sched/fair: Use load instead of runnable load in wakeup path
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
60e17f5c 99 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
100 *
101 * (default: ~20%)
102 */
60e17f5c
VK
103#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
104
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
251static inline struct task_struct *task_of(struct sched_entity *se)
252{
9148a3a1 253 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
254 return container_of(se, struct task_struct, se);
255}
256
b758149c
PZ
257/* Walk up scheduling entities hierarchy */
258#define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262{
263 return p->se.cfs_rq;
264}
265
266/* runqueue on which this entity is (to be) queued */
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 return se->cfs_rq;
270}
271
272/* runqueue "owned" by this group */
273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274{
275 return grp->my_q;
276}
277
3c93a0c0
QY
278static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279{
280 if (!path)
281 return;
282
283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 autogroup_path(cfs_rq->tg, path, len);
285 else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 else
288 strlcpy(path, "(null)", len);
289}
290
f6783319 291static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 292{
5d299eab
PZ
293 struct rq *rq = rq_of(cfs_rq);
294 int cpu = cpu_of(rq);
295
296 if (cfs_rq->on_list)
f6783319 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
298
299 cfs_rq->on_list = 1;
300
301 /*
302 * Ensure we either appear before our parent (if already
303 * enqueued) or force our parent to appear after us when it is
304 * enqueued. The fact that we always enqueue bottom-up
305 * reduces this to two cases and a special case for the root
306 * cfs_rq. Furthermore, it also means that we will always reset
307 * tmp_alone_branch either when the branch is connected
308 * to a tree or when we reach the top of the tree
309 */
310 if (cfs_rq->tg->parent &&
311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 312 /*
5d299eab
PZ
313 * If parent is already on the list, we add the child
314 * just before. Thanks to circular linked property of
315 * the list, this means to put the child at the tail
316 * of the list that starts by parent.
67e86250 317 */
5d299eab
PZ
318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 /*
321 * The branch is now connected to its tree so we can
322 * reset tmp_alone_branch to the beginning of the
323 * list.
324 */
325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 326 return true;
5d299eab 327 }
3d4b47b4 328
5d299eab
PZ
329 if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the top of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 341 return true;
3d4b47b4 342 }
5d299eab
PZ
343
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the begin of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 /*
352 * update tmp_alone_branch to points to the new begin
353 * of the branch
354 */
355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 356 return false;
3d4b47b4
PZ
357}
358
359static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360{
361 if (cfs_rq->on_list) {
31bc6aea
VG
362 struct rq *rq = rq_of(cfs_rq);
363
364 /*
365 * With cfs_rq being unthrottled/throttled during an enqueue,
366 * it can happen the tmp_alone_branch points the a leaf that
367 * we finally want to del. In this case, tmp_alone_branch moves
368 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 * at the end of the enqueue.
370 */
371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373
3d4b47b4
PZ
374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 cfs_rq->on_list = 0;
376 }
377}
378
5d299eab
PZ
379static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380{
381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382}
383
039ae8bc
VG
384/* Iterate thr' all leaf cfs_rq's on a runqueue */
385#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 leaf_cfs_rq_list)
b758149c
PZ
388
389/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 390static inline struct cfs_rq *
b758149c
PZ
391is_same_group(struct sched_entity *se, struct sched_entity *pse)
392{
393 if (se->cfs_rq == pse->cfs_rq)
fed14d45 394 return se->cfs_rq;
b758149c 395
fed14d45 396 return NULL;
b758149c
PZ
397}
398
399static inline struct sched_entity *parent_entity(struct sched_entity *se)
400{
401 return se->parent;
402}
403
464b7527
PZ
404static void
405find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406{
407 int se_depth, pse_depth;
408
409 /*
410 * preemption test can be made between sibling entities who are in the
411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 * both tasks until we find their ancestors who are siblings of common
413 * parent.
414 */
415
416 /* First walk up until both entities are at same depth */
fed14d45
PZ
417 se_depth = (*se)->depth;
418 pse_depth = (*pse)->depth;
464b7527
PZ
419
420 while (se_depth > pse_depth) {
421 se_depth--;
422 *se = parent_entity(*se);
423 }
424
425 while (pse_depth > se_depth) {
426 pse_depth--;
427 *pse = parent_entity(*pse);
428 }
429
430 while (!is_same_group(*se, *pse)) {
431 *se = parent_entity(*se);
432 *pse = parent_entity(*pse);
433 }
434}
435
8f48894f
PZ
436#else /* !CONFIG_FAIR_GROUP_SCHED */
437
438static inline struct task_struct *task_of(struct sched_entity *se)
439{
440 return container_of(se, struct task_struct, se);
441}
bf0f6f24 442
b758149c
PZ
443#define for_each_sched_entity(se) \
444 for (; se; se = NULL)
bf0f6f24 445
b758149c 446static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 447{
b758149c 448 return &task_rq(p)->cfs;
bf0f6f24
IM
449}
450
b758149c
PZ
451static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452{
453 struct task_struct *p = task_of(se);
454 struct rq *rq = task_rq(p);
455
456 return &rq->cfs;
457}
458
459/* runqueue "owned" by this group */
460static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461{
462 return NULL;
463}
464
3c93a0c0
QY
465static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466{
467 if (path)
468 strlcpy(path, "(null)", len);
469}
470
f6783319 471static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 472{
f6783319 473 return true;
3d4b47b4
PZ
474}
475
476static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477{
478}
479
5d299eab
PZ
480static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481{
482}
483
039ae8bc
VG
484#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 486
b758149c
PZ
487static inline struct sched_entity *parent_entity(struct sched_entity *se)
488{
489 return NULL;
490}
491
464b7527
PZ
492static inline void
493find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494{
495}
496
b758149c
PZ
497#endif /* CONFIG_FAIR_GROUP_SCHED */
498
6c16a6dc 499static __always_inline
9dbdb155 500void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
501
502/**************************************************************
503 * Scheduling class tree data structure manipulation methods:
504 */
505
1bf08230 506static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 507{
1bf08230 508 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 509 if (delta > 0)
1bf08230 510 max_vruntime = vruntime;
02e0431a 511
1bf08230 512 return max_vruntime;
02e0431a
PZ
513}
514
0702e3eb 515static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
516{
517 s64 delta = (s64)(vruntime - min_vruntime);
518 if (delta < 0)
519 min_vruntime = vruntime;
520
521 return min_vruntime;
522}
523
54fdc581
FC
524static inline int entity_before(struct sched_entity *a,
525 struct sched_entity *b)
526{
527 return (s64)(a->vruntime - b->vruntime) < 0;
528}
529
1af5f730
PZ
530static void update_min_vruntime(struct cfs_rq *cfs_rq)
531{
b60205c7 532 struct sched_entity *curr = cfs_rq->curr;
bfb06889 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 534
1af5f730
PZ
535 u64 vruntime = cfs_rq->min_vruntime;
536
b60205c7
PZ
537 if (curr) {
538 if (curr->on_rq)
539 vruntime = curr->vruntime;
540 else
541 curr = NULL;
542 }
1af5f730 543
bfb06889
DB
544 if (leftmost) { /* non-empty tree */
545 struct sched_entity *se;
546 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 547
b60205c7 548 if (!curr)
1af5f730
PZ
549 vruntime = se->vruntime;
550 else
551 vruntime = min_vruntime(vruntime, se->vruntime);
552 }
553
1bf08230 554 /* ensure we never gain time by being placed backwards. */
1af5f730 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
556#ifndef CONFIG_64BIT
557 smp_wmb();
558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559#endif
1af5f730
PZ
560}
561
bf0f6f24
IM
562/*
563 * Enqueue an entity into the rb-tree:
564 */
0702e3eb 565static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 566{
bfb06889 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
568 struct rb_node *parent = NULL;
569 struct sched_entity *entry;
bfb06889 570 bool leftmost = true;
bf0f6f24
IM
571
572 /*
573 * Find the right place in the rbtree:
574 */
575 while (*link) {
576 parent = *link;
577 entry = rb_entry(parent, struct sched_entity, run_node);
578 /*
579 * We dont care about collisions. Nodes with
580 * the same key stay together.
581 */
2bd2d6f2 582 if (entity_before(se, entry)) {
bf0f6f24
IM
583 link = &parent->rb_left;
584 } else {
585 link = &parent->rb_right;
bfb06889 586 leftmost = false;
bf0f6f24
IM
587 }
588 }
589
bf0f6f24 590 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
591 rb_insert_color_cached(&se->run_node,
592 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
593}
594
0702e3eb 595static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 596{
bfb06889 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
598}
599
029632fb 600struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 601{
bfb06889 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
603
604 if (!left)
605 return NULL;
606
607 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
608}
609
ac53db59
RR
610static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611{
612 struct rb_node *next = rb_next(&se->run_node);
613
614 if (!next)
615 return NULL;
616
617 return rb_entry(next, struct sched_entity, run_node);
618}
619
620#ifdef CONFIG_SCHED_DEBUG
029632fb 621struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 622{
bfb06889 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 624
70eee74b
BS
625 if (!last)
626 return NULL;
7eee3e67
IM
627
628 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
629}
630
bf0f6f24
IM
631/**************************************************************
632 * Scheduling class statistics methods:
633 */
634
acb4a848 635int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 636 void __user *buffer, size_t *lenp,
b2be5e96
PZ
637 loff_t *ppos)
638{
8d65af78 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 640 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
641
642 if (ret || !write)
643 return ret;
644
645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 sysctl_sched_min_granularity);
647
acb4a848
CE
648#define WRT_SYSCTL(name) \
649 (normalized_sysctl_##name = sysctl_##name / (factor))
650 WRT_SYSCTL(sched_min_granularity);
651 WRT_SYSCTL(sched_latency);
652 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
653#undef WRT_SYSCTL
654
b2be5e96
PZ
655 return 0;
656}
657#endif
647e7cac 658
a7be37ac 659/*
f9c0b095 660 * delta /= w
a7be37ac 661 */
9dbdb155 662static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 663{
f9c0b095 664 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
666
667 return delta;
668}
669
647e7cac
IM
670/*
671 * The idea is to set a period in which each task runs once.
672 *
532b1858 673 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
674 * this period because otherwise the slices get too small.
675 *
676 * p = (nr <= nl) ? l : l*nr/nl
677 */
4d78e7b6
PZ
678static u64 __sched_period(unsigned long nr_running)
679{
8e2b0bf3
BF
680 if (unlikely(nr_running > sched_nr_latency))
681 return nr_running * sysctl_sched_min_granularity;
682 else
683 return sysctl_sched_latency;
4d78e7b6
PZ
684}
685
647e7cac
IM
686/*
687 * We calculate the wall-time slice from the period by taking a part
688 * proportional to the weight.
689 *
f9c0b095 690 * s = p*P[w/rw]
647e7cac 691 */
6d0f0ebd 692static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 693{
0a582440 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 695
0a582440 696 for_each_sched_entity(se) {
6272d68c 697 struct load_weight *load;
3104bf03 698 struct load_weight lw;
6272d68c
LM
699
700 cfs_rq = cfs_rq_of(se);
701 load = &cfs_rq->load;
f9c0b095 702
0a582440 703 if (unlikely(!se->on_rq)) {
3104bf03 704 lw = cfs_rq->load;
0a582440
MG
705
706 update_load_add(&lw, se->load.weight);
707 load = &lw;
708 }
9dbdb155 709 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
710 }
711 return slice;
bf0f6f24
IM
712}
713
647e7cac 714/*
660cc00f 715 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 716 *
f9c0b095 717 * vs = s/w
647e7cac 718 */
f9c0b095 719static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 720{
f9c0b095 721 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
722}
723
c0796298 724#include "pelt.h"
23127296 725#ifdef CONFIG_SMP
283e2ed3 726
772bd008 727static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 728static unsigned long task_h_load(struct task_struct *p);
3b1baa64 729static unsigned long capacity_of(int cpu);
fb13c7ee 730
540247fb
YD
731/* Give new sched_entity start runnable values to heavy its load in infant time */
732void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 733{
540247fb 734 struct sched_avg *sa = &se->avg;
a75cdaa9 735
f207934f
PZ
736 memset(sa, 0, sizeof(*sa));
737
b5a9b340 738 /*
dfcb245e 739 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 740 * they get a chance to stabilize to their real load level.
dfcb245e 741 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
1ea6c46a 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 746
f207934f
PZ
747 se->runnable_weight = se->load.weight;
748
9d89c257 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 750}
7ea241af 751
df217913 752static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 753
2b8c41da
YD
754/*
755 * With new tasks being created, their initial util_avgs are extrapolated
756 * based on the cfs_rq's current util_avg:
757 *
758 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
759 *
760 * However, in many cases, the above util_avg does not give a desired
761 * value. Moreover, the sum of the util_avgs may be divergent, such
762 * as when the series is a harmonic series.
763 *
764 * To solve this problem, we also cap the util_avg of successive tasks to
765 * only 1/2 of the left utilization budget:
766 *
8fe5c5a9 767 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 768 *
8fe5c5a9 769 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 770 *
8fe5c5a9
QP
771 * For example, for a CPU with 1024 of capacity, a simplest series from
772 * the beginning would be like:
2b8c41da
YD
773 *
774 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
775 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
776 *
777 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
778 * if util_avg > util_avg_cap.
779 */
d0fe0b9c 780void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 781{
d0fe0b9c 782 struct sched_entity *se = &p->se;
2b8c41da
YD
783 struct cfs_rq *cfs_rq = cfs_rq_of(se);
784 struct sched_avg *sa = &se->avg;
8ec59c0f 785 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 786 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
787
788 if (cap > 0) {
789 if (cfs_rq->avg.util_avg != 0) {
790 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
791 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
792
793 if (sa->util_avg > cap)
794 sa->util_avg = cap;
795 } else {
796 sa->util_avg = cap;
797 }
2b8c41da 798 }
7dc603c9 799
d0fe0b9c
DE
800 if (p->sched_class != &fair_sched_class) {
801 /*
802 * For !fair tasks do:
803 *
804 update_cfs_rq_load_avg(now, cfs_rq);
805 attach_entity_load_avg(cfs_rq, se, 0);
806 switched_from_fair(rq, p);
807 *
808 * such that the next switched_to_fair() has the
809 * expected state.
810 */
811 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
812 return;
7dc603c9
PZ
813 }
814
df217913 815 attach_entity_cfs_rq(se);
2b8c41da
YD
816}
817
7dc603c9 818#else /* !CONFIG_SMP */
540247fb 819void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
820{
821}
d0fe0b9c 822void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
823{
824}
3d30544f
PZ
825static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
826{
827}
7dc603c9 828#endif /* CONFIG_SMP */
a75cdaa9 829
bf0f6f24 830/*
9dbdb155 831 * Update the current task's runtime statistics.
bf0f6f24 832 */
b7cc0896 833static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 834{
429d43bc 835 struct sched_entity *curr = cfs_rq->curr;
78becc27 836 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 837 u64 delta_exec;
bf0f6f24
IM
838
839 if (unlikely(!curr))
840 return;
841
9dbdb155
PZ
842 delta_exec = now - curr->exec_start;
843 if (unlikely((s64)delta_exec <= 0))
34f28ecd 844 return;
bf0f6f24 845
8ebc91d9 846 curr->exec_start = now;
d842de87 847
9dbdb155
PZ
848 schedstat_set(curr->statistics.exec_max,
849 max(delta_exec, curr->statistics.exec_max));
850
851 curr->sum_exec_runtime += delta_exec;
ae92882e 852 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
853
854 curr->vruntime += calc_delta_fair(delta_exec, curr);
855 update_min_vruntime(cfs_rq);
856
d842de87
SV
857 if (entity_is_task(curr)) {
858 struct task_struct *curtask = task_of(curr);
859
f977bb49 860 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 861 cgroup_account_cputime(curtask, delta_exec);
f06febc9 862 account_group_exec_runtime(curtask, delta_exec);
d842de87 863 }
ec12cb7f
PT
864
865 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
866}
867
6e998916
SG
868static void update_curr_fair(struct rq *rq)
869{
870 update_curr(cfs_rq_of(&rq->curr->se));
871}
872
bf0f6f24 873static inline void
5870db5b 874update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 875{
4fa8d299
JP
876 u64 wait_start, prev_wait_start;
877
878 if (!schedstat_enabled())
879 return;
880
881 wait_start = rq_clock(rq_of(cfs_rq));
882 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
883
884 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
885 likely(wait_start > prev_wait_start))
886 wait_start -= prev_wait_start;
3ea94de1 887
2ed41a55 888 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
889}
890
4fa8d299 891static inline void
3ea94de1
JP
892update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
893{
894 struct task_struct *p;
cb251765
MG
895 u64 delta;
896
4fa8d299
JP
897 if (!schedstat_enabled())
898 return;
899
900 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
901
902 if (entity_is_task(se)) {
903 p = task_of(se);
904 if (task_on_rq_migrating(p)) {
905 /*
906 * Preserve migrating task's wait time so wait_start
907 * time stamp can be adjusted to accumulate wait time
908 * prior to migration.
909 */
2ed41a55 910 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
911 return;
912 }
913 trace_sched_stat_wait(p, delta);
914 }
915
2ed41a55 916 __schedstat_set(se->statistics.wait_max,
4fa8d299 917 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
918 __schedstat_inc(se->statistics.wait_count);
919 __schedstat_add(se->statistics.wait_sum, delta);
920 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 921}
3ea94de1 922
4fa8d299 923static inline void
1a3d027c
JP
924update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
925{
926 struct task_struct *tsk = NULL;
4fa8d299
JP
927 u64 sleep_start, block_start;
928
929 if (!schedstat_enabled())
930 return;
931
932 sleep_start = schedstat_val(se->statistics.sleep_start);
933 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
934
935 if (entity_is_task(se))
936 tsk = task_of(se);
937
4fa8d299
JP
938 if (sleep_start) {
939 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
940
941 if ((s64)delta < 0)
942 delta = 0;
943
4fa8d299 944 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 945 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 946
2ed41a55
PZ
947 __schedstat_set(se->statistics.sleep_start, 0);
948 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
949
950 if (tsk) {
951 account_scheduler_latency(tsk, delta >> 10, 1);
952 trace_sched_stat_sleep(tsk, delta);
953 }
954 }
4fa8d299
JP
955 if (block_start) {
956 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
957
958 if ((s64)delta < 0)
959 delta = 0;
960
4fa8d299 961 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 962 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 963
2ed41a55
PZ
964 __schedstat_set(se->statistics.block_start, 0);
965 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
966
967 if (tsk) {
968 if (tsk->in_iowait) {
2ed41a55
PZ
969 __schedstat_add(se->statistics.iowait_sum, delta);
970 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
971 trace_sched_stat_iowait(tsk, delta);
972 }
973
974 trace_sched_stat_blocked(tsk, delta);
975
976 /*
977 * Blocking time is in units of nanosecs, so shift by
978 * 20 to get a milliseconds-range estimation of the
979 * amount of time that the task spent sleeping:
980 */
981 if (unlikely(prof_on == SLEEP_PROFILING)) {
982 profile_hits(SLEEP_PROFILING,
983 (void *)get_wchan(tsk),
984 delta >> 20);
985 }
986 account_scheduler_latency(tsk, delta >> 10, 0);
987 }
988 }
3ea94de1 989}
3ea94de1 990
bf0f6f24
IM
991/*
992 * Task is being enqueued - update stats:
993 */
cb251765 994static inline void
1a3d027c 995update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 996{
4fa8d299
JP
997 if (!schedstat_enabled())
998 return;
999
bf0f6f24
IM
1000 /*
1001 * Are we enqueueing a waiting task? (for current tasks
1002 * a dequeue/enqueue event is a NOP)
1003 */
429d43bc 1004 if (se != cfs_rq->curr)
5870db5b 1005 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1006
1007 if (flags & ENQUEUE_WAKEUP)
1008 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1009}
1010
bf0f6f24 1011static inline void
cb251765 1012update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1013{
4fa8d299
JP
1014
1015 if (!schedstat_enabled())
1016 return;
1017
bf0f6f24
IM
1018 /*
1019 * Mark the end of the wait period if dequeueing a
1020 * waiting task:
1021 */
429d43bc 1022 if (se != cfs_rq->curr)
9ef0a961 1023 update_stats_wait_end(cfs_rq, se);
cb251765 1024
4fa8d299
JP
1025 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1026 struct task_struct *tsk = task_of(se);
cb251765 1027
4fa8d299 1028 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1029 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1030 rq_clock(rq_of(cfs_rq)));
1031 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1032 __schedstat_set(se->statistics.block_start,
4fa8d299 1033 rq_clock(rq_of(cfs_rq)));
cb251765 1034 }
cb251765
MG
1035}
1036
bf0f6f24
IM
1037/*
1038 * We are picking a new current task - update its stats:
1039 */
1040static inline void
79303e9e 1041update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1042{
1043 /*
1044 * We are starting a new run period:
1045 */
78becc27 1046 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1047}
1048
bf0f6f24
IM
1049/**************************************************
1050 * Scheduling class queueing methods:
1051 */
1052
cbee9f88
PZ
1053#ifdef CONFIG_NUMA_BALANCING
1054/*
598f0ec0
MG
1055 * Approximate time to scan a full NUMA task in ms. The task scan period is
1056 * calculated based on the tasks virtual memory size and
1057 * numa_balancing_scan_size.
cbee9f88 1058 */
598f0ec0
MG
1059unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1060unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1061
1062/* Portion of address space to scan in MB */
1063unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1064
4b96a29b
PZ
1065/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1066unsigned int sysctl_numa_balancing_scan_delay = 1000;
1067
b5dd77c8 1068struct numa_group {
c45a7795 1069 refcount_t refcount;
b5dd77c8
RR
1070
1071 spinlock_t lock; /* nr_tasks, tasks */
1072 int nr_tasks;
1073 pid_t gid;
1074 int active_nodes;
1075
1076 struct rcu_head rcu;
1077 unsigned long total_faults;
1078 unsigned long max_faults_cpu;
1079 /*
1080 * Faults_cpu is used to decide whether memory should move
1081 * towards the CPU. As a consequence, these stats are weighted
1082 * more by CPU use than by memory faults.
1083 */
1084 unsigned long *faults_cpu;
1085 unsigned long faults[0];
1086};
1087
cb361d8c
JH
1088/*
1089 * For functions that can be called in multiple contexts that permit reading
1090 * ->numa_group (see struct task_struct for locking rules).
1091 */
1092static struct numa_group *deref_task_numa_group(struct task_struct *p)
1093{
1094 return rcu_dereference_check(p->numa_group, p == current ||
1095 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1096}
1097
1098static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1099{
1100 return rcu_dereference_protected(p->numa_group, p == current);
1101}
1102
b5dd77c8
RR
1103static inline unsigned long group_faults_priv(struct numa_group *ng);
1104static inline unsigned long group_faults_shared(struct numa_group *ng);
1105
598f0ec0
MG
1106static unsigned int task_nr_scan_windows(struct task_struct *p)
1107{
1108 unsigned long rss = 0;
1109 unsigned long nr_scan_pages;
1110
1111 /*
1112 * Calculations based on RSS as non-present and empty pages are skipped
1113 * by the PTE scanner and NUMA hinting faults should be trapped based
1114 * on resident pages
1115 */
1116 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1117 rss = get_mm_rss(p->mm);
1118 if (!rss)
1119 rss = nr_scan_pages;
1120
1121 rss = round_up(rss, nr_scan_pages);
1122 return rss / nr_scan_pages;
1123}
1124
1125/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1126#define MAX_SCAN_WINDOW 2560
1127
1128static unsigned int task_scan_min(struct task_struct *p)
1129{
316c1608 1130 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1131 unsigned int scan, floor;
1132 unsigned int windows = 1;
1133
64192658
KT
1134 if (scan_size < MAX_SCAN_WINDOW)
1135 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1136 floor = 1000 / windows;
1137
1138 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1139 return max_t(unsigned int, floor, scan);
1140}
1141
b5dd77c8
RR
1142static unsigned int task_scan_start(struct task_struct *p)
1143{
1144 unsigned long smin = task_scan_min(p);
1145 unsigned long period = smin;
cb361d8c 1146 struct numa_group *ng;
b5dd77c8
RR
1147
1148 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1149 rcu_read_lock();
1150 ng = rcu_dereference(p->numa_group);
1151 if (ng) {
b5dd77c8
RR
1152 unsigned long shared = group_faults_shared(ng);
1153 unsigned long private = group_faults_priv(ng);
1154
c45a7795 1155 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1156 period *= shared + 1;
1157 period /= private + shared + 1;
1158 }
cb361d8c 1159 rcu_read_unlock();
b5dd77c8
RR
1160
1161 return max(smin, period);
1162}
1163
598f0ec0
MG
1164static unsigned int task_scan_max(struct task_struct *p)
1165{
b5dd77c8
RR
1166 unsigned long smin = task_scan_min(p);
1167 unsigned long smax;
cb361d8c 1168 struct numa_group *ng;
598f0ec0
MG
1169
1170 /* Watch for min being lower than max due to floor calculations */
1171 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1172
1173 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1174 ng = deref_curr_numa_group(p);
1175 if (ng) {
b5dd77c8
RR
1176 unsigned long shared = group_faults_shared(ng);
1177 unsigned long private = group_faults_priv(ng);
1178 unsigned long period = smax;
1179
c45a7795 1180 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1181 period *= shared + 1;
1182 period /= private + shared + 1;
1183
1184 smax = max(smax, period);
1185 }
1186
598f0ec0
MG
1187 return max(smin, smax);
1188}
1189
0ec8aa00
PZ
1190static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1191{
98fa15f3 1192 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1193 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1194}
1195
1196static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1197{
98fa15f3 1198 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1199 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1200}
1201
be1e4e76
RR
1202/* Shared or private faults. */
1203#define NR_NUMA_HINT_FAULT_TYPES 2
1204
1205/* Memory and CPU locality */
1206#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1207
1208/* Averaged statistics, and temporary buffers. */
1209#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1210
e29cf08b
MG
1211pid_t task_numa_group_id(struct task_struct *p)
1212{
cb361d8c
JH
1213 struct numa_group *ng;
1214 pid_t gid = 0;
1215
1216 rcu_read_lock();
1217 ng = rcu_dereference(p->numa_group);
1218 if (ng)
1219 gid = ng->gid;
1220 rcu_read_unlock();
1221
1222 return gid;
e29cf08b
MG
1223}
1224
44dba3d5 1225/*
97fb7a0a 1226 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1227 * occupy the first half of the array. The second half of the
1228 * array is for current counters, which are averaged into the
1229 * first set by task_numa_placement.
1230 */
1231static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1232{
44dba3d5 1233 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1234}
1235
1236static inline unsigned long task_faults(struct task_struct *p, int nid)
1237{
44dba3d5 1238 if (!p->numa_faults)
ac8e895b
MG
1239 return 0;
1240
44dba3d5
IM
1241 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1242 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1243}
1244
83e1d2cd
MG
1245static inline unsigned long group_faults(struct task_struct *p, int nid)
1246{
cb361d8c
JH
1247 struct numa_group *ng = deref_task_numa_group(p);
1248
1249 if (!ng)
83e1d2cd
MG
1250 return 0;
1251
cb361d8c
JH
1252 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1254}
1255
20e07dea
RR
1256static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1257{
44dba3d5
IM
1258 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1259 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1260}
1261
b5dd77c8
RR
1262static inline unsigned long group_faults_priv(struct numa_group *ng)
1263{
1264 unsigned long faults = 0;
1265 int node;
1266
1267 for_each_online_node(node) {
1268 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1269 }
1270
1271 return faults;
1272}
1273
1274static inline unsigned long group_faults_shared(struct numa_group *ng)
1275{
1276 unsigned long faults = 0;
1277 int node;
1278
1279 for_each_online_node(node) {
1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1281 }
1282
1283 return faults;
1284}
1285
4142c3eb
RR
1286/*
1287 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1288 * considered part of a numa group's pseudo-interleaving set. Migrations
1289 * between these nodes are slowed down, to allow things to settle down.
1290 */
1291#define ACTIVE_NODE_FRACTION 3
1292
1293static bool numa_is_active_node(int nid, struct numa_group *ng)
1294{
1295 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1296}
1297
6c6b1193
RR
1298/* Handle placement on systems where not all nodes are directly connected. */
1299static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1300 int maxdist, bool task)
1301{
1302 unsigned long score = 0;
1303 int node;
1304
1305 /*
1306 * All nodes are directly connected, and the same distance
1307 * from each other. No need for fancy placement algorithms.
1308 */
1309 if (sched_numa_topology_type == NUMA_DIRECT)
1310 return 0;
1311
1312 /*
1313 * This code is called for each node, introducing N^2 complexity,
1314 * which should be ok given the number of nodes rarely exceeds 8.
1315 */
1316 for_each_online_node(node) {
1317 unsigned long faults;
1318 int dist = node_distance(nid, node);
1319
1320 /*
1321 * The furthest away nodes in the system are not interesting
1322 * for placement; nid was already counted.
1323 */
1324 if (dist == sched_max_numa_distance || node == nid)
1325 continue;
1326
1327 /*
1328 * On systems with a backplane NUMA topology, compare groups
1329 * of nodes, and move tasks towards the group with the most
1330 * memory accesses. When comparing two nodes at distance
1331 * "hoplimit", only nodes closer by than "hoplimit" are part
1332 * of each group. Skip other nodes.
1333 */
1334 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1335 dist >= maxdist)
6c6b1193
RR
1336 continue;
1337
1338 /* Add up the faults from nearby nodes. */
1339 if (task)
1340 faults = task_faults(p, node);
1341 else
1342 faults = group_faults(p, node);
1343
1344 /*
1345 * On systems with a glueless mesh NUMA topology, there are
1346 * no fixed "groups of nodes". Instead, nodes that are not
1347 * directly connected bounce traffic through intermediate
1348 * nodes; a numa_group can occupy any set of nodes.
1349 * The further away a node is, the less the faults count.
1350 * This seems to result in good task placement.
1351 */
1352 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1353 faults *= (sched_max_numa_distance - dist);
1354 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1355 }
1356
1357 score += faults;
1358 }
1359
1360 return score;
1361}
1362
83e1d2cd
MG
1363/*
1364 * These return the fraction of accesses done by a particular task, or
1365 * task group, on a particular numa node. The group weight is given a
1366 * larger multiplier, in order to group tasks together that are almost
1367 * evenly spread out between numa nodes.
1368 */
7bd95320
RR
1369static inline unsigned long task_weight(struct task_struct *p, int nid,
1370 int dist)
83e1d2cd 1371{
7bd95320 1372 unsigned long faults, total_faults;
83e1d2cd 1373
44dba3d5 1374 if (!p->numa_faults)
83e1d2cd
MG
1375 return 0;
1376
1377 total_faults = p->total_numa_faults;
1378
1379 if (!total_faults)
1380 return 0;
1381
7bd95320 1382 faults = task_faults(p, nid);
6c6b1193
RR
1383 faults += score_nearby_nodes(p, nid, dist, true);
1384
7bd95320 1385 return 1000 * faults / total_faults;
83e1d2cd
MG
1386}
1387
7bd95320
RR
1388static inline unsigned long group_weight(struct task_struct *p, int nid,
1389 int dist)
83e1d2cd 1390{
cb361d8c 1391 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1392 unsigned long faults, total_faults;
1393
cb361d8c 1394 if (!ng)
7bd95320
RR
1395 return 0;
1396
cb361d8c 1397 total_faults = ng->total_faults;
7bd95320
RR
1398
1399 if (!total_faults)
83e1d2cd
MG
1400 return 0;
1401
7bd95320 1402 faults = group_faults(p, nid);
6c6b1193
RR
1403 faults += score_nearby_nodes(p, nid, dist, false);
1404
7bd95320 1405 return 1000 * faults / total_faults;
83e1d2cd
MG
1406}
1407
10f39042
RR
1408bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1409 int src_nid, int dst_cpu)
1410{
cb361d8c 1411 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1412 int dst_nid = cpu_to_node(dst_cpu);
1413 int last_cpupid, this_cpupid;
1414
1415 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1416 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1417
1418 /*
1419 * Allow first faults or private faults to migrate immediately early in
1420 * the lifetime of a task. The magic number 4 is based on waiting for
1421 * two full passes of the "multi-stage node selection" test that is
1422 * executed below.
1423 */
98fa15f3 1424 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1425 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1426 return true;
10f39042
RR
1427
1428 /*
1429 * Multi-stage node selection is used in conjunction with a periodic
1430 * migration fault to build a temporal task<->page relation. By using
1431 * a two-stage filter we remove short/unlikely relations.
1432 *
1433 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1434 * a task's usage of a particular page (n_p) per total usage of this
1435 * page (n_t) (in a given time-span) to a probability.
1436 *
1437 * Our periodic faults will sample this probability and getting the
1438 * same result twice in a row, given these samples are fully
1439 * independent, is then given by P(n)^2, provided our sample period
1440 * is sufficiently short compared to the usage pattern.
1441 *
1442 * This quadric squishes small probabilities, making it less likely we
1443 * act on an unlikely task<->page relation.
1444 */
10f39042
RR
1445 if (!cpupid_pid_unset(last_cpupid) &&
1446 cpupid_to_nid(last_cpupid) != dst_nid)
1447 return false;
1448
1449 /* Always allow migrate on private faults */
1450 if (cpupid_match_pid(p, last_cpupid))
1451 return true;
1452
1453 /* A shared fault, but p->numa_group has not been set up yet. */
1454 if (!ng)
1455 return true;
1456
1457 /*
4142c3eb
RR
1458 * Destination node is much more heavily used than the source
1459 * node? Allow migration.
10f39042 1460 */
4142c3eb
RR
1461 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1462 ACTIVE_NODE_FRACTION)
10f39042
RR
1463 return true;
1464
1465 /*
4142c3eb
RR
1466 * Distribute memory according to CPU & memory use on each node,
1467 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1468 *
1469 * faults_cpu(dst) 3 faults_cpu(src)
1470 * --------------- * - > ---------------
1471 * faults_mem(dst) 4 faults_mem(src)
10f39042 1472 */
4142c3eb
RR
1473 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1474 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1475}
1476
11f10e54
VG
1477static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
1478
1479static unsigned long cpu_runnable_load(struct rq *rq)
1480{
1481 return cfs_rq_runnable_load_avg(&rq->cfs);
1482}
58d081b5 1483
fb13c7ee 1484/* Cached statistics for all CPUs within a node */
58d081b5
MG
1485struct numa_stats {
1486 unsigned long load;
fb13c7ee
MG
1487
1488 /* Total compute capacity of CPUs on a node */
5ef20ca1 1489 unsigned long compute_capacity;
58d081b5 1490};
e6628d5b 1491
fb13c7ee
MG
1492/*
1493 * XXX borrowed from update_sg_lb_stats
1494 */
1495static void update_numa_stats(struct numa_stats *ns, int nid)
1496{
d90707eb 1497 int cpu;
fb13c7ee
MG
1498
1499 memset(ns, 0, sizeof(*ns));
1500 for_each_cpu(cpu, cpumask_of_node(nid)) {
1501 struct rq *rq = cpu_rq(cpu);
1502
a3df0679 1503 ns->load += cpu_runnable_load(rq);
ced549fa 1504 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1505 }
1506
fb13c7ee
MG
1507}
1508
58d081b5
MG
1509struct task_numa_env {
1510 struct task_struct *p;
e6628d5b 1511
58d081b5
MG
1512 int src_cpu, src_nid;
1513 int dst_cpu, dst_nid;
e6628d5b 1514
58d081b5 1515 struct numa_stats src_stats, dst_stats;
e6628d5b 1516
40ea2b42 1517 int imbalance_pct;
7bd95320 1518 int dist;
fb13c7ee
MG
1519
1520 struct task_struct *best_task;
1521 long best_imp;
58d081b5
MG
1522 int best_cpu;
1523};
1524
fb13c7ee
MG
1525static void task_numa_assign(struct task_numa_env *env,
1526 struct task_struct *p, long imp)
1527{
a4739eca
SD
1528 struct rq *rq = cpu_rq(env->dst_cpu);
1529
1530 /* Bail out if run-queue part of active NUMA balance. */
1531 if (xchg(&rq->numa_migrate_on, 1))
1532 return;
1533
1534 /*
1535 * Clear previous best_cpu/rq numa-migrate flag, since task now
1536 * found a better CPU to move/swap.
1537 */
1538 if (env->best_cpu != -1) {
1539 rq = cpu_rq(env->best_cpu);
1540 WRITE_ONCE(rq->numa_migrate_on, 0);
1541 }
1542
fb13c7ee
MG
1543 if (env->best_task)
1544 put_task_struct(env->best_task);
bac78573
ON
1545 if (p)
1546 get_task_struct(p);
fb13c7ee
MG
1547
1548 env->best_task = p;
1549 env->best_imp = imp;
1550 env->best_cpu = env->dst_cpu;
1551}
1552
28a21745 1553static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1554 struct task_numa_env *env)
1555{
e4991b24
RR
1556 long imb, old_imb;
1557 long orig_src_load, orig_dst_load;
28a21745
RR
1558 long src_capacity, dst_capacity;
1559
1560 /*
1561 * The load is corrected for the CPU capacity available on each node.
1562 *
1563 * src_load dst_load
1564 * ------------ vs ---------
1565 * src_capacity dst_capacity
1566 */
1567 src_capacity = env->src_stats.compute_capacity;
1568 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1569
5f95ba7a 1570 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1571
28a21745 1572 orig_src_load = env->src_stats.load;
e4991b24 1573 orig_dst_load = env->dst_stats.load;
28a21745 1574
5f95ba7a 1575 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1576
1577 /* Would this change make things worse? */
1578 return (imb > old_imb);
e63da036
RR
1579}
1580
6fd98e77
SD
1581/*
1582 * Maximum NUMA importance can be 1998 (2*999);
1583 * SMALLIMP @ 30 would be close to 1998/64.
1584 * Used to deter task migration.
1585 */
1586#define SMALLIMP 30
1587
fb13c7ee
MG
1588/*
1589 * This checks if the overall compute and NUMA accesses of the system would
1590 * be improved if the source tasks was migrated to the target dst_cpu taking
1591 * into account that it might be best if task running on the dst_cpu should
1592 * be exchanged with the source task
1593 */
887c290e 1594static void task_numa_compare(struct task_numa_env *env,
305c1fac 1595 long taskimp, long groupimp, bool maymove)
fb13c7ee 1596{
cb361d8c 1597 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1598 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1599 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1600 struct task_struct *cur;
28a21745 1601 long src_load, dst_load;
7bd95320 1602 int dist = env->dist;
cb361d8c
JH
1603 long moveimp = imp;
1604 long load;
fb13c7ee 1605
a4739eca
SD
1606 if (READ_ONCE(dst_rq->numa_migrate_on))
1607 return;
1608
fb13c7ee 1609 rcu_read_lock();
154abafc 1610 cur = rcu_dereference(dst_rq->curr);
bac78573 1611 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1612 cur = NULL;
1613
7af68335
PZ
1614 /*
1615 * Because we have preemption enabled we can get migrated around and
1616 * end try selecting ourselves (current == env->p) as a swap candidate.
1617 */
1618 if (cur == env->p)
1619 goto unlock;
1620
305c1fac 1621 if (!cur) {
6fd98e77 1622 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1623 goto assign;
1624 else
1625 goto unlock;
1626 }
1627
fb13c7ee
MG
1628 /*
1629 * "imp" is the fault differential for the source task between the
1630 * source and destination node. Calculate the total differential for
1631 * the source task and potential destination task. The more negative
305c1fac 1632 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1633 * be incurred if the tasks were swapped.
1634 */
305c1fac 1635 /* Skip this swap candidate if cannot move to the source cpu */
3bd37062 1636 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
305c1fac 1637 goto unlock;
fb13c7ee 1638
305c1fac
SD
1639 /*
1640 * If dst and source tasks are in the same NUMA group, or not
1641 * in any group then look only at task weights.
1642 */
cb361d8c
JH
1643 cur_ng = rcu_dereference(cur->numa_group);
1644 if (cur_ng == p_ng) {
305c1fac
SD
1645 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1646 task_weight(cur, env->dst_nid, dist);
887c290e 1647 /*
305c1fac
SD
1648 * Add some hysteresis to prevent swapping the
1649 * tasks within a group over tiny differences.
887c290e 1650 */
cb361d8c 1651 if (cur_ng)
305c1fac
SD
1652 imp -= imp / 16;
1653 } else {
1654 /*
1655 * Compare the group weights. If a task is all by itself
1656 * (not part of a group), use the task weight instead.
1657 */
cb361d8c 1658 if (cur_ng && p_ng)
305c1fac
SD
1659 imp += group_weight(cur, env->src_nid, dist) -
1660 group_weight(cur, env->dst_nid, dist);
1661 else
1662 imp += task_weight(cur, env->src_nid, dist) -
1663 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1664 }
1665
305c1fac 1666 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1667 imp = moveimp;
305c1fac 1668 cur = NULL;
fb13c7ee 1669 goto assign;
305c1fac 1670 }
fb13c7ee 1671
6fd98e77
SD
1672 /*
1673 * If the NUMA importance is less than SMALLIMP,
1674 * task migration might only result in ping pong
1675 * of tasks and also hurt performance due to cache
1676 * misses.
1677 */
1678 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1679 goto unlock;
1680
fb13c7ee
MG
1681 /*
1682 * In the overloaded case, try and keep the load balanced.
1683 */
305c1fac
SD
1684 load = task_h_load(env->p) - task_h_load(cur);
1685 if (!load)
1686 goto assign;
1687
e720fff6
PZ
1688 dst_load = env->dst_stats.load + load;
1689 src_load = env->src_stats.load - load;
fb13c7ee 1690
28a21745 1691 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1692 goto unlock;
1693
305c1fac 1694assign:
ba7e5a27
RR
1695 /*
1696 * One idle CPU per node is evaluated for a task numa move.
1697 * Call select_idle_sibling to maybe find a better one.
1698 */
10e2f1ac
PZ
1699 if (!cur) {
1700 /*
97fb7a0a 1701 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1702 * can be used from IRQ context.
1703 */
1704 local_irq_disable();
772bd008
MR
1705 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1706 env->dst_cpu);
10e2f1ac
PZ
1707 local_irq_enable();
1708 }
ba7e5a27 1709
fb13c7ee
MG
1710 task_numa_assign(env, cur, imp);
1711unlock:
1712 rcu_read_unlock();
1713}
1714
887c290e
RR
1715static void task_numa_find_cpu(struct task_numa_env *env,
1716 long taskimp, long groupimp)
2c8a50aa 1717{
305c1fac
SD
1718 long src_load, dst_load, load;
1719 bool maymove = false;
2c8a50aa
MG
1720 int cpu;
1721
305c1fac
SD
1722 load = task_h_load(env->p);
1723 dst_load = env->dst_stats.load + load;
1724 src_load = env->src_stats.load - load;
1725
1726 /*
1727 * If the improvement from just moving env->p direction is better
1728 * than swapping tasks around, check if a move is possible.
1729 */
1730 maymove = !load_too_imbalanced(src_load, dst_load, env);
1731
2c8a50aa
MG
1732 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1733 /* Skip this CPU if the source task cannot migrate */
3bd37062 1734 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1735 continue;
1736
1737 env->dst_cpu = cpu;
305c1fac 1738 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1739 }
1740}
1741
58d081b5
MG
1742static int task_numa_migrate(struct task_struct *p)
1743{
58d081b5
MG
1744 struct task_numa_env env = {
1745 .p = p,
fb13c7ee 1746
58d081b5 1747 .src_cpu = task_cpu(p),
b32e86b4 1748 .src_nid = task_node(p),
fb13c7ee
MG
1749
1750 .imbalance_pct = 112,
1751
1752 .best_task = NULL,
1753 .best_imp = 0,
4142c3eb 1754 .best_cpu = -1,
58d081b5 1755 };
cb361d8c 1756 unsigned long taskweight, groupweight;
58d081b5 1757 struct sched_domain *sd;
cb361d8c
JH
1758 long taskimp, groupimp;
1759 struct numa_group *ng;
a4739eca 1760 struct rq *best_rq;
7bd95320 1761 int nid, ret, dist;
e6628d5b 1762
58d081b5 1763 /*
fb13c7ee
MG
1764 * Pick the lowest SD_NUMA domain, as that would have the smallest
1765 * imbalance and would be the first to start moving tasks about.
1766 *
1767 * And we want to avoid any moving of tasks about, as that would create
1768 * random movement of tasks -- counter the numa conditions we're trying
1769 * to satisfy here.
58d081b5
MG
1770 */
1771 rcu_read_lock();
fb13c7ee 1772 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1773 if (sd)
1774 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1775 rcu_read_unlock();
1776
46a73e8a
RR
1777 /*
1778 * Cpusets can break the scheduler domain tree into smaller
1779 * balance domains, some of which do not cross NUMA boundaries.
1780 * Tasks that are "trapped" in such domains cannot be migrated
1781 * elsewhere, so there is no point in (re)trying.
1782 */
1783 if (unlikely(!sd)) {
8cd45eee 1784 sched_setnuma(p, task_node(p));
46a73e8a
RR
1785 return -EINVAL;
1786 }
1787
2c8a50aa 1788 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1789 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1790 taskweight = task_weight(p, env.src_nid, dist);
1791 groupweight = group_weight(p, env.src_nid, dist);
1792 update_numa_stats(&env.src_stats, env.src_nid);
1793 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1794 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1795 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1796
a43455a1 1797 /* Try to find a spot on the preferred nid. */
2d4056fa 1798 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1799
9de05d48
RR
1800 /*
1801 * Look at other nodes in these cases:
1802 * - there is no space available on the preferred_nid
1803 * - the task is part of a numa_group that is interleaved across
1804 * multiple NUMA nodes; in order to better consolidate the group,
1805 * we need to check other locations.
1806 */
cb361d8c
JH
1807 ng = deref_curr_numa_group(p);
1808 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
1809 for_each_online_node(nid) {
1810 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1811 continue;
58d081b5 1812
7bd95320 1813 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1814 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1815 dist != env.dist) {
1816 taskweight = task_weight(p, env.src_nid, dist);
1817 groupweight = group_weight(p, env.src_nid, dist);
1818 }
7bd95320 1819
83e1d2cd 1820 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1821 taskimp = task_weight(p, nid, dist) - taskweight;
1822 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1823 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1824 continue;
1825
7bd95320 1826 env.dist = dist;
2c8a50aa
MG
1827 env.dst_nid = nid;
1828 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1829 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1830 }
1831 }
1832
68d1b02a
RR
1833 /*
1834 * If the task is part of a workload that spans multiple NUMA nodes,
1835 * and is migrating into one of the workload's active nodes, remember
1836 * this node as the task's preferred numa node, so the workload can
1837 * settle down.
1838 * A task that migrated to a second choice node will be better off
1839 * trying for a better one later. Do not set the preferred node here.
1840 */
cb361d8c 1841 if (ng) {
db015dae
RR
1842 if (env.best_cpu == -1)
1843 nid = env.src_nid;
1844 else
8cd45eee 1845 nid = cpu_to_node(env.best_cpu);
db015dae 1846
8cd45eee
SD
1847 if (nid != p->numa_preferred_nid)
1848 sched_setnuma(p, nid);
db015dae
RR
1849 }
1850
1851 /* No better CPU than the current one was found. */
1852 if (env.best_cpu == -1)
1853 return -EAGAIN;
0ec8aa00 1854
a4739eca 1855 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1856 if (env.best_task == NULL) {
286549dc 1857 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1858 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1859 if (ret != 0)
1860 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1861 return ret;
1862 }
1863
0ad4e3df 1864 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1865 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1866
286549dc
MG
1867 if (ret != 0)
1868 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1869 put_task_struct(env.best_task);
1870 return ret;
e6628d5b
MG
1871}
1872
6b9a7460
MG
1873/* Attempt to migrate a task to a CPU on the preferred node. */
1874static void numa_migrate_preferred(struct task_struct *p)
1875{
5085e2a3
RR
1876 unsigned long interval = HZ;
1877
2739d3ee 1878 /* This task has no NUMA fault statistics yet */
98fa15f3 1879 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
1880 return;
1881
2739d3ee 1882 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1883 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1884 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1885
1886 /* Success if task is already running on preferred CPU */
de1b301a 1887 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1888 return;
1889
1890 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1891 task_numa_migrate(p);
6b9a7460
MG
1892}
1893
20e07dea 1894/*
4142c3eb 1895 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1896 * tracking the nodes from which NUMA hinting faults are triggered. This can
1897 * be different from the set of nodes where the workload's memory is currently
1898 * located.
20e07dea 1899 */
4142c3eb 1900static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1901{
1902 unsigned long faults, max_faults = 0;
4142c3eb 1903 int nid, active_nodes = 0;
20e07dea
RR
1904
1905 for_each_online_node(nid) {
1906 faults = group_faults_cpu(numa_group, nid);
1907 if (faults > max_faults)
1908 max_faults = faults;
1909 }
1910
1911 for_each_online_node(nid) {
1912 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1913 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1914 active_nodes++;
20e07dea 1915 }
4142c3eb
RR
1916
1917 numa_group->max_faults_cpu = max_faults;
1918 numa_group->active_nodes = active_nodes;
20e07dea
RR
1919}
1920
04bb2f94
RR
1921/*
1922 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1923 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1924 * period will be for the next scan window. If local/(local+remote) ratio is
1925 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1926 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1927 */
1928#define NUMA_PERIOD_SLOTS 10
a22b4b01 1929#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1930
1931/*
1932 * Increase the scan period (slow down scanning) if the majority of
1933 * our memory is already on our local node, or if the majority of
1934 * the page accesses are shared with other processes.
1935 * Otherwise, decrease the scan period.
1936 */
1937static void update_task_scan_period(struct task_struct *p,
1938 unsigned long shared, unsigned long private)
1939{
1940 unsigned int period_slot;
37ec97de 1941 int lr_ratio, ps_ratio;
04bb2f94
RR
1942 int diff;
1943
1944 unsigned long remote = p->numa_faults_locality[0];
1945 unsigned long local = p->numa_faults_locality[1];
1946
1947 /*
1948 * If there were no record hinting faults then either the task is
1949 * completely idle or all activity is areas that are not of interest
074c2381
MG
1950 * to automatic numa balancing. Related to that, if there were failed
1951 * migration then it implies we are migrating too quickly or the local
1952 * node is overloaded. In either case, scan slower
04bb2f94 1953 */
074c2381 1954 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1955 p->numa_scan_period = min(p->numa_scan_period_max,
1956 p->numa_scan_period << 1);
1957
1958 p->mm->numa_next_scan = jiffies +
1959 msecs_to_jiffies(p->numa_scan_period);
1960
1961 return;
1962 }
1963
1964 /*
1965 * Prepare to scale scan period relative to the current period.
1966 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1967 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1968 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1969 */
1970 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1971 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1972 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1973
1974 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1975 /*
1976 * Most memory accesses are local. There is no need to
1977 * do fast NUMA scanning, since memory is already local.
1978 */
1979 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1980 if (!slot)
1981 slot = 1;
1982 diff = slot * period_slot;
1983 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1984 /*
1985 * Most memory accesses are shared with other tasks.
1986 * There is no point in continuing fast NUMA scanning,
1987 * since other tasks may just move the memory elsewhere.
1988 */
1989 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1990 if (!slot)
1991 slot = 1;
1992 diff = slot * period_slot;
1993 } else {
04bb2f94 1994 /*
37ec97de
RR
1995 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1996 * yet they are not on the local NUMA node. Speed up
1997 * NUMA scanning to get the memory moved over.
04bb2f94 1998 */
37ec97de
RR
1999 int ratio = max(lr_ratio, ps_ratio);
2000 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2001 }
2002
2003 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2004 task_scan_min(p), task_scan_max(p));
2005 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2006}
2007
7e2703e6
RR
2008/*
2009 * Get the fraction of time the task has been running since the last
2010 * NUMA placement cycle. The scheduler keeps similar statistics, but
2011 * decays those on a 32ms period, which is orders of magnitude off
2012 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2013 * stats only if the task is so new there are no NUMA statistics yet.
2014 */
2015static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2016{
2017 u64 runtime, delta, now;
2018 /* Use the start of this time slice to avoid calculations. */
2019 now = p->se.exec_start;
2020 runtime = p->se.sum_exec_runtime;
2021
2022 if (p->last_task_numa_placement) {
2023 delta = runtime - p->last_sum_exec_runtime;
2024 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2025
2026 /* Avoid time going backwards, prevent potential divide error: */
2027 if (unlikely((s64)*period < 0))
2028 *period = 0;
7e2703e6 2029 } else {
c7b50216 2030 delta = p->se.avg.load_sum;
9d89c257 2031 *period = LOAD_AVG_MAX;
7e2703e6
RR
2032 }
2033
2034 p->last_sum_exec_runtime = runtime;
2035 p->last_task_numa_placement = now;
2036
2037 return delta;
2038}
2039
54009416
RR
2040/*
2041 * Determine the preferred nid for a task in a numa_group. This needs to
2042 * be done in a way that produces consistent results with group_weight,
2043 * otherwise workloads might not converge.
2044 */
2045static int preferred_group_nid(struct task_struct *p, int nid)
2046{
2047 nodemask_t nodes;
2048 int dist;
2049
2050 /* Direct connections between all NUMA nodes. */
2051 if (sched_numa_topology_type == NUMA_DIRECT)
2052 return nid;
2053
2054 /*
2055 * On a system with glueless mesh NUMA topology, group_weight
2056 * scores nodes according to the number of NUMA hinting faults on
2057 * both the node itself, and on nearby nodes.
2058 */
2059 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2060 unsigned long score, max_score = 0;
2061 int node, max_node = nid;
2062
2063 dist = sched_max_numa_distance;
2064
2065 for_each_online_node(node) {
2066 score = group_weight(p, node, dist);
2067 if (score > max_score) {
2068 max_score = score;
2069 max_node = node;
2070 }
2071 }
2072 return max_node;
2073 }
2074
2075 /*
2076 * Finding the preferred nid in a system with NUMA backplane
2077 * interconnect topology is more involved. The goal is to locate
2078 * tasks from numa_groups near each other in the system, and
2079 * untangle workloads from different sides of the system. This requires
2080 * searching down the hierarchy of node groups, recursively searching
2081 * inside the highest scoring group of nodes. The nodemask tricks
2082 * keep the complexity of the search down.
2083 */
2084 nodes = node_online_map;
2085 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2086 unsigned long max_faults = 0;
81907478 2087 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2088 int a, b;
2089
2090 /* Are there nodes at this distance from each other? */
2091 if (!find_numa_distance(dist))
2092 continue;
2093
2094 for_each_node_mask(a, nodes) {
2095 unsigned long faults = 0;
2096 nodemask_t this_group;
2097 nodes_clear(this_group);
2098
2099 /* Sum group's NUMA faults; includes a==b case. */
2100 for_each_node_mask(b, nodes) {
2101 if (node_distance(a, b) < dist) {
2102 faults += group_faults(p, b);
2103 node_set(b, this_group);
2104 node_clear(b, nodes);
2105 }
2106 }
2107
2108 /* Remember the top group. */
2109 if (faults > max_faults) {
2110 max_faults = faults;
2111 max_group = this_group;
2112 /*
2113 * subtle: at the smallest distance there is
2114 * just one node left in each "group", the
2115 * winner is the preferred nid.
2116 */
2117 nid = a;
2118 }
2119 }
2120 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2121 if (!max_faults)
2122 break;
54009416
RR
2123 nodes = max_group;
2124 }
2125 return nid;
2126}
2127
cbee9f88
PZ
2128static void task_numa_placement(struct task_struct *p)
2129{
98fa15f3 2130 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2131 unsigned long max_faults = 0;
04bb2f94 2132 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2133 unsigned long total_faults;
2134 u64 runtime, period;
7dbd13ed 2135 spinlock_t *group_lock = NULL;
cb361d8c 2136 struct numa_group *ng;
cbee9f88 2137
7e5a2c17
JL
2138 /*
2139 * The p->mm->numa_scan_seq field gets updated without
2140 * exclusive access. Use READ_ONCE() here to ensure
2141 * that the field is read in a single access:
2142 */
316c1608 2143 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2144 if (p->numa_scan_seq == seq)
2145 return;
2146 p->numa_scan_seq = seq;
598f0ec0 2147 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2148
7e2703e6
RR
2149 total_faults = p->numa_faults_locality[0] +
2150 p->numa_faults_locality[1];
2151 runtime = numa_get_avg_runtime(p, &period);
2152
7dbd13ed 2153 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2154 ng = deref_curr_numa_group(p);
2155 if (ng) {
2156 group_lock = &ng->lock;
60e69eed 2157 spin_lock_irq(group_lock);
7dbd13ed
MG
2158 }
2159
688b7585
MG
2160 /* Find the node with the highest number of faults */
2161 for_each_online_node(nid) {
44dba3d5
IM
2162 /* Keep track of the offsets in numa_faults array */
2163 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2164 unsigned long faults = 0, group_faults = 0;
44dba3d5 2165 int priv;
745d6147 2166
be1e4e76 2167 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2168 long diff, f_diff, f_weight;
8c8a743c 2169
44dba3d5
IM
2170 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2171 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2172 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2173 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2174
ac8e895b 2175 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2176 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2177 fault_types[priv] += p->numa_faults[membuf_idx];
2178 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2179
7e2703e6
RR
2180 /*
2181 * Normalize the faults_from, so all tasks in a group
2182 * count according to CPU use, instead of by the raw
2183 * number of faults. Tasks with little runtime have
2184 * little over-all impact on throughput, and thus their
2185 * faults are less important.
2186 */
2187 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2188 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2189 (total_faults + 1);
44dba3d5
IM
2190 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2191 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2192
44dba3d5
IM
2193 p->numa_faults[mem_idx] += diff;
2194 p->numa_faults[cpu_idx] += f_diff;
2195 faults += p->numa_faults[mem_idx];
83e1d2cd 2196 p->total_numa_faults += diff;
cb361d8c 2197 if (ng) {
44dba3d5
IM
2198 /*
2199 * safe because we can only change our own group
2200 *
2201 * mem_idx represents the offset for a given
2202 * nid and priv in a specific region because it
2203 * is at the beginning of the numa_faults array.
2204 */
cb361d8c
JH
2205 ng->faults[mem_idx] += diff;
2206 ng->faults_cpu[mem_idx] += f_diff;
2207 ng->total_faults += diff;
2208 group_faults += ng->faults[mem_idx];
8c8a743c 2209 }
ac8e895b
MG
2210 }
2211
cb361d8c 2212 if (!ng) {
f03bb676
SD
2213 if (faults > max_faults) {
2214 max_faults = faults;
2215 max_nid = nid;
2216 }
2217 } else if (group_faults > max_faults) {
2218 max_faults = group_faults;
688b7585
MG
2219 max_nid = nid;
2220 }
83e1d2cd
MG
2221 }
2222
cb361d8c
JH
2223 if (ng) {
2224 numa_group_count_active_nodes(ng);
60e69eed 2225 spin_unlock_irq(group_lock);
f03bb676 2226 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2227 }
2228
bb97fc31
RR
2229 if (max_faults) {
2230 /* Set the new preferred node */
2231 if (max_nid != p->numa_preferred_nid)
2232 sched_setnuma(p, max_nid);
3a7053b3 2233 }
30619c89
SD
2234
2235 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2236}
2237
8c8a743c
PZ
2238static inline int get_numa_group(struct numa_group *grp)
2239{
c45a7795 2240 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2241}
2242
2243static inline void put_numa_group(struct numa_group *grp)
2244{
c45a7795 2245 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2246 kfree_rcu(grp, rcu);
2247}
2248
3e6a9418
MG
2249static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2250 int *priv)
8c8a743c
PZ
2251{
2252 struct numa_group *grp, *my_grp;
2253 struct task_struct *tsk;
2254 bool join = false;
2255 int cpu = cpupid_to_cpu(cpupid);
2256 int i;
2257
cb361d8c 2258 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2259 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2260 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2261
2262 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2263 if (!grp)
2264 return;
2265
c45a7795 2266 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2267 grp->active_nodes = 1;
2268 grp->max_faults_cpu = 0;
8c8a743c 2269 spin_lock_init(&grp->lock);
e29cf08b 2270 grp->gid = p->pid;
50ec8a40 2271 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2272 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2273 nr_node_ids;
8c8a743c 2274
be1e4e76 2275 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2276 grp->faults[i] = p->numa_faults[i];
8c8a743c 2277
989348b5 2278 grp->total_faults = p->total_numa_faults;
83e1d2cd 2279
8c8a743c
PZ
2280 grp->nr_tasks++;
2281 rcu_assign_pointer(p->numa_group, grp);
2282 }
2283
2284 rcu_read_lock();
316c1608 2285 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2286
2287 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2288 goto no_join;
8c8a743c
PZ
2289
2290 grp = rcu_dereference(tsk->numa_group);
2291 if (!grp)
3354781a 2292 goto no_join;
8c8a743c 2293
cb361d8c 2294 my_grp = deref_curr_numa_group(p);
8c8a743c 2295 if (grp == my_grp)
3354781a 2296 goto no_join;
8c8a743c
PZ
2297
2298 /*
2299 * Only join the other group if its bigger; if we're the bigger group,
2300 * the other task will join us.
2301 */
2302 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2303 goto no_join;
8c8a743c
PZ
2304
2305 /*
2306 * Tie-break on the grp address.
2307 */
2308 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2309 goto no_join;
8c8a743c 2310
dabe1d99
RR
2311 /* Always join threads in the same process. */
2312 if (tsk->mm == current->mm)
2313 join = true;
2314
2315 /* Simple filter to avoid false positives due to PID collisions */
2316 if (flags & TNF_SHARED)
2317 join = true;
8c8a743c 2318
3e6a9418
MG
2319 /* Update priv based on whether false sharing was detected */
2320 *priv = !join;
2321
dabe1d99 2322 if (join && !get_numa_group(grp))
3354781a 2323 goto no_join;
8c8a743c 2324
8c8a743c
PZ
2325 rcu_read_unlock();
2326
2327 if (!join)
2328 return;
2329
60e69eed
MG
2330 BUG_ON(irqs_disabled());
2331 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2332
be1e4e76 2333 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2334 my_grp->faults[i] -= p->numa_faults[i];
2335 grp->faults[i] += p->numa_faults[i];
8c8a743c 2336 }
989348b5
MG
2337 my_grp->total_faults -= p->total_numa_faults;
2338 grp->total_faults += p->total_numa_faults;
8c8a743c 2339
8c8a743c
PZ
2340 my_grp->nr_tasks--;
2341 grp->nr_tasks++;
2342
2343 spin_unlock(&my_grp->lock);
60e69eed 2344 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2345
2346 rcu_assign_pointer(p->numa_group, grp);
2347
2348 put_numa_group(my_grp);
3354781a
PZ
2349 return;
2350
2351no_join:
2352 rcu_read_unlock();
2353 return;
8c8a743c
PZ
2354}
2355
16d51a59
JH
2356/*
2357 * Get rid of NUMA staticstics associated with a task (either current or dead).
2358 * If @final is set, the task is dead and has reached refcount zero, so we can
2359 * safely free all relevant data structures. Otherwise, there might be
2360 * concurrent reads from places like load balancing and procfs, and we should
2361 * reset the data back to default state without freeing ->numa_faults.
2362 */
2363void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2364{
cb361d8c
JH
2365 /* safe: p either is current or is being freed by current */
2366 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2367 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2368 unsigned long flags;
2369 int i;
8c8a743c 2370
16d51a59
JH
2371 if (!numa_faults)
2372 return;
2373
8c8a743c 2374 if (grp) {
e9dd685c 2375 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2376 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2377 grp->faults[i] -= p->numa_faults[i];
989348b5 2378 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2379
8c8a743c 2380 grp->nr_tasks--;
e9dd685c 2381 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2382 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2383 put_numa_group(grp);
2384 }
2385
16d51a59
JH
2386 if (final) {
2387 p->numa_faults = NULL;
2388 kfree(numa_faults);
2389 } else {
2390 p->total_numa_faults = 0;
2391 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2392 numa_faults[i] = 0;
2393 }
8c8a743c
PZ
2394}
2395
cbee9f88
PZ
2396/*
2397 * Got a PROT_NONE fault for a page on @node.
2398 */
58b46da3 2399void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2400{
2401 struct task_struct *p = current;
6688cc05 2402 bool migrated = flags & TNF_MIGRATED;
58b46da3 2403 int cpu_node = task_node(current);
792568ec 2404 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2405 struct numa_group *ng;
ac8e895b 2406 int priv;
cbee9f88 2407
2a595721 2408 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2409 return;
2410
9ff1d9ff
MG
2411 /* for example, ksmd faulting in a user's mm */
2412 if (!p->mm)
2413 return;
2414
f809ca9a 2415 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2416 if (unlikely(!p->numa_faults)) {
2417 int size = sizeof(*p->numa_faults) *
be1e4e76 2418 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2419
44dba3d5
IM
2420 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2421 if (!p->numa_faults)
f809ca9a 2422 return;
745d6147 2423
83e1d2cd 2424 p->total_numa_faults = 0;
04bb2f94 2425 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2426 }
cbee9f88 2427
8c8a743c
PZ
2428 /*
2429 * First accesses are treated as private, otherwise consider accesses
2430 * to be private if the accessing pid has not changed
2431 */
2432 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2433 priv = 1;
2434 } else {
2435 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2436 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2437 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2438 }
2439
792568ec
RR
2440 /*
2441 * If a workload spans multiple NUMA nodes, a shared fault that
2442 * occurs wholly within the set of nodes that the workload is
2443 * actively using should be counted as local. This allows the
2444 * scan rate to slow down when a workload has settled down.
2445 */
cb361d8c 2446 ng = deref_curr_numa_group(p);
4142c3eb
RR
2447 if (!priv && !local && ng && ng->active_nodes > 1 &&
2448 numa_is_active_node(cpu_node, ng) &&
2449 numa_is_active_node(mem_node, ng))
792568ec
RR
2450 local = 1;
2451
2739d3ee 2452 /*
e1ff516a
YW
2453 * Retry to migrate task to preferred node periodically, in case it
2454 * previously failed, or the scheduler moved us.
2739d3ee 2455 */
b6a60cf3
SD
2456 if (time_after(jiffies, p->numa_migrate_retry)) {
2457 task_numa_placement(p);
6b9a7460 2458 numa_migrate_preferred(p);
b6a60cf3 2459 }
6b9a7460 2460
b32e86b4
IM
2461 if (migrated)
2462 p->numa_pages_migrated += pages;
074c2381
MG
2463 if (flags & TNF_MIGRATE_FAIL)
2464 p->numa_faults_locality[2] += pages;
b32e86b4 2465
44dba3d5
IM
2466 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2467 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2468 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2469}
2470
6e5fb223
PZ
2471static void reset_ptenuma_scan(struct task_struct *p)
2472{
7e5a2c17
JL
2473 /*
2474 * We only did a read acquisition of the mmap sem, so
2475 * p->mm->numa_scan_seq is written to without exclusive access
2476 * and the update is not guaranteed to be atomic. That's not
2477 * much of an issue though, since this is just used for
2478 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2479 * expensive, to avoid any form of compiler optimizations:
2480 */
316c1608 2481 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2482 p->mm->numa_scan_offset = 0;
2483}
2484
cbee9f88
PZ
2485/*
2486 * The expensive part of numa migration is done from task_work context.
2487 * Triggered from task_tick_numa().
2488 */
9434f9f5 2489static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2490{
2491 unsigned long migrate, next_scan, now = jiffies;
2492 struct task_struct *p = current;
2493 struct mm_struct *mm = p->mm;
51170840 2494 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2495 struct vm_area_struct *vma;
9f40604c 2496 unsigned long start, end;
598f0ec0 2497 unsigned long nr_pte_updates = 0;
4620f8c1 2498 long pages, virtpages;
cbee9f88 2499
9148a3a1 2500 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2501
b34920d4 2502 work->next = work;
cbee9f88
PZ
2503 /*
2504 * Who cares about NUMA placement when they're dying.
2505 *
2506 * NOTE: make sure not to dereference p->mm before this check,
2507 * exit_task_work() happens _after_ exit_mm() so we could be called
2508 * without p->mm even though we still had it when we enqueued this
2509 * work.
2510 */
2511 if (p->flags & PF_EXITING)
2512 return;
2513
930aa174 2514 if (!mm->numa_next_scan) {
7e8d16b6
MG
2515 mm->numa_next_scan = now +
2516 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2517 }
2518
cbee9f88
PZ
2519 /*
2520 * Enforce maximal scan/migration frequency..
2521 */
2522 migrate = mm->numa_next_scan;
2523 if (time_before(now, migrate))
2524 return;
2525
598f0ec0
MG
2526 if (p->numa_scan_period == 0) {
2527 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2528 p->numa_scan_period = task_scan_start(p);
598f0ec0 2529 }
cbee9f88 2530
fb003b80 2531 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2532 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2533 return;
2534
19a78d11
PZ
2535 /*
2536 * Delay this task enough that another task of this mm will likely win
2537 * the next time around.
2538 */
2539 p->node_stamp += 2 * TICK_NSEC;
2540
9f40604c
MG
2541 start = mm->numa_scan_offset;
2542 pages = sysctl_numa_balancing_scan_size;
2543 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2544 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2545 if (!pages)
2546 return;
cbee9f88 2547
4620f8c1 2548
8655d549
VB
2549 if (!down_read_trylock(&mm->mmap_sem))
2550 return;
9f40604c 2551 vma = find_vma(mm, start);
6e5fb223
PZ
2552 if (!vma) {
2553 reset_ptenuma_scan(p);
9f40604c 2554 start = 0;
6e5fb223
PZ
2555 vma = mm->mmap;
2556 }
9f40604c 2557 for (; vma; vma = vma->vm_next) {
6b79c57b 2558 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2559 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2560 continue;
6b79c57b 2561 }
6e5fb223 2562
4591ce4f
MG
2563 /*
2564 * Shared library pages mapped by multiple processes are not
2565 * migrated as it is expected they are cache replicated. Avoid
2566 * hinting faults in read-only file-backed mappings or the vdso
2567 * as migrating the pages will be of marginal benefit.
2568 */
2569 if (!vma->vm_mm ||
2570 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2571 continue;
2572
3c67f474
MG
2573 /*
2574 * Skip inaccessible VMAs to avoid any confusion between
2575 * PROT_NONE and NUMA hinting ptes
2576 */
2577 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2578 continue;
4591ce4f 2579
9f40604c
MG
2580 do {
2581 start = max(start, vma->vm_start);
2582 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2583 end = min(end, vma->vm_end);
4620f8c1 2584 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2585
2586 /*
4620f8c1
RR
2587 * Try to scan sysctl_numa_balancing_size worth of
2588 * hpages that have at least one present PTE that
2589 * is not already pte-numa. If the VMA contains
2590 * areas that are unused or already full of prot_numa
2591 * PTEs, scan up to virtpages, to skip through those
2592 * areas faster.
598f0ec0
MG
2593 */
2594 if (nr_pte_updates)
2595 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2596 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2597
9f40604c 2598 start = end;
4620f8c1 2599 if (pages <= 0 || virtpages <= 0)
9f40604c 2600 goto out;
3cf1962c
RR
2601
2602 cond_resched();
9f40604c 2603 } while (end != vma->vm_end);
cbee9f88 2604 }
6e5fb223 2605
9f40604c 2606out:
6e5fb223 2607 /*
c69307d5
PZ
2608 * It is possible to reach the end of the VMA list but the last few
2609 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2610 * would find the !migratable VMA on the next scan but not reset the
2611 * scanner to the start so check it now.
6e5fb223
PZ
2612 */
2613 if (vma)
9f40604c 2614 mm->numa_scan_offset = start;
6e5fb223
PZ
2615 else
2616 reset_ptenuma_scan(p);
2617 up_read(&mm->mmap_sem);
51170840
RR
2618
2619 /*
2620 * Make sure tasks use at least 32x as much time to run other code
2621 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2622 * Usually update_task_scan_period slows down scanning enough; on an
2623 * overloaded system we need to limit overhead on a per task basis.
2624 */
2625 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2626 u64 diff = p->se.sum_exec_runtime - runtime;
2627 p->node_stamp += 32 * diff;
2628 }
cbee9f88
PZ
2629}
2630
d35927a1
VS
2631void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2632{
2633 int mm_users = 0;
2634 struct mm_struct *mm = p->mm;
2635
2636 if (mm) {
2637 mm_users = atomic_read(&mm->mm_users);
2638 if (mm_users == 1) {
2639 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2640 mm->numa_scan_seq = 0;
2641 }
2642 }
2643 p->node_stamp = 0;
2644 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2645 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2646 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2647 p->numa_work.next = &p->numa_work;
2648 p->numa_faults = NULL;
2649 RCU_INIT_POINTER(p->numa_group, NULL);
2650 p->last_task_numa_placement = 0;
2651 p->last_sum_exec_runtime = 0;
2652
b34920d4
VS
2653 init_task_work(&p->numa_work, task_numa_work);
2654
d35927a1
VS
2655 /* New address space, reset the preferred nid */
2656 if (!(clone_flags & CLONE_VM)) {
2657 p->numa_preferred_nid = NUMA_NO_NODE;
2658 return;
2659 }
2660
2661 /*
2662 * New thread, keep existing numa_preferred_nid which should be copied
2663 * already by arch_dup_task_struct but stagger when scans start.
2664 */
2665 if (mm) {
2666 unsigned int delay;
2667
2668 delay = min_t(unsigned int, task_scan_max(current),
2669 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2670 delay += 2 * TICK_NSEC;
2671 p->node_stamp = delay;
2672 }
2673}
2674
cbee9f88
PZ
2675/*
2676 * Drive the periodic memory faults..
2677 */
b1546edc 2678static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2679{
2680 struct callback_head *work = &curr->numa_work;
2681 u64 period, now;
2682
2683 /*
2684 * We don't care about NUMA placement if we don't have memory.
2685 */
2686 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2687 return;
2688
2689 /*
2690 * Using runtime rather than walltime has the dual advantage that
2691 * we (mostly) drive the selection from busy threads and that the
2692 * task needs to have done some actual work before we bother with
2693 * NUMA placement.
2694 */
2695 now = curr->se.sum_exec_runtime;
2696 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2697
25b3e5a3 2698 if (now > curr->node_stamp + period) {
4b96a29b 2699 if (!curr->node_stamp)
b5dd77c8 2700 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2701 curr->node_stamp += period;
cbee9f88 2702
b34920d4 2703 if (!time_before(jiffies, curr->mm->numa_next_scan))
cbee9f88 2704 task_work_add(curr, work, true);
cbee9f88
PZ
2705 }
2706}
3fed382b 2707
3f9672ba
SD
2708static void update_scan_period(struct task_struct *p, int new_cpu)
2709{
2710 int src_nid = cpu_to_node(task_cpu(p));
2711 int dst_nid = cpu_to_node(new_cpu);
2712
05cbdf4f
MG
2713 if (!static_branch_likely(&sched_numa_balancing))
2714 return;
2715
3f9672ba
SD
2716 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2717 return;
2718
05cbdf4f
MG
2719 if (src_nid == dst_nid)
2720 return;
2721
2722 /*
2723 * Allow resets if faults have been trapped before one scan
2724 * has completed. This is most likely due to a new task that
2725 * is pulled cross-node due to wakeups or load balancing.
2726 */
2727 if (p->numa_scan_seq) {
2728 /*
2729 * Avoid scan adjustments if moving to the preferred
2730 * node or if the task was not previously running on
2731 * the preferred node.
2732 */
2733 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2734 (p->numa_preferred_nid != NUMA_NO_NODE &&
2735 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2736 return;
2737 }
2738
2739 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2740}
2741
cbee9f88
PZ
2742#else
2743static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2744{
2745}
0ec8aa00
PZ
2746
2747static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2748{
2749}
2750
2751static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2752{
2753}
3fed382b 2754
3f9672ba
SD
2755static inline void update_scan_period(struct task_struct *p, int new_cpu)
2756{
2757}
2758
cbee9f88
PZ
2759#endif /* CONFIG_NUMA_BALANCING */
2760
30cfdcfc
DA
2761static void
2762account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2763{
2764 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2765#ifdef CONFIG_SMP
0ec8aa00
PZ
2766 if (entity_is_task(se)) {
2767 struct rq *rq = rq_of(cfs_rq);
2768
2769 account_numa_enqueue(rq, task_of(se));
2770 list_add(&se->group_node, &rq->cfs_tasks);
2771 }
367456c7 2772#endif
30cfdcfc 2773 cfs_rq->nr_running++;
30cfdcfc
DA
2774}
2775
2776static void
2777account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2778{
2779 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2780#ifdef CONFIG_SMP
0ec8aa00
PZ
2781 if (entity_is_task(se)) {
2782 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2783 list_del_init(&se->group_node);
0ec8aa00 2784 }
bfdb198c 2785#endif
30cfdcfc 2786 cfs_rq->nr_running--;
30cfdcfc
DA
2787}
2788
8d5b9025
PZ
2789/*
2790 * Signed add and clamp on underflow.
2791 *
2792 * Explicitly do a load-store to ensure the intermediate value never hits
2793 * memory. This allows lockless observations without ever seeing the negative
2794 * values.
2795 */
2796#define add_positive(_ptr, _val) do { \
2797 typeof(_ptr) ptr = (_ptr); \
2798 typeof(_val) val = (_val); \
2799 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2800 \
2801 res = var + val; \
2802 \
2803 if (val < 0 && res > var) \
2804 res = 0; \
2805 \
2806 WRITE_ONCE(*ptr, res); \
2807} while (0)
2808
2809/*
2810 * Unsigned subtract and clamp on underflow.
2811 *
2812 * Explicitly do a load-store to ensure the intermediate value never hits
2813 * memory. This allows lockless observations without ever seeing the negative
2814 * values.
2815 */
2816#define sub_positive(_ptr, _val) do { \
2817 typeof(_ptr) ptr = (_ptr); \
2818 typeof(*ptr) val = (_val); \
2819 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2820 res = var - val; \
2821 if (res > var) \
2822 res = 0; \
2823 WRITE_ONCE(*ptr, res); \
2824} while (0)
2825
b5c0ce7b
PB
2826/*
2827 * Remove and clamp on negative, from a local variable.
2828 *
2829 * A variant of sub_positive(), which does not use explicit load-store
2830 * and is thus optimized for local variable updates.
2831 */
2832#define lsub_positive(_ptr, _val) do { \
2833 typeof(_ptr) ptr = (_ptr); \
2834 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2835} while (0)
2836
8d5b9025 2837#ifdef CONFIG_SMP
8d5b9025
PZ
2838static inline void
2839enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2840{
1ea6c46a
PZ
2841 cfs_rq->runnable_weight += se->runnable_weight;
2842
2843 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2844 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2845}
2846
2847static inline void
2848dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2849{
1ea6c46a
PZ
2850 cfs_rq->runnable_weight -= se->runnable_weight;
2851
2852 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2853 sub_positive(&cfs_rq->avg.runnable_load_sum,
2854 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2855}
2856
2857static inline void
2858enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2859{
2860 cfs_rq->avg.load_avg += se->avg.load_avg;
2861 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2862}
2863
2864static inline void
2865dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2866{
2867 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2868 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2869}
2870#else
2871static inline void
2872enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2873static inline void
2874dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2875static inline void
2876enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2877static inline void
2878dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2879#endif
2880
9059393e 2881static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2882 unsigned long weight, unsigned long runnable)
9059393e
VG
2883{
2884 if (se->on_rq) {
2885 /* commit outstanding execution time */
2886 if (cfs_rq->curr == se)
2887 update_curr(cfs_rq);
2888 account_entity_dequeue(cfs_rq, se);
2889 dequeue_runnable_load_avg(cfs_rq, se);
2890 }
2891 dequeue_load_avg(cfs_rq, se);
2892
1ea6c46a 2893 se->runnable_weight = runnable;
9059393e
VG
2894 update_load_set(&se->load, weight);
2895
2896#ifdef CONFIG_SMP
1ea6c46a
PZ
2897 do {
2898 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2899
2900 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2901 se->avg.runnable_load_avg =
2902 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2903 } while (0);
9059393e
VG
2904#endif
2905
2906 enqueue_load_avg(cfs_rq, se);
2907 if (se->on_rq) {
2908 account_entity_enqueue(cfs_rq, se);
2909 enqueue_runnable_load_avg(cfs_rq, se);
2910 }
2911}
2912
2913void reweight_task(struct task_struct *p, int prio)
2914{
2915 struct sched_entity *se = &p->se;
2916 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2917 struct load_weight *load = &se->load;
2918 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2919
1ea6c46a 2920 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2921 load->inv_weight = sched_prio_to_wmult[prio];
2922}
2923
3ff6dcac 2924#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2925#ifdef CONFIG_SMP
cef27403
PZ
2926/*
2927 * All this does is approximate the hierarchical proportion which includes that
2928 * global sum we all love to hate.
2929 *
2930 * That is, the weight of a group entity, is the proportional share of the
2931 * group weight based on the group runqueue weights. That is:
2932 *
2933 * tg->weight * grq->load.weight
2934 * ge->load.weight = ----------------------------- (1)
2935 * \Sum grq->load.weight
2936 *
2937 * Now, because computing that sum is prohibitively expensive to compute (been
2938 * there, done that) we approximate it with this average stuff. The average
2939 * moves slower and therefore the approximation is cheaper and more stable.
2940 *
2941 * So instead of the above, we substitute:
2942 *
2943 * grq->load.weight -> grq->avg.load_avg (2)
2944 *
2945 * which yields the following:
2946 *
2947 * tg->weight * grq->avg.load_avg
2948 * ge->load.weight = ------------------------------ (3)
2949 * tg->load_avg
2950 *
2951 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2952 *
2953 * That is shares_avg, and it is right (given the approximation (2)).
2954 *
2955 * The problem with it is that because the average is slow -- it was designed
2956 * to be exactly that of course -- this leads to transients in boundary
2957 * conditions. In specific, the case where the group was idle and we start the
2958 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2959 * yielding bad latency etc..
2960 *
2961 * Now, in that special case (1) reduces to:
2962 *
2963 * tg->weight * grq->load.weight
17de4ee0 2964 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2965 * grp->load.weight
2966 *
2967 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2968 *
2969 * So what we do is modify our approximation (3) to approach (4) in the (near)
2970 * UP case, like:
2971 *
2972 * ge->load.weight =
2973 *
2974 * tg->weight * grq->load.weight
2975 * --------------------------------------------------- (5)
2976 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2977 *
17de4ee0
PZ
2978 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2979 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2980 *
2981 *
2982 * tg->weight * grq->load.weight
2983 * ge->load.weight = ----------------------------- (6)
2984 * tg_load_avg'
2985 *
2986 * Where:
2987 *
2988 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2989 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2990 *
2991 * And that is shares_weight and is icky. In the (near) UP case it approaches
2992 * (4) while in the normal case it approaches (3). It consistently
2993 * overestimates the ge->load.weight and therefore:
2994 *
2995 * \Sum ge->load.weight >= tg->weight
2996 *
2997 * hence icky!
2998 */
2c8e4dce 2999static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3000{
7c80cfc9
PZ
3001 long tg_weight, tg_shares, load, shares;
3002 struct task_group *tg = cfs_rq->tg;
3003
3004 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3005
3d4b60d3 3006 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3007
ea1dc6fc 3008 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3009
ea1dc6fc
PZ
3010 /* Ensure tg_weight >= load */
3011 tg_weight -= cfs_rq->tg_load_avg_contrib;
3012 tg_weight += load;
3ff6dcac 3013
7c80cfc9 3014 shares = (tg_shares * load);
cf5f0acf
PZ
3015 if (tg_weight)
3016 shares /= tg_weight;
3ff6dcac 3017
b8fd8423
DE
3018 /*
3019 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3020 * of a group with small tg->shares value. It is a floor value which is
3021 * assigned as a minimum load.weight to the sched_entity representing
3022 * the group on a CPU.
3023 *
3024 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3025 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3026 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3027 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3028 * instead of 0.
3029 */
7c80cfc9 3030 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3031}
2c8e4dce
JB
3032
3033/*
17de4ee0
PZ
3034 * This calculates the effective runnable weight for a group entity based on
3035 * the group entity weight calculated above.
3036 *
3037 * Because of the above approximation (2), our group entity weight is
3038 * an load_avg based ratio (3). This means that it includes blocked load and
3039 * does not represent the runnable weight.
3040 *
3041 * Approximate the group entity's runnable weight per ratio from the group
3042 * runqueue:
3043 *
3044 * grq->avg.runnable_load_avg
3045 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3046 * grq->avg.load_avg
3047 *
3048 * However, analogous to above, since the avg numbers are slow, this leads to
3049 * transients in the from-idle case. Instead we use:
3050 *
3051 * ge->runnable_weight = ge->load.weight *
3052 *
3053 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3054 * ----------------------------------------------------- (8)
3055 * max(grq->avg.load_avg, grq->load.weight)
3056 *
3057 * Where these max() serve both to use the 'instant' values to fix the slow
3058 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
3059 */
3060static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3061{
17de4ee0
PZ
3062 long runnable, load_avg;
3063
3064 load_avg = max(cfs_rq->avg.load_avg,
3065 scale_load_down(cfs_rq->load.weight));
3066
3067 runnable = max(cfs_rq->avg.runnable_load_avg,
3068 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
3069
3070 runnable *= shares;
3071 if (load_avg)
3072 runnable /= load_avg;
17de4ee0 3073
2c8e4dce
JB
3074 return clamp_t(long, runnable, MIN_SHARES, shares);
3075}
387f77cc 3076#endif /* CONFIG_SMP */
ea1dc6fc 3077
82958366
PT
3078static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3079
1ea6c46a
PZ
3080/*
3081 * Recomputes the group entity based on the current state of its group
3082 * runqueue.
3083 */
3084static void update_cfs_group(struct sched_entity *se)
2069dd75 3085{
1ea6c46a
PZ
3086 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3087 long shares, runnable;
2069dd75 3088
1ea6c46a 3089 if (!gcfs_rq)
89ee048f
VG
3090 return;
3091
1ea6c46a 3092 if (throttled_hierarchy(gcfs_rq))
2069dd75 3093 return;
89ee048f 3094
3ff6dcac 3095#ifndef CONFIG_SMP
1ea6c46a 3096 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3097
3098 if (likely(se->load.weight == shares))
3ff6dcac 3099 return;
7c80cfc9 3100#else
2c8e4dce
JB
3101 shares = calc_group_shares(gcfs_rq);
3102 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3103#endif
2069dd75 3104
1ea6c46a 3105 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3106}
89ee048f 3107
2069dd75 3108#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3109static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3110{
3111}
3112#endif /* CONFIG_FAIR_GROUP_SCHED */
3113
ea14b57e 3114static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3115{
43964409
LT
3116 struct rq *rq = rq_of(cfs_rq);
3117
ea14b57e 3118 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3119 /*
3120 * There are a few boundary cases this might miss but it should
3121 * get called often enough that that should (hopefully) not be
9783be2c 3122 * a real problem.
a030d738
VK
3123 *
3124 * It will not get called when we go idle, because the idle
3125 * thread is a different class (!fair), nor will the utilization
3126 * number include things like RT tasks.
3127 *
3128 * As is, the util number is not freq-invariant (we'd have to
3129 * implement arch_scale_freq_capacity() for that).
3130 *
3131 * See cpu_util().
3132 */
ea14b57e 3133 cpufreq_update_util(rq, flags);
a030d738
VK
3134 }
3135}
3136
141965c7 3137#ifdef CONFIG_SMP
c566e8e9 3138#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3139/**
3140 * update_tg_load_avg - update the tg's load avg
3141 * @cfs_rq: the cfs_rq whose avg changed
3142 * @force: update regardless of how small the difference
3143 *
3144 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3145 * However, because tg->load_avg is a global value there are performance
3146 * considerations.
3147 *
3148 * In order to avoid having to look at the other cfs_rq's, we use a
3149 * differential update where we store the last value we propagated. This in
3150 * turn allows skipping updates if the differential is 'small'.
3151 *
815abf5a 3152 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3153 */
9d89c257 3154static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3155{
9d89c257 3156 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3157
aa0b7ae0
WL
3158 /*
3159 * No need to update load_avg for root_task_group as it is not used.
3160 */
3161 if (cfs_rq->tg == &root_task_group)
3162 return;
3163
9d89c257
YD
3164 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3165 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3166 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3167 }
8165e145 3168}
f5f9739d 3169
ad936d86 3170/*
97fb7a0a 3171 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3172 * caller only guarantees p->pi_lock is held; no other assumptions,
3173 * including the state of rq->lock, should be made.
3174 */
3175void set_task_rq_fair(struct sched_entity *se,
3176 struct cfs_rq *prev, struct cfs_rq *next)
3177{
0ccb977f
PZ
3178 u64 p_last_update_time;
3179 u64 n_last_update_time;
3180
ad936d86
BP
3181 if (!sched_feat(ATTACH_AGE_LOAD))
3182 return;
3183
3184 /*
3185 * We are supposed to update the task to "current" time, then its up to
3186 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3187 * getting what current time is, so simply throw away the out-of-date
3188 * time. This will result in the wakee task is less decayed, but giving
3189 * the wakee more load sounds not bad.
3190 */
0ccb977f
PZ
3191 if (!(se->avg.last_update_time && prev))
3192 return;
ad936d86
BP
3193
3194#ifndef CONFIG_64BIT
0ccb977f 3195 {
ad936d86
BP
3196 u64 p_last_update_time_copy;
3197 u64 n_last_update_time_copy;
3198
3199 do {
3200 p_last_update_time_copy = prev->load_last_update_time_copy;
3201 n_last_update_time_copy = next->load_last_update_time_copy;
3202
3203 smp_rmb();
3204
3205 p_last_update_time = prev->avg.last_update_time;
3206 n_last_update_time = next->avg.last_update_time;
3207
3208 } while (p_last_update_time != p_last_update_time_copy ||
3209 n_last_update_time != n_last_update_time_copy);
0ccb977f 3210 }
ad936d86 3211#else
0ccb977f
PZ
3212 p_last_update_time = prev->avg.last_update_time;
3213 n_last_update_time = next->avg.last_update_time;
ad936d86 3214#endif
23127296 3215 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3216 se->avg.last_update_time = n_last_update_time;
ad936d86 3217}
09a43ace 3218
0e2d2aaa
PZ
3219
3220/*
3221 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3222 * propagate its contribution. The key to this propagation is the invariant
3223 * that for each group:
3224 *
3225 * ge->avg == grq->avg (1)
3226 *
3227 * _IFF_ we look at the pure running and runnable sums. Because they
3228 * represent the very same entity, just at different points in the hierarchy.
3229 *
a4c3c049
VG
3230 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3231 * sum over (but still wrong, because the group entity and group rq do not have
3232 * their PELT windows aligned).
0e2d2aaa
PZ
3233 *
3234 * However, update_tg_cfs_runnable() is more complex. So we have:
3235 *
3236 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3237 *
3238 * And since, like util, the runnable part should be directly transferable,
3239 * the following would _appear_ to be the straight forward approach:
3240 *
a4c3c049 3241 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3242 *
3243 * And per (1) we have:
3244 *
a4c3c049 3245 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3246 *
3247 * Which gives:
3248 *
3249 * ge->load.weight * grq->avg.load_avg
3250 * ge->avg.load_avg = ----------------------------------- (4)
3251 * grq->load.weight
3252 *
3253 * Except that is wrong!
3254 *
3255 * Because while for entities historical weight is not important and we
3256 * really only care about our future and therefore can consider a pure
3257 * runnable sum, runqueues can NOT do this.
3258 *
3259 * We specifically want runqueues to have a load_avg that includes
3260 * historical weights. Those represent the blocked load, the load we expect
3261 * to (shortly) return to us. This only works by keeping the weights as
3262 * integral part of the sum. We therefore cannot decompose as per (3).
3263 *
a4c3c049
VG
3264 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3265 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3266 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3267 * runnable section of these tasks overlap (or not). If they were to perfectly
3268 * align the rq as a whole would be runnable 2/3 of the time. If however we
3269 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3270 *
a4c3c049 3271 * So we'll have to approximate.. :/
0e2d2aaa 3272 *
a4c3c049 3273 * Given the constraint:
0e2d2aaa 3274 *
a4c3c049 3275 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3276 *
a4c3c049
VG
3277 * We can construct a rule that adds runnable to a rq by assuming minimal
3278 * overlap.
0e2d2aaa 3279 *
a4c3c049 3280 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3281 *
a4c3c049 3282 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3283 *
a4c3c049 3284 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3285 *
0e2d2aaa
PZ
3286 */
3287
09a43ace 3288static inline void
0e2d2aaa 3289update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3290{
09a43ace
VG
3291 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3292
3293 /* Nothing to update */
3294 if (!delta)
3295 return;
3296
a4c3c049
VG
3297 /*
3298 * The relation between sum and avg is:
3299 *
3300 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3301 *
3302 * however, the PELT windows are not aligned between grq and gse.
3303 */
3304
09a43ace
VG
3305 /* Set new sched_entity's utilization */
3306 se->avg.util_avg = gcfs_rq->avg.util_avg;
3307 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3308
3309 /* Update parent cfs_rq utilization */
3310 add_positive(&cfs_rq->avg.util_avg, delta);
3311 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3312}
3313
09a43ace 3314static inline void
0e2d2aaa 3315update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3316{
a4c3c049
VG
3317 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3318 unsigned long runnable_load_avg, load_avg;
3319 u64 runnable_load_sum, load_sum = 0;
3320 s64 delta_sum;
09a43ace 3321
0e2d2aaa
PZ
3322 if (!runnable_sum)
3323 return;
09a43ace 3324
0e2d2aaa 3325 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3326
a4c3c049
VG
3327 if (runnable_sum >= 0) {
3328 /*
3329 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3330 * the CPU is saturated running == runnable.
3331 */
3332 runnable_sum += se->avg.load_sum;
3333 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3334 } else {
3335 /*
3336 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3337 * assuming all tasks are equally runnable.
3338 */
3339 if (scale_load_down(gcfs_rq->load.weight)) {
3340 load_sum = div_s64(gcfs_rq->avg.load_sum,
3341 scale_load_down(gcfs_rq->load.weight));
3342 }
3343
3344 /* But make sure to not inflate se's runnable */
3345 runnable_sum = min(se->avg.load_sum, load_sum);
3346 }
3347
3348 /*
3349 * runnable_sum can't be lower than running_sum
23127296
VG
3350 * Rescale running sum to be in the same range as runnable sum
3351 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3352 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3353 */
23127296 3354 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3355 runnable_sum = max(runnable_sum, running_sum);
3356
0e2d2aaa
PZ
3357 load_sum = (s64)se_weight(se) * runnable_sum;
3358 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3359
a4c3c049
VG
3360 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3361 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3362
a4c3c049
VG
3363 se->avg.load_sum = runnable_sum;
3364 se->avg.load_avg = load_avg;
3365 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3366 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3367
1ea6c46a
PZ
3368 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3369 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3370 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3371 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3372
a4c3c049
VG
3373 se->avg.runnable_load_sum = runnable_sum;
3374 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3375
09a43ace 3376 if (se->on_rq) {
a4c3c049
VG
3377 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3378 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3379 }
3380}
3381
0e2d2aaa 3382static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3383{
0e2d2aaa
PZ
3384 cfs_rq->propagate = 1;
3385 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3386}
3387
3388/* Update task and its cfs_rq load average */
3389static inline int propagate_entity_load_avg(struct sched_entity *se)
3390{
0e2d2aaa 3391 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3392
3393 if (entity_is_task(se))
3394 return 0;
3395
0e2d2aaa
PZ
3396 gcfs_rq = group_cfs_rq(se);
3397 if (!gcfs_rq->propagate)
09a43ace
VG
3398 return 0;
3399
0e2d2aaa
PZ
3400 gcfs_rq->propagate = 0;
3401
09a43ace
VG
3402 cfs_rq = cfs_rq_of(se);
3403
0e2d2aaa 3404 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3405
0e2d2aaa
PZ
3406 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3407 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace 3408
ba19f51f 3409 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3410 trace_pelt_se_tp(se);
ba19f51f 3411
09a43ace
VG
3412 return 1;
3413}
3414
bc427898
VG
3415/*
3416 * Check if we need to update the load and the utilization of a blocked
3417 * group_entity:
3418 */
3419static inline bool skip_blocked_update(struct sched_entity *se)
3420{
3421 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3422
3423 /*
3424 * If sched_entity still have not zero load or utilization, we have to
3425 * decay it:
3426 */
3427 if (se->avg.load_avg || se->avg.util_avg)
3428 return false;
3429
3430 /*
3431 * If there is a pending propagation, we have to update the load and
3432 * the utilization of the sched_entity:
3433 */
0e2d2aaa 3434 if (gcfs_rq->propagate)
bc427898
VG
3435 return false;
3436
3437 /*
3438 * Otherwise, the load and the utilization of the sched_entity is
3439 * already zero and there is no pending propagation, so it will be a
3440 * waste of time to try to decay it:
3441 */
3442 return true;
3443}
3444
6e83125c 3445#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3446
9d89c257 3447static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3448
3449static inline int propagate_entity_load_avg(struct sched_entity *se)
3450{
3451 return 0;
3452}
3453
0e2d2aaa 3454static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3455
6e83125c 3456#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3457
3d30544f
PZ
3458/**
3459 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3460 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3461 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3462 *
3463 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3464 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3465 * post_init_entity_util_avg().
3466 *
3467 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3468 *
7c3edd2c
PZ
3469 * Returns true if the load decayed or we removed load.
3470 *
3471 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3472 * call update_tg_load_avg() when this function returns true.
3d30544f 3473 */
a2c6c91f 3474static inline int
3a123bbb 3475update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3476{
0e2d2aaa 3477 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3478 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3479 int decayed = 0;
2dac754e 3480
2a2f5d4e
PZ
3481 if (cfs_rq->removed.nr) {
3482 unsigned long r;
9a2dd585 3483 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3484
3485 raw_spin_lock(&cfs_rq->removed.lock);
3486 swap(cfs_rq->removed.util_avg, removed_util);
3487 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3488 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3489 cfs_rq->removed.nr = 0;
3490 raw_spin_unlock(&cfs_rq->removed.lock);
3491
2a2f5d4e 3492 r = removed_load;
89741892 3493 sub_positive(&sa->load_avg, r);
9a2dd585 3494 sub_positive(&sa->load_sum, r * divider);
2dac754e 3495
2a2f5d4e 3496 r = removed_util;
89741892 3497 sub_positive(&sa->util_avg, r);
9a2dd585 3498 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3499
0e2d2aaa 3500 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3501
3502 decayed = 1;
9d89c257 3503 }
36ee28e4 3504
23127296 3505 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3506
9d89c257
YD
3507#ifndef CONFIG_64BIT
3508 smp_wmb();
3509 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3510#endif
36ee28e4 3511
2a2f5d4e 3512 if (decayed)
ea14b57e 3513 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3514
2a2f5d4e 3515 return decayed;
21e96f88
SM
3516}
3517
3d30544f
PZ
3518/**
3519 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3520 * @cfs_rq: cfs_rq to attach to
3521 * @se: sched_entity to attach
882a78a9 3522 * @flags: migration hints
3d30544f
PZ
3523 *
3524 * Must call update_cfs_rq_load_avg() before this, since we rely on
3525 * cfs_rq->avg.last_update_time being current.
3526 */
ea14b57e 3527static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3528{
f207934f
PZ
3529 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3530
3531 /*
3532 * When we attach the @se to the @cfs_rq, we must align the decay
3533 * window because without that, really weird and wonderful things can
3534 * happen.
3535 *
3536 * XXX illustrate
3537 */
a05e8c51 3538 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3539 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3540
3541 /*
3542 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3543 * period_contrib. This isn't strictly correct, but since we're
3544 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3545 * _sum a little.
3546 */
3547 se->avg.util_sum = se->avg.util_avg * divider;
3548
3549 se->avg.load_sum = divider;
3550 if (se_weight(se)) {
3551 se->avg.load_sum =
3552 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3553 }
3554
3555 se->avg.runnable_load_sum = se->avg.load_sum;
3556
8d5b9025 3557 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3558 cfs_rq->avg.util_avg += se->avg.util_avg;
3559 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3560
3561 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3562
ea14b57e 3563 cfs_rq_util_change(cfs_rq, flags);
ba19f51f
QY
3564
3565 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3566}
3567
3d30544f
PZ
3568/**
3569 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3570 * @cfs_rq: cfs_rq to detach from
3571 * @se: sched_entity to detach
3572 *
3573 * Must call update_cfs_rq_load_avg() before this, since we rely on
3574 * cfs_rq->avg.last_update_time being current.
3575 */
a05e8c51
BP
3576static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3577{
8d5b9025 3578 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3579 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3580 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3581
3582 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3583
ea14b57e 3584 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3585
3586 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3587}
3588
b382a531
PZ
3589/*
3590 * Optional action to be done while updating the load average
3591 */
3592#define UPDATE_TG 0x1
3593#define SKIP_AGE_LOAD 0x2
3594#define DO_ATTACH 0x4
3595
3596/* Update task and its cfs_rq load average */
3597static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3598{
23127296 3599 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3600 int decayed;
3601
3602 /*
3603 * Track task load average for carrying it to new CPU after migrated, and
3604 * track group sched_entity load average for task_h_load calc in migration
3605 */
3606 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3607 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3608
3609 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3610 decayed |= propagate_entity_load_avg(se);
3611
3612 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3613
ea14b57e
PZ
3614 /*
3615 * DO_ATTACH means we're here from enqueue_entity().
3616 * !last_update_time means we've passed through
3617 * migrate_task_rq_fair() indicating we migrated.
3618 *
3619 * IOW we're enqueueing a task on a new CPU.
3620 */
3621 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3622 update_tg_load_avg(cfs_rq, 0);
3623
3624 } else if (decayed && (flags & UPDATE_TG))
3625 update_tg_load_avg(cfs_rq, 0);
3626}
3627
9d89c257 3628#ifndef CONFIG_64BIT
0905f04e
YD
3629static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3630{
9d89c257 3631 u64 last_update_time_copy;
0905f04e 3632 u64 last_update_time;
9ee474f5 3633
9d89c257
YD
3634 do {
3635 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3636 smp_rmb();
3637 last_update_time = cfs_rq->avg.last_update_time;
3638 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3639
3640 return last_update_time;
3641}
9d89c257 3642#else
0905f04e
YD
3643static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3644{
3645 return cfs_rq->avg.last_update_time;
3646}
9d89c257
YD
3647#endif
3648
104cb16d
MR
3649/*
3650 * Synchronize entity load avg of dequeued entity without locking
3651 * the previous rq.
3652 */
71b47eaf 3653static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3654{
3655 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3656 u64 last_update_time;
3657
3658 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3659 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3660}
3661
0905f04e
YD
3662/*
3663 * Task first catches up with cfs_rq, and then subtract
3664 * itself from the cfs_rq (task must be off the queue now).
3665 */
71b47eaf 3666static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3667{
3668 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3669 unsigned long flags;
0905f04e
YD
3670
3671 /*
7dc603c9
PZ
3672 * tasks cannot exit without having gone through wake_up_new_task() ->
3673 * post_init_entity_util_avg() which will have added things to the
3674 * cfs_rq, so we can remove unconditionally.
0905f04e 3675 */
0905f04e 3676
104cb16d 3677 sync_entity_load_avg(se);
2a2f5d4e
PZ
3678
3679 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3680 ++cfs_rq->removed.nr;
3681 cfs_rq->removed.util_avg += se->avg.util_avg;
3682 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3683 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3684 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3685}
642dbc39 3686
7ea241af
YD
3687static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3688{
1ea6c46a 3689 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3690}
3691
3692static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3693{
3694 return cfs_rq->avg.load_avg;
3695}
3696
7f65ea42
PB
3697static inline unsigned long task_util(struct task_struct *p)
3698{
3699 return READ_ONCE(p->se.avg.util_avg);
3700}
3701
3702static inline unsigned long _task_util_est(struct task_struct *p)
3703{
3704 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3705
92a801e5 3706 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3707}
3708
3709static inline unsigned long task_util_est(struct task_struct *p)
3710{
3711 return max(task_util(p), _task_util_est(p));
3712}
3713
3714static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3715 struct task_struct *p)
3716{
3717 unsigned int enqueued;
3718
3719 if (!sched_feat(UTIL_EST))
3720 return;
3721
3722 /* Update root cfs_rq's estimated utilization */
3723 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3724 enqueued += _task_util_est(p);
7f65ea42
PB
3725 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3726}
3727
3728/*
3729 * Check if a (signed) value is within a specified (unsigned) margin,
3730 * based on the observation that:
3731 *
3732 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3733 *
3734 * NOTE: this only works when value + maring < INT_MAX.
3735 */
3736static inline bool within_margin(int value, int margin)
3737{
3738 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3739}
3740
3741static void
3742util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3743{
3744 long last_ewma_diff;
3745 struct util_est ue;
10a35e68 3746 int cpu;
7f65ea42
PB
3747
3748 if (!sched_feat(UTIL_EST))
3749 return;
3750
3482d98b
VG
3751 /* Update root cfs_rq's estimated utilization */
3752 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3753 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3754 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3755
3756 /*
3757 * Skip update of task's estimated utilization when the task has not
3758 * yet completed an activation, e.g. being migrated.
3759 */
3760 if (!task_sleep)
3761 return;
3762
d519329f
PB
3763 /*
3764 * If the PELT values haven't changed since enqueue time,
3765 * skip the util_est update.
3766 */
3767 ue = p->se.avg.util_est;
3768 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3769 return;
3770
7f65ea42
PB
3771 /*
3772 * Skip update of task's estimated utilization when its EWMA is
3773 * already ~1% close to its last activation value.
3774 */
d519329f 3775 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3776 last_ewma_diff = ue.enqueued - ue.ewma;
3777 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3778 return;
3779
10a35e68
VG
3780 /*
3781 * To avoid overestimation of actual task utilization, skip updates if
3782 * we cannot grant there is idle time in this CPU.
3783 */
3784 cpu = cpu_of(rq_of(cfs_rq));
3785 if (task_util(p) > capacity_orig_of(cpu))
3786 return;
3787
7f65ea42
PB
3788 /*
3789 * Update Task's estimated utilization
3790 *
3791 * When *p completes an activation we can consolidate another sample
3792 * of the task size. This is done by storing the current PELT value
3793 * as ue.enqueued and by using this value to update the Exponential
3794 * Weighted Moving Average (EWMA):
3795 *
3796 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3797 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3798 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3799 * = w * ( last_ewma_diff ) + ewma(t-1)
3800 * = w * (last_ewma_diff + ewma(t-1) / w)
3801 *
3802 * Where 'w' is the weight of new samples, which is configured to be
3803 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3804 */
3805 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3806 ue.ewma += last_ewma_diff;
3807 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3808 WRITE_ONCE(p->se.avg.util_est, ue);
3809}
3810
3b1baa64
MR
3811static inline int task_fits_capacity(struct task_struct *p, long capacity)
3812{
60e17f5c 3813 return fits_capacity(task_util_est(p), capacity);
3b1baa64
MR
3814}
3815
3816static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3817{
3818 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3819 return;
3820
3821 if (!p) {
3822 rq->misfit_task_load = 0;
3823 return;
3824 }
3825
3826 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3827 rq->misfit_task_load = 0;
3828 return;
3829 }
3830
3831 rq->misfit_task_load = task_h_load(p);
3832}
3833
38033c37
PZ
3834#else /* CONFIG_SMP */
3835
d31b1a66
VG
3836#define UPDATE_TG 0x0
3837#define SKIP_AGE_LOAD 0x0
b382a531 3838#define DO_ATTACH 0x0
d31b1a66 3839
88c0616e 3840static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3841{
ea14b57e 3842 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3843}
3844
9d89c257 3845static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3846
a05e8c51 3847static inline void
ea14b57e 3848attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3849static inline void
3850detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3851
46f69fa3 3852static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3853{
3854 return 0;
3855}
3856
7f65ea42
PB
3857static inline void
3858util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3859
3860static inline void
3861util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3862 bool task_sleep) {}
3b1baa64 3863static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3864
38033c37 3865#endif /* CONFIG_SMP */
9d85f21c 3866
ddc97297
PZ
3867static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3868{
3869#ifdef CONFIG_SCHED_DEBUG
3870 s64 d = se->vruntime - cfs_rq->min_vruntime;
3871
3872 if (d < 0)
3873 d = -d;
3874
3875 if (d > 3*sysctl_sched_latency)
ae92882e 3876 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3877#endif
3878}
3879
aeb73b04
PZ
3880static void
3881place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3882{
1af5f730 3883 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3884
2cb8600e
PZ
3885 /*
3886 * The 'current' period is already promised to the current tasks,
3887 * however the extra weight of the new task will slow them down a
3888 * little, place the new task so that it fits in the slot that
3889 * stays open at the end.
3890 */
94dfb5e7 3891 if (initial && sched_feat(START_DEBIT))
f9c0b095 3892 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3893
a2e7a7eb 3894 /* sleeps up to a single latency don't count. */
5ca9880c 3895 if (!initial) {
a2e7a7eb 3896 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3897
a2e7a7eb
MG
3898 /*
3899 * Halve their sleep time's effect, to allow
3900 * for a gentler effect of sleepers:
3901 */
3902 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3903 thresh >>= 1;
51e0304c 3904
a2e7a7eb 3905 vruntime -= thresh;
aeb73b04
PZ
3906 }
3907
b5d9d734 3908 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3909 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3910}
3911
d3d9dc33
PT
3912static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3913
cb251765
MG
3914static inline void check_schedstat_required(void)
3915{
3916#ifdef CONFIG_SCHEDSTATS
3917 if (schedstat_enabled())
3918 return;
3919
3920 /* Force schedstat enabled if a dependent tracepoint is active */
3921 if (trace_sched_stat_wait_enabled() ||
3922 trace_sched_stat_sleep_enabled() ||
3923 trace_sched_stat_iowait_enabled() ||
3924 trace_sched_stat_blocked_enabled() ||
3925 trace_sched_stat_runtime_enabled()) {
eda8dca5 3926 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3927 "stat_blocked and stat_runtime require the "
f67abed5 3928 "kernel parameter schedstats=enable or "
cb251765
MG
3929 "kernel.sched_schedstats=1\n");
3930 }
3931#endif
3932}
3933
b5179ac7
PZ
3934
3935/*
3936 * MIGRATION
3937 *
3938 * dequeue
3939 * update_curr()
3940 * update_min_vruntime()
3941 * vruntime -= min_vruntime
3942 *
3943 * enqueue
3944 * update_curr()
3945 * update_min_vruntime()
3946 * vruntime += min_vruntime
3947 *
3948 * this way the vruntime transition between RQs is done when both
3949 * min_vruntime are up-to-date.
3950 *
3951 * WAKEUP (remote)
3952 *
59efa0ba 3953 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3954 * vruntime -= min_vruntime
3955 *
3956 * enqueue
3957 * update_curr()
3958 * update_min_vruntime()
3959 * vruntime += min_vruntime
3960 *
3961 * this way we don't have the most up-to-date min_vruntime on the originating
3962 * CPU and an up-to-date min_vruntime on the destination CPU.
3963 */
3964
bf0f6f24 3965static void
88ec22d3 3966enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3967{
2f950354
PZ
3968 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3969 bool curr = cfs_rq->curr == se;
3970
88ec22d3 3971 /*
2f950354
PZ
3972 * If we're the current task, we must renormalise before calling
3973 * update_curr().
88ec22d3 3974 */
2f950354 3975 if (renorm && curr)
88ec22d3
PZ
3976 se->vruntime += cfs_rq->min_vruntime;
3977
2f950354
PZ
3978 update_curr(cfs_rq);
3979
bf0f6f24 3980 /*
2f950354
PZ
3981 * Otherwise, renormalise after, such that we're placed at the current
3982 * moment in time, instead of some random moment in the past. Being
3983 * placed in the past could significantly boost this task to the
3984 * fairness detriment of existing tasks.
bf0f6f24 3985 */
2f950354
PZ
3986 if (renorm && !curr)
3987 se->vruntime += cfs_rq->min_vruntime;
3988
89ee048f
VG
3989 /*
3990 * When enqueuing a sched_entity, we must:
3991 * - Update loads to have both entity and cfs_rq synced with now.
3992 * - Add its load to cfs_rq->runnable_avg
3993 * - For group_entity, update its weight to reflect the new share of
3994 * its group cfs_rq
3995 * - Add its new weight to cfs_rq->load.weight
3996 */
b382a531 3997 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3998 update_cfs_group(se);
b5b3e35f 3999 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 4000 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4001
1a3d027c 4002 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4003 place_entity(cfs_rq, se, 0);
bf0f6f24 4004
cb251765 4005 check_schedstat_required();
4fa8d299
JP
4006 update_stats_enqueue(cfs_rq, se, flags);
4007 check_spread(cfs_rq, se);
2f950354 4008 if (!curr)
83b699ed 4009 __enqueue_entity(cfs_rq, se);
2069dd75 4010 se->on_rq = 1;
3d4b47b4 4011
d3d9dc33 4012 if (cfs_rq->nr_running == 1) {
3d4b47b4 4013 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
4014 check_enqueue_throttle(cfs_rq);
4015 }
bf0f6f24
IM
4016}
4017
2c13c919 4018static void __clear_buddies_last(struct sched_entity *se)
2002c695 4019{
2c13c919
RR
4020 for_each_sched_entity(se) {
4021 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4022 if (cfs_rq->last != se)
2c13c919 4023 break;
f1044799
PZ
4024
4025 cfs_rq->last = NULL;
2c13c919
RR
4026 }
4027}
2002c695 4028
2c13c919
RR
4029static void __clear_buddies_next(struct sched_entity *se)
4030{
4031 for_each_sched_entity(se) {
4032 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4033 if (cfs_rq->next != se)
2c13c919 4034 break;
f1044799
PZ
4035
4036 cfs_rq->next = NULL;
2c13c919 4037 }
2002c695
PZ
4038}
4039
ac53db59
RR
4040static void __clear_buddies_skip(struct sched_entity *se)
4041{
4042 for_each_sched_entity(se) {
4043 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4044 if (cfs_rq->skip != se)
ac53db59 4045 break;
f1044799
PZ
4046
4047 cfs_rq->skip = NULL;
ac53db59
RR
4048 }
4049}
4050
a571bbea
PZ
4051static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4052{
2c13c919
RR
4053 if (cfs_rq->last == se)
4054 __clear_buddies_last(se);
4055
4056 if (cfs_rq->next == se)
4057 __clear_buddies_next(se);
ac53db59
RR
4058
4059 if (cfs_rq->skip == se)
4060 __clear_buddies_skip(se);
a571bbea
PZ
4061}
4062
6c16a6dc 4063static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4064
bf0f6f24 4065static void
371fd7e7 4066dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4067{
a2a2d680
DA
4068 /*
4069 * Update run-time statistics of the 'current'.
4070 */
4071 update_curr(cfs_rq);
89ee048f
VG
4072
4073 /*
4074 * When dequeuing a sched_entity, we must:
4075 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
4076 * - Subtract its load from the cfs_rq->runnable_avg.
4077 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4078 * - For group entity, update its weight to reflect the new share
4079 * of its group cfs_rq.
4080 */
88c0616e 4081 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4082 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4083
4fa8d299 4084 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4085
2002c695 4086 clear_buddies(cfs_rq, se);
4793241b 4087
83b699ed 4088 if (se != cfs_rq->curr)
30cfdcfc 4089 __dequeue_entity(cfs_rq, se);
17bc14b7 4090 se->on_rq = 0;
30cfdcfc 4091 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4092
4093 /*
b60205c7
PZ
4094 * Normalize after update_curr(); which will also have moved
4095 * min_vruntime if @se is the one holding it back. But before doing
4096 * update_min_vruntime() again, which will discount @se's position and
4097 * can move min_vruntime forward still more.
88ec22d3 4098 */
371fd7e7 4099 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4100 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4101
d8b4986d
PT
4102 /* return excess runtime on last dequeue */
4103 return_cfs_rq_runtime(cfs_rq);
4104
1ea6c46a 4105 update_cfs_group(se);
b60205c7
PZ
4106
4107 /*
4108 * Now advance min_vruntime if @se was the entity holding it back,
4109 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4110 * put back on, and if we advance min_vruntime, we'll be placed back
4111 * further than we started -- ie. we'll be penalized.
4112 */
9845c49c 4113 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4114 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4115}
4116
4117/*
4118 * Preempt the current task with a newly woken task if needed:
4119 */
7c92e54f 4120static void
2e09bf55 4121check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4122{
11697830 4123 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4124 struct sched_entity *se;
4125 s64 delta;
11697830 4126
6d0f0ebd 4127 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4128 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4129 if (delta_exec > ideal_runtime) {
8875125e 4130 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4131 /*
4132 * The current task ran long enough, ensure it doesn't get
4133 * re-elected due to buddy favours.
4134 */
4135 clear_buddies(cfs_rq, curr);
f685ceac
MG
4136 return;
4137 }
4138
4139 /*
4140 * Ensure that a task that missed wakeup preemption by a
4141 * narrow margin doesn't have to wait for a full slice.
4142 * This also mitigates buddy induced latencies under load.
4143 */
f685ceac
MG
4144 if (delta_exec < sysctl_sched_min_granularity)
4145 return;
4146
f4cfb33e
WX
4147 se = __pick_first_entity(cfs_rq);
4148 delta = curr->vruntime - se->vruntime;
f685ceac 4149
f4cfb33e
WX
4150 if (delta < 0)
4151 return;
d7d82944 4152
f4cfb33e 4153 if (delta > ideal_runtime)
8875125e 4154 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4155}
4156
83b699ed 4157static void
8494f412 4158set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4159{
83b699ed
SV
4160 /* 'current' is not kept within the tree. */
4161 if (se->on_rq) {
4162 /*
4163 * Any task has to be enqueued before it get to execute on
4164 * a CPU. So account for the time it spent waiting on the
4165 * runqueue.
4166 */
4fa8d299 4167 update_stats_wait_end(cfs_rq, se);
83b699ed 4168 __dequeue_entity(cfs_rq, se);
88c0616e 4169 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4170 }
4171
79303e9e 4172 update_stats_curr_start(cfs_rq, se);
429d43bc 4173 cfs_rq->curr = se;
4fa8d299 4174
eba1ed4b
IM
4175 /*
4176 * Track our maximum slice length, if the CPU's load is at
4177 * least twice that of our own weight (i.e. dont track it
4178 * when there are only lesser-weight tasks around):
4179 */
f2bedc47
DE
4180 if (schedstat_enabled() &&
4181 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4182 schedstat_set(se->statistics.slice_max,
4183 max((u64)schedstat_val(se->statistics.slice_max),
4184 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4185 }
4fa8d299 4186
4a55b450 4187 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4188}
4189
3f3a4904
PZ
4190static int
4191wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4192
ac53db59
RR
4193/*
4194 * Pick the next process, keeping these things in mind, in this order:
4195 * 1) keep things fair between processes/task groups
4196 * 2) pick the "next" process, since someone really wants that to run
4197 * 3) pick the "last" process, for cache locality
4198 * 4) do not run the "skip" process, if something else is available
4199 */
678d5718
PZ
4200static struct sched_entity *
4201pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4202{
678d5718
PZ
4203 struct sched_entity *left = __pick_first_entity(cfs_rq);
4204 struct sched_entity *se;
4205
4206 /*
4207 * If curr is set we have to see if its left of the leftmost entity
4208 * still in the tree, provided there was anything in the tree at all.
4209 */
4210 if (!left || (curr && entity_before(curr, left)))
4211 left = curr;
4212
4213 se = left; /* ideally we run the leftmost entity */
f4b6755f 4214
ac53db59
RR
4215 /*
4216 * Avoid running the skip buddy, if running something else can
4217 * be done without getting too unfair.
4218 */
4219 if (cfs_rq->skip == se) {
678d5718
PZ
4220 struct sched_entity *second;
4221
4222 if (se == curr) {
4223 second = __pick_first_entity(cfs_rq);
4224 } else {
4225 second = __pick_next_entity(se);
4226 if (!second || (curr && entity_before(curr, second)))
4227 second = curr;
4228 }
4229
ac53db59
RR
4230 if (second && wakeup_preempt_entity(second, left) < 1)
4231 se = second;
4232 }
aa2ac252 4233
f685ceac
MG
4234 /*
4235 * Prefer last buddy, try to return the CPU to a preempted task.
4236 */
4237 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4238 se = cfs_rq->last;
4239
ac53db59
RR
4240 /*
4241 * Someone really wants this to run. If it's not unfair, run it.
4242 */
4243 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4244 se = cfs_rq->next;
4245
f685ceac 4246 clear_buddies(cfs_rq, se);
4793241b
PZ
4247
4248 return se;
aa2ac252
PZ
4249}
4250
678d5718 4251static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4252
ab6cde26 4253static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4254{
4255 /*
4256 * If still on the runqueue then deactivate_task()
4257 * was not called and update_curr() has to be done:
4258 */
4259 if (prev->on_rq)
b7cc0896 4260 update_curr(cfs_rq);
bf0f6f24 4261
d3d9dc33
PT
4262 /* throttle cfs_rqs exceeding runtime */
4263 check_cfs_rq_runtime(cfs_rq);
4264
4fa8d299 4265 check_spread(cfs_rq, prev);
cb251765 4266
30cfdcfc 4267 if (prev->on_rq) {
4fa8d299 4268 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4269 /* Put 'current' back into the tree. */
4270 __enqueue_entity(cfs_rq, prev);
9d85f21c 4271 /* in !on_rq case, update occurred at dequeue */
88c0616e 4272 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4273 }
429d43bc 4274 cfs_rq->curr = NULL;
bf0f6f24
IM
4275}
4276
8f4d37ec
PZ
4277static void
4278entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4279{
bf0f6f24 4280 /*
30cfdcfc 4281 * Update run-time statistics of the 'current'.
bf0f6f24 4282 */
30cfdcfc 4283 update_curr(cfs_rq);
bf0f6f24 4284
9d85f21c
PT
4285 /*
4286 * Ensure that runnable average is periodically updated.
4287 */
88c0616e 4288 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4289 update_cfs_group(curr);
9d85f21c 4290
8f4d37ec
PZ
4291#ifdef CONFIG_SCHED_HRTICK
4292 /*
4293 * queued ticks are scheduled to match the slice, so don't bother
4294 * validating it and just reschedule.
4295 */
983ed7a6 4296 if (queued) {
8875125e 4297 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4298 return;
4299 }
8f4d37ec
PZ
4300 /*
4301 * don't let the period tick interfere with the hrtick preemption
4302 */
4303 if (!sched_feat(DOUBLE_TICK) &&
4304 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4305 return;
4306#endif
4307
2c2efaed 4308 if (cfs_rq->nr_running > 1)
2e09bf55 4309 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4310}
4311
ab84d31e
PT
4312
4313/**************************************************
4314 * CFS bandwidth control machinery
4315 */
4316
4317#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4318
e9666d10 4319#ifdef CONFIG_JUMP_LABEL
c5905afb 4320static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4321
4322static inline bool cfs_bandwidth_used(void)
4323{
c5905afb 4324 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4325}
4326
1ee14e6c 4327void cfs_bandwidth_usage_inc(void)
029632fb 4328{
ce48c146 4329 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4330}
4331
4332void cfs_bandwidth_usage_dec(void)
4333{
ce48c146 4334 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4335}
e9666d10 4336#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4337static bool cfs_bandwidth_used(void)
4338{
4339 return true;
4340}
4341
1ee14e6c
BS
4342void cfs_bandwidth_usage_inc(void) {}
4343void cfs_bandwidth_usage_dec(void) {}
e9666d10 4344#endif /* CONFIG_JUMP_LABEL */
029632fb 4345
ab84d31e
PT
4346/*
4347 * default period for cfs group bandwidth.
4348 * default: 0.1s, units: nanoseconds
4349 */
4350static inline u64 default_cfs_period(void)
4351{
4352 return 100000000ULL;
4353}
ec12cb7f
PT
4354
4355static inline u64 sched_cfs_bandwidth_slice(void)
4356{
4357 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4358}
4359
a9cf55b2 4360/*
763a9ec0
QC
4361 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4362 * directly instead of rq->clock to avoid adding additional synchronization
4363 * around rq->lock.
a9cf55b2
PT
4364 *
4365 * requires cfs_b->lock
4366 */
029632fb 4367void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4368{
763a9ec0
QC
4369 if (cfs_b->quota != RUNTIME_INF)
4370 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4371}
4372
029632fb
PZ
4373static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4374{
4375 return &tg->cfs_bandwidth;
4376}
4377
85dac906
PT
4378/* returns 0 on failure to allocate runtime */
4379static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4380{
4381 struct task_group *tg = cfs_rq->tg;
4382 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
de53fd7a 4383 u64 amount = 0, min_amount;
ec12cb7f
PT
4384
4385 /* note: this is a positive sum as runtime_remaining <= 0 */
4386 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4387
4388 raw_spin_lock(&cfs_b->lock);
4389 if (cfs_b->quota == RUNTIME_INF)
4390 amount = min_amount;
58088ad0 4391 else {
77a4d1a1 4392 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4393
4394 if (cfs_b->runtime > 0) {
4395 amount = min(cfs_b->runtime, min_amount);
4396 cfs_b->runtime -= amount;
4397 cfs_b->idle = 0;
4398 }
ec12cb7f
PT
4399 }
4400 raw_spin_unlock(&cfs_b->lock);
4401
4402 cfs_rq->runtime_remaining += amount;
85dac906
PT
4403
4404 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4405}
4406
9dbdb155 4407static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4408{
4409 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4410 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4411
4412 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4413 return;
4414
5e2d2cc2
L
4415 if (cfs_rq->throttled)
4416 return;
85dac906
PT
4417 /*
4418 * if we're unable to extend our runtime we resched so that the active
4419 * hierarchy can be throttled
4420 */
4421 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4422 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4423}
4424
6c16a6dc 4425static __always_inline
9dbdb155 4426void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4427{
56f570e5 4428 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4429 return;
4430
4431 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4432}
4433
85dac906
PT
4434static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4435{
56f570e5 4436 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4437}
4438
64660c86
PT
4439/* check whether cfs_rq, or any parent, is throttled */
4440static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4441{
56f570e5 4442 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4443}
4444
4445/*
4446 * Ensure that neither of the group entities corresponding to src_cpu or
4447 * dest_cpu are members of a throttled hierarchy when performing group
4448 * load-balance operations.
4449 */
4450static inline int throttled_lb_pair(struct task_group *tg,
4451 int src_cpu, int dest_cpu)
4452{
4453 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4454
4455 src_cfs_rq = tg->cfs_rq[src_cpu];
4456 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4457
4458 return throttled_hierarchy(src_cfs_rq) ||
4459 throttled_hierarchy(dest_cfs_rq);
4460}
4461
64660c86
PT
4462static int tg_unthrottle_up(struct task_group *tg, void *data)
4463{
4464 struct rq *rq = data;
4465 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4466
4467 cfs_rq->throttle_count--;
64660c86 4468 if (!cfs_rq->throttle_count) {
78becc27 4469 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4470 cfs_rq->throttled_clock_task;
31bc6aea
VG
4471
4472 /* Add cfs_rq with already running entity in the list */
4473 if (cfs_rq->nr_running >= 1)
4474 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4475 }
64660c86
PT
4476
4477 return 0;
4478}
4479
4480static int tg_throttle_down(struct task_group *tg, void *data)
4481{
4482 struct rq *rq = data;
4483 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4484
82958366 4485 /* group is entering throttled state, stop time */
31bc6aea 4486 if (!cfs_rq->throttle_count) {
78becc27 4487 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4488 list_del_leaf_cfs_rq(cfs_rq);
4489 }
64660c86
PT
4490 cfs_rq->throttle_count++;
4491
4492 return 0;
4493}
4494
d3d9dc33 4495static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4496{
4497 struct rq *rq = rq_of(cfs_rq);
4498 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4499 struct sched_entity *se;
43e9f7f2 4500 long task_delta, idle_task_delta, dequeue = 1;
77a4d1a1 4501 bool empty;
85dac906
PT
4502
4503 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4504
f1b17280 4505 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4506 rcu_read_lock();
4507 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4508 rcu_read_unlock();
85dac906
PT
4509
4510 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4511 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4512 for_each_sched_entity(se) {
4513 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4514 /* throttled entity or throttle-on-deactivate */
4515 if (!se->on_rq)
4516 break;
4517
4518 if (dequeue)
4519 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4520 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4521 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4522
4523 if (qcfs_rq->load.weight)
4524 dequeue = 0;
4525 }
4526
4527 if (!se)
72465447 4528 sub_nr_running(rq, task_delta);
85dac906
PT
4529
4530 cfs_rq->throttled = 1;
78becc27 4531 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4532 raw_spin_lock(&cfs_b->lock);
d49db342 4533 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4534
c06f04c7
BS
4535 /*
4536 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4537 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4538 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4539 */
baa9be4f
PA
4540 if (cfs_b->distribute_running)
4541 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4542 else
4543 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4544
4545 /*
4546 * If we're the first throttled task, make sure the bandwidth
4547 * timer is running.
4548 */
4549 if (empty)
4550 start_cfs_bandwidth(cfs_b);
4551
85dac906
PT
4552 raw_spin_unlock(&cfs_b->lock);
4553}
4554
029632fb 4555void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4556{
4557 struct rq *rq = rq_of(cfs_rq);
4558 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4559 struct sched_entity *se;
4560 int enqueue = 1;
43e9f7f2 4561 long task_delta, idle_task_delta;
671fd9da 4562
22b958d8 4563 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4564
4565 cfs_rq->throttled = 0;
1a55af2e
FW
4566
4567 update_rq_clock(rq);
4568
671fd9da 4569 raw_spin_lock(&cfs_b->lock);
78becc27 4570 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4571 list_del_rcu(&cfs_rq->throttled_list);
4572 raw_spin_unlock(&cfs_b->lock);
4573
64660c86
PT
4574 /* update hierarchical throttle state */
4575 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4576
671fd9da
PT
4577 if (!cfs_rq->load.weight)
4578 return;
4579
4580 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4581 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4582 for_each_sched_entity(se) {
4583 if (se->on_rq)
4584 enqueue = 0;
4585
4586 cfs_rq = cfs_rq_of(se);
4587 if (enqueue)
4588 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4589 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4590 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da
PT
4591
4592 if (cfs_rq_throttled(cfs_rq))
4593 break;
4594 }
4595
31bc6aea
VG
4596 assert_list_leaf_cfs_rq(rq);
4597
671fd9da 4598 if (!se)
72465447 4599 add_nr_running(rq, task_delta);
671fd9da 4600
97fb7a0a 4601 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4602 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4603 resched_curr(rq);
671fd9da
PT
4604}
4605
de53fd7a 4606static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
671fd9da
PT
4607{
4608 struct cfs_rq *cfs_rq;
c06f04c7
BS
4609 u64 runtime;
4610 u64 starting_runtime = remaining;
671fd9da
PT
4611
4612 rcu_read_lock();
4613 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4614 throttled_list) {
4615 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4616 struct rq_flags rf;
671fd9da 4617
c0ad4aa4 4618 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4619 if (!cfs_rq_throttled(cfs_rq))
4620 goto next;
4621
5e2d2cc2
L
4622 /* By the above check, this should never be true */
4623 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4624
671fd9da
PT
4625 runtime = -cfs_rq->runtime_remaining + 1;
4626 if (runtime > remaining)
4627 runtime = remaining;
4628 remaining -= runtime;
4629
4630 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4631
4632 /* we check whether we're throttled above */
4633 if (cfs_rq->runtime_remaining > 0)
4634 unthrottle_cfs_rq(cfs_rq);
4635
4636next:
c0ad4aa4 4637 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4638
4639 if (!remaining)
4640 break;
4641 }
4642 rcu_read_unlock();
4643
c06f04c7 4644 return starting_runtime - remaining;
671fd9da
PT
4645}
4646
58088ad0
PT
4647/*
4648 * Responsible for refilling a task_group's bandwidth and unthrottling its
4649 * cfs_rqs as appropriate. If there has been no activity within the last
4650 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4651 * used to track this state.
4652 */
c0ad4aa4 4653static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4654{
de53fd7a 4655 u64 runtime;
51f2176d 4656 int throttled;
58088ad0 4657
58088ad0
PT
4658 /* no need to continue the timer with no bandwidth constraint */
4659 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4660 goto out_deactivate;
58088ad0 4661
671fd9da 4662 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4663 cfs_b->nr_periods += overrun;
671fd9da 4664
51f2176d
BS
4665 /*
4666 * idle depends on !throttled (for the case of a large deficit), and if
4667 * we're going inactive then everything else can be deferred
4668 */
4669 if (cfs_b->idle && !throttled)
4670 goto out_deactivate;
a9cf55b2
PT
4671
4672 __refill_cfs_bandwidth_runtime(cfs_b);
4673
671fd9da
PT
4674 if (!throttled) {
4675 /* mark as potentially idle for the upcoming period */
4676 cfs_b->idle = 1;
51f2176d 4677 return 0;
671fd9da
PT
4678 }
4679
e8da1b18
NR
4680 /* account preceding periods in which throttling occurred */
4681 cfs_b->nr_throttled += overrun;
4682
671fd9da 4683 /*
c06f04c7
BS
4684 * This check is repeated as we are holding onto the new bandwidth while
4685 * we unthrottle. This can potentially race with an unthrottled group
4686 * trying to acquire new bandwidth from the global pool. This can result
4687 * in us over-using our runtime if it is all used during this loop, but
4688 * only by limited amounts in that extreme case.
671fd9da 4689 */
baa9be4f 4690 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4691 runtime = cfs_b->runtime;
baa9be4f 4692 cfs_b->distribute_running = 1;
c0ad4aa4 4693 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4694 /* we can't nest cfs_b->lock while distributing bandwidth */
de53fd7a 4695 runtime = distribute_cfs_runtime(cfs_b, runtime);
c0ad4aa4 4696 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4697
baa9be4f 4698 cfs_b->distribute_running = 0;
671fd9da 4699 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4700
b5c0ce7b 4701 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4702 }
58088ad0 4703
671fd9da
PT
4704 /*
4705 * While we are ensured activity in the period following an
4706 * unthrottle, this also covers the case in which the new bandwidth is
4707 * insufficient to cover the existing bandwidth deficit. (Forcing the
4708 * timer to remain active while there are any throttled entities.)
4709 */
4710 cfs_b->idle = 0;
58088ad0 4711
51f2176d
BS
4712 return 0;
4713
4714out_deactivate:
51f2176d 4715 return 1;
58088ad0 4716}
d3d9dc33 4717
d8b4986d
PT
4718/* a cfs_rq won't donate quota below this amount */
4719static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4720/* minimum remaining period time to redistribute slack quota */
4721static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4722/* how long we wait to gather additional slack before distributing */
4723static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4724
db06e78c
BS
4725/*
4726 * Are we near the end of the current quota period?
4727 *
4728 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4729 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4730 * migrate_hrtimers, base is never cleared, so we are fine.
4731 */
d8b4986d
PT
4732static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4733{
4734 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4735 u64 remaining;
4736
4737 /* if the call-back is running a quota refresh is already occurring */
4738 if (hrtimer_callback_running(refresh_timer))
4739 return 1;
4740
4741 /* is a quota refresh about to occur? */
4742 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4743 if (remaining < min_expire)
4744 return 1;
4745
4746 return 0;
4747}
4748
4749static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4750{
4751 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4752
4753 /* if there's a quota refresh soon don't bother with slack */
4754 if (runtime_refresh_within(cfs_b, min_left))
4755 return;
4756
66567fcb 4757 /* don't push forwards an existing deferred unthrottle */
4758 if (cfs_b->slack_started)
4759 return;
4760 cfs_b->slack_started = true;
4761
4cfafd30
PZ
4762 hrtimer_start(&cfs_b->slack_timer,
4763 ns_to_ktime(cfs_bandwidth_slack_period),
4764 HRTIMER_MODE_REL);
d8b4986d
PT
4765}
4766
4767/* we know any runtime found here is valid as update_curr() precedes return */
4768static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4769{
4770 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4771 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4772
4773 if (slack_runtime <= 0)
4774 return;
4775
4776 raw_spin_lock(&cfs_b->lock);
de53fd7a 4777 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
4778 cfs_b->runtime += slack_runtime;
4779
4780 /* we are under rq->lock, defer unthrottling using a timer */
4781 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4782 !list_empty(&cfs_b->throttled_cfs_rq))
4783 start_cfs_slack_bandwidth(cfs_b);
4784 }
4785 raw_spin_unlock(&cfs_b->lock);
4786
4787 /* even if it's not valid for return we don't want to try again */
4788 cfs_rq->runtime_remaining -= slack_runtime;
4789}
4790
4791static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4792{
56f570e5
PT
4793 if (!cfs_bandwidth_used())
4794 return;
4795
fccfdc6f 4796 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4797 return;
4798
4799 __return_cfs_rq_runtime(cfs_rq);
4800}
4801
4802/*
4803 * This is done with a timer (instead of inline with bandwidth return) since
4804 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4805 */
4806static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4807{
4808 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4809 unsigned long flags;
d8b4986d
PT
4810
4811 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4812 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 4813 cfs_b->slack_started = false;
baa9be4f 4814 if (cfs_b->distribute_running) {
c0ad4aa4 4815 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4816 return;
4817 }
4818
db06e78c 4819 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4820 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4821 return;
db06e78c 4822 }
d8b4986d 4823
c06f04c7 4824 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4825 runtime = cfs_b->runtime;
c06f04c7 4826
baa9be4f
PA
4827 if (runtime)
4828 cfs_b->distribute_running = 1;
4829
c0ad4aa4 4830 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4831
4832 if (!runtime)
4833 return;
4834
de53fd7a 4835 runtime = distribute_cfs_runtime(cfs_b, runtime);
d8b4986d 4836
c0ad4aa4 4837 raw_spin_lock_irqsave(&cfs_b->lock, flags);
de53fd7a 4838 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4839 cfs_b->distribute_running = 0;
c0ad4aa4 4840 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4841}
4842
d3d9dc33
PT
4843/*
4844 * When a group wakes up we want to make sure that its quota is not already
4845 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4846 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4847 */
4848static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4849{
56f570e5
PT
4850 if (!cfs_bandwidth_used())
4851 return;
4852
d3d9dc33
PT
4853 /* an active group must be handled by the update_curr()->put() path */
4854 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4855 return;
4856
4857 /* ensure the group is not already throttled */
4858 if (cfs_rq_throttled(cfs_rq))
4859 return;
4860
4861 /* update runtime allocation */
4862 account_cfs_rq_runtime(cfs_rq, 0);
4863 if (cfs_rq->runtime_remaining <= 0)
4864 throttle_cfs_rq(cfs_rq);
4865}
4866
55e16d30
PZ
4867static void sync_throttle(struct task_group *tg, int cpu)
4868{
4869 struct cfs_rq *pcfs_rq, *cfs_rq;
4870
4871 if (!cfs_bandwidth_used())
4872 return;
4873
4874 if (!tg->parent)
4875 return;
4876
4877 cfs_rq = tg->cfs_rq[cpu];
4878 pcfs_rq = tg->parent->cfs_rq[cpu];
4879
4880 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4881 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4882}
4883
d3d9dc33 4884/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4885static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4886{
56f570e5 4887 if (!cfs_bandwidth_used())
678d5718 4888 return false;
56f570e5 4889
d3d9dc33 4890 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4891 return false;
d3d9dc33
PT
4892
4893 /*
4894 * it's possible for a throttled entity to be forced into a running
4895 * state (e.g. set_curr_task), in this case we're finished.
4896 */
4897 if (cfs_rq_throttled(cfs_rq))
678d5718 4898 return true;
d3d9dc33
PT
4899
4900 throttle_cfs_rq(cfs_rq);
678d5718 4901 return true;
d3d9dc33 4902}
029632fb 4903
029632fb
PZ
4904static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4905{
4906 struct cfs_bandwidth *cfs_b =
4907 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4908
029632fb
PZ
4909 do_sched_cfs_slack_timer(cfs_b);
4910
4911 return HRTIMER_NORESTART;
4912}
4913
2e8e1922
PA
4914extern const u64 max_cfs_quota_period;
4915
029632fb
PZ
4916static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4917{
4918 struct cfs_bandwidth *cfs_b =
4919 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4920 unsigned long flags;
029632fb
PZ
4921 int overrun;
4922 int idle = 0;
2e8e1922 4923 int count = 0;
029632fb 4924
c0ad4aa4 4925 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4926 for (;;) {
77a4d1a1 4927 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4928 if (!overrun)
4929 break;
4930
2e8e1922
PA
4931 if (++count > 3) {
4932 u64 new, old = ktime_to_ns(cfs_b->period);
4933
4929a4e6
XZ
4934 /*
4935 * Grow period by a factor of 2 to avoid losing precision.
4936 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4937 * to fail.
4938 */
4939 new = old * 2;
4940 if (new < max_cfs_quota_period) {
4941 cfs_b->period = ns_to_ktime(new);
4942 cfs_b->quota *= 2;
4943
4944 pr_warn_ratelimited(
4945 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4946 smp_processor_id(),
4947 div_u64(new, NSEC_PER_USEC),
4948 div_u64(cfs_b->quota, NSEC_PER_USEC));
4949 } else {
4950 pr_warn_ratelimited(
4951 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4952 smp_processor_id(),
4953 div_u64(old, NSEC_PER_USEC),
4954 div_u64(cfs_b->quota, NSEC_PER_USEC));
4955 }
2e8e1922
PA
4956
4957 /* reset count so we don't come right back in here */
4958 count = 0;
4959 }
4960
c0ad4aa4 4961 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 4962 }
4cfafd30
PZ
4963 if (idle)
4964 cfs_b->period_active = 0;
c0ad4aa4 4965 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
4966
4967 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4968}
4969
4970void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4971{
4972 raw_spin_lock_init(&cfs_b->lock);
4973 cfs_b->runtime = 0;
4974 cfs_b->quota = RUNTIME_INF;
4975 cfs_b->period = ns_to_ktime(default_cfs_period());
4976
4977 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4978 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4979 cfs_b->period_timer.function = sched_cfs_period_timer;
4980 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4981 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4982 cfs_b->distribute_running = 0;
66567fcb 4983 cfs_b->slack_started = false;
029632fb
PZ
4984}
4985
4986static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4987{
4988 cfs_rq->runtime_enabled = 0;
4989 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4990}
4991
77a4d1a1 4992void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4993{
4cfafd30 4994 lockdep_assert_held(&cfs_b->lock);
029632fb 4995
f1d1be8a
XP
4996 if (cfs_b->period_active)
4997 return;
4998
4999 cfs_b->period_active = 1;
763a9ec0 5000 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5001 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5002}
5003
5004static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5005{
7f1a169b
TH
5006 /* init_cfs_bandwidth() was not called */
5007 if (!cfs_b->throttled_cfs_rq.next)
5008 return;
5009
029632fb
PZ
5010 hrtimer_cancel(&cfs_b->period_timer);
5011 hrtimer_cancel(&cfs_b->slack_timer);
5012}
5013
502ce005 5014/*
97fb7a0a 5015 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5016 *
5017 * The race is harmless, since modifying bandwidth settings of unhooked group
5018 * bits doesn't do much.
5019 */
5020
5021/* cpu online calback */
0e59bdae
KT
5022static void __maybe_unused update_runtime_enabled(struct rq *rq)
5023{
502ce005 5024 struct task_group *tg;
0e59bdae 5025
502ce005
PZ
5026 lockdep_assert_held(&rq->lock);
5027
5028 rcu_read_lock();
5029 list_for_each_entry_rcu(tg, &task_groups, list) {
5030 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5031 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5032
5033 raw_spin_lock(&cfs_b->lock);
5034 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5035 raw_spin_unlock(&cfs_b->lock);
5036 }
502ce005 5037 rcu_read_unlock();
0e59bdae
KT
5038}
5039
502ce005 5040/* cpu offline callback */
38dc3348 5041static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5042{
502ce005
PZ
5043 struct task_group *tg;
5044
5045 lockdep_assert_held(&rq->lock);
5046
5047 rcu_read_lock();
5048 list_for_each_entry_rcu(tg, &task_groups, list) {
5049 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5050
029632fb
PZ
5051 if (!cfs_rq->runtime_enabled)
5052 continue;
5053
5054 /*
5055 * clock_task is not advancing so we just need to make sure
5056 * there's some valid quota amount
5057 */
51f2176d 5058 cfs_rq->runtime_remaining = 1;
0e59bdae 5059 /*
97fb7a0a 5060 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5061 * in take_cpu_down(), so we prevent new cfs throttling here.
5062 */
5063 cfs_rq->runtime_enabled = 0;
5064
029632fb
PZ
5065 if (cfs_rq_throttled(cfs_rq))
5066 unthrottle_cfs_rq(cfs_rq);
5067 }
502ce005 5068 rcu_read_unlock();
029632fb
PZ
5069}
5070
5071#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5072
5073static inline bool cfs_bandwidth_used(void)
5074{
5075 return false;
5076}
5077
9dbdb155 5078static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5079static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5080static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5081static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5082static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5083
5084static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5085{
5086 return 0;
5087}
64660c86
PT
5088
5089static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5090{
5091 return 0;
5092}
5093
5094static inline int throttled_lb_pair(struct task_group *tg,
5095 int src_cpu, int dest_cpu)
5096{
5097 return 0;
5098}
029632fb
PZ
5099
5100void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5101
5102#ifdef CONFIG_FAIR_GROUP_SCHED
5103static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5104#endif
5105
029632fb
PZ
5106static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5107{
5108 return NULL;
5109}
5110static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5111static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5112static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5113
5114#endif /* CONFIG_CFS_BANDWIDTH */
5115
bf0f6f24
IM
5116/**************************************************
5117 * CFS operations on tasks:
5118 */
5119
8f4d37ec
PZ
5120#ifdef CONFIG_SCHED_HRTICK
5121static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5122{
8f4d37ec
PZ
5123 struct sched_entity *se = &p->se;
5124 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5125
9148a3a1 5126 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5127
8bf46a39 5128 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5129 u64 slice = sched_slice(cfs_rq, se);
5130 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5131 s64 delta = slice - ran;
5132
5133 if (delta < 0) {
5134 if (rq->curr == p)
8875125e 5135 resched_curr(rq);
8f4d37ec
PZ
5136 return;
5137 }
31656519 5138 hrtick_start(rq, delta);
8f4d37ec
PZ
5139 }
5140}
a4c2f00f
PZ
5141
5142/*
5143 * called from enqueue/dequeue and updates the hrtick when the
5144 * current task is from our class and nr_running is low enough
5145 * to matter.
5146 */
5147static void hrtick_update(struct rq *rq)
5148{
5149 struct task_struct *curr = rq->curr;
5150
b39e66ea 5151 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5152 return;
5153
5154 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5155 hrtick_start_fair(rq, curr);
5156}
55e12e5e 5157#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5158static inline void
5159hrtick_start_fair(struct rq *rq, struct task_struct *p)
5160{
5161}
a4c2f00f
PZ
5162
5163static inline void hrtick_update(struct rq *rq)
5164{
5165}
8f4d37ec
PZ
5166#endif
5167
2802bf3c
MR
5168#ifdef CONFIG_SMP
5169static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5170
5171static inline bool cpu_overutilized(int cpu)
5172{
60e17f5c 5173 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5174}
5175
5176static inline void update_overutilized_status(struct rq *rq)
5177{
f9f240f9 5178 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5179 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5180 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5181 }
2802bf3c
MR
5182}
5183#else
5184static inline void update_overutilized_status(struct rq *rq) { }
5185#endif
5186
bf0f6f24
IM
5187/*
5188 * The enqueue_task method is called before nr_running is
5189 * increased. Here we update the fair scheduling stats and
5190 * then put the task into the rbtree:
5191 */
ea87bb78 5192static void
371fd7e7 5193enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5194{
5195 struct cfs_rq *cfs_rq;
62fb1851 5196 struct sched_entity *se = &p->se;
43e9f7f2 5197 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24 5198
2539fc82
PB
5199 /*
5200 * The code below (indirectly) updates schedutil which looks at
5201 * the cfs_rq utilization to select a frequency.
5202 * Let's add the task's estimated utilization to the cfs_rq's
5203 * estimated utilization, before we update schedutil.
5204 */
5205 util_est_enqueue(&rq->cfs, p);
5206
8c34ab19
RW
5207 /*
5208 * If in_iowait is set, the code below may not trigger any cpufreq
5209 * utilization updates, so do it here explicitly with the IOWAIT flag
5210 * passed.
5211 */
5212 if (p->in_iowait)
674e7541 5213 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5214
bf0f6f24 5215 for_each_sched_entity(se) {
62fb1851 5216 if (se->on_rq)
bf0f6f24
IM
5217 break;
5218 cfs_rq = cfs_rq_of(se);
88ec22d3 5219 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5220
5221 /*
5222 * end evaluation on encountering a throttled cfs_rq
5223 *
5224 * note: in the case of encountering a throttled cfs_rq we will
5225 * post the final h_nr_running increment below.
e210bffd 5226 */
85dac906
PT
5227 if (cfs_rq_throttled(cfs_rq))
5228 break;
953bfcd1 5229 cfs_rq->h_nr_running++;
43e9f7f2 5230 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5231
88ec22d3 5232 flags = ENQUEUE_WAKEUP;
bf0f6f24 5233 }
8f4d37ec 5234
2069dd75 5235 for_each_sched_entity(se) {
0f317143 5236 cfs_rq = cfs_rq_of(se);
953bfcd1 5237 cfs_rq->h_nr_running++;
43e9f7f2 5238 cfs_rq->idle_h_nr_running += idle_h_nr_running;
2069dd75 5239
85dac906
PT
5240 if (cfs_rq_throttled(cfs_rq))
5241 break;
5242
88c0616e 5243 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5244 update_cfs_group(se);
2069dd75
PZ
5245 }
5246
2802bf3c 5247 if (!se) {
72465447 5248 add_nr_running(rq, 1);
2802bf3c
MR
5249 /*
5250 * Since new tasks are assigned an initial util_avg equal to
5251 * half of the spare capacity of their CPU, tiny tasks have the
5252 * ability to cross the overutilized threshold, which will
5253 * result in the load balancer ruining all the task placement
5254 * done by EAS. As a way to mitigate that effect, do not account
5255 * for the first enqueue operation of new tasks during the
5256 * overutilized flag detection.
5257 *
5258 * A better way of solving this problem would be to wait for
5259 * the PELT signals of tasks to converge before taking them
5260 * into account, but that is not straightforward to implement,
5261 * and the following generally works well enough in practice.
5262 */
5263 if (flags & ENQUEUE_WAKEUP)
5264 update_overutilized_status(rq);
5265
5266 }
cd126afe 5267
f6783319
VG
5268 if (cfs_bandwidth_used()) {
5269 /*
5270 * When bandwidth control is enabled; the cfs_rq_throttled()
5271 * breaks in the above iteration can result in incomplete
5272 * leaf list maintenance, resulting in triggering the assertion
5273 * below.
5274 */
5275 for_each_sched_entity(se) {
5276 cfs_rq = cfs_rq_of(se);
5277
5278 if (list_add_leaf_cfs_rq(cfs_rq))
5279 break;
5280 }
5281 }
5282
5d299eab
PZ
5283 assert_list_leaf_cfs_rq(rq);
5284
a4c2f00f 5285 hrtick_update(rq);
bf0f6f24
IM
5286}
5287
2f36825b
VP
5288static void set_next_buddy(struct sched_entity *se);
5289
bf0f6f24
IM
5290/*
5291 * The dequeue_task method is called before nr_running is
5292 * decreased. We remove the task from the rbtree and
5293 * update the fair scheduling stats:
5294 */
371fd7e7 5295static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5296{
5297 struct cfs_rq *cfs_rq;
62fb1851 5298 struct sched_entity *se = &p->se;
2f36825b 5299 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5300 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24
IM
5301
5302 for_each_sched_entity(se) {
5303 cfs_rq = cfs_rq_of(se);
371fd7e7 5304 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5305
5306 /*
5307 * end evaluation on encountering a throttled cfs_rq
5308 *
5309 * note: in the case of encountering a throttled cfs_rq we will
5310 * post the final h_nr_running decrement below.
5311 */
5312 if (cfs_rq_throttled(cfs_rq))
5313 break;
953bfcd1 5314 cfs_rq->h_nr_running--;
43e9f7f2 5315 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5316
bf0f6f24 5317 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5318 if (cfs_rq->load.weight) {
754bd598
KK
5319 /* Avoid re-evaluating load for this entity: */
5320 se = parent_entity(se);
2f36825b
VP
5321 /*
5322 * Bias pick_next to pick a task from this cfs_rq, as
5323 * p is sleeping when it is within its sched_slice.
5324 */
754bd598
KK
5325 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5326 set_next_buddy(se);
bf0f6f24 5327 break;
2f36825b 5328 }
371fd7e7 5329 flags |= DEQUEUE_SLEEP;
bf0f6f24 5330 }
8f4d37ec 5331
2069dd75 5332 for_each_sched_entity(se) {
0f317143 5333 cfs_rq = cfs_rq_of(se);
953bfcd1 5334 cfs_rq->h_nr_running--;
43e9f7f2 5335 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5336
85dac906
PT
5337 if (cfs_rq_throttled(cfs_rq))
5338 break;
5339
88c0616e 5340 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5341 update_cfs_group(se);
2069dd75
PZ
5342 }
5343
cd126afe 5344 if (!se)
72465447 5345 sub_nr_running(rq, 1);
cd126afe 5346
7f65ea42 5347 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5348 hrtick_update(rq);
bf0f6f24
IM
5349}
5350
e7693a36 5351#ifdef CONFIG_SMP
10e2f1ac
PZ
5352
5353/* Working cpumask for: load_balance, load_balance_newidle. */
5354DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5355DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5356
9fd81dd5 5357#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5358
5359static struct {
5360 cpumask_var_t idle_cpus_mask;
5361 atomic_t nr_cpus;
f643ea22 5362 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5363 unsigned long next_balance; /* in jiffy units */
f643ea22 5364 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5365} nohz ____cacheline_aligned;
5366
9fd81dd5 5367#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5368
3c29e651
VK
5369/* CPU only has SCHED_IDLE tasks enqueued */
5370static int sched_idle_cpu(int cpu)
5371{
5372 struct rq *rq = cpu_rq(cpu);
5373
5374 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5375 rq->nr_running);
5376}
5377
b0fb1eb4
VG
5378static unsigned long cpu_load(struct rq *rq)
5379{
5380 return cfs_rq_load_avg(&rq->cfs);
5381}
5382
ced549fa 5383static unsigned long capacity_of(int cpu)
029632fb 5384{
ced549fa 5385 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5386}
5387
c58d25f3
PZ
5388static void record_wakee(struct task_struct *p)
5389{
5390 /*
5391 * Only decay a single time; tasks that have less then 1 wakeup per
5392 * jiffy will not have built up many flips.
5393 */
5394 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5395 current->wakee_flips >>= 1;
5396 current->wakee_flip_decay_ts = jiffies;
5397 }
5398
5399 if (current->last_wakee != p) {
5400 current->last_wakee = p;
5401 current->wakee_flips++;
5402 }
5403}
5404
63b0e9ed
MG
5405/*
5406 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5407 *
63b0e9ed 5408 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5409 * at a frequency roughly N times higher than one of its wakees.
5410 *
5411 * In order to determine whether we should let the load spread vs consolidating
5412 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5413 * partner, and a factor of lls_size higher frequency in the other.
5414 *
5415 * With both conditions met, we can be relatively sure that the relationship is
5416 * non-monogamous, with partner count exceeding socket size.
5417 *
5418 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5419 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5420 * socket size.
63b0e9ed 5421 */
62470419
MW
5422static int wake_wide(struct task_struct *p)
5423{
63b0e9ed
MG
5424 unsigned int master = current->wakee_flips;
5425 unsigned int slave = p->wakee_flips;
7d9ffa89 5426 int factor = this_cpu_read(sd_llc_size);
62470419 5427
63b0e9ed
MG
5428 if (master < slave)
5429 swap(master, slave);
5430 if (slave < factor || master < slave * factor)
5431 return 0;
5432 return 1;
62470419
MW
5433}
5434
90001d67 5435/*
d153b153
PZ
5436 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5437 * soonest. For the purpose of speed we only consider the waking and previous
5438 * CPU.
90001d67 5439 *
7332dec0
MG
5440 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5441 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5442 *
5443 * wake_affine_weight() - considers the weight to reflect the average
5444 * scheduling latency of the CPUs. This seems to work
5445 * for the overloaded case.
90001d67 5446 */
3b76c4a3 5447static int
89a55f56 5448wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5449{
7332dec0
MG
5450 /*
5451 * If this_cpu is idle, it implies the wakeup is from interrupt
5452 * context. Only allow the move if cache is shared. Otherwise an
5453 * interrupt intensive workload could force all tasks onto one
5454 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5455 *
5456 * If the prev_cpu is idle and cache affine then avoid a migration.
5457 * There is no guarantee that the cache hot data from an interrupt
5458 * is more important than cache hot data on the prev_cpu and from
5459 * a cpufreq perspective, it's better to have higher utilisation
5460 * on one CPU.
7332dec0 5461 */
943d355d
RJ
5462 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5463 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5464
d153b153 5465 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5466 return this_cpu;
90001d67 5467
3b76c4a3 5468 return nr_cpumask_bits;
90001d67
PZ
5469}
5470
3b76c4a3 5471static int
f2cdd9cc
PZ
5472wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5473 int this_cpu, int prev_cpu, int sync)
90001d67 5474{
90001d67
PZ
5475 s64 this_eff_load, prev_eff_load;
5476 unsigned long task_load;
5477
11f10e54 5478 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5479
90001d67
PZ
5480 if (sync) {
5481 unsigned long current_load = task_h_load(current);
5482
f2cdd9cc 5483 if (current_load > this_eff_load)
3b76c4a3 5484 return this_cpu;
90001d67 5485
f2cdd9cc 5486 this_eff_load -= current_load;
90001d67
PZ
5487 }
5488
90001d67
PZ
5489 task_load = task_h_load(p);
5490
f2cdd9cc
PZ
5491 this_eff_load += task_load;
5492 if (sched_feat(WA_BIAS))
5493 this_eff_load *= 100;
5494 this_eff_load *= capacity_of(prev_cpu);
90001d67 5495
11f10e54 5496 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5497 prev_eff_load -= task_load;
5498 if (sched_feat(WA_BIAS))
5499 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5500 prev_eff_load *= capacity_of(this_cpu);
90001d67 5501
082f764a
MG
5502 /*
5503 * If sync, adjust the weight of prev_eff_load such that if
5504 * prev_eff == this_eff that select_idle_sibling() will consider
5505 * stacking the wakee on top of the waker if no other CPU is
5506 * idle.
5507 */
5508 if (sync)
5509 prev_eff_load += 1;
5510
5511 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5512}
5513
772bd008 5514static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5515 int this_cpu, int prev_cpu, int sync)
098fb9db 5516{
3b76c4a3 5517 int target = nr_cpumask_bits;
098fb9db 5518
89a55f56 5519 if (sched_feat(WA_IDLE))
3b76c4a3 5520 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5521
3b76c4a3
MG
5522 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5523 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5524
ae92882e 5525 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5526 if (target == nr_cpumask_bits)
5527 return prev_cpu;
098fb9db 5528
3b76c4a3
MG
5529 schedstat_inc(sd->ttwu_move_affine);
5530 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5531 return target;
098fb9db
IM
5532}
5533
c469933e 5534static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5535
c469933e 5536static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5537{
c469933e 5538 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5539}
5540
aaee1203
PZ
5541/*
5542 * find_idlest_group finds and returns the least busy CPU group within the
5543 * domain.
6fee85cc
BJ
5544 *
5545 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5546 */
5547static struct sched_group *
78e7ed53 5548find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5549 int this_cpu, int sd_flag)
e7693a36 5550{
b3bd3de6 5551 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5552 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5553 unsigned long min_runnable_load = ULONG_MAX;
5554 unsigned long this_runnable_load = ULONG_MAX;
5555 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5556 unsigned long most_spare = 0, this_spare = 0;
6b94780e
VG
5557 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5558 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5559 (sd->imbalance_pct-100) / 100;
e7693a36 5560
aaee1203 5561 do {
6b94780e
VG
5562 unsigned long load, avg_load, runnable_load;
5563 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5564 int local_group;
5565 int i;
e7693a36 5566
aaee1203 5567 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5568 if (!cpumask_intersects(sched_group_span(group),
3bd37062 5569 p->cpus_ptr))
aaee1203
PZ
5570 continue;
5571
5572 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5573 sched_group_span(group));
aaee1203 5574
6a0b19c0
MR
5575 /*
5576 * Tally up the load of all CPUs in the group and find
5577 * the group containing the CPU with most spare capacity.
5578 */
aaee1203 5579 avg_load = 0;
6b94780e 5580 runnable_load = 0;
6a0b19c0 5581 max_spare_cap = 0;
aaee1203 5582
ae4df9d6 5583 for_each_cpu(i, sched_group_span(group)) {
11f10e54 5584 load = cpu_load(cpu_rq(i));
6b94780e
VG
5585 runnable_load += load;
5586
5587 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5588
c469933e 5589 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5590
5591 if (spare_cap > max_spare_cap)
5592 max_spare_cap = spare_cap;
aaee1203
PZ
5593 }
5594
63b2ca30 5595 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5596 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5597 group->sgc->capacity;
5598 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5599 group->sgc->capacity;
aaee1203
PZ
5600
5601 if (local_group) {
6b94780e
VG
5602 this_runnable_load = runnable_load;
5603 this_avg_load = avg_load;
6a0b19c0
MR
5604 this_spare = max_spare_cap;
5605 } else {
6b94780e
VG
5606 if (min_runnable_load > (runnable_load + imbalance)) {
5607 /*
5608 * The runnable load is significantly smaller
97fb7a0a 5609 * so we can pick this new CPU:
6b94780e
VG
5610 */
5611 min_runnable_load = runnable_load;
5612 min_avg_load = avg_load;
5613 idlest = group;
5614 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5615 (100*min_avg_load > imbalance_scale*avg_load)) {
5616 /*
5617 * The runnable loads are close so take the
97fb7a0a 5618 * blocked load into account through avg_load:
6b94780e
VG
5619 */
5620 min_avg_load = avg_load;
6a0b19c0
MR
5621 idlest = group;
5622 }
5623
5624 if (most_spare < max_spare_cap) {
5625 most_spare = max_spare_cap;
5626 most_spare_sg = group;
5627 }
aaee1203
PZ
5628 }
5629 } while (group = group->next, group != sd->groups);
5630
6a0b19c0
MR
5631 /*
5632 * The cross-over point between using spare capacity or least load
5633 * is too conservative for high utilization tasks on partially
5634 * utilized systems if we require spare_capacity > task_util(p),
5635 * so we allow for some task stuffing by using
5636 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5637 *
5638 * Spare capacity can't be used for fork because the utilization has
5639 * not been set yet, we must first select a rq to compute the initial
5640 * utilization.
6a0b19c0 5641 */
f519a3f1
VG
5642 if (sd_flag & SD_BALANCE_FORK)
5643 goto skip_spare;
5644
6a0b19c0 5645 if (this_spare > task_util(p) / 2 &&
6b94780e 5646 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5647 return NULL;
6b94780e
VG
5648
5649 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5650 return most_spare_sg;
5651
f519a3f1 5652skip_spare:
6b94780e
VG
5653 if (!idlest)
5654 return NULL;
5655
2c833627
MG
5656 /*
5657 * When comparing groups across NUMA domains, it's possible for the
5658 * local domain to be very lightly loaded relative to the remote
5659 * domains but "imbalance" skews the comparison making remote CPUs
5660 * look much more favourable. When considering cross-domain, add
5661 * imbalance to the runnable load on the remote node and consider
5662 * staying local.
5663 */
5664 if ((sd->flags & SD_NUMA) &&
5665 min_runnable_load + imbalance >= this_runnable_load)
5666 return NULL;
5667
6b94780e 5668 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5669 return NULL;
6b94780e
VG
5670
5671 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5672 (100*this_avg_load < imbalance_scale*min_avg_load))
5673 return NULL;
5674
aaee1203
PZ
5675 return idlest;
5676}
5677
5678/*
97fb7a0a 5679 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5680 */
5681static int
18bd1b4b 5682find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5683{
5684 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5685 unsigned int min_exit_latency = UINT_MAX;
5686 u64 latest_idle_timestamp = 0;
5687 int least_loaded_cpu = this_cpu;
3c29e651 5688 int shallowest_idle_cpu = -1, si_cpu = -1;
aaee1203
PZ
5689 int i;
5690
eaecf41f
MR
5691 /* Check if we have any choice: */
5692 if (group->group_weight == 1)
ae4df9d6 5693 return cpumask_first(sched_group_span(group));
eaecf41f 5694
aaee1203 5695 /* Traverse only the allowed CPUs */
3bd37062 5696 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
943d355d 5697 if (available_idle_cpu(i)) {
83a0a96a
NP
5698 struct rq *rq = cpu_rq(i);
5699 struct cpuidle_state *idle = idle_get_state(rq);
5700 if (idle && idle->exit_latency < min_exit_latency) {
5701 /*
5702 * We give priority to a CPU whose idle state
5703 * has the smallest exit latency irrespective
5704 * of any idle timestamp.
5705 */
5706 min_exit_latency = idle->exit_latency;
5707 latest_idle_timestamp = rq->idle_stamp;
5708 shallowest_idle_cpu = i;
5709 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5710 rq->idle_stamp > latest_idle_timestamp) {
5711 /*
5712 * If equal or no active idle state, then
5713 * the most recently idled CPU might have
5714 * a warmer cache.
5715 */
5716 latest_idle_timestamp = rq->idle_stamp;
5717 shallowest_idle_cpu = i;
5718 }
3c29e651
VK
5719 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5720 if (sched_idle_cpu(i)) {
5721 si_cpu = i;
5722 continue;
5723 }
5724
11f10e54 5725 load = cpu_load(cpu_rq(i));
18cec7e0 5726 if (load < min_load) {
83a0a96a
NP
5727 min_load = load;
5728 least_loaded_cpu = i;
5729 }
e7693a36
GH
5730 }
5731 }
5732
3c29e651
VK
5733 if (shallowest_idle_cpu != -1)
5734 return shallowest_idle_cpu;
5735 if (si_cpu != -1)
5736 return si_cpu;
5737 return least_loaded_cpu;
aaee1203 5738}
e7693a36 5739
18bd1b4b
BJ
5740static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5741 int cpu, int prev_cpu, int sd_flag)
5742{
93f50f90 5743 int new_cpu = cpu;
18bd1b4b 5744
3bd37062 5745 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5746 return prev_cpu;
5747
c976a862 5748 /*
c469933e
PB
5749 * We need task's util for capacity_spare_without, sync it up to
5750 * prev_cpu's last_update_time.
c976a862
VK
5751 */
5752 if (!(sd_flag & SD_BALANCE_FORK))
5753 sync_entity_load_avg(&p->se);
5754
18bd1b4b
BJ
5755 while (sd) {
5756 struct sched_group *group;
5757 struct sched_domain *tmp;
5758 int weight;
5759
5760 if (!(sd->flags & sd_flag)) {
5761 sd = sd->child;
5762 continue;
5763 }
5764
5765 group = find_idlest_group(sd, p, cpu, sd_flag);
5766 if (!group) {
5767 sd = sd->child;
5768 continue;
5769 }
5770
5771 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5772 if (new_cpu == cpu) {
97fb7a0a 5773 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5774 sd = sd->child;
5775 continue;
5776 }
5777
97fb7a0a 5778 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5779 cpu = new_cpu;
5780 weight = sd->span_weight;
5781 sd = NULL;
5782 for_each_domain(cpu, tmp) {
5783 if (weight <= tmp->span_weight)
5784 break;
5785 if (tmp->flags & sd_flag)
5786 sd = tmp;
5787 }
18bd1b4b
BJ
5788 }
5789
5790 return new_cpu;
5791}
5792
10e2f1ac 5793#ifdef CONFIG_SCHED_SMT
ba2591a5 5794DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5795EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5796
5797static inline void set_idle_cores(int cpu, int val)
5798{
5799 struct sched_domain_shared *sds;
5800
5801 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5802 if (sds)
5803 WRITE_ONCE(sds->has_idle_cores, val);
5804}
5805
5806static inline bool test_idle_cores(int cpu, bool def)
5807{
5808 struct sched_domain_shared *sds;
5809
5810 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5811 if (sds)
5812 return READ_ONCE(sds->has_idle_cores);
5813
5814 return def;
5815}
5816
5817/*
5818 * Scans the local SMT mask to see if the entire core is idle, and records this
5819 * information in sd_llc_shared->has_idle_cores.
5820 *
5821 * Since SMT siblings share all cache levels, inspecting this limited remote
5822 * state should be fairly cheap.
5823 */
1b568f0a 5824void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5825{
5826 int core = cpu_of(rq);
5827 int cpu;
5828
5829 rcu_read_lock();
5830 if (test_idle_cores(core, true))
5831 goto unlock;
5832
5833 for_each_cpu(cpu, cpu_smt_mask(core)) {
5834 if (cpu == core)
5835 continue;
5836
943d355d 5837 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5838 goto unlock;
5839 }
5840
5841 set_idle_cores(core, 1);
5842unlock:
5843 rcu_read_unlock();
5844}
5845
5846/*
5847 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5848 * there are no idle cores left in the system; tracked through
5849 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5850 */
5851static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5852{
5853 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5854 int core, cpu;
10e2f1ac 5855
1b568f0a
PZ
5856 if (!static_branch_likely(&sched_smt_present))
5857 return -1;
5858
10e2f1ac
PZ
5859 if (!test_idle_cores(target, false))
5860 return -1;
5861
3bd37062 5862 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 5863
c743f0a5 5864 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5865 bool idle = true;
5866
5867 for_each_cpu(cpu, cpu_smt_mask(core)) {
c89d92ed 5868 __cpumask_clear_cpu(cpu, cpus);
943d355d 5869 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5870 idle = false;
5871 }
5872
5873 if (idle)
5874 return core;
5875 }
5876
5877 /*
5878 * Failed to find an idle core; stop looking for one.
5879 */
5880 set_idle_cores(target, 0);
5881
5882 return -1;
5883}
5884
5885/*
5886 * Scan the local SMT mask for idle CPUs.
5887 */
1b5500d7 5888static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac 5889{
3c29e651 5890 int cpu, si_cpu = -1;
10e2f1ac 5891
1b568f0a
PZ
5892 if (!static_branch_likely(&sched_smt_present))
5893 return -1;
5894
10e2f1ac 5895 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 5896 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5897 continue;
943d355d 5898 if (available_idle_cpu(cpu))
10e2f1ac 5899 return cpu;
3c29e651
VK
5900 if (si_cpu == -1 && sched_idle_cpu(cpu))
5901 si_cpu = cpu;
10e2f1ac
PZ
5902 }
5903
3c29e651 5904 return si_cpu;
10e2f1ac
PZ
5905}
5906
5907#else /* CONFIG_SCHED_SMT */
5908
5909static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5910{
5911 return -1;
5912}
5913
1b5500d7 5914static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5915{
5916 return -1;
5917}
5918
5919#endif /* CONFIG_SCHED_SMT */
5920
5921/*
5922 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5923 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5924 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5925 */
10e2f1ac
PZ
5926static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5927{
9cfb38a7 5928 struct sched_domain *this_sd;
1ad3aaf3 5929 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5930 u64 time, cost;
5931 s64 delta;
8dc2d993 5932 int this = smp_processor_id();
3c29e651 5933 int cpu, nr = INT_MAX, si_cpu = -1;
10e2f1ac 5934
9cfb38a7
WL
5935 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5936 if (!this_sd)
5937 return -1;
5938
10e2f1ac
PZ
5939 /*
5940 * Due to large variance we need a large fuzz factor; hackbench in
5941 * particularly is sensitive here.
5942 */
1ad3aaf3
PZ
5943 avg_idle = this_rq()->avg_idle / 512;
5944 avg_cost = this_sd->avg_scan_cost + 1;
5945
5946 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5947 return -1;
5948
1ad3aaf3
PZ
5949 if (sched_feat(SIS_PROP)) {
5950 u64 span_avg = sd->span_weight * avg_idle;
5951 if (span_avg > 4*avg_cost)
5952 nr = div_u64(span_avg, avg_cost);
5953 else
5954 nr = 4;
5955 }
5956
8dc2d993 5957 time = cpu_clock(this);
10e2f1ac 5958
c743f0a5 5959 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3 5960 if (!--nr)
3c29e651 5961 return si_cpu;
3bd37062 5962 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5963 continue;
943d355d 5964 if (available_idle_cpu(cpu))
10e2f1ac 5965 break;
3c29e651
VK
5966 if (si_cpu == -1 && sched_idle_cpu(cpu))
5967 si_cpu = cpu;
10e2f1ac
PZ
5968 }
5969
8dc2d993 5970 time = cpu_clock(this) - time;
10e2f1ac
PZ
5971 cost = this_sd->avg_scan_cost;
5972 delta = (s64)(time - cost) / 8;
5973 this_sd->avg_scan_cost += delta;
5974
5975 return cpu;
5976}
5977
5978/*
5979 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5980 */
772bd008 5981static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5982{
99bd5e2f 5983 struct sched_domain *sd;
32e839dd 5984 int i, recent_used_cpu;
a50bde51 5985
3c29e651 5986 if (available_idle_cpu(target) || sched_idle_cpu(target))
e0a79f52 5987 return target;
99bd5e2f
SS
5988
5989 /*
97fb7a0a 5990 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 5991 */
3c29e651
VK
5992 if (prev != target && cpus_share_cache(prev, target) &&
5993 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
772bd008 5994 return prev;
a50bde51 5995
97fb7a0a 5996 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
5997 recent_used_cpu = p->recent_used_cpu;
5998 if (recent_used_cpu != prev &&
5999 recent_used_cpu != target &&
6000 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6001 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
3bd37062 6002 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6003 /*
6004 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6005 * candidate for the next wake:
32e839dd
MG
6006 */
6007 p->recent_used_cpu = prev;
6008 return recent_used_cpu;
6009 }
6010
518cd623 6011 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6012 if (!sd)
6013 return target;
772bd008 6014
10e2f1ac
PZ
6015 i = select_idle_core(p, sd, target);
6016 if ((unsigned)i < nr_cpumask_bits)
6017 return i;
37407ea7 6018
10e2f1ac
PZ
6019 i = select_idle_cpu(p, sd, target);
6020 if ((unsigned)i < nr_cpumask_bits)
6021 return i;
6022
1b5500d7 6023 i = select_idle_smt(p, target);
10e2f1ac
PZ
6024 if ((unsigned)i < nr_cpumask_bits)
6025 return i;
970e1789 6026
a50bde51
PZ
6027 return target;
6028}
231678b7 6029
f9be3e59
PB
6030/**
6031 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6032 * @cpu: the CPU to get the utilization of
6033 *
6034 * The unit of the return value must be the one of capacity so we can compare
6035 * the utilization with the capacity of the CPU that is available for CFS task
6036 * (ie cpu_capacity).
231678b7
DE
6037 *
6038 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6039 * recent utilization of currently non-runnable tasks on a CPU. It represents
6040 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6041 * capacity_orig is the cpu_capacity available at the highest frequency
6042 * (arch_scale_freq_capacity()).
6043 * The utilization of a CPU converges towards a sum equal to or less than the
6044 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6045 * the running time on this CPU scaled by capacity_curr.
6046 *
f9be3e59
PB
6047 * The estimated utilization of a CPU is defined to be the maximum between its
6048 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6049 * currently RUNNABLE on that CPU.
6050 * This allows to properly represent the expected utilization of a CPU which
6051 * has just got a big task running since a long sleep period. At the same time
6052 * however it preserves the benefits of the "blocked utilization" in
6053 * describing the potential for other tasks waking up on the same CPU.
6054 *
231678b7
DE
6055 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6056 * higher than capacity_orig because of unfortunate rounding in
6057 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6058 * the average stabilizes with the new running time. We need to check that the
6059 * utilization stays within the range of [0..capacity_orig] and cap it if
6060 * necessary. Without utilization capping, a group could be seen as overloaded
6061 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6062 * available capacity. We allow utilization to overshoot capacity_curr (but not
6063 * capacity_orig) as it useful for predicting the capacity required after task
6064 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6065 *
6066 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6067 */
f9be3e59 6068static inline unsigned long cpu_util(int cpu)
8bb5b00c 6069{
f9be3e59
PB
6070 struct cfs_rq *cfs_rq;
6071 unsigned int util;
6072
6073 cfs_rq = &cpu_rq(cpu)->cfs;
6074 util = READ_ONCE(cfs_rq->avg.util_avg);
6075
6076 if (sched_feat(UTIL_EST))
6077 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6078
f9be3e59 6079 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6080}
a50bde51 6081
104cb16d 6082/*
c469933e
PB
6083 * cpu_util_without: compute cpu utilization without any contributions from *p
6084 * @cpu: the CPU which utilization is requested
6085 * @p: the task which utilization should be discounted
6086 *
6087 * The utilization of a CPU is defined by the utilization of tasks currently
6088 * enqueued on that CPU as well as tasks which are currently sleeping after an
6089 * execution on that CPU.
6090 *
6091 * This method returns the utilization of the specified CPU by discounting the
6092 * utilization of the specified task, whenever the task is currently
6093 * contributing to the CPU utilization.
104cb16d 6094 */
c469933e 6095static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6096{
f9be3e59
PB
6097 struct cfs_rq *cfs_rq;
6098 unsigned int util;
104cb16d
MR
6099
6100 /* Task has no contribution or is new */
f9be3e59 6101 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6102 return cpu_util(cpu);
6103
f9be3e59
PB
6104 cfs_rq = &cpu_rq(cpu)->cfs;
6105 util = READ_ONCE(cfs_rq->avg.util_avg);
6106
c469933e 6107 /* Discount task's util from CPU's util */
b5c0ce7b 6108 lsub_positive(&util, task_util(p));
104cb16d 6109
f9be3e59
PB
6110 /*
6111 * Covered cases:
6112 *
6113 * a) if *p is the only task sleeping on this CPU, then:
6114 * cpu_util (== task_util) > util_est (== 0)
6115 * and thus we return:
c469933e 6116 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6117 *
6118 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6119 * IDLE, then:
6120 * cpu_util >= task_util
6121 * cpu_util > util_est (== 0)
6122 * and thus we discount *p's blocked utilization to return:
c469933e 6123 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6124 *
6125 * c) if other tasks are RUNNABLE on that CPU and
6126 * util_est > cpu_util
6127 * then we use util_est since it returns a more restrictive
6128 * estimation of the spare capacity on that CPU, by just
6129 * considering the expected utilization of tasks already
6130 * runnable on that CPU.
6131 *
6132 * Cases a) and b) are covered by the above code, while case c) is
6133 * covered by the following code when estimated utilization is
6134 * enabled.
6135 */
c469933e
PB
6136 if (sched_feat(UTIL_EST)) {
6137 unsigned int estimated =
6138 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6139
6140 /*
6141 * Despite the following checks we still have a small window
6142 * for a possible race, when an execl's select_task_rq_fair()
6143 * races with LB's detach_task():
6144 *
6145 * detach_task()
6146 * p->on_rq = TASK_ON_RQ_MIGRATING;
6147 * ---------------------------------- A
6148 * deactivate_task() \
6149 * dequeue_task() + RaceTime
6150 * util_est_dequeue() /
6151 * ---------------------------------- B
6152 *
6153 * The additional check on "current == p" it's required to
6154 * properly fix the execl regression and it helps in further
6155 * reducing the chances for the above race.
6156 */
b5c0ce7b
PB
6157 if (unlikely(task_on_rq_queued(p) || current == p))
6158 lsub_positive(&estimated, _task_util_est(p));
6159
c469933e
PB
6160 util = max(util, estimated);
6161 }
f9be3e59
PB
6162
6163 /*
6164 * Utilization (estimated) can exceed the CPU capacity, thus let's
6165 * clamp to the maximum CPU capacity to ensure consistency with
6166 * the cpu_util call.
6167 */
6168 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6169}
6170
3273163c
MR
6171/*
6172 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6173 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6174 *
6175 * In that case WAKE_AFFINE doesn't make sense and we'll let
6176 * BALANCE_WAKE sort things out.
6177 */
6178static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6179{
6180 long min_cap, max_cap;
6181
df054e84
MR
6182 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6183 return 0;
6184
3273163c
MR
6185 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6186 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6187
6188 /* Minimum capacity is close to max, no need to abort wake_affine */
6189 if (max_cap - min_cap < max_cap >> 3)
6190 return 0;
6191
104cb16d
MR
6192 /* Bring task utilization in sync with prev_cpu */
6193 sync_entity_load_avg(&p->se);
6194
3b1baa64 6195 return !task_fits_capacity(p, min_cap);
3273163c
MR
6196}
6197
390031e4
QP
6198/*
6199 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6200 * to @dst_cpu.
6201 */
6202static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6203{
6204 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6205 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6206
6207 /*
6208 * If @p migrates from @cpu to another, remove its contribution. Or,
6209 * if @p migrates from another CPU to @cpu, add its contribution. In
6210 * the other cases, @cpu is not impacted by the migration, so the
6211 * util_avg should already be correct.
6212 */
6213 if (task_cpu(p) == cpu && dst_cpu != cpu)
6214 sub_positive(&util, task_util(p));
6215 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6216 util += task_util(p);
6217
6218 if (sched_feat(UTIL_EST)) {
6219 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6220
6221 /*
6222 * During wake-up, the task isn't enqueued yet and doesn't
6223 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6224 * so just add it (if needed) to "simulate" what will be
6225 * cpu_util() after the task has been enqueued.
6226 */
6227 if (dst_cpu == cpu)
6228 util_est += _task_util_est(p);
6229
6230 util = max(util, util_est);
6231 }
6232
6233 return min(util, capacity_orig_of(cpu));
6234}
6235
6236/*
eb92692b 6237 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6238 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6239 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6240 * to compute what would be the energy if we decided to actually migrate that
6241 * task.
6242 */
6243static long
6244compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6245{
eb92692b
QP
6246 struct cpumask *pd_mask = perf_domain_span(pd);
6247 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6248 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6249 int cpu;
6250
eb92692b
QP
6251 /*
6252 * The capacity state of CPUs of the current rd can be driven by CPUs
6253 * of another rd if they belong to the same pd. So, account for the
6254 * utilization of these CPUs too by masking pd with cpu_online_mask
6255 * instead of the rd span.
6256 *
6257 * If an entire pd is outside of the current rd, it will not appear in
6258 * its pd list and will not be accounted by compute_energy().
6259 */
6260 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6261 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6262 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6263
6264 /*
eb92692b
QP
6265 * Busy time computation: utilization clamping is not
6266 * required since the ratio (sum_util / cpu_capacity)
6267 * is already enough to scale the EM reported power
6268 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6269 */
eb92692b
QP
6270 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6271 ENERGY_UTIL, NULL);
af24bde8 6272
390031e4 6273 /*
eb92692b
QP
6274 * Performance domain frequency: utilization clamping
6275 * must be considered since it affects the selection
6276 * of the performance domain frequency.
6277 * NOTE: in case RT tasks are running, by default the
6278 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6279 */
eb92692b
QP
6280 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6281 FREQUENCY_UTIL, tsk);
6282 max_util = max(max_util, cpu_util);
390031e4
QP
6283 }
6284
eb92692b 6285 return em_pd_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6286}
6287
732cd75b
QP
6288/*
6289 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6290 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6291 * spare capacity in each performance domain and uses it as a potential
6292 * candidate to execute the task. Then, it uses the Energy Model to figure
6293 * out which of the CPU candidates is the most energy-efficient.
6294 *
6295 * The rationale for this heuristic is as follows. In a performance domain,
6296 * all the most energy efficient CPU candidates (according to the Energy
6297 * Model) are those for which we'll request a low frequency. When there are
6298 * several CPUs for which the frequency request will be the same, we don't
6299 * have enough data to break the tie between them, because the Energy Model
6300 * only includes active power costs. With this model, if we assume that
6301 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6302 * the maximum spare capacity in a performance domain is guaranteed to be among
6303 * the best candidates of the performance domain.
6304 *
6305 * In practice, it could be preferable from an energy standpoint to pack
6306 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6307 * but that could also hurt our chances to go cluster idle, and we have no
6308 * ways to tell with the current Energy Model if this is actually a good
6309 * idea or not. So, find_energy_efficient_cpu() basically favors
6310 * cluster-packing, and spreading inside a cluster. That should at least be
6311 * a good thing for latency, and this is consistent with the idea that most
6312 * of the energy savings of EAS come from the asymmetry of the system, and
6313 * not so much from breaking the tie between identical CPUs. That's also the
6314 * reason why EAS is enabled in the topology code only for systems where
6315 * SD_ASYM_CPUCAPACITY is set.
6316 *
6317 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6318 * they don't have any useful utilization data yet and it's not possible to
6319 * forecast their impact on energy consumption. Consequently, they will be
6320 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6321 * to be energy-inefficient in some use-cases. The alternative would be to
6322 * bias new tasks towards specific types of CPUs first, or to try to infer
6323 * their util_avg from the parent task, but those heuristics could hurt
6324 * other use-cases too. So, until someone finds a better way to solve this,
6325 * let's keep things simple by re-using the existing slow path.
6326 */
732cd75b
QP
6327static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6328{
eb92692b 6329 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6330 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6331 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6332 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6333 struct sched_domain *sd;
eb92692b 6334 struct perf_domain *pd;
732cd75b
QP
6335
6336 rcu_read_lock();
6337 pd = rcu_dereference(rd->pd);
6338 if (!pd || READ_ONCE(rd->overutilized))
6339 goto fail;
732cd75b
QP
6340
6341 /*
6342 * Energy-aware wake-up happens on the lowest sched_domain starting
6343 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6344 */
6345 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6346 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6347 sd = sd->parent;
6348 if (!sd)
6349 goto fail;
6350
6351 sync_entity_load_avg(&p->se);
6352 if (!task_util_est(p))
6353 goto unlock;
6354
6355 for (; pd; pd = pd->next) {
eb92692b
QP
6356 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6357 unsigned long base_energy_pd;
732cd75b
QP
6358 int max_spare_cap_cpu = -1;
6359
eb92692b
QP
6360 /* Compute the 'base' energy of the pd, without @p */
6361 base_energy_pd = compute_energy(p, -1, pd);
6362 base_energy += base_energy_pd;
6363
732cd75b 6364 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6365 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6366 continue;
6367
6368 /* Skip CPUs that will be overutilized. */
6369 util = cpu_util_next(cpu, p, cpu);
6370 cpu_cap = capacity_of(cpu);
60e17f5c 6371 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6372 continue;
6373
6374 /* Always use prev_cpu as a candidate. */
6375 if (cpu == prev_cpu) {
eb92692b
QP
6376 prev_delta = compute_energy(p, prev_cpu, pd);
6377 prev_delta -= base_energy_pd;
6378 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6379 }
6380
6381 /*
6382 * Find the CPU with the maximum spare capacity in
6383 * the performance domain
6384 */
6385 spare_cap = cpu_cap - util;
6386 if (spare_cap > max_spare_cap) {
6387 max_spare_cap = spare_cap;
6388 max_spare_cap_cpu = cpu;
6389 }
6390 }
6391
6392 /* Evaluate the energy impact of using this CPU. */
4892f51a 6393 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6394 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6395 cur_delta -= base_energy_pd;
6396 if (cur_delta < best_delta) {
6397 best_delta = cur_delta;
732cd75b
QP
6398 best_energy_cpu = max_spare_cap_cpu;
6399 }
6400 }
6401 }
6402unlock:
6403 rcu_read_unlock();
6404
6405 /*
6406 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6407 * least 6% of the energy used by prev_cpu.
6408 */
eb92692b 6409 if (prev_delta == ULONG_MAX)
732cd75b
QP
6410 return best_energy_cpu;
6411
eb92692b 6412 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6413 return best_energy_cpu;
6414
6415 return prev_cpu;
6416
6417fail:
6418 rcu_read_unlock();
6419
6420 return -1;
6421}
6422
aaee1203 6423/*
de91b9cb
MR
6424 * select_task_rq_fair: Select target runqueue for the waking task in domains
6425 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6426 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6427 *
97fb7a0a
IM
6428 * Balances load by selecting the idlest CPU in the idlest group, or under
6429 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6430 *
97fb7a0a 6431 * Returns the target CPU number.
aaee1203
PZ
6432 *
6433 * preempt must be disabled.
6434 */
0017d735 6435static int
ac66f547 6436select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6437{
f1d88b44 6438 struct sched_domain *tmp, *sd = NULL;
c88d5910 6439 int cpu = smp_processor_id();
63b0e9ed 6440 int new_cpu = prev_cpu;
99bd5e2f 6441 int want_affine = 0;
24d0c1d6 6442 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6443
c58d25f3
PZ
6444 if (sd_flag & SD_BALANCE_WAKE) {
6445 record_wakee(p);
732cd75b 6446
f8a696f2 6447 if (sched_energy_enabled()) {
732cd75b
QP
6448 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6449 if (new_cpu >= 0)
6450 return new_cpu;
6451 new_cpu = prev_cpu;
6452 }
6453
6454 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
3bd37062 6455 cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6456 }
aaee1203 6457
dce840a0 6458 rcu_read_lock();
aaee1203 6459 for_each_domain(cpu, tmp) {
e4f42888 6460 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6461 break;
e4f42888 6462
fe3bcfe1 6463 /*
97fb7a0a 6464 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6465 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6466 */
99bd5e2f
SS
6467 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6468 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6469 if (cpu != prev_cpu)
6470 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6471
6472 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6473 break;
f03542a7 6474 }
29cd8bae 6475
f03542a7 6476 if (tmp->flags & sd_flag)
29cd8bae 6477 sd = tmp;
63b0e9ed
MG
6478 else if (!want_affine)
6479 break;
29cd8bae
PZ
6480 }
6481
f1d88b44
VK
6482 if (unlikely(sd)) {
6483 /* Slow path */
18bd1b4b 6484 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6485 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6486 /* Fast path */
6487
6488 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6489
6490 if (want_affine)
6491 current->recent_used_cpu = cpu;
e7693a36 6492 }
dce840a0 6493 rcu_read_unlock();
e7693a36 6494
c88d5910 6495 return new_cpu;
e7693a36 6496}
0a74bef8 6497
144d8487
PZ
6498static void detach_entity_cfs_rq(struct sched_entity *se);
6499
0a74bef8 6500/*
97fb7a0a 6501 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6502 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6503 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6504 */
3f9672ba 6505static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6506{
59efa0ba
PZ
6507 /*
6508 * As blocked tasks retain absolute vruntime the migration needs to
6509 * deal with this by subtracting the old and adding the new
6510 * min_vruntime -- the latter is done by enqueue_entity() when placing
6511 * the task on the new runqueue.
6512 */
6513 if (p->state == TASK_WAKING) {
6514 struct sched_entity *se = &p->se;
6515 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6516 u64 min_vruntime;
6517
6518#ifndef CONFIG_64BIT
6519 u64 min_vruntime_copy;
6520
6521 do {
6522 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6523 smp_rmb();
6524 min_vruntime = cfs_rq->min_vruntime;
6525 } while (min_vruntime != min_vruntime_copy);
6526#else
6527 min_vruntime = cfs_rq->min_vruntime;
6528#endif
6529
6530 se->vruntime -= min_vruntime;
6531 }
6532
144d8487
PZ
6533 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6534 /*
6535 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6536 * rq->lock and can modify state directly.
6537 */
6538 lockdep_assert_held(&task_rq(p)->lock);
6539 detach_entity_cfs_rq(&p->se);
6540
6541 } else {
6542 /*
6543 * We are supposed to update the task to "current" time, then
6544 * its up to date and ready to go to new CPU/cfs_rq. But we
6545 * have difficulty in getting what current time is, so simply
6546 * throw away the out-of-date time. This will result in the
6547 * wakee task is less decayed, but giving the wakee more load
6548 * sounds not bad.
6549 */
6550 remove_entity_load_avg(&p->se);
6551 }
9d89c257
YD
6552
6553 /* Tell new CPU we are migrated */
6554 p->se.avg.last_update_time = 0;
3944a927
BS
6555
6556 /* We have migrated, no longer consider this task hot */
9d89c257 6557 p->se.exec_start = 0;
3f9672ba
SD
6558
6559 update_scan_period(p, new_cpu);
0a74bef8 6560}
12695578
YD
6561
6562static void task_dead_fair(struct task_struct *p)
6563{
6564 remove_entity_load_avg(&p->se);
6565}
e7693a36
GH
6566#endif /* CONFIG_SMP */
6567
a555e9d8 6568static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6569{
6570 unsigned long gran = sysctl_sched_wakeup_granularity;
6571
6572 /*
e52fb7c0
PZ
6573 * Since its curr running now, convert the gran from real-time
6574 * to virtual-time in his units.
13814d42
MG
6575 *
6576 * By using 'se' instead of 'curr' we penalize light tasks, so
6577 * they get preempted easier. That is, if 'se' < 'curr' then
6578 * the resulting gran will be larger, therefore penalizing the
6579 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6580 * be smaller, again penalizing the lighter task.
6581 *
6582 * This is especially important for buddies when the leftmost
6583 * task is higher priority than the buddy.
0bbd3336 6584 */
f4ad9bd2 6585 return calc_delta_fair(gran, se);
0bbd3336
PZ
6586}
6587
464b7527
PZ
6588/*
6589 * Should 'se' preempt 'curr'.
6590 *
6591 * |s1
6592 * |s2
6593 * |s3
6594 * g
6595 * |<--->|c
6596 *
6597 * w(c, s1) = -1
6598 * w(c, s2) = 0
6599 * w(c, s3) = 1
6600 *
6601 */
6602static int
6603wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6604{
6605 s64 gran, vdiff = curr->vruntime - se->vruntime;
6606
6607 if (vdiff <= 0)
6608 return -1;
6609
a555e9d8 6610 gran = wakeup_gran(se);
464b7527
PZ
6611 if (vdiff > gran)
6612 return 1;
6613
6614 return 0;
6615}
6616
02479099
PZ
6617static void set_last_buddy(struct sched_entity *se)
6618{
1da1843f 6619 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6620 return;
6621
c5ae366e
DA
6622 for_each_sched_entity(se) {
6623 if (SCHED_WARN_ON(!se->on_rq))
6624 return;
69c80f3e 6625 cfs_rq_of(se)->last = se;
c5ae366e 6626 }
02479099
PZ
6627}
6628
6629static void set_next_buddy(struct sched_entity *se)
6630{
1da1843f 6631 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6632 return;
6633
c5ae366e
DA
6634 for_each_sched_entity(se) {
6635 if (SCHED_WARN_ON(!se->on_rq))
6636 return;
69c80f3e 6637 cfs_rq_of(se)->next = se;
c5ae366e 6638 }
02479099
PZ
6639}
6640
ac53db59
RR
6641static void set_skip_buddy(struct sched_entity *se)
6642{
69c80f3e
VP
6643 for_each_sched_entity(se)
6644 cfs_rq_of(se)->skip = se;
ac53db59
RR
6645}
6646
bf0f6f24
IM
6647/*
6648 * Preempt the current task with a newly woken task if needed:
6649 */
5a9b86f6 6650static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6651{
6652 struct task_struct *curr = rq->curr;
8651a86c 6653 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6654 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6655 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6656 int next_buddy_marked = 0;
bf0f6f24 6657
4ae7d5ce
IM
6658 if (unlikely(se == pse))
6659 return;
6660
5238cdd3 6661 /*
163122b7 6662 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6663 * unconditionally check_prempt_curr() after an enqueue (which may have
6664 * lead to a throttle). This both saves work and prevents false
6665 * next-buddy nomination below.
6666 */
6667 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6668 return;
6669
2f36825b 6670 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6671 set_next_buddy(pse);
2f36825b
VP
6672 next_buddy_marked = 1;
6673 }
57fdc26d 6674
aec0a514
BR
6675 /*
6676 * We can come here with TIF_NEED_RESCHED already set from new task
6677 * wake up path.
5238cdd3
PT
6678 *
6679 * Note: this also catches the edge-case of curr being in a throttled
6680 * group (e.g. via set_curr_task), since update_curr() (in the
6681 * enqueue of curr) will have resulted in resched being set. This
6682 * prevents us from potentially nominating it as a false LAST_BUDDY
6683 * below.
aec0a514
BR
6684 */
6685 if (test_tsk_need_resched(curr))
6686 return;
6687
a2f5c9ab 6688 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6689 if (unlikely(task_has_idle_policy(curr)) &&
6690 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6691 goto preempt;
6692
91c234b4 6693 /*
a2f5c9ab
DH
6694 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6695 * is driven by the tick):
91c234b4 6696 */
8ed92e51 6697 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6698 return;
bf0f6f24 6699
464b7527 6700 find_matching_se(&se, &pse);
9bbd7374 6701 update_curr(cfs_rq_of(se));
002f128b 6702 BUG_ON(!pse);
2f36825b
VP
6703 if (wakeup_preempt_entity(se, pse) == 1) {
6704 /*
6705 * Bias pick_next to pick the sched entity that is
6706 * triggering this preemption.
6707 */
6708 if (!next_buddy_marked)
6709 set_next_buddy(pse);
3a7e73a2 6710 goto preempt;
2f36825b 6711 }
464b7527 6712
3a7e73a2 6713 return;
a65ac745 6714
3a7e73a2 6715preempt:
8875125e 6716 resched_curr(rq);
3a7e73a2
PZ
6717 /*
6718 * Only set the backward buddy when the current task is still
6719 * on the rq. This can happen when a wakeup gets interleaved
6720 * with schedule on the ->pre_schedule() or idle_balance()
6721 * point, either of which can * drop the rq lock.
6722 *
6723 * Also, during early boot the idle thread is in the fair class,
6724 * for obvious reasons its a bad idea to schedule back to it.
6725 */
6726 if (unlikely(!se->on_rq || curr == rq->idle))
6727 return;
6728
6729 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6730 set_last_buddy(se);
bf0f6f24
IM
6731}
6732
606dba2e 6733static struct task_struct *
d8ac8971 6734pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6735{
6736 struct cfs_rq *cfs_rq = &rq->cfs;
6737 struct sched_entity *se;
678d5718 6738 struct task_struct *p;
37e117c0 6739 int new_tasks;
678d5718 6740
6e83125c 6741again:
678d5718 6742 if (!cfs_rq->nr_running)
38033c37 6743 goto idle;
678d5718 6744
9674f5ca 6745#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 6746 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
6747 goto simple;
6748
6749 /*
6750 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6751 * likely that a next task is from the same cgroup as the current.
6752 *
6753 * Therefore attempt to avoid putting and setting the entire cgroup
6754 * hierarchy, only change the part that actually changes.
6755 */
6756
6757 do {
6758 struct sched_entity *curr = cfs_rq->curr;
6759
6760 /*
6761 * Since we got here without doing put_prev_entity() we also
6762 * have to consider cfs_rq->curr. If it is still a runnable
6763 * entity, update_curr() will update its vruntime, otherwise
6764 * forget we've ever seen it.
6765 */
54d27365
BS
6766 if (curr) {
6767 if (curr->on_rq)
6768 update_curr(cfs_rq);
6769 else
6770 curr = NULL;
678d5718 6771
54d27365
BS
6772 /*
6773 * This call to check_cfs_rq_runtime() will do the
6774 * throttle and dequeue its entity in the parent(s).
9674f5ca 6775 * Therefore the nr_running test will indeed
54d27365
BS
6776 * be correct.
6777 */
9674f5ca
VK
6778 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6779 cfs_rq = &rq->cfs;
6780
6781 if (!cfs_rq->nr_running)
6782 goto idle;
6783
54d27365 6784 goto simple;
9674f5ca 6785 }
54d27365 6786 }
678d5718
PZ
6787
6788 se = pick_next_entity(cfs_rq, curr);
6789 cfs_rq = group_cfs_rq(se);
6790 } while (cfs_rq);
6791
6792 p = task_of(se);
6793
6794 /*
6795 * Since we haven't yet done put_prev_entity and if the selected task
6796 * is a different task than we started out with, try and touch the
6797 * least amount of cfs_rqs.
6798 */
6799 if (prev != p) {
6800 struct sched_entity *pse = &prev->se;
6801
6802 while (!(cfs_rq = is_same_group(se, pse))) {
6803 int se_depth = se->depth;
6804 int pse_depth = pse->depth;
6805
6806 if (se_depth <= pse_depth) {
6807 put_prev_entity(cfs_rq_of(pse), pse);
6808 pse = parent_entity(pse);
6809 }
6810 if (se_depth >= pse_depth) {
6811 set_next_entity(cfs_rq_of(se), se);
6812 se = parent_entity(se);
6813 }
6814 }
6815
6816 put_prev_entity(cfs_rq, pse);
6817 set_next_entity(cfs_rq, se);
6818 }
6819
93824900 6820 goto done;
678d5718 6821simple:
678d5718 6822#endif
67692435
PZ
6823 if (prev)
6824 put_prev_task(rq, prev);
606dba2e 6825
bf0f6f24 6826 do {
678d5718 6827 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6828 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6829 cfs_rq = group_cfs_rq(se);
6830 } while (cfs_rq);
6831
8f4d37ec 6832 p = task_of(se);
678d5718 6833
13a453c2 6834done: __maybe_unused;
93824900
UR
6835#ifdef CONFIG_SMP
6836 /*
6837 * Move the next running task to the front of
6838 * the list, so our cfs_tasks list becomes MRU
6839 * one.
6840 */
6841 list_move(&p->se.group_node, &rq->cfs_tasks);
6842#endif
6843
b39e66ea
MG
6844 if (hrtick_enabled(rq))
6845 hrtick_start_fair(rq, p);
8f4d37ec 6846
3b1baa64
MR
6847 update_misfit_status(p, rq);
6848
8f4d37ec 6849 return p;
38033c37
PZ
6850
6851idle:
67692435
PZ
6852 if (!rf)
6853 return NULL;
6854
5ba553ef 6855 new_tasks = newidle_balance(rq, rf);
46f69fa3 6856
37e117c0 6857 /*
5ba553ef 6858 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
6859 * possible for any higher priority task to appear. In that case we
6860 * must re-start the pick_next_entity() loop.
6861 */
e4aa358b 6862 if (new_tasks < 0)
37e117c0
PZ
6863 return RETRY_TASK;
6864
e4aa358b 6865 if (new_tasks > 0)
38033c37 6866 goto again;
38033c37 6867
23127296
VG
6868 /*
6869 * rq is about to be idle, check if we need to update the
6870 * lost_idle_time of clock_pelt
6871 */
6872 update_idle_rq_clock_pelt(rq);
6873
38033c37 6874 return NULL;
bf0f6f24
IM
6875}
6876
6877/*
6878 * Account for a descheduled task:
6879 */
5f2a45fc 6880static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6881{
6882 struct sched_entity *se = &prev->se;
6883 struct cfs_rq *cfs_rq;
6884
6885 for_each_sched_entity(se) {
6886 cfs_rq = cfs_rq_of(se);
ab6cde26 6887 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6888 }
6889}
6890
ac53db59
RR
6891/*
6892 * sched_yield() is very simple
6893 *
6894 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6895 */
6896static void yield_task_fair(struct rq *rq)
6897{
6898 struct task_struct *curr = rq->curr;
6899 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6900 struct sched_entity *se = &curr->se;
6901
6902 /*
6903 * Are we the only task in the tree?
6904 */
6905 if (unlikely(rq->nr_running == 1))
6906 return;
6907
6908 clear_buddies(cfs_rq, se);
6909
6910 if (curr->policy != SCHED_BATCH) {
6911 update_rq_clock(rq);
6912 /*
6913 * Update run-time statistics of the 'current'.
6914 */
6915 update_curr(cfs_rq);
916671c0
MG
6916 /*
6917 * Tell update_rq_clock() that we've just updated,
6918 * so we don't do microscopic update in schedule()
6919 * and double the fastpath cost.
6920 */
adcc8da8 6921 rq_clock_skip_update(rq);
ac53db59
RR
6922 }
6923
6924 set_skip_buddy(se);
6925}
6926
d95f4122
MG
6927static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6928{
6929 struct sched_entity *se = &p->se;
6930
5238cdd3
PT
6931 /* throttled hierarchies are not runnable */
6932 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6933 return false;
6934
6935 /* Tell the scheduler that we'd really like pse to run next. */
6936 set_next_buddy(se);
6937
d95f4122
MG
6938 yield_task_fair(rq);
6939
6940 return true;
6941}
6942
681f3e68 6943#ifdef CONFIG_SMP
bf0f6f24 6944/**************************************************
e9c84cb8
PZ
6945 * Fair scheduling class load-balancing methods.
6946 *
6947 * BASICS
6948 *
6949 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 6950 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
6951 * time to each task. This is expressed in the following equation:
6952 *
6953 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6954 *
97fb7a0a 6955 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
6956 * W_i,0 is defined as:
6957 *
6958 * W_i,0 = \Sum_j w_i,j (2)
6959 *
97fb7a0a 6960 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 6961 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6962 *
6963 * The weight average is an exponential decay average of the instantaneous
6964 * weight:
6965 *
6966 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6967 *
97fb7a0a 6968 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
6969 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6970 * can also include other factors [XXX].
6971 *
6972 * To achieve this balance we define a measure of imbalance which follows
6973 * directly from (1):
6974 *
ced549fa 6975 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6976 *
6977 * We them move tasks around to minimize the imbalance. In the continuous
6978 * function space it is obvious this converges, in the discrete case we get
6979 * a few fun cases generally called infeasible weight scenarios.
6980 *
6981 * [XXX expand on:
6982 * - infeasible weights;
6983 * - local vs global optima in the discrete case. ]
6984 *
6985 *
6986 * SCHED DOMAINS
6987 *
6988 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 6989 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 6990 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 6991 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 6992 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 6993 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
6994 * the groups.
6995 *
6996 * This yields:
6997 *
6998 * log_2 n 1 n
6999 * \Sum { --- * --- * 2^i } = O(n) (5)
7000 * i = 0 2^i 2^i
7001 * `- size of each group
97fb7a0a 7002 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7003 * | `- freq
7004 * `- sum over all levels
7005 *
7006 * Coupled with a limit on how many tasks we can migrate every balance pass,
7007 * this makes (5) the runtime complexity of the balancer.
7008 *
7009 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7010 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7011 *
7012 * The adjacency matrix of the resulting graph is given by:
7013 *
97a7142f 7014 * log_2 n
e9c84cb8
PZ
7015 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7016 * k = 0
7017 *
7018 * And you'll find that:
7019 *
7020 * A^(log_2 n)_i,j != 0 for all i,j (7)
7021 *
97fb7a0a 7022 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7023 * The task movement gives a factor of O(m), giving a convergence complexity
7024 * of:
7025 *
7026 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7027 *
7028 *
7029 * WORK CONSERVING
7030 *
7031 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7032 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7033 * tree itself instead of relying on other CPUs to bring it work.
7034 *
7035 * This adds some complexity to both (5) and (8) but it reduces the total idle
7036 * time.
7037 *
7038 * [XXX more?]
7039 *
7040 *
7041 * CGROUPS
7042 *
7043 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7044 *
7045 * s_k,i
7046 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7047 * S_k
7048 *
7049 * Where
7050 *
7051 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7052 *
97fb7a0a 7053 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7054 *
7055 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7056 * property.
7057 *
7058 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7059 * rewrite all of this once again.]
97a7142f 7060 */
bf0f6f24 7061
ed387b78
HS
7062static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7063
0ec8aa00
PZ
7064enum fbq_type { regular, remote, all };
7065
0b0695f2
VG
7066/*
7067 * group_type describes the group of CPUs at the moment of the load balance.
7068 * The enum is ordered by pulling priority, with the group with lowest priority
7069 * first so the groupe_type can be simply compared when selecting the busiest
7070 * group. see update_sd_pick_busiest().
7071 */
3b1baa64 7072enum group_type {
0b0695f2
VG
7073 group_has_spare = 0,
7074 group_fully_busy,
3b1baa64 7075 group_misfit_task,
0b0695f2 7076 group_asym_packing,
3b1baa64 7077 group_imbalanced,
0b0695f2
VG
7078 group_overloaded
7079};
7080
7081enum migration_type {
7082 migrate_load = 0,
7083 migrate_util,
7084 migrate_task,
7085 migrate_misfit
3b1baa64
MR
7086};
7087
ddcdf6e7 7088#define LBF_ALL_PINNED 0x01
367456c7 7089#define LBF_NEED_BREAK 0x02
6263322c
PZ
7090#define LBF_DST_PINNED 0x04
7091#define LBF_SOME_PINNED 0x08
e022e0d3 7092#define LBF_NOHZ_STATS 0x10
f643ea22 7093#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7094
7095struct lb_env {
7096 struct sched_domain *sd;
7097
ddcdf6e7 7098 struct rq *src_rq;
85c1e7da 7099 int src_cpu;
ddcdf6e7
PZ
7100
7101 int dst_cpu;
7102 struct rq *dst_rq;
7103
88b8dac0
SV
7104 struct cpumask *dst_grpmask;
7105 int new_dst_cpu;
ddcdf6e7 7106 enum cpu_idle_type idle;
bd939f45 7107 long imbalance;
b9403130
MW
7108 /* The set of CPUs under consideration for load-balancing */
7109 struct cpumask *cpus;
7110
ddcdf6e7 7111 unsigned int flags;
367456c7
PZ
7112
7113 unsigned int loop;
7114 unsigned int loop_break;
7115 unsigned int loop_max;
0ec8aa00
PZ
7116
7117 enum fbq_type fbq_type;
0b0695f2 7118 enum migration_type migration_type;
163122b7 7119 struct list_head tasks;
ddcdf6e7
PZ
7120};
7121
029632fb
PZ
7122/*
7123 * Is this task likely cache-hot:
7124 */
5d5e2b1b 7125static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7126{
7127 s64 delta;
7128
e5673f28
KT
7129 lockdep_assert_held(&env->src_rq->lock);
7130
029632fb
PZ
7131 if (p->sched_class != &fair_sched_class)
7132 return 0;
7133
1da1843f 7134 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7135 return 0;
7136
7137 /*
7138 * Buddy candidates are cache hot:
7139 */
5d5e2b1b 7140 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7141 (&p->se == cfs_rq_of(&p->se)->next ||
7142 &p->se == cfs_rq_of(&p->se)->last))
7143 return 1;
7144
7145 if (sysctl_sched_migration_cost == -1)
7146 return 1;
7147 if (sysctl_sched_migration_cost == 0)
7148 return 0;
7149
5d5e2b1b 7150 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7151
7152 return delta < (s64)sysctl_sched_migration_cost;
7153}
7154
3a7053b3 7155#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7156/*
2a1ed24c
SD
7157 * Returns 1, if task migration degrades locality
7158 * Returns 0, if task migration improves locality i.e migration preferred.
7159 * Returns -1, if task migration is not affected by locality.
c1ceac62 7160 */
2a1ed24c 7161static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7162{
b1ad065e 7163 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7164 unsigned long src_weight, dst_weight;
7165 int src_nid, dst_nid, dist;
3a7053b3 7166
2a595721 7167 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7168 return -1;
7169
c3b9bc5b 7170 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7171 return -1;
7a0f3083
MG
7172
7173 src_nid = cpu_to_node(env->src_cpu);
7174 dst_nid = cpu_to_node(env->dst_cpu);
7175
83e1d2cd 7176 if (src_nid == dst_nid)
2a1ed24c 7177 return -1;
7a0f3083 7178
2a1ed24c
SD
7179 /* Migrating away from the preferred node is always bad. */
7180 if (src_nid == p->numa_preferred_nid) {
7181 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7182 return 1;
7183 else
7184 return -1;
7185 }
b1ad065e 7186
c1ceac62
RR
7187 /* Encourage migration to the preferred node. */
7188 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7189 return 0;
b1ad065e 7190
739294fb 7191 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7192 if (env->idle == CPU_IDLE)
739294fb
RR
7193 return -1;
7194
f35678b6 7195 dist = node_distance(src_nid, dst_nid);
c1ceac62 7196 if (numa_group) {
f35678b6
SD
7197 src_weight = group_weight(p, src_nid, dist);
7198 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7199 } else {
f35678b6
SD
7200 src_weight = task_weight(p, src_nid, dist);
7201 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7202 }
7203
f35678b6 7204 return dst_weight < src_weight;
7a0f3083
MG
7205}
7206
3a7053b3 7207#else
2a1ed24c 7208static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7209 struct lb_env *env)
7210{
2a1ed24c 7211 return -1;
7a0f3083 7212}
3a7053b3
MG
7213#endif
7214
1e3c88bd
PZ
7215/*
7216 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7217 */
7218static
8e45cb54 7219int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7220{
2a1ed24c 7221 int tsk_cache_hot;
e5673f28
KT
7222
7223 lockdep_assert_held(&env->src_rq->lock);
7224
1e3c88bd
PZ
7225 /*
7226 * We do not migrate tasks that are:
d3198084 7227 * 1) throttled_lb_pair, or
3bd37062 7228 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7229 * 3) running (obviously), or
7230 * 4) are cache-hot on their current CPU.
1e3c88bd 7231 */
d3198084
JK
7232 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7233 return 0;
7234
3bd37062 7235 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7236 int cpu;
88b8dac0 7237
ae92882e 7238 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7239
6263322c
PZ
7240 env->flags |= LBF_SOME_PINNED;
7241
88b8dac0 7242 /*
97fb7a0a 7243 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7244 * our sched_group. We may want to revisit it if we couldn't
7245 * meet load balance goals by pulling other tasks on src_cpu.
7246 *
65a4433a
JH
7247 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7248 * already computed one in current iteration.
88b8dac0 7249 */
65a4433a 7250 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7251 return 0;
7252
97fb7a0a 7253 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7254 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7255 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7256 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7257 env->new_dst_cpu = cpu;
7258 break;
7259 }
88b8dac0 7260 }
e02e60c1 7261
1e3c88bd
PZ
7262 return 0;
7263 }
88b8dac0
SV
7264
7265 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7266 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7267
ddcdf6e7 7268 if (task_running(env->src_rq, p)) {
ae92882e 7269 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7270 return 0;
7271 }
7272
7273 /*
7274 * Aggressive migration if:
3a7053b3
MG
7275 * 1) destination numa is preferred
7276 * 2) task is cache cold, or
7277 * 3) too many balance attempts have failed.
1e3c88bd 7278 */
2a1ed24c
SD
7279 tsk_cache_hot = migrate_degrades_locality(p, env);
7280 if (tsk_cache_hot == -1)
7281 tsk_cache_hot = task_hot(p, env);
3a7053b3 7282
2a1ed24c 7283 if (tsk_cache_hot <= 0 ||
7a96c231 7284 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7285 if (tsk_cache_hot == 1) {
ae92882e
JP
7286 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7287 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7288 }
1e3c88bd
PZ
7289 return 1;
7290 }
7291
ae92882e 7292 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7293 return 0;
1e3c88bd
PZ
7294}
7295
897c395f 7296/*
163122b7
KT
7297 * detach_task() -- detach the task for the migration specified in env
7298 */
7299static void detach_task(struct task_struct *p, struct lb_env *env)
7300{
7301 lockdep_assert_held(&env->src_rq->lock);
7302
5704ac0a 7303 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7304 set_task_cpu(p, env->dst_cpu);
7305}
7306
897c395f 7307/*
e5673f28 7308 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7309 * part of active balancing operations within "domain".
897c395f 7310 *
e5673f28 7311 * Returns a task if successful and NULL otherwise.
897c395f 7312 */
e5673f28 7313static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7314{
93824900 7315 struct task_struct *p;
897c395f 7316
e5673f28
KT
7317 lockdep_assert_held(&env->src_rq->lock);
7318
93824900
UR
7319 list_for_each_entry_reverse(p,
7320 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7321 if (!can_migrate_task(p, env))
7322 continue;
897c395f 7323
163122b7 7324 detach_task(p, env);
e5673f28 7325
367456c7 7326 /*
e5673f28 7327 * Right now, this is only the second place where
163122b7 7328 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7329 * so we can safely collect stats here rather than
163122b7 7330 * inside detach_tasks().
367456c7 7331 */
ae92882e 7332 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7333 return p;
897c395f 7334 }
e5673f28 7335 return NULL;
897c395f
PZ
7336}
7337
eb95308e
PZ
7338static const unsigned int sched_nr_migrate_break = 32;
7339
5d6523eb 7340/*
0b0695f2 7341 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7342 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7343 *
163122b7 7344 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7345 */
163122b7 7346static int detach_tasks(struct lb_env *env)
1e3c88bd 7347{
5d6523eb 7348 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7349 unsigned long util, load;
5d6523eb 7350 struct task_struct *p;
163122b7
KT
7351 int detached = 0;
7352
7353 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7354
bd939f45 7355 if (env->imbalance <= 0)
5d6523eb 7356 return 0;
1e3c88bd 7357
5d6523eb 7358 while (!list_empty(tasks)) {
985d3a4c
YD
7359 /*
7360 * We don't want to steal all, otherwise we may be treated likewise,
7361 * which could at worst lead to a livelock crash.
7362 */
7363 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7364 break;
7365
93824900 7366 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7367
367456c7
PZ
7368 env->loop++;
7369 /* We've more or less seen every task there is, call it quits */
5d6523eb 7370 if (env->loop > env->loop_max)
367456c7 7371 break;
5d6523eb
PZ
7372
7373 /* take a breather every nr_migrate tasks */
367456c7 7374 if (env->loop > env->loop_break) {
eb95308e 7375 env->loop_break += sched_nr_migrate_break;
8e45cb54 7376 env->flags |= LBF_NEED_BREAK;
ee00e66f 7377 break;
a195f004 7378 }
1e3c88bd 7379
d3198084 7380 if (!can_migrate_task(p, env))
367456c7
PZ
7381 goto next;
7382
0b0695f2
VG
7383 switch (env->migration_type) {
7384 case migrate_load:
7385 load = task_h_load(p);
5d6523eb 7386
0b0695f2
VG
7387 if (sched_feat(LB_MIN) &&
7388 load < 16 && !env->sd->nr_balance_failed)
7389 goto next;
367456c7 7390
0b0695f2
VG
7391 if (load/2 > env->imbalance)
7392 goto next;
7393
7394 env->imbalance -= load;
7395 break;
7396
7397 case migrate_util:
7398 util = task_util_est(p);
7399
7400 if (util > env->imbalance)
7401 goto next;
7402
7403 env->imbalance -= util;
7404 break;
7405
7406 case migrate_task:
7407 env->imbalance--;
7408 break;
7409
7410 case migrate_misfit:
c63be7be
VG
7411 /* This is not a misfit task */
7412 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7413 goto next;
7414
7415 env->imbalance = 0;
7416 break;
7417 }
1e3c88bd 7418
163122b7
KT
7419 detach_task(p, env);
7420 list_add(&p->se.group_node, &env->tasks);
7421
7422 detached++;
1e3c88bd 7423
c1a280b6 7424#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7425 /*
7426 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7427 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7428 * the critical section.
7429 */
5d6523eb 7430 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7431 break;
1e3c88bd
PZ
7432#endif
7433
ee00e66f
PZ
7434 /*
7435 * We only want to steal up to the prescribed amount of
0b0695f2 7436 * load/util/tasks.
ee00e66f 7437 */
bd939f45 7438 if (env->imbalance <= 0)
ee00e66f 7439 break;
367456c7
PZ
7440
7441 continue;
7442next:
93824900 7443 list_move(&p->se.group_node, tasks);
1e3c88bd 7444 }
5d6523eb 7445
1e3c88bd 7446 /*
163122b7
KT
7447 * Right now, this is one of only two places we collect this stat
7448 * so we can safely collect detach_one_task() stats here rather
7449 * than inside detach_one_task().
1e3c88bd 7450 */
ae92882e 7451 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7452
163122b7
KT
7453 return detached;
7454}
7455
7456/*
7457 * attach_task() -- attach the task detached by detach_task() to its new rq.
7458 */
7459static void attach_task(struct rq *rq, struct task_struct *p)
7460{
7461 lockdep_assert_held(&rq->lock);
7462
7463 BUG_ON(task_rq(p) != rq);
5704ac0a 7464 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7465 check_preempt_curr(rq, p, 0);
7466}
7467
7468/*
7469 * attach_one_task() -- attaches the task returned from detach_one_task() to
7470 * its new rq.
7471 */
7472static void attach_one_task(struct rq *rq, struct task_struct *p)
7473{
8a8c69c3
PZ
7474 struct rq_flags rf;
7475
7476 rq_lock(rq, &rf);
5704ac0a 7477 update_rq_clock(rq);
163122b7 7478 attach_task(rq, p);
8a8c69c3 7479 rq_unlock(rq, &rf);
163122b7
KT
7480}
7481
7482/*
7483 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7484 * new rq.
7485 */
7486static void attach_tasks(struct lb_env *env)
7487{
7488 struct list_head *tasks = &env->tasks;
7489 struct task_struct *p;
8a8c69c3 7490 struct rq_flags rf;
163122b7 7491
8a8c69c3 7492 rq_lock(env->dst_rq, &rf);
5704ac0a 7493 update_rq_clock(env->dst_rq);
163122b7
KT
7494
7495 while (!list_empty(tasks)) {
7496 p = list_first_entry(tasks, struct task_struct, se.group_node);
7497 list_del_init(&p->se.group_node);
1e3c88bd 7498
163122b7
KT
7499 attach_task(env->dst_rq, p);
7500 }
7501
8a8c69c3 7502 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7503}
7504
b0c79224 7505#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7506static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7507{
7508 if (cfs_rq->avg.load_avg)
7509 return true;
7510
7511 if (cfs_rq->avg.util_avg)
7512 return true;
7513
7514 return false;
7515}
7516
91c27493 7517static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7518{
7519 if (READ_ONCE(rq->avg_rt.util_avg))
7520 return true;
7521
3727e0e1
VG
7522 if (READ_ONCE(rq->avg_dl.util_avg))
7523 return true;
7524
11d4afd4 7525#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7526 if (READ_ONCE(rq->avg_irq.util_avg))
7527 return true;
7528#endif
7529
371bf427
VG
7530 return false;
7531}
7532
b0c79224
VS
7533static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7534{
7535 rq->last_blocked_load_update_tick = jiffies;
7536
7537 if (!has_blocked)
7538 rq->has_blocked_load = 0;
7539}
7540#else
7541static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7542static inline bool others_have_blocked(struct rq *rq) { return false; }
7543static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7544#endif
7545
1936c53c
VG
7546#ifdef CONFIG_FAIR_GROUP_SCHED
7547
039ae8bc
VG
7548static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7549{
7550 if (cfs_rq->load.weight)
7551 return false;
7552
7553 if (cfs_rq->avg.load_sum)
7554 return false;
7555
7556 if (cfs_rq->avg.util_sum)
7557 return false;
7558
7559 if (cfs_rq->avg.runnable_load_sum)
7560 return false;
7561
7562 return true;
7563}
7564
48a16753 7565static void update_blocked_averages(int cpu)
9e3081ca 7566{
9e3081ca 7567 struct rq *rq = cpu_rq(cpu);
039ae8bc 7568 struct cfs_rq *cfs_rq, *pos;
12b04875 7569 const struct sched_class *curr_class;
8a8c69c3 7570 struct rq_flags rf;
f643ea22 7571 bool done = true;
9e3081ca 7572
8a8c69c3 7573 rq_lock_irqsave(rq, &rf);
48a16753 7574 update_rq_clock(rq);
9d89c257 7575
9763b67f
PZ
7576 /*
7577 * Iterates the task_group tree in a bottom up fashion, see
7578 * list_add_leaf_cfs_rq() for details.
7579 */
039ae8bc 7580 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7581 struct sched_entity *se;
7582
23127296 7583 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
9d89c257 7584 update_tg_load_avg(cfs_rq, 0);
4e516076 7585
bc427898
VG
7586 /* Propagate pending load changes to the parent, if any: */
7587 se = cfs_rq->tg->se[cpu];
7588 if (se && !skip_blocked_update(se))
88c0616e 7589 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7590
039ae8bc
VG
7591 /*
7592 * There can be a lot of idle CPU cgroups. Don't let fully
7593 * decayed cfs_rqs linger on the list.
7594 */
7595 if (cfs_rq_is_decayed(cfs_rq))
7596 list_del_leaf_cfs_rq(cfs_rq);
7597
1936c53c
VG
7598 /* Don't need periodic decay once load/util_avg are null */
7599 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7600 done = false;
9d89c257 7601 }
12b04875
VG
7602
7603 curr_class = rq->curr->sched_class;
23127296
VG
7604 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7605 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7606 update_irq_load_avg(rq, 0);
371bf427 7607 /* Don't need periodic decay once load/util_avg are null */
91c27493 7608 if (others_have_blocked(rq))
371bf427 7609 done = false;
e022e0d3 7610
b0c79224 7611 update_blocked_load_status(rq, !done);
8a8c69c3 7612 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7613}
7614
9763b67f 7615/*
68520796 7616 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7617 * This needs to be done in a top-down fashion because the load of a child
7618 * group is a fraction of its parents load.
7619 */
68520796 7620static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7621{
68520796
VD
7622 struct rq *rq = rq_of(cfs_rq);
7623 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7624 unsigned long now = jiffies;
68520796 7625 unsigned long load;
a35b6466 7626
68520796 7627 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7628 return;
7629
0e9f0245 7630 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7631 for_each_sched_entity(se) {
7632 cfs_rq = cfs_rq_of(se);
0e9f0245 7633 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7634 if (cfs_rq->last_h_load_update == now)
7635 break;
7636 }
a35b6466 7637
68520796 7638 if (!se) {
7ea241af 7639 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7640 cfs_rq->last_h_load_update = now;
7641 }
7642
0e9f0245 7643 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7644 load = cfs_rq->h_load;
7ea241af
YD
7645 load = div64_ul(load * se->avg.load_avg,
7646 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7647 cfs_rq = group_cfs_rq(se);
7648 cfs_rq->h_load = load;
7649 cfs_rq->last_h_load_update = now;
7650 }
9763b67f
PZ
7651}
7652
367456c7 7653static unsigned long task_h_load(struct task_struct *p)
230059de 7654{
367456c7 7655 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7656
68520796 7657 update_cfs_rq_h_load(cfs_rq);
9d89c257 7658 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7659 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7660}
7661#else
48a16753 7662static inline void update_blocked_averages(int cpu)
9e3081ca 7663{
6c1d47c0
VG
7664 struct rq *rq = cpu_rq(cpu);
7665 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7666 const struct sched_class *curr_class;
8a8c69c3 7667 struct rq_flags rf;
6c1d47c0 7668
8a8c69c3 7669 rq_lock_irqsave(rq, &rf);
6c1d47c0 7670 update_rq_clock(rq);
23127296 7671 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
12b04875
VG
7672
7673 curr_class = rq->curr->sched_class;
23127296
VG
7674 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7675 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7676 update_irq_load_avg(rq, 0);
b0c79224 7677 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
8a8c69c3 7678 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7679}
7680
367456c7 7681static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7682{
9d89c257 7683 return p->se.avg.load_avg;
1e3c88bd 7684}
230059de 7685#endif
1e3c88bd 7686
1e3c88bd 7687/********** Helpers for find_busiest_group ************************/
caeb178c 7688
1e3c88bd
PZ
7689/*
7690 * sg_lb_stats - stats of a sched_group required for load_balancing
7691 */
7692struct sg_lb_stats {
7693 unsigned long avg_load; /*Avg load across the CPUs of the group */
7694 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 7695 unsigned long group_capacity;
9e91d61d 7696 unsigned long group_util; /* Total utilization of the group */
5e23e474 7697 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 7698 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
7699 unsigned int idle_cpus;
7700 unsigned int group_weight;
caeb178c 7701 enum group_type group_type;
490ba971 7702 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 7703 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7704#ifdef CONFIG_NUMA_BALANCING
7705 unsigned int nr_numa_running;
7706 unsigned int nr_preferred_running;
7707#endif
1e3c88bd
PZ
7708};
7709
56cf515b
JK
7710/*
7711 * sd_lb_stats - Structure to store the statistics of a sched_domain
7712 * during load balancing.
7713 */
7714struct sd_lb_stats {
7715 struct sched_group *busiest; /* Busiest group in this sd */
7716 struct sched_group *local; /* Local group in this sd */
7717 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7718 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 7719 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 7720 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 7721
56cf515b 7722 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7723 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7724};
7725
147c5fc2
PZ
7726static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7727{
7728 /*
7729 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7730 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
7731 * We must however set busiest_stat::group_type and
7732 * busiest_stat::idle_cpus to the worst busiest group because
7733 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
7734 */
7735 *sds = (struct sd_lb_stats){
7736 .busiest = NULL,
7737 .local = NULL,
7738 .total_load = 0UL,
63b2ca30 7739 .total_capacity = 0UL,
147c5fc2 7740 .busiest_stat = {
0b0695f2
VG
7741 .idle_cpus = UINT_MAX,
7742 .group_type = group_has_spare,
147c5fc2
PZ
7743 },
7744 };
7745}
7746
287cdaac 7747static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7748{
7749 struct rq *rq = cpu_rq(cpu);
8ec59c0f 7750 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 7751 unsigned long used, free;
523e979d 7752 unsigned long irq;
b654f7de 7753
2e62c474 7754 irq = cpu_util_irq(rq);
cadefd3d 7755
523e979d
VG
7756 if (unlikely(irq >= max))
7757 return 1;
aa483808 7758
523e979d
VG
7759 used = READ_ONCE(rq->avg_rt.util_avg);
7760 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7761
523e979d
VG
7762 if (unlikely(used >= max))
7763 return 1;
1e3c88bd 7764
523e979d 7765 free = max - used;
2e62c474
VG
7766
7767 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7768}
7769
ced549fa 7770static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7771{
287cdaac 7772 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7773 struct sched_group *sdg = sd->groups;
7774
8ec59c0f 7775 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 7776
ced549fa
NP
7777 if (!capacity)
7778 capacity = 1;
1e3c88bd 7779
ced549fa
NP
7780 cpu_rq(cpu)->cpu_capacity = capacity;
7781 sdg->sgc->capacity = capacity;
bf475ce0 7782 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7783 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7784}
7785
63b2ca30 7786void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7787{
7788 struct sched_domain *child = sd->child;
7789 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7790 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7791 unsigned long interval;
7792
7793 interval = msecs_to_jiffies(sd->balance_interval);
7794 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7795 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7796
7797 if (!child) {
ced549fa 7798 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7799 return;
7800 }
7801
dc7ff76e 7802 capacity = 0;
bf475ce0 7803 min_capacity = ULONG_MAX;
e3d6d0cb 7804 max_capacity = 0;
1e3c88bd 7805
74a5ce20
PZ
7806 if (child->flags & SD_OVERLAP) {
7807 /*
7808 * SD_OVERLAP domains cannot assume that child groups
7809 * span the current group.
7810 */
7811
ae4df9d6 7812 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7813 struct sched_group_capacity *sgc;
9abf24d4 7814 struct rq *rq = cpu_rq(cpu);
863bffc8 7815
9abf24d4 7816 /*
63b2ca30 7817 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7818 * gets here before we've attached the domains to the
7819 * runqueues.
7820 *
ced549fa
NP
7821 * Use capacity_of(), which is set irrespective of domains
7822 * in update_cpu_capacity().
9abf24d4 7823 *
dc7ff76e 7824 * This avoids capacity from being 0 and
9abf24d4 7825 * causing divide-by-zero issues on boot.
9abf24d4
SD
7826 */
7827 if (unlikely(!rq->sd)) {
ced549fa 7828 capacity += capacity_of(cpu);
bf475ce0
MR
7829 } else {
7830 sgc = rq->sd->groups->sgc;
7831 capacity += sgc->capacity;
9abf24d4 7832 }
863bffc8 7833
bf475ce0 7834 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7835 max_capacity = max(capacity, max_capacity);
863bffc8 7836 }
74a5ce20
PZ
7837 } else {
7838 /*
7839 * !SD_OVERLAP domains can assume that child groups
7840 * span the current group.
97a7142f 7841 */
74a5ce20
PZ
7842
7843 group = child->groups;
7844 do {
bf475ce0
MR
7845 struct sched_group_capacity *sgc = group->sgc;
7846
7847 capacity += sgc->capacity;
7848 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7849 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7850 group = group->next;
7851 } while (group != child->groups);
7852 }
1e3c88bd 7853
63b2ca30 7854 sdg->sgc->capacity = capacity;
bf475ce0 7855 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 7856 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
7857}
7858
9d5efe05 7859/*
ea67821b
VG
7860 * Check whether the capacity of the rq has been noticeably reduced by side
7861 * activity. The imbalance_pct is used for the threshold.
7862 * Return true is the capacity is reduced
9d5efe05
SV
7863 */
7864static inline int
ea67821b 7865check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7866{
ea67821b
VG
7867 return ((rq->cpu_capacity * sd->imbalance_pct) <
7868 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7869}
7870
a0fe2cf0
VS
7871/*
7872 * Check whether a rq has a misfit task and if it looks like we can actually
7873 * help that task: we can migrate the task to a CPU of higher capacity, or
7874 * the task's current CPU is heavily pressured.
7875 */
7876static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7877{
7878 return rq->misfit_task_load &&
7879 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7880 check_cpu_capacity(rq, sd));
7881}
7882
30ce5dab
PZ
7883/*
7884 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 7885 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 7886 *
97fb7a0a
IM
7887 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7888 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7889 * Something like:
7890 *
2b4d5b25
IM
7891 * { 0 1 2 3 } { 4 5 6 7 }
7892 * * * * *
30ce5dab
PZ
7893 *
7894 * If we were to balance group-wise we'd place two tasks in the first group and
7895 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7896 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7897 *
7898 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7899 * by noticing the lower domain failed to reach balance and had difficulty
7900 * moving tasks due to affinity constraints.
30ce5dab
PZ
7901 *
7902 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7903 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7904 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7905 * to create an effective group imbalance.
7906 *
7907 * This is a somewhat tricky proposition since the next run might not find the
7908 * group imbalance and decide the groups need to be balanced again. A most
7909 * subtle and fragile situation.
7910 */
7911
6263322c 7912static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7913{
63b2ca30 7914 return group->sgc->imbalance;
30ce5dab
PZ
7915}
7916
b37d9316 7917/*
ea67821b
VG
7918 * group_has_capacity returns true if the group has spare capacity that could
7919 * be used by some tasks.
7920 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7921 * smaller than the number of CPUs or if the utilization is lower than the
7922 * available capacity for CFS tasks.
ea67821b
VG
7923 * For the latter, we use a threshold to stabilize the state, to take into
7924 * account the variance of the tasks' load and to return true if the available
7925 * capacity in meaningful for the load balancer.
7926 * As an example, an available capacity of 1% can appear but it doesn't make
7927 * any benefit for the load balance.
b37d9316 7928 */
ea67821b
VG
7929static inline bool
7930group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7931{
5e23e474 7932 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 7933 return true;
c61037e9 7934
ea67821b 7935 if ((sgs->group_capacity * 100) >
9e91d61d 7936 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7937 return true;
b37d9316 7938
ea67821b
VG
7939 return false;
7940}
7941
7942/*
7943 * group_is_overloaded returns true if the group has more tasks than it can
7944 * handle.
7945 * group_is_overloaded is not equals to !group_has_capacity because a group
7946 * with the exact right number of tasks, has no more spare capacity but is not
7947 * overloaded so both group_has_capacity and group_is_overloaded return
7948 * false.
7949 */
7950static inline bool
7951group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7952{
5e23e474 7953 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 7954 return false;
b37d9316 7955
ea67821b 7956 if ((sgs->group_capacity * 100) <
9e91d61d 7957 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7958 return true;
b37d9316 7959
ea67821b 7960 return false;
b37d9316
PZ
7961}
7962
9e0994c0 7963/*
e3d6d0cb 7964 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
7965 * per-CPU capacity than sched_group ref.
7966 */
7967static inline bool
e3d6d0cb 7968group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 7969{
60e17f5c 7970 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
7971}
7972
e3d6d0cb
MR
7973/*
7974 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7975 * per-CPU capacity_orig than sched_group ref.
7976 */
7977static inline bool
7978group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7979{
60e17f5c 7980 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
7981}
7982
79a89f92 7983static inline enum
0b0695f2
VG
7984group_type group_classify(struct lb_env *env,
7985 struct sched_group *group,
79a89f92 7986 struct sg_lb_stats *sgs)
caeb178c 7987{
0b0695f2 7988 if (group_is_overloaded(env, sgs))
caeb178c
RR
7989 return group_overloaded;
7990
7991 if (sg_imbalanced(group))
7992 return group_imbalanced;
7993
0b0695f2
VG
7994 if (sgs->group_asym_packing)
7995 return group_asym_packing;
7996
3b1baa64
MR
7997 if (sgs->group_misfit_task_load)
7998 return group_misfit_task;
7999
0b0695f2
VG
8000 if (!group_has_capacity(env, sgs))
8001 return group_fully_busy;
8002
8003 return group_has_spare;
caeb178c
RR
8004}
8005
63928384 8006static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8007{
8008#ifdef CONFIG_NO_HZ_COMMON
8009 unsigned int cpu = rq->cpu;
8010
f643ea22
VG
8011 if (!rq->has_blocked_load)
8012 return false;
8013
e022e0d3 8014 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8015 return false;
e022e0d3 8016
63928384 8017 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8018 return true;
e022e0d3
PZ
8019
8020 update_blocked_averages(cpu);
f643ea22
VG
8021
8022 return rq->has_blocked_load;
8023#else
8024 return false;
e022e0d3
PZ
8025#endif
8026}
8027
1e3c88bd
PZ
8028/**
8029 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8030 * @env: The load balancing environment.
1e3c88bd 8031 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8032 * @sgs: variable to hold the statistics for this group.
630246a0 8033 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8034 */
bd939f45 8035static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8036 struct sched_group *group,
8037 struct sg_lb_stats *sgs,
8038 int *sg_status)
1e3c88bd 8039{
0b0695f2 8040 int i, nr_running, local_group;
1e3c88bd 8041
b72ff13c
PZ
8042 memset(sgs, 0, sizeof(*sgs));
8043
0b0695f2
VG
8044 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8045
ae4df9d6 8046 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8047 struct rq *rq = cpu_rq(i);
8048
63928384 8049 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8050 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8051
b0fb1eb4 8052 sgs->group_load += cpu_load(rq);
9e91d61d 8053 sgs->group_util += cpu_util(i);
a3498347 8054 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8055
a426f99c 8056 nr_running = rq->nr_running;
5e23e474
VG
8057 sgs->sum_nr_running += nr_running;
8058
a426f99c 8059 if (nr_running > 1)
630246a0 8060 *sg_status |= SG_OVERLOAD;
4486edd1 8061
2802bf3c
MR
8062 if (cpu_overutilized(i))
8063 *sg_status |= SG_OVERUTILIZED;
4486edd1 8064
0ec8aa00
PZ
8065#ifdef CONFIG_NUMA_BALANCING
8066 sgs->nr_numa_running += rq->nr_numa_running;
8067 sgs->nr_preferred_running += rq->nr_preferred_running;
8068#endif
a426f99c
WL
8069 /*
8070 * No need to call idle_cpu() if nr_running is not 0
8071 */
0b0695f2 8072 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8073 sgs->idle_cpus++;
0b0695f2
VG
8074 /* Idle cpu can't have misfit task */
8075 continue;
8076 }
8077
8078 if (local_group)
8079 continue;
3b1baa64 8080
0b0695f2 8081 /* Check for a misfit task on the cpu */
3b1baa64 8082 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8083 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8084 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8085 *sg_status |= SG_OVERLOAD;
757ffdd7 8086 }
1e3c88bd
PZ
8087 }
8088
0b0695f2
VG
8089 /* Check if dst CPU is idle and preferred to this group */
8090 if (env->sd->flags & SD_ASYM_PACKING &&
8091 env->idle != CPU_NOT_IDLE &&
8092 sgs->sum_h_nr_running &&
8093 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8094 sgs->group_asym_packing = 1;
8095 }
8096
63b2ca30 8097 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8098
aae6d3dd 8099 sgs->group_weight = group->group_weight;
b37d9316 8100
0b0695f2
VG
8101 sgs->group_type = group_classify(env, group, sgs);
8102
8103 /* Computing avg_load makes sense only when group is overloaded */
8104 if (sgs->group_type == group_overloaded)
8105 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8106 sgs->group_capacity;
1e3c88bd
PZ
8107}
8108
532cb4c4
MN
8109/**
8110 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8111 * @env: The load balancing environment.
532cb4c4
MN
8112 * @sds: sched_domain statistics
8113 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8114 * @sgs: sched_group statistics
532cb4c4
MN
8115 *
8116 * Determine if @sg is a busier group than the previously selected
8117 * busiest group.
e69f6186
YB
8118 *
8119 * Return: %true if @sg is a busier group than the previously selected
8120 * busiest group. %false otherwise.
532cb4c4 8121 */
bd939f45 8122static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8123 struct sd_lb_stats *sds,
8124 struct sched_group *sg,
bd939f45 8125 struct sg_lb_stats *sgs)
532cb4c4 8126{
caeb178c 8127 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8128
0b0695f2
VG
8129 /* Make sure that there is at least one task to pull */
8130 if (!sgs->sum_h_nr_running)
8131 return false;
8132
cad68e55
MR
8133 /*
8134 * Don't try to pull misfit tasks we can't help.
8135 * We can use max_capacity here as reduction in capacity on some
8136 * CPUs in the group should either be possible to resolve
8137 * internally or be covered by avg_load imbalance (eventually).
8138 */
8139 if (sgs->group_type == group_misfit_task &&
8140 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8141 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8142 return false;
8143
caeb178c 8144 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8145 return true;
8146
caeb178c
RR
8147 if (sgs->group_type < busiest->group_type)
8148 return false;
8149
9e0994c0 8150 /*
0b0695f2
VG
8151 * The candidate and the current busiest group are the same type of
8152 * group. Let check which one is the busiest according to the type.
9e0994c0 8153 */
9e0994c0 8154
0b0695f2
VG
8155 switch (sgs->group_type) {
8156 case group_overloaded:
8157 /* Select the overloaded group with highest avg_load. */
8158 if (sgs->avg_load <= busiest->avg_load)
8159 return false;
8160 break;
8161
8162 case group_imbalanced:
8163 /*
8164 * Select the 1st imbalanced group as we don't have any way to
8165 * choose one more than another.
8166 */
9e0994c0
MR
8167 return false;
8168
0b0695f2
VG
8169 case group_asym_packing:
8170 /* Prefer to move from lowest priority CPU's work */
8171 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8172 return false;
8173 break;
532cb4c4 8174
0b0695f2
VG
8175 case group_misfit_task:
8176 /*
8177 * If we have more than one misfit sg go with the biggest
8178 * misfit.
8179 */
8180 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8181 return false;
8182 break;
532cb4c4 8183
0b0695f2
VG
8184 case group_fully_busy:
8185 /*
8186 * Select the fully busy group with highest avg_load. In
8187 * theory, there is no need to pull task from such kind of
8188 * group because tasks have all compute capacity that they need
8189 * but we can still improve the overall throughput by reducing
8190 * contention when accessing shared HW resources.
8191 *
8192 * XXX for now avg_load is not computed and always 0 so we
8193 * select the 1st one.
8194 */
8195 if (sgs->avg_load <= busiest->avg_load)
8196 return false;
8197 break;
8198
8199 case group_has_spare:
8200 /*
8201 * Select not overloaded group with lowest number of
8202 * idle cpus. We could also compare the spare capacity
8203 * which is more stable but it can end up that the
8204 * group has less spare capacity but finally more idle
8205 * CPUs which means less opportunity to pull tasks.
8206 */
8207 if (sgs->idle_cpus >= busiest->idle_cpus)
8208 return false;
8209 break;
532cb4c4
MN
8210 }
8211
0b0695f2
VG
8212 /*
8213 * Candidate sg has no more than one task per CPU and has higher
8214 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8215 * throughput. Maximize throughput, power/energy consequences are not
8216 * considered.
8217 */
8218 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8219 (sgs->group_type <= group_fully_busy) &&
8220 (group_smaller_min_cpu_capacity(sds->local, sg)))
8221 return false;
8222
8223 return true;
532cb4c4
MN
8224}
8225
0ec8aa00
PZ
8226#ifdef CONFIG_NUMA_BALANCING
8227static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8228{
a3498347 8229 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8230 return regular;
a3498347 8231 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8232 return remote;
8233 return all;
8234}
8235
8236static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8237{
8238 if (rq->nr_running > rq->nr_numa_running)
8239 return regular;
8240 if (rq->nr_running > rq->nr_preferred_running)
8241 return remote;
8242 return all;
8243}
8244#else
8245static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8246{
8247 return all;
8248}
8249
8250static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8251{
8252 return regular;
8253}
8254#endif /* CONFIG_NUMA_BALANCING */
8255
1e3c88bd 8256/**
461819ac 8257 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8258 * @env: The load balancing environment.
1e3c88bd
PZ
8259 * @sds: variable to hold the statistics for this sched_domain.
8260 */
0b0695f2 8261
0ec8aa00 8262static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8263{
bd939f45
PZ
8264 struct sched_domain *child = env->sd->child;
8265 struct sched_group *sg = env->sd->groups;
05b40e05 8266 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8267 struct sg_lb_stats tmp_sgs;
630246a0 8268 int sg_status = 0;
1e3c88bd 8269
e022e0d3 8270#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8271 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8272 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8273#endif
8274
1e3c88bd 8275 do {
56cf515b 8276 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8277 int local_group;
8278
ae4df9d6 8279 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8280 if (local_group) {
8281 sds->local = sg;
05b40e05 8282 sgs = local;
b72ff13c
PZ
8283
8284 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8285 time_after_eq(jiffies, sg->sgc->next_update))
8286 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8287 }
1e3c88bd 8288
630246a0 8289 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8290
b72ff13c
PZ
8291 if (local_group)
8292 goto next_group;
8293
1e3c88bd 8294
b72ff13c 8295 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8296 sds->busiest = sg;
56cf515b 8297 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8298 }
8299
b72ff13c
PZ
8300next_group:
8301 /* Now, start updating sd_lb_stats */
8302 sds->total_load += sgs->group_load;
63b2ca30 8303 sds->total_capacity += sgs->group_capacity;
b72ff13c 8304
532cb4c4 8305 sg = sg->next;
bd939f45 8306 } while (sg != env->sd->groups);
0ec8aa00 8307
0b0695f2
VG
8308 /* Tag domain that child domain prefers tasks go to siblings first */
8309 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8310
f643ea22
VG
8311#ifdef CONFIG_NO_HZ_COMMON
8312 if ((env->flags & LBF_NOHZ_AGAIN) &&
8313 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8314
8315 WRITE_ONCE(nohz.next_blocked,
8316 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8317 }
8318#endif
8319
0ec8aa00
PZ
8320 if (env->sd->flags & SD_NUMA)
8321 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8322
8323 if (!env->sd->parent) {
2802bf3c
MR
8324 struct root_domain *rd = env->dst_rq->rd;
8325
4486edd1 8326 /* update overload indicator if we are at root domain */
2802bf3c
MR
8327 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8328
8329 /* Update over-utilization (tipping point, U >= 0) indicator */
8330 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8331 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8332 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8333 struct root_domain *rd = env->dst_rq->rd;
8334
8335 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8336 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8337 }
532cb4c4
MN
8338}
8339
1e3c88bd
PZ
8340/**
8341 * calculate_imbalance - Calculate the amount of imbalance present within the
8342 * groups of a given sched_domain during load balance.
bd939f45 8343 * @env: load balance environment
1e3c88bd 8344 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8345 */
bd939f45 8346static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8347{
56cf515b
JK
8348 struct sg_lb_stats *local, *busiest;
8349
8350 local = &sds->local_stat;
56cf515b 8351 busiest = &sds->busiest_stat;
dd5feea1 8352
0b0695f2
VG
8353 if (busiest->group_type == group_misfit_task) {
8354 /* Set imbalance to allow misfit tasks to be balanced. */
8355 env->migration_type = migrate_misfit;
c63be7be 8356 env->imbalance = 1;
0b0695f2
VG
8357 return;
8358 }
8359
8360 if (busiest->group_type == group_asym_packing) {
8361 /*
8362 * In case of asym capacity, we will try to migrate all load to
8363 * the preferred CPU.
8364 */
8365 env->migration_type = migrate_task;
8366 env->imbalance = busiest->sum_h_nr_running;
8367 return;
8368 }
8369
8370 if (busiest->group_type == group_imbalanced) {
8371 /*
8372 * In the group_imb case we cannot rely on group-wide averages
8373 * to ensure CPU-load equilibrium, try to move any task to fix
8374 * the imbalance. The next load balance will take care of
8375 * balancing back the system.
8376 */
8377 env->migration_type = migrate_task;
8378 env->imbalance = 1;
490ba971
VG
8379 return;
8380 }
8381
1e3c88bd 8382 /*
0b0695f2
VG
8383 * Try to use spare capacity of local group without overloading it or
8384 * emptying busiest
1e3c88bd 8385 */
0b0695f2
VG
8386 if (local->group_type == group_has_spare) {
8387 if (busiest->group_type > group_fully_busy) {
8388 /*
8389 * If busiest is overloaded, try to fill spare
8390 * capacity. This might end up creating spare capacity
8391 * in busiest or busiest still being overloaded but
8392 * there is no simple way to directly compute the
8393 * amount of load to migrate in order to balance the
8394 * system.
8395 */
8396 env->migration_type = migrate_util;
8397 env->imbalance = max(local->group_capacity, local->group_util) -
8398 local->group_util;
8399
8400 /*
8401 * In some cases, the group's utilization is max or even
8402 * higher than capacity because of migrations but the
8403 * local CPU is (newly) idle. There is at least one
8404 * waiting task in this overloaded busiest group. Let's
8405 * try to pull it.
8406 */
8407 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
8408 env->migration_type = migrate_task;
8409 env->imbalance = 1;
8410 }
8411
8412 return;
8413 }
8414
8415 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 8416 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
8417 /*
8418 * When prefer sibling, evenly spread running tasks on
8419 * groups.
8420 */
8421 env->migration_type = migrate_task;
5e23e474 8422 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2
VG
8423 env->imbalance = nr_diff >> 1;
8424 return;
8425 }
8426
8427 /*
8428 * If there is no overload, we just want to even the number of
8429 * idle cpus.
8430 */
8431 env->migration_type = migrate_task;
8432 env->imbalance = max_t(long, 0, (local->idle_cpus -
8433 busiest->idle_cpus) >> 1);
fcf0553d 8434 return;
1e3c88bd
PZ
8435 }
8436
9a5d9ba6 8437 /*
0b0695f2
VG
8438 * Local is fully busy but has to take more load to relieve the
8439 * busiest group
9a5d9ba6 8440 */
0b0695f2
VG
8441 if (local->group_type < group_overloaded) {
8442 /*
8443 * Local will become overloaded so the avg_load metrics are
8444 * finally needed.
8445 */
8446
8447 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
8448 local->group_capacity;
8449
8450 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
8451 sds->total_capacity;
dd5feea1
SS
8452 }
8453
8454 /*
0b0695f2
VG
8455 * Both group are or will become overloaded and we're trying to get all
8456 * the CPUs to the average_load, so we don't want to push ourselves
8457 * above the average load, nor do we wish to reduce the max loaded CPU
8458 * below the average load. At the same time, we also don't want to
8459 * reduce the group load below the group capacity. Thus we look for
8460 * the minimum possible imbalance.
dd5feea1 8461 */
0b0695f2 8462 env->migration_type = migrate_load;
56cf515b 8463 env->imbalance = min(
0b0695f2 8464 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 8465 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8466 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8467}
fab47622 8468
1e3c88bd
PZ
8469/******* find_busiest_group() helpers end here *********************/
8470
0b0695f2
VG
8471/*
8472 * Decision matrix according to the local and busiest group type:
8473 *
8474 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
8475 * has_spare nr_idle balanced N/A N/A balanced balanced
8476 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
8477 * misfit_task force N/A N/A N/A force force
8478 * asym_packing force force N/A N/A force force
8479 * imbalanced force force N/A N/A force force
8480 * overloaded force force N/A N/A force avg_load
8481 *
8482 * N/A : Not Applicable because already filtered while updating
8483 * statistics.
8484 * balanced : The system is balanced for these 2 groups.
8485 * force : Calculate the imbalance as load migration is probably needed.
8486 * avg_load : Only if imbalance is significant enough.
8487 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
8488 * different in groups.
8489 */
8490
1e3c88bd
PZ
8491/**
8492 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8493 * if there is an imbalance.
1e3c88bd 8494 *
a3df0679 8495 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
8496 * to restore balance.
8497 *
cd96891d 8498 * @env: The load balancing environment.
1e3c88bd 8499 *
e69f6186 8500 * Return: - The busiest group if imbalance exists.
1e3c88bd 8501 */
56cf515b 8502static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8503{
56cf515b 8504 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8505 struct sd_lb_stats sds;
8506
147c5fc2 8507 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8508
8509 /*
b0fb1eb4 8510 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
8511 * this level.
8512 */
23f0d209 8513 update_sd_lb_stats(env, &sds);
2802bf3c 8514
f8a696f2 8515 if (sched_energy_enabled()) {
2802bf3c
MR
8516 struct root_domain *rd = env->dst_rq->rd;
8517
8518 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8519 goto out_balanced;
8520 }
8521
56cf515b
JK
8522 local = &sds.local_stat;
8523 busiest = &sds.busiest_stat;
1e3c88bd 8524
cc57aa8f 8525 /* There is no busy sibling group to pull tasks from */
0b0695f2 8526 if (!sds.busiest)
1e3c88bd
PZ
8527 goto out_balanced;
8528
0b0695f2
VG
8529 /* Misfit tasks should be dealt with regardless of the avg load */
8530 if (busiest->group_type == group_misfit_task)
8531 goto force_balance;
8532
8533 /* ASYM feature bypasses nice load balance check */
8534 if (busiest->group_type == group_asym_packing)
8535 goto force_balance;
b0432d8f 8536
866ab43e
PZ
8537 /*
8538 * If the busiest group is imbalanced the below checks don't
30ce5dab 8539 * work because they assume all things are equal, which typically
3bd37062 8540 * isn't true due to cpus_ptr constraints and the like.
866ab43e 8541 */
caeb178c 8542 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8543 goto force_balance;
8544
cc57aa8f 8545 /*
9c58c79a 8546 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8547 * don't try and pull any tasks.
8548 */
0b0695f2 8549 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
8550 goto out_balanced;
8551
cc57aa8f 8552 /*
0b0695f2
VG
8553 * When groups are overloaded, use the avg_load to ensure fairness
8554 * between tasks.
cc57aa8f 8555 */
0b0695f2
VG
8556 if (local->group_type == group_overloaded) {
8557 /*
8558 * If the local group is more loaded than the selected
8559 * busiest group don't try to pull any tasks.
8560 */
8561 if (local->avg_load >= busiest->avg_load)
8562 goto out_balanced;
8563
8564 /* XXX broken for overlapping NUMA groups */
8565 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
8566 sds.total_capacity;
1e3c88bd 8567
aae6d3dd 8568 /*
0b0695f2
VG
8569 * Don't pull any tasks if this group is already above the
8570 * domain average load.
aae6d3dd 8571 */
0b0695f2 8572 if (local->avg_load >= sds.avg_load)
aae6d3dd 8573 goto out_balanced;
0b0695f2 8574
c186fafe 8575 /*
0b0695f2
VG
8576 * If the busiest group is more loaded, use imbalance_pct to be
8577 * conservative.
c186fafe 8578 */
56cf515b
JK
8579 if (100 * busiest->avg_load <=
8580 env->sd->imbalance_pct * local->avg_load)
c186fafe 8581 goto out_balanced;
aae6d3dd 8582 }
1e3c88bd 8583
0b0695f2
VG
8584 /* Try to move all excess tasks to child's sibling domain */
8585 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 8586 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
8587 goto force_balance;
8588
2ab4092f
VG
8589 if (busiest->group_type != group_overloaded) {
8590 if (env->idle == CPU_NOT_IDLE)
8591 /*
8592 * If the busiest group is not overloaded (and as a
8593 * result the local one too) but this CPU is already
8594 * busy, let another idle CPU try to pull task.
8595 */
8596 goto out_balanced;
8597
8598 if (busiest->group_weight > 1 &&
8599 local->idle_cpus <= (busiest->idle_cpus + 1))
8600 /*
8601 * If the busiest group is not overloaded
8602 * and there is no imbalance between this and busiest
8603 * group wrt idle CPUs, it is balanced. The imbalance
8604 * becomes significant if the diff is greater than 1
8605 * otherwise we might end up to just move the imbalance
8606 * on another group. Of course this applies only if
8607 * there is more than 1 CPU per group.
8608 */
8609 goto out_balanced;
8610
8611 if (busiest->sum_h_nr_running == 1)
8612 /*
8613 * busiest doesn't have any tasks waiting to run
8614 */
8615 goto out_balanced;
8616 }
0b0695f2 8617
fab47622 8618force_balance:
1e3c88bd 8619 /* Looks like there is an imbalance. Compute it */
bd939f45 8620 calculate_imbalance(env, &sds);
bb3485c8 8621 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8622
8623out_balanced:
bd939f45 8624 env->imbalance = 0;
1e3c88bd
PZ
8625 return NULL;
8626}
8627
8628/*
97fb7a0a 8629 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8630 */
bd939f45 8631static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8632 struct sched_group *group)
1e3c88bd
PZ
8633{
8634 struct rq *busiest = NULL, *rq;
0b0695f2
VG
8635 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
8636 unsigned int busiest_nr = 0;
1e3c88bd
PZ
8637 int i;
8638
ae4df9d6 8639 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
8640 unsigned long capacity, load, util;
8641 unsigned int nr_running;
0ec8aa00
PZ
8642 enum fbq_type rt;
8643
8644 rq = cpu_rq(i);
8645 rt = fbq_classify_rq(rq);
1e3c88bd 8646
0ec8aa00
PZ
8647 /*
8648 * We classify groups/runqueues into three groups:
8649 * - regular: there are !numa tasks
8650 * - remote: there are numa tasks that run on the 'wrong' node
8651 * - all: there is no distinction
8652 *
8653 * In order to avoid migrating ideally placed numa tasks,
8654 * ignore those when there's better options.
8655 *
8656 * If we ignore the actual busiest queue to migrate another
8657 * task, the next balance pass can still reduce the busiest
8658 * queue by moving tasks around inside the node.
8659 *
8660 * If we cannot move enough load due to this classification
8661 * the next pass will adjust the group classification and
8662 * allow migration of more tasks.
8663 *
8664 * Both cases only affect the total convergence complexity.
8665 */
8666 if (rt > env->fbq_type)
8667 continue;
8668
ced549fa 8669 capacity = capacity_of(i);
0b0695f2 8670 nr_running = rq->cfs.h_nr_running;
9d5efe05 8671
4ad3831a
CR
8672 /*
8673 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8674 * eventually lead to active_balancing high->low capacity.
8675 * Higher per-CPU capacity is considered better than balancing
8676 * average load.
8677 */
8678 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8679 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 8680 nr_running == 1)
4ad3831a
CR
8681 continue;
8682
0b0695f2
VG
8683 switch (env->migration_type) {
8684 case migrate_load:
8685 /*
b0fb1eb4
VG
8686 * When comparing with load imbalance, use cpu_load()
8687 * which is not scaled with the CPU capacity.
0b0695f2 8688 */
b0fb1eb4 8689 load = cpu_load(rq);
1e3c88bd 8690
0b0695f2
VG
8691 if (nr_running == 1 && load > env->imbalance &&
8692 !check_cpu_capacity(rq, env->sd))
8693 break;
ea67821b 8694
0b0695f2
VG
8695 /*
8696 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
8697 * consider the cpu_load() scaled with the CPU
8698 * capacity, so that the load can be moved away
8699 * from the CPU that is potentially running at a
8700 * lower capacity.
0b0695f2
VG
8701 *
8702 * Thus we're looking for max(load_i / capacity_i),
8703 * crosswise multiplication to rid ourselves of the
8704 * division works out to:
8705 * load_i * capacity_j > load_j * capacity_i;
8706 * where j is our previous maximum.
8707 */
8708 if (load * busiest_capacity > busiest_load * capacity) {
8709 busiest_load = load;
8710 busiest_capacity = capacity;
8711 busiest = rq;
8712 }
8713 break;
8714
8715 case migrate_util:
8716 util = cpu_util(cpu_of(rq));
8717
8718 if (busiest_util < util) {
8719 busiest_util = util;
8720 busiest = rq;
8721 }
8722 break;
8723
8724 case migrate_task:
8725 if (busiest_nr < nr_running) {
8726 busiest_nr = nr_running;
8727 busiest = rq;
8728 }
8729 break;
8730
8731 case migrate_misfit:
8732 /*
8733 * For ASYM_CPUCAPACITY domains with misfit tasks we
8734 * simply seek the "biggest" misfit task.
8735 */
8736 if (rq->misfit_task_load > busiest_load) {
8737 busiest_load = rq->misfit_task_load;
8738 busiest = rq;
8739 }
8740
8741 break;
1e3c88bd 8742
1e3c88bd
PZ
8743 }
8744 }
8745
8746 return busiest;
8747}
8748
8749/*
8750 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8751 * so long as it is large enough.
8752 */
8753#define MAX_PINNED_INTERVAL 512
8754
46a745d9
VG
8755static inline bool
8756asym_active_balance(struct lb_env *env)
1af3ed3d 8757{
46a745d9
VG
8758 /*
8759 * ASYM_PACKING needs to force migrate tasks from busy but
8760 * lower priority CPUs in order to pack all tasks in the
8761 * highest priority CPUs.
8762 */
8763 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8764 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8765}
bd939f45 8766
46a745d9
VG
8767static inline bool
8768voluntary_active_balance(struct lb_env *env)
8769{
8770 struct sched_domain *sd = env->sd;
532cb4c4 8771
46a745d9
VG
8772 if (asym_active_balance(env))
8773 return 1;
1af3ed3d 8774
1aaf90a4
VG
8775 /*
8776 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8777 * It's worth migrating the task if the src_cpu's capacity is reduced
8778 * because of other sched_class or IRQs if more capacity stays
8779 * available on dst_cpu.
8780 */
8781 if ((env->idle != CPU_NOT_IDLE) &&
8782 (env->src_rq->cfs.h_nr_running == 1)) {
8783 if ((check_cpu_capacity(env->src_rq, sd)) &&
8784 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8785 return 1;
8786 }
8787
0b0695f2 8788 if (env->migration_type == migrate_misfit)
cad68e55
MR
8789 return 1;
8790
46a745d9
VG
8791 return 0;
8792}
8793
8794static int need_active_balance(struct lb_env *env)
8795{
8796 struct sched_domain *sd = env->sd;
8797
8798 if (voluntary_active_balance(env))
8799 return 1;
8800
1af3ed3d
PZ
8801 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8802}
8803
969c7921
TH
8804static int active_load_balance_cpu_stop(void *data);
8805
23f0d209
JK
8806static int should_we_balance(struct lb_env *env)
8807{
8808 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8809 int cpu, balance_cpu = -1;
8810
024c9d2f
PZ
8811 /*
8812 * Ensure the balancing environment is consistent; can happen
8813 * when the softirq triggers 'during' hotplug.
8814 */
8815 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8816 return 0;
8817
23f0d209 8818 /*
97fb7a0a 8819 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8820 * to do the newly idle load balance.
8821 */
8822 if (env->idle == CPU_NEWLY_IDLE)
8823 return 1;
8824
97fb7a0a 8825 /* Try to find first idle CPU */
e5c14b1f 8826 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8827 if (!idle_cpu(cpu))
23f0d209
JK
8828 continue;
8829
8830 balance_cpu = cpu;
8831 break;
8832 }
8833
8834 if (balance_cpu == -1)
8835 balance_cpu = group_balance_cpu(sg);
8836
8837 /*
97fb7a0a 8838 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8839 * is eligible for doing load balancing at this and above domains.
8840 */
b0cff9d8 8841 return balance_cpu == env->dst_cpu;
23f0d209
JK
8842}
8843
1e3c88bd
PZ
8844/*
8845 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8846 * tasks if there is an imbalance.
8847 */
8848static int load_balance(int this_cpu, struct rq *this_rq,
8849 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8850 int *continue_balancing)
1e3c88bd 8851{
88b8dac0 8852 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8853 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8854 struct sched_group *group;
1e3c88bd 8855 struct rq *busiest;
8a8c69c3 8856 struct rq_flags rf;
4ba29684 8857 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8858
8e45cb54
PZ
8859 struct lb_env env = {
8860 .sd = sd,
ddcdf6e7
PZ
8861 .dst_cpu = this_cpu,
8862 .dst_rq = this_rq,
ae4df9d6 8863 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8864 .idle = idle,
eb95308e 8865 .loop_break = sched_nr_migrate_break,
b9403130 8866 .cpus = cpus,
0ec8aa00 8867 .fbq_type = all,
163122b7 8868 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8869 };
8870
65a4433a 8871 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8872
ae92882e 8873 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8874
8875redo:
23f0d209
JK
8876 if (!should_we_balance(&env)) {
8877 *continue_balancing = 0;
1e3c88bd 8878 goto out_balanced;
23f0d209 8879 }
1e3c88bd 8880
23f0d209 8881 group = find_busiest_group(&env);
1e3c88bd 8882 if (!group) {
ae92882e 8883 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8884 goto out_balanced;
8885 }
8886
b9403130 8887 busiest = find_busiest_queue(&env, group);
1e3c88bd 8888 if (!busiest) {
ae92882e 8889 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8890 goto out_balanced;
8891 }
8892
78feefc5 8893 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8894
ae92882e 8895 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8896
1aaf90a4
VG
8897 env.src_cpu = busiest->cpu;
8898 env.src_rq = busiest;
8899
1e3c88bd
PZ
8900 ld_moved = 0;
8901 if (busiest->nr_running > 1) {
8902 /*
8903 * Attempt to move tasks. If find_busiest_group has found
8904 * an imbalance but busiest->nr_running <= 1, the group is
8905 * still unbalanced. ld_moved simply stays zero, so it is
8906 * correctly treated as an imbalance.
8907 */
8e45cb54 8908 env.flags |= LBF_ALL_PINNED;
c82513e5 8909 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8910
5d6523eb 8911more_balance:
8a8c69c3 8912 rq_lock_irqsave(busiest, &rf);
3bed5e21 8913 update_rq_clock(busiest);
88b8dac0
SV
8914
8915 /*
8916 * cur_ld_moved - load moved in current iteration
8917 * ld_moved - cumulative load moved across iterations
8918 */
163122b7 8919 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8920
8921 /*
163122b7
KT
8922 * We've detached some tasks from busiest_rq. Every
8923 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8924 * unlock busiest->lock, and we are able to be sure
8925 * that nobody can manipulate the tasks in parallel.
8926 * See task_rq_lock() family for the details.
1e3c88bd 8927 */
163122b7 8928
8a8c69c3 8929 rq_unlock(busiest, &rf);
163122b7
KT
8930
8931 if (cur_ld_moved) {
8932 attach_tasks(&env);
8933 ld_moved += cur_ld_moved;
8934 }
8935
8a8c69c3 8936 local_irq_restore(rf.flags);
88b8dac0 8937
f1cd0858
JK
8938 if (env.flags & LBF_NEED_BREAK) {
8939 env.flags &= ~LBF_NEED_BREAK;
8940 goto more_balance;
8941 }
8942
88b8dac0
SV
8943 /*
8944 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8945 * us and move them to an alternate dst_cpu in our sched_group
8946 * where they can run. The upper limit on how many times we
97fb7a0a 8947 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
8948 * sched_group.
8949 *
8950 * This changes load balance semantics a bit on who can move
8951 * load to a given_cpu. In addition to the given_cpu itself
8952 * (or a ilb_cpu acting on its behalf where given_cpu is
8953 * nohz-idle), we now have balance_cpu in a position to move
8954 * load to given_cpu. In rare situations, this may cause
8955 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8956 * _independently_ and at _same_ time to move some load to
8957 * given_cpu) causing exceess load to be moved to given_cpu.
8958 * This however should not happen so much in practice and
8959 * moreover subsequent load balance cycles should correct the
8960 * excess load moved.
8961 */
6263322c 8962 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8963
97fb7a0a 8964 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 8965 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 8966
78feefc5 8967 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8968 env.dst_cpu = env.new_dst_cpu;
6263322c 8969 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8970 env.loop = 0;
8971 env.loop_break = sched_nr_migrate_break;
e02e60c1 8972
88b8dac0
SV
8973 /*
8974 * Go back to "more_balance" rather than "redo" since we
8975 * need to continue with same src_cpu.
8976 */
8977 goto more_balance;
8978 }
1e3c88bd 8979
6263322c
PZ
8980 /*
8981 * We failed to reach balance because of affinity.
8982 */
8983 if (sd_parent) {
63b2ca30 8984 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8985
afdeee05 8986 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8987 *group_imbalance = 1;
6263322c
PZ
8988 }
8989
1e3c88bd 8990 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8991 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 8992 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8993 /*
8994 * Attempting to continue load balancing at the current
8995 * sched_domain level only makes sense if there are
8996 * active CPUs remaining as possible busiest CPUs to
8997 * pull load from which are not contained within the
8998 * destination group that is receiving any migrated
8999 * load.
9000 */
9001 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9002 env.loop = 0;
9003 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9004 goto redo;
bbf18b19 9005 }
afdeee05 9006 goto out_all_pinned;
1e3c88bd
PZ
9007 }
9008 }
9009
9010 if (!ld_moved) {
ae92882e 9011 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9012 /*
9013 * Increment the failure counter only on periodic balance.
9014 * We do not want newidle balance, which can be very
9015 * frequent, pollute the failure counter causing
9016 * excessive cache_hot migrations and active balances.
9017 */
9018 if (idle != CPU_NEWLY_IDLE)
9019 sd->nr_balance_failed++;
1e3c88bd 9020
bd939f45 9021 if (need_active_balance(&env)) {
8a8c69c3
PZ
9022 unsigned long flags;
9023
1e3c88bd
PZ
9024 raw_spin_lock_irqsave(&busiest->lock, flags);
9025
97fb7a0a
IM
9026 /*
9027 * Don't kick the active_load_balance_cpu_stop,
9028 * if the curr task on busiest CPU can't be
9029 * moved to this_cpu:
1e3c88bd 9030 */
3bd37062 9031 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9032 raw_spin_unlock_irqrestore(&busiest->lock,
9033 flags);
8e45cb54 9034 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9035 goto out_one_pinned;
9036 }
9037
969c7921
TH
9038 /*
9039 * ->active_balance synchronizes accesses to
9040 * ->active_balance_work. Once set, it's cleared
9041 * only after active load balance is finished.
9042 */
1e3c88bd
PZ
9043 if (!busiest->active_balance) {
9044 busiest->active_balance = 1;
9045 busiest->push_cpu = this_cpu;
9046 active_balance = 1;
9047 }
9048 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9049
bd939f45 9050 if (active_balance) {
969c7921
TH
9051 stop_one_cpu_nowait(cpu_of(busiest),
9052 active_load_balance_cpu_stop, busiest,
9053 &busiest->active_balance_work);
bd939f45 9054 }
1e3c88bd 9055
d02c0711 9056 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9057 sd->nr_balance_failed = sd->cache_nice_tries+1;
9058 }
9059 } else
9060 sd->nr_balance_failed = 0;
9061
46a745d9 9062 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9063 /* We were unbalanced, so reset the balancing interval */
9064 sd->balance_interval = sd->min_interval;
9065 } else {
9066 /*
9067 * If we've begun active balancing, start to back off. This
9068 * case may not be covered by the all_pinned logic if there
9069 * is only 1 task on the busy runqueue (because we don't call
163122b7 9070 * detach_tasks).
1e3c88bd
PZ
9071 */
9072 if (sd->balance_interval < sd->max_interval)
9073 sd->balance_interval *= 2;
9074 }
9075
1e3c88bd
PZ
9076 goto out;
9077
9078out_balanced:
afdeee05
VG
9079 /*
9080 * We reach balance although we may have faced some affinity
f6cad8df
VG
9081 * constraints. Clear the imbalance flag only if other tasks got
9082 * a chance to move and fix the imbalance.
afdeee05 9083 */
f6cad8df 9084 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9085 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9086
9087 if (*group_imbalance)
9088 *group_imbalance = 0;
9089 }
9090
9091out_all_pinned:
9092 /*
9093 * We reach balance because all tasks are pinned at this level so
9094 * we can't migrate them. Let the imbalance flag set so parent level
9095 * can try to migrate them.
9096 */
ae92882e 9097 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9098
9099 sd->nr_balance_failed = 0;
9100
9101out_one_pinned:
3f130a37
VS
9102 ld_moved = 0;
9103
9104 /*
5ba553ef
PZ
9105 * newidle_balance() disregards balance intervals, so we could
9106 * repeatedly reach this code, which would lead to balance_interval
9107 * skyrocketting in a short amount of time. Skip the balance_interval
9108 * increase logic to avoid that.
3f130a37
VS
9109 */
9110 if (env.idle == CPU_NEWLY_IDLE)
9111 goto out;
9112
1e3c88bd 9113 /* tune up the balancing interval */
47b7aee1
VS
9114 if ((env.flags & LBF_ALL_PINNED &&
9115 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9116 sd->balance_interval < sd->max_interval)
1e3c88bd 9117 sd->balance_interval *= 2;
1e3c88bd 9118out:
1e3c88bd
PZ
9119 return ld_moved;
9120}
9121
52a08ef1
JL
9122static inline unsigned long
9123get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9124{
9125 unsigned long interval = sd->balance_interval;
9126
9127 if (cpu_busy)
9128 interval *= sd->busy_factor;
9129
9130 /* scale ms to jiffies */
9131 interval = msecs_to_jiffies(interval);
9132 interval = clamp(interval, 1UL, max_load_balance_interval);
9133
9134 return interval;
9135}
9136
9137static inline void
31851a98 9138update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9139{
9140 unsigned long interval, next;
9141
31851a98
LY
9142 /* used by idle balance, so cpu_busy = 0 */
9143 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9144 next = sd->last_balance + interval;
9145
9146 if (time_after(*next_balance, next))
9147 *next_balance = next;
9148}
9149
1e3c88bd 9150/*
97fb7a0a 9151 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9152 * running tasks off the busiest CPU onto idle CPUs. It requires at
9153 * least 1 task to be running on each physical CPU where possible, and
9154 * avoids physical / logical imbalances.
1e3c88bd 9155 */
969c7921 9156static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9157{
969c7921
TH
9158 struct rq *busiest_rq = data;
9159 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9160 int target_cpu = busiest_rq->push_cpu;
969c7921 9161 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9162 struct sched_domain *sd;
e5673f28 9163 struct task_struct *p = NULL;
8a8c69c3 9164 struct rq_flags rf;
969c7921 9165
8a8c69c3 9166 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9167 /*
9168 * Between queueing the stop-work and running it is a hole in which
9169 * CPUs can become inactive. We should not move tasks from or to
9170 * inactive CPUs.
9171 */
9172 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9173 goto out_unlock;
969c7921 9174
97fb7a0a 9175 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9176 if (unlikely(busiest_cpu != smp_processor_id() ||
9177 !busiest_rq->active_balance))
9178 goto out_unlock;
1e3c88bd
PZ
9179
9180 /* Is there any task to move? */
9181 if (busiest_rq->nr_running <= 1)
969c7921 9182 goto out_unlock;
1e3c88bd
PZ
9183
9184 /*
9185 * This condition is "impossible", if it occurs
9186 * we need to fix it. Originally reported by
97fb7a0a 9187 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9188 */
9189 BUG_ON(busiest_rq == target_rq);
9190
1e3c88bd 9191 /* Search for an sd spanning us and the target CPU. */
dce840a0 9192 rcu_read_lock();
1e3c88bd
PZ
9193 for_each_domain(target_cpu, sd) {
9194 if ((sd->flags & SD_LOAD_BALANCE) &&
9195 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9196 break;
9197 }
9198
9199 if (likely(sd)) {
8e45cb54
PZ
9200 struct lb_env env = {
9201 .sd = sd,
ddcdf6e7
PZ
9202 .dst_cpu = target_cpu,
9203 .dst_rq = target_rq,
9204 .src_cpu = busiest_rq->cpu,
9205 .src_rq = busiest_rq,
8e45cb54 9206 .idle = CPU_IDLE,
65a4433a
JH
9207 /*
9208 * can_migrate_task() doesn't need to compute new_dst_cpu
9209 * for active balancing. Since we have CPU_IDLE, but no
9210 * @dst_grpmask we need to make that test go away with lying
9211 * about DST_PINNED.
9212 */
9213 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9214 };
9215
ae92882e 9216 schedstat_inc(sd->alb_count);
3bed5e21 9217 update_rq_clock(busiest_rq);
1e3c88bd 9218
e5673f28 9219 p = detach_one_task(&env);
d02c0711 9220 if (p) {
ae92882e 9221 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9222 /* Active balancing done, reset the failure counter. */
9223 sd->nr_balance_failed = 0;
9224 } else {
ae92882e 9225 schedstat_inc(sd->alb_failed);
d02c0711 9226 }
1e3c88bd 9227 }
dce840a0 9228 rcu_read_unlock();
969c7921
TH
9229out_unlock:
9230 busiest_rq->active_balance = 0;
8a8c69c3 9231 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9232
9233 if (p)
9234 attach_one_task(target_rq, p);
9235
9236 local_irq_enable();
9237
969c7921 9238 return 0;
1e3c88bd
PZ
9239}
9240
af3fe03c
PZ
9241static DEFINE_SPINLOCK(balancing);
9242
9243/*
9244 * Scale the max load_balance interval with the number of CPUs in the system.
9245 * This trades load-balance latency on larger machines for less cross talk.
9246 */
9247void update_max_interval(void)
9248{
9249 max_load_balance_interval = HZ*num_online_cpus()/10;
9250}
9251
9252/*
9253 * It checks each scheduling domain to see if it is due to be balanced,
9254 * and initiates a balancing operation if so.
9255 *
9256 * Balancing parameters are set up in init_sched_domains.
9257 */
9258static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9259{
9260 int continue_balancing = 1;
9261 int cpu = rq->cpu;
9262 unsigned long interval;
9263 struct sched_domain *sd;
9264 /* Earliest time when we have to do rebalance again */
9265 unsigned long next_balance = jiffies + 60*HZ;
9266 int update_next_balance = 0;
9267 int need_serialize, need_decay = 0;
9268 u64 max_cost = 0;
9269
9270 rcu_read_lock();
9271 for_each_domain(cpu, sd) {
9272 /*
9273 * Decay the newidle max times here because this is a regular
9274 * visit to all the domains. Decay ~1% per second.
9275 */
9276 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9277 sd->max_newidle_lb_cost =
9278 (sd->max_newidle_lb_cost * 253) / 256;
9279 sd->next_decay_max_lb_cost = jiffies + HZ;
9280 need_decay = 1;
9281 }
9282 max_cost += sd->max_newidle_lb_cost;
9283
9284 if (!(sd->flags & SD_LOAD_BALANCE))
9285 continue;
9286
9287 /*
9288 * Stop the load balance at this level. There is another
9289 * CPU in our sched group which is doing load balancing more
9290 * actively.
9291 */
9292 if (!continue_balancing) {
9293 if (need_decay)
9294 continue;
9295 break;
9296 }
9297
9298 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9299
9300 need_serialize = sd->flags & SD_SERIALIZE;
9301 if (need_serialize) {
9302 if (!spin_trylock(&balancing))
9303 goto out;
9304 }
9305
9306 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9307 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9308 /*
9309 * The LBF_DST_PINNED logic could have changed
9310 * env->dst_cpu, so we can't know our idle
9311 * state even if we migrated tasks. Update it.
9312 */
9313 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9314 }
9315 sd->last_balance = jiffies;
9316 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9317 }
9318 if (need_serialize)
9319 spin_unlock(&balancing);
9320out:
9321 if (time_after(next_balance, sd->last_balance + interval)) {
9322 next_balance = sd->last_balance + interval;
9323 update_next_balance = 1;
9324 }
9325 }
9326 if (need_decay) {
9327 /*
9328 * Ensure the rq-wide value also decays but keep it at a
9329 * reasonable floor to avoid funnies with rq->avg_idle.
9330 */
9331 rq->max_idle_balance_cost =
9332 max((u64)sysctl_sched_migration_cost, max_cost);
9333 }
9334 rcu_read_unlock();
9335
9336 /*
9337 * next_balance will be updated only when there is a need.
9338 * When the cpu is attached to null domain for ex, it will not be
9339 * updated.
9340 */
9341 if (likely(update_next_balance)) {
9342 rq->next_balance = next_balance;
9343
9344#ifdef CONFIG_NO_HZ_COMMON
9345 /*
9346 * If this CPU has been elected to perform the nohz idle
9347 * balance. Other idle CPUs have already rebalanced with
9348 * nohz_idle_balance() and nohz.next_balance has been
9349 * updated accordingly. This CPU is now running the idle load
9350 * balance for itself and we need to update the
9351 * nohz.next_balance accordingly.
9352 */
9353 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9354 nohz.next_balance = rq->next_balance;
9355#endif
9356 }
9357}
9358
d987fc7f
MG
9359static inline int on_null_domain(struct rq *rq)
9360{
9361 return unlikely(!rcu_dereference_sched(rq->sd));
9362}
9363
3451d024 9364#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9365/*
9366 * idle load balancing details
83cd4fe2
VP
9367 * - When one of the busy CPUs notice that there may be an idle rebalancing
9368 * needed, they will kick the idle load balancer, which then does idle
9369 * load balancing for all the idle CPUs.
9b019acb
NP
9370 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9371 * anywhere yet.
83cd4fe2 9372 */
1e3c88bd 9373
3dd0337d 9374static inline int find_new_ilb(void)
1e3c88bd 9375{
9b019acb 9376 int ilb;
1e3c88bd 9377
9b019acb
NP
9378 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9379 housekeeping_cpumask(HK_FLAG_MISC)) {
9380 if (idle_cpu(ilb))
9381 return ilb;
9382 }
786d6dc7
SS
9383
9384 return nr_cpu_ids;
1e3c88bd 9385}
1e3c88bd 9386
83cd4fe2 9387/*
9b019acb
NP
9388 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9389 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 9390 */
a4064fb6 9391static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9392{
9393 int ilb_cpu;
9394
9395 nohz.next_balance++;
9396
3dd0337d 9397 ilb_cpu = find_new_ilb();
83cd4fe2 9398
0b005cf5
SS
9399 if (ilb_cpu >= nr_cpu_ids)
9400 return;
83cd4fe2 9401
a4064fb6 9402 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9403 if (flags & NOHZ_KICK_MASK)
1c792db7 9404 return;
4550487a 9405
1c792db7
SS
9406 /*
9407 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9408 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9409 * is idle. And the softirq performing nohz idle load balance
9410 * will be run before returning from the IPI.
9411 */
9412 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9413}
9414
9415/*
9f132742
VS
9416 * Current decision point for kicking the idle load balancer in the presence
9417 * of idle CPUs in the system.
4550487a
PZ
9418 */
9419static void nohz_balancer_kick(struct rq *rq)
9420{
9421 unsigned long now = jiffies;
9422 struct sched_domain_shared *sds;
9423 struct sched_domain *sd;
9424 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9425 unsigned int flags = 0;
4550487a
PZ
9426
9427 if (unlikely(rq->idle_balance))
9428 return;
9429
9430 /*
9431 * We may be recently in ticked or tickless idle mode. At the first
9432 * busy tick after returning from idle, we will update the busy stats.
9433 */
00357f5e 9434 nohz_balance_exit_idle(rq);
4550487a
PZ
9435
9436 /*
9437 * None are in tickless mode and hence no need for NOHZ idle load
9438 * balancing.
9439 */
9440 if (likely(!atomic_read(&nohz.nr_cpus)))
9441 return;
9442
f643ea22
VG
9443 if (READ_ONCE(nohz.has_blocked) &&
9444 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9445 flags = NOHZ_STATS_KICK;
9446
4550487a 9447 if (time_before(now, nohz.next_balance))
a4064fb6 9448 goto out;
4550487a 9449
a0fe2cf0 9450 if (rq->nr_running >= 2) {
a4064fb6 9451 flags = NOHZ_KICK_MASK;
4550487a
PZ
9452 goto out;
9453 }
9454
9455 rcu_read_lock();
4550487a
PZ
9456
9457 sd = rcu_dereference(rq->sd);
9458 if (sd) {
e25a7a94
VS
9459 /*
9460 * If there's a CFS task and the current CPU has reduced
9461 * capacity; kick the ILB to see if there's a better CPU to run
9462 * on.
9463 */
9464 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 9465 flags = NOHZ_KICK_MASK;
4550487a
PZ
9466 goto unlock;
9467 }
9468 }
9469
011b27bb 9470 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 9471 if (sd) {
b9a7b883
VS
9472 /*
9473 * When ASYM_PACKING; see if there's a more preferred CPU
9474 * currently idle; in which case, kick the ILB to move tasks
9475 * around.
9476 */
7edab78d 9477 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 9478 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9479 flags = NOHZ_KICK_MASK;
4550487a
PZ
9480 goto unlock;
9481 }
9482 }
9483 }
b9a7b883 9484
a0fe2cf0
VS
9485 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9486 if (sd) {
9487 /*
9488 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9489 * to run the misfit task on.
9490 */
9491 if (check_misfit_status(rq, sd)) {
9492 flags = NOHZ_KICK_MASK;
9493 goto unlock;
9494 }
b9a7b883
VS
9495
9496 /*
9497 * For asymmetric systems, we do not want to nicely balance
9498 * cache use, instead we want to embrace asymmetry and only
9499 * ensure tasks have enough CPU capacity.
9500 *
9501 * Skip the LLC logic because it's not relevant in that case.
9502 */
9503 goto unlock;
a0fe2cf0
VS
9504 }
9505
b9a7b883
VS
9506 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9507 if (sds) {
e25a7a94 9508 /*
b9a7b883
VS
9509 * If there is an imbalance between LLC domains (IOW we could
9510 * increase the overall cache use), we need some less-loaded LLC
9511 * domain to pull some load. Likewise, we may need to spread
9512 * load within the current LLC domain (e.g. packed SMT cores but
9513 * other CPUs are idle). We can't really know from here how busy
9514 * the others are - so just get a nohz balance going if it looks
9515 * like this LLC domain has tasks we could move.
e25a7a94 9516 */
b9a7b883
VS
9517 nr_busy = atomic_read(&sds->nr_busy_cpus);
9518 if (nr_busy > 1) {
9519 flags = NOHZ_KICK_MASK;
9520 goto unlock;
4550487a
PZ
9521 }
9522 }
9523unlock:
9524 rcu_read_unlock();
9525out:
a4064fb6
PZ
9526 if (flags)
9527 kick_ilb(flags);
83cd4fe2
VP
9528}
9529
00357f5e 9530static void set_cpu_sd_state_busy(int cpu)
71325960 9531{
00357f5e 9532 struct sched_domain *sd;
a22e47a4 9533
00357f5e
PZ
9534 rcu_read_lock();
9535 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9536
00357f5e
PZ
9537 if (!sd || !sd->nohz_idle)
9538 goto unlock;
9539 sd->nohz_idle = 0;
9540
9541 atomic_inc(&sd->shared->nr_busy_cpus);
9542unlock:
9543 rcu_read_unlock();
71325960
SS
9544}
9545
00357f5e
PZ
9546void nohz_balance_exit_idle(struct rq *rq)
9547{
9548 SCHED_WARN_ON(rq != this_rq());
9549
9550 if (likely(!rq->nohz_tick_stopped))
9551 return;
9552
9553 rq->nohz_tick_stopped = 0;
9554 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9555 atomic_dec(&nohz.nr_cpus);
9556
9557 set_cpu_sd_state_busy(rq->cpu);
9558}
9559
9560static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9561{
9562 struct sched_domain *sd;
69e1e811 9563
69e1e811 9564 rcu_read_lock();
0e369d75 9565 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9566
9567 if (!sd || sd->nohz_idle)
9568 goto unlock;
9569 sd->nohz_idle = 1;
9570
0e369d75 9571 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9572unlock:
69e1e811
SS
9573 rcu_read_unlock();
9574}
9575
1e3c88bd 9576/*
97fb7a0a 9577 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9578 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9579 */
c1cc017c 9580void nohz_balance_enter_idle(int cpu)
1e3c88bd 9581{
00357f5e
PZ
9582 struct rq *rq = cpu_rq(cpu);
9583
9584 SCHED_WARN_ON(cpu != smp_processor_id());
9585
97fb7a0a 9586 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9587 if (!cpu_active(cpu))
9588 return;
9589
387bc8b5 9590 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9591 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9592 return;
9593
f643ea22
VG
9594 /*
9595 * Can be set safely without rq->lock held
9596 * If a clear happens, it will have evaluated last additions because
9597 * rq->lock is held during the check and the clear
9598 */
9599 rq->has_blocked_load = 1;
9600
9601 /*
9602 * The tick is still stopped but load could have been added in the
9603 * meantime. We set the nohz.has_blocked flag to trig a check of the
9604 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9605 * of nohz.has_blocked can only happen after checking the new load
9606 */
00357f5e 9607 if (rq->nohz_tick_stopped)
f643ea22 9608 goto out;
1e3c88bd 9609
97fb7a0a 9610 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9611 if (on_null_domain(rq))
d987fc7f
MG
9612 return;
9613
00357f5e
PZ
9614 rq->nohz_tick_stopped = 1;
9615
c1cc017c
AS
9616 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9617 atomic_inc(&nohz.nr_cpus);
00357f5e 9618
f643ea22
VG
9619 /*
9620 * Ensures that if nohz_idle_balance() fails to observe our
9621 * @idle_cpus_mask store, it must observe the @has_blocked
9622 * store.
9623 */
9624 smp_mb__after_atomic();
9625
00357f5e 9626 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9627
9628out:
9629 /*
9630 * Each time a cpu enter idle, we assume that it has blocked load and
9631 * enable the periodic update of the load of idle cpus
9632 */
9633 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9634}
1e3c88bd 9635
1e3c88bd 9636/*
31e77c93
VG
9637 * Internal function that runs load balance for all idle cpus. The load balance
9638 * can be a simple update of blocked load or a complete load balance with
9639 * tasks movement depending of flags.
9640 * The function returns false if the loop has stopped before running
9641 * through all idle CPUs.
1e3c88bd 9642 */
31e77c93
VG
9643static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9644 enum cpu_idle_type idle)
83cd4fe2 9645{
c5afb6a8 9646 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9647 unsigned long now = jiffies;
9648 unsigned long next_balance = now + 60*HZ;
f643ea22 9649 bool has_blocked_load = false;
c5afb6a8 9650 int update_next_balance = 0;
b7031a02 9651 int this_cpu = this_rq->cpu;
b7031a02 9652 int balance_cpu;
31e77c93 9653 int ret = false;
b7031a02 9654 struct rq *rq;
83cd4fe2 9655
b7031a02 9656 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9657
f643ea22
VG
9658 /*
9659 * We assume there will be no idle load after this update and clear
9660 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9661 * set the has_blocked flag and trig another update of idle load.
9662 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9663 * setting the flag, we are sure to not clear the state and not
9664 * check the load of an idle cpu.
9665 */
9666 WRITE_ONCE(nohz.has_blocked, 0);
9667
9668 /*
9669 * Ensures that if we miss the CPU, we must see the has_blocked
9670 * store from nohz_balance_enter_idle().
9671 */
9672 smp_mb();
9673
83cd4fe2 9674 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9675 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9676 continue;
9677
9678 /*
97fb7a0a
IM
9679 * If this CPU gets work to do, stop the load balancing
9680 * work being done for other CPUs. Next load
83cd4fe2
VP
9681 * balancing owner will pick it up.
9682 */
f643ea22
VG
9683 if (need_resched()) {
9684 has_blocked_load = true;
9685 goto abort;
9686 }
83cd4fe2 9687
5ed4f1d9
VG
9688 rq = cpu_rq(balance_cpu);
9689
63928384 9690 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9691
ed61bbc6
TC
9692 /*
9693 * If time for next balance is due,
9694 * do the balance.
9695 */
9696 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9697 struct rq_flags rf;
9698
31e77c93 9699 rq_lock_irqsave(rq, &rf);
ed61bbc6 9700 update_rq_clock(rq);
31e77c93 9701 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9702
b7031a02
PZ
9703 if (flags & NOHZ_BALANCE_KICK)
9704 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9705 }
83cd4fe2 9706
c5afb6a8
VG
9707 if (time_after(next_balance, rq->next_balance)) {
9708 next_balance = rq->next_balance;
9709 update_next_balance = 1;
9710 }
83cd4fe2 9711 }
c5afb6a8 9712
31e77c93
VG
9713 /* Newly idle CPU doesn't need an update */
9714 if (idle != CPU_NEWLY_IDLE) {
9715 update_blocked_averages(this_cpu);
9716 has_blocked_load |= this_rq->has_blocked_load;
9717 }
9718
b7031a02
PZ
9719 if (flags & NOHZ_BALANCE_KICK)
9720 rebalance_domains(this_rq, CPU_IDLE);
9721
f643ea22
VG
9722 WRITE_ONCE(nohz.next_blocked,
9723 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9724
31e77c93
VG
9725 /* The full idle balance loop has been done */
9726 ret = true;
9727
f643ea22
VG
9728abort:
9729 /* There is still blocked load, enable periodic update */
9730 if (has_blocked_load)
9731 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9732
c5afb6a8
VG
9733 /*
9734 * next_balance will be updated only when there is a need.
9735 * When the CPU is attached to null domain for ex, it will not be
9736 * updated.
9737 */
9738 if (likely(update_next_balance))
9739 nohz.next_balance = next_balance;
b7031a02 9740
31e77c93
VG
9741 return ret;
9742}
9743
9744/*
9745 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9746 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9747 */
9748static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9749{
9750 int this_cpu = this_rq->cpu;
9751 unsigned int flags;
9752
9753 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9754 return false;
9755
9756 if (idle != CPU_IDLE) {
9757 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9758 return false;
9759 }
9760
80eb8657 9761 /* could be _relaxed() */
31e77c93
VG
9762 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9763 if (!(flags & NOHZ_KICK_MASK))
9764 return false;
9765
9766 _nohz_idle_balance(this_rq, flags, idle);
9767
b7031a02 9768 return true;
83cd4fe2 9769}
31e77c93
VG
9770
9771static void nohz_newidle_balance(struct rq *this_rq)
9772{
9773 int this_cpu = this_rq->cpu;
9774
9775 /*
9776 * This CPU doesn't want to be disturbed by scheduler
9777 * housekeeping
9778 */
9779 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9780 return;
9781
9782 /* Will wake up very soon. No time for doing anything else*/
9783 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9784 return;
9785
9786 /* Don't need to update blocked load of idle CPUs*/
9787 if (!READ_ONCE(nohz.has_blocked) ||
9788 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9789 return;
9790
9791 raw_spin_unlock(&this_rq->lock);
9792 /*
9793 * This CPU is going to be idle and blocked load of idle CPUs
9794 * need to be updated. Run the ilb locally as it is a good
9795 * candidate for ilb instead of waking up another idle CPU.
9796 * Kick an normal ilb if we failed to do the update.
9797 */
9798 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9799 kick_ilb(NOHZ_STATS_KICK);
9800 raw_spin_lock(&this_rq->lock);
9801}
9802
dd707247
PZ
9803#else /* !CONFIG_NO_HZ_COMMON */
9804static inline void nohz_balancer_kick(struct rq *rq) { }
9805
31e77c93 9806static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9807{
9808 return false;
9809}
31e77c93
VG
9810
9811static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9812#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9813
47ea5412
PZ
9814/*
9815 * idle_balance is called by schedule() if this_cpu is about to become
9816 * idle. Attempts to pull tasks from other CPUs.
9817 */
5ba553ef 9818int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
9819{
9820 unsigned long next_balance = jiffies + HZ;
9821 int this_cpu = this_rq->cpu;
9822 struct sched_domain *sd;
9823 int pulled_task = 0;
9824 u64 curr_cost = 0;
9825
5ba553ef 9826 update_misfit_status(NULL, this_rq);
47ea5412
PZ
9827 /*
9828 * We must set idle_stamp _before_ calling idle_balance(), such that we
9829 * measure the duration of idle_balance() as idle time.
9830 */
9831 this_rq->idle_stamp = rq_clock(this_rq);
9832
9833 /*
9834 * Do not pull tasks towards !active CPUs...
9835 */
9836 if (!cpu_active(this_cpu))
9837 return 0;
9838
9839 /*
9840 * This is OK, because current is on_cpu, which avoids it being picked
9841 * for load-balance and preemption/IRQs are still disabled avoiding
9842 * further scheduler activity on it and we're being very careful to
9843 * re-start the picking loop.
9844 */
9845 rq_unpin_lock(this_rq, rf);
9846
9847 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9848 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9849
47ea5412
PZ
9850 rcu_read_lock();
9851 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9852 if (sd)
9853 update_next_balance(sd, &next_balance);
9854 rcu_read_unlock();
9855
31e77c93
VG
9856 nohz_newidle_balance(this_rq);
9857
47ea5412
PZ
9858 goto out;
9859 }
9860
9861 raw_spin_unlock(&this_rq->lock);
9862
9863 update_blocked_averages(this_cpu);
9864 rcu_read_lock();
9865 for_each_domain(this_cpu, sd) {
9866 int continue_balancing = 1;
9867 u64 t0, domain_cost;
9868
9869 if (!(sd->flags & SD_LOAD_BALANCE))
9870 continue;
9871
9872 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9873 update_next_balance(sd, &next_balance);
9874 break;
9875 }
9876
9877 if (sd->flags & SD_BALANCE_NEWIDLE) {
9878 t0 = sched_clock_cpu(this_cpu);
9879
9880 pulled_task = load_balance(this_cpu, this_rq,
9881 sd, CPU_NEWLY_IDLE,
9882 &continue_balancing);
9883
9884 domain_cost = sched_clock_cpu(this_cpu) - t0;
9885 if (domain_cost > sd->max_newidle_lb_cost)
9886 sd->max_newidle_lb_cost = domain_cost;
9887
9888 curr_cost += domain_cost;
9889 }
9890
9891 update_next_balance(sd, &next_balance);
9892
9893 /*
9894 * Stop searching for tasks to pull if there are
9895 * now runnable tasks on this rq.
9896 */
9897 if (pulled_task || this_rq->nr_running > 0)
9898 break;
9899 }
9900 rcu_read_unlock();
9901
9902 raw_spin_lock(&this_rq->lock);
9903
9904 if (curr_cost > this_rq->max_idle_balance_cost)
9905 this_rq->max_idle_balance_cost = curr_cost;
9906
457be908 9907out:
47ea5412
PZ
9908 /*
9909 * While browsing the domains, we released the rq lock, a task could
9910 * have been enqueued in the meantime. Since we're not going idle,
9911 * pretend we pulled a task.
9912 */
9913 if (this_rq->cfs.h_nr_running && !pulled_task)
9914 pulled_task = 1;
9915
47ea5412
PZ
9916 /* Move the next balance forward */
9917 if (time_after(this_rq->next_balance, next_balance))
9918 this_rq->next_balance = next_balance;
9919
9920 /* Is there a task of a high priority class? */
9921 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9922 pulled_task = -1;
9923
9924 if (pulled_task)
9925 this_rq->idle_stamp = 0;
9926
9927 rq_repin_lock(this_rq, rf);
9928
9929 return pulled_task;
9930}
9931
83cd4fe2
VP
9932/*
9933 * run_rebalance_domains is triggered when needed from the scheduler tick.
9934 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9935 */
0766f788 9936static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9937{
208cb16b 9938 struct rq *this_rq = this_rq();
6eb57e0d 9939 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9940 CPU_IDLE : CPU_NOT_IDLE;
9941
1e3c88bd 9942 /*
97fb7a0a
IM
9943 * If this CPU has a pending nohz_balance_kick, then do the
9944 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9945 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9946 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9947 * load balance only within the local sched_domain hierarchy
9948 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9949 */
b7031a02
PZ
9950 if (nohz_idle_balance(this_rq, idle))
9951 return;
9952
9953 /* normal load balance */
9954 update_blocked_averages(this_rq->cpu);
d4573c3e 9955 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9956}
9957
1e3c88bd
PZ
9958/*
9959 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9960 */
7caff66f 9961void trigger_load_balance(struct rq *rq)
1e3c88bd 9962{
1e3c88bd 9963 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9964 if (unlikely(on_null_domain(rq)))
9965 return;
9966
9967 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9968 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
9969
9970 nohz_balancer_kick(rq);
1e3c88bd
PZ
9971}
9972
0bcdcf28
CE
9973static void rq_online_fair(struct rq *rq)
9974{
9975 update_sysctl();
0e59bdae
KT
9976
9977 update_runtime_enabled(rq);
0bcdcf28
CE
9978}
9979
9980static void rq_offline_fair(struct rq *rq)
9981{
9982 update_sysctl();
a4c96ae3
PB
9983
9984 /* Ensure any throttled groups are reachable by pick_next_task */
9985 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9986}
9987
55e12e5e 9988#endif /* CONFIG_SMP */
e1d1484f 9989
bf0f6f24 9990/*
d84b3131
FW
9991 * scheduler tick hitting a task of our scheduling class.
9992 *
9993 * NOTE: This function can be called remotely by the tick offload that
9994 * goes along full dynticks. Therefore no local assumption can be made
9995 * and everything must be accessed through the @rq and @curr passed in
9996 * parameters.
bf0f6f24 9997 */
8f4d37ec 9998static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9999{
10000 struct cfs_rq *cfs_rq;
10001 struct sched_entity *se = &curr->se;
10002
10003 for_each_sched_entity(se) {
10004 cfs_rq = cfs_rq_of(se);
8f4d37ec 10005 entity_tick(cfs_rq, se, queued);
bf0f6f24 10006 }
18bf2805 10007
b52da86e 10008 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10009 task_tick_numa(rq, curr);
3b1baa64
MR
10010
10011 update_misfit_status(curr, rq);
2802bf3c 10012 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10013}
10014
10015/*
cd29fe6f
PZ
10016 * called on fork with the child task as argument from the parent's context
10017 * - child not yet on the tasklist
10018 * - preemption disabled
bf0f6f24 10019 */
cd29fe6f 10020static void task_fork_fair(struct task_struct *p)
bf0f6f24 10021{
4fc420c9
DN
10022 struct cfs_rq *cfs_rq;
10023 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10024 struct rq *rq = this_rq();
8a8c69c3 10025 struct rq_flags rf;
bf0f6f24 10026
8a8c69c3 10027 rq_lock(rq, &rf);
861d034e
PZ
10028 update_rq_clock(rq);
10029
4fc420c9
DN
10030 cfs_rq = task_cfs_rq(current);
10031 curr = cfs_rq->curr;
e210bffd
PZ
10032 if (curr) {
10033 update_curr(cfs_rq);
b5d9d734 10034 se->vruntime = curr->vruntime;
e210bffd 10035 }
aeb73b04 10036 place_entity(cfs_rq, se, 1);
4d78e7b6 10037
cd29fe6f 10038 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10039 /*
edcb60a3
IM
10040 * Upon rescheduling, sched_class::put_prev_task() will place
10041 * 'current' within the tree based on its new key value.
10042 */
4d78e7b6 10043 swap(curr->vruntime, se->vruntime);
8875125e 10044 resched_curr(rq);
4d78e7b6 10045 }
bf0f6f24 10046
88ec22d3 10047 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10048 rq_unlock(rq, &rf);
bf0f6f24
IM
10049}
10050
cb469845
SR
10051/*
10052 * Priority of the task has changed. Check to see if we preempt
10053 * the current task.
10054 */
da7a735e
PZ
10055static void
10056prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10057{
da0c1e65 10058 if (!task_on_rq_queued(p))
da7a735e
PZ
10059 return;
10060
cb469845
SR
10061 /*
10062 * Reschedule if we are currently running on this runqueue and
10063 * our priority decreased, or if we are not currently running on
10064 * this runqueue and our priority is higher than the current's
10065 */
da7a735e 10066 if (rq->curr == p) {
cb469845 10067 if (p->prio > oldprio)
8875125e 10068 resched_curr(rq);
cb469845 10069 } else
15afe09b 10070 check_preempt_curr(rq, p, 0);
cb469845
SR
10071}
10072
daa59407 10073static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10074{
10075 struct sched_entity *se = &p->se;
da7a735e
PZ
10076
10077 /*
daa59407
BP
10078 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10079 * the dequeue_entity(.flags=0) will already have normalized the
10080 * vruntime.
10081 */
10082 if (p->on_rq)
10083 return true;
10084
10085 /*
10086 * When !on_rq, vruntime of the task has usually NOT been normalized.
10087 * But there are some cases where it has already been normalized:
da7a735e 10088 *
daa59407
BP
10089 * - A forked child which is waiting for being woken up by
10090 * wake_up_new_task().
10091 * - A task which has been woken up by try_to_wake_up() and
10092 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10093 */
d0cdb3ce
SM
10094 if (!se->sum_exec_runtime ||
10095 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10096 return true;
10097
10098 return false;
10099}
10100
09a43ace
VG
10101#ifdef CONFIG_FAIR_GROUP_SCHED
10102/*
10103 * Propagate the changes of the sched_entity across the tg tree to make it
10104 * visible to the root
10105 */
10106static void propagate_entity_cfs_rq(struct sched_entity *se)
10107{
10108 struct cfs_rq *cfs_rq;
10109
10110 /* Start to propagate at parent */
10111 se = se->parent;
10112
10113 for_each_sched_entity(se) {
10114 cfs_rq = cfs_rq_of(se);
10115
10116 if (cfs_rq_throttled(cfs_rq))
10117 break;
10118
88c0616e 10119 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10120 }
10121}
10122#else
10123static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10124#endif
10125
df217913 10126static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10127{
daa59407
BP
10128 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10129
9d89c257 10130 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10131 update_load_avg(cfs_rq, se, 0);
a05e8c51 10132 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10133 update_tg_load_avg(cfs_rq, false);
09a43ace 10134 propagate_entity_cfs_rq(se);
da7a735e
PZ
10135}
10136
df217913 10137static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10138{
daa59407 10139 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10140
10141#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10142 /*
10143 * Since the real-depth could have been changed (only FAIR
10144 * class maintain depth value), reset depth properly.
10145 */
10146 se->depth = se->parent ? se->parent->depth + 1 : 0;
10147#endif
7855a35a 10148
df217913 10149 /* Synchronize entity with its cfs_rq */
88c0616e 10150 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10151 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10152 update_tg_load_avg(cfs_rq, false);
09a43ace 10153 propagate_entity_cfs_rq(se);
df217913
VG
10154}
10155
10156static void detach_task_cfs_rq(struct task_struct *p)
10157{
10158 struct sched_entity *se = &p->se;
10159 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10160
10161 if (!vruntime_normalized(p)) {
10162 /*
10163 * Fix up our vruntime so that the current sleep doesn't
10164 * cause 'unlimited' sleep bonus.
10165 */
10166 place_entity(cfs_rq, se, 0);
10167 se->vruntime -= cfs_rq->min_vruntime;
10168 }
10169
10170 detach_entity_cfs_rq(se);
10171}
10172
10173static void attach_task_cfs_rq(struct task_struct *p)
10174{
10175 struct sched_entity *se = &p->se;
10176 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10177
10178 attach_entity_cfs_rq(se);
daa59407
BP
10179
10180 if (!vruntime_normalized(p))
10181 se->vruntime += cfs_rq->min_vruntime;
10182}
6efdb105 10183
daa59407
BP
10184static void switched_from_fair(struct rq *rq, struct task_struct *p)
10185{
10186 detach_task_cfs_rq(p);
10187}
10188
10189static void switched_to_fair(struct rq *rq, struct task_struct *p)
10190{
10191 attach_task_cfs_rq(p);
7855a35a 10192
daa59407 10193 if (task_on_rq_queued(p)) {
7855a35a 10194 /*
daa59407
BP
10195 * We were most likely switched from sched_rt, so
10196 * kick off the schedule if running, otherwise just see
10197 * if we can still preempt the current task.
7855a35a 10198 */
daa59407
BP
10199 if (rq->curr == p)
10200 resched_curr(rq);
10201 else
10202 check_preempt_curr(rq, p, 0);
7855a35a 10203 }
cb469845
SR
10204}
10205
83b699ed
SV
10206/* Account for a task changing its policy or group.
10207 *
10208 * This routine is mostly called to set cfs_rq->curr field when a task
10209 * migrates between groups/classes.
10210 */
03b7fad1 10211static void set_next_task_fair(struct rq *rq, struct task_struct *p)
83b699ed 10212{
03b7fad1
PZ
10213 struct sched_entity *se = &p->se;
10214
10215#ifdef CONFIG_SMP
10216 if (task_on_rq_queued(p)) {
10217 /*
10218 * Move the next running task to the front of the list, so our
10219 * cfs_tasks list becomes MRU one.
10220 */
10221 list_move(&se->group_node, &rq->cfs_tasks);
10222 }
10223#endif
83b699ed 10224
ec12cb7f
PT
10225 for_each_sched_entity(se) {
10226 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10227
10228 set_next_entity(cfs_rq, se);
10229 /* ensure bandwidth has been allocated on our new cfs_rq */
10230 account_cfs_rq_runtime(cfs_rq, 0);
10231 }
83b699ed
SV
10232}
10233
029632fb
PZ
10234void init_cfs_rq(struct cfs_rq *cfs_rq)
10235{
bfb06889 10236 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10237 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10238#ifndef CONFIG_64BIT
10239 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10240#endif
141965c7 10241#ifdef CONFIG_SMP
2a2f5d4e 10242 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10243#endif
029632fb
PZ
10244}
10245
810b3817 10246#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10247static void task_set_group_fair(struct task_struct *p)
10248{
10249 struct sched_entity *se = &p->se;
10250
10251 set_task_rq(p, task_cpu(p));
10252 se->depth = se->parent ? se->parent->depth + 1 : 0;
10253}
10254
bc54da21 10255static void task_move_group_fair(struct task_struct *p)
810b3817 10256{
daa59407 10257 detach_task_cfs_rq(p);
b2b5ce02 10258 set_task_rq(p, task_cpu(p));
6efdb105
BP
10259
10260#ifdef CONFIG_SMP
10261 /* Tell se's cfs_rq has been changed -- migrated */
10262 p->se.avg.last_update_time = 0;
10263#endif
daa59407 10264 attach_task_cfs_rq(p);
810b3817 10265}
029632fb 10266
ea86cb4b
VG
10267static void task_change_group_fair(struct task_struct *p, int type)
10268{
10269 switch (type) {
10270 case TASK_SET_GROUP:
10271 task_set_group_fair(p);
10272 break;
10273
10274 case TASK_MOVE_GROUP:
10275 task_move_group_fair(p);
10276 break;
10277 }
10278}
10279
029632fb
PZ
10280void free_fair_sched_group(struct task_group *tg)
10281{
10282 int i;
10283
10284 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10285
10286 for_each_possible_cpu(i) {
10287 if (tg->cfs_rq)
10288 kfree(tg->cfs_rq[i]);
6fe1f348 10289 if (tg->se)
029632fb
PZ
10290 kfree(tg->se[i]);
10291 }
10292
10293 kfree(tg->cfs_rq);
10294 kfree(tg->se);
10295}
10296
10297int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10298{
029632fb 10299 struct sched_entity *se;
b7fa30c9 10300 struct cfs_rq *cfs_rq;
029632fb
PZ
10301 int i;
10302
6396bb22 10303 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10304 if (!tg->cfs_rq)
10305 goto err;
6396bb22 10306 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10307 if (!tg->se)
10308 goto err;
10309
10310 tg->shares = NICE_0_LOAD;
10311
10312 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10313
10314 for_each_possible_cpu(i) {
10315 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10316 GFP_KERNEL, cpu_to_node(i));
10317 if (!cfs_rq)
10318 goto err;
10319
10320 se = kzalloc_node(sizeof(struct sched_entity),
10321 GFP_KERNEL, cpu_to_node(i));
10322 if (!se)
10323 goto err_free_rq;
10324
10325 init_cfs_rq(cfs_rq);
10326 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10327 init_entity_runnable_average(se);
029632fb
PZ
10328 }
10329
10330 return 1;
10331
10332err_free_rq:
10333 kfree(cfs_rq);
10334err:
10335 return 0;
10336}
10337
8663e24d
PZ
10338void online_fair_sched_group(struct task_group *tg)
10339{
10340 struct sched_entity *se;
a46d14ec 10341 struct rq_flags rf;
8663e24d
PZ
10342 struct rq *rq;
10343 int i;
10344
10345 for_each_possible_cpu(i) {
10346 rq = cpu_rq(i);
10347 se = tg->se[i];
a46d14ec 10348 rq_lock_irq(rq, &rf);
4126bad6 10349 update_rq_clock(rq);
d0326691 10350 attach_entity_cfs_rq(se);
55e16d30 10351 sync_throttle(tg, i);
a46d14ec 10352 rq_unlock_irq(rq, &rf);
8663e24d
PZ
10353 }
10354}
10355
6fe1f348 10356void unregister_fair_sched_group(struct task_group *tg)
029632fb 10357{
029632fb 10358 unsigned long flags;
6fe1f348
PZ
10359 struct rq *rq;
10360 int cpu;
029632fb 10361
6fe1f348
PZ
10362 for_each_possible_cpu(cpu) {
10363 if (tg->se[cpu])
10364 remove_entity_load_avg(tg->se[cpu]);
029632fb 10365
6fe1f348
PZ
10366 /*
10367 * Only empty task groups can be destroyed; so we can speculatively
10368 * check on_list without danger of it being re-added.
10369 */
10370 if (!tg->cfs_rq[cpu]->on_list)
10371 continue;
10372
10373 rq = cpu_rq(cpu);
10374
10375 raw_spin_lock_irqsave(&rq->lock, flags);
10376 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10377 raw_spin_unlock_irqrestore(&rq->lock, flags);
10378 }
029632fb
PZ
10379}
10380
10381void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10382 struct sched_entity *se, int cpu,
10383 struct sched_entity *parent)
10384{
10385 struct rq *rq = cpu_rq(cpu);
10386
10387 cfs_rq->tg = tg;
10388 cfs_rq->rq = rq;
029632fb
PZ
10389 init_cfs_rq_runtime(cfs_rq);
10390
10391 tg->cfs_rq[cpu] = cfs_rq;
10392 tg->se[cpu] = se;
10393
10394 /* se could be NULL for root_task_group */
10395 if (!se)
10396 return;
10397
fed14d45 10398 if (!parent) {
029632fb 10399 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10400 se->depth = 0;
10401 } else {
029632fb 10402 se->cfs_rq = parent->my_q;
fed14d45
PZ
10403 se->depth = parent->depth + 1;
10404 }
029632fb
PZ
10405
10406 se->my_q = cfs_rq;
0ac9b1c2
PT
10407 /* guarantee group entities always have weight */
10408 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10409 se->parent = parent;
10410}
10411
10412static DEFINE_MUTEX(shares_mutex);
10413
10414int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10415{
10416 int i;
029632fb
PZ
10417
10418 /*
10419 * We can't change the weight of the root cgroup.
10420 */
10421 if (!tg->se[0])
10422 return -EINVAL;
10423
10424 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10425
10426 mutex_lock(&shares_mutex);
10427 if (tg->shares == shares)
10428 goto done;
10429
10430 tg->shares = shares;
10431 for_each_possible_cpu(i) {
10432 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10433 struct sched_entity *se = tg->se[i];
10434 struct rq_flags rf;
029632fb 10435
029632fb 10436 /* Propagate contribution to hierarchy */
8a8c69c3 10437 rq_lock_irqsave(rq, &rf);
71b1da46 10438 update_rq_clock(rq);
89ee048f 10439 for_each_sched_entity(se) {
88c0616e 10440 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10441 update_cfs_group(se);
89ee048f 10442 }
8a8c69c3 10443 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10444 }
10445
10446done:
10447 mutex_unlock(&shares_mutex);
10448 return 0;
10449}
10450#else /* CONFIG_FAIR_GROUP_SCHED */
10451
10452void free_fair_sched_group(struct task_group *tg) { }
10453
10454int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10455{
10456 return 1;
10457}
10458
8663e24d
PZ
10459void online_fair_sched_group(struct task_group *tg) { }
10460
6fe1f348 10461void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10462
10463#endif /* CONFIG_FAIR_GROUP_SCHED */
10464
810b3817 10465
6d686f45 10466static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10467{
10468 struct sched_entity *se = &task->se;
0d721cea
PW
10469 unsigned int rr_interval = 0;
10470
10471 /*
10472 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10473 * idle runqueue:
10474 */
0d721cea 10475 if (rq->cfs.load.weight)
a59f4e07 10476 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10477
10478 return rr_interval;
10479}
10480
bf0f6f24
IM
10481/*
10482 * All the scheduling class methods:
10483 */
029632fb 10484const struct sched_class fair_sched_class = {
5522d5d5 10485 .next = &idle_sched_class,
bf0f6f24
IM
10486 .enqueue_task = enqueue_task_fair,
10487 .dequeue_task = dequeue_task_fair,
10488 .yield_task = yield_task_fair,
d95f4122 10489 .yield_to_task = yield_to_task_fair,
bf0f6f24 10490
2e09bf55 10491 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10492
10493 .pick_next_task = pick_next_task_fair,
03b7fad1 10494
bf0f6f24 10495 .put_prev_task = put_prev_task_fair,
03b7fad1 10496 .set_next_task = set_next_task_fair,
bf0f6f24 10497
681f3e68 10498#ifdef CONFIG_SMP
4ce72a2c 10499 .select_task_rq = select_task_rq_fair,
0a74bef8 10500 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10501
0bcdcf28
CE
10502 .rq_online = rq_online_fair,
10503 .rq_offline = rq_offline_fair,
88ec22d3 10504
12695578 10505 .task_dead = task_dead_fair,
c5b28038 10506 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10507#endif
bf0f6f24 10508
bf0f6f24 10509 .task_tick = task_tick_fair,
cd29fe6f 10510 .task_fork = task_fork_fair,
cb469845
SR
10511
10512 .prio_changed = prio_changed_fair,
da7a735e 10513 .switched_from = switched_from_fair,
cb469845 10514 .switched_to = switched_to_fair,
810b3817 10515
0d721cea
PW
10516 .get_rr_interval = get_rr_interval_fair,
10517
6e998916
SG
10518 .update_curr = update_curr_fair,
10519
810b3817 10520#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10521 .task_change_group = task_change_group_fair,
810b3817 10522#endif
982d9cdc
PB
10523
10524#ifdef CONFIG_UCLAMP_TASK
10525 .uclamp_enabled = 1,
10526#endif
bf0f6f24
IM
10527};
10528
10529#ifdef CONFIG_SCHED_DEBUG
029632fb 10530void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10531{
039ae8bc 10532 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10533
5973e5b9 10534 rcu_read_lock();
039ae8bc 10535 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10536 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10537 rcu_read_unlock();
bf0f6f24 10538}
397f2378
SD
10539
10540#ifdef CONFIG_NUMA_BALANCING
10541void show_numa_stats(struct task_struct *p, struct seq_file *m)
10542{
10543 int node;
10544 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 10545 struct numa_group *ng;
397f2378 10546
cb361d8c
JH
10547 rcu_read_lock();
10548 ng = rcu_dereference(p->numa_group);
397f2378
SD
10549 for_each_online_node(node) {
10550 if (p->numa_faults) {
10551 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10552 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10553 }
cb361d8c
JH
10554 if (ng) {
10555 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10556 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
10557 }
10558 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10559 }
cb361d8c 10560 rcu_read_unlock();
397f2378
SD
10561}
10562#endif /* CONFIG_NUMA_BALANCING */
10563#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10564
10565__init void init_sched_fair_class(void)
10566{
10567#ifdef CONFIG_SMP
10568 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10569
3451d024 10570#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10571 nohz.next_balance = jiffies;
f643ea22 10572 nohz.next_blocked = jiffies;
029632fb 10573 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10574#endif
10575#endif /* SMP */
10576
10577}
3c93a0c0
QY
10578
10579/*
10580 * Helper functions to facilitate extracting info from tracepoints.
10581 */
10582
10583const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10584{
10585#ifdef CONFIG_SMP
10586 return cfs_rq ? &cfs_rq->avg : NULL;
10587#else
10588 return NULL;
10589#endif
10590}
10591EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10592
10593char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10594{
10595 if (!cfs_rq) {
10596 if (str)
10597 strlcpy(str, "(null)", len);
10598 else
10599 return NULL;
10600 }
10601
10602 cfs_rq_tg_path(cfs_rq, str, len);
10603 return str;
10604}
10605EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10606
10607int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10608{
10609 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10610}
10611EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10612
10613const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10614{
10615#ifdef CONFIG_SMP
10616 return rq ? &rq->avg_rt : NULL;
10617#else
10618 return NULL;
10619#endif
10620}
10621EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10622
10623const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10624{
10625#ifdef CONFIG_SMP
10626 return rq ? &rq->avg_dl : NULL;
10627#else
10628 return NULL;
10629#endif
10630}
10631EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10632
10633const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10634{
10635#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10636 return rq ? &rq->avg_irq : NULL;
10637#else
10638 return NULL;
10639#endif
10640}
10641EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10642
10643int sched_trace_rq_cpu(struct rq *rq)
10644{
10645 return rq ? cpu_of(rq) : -1;
10646}
10647EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10648
10649const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10650{
10651#ifdef CONFIG_SMP
10652 return rd ? rd->span : NULL;
10653#else
10654 return NULL;
10655#endif
10656}
10657EXPORT_SYMBOL_GPL(sched_trace_rd_span);