu_ids)
7395 return;
83cd4fe2 7396
cd490c5b 7397 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7398 return;
7399 /*
7400 * Use smp_send_reschedule() instead of resched_cpu().
7401 * This way we generate a sched IPI on the target cpu which
7402 * is idle. And the softirq performing nohz idle load balance
7403 * will be run before returning from the IPI.
7404 */
7405 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7406 return;
7407}
7408
c1cc017c 7409static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7410{
7411 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7412 /*
7413 * Completely isolated CPUs don't ever set, so we must test.
7414 */
7415 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7416 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7417 atomic_dec(&nohz.nr_cpus);
7418 }
71325960
SS
7419 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7420 }
7421}
7422
69e1e811
SS
7423static inline void set_cpu_sd_state_busy(void)
7424{
7425 struct sched_domain *sd;
37dc6b50 7426 int cpu = smp_processor_id();
69e1e811 7427
69e1e811 7428 rcu_read_lock();
37dc6b50 7429 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7430
7431 if (!sd || !sd->nohz_idle)
7432 goto unlock;
7433 sd->nohz_idle = 0;
7434
63b2ca30 7435 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7436unlock:
69e1e811
SS
7437 rcu_read_unlock();
7438}
7439
7440void set_cpu_sd_state_idle(void)
7441{
7442 struct sched_domain *sd;
37dc6b50 7443 int cpu = smp_processor_id();
69e1e811 7444
69e1e811 7445 rcu_read_lock();
37dc6b50 7446 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7447
7448 if (!sd || sd->nohz_idle)
7449 goto unlock;
7450 sd->nohz_idle = 1;
7451
63b2ca30 7452 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7453unlock:
69e1e811
SS
7454 rcu_read_unlock();
7455}
7456
1e3c88bd 7457/*
c1cc017c 7458 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7459 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7460 */
c1cc017c 7461void nohz_balance_enter_idle(int cpu)
1e3c88bd 7462{
71325960
SS
7463 /*
7464 * If this cpu is going down, then nothing needs to be done.
7465 */
7466 if (!cpu_active(cpu))
7467 return;
7468
c1cc017c
AS
7469 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7470 return;
1e3c88bd 7471
d987fc7f
MG
7472 /*
7473 * If we're a completely isolated CPU, we don't play.
7474 */
7475 if (on_null_domain(cpu_rq(cpu)))
7476 return;
7477
c1cc017c
AS
7478 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7479 atomic_inc(&nohz.nr_cpus);
7480 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7481}
71325960 7482
0db0628d 7483static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7484 unsigned long action, void *hcpu)
7485{
7486 switch (action & ~CPU_TASKS_FROZEN) {
7487 case CPU_DYING:
c1cc017c 7488 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7489 return NOTIFY_OK;
7490 default:
7491 return NOTIFY_DONE;
7492 }
7493}
1e3c88bd
PZ
7494#endif
7495
7496static DEFINE_SPINLOCK(balancing);
7497
49c022e6
PZ
7498/*
7499 * Scale the max load_balance interval with the number of CPUs in the system.
7500 * This trades load-balance latency on larger machines for less cross talk.
7501 */
029632fb 7502void update_max_interval(void)
49c022e6
PZ
7503{
7504 max_load_balance_interval = HZ*num_online_cpus()/10;
7505}
7506
1e3c88bd
PZ
7507/*
7508 * It checks each scheduling domain to see if it is due to be balanced,
7509 * and initiates a balancing operation if so.
7510 *
b9b0853a 7511 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7512 */
f7ed0a89 7513static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7514{
23f0d209 7515 int continue_balancing = 1;
f7ed0a89 7516 int cpu = rq->cpu;
1e3c88bd 7517 unsigned long interval;
04f733b4 7518 struct sched_domain *sd;
1e3c88bd
PZ
7519 /* Earliest time when we have to do rebalance again */
7520 unsigned long next_balance = jiffies + 60*HZ;
7521 int update_next_balance = 0;
f48627e6
JL
7522 int need_serialize, need_decay = 0;
7523 u64 max_cost = 0;
1e3c88bd 7524
48a16753 7525 update_blocked_averages(cpu);
2069dd75 7526
dce840a0 7527 rcu_read_lock();
1e3c88bd 7528 for_each_domain(cpu, sd) {
f48627e6
JL
7529 /*
7530 * Decay the newidle max times here because this is a regular
7531 * visit to all the domains. Decay ~1% per second.
7532 */
7533 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7534 sd->max_newidle_lb_cost =
7535 (sd->max_newidle_lb_cost * 253) / 256;
7536 sd->next_decay_max_lb_cost = jiffies + HZ;
7537 need_decay = 1;
7538 }
7539 max_cost += sd->max_newidle_lb_cost;
7540
1e3c88bd
PZ
7541 if (!(sd->flags & SD_LOAD_BALANCE))
7542 continue;
7543
f48627e6
JL
7544 /*
7545 * Stop the load balance at this level. There is another
7546 * CPU in our sched group which is doing load balancing more
7547 * actively.
7548 */
7549 if (!continue_balancing) {
7550 if (need_decay)
7551 continue;
7552 break;
7553 }
7554
52a08ef1 7555 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7556
7557 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7558 if (need_serialize) {
7559 if (!spin_trylock(&balancing))
7560 goto out;
7561 }
7562
7563 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7564 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7565 /*
6263322c 7566 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7567 * env->dst_cpu, so we can't know our idle
7568 * state even if we migrated tasks. Update it.
1e3c88bd 7569 */
de5eb2dd 7570 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7571 }
7572 sd->last_balance = jiffies;
52a08ef1 7573 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7574 }
7575 if (need_serialize)
7576 spin_unlock(&balancing);
7577out:
7578 if (time_after(next_balance, sd->last_balance + interval)) {
7579 next_balance = sd->last_balance + interval;
7580 update_next_balance = 1;
7581 }
f48627e6
JL
7582 }
7583 if (need_decay) {
1e3c88bd 7584 /*
f48627e6
JL
7585 * Ensure the rq-wide value also decays but keep it at a
7586 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7587 */
f48627e6
JL
7588 rq->max_idle_balance_cost =
7589 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7590 }
dce840a0 7591 rcu_read_unlock();
1e3c88bd
PZ
7592
7593 /*
7594 * next_balance will be updated only when there is a need.
7595 * When the cpu is attached to null domain for ex, it will not be
7596 * updated.
7597 */
7598 if (likely(update_next_balance))
7599 rq->next_balance = next_balance;
7600}
7601
3451d024 7602#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7603/*
3451d024 7604 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7605 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7606 */
208cb16b 7607static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7608{
208cb16b 7609 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7610 struct rq *rq;
7611 int balance_cpu;
7612
1c792db7
SS
7613 if (idle != CPU_IDLE ||
7614 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7615 goto end;
83cd4fe2
VP
7616
7617 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7618 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7619 continue;
7620
7621 /*
7622 * If this cpu gets work to do, stop the load balancing
7623 * work being done for other cpus. Next load
7624 * balancing owner will pick it up.
7625 */
1c792db7 7626 if (need_resched())
83cd4fe2 7627 break;
83cd4fe2 7628
5ed4f1d9
VG
7629 rq = cpu_rq(balance_cpu);
7630
ed61bbc6
TC
7631 /*
7632 * If time for next balance is due,
7633 * do the balance.
7634 */
7635 if (time_after_eq(jiffies, rq->next_balance)) {
7636 raw_spin_lock_irq(&rq->lock);
7637 update_rq_clock(rq);
7638 update_idle_cpu_load(rq);
7639 raw_spin_unlock_irq(&rq->lock);
7640 rebalance_domains(rq, CPU_IDLE);
7641 }
83cd4fe2 7642
83cd4fe2
VP
7643 if (time_after(this_rq->next_balance, rq->next_balance))
7644 this_rq->next_balance = rq->next_balance;
7645 }
7646 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7647end:
7648 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7649}
7650
7651/*
0b005cf5 7652 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7653 * of an idle cpu in the system.
0b005cf5 7654 * - This rq has more than one task.
1aaf90a4
VG
7655 * - This rq has at least one CFS task and the capacity of the CPU is
7656 * significantly reduced because of RT tasks or IRQs.
7657 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7658 * multiple busy cpu.
0b005cf5
SS
7659 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7660 * domain span are idle.
83cd4fe2 7661 */
1aaf90a4 7662static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7663{
7664 unsigned long now = jiffies;
0b005cf5 7665 struct sched_domain *sd;
63b2ca30 7666 struct sched_group_capacity *sgc;
4a725627 7667 int nr_busy, cpu = rq->cpu;
1aaf90a4 7668 bool kick = false;
83cd4fe2 7669
4a725627 7670 if (unlikely(rq->idle_balance))
1aaf90a4 7671 return false;
83cd4fe2 7672
1c792db7
SS
7673 /*
7674 * We may be recently in ticked or tickless idle mode. At the first
7675 * busy tick after returning from idle, we will update the busy stats.
7676 */
69e1e811 7677 set_cpu_sd_state_busy();
c1cc017c 7678 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7679
7680 /*
7681 * None are in tickless mode and hence no need for NOHZ idle load
7682 * balancing.
7683 */
7684 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7685 return false;
1c792db7
SS
7686
7687 if (time_before(now, nohz.next_balance))
1aaf90a4 7688 return false;
83cd4fe2 7689
0b005cf5 7690 if (rq->nr_running >= 2)
1aaf90a4 7691 return true;
83cd4fe2 7692
067491b7 7693 rcu_read_lock();
37dc6b50 7694 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7695 if (sd) {
63b2ca30
NP
7696 sgc = sd->groups->sgc;
7697 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7698
1aaf90a4
VG
7699 if (nr_busy > 1) {
7700 kick = true;
7701 goto unlock;
7702 }
7703
83cd4fe2 7704 }
37dc6b50 7705
1aaf90a4
VG
7706 sd = rcu_dereference(rq->sd);
7707 if (sd) {
7708 if ((rq->cfs.h_nr_running >= 1) &&
7709 check_cpu_capacity(rq, sd)) {
7710 kick = true;
7711 goto unlock;
7712 }
7713 }
37dc6b50 7714
1aaf90a4 7715 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7716 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7717 sched_domain_span(sd)) < cpu)) {
7718 kick = true;
7719 goto unlock;
7720 }
067491b7 7721
1aaf90a4 7722unlock:
067491b7 7723 rcu_read_unlock();
1aaf90a4 7724 return kick;
83cd4fe2
VP
7725}
7726#else
208cb16b 7727static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7728#endif
7729
7730/*
7731 * run_rebalance_domains is triggered when needed from the scheduler tick.
7732 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7733 */
1e3c88bd
PZ
7734static void run_rebalance_domains(struct softirq_action *h)
7735{
208cb16b 7736 struct rq *this_rq = this_rq();
6eb57e0d 7737 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7738 CPU_IDLE : CPU_NOT_IDLE;
7739
1e3c88bd 7740 /*
83cd4fe2 7741 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7742 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7743 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7744 * give the idle cpus a chance to load balance. Else we may
7745 * load balance only within the local sched_domain hierarchy
7746 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7747 */
208cb16b 7748 nohz_idle_balance(this_rq, idle);
d4573c3e 7749 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7750}
7751
1e3c88bd
PZ
7752/*
7753 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7754 */
7caff66f 7755void trigger_load_balance(struct rq *rq)
1e3c88bd 7756{
1e3c88bd 7757 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7758 if (unlikely(on_null_domain(rq)))
7759 return;
7760
7761 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7762 raise_softirq(SCHED_SOFTIRQ);
3451d024 7763#ifdef CONFIG_NO_HZ_COMMON
c726099e 7764 if (nohz_kick_needed(rq))
0aeeeeba 7765 nohz_balancer_kick();
83cd4fe2 7766#endif
1e3c88bd
PZ
7767}
7768
0bcdcf28
CE
7769static void rq_online_fair(struct rq *rq)
7770{
7771 update_sysctl();
0e59bdae
KT
7772
7773 update_runtime_enabled(rq);
0bcdcf28
CE
7774}
7775
7776static void rq_offline_fair(struct rq *rq)
7777{
7778 update_sysctl();
a4c96ae3
PB
7779
7780 /* Ensure any throttled groups are reachable by pick_next_task */
7781 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7782}
7783
55e12e5e 7784#endif /* CONFIG_SMP */
e1d1484f 7785
bf0f6f24
IM
7786/*
7787 * scheduler tick hitting a task of our scheduling class:
7788 */
8f4d37ec 7789static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7790{
7791 struct cfs_rq *cfs_rq;
7792 struct sched_entity *se = &curr->se;
7793
7794 for_each_sched_entity(se) {
7795 cfs_rq = cfs_rq_of(se);
8f4d37ec 7796 entity_tick(cfs_rq, se, queued);
bf0f6f24 7797 }
18bf2805 7798
10e84b97 7799 if (numabalancing_enabled)
cbee9f88 7800 task_tick_numa(rq, curr);
bf0f6f24
IM
7801}
7802
7803/*
cd29fe6f
PZ
7804 * called on fork with the child task as argument from the parent's context
7805 * - child not yet on the tasklist
7806 * - preemption disabled
bf0f6f24 7807 */
cd29fe6f 7808static void task_fork_fair(struct task_struct *p)
bf0f6f24 7809{
4fc420c9
DN
7810 struct cfs_rq *cfs_rq;
7811 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7812 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7813 struct rq *rq = this_rq();
7814 unsigned long flags;
7815
05fa785c 7816 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7817
861d034e
PZ
7818 update_rq_clock(rq);
7819
4fc420c9
DN
7820 cfs_rq = task_cfs_rq(current);
7821 curr = cfs_rq->curr;
7822
6c9a27f5
DN
7823 /*
7824 * Not only the cpu but also the task_group of the parent might have
7825 * been changed after parent->se.parent,cfs_rq were copied to
7826 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7827 * of child point to valid ones.
7828 */
7829 rcu_read_lock();
7830 __set_task_cpu(p, this_cpu);
7831 rcu_read_unlock();
bf0f6f24 7832
7109c442 7833 update_curr(cfs_rq);
cd29fe6f 7834
b5d9d734
MG
7835 if (curr)
7836 se->vruntime = curr->vruntime;
aeb73b04 7837 place_entity(cfs_rq, se, 1);
4d78e7b6 7838
cd29fe6f 7839 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7840 /*
edcb60a3
IM
7841 * Upon rescheduling, sched_class::put_prev_task() will place
7842 * 'current' within the tree based on its new key value.
7843 */
4d78e7b6 7844 swap(curr->vruntime, se->vruntime);
8875125e 7845 resched_curr(rq);
4d78e7b6 7846 }
bf0f6f24 7847
88ec22d3
PZ
7848 se->vruntime -= cfs_rq->min_vruntime;
7849
05fa785c 7850 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7851}
7852
cb469845
SR
7853/*
7854 * Priority of the task has changed. Check to see if we preempt
7855 * the current task.
7856 */
da7a735e
PZ
7857static void
7858prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7859{
da0c1e65 7860 if (!task_on_rq_queued(p))
da7a735e
PZ
7861 return;
7862
cb469845
SR
7863 /*
7864 * Reschedule if we are currently running on this runqueue and
7865 * our priority decreased, or if we are not currently running on
7866 * this runqueue and our priority is higher than the current's
7867 */
da7a735e 7868 if (rq->curr == p) {
cb469845 7869 if (p->prio > oldprio)
8875125e 7870 resched_curr(rq);
cb469845 7871 } else
15afe09b 7872 check_preempt_curr(rq, p, 0);
cb469845
SR
7873}
7874
da7a735e
PZ
7875static void switched_from_fair(struct rq *rq, struct task_struct *p)
7876{
7877 struct sched_entity *se = &p->se;
7878 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7879
7880 /*
791c9e02 7881 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7882 * switched back to the fair class the enqueue_entity(.flags=0) will
7883 * do the right thing.
7884 *
da0c1e65
KT
7885 * If it's queued, then the dequeue_entity(.flags=0) will already
7886 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7887 * the task is sleeping will it still have non-normalized vruntime.
7888 */
da0c1e65 7889 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7890 /*
7891 * Fix up our vruntime so that the current sleep doesn't
7892 * cause 'unlimited' sleep bonus.
7893 */
7894 place_entity(cfs_rq, se, 0);
7895 se->vruntime -= cfs_rq->min_vruntime;
7896 }
9ee474f5 7897
141965c7 7898#ifdef CONFIG_SMP
9d89c257
YD
7899 /* Catch up with the cfs_rq and remove our load when we leave */
7900 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
13962234 7901 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
9d89c257
YD
7902
7903 cfs_rq->avg.load_avg =
7904 max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
7905 cfs_rq->avg.load_sum =
7906 max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
7907 cfs_rq->avg.util_avg =
7908 max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
7909 cfs_rq->avg.util_sum =
7910 max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
9ee474f5 7911#endif
da7a735e
PZ
7912}
7913
cb469845
SR
7914/*
7915 * We switched to the sched_fair class.
7916 */
da7a735e 7917static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7918{
eb7a59b2 7919#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7920 struct sched_entity *se = &p->se;
eb7a59b2
M
7921 /*
7922 * Since the real-depth could have been changed (only FAIR
7923 * class maintain depth value), reset depth properly.
7924 */
7925 se->depth = se->parent ? se->parent->depth + 1 : 0;
7926#endif
da0c1e65 7927 if (!task_on_rq_queued(p))
da7a735e
PZ
7928 return;
7929
cb469845
SR
7930 /*
7931 * We were most likely switched from sched_rt, so
7932 * kick off the schedule if running, otherwise just see
7933 * if we can still preempt the current task.
7934 */
da7a735e 7935 if (rq->curr == p)
8875125e 7936 resched_curr(rq);
cb469845 7937 else
15afe09b 7938 check_preempt_curr(rq, p, 0);
cb469845
SR
7939}
7940
83b699ed
SV
7941/* Account for a task changing its policy or group.
7942 *
7943 * This routine is mostly called to set cfs_rq->curr field when a task
7944 * migrates between groups/classes.
7945 */
7946static void set_curr_task_fair(struct rq *rq)
7947{
7948 struct sched_entity *se = &rq->curr->se;
7949
ec12cb7f
PT
7950 for_each_sched_entity(se) {
7951 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7952
7953 set_next_entity(cfs_rq, se);
7954 /* ensure bandwidth has been allocated on our new cfs_rq */
7955 account_cfs_rq_runtime(cfs_rq, 0);
7956 }
83b699ed
SV
7957}
7958
029632fb
PZ
7959void init_cfs_rq(struct cfs_rq *cfs_rq)
7960{
7961 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7962 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7963#ifndef CONFIG_64BIT
7964 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7965#endif
141965c7 7966#ifdef CONFIG_SMP
9d89c257
YD
7967 atomic_long_set(&cfs_rq->removed_load_avg, 0);
7968 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 7969#endif
029632fb
PZ
7970}
7971
810b3817 7972#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7973static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7974{
fed14d45 7975 struct sched_entity *se = &p->se;
aff3e498 7976 struct cfs_rq *cfs_rq;
fed14d45 7977
b2b5ce02
PZ
7978 /*
7979 * If the task was not on the rq at the time of this cgroup movement
7980 * it must have been asleep, sleeping tasks keep their ->vruntime
7981 * absolute on their old rq until wakeup (needed for the fair sleeper
7982 * bonus in place_entity()).
7983 *
7984 * If it was on the rq, we've just 'preempted' it, which does convert
7985 * ->vruntime to a relative base.
7986 *
7987 * Make sure both cases convert their relative position when migrating
7988 * to another cgroup's rq. This does somewhat interfere with the
7989 * fair sleeper stuff for the first placement, but who cares.
7990 */
7ceff013 7991 /*
da0c1e65 7992 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7993 * But there are some cases where it has already been normalized:
7994 *
7995 * - Moving a forked child which is waiting for being woken up by
7996 * wake_up_new_task().
62af3783
DN
7997 * - Moving a task which has been woken up by try_to_wake_up() and
7998 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7999 *
8000 * To prevent boost or penalty in the new cfs_rq caused by delta
8001 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8002 */
da0c1e65
KT
8003 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8004 queued = 1;
7ceff013 8005
da0c1e65 8006 if (!queued)
fed14d45 8007 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8008 set_task_rq(p, task_cpu(p));
fed14d45 8009 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8010 if (!queued) {
fed14d45
PZ
8011 cfs_rq = cfs_rq_of(se);
8012 se->vruntime += cfs_rq->min_vruntime;
9d89c257 8013
aff3e498 8014#ifdef CONFIG_SMP
9d89c257
YD
8015 /* Virtually synchronize task with its new cfs_rq */
8016 p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
8017 cfs_rq->avg.load_avg += p->se.avg.load_avg;
8018 cfs_rq->avg.load_sum += p->se.avg.load_sum;
8019 cfs_rq->avg.util_avg += p->se.avg.util_avg;
8020 cfs_rq->avg.util_sum += p->se.avg.util_sum;
aff3e498
PT
8021#endif
8022 }
810b3817 8023}
029632fb
PZ
8024
8025void free_fair_sched_group(struct task_group *tg)
8026{
8027 int i;
8028
8029 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8030
8031 for_each_possible_cpu(i) {
8032 if (tg->cfs_rq)
8033 kfree(tg->cfs_rq[i]);
12695578
YD
8034 if (tg->se) {
8035 if (tg->se[i])
8036 remove_entity_load_avg(tg->se[i]);
029632fb 8037 kfree(tg->se[i]);
12695578 8038 }
029632fb
PZ
8039 }
8040
8041 kfree(tg->cfs_rq);
8042 kfree(tg->se);
8043}
8044
8045int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8046{
8047 struct cfs_rq *cfs_rq;
8048 struct sched_entity *se;
8049 int i;
8050
8051 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8052 if (!tg->cfs_rq)
8053 goto err;
8054 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8055 if (!tg->se)
8056 goto err;
8057
8058 tg->shares = NICE_0_LOAD;
8059
8060 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8061
8062 for_each_possible_cpu(i) {
8063 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8064 GFP_KERNEL, cpu_to_node(i));
8065 if (!cfs_rq)
8066 goto err;
8067
8068 se = kzalloc_node(sizeof(struct sched_entity),
8069 GFP_KERNEL, cpu_to_node(i));
8070 if (!se)
8071 goto err_free_rq;
8072
8073 init_cfs_rq(cfs_rq);
8074 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8075 init_entity_runnable_average(se);
029632fb
PZ
8076 }
8077
8078 return 1;
8079
8080err_free_rq:
8081 kfree(cfs_rq);
8082err:
8083 return 0;
8084}
8085
8086void unregister_fair_sched_group(struct task_group *tg, int cpu)
8087{
8088 struct rq *rq = cpu_rq(cpu);
8089 unsigned long flags;
8090
8091 /*
8092 * Only empty task groups can be destroyed; so we can speculatively
8093 * check on_list without danger of it being re-added.
8094 */
8095 if (!tg->cfs_rq[cpu]->on_list)
8096 return;
8097
8098 raw_spin_lock_irqsave(&rq->lock, flags);
8099 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8100 raw_spin_unlock_irqrestore(&rq->lock, flags);
8101}
8102
8103void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8104 struct sched_entity *se, int cpu,
8105 struct sched_entity *parent)
8106{
8107 struct rq *rq = cpu_rq(cpu);
8108
8109 cfs_rq->tg = tg;
8110 cfs_rq->rq = rq;
029632fb
PZ
8111 init_cfs_rq_runtime(cfs_rq);
8112
8113 tg->cfs_rq[cpu] = cfs_rq;
8114 tg->se[cpu] = se;
8115
8116 /* se could be NULL for root_task_group */
8117 if (!se)
8118 return;
8119
fed14d45 8120 if (!parent) {
029632fb 8121 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8122 se->depth = 0;
8123 } else {
029632fb 8124 se->cfs_rq = parent->my_q;
fed14d45
PZ
8125 se->depth = parent->depth + 1;
8126 }
029632fb
PZ
8127
8128 se->my_q = cfs_rq;
0ac9b1c2
PT
8129 /* guarantee group entities always have weight */
8130 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8131 se->parent = parent;
8132}
8133
8134static DEFINE_MUTEX(shares_mutex);
8135
8136int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8137{
8138 int i;
8139 unsigned long flags;
8140
8141 /*
8142 * We can't change the weight of the root cgroup.
8143 */
8144 if (!tg->se[0])
8145 return -EINVAL;
8146
8147 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8148
8149 mutex_lock(&shares_mutex);
8150 if (tg->shares == shares)
8151 goto done;
8152
8153 tg->shares = shares;
8154 for_each_possible_cpu(i) {
8155 struct rq *rq = cpu_rq(i);
8156 struct sched_entity *se;
8157
8158 se = tg->se[i];
8159 /* Propagate contribution to hierarchy */
8160 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8161
8162 /* Possible calls to update_curr() need rq clock */
8163 update_rq_clock(rq);
17bc14b7 8164 for_each_sched_entity(se)
029632fb
PZ
8165 update_cfs_shares(group_cfs_rq(se));
8166 raw_spin_unlock_irqrestore(&rq->lock, flags);
8167 }
8168
8169done:
8170 mutex_unlock(&shares_mutex);
8171 return 0;
8172}
8173#else /* CONFIG_FAIR_GROUP_SCHED */
8174
8175void free_fair_sched_group(struct task_group *tg) { }
8176
8177int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8178{
8179 return 1;
8180}
8181
8182void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8183
8184#endif /* CONFIG_FAIR_GROUP_SCHED */
8185
810b3817 8186
6d686f45 8187static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8188{
8189 struct sched_entity *se = &task->se;
0d721cea
PW
8190 unsigned int rr_interval = 0;
8191
8192 /*
8193 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8194 * idle runqueue:
8195 */
0d721cea 8196 if (rq->cfs.load.weight)
a59f4e07 8197 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8198
8199 return rr_interval;
8200}
8201
bf0f6f24
IM
8202/*
8203 * All the scheduling class methods:
8204 */
029632fb 8205const struct sched_class fair_sched_class = {
5522d5d5 8206 .next = &idle_sched_class,
bf0f6f24
IM
8207 .enqueue_task = enqueue_task_fair,
8208 .dequeue_task = dequeue_task_fair,
8209 .yield_task = yield_task_fair,
d95f4122 8210 .yield_to_task = yield_to_task_fair,
bf0f6f24 8211
2e09bf55 8212 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8213
8214 .pick_next_task = pick_next_task_fair,
8215 .put_prev_task = put_prev_task_fair,
8216
681f3e68 8217#ifdef CONFIG_SMP
4ce72a2c 8218 .select_task_rq = select_task_rq_fair,
0a74bef8 8219 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8220
0bcdcf28
CE
8221 .rq_online = rq_online_fair,
8222 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8223
8224 .task_waking = task_waking_fair,
12695578 8225 .task_dead = task_dead_fair,
681f3e68 8226#endif
bf0f6f24 8227
83b699ed 8228 .set_curr_task = set_curr_task_fair,
bf0f6f24 8229 .task_tick = task_tick_fair,
cd29fe6f 8230 .task_fork = task_fork_fair,
cb469845
SR
8231
8232 .prio_changed = prio_changed_fair,
da7a735e 8233 .switched_from = switched_from_fair,
cb469845 8234 .switched_to = switched_to_fair,
810b3817 8235
0d721cea
PW
8236 .get_rr_interval = get_rr_interval_fair,
8237
6e998916
SG
8238 .update_curr = update_curr_fair,
8239
810b3817 8240#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8241 .task_move_group = task_move_group_fair,
810b3817 8242#endif
bf0f6f24
IM
8243};
8244
8245#ifdef CONFIG_SCHED_DEBUG
029632fb 8246void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8247{
bf0f6f24
IM
8248 struct cfs_rq *cfs_rq;
8249
5973e5b9 8250 rcu_read_lock();
c3b64f1e 8251 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8252 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8253 rcu_read_unlock();
bf0f6f24 8254}
397f2378
SD
8255
8256#ifdef CONFIG_NUMA_BALANCING
8257void show_numa_stats(struct task_struct *p, struct seq_file *m)
8258{
8259 int node;
8260 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8261
8262 for_each_online_node(node) {
8263 if (p->numa_faults) {
8264 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8265 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8266 }
8267 if (p->numa_group) {
8268 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8269 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8270 }
8271 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8272 }
8273}
8274#endif /* CONFIG_NUMA_BALANCING */
8275#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8276
8277__init void init_sched_fair_class(void)
8278{
8279#ifdef CONFIG_SMP
8280 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8281
3451d024 8282#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8283 nohz.next_balance = jiffies;
029632fb 8284 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8285 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8286#endif
8287#endif /* SMP */
8288
8289}