sched/fair: Disambiguate existing/remaining "capacity" usage
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
5ef20ca1 1049 ns->compute_capacity += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1b6a7495
NP
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
5eca82a9
PZ
1061 */
1062 if (!cpus)
1063 return;
1064
5ef20ca1
NP
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->compute_capacity;
1066 ns->task_capacity =
1067 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_POWER_SCALE);
1b6a7495 1068 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1069}
1070
58d081b5
MG
1071struct task_numa_env {
1072 struct task_struct *p;
e6628d5b 1073
58d081b5
MG
1074 int src_cpu, src_nid;
1075 int dst_cpu, dst_nid;
e6628d5b 1076
58d081b5 1077 struct numa_stats src_stats, dst_stats;
e6628d5b 1078
40ea2b42 1079 int imbalance_pct;
fb13c7ee
MG
1080
1081 struct task_struct *best_task;
1082 long best_imp;
58d081b5
MG
1083 int best_cpu;
1084};
1085
fb13c7ee
MG
1086static void task_numa_assign(struct task_numa_env *env,
1087 struct task_struct *p, long imp)
1088{
1089 if (env->best_task)
1090 put_task_struct(env->best_task);
1091 if (p)
1092 get_task_struct(p);
1093
1094 env->best_task = p;
1095 env->best_imp = imp;
1096 env->best_cpu = env->dst_cpu;
1097}
1098
e63da036
RR
1099static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
1100 long src_load, long dst_load,
1101 struct task_numa_env *env)
1102{
1103 long imb, old_imb;
1104
1105 /* We care about the slope of the imbalance, not the direction. */
1106 if (dst_load < src_load)
1107 swap(dst_load, src_load);
1108
1109 /* Is the difference below the threshold? */
1110 imb = dst_load * 100 - src_load * env->imbalance_pct;
1111 if (imb <= 0)
1112 return false;
1113
1114 /*
1115 * The imbalance is above the allowed threshold.
1116 * Compare it with the old imbalance.
1117 */
1118 if (orig_dst_load < orig_src_load)
1119 swap(orig_dst_load, orig_src_load);
1120
1121 old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
1122
1123 /* Would this change make things worse? */
1124 return (old_imb > imb);
1125}
1126
fb13c7ee
MG
1127/*
1128 * This checks if the overall compute and NUMA accesses of the system would
1129 * be improved if the source tasks was migrated to the target dst_cpu taking
1130 * into account that it might be best if task running on the dst_cpu should
1131 * be exchanged with the source task
1132 */
887c290e
RR
1133static void task_numa_compare(struct task_numa_env *env,
1134 long taskimp, long groupimp)
fb13c7ee
MG
1135{
1136 struct rq *src_rq = cpu_rq(env->src_cpu);
1137 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1138 struct task_struct *cur;
e63da036
RR
1139 long orig_src_load, src_load;
1140 long orig_dst_load, dst_load;
fb13c7ee 1141 long load;
887c290e 1142 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1143
1144 rcu_read_lock();
1145 cur = ACCESS_ONCE(dst_rq->curr);
1146 if (cur->pid == 0) /* idle */
1147 cur = NULL;
1148
1149 /*
1150 * "imp" is the fault differential for the source task between the
1151 * source and destination node. Calculate the total differential for
1152 * the source task and potential destination task. The more negative
1153 * the value is, the more rmeote accesses that would be expected to
1154 * be incurred if the tasks were swapped.
1155 */
1156 if (cur) {
1157 /* Skip this swap candidate if cannot move to the source cpu */
1158 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1159 goto unlock;
1160
887c290e
RR
1161 /*
1162 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1163 * in any group then look only at task weights.
887c290e 1164 */
ca28aa53 1165 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1166 imp = taskimp + task_weight(cur, env->src_nid) -
1167 task_weight(cur, env->dst_nid);
ca28aa53
RR
1168 /*
1169 * Add some hysteresis to prevent swapping the
1170 * tasks within a group over tiny differences.
1171 */
1172 if (cur->numa_group)
1173 imp -= imp/16;
887c290e 1174 } else {
ca28aa53
RR
1175 /*
1176 * Compare the group weights. If a task is all by
1177 * itself (not part of a group), use the task weight
1178 * instead.
1179 */
1180 if (env->p->numa_group)
1181 imp = groupimp;
1182 else
1183 imp = taskimp;
1184
1185 if (cur->numa_group)
1186 imp += group_weight(cur, env->src_nid) -
1187 group_weight(cur, env->dst_nid);
1188 else
1189 imp += task_weight(cur, env->src_nid) -
1190 task_weight(cur, env->dst_nid);
887c290e 1191 }
fb13c7ee
MG
1192 }
1193
1194 if (imp < env->best_imp)
1195 goto unlock;
1196
1197 if (!cur) {
1198 /* Is there capacity at our destination? */
1b6a7495
NP
1199 if (env->src_stats.has_free_capacity &&
1200 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1201 goto unlock;
1202
1203 goto balance;
1204 }
1205
1206 /* Balance doesn't matter much if we're running a task per cpu */
1207 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1208 goto assign;
1209
1210 /*
1211 * In the overloaded case, try and keep the load balanced.
1212 */
1213balance:
e63da036
RR
1214 orig_dst_load = env->dst_stats.load;
1215 orig_src_load = env->src_stats.load;
fb13c7ee
MG
1216
1217 /* XXX missing power terms */
1218 load = task_h_load(env->p);
e63da036
RR
1219 dst_load = orig_dst_load + load;
1220 src_load = orig_src_load - load;
fb13c7ee
MG
1221
1222 if (cur) {
1223 load = task_h_load(cur);
1224 dst_load -= load;
1225 src_load += load;
1226 }
1227
e63da036
RR
1228 if (load_too_imbalanced(orig_src_load, orig_dst_load,
1229 src_load, dst_load, env))
fb13c7ee
MG
1230 goto unlock;
1231
1232assign:
1233 task_numa_assign(env, cur, imp);
1234unlock:
1235 rcu_read_unlock();
1236}
1237
887c290e
RR
1238static void task_numa_find_cpu(struct task_numa_env *env,
1239 long taskimp, long groupimp)
2c8a50aa
MG
1240{
1241 int cpu;
1242
1243 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1244 /* Skip this CPU if the source task cannot migrate */
1245 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1246 continue;
1247
1248 env->dst_cpu = cpu;
887c290e 1249 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1250 }
1251}
1252
58d081b5
MG
1253static int task_numa_migrate(struct task_struct *p)
1254{
58d081b5
MG
1255 struct task_numa_env env = {
1256 .p = p,
fb13c7ee 1257
58d081b5 1258 .src_cpu = task_cpu(p),
b32e86b4 1259 .src_nid = task_node(p),
fb13c7ee
MG
1260
1261 .imbalance_pct = 112,
1262
1263 .best_task = NULL,
1264 .best_imp = 0,
1265 .best_cpu = -1
58d081b5
MG
1266 };
1267 struct sched_domain *sd;
887c290e 1268 unsigned long taskweight, groupweight;
2c8a50aa 1269 int nid, ret;
887c290e 1270 long taskimp, groupimp;
e6628d5b 1271
58d081b5 1272 /*
fb13c7ee
MG
1273 * Pick the lowest SD_NUMA domain, as that would have the smallest
1274 * imbalance and would be the first to start moving tasks about.
1275 *
1276 * And we want to avoid any moving of tasks about, as that would create
1277 * random movement of tasks -- counter the numa conditions we're trying
1278 * to satisfy here.
58d081b5
MG
1279 */
1280 rcu_read_lock();
fb13c7ee 1281 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1282 if (sd)
1283 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1284 rcu_read_unlock();
1285
46a73e8a
RR
1286 /*
1287 * Cpusets can break the scheduler domain tree into smaller
1288 * balance domains, some of which do not cross NUMA boundaries.
1289 * Tasks that are "trapped" in such domains cannot be migrated
1290 * elsewhere, so there is no point in (re)trying.
1291 */
1292 if (unlikely(!sd)) {
de1b301a 1293 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1294 return -EINVAL;
1295 }
1296
887c290e
RR
1297 taskweight = task_weight(p, env.src_nid);
1298 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1299 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1300 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1301 taskimp = task_weight(p, env.dst_nid) - taskweight;
1302 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1303 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1304
1b6a7495
NP
1305 /* If the preferred nid has free capacity, try to use it. */
1306 if (env.dst_stats.has_free_capacity)
887c290e 1307 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1308
1309 /* No space available on the preferred nid. Look elsewhere. */
1310 if (env.best_cpu == -1) {
2c8a50aa
MG
1311 for_each_online_node(nid) {
1312 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1313 continue;
58d081b5 1314
83e1d2cd 1315 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1316 taskimp = task_weight(p, nid) - taskweight;
1317 groupimp = group_weight(p, nid) - groupweight;
1318 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1319 continue;
1320
2c8a50aa
MG
1321 env.dst_nid = nid;
1322 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1323 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1324 }
1325 }
1326
fb13c7ee
MG
1327 /* No better CPU than the current one was found. */
1328 if (env.best_cpu == -1)
1329 return -EAGAIN;
1330
68d1b02a
RR
1331 /*
1332 * If the task is part of a workload that spans multiple NUMA nodes,
1333 * and is migrating into one of the workload's active nodes, remember
1334 * this node as the task's preferred numa node, so the workload can
1335 * settle down.
1336 * A task that migrated to a second choice node will be better off
1337 * trying for a better one later. Do not set the preferred node here.
1338 */
1339 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1340 sched_setnuma(p, env.dst_nid);
0ec8aa00 1341
04bb2f94
RR
1342 /*
1343 * Reset the scan period if the task is being rescheduled on an
1344 * alternative node to recheck if the tasks is now properly placed.
1345 */
1346 p->numa_scan_period = task_scan_min(p);
1347
fb13c7ee 1348 if (env.best_task == NULL) {
286549dc
MG
1349 ret = migrate_task_to(p, env.best_cpu);
1350 if (ret != 0)
1351 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1352 return ret;
1353 }
1354
1355 ret = migrate_swap(p, env.best_task);
286549dc
MG
1356 if (ret != 0)
1357 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1358 put_task_struct(env.best_task);
1359 return ret;
e6628d5b
MG
1360}
1361
6b9a7460
MG
1362/* Attempt to migrate a task to a CPU on the preferred node. */
1363static void numa_migrate_preferred(struct task_struct *p)
1364{
5085e2a3
RR
1365 unsigned long interval = HZ;
1366
2739d3ee 1367 /* This task has no NUMA fault statistics yet */
ff1df896 1368 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1369 return;
1370
2739d3ee 1371 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1372 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1373 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1374
1375 /* Success if task is already running on preferred CPU */
de1b301a 1376 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1377 return;
1378
1379 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1380 task_numa_migrate(p);
6b9a7460
MG
1381}
1382
20e07dea
RR
1383/*
1384 * Find the nodes on which the workload is actively running. We do this by
1385 * tracking the nodes from which NUMA hinting faults are triggered. This can
1386 * be different from the set of nodes where the workload's memory is currently
1387 * located.
1388 *
1389 * The bitmask is used to make smarter decisions on when to do NUMA page
1390 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1391 * are added when they cause over 6/16 of the maximum number of faults, but
1392 * only removed when they drop below 3/16.
1393 */
1394static void update_numa_active_node_mask(struct numa_group *numa_group)
1395{
1396 unsigned long faults, max_faults = 0;
1397 int nid;
1398
1399 for_each_online_node(nid) {
1400 faults = group_faults_cpu(numa_group, nid);
1401 if (faults > max_faults)
1402 max_faults = faults;
1403 }
1404
1405 for_each_online_node(nid) {
1406 faults = group_faults_cpu(numa_group, nid);
1407 if (!node_isset(nid, numa_group->active_nodes)) {
1408 if (faults > max_faults * 6 / 16)
1409 node_set(nid, numa_group->active_nodes);
1410 } else if (faults < max_faults * 3 / 16)
1411 node_clear(nid, numa_group->active_nodes);
1412 }
1413}
1414
04bb2f94
RR
1415/*
1416 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1417 * increments. The more local the fault statistics are, the higher the scan
1418 * period will be for the next scan window. If local/remote ratio is below
1419 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1420 * scan period will decrease
1421 */
1422#define NUMA_PERIOD_SLOTS 10
1423#define NUMA_PERIOD_THRESHOLD 3
1424
1425/*
1426 * Increase the scan period (slow down scanning) if the majority of
1427 * our memory is already on our local node, or if the majority of
1428 * the page accesses are shared with other processes.
1429 * Otherwise, decrease the scan period.
1430 */
1431static void update_task_scan_period(struct task_struct *p,
1432 unsigned long shared, unsigned long private)
1433{
1434 unsigned int period_slot;
1435 int ratio;
1436 int diff;
1437
1438 unsigned long remote = p->numa_faults_locality[0];
1439 unsigned long local = p->numa_faults_locality[1];
1440
1441 /*
1442 * If there were no record hinting faults then either the task is
1443 * completely idle or all activity is areas that are not of interest
1444 * to automatic numa balancing. Scan slower
1445 */
1446 if (local + shared == 0) {
1447 p->numa_scan_period = min(p->numa_scan_period_max,
1448 p->numa_scan_period << 1);
1449
1450 p->mm->numa_next_scan = jiffies +
1451 msecs_to_jiffies(p->numa_scan_period);
1452
1453 return;
1454 }
1455
1456 /*
1457 * Prepare to scale scan period relative to the current period.
1458 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1459 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1460 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1461 */
1462 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1463 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1464 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1465 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1466 if (!slot)
1467 slot = 1;
1468 diff = slot * period_slot;
1469 } else {
1470 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1471
1472 /*
1473 * Scale scan rate increases based on sharing. There is an
1474 * inverse relationship between the degree of sharing and
1475 * the adjustment made to the scanning period. Broadly
1476 * speaking the intent is that there is little point
1477 * scanning faster if shared accesses dominate as it may
1478 * simply bounce migrations uselessly
1479 */
04bb2f94
RR
1480 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1481 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1482 }
1483
1484 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1485 task_scan_min(p), task_scan_max(p));
1486 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1487}
1488
7e2703e6
RR
1489/*
1490 * Get the fraction of time the task has been running since the last
1491 * NUMA placement cycle. The scheduler keeps similar statistics, but
1492 * decays those on a 32ms period, which is orders of magnitude off
1493 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1494 * stats only if the task is so new there are no NUMA statistics yet.
1495 */
1496static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1497{
1498 u64 runtime, delta, now;
1499 /* Use the start of this time slice to avoid calculations. */
1500 now = p->se.exec_start;
1501 runtime = p->se.sum_exec_runtime;
1502
1503 if (p->last_task_numa_placement) {
1504 delta = runtime - p->last_sum_exec_runtime;
1505 *period = now - p->last_task_numa_placement;
1506 } else {
1507 delta = p->se.avg.runnable_avg_sum;
1508 *period = p->se.avg.runnable_avg_period;
1509 }
1510
1511 p->last_sum_exec_runtime = runtime;
1512 p->last_task_numa_placement = now;
1513
1514 return delta;
1515}
1516
cbee9f88
PZ
1517static void task_numa_placement(struct task_struct *p)
1518{
83e1d2cd
MG
1519 int seq, nid, max_nid = -1, max_group_nid = -1;
1520 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1521 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1522 unsigned long total_faults;
1523 u64 runtime, period;
7dbd13ed 1524 spinlock_t *group_lock = NULL;
cbee9f88 1525
2832bc19 1526 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1527 if (p->numa_scan_seq == seq)
1528 return;
1529 p->numa_scan_seq = seq;
598f0ec0 1530 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1531
7e2703e6
RR
1532 total_faults = p->numa_faults_locality[0] +
1533 p->numa_faults_locality[1];
1534 runtime = numa_get_avg_runtime(p, &period);
1535
7dbd13ed
MG
1536 /* If the task is part of a group prevent parallel updates to group stats */
1537 if (p->numa_group) {
1538 group_lock = &p->numa_group->lock;
60e69eed 1539 spin_lock_irq(group_lock);
7dbd13ed
MG
1540 }
1541
688b7585
MG
1542 /* Find the node with the highest number of faults */
1543 for_each_online_node(nid) {
83e1d2cd 1544 unsigned long faults = 0, group_faults = 0;
ac8e895b 1545 int priv, i;
745d6147 1546
be1e4e76 1547 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1548 long diff, f_diff, f_weight;
8c8a743c 1549
ac8e895b 1550 i = task_faults_idx(nid, priv);
745d6147 1551
ac8e895b 1552 /* Decay existing window, copy faults since last scan */
35664fd4 1553 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1554 fault_types[priv] += p->numa_faults_buffer_memory[i];
1555 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1556
7e2703e6
RR
1557 /*
1558 * Normalize the faults_from, so all tasks in a group
1559 * count according to CPU use, instead of by the raw
1560 * number of faults. Tasks with little runtime have
1561 * little over-all impact on throughput, and thus their
1562 * faults are less important.
1563 */
1564 f_weight = div64_u64(runtime << 16, period + 1);
1565 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1566 (total_faults + 1);
35664fd4 1567 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1568 p->numa_faults_buffer_cpu[i] = 0;
1569
35664fd4
RR
1570 p->numa_faults_memory[i] += diff;
1571 p->numa_faults_cpu[i] += f_diff;
ff1df896 1572 faults += p->numa_faults_memory[i];
83e1d2cd 1573 p->total_numa_faults += diff;
8c8a743c
PZ
1574 if (p->numa_group) {
1575 /* safe because we can only change our own group */
989348b5 1576 p->numa_group->faults[i] += diff;
50ec8a40 1577 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1578 p->numa_group->total_faults += diff;
1579 group_faults += p->numa_group->faults[i];
8c8a743c 1580 }
ac8e895b
MG
1581 }
1582
688b7585
MG
1583 if (faults > max_faults) {
1584 max_faults = faults;
1585 max_nid = nid;
1586 }
83e1d2cd
MG
1587
1588 if (group_faults > max_group_faults) {
1589 max_group_faults = group_faults;
1590 max_group_nid = nid;
1591 }
1592 }
1593
04bb2f94
RR
1594 update_task_scan_period(p, fault_types[0], fault_types[1]);
1595
7dbd13ed 1596 if (p->numa_group) {
20e07dea 1597 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1598 /*
1599 * If the preferred task and group nids are different,
1600 * iterate over the nodes again to find the best place.
1601 */
1602 if (max_nid != max_group_nid) {
1603 unsigned long weight, max_weight = 0;
1604
1605 for_each_online_node(nid) {
1606 weight = task_weight(p, nid) + group_weight(p, nid);
1607 if (weight > max_weight) {
1608 max_weight = weight;
1609 max_nid = nid;
1610 }
83e1d2cd
MG
1611 }
1612 }
7dbd13ed 1613
60e69eed 1614 spin_unlock_irq(group_lock);
688b7585
MG
1615 }
1616
6b9a7460 1617 /* Preferred node as the node with the most faults */
3a7053b3 1618 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1619 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1620 sched_setnuma(p, max_nid);
6b9a7460 1621 numa_migrate_preferred(p);
3a7053b3 1622 }
cbee9f88
PZ
1623}
1624
8c8a743c
PZ
1625static inline int get_numa_group(struct numa_group *grp)
1626{
1627 return atomic_inc_not_zero(&grp->refcount);
1628}
1629
1630static inline void put_numa_group(struct numa_group *grp)
1631{
1632 if (atomic_dec_and_test(&grp->refcount))
1633 kfree_rcu(grp, rcu);
1634}
1635
3e6a9418
MG
1636static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1637 int *priv)
8c8a743c
PZ
1638{
1639 struct numa_group *grp, *my_grp;
1640 struct task_struct *tsk;
1641 bool join = false;
1642 int cpu = cpupid_to_cpu(cpupid);
1643 int i;
1644
1645 if (unlikely(!p->numa_group)) {
1646 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1647 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1648
1649 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1650 if (!grp)
1651 return;
1652
1653 atomic_set(&grp->refcount, 1);
1654 spin_lock_init(&grp->lock);
1655 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1656 grp->gid = p->pid;
50ec8a40 1657 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1658 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1659 nr_node_ids;
8c8a743c 1660
20e07dea
RR
1661 node_set(task_node(current), grp->active_nodes);
1662
be1e4e76 1663 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1664 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1665
989348b5 1666 grp->total_faults = p->total_numa_faults;
83e1d2cd 1667
8c8a743c
PZ
1668 list_add(&p->numa_entry, &grp->task_list);
1669 grp->nr_tasks++;
1670 rcu_assign_pointer(p->numa_group, grp);
1671 }
1672
1673 rcu_read_lock();
1674 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1675
1676 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1677 goto no_join;
8c8a743c
PZ
1678
1679 grp = rcu_dereference(tsk->numa_group);
1680 if (!grp)
3354781a 1681 goto no_join;
8c8a743c
PZ
1682
1683 my_grp = p->numa_group;
1684 if (grp == my_grp)
3354781a 1685 goto no_join;
8c8a743c
PZ
1686
1687 /*
1688 * Only join the other group if its bigger; if we're the bigger group,
1689 * the other task will join us.
1690 */
1691 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1692 goto no_join;
8c8a743c
PZ
1693
1694 /*
1695 * Tie-break on the grp address.
1696 */
1697 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1698 goto no_join;
8c8a743c 1699
dabe1d99
RR
1700 /* Always join threads in the same process. */
1701 if (tsk->mm == current->mm)
1702 join = true;
1703
1704 /* Simple filter to avoid false positives due to PID collisions */
1705 if (flags & TNF_SHARED)
1706 join = true;
8c8a743c 1707
3e6a9418
MG
1708 /* Update priv based on whether false sharing was detected */
1709 *priv = !join;
1710
dabe1d99 1711 if (join && !get_numa_group(grp))
3354781a 1712 goto no_join;
8c8a743c 1713
8c8a743c
PZ
1714 rcu_read_unlock();
1715
1716 if (!join)
1717 return;
1718
60e69eed
MG
1719 BUG_ON(irqs_disabled());
1720 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1721
be1e4e76 1722 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1723 my_grp->faults[i] -= p->numa_faults_memory[i];
1724 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1725 }
989348b5
MG
1726 my_grp->total_faults -= p->total_numa_faults;
1727 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1728
1729 list_move(&p->numa_entry, &grp->task_list);
1730 my_grp->nr_tasks--;
1731 grp->nr_tasks++;
1732
1733 spin_unlock(&my_grp->lock);
60e69eed 1734 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1735
1736 rcu_assign_pointer(p->numa_group, grp);
1737
1738 put_numa_group(my_grp);
3354781a
PZ
1739 return;
1740
1741no_join:
1742 rcu_read_unlock();
1743 return;
8c8a743c
PZ
1744}
1745
1746void task_numa_free(struct task_struct *p)
1747{
1748 struct numa_group *grp = p->numa_group;
1749 int i;
ff1df896 1750 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1751
1752 if (grp) {
60e69eed 1753 spin_lock_irq(&grp->lock);
be1e4e76 1754 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1755 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1756 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1757
8c8a743c
PZ
1758 list_del(&p->numa_entry);
1759 grp->nr_tasks--;
60e69eed 1760 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1761 rcu_assign_pointer(p->numa_group, NULL);
1762 put_numa_group(grp);
1763 }
1764
ff1df896
RR
1765 p->numa_faults_memory = NULL;
1766 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1767 p->numa_faults_cpu= NULL;
1768 p->numa_faults_buffer_cpu = NULL;
82727018 1769 kfree(numa_faults);
8c8a743c
PZ
1770}
1771
cbee9f88
PZ
1772/*
1773 * Got a PROT_NONE fault for a page on @node.
1774 */
58b46da3 1775void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1776{
1777 struct task_struct *p = current;
6688cc05 1778 bool migrated = flags & TNF_MIGRATED;
58b46da3 1779 int cpu_node = task_node(current);
792568ec 1780 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1781 int priv;
cbee9f88 1782
10e84b97 1783 if (!numabalancing_enabled)
1a687c2e
MG
1784 return;
1785
9ff1d9ff
MG
1786 /* for example, ksmd faulting in a user's mm */
1787 if (!p->mm)
1788 return;
1789
82727018
RR
1790 /* Do not worry about placement if exiting */
1791 if (p->state == TASK_DEAD)
1792 return;
1793
f809ca9a 1794 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1795 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1796 int size = sizeof(*p->numa_faults_memory) *
1797 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1798
be1e4e76 1799 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1800 if (!p->numa_faults_memory)
f809ca9a 1801 return;
745d6147 1802
ff1df896 1803 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1804 /*
1805 * The averaged statistics, shared & private, memory & cpu,
1806 * occupy the first half of the array. The second half of the
1807 * array is for current counters, which are averaged into the
1808 * first set by task_numa_placement.
1809 */
50ec8a40
RR
1810 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1811 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1812 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1813 p->total_numa_faults = 0;
04bb2f94 1814 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1815 }
cbee9f88 1816
8c8a743c
PZ
1817 /*
1818 * First accesses are treated as private, otherwise consider accesses
1819 * to be private if the accessing pid has not changed
1820 */
1821 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1822 priv = 1;
1823 } else {
1824 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1825 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1826 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1827 }
1828
792568ec
RR
1829 /*
1830 * If a workload spans multiple NUMA nodes, a shared fault that
1831 * occurs wholly within the set of nodes that the workload is
1832 * actively using should be counted as local. This allows the
1833 * scan rate to slow down when a workload has settled down.
1834 */
1835 if (!priv && !local && p->numa_group &&
1836 node_isset(cpu_node, p->numa_group->active_nodes) &&
1837 node_isset(mem_node, p->numa_group->active_nodes))
1838 local = 1;
1839
cbee9f88 1840 task_numa_placement(p);
f809ca9a 1841
2739d3ee
RR
1842 /*
1843 * Retry task to preferred node migration periodically, in case it
1844 * case it previously failed, or the scheduler moved us.
1845 */
1846 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1847 numa_migrate_preferred(p);
1848
b32e86b4
IM
1849 if (migrated)
1850 p->numa_pages_migrated += pages;
1851
58b46da3
RR
1852 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1853 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1854 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1855}
1856
6e5fb223
PZ
1857static void reset_ptenuma_scan(struct task_struct *p)
1858{
1859 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1860 p->mm->numa_scan_offset = 0;
1861}
1862
cbee9f88
PZ
1863/*
1864 * The expensive part of numa migration is done from task_work context.
1865 * Triggered from task_tick_numa().
1866 */
1867void task_numa_work(struct callback_head *work)
1868{
1869 unsigned long migrate, next_scan, now = jiffies;
1870 struct task_struct *p = current;
1871 struct mm_struct *mm = p->mm;
6e5fb223 1872 struct vm_area_struct *vma;
9f40604c 1873 unsigned long start, end;
598f0ec0 1874 unsigned long nr_pte_updates = 0;
9f40604c 1875 long pages;
cbee9f88
PZ
1876
1877 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1878
1879 work->next = work; /* protect against double add */
1880 /*
1881 * Who cares about NUMA placement when they're dying.
1882 *
1883 * NOTE: make sure not to dereference p->mm before this check,
1884 * exit_task_work() happens _after_ exit_mm() so we could be called
1885 * without p->mm even though we still had it when we enqueued this
1886 * work.
1887 */
1888 if (p->flags & PF_EXITING)
1889 return;
1890
930aa174 1891 if (!mm->numa_next_scan) {
7e8d16b6
MG
1892 mm->numa_next_scan = now +
1893 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1894 }
1895
cbee9f88
PZ
1896 /*
1897 * Enforce maximal scan/migration frequency..
1898 */
1899 migrate = mm->numa_next_scan;
1900 if (time_before(now, migrate))
1901 return;
1902
598f0ec0
MG
1903 if (p->numa_scan_period == 0) {
1904 p->numa_scan_period_max = task_scan_max(p);
1905 p->numa_scan_period = task_scan_min(p);
1906 }
cbee9f88 1907
fb003b80 1908 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1909 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1910 return;
1911
19a78d11
PZ
1912 /*
1913 * Delay this task enough that another task of this mm will likely win
1914 * the next time around.
1915 */
1916 p->node_stamp += 2 * TICK_NSEC;
1917
9f40604c
MG
1918 start = mm->numa_scan_offset;
1919 pages = sysctl_numa_balancing_scan_size;
1920 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1921 if (!pages)
1922 return;
cbee9f88 1923
6e5fb223 1924 down_read(&mm->mmap_sem);
9f40604c 1925 vma = find_vma(mm, start);
6e5fb223
PZ
1926 if (!vma) {
1927 reset_ptenuma_scan(p);
9f40604c 1928 start = 0;
6e5fb223
PZ
1929 vma = mm->mmap;
1930 }
9f40604c 1931 for (; vma; vma = vma->vm_next) {
fc314724 1932 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1933 continue;
1934
4591ce4f
MG
1935 /*
1936 * Shared library pages mapped by multiple processes are not
1937 * migrated as it is expected they are cache replicated. Avoid
1938 * hinting faults in read-only file-backed mappings or the vdso
1939 * as migrating the pages will be of marginal benefit.
1940 */
1941 if (!vma->vm_mm ||
1942 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1943 continue;
1944
3c67f474
MG
1945 /*
1946 * Skip inaccessible VMAs to avoid any confusion between
1947 * PROT_NONE and NUMA hinting ptes
1948 */
1949 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1950 continue;
4591ce4f 1951
9f40604c
MG
1952 do {
1953 start = max(start, vma->vm_start);
1954 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1955 end = min(end, vma->vm_end);
598f0ec0
MG
1956 nr_pte_updates += change_prot_numa(vma, start, end);
1957
1958 /*
1959 * Scan sysctl_numa_balancing_scan_size but ensure that
1960 * at least one PTE is updated so that unused virtual
1961 * address space is quickly skipped.
1962 */
1963 if (nr_pte_updates)
1964 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1965
9f40604c
MG
1966 start = end;
1967 if (pages <= 0)
1968 goto out;
3cf1962c
RR
1969
1970 cond_resched();
9f40604c 1971 } while (end != vma->vm_end);
cbee9f88 1972 }
6e5fb223 1973
9f40604c 1974out:
6e5fb223 1975 /*
c69307d5
PZ
1976 * It is possible to reach the end of the VMA list but the last few
1977 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1978 * would find the !migratable VMA on the next scan but not reset the
1979 * scanner to the start so check it now.
6e5fb223
PZ
1980 */
1981 if (vma)
9f40604c 1982 mm->numa_scan_offset = start;
6e5fb223
PZ
1983 else
1984 reset_ptenuma_scan(p);
1985 up_read(&mm->mmap_sem);
cbee9f88
PZ
1986}
1987
1988/*
1989 * Drive the periodic memory faults..
1990 */
1991void task_tick_numa(struct rq *rq, struct task_struct *curr)
1992{
1993 struct callback_head *work = &curr->numa_work;
1994 u64 period, now;
1995
1996 /*
1997 * We don't care about NUMA placement if we don't have memory.
1998 */
1999 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2000 return;
2001
2002 /*
2003 * Using runtime rather than walltime has the dual advantage that
2004 * we (mostly) drive the selection from busy threads and that the
2005 * task needs to have done some actual work before we bother with
2006 * NUMA placement.
2007 */
2008 now = curr->se.sum_exec_runtime;
2009 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2010
2011 if (now - curr->node_stamp > period) {
4b96a29b 2012 if (!curr->node_stamp)
598f0ec0 2013 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2014 curr->node_stamp += period;
cbee9f88
PZ
2015
2016 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2017 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2018 task_work_add(curr, work, true);
2019 }
2020 }
2021}
2022#else
2023static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2024{
2025}
0ec8aa00
PZ
2026
2027static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2028{
2029}
2030
2031static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2032{
2033}
cbee9f88
PZ
2034#endif /* CONFIG_NUMA_BALANCING */
2035
30cfdcfc
DA
2036static void
2037account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2038{
2039 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2040 if (!parent_entity(se))
029632fb 2041 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2042#ifdef CONFIG_SMP
0ec8aa00
PZ
2043 if (entity_is_task(se)) {
2044 struct rq *rq = rq_of(cfs_rq);
2045
2046 account_numa_enqueue(rq, task_of(se));
2047 list_add(&se->group_node, &rq->cfs_tasks);
2048 }
367456c7 2049#endif
30cfdcfc 2050 cfs_rq->nr_running++;
30cfdcfc
DA
2051}
2052
2053static void
2054account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2055{
2056 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2057 if (!parent_entity(se))
029632fb 2058 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2059 if (entity_is_task(se)) {
2060 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2061 list_del_init(&se->group_node);
0ec8aa00 2062 }
30cfdcfc 2063 cfs_rq->nr_running--;
30cfdcfc
DA
2064}
2065
3ff6dcac
YZ
2066#ifdef CONFIG_FAIR_GROUP_SCHED
2067# ifdef CONFIG_SMP
cf5f0acf
PZ
2068static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2069{
2070 long tg_weight;
2071
2072 /*
2073 * Use this CPU's actual weight instead of the last load_contribution
2074 * to gain a more accurate current total weight. See
2075 * update_cfs_rq_load_contribution().
2076 */
bf5b986e 2077 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2078 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2079 tg_weight += cfs_rq->load.weight;
2080
2081 return tg_weight;
2082}
2083
6d5ab293 2084static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2085{
cf5f0acf 2086 long tg_weight, load, shares;
3ff6dcac 2087
cf5f0acf 2088 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2089 load = cfs_rq->load.weight;
3ff6dcac 2090
3ff6dcac 2091 shares = (tg->shares * load);
cf5f0acf
PZ
2092 if (tg_weight)
2093 shares /= tg_weight;
3ff6dcac
YZ
2094
2095 if (shares < MIN_SHARES)
2096 shares = MIN_SHARES;
2097 if (shares > tg->shares)
2098 shares = tg->shares;
2099
2100 return shares;
2101}
3ff6dcac 2102# else /* CONFIG_SMP */
6d5ab293 2103static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2104{
2105 return tg->shares;
2106}
3ff6dcac 2107# endif /* CONFIG_SMP */
2069dd75
PZ
2108static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2109 unsigned long weight)
2110{
19e5eebb
PT
2111 if (se->on_rq) {
2112 /* commit outstanding execution time */
2113 if (cfs_rq->curr == se)
2114 update_curr(cfs_rq);
2069dd75 2115 account_entity_dequeue(cfs_rq, se);
19e5eebb 2116 }
2069dd75
PZ
2117
2118 update_load_set(&se->load, weight);
2119
2120 if (se->on_rq)
2121 account_entity_enqueue(cfs_rq, se);
2122}
2123
82958366
PT
2124static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2125
6d5ab293 2126static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2127{
2128 struct task_group *tg;
2129 struct sched_entity *se;
3ff6dcac 2130 long shares;
2069dd75 2131
2069dd75
PZ
2132 tg = cfs_rq->tg;
2133 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2134 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2135 return;
3ff6dcac
YZ
2136#ifndef CONFIG_SMP
2137 if (likely(se->load.weight == tg->shares))
2138 return;
2139#endif
6d5ab293 2140 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2141
2142 reweight_entity(cfs_rq_of(se), se, shares);
2143}
2144#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2145static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2146{
2147}
2148#endif /* CONFIG_FAIR_GROUP_SCHED */
2149
141965c7 2150#ifdef CONFIG_SMP
5b51f2f8
PT
2151/*
2152 * We choose a half-life close to 1 scheduling period.
2153 * Note: The tables below are dependent on this value.
2154 */
2155#define LOAD_AVG_PERIOD 32
2156#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2157#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2158
2159/* Precomputed fixed inverse multiplies for multiplication by y^n */
2160static const u32 runnable_avg_yN_inv[] = {
2161 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2162 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2163 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2164 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2165 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2166 0x85aac367, 0x82cd8698,
2167};
2168
2169/*
2170 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2171 * over-estimates when re-combining.
2172 */
2173static const u32 runnable_avg_yN_sum[] = {
2174 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2175 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2176 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2177};
2178
9d85f21c
PT
2179/*
2180 * Approximate:
2181 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2182 */
2183static __always_inline u64 decay_load(u64 val, u64 n)
2184{
5b51f2f8
PT
2185 unsigned int local_n;
2186
2187 if (!n)
2188 return val;
2189 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2190 return 0;
2191
2192 /* after bounds checking we can collapse to 32-bit */
2193 local_n = n;
2194
2195 /*
2196 * As y^PERIOD = 1/2, we can combine
2197 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2198 * With a look-up table which covers k^n (n<PERIOD)
2199 *
2200 * To achieve constant time decay_load.
2201 */
2202 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2203 val >>= local_n / LOAD_AVG_PERIOD;
2204 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2205 }
2206
5b51f2f8
PT
2207 val *= runnable_avg_yN_inv[local_n];
2208 /* We don't use SRR here since we always want to round down. */
2209 return val >> 32;
2210}
2211
2212/*
2213 * For updates fully spanning n periods, the contribution to runnable
2214 * average will be: \Sum 1024*y^n
2215 *
2216 * We can compute this reasonably efficiently by combining:
2217 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2218 */
2219static u32 __compute_runnable_contrib(u64 n)
2220{
2221 u32 contrib = 0;
2222
2223 if (likely(n <= LOAD_AVG_PERIOD))
2224 return runnable_avg_yN_sum[n];
2225 else if (unlikely(n >= LOAD_AVG_MAX_N))
2226 return LOAD_AVG_MAX;
2227
2228 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2229 do {
2230 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2231 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2232
2233 n -= LOAD_AVG_PERIOD;
2234 } while (n > LOAD_AVG_PERIOD);
2235
2236 contrib = decay_load(contrib, n);
2237 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2238}
2239
2240/*
2241 * We can represent the historical contribution to runnable average as the
2242 * coefficients of a geometric series. To do this we sub-divide our runnable
2243 * history into segments of approximately 1ms (1024us); label the segment that
2244 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2245 *
2246 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2247 * p0 p1 p2
2248 * (now) (~1ms ago) (~2ms ago)
2249 *
2250 * Let u_i denote the fraction of p_i that the entity was runnable.
2251 *
2252 * We then designate the fractions u_i as our co-efficients, yielding the
2253 * following representation of historical load:
2254 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2255 *
2256 * We choose y based on the with of a reasonably scheduling period, fixing:
2257 * y^32 = 0.5
2258 *
2259 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2260 * approximately half as much as the contribution to load within the last ms
2261 * (u_0).
2262 *
2263 * When a period "rolls over" and we have new u_0`, multiplying the previous
2264 * sum again by y is sufficient to update:
2265 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2266 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2267 */
2268static __always_inline int __update_entity_runnable_avg(u64 now,
2269 struct sched_avg *sa,
2270 int runnable)
2271{
5b51f2f8
PT
2272 u64 delta, periods;
2273 u32 runnable_contrib;
9d85f21c
PT
2274 int delta_w, decayed = 0;
2275
2276 delta = now - sa->last_runnable_update;
2277 /*
2278 * This should only happen when time goes backwards, which it
2279 * unfortunately does during sched clock init when we swap over to TSC.
2280 */
2281 if ((s64)delta < 0) {
2282 sa->last_runnable_update = now;
2283 return 0;
2284 }
2285
2286 /*
2287 * Use 1024ns as the unit of measurement since it's a reasonable
2288 * approximation of 1us and fast to compute.
2289 */
2290 delta >>= 10;
2291 if (!delta)
2292 return 0;
2293 sa->last_runnable_update = now;
2294
2295 /* delta_w is the amount already accumulated against our next period */
2296 delta_w = sa->runnable_avg_period % 1024;
2297 if (delta + delta_w >= 1024) {
2298 /* period roll-over */
2299 decayed = 1;
2300
2301 /*
2302 * Now that we know we're crossing a period boundary, figure
2303 * out how much from delta we need to complete the current
2304 * period and accrue it.
2305 */
2306 delta_w = 1024 - delta_w;
5b51f2f8
PT
2307 if (runnable)
2308 sa->runnable_avg_sum += delta_w;
2309 sa->runnable_avg_period += delta_w;
2310
2311 delta -= delta_w;
2312
2313 /* Figure out how many additional periods this update spans */
2314 periods = delta / 1024;
2315 delta %= 1024;
2316
2317 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2318 periods + 1);
2319 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2320 periods + 1);
2321
2322 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2323 runnable_contrib = __compute_runnable_contrib(periods);
2324 if (runnable)
2325 sa->runnable_avg_sum += runnable_contrib;
2326 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2327 }
2328
2329 /* Remainder of delta accrued against u_0` */
2330 if (runnable)
2331 sa->runnable_avg_sum += delta;
2332 sa->runnable_avg_period += delta;
2333
2334 return decayed;
2335}
2336
9ee474f5 2337/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2338static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2339{
2340 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2341 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2342
2343 decays -= se->avg.decay_count;
2344 if (!decays)
aff3e498 2345 return 0;
9ee474f5
PT
2346
2347 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2348 se->avg.decay_count = 0;
aff3e498
PT
2349
2350 return decays;
9ee474f5
PT
2351}
2352
c566e8e9
PT
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2355 int force_update)
2356{
2357 struct task_group *tg = cfs_rq->tg;
bf5b986e 2358 long tg_contrib;
c566e8e9
PT
2359
2360 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2361 tg_contrib -= cfs_rq->tg_load_contrib;
2362
bf5b986e
AS
2363 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2364 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2365 cfs_rq->tg_load_contrib += tg_contrib;
2366 }
2367}
8165e145 2368
bb17f655
PT
2369/*
2370 * Aggregate cfs_rq runnable averages into an equivalent task_group
2371 * representation for computing load contributions.
2372 */
2373static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2374 struct cfs_rq *cfs_rq)
2375{
2376 struct task_group *tg = cfs_rq->tg;
2377 long contrib;
2378
2379 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2380 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2381 sa->runnable_avg_period + 1);
2382 contrib -= cfs_rq->tg_runnable_contrib;
2383
2384 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2385 atomic_add(contrib, &tg->runnable_avg);
2386 cfs_rq->tg_runnable_contrib += contrib;
2387 }
2388}
2389
8165e145
PT
2390static inline void __update_group_entity_contrib(struct sched_entity *se)
2391{
2392 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2393 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2394 int runnable_avg;
2395
8165e145
PT
2396 u64 contrib;
2397
2398 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2399 se->avg.load_avg_contrib = div_u64(contrib,
2400 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2401
2402 /*
2403 * For group entities we need to compute a correction term in the case
2404 * that they are consuming <1 cpu so that we would contribute the same
2405 * load as a task of equal weight.
2406 *
2407 * Explicitly co-ordinating this measurement would be expensive, but
2408 * fortunately the sum of each cpus contribution forms a usable
2409 * lower-bound on the true value.
2410 *
2411 * Consider the aggregate of 2 contributions. Either they are disjoint
2412 * (and the sum represents true value) or they are disjoint and we are
2413 * understating by the aggregate of their overlap.
2414 *
2415 * Extending this to N cpus, for a given overlap, the maximum amount we
2416 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2417 * cpus that overlap for this interval and w_i is the interval width.
2418 *
2419 * On a small machine; the first term is well-bounded which bounds the
2420 * total error since w_i is a subset of the period. Whereas on a
2421 * larger machine, while this first term can be larger, if w_i is the
2422 * of consequential size guaranteed to see n_i*w_i quickly converge to
2423 * our upper bound of 1-cpu.
2424 */
2425 runnable_avg = atomic_read(&tg->runnable_avg);
2426 if (runnable_avg < NICE_0_LOAD) {
2427 se->avg.load_avg_contrib *= runnable_avg;
2428 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2429 }
8165e145 2430}
f5f9739d
DE
2431
2432static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2433{
2434 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2435 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2436}
6e83125c 2437#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2438static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2439 int force_update) {}
bb17f655
PT
2440static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2441 struct cfs_rq *cfs_rq) {}
8165e145 2442static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2443static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2444#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2445
8165e145
PT
2446static inline void __update_task_entity_contrib(struct sched_entity *se)
2447{
2448 u32 contrib;
2449
2450 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2451 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2452 contrib /= (se->avg.runnable_avg_period + 1);
2453 se->avg.load_avg_contrib = scale_load(contrib);
2454}
2455
2dac754e
PT
2456/* Compute the current contribution to load_avg by se, return any delta */
2457static long __update_entity_load_avg_contrib(struct sched_entity *se)
2458{
2459 long old_contrib = se->avg.load_avg_contrib;
2460
8165e145
PT
2461 if (entity_is_task(se)) {
2462 __update_task_entity_contrib(se);
2463 } else {
bb17f655 2464 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2465 __update_group_entity_contrib(se);
2466 }
2dac754e
PT
2467
2468 return se->avg.load_avg_contrib - old_contrib;
2469}
2470
9ee474f5
PT
2471static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2472 long load_contrib)
2473{
2474 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2475 cfs_rq->blocked_load_avg -= load_contrib;
2476 else
2477 cfs_rq->blocked_load_avg = 0;
2478}
2479
f1b17280
PT
2480static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2481
9d85f21c 2482/* Update a sched_entity's runnable average */
9ee474f5
PT
2483static inline void update_entity_load_avg(struct sched_entity *se,
2484 int update_cfs_rq)
9d85f21c 2485{
2dac754e
PT
2486 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2487 long contrib_delta;
f1b17280 2488 u64 now;
2dac754e 2489
f1b17280
PT
2490 /*
2491 * For a group entity we need to use their owned cfs_rq_clock_task() in
2492 * case they are the parent of a throttled hierarchy.
2493 */
2494 if (entity_is_task(se))
2495 now = cfs_rq_clock_task(cfs_rq);
2496 else
2497 now = cfs_rq_clock_task(group_cfs_rq(se));
2498
2499 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2500 return;
2501
2502 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2503
2504 if (!update_cfs_rq)
2505 return;
2506
2dac754e
PT
2507 if (se->on_rq)
2508 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2509 else
2510 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2511}
2512
2513/*
2514 * Decay the load contributed by all blocked children and account this so that
2515 * their contribution may appropriately discounted when they wake up.
2516 */
aff3e498 2517static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2518{
f1b17280 2519 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2520 u64 decays;
2521
2522 decays = now - cfs_rq->last_decay;
aff3e498 2523 if (!decays && !force_update)
9ee474f5
PT
2524 return;
2525
2509940f
AS
2526 if (atomic_long_read(&cfs_rq->removed_load)) {
2527 unsigned long removed_load;
2528 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2529 subtract_blocked_load_contrib(cfs_rq, removed_load);
2530 }
9ee474f5 2531
aff3e498
PT
2532 if (decays) {
2533 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2534 decays);
2535 atomic64_add(decays, &cfs_rq->decay_counter);
2536 cfs_rq->last_decay = now;
2537 }
c566e8e9
PT
2538
2539 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2540}
18bf2805 2541
2dac754e
PT
2542/* Add the load generated by se into cfs_rq's child load-average */
2543static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2544 struct sched_entity *se,
2545 int wakeup)
2dac754e 2546{
aff3e498
PT
2547 /*
2548 * We track migrations using entity decay_count <= 0, on a wake-up
2549 * migration we use a negative decay count to track the remote decays
2550 * accumulated while sleeping.
a75cdaa9
AS
2551 *
2552 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2553 * are seen by enqueue_entity_load_avg() as a migration with an already
2554 * constructed load_avg_contrib.
aff3e498
PT
2555 */
2556 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2557 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2558 if (se->avg.decay_count) {
2559 /*
2560 * In a wake-up migration we have to approximate the
2561 * time sleeping. This is because we can't synchronize
2562 * clock_task between the two cpus, and it is not
2563 * guaranteed to be read-safe. Instead, we can
2564 * approximate this using our carried decays, which are
2565 * explicitly atomically readable.
2566 */
2567 se->avg.last_runnable_update -= (-se->avg.decay_count)
2568 << 20;
2569 update_entity_load_avg(se, 0);
2570 /* Indicate that we're now synchronized and on-rq */
2571 se->avg.decay_count = 0;
2572 }
9ee474f5
PT
2573 wakeup = 0;
2574 } else {
9390675a 2575 __synchronize_entity_decay(se);
9ee474f5
PT
2576 }
2577
aff3e498
PT
2578 /* migrated tasks did not contribute to our blocked load */
2579 if (wakeup) {
9ee474f5 2580 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2581 update_entity_load_avg(se, 0);
2582 }
9ee474f5 2583
2dac754e 2584 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2585 /* we force update consideration on load-balancer moves */
2586 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2587}
2588
9ee474f5
PT
2589/*
2590 * Remove se's load from this cfs_rq child load-average, if the entity is
2591 * transitioning to a blocked state we track its projected decay using
2592 * blocked_load_avg.
2593 */
2dac754e 2594static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2595 struct sched_entity *se,
2596 int sleep)
2dac754e 2597{
9ee474f5 2598 update_entity_load_avg(se, 1);
aff3e498
PT
2599 /* we force update consideration on load-balancer moves */
2600 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2601
2dac754e 2602 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2603 if (sleep) {
2604 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2605 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2606 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2607}
642dbc39
VG
2608
2609/*
2610 * Update the rq's load with the elapsed running time before entering
2611 * idle. if the last scheduled task is not a CFS task, idle_enter will
2612 * be the only way to update the runnable statistic.
2613 */
2614void idle_enter_fair(struct rq *this_rq)
2615{
2616 update_rq_runnable_avg(this_rq, 1);
2617}
2618
2619/*
2620 * Update the rq's load with the elapsed idle time before a task is
2621 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2622 * be the only way to update the runnable statistic.
2623 */
2624void idle_exit_fair(struct rq *this_rq)
2625{
2626 update_rq_runnable_avg(this_rq, 0);
2627}
2628
6e83125c
PZ
2629static int idle_balance(struct rq *this_rq);
2630
38033c37
PZ
2631#else /* CONFIG_SMP */
2632
9ee474f5
PT
2633static inline void update_entity_load_avg(struct sched_entity *se,
2634 int update_cfs_rq) {}
18bf2805 2635static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2636static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2637 struct sched_entity *se,
2638 int wakeup) {}
2dac754e 2639static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2640 struct sched_entity *se,
2641 int sleep) {}
aff3e498
PT
2642static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2643 int force_update) {}
6e83125c
PZ
2644
2645static inline int idle_balance(struct rq *rq)
2646{
2647 return 0;
2648}
2649
38033c37 2650#endif /* CONFIG_SMP */
9d85f21c 2651
2396af69 2652static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2653{
bf0f6f24 2654#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2655 struct task_struct *tsk = NULL;
2656
2657 if (entity_is_task(se))
2658 tsk = task_of(se);
2659
41acab88 2660 if (se->statistics.sleep_start) {
78becc27 2661 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2662
2663 if ((s64)delta < 0)
2664 delta = 0;
2665
41acab88
LDM
2666 if (unlikely(delta > se->statistics.sleep_max))
2667 se->statistics.sleep_max = delta;
bf0f6f24 2668
8c79a045 2669 se->statistics.sleep_start = 0;
41acab88 2670 se->statistics.sum_sleep_runtime += delta;
9745512c 2671
768d0c27 2672 if (tsk) {
e414314c 2673 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2674 trace_sched_stat_sleep(tsk, delta);
2675 }
bf0f6f24 2676 }
41acab88 2677 if (se->statistics.block_start) {
78becc27 2678 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2679
2680 if ((s64)delta < 0)
2681 delta = 0;
2682
41acab88
LDM
2683 if (unlikely(delta > se->statistics.block_max))
2684 se->statistics.block_max = delta;
bf0f6f24 2685
8c79a045 2686 se->statistics.block_start = 0;
41acab88 2687 se->statistics.sum_sleep_runtime += delta;
30084fbd 2688
e414314c 2689 if (tsk) {
8f0dfc34 2690 if (tsk->in_iowait) {
41acab88
LDM
2691 se->statistics.iowait_sum += delta;
2692 se->statistics.iowait_count++;
768d0c27 2693 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2694 }
2695
b781a602
AV
2696 trace_sched_stat_blocked(tsk, delta);
2697
e414314c
PZ
2698 /*
2699 * Blocking time is in units of nanosecs, so shift by
2700 * 20 to get a milliseconds-range estimation of the
2701 * amount of time that the task spent sleeping:
2702 */
2703 if (unlikely(prof_on == SLEEP_PROFILING)) {
2704 profile_hits(SLEEP_PROFILING,
2705 (void *)get_wchan(tsk),
2706 delta >> 20);
2707 }
2708 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2709 }
bf0f6f24
IM
2710 }
2711#endif
2712}
2713
ddc97297
PZ
2714static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2715{
2716#ifdef CONFIG_SCHED_DEBUG
2717 s64 d = se->vruntime - cfs_rq->min_vruntime;
2718
2719 if (d < 0)
2720 d = -d;
2721
2722 if (d > 3*sysctl_sched_latency)
2723 schedstat_inc(cfs_rq, nr_spread_over);
2724#endif
2725}
2726
aeb73b04
PZ
2727static void
2728place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2729{
1af5f730 2730 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2731
2cb8600e
PZ
2732 /*
2733 * The 'current' period is already promised to the current tasks,
2734 * however the extra weight of the new task will slow them down a
2735 * little, place the new task so that it fits in the slot that
2736 * stays open at the end.
2737 */
94dfb5e7 2738 if (initial && sched_feat(START_DEBIT))
f9c0b095 2739 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2740
a2e7a7eb 2741 /* sleeps up to a single latency don't count. */
5ca9880c 2742 if (!initial) {
a2e7a7eb 2743 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2744
a2e7a7eb
MG
2745 /*
2746 * Halve their sleep time's effect, to allow
2747 * for a gentler effect of sleepers:
2748 */
2749 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2750 thresh >>= 1;
51e0304c 2751
a2e7a7eb 2752 vruntime -= thresh;
aeb73b04
PZ
2753 }
2754
b5d9d734 2755 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2756 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2757}
2758
d3d9dc33
PT
2759static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2760
bf0f6f24 2761static void
88ec22d3 2762enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2763{
88ec22d3
PZ
2764 /*
2765 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2766 * through calling update_curr().
88ec22d3 2767 */
371fd7e7 2768 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2769 se->vruntime += cfs_rq->min_vruntime;
2770
bf0f6f24 2771 /*
a2a2d680 2772 * Update run-time statistics of the 'current'.
bf0f6f24 2773 */
b7cc0896 2774 update_curr(cfs_rq);
f269ae04 2775 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2776 account_entity_enqueue(cfs_rq, se);
2777 update_cfs_shares(cfs_rq);
bf0f6f24 2778
88ec22d3 2779 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2780 place_entity(cfs_rq, se, 0);
2396af69 2781 enqueue_sleeper(cfs_rq, se);
e9acbff6 2782 }
bf0f6f24 2783
d2417e5a 2784 update_stats_enqueue(cfs_rq, se);
ddc97297 2785 check_spread(cfs_rq, se);
83b699ed
SV
2786 if (se != cfs_rq->curr)
2787 __enqueue_entity(cfs_rq, se);
2069dd75 2788 se->on_rq = 1;
3d4b47b4 2789
d3d9dc33 2790 if (cfs_rq->nr_running == 1) {
3d4b47b4 2791 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2792 check_enqueue_throttle(cfs_rq);
2793 }
bf0f6f24
IM
2794}
2795
2c13c919 2796static void __clear_buddies_last(struct sched_entity *se)
2002c695 2797{
2c13c919
RR
2798 for_each_sched_entity(se) {
2799 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2800 if (cfs_rq->last != se)
2c13c919 2801 break;
f1044799
PZ
2802
2803 cfs_rq->last = NULL;
2c13c919
RR
2804 }
2805}
2002c695 2806
2c13c919
RR
2807static void __clear_buddies_next(struct sched_entity *se)
2808{
2809 for_each_sched_entity(se) {
2810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2811 if (cfs_rq->next != se)
2c13c919 2812 break;
f1044799
PZ
2813
2814 cfs_rq->next = NULL;
2c13c919 2815 }
2002c695
PZ
2816}
2817
ac53db59
RR
2818static void __clear_buddies_skip(struct sched_entity *se)
2819{
2820 for_each_sched_entity(se) {
2821 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2822 if (cfs_rq->skip != se)
ac53db59 2823 break;
f1044799
PZ
2824
2825 cfs_rq->skip = NULL;
ac53db59
RR
2826 }
2827}
2828
a571bbea
PZ
2829static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2830{
2c13c919
RR
2831 if (cfs_rq->last == se)
2832 __clear_buddies_last(se);
2833
2834 if (cfs_rq->next == se)
2835 __clear_buddies_next(se);
ac53db59
RR
2836
2837 if (cfs_rq->skip == se)
2838 __clear_buddies_skip(se);
a571bbea
PZ
2839}
2840
6c16a6dc 2841static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2842
bf0f6f24 2843static void
371fd7e7 2844dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2845{
a2a2d680
DA
2846 /*
2847 * Update run-time statistics of the 'current'.
2848 */
2849 update_curr(cfs_rq);
17bc14b7 2850 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2851
19b6a2e3 2852 update_stats_dequeue(cfs_rq, se);
371fd7e7 2853 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2854#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2855 if (entity_is_task(se)) {
2856 struct task_struct *tsk = task_of(se);
2857
2858 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2859 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2860 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2861 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2862 }
db36cc7d 2863#endif
67e9fb2a
PZ
2864 }
2865
2002c695 2866 clear_buddies(cfs_rq, se);
4793241b 2867
83b699ed 2868 if (se != cfs_rq->curr)
30cfdcfc 2869 __dequeue_entity(cfs_rq, se);
17bc14b7 2870 se->on_rq = 0;
30cfdcfc 2871 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2872
2873 /*
2874 * Normalize the entity after updating the min_vruntime because the
2875 * update can refer to the ->curr item and we need to reflect this
2876 * movement in our normalized position.
2877 */
371fd7e7 2878 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2879 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2880
d8b4986d
PT
2881 /* return excess runtime on last dequeue */
2882 return_cfs_rq_runtime(cfs_rq);
2883
1e876231 2884 update_min_vruntime(cfs_rq);
17bc14b7 2885 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2886}
2887
2888/*
2889 * Preempt the current task with a newly woken task if needed:
2890 */
7c92e54f 2891static void
2e09bf55 2892check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2893{
11697830 2894 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2895 struct sched_entity *se;
2896 s64 delta;
11697830 2897
6d0f0ebd 2898 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2899 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2900 if (delta_exec > ideal_runtime) {
bf0f6f24 2901 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2902 /*
2903 * The current task ran long enough, ensure it doesn't get
2904 * re-elected due to buddy favours.
2905 */
2906 clear_buddies(cfs_rq, curr);
f685ceac
MG
2907 return;
2908 }
2909
2910 /*
2911 * Ensure that a task that missed wakeup preemption by a
2912 * narrow margin doesn't have to wait for a full slice.
2913 * This also mitigates buddy induced latencies under load.
2914 */
f685ceac
MG
2915 if (delta_exec < sysctl_sched_min_granularity)
2916 return;
2917
f4cfb33e
WX
2918 se = __pick_first_entity(cfs_rq);
2919 delta = curr->vruntime - se->vruntime;
f685ceac 2920
f4cfb33e
WX
2921 if (delta < 0)
2922 return;
d7d82944 2923
f4cfb33e
WX
2924 if (delta > ideal_runtime)
2925 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2926}
2927
83b699ed 2928static void
8494f412 2929set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2930{
83b699ed
SV
2931 /* 'current' is not kept within the tree. */
2932 if (se->on_rq) {
2933 /*
2934 * Any task has to be enqueued before it get to execute on
2935 * a CPU. So account for the time it spent waiting on the
2936 * runqueue.
2937 */
2938 update_stats_wait_end(cfs_rq, se);
2939 __dequeue_entity(cfs_rq, se);
2940 }
2941
79303e9e 2942 update_stats_curr_start(cfs_rq, se);
429d43bc 2943 cfs_rq->curr = se;
eba1ed4b
IM
2944#ifdef CONFIG_SCHEDSTATS
2945 /*
2946 * Track our maximum slice length, if the CPU's load is at
2947 * least twice that of our own weight (i.e. dont track it
2948 * when there are only lesser-weight tasks around):
2949 */
495eca49 2950 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2951 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2952 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2953 }
2954#endif
4a55b450 2955 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2956}
2957
3f3a4904
PZ
2958static int
2959wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2960
ac53db59
RR
2961/*
2962 * Pick the next process, keeping these things in mind, in this order:
2963 * 1) keep things fair between processes/task groups
2964 * 2) pick the "next" process, since someone really wants that to run
2965 * 3) pick the "last" process, for cache locality
2966 * 4) do not run the "skip" process, if something else is available
2967 */
678d5718
PZ
2968static struct sched_entity *
2969pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2970{
678d5718
PZ
2971 struct sched_entity *left = __pick_first_entity(cfs_rq);
2972 struct sched_entity *se;
2973
2974 /*
2975 * If curr is set we have to see if its left of the leftmost entity
2976 * still in the tree, provided there was anything in the tree at all.
2977 */
2978 if (!left || (curr && entity_before(curr, left)))
2979 left = curr;
2980
2981 se = left; /* ideally we run the leftmost entity */
f4b6755f 2982
ac53db59
RR
2983 /*
2984 * Avoid running the skip buddy, if running something else can
2985 * be done without getting too unfair.
2986 */
2987 if (cfs_rq->skip == se) {
678d5718
PZ
2988 struct sched_entity *second;
2989
2990 if (se == curr) {
2991 second = __pick_first_entity(cfs_rq);
2992 } else {
2993 second = __pick_next_entity(se);
2994 if (!second || (curr && entity_before(curr, second)))
2995 second = curr;
2996 }
2997
ac53db59
RR
2998 if (second && wakeup_preempt_entity(second, left) < 1)
2999 se = second;
3000 }
aa2ac252 3001
f685ceac
MG
3002 /*
3003 * Prefer last buddy, try to return the CPU to a preempted task.
3004 */
3005 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3006 se = cfs_rq->last;
3007
ac53db59
RR
3008 /*
3009 * Someone really wants this to run. If it's not unfair, run it.
3010 */
3011 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3012 se = cfs_rq->next;
3013
f685ceac 3014 clear_buddies(cfs_rq, se);
4793241b
PZ
3015
3016 return se;
aa2ac252
PZ
3017}
3018
678d5718 3019static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3020
ab6cde26 3021static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3022{
3023 /*
3024 * If still on the runqueue then deactivate_task()
3025 * was not called and update_curr() has to be done:
3026 */
3027 if (prev->on_rq)
b7cc0896 3028 update_curr(cfs_rq);
bf0f6f24 3029
d3d9dc33
PT
3030 /* throttle cfs_rqs exceeding runtime */
3031 check_cfs_rq_runtime(cfs_rq);
3032
ddc97297 3033 check_spread(cfs_rq, prev);
30cfdcfc 3034 if (prev->on_rq) {
5870db5b 3035 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3036 /* Put 'current' back into the tree. */
3037 __enqueue_entity(cfs_rq, prev);
9d85f21c 3038 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3039 update_entity_load_avg(prev, 1);
30cfdcfc 3040 }
429d43bc 3041 cfs_rq->curr = NULL;
bf0f6f24
IM
3042}
3043
8f4d37ec
PZ
3044static void
3045entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3046{
bf0f6f24 3047 /*
30cfdcfc 3048 * Update run-time statistics of the 'current'.
bf0f6f24 3049 */
30cfdcfc 3050 update_curr(cfs_rq);
bf0f6f24 3051
9d85f21c
PT
3052 /*
3053 * Ensure that runnable average is periodically updated.
3054 */
9ee474f5 3055 update_entity_load_avg(curr, 1);
aff3e498 3056 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3057 update_cfs_shares(cfs_rq);
9d85f21c 3058
8f4d37ec
PZ
3059#ifdef CONFIG_SCHED_HRTICK
3060 /*
3061 * queued ticks are scheduled to match the slice, so don't bother
3062 * validating it and just reschedule.
3063 */
983ed7a6
HH
3064 if (queued) {
3065 resched_task(rq_of(cfs_rq)->curr);
3066 return;
3067 }
8f4d37ec
PZ
3068 /*
3069 * don't let the period tick interfere with the hrtick preemption
3070 */
3071 if (!sched_feat(DOUBLE_TICK) &&
3072 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3073 return;
3074#endif
3075
2c2efaed 3076 if (cfs_rq->nr_running > 1)
2e09bf55 3077 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3078}
3079
ab84d31e
PT
3080
3081/**************************************************
3082 * CFS bandwidth control machinery
3083 */
3084
3085#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3086
3087#ifdef HAVE_JUMP_LABEL
c5905afb 3088static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3089
3090static inline bool cfs_bandwidth_used(void)
3091{
c5905afb 3092 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3093}
3094
1ee14e6c 3095void cfs_bandwidth_usage_inc(void)
029632fb 3096{
1ee14e6c
BS
3097 static_key_slow_inc(&__cfs_bandwidth_used);
3098}
3099
3100void cfs_bandwidth_usage_dec(void)
3101{
3102 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3103}
3104#else /* HAVE_JUMP_LABEL */
3105static bool cfs_bandwidth_used(void)
3106{
3107 return true;
3108}
3109
1ee14e6c
BS
3110void cfs_bandwidth_usage_inc(void) {}
3111void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3112#endif /* HAVE_JUMP_LABEL */
3113
ab84d31e
PT
3114/*
3115 * default period for cfs group bandwidth.
3116 * default: 0.1s, units: nanoseconds
3117 */
3118static inline u64 default_cfs_period(void)
3119{
3120 return 100000000ULL;
3121}
ec12cb7f
PT
3122
3123static inline u64 sched_cfs_bandwidth_slice(void)
3124{
3125 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3126}
3127
a9cf55b2
PT
3128/*
3129 * Replenish runtime according to assigned quota and update expiration time.
3130 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3131 * additional synchronization around rq->lock.
3132 *
3133 * requires cfs_b->lock
3134 */
029632fb 3135void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3136{
3137 u64 now;
3138
3139 if (cfs_b->quota == RUNTIME_INF)
3140 return;
3141
3142 now = sched_clock_cpu(smp_processor_id());
3143 cfs_b->runtime = cfs_b->quota;
3144 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3145}
3146
029632fb
PZ
3147static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3148{
3149 return &tg->cfs_bandwidth;
3150}
3151
f1b17280
PT
3152/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3153static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3154{
3155 if (unlikely(cfs_rq->throttle_count))
3156 return cfs_rq->throttled_clock_task;
3157
78becc27 3158 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3159}
3160
85dac906
PT
3161/* returns 0 on failure to allocate runtime */
3162static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3163{
3164 struct task_group *tg = cfs_rq->tg;
3165 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3166 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3167
3168 /* note: this is a positive sum as runtime_remaining <= 0 */
3169 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3170
3171 raw_spin_lock(&cfs_b->lock);
3172 if (cfs_b->quota == RUNTIME_INF)
3173 amount = min_amount;
58088ad0 3174 else {
a9cf55b2
PT
3175 /*
3176 * If the bandwidth pool has become inactive, then at least one
3177 * period must have elapsed since the last consumption.
3178 * Refresh the global state and ensure bandwidth timer becomes
3179 * active.
3180 */
3181 if (!cfs_b->timer_active) {
3182 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3183 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3184 }
58088ad0
PT
3185
3186 if (cfs_b->runtime > 0) {
3187 amount = min(cfs_b->runtime, min_amount);
3188 cfs_b->runtime -= amount;
3189 cfs_b->idle = 0;
3190 }
ec12cb7f 3191 }
a9cf55b2 3192 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3193 raw_spin_unlock(&cfs_b->lock);
3194
3195 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3196 /*
3197 * we may have advanced our local expiration to account for allowed
3198 * spread between our sched_clock and the one on which runtime was
3199 * issued.
3200 */
3201 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3202 cfs_rq->runtime_expires = expires;
85dac906
PT
3203
3204 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3205}
3206
a9cf55b2
PT
3207/*
3208 * Note: This depends on the synchronization provided by sched_clock and the
3209 * fact that rq->clock snapshots this value.
3210 */
3211static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3212{
a9cf55b2 3213 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3214
3215 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3216 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3217 return;
3218
a9cf55b2
PT
3219 if (cfs_rq->runtime_remaining < 0)
3220 return;
3221
3222 /*
3223 * If the local deadline has passed we have to consider the
3224 * possibility that our sched_clock is 'fast' and the global deadline
3225 * has not truly expired.
3226 *
3227 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3228 * whether the global deadline has advanced. It is valid to compare
3229 * cfs_b->runtime_expires without any locks since we only care about
3230 * exact equality, so a partial write will still work.
a9cf55b2
PT
3231 */
3232
51f2176d 3233 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3234 /* extend local deadline, drift is bounded above by 2 ticks */
3235 cfs_rq->runtime_expires += TICK_NSEC;
3236 } else {
3237 /* global deadline is ahead, expiration has passed */
3238 cfs_rq->runtime_remaining = 0;
3239 }
3240}
3241
9dbdb155 3242static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3243{
3244 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3245 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3246 expire_cfs_rq_runtime(cfs_rq);
3247
3248 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3249 return;
3250
85dac906
PT
3251 /*
3252 * if we're unable to extend our runtime we resched so that the active
3253 * hierarchy can be throttled
3254 */
3255 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3256 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3257}
3258
6c16a6dc 3259static __always_inline
9dbdb155 3260void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3261{
56f570e5 3262 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3263 return;
3264
3265 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3266}
3267
85dac906
PT
3268static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3269{
56f570e5 3270 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3271}
3272
64660c86
PT
3273/* check whether cfs_rq, or any parent, is throttled */
3274static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3275{
56f570e5 3276 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3277}
3278
3279/*
3280 * Ensure that neither of the group entities corresponding to src_cpu or
3281 * dest_cpu are members of a throttled hierarchy when performing group
3282 * load-balance operations.
3283 */
3284static inline int throttled_lb_pair(struct task_group *tg,
3285 int src_cpu, int dest_cpu)
3286{
3287 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3288
3289 src_cfs_rq = tg->cfs_rq[src_cpu];
3290 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3291
3292 return throttled_hierarchy(src_cfs_rq) ||
3293 throttled_hierarchy(dest_cfs_rq);
3294}
3295
3296/* updated child weight may affect parent so we have to do this bottom up */
3297static int tg_unthrottle_up(struct task_group *tg, void *data)
3298{
3299 struct rq *rq = data;
3300 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3301
3302 cfs_rq->throttle_count--;
3303#ifdef CONFIG_SMP
3304 if (!cfs_rq->throttle_count) {
f1b17280 3305 /* adjust cfs_rq_clock_task() */
78becc27 3306 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3307 cfs_rq->throttled_clock_task;
64660c86
PT
3308 }
3309#endif
3310
3311 return 0;
3312}
3313
3314static int tg_throttle_down(struct task_group *tg, void *data)
3315{
3316 struct rq *rq = data;
3317 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3318
82958366
PT
3319 /* group is entering throttled state, stop time */
3320 if (!cfs_rq->throttle_count)
78becc27 3321 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3322 cfs_rq->throttle_count++;
3323
3324 return 0;
3325}
3326
d3d9dc33 3327static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3328{
3329 struct rq *rq = rq_of(cfs_rq);
3330 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3331 struct sched_entity *se;
3332 long task_delta, dequeue = 1;
3333
3334 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3335
f1b17280 3336 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3337 rcu_read_lock();
3338 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3339 rcu_read_unlock();
85dac906
PT
3340
3341 task_delta = cfs_rq->h_nr_running;
3342 for_each_sched_entity(se) {
3343 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3344 /* throttled entity or throttle-on-deactivate */
3345 if (!se->on_rq)
3346 break;
3347
3348 if (dequeue)
3349 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3350 qcfs_rq->h_nr_running -= task_delta;
3351
3352 if (qcfs_rq->load.weight)
3353 dequeue = 0;
3354 }
3355
3356 if (!se)
72465447 3357 sub_nr_running(rq, task_delta);
85dac906
PT
3358
3359 cfs_rq->throttled = 1;
78becc27 3360 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3361 raw_spin_lock(&cfs_b->lock);
3362 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3363 if (!cfs_b->timer_active)
3364 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3365 raw_spin_unlock(&cfs_b->lock);
3366}
3367
029632fb 3368void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3369{
3370 struct rq *rq = rq_of(cfs_rq);
3371 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3372 struct sched_entity *se;
3373 int enqueue = 1;
3374 long task_delta;
3375
22b958d8 3376 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3377
3378 cfs_rq->throttled = 0;
1a55af2e
FW
3379
3380 update_rq_clock(rq);
3381
671fd9da 3382 raw_spin_lock(&cfs_b->lock);
78becc27 3383 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3384 list_del_rcu(&cfs_rq->throttled_list);
3385 raw_spin_unlock(&cfs_b->lock);
3386
64660c86
PT
3387 /* update hierarchical throttle state */
3388 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3389
671fd9da
PT
3390 if (!cfs_rq->load.weight)
3391 return;
3392
3393 task_delta = cfs_rq->h_nr_running;
3394 for_each_sched_entity(se) {
3395 if (se->on_rq)
3396 enqueue = 0;
3397
3398 cfs_rq = cfs_rq_of(se);
3399 if (enqueue)
3400 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3401 cfs_rq->h_nr_running += task_delta;
3402
3403 if (cfs_rq_throttled(cfs_rq))
3404 break;
3405 }
3406
3407 if (!se)
72465447 3408 add_nr_running(rq, task_delta);
671fd9da
PT
3409
3410 /* determine whether we need to wake up potentially idle cpu */
3411 if (rq->curr == rq->idle && rq->cfs.nr_running)
3412 resched_task(rq->curr);
3413}
3414
3415static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3416 u64 remaining, u64 expires)
3417{
3418 struct cfs_rq *cfs_rq;
3419 u64 runtime = remaining;
3420
3421 rcu_read_lock();
3422 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3423 throttled_list) {
3424 struct rq *rq = rq_of(cfs_rq);
3425
3426 raw_spin_lock(&rq->lock);
3427 if (!cfs_rq_throttled(cfs_rq))
3428 goto next;
3429
3430 runtime = -cfs_rq->runtime_remaining + 1;
3431 if (runtime > remaining)
3432 runtime = remaining;
3433 remaining -= runtime;
3434
3435 cfs_rq->runtime_remaining += runtime;
3436 cfs_rq->runtime_expires = expires;
3437
3438 /* we check whether we're throttled above */
3439 if (cfs_rq->runtime_remaining > 0)
3440 unthrottle_cfs_rq(cfs_rq);
3441
3442next:
3443 raw_spin_unlock(&rq->lock);
3444
3445 if (!remaining)
3446 break;
3447 }
3448 rcu_read_unlock();
3449
3450 return remaining;
3451}
3452
58088ad0
PT
3453/*
3454 * Responsible for refilling a task_group's bandwidth and unthrottling its
3455 * cfs_rqs as appropriate. If there has been no activity within the last
3456 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3457 * used to track this state.
3458 */
3459static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3460{
671fd9da 3461 u64 runtime, runtime_expires;
51f2176d 3462 int throttled;
58088ad0 3463
58088ad0
PT
3464 /* no need to continue the timer with no bandwidth constraint */
3465 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3466 goto out_deactivate;
58088ad0 3467
671fd9da 3468 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3469 cfs_b->nr_periods += overrun;
671fd9da 3470
51f2176d
BS
3471 /*
3472 * idle depends on !throttled (for the case of a large deficit), and if
3473 * we're going inactive then everything else can be deferred
3474 */
3475 if (cfs_b->idle && !throttled)
3476 goto out_deactivate;
a9cf55b2 3477
927b54fc
BS
3478 /*
3479 * if we have relooped after returning idle once, we need to update our
3480 * status as actually running, so that other cpus doing
3481 * __start_cfs_bandwidth will stop trying to cancel us.
3482 */
3483 cfs_b->timer_active = 1;
3484
a9cf55b2
PT
3485 __refill_cfs_bandwidth_runtime(cfs_b);
3486
671fd9da
PT
3487 if (!throttled) {
3488 /* mark as potentially idle for the upcoming period */
3489 cfs_b->idle = 1;
51f2176d 3490 return 0;
671fd9da
PT
3491 }
3492
e8da1b18
NR
3493 /* account preceding periods in which throttling occurred */
3494 cfs_b->nr_throttled += overrun;
3495
671fd9da
PT
3496 /*
3497 * There are throttled entities so we must first use the new bandwidth
3498 * to unthrottle them before making it generally available. This
3499 * ensures that all existing debts will be paid before a new cfs_rq is
3500 * allowed to run.
3501 */
3502 runtime = cfs_b->runtime;
3503 runtime_expires = cfs_b->runtime_expires;
3504 cfs_b->runtime = 0;
3505
3506 /*
3507 * This check is repeated as we are holding onto the new bandwidth
3508 * while we unthrottle. This can potentially race with an unthrottled
3509 * group trying to acquire new bandwidth from the global pool.
3510 */
3511 while (throttled && runtime > 0) {
3512 raw_spin_unlock(&cfs_b->lock);
3513 /* we can't nest cfs_b->lock while distributing bandwidth */
3514 runtime = distribute_cfs_runtime(cfs_b, runtime,
3515 runtime_expires);
3516 raw_spin_lock(&cfs_b->lock);
3517
3518 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3519 }
58088ad0 3520
671fd9da
PT
3521 /* return (any) remaining runtime */
3522 cfs_b->runtime = runtime;
3523 /*
3524 * While we are ensured activity in the period following an
3525 * unthrottle, this also covers the case in which the new bandwidth is
3526 * insufficient to cover the existing bandwidth deficit. (Forcing the
3527 * timer to remain active while there are any throttled entities.)
3528 */
3529 cfs_b->idle = 0;
58088ad0 3530
51f2176d
BS
3531 return 0;
3532
3533out_deactivate:
3534 cfs_b->timer_active = 0;
3535 return 1;
58088ad0 3536}
d3d9dc33 3537
d8b4986d
PT
3538/* a cfs_rq won't donate quota below this amount */
3539static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3540/* minimum remaining period time to redistribute slack quota */
3541static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3542/* how long we wait to gather additional slack before distributing */
3543static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3544
db06e78c
BS
3545/*
3546 * Are we near the end of the current quota period?
3547 *
3548 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3549 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3550 * migrate_hrtimers, base is never cleared, so we are fine.
3551 */
d8b4986d
PT
3552static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3553{
3554 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3555 u64 remaining;
3556
3557 /* if the call-back is running a quota refresh is already occurring */
3558 if (hrtimer_callback_running(refresh_timer))
3559 return 1;
3560
3561 /* is a quota refresh about to occur? */
3562 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3563 if (remaining < min_expire)
3564 return 1;
3565
3566 return 0;
3567}
3568
3569static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3570{
3571 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3572
3573 /* if there's a quota refresh soon don't bother with slack */
3574 if (runtime_refresh_within(cfs_b, min_left))
3575 return;
3576
3577 start_bandwidth_timer(&cfs_b->slack_timer,
3578 ns_to_ktime(cfs_bandwidth_slack_period));
3579}
3580
3581/* we know any runtime found here is valid as update_curr() precedes return */
3582static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3583{
3584 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3585 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3586
3587 if (slack_runtime <= 0)
3588 return;
3589
3590 raw_spin_lock(&cfs_b->lock);
3591 if (cfs_b->quota != RUNTIME_INF &&
3592 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3593 cfs_b->runtime += slack_runtime;
3594
3595 /* we are under rq->lock, defer unthrottling using a timer */
3596 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3597 !list_empty(&cfs_b->throttled_cfs_rq))
3598 start_cfs_slack_bandwidth(cfs_b);
3599 }
3600 raw_spin_unlock(&cfs_b->lock);
3601
3602 /* even if it's not valid for return we don't want to try again */
3603 cfs_rq->runtime_remaining -= slack_runtime;
3604}
3605
3606static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3607{
56f570e5
PT
3608 if (!cfs_bandwidth_used())
3609 return;
3610
fccfdc6f 3611 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3612 return;
3613
3614 __return_cfs_rq_runtime(cfs_rq);
3615}
3616
3617/*
3618 * This is done with a timer (instead of inline with bandwidth return) since
3619 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3620 */
3621static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3622{
3623 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3624 u64 expires;
3625
3626 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3627 raw_spin_lock(&cfs_b->lock);
3628 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3629 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3630 return;
db06e78c 3631 }
d8b4986d 3632
d8b4986d
PT
3633 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3634 runtime = cfs_b->runtime;
3635 cfs_b->runtime = 0;
3636 }
3637 expires = cfs_b->runtime_expires;
3638 raw_spin_unlock(&cfs_b->lock);
3639
3640 if (!runtime)
3641 return;
3642
3643 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3644
3645 raw_spin_lock(&cfs_b->lock);
3646 if (expires == cfs_b->runtime_expires)
3647 cfs_b->runtime = runtime;
3648 raw_spin_unlock(&cfs_b->lock);
3649}
3650
d3d9dc33
PT
3651/*
3652 * When a group wakes up we want to make sure that its quota is not already
3653 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3654 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3655 */
3656static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3657{
56f570e5
PT
3658 if (!cfs_bandwidth_used())
3659 return;
3660
d3d9dc33
PT
3661 /* an active group must be handled by the update_curr()->put() path */
3662 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3663 return;
3664
3665 /* ensure the group is not already throttled */
3666 if (cfs_rq_throttled(cfs_rq))
3667 return;
3668
3669 /* update runtime allocation */
3670 account_cfs_rq_runtime(cfs_rq, 0);
3671 if (cfs_rq->runtime_remaining <= 0)
3672 throttle_cfs_rq(cfs_rq);
3673}
3674
3675/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3676static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3677{
56f570e5 3678 if (!cfs_bandwidth_used())
678d5718 3679 return false;
56f570e5 3680
d3d9dc33 3681 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3682 return false;
d3d9dc33
PT
3683
3684 /*
3685 * it's possible for a throttled entity to be forced into a running
3686 * state (e.g. set_curr_task), in this case we're finished.
3687 */
3688 if (cfs_rq_throttled(cfs_rq))
678d5718 3689 return true;
d3d9dc33
PT
3690
3691 throttle_cfs_rq(cfs_rq);
678d5718 3692 return true;
d3d9dc33 3693}
029632fb 3694
029632fb
PZ
3695static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3696{
3697 struct cfs_bandwidth *cfs_b =
3698 container_of(timer, struct cfs_bandwidth, slack_timer);
3699 do_sched_cfs_slack_timer(cfs_b);
3700
3701 return HRTIMER_NORESTART;
3702}
3703
3704static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3705{
3706 struct cfs_bandwidth *cfs_b =
3707 container_of(timer, struct cfs_bandwidth, period_timer);
3708 ktime_t now;
3709 int overrun;
3710 int idle = 0;
3711
51f2176d 3712 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3713 for (;;) {
3714 now = hrtimer_cb_get_time(timer);
3715 overrun = hrtimer_forward(timer, now, cfs_b->period);
3716
3717 if (!overrun)
3718 break;
3719
3720 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3721 }
51f2176d 3722 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3723
3724 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3725}
3726
3727void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3728{
3729 raw_spin_lock_init(&cfs_b->lock);
3730 cfs_b->runtime = 0;
3731 cfs_b->quota = RUNTIME_INF;
3732 cfs_b->period = ns_to_ktime(default_cfs_period());
3733
3734 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3735 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3736 cfs_b->period_timer.function = sched_cfs_period_timer;
3737 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3738 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3739}
3740
3741static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3742{
3743 cfs_rq->runtime_enabled = 0;
3744 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3745}
3746
3747/* requires cfs_b->lock, may release to reprogram timer */
3748void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3749{
3750 /*
3751 * The timer may be active because we're trying to set a new bandwidth
3752 * period or because we're racing with the tear-down path
3753 * (timer_active==0 becomes visible before the hrtimer call-back
3754 * terminates). In either case we ensure that it's re-programmed
3755 */
927b54fc
BS
3756 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3757 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3758 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3759 raw_spin_unlock(&cfs_b->lock);
927b54fc 3760 cpu_relax();
029632fb
PZ
3761 raw_spin_lock(&cfs_b->lock);
3762 /* if someone else restarted the timer then we're done */
3763 if (cfs_b->timer_active)
3764 return;
3765 }
3766
3767 cfs_b->timer_active = 1;
3768 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3769}
3770
3771static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3772{
3773 hrtimer_cancel(&cfs_b->period_timer);
3774 hrtimer_cancel(&cfs_b->slack_timer);
3775}
3776
38dc3348 3777static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3778{
3779 struct cfs_rq *cfs_rq;
3780
3781 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3782 if (!cfs_rq->runtime_enabled)
3783 continue;
3784
3785 /*
3786 * clock_task is not advancing so we just need to make sure
3787 * there's some valid quota amount
3788 */
51f2176d 3789 cfs_rq->runtime_remaining = 1;
029632fb
PZ
3790 if (cfs_rq_throttled(cfs_rq))
3791 unthrottle_cfs_rq(cfs_rq);
3792 }
3793}
3794
3795#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3796static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3797{
78becc27 3798 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3799}
3800
9dbdb155 3801static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3802static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3803static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3804static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3805
3806static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3807{
3808 return 0;
3809}
64660c86
PT
3810
3811static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3812{
3813 return 0;
3814}
3815
3816static inline int throttled_lb_pair(struct task_group *tg,
3817 int src_cpu, int dest_cpu)
3818{
3819 return 0;
3820}
029632fb
PZ
3821
3822void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3823
3824#ifdef CONFIG_FAIR_GROUP_SCHED
3825static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3826#endif
3827
029632fb
PZ
3828static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3829{
3830 return NULL;
3831}
3832static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3833static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3834
3835#endif /* CONFIG_CFS_BANDWIDTH */
3836
bf0f6f24
IM
3837/**************************************************
3838 * CFS operations on tasks:
3839 */
3840
8f4d37ec
PZ
3841#ifdef CONFIG_SCHED_HRTICK
3842static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3843{
8f4d37ec
PZ
3844 struct sched_entity *se = &p->se;
3845 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3846
3847 WARN_ON(task_rq(p) != rq);
3848
b39e66ea 3849 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3850 u64 slice = sched_slice(cfs_rq, se);
3851 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3852 s64 delta = slice - ran;
3853
3854 if (delta < 0) {
3855 if (rq->curr == p)
3856 resched_task(p);
3857 return;
3858 }
3859
3860 /*
3861 * Don't schedule slices shorter than 10000ns, that just
3862 * doesn't make sense. Rely on vruntime for fairness.
3863 */
31656519 3864 if (rq->curr != p)
157124c1 3865 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3866
31656519 3867 hrtick_start(rq, delta);
8f4d37ec
PZ
3868 }
3869}
a4c2f00f
PZ
3870
3871/*
3872 * called from enqueue/dequeue and updates the hrtick when the
3873 * current task is from our class and nr_running is low enough
3874 * to matter.
3875 */
3876static void hrtick_update(struct rq *rq)
3877{
3878 struct task_struct *curr = rq->curr;
3879
b39e66ea 3880 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3881 return;
3882
3883 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3884 hrtick_start_fair(rq, curr);
3885}
55e12e5e 3886#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3887static inline void
3888hrtick_start_fair(struct rq *rq, struct task_struct *p)
3889{
3890}
a4c2f00f
PZ
3891
3892static inline void hrtick_update(struct rq *rq)
3893{
3894}
8f4d37ec
PZ
3895#endif
3896
bf0f6f24
IM
3897/*
3898 * The enqueue_task method is called before nr_running is
3899 * increased. Here we update the fair scheduling stats and
3900 * then put the task into the rbtree:
3901 */
ea87bb78 3902static void
371fd7e7 3903enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3904{
3905 struct cfs_rq *cfs_rq;
62fb1851 3906 struct sched_entity *se = &p->se;
bf0f6f24
IM
3907
3908 for_each_sched_entity(se) {
62fb1851 3909 if (se->on_rq)
bf0f6f24
IM
3910 break;
3911 cfs_rq = cfs_rq_of(se);
88ec22d3 3912 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3913
3914 /*
3915 * end evaluation on encountering a throttled cfs_rq
3916 *
3917 * note: in the case of encountering a throttled cfs_rq we will
3918 * post the final h_nr_running increment below.
3919 */
3920 if (cfs_rq_throttled(cfs_rq))
3921 break;
953bfcd1 3922 cfs_rq->h_nr_running++;
85dac906 3923
88ec22d3 3924 flags = ENQUEUE_WAKEUP;
bf0f6f24 3925 }
8f4d37ec 3926
2069dd75 3927 for_each_sched_entity(se) {
0f317143 3928 cfs_rq = cfs_rq_of(se);
953bfcd1 3929 cfs_rq->h_nr_running++;
2069dd75 3930
85dac906
PT
3931 if (cfs_rq_throttled(cfs_rq))
3932 break;
3933
17bc14b7 3934 update_cfs_shares(cfs_rq);
9ee474f5 3935 update_entity_load_avg(se, 1);
2069dd75
PZ
3936 }
3937
18bf2805
BS
3938 if (!se) {
3939 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3940 add_nr_running(rq, 1);
18bf2805 3941 }
a4c2f00f 3942 hrtick_update(rq);
bf0f6f24
IM
3943}
3944
2f36825b
VP
3945static void set_next_buddy(struct sched_entity *se);
3946
bf0f6f24
IM
3947/*
3948 * The dequeue_task method is called before nr_running is
3949 * decreased. We remove the task from the rbtree and
3950 * update the fair scheduling stats:
3951 */
371fd7e7 3952static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3953{
3954 struct cfs_rq *cfs_rq;
62fb1851 3955 struct sched_entity *se = &p->se;
2f36825b 3956 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3957
3958 for_each_sched_entity(se) {
3959 cfs_rq = cfs_rq_of(se);
371fd7e7 3960 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3961
3962 /*
3963 * end evaluation on encountering a throttled cfs_rq
3964 *
3965 * note: in the case of encountering a throttled cfs_rq we will
3966 * post the final h_nr_running decrement below.
3967 */
3968 if (cfs_rq_throttled(cfs_rq))
3969 break;
953bfcd1 3970 cfs_rq->h_nr_running--;
2069dd75 3971
bf0f6f24 3972 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3973 if (cfs_rq->load.weight) {
3974 /*
3975 * Bias pick_next to pick a task from this cfs_rq, as
3976 * p is sleeping when it is within its sched_slice.
3977 */
3978 if (task_sleep && parent_entity(se))
3979 set_next_buddy(parent_entity(se));
9598c82d
PT
3980
3981 /* avoid re-evaluating load for this entity */
3982 se = parent_entity(se);
bf0f6f24 3983 break;
2f36825b 3984 }
371fd7e7 3985 flags |= DEQUEUE_SLEEP;
bf0f6f24 3986 }
8f4d37ec 3987
2069dd75 3988 for_each_sched_entity(se) {
0f317143 3989 cfs_rq = cfs_rq_of(se);
953bfcd1 3990 cfs_rq->h_nr_running--;
2069dd75 3991
85dac906
PT
3992 if (cfs_rq_throttled(cfs_rq))
3993 break;
3994
17bc14b7 3995 update_cfs_shares(cfs_rq);
9ee474f5 3996 update_entity_load_avg(se, 1);
2069dd75
PZ
3997 }
3998
18bf2805 3999 if (!se) {
72465447 4000 sub_nr_running(rq, 1);
18bf2805
BS
4001 update_rq_runnable_avg(rq, 1);
4002 }
a4c2f00f 4003 hrtick_update(rq);
bf0f6f24
IM
4004}
4005
e7693a36 4006#ifdef CONFIG_SMP
029632fb
PZ
4007/* Used instead of source_load when we know the type == 0 */
4008static unsigned long weighted_cpuload(const int cpu)
4009{
b92486cb 4010 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4011}
4012
4013/*
4014 * Return a low guess at the load of a migration-source cpu weighted
4015 * according to the scheduling class and "nice" value.
4016 *
4017 * We want to under-estimate the load of migration sources, to
4018 * balance conservatively.
4019 */
4020static unsigned long source_load(int cpu, int type)
4021{
4022 struct rq *rq = cpu_rq(cpu);
4023 unsigned long total = weighted_cpuload(cpu);
4024
4025 if (type == 0 || !sched_feat(LB_BIAS))
4026 return total;
4027
4028 return min(rq->cpu_load[type-1], total);
4029}
4030
4031/*
4032 * Return a high guess at the load of a migration-target cpu weighted
4033 * according to the scheduling class and "nice" value.
4034 */
4035static unsigned long target_load(int cpu, int type)
4036{
4037 struct rq *rq = cpu_rq(cpu);
4038 unsigned long total = weighted_cpuload(cpu);
4039
4040 if (type == 0 || !sched_feat(LB_BIAS))
4041 return total;
4042
4043 return max(rq->cpu_load[type-1], total);
4044}
4045
4046static unsigned long power_of(int cpu)
4047{
4048 return cpu_rq(cpu)->cpu_power;
4049}
4050
4051static unsigned long cpu_avg_load_per_task(int cpu)
4052{
4053 struct rq *rq = cpu_rq(cpu);
4054 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4055 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4056
4057 if (nr_running)
b92486cb 4058 return load_avg / nr_running;
029632fb
PZ
4059
4060 return 0;
4061}
4062
62470419
MW
4063static void record_wakee(struct task_struct *p)
4064{
4065 /*
4066 * Rough decay (wiping) for cost saving, don't worry
4067 * about the boundary, really active task won't care
4068 * about the loss.
4069 */
2538d960 4070 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4071 current->wakee_flips >>= 1;
62470419
MW
4072 current->wakee_flip_decay_ts = jiffies;
4073 }
4074
4075 if (current->last_wakee != p) {
4076 current->last_wakee = p;
4077 current->wakee_flips++;
4078 }
4079}
098fb9db 4080
74f8e4b2 4081static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4082{
4083 struct sched_entity *se = &p->se;
4084 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4085 u64 min_vruntime;
4086
4087#ifndef CONFIG_64BIT
4088 u64 min_vruntime_copy;
88ec22d3 4089
3fe1698b
PZ
4090 do {
4091 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4092 smp_rmb();
4093 min_vruntime = cfs_rq->min_vruntime;
4094 } while (min_vruntime != min_vruntime_copy);
4095#else
4096 min_vruntime = cfs_rq->min_vruntime;
4097#endif
88ec22d3 4098
3fe1698b 4099 se->vruntime -= min_vruntime;
62470419 4100 record_wakee(p);
88ec22d3
PZ
4101}
4102
bb3469ac 4103#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4104/*
4105 * effective_load() calculates the load change as seen from the root_task_group
4106 *
4107 * Adding load to a group doesn't make a group heavier, but can cause movement
4108 * of group shares between cpus. Assuming the shares were perfectly aligned one
4109 * can calculate the shift in shares.
cf5f0acf
PZ
4110 *
4111 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4112 * on this @cpu and results in a total addition (subtraction) of @wg to the
4113 * total group weight.
4114 *
4115 * Given a runqueue weight distribution (rw_i) we can compute a shares
4116 * distribution (s_i) using:
4117 *
4118 * s_i = rw_i / \Sum rw_j (1)
4119 *
4120 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4121 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4122 * shares distribution (s_i):
4123 *
4124 * rw_i = { 2, 4, 1, 0 }
4125 * s_i = { 2/7, 4/7, 1/7, 0 }
4126 *
4127 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4128 * task used to run on and the CPU the waker is running on), we need to
4129 * compute the effect of waking a task on either CPU and, in case of a sync
4130 * wakeup, compute the effect of the current task going to sleep.
4131 *
4132 * So for a change of @wl to the local @cpu with an overall group weight change
4133 * of @wl we can compute the new shares distribution (s'_i) using:
4134 *
4135 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4136 *
4137 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4138 * differences in waking a task to CPU 0. The additional task changes the
4139 * weight and shares distributions like:
4140 *
4141 * rw'_i = { 3, 4, 1, 0 }
4142 * s'_i = { 3/8, 4/8, 1/8, 0 }
4143 *
4144 * We can then compute the difference in effective weight by using:
4145 *
4146 * dw_i = S * (s'_i - s_i) (3)
4147 *
4148 * Where 'S' is the group weight as seen by its parent.
4149 *
4150 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4151 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4152 * 4/7) times the weight of the group.
f5bfb7d9 4153 */
2069dd75 4154static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4155{
4be9daaa 4156 struct sched_entity *se = tg->se[cpu];
f1d239f7 4157
9722c2da 4158 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4159 return wl;
4160
4be9daaa 4161 for_each_sched_entity(se) {
cf5f0acf 4162 long w, W;
4be9daaa 4163
977dda7c 4164 tg = se->my_q->tg;
bb3469ac 4165
cf5f0acf
PZ
4166 /*
4167 * W = @wg + \Sum rw_j
4168 */
4169 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4170
cf5f0acf
PZ
4171 /*
4172 * w = rw_i + @wl
4173 */
4174 w = se->my_q->load.weight + wl;
940959e9 4175
cf5f0acf
PZ
4176 /*
4177 * wl = S * s'_i; see (2)
4178 */
4179 if (W > 0 && w < W)
4180 wl = (w * tg->shares) / W;
977dda7c
PT
4181 else
4182 wl = tg->shares;
940959e9 4183
cf5f0acf
PZ
4184 /*
4185 * Per the above, wl is the new se->load.weight value; since
4186 * those are clipped to [MIN_SHARES, ...) do so now. See
4187 * calc_cfs_shares().
4188 */
977dda7c
PT
4189 if (wl < MIN_SHARES)
4190 wl = MIN_SHARES;
cf5f0acf
PZ
4191
4192 /*
4193 * wl = dw_i = S * (s'_i - s_i); see (3)
4194 */
977dda7c 4195 wl -= se->load.weight;
cf5f0acf
PZ
4196
4197 /*
4198 * Recursively apply this logic to all parent groups to compute
4199 * the final effective load change on the root group. Since
4200 * only the @tg group gets extra weight, all parent groups can
4201 * only redistribute existing shares. @wl is the shift in shares
4202 * resulting from this level per the above.
4203 */
4be9daaa 4204 wg = 0;
4be9daaa 4205 }
bb3469ac 4206
4be9daaa 4207 return wl;
bb3469ac
PZ
4208}
4209#else
4be9daaa 4210
58d081b5 4211static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4212{
83378269 4213 return wl;
bb3469ac 4214}
4be9daaa 4215
bb3469ac
PZ
4216#endif
4217
62470419
MW
4218static int wake_wide(struct task_struct *p)
4219{
7d9ffa89 4220 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4221
4222 /*
4223 * Yeah, it's the switching-frequency, could means many wakee or
4224 * rapidly switch, use factor here will just help to automatically
4225 * adjust the loose-degree, so bigger node will lead to more pull.
4226 */
4227 if (p->wakee_flips > factor) {
4228 /*
4229 * wakee is somewhat hot, it needs certain amount of cpu
4230 * resource, so if waker is far more hot, prefer to leave
4231 * it alone.
4232 */
4233 if (current->wakee_flips > (factor * p->wakee_flips))
4234 return 1;
4235 }
4236
4237 return 0;
4238}
4239
c88d5910 4240static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4241{
e37b6a7b 4242 s64 this_load, load;
c88d5910 4243 int idx, this_cpu, prev_cpu;
098fb9db 4244 unsigned long tl_per_task;
c88d5910 4245 struct task_group *tg;
83378269 4246 unsigned long weight;
b3137bc8 4247 int balanced;
098fb9db 4248
62470419
MW
4249 /*
4250 * If we wake multiple tasks be careful to not bounce
4251 * ourselves around too much.
4252 */
4253 if (wake_wide(p))
4254 return 0;
4255
c88d5910
PZ
4256 idx = sd->wake_idx;
4257 this_cpu = smp_processor_id();
4258 prev_cpu = task_cpu(p);
4259 load = source_load(prev_cpu, idx);
4260 this_load = target_load(this_cpu, idx);
098fb9db 4261
b3137bc8
MG
4262 /*
4263 * If sync wakeup then subtract the (maximum possible)
4264 * effect of the currently running task from the load
4265 * of the current CPU:
4266 */
83378269
PZ
4267 if (sync) {
4268 tg = task_group(current);
4269 weight = current->se.load.weight;
4270
c88d5910 4271 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4272 load += effective_load(tg, prev_cpu, 0, -weight);
4273 }
b3137bc8 4274
83378269
PZ
4275 tg = task_group(p);
4276 weight = p->se.load.weight;
b3137bc8 4277
71a29aa7
PZ
4278 /*
4279 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4280 * due to the sync cause above having dropped this_load to 0, we'll
4281 * always have an imbalance, but there's really nothing you can do
4282 * about that, so that's good too.
71a29aa7
PZ
4283 *
4284 * Otherwise check if either cpus are near enough in load to allow this
4285 * task to be woken on this_cpu.
4286 */
e37b6a7b
PT
4287 if (this_load > 0) {
4288 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4289
4290 this_eff_load = 100;
4291 this_eff_load *= power_of(prev_cpu);
4292 this_eff_load *= this_load +
4293 effective_load(tg, this_cpu, weight, weight);
4294
4295 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4296 prev_eff_load *= power_of(this_cpu);
4297 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4298
4299 balanced = this_eff_load <= prev_eff_load;
4300 } else
4301 balanced = true;
b3137bc8 4302
098fb9db 4303 /*
4ae7d5ce
IM
4304 * If the currently running task will sleep within
4305 * a reasonable amount of time then attract this newly
4306 * woken task:
098fb9db 4307 */
2fb7635c
PZ
4308 if (sync && balanced)
4309 return 1;
098fb9db 4310
41acab88 4311 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4312 tl_per_task = cpu_avg_load_per_task(this_cpu);
4313
c88d5910
PZ
4314 if (balanced ||
4315 (this_load <= load &&
4316 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4317 /*
4318 * This domain has SD_WAKE_AFFINE and
4319 * p is cache cold in this domain, and
4320 * there is no bad imbalance.
4321 */
c88d5910 4322 schedstat_inc(sd, ttwu_move_affine);
41acab88 4323 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4324
4325 return 1;
4326 }
4327 return 0;
4328}
4329
aaee1203
PZ
4330/*
4331 * find_idlest_group finds and returns the least busy CPU group within the
4332 * domain.
4333 */
4334static struct sched_group *
78e7ed53 4335find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4336 int this_cpu, int sd_flag)
e7693a36 4337{
b3bd3de6 4338 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4339 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4340 int load_idx = sd->forkexec_idx;
aaee1203 4341 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4342
c44f2a02
VG
4343 if (sd_flag & SD_BALANCE_WAKE)
4344 load_idx = sd->wake_idx;
4345
aaee1203
PZ
4346 do {
4347 unsigned long load, avg_load;
4348 int local_group;
4349 int i;
e7693a36 4350
aaee1203
PZ
4351 /* Skip over this group if it has no CPUs allowed */
4352 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4353 tsk_cpus_allowed(p)))
aaee1203
PZ
4354 continue;
4355
4356 local_group = cpumask_test_cpu(this_cpu,
4357 sched_group_cpus(group));
4358
4359 /* Tally up the load of all CPUs in the group */
4360 avg_load = 0;
4361
4362 for_each_cpu(i, sched_group_cpus(group)) {
4363 /* Bias balancing toward cpus of our domain */
4364 if (local_group)
4365 load = source_load(i, load_idx);
4366 else
4367 load = target_load(i, load_idx);
4368
4369 avg_load += load;
4370 }
4371
4372 /* Adjust by relative CPU power of the group */
9c3f75cb 4373 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4374
4375 if (local_group) {
4376 this_load = avg_load;
aaee1203
PZ
4377 } else if (avg_load < min_load) {
4378 min_load = avg_load;
4379 idlest = group;
4380 }
4381 } while (group = group->next, group != sd->groups);
4382
4383 if (!idlest || 100*this_load < imbalance*min_load)
4384 return NULL;
4385 return idlest;
4386}
4387
4388/*
4389 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4390 */
4391static int
4392find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4393{
4394 unsigned long load, min_load = ULONG_MAX;
4395 int idlest = -1;
4396 int i;
4397
4398 /* Traverse only the allowed CPUs */
fa17b507 4399 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4400 load = weighted_cpuload(i);
4401
4402 if (load < min_load || (load == min_load && i == this_cpu)) {
4403 min_load = load;
4404 idlest = i;
e7693a36
GH
4405 }
4406 }
4407
aaee1203
PZ
4408 return idlest;
4409}
e7693a36 4410
a50bde51
PZ
4411/*
4412 * Try and locate an idle CPU in the sched_domain.
4413 */
99bd5e2f 4414static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4415{
99bd5e2f 4416 struct sched_domain *sd;
37407ea7 4417 struct sched_group *sg;
e0a79f52 4418 int i = task_cpu(p);
a50bde51 4419
e0a79f52
MG
4420 if (idle_cpu(target))
4421 return target;
99bd5e2f
SS
4422
4423 /*
e0a79f52 4424 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4425 */
e0a79f52
MG
4426 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4427 return i;
a50bde51
PZ
4428
4429 /*
37407ea7 4430 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4431 */
518cd623 4432 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4433 for_each_lower_domain(sd) {
37407ea7
LT
4434 sg = sd->groups;
4435 do {
4436 if (!cpumask_intersects(sched_group_cpus(sg),
4437 tsk_cpus_allowed(p)))
4438 goto next;
4439
4440 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4441 if (i == target || !idle_cpu(i))
37407ea7
LT
4442 goto next;
4443 }
970e1789 4444
37407ea7
LT
4445 target = cpumask_first_and(sched_group_cpus(sg),
4446 tsk_cpus_allowed(p));
4447 goto done;
4448next:
4449 sg = sg->next;
4450 } while (sg != sd->groups);
4451 }
4452done:
a50bde51
PZ
4453 return target;
4454}
4455
aaee1203 4456/*
de91b9cb
MR
4457 * select_task_rq_fair: Select target runqueue for the waking task in domains
4458 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4459 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4460 *
de91b9cb
MR
4461 * Balances load by selecting the idlest cpu in the idlest group, or under
4462 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4463 *
de91b9cb 4464 * Returns the target cpu number.
aaee1203
PZ
4465 *
4466 * preempt must be disabled.
4467 */
0017d735 4468static int
ac66f547 4469select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4470{
29cd8bae 4471 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4472 int cpu = smp_processor_id();
c88d5910 4473 int new_cpu = cpu;
99bd5e2f 4474 int want_affine = 0;
5158f4e4 4475 int sync = wake_flags & WF_SYNC;
c88d5910 4476
29baa747 4477 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4478 return prev_cpu;
4479
0763a660 4480 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4481 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4482 want_affine = 1;
4483 new_cpu = prev_cpu;
4484 }
aaee1203 4485
dce840a0 4486 rcu_read_lock();
aaee1203 4487 for_each_domain(cpu, tmp) {
e4f42888
PZ
4488 if (!(tmp->flags & SD_LOAD_BALANCE))
4489 continue;
4490
fe3bcfe1 4491 /*
99bd5e2f
SS
4492 * If both cpu and prev_cpu are part of this domain,
4493 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4494 */
99bd5e2f
SS
4495 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4496 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4497 affine_sd = tmp;
29cd8bae 4498 break;
f03542a7 4499 }
29cd8bae 4500
f03542a7 4501 if (tmp->flags & sd_flag)
29cd8bae
PZ
4502 sd = tmp;
4503 }
4504
8bf21433
RR
4505 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4506 prev_cpu = cpu;
dce840a0 4507
8bf21433 4508 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4509 new_cpu = select_idle_sibling(p, prev_cpu);
4510 goto unlock;
8b911acd 4511 }
e7693a36 4512
aaee1203
PZ
4513 while (sd) {
4514 struct sched_group *group;
c88d5910 4515 int weight;
098fb9db 4516
0763a660 4517 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4518 sd = sd->child;
4519 continue;
4520 }
098fb9db 4521
c44f2a02 4522 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4523 if (!group) {
4524 sd = sd->child;
4525 continue;
4526 }
4ae7d5ce 4527
d7c33c49 4528 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4529 if (new_cpu == -1 || new_cpu == cpu) {
4530 /* Now try balancing at a lower domain level of cpu */
4531 sd = sd->child;
4532 continue;
e7693a36 4533 }
aaee1203
PZ
4534
4535 /* Now try balancing at a lower domain level of new_cpu */
4536 cpu = new_cpu;
669c55e9 4537 weight = sd->span_weight;
aaee1203
PZ
4538 sd = NULL;
4539 for_each_domain(cpu, tmp) {
669c55e9 4540 if (weight <= tmp->span_weight)
aaee1203 4541 break;
0763a660 4542 if (tmp->flags & sd_flag)
aaee1203
PZ
4543 sd = tmp;
4544 }
4545 /* while loop will break here if sd == NULL */
e7693a36 4546 }
dce840a0
PZ
4547unlock:
4548 rcu_read_unlock();
e7693a36 4549
c88d5910 4550 return new_cpu;
e7693a36 4551}
0a74bef8
PT
4552
4553/*
4554 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4555 * cfs_rq_of(p) references at time of call are still valid and identify the
4556 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4557 * other assumptions, including the state of rq->lock, should be made.
4558 */
4559static void
4560migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4561{
aff3e498
PT
4562 struct sched_entity *se = &p->se;
4563 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4564
4565 /*
4566 * Load tracking: accumulate removed load so that it can be processed
4567 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4568 * to blocked load iff they have a positive decay-count. It can never
4569 * be negative here since on-rq tasks have decay-count == 0.
4570 */
4571 if (se->avg.decay_count) {
4572 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4573 atomic_long_add(se->avg.load_avg_contrib,
4574 &cfs_rq->removed_load);
aff3e498 4575 }
3944a927
BS
4576
4577 /* We have migrated, no longer consider this task hot */
4578 se->exec_start = 0;
0a74bef8 4579}
e7693a36
GH
4580#endif /* CONFIG_SMP */
4581
e52fb7c0
PZ
4582static unsigned long
4583wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4584{
4585 unsigned long gran = sysctl_sched_wakeup_granularity;
4586
4587 /*
e52fb7c0
PZ
4588 * Since its curr running now, convert the gran from real-time
4589 * to virtual-time in his units.
13814d42
MG
4590 *
4591 * By using 'se' instead of 'curr' we penalize light tasks, so
4592 * they get preempted easier. That is, if 'se' < 'curr' then
4593 * the resulting gran will be larger, therefore penalizing the
4594 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4595 * be smaller, again penalizing the lighter task.
4596 *
4597 * This is especially important for buddies when the leftmost
4598 * task is higher priority than the buddy.
0bbd3336 4599 */
f4ad9bd2 4600 return calc_delta_fair(gran, se);
0bbd3336
PZ
4601}
4602
464b7527
PZ
4603/*
4604 * Should 'se' preempt 'curr'.
4605 *
4606 * |s1
4607 * |s2
4608 * |s3
4609 * g
4610 * |<--->|c
4611 *
4612 * w(c, s1) = -1
4613 * w(c, s2) = 0
4614 * w(c, s3) = 1
4615 *
4616 */
4617static int
4618wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4619{
4620 s64 gran, vdiff = curr->vruntime - se->vruntime;
4621
4622 if (vdiff <= 0)
4623 return -1;
4624
e52fb7c0 4625 gran = wakeup_gran(curr, se);
464b7527
PZ
4626 if (vdiff > gran)
4627 return 1;
4628
4629 return 0;
4630}
4631
02479099
PZ
4632static void set_last_buddy(struct sched_entity *se)
4633{
69c80f3e
VP
4634 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4635 return;
4636
4637 for_each_sched_entity(se)
4638 cfs_rq_of(se)->last = se;
02479099
PZ
4639}
4640
4641static void set_next_buddy(struct sched_entity *se)
4642{
69c80f3e
VP
4643 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4644 return;
4645
4646 for_each_sched_entity(se)
4647 cfs_rq_of(se)->next = se;
02479099
PZ
4648}
4649
ac53db59
RR
4650static void set_skip_buddy(struct sched_entity *se)
4651{
69c80f3e
VP
4652 for_each_sched_entity(se)
4653 cfs_rq_of(se)->skip = se;
ac53db59
RR
4654}
4655
bf0f6f24
IM
4656/*
4657 * Preempt the current task with a newly woken task if needed:
4658 */
5a9b86f6 4659static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4660{
4661 struct task_struct *curr = rq->curr;
8651a86c 4662 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4663 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4664 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4665 int next_buddy_marked = 0;
bf0f6f24 4666
4ae7d5ce
IM
4667 if (unlikely(se == pse))
4668 return;
4669
5238cdd3 4670 /*
ddcdf6e7 4671 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4672 * unconditionally check_prempt_curr() after an enqueue (which may have
4673 * lead to a throttle). This both saves work and prevents false
4674 * next-buddy nomination below.
4675 */
4676 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4677 return;
4678
2f36825b 4679 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4680 set_next_buddy(pse);
2f36825b
VP
4681 next_buddy_marked = 1;
4682 }
57fdc26d 4683
aec0a514
BR
4684 /*
4685 * We can come here with TIF_NEED_RESCHED already set from new task
4686 * wake up path.
5238cdd3
PT
4687 *
4688 * Note: this also catches the edge-case of curr being in a throttled
4689 * group (e.g. via set_curr_task), since update_curr() (in the
4690 * enqueue of curr) will have resulted in resched being set. This
4691 * prevents us from potentially nominating it as a false LAST_BUDDY
4692 * below.
aec0a514
BR
4693 */
4694 if (test_tsk_need_resched(curr))
4695 return;
4696
a2f5c9ab
DH
4697 /* Idle tasks are by definition preempted by non-idle tasks. */
4698 if (unlikely(curr->policy == SCHED_IDLE) &&
4699 likely(p->policy != SCHED_IDLE))
4700 goto preempt;
4701
91c234b4 4702 /*
a2f5c9ab
DH
4703 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4704 * is driven by the tick):
91c234b4 4705 */
8ed92e51 4706 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4707 return;
bf0f6f24 4708
464b7527 4709 find_matching_se(&se, &pse);
9bbd7374 4710 update_curr(cfs_rq_of(se));
002f128b 4711 BUG_ON(!pse);
2f36825b
VP
4712 if (wakeup_preempt_entity(se, pse) == 1) {
4713 /*
4714 * Bias pick_next to pick the sched entity that is
4715 * triggering this preemption.
4716 */
4717 if (!next_buddy_marked)
4718 set_next_buddy(pse);
3a7e73a2 4719 goto preempt;
2f36825b 4720 }
464b7527 4721
3a7e73a2 4722 return;
a65ac745 4723
3a7e73a2
PZ
4724preempt:
4725 resched_task(curr);
4726 /*
4727 * Only set the backward buddy when the current task is still
4728 * on the rq. This can happen when a wakeup gets interleaved
4729 * with schedule on the ->pre_schedule() or idle_balance()
4730 * point, either of which can * drop the rq lock.
4731 *
4732 * Also, during early boot the idle thread is in the fair class,
4733 * for obvious reasons its a bad idea to schedule back to it.
4734 */
4735 if (unlikely(!se->on_rq || curr == rq->idle))
4736 return;
4737
4738 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4739 set_last_buddy(se);
bf0f6f24
IM
4740}
4741
606dba2e
PZ
4742static struct task_struct *
4743pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4744{
4745 struct cfs_rq *cfs_rq = &rq->cfs;
4746 struct sched_entity *se;
678d5718 4747 struct task_struct *p;
37e117c0 4748 int new_tasks;
678d5718 4749
6e83125c 4750again:
678d5718
PZ
4751#ifdef CONFIG_FAIR_GROUP_SCHED
4752 if (!cfs_rq->nr_running)
38033c37 4753 goto idle;
678d5718 4754
3f1d2a31 4755 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4756 goto simple;
4757
4758 /*
4759 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4760 * likely that a next task is from the same cgroup as the current.
4761 *
4762 * Therefore attempt to avoid putting and setting the entire cgroup
4763 * hierarchy, only change the part that actually changes.
4764 */
4765
4766 do {
4767 struct sched_entity *curr = cfs_rq->curr;
4768
4769 /*
4770 * Since we got here without doing put_prev_entity() we also
4771 * have to consider cfs_rq->curr. If it is still a runnable
4772 * entity, update_curr() will update its vruntime, otherwise
4773 * forget we've ever seen it.
4774 */
4775 if (curr && curr->on_rq)
4776 update_curr(cfs_rq);
4777 else
4778 curr = NULL;
4779
4780 /*
4781 * This call to check_cfs_rq_runtime() will do the throttle and
4782 * dequeue its entity in the parent(s). Therefore the 'simple'
4783 * nr_running test will indeed be correct.
4784 */
4785 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4786 goto simple;
4787
4788 se = pick_next_entity(cfs_rq, curr);
4789 cfs_rq = group_cfs_rq(se);
4790 } while (cfs_rq);
4791
4792 p = task_of(se);
4793
4794 /*
4795 * Since we haven't yet done put_prev_entity and if the selected task
4796 * is a different task than we started out with, try and touch the
4797 * least amount of cfs_rqs.
4798 */
4799 if (prev != p) {
4800 struct sched_entity *pse = &prev->se;
4801
4802 while (!(cfs_rq = is_same_group(se, pse))) {
4803 int se_depth = se->depth;
4804 int pse_depth = pse->depth;
4805
4806 if (se_depth <= pse_depth) {
4807 put_prev_entity(cfs_rq_of(pse), pse);
4808 pse = parent_entity(pse);
4809 }
4810 if (se_depth >= pse_depth) {
4811 set_next_entity(cfs_rq_of(se), se);
4812 se = parent_entity(se);
4813 }
4814 }
4815
4816 put_prev_entity(cfs_rq, pse);
4817 set_next_entity(cfs_rq, se);
4818 }
4819
4820 if (hrtick_enabled(rq))
4821 hrtick_start_fair(rq, p);
4822
4823 return p;
4824simple:
4825 cfs_rq = &rq->cfs;
4826#endif
bf0f6f24 4827
36ace27e 4828 if (!cfs_rq->nr_running)
38033c37 4829 goto idle;
bf0f6f24 4830
3f1d2a31 4831 put_prev_task(rq, prev);
606dba2e 4832
bf0f6f24 4833 do {
678d5718 4834 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4835 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4836 cfs_rq = group_cfs_rq(se);
4837 } while (cfs_rq);
4838
8f4d37ec 4839 p = task_of(se);
678d5718 4840
b39e66ea
MG
4841 if (hrtick_enabled(rq))
4842 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4843
4844 return p;
38033c37
PZ
4845
4846idle:
e4aa358b 4847 new_tasks = idle_balance(rq);
37e117c0
PZ
4848 /*
4849 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4850 * possible for any higher priority task to appear. In that case we
4851 * must re-start the pick_next_entity() loop.
4852 */
e4aa358b 4853 if (new_tasks < 0)
37e117c0
PZ
4854 return RETRY_TASK;
4855
e4aa358b 4856 if (new_tasks > 0)
38033c37 4857 goto again;
38033c37
PZ
4858
4859 return NULL;
bf0f6f24
IM
4860}
4861
4862/*
4863 * Account for a descheduled task:
4864 */
31ee529c 4865static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4866{
4867 struct sched_entity *se = &prev->se;
4868 struct cfs_rq *cfs_rq;
4869
4870 for_each_sched_entity(se) {
4871 cfs_rq = cfs_rq_of(se);
ab6cde26 4872 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4873 }
4874}
4875
ac53db59
RR
4876/*
4877 * sched_yield() is very simple
4878 *
4879 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4880 */
4881static void yield_task_fair(struct rq *rq)
4882{
4883 struct task_struct *curr = rq->curr;
4884 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4885 struct sched_entity *se = &curr->se;
4886
4887 /*
4888 * Are we the only task in the tree?
4889 */
4890 if (unlikely(rq->nr_running == 1))
4891 return;
4892
4893 clear_buddies(cfs_rq, se);
4894
4895 if (curr->policy != SCHED_BATCH) {
4896 update_rq_clock(rq);
4897 /*
4898 * Update run-time statistics of the 'current'.
4899 */
4900 update_curr(cfs_rq);
916671c0
MG
4901 /*
4902 * Tell update_rq_clock() that we've just updated,
4903 * so we don't do microscopic update in schedule()
4904 * and double the fastpath cost.
4905 */
4906 rq->skip_clock_update = 1;
ac53db59
RR
4907 }
4908
4909 set_skip_buddy(se);
4910}
4911
d95f4122
MG
4912static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4913{
4914 struct sched_entity *se = &p->se;
4915
5238cdd3
PT
4916 /* throttled hierarchies are not runnable */
4917 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4918 return false;
4919
4920 /* Tell the scheduler that we'd really like pse to run next. */
4921 set_next_buddy(se);
4922
d95f4122
MG
4923 yield_task_fair(rq);
4924
4925 return true;
4926}
4927
681f3e68 4928#ifdef CONFIG_SMP
bf0f6f24 4929/**************************************************
e9c84cb8
PZ
4930 * Fair scheduling class load-balancing methods.
4931 *
4932 * BASICS
4933 *
4934 * The purpose of load-balancing is to achieve the same basic fairness the
4935 * per-cpu scheduler provides, namely provide a proportional amount of compute
4936 * time to each task. This is expressed in the following equation:
4937 *
4938 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4939 *
4940 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4941 * W_i,0 is defined as:
4942 *
4943 * W_i,0 = \Sum_j w_i,j (2)
4944 *
4945 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4946 * is derived from the nice value as per prio_to_weight[].
4947 *
4948 * The weight average is an exponential decay average of the instantaneous
4949 * weight:
4950 *
4951 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4952 *
4953 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4954 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4955 * can also include other factors [XXX].
4956 *
4957 * To achieve this balance we define a measure of imbalance which follows
4958 * directly from (1):
4959 *
4960 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4961 *
4962 * We them move tasks around to minimize the imbalance. In the continuous
4963 * function space it is obvious this converges, in the discrete case we get
4964 * a few fun cases generally called infeasible weight scenarios.
4965 *
4966 * [XXX expand on:
4967 * - infeasible weights;
4968 * - local vs global optima in the discrete case. ]
4969 *
4970 *
4971 * SCHED DOMAINS
4972 *
4973 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4974 * for all i,j solution, we create a tree of cpus that follows the hardware
4975 * topology where each level pairs two lower groups (or better). This results
4976 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4977 * tree to only the first of the previous level and we decrease the frequency
4978 * of load-balance at each level inv. proportional to the number of cpus in
4979 * the groups.
4980 *
4981 * This yields:
4982 *
4983 * log_2 n 1 n
4984 * \Sum { --- * --- * 2^i } = O(n) (5)
4985 * i = 0 2^i 2^i
4986 * `- size of each group
4987 * | | `- number of cpus doing load-balance
4988 * | `- freq
4989 * `- sum over all levels
4990 *
4991 * Coupled with a limit on how many tasks we can migrate every balance pass,
4992 * this makes (5) the runtime complexity of the balancer.
4993 *
4994 * An important property here is that each CPU is still (indirectly) connected
4995 * to every other cpu in at most O(log n) steps:
4996 *
4997 * The adjacency matrix of the resulting graph is given by:
4998 *
4999 * log_2 n
5000 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5001 * k = 0
5002 *
5003 * And you'll find that:
5004 *
5005 * A^(log_2 n)_i,j != 0 for all i,j (7)
5006 *
5007 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5008 * The task movement gives a factor of O(m), giving a convergence complexity
5009 * of:
5010 *
5011 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5012 *
5013 *
5014 * WORK CONSERVING
5015 *
5016 * In order to avoid CPUs going idle while there's still work to do, new idle
5017 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5018 * tree itself instead of relying on other CPUs to bring it work.
5019 *
5020 * This adds some complexity to both (5) and (8) but it reduces the total idle
5021 * time.
5022 *
5023 * [XXX more?]
5024 *
5025 *
5026 * CGROUPS
5027 *
5028 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5029 *
5030 * s_k,i
5031 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5032 * S_k
5033 *
5034 * Where
5035 *
5036 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5037 *
5038 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5039 *
5040 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5041 * property.
5042 *
5043 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5044 * rewrite all of this once again.]
5045 */
bf0f6f24 5046
ed387b78
HS
5047static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5048
0ec8aa00
PZ
5049enum fbq_type { regular, remote, all };
5050
ddcdf6e7 5051#define LBF_ALL_PINNED 0x01
367456c7 5052#define LBF_NEED_BREAK 0x02
6263322c
PZ
5053#define LBF_DST_PINNED 0x04
5054#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5055
5056struct lb_env {
5057 struct sched_domain *sd;
5058
ddcdf6e7 5059 struct rq *src_rq;
85c1e7da 5060 int src_cpu;
ddcdf6e7
PZ
5061
5062 int dst_cpu;
5063 struct rq *dst_rq;
5064
88b8dac0
SV
5065 struct cpumask *dst_grpmask;
5066 int new_dst_cpu;
ddcdf6e7 5067 enum cpu_idle_type idle;
bd939f45 5068 long imbalance;
b9403130
MW
5069 /* The set of CPUs under consideration for load-balancing */
5070 struct cpumask *cpus;
5071
ddcdf6e7 5072 unsigned int flags;
367456c7
PZ
5073
5074 unsigned int loop;
5075 unsigned int loop_break;
5076 unsigned int loop_max;
0ec8aa00
PZ
5077
5078 enum fbq_type fbq_type;
ddcdf6e7
PZ
5079};
5080
1e3c88bd 5081/*
ddcdf6e7 5082 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5083 * Both runqueues must be locked.
5084 */
ddcdf6e7 5085static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5086{
ddcdf6e7
PZ
5087 deactivate_task(env->src_rq, p, 0);
5088 set_task_cpu(p, env->dst_cpu);
5089 activate_task(env->dst_rq, p, 0);
5090 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5091}
5092
029632fb
PZ
5093/*
5094 * Is this task likely cache-hot:
5095 */
5096static int
6037dd1a 5097task_hot(struct task_struct *p, u64 now)
029632fb
PZ
5098{
5099 s64 delta;
5100
5101 if (p->sched_class != &fair_sched_class)
5102 return 0;
5103
5104 if (unlikely(p->policy == SCHED_IDLE))
5105 return 0;
5106
5107 /*
5108 * Buddy candidates are cache hot:
5109 */
5110 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5111 (&p->se == cfs_rq_of(&p->se)->next ||
5112 &p->se == cfs_rq_of(&p->se)->last))
5113 return 1;
5114
5115 if (sysctl_sched_migration_cost == -1)
5116 return 1;
5117 if (sysctl_sched_migration_cost == 0)
5118 return 0;
5119
5120 delta = now - p->se.exec_start;
5121
5122 return delta < (s64)sysctl_sched_migration_cost;
5123}
5124
3a7053b3
MG
5125#ifdef CONFIG_NUMA_BALANCING
5126/* Returns true if the destination node has incurred more faults */
5127static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5128{
b1ad065e 5129 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5130 int src_nid, dst_nid;
5131
ff1df896 5132 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5133 !(env->sd->flags & SD_NUMA)) {
5134 return false;
5135 }
5136
5137 src_nid = cpu_to_node(env->src_cpu);
5138 dst_nid = cpu_to_node(env->dst_cpu);
5139
83e1d2cd 5140 if (src_nid == dst_nid)
3a7053b3
MG
5141 return false;
5142
b1ad065e
RR
5143 if (numa_group) {
5144 /* Task is already in the group's interleave set. */
5145 if (node_isset(src_nid, numa_group->active_nodes))
5146 return false;
83e1d2cd 5147
b1ad065e
RR
5148 /* Task is moving into the group's interleave set. */
5149 if (node_isset(dst_nid, numa_group->active_nodes))
5150 return true;
5151
5152 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5153 }
5154
5155 /* Encourage migration to the preferred node. */
5156 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5157 return true;
5158
b1ad065e 5159 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5160}
7a0f3083
MG
5161
5162
5163static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5164{
b1ad065e 5165 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5166 int src_nid, dst_nid;
5167
5168 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5169 return false;
5170
ff1df896 5171 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5172 return false;
5173
5174 src_nid = cpu_to_node(env->src_cpu);
5175 dst_nid = cpu_to_node(env->dst_cpu);
5176
83e1d2cd 5177 if (src_nid == dst_nid)
7a0f3083
MG
5178 return false;
5179
b1ad065e
RR
5180 if (numa_group) {
5181 /* Task is moving within/into the group's interleave set. */
5182 if (node_isset(dst_nid, numa_group->active_nodes))
5183 return false;
5184
5185 /* Task is moving out of the group's interleave set. */
5186 if (node_isset(src_nid, numa_group->active_nodes))
5187 return true;
5188
5189 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5190 }
5191
83e1d2cd
MG
5192 /* Migrating away from the preferred node is always bad. */
5193 if (src_nid == p->numa_preferred_nid)
5194 return true;
5195
b1ad065e 5196 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5197}
5198
3a7053b3
MG
5199#else
5200static inline bool migrate_improves_locality(struct task_struct *p,
5201 struct lb_env *env)
5202{
5203 return false;
5204}
7a0f3083
MG
5205
5206static inline bool migrate_degrades_locality(struct task_struct *p,
5207 struct lb_env *env)
5208{
5209 return false;
5210}
3a7053b3
MG
5211#endif
5212
1e3c88bd
PZ
5213/*
5214 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5215 */
5216static
8e45cb54 5217int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5218{
5219 int tsk_cache_hot = 0;
5220 /*
5221 * We do not migrate tasks that are:
d3198084 5222 * 1) throttled_lb_pair, or
1e3c88bd 5223 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5224 * 3) running (obviously), or
5225 * 4) are cache-hot on their current CPU.
1e3c88bd 5226 */
d3198084
JK
5227 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5228 return 0;
5229
ddcdf6e7 5230 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5231 int cpu;
88b8dac0 5232
41acab88 5233 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5234
6263322c
PZ
5235 env->flags |= LBF_SOME_PINNED;
5236
88b8dac0
SV
5237 /*
5238 * Remember if this task can be migrated to any other cpu in
5239 * our sched_group. We may want to revisit it if we couldn't
5240 * meet load balance goals by pulling other tasks on src_cpu.
5241 *
5242 * Also avoid computing new_dst_cpu if we have already computed
5243 * one in current iteration.
5244 */
6263322c 5245 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5246 return 0;
5247
e02e60c1
JK
5248 /* Prevent to re-select dst_cpu via env's cpus */
5249 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5250 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5251 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5252 env->new_dst_cpu = cpu;
5253 break;
5254 }
88b8dac0 5255 }
e02e60c1 5256
1e3c88bd
PZ
5257 return 0;
5258 }
88b8dac0
SV
5259
5260 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5261 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5262
ddcdf6e7 5263 if (task_running(env->src_rq, p)) {
41acab88 5264 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5265 return 0;
5266 }
5267
5268 /*
5269 * Aggressive migration if:
3a7053b3
MG
5270 * 1) destination numa is preferred
5271 * 2) task is cache cold, or
5272 * 3) too many balance attempts have failed.
1e3c88bd 5273 */
6037dd1a 5274 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
7a0f3083
MG
5275 if (!tsk_cache_hot)
5276 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5277
5278 if (migrate_improves_locality(p, env)) {
5279#ifdef CONFIG_SCHEDSTATS
5280 if (tsk_cache_hot) {
5281 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5282 schedstat_inc(p, se.statistics.nr_forced_migrations);
5283 }
5284#endif
5285 return 1;
5286 }
5287
1e3c88bd 5288 if (!tsk_cache_hot ||
8e45cb54 5289 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5290
1e3c88bd 5291 if (tsk_cache_hot) {
8e45cb54 5292 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5293 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5294 }
4e2dcb73 5295
1e3c88bd
PZ
5296 return 1;
5297 }
5298
4e2dcb73
ZH
5299 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5300 return 0;
1e3c88bd
PZ
5301}
5302
897c395f
PZ
5303/*
5304 * move_one_task tries to move exactly one task from busiest to this_rq, as
5305 * part of active balancing operations within "domain".
5306 * Returns 1 if successful and 0 otherwise.
5307 *
5308 * Called with both runqueues locked.
5309 */
8e45cb54 5310static int move_one_task(struct lb_env *env)
897c395f
PZ
5311{
5312 struct task_struct *p, *n;
897c395f 5313
367456c7 5314 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5315 if (!can_migrate_task(p, env))
5316 continue;
897c395f 5317
367456c7
PZ
5318 move_task(p, env);
5319 /*
5320 * Right now, this is only the second place move_task()
5321 * is called, so we can safely collect move_task()
5322 * stats here rather than inside move_task().
5323 */
5324 schedstat_inc(env->sd, lb_gained[env->idle]);
5325 return 1;
897c395f 5326 }
897c395f
PZ
5327 return 0;
5328}
5329
eb95308e
PZ
5330static const unsigned int sched_nr_migrate_break = 32;
5331
5d6523eb 5332/*
bd939f45 5333 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5334 * this_rq, as part of a balancing operation within domain "sd".
5335 * Returns 1 if successful and 0 otherwise.
5336 *
5337 * Called with both runqueues locked.
5338 */
5339static int move_tasks(struct lb_env *env)
1e3c88bd 5340{
5d6523eb
PZ
5341 struct list_head *tasks = &env->src_rq->cfs_tasks;
5342 struct task_struct *p;
367456c7
PZ
5343 unsigned long load;
5344 int pulled = 0;
1e3c88bd 5345
bd939f45 5346 if (env->imbalance <= 0)
5d6523eb 5347 return 0;
1e3c88bd 5348
5d6523eb
PZ
5349 while (!list_empty(tasks)) {
5350 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5351
367456c7
PZ
5352 env->loop++;
5353 /* We've more or less seen every task there is, call it quits */
5d6523eb 5354 if (env->loop > env->loop_max)
367456c7 5355 break;
5d6523eb
PZ
5356
5357 /* take a breather every nr_migrate tasks */
367456c7 5358 if (env->loop > env->loop_break) {
eb95308e 5359 env->loop_break += sched_nr_migrate_break;
8e45cb54 5360 env->flags |= LBF_NEED_BREAK;
ee00e66f 5361 break;
a195f004 5362 }
1e3c88bd 5363
d3198084 5364 if (!can_migrate_task(p, env))
367456c7
PZ
5365 goto next;
5366
5367 load = task_h_load(p);
5d6523eb 5368
eb95308e 5369 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5370 goto next;
5371
bd939f45 5372 if ((load / 2) > env->imbalance)
367456c7 5373 goto next;
1e3c88bd 5374
ddcdf6e7 5375 move_task(p, env);
ee00e66f 5376 pulled++;
bd939f45 5377 env->imbalance -= load;
1e3c88bd
PZ
5378
5379#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5380 /*
5381 * NEWIDLE balancing is a source of latency, so preemptible
5382 * kernels will stop after the first task is pulled to minimize
5383 * the critical section.
5384 */
5d6523eb 5385 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5386 break;
1e3c88bd
PZ
5387#endif
5388
ee00e66f
PZ
5389 /*
5390 * We only want to steal up to the prescribed amount of
5391 * weighted load.
5392 */
bd939f45 5393 if (env->imbalance <= 0)
ee00e66f 5394 break;
367456c7
PZ
5395
5396 continue;
5397next:
5d6523eb 5398 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5399 }
5d6523eb 5400
1e3c88bd 5401 /*
ddcdf6e7
PZ
5402 * Right now, this is one of only two places move_task() is called,
5403 * so we can safely collect move_task() stats here rather than
5404 * inside move_task().
1e3c88bd 5405 */
8e45cb54 5406 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5407
5d6523eb 5408 return pulled;
1e3c88bd
PZ
5409}
5410
230059de 5411#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5412/*
5413 * update tg->load_weight by folding this cpu's load_avg
5414 */
48a16753 5415static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5416{
48a16753
PT
5417 struct sched_entity *se = tg->se[cpu];
5418 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5419
48a16753
PT
5420 /* throttled entities do not contribute to load */
5421 if (throttled_hierarchy(cfs_rq))
5422 return;
9e3081ca 5423
aff3e498 5424 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5425
82958366
PT
5426 if (se) {
5427 update_entity_load_avg(se, 1);
5428 /*
5429 * We pivot on our runnable average having decayed to zero for
5430 * list removal. This generally implies that all our children
5431 * have also been removed (modulo rounding error or bandwidth
5432 * control); however, such cases are rare and we can fix these
5433 * at enqueue.
5434 *
5435 * TODO: fix up out-of-order children on enqueue.
5436 */
5437 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5438 list_del_leaf_cfs_rq(cfs_rq);
5439 } else {
48a16753 5440 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5441 update_rq_runnable_avg(rq, rq->nr_running);
5442 }
9e3081ca
PZ
5443}
5444
48a16753 5445static void update_blocked_averages(int cpu)
9e3081ca 5446{
9e3081ca 5447 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5448 struct cfs_rq *cfs_rq;
5449 unsigned long flags;
9e3081ca 5450
48a16753
PT
5451 raw_spin_lock_irqsave(&rq->lock, flags);
5452 update_rq_clock(rq);
9763b67f
PZ
5453 /*
5454 * Iterates the task_group tree in a bottom up fashion, see
5455 * list_add_leaf_cfs_rq() for details.
5456 */
64660c86 5457 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5458 /*
5459 * Note: We may want to consider periodically releasing
5460 * rq->lock about these updates so that creating many task
5461 * groups does not result in continually extending hold time.
5462 */
5463 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5464 }
48a16753
PT
5465
5466 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5467}
5468
9763b67f 5469/*
68520796 5470 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5471 * This needs to be done in a top-down fashion because the load of a child
5472 * group is a fraction of its parents load.
5473 */
68520796 5474static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5475{
68520796
VD
5476 struct rq *rq = rq_of(cfs_rq);
5477 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5478 unsigned long now = jiffies;
68520796 5479 unsigned long load;
a35b6466 5480
68520796 5481 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5482 return;
5483
68520796
VD
5484 cfs_rq->h_load_next = NULL;
5485 for_each_sched_entity(se) {
5486 cfs_rq = cfs_rq_of(se);
5487 cfs_rq->h_load_next = se;
5488 if (cfs_rq->last_h_load_update == now)
5489 break;
5490 }
a35b6466 5491
68520796 5492 if (!se) {
7e3115ef 5493 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5494 cfs_rq->last_h_load_update = now;
5495 }
5496
5497 while ((se = cfs_rq->h_load_next) != NULL) {
5498 load = cfs_rq->h_load;
5499 load = div64_ul(load * se->avg.load_avg_contrib,
5500 cfs_rq->runnable_load_avg + 1);
5501 cfs_rq = group_cfs_rq(se);
5502 cfs_rq->h_load = load;
5503 cfs_rq->last_h_load_update = now;
5504 }
9763b67f
PZ
5505}
5506
367456c7 5507static unsigned long task_h_load(struct task_struct *p)
230059de 5508{
367456c7 5509 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5510
68520796 5511 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5512 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5513 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5514}
5515#else
48a16753 5516static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5517{
5518}
5519
367456c7 5520static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5521{
a003a25b 5522 return p->se.avg.load_avg_contrib;
1e3c88bd 5523}
230059de 5524#endif
1e3c88bd 5525
1e3c88bd 5526/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5527/*
5528 * sg_lb_stats - stats of a sched_group required for load_balancing
5529 */
5530struct sg_lb_stats {
5531 unsigned long avg_load; /*Avg load across the CPUs of the group */
5532 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5533 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5534 unsigned long load_per_task;
3ae11c90 5535 unsigned long group_power;
147c5fc2 5536 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5537 unsigned int group_capacity_factor;
147c5fc2
PZ
5538 unsigned int idle_cpus;
5539 unsigned int group_weight;
1e3c88bd 5540 int group_imb; /* Is there an imbalance in the group ? */
1b6a7495 5541 int group_has_free_capacity;
0ec8aa00
PZ
5542#ifdef CONFIG_NUMA_BALANCING
5543 unsigned int nr_numa_running;
5544 unsigned int nr_preferred_running;
5545#endif
1e3c88bd
PZ
5546};
5547
56cf515b
JK
5548/*
5549 * sd_lb_stats - Structure to store the statistics of a sched_domain
5550 * during load balancing.
5551 */
5552struct sd_lb_stats {
5553 struct sched_group *busiest; /* Busiest group in this sd */
5554 struct sched_group *local; /* Local group in this sd */
5555 unsigned long total_load; /* Total load of all groups in sd */
5556 unsigned long total_pwr; /* Total power of all groups in sd */
5557 unsigned long avg_load; /* Average load across all groups in sd */
5558
56cf515b 5559 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5560 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5561};
5562
147c5fc2
PZ
5563static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5564{
5565 /*
5566 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5567 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5568 * We must however clear busiest_stat::avg_load because
5569 * update_sd_pick_busiest() reads this before assignment.
5570 */
5571 *sds = (struct sd_lb_stats){
5572 .busiest = NULL,
5573 .local = NULL,
5574 .total_load = 0UL,
5575 .total_pwr = 0UL,
5576 .busiest_stat = {
5577 .avg_load = 0UL,
5578 },
5579 };
5580}
5581
1e3c88bd
PZ
5582/**
5583 * get_sd_load_idx - Obtain the load index for a given sched domain.
5584 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5585 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5586 *
5587 * Return: The load index.
1e3c88bd
PZ
5588 */
5589static inline int get_sd_load_idx(struct sched_domain *sd,
5590 enum cpu_idle_type idle)
5591{
5592 int load_idx;
5593
5594 switch (idle) {
5595 case CPU_NOT_IDLE:
5596 load_idx = sd->busy_idx;
5597 break;
5598
5599 case CPU_NEWLY_IDLE:
5600 load_idx = sd->newidle_idx;
5601 break;
5602 default:
5603 load_idx = sd->idle_idx;
5604 break;
5605 }
5606
5607 return load_idx;
5608}
5609
15f803c9 5610static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5611{
1399fa78 5612 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5613}
5614
5615unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5616{
5617 return default_scale_freq_power(sd, cpu);
5618}
5619
15f803c9 5620static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5621{
669c55e9 5622 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5623 unsigned long smt_gain = sd->smt_gain;
5624
5625 smt_gain /= weight;
5626
5627 return smt_gain;
5628}
5629
5630unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5631{
5632 return default_scale_smt_power(sd, cpu);
5633}
5634
15f803c9 5635static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5636{
5637 struct rq *rq = cpu_rq(cpu);
b654f7de 5638 u64 total, available, age_stamp, avg;
cadefd3d 5639 s64 delta;
1e3c88bd 5640
b654f7de
PZ
5641 /*
5642 * Since we're reading these variables without serialization make sure
5643 * we read them once before doing sanity checks on them.
5644 */
5645 age_stamp = ACCESS_ONCE(rq->age_stamp);
5646 avg = ACCESS_ONCE(rq->rt_avg);
5647
cadefd3d
PZ
5648 delta = rq_clock(rq) - age_stamp;
5649 if (unlikely(delta < 0))
5650 delta = 0;
5651
5652 total = sched_avg_period() + delta;
aa483808 5653
b654f7de 5654 if (unlikely(total < avg)) {
aa483808
VP
5655 /* Ensures that power won't end up being negative */
5656 available = 0;
5657 } else {
b654f7de 5658 available = total - avg;
aa483808 5659 }
1e3c88bd 5660
1399fa78
NR
5661 if (unlikely((s64)total < SCHED_POWER_SCALE))
5662 total = SCHED_POWER_SCALE;
1e3c88bd 5663
1399fa78 5664 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5665
5666 return div_u64(available, total);
5667}
5668
5669static void update_cpu_power(struct sched_domain *sd, int cpu)
5670{
669c55e9 5671 unsigned long weight = sd->span_weight;
1399fa78 5672 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5673 struct sched_group *sdg = sd->groups;
5674
1e3c88bd
PZ
5675 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5676 if (sched_feat(ARCH_POWER))
5677 power *= arch_scale_smt_power(sd, cpu);
5678 else
5679 power *= default_scale_smt_power(sd, cpu);
5680
1399fa78 5681 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5682 }
5683
9c3f75cb 5684 sdg->sgp->power_orig = power;
9d5efe05
SV
5685
5686 if (sched_feat(ARCH_POWER))
5687 power *= arch_scale_freq_power(sd, cpu);
5688 else
5689 power *= default_scale_freq_power(sd, cpu);
5690
1399fa78 5691 power >>= SCHED_POWER_SHIFT;
9d5efe05 5692
1e3c88bd 5693 power *= scale_rt_power(cpu);
1399fa78 5694 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5695
5696 if (!power)
5697 power = 1;
5698
e51fd5e2 5699 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5700 sdg->sgp->power = power;
1e3c88bd
PZ
5701}
5702
029632fb 5703void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5704{
5705 struct sched_domain *child = sd->child;
5706 struct sched_group *group, *sdg = sd->groups;
863bffc8 5707 unsigned long power, power_orig;
4ec4412e
VG
5708 unsigned long interval;
5709
5710 interval = msecs_to_jiffies(sd->balance_interval);
5711 interval = clamp(interval, 1UL, max_load_balance_interval);
5712 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5713
5714 if (!child) {
5715 update_cpu_power(sd, cpu);
5716 return;
5717 }
5718
863bffc8 5719 power_orig = power = 0;
1e3c88bd 5720
74a5ce20
PZ
5721 if (child->flags & SD_OVERLAP) {
5722 /*
5723 * SD_OVERLAP domains cannot assume that child groups
5724 * span the current group.
5725 */
5726
863bffc8 5727 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5728 struct sched_group_power *sgp;
5729 struct rq *rq = cpu_rq(cpu);
863bffc8 5730
9abf24d4
SD
5731 /*
5732 * build_sched_domains() -> init_sched_groups_power()
5733 * gets here before we've attached the domains to the
5734 * runqueues.
5735 *
5736 * Use power_of(), which is set irrespective of domains
5737 * in update_cpu_power().
5738 *
5739 * This avoids power/power_orig from being 0 and
5740 * causing divide-by-zero issues on boot.
5741 *
5742 * Runtime updates will correct power_orig.
5743 */
5744 if (unlikely(!rq->sd)) {
5745 power_orig += power_of(cpu);
5746 power += power_of(cpu);
5747 continue;
5748 }
863bffc8 5749
9abf24d4
SD
5750 sgp = rq->sd->groups->sgp;
5751 power_orig += sgp->power_orig;
5752 power += sgp->power;
863bffc8 5753 }
74a5ce20
PZ
5754 } else {
5755 /*
5756 * !SD_OVERLAP domains can assume that child groups
5757 * span the current group.
5758 */
5759
5760 group = child->groups;
5761 do {
863bffc8 5762 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5763 power += group->sgp->power;
5764 group = group->next;
5765 } while (group != child->groups);
5766 }
1e3c88bd 5767
863bffc8
PZ
5768 sdg->sgp->power_orig = power_orig;
5769 sdg->sgp->power = power;
1e3c88bd
PZ
5770}
5771
9d5efe05
SV
5772/*
5773 * Try and fix up capacity for tiny siblings, this is needed when
5774 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5775 * which on its own isn't powerful enough.
5776 *
5777 * See update_sd_pick_busiest() and check_asym_packing().
5778 */
5779static inline int
5780fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5781{
5782 /*
1399fa78 5783 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5784 */
a6c75f2f 5785 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5786 return 0;
5787
5788 /*
5789 * If ~90% of the cpu_power is still there, we're good.
5790 */
9c3f75cb 5791 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5792 return 1;
5793
5794 return 0;
5795}
5796
30ce5dab
PZ
5797/*
5798 * Group imbalance indicates (and tries to solve) the problem where balancing
5799 * groups is inadequate due to tsk_cpus_allowed() constraints.
5800 *
5801 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5802 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5803 * Something like:
5804 *
5805 * { 0 1 2 3 } { 4 5 6 7 }
5806 * * * * *
5807 *
5808 * If we were to balance group-wise we'd place two tasks in the first group and
5809 * two tasks in the second group. Clearly this is undesired as it will overload
5810 * cpu 3 and leave one of the cpus in the second group unused.
5811 *
5812 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5813 * by noticing the lower domain failed to reach balance and had difficulty
5814 * moving tasks due to affinity constraints.
30ce5dab
PZ
5815 *
5816 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5817 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5818 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5819 * to create an effective group imbalance.
5820 *
5821 * This is a somewhat tricky proposition since the next run might not find the
5822 * group imbalance and decide the groups need to be balanced again. A most
5823 * subtle and fragile situation.
5824 */
5825
6263322c 5826static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5827{
6263322c 5828 return group->sgp->imbalance;
30ce5dab
PZ
5829}
5830
b37d9316 5831/*
0fedc6c8 5832 * Compute the group capacity factor.
b37d9316 5833 *
c61037e9
PZ
5834 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5835 * first dividing out the smt factor and computing the actual number of cores
5836 * and limit power unit capacity with that.
b37d9316 5837 */
0fedc6c8 5838static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5839{
0fedc6c8 5840 unsigned int capacity_factor, smt, cpus;
c61037e9
PZ
5841 unsigned int power, power_orig;
5842
5843 power = group->sgp->power;
5844 power_orig = group->sgp->power_orig;
5845 cpus = group->group_weight;
b37d9316 5846
c61037e9
PZ
5847 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5848 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
0fedc6c8 5849 capacity_factor = cpus / smt; /* cores */
b37d9316 5850
0fedc6c8
NP
5851 capacity_factor = min_t(unsigned, capacity_factor, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5852 if (!capacity_factor)
5853 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5854
0fedc6c8 5855 return capacity_factor;
b37d9316
PZ
5856}
5857
1e3c88bd
PZ
5858/**
5859 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5860 * @env: The load balancing environment.
1e3c88bd 5861 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5862 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5863 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5864 * @sgs: variable to hold the statistics for this group.
5865 */
bd939f45
PZ
5866static inline void update_sg_lb_stats(struct lb_env *env,
5867 struct sched_group *group, int load_idx,
23f0d209 5868 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5869{
30ce5dab 5870 unsigned long load;
bd939f45 5871 int i;
1e3c88bd 5872
b72ff13c
PZ
5873 memset(sgs, 0, sizeof(*sgs));
5874
b9403130 5875 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5876 struct rq *rq = cpu_rq(i);
5877
1e3c88bd 5878 /* Bias balancing toward cpus of our domain */
6263322c 5879 if (local_group)
04f733b4 5880 load = target_load(i, load_idx);
6263322c 5881 else
1e3c88bd 5882 load = source_load(i, load_idx);
1e3c88bd
PZ
5883
5884 sgs->group_load += load;
380c9077 5885 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5886#ifdef CONFIG_NUMA_BALANCING
5887 sgs->nr_numa_running += rq->nr_numa_running;
5888 sgs->nr_preferred_running += rq->nr_preferred_running;
5889#endif
1e3c88bd 5890 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5891 if (idle_cpu(i))
5892 sgs->idle_cpus++;
1e3c88bd
PZ
5893 }
5894
1e3c88bd 5895 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5896 sgs->group_power = group->sgp->power;
5897 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5898
dd5feea1 5899 if (sgs->sum_nr_running)
38d0f770 5900 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5901
aae6d3dd 5902 sgs->group_weight = group->group_weight;
fab47622 5903
b37d9316 5904 sgs->group_imb = sg_imbalanced(group);
0fedc6c8 5905 sgs->group_capacity_factor = sg_capacity_factor(env, group);
b37d9316 5906
0fedc6c8 5907 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 5908 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
5909}
5910
532cb4c4
MN
5911/**
5912 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5913 * @env: The load balancing environment.
532cb4c4
MN
5914 * @sds: sched_domain statistics
5915 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5916 * @sgs: sched_group statistics
532cb4c4
MN
5917 *
5918 * Determine if @sg is a busier group than the previously selected
5919 * busiest group.
e69f6186
YB
5920 *
5921 * Return: %true if @sg is a busier group than the previously selected
5922 * busiest group. %false otherwise.
532cb4c4 5923 */
bd939f45 5924static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5925 struct sd_lb_stats *sds,
5926 struct sched_group *sg,
bd939f45 5927 struct sg_lb_stats *sgs)
532cb4c4 5928{
56cf515b 5929 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5930 return false;
5931
0fedc6c8 5932 if (sgs->sum_nr_running > sgs->group_capacity_factor)
532cb4c4
MN
5933 return true;
5934
5935 if (sgs->group_imb)
5936 return true;
5937
5938 /*
5939 * ASYM_PACKING needs to move all the work to the lowest
5940 * numbered CPUs in the group, therefore mark all groups
5941 * higher than ourself as busy.
5942 */
bd939f45
PZ
5943 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5944 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5945 if (!sds->busiest)
5946 return true;
5947
5948 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5949 return true;
5950 }
5951
5952 return false;
5953}
5954
0ec8aa00
PZ
5955#ifdef CONFIG_NUMA_BALANCING
5956static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5957{
5958 if (sgs->sum_nr_running > sgs->nr_numa_running)
5959 return regular;
5960 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5961 return remote;
5962 return all;
5963}
5964
5965static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5966{
5967 if (rq->nr_running > rq->nr_numa_running)
5968 return regular;
5969 if (rq->nr_running > rq->nr_preferred_running)
5970 return remote;
5971 return all;
5972}
5973#else
5974static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5975{
5976 return all;
5977}
5978
5979static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5980{
5981 return regular;
5982}
5983#endif /* CONFIG_NUMA_BALANCING */
5984
1e3c88bd 5985/**
461819ac 5986 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5987 * @env: The load balancing environment.
1e3c88bd
PZ
5988 * @sds: variable to hold the statistics for this sched_domain.
5989 */
0ec8aa00 5990static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5991{
bd939f45
PZ
5992 struct sched_domain *child = env->sd->child;
5993 struct sched_group *sg = env->sd->groups;
56cf515b 5994 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5995 int load_idx, prefer_sibling = 0;
5996
5997 if (child && child->flags & SD_PREFER_SIBLING)
5998 prefer_sibling = 1;
5999
bd939f45 6000 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6001
6002 do {
56cf515b 6003 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6004 int local_group;
6005
bd939f45 6006 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6007 if (local_group) {
6008 sds->local = sg;
6009 sgs = &sds->local_stat;
b72ff13c
PZ
6010
6011 if (env->idle != CPU_NEWLY_IDLE ||
6012 time_after_eq(jiffies, sg->sgp->next_update))
6013 update_group_power(env->sd, env->dst_cpu);
56cf515b 6014 }
1e3c88bd 6015
56cf515b 6016 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 6017
b72ff13c
PZ
6018 if (local_group)
6019 goto next_group;
6020
1e3c88bd
PZ
6021 /*
6022 * In case the child domain prefers tasks go to siblings
0fedc6c8 6023 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6024 * and move all the excess tasks away. We lower the capacity
6025 * of a group only if the local group has the capacity to fit
0fedc6c8 6026 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6027 * extra check prevents the case where you always pull from the
6028 * heaviest group when it is already under-utilized (possible
6029 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6030 */
b72ff13c 6031 if (prefer_sibling && sds->local &&
1b6a7495 6032 sds->local_stat.group_has_free_capacity)
0fedc6c8 6033 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6034
b72ff13c 6035 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6036 sds->busiest = sg;
56cf515b 6037 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6038 }
6039
b72ff13c
PZ
6040next_group:
6041 /* Now, start updating sd_lb_stats */
6042 sds->total_load += sgs->group_load;
6043 sds->total_pwr += sgs->group_power;
6044
532cb4c4 6045 sg = sg->next;
bd939f45 6046 } while (sg != env->sd->groups);
0ec8aa00
PZ
6047
6048 if (env->sd->flags & SD_NUMA)
6049 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
6050}
6051
532cb4c4
MN
6052/**
6053 * check_asym_packing - Check to see if the group is packed into the
6054 * sched doman.
6055 *
6056 * This is primarily intended to used at the sibling level. Some
6057 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6058 * case of POWER7, it can move to lower SMT modes only when higher
6059 * threads are idle. When in lower SMT modes, the threads will
6060 * perform better since they share less core resources. Hence when we
6061 * have idle threads, we want them to be the higher ones.
6062 *
6063 * This packing function is run on idle threads. It checks to see if
6064 * the busiest CPU in this domain (core in the P7 case) has a higher
6065 * CPU number than the packing function is being run on. Here we are
6066 * assuming lower CPU number will be equivalent to lower a SMT thread
6067 * number.
6068 *
e69f6186 6069 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6070 * this CPU. The amount of the imbalance is returned in *imbalance.
6071 *
cd96891d 6072 * @env: The load balancing environment.
532cb4c4 6073 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6074 */
bd939f45 6075static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6076{
6077 int busiest_cpu;
6078
bd939f45 6079 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6080 return 0;
6081
6082 if (!sds->busiest)
6083 return 0;
6084
6085 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6086 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6087 return 0;
6088
bd939f45 6089 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
6090 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6091 SCHED_POWER_SCALE);
bd939f45 6092
532cb4c4 6093 return 1;
1e3c88bd
PZ
6094}
6095
6096/**
6097 * fix_small_imbalance - Calculate the minor imbalance that exists
6098 * amongst the groups of a sched_domain, during
6099 * load balancing.
cd96891d 6100 * @env: The load balancing environment.
1e3c88bd 6101 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6102 */
bd939f45
PZ
6103static inline
6104void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6105{
6106 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6107 unsigned int imbn = 2;
dd5feea1 6108 unsigned long scaled_busy_load_per_task;
56cf515b 6109 struct sg_lb_stats *local, *busiest;
1e3c88bd 6110
56cf515b
JK
6111 local = &sds->local_stat;
6112 busiest = &sds->busiest_stat;
1e3c88bd 6113
56cf515b
JK
6114 if (!local->sum_nr_running)
6115 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6116 else if (busiest->load_per_task > local->load_per_task)
6117 imbn = 1;
dd5feea1 6118
56cf515b
JK
6119 scaled_busy_load_per_task =
6120 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6121 busiest->group_power;
56cf515b 6122
3029ede3
VD
6123 if (busiest->avg_load + scaled_busy_load_per_task >=
6124 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6125 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6126 return;
6127 }
6128
6129 /*
6130 * OK, we don't have enough imbalance to justify moving tasks,
6131 * however we may be able to increase total CPU power used by
6132 * moving them.
6133 */
6134
3ae11c90 6135 pwr_now += busiest->group_power *
56cf515b 6136 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6137 pwr_now += local->group_power *
56cf515b 6138 min(local->load_per_task, local->avg_load);
1399fa78 6139 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6140
6141 /* Amount of load we'd subtract */
a2cd4260 6142 if (busiest->avg_load > scaled_busy_load_per_task) {
3ae11c90 6143 pwr_move += busiest->group_power *
56cf515b 6144 min(busiest->load_per_task,
a2cd4260 6145 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6146 }
1e3c88bd
PZ
6147
6148 /* Amount of load we'd add */
3ae11c90 6149 if (busiest->avg_load * busiest->group_power <
56cf515b 6150 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6151 tmp = (busiest->avg_load * busiest->group_power) /
6152 local->group_power;
56cf515b
JK
6153 } else {
6154 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6155 local->group_power;
56cf515b 6156 }
3ae11c90
PZ
6157 pwr_move += local->group_power *
6158 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6159 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6160
6161 /* Move if we gain throughput */
6162 if (pwr_move > pwr_now)
56cf515b 6163 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6164}
6165
6166/**
6167 * calculate_imbalance - Calculate the amount of imbalance present within the
6168 * groups of a given sched_domain during load balance.
bd939f45 6169 * @env: load balance environment
1e3c88bd 6170 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6171 */
bd939f45 6172static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6173{
dd5feea1 6174 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6175 struct sg_lb_stats *local, *busiest;
6176
6177 local = &sds->local_stat;
56cf515b 6178 busiest = &sds->busiest_stat;
dd5feea1 6179
56cf515b 6180 if (busiest->group_imb) {
30ce5dab
PZ
6181 /*
6182 * In the group_imb case we cannot rely on group-wide averages
6183 * to ensure cpu-load equilibrium, look at wider averages. XXX
6184 */
56cf515b
JK
6185 busiest->load_per_task =
6186 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6187 }
6188
1e3c88bd
PZ
6189 /*
6190 * In the presence of smp nice balancing, certain scenarios can have
6191 * max load less than avg load(as we skip the groups at or below
6192 * its cpu_power, while calculating max_load..)
6193 */
b1885550
VD
6194 if (busiest->avg_load <= sds->avg_load ||
6195 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6196 env->imbalance = 0;
6197 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6198 }
6199
56cf515b 6200 if (!busiest->group_imb) {
dd5feea1
SS
6201 /*
6202 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6203 * Except of course for the group_imb case, since then we might
6204 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6205 */
56cf515b 6206 load_above_capacity =
0fedc6c8 6207 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6208
1399fa78 6209 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6210 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6211 }
6212
6213 /*
6214 * We're trying to get all the cpus to the average_load, so we don't
6215 * want to push ourselves above the average load, nor do we wish to
6216 * reduce the max loaded cpu below the average load. At the same time,
6217 * we also don't want to reduce the group load below the group capacity
6218 * (so that we can implement power-savings policies etc). Thus we look
6219 * for the minimum possible imbalance.
dd5feea1 6220 */
30ce5dab 6221 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6222
6223 /* How much load to actually move to equalise the imbalance */
56cf515b 6224 env->imbalance = min(
3ae11c90
PZ
6225 max_pull * busiest->group_power,
6226 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6227 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6228
6229 /*
6230 * if *imbalance is less than the average load per runnable task
25985edc 6231 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6232 * a think about bumping its value to force at least one task to be
6233 * moved
6234 */
56cf515b 6235 if (env->imbalance < busiest->load_per_task)
bd939f45 6236 return fix_small_imbalance(env, sds);
1e3c88bd 6237}
fab47622 6238
1e3c88bd
PZ
6239/******* find_busiest_group() helpers end here *********************/
6240
6241/**
6242 * find_busiest_group - Returns the busiest group within the sched_domain
6243 * if there is an imbalance. If there isn't an imbalance, and
6244 * the user has opted for power-savings, it returns a group whose
6245 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6246 * such a group exists.
6247 *
6248 * Also calculates the amount of weighted load which should be moved
6249 * to restore balance.
6250 *
cd96891d 6251 * @env: The load balancing environment.
1e3c88bd 6252 *
e69f6186 6253 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6254 * - If no imbalance and user has opted for power-savings balance,
6255 * return the least loaded group whose CPUs can be
6256 * put to idle by rebalancing its tasks onto our group.
6257 */
56cf515b 6258static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6259{
56cf515b 6260 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6261 struct sd_lb_stats sds;
6262
147c5fc2 6263 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6264
6265 /*
6266 * Compute the various statistics relavent for load balancing at
6267 * this level.
6268 */
23f0d209 6269 update_sd_lb_stats(env, &sds);
56cf515b
JK
6270 local = &sds.local_stat;
6271 busiest = &sds.busiest_stat;
1e3c88bd 6272
bd939f45
PZ
6273 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6274 check_asym_packing(env, &sds))
532cb4c4
MN
6275 return sds.busiest;
6276
cc57aa8f 6277 /* There is no busy sibling group to pull tasks from */
56cf515b 6278 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6279 goto out_balanced;
6280
1399fa78 6281 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6282
866ab43e
PZ
6283 /*
6284 * If the busiest group is imbalanced the below checks don't
30ce5dab 6285 * work because they assume all things are equal, which typically
866ab43e
PZ
6286 * isn't true due to cpus_allowed constraints and the like.
6287 */
56cf515b 6288 if (busiest->group_imb)
866ab43e
PZ
6289 goto force_balance;
6290
cc57aa8f 6291 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6292 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6293 !busiest->group_has_free_capacity)
fab47622
NR
6294 goto force_balance;
6295
cc57aa8f
PZ
6296 /*
6297 * If the local group is more busy than the selected busiest group
6298 * don't try and pull any tasks.
6299 */
56cf515b 6300 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6301 goto out_balanced;
6302
cc57aa8f
PZ
6303 /*
6304 * Don't pull any tasks if this group is already above the domain
6305 * average load.
6306 */
56cf515b 6307 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6308 goto out_balanced;
6309
bd939f45 6310 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6311 /*
6312 * This cpu is idle. If the busiest group load doesn't
6313 * have more tasks than the number of available cpu's and
6314 * there is no imbalance between this and busiest group
6315 * wrt to idle cpu's, it is balanced.
6316 */
56cf515b
JK
6317 if ((local->idle_cpus < busiest->idle_cpus) &&
6318 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6319 goto out_balanced;
c186fafe
PZ
6320 } else {
6321 /*
6322 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6323 * imbalance_pct to be conservative.
6324 */
56cf515b
JK
6325 if (100 * busiest->avg_load <=
6326 env->sd->imbalance_pct * local->avg_load)
c186fafe 6327 goto out_balanced;
aae6d3dd 6328 }
1e3c88bd 6329
fab47622 6330force_balance:
1e3c88bd 6331 /* Looks like there is an imbalance. Compute it */
bd939f45 6332 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6333 return sds.busiest;
6334
6335out_balanced:
bd939f45 6336 env->imbalance = 0;
1e3c88bd
PZ
6337 return NULL;
6338}
6339
6340/*
6341 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6342 */
bd939f45 6343static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6344 struct sched_group *group)
1e3c88bd
PZ
6345{
6346 struct rq *busiest = NULL, *rq;
95a79b80 6347 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6348 int i;
6349
6906a408 6350 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0fedc6c8 6351 unsigned long power, capacity_factor, wl;
0ec8aa00
PZ
6352 enum fbq_type rt;
6353
6354 rq = cpu_rq(i);
6355 rt = fbq_classify_rq(rq);
1e3c88bd 6356
0ec8aa00
PZ
6357 /*
6358 * We classify groups/runqueues into three groups:
6359 * - regular: there are !numa tasks
6360 * - remote: there are numa tasks that run on the 'wrong' node
6361 * - all: there is no distinction
6362 *
6363 * In order to avoid migrating ideally placed numa tasks,
6364 * ignore those when there's better options.
6365 *
6366 * If we ignore the actual busiest queue to migrate another
6367 * task, the next balance pass can still reduce the busiest
6368 * queue by moving tasks around inside the node.
6369 *
6370 * If we cannot move enough load due to this classification
6371 * the next pass will adjust the group classification and
6372 * allow migration of more tasks.
6373 *
6374 * Both cases only affect the total convergence complexity.
6375 */
6376 if (rt > env->fbq_type)
6377 continue;
6378
6379 power = power_of(i);
0fedc6c8
NP
6380 capacity_factor = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6381 if (!capacity_factor)
6382 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6383
6e40f5bb 6384 wl = weighted_cpuload(i);
1e3c88bd 6385
6e40f5bb
TG
6386 /*
6387 * When comparing with imbalance, use weighted_cpuload()
6388 * which is not scaled with the cpu power.
6389 */
0fedc6c8 6390 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6391 continue;
6392
6e40f5bb
TG
6393 /*
6394 * For the load comparisons with the other cpu's, consider
6395 * the weighted_cpuload() scaled with the cpu power, so that
6396 * the load can be moved away from the cpu that is potentially
6397 * running at a lower capacity.
95a79b80
JK
6398 *
6399 * Thus we're looking for max(wl_i / power_i), crosswise
6400 * multiplication to rid ourselves of the division works out
6401 * to: wl_i * power_j > wl_j * power_i; where j is our
6402 * previous maximum.
6e40f5bb 6403 */
95a79b80
JK
6404 if (wl * busiest_power > busiest_load * power) {
6405 busiest_load = wl;
6406 busiest_power = power;
1e3c88bd
PZ
6407 busiest = rq;
6408 }
6409 }
6410
6411 return busiest;
6412}
6413
6414/*
6415 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6416 * so long as it is large enough.
6417 */
6418#define MAX_PINNED_INTERVAL 512
6419
6420/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6421DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6422
bd939f45 6423static int need_active_balance(struct lb_env *env)
1af3ed3d 6424{
bd939f45
PZ
6425 struct sched_domain *sd = env->sd;
6426
6427 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6428
6429 /*
6430 * ASYM_PACKING needs to force migrate tasks from busy but
6431 * higher numbered CPUs in order to pack all tasks in the
6432 * lowest numbered CPUs.
6433 */
bd939f45 6434 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6435 return 1;
1af3ed3d
PZ
6436 }
6437
6438 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6439}
6440
969c7921
TH
6441static int active_load_balance_cpu_stop(void *data);
6442
23f0d209
JK
6443static int should_we_balance(struct lb_env *env)
6444{
6445 struct sched_group *sg = env->sd->groups;
6446 struct cpumask *sg_cpus, *sg_mask;
6447 int cpu, balance_cpu = -1;
6448
6449 /*
6450 * In the newly idle case, we will allow all the cpu's
6451 * to do the newly idle load balance.
6452 */
6453 if (env->idle == CPU_NEWLY_IDLE)
6454 return 1;
6455
6456 sg_cpus = sched_group_cpus(sg);
6457 sg_mask = sched_group_mask(sg);
6458 /* Try to find first idle cpu */
6459 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6460 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6461 continue;
6462
6463 balance_cpu = cpu;
6464 break;
6465 }
6466
6467 if (balance_cpu == -1)
6468 balance_cpu = group_balance_cpu(sg);
6469
6470 /*
6471 * First idle cpu or the first cpu(busiest) in this sched group
6472 * is eligible for doing load balancing at this and above domains.
6473 */
b0cff9d8 6474 return balance_cpu == env->dst_cpu;
23f0d209
JK
6475}
6476
1e3c88bd
PZ
6477/*
6478 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6479 * tasks if there is an imbalance.
6480 */
6481static int load_balance(int this_cpu, struct rq *this_rq,
6482 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6483 int *continue_balancing)
1e3c88bd 6484{
88b8dac0 6485 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6486 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6487 struct sched_group *group;
1e3c88bd
PZ
6488 struct rq *busiest;
6489 unsigned long flags;
e6252c3e 6490 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6491
8e45cb54
PZ
6492 struct lb_env env = {
6493 .sd = sd,
ddcdf6e7
PZ
6494 .dst_cpu = this_cpu,
6495 .dst_rq = this_rq,
88b8dac0 6496 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6497 .idle = idle,
eb95308e 6498 .loop_break = sched_nr_migrate_break,
b9403130 6499 .cpus = cpus,
0ec8aa00 6500 .fbq_type = all,
8e45cb54
PZ
6501 };
6502
cfc03118
JK
6503 /*
6504 * For NEWLY_IDLE load_balancing, we don't need to consider
6505 * other cpus in our group
6506 */
e02e60c1 6507 if (idle == CPU_NEWLY_IDLE)
cfc03118 6508 env.dst_grpmask = NULL;
cfc03118 6509
1e3c88bd
PZ
6510 cpumask_copy(cpus, cpu_active_mask);
6511
1e3c88bd
PZ
6512 schedstat_inc(sd, lb_count[idle]);
6513
6514redo:
23f0d209
JK
6515 if (!should_we_balance(&env)) {
6516 *continue_balancing = 0;
1e3c88bd 6517 goto out_balanced;
23f0d209 6518 }
1e3c88bd 6519
23f0d209 6520 group = find_busiest_group(&env);
1e3c88bd
PZ
6521 if (!group) {
6522 schedstat_inc(sd, lb_nobusyg[idle]);
6523 goto out_balanced;
6524 }
6525
b9403130 6526 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6527 if (!busiest) {
6528 schedstat_inc(sd, lb_nobusyq[idle]);
6529 goto out_balanced;
6530 }
6531
78feefc5 6532 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6533
bd939f45 6534 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6535
6536 ld_moved = 0;
6537 if (busiest->nr_running > 1) {
6538 /*
6539 * Attempt to move tasks. If find_busiest_group has found
6540 * an imbalance but busiest->nr_running <= 1, the group is
6541 * still unbalanced. ld_moved simply stays zero, so it is
6542 * correctly treated as an imbalance.
6543 */
8e45cb54 6544 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6545 env.src_cpu = busiest->cpu;
6546 env.src_rq = busiest;
6547 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6548
5d6523eb 6549more_balance:
1e3c88bd 6550 local_irq_save(flags);
78feefc5 6551 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6552
6553 /*
6554 * cur_ld_moved - load moved in current iteration
6555 * ld_moved - cumulative load moved across iterations
6556 */
6557 cur_ld_moved = move_tasks(&env);
6558 ld_moved += cur_ld_moved;
78feefc5 6559 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6560 local_irq_restore(flags);
6561
6562 /*
6563 * some other cpu did the load balance for us.
6564 */
88b8dac0
SV
6565 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6566 resched_cpu(env.dst_cpu);
6567
f1cd0858
JK
6568 if (env.flags & LBF_NEED_BREAK) {
6569 env.flags &= ~LBF_NEED_BREAK;
6570 goto more_balance;
6571 }
6572
88b8dac0
SV
6573 /*
6574 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6575 * us and move them to an alternate dst_cpu in our sched_group
6576 * where they can run. The upper limit on how many times we
6577 * iterate on same src_cpu is dependent on number of cpus in our
6578 * sched_group.
6579 *
6580 * This changes load balance semantics a bit on who can move
6581 * load to a given_cpu. In addition to the given_cpu itself
6582 * (or a ilb_cpu acting on its behalf where given_cpu is
6583 * nohz-idle), we now have balance_cpu in a position to move
6584 * load to given_cpu. In rare situations, this may cause
6585 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6586 * _independently_ and at _same_ time to move some load to
6587 * given_cpu) causing exceess load to be moved to given_cpu.
6588 * This however should not happen so much in practice and
6589 * moreover subsequent load balance cycles should correct the
6590 * excess load moved.
6591 */
6263322c 6592 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6593
7aff2e3a
VD
6594 /* Prevent to re-select dst_cpu via env's cpus */
6595 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6596
78feefc5 6597 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6598 env.dst_cpu = env.new_dst_cpu;
6263322c 6599 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6600 env.loop = 0;
6601 env.loop_break = sched_nr_migrate_break;
e02e60c1 6602
88b8dac0
SV
6603 /*
6604 * Go back to "more_balance" rather than "redo" since we
6605 * need to continue with same src_cpu.
6606 */
6607 goto more_balance;
6608 }
1e3c88bd 6609
6263322c
PZ
6610 /*
6611 * We failed to reach balance because of affinity.
6612 */
6613 if (sd_parent) {
6614 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6615
6616 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6617 *group_imbalance = 1;
6618 } else if (*group_imbalance)
6619 *group_imbalance = 0;
6620 }
6621
1e3c88bd 6622 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6623 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6624 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6625 if (!cpumask_empty(cpus)) {
6626 env.loop = 0;
6627 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6628 goto redo;
bbf18b19 6629 }
1e3c88bd
PZ
6630 goto out_balanced;
6631 }
6632 }
6633
6634 if (!ld_moved) {
6635 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6636 /*
6637 * Increment the failure counter only on periodic balance.
6638 * We do not want newidle balance, which can be very
6639 * frequent, pollute the failure counter causing
6640 * excessive cache_hot migrations and active balances.
6641 */
6642 if (idle != CPU_NEWLY_IDLE)
6643 sd->nr_balance_failed++;
1e3c88bd 6644
bd939f45 6645 if (need_active_balance(&env)) {
1e3c88bd
PZ
6646 raw_spin_lock_irqsave(&busiest->lock, flags);
6647
969c7921
TH
6648 /* don't kick the active_load_balance_cpu_stop,
6649 * if the curr task on busiest cpu can't be
6650 * moved to this_cpu
1e3c88bd
PZ
6651 */
6652 if (!cpumask_test_cpu(this_cpu,
fa17b507 6653 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6654 raw_spin_unlock_irqrestore(&busiest->lock,
6655 flags);
8e45cb54 6656 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6657 goto out_one_pinned;
6658 }
6659
969c7921
TH
6660 /*
6661 * ->active_balance synchronizes accesses to
6662 * ->active_balance_work. Once set, it's cleared
6663 * only after active load balance is finished.
6664 */
1e3c88bd
PZ
6665 if (!busiest->active_balance) {
6666 busiest->active_balance = 1;
6667 busiest->push_cpu = this_cpu;
6668 active_balance = 1;
6669 }
6670 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6671
bd939f45 6672 if (active_balance) {
969c7921
TH
6673 stop_one_cpu_nowait(cpu_of(busiest),
6674 active_load_balance_cpu_stop, busiest,
6675 &busiest->active_balance_work);
bd939f45 6676 }
1e3c88bd
PZ
6677
6678 /*
6679 * We've kicked active balancing, reset the failure
6680 * counter.
6681 */
6682 sd->nr_balance_failed = sd->cache_nice_tries+1;
6683 }
6684 } else
6685 sd->nr_balance_failed = 0;
6686
6687 if (likely(!active_balance)) {
6688 /* We were unbalanced, so reset the balancing interval */
6689 sd->balance_interval = sd->min_interval;
6690 } else {
6691 /*
6692 * If we've begun active balancing, start to back off. This
6693 * case may not be covered by the all_pinned logic if there
6694 * is only 1 task on the busy runqueue (because we don't call
6695 * move_tasks).
6696 */
6697 if (sd->balance_interval < sd->max_interval)
6698 sd->balance_interval *= 2;
6699 }
6700
1e3c88bd
PZ
6701 goto out;
6702
6703out_balanced:
6704 schedstat_inc(sd, lb_balanced[idle]);
6705
6706 sd->nr_balance_failed = 0;
6707
6708out_one_pinned:
6709 /* tune up the balancing interval */
8e45cb54 6710 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6711 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6712 (sd->balance_interval < sd->max_interval))
6713 sd->balance_interval *= 2;
6714
46e49b38 6715 ld_moved = 0;
1e3c88bd 6716out:
1e3c88bd
PZ
6717 return ld_moved;
6718}
6719
52a08ef1
JL
6720static inline unsigned long
6721get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6722{
6723 unsigned long interval = sd->balance_interval;
6724
6725 if (cpu_busy)
6726 interval *= sd->busy_factor;
6727
6728 /* scale ms to jiffies */
6729 interval = msecs_to_jiffies(interval);
6730 interval = clamp(interval, 1UL, max_load_balance_interval);
6731
6732 return interval;
6733}
6734
6735static inline void
6736update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6737{
6738 unsigned long interval, next;
6739
6740 interval = get_sd_balance_interval(sd, cpu_busy);
6741 next = sd->last_balance + interval;
6742
6743 if (time_after(*next_balance, next))
6744 *next_balance = next;
6745}
6746
1e3c88bd
PZ
6747/*
6748 * idle_balance is called by schedule() if this_cpu is about to become
6749 * idle. Attempts to pull tasks from other CPUs.
6750 */
6e83125c 6751static int idle_balance(struct rq *this_rq)
1e3c88bd 6752{
52a08ef1
JL
6753 unsigned long next_balance = jiffies + HZ;
6754 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6755 struct sched_domain *sd;
6756 int pulled_task = 0;
9bd721c5 6757 u64 curr_cost = 0;
1e3c88bd 6758
6e83125c 6759 idle_enter_fair(this_rq);
0e5b5337 6760
6e83125c
PZ
6761 /*
6762 * We must set idle_stamp _before_ calling idle_balance(), such that we
6763 * measure the duration of idle_balance() as idle time.
6764 */
6765 this_rq->idle_stamp = rq_clock(this_rq);
6766
52a08ef1
JL
6767 if (this_rq->avg_idle < sysctl_sched_migration_cost) {
6768 rcu_read_lock();
6769 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6770 if (sd)
6771 update_next_balance(sd, 0, &next_balance);
6772 rcu_read_unlock();
6773
6e83125c 6774 goto out;
52a08ef1 6775 }
1e3c88bd 6776
f492e12e
PZ
6777 /*
6778 * Drop the rq->lock, but keep IRQ/preempt disabled.
6779 */
6780 raw_spin_unlock(&this_rq->lock);
6781
48a16753 6782 update_blocked_averages(this_cpu);
dce840a0 6783 rcu_read_lock();
1e3c88bd 6784 for_each_domain(this_cpu, sd) {
23f0d209 6785 int continue_balancing = 1;
9bd721c5 6786 u64 t0, domain_cost;
1e3c88bd
PZ
6787
6788 if (!(sd->flags & SD_LOAD_BALANCE))
6789 continue;
6790
52a08ef1
JL
6791 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6792 update_next_balance(sd, 0, &next_balance);
9bd721c5 6793 break;
52a08ef1 6794 }
9bd721c5 6795
f492e12e 6796 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6797 t0 = sched_clock_cpu(this_cpu);
6798
f492e12e 6799 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6800 sd, CPU_NEWLY_IDLE,
6801 &continue_balancing);
9bd721c5
JL
6802
6803 domain_cost = sched_clock_cpu(this_cpu) - t0;
6804 if (domain_cost > sd->max_newidle_lb_cost)
6805 sd->max_newidle_lb_cost = domain_cost;
6806
6807 curr_cost += domain_cost;
f492e12e 6808 }
1e3c88bd 6809
52a08ef1 6810 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6811
6812 /*
6813 * Stop searching for tasks to pull if there are
6814 * now runnable tasks on this rq.
6815 */
6816 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6817 break;
1e3c88bd 6818 }
dce840a0 6819 rcu_read_unlock();
f492e12e
PZ
6820
6821 raw_spin_lock(&this_rq->lock);
6822
0e5b5337
JL
6823 if (curr_cost > this_rq->max_idle_balance_cost)
6824 this_rq->max_idle_balance_cost = curr_cost;
6825
e5fc6611 6826 /*
0e5b5337
JL
6827 * While browsing the domains, we released the rq lock, a task could
6828 * have been enqueued in the meantime. Since we're not going idle,
6829 * pretend we pulled a task.
e5fc6611 6830 */
0e5b5337 6831 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6832 pulled_task = 1;
e5fc6611 6833
52a08ef1
JL
6834out:
6835 /* Move the next balance forward */
6836 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6837 this_rq->next_balance = next_balance;
9bd721c5 6838
e4aa358b 6839 /* Is there a task of a high priority class? */
46383648 6840 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6841 pulled_task = -1;
6842
6843 if (pulled_task) {
6844 idle_exit_fair(this_rq);
6e83125c 6845 this_rq->idle_stamp = 0;
e4aa358b 6846 }
6e83125c 6847
3c4017c1 6848 return pulled_task;
1e3c88bd
PZ
6849}
6850
6851/*
969c7921
TH
6852 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6853 * running tasks off the busiest CPU onto idle CPUs. It requires at
6854 * least 1 task to be running on each physical CPU where possible, and
6855 * avoids physical / logical imbalances.
1e3c88bd 6856 */
969c7921 6857static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6858{
969c7921
TH
6859 struct rq *busiest_rq = data;
6860 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6861 int target_cpu = busiest_rq->push_cpu;
969c7921 6862 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6863 struct sched_domain *sd;
969c7921
TH
6864
6865 raw_spin_lock_irq(&busiest_rq->lock);
6866
6867 /* make sure the requested cpu hasn't gone down in the meantime */
6868 if (unlikely(busiest_cpu != smp_processor_id() ||
6869 !busiest_rq->active_balance))
6870 goto out_unlock;
1e3c88bd
PZ
6871
6872 /* Is there any task to move? */
6873 if (busiest_rq->nr_running <= 1)
969c7921 6874 goto out_unlock;
1e3c88bd
PZ
6875
6876 /*
6877 * This condition is "impossible", if it occurs
6878 * we need to fix it. Originally reported by
6879 * Bjorn Helgaas on a 128-cpu setup.
6880 */
6881 BUG_ON(busiest_rq == target_rq);
6882
6883 /* move a task from busiest_rq to target_rq */
6884 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6885
6886 /* Search for an sd spanning us and the target CPU. */
dce840a0 6887 rcu_read_lock();
1e3c88bd
PZ
6888 for_each_domain(target_cpu, sd) {
6889 if ((sd->flags & SD_LOAD_BALANCE) &&
6890 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6891 break;
6892 }
6893
6894 if (likely(sd)) {
8e45cb54
PZ
6895 struct lb_env env = {
6896 .sd = sd,
ddcdf6e7
PZ
6897 .dst_cpu = target_cpu,
6898 .dst_rq = target_rq,
6899 .src_cpu = busiest_rq->cpu,
6900 .src_rq = busiest_rq,
8e45cb54
PZ
6901 .idle = CPU_IDLE,
6902 };
6903
1e3c88bd
PZ
6904 schedstat_inc(sd, alb_count);
6905
8e45cb54 6906 if (move_one_task(&env))
1e3c88bd
PZ
6907 schedstat_inc(sd, alb_pushed);
6908 else
6909 schedstat_inc(sd, alb_failed);
6910 }
dce840a0 6911 rcu_read_unlock();
1e3c88bd 6912 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6913out_unlock:
6914 busiest_rq->active_balance = 0;
6915 raw_spin_unlock_irq(&busiest_rq->lock);
6916 return 0;
1e3c88bd
PZ
6917}
6918
d987fc7f
MG
6919static inline int on_null_domain(struct rq *rq)
6920{
6921 return unlikely(!rcu_dereference_sched(rq->sd));
6922}
6923
3451d024 6924#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6925/*
6926 * idle load balancing details
83cd4fe2
VP
6927 * - When one of the busy CPUs notice that there may be an idle rebalancing
6928 * needed, they will kick the idle load balancer, which then does idle
6929 * load balancing for all the idle CPUs.
6930 */
1e3c88bd 6931static struct {
83cd4fe2 6932 cpumask_var_t idle_cpus_mask;
0b005cf5 6933 atomic_t nr_cpus;
83cd4fe2
VP
6934 unsigned long next_balance; /* in jiffy units */
6935} nohz ____cacheline_aligned;
1e3c88bd 6936
3dd0337d 6937static inline int find_new_ilb(void)
1e3c88bd 6938{
0b005cf5 6939 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6940
786d6dc7
SS
6941 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6942 return ilb;
6943
6944 return nr_cpu_ids;
1e3c88bd 6945}
1e3c88bd 6946
83cd4fe2
VP
6947/*
6948 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6949 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6950 * CPU (if there is one).
6951 */
0aeeeeba 6952static void nohz_balancer_kick(void)
83cd4fe2
VP
6953{
6954 int ilb_cpu;
6955
6956 nohz.next_balance++;
6957
3dd0337d 6958 ilb_cpu = find_new_ilb();
83cd4fe2 6959
0b005cf5
SS
6960 if (ilb_cpu >= nr_cpu_ids)
6961 return;
83cd4fe2 6962
cd490c5b 6963 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6964 return;
6965 /*
6966 * Use smp_send_reschedule() instead of resched_cpu().
6967 * This way we generate a sched IPI on the target cpu which
6968 * is idle. And the softirq performing nohz idle load balance
6969 * will be run before returning from the IPI.
6970 */
6971 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6972 return;
6973}
6974
c1cc017c 6975static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6976{
6977 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6978 /*
6979 * Completely isolated CPUs don't ever set, so we must test.
6980 */
6981 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6982 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6983 atomic_dec(&nohz.nr_cpus);
6984 }
71325960
SS
6985 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6986 }
6987}
6988
69e1e811
SS
6989static inline void set_cpu_sd_state_busy(void)
6990{
6991 struct sched_domain *sd;
37dc6b50 6992 int cpu = smp_processor_id();
69e1e811 6993
69e1e811 6994 rcu_read_lock();
37dc6b50 6995 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6996
6997 if (!sd || !sd->nohz_idle)
6998 goto unlock;
6999 sd->nohz_idle = 0;
7000
37dc6b50 7001 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 7002unlock:
69e1e811
SS
7003 rcu_read_unlock();
7004}
7005
7006void set_cpu_sd_state_idle(void)
7007{
7008 struct sched_domain *sd;
37dc6b50 7009 int cpu = smp_processor_id();
69e1e811 7010
69e1e811 7011 rcu_read_lock();
37dc6b50 7012 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7013
7014 if (!sd || sd->nohz_idle)
7015 goto unlock;
7016 sd->nohz_idle = 1;
7017
37dc6b50 7018 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 7019unlock:
69e1e811
SS
7020 rcu_read_unlock();
7021}
7022
1e3c88bd 7023/*
c1cc017c 7024 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7025 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7026 */
c1cc017c 7027void nohz_balance_enter_idle(int cpu)
1e3c88bd 7028{
71325960
SS
7029 /*
7030 * If this cpu is going down, then nothing needs to be done.
7031 */
7032 if (!cpu_active(cpu))
7033 return;
7034
c1cc017c
AS
7035 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7036 return;
1e3c88bd 7037
d987fc7f
MG
7038 /*
7039 * If we're a completely isolated CPU, we don't play.
7040 */
7041 if (on_null_domain(cpu_rq(cpu)))
7042 return;
7043
c1cc017c
AS
7044 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7045 atomic_inc(&nohz.nr_cpus);
7046 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7047}
71325960 7048
0db0628d 7049static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7050 unsigned long action, void *hcpu)
7051{
7052 switch (action & ~CPU_TASKS_FROZEN) {
7053 case CPU_DYING:
c1cc017c 7054 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7055 return NOTIFY_OK;
7056 default:
7057 return NOTIFY_DONE;
7058 }
7059}
1e3c88bd
PZ
7060#endif
7061
7062static DEFINE_SPINLOCK(balancing);
7063
49c022e6
PZ
7064/*
7065 * Scale the max load_balance interval with the number of CPUs in the system.
7066 * This trades load-balance latency on larger machines for less cross talk.
7067 */
029632fb 7068void update_max_interval(void)
49c022e6
PZ
7069{
7070 max_load_balance_interval = HZ*num_online_cpus()/10;
7071}
7072
1e3c88bd
PZ
7073/*
7074 * It checks each scheduling domain to see if it is due to be balanced,
7075 * and initiates a balancing operation if so.
7076 *
b9b0853a 7077 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7078 */
f7ed0a89 7079static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7080{
23f0d209 7081 int continue_balancing = 1;
f7ed0a89 7082 int cpu = rq->cpu;
1e3c88bd 7083 unsigned long interval;
04f733b4 7084 struct sched_domain *sd;
1e3c88bd
PZ
7085 /* Earliest time when we have to do rebalance again */
7086 unsigned long next_balance = jiffies + 60*HZ;
7087 int update_next_balance = 0;
f48627e6
JL
7088 int need_serialize, need_decay = 0;
7089 u64 max_cost = 0;
1e3c88bd 7090
48a16753 7091 update_blocked_averages(cpu);
2069dd75 7092
dce840a0 7093 rcu_read_lock();
1e3c88bd 7094 for_each_domain(cpu, sd) {
f48627e6
JL
7095 /*
7096 * Decay the newidle max times here because this is a regular
7097 * visit to all the domains. Decay ~1% per second.
7098 */
7099 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7100 sd->max_newidle_lb_cost =
7101 (sd->max_newidle_lb_cost * 253) / 256;
7102 sd->next_decay_max_lb_cost = jiffies + HZ;
7103 need_decay = 1;
7104 }
7105 max_cost += sd->max_newidle_lb_cost;
7106
1e3c88bd
PZ
7107 if (!(sd->flags & SD_LOAD_BALANCE))
7108 continue;
7109
f48627e6
JL
7110 /*
7111 * Stop the load balance at this level. There is another
7112 * CPU in our sched group which is doing load balancing more
7113 * actively.
7114 */
7115 if (!continue_balancing) {
7116 if (need_decay)
7117 continue;
7118 break;
7119 }
7120
52a08ef1 7121 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7122
7123 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7124 if (need_serialize) {
7125 if (!spin_trylock(&balancing))
7126 goto out;
7127 }
7128
7129 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7130 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7131 /*
6263322c 7132 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7133 * env->dst_cpu, so we can't know our idle
7134 * state even if we migrated tasks. Update it.
1e3c88bd 7135 */
de5eb2dd 7136 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7137 }
7138 sd->last_balance = jiffies;
52a08ef1 7139 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7140 }
7141 if (need_serialize)
7142 spin_unlock(&balancing);
7143out:
7144 if (time_after(next_balance, sd->last_balance + interval)) {
7145 next_balance = sd->last_balance + interval;
7146 update_next_balance = 1;
7147 }
f48627e6
JL
7148 }
7149 if (need_decay) {
1e3c88bd 7150 /*
f48627e6
JL
7151 * Ensure the rq-wide value also decays but keep it at a
7152 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7153 */
f48627e6
JL
7154 rq->max_idle_balance_cost =
7155 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7156 }
dce840a0 7157 rcu_read_unlock();
1e3c88bd
PZ
7158
7159 /*
7160 * next_balance will be updated only when there is a need.
7161 * When the cpu is attached to null domain for ex, it will not be
7162 * updated.
7163 */
7164 if (likely(update_next_balance))
7165 rq->next_balance = next_balance;
7166}
7167
3451d024 7168#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7169/*
3451d024 7170 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7171 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7172 */
208cb16b 7173static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7174{
208cb16b 7175 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7176 struct rq *rq;
7177 int balance_cpu;
7178
1c792db7
SS
7179 if (idle != CPU_IDLE ||
7180 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7181 goto end;
83cd4fe2
VP
7182
7183 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7184 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7185 continue;
7186
7187 /*
7188 * If this cpu gets work to do, stop the load balancing
7189 * work being done for other cpus. Next load
7190 * balancing owner will pick it up.
7191 */
1c792db7 7192 if (need_resched())
83cd4fe2 7193 break;
83cd4fe2 7194
5ed4f1d9
VG
7195 rq = cpu_rq(balance_cpu);
7196
ed61bbc6
TC
7197 /*
7198 * If time for next balance is due,
7199 * do the balance.
7200 */
7201 if (time_after_eq(jiffies, rq->next_balance)) {
7202 raw_spin_lock_irq(&rq->lock);
7203 update_rq_clock(rq);
7204 update_idle_cpu_load(rq);
7205 raw_spin_unlock_irq(&rq->lock);
7206 rebalance_domains(rq, CPU_IDLE);
7207 }
83cd4fe2 7208
83cd4fe2
VP
7209 if (time_after(this_rq->next_balance, rq->next_balance))
7210 this_rq->next_balance = rq->next_balance;
7211 }
7212 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7213end:
7214 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7215}
7216
7217/*
0b005cf5
SS
7218 * Current heuristic for kicking the idle load balancer in the presence
7219 * of an idle cpu is the system.
7220 * - This rq has more than one task.
7221 * - At any scheduler domain level, this cpu's scheduler group has multiple
7222 * busy cpu's exceeding the group's power.
7223 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7224 * domain span are idle.
83cd4fe2 7225 */
4a725627 7226static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7227{
7228 unsigned long now = jiffies;
0b005cf5 7229 struct sched_domain *sd;
37dc6b50 7230 struct sched_group_power *sgp;
4a725627 7231 int nr_busy, cpu = rq->cpu;
83cd4fe2 7232
4a725627 7233 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7234 return 0;
7235
1c792db7
SS
7236 /*
7237 * We may be recently in ticked or tickless idle mode. At the first
7238 * busy tick after returning from idle, we will update the busy stats.
7239 */
69e1e811 7240 set_cpu_sd_state_busy();
c1cc017c 7241 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7242
7243 /*
7244 * None are in tickless mode and hence no need for NOHZ idle load
7245 * balancing.
7246 */
7247 if (likely(!atomic_read(&nohz.nr_cpus)))
7248 return 0;
1c792db7
SS
7249
7250 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7251 return 0;
7252
0b005cf5
SS
7253 if (rq->nr_running >= 2)
7254 goto need_kick;
83cd4fe2 7255
067491b7 7256 rcu_read_lock();
37dc6b50 7257 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7258
37dc6b50
PM
7259 if (sd) {
7260 sgp = sd->groups->sgp;
7261 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7262
37dc6b50 7263 if (nr_busy > 1)
067491b7 7264 goto need_kick_unlock;
83cd4fe2 7265 }
37dc6b50
PM
7266
7267 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7268
7269 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7270 sched_domain_span(sd)) < cpu))
7271 goto need_kick_unlock;
7272
067491b7 7273 rcu_read_unlock();
83cd4fe2 7274 return 0;
067491b7
PZ
7275
7276need_kick_unlock:
7277 rcu_read_unlock();
0b005cf5
SS
7278need_kick:
7279 return 1;
83cd4fe2
VP
7280}
7281#else
208cb16b 7282static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7283#endif
7284
7285/*
7286 * run_rebalance_domains is triggered when needed from the scheduler tick.
7287 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7288 */
1e3c88bd
PZ
7289static void run_rebalance_domains(struct softirq_action *h)
7290{
208cb16b 7291 struct rq *this_rq = this_rq();
6eb57e0d 7292 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7293 CPU_IDLE : CPU_NOT_IDLE;
7294
f7ed0a89 7295 rebalance_domains(this_rq, idle);
1e3c88bd 7296
1e3c88bd 7297 /*
83cd4fe2 7298 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7299 * balancing on behalf of the other idle cpus whose ticks are
7300 * stopped.
7301 */
208cb16b 7302 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7303}
7304
1e3c88bd
PZ
7305/*
7306 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7307 */
7caff66f 7308void trigger_load_balance(struct rq *rq)
1e3c88bd 7309{
1e3c88bd 7310 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7311 if (unlikely(on_null_domain(rq)))
7312 return;
7313
7314 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7315 raise_softirq(SCHED_SOFTIRQ);
3451d024 7316#ifdef CONFIG_NO_HZ_COMMON
c726099e 7317 if (nohz_kick_needed(rq))
0aeeeeba 7318 nohz_balancer_kick();
83cd4fe2 7319#endif
1e3c88bd
PZ
7320}
7321
0bcdcf28
CE
7322static void rq_online_fair(struct rq *rq)
7323{
7324 update_sysctl();
7325}
7326
7327static void rq_offline_fair(struct rq *rq)
7328{
7329 update_sysctl();
a4c96ae3
PB
7330
7331 /* Ensure any throttled groups are reachable by pick_next_task */
7332 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7333}
7334
55e12e5e 7335#endif /* CONFIG_SMP */
e1d1484f 7336
bf0f6f24
IM
7337/*
7338 * scheduler tick hitting a task of our scheduling class:
7339 */
8f4d37ec 7340static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7341{
7342 struct cfs_rq *cfs_rq;
7343 struct sched_entity *se = &curr->se;
7344
7345 for_each_sched_entity(se) {
7346 cfs_rq = cfs_rq_of(se);
8f4d37ec 7347 entity_tick(cfs_rq, se, queued);
bf0f6f24 7348 }
18bf2805 7349
10e84b97 7350 if (numabalancing_enabled)
cbee9f88 7351 task_tick_numa(rq, curr);
3d59eebc 7352
18bf2805 7353 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7354}
7355
7356/*
cd29fe6f
PZ
7357 * called on fork with the child task as argument from the parent's context
7358 * - child not yet on the tasklist
7359 * - preemption disabled
bf0f6f24 7360 */
cd29fe6f 7361static void task_fork_fair(struct task_struct *p)
bf0f6f24 7362{
4fc420c9
DN
7363 struct cfs_rq *cfs_rq;
7364 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7365 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7366 struct rq *rq = this_rq();
7367 unsigned long flags;
7368
05fa785c 7369 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7370
861d034e
PZ
7371 update_rq_clock(rq);
7372
4fc420c9
DN
7373 cfs_rq = task_cfs_rq(current);
7374 curr = cfs_rq->curr;
7375
6c9a27f5
DN
7376 /*
7377 * Not only the cpu but also the task_group of the parent might have
7378 * been changed after parent->se.parent,cfs_rq were copied to
7379 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7380 * of child point to valid ones.
7381 */
7382 rcu_read_lock();
7383 __set_task_cpu(p, this_cpu);
7384 rcu_read_unlock();
bf0f6f24 7385
7109c442 7386 update_curr(cfs_rq);
cd29fe6f 7387
b5d9d734
MG
7388 if (curr)
7389 se->vruntime = curr->vruntime;
aeb73b04 7390 place_entity(cfs_rq, se, 1);
4d78e7b6 7391
cd29fe6f 7392 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7393 /*
edcb60a3
IM
7394 * Upon rescheduling, sched_class::put_prev_task() will place
7395 * 'current' within the tree based on its new key value.
7396 */
4d78e7b6 7397 swap(curr->vruntime, se->vruntime);
aec0a514 7398 resched_task(rq->curr);
4d78e7b6 7399 }
bf0f6f24 7400
88ec22d3
PZ
7401 se->vruntime -= cfs_rq->min_vruntime;
7402
05fa785c 7403 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7404}
7405
cb469845
SR
7406/*
7407 * Priority of the task has changed. Check to see if we preempt
7408 * the current task.
7409 */
da7a735e
PZ
7410static void
7411prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7412{
da7a735e
PZ
7413 if (!p->se.on_rq)
7414 return;
7415
cb469845
SR
7416 /*
7417 * Reschedule if we are currently running on this runqueue and
7418 * our priority decreased, or if we are not currently running on
7419 * this runqueue and our priority is higher than the current's
7420 */
da7a735e 7421 if (rq->curr == p) {
cb469845
SR
7422 if (p->prio > oldprio)
7423 resched_task(rq->curr);
7424 } else
15afe09b 7425 check_preempt_curr(rq, p, 0);
cb469845
SR
7426}
7427
da7a735e
PZ
7428static void switched_from_fair(struct rq *rq, struct task_struct *p)
7429{
7430 struct sched_entity *se = &p->se;
7431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7432
7433 /*
791c9e02 7434 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7435 * switched back to the fair class the enqueue_entity(.flags=0) will
7436 * do the right thing.
7437 *
791c9e02
GM
7438 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7439 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7440 * the task is sleeping will it still have non-normalized vruntime.
7441 */
791c9e02 7442 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7443 /*
7444 * Fix up our vruntime so that the current sleep doesn't
7445 * cause 'unlimited' sleep bonus.
7446 */
7447 place_entity(cfs_rq, se, 0);
7448 se->vruntime -= cfs_rq->min_vruntime;
7449 }
9ee474f5 7450
141965c7 7451#ifdef CONFIG_SMP
9ee474f5
PT
7452 /*
7453 * Remove our load from contribution when we leave sched_fair
7454 * and ensure we don't carry in an old decay_count if we
7455 * switch back.
7456 */
87e3c8ae
KT
7457 if (se->avg.decay_count) {
7458 __synchronize_entity_decay(se);
7459 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7460 }
7461#endif
da7a735e
PZ
7462}
7463
cb469845
SR
7464/*
7465 * We switched to the sched_fair class.
7466 */
da7a735e 7467static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7468{
eb7a59b2
M
7469 struct sched_entity *se = &p->se;
7470#ifdef CONFIG_FAIR_GROUP_SCHED
7471 /*
7472 * Since the real-depth could have been changed (only FAIR
7473 * class maintain depth value), reset depth properly.
7474 */
7475 se->depth = se->parent ? se->parent->depth + 1 : 0;
7476#endif
7477 if (!se->on_rq)
da7a735e
PZ
7478 return;
7479
cb469845
SR
7480 /*
7481 * We were most likely switched from sched_rt, so
7482 * kick off the schedule if running, otherwise just see
7483 * if we can still preempt the current task.
7484 */
da7a735e 7485 if (rq->curr == p)
cb469845
SR
7486 resched_task(rq->curr);
7487 else
15afe09b 7488 check_preempt_curr(rq, p, 0);
cb469845
SR
7489}
7490
83b699ed
SV
7491/* Account for a task changing its policy or group.
7492 *
7493 * This routine is mostly called to set cfs_rq->curr field when a task
7494 * migrates between groups/classes.
7495 */
7496static void set_curr_task_fair(struct rq *rq)
7497{
7498 struct sched_entity *se = &rq->curr->se;
7499
ec12cb7f
PT
7500 for_each_sched_entity(se) {
7501 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7502
7503 set_next_entity(cfs_rq, se);
7504 /* ensure bandwidth has been allocated on our new cfs_rq */
7505 account_cfs_rq_runtime(cfs_rq, 0);
7506 }
83b699ed
SV
7507}
7508
029632fb
PZ
7509void init_cfs_rq(struct cfs_rq *cfs_rq)
7510{
7511 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7512 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7513#ifndef CONFIG_64BIT
7514 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7515#endif
141965c7 7516#ifdef CONFIG_SMP
9ee474f5 7517 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7518 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7519#endif
029632fb
PZ
7520}
7521
810b3817 7522#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7523static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7524{
fed14d45 7525 struct sched_entity *se = &p->se;
aff3e498 7526 struct cfs_rq *cfs_rq;
fed14d45 7527
b2b5ce02
PZ
7528 /*
7529 * If the task was not on the rq at the time of this cgroup movement
7530 * it must have been asleep, sleeping tasks keep their ->vruntime
7531 * absolute on their old rq until wakeup (needed for the fair sleeper
7532 * bonus in place_entity()).
7533 *
7534 * If it was on the rq, we've just 'preempted' it, which does convert
7535 * ->vruntime to a relative base.
7536 *
7537 * Make sure both cases convert their relative position when migrating
7538 * to another cgroup's rq. This does somewhat interfere with the
7539 * fair sleeper stuff for the first placement, but who cares.
7540 */
7ceff013
DN
7541 /*
7542 * When !on_rq, vruntime of the task has usually NOT been normalized.
7543 * But there are some cases where it has already been normalized:
7544 *
7545 * - Moving a forked child which is waiting for being woken up by
7546 * wake_up_new_task().
62af3783
DN
7547 * - Moving a task which has been woken up by try_to_wake_up() and
7548 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7549 *
7550 * To prevent boost or penalty in the new cfs_rq caused by delta
7551 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7552 */
fed14d45 7553 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7554 on_rq = 1;
7555
b2b5ce02 7556 if (!on_rq)
fed14d45 7557 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7558 set_task_rq(p, task_cpu(p));
fed14d45 7559 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7560 if (!on_rq) {
fed14d45
PZ
7561 cfs_rq = cfs_rq_of(se);
7562 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7563#ifdef CONFIG_SMP
7564 /*
7565 * migrate_task_rq_fair() will have removed our previous
7566 * contribution, but we must synchronize for ongoing future
7567 * decay.
7568 */
fed14d45
PZ
7569 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7570 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7571#endif
7572 }
810b3817 7573}
029632fb
PZ
7574
7575void free_fair_sched_group(struct task_group *tg)
7576{
7577 int i;
7578
7579 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7580
7581 for_each_possible_cpu(i) {
7582 if (tg->cfs_rq)
7583 kfree(tg->cfs_rq[i]);
7584 if (tg->se)
7585 kfree(tg->se[i]);
7586 }
7587
7588 kfree(tg->cfs_rq);
7589 kfree(tg->se);
7590}
7591
7592int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7593{
7594 struct cfs_rq *cfs_rq;
7595 struct sched_entity *se;
7596 int i;
7597
7598 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7599 if (!tg->cfs_rq)
7600 goto err;
7601 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7602 if (!tg->se)
7603 goto err;
7604
7605 tg->shares = NICE_0_LOAD;
7606
7607 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7608
7609 for_each_possible_cpu(i) {
7610 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7611 GFP_KERNEL, cpu_to_node(i));
7612 if (!cfs_rq)
7613 goto err;
7614
7615 se = kzalloc_node(sizeof(struct sched_entity),
7616 GFP_KERNEL, cpu_to_node(i));
7617 if (!se)
7618 goto err_free_rq;
7619
7620 init_cfs_rq(cfs_rq);
7621 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7622 }
7623
7624 return 1;
7625
7626err_free_rq:
7627 kfree(cfs_rq);
7628err:
7629 return 0;
7630}
7631
7632void unregister_fair_sched_group(struct task_group *tg, int cpu)
7633{
7634 struct rq *rq = cpu_rq(cpu);
7635 unsigned long flags;
7636
7637 /*
7638 * Only empty task groups can be destroyed; so we can speculatively
7639 * check on_list without danger of it being re-added.
7640 */
7641 if (!tg->cfs_rq[cpu]->on_list)
7642 return;
7643
7644 raw_spin_lock_irqsave(&rq->lock, flags);
7645 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7646 raw_spin_unlock_irqrestore(&rq->lock, flags);
7647}
7648
7649void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7650 struct sched_entity *se, int cpu,
7651 struct sched_entity *parent)
7652{
7653 struct rq *rq = cpu_rq(cpu);
7654
7655 cfs_rq->tg = tg;
7656 cfs_rq->rq = rq;
029632fb
PZ
7657 init_cfs_rq_runtime(cfs_rq);
7658
7659 tg->cfs_rq[cpu] = cfs_rq;
7660 tg->se[cpu] = se;
7661
7662 /* se could be NULL for root_task_group */
7663 if (!se)
7664 return;
7665
fed14d45 7666 if (!parent) {
029632fb 7667 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7668 se->depth = 0;
7669 } else {
029632fb 7670 se->cfs_rq = parent->my_q;
fed14d45
PZ
7671 se->depth = parent->depth + 1;
7672 }
029632fb
PZ
7673
7674 se->my_q = cfs_rq;
0ac9b1c2
PT
7675 /* guarantee group entities always have weight */
7676 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7677 se->parent = parent;
7678}
7679
7680static DEFINE_MUTEX(shares_mutex);
7681
7682int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7683{
7684 int i;
7685 unsigned long flags;
7686
7687 /*
7688 * We can't change the weight of the root cgroup.
7689 */
7690 if (!tg->se[0])
7691 return -EINVAL;
7692
7693 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7694
7695 mutex_lock(&shares_mutex);
7696 if (tg->shares == shares)
7697 goto done;
7698
7699 tg->shares = shares;
7700 for_each_possible_cpu(i) {
7701 struct rq *rq = cpu_rq(i);
7702 struct sched_entity *se;
7703
7704 se = tg->se[i];
7705 /* Propagate contribution to hierarchy */
7706 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7707
7708 /* Possible calls to update_curr() need rq clock */
7709 update_rq_clock(rq);
17bc14b7 7710 for_each_sched_entity(se)
029632fb
PZ
7711 update_cfs_shares(group_cfs_rq(se));
7712 raw_spin_unlock_irqrestore(&rq->lock, flags);
7713 }
7714
7715done:
7716 mutex_unlock(&shares_mutex);
7717 return 0;
7718}
7719#else /* CONFIG_FAIR_GROUP_SCHED */
7720
7721void free_fair_sched_group(struct task_group *tg) { }
7722
7723int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7724{
7725 return 1;
7726}
7727
7728void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7729
7730#endif /* CONFIG_FAIR_GROUP_SCHED */
7731
810b3817 7732
6d686f45 7733static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7734{
7735 struct sched_entity *se = &task->se;
0d721cea
PW
7736 unsigned int rr_interval = 0;
7737
7738 /*
7739 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7740 * idle runqueue:
7741 */
0d721cea 7742 if (rq->cfs.load.weight)
a59f4e07 7743 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7744
7745 return rr_interval;
7746}
7747
bf0f6f24
IM
7748/*
7749 * All the scheduling class methods:
7750 */
029632fb 7751const struct sched_class fair_sched_class = {
5522d5d5 7752 .next = &idle_sched_class,
bf0f6f24
IM
7753 .enqueue_task = enqueue_task_fair,
7754 .dequeue_task = dequeue_task_fair,
7755 .yield_task = yield_task_fair,
d95f4122 7756 .yield_to_task = yield_to_task_fair,
bf0f6f24 7757
2e09bf55 7758 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7759
7760 .pick_next_task = pick_next_task_fair,
7761 .put_prev_task = put_prev_task_fair,
7762
681f3e68 7763#ifdef CONFIG_SMP
4ce72a2c 7764 .select_task_rq = select_task_rq_fair,
0a74bef8 7765 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7766
0bcdcf28
CE
7767 .rq_online = rq_online_fair,
7768 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7769
7770 .task_waking = task_waking_fair,
681f3e68 7771#endif
bf0f6f24 7772
83b699ed 7773 .set_curr_task = set_curr_task_fair,
bf0f6f24 7774 .task_tick = task_tick_fair,
cd29fe6f 7775 .task_fork = task_fork_fair,
cb469845
SR
7776
7777 .prio_changed = prio_changed_fair,
da7a735e 7778 .switched_from = switched_from_fair,
cb469845 7779 .switched_to = switched_to_fair,
810b3817 7780
0d721cea
PW
7781 .get_rr_interval = get_rr_interval_fair,
7782
810b3817 7783#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7784 .task_move_group = task_move_group_fair,
810b3817 7785#endif
bf0f6f24
IM
7786};
7787
7788#ifdef CONFIG_SCHED_DEBUG
029632fb 7789void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7790{
bf0f6f24
IM
7791 struct cfs_rq *cfs_rq;
7792
5973e5b9 7793 rcu_read_lock();
c3b64f1e 7794 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7795 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7796 rcu_read_unlock();
bf0f6f24
IM
7797}
7798#endif
029632fb
PZ
7799
7800__init void init_sched_fair_class(void)
7801{
7802#ifdef CONFIG_SMP
7803 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7804
3451d024 7805#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7806 nohz.next_balance = jiffies;
029632fb 7807 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7808 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7809#endif
7810#endif /* SMP */
7811
7812}