sched/fair: Rewrite PELT migration propagation
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7 515 struct sched_entity *curr = cfs_rq->curr;
bfb06889 516 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 517
1af5f730
PZ
518 u64 vruntime = cfs_rq->min_vruntime;
519
b60205c7
PZ
520 if (curr) {
521 if (curr->on_rq)
522 vruntime = curr->vruntime;
523 else
524 curr = NULL;
525 }
1af5f730 526
bfb06889
DB
527 if (leftmost) { /* non-empty tree */
528 struct sched_entity *se;
529 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 549{
bfb06889 550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bfb06889 553 bool leftmost = true;
bf0f6f24
IM
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
bfb06889 569 leftmost = false;
bf0f6f24
IM
570 }
571 }
572
bf0f6f24 573 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
574 rb_insert_color_cached(&se->run_node,
575 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
576}
577
0702e3eb 578static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 579{
bfb06889 580 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
029632fb 583struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 584{
bfb06889 585 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
586
587 if (!left)
588 return NULL;
589
590 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
591}
592
ac53db59
RR
593static struct sched_entity *__pick_next_entity(struct sched_entity *se)
594{
595 struct rb_node *next = rb_next(&se->run_node);
596
597 if (!next)
598 return NULL;
599
600 return rb_entry(next, struct sched_entity, run_node);
601}
602
603#ifdef CONFIG_SCHED_DEBUG
029632fb 604struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 605{
bfb06889 606 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 607
70eee74b
BS
608 if (!last)
609 return NULL;
7eee3e67
IM
610
611 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
612}
613
bf0f6f24
IM
614/**************************************************************
615 * Scheduling class statistics methods:
616 */
617
acb4a848 618int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 619 void __user *buffer, size_t *lenp,
b2be5e96
PZ
620 loff_t *ppos)
621{
8d65af78 622 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 623 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
624
625 if (ret || !write)
626 return ret;
627
628 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
629 sysctl_sched_min_granularity);
630
acb4a848
CE
631#define WRT_SYSCTL(name) \
632 (normalized_sysctl_##name = sysctl_##name / (factor))
633 WRT_SYSCTL(sched_min_granularity);
634 WRT_SYSCTL(sched_latency);
635 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
636#undef WRT_SYSCTL
637
b2be5e96
PZ
638 return 0;
639}
640#endif
647e7cac 641
a7be37ac 642/*
f9c0b095 643 * delta /= w
a7be37ac 644 */
9dbdb155 645static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 646{
f9c0b095 647 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 648 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
649
650 return delta;
651}
652
647e7cac
IM
653/*
654 * The idea is to set a period in which each task runs once.
655 *
532b1858 656 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
657 * this period because otherwise the slices get too small.
658 *
659 * p = (nr <= nl) ? l : l*nr/nl
660 */
4d78e7b6
PZ
661static u64 __sched_period(unsigned long nr_running)
662{
8e2b0bf3
BF
663 if (unlikely(nr_running > sched_nr_latency))
664 return nr_running * sysctl_sched_min_granularity;
665 else
666 return sysctl_sched_latency;
4d78e7b6
PZ
667}
668
647e7cac
IM
669/*
670 * We calculate the wall-time slice from the period by taking a part
671 * proportional to the weight.
672 *
f9c0b095 673 * s = p*P[w/rw]
647e7cac 674 */
6d0f0ebd 675static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 676{
0a582440 677 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 678
0a582440 679 for_each_sched_entity(se) {
6272d68c 680 struct load_weight *load;
3104bf03 681 struct load_weight lw;
6272d68c
LM
682
683 cfs_rq = cfs_rq_of(se);
684 load = &cfs_rq->load;
f9c0b095 685
0a582440 686 if (unlikely(!se->on_rq)) {
3104bf03 687 lw = cfs_rq->load;
0a582440
MG
688
689 update_load_add(&lw, se->load.weight);
690 load = &lw;
691 }
9dbdb155 692 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
693 }
694 return slice;
bf0f6f24
IM
695}
696
647e7cac 697/*
660cc00f 698 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 699 *
f9c0b095 700 * vs = s/w
647e7cac 701 */
f9c0b095 702static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 703{
f9c0b095 704 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
705}
706
a75cdaa9 707#ifdef CONFIG_SMP
283e2ed3
PZ
708
709#include "sched-pelt.h"
710
772bd008 711static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
712static unsigned long task_h_load(struct task_struct *p);
713
540247fb
YD
714/* Give new sched_entity start runnable values to heavy its load in infant time */
715void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 716{
540247fb 717 struct sched_avg *sa = &se->avg;
a75cdaa9 718
9d89c257
YD
719 sa->last_update_time = 0;
720 /*
721 * sched_avg's period_contrib should be strictly less then 1024, so
722 * we give it 1023 to make sure it is almost a period (1024us), and
723 * will definitely be update (after enqueue).
724 */
725 sa->period_contrib = 1023;
b5a9b340
VG
726 /*
727 * Tasks are intialized with full load to be seen as heavy tasks until
728 * they get a chance to stabilize to their real load level.
729 * Group entities are intialized with zero load to reflect the fact that
730 * nothing has been attached to the task group yet.
731 */
732 if (entity_is_task(se))
733 sa->load_avg = scale_load_down(se->load.weight);
c7b50216 734 sa->load_sum = LOAD_AVG_MAX;
2b8c41da
YD
735 /*
736 * At this point, util_avg won't be used in select_task_rq_fair anyway
737 */
738 sa->util_avg = 0;
739 sa->util_sum = 0;
9d89c257 740 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 741}
7ea241af 742
7dc603c9 743static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 744static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 745
2b8c41da
YD
746/*
747 * With new tasks being created, their initial util_avgs are extrapolated
748 * based on the cfs_rq's current util_avg:
749 *
750 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
751 *
752 * However, in many cases, the above util_avg does not give a desired
753 * value. Moreover, the sum of the util_avgs may be divergent, such
754 * as when the series is a harmonic series.
755 *
756 * To solve this problem, we also cap the util_avg of successive tasks to
757 * only 1/2 of the left utilization budget:
758 *
759 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
760 *
761 * where n denotes the nth task.
762 *
763 * For example, a simplest series from the beginning would be like:
764 *
765 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
766 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
767 *
768 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
769 * if util_avg > util_avg_cap.
770 */
771void post_init_entity_util_avg(struct sched_entity *se)
772{
773 struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 struct sched_avg *sa = &se->avg;
172895e6 775 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
776
777 if (cap > 0) {
778 if (cfs_rq->avg.util_avg != 0) {
779 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
780 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
781
782 if (sa->util_avg > cap)
783 sa->util_avg = cap;
784 } else {
785 sa->util_avg = cap;
786 }
787 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
788 }
7dc603c9
PZ
789
790 if (entity_is_task(se)) {
791 struct task_struct *p = task_of(se);
792 if (p->sched_class != &fair_sched_class) {
793 /*
794 * For !fair tasks do:
795 *
3a123bbb 796 update_cfs_rq_load_avg(now, cfs_rq);
7dc603c9
PZ
797 attach_entity_load_avg(cfs_rq, se);
798 switched_from_fair(rq, p);
799 *
800 * such that the next switched_to_fair() has the
801 * expected state.
802 */
df217913 803 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
804 return;
805 }
806 }
807
df217913 808 attach_entity_cfs_rq(se);
2b8c41da
YD
809}
810
7dc603c9 811#else /* !CONFIG_SMP */
540247fb 812void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
813{
814}
2b8c41da
YD
815void post_init_entity_util_avg(struct sched_entity *se)
816{
817}
3d30544f
PZ
818static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
819{
820}
7dc603c9 821#endif /* CONFIG_SMP */
a75cdaa9 822
bf0f6f24 823/*
9dbdb155 824 * Update the current task's runtime statistics.
bf0f6f24 825 */
b7cc0896 826static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 827{
429d43bc 828 struct sched_entity *curr = cfs_rq->curr;
78becc27 829 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 830 u64 delta_exec;
bf0f6f24
IM
831
832 if (unlikely(!curr))
833 return;
834
9dbdb155
PZ
835 delta_exec = now - curr->exec_start;
836 if (unlikely((s64)delta_exec <= 0))
34f28ecd 837 return;
bf0f6f24 838
8ebc91d9 839 curr->exec_start = now;
d842de87 840
9dbdb155
PZ
841 schedstat_set(curr->statistics.exec_max,
842 max(delta_exec, curr->statistics.exec_max));
843
844 curr->sum_exec_runtime += delta_exec;
ae92882e 845 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
846
847 curr->vruntime += calc_delta_fair(delta_exec, curr);
848 update_min_vruntime(cfs_rq);
849
d842de87
SV
850 if (entity_is_task(curr)) {
851 struct task_struct *curtask = task_of(curr);
852
f977bb49 853 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 854 cpuacct_charge(curtask, delta_exec);
f06febc9 855 account_group_exec_runtime(curtask, delta_exec);
d842de87 856 }
ec12cb7f
PT
857
858 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
859}
860
6e998916
SG
861static void update_curr_fair(struct rq *rq)
862{
863 update_curr(cfs_rq_of(&rq->curr->se));
864}
865
bf0f6f24 866static inline void
5870db5b 867update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 868{
4fa8d299
JP
869 u64 wait_start, prev_wait_start;
870
871 if (!schedstat_enabled())
872 return;
873
874 wait_start = rq_clock(rq_of(cfs_rq));
875 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
876
877 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
878 likely(wait_start > prev_wait_start))
879 wait_start -= prev_wait_start;
3ea94de1 880
4fa8d299 881 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
882}
883
4fa8d299 884static inline void
3ea94de1
JP
885update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
886{
887 struct task_struct *p;
cb251765
MG
888 u64 delta;
889
4fa8d299
JP
890 if (!schedstat_enabled())
891 return;
892
893 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
894
895 if (entity_is_task(se)) {
896 p = task_of(se);
897 if (task_on_rq_migrating(p)) {
898 /*
899 * Preserve migrating task's wait time so wait_start
900 * time stamp can be adjusted to accumulate wait time
901 * prior to migration.
902 */
4fa8d299 903 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
904 return;
905 }
906 trace_sched_stat_wait(p, delta);
907 }
908
4fa8d299
JP
909 schedstat_set(se->statistics.wait_max,
910 max(schedstat_val(se->statistics.wait_max), delta));
911 schedstat_inc(se->statistics.wait_count);
912 schedstat_add(se->statistics.wait_sum, delta);
913 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 914}
3ea94de1 915
4fa8d299 916static inline void
1a3d027c
JP
917update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
918{
919 struct task_struct *tsk = NULL;
4fa8d299
JP
920 u64 sleep_start, block_start;
921
922 if (!schedstat_enabled())
923 return;
924
925 sleep_start = schedstat_val(se->statistics.sleep_start);
926 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
927
928 if (entity_is_task(se))
929 tsk = task_of(se);
930
4fa8d299
JP
931 if (sleep_start) {
932 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
933
934 if ((s64)delta < 0)
935 delta = 0;
936
4fa8d299
JP
937 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
938 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 939
4fa8d299
JP
940 schedstat_set(se->statistics.sleep_start, 0);
941 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
942
943 if (tsk) {
944 account_scheduler_latency(tsk, delta >> 10, 1);
945 trace_sched_stat_sleep(tsk, delta);
946 }
947 }
4fa8d299
JP
948 if (block_start) {
949 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
950
951 if ((s64)delta < 0)
952 delta = 0;
953
4fa8d299
JP
954 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
955 schedstat_set(se->statistics.block_max, delta);
1a3d027c 956
4fa8d299
JP
957 schedstat_set(se->statistics.block_start, 0);
958 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
959
960 if (tsk) {
961 if (tsk->in_iowait) {
4fa8d299
JP
962 schedstat_add(se->statistics.iowait_sum, delta);
963 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
964 trace_sched_stat_iowait(tsk, delta);
965 }
966
967 trace_sched_stat_blocked(tsk, delta);
968
969 /*
970 * Blocking time is in units of nanosecs, so shift by
971 * 20 to get a milliseconds-range estimation of the
972 * amount of time that the task spent sleeping:
973 */
974 if (unlikely(prof_on == SLEEP_PROFILING)) {
975 profile_hits(SLEEP_PROFILING,
976 (void *)get_wchan(tsk),
977 delta >> 20);
978 }
979 account_scheduler_latency(tsk, delta >> 10, 0);
980 }
981 }
3ea94de1 982}
3ea94de1 983
bf0f6f24
IM
984/*
985 * Task is being enqueued - update stats:
986 */
cb251765 987static inline void
1a3d027c 988update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 989{
4fa8d299
JP
990 if (!schedstat_enabled())
991 return;
992
bf0f6f24
IM
993 /*
994 * Are we enqueueing a waiting task? (for current tasks
995 * a dequeue/enqueue event is a NOP)
996 */
429d43bc 997 if (se != cfs_rq->curr)
5870db5b 998 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
999
1000 if (flags & ENQUEUE_WAKEUP)
1001 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1002}
1003
bf0f6f24 1004static inline void
cb251765 1005update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1006{
4fa8d299
JP
1007
1008 if (!schedstat_enabled())
1009 return;
1010
bf0f6f24
IM
1011 /*
1012 * Mark the end of the wait period if dequeueing a
1013 * waiting task:
1014 */
429d43bc 1015 if (se != cfs_rq->curr)
9ef0a961 1016 update_stats_wait_end(cfs_rq, se);
cb251765 1017
4fa8d299
JP
1018 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1019 struct task_struct *tsk = task_of(se);
cb251765 1020
4fa8d299
JP
1021 if (tsk->state & TASK_INTERRUPTIBLE)
1022 schedstat_set(se->statistics.sleep_start,
1023 rq_clock(rq_of(cfs_rq)));
1024 if (tsk->state & TASK_UNINTERRUPTIBLE)
1025 schedstat_set(se->statistics.block_start,
1026 rq_clock(rq_of(cfs_rq)));
cb251765 1027 }
cb251765
MG
1028}
1029
bf0f6f24
IM
1030/*
1031 * We are picking a new current task - update its stats:
1032 */
1033static inline void
79303e9e 1034update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1035{
1036 /*
1037 * We are starting a new run period:
1038 */
78becc27 1039 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1040}
1041
bf0f6f24
IM
1042/**************************************************
1043 * Scheduling class queueing methods:
1044 */
1045
cbee9f88
PZ
1046#ifdef CONFIG_NUMA_BALANCING
1047/*
598f0ec0
MG
1048 * Approximate time to scan a full NUMA task in ms. The task scan period is
1049 * calculated based on the tasks virtual memory size and
1050 * numa_balancing_scan_size.
cbee9f88 1051 */
598f0ec0
MG
1052unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1053unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1054
1055/* Portion of address space to scan in MB */
1056unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1057
4b96a29b
PZ
1058/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1059unsigned int sysctl_numa_balancing_scan_delay = 1000;
1060
b5dd77c8
RR
1061struct numa_group {
1062 atomic_t refcount;
1063
1064 spinlock_t lock; /* nr_tasks, tasks */
1065 int nr_tasks;
1066 pid_t gid;
1067 int active_nodes;
1068
1069 struct rcu_head rcu;
1070 unsigned long total_faults;
1071 unsigned long max_faults_cpu;
1072 /*
1073 * Faults_cpu is used to decide whether memory should move
1074 * towards the CPU. As a consequence, these stats are weighted
1075 * more by CPU use than by memory faults.
1076 */
1077 unsigned long *faults_cpu;
1078 unsigned long faults[0];
1079};
1080
1081static inline unsigned long group_faults_priv(struct numa_group *ng);
1082static inline unsigned long group_faults_shared(struct numa_group *ng);
1083
598f0ec0
MG
1084static unsigned int task_nr_scan_windows(struct task_struct *p)
1085{
1086 unsigned long rss = 0;
1087 unsigned long nr_scan_pages;
1088
1089 /*
1090 * Calculations based on RSS as non-present and empty pages are skipped
1091 * by the PTE scanner and NUMA hinting faults should be trapped based
1092 * on resident pages
1093 */
1094 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1095 rss = get_mm_rss(p->mm);
1096 if (!rss)
1097 rss = nr_scan_pages;
1098
1099 rss = round_up(rss, nr_scan_pages);
1100 return rss / nr_scan_pages;
1101}
1102
1103/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1104#define MAX_SCAN_WINDOW 2560
1105
1106static unsigned int task_scan_min(struct task_struct *p)
1107{
316c1608 1108 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1109 unsigned int scan, floor;
1110 unsigned int windows = 1;
1111
64192658
KT
1112 if (scan_size < MAX_SCAN_WINDOW)
1113 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1114 floor = 1000 / windows;
1115
1116 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1117 return max_t(unsigned int, floor, scan);
1118}
1119
b5dd77c8
RR
1120static unsigned int task_scan_start(struct task_struct *p)
1121{
1122 unsigned long smin = task_scan_min(p);
1123 unsigned long period = smin;
1124
1125 /* Scale the maximum scan period with the amount of shared memory. */
1126 if (p->numa_group) {
1127 struct numa_group *ng = p->numa_group;
1128 unsigned long shared = group_faults_shared(ng);
1129 unsigned long private = group_faults_priv(ng);
1130
1131 period *= atomic_read(&ng->refcount);
1132 period *= shared + 1;
1133 period /= private + shared + 1;
1134 }
1135
1136 return max(smin, period);
1137}
1138
598f0ec0
MG
1139static unsigned int task_scan_max(struct task_struct *p)
1140{
b5dd77c8
RR
1141 unsigned long smin = task_scan_min(p);
1142 unsigned long smax;
598f0ec0
MG
1143
1144 /* Watch for min being lower than max due to floor calculations */
1145 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1146
1147 /* Scale the maximum scan period with the amount of shared memory. */
1148 if (p->numa_group) {
1149 struct numa_group *ng = p->numa_group;
1150 unsigned long shared = group_faults_shared(ng);
1151 unsigned long private = group_faults_priv(ng);
1152 unsigned long period = smax;
1153
1154 period *= atomic_read(&ng->refcount);
1155 period *= shared + 1;
1156 period /= private + shared + 1;
1157
1158 smax = max(smax, period);
1159 }
1160
598f0ec0
MG
1161 return max(smin, smax);
1162}
1163
0ec8aa00
PZ
1164static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1165{
1166 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1167 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1168}
1169
1170static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1171{
1172 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1173 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1174}
1175
be1e4e76
RR
1176/* Shared or private faults. */
1177#define NR_NUMA_HINT_FAULT_TYPES 2
1178
1179/* Memory and CPU locality */
1180#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1181
1182/* Averaged statistics, and temporary buffers. */
1183#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1184
e29cf08b
MG
1185pid_t task_numa_group_id(struct task_struct *p)
1186{
1187 return p->numa_group ? p->numa_group->gid : 0;
1188}
1189
44dba3d5
IM
1190/*
1191 * The averaged statistics, shared & private, memory & cpu,
1192 * occupy the first half of the array. The second half of the
1193 * array is for current counters, which are averaged into the
1194 * first set by task_numa_placement.
1195 */
1196static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1197{
44dba3d5 1198 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1199}
1200
1201static inline unsigned long task_faults(struct task_struct *p, int nid)
1202{
44dba3d5 1203 if (!p->numa_faults)
ac8e895b
MG
1204 return 0;
1205
44dba3d5
IM
1206 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1207 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1208}
1209
83e1d2cd
MG
1210static inline unsigned long group_faults(struct task_struct *p, int nid)
1211{
1212 if (!p->numa_group)
1213 return 0;
1214
44dba3d5
IM
1215 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1216 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1217}
1218
20e07dea
RR
1219static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1220{
44dba3d5
IM
1221 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1222 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1223}
1224
b5dd77c8
RR
1225static inline unsigned long group_faults_priv(struct numa_group *ng)
1226{
1227 unsigned long faults = 0;
1228 int node;
1229
1230 for_each_online_node(node) {
1231 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1232 }
1233
1234 return faults;
1235}
1236
1237static inline unsigned long group_faults_shared(struct numa_group *ng)
1238{
1239 unsigned long faults = 0;
1240 int node;
1241
1242 for_each_online_node(node) {
1243 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1244 }
1245
1246 return faults;
1247}
1248
4142c3eb
RR
1249/*
1250 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1251 * considered part of a numa group's pseudo-interleaving set. Migrations
1252 * between these nodes are slowed down, to allow things to settle down.
1253 */
1254#define ACTIVE_NODE_FRACTION 3
1255
1256static bool numa_is_active_node(int nid, struct numa_group *ng)
1257{
1258 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1259}
1260
6c6b1193
RR
1261/* Handle placement on systems where not all nodes are directly connected. */
1262static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1263 int maxdist, bool task)
1264{
1265 unsigned long score = 0;
1266 int node;
1267
1268 /*
1269 * All nodes are directly connected, and the same distance
1270 * from each other. No need for fancy placement algorithms.
1271 */
1272 if (sched_numa_topology_type == NUMA_DIRECT)
1273 return 0;
1274
1275 /*
1276 * This code is called for each node, introducing N^2 complexity,
1277 * which should be ok given the number of nodes rarely exceeds 8.
1278 */
1279 for_each_online_node(node) {
1280 unsigned long faults;
1281 int dist = node_distance(nid, node);
1282
1283 /*
1284 * The furthest away nodes in the system are not interesting
1285 * for placement; nid was already counted.
1286 */
1287 if (dist == sched_max_numa_distance || node == nid)
1288 continue;
1289
1290 /*
1291 * On systems with a backplane NUMA topology, compare groups
1292 * of nodes, and move tasks towards the group with the most
1293 * memory accesses. When comparing two nodes at distance
1294 * "hoplimit", only nodes closer by than "hoplimit" are part
1295 * of each group. Skip other nodes.
1296 */
1297 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1298 dist > maxdist)
1299 continue;
1300
1301 /* Add up the faults from nearby nodes. */
1302 if (task)
1303 faults = task_faults(p, node);
1304 else
1305 faults = group_faults(p, node);
1306
1307 /*
1308 * On systems with a glueless mesh NUMA topology, there are
1309 * no fixed "groups of nodes". Instead, nodes that are not
1310 * directly connected bounce traffic through intermediate
1311 * nodes; a numa_group can occupy any set of nodes.
1312 * The further away a node is, the less the faults count.
1313 * This seems to result in good task placement.
1314 */
1315 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1316 faults *= (sched_max_numa_distance - dist);
1317 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1318 }
1319
1320 score += faults;
1321 }
1322
1323 return score;
1324}
1325
83e1d2cd
MG
1326/*
1327 * These return the fraction of accesses done by a particular task, or
1328 * task group, on a particular numa node. The group weight is given a
1329 * larger multiplier, in order to group tasks together that are almost
1330 * evenly spread out between numa nodes.
1331 */
7bd95320
RR
1332static inline unsigned long task_weight(struct task_struct *p, int nid,
1333 int dist)
83e1d2cd 1334{
7bd95320 1335 unsigned long faults, total_faults;
83e1d2cd 1336
44dba3d5 1337 if (!p->numa_faults)
83e1d2cd
MG
1338 return 0;
1339
1340 total_faults = p->total_numa_faults;
1341
1342 if (!total_faults)
1343 return 0;
1344
7bd95320 1345 faults = task_faults(p, nid);
6c6b1193
RR
1346 faults += score_nearby_nodes(p, nid, dist, true);
1347
7bd95320 1348 return 1000 * faults / total_faults;
83e1d2cd
MG
1349}
1350
7bd95320
RR
1351static inline unsigned long group_weight(struct task_struct *p, int nid,
1352 int dist)
83e1d2cd 1353{
7bd95320
RR
1354 unsigned long faults, total_faults;
1355
1356 if (!p->numa_group)
1357 return 0;
1358
1359 total_faults = p->numa_group->total_faults;
1360
1361 if (!total_faults)
83e1d2cd
MG
1362 return 0;
1363
7bd95320 1364 faults = group_faults(p, nid);
6c6b1193
RR
1365 faults += score_nearby_nodes(p, nid, dist, false);
1366
7bd95320 1367 return 1000 * faults / total_faults;
83e1d2cd
MG
1368}
1369
10f39042
RR
1370bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 int src_nid, int dst_cpu)
1372{
1373 struct numa_group *ng = p->numa_group;
1374 int dst_nid = cpu_to_node(dst_cpu);
1375 int last_cpupid, this_cpupid;
1376
1377 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378
1379 /*
1380 * Multi-stage node selection is used in conjunction with a periodic
1381 * migration fault to build a temporal task<->page relation. By using
1382 * a two-stage filter we remove short/unlikely relations.
1383 *
1384 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1385 * a task's usage of a particular page (n_p) per total usage of this
1386 * page (n_t) (in a given time-span) to a probability.
1387 *
1388 * Our periodic faults will sample this probability and getting the
1389 * same result twice in a row, given these samples are fully
1390 * independent, is then given by P(n)^2, provided our sample period
1391 * is sufficiently short compared to the usage pattern.
1392 *
1393 * This quadric squishes small probabilities, making it less likely we
1394 * act on an unlikely task<->page relation.
1395 */
1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 if (!cpupid_pid_unset(last_cpupid) &&
1398 cpupid_to_nid(last_cpupid) != dst_nid)
1399 return false;
1400
1401 /* Always allow migrate on private faults */
1402 if (cpupid_match_pid(p, last_cpupid))
1403 return true;
1404
1405 /* A shared fault, but p->numa_group has not been set up yet. */
1406 if (!ng)
1407 return true;
1408
1409 /*
4142c3eb
RR
1410 * Destination node is much more heavily used than the source
1411 * node? Allow migration.
10f39042 1412 */
4142c3eb
RR
1413 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1414 ACTIVE_NODE_FRACTION)
10f39042
RR
1415 return true;
1416
1417 /*
4142c3eb
RR
1418 * Distribute memory according to CPU & memory use on each node,
1419 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1420 *
1421 * faults_cpu(dst) 3 faults_cpu(src)
1422 * --------------- * - > ---------------
1423 * faults_mem(dst) 4 faults_mem(src)
10f39042 1424 */
4142c3eb
RR
1425 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1426 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1427}
1428
c7132dd6 1429static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1430static unsigned long source_load(int cpu, int type);
1431static unsigned long target_load(int cpu, int type);
ced549fa 1432static unsigned long capacity_of(int cpu);
58d081b5 1433
fb13c7ee 1434/* Cached statistics for all CPUs within a node */
58d081b5 1435struct numa_stats {
fb13c7ee 1436 unsigned long nr_running;
58d081b5 1437 unsigned long load;
fb13c7ee
MG
1438
1439 /* Total compute capacity of CPUs on a node */
5ef20ca1 1440 unsigned long compute_capacity;
fb13c7ee
MG
1441
1442 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1443 unsigned long task_capacity;
1b6a7495 1444 int has_free_capacity;
58d081b5 1445};
e6628d5b 1446
fb13c7ee
MG
1447/*
1448 * XXX borrowed from update_sg_lb_stats
1449 */
1450static void update_numa_stats(struct numa_stats *ns, int nid)
1451{
83d7f242
RR
1452 int smt, cpu, cpus = 0;
1453 unsigned long capacity;
fb13c7ee
MG
1454
1455 memset(ns, 0, sizeof(*ns));
1456 for_each_cpu(cpu, cpumask_of_node(nid)) {
1457 struct rq *rq = cpu_rq(cpu);
1458
1459 ns->nr_running += rq->nr_running;
c7132dd6 1460 ns->load += weighted_cpuload(rq);
ced549fa 1461 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1462
1463 cpus++;
fb13c7ee
MG
1464 }
1465
5eca82a9
PZ
1466 /*
1467 * If we raced with hotplug and there are no CPUs left in our mask
1468 * the @ns structure is NULL'ed and task_numa_compare() will
1469 * not find this node attractive.
1470 *
1b6a7495
NP
1471 * We'll either bail at !has_free_capacity, or we'll detect a huge
1472 * imbalance and bail there.
5eca82a9
PZ
1473 */
1474 if (!cpus)
1475 return;
1476
83d7f242
RR
1477 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1478 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1479 capacity = cpus / smt; /* cores */
1480
1481 ns->task_capacity = min_t(unsigned, capacity,
1482 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1483 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1484}
1485
58d081b5
MG
1486struct task_numa_env {
1487 struct task_struct *p;
e6628d5b 1488
58d081b5
MG
1489 int src_cpu, src_nid;
1490 int dst_cpu, dst_nid;
e6628d5b 1491
58d081b5 1492 struct numa_stats src_stats, dst_stats;
e6628d5b 1493
40ea2b42 1494 int imbalance_pct;
7bd95320 1495 int dist;
fb13c7ee
MG
1496
1497 struct task_struct *best_task;
1498 long best_imp;
58d081b5
MG
1499 int best_cpu;
1500};
1501
fb13c7ee
MG
1502static void task_numa_assign(struct task_numa_env *env,
1503 struct task_struct *p, long imp)
1504{
1505 if (env->best_task)
1506 put_task_struct(env->best_task);
bac78573
ON
1507 if (p)
1508 get_task_struct(p);
fb13c7ee
MG
1509
1510 env->best_task = p;
1511 env->best_imp = imp;
1512 env->best_cpu = env->dst_cpu;
1513}
1514
28a21745 1515static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1516 struct task_numa_env *env)
1517{
e4991b24
RR
1518 long imb, old_imb;
1519 long orig_src_load, orig_dst_load;
28a21745
RR
1520 long src_capacity, dst_capacity;
1521
1522 /*
1523 * The load is corrected for the CPU capacity available on each node.
1524 *
1525 * src_load dst_load
1526 * ------------ vs ---------
1527 * src_capacity dst_capacity
1528 */
1529 src_capacity = env->src_stats.compute_capacity;
1530 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1531
1532 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1533 if (dst_load < src_load)
1534 swap(dst_load, src_load);
e63da036
RR
1535
1536 /* Is the difference below the threshold? */
e4991b24
RR
1537 imb = dst_load * src_capacity * 100 -
1538 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1539 if (imb <= 0)
1540 return false;
1541
1542 /*
1543 * The imbalance is above the allowed threshold.
e4991b24 1544 * Compare it with the old imbalance.
e63da036 1545 */
28a21745 1546 orig_src_load = env->src_stats.load;
e4991b24 1547 orig_dst_load = env->dst_stats.load;
28a21745 1548
e4991b24
RR
1549 if (orig_dst_load < orig_src_load)
1550 swap(orig_dst_load, orig_src_load);
e63da036 1551
e4991b24
RR
1552 old_imb = orig_dst_load * src_capacity * 100 -
1553 orig_src_load * dst_capacity * env->imbalance_pct;
1554
1555 /* Would this change make things worse? */
1556 return (imb > old_imb);
e63da036
RR
1557}
1558
fb13c7ee
MG
1559/*
1560 * This checks if the overall compute and NUMA accesses of the system would
1561 * be improved if the source tasks was migrated to the target dst_cpu taking
1562 * into account that it might be best if task running on the dst_cpu should
1563 * be exchanged with the source task
1564 */
887c290e
RR
1565static void task_numa_compare(struct task_numa_env *env,
1566 long taskimp, long groupimp)
fb13c7ee
MG
1567{
1568 struct rq *src_rq = cpu_rq(env->src_cpu);
1569 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1570 struct task_struct *cur;
28a21745 1571 long src_load, dst_load;
fb13c7ee 1572 long load;
1c5d3eb3 1573 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1574 long moveimp = imp;
7bd95320 1575 int dist = env->dist;
fb13c7ee
MG
1576
1577 rcu_read_lock();
bac78573
ON
1578 cur = task_rcu_dereference(&dst_rq->curr);
1579 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1580 cur = NULL;
1581
7af68335
PZ
1582 /*
1583 * Because we have preemption enabled we can get migrated around and
1584 * end try selecting ourselves (current == env->p) as a swap candidate.
1585 */
1586 if (cur == env->p)
1587 goto unlock;
1588
fb13c7ee
MG
1589 /*
1590 * "imp" is the fault differential for the source task between the
1591 * source and destination node. Calculate the total differential for
1592 * the source task and potential destination task. The more negative
1593 * the value is, the more rmeote accesses that would be expected to
1594 * be incurred if the tasks were swapped.
1595 */
1596 if (cur) {
1597 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1598 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1599 goto unlock;
1600
887c290e
RR
1601 /*
1602 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1603 * in any group then look only at task weights.
887c290e 1604 */
ca28aa53 1605 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1606 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1607 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1608 /*
1609 * Add some hysteresis to prevent swapping the
1610 * tasks within a group over tiny differences.
1611 */
1612 if (cur->numa_group)
1613 imp -= imp/16;
887c290e 1614 } else {
ca28aa53
RR
1615 /*
1616 * Compare the group weights. If a task is all by
1617 * itself (not part of a group), use the task weight
1618 * instead.
1619 */
ca28aa53 1620 if (cur->numa_group)
7bd95320
RR
1621 imp += group_weight(cur, env->src_nid, dist) -
1622 group_weight(cur, env->dst_nid, dist);
ca28aa53 1623 else
7bd95320
RR
1624 imp += task_weight(cur, env->src_nid, dist) -
1625 task_weight(cur, env->dst_nid, dist);
887c290e 1626 }
fb13c7ee
MG
1627 }
1628
0132c3e1 1629 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1630 goto unlock;
1631
1632 if (!cur) {
1633 /* Is there capacity at our destination? */
b932c03c 1634 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1635 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1636 goto unlock;
1637
1638 goto balance;
1639 }
1640
1641 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1642 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1643 dst_rq->nr_running == 1)
fb13c7ee
MG
1644 goto assign;
1645
1646 /*
1647 * In the overloaded case, try and keep the load balanced.
1648 */
1649balance:
e720fff6
PZ
1650 load = task_h_load(env->p);
1651 dst_load = env->dst_stats.load + load;
1652 src_load = env->src_stats.load - load;
fb13c7ee 1653
0132c3e1
RR
1654 if (moveimp > imp && moveimp > env->best_imp) {
1655 /*
1656 * If the improvement from just moving env->p direction is
1657 * better than swapping tasks around, check if a move is
1658 * possible. Store a slightly smaller score than moveimp,
1659 * so an actually idle CPU will win.
1660 */
1661 if (!load_too_imbalanced(src_load, dst_load, env)) {
1662 imp = moveimp - 1;
1663 cur = NULL;
1664 goto assign;
1665 }
1666 }
1667
1668 if (imp <= env->best_imp)
1669 goto unlock;
1670
fb13c7ee 1671 if (cur) {
e720fff6
PZ
1672 load = task_h_load(cur);
1673 dst_load -= load;
1674 src_load += load;
fb13c7ee
MG
1675 }
1676
28a21745 1677 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1678 goto unlock;
1679
ba7e5a27
RR
1680 /*
1681 * One idle CPU per node is evaluated for a task numa move.
1682 * Call select_idle_sibling to maybe find a better one.
1683 */
10e2f1ac
PZ
1684 if (!cur) {
1685 /*
1686 * select_idle_siblings() uses an per-cpu cpumask that
1687 * can be used from IRQ context.
1688 */
1689 local_irq_disable();
772bd008
MR
1690 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1691 env->dst_cpu);
10e2f1ac
PZ
1692 local_irq_enable();
1693 }
ba7e5a27 1694
fb13c7ee
MG
1695assign:
1696 task_numa_assign(env, cur, imp);
1697unlock:
1698 rcu_read_unlock();
1699}
1700
887c290e
RR
1701static void task_numa_find_cpu(struct task_numa_env *env,
1702 long taskimp, long groupimp)
2c8a50aa
MG
1703{
1704 int cpu;
1705
1706 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1707 /* Skip this CPU if the source task cannot migrate */
0c98d344 1708 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1709 continue;
1710
1711 env->dst_cpu = cpu;
887c290e 1712 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1713 }
1714}
1715
6f9aad0b
RR
1716/* Only move tasks to a NUMA node less busy than the current node. */
1717static bool numa_has_capacity(struct task_numa_env *env)
1718{
1719 struct numa_stats *src = &env->src_stats;
1720 struct numa_stats *dst = &env->dst_stats;
1721
1722 if (src->has_free_capacity && !dst->has_free_capacity)
1723 return false;
1724
1725 /*
1726 * Only consider a task move if the source has a higher load
1727 * than the destination, corrected for CPU capacity on each node.
1728 *
1729 * src->load dst->load
1730 * --------------------- vs ---------------------
1731 * src->compute_capacity dst->compute_capacity
1732 */
44dcb04f
SD
1733 if (src->load * dst->compute_capacity * env->imbalance_pct >
1734
1735 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1736 return true;
1737
1738 return false;
1739}
1740
58d081b5
MG
1741static int task_numa_migrate(struct task_struct *p)
1742{
58d081b5
MG
1743 struct task_numa_env env = {
1744 .p = p,
fb13c7ee 1745
58d081b5 1746 .src_cpu = task_cpu(p),
b32e86b4 1747 .src_nid = task_node(p),
fb13c7ee
MG
1748
1749 .imbalance_pct = 112,
1750
1751 .best_task = NULL,
1752 .best_imp = 0,
4142c3eb 1753 .best_cpu = -1,
58d081b5
MG
1754 };
1755 struct sched_domain *sd;
887c290e 1756 unsigned long taskweight, groupweight;
7bd95320 1757 int nid, ret, dist;
887c290e 1758 long taskimp, groupimp;
e6628d5b 1759
58d081b5 1760 /*
fb13c7ee
MG
1761 * Pick the lowest SD_NUMA domain, as that would have the smallest
1762 * imbalance and would be the first to start moving tasks about.
1763 *
1764 * And we want to avoid any moving of tasks about, as that would create
1765 * random movement of tasks -- counter the numa conditions we're trying
1766 * to satisfy here.
58d081b5
MG
1767 */
1768 rcu_read_lock();
fb13c7ee 1769 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1770 if (sd)
1771 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1772 rcu_read_unlock();
1773
46a73e8a
RR
1774 /*
1775 * Cpusets can break the scheduler domain tree into smaller
1776 * balance domains, some of which do not cross NUMA boundaries.
1777 * Tasks that are "trapped" in such domains cannot be migrated
1778 * elsewhere, so there is no point in (re)trying.
1779 */
1780 if (unlikely(!sd)) {
de1b301a 1781 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1782 return -EINVAL;
1783 }
1784
2c8a50aa 1785 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1786 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1787 taskweight = task_weight(p, env.src_nid, dist);
1788 groupweight = group_weight(p, env.src_nid, dist);
1789 update_numa_stats(&env.src_stats, env.src_nid);
1790 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1791 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1792 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1793
a43455a1 1794 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1795 if (numa_has_capacity(&env))
1796 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1797
9de05d48
RR
1798 /*
1799 * Look at other nodes in these cases:
1800 * - there is no space available on the preferred_nid
1801 * - the task is part of a numa_group that is interleaved across
1802 * multiple NUMA nodes; in order to better consolidate the group,
1803 * we need to check other locations.
1804 */
4142c3eb 1805 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1806 for_each_online_node(nid) {
1807 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1808 continue;
58d081b5 1809
7bd95320 1810 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1811 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1812 dist != env.dist) {
1813 taskweight = task_weight(p, env.src_nid, dist);
1814 groupweight = group_weight(p, env.src_nid, dist);
1815 }
7bd95320 1816
83e1d2cd 1817 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1818 taskimp = task_weight(p, nid, dist) - taskweight;
1819 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1820 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1821 continue;
1822
7bd95320 1823 env.dist = dist;
2c8a50aa
MG
1824 env.dst_nid = nid;
1825 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1826 if (numa_has_capacity(&env))
1827 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1828 }
1829 }
1830
68d1b02a
RR
1831 /*
1832 * If the task is part of a workload that spans multiple NUMA nodes,
1833 * and is migrating into one of the workload's active nodes, remember
1834 * this node as the task's preferred numa node, so the workload can
1835 * settle down.
1836 * A task that migrated to a second choice node will be better off
1837 * trying for a better one later. Do not set the preferred node here.
1838 */
db015dae 1839 if (p->numa_group) {
4142c3eb
RR
1840 struct numa_group *ng = p->numa_group;
1841
db015dae
RR
1842 if (env.best_cpu == -1)
1843 nid = env.src_nid;
1844 else
1845 nid = env.dst_nid;
1846
4142c3eb 1847 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1848 sched_setnuma(p, env.dst_nid);
1849 }
1850
1851 /* No better CPU than the current one was found. */
1852 if (env.best_cpu == -1)
1853 return -EAGAIN;
0ec8aa00 1854
04bb2f94
RR
1855 /*
1856 * Reset the scan period if the task is being rescheduled on an
1857 * alternative node to recheck if the tasks is now properly placed.
1858 */
b5dd77c8 1859 p->numa_scan_period = task_scan_start(p);
04bb2f94 1860
fb13c7ee 1861 if (env.best_task == NULL) {
286549dc
MG
1862 ret = migrate_task_to(p, env.best_cpu);
1863 if (ret != 0)
1864 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1865 return ret;
1866 }
1867
1868 ret = migrate_swap(p, env.best_task);
286549dc
MG
1869 if (ret != 0)
1870 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1871 put_task_struct(env.best_task);
1872 return ret;
e6628d5b
MG
1873}
1874
6b9a7460
MG
1875/* Attempt to migrate a task to a CPU on the preferred node. */
1876static void numa_migrate_preferred(struct task_struct *p)
1877{
5085e2a3
RR
1878 unsigned long interval = HZ;
1879
2739d3ee 1880 /* This task has no NUMA fault statistics yet */
44dba3d5 1881 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1882 return;
1883
2739d3ee 1884 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1885 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1886 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1887
1888 /* Success if task is already running on preferred CPU */
de1b301a 1889 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1890 return;
1891
1892 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1893 task_numa_migrate(p);
6b9a7460
MG
1894}
1895
20e07dea 1896/*
4142c3eb 1897 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1898 * tracking the nodes from which NUMA hinting faults are triggered. This can
1899 * be different from the set of nodes where the workload's memory is currently
1900 * located.
20e07dea 1901 */
4142c3eb 1902static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1903{
1904 unsigned long faults, max_faults = 0;
4142c3eb 1905 int nid, active_nodes = 0;
20e07dea
RR
1906
1907 for_each_online_node(nid) {
1908 faults = group_faults_cpu(numa_group, nid);
1909 if (faults > max_faults)
1910 max_faults = faults;
1911 }
1912
1913 for_each_online_node(nid) {
1914 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1915 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1916 active_nodes++;
20e07dea 1917 }
4142c3eb
RR
1918
1919 numa_group->max_faults_cpu = max_faults;
1920 numa_group->active_nodes = active_nodes;
20e07dea
RR
1921}
1922
04bb2f94
RR
1923/*
1924 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1925 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1926 * period will be for the next scan window. If local/(local+remote) ratio is
1927 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1928 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1929 */
1930#define NUMA_PERIOD_SLOTS 10
a22b4b01 1931#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1932
1933/*
1934 * Increase the scan period (slow down scanning) if the majority of
1935 * our memory is already on our local node, or if the majority of
1936 * the page accesses are shared with other processes.
1937 * Otherwise, decrease the scan period.
1938 */
1939static void update_task_scan_period(struct task_struct *p,
1940 unsigned long shared, unsigned long private)
1941{
1942 unsigned int period_slot;
37ec97de 1943 int lr_ratio, ps_ratio;
04bb2f94
RR
1944 int diff;
1945
1946 unsigned long remote = p->numa_faults_locality[0];
1947 unsigned long local = p->numa_faults_locality[1];
1948
1949 /*
1950 * If there were no record hinting faults then either the task is
1951 * completely idle or all activity is areas that are not of interest
074c2381
MG
1952 * to automatic numa balancing. Related to that, if there were failed
1953 * migration then it implies we are migrating too quickly or the local
1954 * node is overloaded. In either case, scan slower
04bb2f94 1955 */
074c2381 1956 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1957 p->numa_scan_period = min(p->numa_scan_period_max,
1958 p->numa_scan_period << 1);
1959
1960 p->mm->numa_next_scan = jiffies +
1961 msecs_to_jiffies(p->numa_scan_period);
1962
1963 return;
1964 }
1965
1966 /*
1967 * Prepare to scale scan period relative to the current period.
1968 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1969 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1970 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1971 */
1972 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1973 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1974 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1975
1976 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1977 /*
1978 * Most memory accesses are local. There is no need to
1979 * do fast NUMA scanning, since memory is already local.
1980 */
1981 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1982 if (!slot)
1983 slot = 1;
1984 diff = slot * period_slot;
1985 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1986 /*
1987 * Most memory accesses are shared with other tasks.
1988 * There is no point in continuing fast NUMA scanning,
1989 * since other tasks may just move the memory elsewhere.
1990 */
1991 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1992 if (!slot)
1993 slot = 1;
1994 diff = slot * period_slot;
1995 } else {
04bb2f94 1996 /*
37ec97de
RR
1997 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1998 * yet they are not on the local NUMA node. Speed up
1999 * NUMA scanning to get the memory moved over.
04bb2f94 2000 */
37ec97de
RR
2001 int ratio = max(lr_ratio, ps_ratio);
2002 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2003 }
2004
2005 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2006 task_scan_min(p), task_scan_max(p));
2007 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2008}
2009
7e2703e6
RR
2010/*
2011 * Get the fraction of time the task has been running since the last
2012 * NUMA placement cycle. The scheduler keeps similar statistics, but
2013 * decays those on a 32ms period, which is orders of magnitude off
2014 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2015 * stats only if the task is so new there are no NUMA statistics yet.
2016 */
2017static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2018{
2019 u64 runtime, delta, now;
2020 /* Use the start of this time slice to avoid calculations. */
2021 now = p->se.exec_start;
2022 runtime = p->se.sum_exec_runtime;
2023
2024 if (p->last_task_numa_placement) {
2025 delta = runtime - p->last_sum_exec_runtime;
2026 *period = now - p->last_task_numa_placement;
2027 } else {
c7b50216 2028 delta = p->se.avg.load_sum;
9d89c257 2029 *period = LOAD_AVG_MAX;
7e2703e6
RR
2030 }
2031
2032 p->last_sum_exec_runtime = runtime;
2033 p->last_task_numa_placement = now;
2034
2035 return delta;
2036}
2037
54009416
RR
2038/*
2039 * Determine the preferred nid for a task in a numa_group. This needs to
2040 * be done in a way that produces consistent results with group_weight,
2041 * otherwise workloads might not converge.
2042 */
2043static int preferred_group_nid(struct task_struct *p, int nid)
2044{
2045 nodemask_t nodes;
2046 int dist;
2047
2048 /* Direct connections between all NUMA nodes. */
2049 if (sched_numa_topology_type == NUMA_DIRECT)
2050 return nid;
2051
2052 /*
2053 * On a system with glueless mesh NUMA topology, group_weight
2054 * scores nodes according to the number of NUMA hinting faults on
2055 * both the node itself, and on nearby nodes.
2056 */
2057 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2058 unsigned long score, max_score = 0;
2059 int node, max_node = nid;
2060
2061 dist = sched_max_numa_distance;
2062
2063 for_each_online_node(node) {
2064 score = group_weight(p, node, dist);
2065 if (score > max_score) {
2066 max_score = score;
2067 max_node = node;
2068 }
2069 }
2070 return max_node;
2071 }
2072
2073 /*
2074 * Finding the preferred nid in a system with NUMA backplane
2075 * interconnect topology is more involved. The goal is to locate
2076 * tasks from numa_groups near each other in the system, and
2077 * untangle workloads from different sides of the system. This requires
2078 * searching down the hierarchy of node groups, recursively searching
2079 * inside the highest scoring group of nodes. The nodemask tricks
2080 * keep the complexity of the search down.
2081 */
2082 nodes = node_online_map;
2083 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2084 unsigned long max_faults = 0;
81907478 2085 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2086 int a, b;
2087
2088 /* Are there nodes at this distance from each other? */
2089 if (!find_numa_distance(dist))
2090 continue;
2091
2092 for_each_node_mask(a, nodes) {
2093 unsigned long faults = 0;
2094 nodemask_t this_group;
2095 nodes_clear(this_group);
2096
2097 /* Sum group's NUMA faults; includes a==b case. */
2098 for_each_node_mask(b, nodes) {
2099 if (node_distance(a, b) < dist) {
2100 faults += group_faults(p, b);
2101 node_set(b, this_group);
2102 node_clear(b, nodes);
2103 }
2104 }
2105
2106 /* Remember the top group. */
2107 if (faults > max_faults) {
2108 max_faults = faults;
2109 max_group = this_group;
2110 /*
2111 * subtle: at the smallest distance there is
2112 * just one node left in each "group", the
2113 * winner is the preferred nid.
2114 */
2115 nid = a;
2116 }
2117 }
2118 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2119 if (!max_faults)
2120 break;
54009416
RR
2121 nodes = max_group;
2122 }
2123 return nid;
2124}
2125
cbee9f88
PZ
2126static void task_numa_placement(struct task_struct *p)
2127{
83e1d2cd
MG
2128 int seq, nid, max_nid = -1, max_group_nid = -1;
2129 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2130 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2131 unsigned long total_faults;
2132 u64 runtime, period;
7dbd13ed 2133 spinlock_t *group_lock = NULL;
cbee9f88 2134
7e5a2c17
JL
2135 /*
2136 * The p->mm->numa_scan_seq field gets updated without
2137 * exclusive access. Use READ_ONCE() here to ensure
2138 * that the field is read in a single access:
2139 */
316c1608 2140 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2141 if (p->numa_scan_seq == seq)
2142 return;
2143 p->numa_scan_seq = seq;
598f0ec0 2144 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2145
7e2703e6
RR
2146 total_faults = p->numa_faults_locality[0] +
2147 p->numa_faults_locality[1];
2148 runtime = numa_get_avg_runtime(p, &period);
2149
7dbd13ed
MG
2150 /* If the task is part of a group prevent parallel updates to group stats */
2151 if (p->numa_group) {
2152 group_lock = &p->numa_group->lock;
60e69eed 2153 spin_lock_irq(group_lock);
7dbd13ed
MG
2154 }
2155
688b7585
MG
2156 /* Find the node with the highest number of faults */
2157 for_each_online_node(nid) {
44dba3d5
IM
2158 /* Keep track of the offsets in numa_faults array */
2159 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2160 unsigned long faults = 0, group_faults = 0;
44dba3d5 2161 int priv;
745d6147 2162
be1e4e76 2163 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2164 long diff, f_diff, f_weight;
8c8a743c 2165
44dba3d5
IM
2166 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2167 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2168 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2169 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2170
ac8e895b 2171 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2172 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2173 fault_types[priv] += p->numa_faults[membuf_idx];
2174 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2175
7e2703e6
RR
2176 /*
2177 * Normalize the faults_from, so all tasks in a group
2178 * count according to CPU use, instead of by the raw
2179 * number of faults. Tasks with little runtime have
2180 * little over-all impact on throughput, and thus their
2181 * faults are less important.
2182 */
2183 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2184 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2185 (total_faults + 1);
44dba3d5
IM
2186 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2187 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2188
44dba3d5
IM
2189 p->numa_faults[mem_idx] += diff;
2190 p->numa_faults[cpu_idx] += f_diff;
2191 faults += p->numa_faults[mem_idx];
83e1d2cd 2192 p->total_numa_faults += diff;
8c8a743c 2193 if (p->numa_group) {
44dba3d5
IM
2194 /*
2195 * safe because we can only change our own group
2196 *
2197 * mem_idx represents the offset for a given
2198 * nid and priv in a specific region because it
2199 * is at the beginning of the numa_faults array.
2200 */
2201 p->numa_group->faults[mem_idx] += diff;
2202 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2203 p->numa_group->total_faults += diff;
44dba3d5 2204 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2205 }
ac8e895b
MG
2206 }
2207
688b7585
MG
2208 if (faults > max_faults) {
2209 max_faults = faults;
2210 max_nid = nid;
2211 }
83e1d2cd
MG
2212
2213 if (group_faults > max_group_faults) {
2214 max_group_faults = group_faults;
2215 max_group_nid = nid;
2216 }
2217 }
2218
04bb2f94
RR
2219 update_task_scan_period(p, fault_types[0], fault_types[1]);
2220
7dbd13ed 2221 if (p->numa_group) {
4142c3eb 2222 numa_group_count_active_nodes(p->numa_group);
60e69eed 2223 spin_unlock_irq(group_lock);
54009416 2224 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2225 }
2226
bb97fc31
RR
2227 if (max_faults) {
2228 /* Set the new preferred node */
2229 if (max_nid != p->numa_preferred_nid)
2230 sched_setnuma(p, max_nid);
2231
2232 if (task_node(p) != p->numa_preferred_nid)
2233 numa_migrate_preferred(p);
3a7053b3 2234 }
cbee9f88
PZ
2235}
2236
8c8a743c
PZ
2237static inline int get_numa_group(struct numa_group *grp)
2238{
2239 return atomic_inc_not_zero(&grp->refcount);
2240}
2241
2242static inline void put_numa_group(struct numa_group *grp)
2243{
2244 if (atomic_dec_and_test(&grp->refcount))
2245 kfree_rcu(grp, rcu);
2246}
2247
3e6a9418
MG
2248static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249 int *priv)
8c8a743c
PZ
2250{
2251 struct numa_group *grp, *my_grp;
2252 struct task_struct *tsk;
2253 bool join = false;
2254 int cpu = cpupid_to_cpu(cpupid);
2255 int i;
2256
2257 if (unlikely(!p->numa_group)) {
2258 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2259 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2260
2261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262 if (!grp)
2263 return;
2264
2265 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2266 grp->active_nodes = 1;
2267 grp->max_faults_cpu = 0;
8c8a743c 2268 spin_lock_init(&grp->lock);
e29cf08b 2269 grp->gid = p->pid;
50ec8a40 2270 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2271 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272 nr_node_ids;
8c8a743c 2273
be1e4e76 2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2275 grp->faults[i] = p->numa_faults[i];
8c8a743c 2276
989348b5 2277 grp->total_faults = p->total_numa_faults;
83e1d2cd 2278
8c8a743c
PZ
2279 grp->nr_tasks++;
2280 rcu_assign_pointer(p->numa_group, grp);
2281 }
2282
2283 rcu_read_lock();
316c1608 2284 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2285
2286 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2287 goto no_join;
8c8a743c
PZ
2288
2289 grp = rcu_dereference(tsk->numa_group);
2290 if (!grp)
3354781a 2291 goto no_join;
8c8a743c
PZ
2292
2293 my_grp = p->numa_group;
2294 if (grp == my_grp)
3354781a 2295 goto no_join;
8c8a743c
PZ
2296
2297 /*
2298 * Only join the other group if its bigger; if we're the bigger group,
2299 * the other task will join us.
2300 */
2301 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2302 goto no_join;
8c8a743c
PZ
2303
2304 /*
2305 * Tie-break on the grp address.
2306 */
2307 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2308 goto no_join;
8c8a743c 2309
dabe1d99
RR
2310 /* Always join threads in the same process. */
2311 if (tsk->mm == current->mm)
2312 join = true;
2313
2314 /* Simple filter to avoid false positives due to PID collisions */
2315 if (flags & TNF_SHARED)
2316 join = true;
8c8a743c 2317
3e6a9418
MG
2318 /* Update priv based on whether false sharing was detected */
2319 *priv = !join;
2320
dabe1d99 2321 if (join && !get_numa_group(grp))
3354781a 2322 goto no_join;
8c8a743c 2323
8c8a743c
PZ
2324 rcu_read_unlock();
2325
2326 if (!join)
2327 return;
2328
60e69eed
MG
2329 BUG_ON(irqs_disabled());
2330 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2331
be1e4e76 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2333 my_grp->faults[i] -= p->numa_faults[i];
2334 grp->faults[i] += p->numa_faults[i];
8c8a743c 2335 }
989348b5
MG
2336 my_grp->total_faults -= p->total_numa_faults;
2337 grp->total_faults += p->total_numa_faults;
8c8a743c 2338
8c8a743c
PZ
2339 my_grp->nr_tasks--;
2340 grp->nr_tasks++;
2341
2342 spin_unlock(&my_grp->lock);
60e69eed 2343 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2344
2345 rcu_assign_pointer(p->numa_group, grp);
2346
2347 put_numa_group(my_grp);
3354781a
PZ
2348 return;
2349
2350no_join:
2351 rcu_read_unlock();
2352 return;
8c8a743c
PZ
2353}
2354
2355void task_numa_free(struct task_struct *p)
2356{
2357 struct numa_group *grp = p->numa_group;
44dba3d5 2358 void *numa_faults = p->numa_faults;
e9dd685c
SR
2359 unsigned long flags;
2360 int i;
8c8a743c
PZ
2361
2362 if (grp) {
e9dd685c 2363 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2364 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2365 grp->faults[i] -= p->numa_faults[i];
989348b5 2366 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2367
8c8a743c 2368 grp->nr_tasks--;
e9dd685c 2369 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2370 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2371 put_numa_group(grp);
2372 }
2373
44dba3d5 2374 p->numa_faults = NULL;
82727018 2375 kfree(numa_faults);
8c8a743c
PZ
2376}
2377
cbee9f88
PZ
2378/*
2379 * Got a PROT_NONE fault for a page on @node.
2380 */
58b46da3 2381void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2382{
2383 struct task_struct *p = current;
6688cc05 2384 bool migrated = flags & TNF_MIGRATED;
58b46da3 2385 int cpu_node = task_node(current);
792568ec 2386 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2387 struct numa_group *ng;
ac8e895b 2388 int priv;
cbee9f88 2389
2a595721 2390 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2391 return;
2392
9ff1d9ff
MG
2393 /* for example, ksmd faulting in a user's mm */
2394 if (!p->mm)
2395 return;
2396
f809ca9a 2397 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2398 if (unlikely(!p->numa_faults)) {
2399 int size = sizeof(*p->numa_faults) *
be1e4e76 2400 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2401
44dba3d5
IM
2402 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2403 if (!p->numa_faults)
f809ca9a 2404 return;
745d6147 2405
83e1d2cd 2406 p->total_numa_faults = 0;
04bb2f94 2407 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2408 }
cbee9f88 2409
8c8a743c
PZ
2410 /*
2411 * First accesses are treated as private, otherwise consider accesses
2412 * to be private if the accessing pid has not changed
2413 */
2414 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2415 priv = 1;
2416 } else {
2417 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2418 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2419 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2420 }
2421
792568ec
RR
2422 /*
2423 * If a workload spans multiple NUMA nodes, a shared fault that
2424 * occurs wholly within the set of nodes that the workload is
2425 * actively using should be counted as local. This allows the
2426 * scan rate to slow down when a workload has settled down.
2427 */
4142c3eb
RR
2428 ng = p->numa_group;
2429 if (!priv && !local && ng && ng->active_nodes > 1 &&
2430 numa_is_active_node(cpu_node, ng) &&
2431 numa_is_active_node(mem_node, ng))
792568ec
RR
2432 local = 1;
2433
cbee9f88 2434 task_numa_placement(p);
f809ca9a 2435
2739d3ee
RR
2436 /*
2437 * Retry task to preferred node migration periodically, in case it
2438 * case it previously failed, or the scheduler moved us.
2439 */
2440 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2441 numa_migrate_preferred(p);
2442
b32e86b4
IM
2443 if (migrated)
2444 p->numa_pages_migrated += pages;
074c2381
MG
2445 if (flags & TNF_MIGRATE_FAIL)
2446 p->numa_faults_locality[2] += pages;
b32e86b4 2447
44dba3d5
IM
2448 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2449 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2450 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2451}
2452
6e5fb223
PZ
2453static void reset_ptenuma_scan(struct task_struct *p)
2454{
7e5a2c17
JL
2455 /*
2456 * We only did a read acquisition of the mmap sem, so
2457 * p->mm->numa_scan_seq is written to without exclusive access
2458 * and the update is not guaranteed to be atomic. That's not
2459 * much of an issue though, since this is just used for
2460 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2461 * expensive, to avoid any form of compiler optimizations:
2462 */
316c1608 2463 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2464 p->mm->numa_scan_offset = 0;
2465}
2466
cbee9f88
PZ
2467/*
2468 * The expensive part of numa migration is done from task_work context.
2469 * Triggered from task_tick_numa().
2470 */
2471void task_numa_work(struct callback_head *work)
2472{
2473 unsigned long migrate, next_scan, now = jiffies;
2474 struct task_struct *p = current;
2475 struct mm_struct *mm = p->mm;
51170840 2476 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2477 struct vm_area_struct *vma;
9f40604c 2478 unsigned long start, end;
598f0ec0 2479 unsigned long nr_pte_updates = 0;
4620f8c1 2480 long pages, virtpages;
cbee9f88 2481
9148a3a1 2482 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2483
2484 work->next = work; /* protect against double add */
2485 /*
2486 * Who cares about NUMA placement when they're dying.
2487 *
2488 * NOTE: make sure not to dereference p->mm before this check,
2489 * exit_task_work() happens _after_ exit_mm() so we could be called
2490 * without p->mm even though we still had it when we enqueued this
2491 * work.
2492 */
2493 if (p->flags & PF_EXITING)
2494 return;
2495
930aa174 2496 if (!mm->numa_next_scan) {
7e8d16b6
MG
2497 mm->numa_next_scan = now +
2498 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2499 }
2500
cbee9f88
PZ
2501 /*
2502 * Enforce maximal scan/migration frequency..
2503 */
2504 migrate = mm->numa_next_scan;
2505 if (time_before(now, migrate))
2506 return;
2507
598f0ec0
MG
2508 if (p->numa_scan_period == 0) {
2509 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2510 p->numa_scan_period = task_scan_start(p);
598f0ec0 2511 }
cbee9f88 2512
fb003b80 2513 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2514 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2515 return;
2516
19a78d11
PZ
2517 /*
2518 * Delay this task enough that another task of this mm will likely win
2519 * the next time around.
2520 */
2521 p->node_stamp += 2 * TICK_NSEC;
2522
9f40604c
MG
2523 start = mm->numa_scan_offset;
2524 pages = sysctl_numa_balancing_scan_size;
2525 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2526 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2527 if (!pages)
2528 return;
cbee9f88 2529
4620f8c1 2530
8655d549
VB
2531 if (!down_read_trylock(&mm->mmap_sem))
2532 return;
9f40604c 2533 vma = find_vma(mm, start);
6e5fb223
PZ
2534 if (!vma) {
2535 reset_ptenuma_scan(p);
9f40604c 2536 start = 0;
6e5fb223
PZ
2537 vma = mm->mmap;
2538 }
9f40604c 2539 for (; vma; vma = vma->vm_next) {
6b79c57b 2540 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2541 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2542 continue;
6b79c57b 2543 }
6e5fb223 2544
4591ce4f
MG
2545 /*
2546 * Shared library pages mapped by multiple processes are not
2547 * migrated as it is expected they are cache replicated. Avoid
2548 * hinting faults in read-only file-backed mappings or the vdso
2549 * as migrating the pages will be of marginal benefit.
2550 */
2551 if (!vma->vm_mm ||
2552 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2553 continue;
2554
3c67f474
MG
2555 /*
2556 * Skip inaccessible VMAs to avoid any confusion between
2557 * PROT_NONE and NUMA hinting ptes
2558 */
2559 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2560 continue;
4591ce4f 2561
9f40604c
MG
2562 do {
2563 start = max(start, vma->vm_start);
2564 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2565 end = min(end, vma->vm_end);
4620f8c1 2566 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2567
2568 /*
4620f8c1
RR
2569 * Try to scan sysctl_numa_balancing_size worth of
2570 * hpages that have at least one present PTE that
2571 * is not already pte-numa. If the VMA contains
2572 * areas that are unused or already full of prot_numa
2573 * PTEs, scan up to virtpages, to skip through those
2574 * areas faster.
598f0ec0
MG
2575 */
2576 if (nr_pte_updates)
2577 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2578 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2579
9f40604c 2580 start = end;
4620f8c1 2581 if (pages <= 0 || virtpages <= 0)
9f40604c 2582 goto out;
3cf1962c
RR
2583
2584 cond_resched();
9f40604c 2585 } while (end != vma->vm_end);
cbee9f88 2586 }
6e5fb223 2587
9f40604c 2588out:
6e5fb223 2589 /*
c69307d5
PZ
2590 * It is possible to reach the end of the VMA list but the last few
2591 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2592 * would find the !migratable VMA on the next scan but not reset the
2593 * scanner to the start so check it now.
6e5fb223
PZ
2594 */
2595 if (vma)
9f40604c 2596 mm->numa_scan_offset = start;
6e5fb223
PZ
2597 else
2598 reset_ptenuma_scan(p);
2599 up_read(&mm->mmap_sem);
51170840
RR
2600
2601 /*
2602 * Make sure tasks use at least 32x as much time to run other code
2603 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2604 * Usually update_task_scan_period slows down scanning enough; on an
2605 * overloaded system we need to limit overhead on a per task basis.
2606 */
2607 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2608 u64 diff = p->se.sum_exec_runtime - runtime;
2609 p->node_stamp += 32 * diff;
2610 }
cbee9f88
PZ
2611}
2612
2613/*
2614 * Drive the periodic memory faults..
2615 */
2616void task_tick_numa(struct rq *rq, struct task_struct *curr)
2617{
2618 struct callback_head *work = &curr->numa_work;
2619 u64 period, now;
2620
2621 /*
2622 * We don't care about NUMA placement if we don't have memory.
2623 */
2624 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2625 return;
2626
2627 /*
2628 * Using runtime rather than walltime has the dual advantage that
2629 * we (mostly) drive the selection from busy threads and that the
2630 * task needs to have done some actual work before we bother with
2631 * NUMA placement.
2632 */
2633 now = curr->se.sum_exec_runtime;
2634 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2635
25b3e5a3 2636 if (now > curr->node_stamp + period) {
4b96a29b 2637 if (!curr->node_stamp)
b5dd77c8 2638 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2639 curr->node_stamp += period;
cbee9f88
PZ
2640
2641 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2642 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2643 task_work_add(curr, work, true);
2644 }
2645 }
2646}
3fed382b 2647
cbee9f88
PZ
2648#else
2649static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2650{
2651}
0ec8aa00
PZ
2652
2653static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2654{
2655}
2656
2657static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2658{
2659}
3fed382b 2660
cbee9f88
PZ
2661#endif /* CONFIG_NUMA_BALANCING */
2662
30cfdcfc
DA
2663static void
2664account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665{
2666 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2667 if (!parent_entity(se))
029632fb 2668 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2669#ifdef CONFIG_SMP
0ec8aa00
PZ
2670 if (entity_is_task(se)) {
2671 struct rq *rq = rq_of(cfs_rq);
2672
2673 account_numa_enqueue(rq, task_of(se));
2674 list_add(&se->group_node, &rq->cfs_tasks);
2675 }
367456c7 2676#endif
30cfdcfc 2677 cfs_rq->nr_running++;
30cfdcfc
DA
2678}
2679
2680static void
2681account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2682{
2683 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2684 if (!parent_entity(se))
029632fb 2685 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2686#ifdef CONFIG_SMP
0ec8aa00
PZ
2687 if (entity_is_task(se)) {
2688 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2689 list_del_init(&se->group_node);
0ec8aa00 2690 }
bfdb198c 2691#endif
30cfdcfc 2692 cfs_rq->nr_running--;
30cfdcfc
DA
2693}
2694
8d5b9025
PZ
2695/*
2696 * Signed add and clamp on underflow.
2697 *
2698 * Explicitly do a load-store to ensure the intermediate value never hits
2699 * memory. This allows lockless observations without ever seeing the negative
2700 * values.
2701 */
2702#define add_positive(_ptr, _val) do { \
2703 typeof(_ptr) ptr = (_ptr); \
2704 typeof(_val) val = (_val); \
2705 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2706 \
2707 res = var + val; \
2708 \
2709 if (val < 0 && res > var) \
2710 res = 0; \
2711 \
2712 WRITE_ONCE(*ptr, res); \
2713} while (0)
2714
2715/*
2716 * Unsigned subtract and clamp on underflow.
2717 *
2718 * Explicitly do a load-store to ensure the intermediate value never hits
2719 * memory. This allows lockless observations without ever seeing the negative
2720 * values.
2721 */
2722#define sub_positive(_ptr, _val) do { \
2723 typeof(_ptr) ptr = (_ptr); \
2724 typeof(*ptr) val = (_val); \
2725 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2726 res = var - val; \
2727 if (res > var) \
2728 res = 0; \
2729 WRITE_ONCE(*ptr, res); \
2730} while (0)
2731
2732#ifdef CONFIG_SMP
2733/*
2734 * XXX we want to get rid of this helper and use the full load resolution.
2735 */
2736static inline long se_weight(struct sched_entity *se)
2737{
2738 return scale_load_down(se->load.weight);
2739}
2740
2741static inline void
2742enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2743{
2744 cfs_rq->runnable_load_avg += se->avg.load_avg;
2745 cfs_rq->runnable_load_sum += se_weight(se) * se->avg.load_sum;
2746}
2747
2748static inline void
2749dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750{
2751 sub_positive(&cfs_rq->runnable_load_avg, se->avg.load_avg);
2752 sub_positive(&cfs_rq->runnable_load_sum, se_weight(se) * se->avg.load_sum);
2753}
2754
2755static inline void
2756enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2757{
2758 cfs_rq->avg.load_avg += se->avg.load_avg;
2759 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2760}
2761
2762static inline void
2763dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2764{
2765 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2766 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2767}
2768#else
2769static inline void
2770enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2771static inline void
2772dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2773static inline void
2774enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2775static inline void
2776dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2777#endif
2778
9059393e
VG
2779static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2780 unsigned long weight)
2781{
2782 if (se->on_rq) {
2783 /* commit outstanding execution time */
2784 if (cfs_rq->curr == se)
2785 update_curr(cfs_rq);
2786 account_entity_dequeue(cfs_rq, se);
2787 dequeue_runnable_load_avg(cfs_rq, se);
2788 }
2789 dequeue_load_avg(cfs_rq, se);
2790
2791 update_load_set(&se->load, weight);
2792
2793#ifdef CONFIG_SMP
2794 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum,
2795 LOAD_AVG_MAX - 1024 + se->avg.period_contrib);
2796#endif
2797
2798 enqueue_load_avg(cfs_rq, se);
2799 if (se->on_rq) {
2800 account_entity_enqueue(cfs_rq, se);
2801 enqueue_runnable_load_avg(cfs_rq, se);
2802 }
2803}
2804
2805void reweight_task(struct task_struct *p, int prio)
2806{
2807 struct sched_entity *se = &p->se;
2808 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2809 struct load_weight *load = &se->load;
2810 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2811
2812 reweight_entity(cfs_rq, se, weight);
2813 load->inv_weight = sched_prio_to_wmult[prio];
2814}
2815
3ff6dcac
YZ
2816#ifdef CONFIG_FAIR_GROUP_SCHED
2817# ifdef CONFIG_SMP
cef27403
PZ
2818/*
2819 * All this does is approximate the hierarchical proportion which includes that
2820 * global sum we all love to hate.
2821 *
2822 * That is, the weight of a group entity, is the proportional share of the
2823 * group weight based on the group runqueue weights. That is:
2824 *
2825 * tg->weight * grq->load.weight
2826 * ge->load.weight = ----------------------------- (1)
2827 * \Sum grq->load.weight
2828 *
2829 * Now, because computing that sum is prohibitively expensive to compute (been
2830 * there, done that) we approximate it with this average stuff. The average
2831 * moves slower and therefore the approximation is cheaper and more stable.
2832 *
2833 * So instead of the above, we substitute:
2834 *
2835 * grq->load.weight -> grq->avg.load_avg (2)
2836 *
2837 * which yields the following:
2838 *
2839 * tg->weight * grq->avg.load_avg
2840 * ge->load.weight = ------------------------------ (3)
2841 * tg->load_avg
2842 *
2843 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2844 *
2845 * That is shares_avg, and it is right (given the approximation (2)).
2846 *
2847 * The problem with it is that because the average is slow -- it was designed
2848 * to be exactly that of course -- this leads to transients in boundary
2849 * conditions. In specific, the case where the group was idle and we start the
2850 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2851 * yielding bad latency etc..
2852 *
2853 * Now, in that special case (1) reduces to:
2854 *
2855 * tg->weight * grq->load.weight
2856 * ge->load.weight = ----------------------------- = tg>weight (4)
2857 * grp->load.weight
2858 *
2859 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2860 *
2861 * So what we do is modify our approximation (3) to approach (4) in the (near)
2862 * UP case, like:
2863 *
2864 * ge->load.weight =
2865 *
2866 * tg->weight * grq->load.weight
2867 * --------------------------------------------------- (5)
2868 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2869 *
2870 *
2871 * And that is shares_weight and is icky. In the (near) UP case it approaches
2872 * (4) while in the normal case it approaches (3). It consistently
2873 * overestimates the ge->load.weight and therefore:
2874 *
2875 * \Sum ge->load.weight >= tg->weight
2876 *
2877 * hence icky!
2878 */
7c80cfc9 2879static long calc_cfs_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2880{
7c80cfc9
PZ
2881 long tg_weight, tg_shares, load, shares;
2882 struct task_group *tg = cfs_rq->tg;
2883
2884 tg_shares = READ_ONCE(tg->shares);
cf5f0acf
PZ
2885
2886 /*
3d4b60d3
PZ
2887 * Because (5) drops to 0 when the cfs_rq is idle, we need to use (3)
2888 * as a lower bound.
cf5f0acf 2889 */
3d4b60d3 2890 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2891
ea1dc6fc 2892 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2893
ea1dc6fc
PZ
2894 /* Ensure tg_weight >= load */
2895 tg_weight -= cfs_rq->tg_load_avg_contrib;
2896 tg_weight += load;
3ff6dcac 2897
7c80cfc9 2898 shares = (tg_shares * load);
cf5f0acf
PZ
2899 if (tg_weight)
2900 shares /= tg_weight;
3ff6dcac 2901
b8fd8423
DE
2902 /*
2903 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2904 * of a group with small tg->shares value. It is a floor value which is
2905 * assigned as a minimum load.weight to the sched_entity representing
2906 * the group on a CPU.
2907 *
2908 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2909 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2910 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2911 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2912 * instead of 0.
2913 */
7c80cfc9 2914 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2915}
3ff6dcac 2916# endif /* CONFIG_SMP */
ea1dc6fc 2917
82958366
PT
2918static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2919
89ee048f 2920static void update_cfs_shares(struct sched_entity *se)
2069dd75 2921{
89ee048f 2922 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3ff6dcac 2923 long shares;
2069dd75 2924
89ee048f
VG
2925 if (!cfs_rq)
2926 return;
2927
2928 if (throttled_hierarchy(cfs_rq))
2069dd75 2929 return;
89ee048f 2930
3ff6dcac 2931#ifndef CONFIG_SMP
7c80cfc9
PZ
2932 shares = READ_ONCE(cfs_rq->tg->shares);
2933
2934 if (likely(se->load.weight == shares))
3ff6dcac 2935 return;
7c80cfc9
PZ
2936#else
2937 shares = calc_cfs_shares(cfs_rq);
3ff6dcac 2938#endif
2069dd75
PZ
2939
2940 reweight_entity(cfs_rq_of(se), se, shares);
2941}
89ee048f 2942
2069dd75 2943#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2944static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2945{
2946}
2947#endif /* CONFIG_FAIR_GROUP_SCHED */
2948
a030d738
VK
2949static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2950{
43964409
LT
2951 struct rq *rq = rq_of(cfs_rq);
2952
2953 if (&rq->cfs == cfs_rq) {
a030d738
VK
2954 /*
2955 * There are a few boundary cases this might miss but it should
2956 * get called often enough that that should (hopefully) not be
2957 * a real problem -- added to that it only calls on the local
2958 * CPU, so if we enqueue remotely we'll miss an update, but
2959 * the next tick/schedule should update.
2960 *
2961 * It will not get called when we go idle, because the idle
2962 * thread is a different class (!fair), nor will the utilization
2963 * number include things like RT tasks.
2964 *
2965 * As is, the util number is not freq-invariant (we'd have to
2966 * implement arch_scale_freq_capacity() for that).
2967 *
2968 * See cpu_util().
2969 */
43964409 2970 cpufreq_update_util(rq, 0);
a030d738
VK
2971 }
2972}
2973
141965c7 2974#ifdef CONFIG_SMP
9d85f21c
PT
2975/*
2976 * Approximate:
2977 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2978 */
a481db34 2979static u64 decay_load(u64 val, u64 n)
9d85f21c 2980{
5b51f2f8
PT
2981 unsigned int local_n;
2982
05296e75 2983 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2984 return 0;
2985
2986 /* after bounds checking we can collapse to 32-bit */
2987 local_n = n;
2988
2989 /*
2990 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2991 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2992 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2993 *
2994 * To achieve constant time decay_load.
2995 */
2996 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2997 val >>= local_n / LOAD_AVG_PERIOD;
2998 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2999 }
3000
9d89c257
YD
3001 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3002 return val;
5b51f2f8
PT
3003}
3004
05296e75 3005static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 3006{
05296e75 3007 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 3008
a481db34 3009 /*
3841cdc3 3010 * c1 = d1 y^p
a481db34 3011 */
05296e75 3012 c1 = decay_load((u64)d1, periods);
a481db34 3013
a481db34 3014 /*
3841cdc3 3015 * p-1
05296e75
PZ
3016 * c2 = 1024 \Sum y^n
3017 * n=1
a481db34 3018 *
05296e75
PZ
3019 * inf inf
3020 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 3021 * n=0 n=p
a481db34 3022 */
05296e75 3023 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
3024
3025 return c1 + c2 + c3;
9d85f21c
PT
3026}
3027
54a21385 3028#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 3029
a481db34
YD
3030/*
3031 * Accumulate the three separate parts of the sum; d1 the remainder
3032 * of the last (incomplete) period, d2 the span of full periods and d3
3033 * the remainder of the (incomplete) current period.
3034 *
3035 * d1 d2 d3
3036 * ^ ^ ^
3037 * | | |
3038 * |<->|<----------------->|<--->|
3039 * ... |---x---|------| ... |------|-----x (now)
3040 *
3841cdc3
PZ
3041 * p-1
3042 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3043 * n=1
a481db34 3044 *
3841cdc3 3045 * = u y^p + (Step 1)
a481db34 3046 *
3841cdc3
PZ
3047 * p-1
3048 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
3049 * n=1
a481db34
YD
3050 */
3051static __always_inline u32
3052accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3053 unsigned long weight, int running, struct cfs_rq *cfs_rq)
3054{
3055 unsigned long scale_freq, scale_cpu;
05296e75 3056 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 3057 u64 periods;
a481db34
YD
3058
3059 scale_freq = arch_scale_freq_capacity(NULL, cpu);
3060 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3061
3062 delta += sa->period_contrib;
3063 periods = delta / 1024; /* A period is 1024us (~1ms) */
3064
3065 /*
3066 * Step 1: decay old *_sum if we crossed period boundaries.
3067 */
3068 if (periods) {
3069 sa->load_sum = decay_load(sa->load_sum, periods);
3070 if (cfs_rq) {
3071 cfs_rq->runnable_load_sum =
3072 decay_load(cfs_rq->runnable_load_sum, periods);
3073 }
3074 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 3075
05296e75
PZ
3076 /*
3077 * Step 2
3078 */
3079 delta %= 1024;
3080 contrib = __accumulate_pelt_segments(periods,
3081 1024 - sa->period_contrib, delta);
3082 }
a481db34
YD
3083 sa->period_contrib = delta;
3084
3085 contrib = cap_scale(contrib, scale_freq);
3086 if (weight) {
3087 sa->load_sum += weight * contrib;
3088 if (cfs_rq)
3089 cfs_rq->runnable_load_sum += weight * contrib;
3090 }
3091 if (running)
3092 sa->util_sum += contrib * scale_cpu;
3093
3094 return periods;
3095}
3096
9d85f21c
PT
3097/*
3098 * We can represent the historical contribution to runnable average as the
3099 * coefficients of a geometric series. To do this we sub-divide our runnable
3100 * history into segments of approximately 1ms (1024us); label the segment that
3101 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3102 *
3103 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3104 * p0 p1 p2
3105 * (now) (~1ms ago) (~2ms ago)
3106 *
3107 * Let u_i denote the fraction of p_i that the entity was runnable.
3108 *
3109 * We then designate the fractions u_i as our co-efficients, yielding the
3110 * following representation of historical load:
3111 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3112 *
3113 * We choose y based on the with of a reasonably scheduling period, fixing:
3114 * y^32 = 0.5
3115 *
3116 * This means that the contribution to load ~32ms ago (u_32) will be weighted
3117 * approximately half as much as the contribution to load within the last ms
3118 * (u_0).
3119 *
3120 * When a period "rolls over" and we have new u_0`, multiplying the previous
3121 * sum again by y is sufficient to update:
3122 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3123 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3124 */
9d89c257 3125static __always_inline int
c7b50216
PZ
3126___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3127 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 3128{
a481db34 3129 u64 delta;
9d85f21c 3130
9d89c257 3131 delta = now - sa->last_update_time;
9d85f21c
PT
3132 /*
3133 * This should only happen when time goes backwards, which it
3134 * unfortunately does during sched clock init when we swap over to TSC.
3135 */
3136 if ((s64)delta < 0) {
9d89c257 3137 sa->last_update_time = now;
9d85f21c
PT
3138 return 0;
3139 }
3140
3141 /*
3142 * Use 1024ns as the unit of measurement since it's a reasonable
3143 * approximation of 1us and fast to compute.
3144 */
3145 delta >>= 10;
3146 if (!delta)
3147 return 0;
bb0bd044
PZ
3148
3149 sa->last_update_time += delta << 10;
9d85f21c 3150
f235a54f
VG
3151 /*
3152 * running is a subset of runnable (weight) so running can't be set if
3153 * runnable is clear. But there are some corner cases where the current
3154 * se has been already dequeued but cfs_rq->curr still points to it.
3155 * This means that weight will be 0 but not running for a sched_entity
3156 * but also for a cfs_rq if the latter becomes idle. As an example,
3157 * this happens during idle_balance() which calls
3158 * update_blocked_averages()
3159 */
3160 if (!weight)
3161 running = 0;
3162
a481db34
YD
3163 /*
3164 * Now we know we crossed measurement unit boundaries. The *_avg
3165 * accrues by two steps:
3166 *
3167 * Step 1: accumulate *_sum since last_update_time. If we haven't
3168 * crossed period boundaries, finish.
3169 */
3170 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3171 return 0;
9ee474f5 3172
c7b50216
PZ
3173 return 1;
3174}
3175
3176static __always_inline void
3177___update_load_avg(struct sched_avg *sa, unsigned long weight, struct cfs_rq *cfs_rq)
3178{
3179 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3180
a481db34
YD
3181 /*
3182 * Step 2: update *_avg.
3183 */
c7b50216 3184 sa->load_avg = div_u64(weight * sa->load_sum, divider);
a481db34
YD
3185 if (cfs_rq) {
3186 cfs_rq->runnable_load_avg =
c7b50216 3187 div_u64(cfs_rq->runnable_load_sum, divider);
9d89c257 3188 }
c7b50216
PZ
3189 sa->util_avg = sa->util_sum / divider;
3190}
aff3e498 3191
c7b50216
PZ
3192/*
3193 * sched_entity:
3194 *
3195 * load_sum := runnable_sum
3196 * load_avg = se_weight(se) * runnable_avg
3197 *
3198 * cfq_rs:
3199 *
3200 * load_sum = \Sum se_weight(se) * se->avg.load_sum
3201 * load_avg = \Sum se->avg.load_avg
3202 */
3203
0ccb977f
PZ
3204static int
3205__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3206{
c7b50216
PZ
3207 if (___update_load_sum(now, cpu, &se->avg, 0, 0, NULL)) {
3208 ___update_load_avg(&se->avg, se_weight(se), NULL);
3209 return 1;
3210 }
3211
3212 return 0;
0ccb977f
PZ
3213}
3214
3215static int
3216__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3217{
c7b50216
PZ
3218 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq,
3219 cfs_rq->curr == se, NULL)) {
3220
3221 ___update_load_avg(&se->avg, se_weight(se), NULL);
3222 return 1;
3223 }
3224
3225 return 0;
0ccb977f
PZ
3226}
3227
3228static int
3229__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3230{
c7b50216
PZ
3231 if (___update_load_sum(now, cpu, &cfs_rq->avg,
3232 scale_load_down(cfs_rq->load.weight),
3233 cfs_rq->curr != NULL, cfs_rq)) {
3234 ___update_load_avg(&cfs_rq->avg, 1, cfs_rq);
3235 return 1;
3236 }
3237
3238 return 0;
0ccb977f
PZ
3239}
3240
c566e8e9 3241#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3242/**
3243 * update_tg_load_avg - update the tg's load avg
3244 * @cfs_rq: the cfs_rq whose avg changed
3245 * @force: update regardless of how small the difference
3246 *
3247 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3248 * However, because tg->load_avg is a global value there are performance
3249 * considerations.
3250 *
3251 * In order to avoid having to look at the other cfs_rq's, we use a
3252 * differential update where we store the last value we propagated. This in
3253 * turn allows skipping updates if the differential is 'small'.
3254 *
815abf5a 3255 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3256 */
9d89c257 3257static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3258{
9d89c257 3259 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3260
aa0b7ae0
WL
3261 /*
3262 * No need to update load_avg for root_task_group as it is not used.
3263 */
3264 if (cfs_rq->tg == &root_task_group)
3265 return;
3266
9d89c257
YD
3267 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3268 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3269 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3270 }
8165e145 3271}
f5f9739d 3272
ad936d86
BP
3273/*
3274 * Called within set_task_rq() right before setting a task's cpu. The
3275 * caller only guarantees p->pi_lock is held; no other assumptions,
3276 * including the state of rq->lock, should be made.
3277 */
3278void set_task_rq_fair(struct sched_entity *se,
3279 struct cfs_rq *prev, struct cfs_rq *next)
3280{
0ccb977f
PZ
3281 u64 p_last_update_time;
3282 u64 n_last_update_time;
3283
ad936d86
BP
3284 if (!sched_feat(ATTACH_AGE_LOAD))
3285 return;
3286
3287 /*
3288 * We are supposed to update the task to "current" time, then its up to
3289 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3290 * getting what current time is, so simply throw away the out-of-date
3291 * time. This will result in the wakee task is less decayed, but giving
3292 * the wakee more load sounds not bad.
3293 */
0ccb977f
PZ
3294 if (!(se->avg.last_update_time && prev))
3295 return;
ad936d86
BP
3296
3297#ifndef CONFIG_64BIT
0ccb977f 3298 {
ad936d86
BP
3299 u64 p_last_update_time_copy;
3300 u64 n_last_update_time_copy;
3301
3302 do {
3303 p_last_update_time_copy = prev->load_last_update_time_copy;
3304 n_last_update_time_copy = next->load_last_update_time_copy;
3305
3306 smp_rmb();
3307
3308 p_last_update_time = prev->avg.last_update_time;
3309 n_last_update_time = next->avg.last_update_time;
3310
3311 } while (p_last_update_time != p_last_update_time_copy ||
3312 n_last_update_time != n_last_update_time_copy);
0ccb977f 3313 }
ad936d86 3314#else
0ccb977f
PZ
3315 p_last_update_time = prev->avg.last_update_time;
3316 n_last_update_time = next->avg.last_update_time;
ad936d86 3317#endif
0ccb977f
PZ
3318 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3319 se->avg.last_update_time = n_last_update_time;
ad936d86 3320}
09a43ace 3321
0e2d2aaa
PZ
3322
3323/*
3324 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3325 * propagate its contribution. The key to this propagation is the invariant
3326 * that for each group:
3327 *
3328 * ge->avg == grq->avg (1)
3329 *
3330 * _IFF_ we look at the pure running and runnable sums. Because they
3331 * represent the very same entity, just at different points in the hierarchy.
3332 *
3333 *
3334 * Per the above update_tg_cfs_util() is trivial (and still 'wrong') and
3335 * simply copies the running sum over.
3336 *
3337 * However, update_tg_cfs_runnable() is more complex. So we have:
3338 *
3339 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3340 *
3341 * And since, like util, the runnable part should be directly transferable,
3342 * the following would _appear_ to be the straight forward approach:
3343 *
3344 * grq->avg.load_avg = grq->load.weight * grq->avg.running_avg (3)
3345 *
3346 * And per (1) we have:
3347 *
3348 * ge->avg.running_avg == grq->avg.running_avg
3349 *
3350 * Which gives:
3351 *
3352 * ge->load.weight * grq->avg.load_avg
3353 * ge->avg.load_avg = ----------------------------------- (4)
3354 * grq->load.weight
3355 *
3356 * Except that is wrong!
3357 *
3358 * Because while for entities historical weight is not important and we
3359 * really only care about our future and therefore can consider a pure
3360 * runnable sum, runqueues can NOT do this.
3361 *
3362 * We specifically want runqueues to have a load_avg that includes
3363 * historical weights. Those represent the blocked load, the load we expect
3364 * to (shortly) return to us. This only works by keeping the weights as
3365 * integral part of the sum. We therefore cannot decompose as per (3).
3366 *
3367 * OK, so what then?
3368 *
3369 *
3370 * Another way to look at things is:
3371 *
3372 * grq->avg.load_avg = \Sum se->avg.load_avg
3373 *
3374 * Therefore, per (2):
3375 *
3376 * grq->avg.load_avg = \Sum se->load.weight * se->avg.runnable_avg
3377 *
3378 * And the very thing we're propagating is a change in that sum (someone
3379 * joined/left). So we can easily know the runnable change, which would be, per
3380 * (2) the already tracked se->load_avg divided by the corresponding
3381 * se->weight.
3382 *
3383 * Basically (4) but in differential form:
3384 *
3385 * d(runnable_avg) += se->avg.load_avg / se->load.weight
3386 * (5)
3387 * ge->avg.load_avg += ge->load.weight * d(runnable_avg)
3388 */
3389
09a43ace 3390static inline void
0e2d2aaa 3391update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3392{
09a43ace
VG
3393 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3394
3395 /* Nothing to update */
3396 if (!delta)
3397 return;
3398
3399 /* Set new sched_entity's utilization */
3400 se->avg.util_avg = gcfs_rq->avg.util_avg;
3401 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3402
3403 /* Update parent cfs_rq utilization */
3404 add_positive(&cfs_rq->avg.util_avg, delta);
3405 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3406}
3407
09a43ace 3408static inline void
0e2d2aaa 3409update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3410{
0e2d2aaa
PZ
3411 long runnable_sum = gcfs_rq->prop_runnable_sum;
3412 long load_avg;
3413 s64 load_sum;
09a43ace 3414
0e2d2aaa
PZ
3415 if (!runnable_sum)
3416 return;
09a43ace 3417
0e2d2aaa 3418 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3419
0e2d2aaa
PZ
3420 load_sum = (s64)se_weight(se) * runnable_sum;
3421 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3422
0e2d2aaa
PZ
3423 add_positive(&se->avg.load_sum, runnable_sum);
3424 add_positive(&se->avg.load_avg, load_avg);
09a43ace 3425
0e2d2aaa
PZ
3426 add_positive(&cfs_rq->avg.load_avg, load_avg);
3427 add_positive(&cfs_rq->avg.load_sum, load_sum);
09a43ace 3428
09a43ace 3429 if (se->on_rq) {
0e2d2aaa
PZ
3430 add_positive(&cfs_rq->runnable_load_avg, load_avg);
3431 add_positive(&cfs_rq->runnable_load_sum, load_sum);
09a43ace
VG
3432 }
3433}
3434
0e2d2aaa 3435static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3436{
0e2d2aaa
PZ
3437 cfs_rq->propagate = 1;
3438 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3439}
3440
3441/* Update task and its cfs_rq load average */
3442static inline int propagate_entity_load_avg(struct sched_entity *se)
3443{
0e2d2aaa 3444 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3445
3446 if (entity_is_task(se))
3447 return 0;
3448
0e2d2aaa
PZ
3449 gcfs_rq = group_cfs_rq(se);
3450 if (!gcfs_rq->propagate)
09a43ace
VG
3451 return 0;
3452
0e2d2aaa
PZ
3453 gcfs_rq->propagate = 0;
3454
09a43ace
VG
3455 cfs_rq = cfs_rq_of(se);
3456
0e2d2aaa 3457 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3458
0e2d2aaa
PZ
3459 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3460 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3461
3462 return 1;
3463}
3464
bc427898
VG
3465/*
3466 * Check if we need to update the load and the utilization of a blocked
3467 * group_entity:
3468 */
3469static inline bool skip_blocked_update(struct sched_entity *se)
3470{
3471 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3472
3473 /*
3474 * If sched_entity still have not zero load or utilization, we have to
3475 * decay it:
3476 */
3477 if (se->avg.load_avg || se->avg.util_avg)
3478 return false;
3479
3480 /*
3481 * If there is a pending propagation, we have to update the load and
3482 * the utilization of the sched_entity:
3483 */
0e2d2aaa 3484 if (gcfs_rq->propagate)
bc427898
VG
3485 return false;
3486
3487 /*
3488 * Otherwise, the load and the utilization of the sched_entity is
3489 * already zero and there is no pending propagation, so it will be a
3490 * waste of time to try to decay it:
3491 */
3492 return true;
3493}
3494
6e83125c 3495#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3496
9d89c257 3497static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3498
3499static inline int propagate_entity_load_avg(struct sched_entity *se)
3500{
3501 return 0;
3502}
3503
0e2d2aaa 3504static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3505
6e83125c 3506#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3507
3d30544f
PZ
3508/**
3509 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3510 * @now: current time, as per cfs_rq_clock_task()
3511 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3512 *
3513 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3514 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3515 * post_init_entity_util_avg().
3516 *
3517 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3518 *
7c3edd2c
PZ
3519 * Returns true if the load decayed or we removed load.
3520 *
3521 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3522 * call update_tg_load_avg() when this function returns true.
3d30544f 3523 */
a2c6c91f 3524static inline int
3a123bbb 3525update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3526{
0e2d2aaa 3527 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3528 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3529 int decayed = 0;
2dac754e 3530
2a2f5d4e
PZ
3531 if (cfs_rq->removed.nr) {
3532 unsigned long r;
3533
3534 raw_spin_lock(&cfs_rq->removed.lock);
3535 swap(cfs_rq->removed.util_avg, removed_util);
3536 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3537 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3538 cfs_rq->removed.nr = 0;
3539 raw_spin_unlock(&cfs_rq->removed.lock);
3540
3541 /*
3542 * The LOAD_AVG_MAX for _sum is a slight over-estimate,
3543 * which is safe due to sub_positive() clipping at 0.
3544 */
3545 r = removed_load;
89741892
PZ
3546 sub_positive(&sa->load_avg, r);
3547 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2dac754e 3548
2a2f5d4e 3549 r = removed_util;
89741892
PZ
3550 sub_positive(&sa->util_avg, r);
3551 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2a2f5d4e 3552
0e2d2aaa 3553 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3554
3555 decayed = 1;
9d89c257 3556 }
36ee28e4 3557
2a2f5d4e 3558 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3559
9d89c257
YD
3560#ifndef CONFIG_64BIT
3561 smp_wmb();
3562 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3563#endif
36ee28e4 3564
2a2f5d4e 3565 if (decayed)
a2c6c91f 3566 cfs_rq_util_change(cfs_rq);
21e96f88 3567
2a2f5d4e 3568 return decayed;
21e96f88
SM
3569}
3570
3d30544f
PZ
3571/**
3572 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3573 * @cfs_rq: cfs_rq to attach to
3574 * @se: sched_entity to attach
3575 *
3576 * Must call update_cfs_rq_load_avg() before this, since we rely on
3577 * cfs_rq->avg.last_update_time being current.
3578 */
a05e8c51
BP
3579static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3580{
3581 se->avg.last_update_time = cfs_rq->avg.last_update_time;
8d5b9025 3582 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3583 cfs_rq->avg.util_avg += se->avg.util_avg;
3584 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3585
3586 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f
SM
3587
3588 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3589}
3590
3d30544f
PZ
3591/**
3592 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3593 * @cfs_rq: cfs_rq to detach from
3594 * @se: sched_entity to detach
3595 *
3596 * Must call update_cfs_rq_load_avg() before this, since we rely on
3597 * cfs_rq->avg.last_update_time being current.
3598 */
a05e8c51
BP
3599static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3600{
8d5b9025 3601 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3602 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3603 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3604
3605 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f
SM
3606
3607 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3608}
3609
b382a531
PZ
3610/*
3611 * Optional action to be done while updating the load average
3612 */
3613#define UPDATE_TG 0x1
3614#define SKIP_AGE_LOAD 0x2
3615#define DO_ATTACH 0x4
3616
3617/* Update task and its cfs_rq load average */
3618static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3619{
3620 u64 now = cfs_rq_clock_task(cfs_rq);
3621 struct rq *rq = rq_of(cfs_rq);
3622 int cpu = cpu_of(rq);
3623 int decayed;
3624
3625 /*
3626 * Track task load average for carrying it to new CPU after migrated, and
3627 * track group sched_entity load average for task_h_load calc in migration
3628 */
3629 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3630 __update_load_avg_se(now, cpu, cfs_rq, se);
3631
3632 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3633 decayed |= propagate_entity_load_avg(se);
3634
3635 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3636
3637 attach_entity_load_avg(cfs_rq, se);
3638 update_tg_load_avg(cfs_rq, 0);
3639
3640 } else if (decayed && (flags & UPDATE_TG))
3641 update_tg_load_avg(cfs_rq, 0);
3642}
3643
9d89c257 3644#ifndef CONFIG_64BIT
0905f04e
YD
3645static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3646{
9d89c257 3647 u64 last_update_time_copy;
0905f04e 3648 u64 last_update_time;
9ee474f5 3649
9d89c257
YD
3650 do {
3651 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3652 smp_rmb();
3653 last_update_time = cfs_rq->avg.last_update_time;
3654 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3655
3656 return last_update_time;
3657}
9d89c257 3658#else
0905f04e
YD
3659static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3660{
3661 return cfs_rq->avg.last_update_time;
3662}
9d89c257
YD
3663#endif
3664
104cb16d
MR
3665/*
3666 * Synchronize entity load avg of dequeued entity without locking
3667 * the previous rq.
3668 */
3669void sync_entity_load_avg(struct sched_entity *se)
3670{
3671 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3672 u64 last_update_time;
3673
3674 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3675 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3676}
3677
0905f04e
YD
3678/*
3679 * Task first catches up with cfs_rq, and then subtract
3680 * itself from the cfs_rq (task must be off the queue now).
3681 */
3682void remove_entity_load_avg(struct sched_entity *se)
3683{
3684 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3685 unsigned long flags;
0905f04e
YD
3686
3687 /*
7dc603c9
PZ
3688 * tasks cannot exit without having gone through wake_up_new_task() ->
3689 * post_init_entity_util_avg() which will have added things to the
3690 * cfs_rq, so we can remove unconditionally.
3691 *
3692 * Similarly for groups, they will have passed through
3693 * post_init_entity_util_avg() before unregister_sched_fair_group()
3694 * calls this.
2a2f5d4e
PZ
3695 *
3696 * XXX in case entity_is_task(se) && task_of(se)->on_rq == MIGRATING
3697 * we could actually get the right time, since we're called with
3698 * rq->lock held, see detach_task().
0905f04e 3699 */
0905f04e 3700
104cb16d 3701 sync_entity_load_avg(se);
2a2f5d4e
PZ
3702
3703 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3704 ++cfs_rq->removed.nr;
3705 cfs_rq->removed.util_avg += se->avg.util_avg;
3706 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3707 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3708 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3709}
642dbc39 3710
7ea241af
YD
3711static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3712{
3713 return cfs_rq->runnable_load_avg;
3714}
3715
3716static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3717{
3718 return cfs_rq->avg.load_avg;
3719}
3720
46f69fa3 3721static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3722
38033c37
PZ
3723#else /* CONFIG_SMP */
3724
01011473 3725static inline int
3a123bbb 3726update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
01011473
PZ
3727{
3728 return 0;
3729}
3730
d31b1a66
VG
3731#define UPDATE_TG 0x0
3732#define SKIP_AGE_LOAD 0x0
b382a531 3733#define DO_ATTACH 0x0
d31b1a66 3734
88c0616e 3735static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3736{
88c0616e 3737 cfs_rq_util_change(cfs_rq);
536bd00c
RW
3738}
3739
9d89c257 3740static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3741
a05e8c51
BP
3742static inline void
3743attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3744static inline void
3745detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3746
46f69fa3 3747static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3748{
3749 return 0;
3750}
3751
38033c37 3752#endif /* CONFIG_SMP */
9d85f21c 3753
ddc97297
PZ
3754static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3755{
3756#ifdef CONFIG_SCHED_DEBUG
3757 s64 d = se->vruntime - cfs_rq->min_vruntime;
3758
3759 if (d < 0)
3760 d = -d;
3761
3762 if (d > 3*sysctl_sched_latency)
ae92882e 3763 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3764#endif
3765}
3766
aeb73b04
PZ
3767static void
3768place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3769{
1af5f730 3770 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3771
2cb8600e
PZ
3772 /*
3773 * The 'current' period is already promised to the current tasks,
3774 * however the extra weight of the new task will slow them down a
3775 * little, place the new task so that it fits in the slot that
3776 * stays open at the end.
3777 */
94dfb5e7 3778 if (initial && sched_feat(START_DEBIT))
f9c0b095 3779 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3780
a2e7a7eb 3781 /* sleeps up to a single latency don't count. */
5ca9880c 3782 if (!initial) {
a2e7a7eb 3783 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3784
a2e7a7eb
MG
3785 /*
3786 * Halve their sleep time's effect, to allow
3787 * for a gentler effect of sleepers:
3788 */
3789 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3790 thresh >>= 1;
51e0304c 3791
a2e7a7eb 3792 vruntime -= thresh;
aeb73b04
PZ
3793 }
3794
b5d9d734 3795 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3796 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3797}
3798
d3d9dc33
PT
3799static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3800
cb251765
MG
3801static inline void check_schedstat_required(void)
3802{
3803#ifdef CONFIG_SCHEDSTATS
3804 if (schedstat_enabled())
3805 return;
3806
3807 /* Force schedstat enabled if a dependent tracepoint is active */
3808 if (trace_sched_stat_wait_enabled() ||
3809 trace_sched_stat_sleep_enabled() ||
3810 trace_sched_stat_iowait_enabled() ||
3811 trace_sched_stat_blocked_enabled() ||
3812 trace_sched_stat_runtime_enabled()) {
eda8dca5 3813 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3814 "stat_blocked and stat_runtime require the "
f67abed5 3815 "kernel parameter schedstats=enable or "
cb251765
MG
3816 "kernel.sched_schedstats=1\n");
3817 }
3818#endif
3819}
3820
b5179ac7
PZ
3821
3822/*
3823 * MIGRATION
3824 *
3825 * dequeue
3826 * update_curr()
3827 * update_min_vruntime()
3828 * vruntime -= min_vruntime
3829 *
3830 * enqueue
3831 * update_curr()
3832 * update_min_vruntime()
3833 * vruntime += min_vruntime
3834 *
3835 * this way the vruntime transition between RQs is done when both
3836 * min_vruntime are up-to-date.
3837 *
3838 * WAKEUP (remote)
3839 *
59efa0ba 3840 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3841 * vruntime -= min_vruntime
3842 *
3843 * enqueue
3844 * update_curr()
3845 * update_min_vruntime()
3846 * vruntime += min_vruntime
3847 *
3848 * this way we don't have the most up-to-date min_vruntime on the originating
3849 * CPU and an up-to-date min_vruntime on the destination CPU.
3850 */
3851
bf0f6f24 3852static void
88ec22d3 3853enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3854{
2f950354
PZ
3855 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3856 bool curr = cfs_rq->curr == se;
3857
88ec22d3 3858 /*
2f950354
PZ
3859 * If we're the current task, we must renormalise before calling
3860 * update_curr().
88ec22d3 3861 */
2f950354 3862 if (renorm && curr)
88ec22d3
PZ
3863 se->vruntime += cfs_rq->min_vruntime;
3864
2f950354
PZ
3865 update_curr(cfs_rq);
3866
bf0f6f24 3867 /*
2f950354
PZ
3868 * Otherwise, renormalise after, such that we're placed at the current
3869 * moment in time, instead of some random moment in the past. Being
3870 * placed in the past could significantly boost this task to the
3871 * fairness detriment of existing tasks.
bf0f6f24 3872 */
2f950354
PZ
3873 if (renorm && !curr)
3874 se->vruntime += cfs_rq->min_vruntime;
3875
89ee048f
VG
3876 /*
3877 * When enqueuing a sched_entity, we must:
3878 * - Update loads to have both entity and cfs_rq synced with now.
3879 * - Add its load to cfs_rq->runnable_avg
3880 * - For group_entity, update its weight to reflect the new share of
3881 * its group cfs_rq
3882 * - Add its new weight to cfs_rq->load.weight
3883 */
b382a531 3884 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
b5b3e35f 3885 enqueue_runnable_load_avg(cfs_rq, se);
89ee048f 3886 update_cfs_shares(se);
17bc14b7 3887 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3888
1a3d027c 3889 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3890 place_entity(cfs_rq, se, 0);
bf0f6f24 3891
cb251765 3892 check_schedstat_required();
4fa8d299
JP
3893 update_stats_enqueue(cfs_rq, se, flags);
3894 check_spread(cfs_rq, se);
2f950354 3895 if (!curr)
83b699ed 3896 __enqueue_entity(cfs_rq, se);
2069dd75 3897 se->on_rq = 1;
3d4b47b4 3898
d3d9dc33 3899 if (cfs_rq->nr_running == 1) {
3d4b47b4 3900 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3901 check_enqueue_throttle(cfs_rq);
3902 }
bf0f6f24
IM
3903}
3904
2c13c919 3905static void __clear_buddies_last(struct sched_entity *se)
2002c695 3906{
2c13c919
RR
3907 for_each_sched_entity(se) {
3908 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3909 if (cfs_rq->last != se)
2c13c919 3910 break;
f1044799
PZ
3911
3912 cfs_rq->last = NULL;
2c13c919
RR
3913 }
3914}
2002c695 3915
2c13c919
RR
3916static void __clear_buddies_next(struct sched_entity *se)
3917{
3918 for_each_sched_entity(se) {
3919 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3920 if (cfs_rq->next != se)
2c13c919 3921 break;
f1044799
PZ
3922
3923 cfs_rq->next = NULL;
2c13c919 3924 }
2002c695
PZ
3925}
3926
ac53db59
RR
3927static void __clear_buddies_skip(struct sched_entity *se)
3928{
3929 for_each_sched_entity(se) {
3930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3931 if (cfs_rq->skip != se)
ac53db59 3932 break;
f1044799
PZ
3933
3934 cfs_rq->skip = NULL;
ac53db59
RR
3935 }
3936}
3937
a571bbea
PZ
3938static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3939{
2c13c919
RR
3940 if (cfs_rq->last == se)
3941 __clear_buddies_last(se);
3942
3943 if (cfs_rq->next == se)
3944 __clear_buddies_next(se);
ac53db59
RR
3945
3946 if (cfs_rq->skip == se)
3947 __clear_buddies_skip(se);
a571bbea
PZ
3948}
3949
6c16a6dc 3950static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3951
bf0f6f24 3952static void
371fd7e7 3953dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3954{
a2a2d680
DA
3955 /*
3956 * Update run-time statistics of the 'current'.
3957 */
3958 update_curr(cfs_rq);
89ee048f
VG
3959
3960 /*
3961 * When dequeuing a sched_entity, we must:
3962 * - Update loads to have both entity and cfs_rq synced with now.
3963 * - Substract its load from the cfs_rq->runnable_avg.
3964 * - Substract its previous weight from cfs_rq->load.weight.
3965 * - For group entity, update its weight to reflect the new share
3966 * of its group cfs_rq.
3967 */
88c0616e 3968 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 3969 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 3970
4fa8d299 3971 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3972
2002c695 3973 clear_buddies(cfs_rq, se);
4793241b 3974
83b699ed 3975 if (se != cfs_rq->curr)
30cfdcfc 3976 __dequeue_entity(cfs_rq, se);
17bc14b7 3977 se->on_rq = 0;
30cfdcfc 3978 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3979
3980 /*
b60205c7
PZ
3981 * Normalize after update_curr(); which will also have moved
3982 * min_vruntime if @se is the one holding it back. But before doing
3983 * update_min_vruntime() again, which will discount @se's position and
3984 * can move min_vruntime forward still more.
88ec22d3 3985 */
371fd7e7 3986 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3987 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3988
d8b4986d
PT
3989 /* return excess runtime on last dequeue */
3990 return_cfs_rq_runtime(cfs_rq);
3991
89ee048f 3992 update_cfs_shares(se);
b60205c7
PZ
3993
3994 /*
3995 * Now advance min_vruntime if @se was the entity holding it back,
3996 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3997 * put back on, and if we advance min_vruntime, we'll be placed back
3998 * further than we started -- ie. we'll be penalized.
3999 */
4000 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4001 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4002}
4003
4004/*
4005 * Preempt the current task with a newly woken task if needed:
4006 */
7c92e54f 4007static void
2e09bf55 4008check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4009{
11697830 4010 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4011 struct sched_entity *se;
4012 s64 delta;
11697830 4013
6d0f0ebd 4014 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4015 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4016 if (delta_exec > ideal_runtime) {
8875125e 4017 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4018 /*
4019 * The current task ran long enough, ensure it doesn't get
4020 * re-elected due to buddy favours.
4021 */
4022 clear_buddies(cfs_rq, curr);
f685ceac
MG
4023 return;
4024 }
4025
4026 /*
4027 * Ensure that a task that missed wakeup preemption by a
4028 * narrow margin doesn't have to wait for a full slice.
4029 * This also mitigates buddy induced latencies under load.
4030 */
f685ceac
MG
4031 if (delta_exec < sysctl_sched_min_granularity)
4032 return;
4033
f4cfb33e
WX
4034 se = __pick_first_entity(cfs_rq);
4035 delta = curr->vruntime - se->vruntime;
f685ceac 4036
f4cfb33e
WX
4037 if (delta < 0)
4038 return;
d7d82944 4039
f4cfb33e 4040 if (delta > ideal_runtime)
8875125e 4041 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4042}
4043
83b699ed 4044static void
8494f412 4045set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4046{
83b699ed
SV
4047 /* 'current' is not kept within the tree. */
4048 if (se->on_rq) {
4049 /*
4050 * Any task has to be enqueued before it get to execute on
4051 * a CPU. So account for the time it spent waiting on the
4052 * runqueue.
4053 */
4fa8d299 4054 update_stats_wait_end(cfs_rq, se);
83b699ed 4055 __dequeue_entity(cfs_rq, se);
88c0616e 4056 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4057 }
4058
79303e9e 4059 update_stats_curr_start(cfs_rq, se);
429d43bc 4060 cfs_rq->curr = se;
4fa8d299 4061
eba1ed4b
IM
4062 /*
4063 * Track our maximum slice length, if the CPU's load is at
4064 * least twice that of our own weight (i.e. dont track it
4065 * when there are only lesser-weight tasks around):
4066 */
cb251765 4067 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4068 schedstat_set(se->statistics.slice_max,
4069 max((u64)schedstat_val(se->statistics.slice_max),
4070 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4071 }
4fa8d299 4072
4a55b450 4073 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4074}
4075
3f3a4904
PZ
4076static int
4077wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4078
ac53db59
RR
4079/*
4080 * Pick the next process, keeping these things in mind, in this order:
4081 * 1) keep things fair between processes/task groups
4082 * 2) pick the "next" process, since someone really wants that to run
4083 * 3) pick the "last" process, for cache locality
4084 * 4) do not run the "skip" process, if something else is available
4085 */
678d5718
PZ
4086static struct sched_entity *
4087pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4088{
678d5718
PZ
4089 struct sched_entity *left = __pick_first_entity(cfs_rq);
4090 struct sched_entity *se;
4091
4092 /*
4093 * If curr is set we have to see if its left of the leftmost entity
4094 * still in the tree, provided there was anything in the tree at all.
4095 */
4096 if (!left || (curr && entity_before(curr, left)))
4097 left = curr;
4098
4099 se = left; /* ideally we run the leftmost entity */
f4b6755f 4100
ac53db59
RR
4101 /*
4102 * Avoid running the skip buddy, if running something else can
4103 * be done without getting too unfair.
4104 */
4105 if (cfs_rq->skip == se) {
678d5718
PZ
4106 struct sched_entity *second;
4107
4108 if (se == curr) {
4109 second = __pick_first_entity(cfs_rq);
4110 } else {
4111 second = __pick_next_entity(se);
4112 if (!second || (curr && entity_before(curr, second)))
4113 second = curr;
4114 }
4115
ac53db59
RR
4116 if (second && wakeup_preempt_entity(second, left) < 1)
4117 se = second;
4118 }
aa2ac252 4119
f685ceac
MG
4120 /*
4121 * Prefer last buddy, try to return the CPU to a preempted task.
4122 */
4123 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4124 se = cfs_rq->last;
4125
ac53db59
RR
4126 /*
4127 * Someone really wants this to run. If it's not unfair, run it.
4128 */
4129 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4130 se = cfs_rq->next;
4131
f685ceac 4132 clear_buddies(cfs_rq, se);
4793241b
PZ
4133
4134 return se;
aa2ac252
PZ
4135}
4136
678d5718 4137static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4138
ab6cde26 4139static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4140{
4141 /*
4142 * If still on the runqueue then deactivate_task()
4143 * was not called and update_curr() has to be done:
4144 */
4145 if (prev->on_rq)
b7cc0896 4146 update_curr(cfs_rq);
bf0f6f24 4147
d3d9dc33
PT
4148 /* throttle cfs_rqs exceeding runtime */
4149 check_cfs_rq_runtime(cfs_rq);
4150
4fa8d299 4151 check_spread(cfs_rq, prev);
cb251765 4152
30cfdcfc 4153 if (prev->on_rq) {
4fa8d299 4154 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4155 /* Put 'current' back into the tree. */
4156 __enqueue_entity(cfs_rq, prev);
9d85f21c 4157 /* in !on_rq case, update occurred at dequeue */
88c0616e 4158 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4159 }
429d43bc 4160 cfs_rq->curr = NULL;
bf0f6f24
IM
4161}
4162
8f4d37ec
PZ
4163static void
4164entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4165{
bf0f6f24 4166 /*
30cfdcfc 4167 * Update run-time statistics of the 'current'.
bf0f6f24 4168 */
30cfdcfc 4169 update_curr(cfs_rq);
bf0f6f24 4170
9d85f21c
PT
4171 /*
4172 * Ensure that runnable average is periodically updated.
4173 */
88c0616e 4174 update_load_avg(cfs_rq, curr, UPDATE_TG);
89ee048f 4175 update_cfs_shares(curr);
9d85f21c 4176
8f4d37ec
PZ
4177#ifdef CONFIG_SCHED_HRTICK
4178 /*
4179 * queued ticks are scheduled to match the slice, so don't bother
4180 * validating it and just reschedule.
4181 */
983ed7a6 4182 if (queued) {
8875125e 4183 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4184 return;
4185 }
8f4d37ec
PZ
4186 /*
4187 * don't let the period tick interfere with the hrtick preemption
4188 */
4189 if (!sched_feat(DOUBLE_TICK) &&
4190 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4191 return;
4192#endif
4193
2c2efaed 4194 if (cfs_rq->nr_running > 1)
2e09bf55 4195 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4196}
4197
ab84d31e
PT
4198
4199/**************************************************
4200 * CFS bandwidth control machinery
4201 */
4202
4203#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4204
4205#ifdef HAVE_JUMP_LABEL
c5905afb 4206static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4207
4208static inline bool cfs_bandwidth_used(void)
4209{
c5905afb 4210 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4211}
4212
1ee14e6c 4213void cfs_bandwidth_usage_inc(void)
029632fb 4214{
1ee14e6c
BS
4215 static_key_slow_inc(&__cfs_bandwidth_used);
4216}
4217
4218void cfs_bandwidth_usage_dec(void)
4219{
4220 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
4221}
4222#else /* HAVE_JUMP_LABEL */
4223static bool cfs_bandwidth_used(void)
4224{
4225 return true;
4226}
4227
1ee14e6c
BS
4228void cfs_bandwidth_usage_inc(void) {}
4229void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4230#endif /* HAVE_JUMP_LABEL */
4231
ab84d31e
PT
4232/*
4233 * default period for cfs group bandwidth.
4234 * default: 0.1s, units: nanoseconds
4235 */
4236static inline u64 default_cfs_period(void)
4237{
4238 return 100000000ULL;
4239}
ec12cb7f
PT
4240
4241static inline u64 sched_cfs_bandwidth_slice(void)
4242{
4243 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4244}
4245
a9cf55b2
PT
4246/*
4247 * Replenish runtime according to assigned quota and update expiration time.
4248 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4249 * additional synchronization around rq->lock.
4250 *
4251 * requires cfs_b->lock
4252 */
029632fb 4253void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4254{
4255 u64 now;
4256
4257 if (cfs_b->quota == RUNTIME_INF)
4258 return;
4259
4260 now = sched_clock_cpu(smp_processor_id());
4261 cfs_b->runtime = cfs_b->quota;
4262 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4263}
4264
029632fb
PZ
4265static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4266{
4267 return &tg->cfs_bandwidth;
4268}
4269
f1b17280
PT
4270/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4271static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4272{
4273 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4274 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4275
78becc27 4276 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4277}
4278
85dac906
PT
4279/* returns 0 on failure to allocate runtime */
4280static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4281{
4282 struct task_group *tg = cfs_rq->tg;
4283 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4284 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4285
4286 /* note: this is a positive sum as runtime_remaining <= 0 */
4287 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4288
4289 raw_spin_lock(&cfs_b->lock);
4290 if (cfs_b->quota == RUNTIME_INF)
4291 amount = min_amount;
58088ad0 4292 else {
77a4d1a1 4293 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4294
4295 if (cfs_b->runtime > 0) {
4296 amount = min(cfs_b->runtime, min_amount);
4297 cfs_b->runtime -= amount;
4298 cfs_b->idle = 0;
4299 }
ec12cb7f 4300 }
a9cf55b2 4301 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4302 raw_spin_unlock(&cfs_b->lock);
4303
4304 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4305 /*
4306 * we may have advanced our local expiration to account for allowed
4307 * spread between our sched_clock and the one on which runtime was
4308 * issued.
4309 */
4310 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4311 cfs_rq->runtime_expires = expires;
85dac906
PT
4312
4313 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4314}
4315
a9cf55b2
PT
4316/*
4317 * Note: This depends on the synchronization provided by sched_clock and the
4318 * fact that rq->clock snapshots this value.
4319 */
4320static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4321{
a9cf55b2 4322 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4323
4324 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4325 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4326 return;
4327
a9cf55b2
PT
4328 if (cfs_rq->runtime_remaining < 0)
4329 return;
4330
4331 /*
4332 * If the local deadline has passed we have to consider the
4333 * possibility that our sched_clock is 'fast' and the global deadline
4334 * has not truly expired.
4335 *
4336 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4337 * whether the global deadline has advanced. It is valid to compare
4338 * cfs_b->runtime_expires without any locks since we only care about
4339 * exact equality, so a partial write will still work.
a9cf55b2
PT
4340 */
4341
51f2176d 4342 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4343 /* extend local deadline, drift is bounded above by 2 ticks */
4344 cfs_rq->runtime_expires += TICK_NSEC;
4345 } else {
4346 /* global deadline is ahead, expiration has passed */
4347 cfs_rq->runtime_remaining = 0;
4348 }
4349}
4350
9dbdb155 4351static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4352{
4353 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4354 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4355 expire_cfs_rq_runtime(cfs_rq);
4356
4357 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4358 return;
4359
85dac906
PT
4360 /*
4361 * if we're unable to extend our runtime we resched so that the active
4362 * hierarchy can be throttled
4363 */
4364 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4365 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4366}
4367
6c16a6dc 4368static __always_inline
9dbdb155 4369void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4370{
56f570e5 4371 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4372 return;
4373
4374 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4375}
4376
85dac906
PT
4377static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4378{
56f570e5 4379 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4380}
4381
64660c86
PT
4382/* check whether cfs_rq, or any parent, is throttled */
4383static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4384{
56f570e5 4385 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4386}
4387
4388/*
4389 * Ensure that neither of the group entities corresponding to src_cpu or
4390 * dest_cpu are members of a throttled hierarchy when performing group
4391 * load-balance operations.
4392 */
4393static inline int throttled_lb_pair(struct task_group *tg,
4394 int src_cpu, int dest_cpu)
4395{
4396 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4397
4398 src_cfs_rq = tg->cfs_rq[src_cpu];
4399 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4400
4401 return throttled_hierarchy(src_cfs_rq) ||
4402 throttled_hierarchy(dest_cfs_rq);
4403}
4404
4405/* updated child weight may affect parent so we have to do this bottom up */
4406static int tg_unthrottle_up(struct task_group *tg, void *data)
4407{
4408 struct rq *rq = data;
4409 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4410
4411 cfs_rq->throttle_count--;
64660c86 4412 if (!cfs_rq->throttle_count) {
f1b17280 4413 /* adjust cfs_rq_clock_task() */
78becc27 4414 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4415 cfs_rq->throttled_clock_task;
64660c86 4416 }
64660c86
PT
4417
4418 return 0;
4419}
4420
4421static int tg_throttle_down(struct task_group *tg, void *data)
4422{
4423 struct rq *rq = data;
4424 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4425
82958366
PT
4426 /* group is entering throttled state, stop time */
4427 if (!cfs_rq->throttle_count)
78becc27 4428 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4429 cfs_rq->throttle_count++;
4430
4431 return 0;
4432}
4433
d3d9dc33 4434static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4435{
4436 struct rq *rq = rq_of(cfs_rq);
4437 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4438 struct sched_entity *se;
4439 long task_delta, dequeue = 1;
77a4d1a1 4440 bool empty;
85dac906
PT
4441
4442 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4443
f1b17280 4444 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4445 rcu_read_lock();
4446 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4447 rcu_read_unlock();
85dac906
PT
4448
4449 task_delta = cfs_rq->h_nr_running;
4450 for_each_sched_entity(se) {
4451 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4452 /* throttled entity or throttle-on-deactivate */
4453 if (!se->on_rq)
4454 break;
4455
4456 if (dequeue)
4457 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4458 qcfs_rq->h_nr_running -= task_delta;
4459
4460 if (qcfs_rq->load.weight)
4461 dequeue = 0;
4462 }
4463
4464 if (!se)
72465447 4465 sub_nr_running(rq, task_delta);
85dac906
PT
4466
4467 cfs_rq->throttled = 1;
78becc27 4468 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4469 raw_spin_lock(&cfs_b->lock);
d49db342 4470 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4471
c06f04c7
BS
4472 /*
4473 * Add to the _head_ of the list, so that an already-started
4474 * distribute_cfs_runtime will not see us
4475 */
4476 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4477
4478 /*
4479 * If we're the first throttled task, make sure the bandwidth
4480 * timer is running.
4481 */
4482 if (empty)
4483 start_cfs_bandwidth(cfs_b);
4484
85dac906
PT
4485 raw_spin_unlock(&cfs_b->lock);
4486}
4487
029632fb 4488void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4489{
4490 struct rq *rq = rq_of(cfs_rq);
4491 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4492 struct sched_entity *se;
4493 int enqueue = 1;
4494 long task_delta;
4495
22b958d8 4496 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4497
4498 cfs_rq->throttled = 0;
1a55af2e
FW
4499
4500 update_rq_clock(rq);
4501
671fd9da 4502 raw_spin_lock(&cfs_b->lock);
78becc27 4503 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4504 list_del_rcu(&cfs_rq->throttled_list);
4505 raw_spin_unlock(&cfs_b->lock);
4506
64660c86
PT
4507 /* update hierarchical throttle state */
4508 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4509
671fd9da
PT
4510 if (!cfs_rq->load.weight)
4511 return;
4512
4513 task_delta = cfs_rq->h_nr_running;
4514 for_each_sched_entity(se) {
4515 if (se->on_rq)
4516 enqueue = 0;
4517
4518 cfs_rq = cfs_rq_of(se);
4519 if (enqueue)
4520 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4521 cfs_rq->h_nr_running += task_delta;
4522
4523 if (cfs_rq_throttled(cfs_rq))
4524 break;
4525 }
4526
4527 if (!se)
72465447 4528 add_nr_running(rq, task_delta);
671fd9da
PT
4529
4530 /* determine whether we need to wake up potentially idle cpu */
4531 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4532 resched_curr(rq);
671fd9da
PT
4533}
4534
4535static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4536 u64 remaining, u64 expires)
4537{
4538 struct cfs_rq *cfs_rq;
c06f04c7
BS
4539 u64 runtime;
4540 u64 starting_runtime = remaining;
671fd9da
PT
4541
4542 rcu_read_lock();
4543 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4544 throttled_list) {
4545 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4546 struct rq_flags rf;
671fd9da 4547
8a8c69c3 4548 rq_lock(rq, &rf);
671fd9da
PT
4549 if (!cfs_rq_throttled(cfs_rq))
4550 goto next;
4551
4552 runtime = -cfs_rq->runtime_remaining + 1;
4553 if (runtime > remaining)
4554 runtime = remaining;
4555 remaining -= runtime;
4556
4557 cfs_rq->runtime_remaining += runtime;
4558 cfs_rq->runtime_expires = expires;
4559
4560 /* we check whether we're throttled above */
4561 if (cfs_rq->runtime_remaining > 0)
4562 unthrottle_cfs_rq(cfs_rq);
4563
4564next:
8a8c69c3 4565 rq_unlock(rq, &rf);
671fd9da
PT
4566
4567 if (!remaining)
4568 break;
4569 }
4570 rcu_read_unlock();
4571
c06f04c7 4572 return starting_runtime - remaining;
671fd9da
PT
4573}
4574
58088ad0
PT
4575/*
4576 * Responsible for refilling a task_group's bandwidth and unthrottling its
4577 * cfs_rqs as appropriate. If there has been no activity within the last
4578 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4579 * used to track this state.
4580 */
4581static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4582{
671fd9da 4583 u64 runtime, runtime_expires;
51f2176d 4584 int throttled;
58088ad0 4585
58088ad0
PT
4586 /* no need to continue the timer with no bandwidth constraint */
4587 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4588 goto out_deactivate;
58088ad0 4589
671fd9da 4590 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4591 cfs_b->nr_periods += overrun;
671fd9da 4592
51f2176d
BS
4593 /*
4594 * idle depends on !throttled (for the case of a large deficit), and if
4595 * we're going inactive then everything else can be deferred
4596 */
4597 if (cfs_b->idle && !throttled)
4598 goto out_deactivate;
a9cf55b2
PT
4599
4600 __refill_cfs_bandwidth_runtime(cfs_b);
4601
671fd9da
PT
4602 if (!throttled) {
4603 /* mark as potentially idle for the upcoming period */
4604 cfs_b->idle = 1;
51f2176d 4605 return 0;
671fd9da
PT
4606 }
4607
e8da1b18
NR
4608 /* account preceding periods in which throttling occurred */
4609 cfs_b->nr_throttled += overrun;
4610
671fd9da 4611 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4612
4613 /*
c06f04c7
BS
4614 * This check is repeated as we are holding onto the new bandwidth while
4615 * we unthrottle. This can potentially race with an unthrottled group
4616 * trying to acquire new bandwidth from the global pool. This can result
4617 * in us over-using our runtime if it is all used during this loop, but
4618 * only by limited amounts in that extreme case.
671fd9da 4619 */
c06f04c7
BS
4620 while (throttled && cfs_b->runtime > 0) {
4621 runtime = cfs_b->runtime;
671fd9da
PT
4622 raw_spin_unlock(&cfs_b->lock);
4623 /* we can't nest cfs_b->lock while distributing bandwidth */
4624 runtime = distribute_cfs_runtime(cfs_b, runtime,
4625 runtime_expires);
4626 raw_spin_lock(&cfs_b->lock);
4627
4628 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4629
4630 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4631 }
58088ad0 4632
671fd9da
PT
4633 /*
4634 * While we are ensured activity in the period following an
4635 * unthrottle, this also covers the case in which the new bandwidth is
4636 * insufficient to cover the existing bandwidth deficit. (Forcing the
4637 * timer to remain active while there are any throttled entities.)
4638 */
4639 cfs_b->idle = 0;
58088ad0 4640
51f2176d
BS
4641 return 0;
4642
4643out_deactivate:
51f2176d 4644 return 1;
58088ad0 4645}
d3d9dc33 4646
d8b4986d
PT
4647/* a cfs_rq won't donate quota below this amount */
4648static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4649/* minimum remaining period time to redistribute slack quota */
4650static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4651/* how long we wait to gather additional slack before distributing */
4652static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4653
db06e78c
BS
4654/*
4655 * Are we near the end of the current quota period?
4656 *
4657 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4658 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4659 * migrate_hrtimers, base is never cleared, so we are fine.
4660 */
d8b4986d
PT
4661static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4662{
4663 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4664 u64 remaining;
4665
4666 /* if the call-back is running a quota refresh is already occurring */
4667 if (hrtimer_callback_running(refresh_timer))
4668 return 1;
4669
4670 /* is a quota refresh about to occur? */
4671 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4672 if (remaining < min_expire)
4673 return 1;
4674
4675 return 0;
4676}
4677
4678static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4679{
4680 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4681
4682 /* if there's a quota refresh soon don't bother with slack */
4683 if (runtime_refresh_within(cfs_b, min_left))
4684 return;
4685
4cfafd30
PZ
4686 hrtimer_start(&cfs_b->slack_timer,
4687 ns_to_ktime(cfs_bandwidth_slack_period),
4688 HRTIMER_MODE_REL);
d8b4986d
PT
4689}
4690
4691/* we know any runtime found here is valid as update_curr() precedes return */
4692static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4693{
4694 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4695 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4696
4697 if (slack_runtime <= 0)
4698 return;
4699
4700 raw_spin_lock(&cfs_b->lock);
4701 if (cfs_b->quota != RUNTIME_INF &&
4702 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4703 cfs_b->runtime += slack_runtime;
4704
4705 /* we are under rq->lock, defer unthrottling using a timer */
4706 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4707 !list_empty(&cfs_b->throttled_cfs_rq))
4708 start_cfs_slack_bandwidth(cfs_b);
4709 }
4710 raw_spin_unlock(&cfs_b->lock);
4711
4712 /* even if it's not valid for return we don't want to try again */
4713 cfs_rq->runtime_remaining -= slack_runtime;
4714}
4715
4716static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4717{
56f570e5
PT
4718 if (!cfs_bandwidth_used())
4719 return;
4720
fccfdc6f 4721 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4722 return;
4723
4724 __return_cfs_rq_runtime(cfs_rq);
4725}
4726
4727/*
4728 * This is done with a timer (instead of inline with bandwidth return) since
4729 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4730 */
4731static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4732{
4733 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4734 u64 expires;
4735
4736 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4737 raw_spin_lock(&cfs_b->lock);
4738 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4739 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4740 return;
db06e78c 4741 }
d8b4986d 4742
c06f04c7 4743 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4744 runtime = cfs_b->runtime;
c06f04c7 4745
d8b4986d
PT
4746 expires = cfs_b->runtime_expires;
4747 raw_spin_unlock(&cfs_b->lock);
4748
4749 if (!runtime)
4750 return;
4751
4752 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4753
4754 raw_spin_lock(&cfs_b->lock);
4755 if (expires == cfs_b->runtime_expires)
c06f04c7 4756 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4757 raw_spin_unlock(&cfs_b->lock);
4758}
4759
d3d9dc33
PT
4760/*
4761 * When a group wakes up we want to make sure that its quota is not already
4762 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4763 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4764 */
4765static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4766{
56f570e5
PT
4767 if (!cfs_bandwidth_used())
4768 return;
4769
d3d9dc33
PT
4770 /* an active group must be handled by the update_curr()->put() path */
4771 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4772 return;
4773
4774 /* ensure the group is not already throttled */
4775 if (cfs_rq_throttled(cfs_rq))
4776 return;
4777
4778 /* update runtime allocation */
4779 account_cfs_rq_runtime(cfs_rq, 0);
4780 if (cfs_rq->runtime_remaining <= 0)
4781 throttle_cfs_rq(cfs_rq);
4782}
4783
55e16d30
PZ
4784static void sync_throttle(struct task_group *tg, int cpu)
4785{
4786 struct cfs_rq *pcfs_rq, *cfs_rq;
4787
4788 if (!cfs_bandwidth_used())
4789 return;
4790
4791 if (!tg->parent)
4792 return;
4793
4794 cfs_rq = tg->cfs_rq[cpu];
4795 pcfs_rq = tg->parent->cfs_rq[cpu];
4796
4797 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4798 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4799}
4800
d3d9dc33 4801/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4802static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4803{
56f570e5 4804 if (!cfs_bandwidth_used())
678d5718 4805 return false;
56f570e5 4806
d3d9dc33 4807 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4808 return false;
d3d9dc33
PT
4809
4810 /*
4811 * it's possible for a throttled entity to be forced into a running
4812 * state (e.g. set_curr_task), in this case we're finished.
4813 */
4814 if (cfs_rq_throttled(cfs_rq))
678d5718 4815 return true;
d3d9dc33
PT
4816
4817 throttle_cfs_rq(cfs_rq);
678d5718 4818 return true;
d3d9dc33 4819}
029632fb 4820
029632fb
PZ
4821static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4822{
4823 struct cfs_bandwidth *cfs_b =
4824 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4825
029632fb
PZ
4826 do_sched_cfs_slack_timer(cfs_b);
4827
4828 return HRTIMER_NORESTART;
4829}
4830
4831static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4832{
4833 struct cfs_bandwidth *cfs_b =
4834 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4835 int overrun;
4836 int idle = 0;
4837
51f2176d 4838 raw_spin_lock(&cfs_b->lock);
029632fb 4839 for (;;) {
77a4d1a1 4840 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4841 if (!overrun)
4842 break;
4843
4844 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4845 }
4cfafd30
PZ
4846 if (idle)
4847 cfs_b->period_active = 0;
51f2176d 4848 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4849
4850 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4851}
4852
4853void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4854{
4855 raw_spin_lock_init(&cfs_b->lock);
4856 cfs_b->runtime = 0;
4857 cfs_b->quota = RUNTIME_INF;
4858 cfs_b->period = ns_to_ktime(default_cfs_period());
4859
4860 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4861 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4862 cfs_b->period_timer.function = sched_cfs_period_timer;
4863 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4864 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4865}
4866
4867static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4868{
4869 cfs_rq->runtime_enabled = 0;
4870 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4871}
4872
77a4d1a1 4873void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4874{
4cfafd30 4875 lockdep_assert_held(&cfs_b->lock);
029632fb 4876
4cfafd30
PZ
4877 if (!cfs_b->period_active) {
4878 cfs_b->period_active = 1;
4879 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4880 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4881 }
029632fb
PZ
4882}
4883
4884static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4885{
7f1a169b
TH
4886 /* init_cfs_bandwidth() was not called */
4887 if (!cfs_b->throttled_cfs_rq.next)
4888 return;
4889
029632fb
PZ
4890 hrtimer_cancel(&cfs_b->period_timer);
4891 hrtimer_cancel(&cfs_b->slack_timer);
4892}
4893
502ce005
PZ
4894/*
4895 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4896 *
4897 * The race is harmless, since modifying bandwidth settings of unhooked group
4898 * bits doesn't do much.
4899 */
4900
4901/* cpu online calback */
0e59bdae
KT
4902static void __maybe_unused update_runtime_enabled(struct rq *rq)
4903{
502ce005 4904 struct task_group *tg;
0e59bdae 4905
502ce005
PZ
4906 lockdep_assert_held(&rq->lock);
4907
4908 rcu_read_lock();
4909 list_for_each_entry_rcu(tg, &task_groups, list) {
4910 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4911 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4912
4913 raw_spin_lock(&cfs_b->lock);
4914 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4915 raw_spin_unlock(&cfs_b->lock);
4916 }
502ce005 4917 rcu_read_unlock();
0e59bdae
KT
4918}
4919
502ce005 4920/* cpu offline callback */
38dc3348 4921static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4922{
502ce005
PZ
4923 struct task_group *tg;
4924
4925 lockdep_assert_held(&rq->lock);
4926
4927 rcu_read_lock();
4928 list_for_each_entry_rcu(tg, &task_groups, list) {
4929 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4930
029632fb
PZ
4931 if (!cfs_rq->runtime_enabled)
4932 continue;
4933
4934 /*
4935 * clock_task is not advancing so we just need to make sure
4936 * there's some valid quota amount
4937 */
51f2176d 4938 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4939 /*
4940 * Offline rq is schedulable till cpu is completely disabled
4941 * in take_cpu_down(), so we prevent new cfs throttling here.
4942 */
4943 cfs_rq->runtime_enabled = 0;
4944
029632fb
PZ
4945 if (cfs_rq_throttled(cfs_rq))
4946 unthrottle_cfs_rq(cfs_rq);
4947 }
502ce005 4948 rcu_read_unlock();
029632fb
PZ
4949}
4950
4951#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4952static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4953{
78becc27 4954 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4955}
4956
9dbdb155 4957static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4958static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4959static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4960static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4961static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4962
4963static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4964{
4965 return 0;
4966}
64660c86
PT
4967
4968static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4969{
4970 return 0;
4971}
4972
4973static inline int throttled_lb_pair(struct task_group *tg,
4974 int src_cpu, int dest_cpu)
4975{
4976 return 0;
4977}
029632fb
PZ
4978
4979void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4980
4981#ifdef CONFIG_FAIR_GROUP_SCHED
4982static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4983#endif
4984
029632fb
PZ
4985static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4986{
4987 return NULL;
4988}
4989static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4990static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4991static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4992
4993#endif /* CONFIG_CFS_BANDWIDTH */
4994
bf0f6f24
IM
4995/**************************************************
4996 * CFS operations on tasks:
4997 */
4998
8f4d37ec
PZ
4999#ifdef CONFIG_SCHED_HRTICK
5000static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5001{
8f4d37ec
PZ
5002 struct sched_entity *se = &p->se;
5003 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5004
9148a3a1 5005 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5006
8bf46a39 5007 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5008 u64 slice = sched_slice(cfs_rq, se);
5009 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5010 s64 delta = slice - ran;
5011
5012 if (delta < 0) {
5013 if (rq->curr == p)
8875125e 5014 resched_curr(rq);
8f4d37ec
PZ
5015 return;
5016 }
31656519 5017 hrtick_start(rq, delta);
8f4d37ec
PZ
5018 }
5019}
a4c2f00f
PZ
5020
5021/*
5022 * called from enqueue/dequeue and updates the hrtick when the
5023 * current task is from our class and nr_running is low enough
5024 * to matter.
5025 */
5026static void hrtick_update(struct rq *rq)
5027{
5028 struct task_struct *curr = rq->curr;
5029
b39e66ea 5030 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5031 return;
5032
5033 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5034 hrtick_start_fair(rq, curr);
5035}
55e12e5e 5036#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5037static inline void
5038hrtick_start_fair(struct rq *rq, struct task_struct *p)
5039{
5040}
a4c2f00f
PZ
5041
5042static inline void hrtick_update(struct rq *rq)
5043{
5044}
8f4d37ec
PZ
5045#endif
5046
bf0f6f24
IM
5047/*
5048 * The enqueue_task method is called before nr_running is
5049 * increased. Here we update the fair scheduling stats and
5050 * then put the task into the rbtree:
5051 */
ea87bb78 5052static void
371fd7e7 5053enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5054{
5055 struct cfs_rq *cfs_rq;
62fb1851 5056 struct sched_entity *se = &p->se;
bf0f6f24 5057
8c34ab19
RW
5058 /*
5059 * If in_iowait is set, the code below may not trigger any cpufreq
5060 * utilization updates, so do it here explicitly with the IOWAIT flag
5061 * passed.
5062 */
5063 if (p->in_iowait)
674e7541 5064 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5065
bf0f6f24 5066 for_each_sched_entity(se) {
62fb1851 5067 if (se->on_rq)
bf0f6f24
IM
5068 break;
5069 cfs_rq = cfs_rq_of(se);
88ec22d3 5070 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5071
5072 /*
5073 * end evaluation on encountering a throttled cfs_rq
5074 *
5075 * note: in the case of encountering a throttled cfs_rq we will
5076 * post the final h_nr_running increment below.
e210bffd 5077 */
85dac906
PT
5078 if (cfs_rq_throttled(cfs_rq))
5079 break;
953bfcd1 5080 cfs_rq->h_nr_running++;
85dac906 5081
88ec22d3 5082 flags = ENQUEUE_WAKEUP;
bf0f6f24 5083 }
8f4d37ec 5084
2069dd75 5085 for_each_sched_entity(se) {
0f317143 5086 cfs_rq = cfs_rq_of(se);
953bfcd1 5087 cfs_rq->h_nr_running++;
2069dd75 5088
85dac906
PT
5089 if (cfs_rq_throttled(cfs_rq))
5090 break;
5091
88c0616e 5092 update_load_avg(cfs_rq, se, UPDATE_TG);
89ee048f 5093 update_cfs_shares(se);
2069dd75
PZ
5094 }
5095
cd126afe 5096 if (!se)
72465447 5097 add_nr_running(rq, 1);
cd126afe 5098
a4c2f00f 5099 hrtick_update(rq);
bf0f6f24
IM
5100}
5101
2f36825b
VP
5102static void set_next_buddy(struct sched_entity *se);
5103
bf0f6f24
IM
5104/*
5105 * The dequeue_task method is called before nr_running is
5106 * decreased. We remove the task from the rbtree and
5107 * update the fair scheduling stats:
5108 */
371fd7e7 5109static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5110{
5111 struct cfs_rq *cfs_rq;
62fb1851 5112 struct sched_entity *se = &p->se;
2f36825b 5113 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5114
5115 for_each_sched_entity(se) {
5116 cfs_rq = cfs_rq_of(se);
371fd7e7 5117 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5118
5119 /*
5120 * end evaluation on encountering a throttled cfs_rq
5121 *
5122 * note: in the case of encountering a throttled cfs_rq we will
5123 * post the final h_nr_running decrement below.
5124 */
5125 if (cfs_rq_throttled(cfs_rq))
5126 break;
953bfcd1 5127 cfs_rq->h_nr_running--;
2069dd75 5128
bf0f6f24 5129 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5130 if (cfs_rq->load.weight) {
754bd598
KK
5131 /* Avoid re-evaluating load for this entity: */
5132 se = parent_entity(se);
2f36825b
VP
5133 /*
5134 * Bias pick_next to pick a task from this cfs_rq, as
5135 * p is sleeping when it is within its sched_slice.
5136 */
754bd598
KK
5137 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5138 set_next_buddy(se);
bf0f6f24 5139 break;
2f36825b 5140 }
371fd7e7 5141 flags |= DEQUEUE_SLEEP;
bf0f6f24 5142 }
8f4d37ec 5143
2069dd75 5144 for_each_sched_entity(se) {
0f317143 5145 cfs_rq = cfs_rq_of(se);
953bfcd1 5146 cfs_rq->h_nr_running--;
2069dd75 5147
85dac906
PT
5148 if (cfs_rq_throttled(cfs_rq))
5149 break;
5150
88c0616e 5151 update_load_avg(cfs_rq, se, UPDATE_TG);
89ee048f 5152 update_cfs_shares(se);
2069dd75
PZ
5153 }
5154
cd126afe 5155 if (!se)
72465447 5156 sub_nr_running(rq, 1);
cd126afe 5157
a4c2f00f 5158 hrtick_update(rq);
bf0f6f24
IM
5159}
5160
e7693a36 5161#ifdef CONFIG_SMP
10e2f1ac
PZ
5162
5163/* Working cpumask for: load_balance, load_balance_newidle. */
5164DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5165DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5166
9fd81dd5 5167#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5168/*
5169 * per rq 'load' arrray crap; XXX kill this.
5170 */
5171
5172/*
d937cdc5 5173 * The exact cpuload calculated at every tick would be:
3289bdb4 5174 *
d937cdc5
PZ
5175 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5176 *
5177 * If a cpu misses updates for n ticks (as it was idle) and update gets
5178 * called on the n+1-th tick when cpu may be busy, then we have:
5179 *
5180 * load_n = (1 - 1/2^i)^n * load_0
5181 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5182 *
5183 * decay_load_missed() below does efficient calculation of
3289bdb4 5184 *
d937cdc5
PZ
5185 * load' = (1 - 1/2^i)^n * load
5186 *
5187 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5188 * This allows us to precompute the above in said factors, thereby allowing the
5189 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5190 * fixed_power_int())
3289bdb4 5191 *
d937cdc5 5192 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5193 */
5194#define DEGRADE_SHIFT 7
d937cdc5
PZ
5195
5196static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5197static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5198 { 0, 0, 0, 0, 0, 0, 0, 0 },
5199 { 64, 32, 8, 0, 0, 0, 0, 0 },
5200 { 96, 72, 40, 12, 1, 0, 0, 0 },
5201 { 112, 98, 75, 43, 15, 1, 0, 0 },
5202 { 120, 112, 98, 76, 45, 16, 2, 0 }
5203};
3289bdb4
PZ
5204
5205/*
5206 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5207 * would be when CPU is idle and so we just decay the old load without
5208 * adding any new load.
5209 */
5210static unsigned long
5211decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5212{
5213 int j = 0;
5214
5215 if (!missed_updates)
5216 return load;
5217
5218 if (missed_updates >= degrade_zero_ticks[idx])
5219 return 0;
5220
5221 if (idx == 1)
5222 return load >> missed_updates;
5223
5224 while (missed_updates) {
5225 if (missed_updates % 2)
5226 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5227
5228 missed_updates >>= 1;
5229 j++;
5230 }
5231 return load;
5232}
9fd81dd5 5233#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5234
59543275 5235/**
cee1afce 5236 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5237 * @this_rq: The rq to update statistics for
5238 * @this_load: The current load
5239 * @pending_updates: The number of missed updates
59543275 5240 *
3289bdb4 5241 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5242 * scheduler tick (TICK_NSEC).
5243 *
5244 * This function computes a decaying average:
5245 *
5246 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5247 *
5248 * Because of NOHZ it might not get called on every tick which gives need for
5249 * the @pending_updates argument.
5250 *
5251 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5252 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5253 * = A * (A * load[i]_n-2 + B) + B
5254 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5255 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5256 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5257 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5258 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5259 *
5260 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5261 * any change in load would have resulted in the tick being turned back on.
5262 *
5263 * For regular NOHZ, this reduces to:
5264 *
5265 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5266 *
5267 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5268 * term.
3289bdb4 5269 */
1f41906a
FW
5270static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5271 unsigned long pending_updates)
3289bdb4 5272{
9fd81dd5 5273 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5274 int i, scale;
5275
5276 this_rq->nr_load_updates++;
5277
5278 /* Update our load: */
5279 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5280 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5281 unsigned long old_load, new_load;
5282
5283 /* scale is effectively 1 << i now, and >> i divides by scale */
5284
7400d3bb 5285 old_load = this_rq->cpu_load[i];
9fd81dd5 5286#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5287 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5288 if (tickless_load) {
5289 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5290 /*
5291 * old_load can never be a negative value because a
5292 * decayed tickless_load cannot be greater than the
5293 * original tickless_load.
5294 */
5295 old_load += tickless_load;
5296 }
9fd81dd5 5297#endif
3289bdb4
PZ
5298 new_load = this_load;
5299 /*
5300 * Round up the averaging division if load is increasing. This
5301 * prevents us from getting stuck on 9 if the load is 10, for
5302 * example.
5303 */
5304 if (new_load > old_load)
5305 new_load += scale - 1;
5306
5307 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5308 }
5309
5310 sched_avg_update(this_rq);
5311}
5312
7ea241af 5313/* Used instead of source_load when we know the type == 0 */
c7132dd6 5314static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5315{
c7132dd6 5316 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5317}
5318
3289bdb4 5319#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5320/*
5321 * There is no sane way to deal with nohz on smp when using jiffies because the
5322 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5323 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5324 *
5325 * Therefore we need to avoid the delta approach from the regular tick when
5326 * possible since that would seriously skew the load calculation. This is why we
5327 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5328 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5329 * loop exit, nohz_idle_balance, nohz full exit...)
5330 *
5331 * This means we might still be one tick off for nohz periods.
5332 */
5333
5334static void cpu_load_update_nohz(struct rq *this_rq,
5335 unsigned long curr_jiffies,
5336 unsigned long load)
be68a682
FW
5337{
5338 unsigned long pending_updates;
5339
5340 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5341 if (pending_updates) {
5342 this_rq->last_load_update_tick = curr_jiffies;
5343 /*
5344 * In the regular NOHZ case, we were idle, this means load 0.
5345 * In the NOHZ_FULL case, we were non-idle, we should consider
5346 * its weighted load.
5347 */
1f41906a 5348 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5349 }
5350}
5351
3289bdb4
PZ
5352/*
5353 * Called from nohz_idle_balance() to update the load ratings before doing the
5354 * idle balance.
5355 */
cee1afce 5356static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5357{
3289bdb4
PZ
5358 /*
5359 * bail if there's load or we're actually up-to-date.
5360 */
c7132dd6 5361 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5362 return;
5363
1f41906a 5364 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5365}
5366
5367/*
1f41906a
FW
5368 * Record CPU load on nohz entry so we know the tickless load to account
5369 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5370 * than other cpu_load[idx] but it should be fine as cpu_load readers
5371 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5372 */
1f41906a 5373void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5374{
5375 struct rq *this_rq = this_rq();
1f41906a
FW
5376
5377 /*
5378 * This is all lockless but should be fine. If weighted_cpuload changes
5379 * concurrently we'll exit nohz. And cpu_load write can race with
5380 * cpu_load_update_idle() but both updater would be writing the same.
5381 */
c7132dd6 5382 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5383}
5384
5385/*
5386 * Account the tickless load in the end of a nohz frame.
5387 */
5388void cpu_load_update_nohz_stop(void)
5389{
316c1608 5390 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5391 struct rq *this_rq = this_rq();
5392 unsigned long load;
8a8c69c3 5393 struct rq_flags rf;
3289bdb4
PZ
5394
5395 if (curr_jiffies == this_rq->last_load_update_tick)
5396 return;
5397
c7132dd6 5398 load = weighted_cpuload(this_rq);
8a8c69c3 5399 rq_lock(this_rq, &rf);
b52fad2d 5400 update_rq_clock(this_rq);
1f41906a 5401 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5402 rq_unlock(this_rq, &rf);
3289bdb4 5403}
1f41906a
FW
5404#else /* !CONFIG_NO_HZ_COMMON */
5405static inline void cpu_load_update_nohz(struct rq *this_rq,
5406 unsigned long curr_jiffies,
5407 unsigned long load) { }
5408#endif /* CONFIG_NO_HZ_COMMON */
5409
5410static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5411{
9fd81dd5 5412#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5413 /* See the mess around cpu_load_update_nohz(). */
5414 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5415#endif
1f41906a
FW
5416 cpu_load_update(this_rq, load, 1);
5417}
3289bdb4
PZ
5418
5419/*
5420 * Called from scheduler_tick()
5421 */
cee1afce 5422void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5423{
c7132dd6 5424 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5425
5426 if (tick_nohz_tick_stopped())
5427 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5428 else
5429 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5430}
5431
029632fb
PZ
5432/*
5433 * Return a low guess at the load of a migration-source cpu weighted
5434 * according to the scheduling class and "nice" value.
5435 *
5436 * We want to under-estimate the load of migration sources, to
5437 * balance conservatively.
5438 */
5439static unsigned long source_load(int cpu, int type)
5440{
5441 struct rq *rq = cpu_rq(cpu);
c7132dd6 5442 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5443
5444 if (type == 0 || !sched_feat(LB_BIAS))
5445 return total;
5446
5447 return min(rq->cpu_load[type-1], total);
5448}
5449
5450/*
5451 * Return a high guess at the load of a migration-target cpu weighted
5452 * according to the scheduling class and "nice" value.
5453 */
5454static unsigned long target_load(int cpu, int type)
5455{
5456 struct rq *rq = cpu_rq(cpu);
c7132dd6 5457 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5458
5459 if (type == 0 || !sched_feat(LB_BIAS))
5460 return total;
5461
5462 return max(rq->cpu_load[type-1], total);
5463}
5464
ced549fa 5465static unsigned long capacity_of(int cpu)
029632fb 5466{
ced549fa 5467 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5468}
5469
ca6d75e6
VG
5470static unsigned long capacity_orig_of(int cpu)
5471{
5472 return cpu_rq(cpu)->cpu_capacity_orig;
5473}
5474
029632fb
PZ
5475static unsigned long cpu_avg_load_per_task(int cpu)
5476{
5477 struct rq *rq = cpu_rq(cpu);
316c1608 5478 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5479 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5480
5481 if (nr_running)
b92486cb 5482 return load_avg / nr_running;
029632fb
PZ
5483
5484 return 0;
5485}
5486
c58d25f3
PZ
5487static void record_wakee(struct task_struct *p)
5488{
5489 /*
5490 * Only decay a single time; tasks that have less then 1 wakeup per
5491 * jiffy will not have built up many flips.
5492 */
5493 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5494 current->wakee_flips >>= 1;
5495 current->wakee_flip_decay_ts = jiffies;
5496 }
5497
5498 if (current->last_wakee != p) {
5499 current->last_wakee = p;
5500 current->wakee_flips++;
5501 }
5502}
5503
63b0e9ed
MG
5504/*
5505 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5506 *
63b0e9ed 5507 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5508 * at a frequency roughly N times higher than one of its wakees.
5509 *
5510 * In order to determine whether we should let the load spread vs consolidating
5511 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5512 * partner, and a factor of lls_size higher frequency in the other.
5513 *
5514 * With both conditions met, we can be relatively sure that the relationship is
5515 * non-monogamous, with partner count exceeding socket size.
5516 *
5517 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5518 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5519 * socket size.
63b0e9ed 5520 */
62470419
MW
5521static int wake_wide(struct task_struct *p)
5522{
63b0e9ed
MG
5523 unsigned int master = current->wakee_flips;
5524 unsigned int slave = p->wakee_flips;
7d9ffa89 5525 int factor = this_cpu_read(sd_llc_size);
62470419 5526
63b0e9ed
MG
5527 if (master < slave)
5528 swap(master, slave);
5529 if (slave < factor || master < slave * factor)
5530 return 0;
5531 return 1;
62470419
MW
5532}
5533
90001d67
PZ
5534struct llc_stats {
5535 unsigned long nr_running;
5536 unsigned long load;
5537 unsigned long capacity;
5538 int has_capacity;
5539};
5540
5541static bool get_llc_stats(struct llc_stats *stats, int cpu)
5542{
5543 struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5544
5545 if (!sds)
5546 return false;
5547
5548 stats->nr_running = READ_ONCE(sds->nr_running);
5549 stats->load = READ_ONCE(sds->load);
5550 stats->capacity = READ_ONCE(sds->capacity);
5551 stats->has_capacity = stats->nr_running < per_cpu(sd_llc_size, cpu);
5552
5553 return true;
5554}
5555
5556/*
5557 * Can a task be moved from prev_cpu to this_cpu without causing a load
5558 * imbalance that would trigger the load balancer?
5559 *
5560 * Since we're running on 'stale' values, we might in fact create an imbalance
5561 * but recomputing these values is expensive, as that'd mean iteration 2 cache
5562 * domains worth of CPUs.
5563 */
5564static bool
5565wake_affine_llc(struct sched_domain *sd, struct task_struct *p,
5566 int this_cpu, int prev_cpu, int sync)
5567{
5568 struct llc_stats prev_stats, this_stats;
5569 s64 this_eff_load, prev_eff_load;
5570 unsigned long task_load;
5571
5572 if (!get_llc_stats(&prev_stats, prev_cpu) ||
5573 !get_llc_stats(&this_stats, this_cpu))
5574 return false;
5575
5576 /*
5577 * If sync wakeup then subtract the (maximum possible)
5578 * effect of the currently running task from the load
5579 * of the current LLC.
5580 */
5581 if (sync) {
5582 unsigned long current_load = task_h_load(current);
5583
5584 /* in this case load hits 0 and this LLC is considered 'idle' */
5585 if (current_load > this_stats.load)
5586 return true;
5587
5588 this_stats.load -= current_load;
5589 }
5590
5591 /*
5592 * The has_capacity stuff is not SMT aware, but by trying to balance
5593 * the nr_running on both ends we try and fill the domain at equal
5594 * rates, thereby first consuming cores before siblings.
5595 */
5596
5597 /* if the old cache has capacity, stay there */
5598 if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1)
5599 return false;
5600
5601 /* if this cache has capacity, come here */
a731ebe6 5602 if (this_stats.has_capacity && this_stats.nr_running+1 < prev_stats.nr_running)
90001d67
PZ
5603 return true;
5604
5605 /*
5606 * Check to see if we can move the load without causing too much
5607 * imbalance.
5608 */
5609 task_load = task_h_load(p);
5610
5611 this_eff_load = 100;
5612 this_eff_load *= prev_stats.capacity;
5613
5614 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5615 prev_eff_load *= this_stats.capacity;
5616
5617 this_eff_load *= this_stats.load + task_load;
5618 prev_eff_load *= prev_stats.load - task_load;
5619
5620 return this_eff_load <= prev_eff_load;
5621}
5622
772bd008
MR
5623static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5624 int prev_cpu, int sync)
098fb9db 5625{
3fed382b 5626 int this_cpu = smp_processor_id();
90001d67 5627 bool affine;
098fb9db 5628
7d894e6e 5629 /*
90001d67
PZ
5630 * Default to no affine wakeups; wake_affine() should not effect a task
5631 * placement the load-balancer feels inclined to undo. The conservative
5632 * option is therefore to not move tasks when they wake up.
7d894e6e 5633 */
90001d67
PZ
5634 affine = false;
5635
5636 /*
5637 * If the wakeup is across cache domains, try to evaluate if movement
5638 * makes sense, otherwise rely on select_idle_siblings() to do
5639 * placement inside the cache domain.
5640 */
5641 if (!cpus_share_cache(prev_cpu, this_cpu))
5642 affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5643
ae92882e 5644 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3fed382b
RR
5645 if (affine) {
5646 schedstat_inc(sd->ttwu_move_affine);
5647 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5648 }
098fb9db 5649
3fed382b 5650 return affine;
098fb9db
IM
5651}
5652
6a0b19c0
MR
5653static inline int task_util(struct task_struct *p);
5654static int cpu_util_wake(int cpu, struct task_struct *p);
5655
5656static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5657{
5658 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5659}
5660
aaee1203
PZ
5661/*
5662 * find_idlest_group finds and returns the least busy CPU group within the
5663 * domain.
5664 */
5665static struct sched_group *
78e7ed53 5666find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5667 int this_cpu, int sd_flag)
e7693a36 5668{
b3bd3de6 5669 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5670 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5671 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5672 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5673 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5674 int load_idx = sd->forkexec_idx;
6b94780e
VG
5675 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5676 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5677 (sd->imbalance_pct-100) / 100;
e7693a36 5678
c44f2a02
VG
5679 if (sd_flag & SD_BALANCE_WAKE)
5680 load_idx = sd->wake_idx;
5681
aaee1203 5682 do {
6b94780e
VG
5683 unsigned long load, avg_load, runnable_load;
5684 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5685 int local_group;
5686 int i;
e7693a36 5687
aaee1203 5688 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5689 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5690 &p->cpus_allowed))
aaee1203
PZ
5691 continue;
5692
5693 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5694 sched_group_span(group));
aaee1203 5695
6a0b19c0
MR
5696 /*
5697 * Tally up the load of all CPUs in the group and find
5698 * the group containing the CPU with most spare capacity.
5699 */
aaee1203 5700 avg_load = 0;
6b94780e 5701 runnable_load = 0;
6a0b19c0 5702 max_spare_cap = 0;
aaee1203 5703
ae4df9d6 5704 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5705 /* Bias balancing toward cpus of our domain */
5706 if (local_group)
5707 load = source_load(i, load_idx);
5708 else
5709 load = target_load(i, load_idx);
5710
6b94780e
VG
5711 runnable_load += load;
5712
5713 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5714
5715 spare_cap = capacity_spare_wake(i, p);
5716
5717 if (spare_cap > max_spare_cap)
5718 max_spare_cap = spare_cap;
aaee1203
PZ
5719 }
5720
63b2ca30 5721 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5722 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5723 group->sgc->capacity;
5724 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5725 group->sgc->capacity;
aaee1203
PZ
5726
5727 if (local_group) {
6b94780e
VG
5728 this_runnable_load = runnable_load;
5729 this_avg_load = avg_load;
6a0b19c0
MR
5730 this_spare = max_spare_cap;
5731 } else {
6b94780e
VG
5732 if (min_runnable_load > (runnable_load + imbalance)) {
5733 /*
5734 * The runnable load is significantly smaller
5735 * so we can pick this new cpu
5736 */
5737 min_runnable_load = runnable_load;
5738 min_avg_load = avg_load;
5739 idlest = group;
5740 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5741 (100*min_avg_load > imbalance_scale*avg_load)) {
5742 /*
5743 * The runnable loads are close so take the
5744 * blocked load into account through avg_load.
5745 */
5746 min_avg_load = avg_load;
6a0b19c0
MR
5747 idlest = group;
5748 }
5749
5750 if (most_spare < max_spare_cap) {
5751 most_spare = max_spare_cap;
5752 most_spare_sg = group;
5753 }
aaee1203
PZ
5754 }
5755 } while (group = group->next, group != sd->groups);
5756
6a0b19c0
MR
5757 /*
5758 * The cross-over point between using spare capacity or least load
5759 * is too conservative for high utilization tasks on partially
5760 * utilized systems if we require spare_capacity > task_util(p),
5761 * so we allow for some task stuffing by using
5762 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5763 *
5764 * Spare capacity can't be used for fork because the utilization has
5765 * not been set yet, we must first select a rq to compute the initial
5766 * utilization.
6a0b19c0 5767 */
f519a3f1
VG
5768 if (sd_flag & SD_BALANCE_FORK)
5769 goto skip_spare;
5770
6a0b19c0 5771 if (this_spare > task_util(p) / 2 &&
6b94780e 5772 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5773 return NULL;
6b94780e
VG
5774
5775 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5776 return most_spare_sg;
5777
f519a3f1 5778skip_spare:
6b94780e
VG
5779 if (!idlest)
5780 return NULL;
5781
5782 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5783 return NULL;
6b94780e
VG
5784
5785 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5786 (100*this_avg_load < imbalance_scale*min_avg_load))
5787 return NULL;
5788
aaee1203
PZ
5789 return idlest;
5790}
5791
5792/*
5793 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5794 */
5795static int
5796find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5797{
5798 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5799 unsigned int min_exit_latency = UINT_MAX;
5800 u64 latest_idle_timestamp = 0;
5801 int least_loaded_cpu = this_cpu;
5802 int shallowest_idle_cpu = -1;
aaee1203
PZ
5803 int i;
5804
eaecf41f
MR
5805 /* Check if we have any choice: */
5806 if (group->group_weight == 1)
ae4df9d6 5807 return cpumask_first(sched_group_span(group));
eaecf41f 5808
aaee1203 5809 /* Traverse only the allowed CPUs */
ae4df9d6 5810 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5811 if (idle_cpu(i)) {
5812 struct rq *rq = cpu_rq(i);
5813 struct cpuidle_state *idle = idle_get_state(rq);
5814 if (idle && idle->exit_latency < min_exit_latency) {
5815 /*
5816 * We give priority to a CPU whose idle state
5817 * has the smallest exit latency irrespective
5818 * of any idle timestamp.
5819 */
5820 min_exit_latency = idle->exit_latency;
5821 latest_idle_timestamp = rq->idle_stamp;
5822 shallowest_idle_cpu = i;
5823 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5824 rq->idle_stamp > latest_idle_timestamp) {
5825 /*
5826 * If equal or no active idle state, then
5827 * the most recently idled CPU might have
5828 * a warmer cache.
5829 */
5830 latest_idle_timestamp = rq->idle_stamp;
5831 shallowest_idle_cpu = i;
5832 }
9f96742a 5833 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5834 load = weighted_cpuload(cpu_rq(i));
83a0a96a
NP
5835 if (load < min_load || (load == min_load && i == this_cpu)) {
5836 min_load = load;
5837 least_loaded_cpu = i;
5838 }
e7693a36
GH
5839 }
5840 }
5841
83a0a96a 5842 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5843}
e7693a36 5844
10e2f1ac
PZ
5845#ifdef CONFIG_SCHED_SMT
5846
5847static inline void set_idle_cores(int cpu, int val)
5848{
5849 struct sched_domain_shared *sds;
5850
5851 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5852 if (sds)
5853 WRITE_ONCE(sds->has_idle_cores, val);
5854}
5855
5856static inline bool test_idle_cores(int cpu, bool def)
5857{
5858 struct sched_domain_shared *sds;
5859
5860 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5861 if (sds)
5862 return READ_ONCE(sds->has_idle_cores);
5863
5864 return def;
5865}
5866
5867/*
5868 * Scans the local SMT mask to see if the entire core is idle, and records this
5869 * information in sd_llc_shared->has_idle_cores.
5870 *
5871 * Since SMT siblings share all cache levels, inspecting this limited remote
5872 * state should be fairly cheap.
5873 */
1b568f0a 5874void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5875{
5876 int core = cpu_of(rq);
5877 int cpu;
5878
5879 rcu_read_lock();
5880 if (test_idle_cores(core, true))
5881 goto unlock;
5882
5883 for_each_cpu(cpu, cpu_smt_mask(core)) {
5884 if (cpu == core)
5885 continue;
5886
5887 if (!idle_cpu(cpu))
5888 goto unlock;
5889 }
5890
5891 set_idle_cores(core, 1);
5892unlock:
5893 rcu_read_unlock();
5894}
5895
5896/*
5897 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5898 * there are no idle cores left in the system; tracked through
5899 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5900 */
5901static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5902{
5903 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5904 int core, cpu;
10e2f1ac 5905
1b568f0a
PZ
5906 if (!static_branch_likely(&sched_smt_present))
5907 return -1;
5908
10e2f1ac
PZ
5909 if (!test_idle_cores(target, false))
5910 return -1;
5911
0c98d344 5912 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5913
c743f0a5 5914 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5915 bool idle = true;
5916
5917 for_each_cpu(cpu, cpu_smt_mask(core)) {
5918 cpumask_clear_cpu(cpu, cpus);
5919 if (!idle_cpu(cpu))
5920 idle = false;
5921 }
5922
5923 if (idle)
5924 return core;
5925 }
5926
5927 /*
5928 * Failed to find an idle core; stop looking for one.
5929 */
5930 set_idle_cores(target, 0);
5931
5932 return -1;
5933}
5934
5935/*
5936 * Scan the local SMT mask for idle CPUs.
5937 */
5938static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5939{
5940 int cpu;
5941
1b568f0a
PZ
5942 if (!static_branch_likely(&sched_smt_present))
5943 return -1;
5944
10e2f1ac 5945 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5946 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5947 continue;
5948 if (idle_cpu(cpu))
5949 return cpu;
5950 }
5951
5952 return -1;
5953}
5954
5955#else /* CONFIG_SCHED_SMT */
5956
5957static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5958{
5959 return -1;
5960}
5961
5962static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5963{
5964 return -1;
5965}
5966
5967#endif /* CONFIG_SCHED_SMT */
5968
5969/*
5970 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5971 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5972 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5973 */
10e2f1ac
PZ
5974static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5975{
9cfb38a7 5976 struct sched_domain *this_sd;
1ad3aaf3 5977 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5978 u64 time, cost;
5979 s64 delta;
1ad3aaf3 5980 int cpu, nr = INT_MAX;
10e2f1ac 5981
9cfb38a7
WL
5982 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5983 if (!this_sd)
5984 return -1;
5985
10e2f1ac
PZ
5986 /*
5987 * Due to large variance we need a large fuzz factor; hackbench in
5988 * particularly is sensitive here.
5989 */
1ad3aaf3
PZ
5990 avg_idle = this_rq()->avg_idle / 512;
5991 avg_cost = this_sd->avg_scan_cost + 1;
5992
5993 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5994 return -1;
5995
1ad3aaf3
PZ
5996 if (sched_feat(SIS_PROP)) {
5997 u64 span_avg = sd->span_weight * avg_idle;
5998 if (span_avg > 4*avg_cost)
5999 nr = div_u64(span_avg, avg_cost);
6000 else
6001 nr = 4;
6002 }
6003
10e2f1ac
PZ
6004 time = local_clock();
6005
c743f0a5 6006 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6007 if (!--nr)
6008 return -1;
0c98d344 6009 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
6010 continue;
6011 if (idle_cpu(cpu))
6012 break;
6013 }
6014
6015 time = local_clock() - time;
6016 cost = this_sd->avg_scan_cost;
6017 delta = (s64)(time - cost) / 8;
6018 this_sd->avg_scan_cost += delta;
6019
6020 return cpu;
6021}
6022
6023/*
6024 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6025 */
772bd008 6026static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6027{
99bd5e2f 6028 struct sched_domain *sd;
10e2f1ac 6029 int i;
a50bde51 6030
e0a79f52
MG
6031 if (idle_cpu(target))
6032 return target;
99bd5e2f
SS
6033
6034 /*
10e2f1ac 6035 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 6036 */
772bd008
MR
6037 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
6038 return prev;
a50bde51 6039
518cd623 6040 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6041 if (!sd)
6042 return target;
772bd008 6043
10e2f1ac
PZ
6044 i = select_idle_core(p, sd, target);
6045 if ((unsigned)i < nr_cpumask_bits)
6046 return i;
37407ea7 6047
10e2f1ac
PZ
6048 i = select_idle_cpu(p, sd, target);
6049 if ((unsigned)i < nr_cpumask_bits)
6050 return i;
6051
6052 i = select_idle_smt(p, sd, target);
6053 if ((unsigned)i < nr_cpumask_bits)
6054 return i;
970e1789 6055
a50bde51
PZ
6056 return target;
6057}
231678b7 6058
8bb5b00c 6059/*
9e91d61d 6060 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 6061 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
6062 * compare the utilization with the capacity of the CPU that is available for
6063 * CFS task (ie cpu_capacity).
231678b7
DE
6064 *
6065 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6066 * recent utilization of currently non-runnable tasks on a CPU. It represents
6067 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6068 * capacity_orig is the cpu_capacity available at the highest frequency
6069 * (arch_scale_freq_capacity()).
6070 * The utilization of a CPU converges towards a sum equal to or less than the
6071 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6072 * the running time on this CPU scaled by capacity_curr.
6073 *
6074 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6075 * higher than capacity_orig because of unfortunate rounding in
6076 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6077 * the average stabilizes with the new running time. We need to check that the
6078 * utilization stays within the range of [0..capacity_orig] and cap it if
6079 * necessary. Without utilization capping, a group could be seen as overloaded
6080 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6081 * available capacity. We allow utilization to overshoot capacity_curr (but not
6082 * capacity_orig) as it useful for predicting the capacity required after task
6083 * migrations (scheduler-driven DVFS).
8bb5b00c 6084 */
9e91d61d 6085static int cpu_util(int cpu)
8bb5b00c 6086{
9e91d61d 6087 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
6088 unsigned long capacity = capacity_orig_of(cpu);
6089
231678b7 6090 return (util >= capacity) ? capacity : util;
8bb5b00c 6091}
a50bde51 6092
3273163c
MR
6093static inline int task_util(struct task_struct *p)
6094{
6095 return p->se.avg.util_avg;
6096}
6097
104cb16d
MR
6098/*
6099 * cpu_util_wake: Compute cpu utilization with any contributions from
6100 * the waking task p removed.
6101 */
6102static int cpu_util_wake(int cpu, struct task_struct *p)
6103{
6104 unsigned long util, capacity;
6105
6106 /* Task has no contribution or is new */
6107 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6108 return cpu_util(cpu);
6109
6110 capacity = capacity_orig_of(cpu);
6111 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
6112
6113 return (util >= capacity) ? capacity : util;
6114}
6115
3273163c
MR
6116/*
6117 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6118 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6119 *
6120 * In that case WAKE_AFFINE doesn't make sense and we'll let
6121 * BALANCE_WAKE sort things out.
6122 */
6123static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6124{
6125 long min_cap, max_cap;
6126
6127 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6128 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6129
6130 /* Minimum capacity is close to max, no need to abort wake_affine */
6131 if (max_cap - min_cap < max_cap >> 3)
6132 return 0;
6133
104cb16d
MR
6134 /* Bring task utilization in sync with prev_cpu */
6135 sync_entity_load_avg(&p->se);
6136
3273163c
MR
6137 return min_cap * 1024 < task_util(p) * capacity_margin;
6138}
6139
aaee1203 6140/*
de91b9cb
MR
6141 * select_task_rq_fair: Select target runqueue for the waking task in domains
6142 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6143 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6144 *
de91b9cb
MR
6145 * Balances load by selecting the idlest cpu in the idlest group, or under
6146 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 6147 *
de91b9cb 6148 * Returns the target cpu number.
aaee1203
PZ
6149 *
6150 * preempt must be disabled.
6151 */
0017d735 6152static int
ac66f547 6153select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6154{
29cd8bae 6155 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 6156 int cpu = smp_processor_id();
63b0e9ed 6157 int new_cpu = prev_cpu;
99bd5e2f 6158 int want_affine = 0;
5158f4e4 6159 int sync = wake_flags & WF_SYNC;
c88d5910 6160
c58d25f3
PZ
6161 if (sd_flag & SD_BALANCE_WAKE) {
6162 record_wakee(p);
3273163c 6163 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6164 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6165 }
aaee1203 6166
dce840a0 6167 rcu_read_lock();
aaee1203 6168 for_each_domain(cpu, tmp) {
e4f42888 6169 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6170 break;
e4f42888 6171
fe3bcfe1 6172 /*
99bd5e2f
SS
6173 * If both cpu and prev_cpu are part of this domain,
6174 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6175 */
99bd5e2f
SS
6176 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6177 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6178 affine_sd = tmp;
29cd8bae 6179 break;
f03542a7 6180 }
29cd8bae 6181
f03542a7 6182 if (tmp->flags & sd_flag)
29cd8bae 6183 sd = tmp;
63b0e9ed
MG
6184 else if (!want_affine)
6185 break;
29cd8bae
PZ
6186 }
6187
63b0e9ed
MG
6188 if (affine_sd) {
6189 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
6190 if (cpu == prev_cpu)
6191 goto pick_cpu;
6192
6193 if (wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 6194 new_cpu = cpu;
8b911acd 6195 }
e7693a36 6196
63b0e9ed 6197 if (!sd) {
7d894e6e 6198 pick_cpu:
63b0e9ed 6199 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6200 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
6201
6202 } else while (sd) {
aaee1203 6203 struct sched_group *group;
c88d5910 6204 int weight;
098fb9db 6205
0763a660 6206 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6207 sd = sd->child;
6208 continue;
6209 }
098fb9db 6210
c44f2a02 6211 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6212 if (!group) {
6213 sd = sd->child;
6214 continue;
6215 }
4ae7d5ce 6216
d7c33c49 6217 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6218 if (new_cpu == -1 || new_cpu == cpu) {
6219 /* Now try balancing at a lower domain level of cpu */
6220 sd = sd->child;
6221 continue;
e7693a36 6222 }
aaee1203
PZ
6223
6224 /* Now try balancing at a lower domain level of new_cpu */
6225 cpu = new_cpu;
669c55e9 6226 weight = sd->span_weight;
aaee1203
PZ
6227 sd = NULL;
6228 for_each_domain(cpu, tmp) {
669c55e9 6229 if (weight <= tmp->span_weight)
aaee1203 6230 break;
0763a660 6231 if (tmp->flags & sd_flag)
aaee1203
PZ
6232 sd = tmp;
6233 }
6234 /* while loop will break here if sd == NULL */
e7693a36 6235 }
dce840a0 6236 rcu_read_unlock();
e7693a36 6237
c88d5910 6238 return new_cpu;
e7693a36 6239}
0a74bef8
PT
6240
6241/*
6242 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6243 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6244 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6245 */
5a4fd036 6246static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6247{
59efa0ba
PZ
6248 /*
6249 * As blocked tasks retain absolute vruntime the migration needs to
6250 * deal with this by subtracting the old and adding the new
6251 * min_vruntime -- the latter is done by enqueue_entity() when placing
6252 * the task on the new runqueue.
6253 */
6254 if (p->state == TASK_WAKING) {
6255 struct sched_entity *se = &p->se;
6256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6257 u64 min_vruntime;
6258
6259#ifndef CONFIG_64BIT
6260 u64 min_vruntime_copy;
6261
6262 do {
6263 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6264 smp_rmb();
6265 min_vruntime = cfs_rq->min_vruntime;
6266 } while (min_vruntime != min_vruntime_copy);
6267#else
6268 min_vruntime = cfs_rq->min_vruntime;
6269#endif
6270
6271 se->vruntime -= min_vruntime;
6272 }
6273
aff3e498 6274 /*
9d89c257
YD
6275 * We are supposed to update the task to "current" time, then its up to date
6276 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6277 * what current time is, so simply throw away the out-of-date time. This
6278 * will result in the wakee task is less decayed, but giving the wakee more
6279 * load sounds not bad.
aff3e498 6280 */
9d89c257
YD
6281 remove_entity_load_avg(&p->se);
6282
6283 /* Tell new CPU we are migrated */
6284 p->se.avg.last_update_time = 0;
3944a927
BS
6285
6286 /* We have migrated, no longer consider this task hot */
9d89c257 6287 p->se.exec_start = 0;
0a74bef8 6288}
12695578
YD
6289
6290static void task_dead_fair(struct task_struct *p)
6291{
6292 remove_entity_load_avg(&p->se);
6293}
e7693a36
GH
6294#endif /* CONFIG_SMP */
6295
e52fb7c0
PZ
6296static unsigned long
6297wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6298{
6299 unsigned long gran = sysctl_sched_wakeup_granularity;
6300
6301 /*
e52fb7c0
PZ
6302 * Since its curr running now, convert the gran from real-time
6303 * to virtual-time in his units.
13814d42
MG
6304 *
6305 * By using 'se' instead of 'curr' we penalize light tasks, so
6306 * they get preempted easier. That is, if 'se' < 'curr' then
6307 * the resulting gran will be larger, therefore penalizing the
6308 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6309 * be smaller, again penalizing the lighter task.
6310 *
6311 * This is especially important for buddies when the leftmost
6312 * task is higher priority than the buddy.
0bbd3336 6313 */
f4ad9bd2 6314 return calc_delta_fair(gran, se);
0bbd3336
PZ
6315}
6316
464b7527
PZ
6317/*
6318 * Should 'se' preempt 'curr'.
6319 *
6320 * |s1
6321 * |s2
6322 * |s3
6323 * g
6324 * |<--->|c
6325 *
6326 * w(c, s1) = -1
6327 * w(c, s2) = 0
6328 * w(c, s3) = 1
6329 *
6330 */
6331static int
6332wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6333{
6334 s64 gran, vdiff = curr->vruntime - se->vruntime;
6335
6336 if (vdiff <= 0)
6337 return -1;
6338
e52fb7c0 6339 gran = wakeup_gran(curr, se);
464b7527
PZ
6340 if (vdiff > gran)
6341 return 1;
6342
6343 return 0;
6344}
6345
02479099
PZ
6346static void set_last_buddy(struct sched_entity *se)
6347{
69c80f3e
VP
6348 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6349 return;
6350
c5ae366e
DA
6351 for_each_sched_entity(se) {
6352 if (SCHED_WARN_ON(!se->on_rq))
6353 return;
69c80f3e 6354 cfs_rq_of(se)->last = se;
c5ae366e 6355 }
02479099
PZ
6356}
6357
6358static void set_next_buddy(struct sched_entity *se)
6359{
69c80f3e
VP
6360 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6361 return;
6362
c5ae366e
DA
6363 for_each_sched_entity(se) {
6364 if (SCHED_WARN_ON(!se->on_rq))
6365 return;
69c80f3e 6366 cfs_rq_of(se)->next = se;
c5ae366e 6367 }
02479099
PZ
6368}
6369
ac53db59
RR
6370static void set_skip_buddy(struct sched_entity *se)
6371{
69c80f3e
VP
6372 for_each_sched_entity(se)
6373 cfs_rq_of(se)->skip = se;
ac53db59
RR
6374}
6375
bf0f6f24
IM
6376/*
6377 * Preempt the current task with a newly woken task if needed:
6378 */
5a9b86f6 6379static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6380{
6381 struct task_struct *curr = rq->curr;
8651a86c 6382 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6383 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6384 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6385 int next_buddy_marked = 0;
bf0f6f24 6386
4ae7d5ce
IM
6387 if (unlikely(se == pse))
6388 return;
6389
5238cdd3 6390 /*
163122b7 6391 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6392 * unconditionally check_prempt_curr() after an enqueue (which may have
6393 * lead to a throttle). This both saves work and prevents false
6394 * next-buddy nomination below.
6395 */
6396 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6397 return;
6398
2f36825b 6399 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6400 set_next_buddy(pse);
2f36825b
VP
6401 next_buddy_marked = 1;
6402 }
57fdc26d 6403
aec0a514
BR
6404 /*
6405 * We can come here with TIF_NEED_RESCHED already set from new task
6406 * wake up path.
5238cdd3
PT
6407 *
6408 * Note: this also catches the edge-case of curr being in a throttled
6409 * group (e.g. via set_curr_task), since update_curr() (in the
6410 * enqueue of curr) will have resulted in resched being set. This
6411 * prevents us from potentially nominating it as a false LAST_BUDDY
6412 * below.
aec0a514
BR
6413 */
6414 if (test_tsk_need_resched(curr))
6415 return;
6416
a2f5c9ab
DH
6417 /* Idle tasks are by definition preempted by non-idle tasks. */
6418 if (unlikely(curr->policy == SCHED_IDLE) &&
6419 likely(p->policy != SCHED_IDLE))
6420 goto preempt;
6421
91c234b4 6422 /*
a2f5c9ab
DH
6423 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6424 * is driven by the tick):
91c234b4 6425 */
8ed92e51 6426 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6427 return;
bf0f6f24 6428
464b7527 6429 find_matching_se(&se, &pse);
9bbd7374 6430 update_curr(cfs_rq_of(se));
002f128b 6431 BUG_ON(!pse);
2f36825b
VP
6432 if (wakeup_preempt_entity(se, pse) == 1) {
6433 /*
6434 * Bias pick_next to pick the sched entity that is
6435 * triggering this preemption.
6436 */
6437 if (!next_buddy_marked)
6438 set_next_buddy(pse);
3a7e73a2 6439 goto preempt;
2f36825b 6440 }
464b7527 6441
3a7e73a2 6442 return;
a65ac745 6443
3a7e73a2 6444preempt:
8875125e 6445 resched_curr(rq);
3a7e73a2
PZ
6446 /*
6447 * Only set the backward buddy when the current task is still
6448 * on the rq. This can happen when a wakeup gets interleaved
6449 * with schedule on the ->pre_schedule() or idle_balance()
6450 * point, either of which can * drop the rq lock.
6451 *
6452 * Also, during early boot the idle thread is in the fair class,
6453 * for obvious reasons its a bad idea to schedule back to it.
6454 */
6455 if (unlikely(!se->on_rq || curr == rq->idle))
6456 return;
6457
6458 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6459 set_last_buddy(se);
bf0f6f24
IM
6460}
6461
606dba2e 6462static struct task_struct *
d8ac8971 6463pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6464{
6465 struct cfs_rq *cfs_rq = &rq->cfs;
6466 struct sched_entity *se;
678d5718 6467 struct task_struct *p;
37e117c0 6468 int new_tasks;
678d5718 6469
6e83125c 6470again:
678d5718 6471 if (!cfs_rq->nr_running)
38033c37 6472 goto idle;
678d5718 6473
9674f5ca 6474#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6475 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6476 goto simple;
6477
6478 /*
6479 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6480 * likely that a next task is from the same cgroup as the current.
6481 *
6482 * Therefore attempt to avoid putting and setting the entire cgroup
6483 * hierarchy, only change the part that actually changes.
6484 */
6485
6486 do {
6487 struct sched_entity *curr = cfs_rq->curr;
6488
6489 /*
6490 * Since we got here without doing put_prev_entity() we also
6491 * have to consider cfs_rq->curr. If it is still a runnable
6492 * entity, update_curr() will update its vruntime, otherwise
6493 * forget we've ever seen it.
6494 */
54d27365
BS
6495 if (curr) {
6496 if (curr->on_rq)
6497 update_curr(cfs_rq);
6498 else
6499 curr = NULL;
678d5718 6500
54d27365
BS
6501 /*
6502 * This call to check_cfs_rq_runtime() will do the
6503 * throttle and dequeue its entity in the parent(s).
9674f5ca 6504 * Therefore the nr_running test will indeed
54d27365
BS
6505 * be correct.
6506 */
9674f5ca
VK
6507 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6508 cfs_rq = &rq->cfs;
6509
6510 if (!cfs_rq->nr_running)
6511 goto idle;
6512
54d27365 6513 goto simple;
9674f5ca 6514 }
54d27365 6515 }
678d5718
PZ
6516
6517 se = pick_next_entity(cfs_rq, curr);
6518 cfs_rq = group_cfs_rq(se);
6519 } while (cfs_rq);
6520
6521 p = task_of(se);
6522
6523 /*
6524 * Since we haven't yet done put_prev_entity and if the selected task
6525 * is a different task than we started out with, try and touch the
6526 * least amount of cfs_rqs.
6527 */
6528 if (prev != p) {
6529 struct sched_entity *pse = &prev->se;
6530
6531 while (!(cfs_rq = is_same_group(se, pse))) {
6532 int se_depth = se->depth;
6533 int pse_depth = pse->depth;
6534
6535 if (se_depth <= pse_depth) {
6536 put_prev_entity(cfs_rq_of(pse), pse);
6537 pse = parent_entity(pse);
6538 }
6539 if (se_depth >= pse_depth) {
6540 set_next_entity(cfs_rq_of(se), se);
6541 se = parent_entity(se);
6542 }
6543 }
6544
6545 put_prev_entity(cfs_rq, pse);
6546 set_next_entity(cfs_rq, se);
6547 }
6548
6549 if (hrtick_enabled(rq))
6550 hrtick_start_fair(rq, p);
6551
6552 return p;
6553simple:
678d5718 6554#endif
bf0f6f24 6555
3f1d2a31 6556 put_prev_task(rq, prev);
606dba2e 6557
bf0f6f24 6558 do {
678d5718 6559 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6560 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6561 cfs_rq = group_cfs_rq(se);
6562 } while (cfs_rq);
6563
8f4d37ec 6564 p = task_of(se);
678d5718 6565
b39e66ea
MG
6566 if (hrtick_enabled(rq))
6567 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6568
6569 return p;
38033c37
PZ
6570
6571idle:
46f69fa3
MF
6572 new_tasks = idle_balance(rq, rf);
6573
37e117c0
PZ
6574 /*
6575 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6576 * possible for any higher priority task to appear. In that case we
6577 * must re-start the pick_next_entity() loop.
6578 */
e4aa358b 6579 if (new_tasks < 0)
37e117c0
PZ
6580 return RETRY_TASK;
6581
e4aa358b 6582 if (new_tasks > 0)
38033c37 6583 goto again;
38033c37
PZ
6584
6585 return NULL;
bf0f6f24
IM
6586}
6587
6588/*
6589 * Account for a descheduled task:
6590 */
31ee529c 6591static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6592{
6593 struct sched_entity *se = &prev->se;
6594 struct cfs_rq *cfs_rq;
6595
6596 for_each_sched_entity(se) {
6597 cfs_rq = cfs_rq_of(se);
ab6cde26 6598 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6599 }
6600}
6601
ac53db59
RR
6602/*
6603 * sched_yield() is very simple
6604 *
6605 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6606 */
6607static void yield_task_fair(struct rq *rq)
6608{
6609 struct task_struct *curr = rq->curr;
6610 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6611 struct sched_entity *se = &curr->se;
6612
6613 /*
6614 * Are we the only task in the tree?
6615 */
6616 if (unlikely(rq->nr_running == 1))
6617 return;
6618
6619 clear_buddies(cfs_rq, se);
6620
6621 if (curr->policy != SCHED_BATCH) {
6622 update_rq_clock(rq);
6623 /*
6624 * Update run-time statistics of the 'current'.
6625 */
6626 update_curr(cfs_rq);
916671c0
MG
6627 /*
6628 * Tell update_rq_clock() that we've just updated,
6629 * so we don't do microscopic update in schedule()
6630 * and double the fastpath cost.
6631 */
9edfbfed 6632 rq_clock_skip_update(rq, true);
ac53db59
RR
6633 }
6634
6635 set_skip_buddy(se);
6636}
6637
d95f4122
MG
6638static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6639{
6640 struct sched_entity *se = &p->se;
6641
5238cdd3
PT
6642 /* throttled hierarchies are not runnable */
6643 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6644 return false;
6645
6646 /* Tell the scheduler that we'd really like pse to run next. */
6647 set_next_buddy(se);
6648
d95f4122
MG
6649 yield_task_fair(rq);
6650
6651 return true;
6652}
6653
681f3e68 6654#ifdef CONFIG_SMP
bf0f6f24 6655/**************************************************
e9c84cb8
PZ
6656 * Fair scheduling class load-balancing methods.
6657 *
6658 * BASICS
6659 *
6660 * The purpose of load-balancing is to achieve the same basic fairness the
6661 * per-cpu scheduler provides, namely provide a proportional amount of compute
6662 * time to each task. This is expressed in the following equation:
6663 *
6664 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6665 *
6666 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6667 * W_i,0 is defined as:
6668 *
6669 * W_i,0 = \Sum_j w_i,j (2)
6670 *
6671 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6672 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6673 *
6674 * The weight average is an exponential decay average of the instantaneous
6675 * weight:
6676 *
6677 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6678 *
ced549fa 6679 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6680 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6681 * can also include other factors [XXX].
6682 *
6683 * To achieve this balance we define a measure of imbalance which follows
6684 * directly from (1):
6685 *
ced549fa 6686 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6687 *
6688 * We them move tasks around to minimize the imbalance. In the continuous
6689 * function space it is obvious this converges, in the discrete case we get
6690 * a few fun cases generally called infeasible weight scenarios.
6691 *
6692 * [XXX expand on:
6693 * - infeasible weights;
6694 * - local vs global optima in the discrete case. ]
6695 *
6696 *
6697 * SCHED DOMAINS
6698 *
6699 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6700 * for all i,j solution, we create a tree of cpus that follows the hardware
6701 * topology where each level pairs two lower groups (or better). This results
6702 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6703 * tree to only the first of the previous level and we decrease the frequency
6704 * of load-balance at each level inv. proportional to the number of cpus in
6705 * the groups.
6706 *
6707 * This yields:
6708 *
6709 * log_2 n 1 n
6710 * \Sum { --- * --- * 2^i } = O(n) (5)
6711 * i = 0 2^i 2^i
6712 * `- size of each group
6713 * | | `- number of cpus doing load-balance
6714 * | `- freq
6715 * `- sum over all levels
6716 *
6717 * Coupled with a limit on how many tasks we can migrate every balance pass,
6718 * this makes (5) the runtime complexity of the balancer.
6719 *
6720 * An important property here is that each CPU is still (indirectly) connected
6721 * to every other cpu in at most O(log n) steps:
6722 *
6723 * The adjacency matrix of the resulting graph is given by:
6724 *
97a7142f 6725 * log_2 n
e9c84cb8
PZ
6726 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6727 * k = 0
6728 *
6729 * And you'll find that:
6730 *
6731 * A^(log_2 n)_i,j != 0 for all i,j (7)
6732 *
6733 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6734 * The task movement gives a factor of O(m), giving a convergence complexity
6735 * of:
6736 *
6737 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6738 *
6739 *
6740 * WORK CONSERVING
6741 *
6742 * In order to avoid CPUs going idle while there's still work to do, new idle
6743 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6744 * tree itself instead of relying on other CPUs to bring it work.
6745 *
6746 * This adds some complexity to both (5) and (8) but it reduces the total idle
6747 * time.
6748 *
6749 * [XXX more?]
6750 *
6751 *
6752 * CGROUPS
6753 *
6754 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6755 *
6756 * s_k,i
6757 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6758 * S_k
6759 *
6760 * Where
6761 *
6762 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6763 *
6764 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6765 *
6766 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6767 * property.
6768 *
6769 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6770 * rewrite all of this once again.]
97a7142f 6771 */
bf0f6f24 6772
ed387b78
HS
6773static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6774
0ec8aa00
PZ
6775enum fbq_type { regular, remote, all };
6776
ddcdf6e7 6777#define LBF_ALL_PINNED 0x01
367456c7 6778#define LBF_NEED_BREAK 0x02
6263322c
PZ
6779#define LBF_DST_PINNED 0x04
6780#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6781
6782struct lb_env {
6783 struct sched_domain *sd;
6784
ddcdf6e7 6785 struct rq *src_rq;
85c1e7da 6786 int src_cpu;
ddcdf6e7
PZ
6787
6788 int dst_cpu;
6789 struct rq *dst_rq;
6790
88b8dac0
SV
6791 struct cpumask *dst_grpmask;
6792 int new_dst_cpu;
ddcdf6e7 6793 enum cpu_idle_type idle;
bd939f45 6794 long imbalance;
b9403130
MW
6795 /* The set of CPUs under consideration for load-balancing */
6796 struct cpumask *cpus;
6797
ddcdf6e7 6798 unsigned int flags;
367456c7
PZ
6799
6800 unsigned int loop;
6801 unsigned int loop_break;
6802 unsigned int loop_max;
0ec8aa00
PZ
6803
6804 enum fbq_type fbq_type;
163122b7 6805 struct list_head tasks;
ddcdf6e7
PZ
6806};
6807
029632fb
PZ
6808/*
6809 * Is this task likely cache-hot:
6810 */
5d5e2b1b 6811static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6812{
6813 s64 delta;
6814
e5673f28
KT
6815 lockdep_assert_held(&env->src_rq->lock);
6816
029632fb
PZ
6817 if (p->sched_class != &fair_sched_class)
6818 return 0;
6819
6820 if (unlikely(p->policy == SCHED_IDLE))
6821 return 0;
6822
6823 /*
6824 * Buddy candidates are cache hot:
6825 */
5d5e2b1b 6826 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6827 (&p->se == cfs_rq_of(&p->se)->next ||
6828 &p->se == cfs_rq_of(&p->se)->last))
6829 return 1;
6830
6831 if (sysctl_sched_migration_cost == -1)
6832 return 1;
6833 if (sysctl_sched_migration_cost == 0)
6834 return 0;
6835
5d5e2b1b 6836 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6837
6838 return delta < (s64)sysctl_sched_migration_cost;
6839}
6840
3a7053b3 6841#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6842/*
2a1ed24c
SD
6843 * Returns 1, if task migration degrades locality
6844 * Returns 0, if task migration improves locality i.e migration preferred.
6845 * Returns -1, if task migration is not affected by locality.
c1ceac62 6846 */
2a1ed24c 6847static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6848{
b1ad065e 6849 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6850 unsigned long src_faults, dst_faults;
3a7053b3
MG
6851 int src_nid, dst_nid;
6852
2a595721 6853 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6854 return -1;
6855
c3b9bc5b 6856 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6857 return -1;
7a0f3083
MG
6858
6859 src_nid = cpu_to_node(env->src_cpu);
6860 dst_nid = cpu_to_node(env->dst_cpu);
6861
83e1d2cd 6862 if (src_nid == dst_nid)
2a1ed24c 6863 return -1;
7a0f3083 6864
2a1ed24c
SD
6865 /* Migrating away from the preferred node is always bad. */
6866 if (src_nid == p->numa_preferred_nid) {
6867 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6868 return 1;
6869 else
6870 return -1;
6871 }
b1ad065e 6872
c1ceac62
RR
6873 /* Encourage migration to the preferred node. */
6874 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6875 return 0;
b1ad065e 6876
739294fb
RR
6877 /* Leaving a core idle is often worse than degrading locality. */
6878 if (env->idle != CPU_NOT_IDLE)
6879 return -1;
6880
c1ceac62
RR
6881 if (numa_group) {
6882 src_faults = group_faults(p, src_nid);
6883 dst_faults = group_faults(p, dst_nid);
6884 } else {
6885 src_faults = task_faults(p, src_nid);
6886 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6887 }
6888
c1ceac62 6889 return dst_faults < src_faults;
7a0f3083
MG
6890}
6891
3a7053b3 6892#else
2a1ed24c 6893static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6894 struct lb_env *env)
6895{
2a1ed24c 6896 return -1;
7a0f3083 6897}
3a7053b3
MG
6898#endif
6899
1e3c88bd
PZ
6900/*
6901 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6902 */
6903static
8e45cb54 6904int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6905{
2a1ed24c 6906 int tsk_cache_hot;
e5673f28
KT
6907
6908 lockdep_assert_held(&env->src_rq->lock);
6909
1e3c88bd
PZ
6910 /*
6911 * We do not migrate tasks that are:
d3198084 6912 * 1) throttled_lb_pair, or
1e3c88bd 6913 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6914 * 3) running (obviously), or
6915 * 4) are cache-hot on their current CPU.
1e3c88bd 6916 */
d3198084
JK
6917 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6918 return 0;
6919
0c98d344 6920 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6921 int cpu;
88b8dac0 6922
ae92882e 6923 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6924
6263322c
PZ
6925 env->flags |= LBF_SOME_PINNED;
6926
88b8dac0
SV
6927 /*
6928 * Remember if this task can be migrated to any other cpu in
6929 * our sched_group. We may want to revisit it if we couldn't
6930 * meet load balance goals by pulling other tasks on src_cpu.
6931 *
65a4433a
JH
6932 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6933 * already computed one in current iteration.
88b8dac0 6934 */
65a4433a 6935 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6936 return 0;
6937
e02e60c1
JK
6938 /* Prevent to re-select dst_cpu via env's cpus */
6939 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6940 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6941 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6942 env->new_dst_cpu = cpu;
6943 break;
6944 }
88b8dac0 6945 }
e02e60c1 6946
1e3c88bd
PZ
6947 return 0;
6948 }
88b8dac0
SV
6949
6950 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6951 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6952
ddcdf6e7 6953 if (task_running(env->src_rq, p)) {
ae92882e 6954 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6955 return 0;
6956 }
6957
6958 /*
6959 * Aggressive migration if:
3a7053b3
MG
6960 * 1) destination numa is preferred
6961 * 2) task is cache cold, or
6962 * 3) too many balance attempts have failed.
1e3c88bd 6963 */
2a1ed24c
SD
6964 tsk_cache_hot = migrate_degrades_locality(p, env);
6965 if (tsk_cache_hot == -1)
6966 tsk_cache_hot = task_hot(p, env);
3a7053b3 6967
2a1ed24c 6968 if (tsk_cache_hot <= 0 ||
7a96c231 6969 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6970 if (tsk_cache_hot == 1) {
ae92882e
JP
6971 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6972 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6973 }
1e3c88bd
PZ
6974 return 1;
6975 }
6976
ae92882e 6977 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6978 return 0;
1e3c88bd
PZ
6979}
6980
897c395f 6981/*
163122b7
KT
6982 * detach_task() -- detach the task for the migration specified in env
6983 */
6984static void detach_task(struct task_struct *p, struct lb_env *env)
6985{
6986 lockdep_assert_held(&env->src_rq->lock);
6987
163122b7 6988 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6989 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6990 set_task_cpu(p, env->dst_cpu);
6991}
6992
897c395f 6993/*
e5673f28 6994 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6995 * part of active balancing operations within "domain".
897c395f 6996 *
e5673f28 6997 * Returns a task if successful and NULL otherwise.
897c395f 6998 */
e5673f28 6999static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
7000{
7001 struct task_struct *p, *n;
897c395f 7002
e5673f28
KT
7003 lockdep_assert_held(&env->src_rq->lock);
7004
367456c7 7005 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7006 if (!can_migrate_task(p, env))
7007 continue;
897c395f 7008
163122b7 7009 detach_task(p, env);
e5673f28 7010
367456c7 7011 /*
e5673f28 7012 * Right now, this is only the second place where
163122b7 7013 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7014 * so we can safely collect stats here rather than
163122b7 7015 * inside detach_tasks().
367456c7 7016 */
ae92882e 7017 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7018 return p;
897c395f 7019 }
e5673f28 7020 return NULL;
897c395f
PZ
7021}
7022
eb95308e
PZ
7023static const unsigned int sched_nr_migrate_break = 32;
7024
5d6523eb 7025/*
163122b7
KT
7026 * detach_tasks() -- tries to detach up to imbalance weighted load from
7027 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7028 *
163122b7 7029 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7030 */
163122b7 7031static int detach_tasks(struct lb_env *env)
1e3c88bd 7032{
5d6523eb
PZ
7033 struct list_head *tasks = &env->src_rq->cfs_tasks;
7034 struct task_struct *p;
367456c7 7035 unsigned long load;
163122b7
KT
7036 int detached = 0;
7037
7038 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7039
bd939f45 7040 if (env->imbalance <= 0)
5d6523eb 7041 return 0;
1e3c88bd 7042
5d6523eb 7043 while (!list_empty(tasks)) {
985d3a4c
YD
7044 /*
7045 * We don't want to steal all, otherwise we may be treated likewise,
7046 * which could at worst lead to a livelock crash.
7047 */
7048 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7049 break;
7050
5d6523eb 7051 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7052
367456c7
PZ
7053 env->loop++;
7054 /* We've more or less seen every task there is, call it quits */
5d6523eb 7055 if (env->loop > env->loop_max)
367456c7 7056 break;
5d6523eb
PZ
7057
7058 /* take a breather every nr_migrate tasks */
367456c7 7059 if (env->loop > env->loop_break) {
eb95308e 7060 env->loop_break += sched_nr_migrate_break;
8e45cb54 7061 env->flags |= LBF_NEED_BREAK;
ee00e66f 7062 break;
a195f004 7063 }
1e3c88bd 7064
d3198084 7065 if (!can_migrate_task(p, env))
367456c7
PZ
7066 goto next;
7067
7068 load = task_h_load(p);
5d6523eb 7069
eb95308e 7070 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7071 goto next;
7072
bd939f45 7073 if ((load / 2) > env->imbalance)
367456c7 7074 goto next;
1e3c88bd 7075
163122b7
KT
7076 detach_task(p, env);
7077 list_add(&p->se.group_node, &env->tasks);
7078
7079 detached++;
bd939f45 7080 env->imbalance -= load;
1e3c88bd
PZ
7081
7082#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7083 /*
7084 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7085 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7086 * the critical section.
7087 */
5d6523eb 7088 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7089 break;
1e3c88bd
PZ
7090#endif
7091
ee00e66f
PZ
7092 /*
7093 * We only want to steal up to the prescribed amount of
7094 * weighted load.
7095 */
bd939f45 7096 if (env->imbalance <= 0)
ee00e66f 7097 break;
367456c7
PZ
7098
7099 continue;
7100next:
5d6523eb 7101 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 7102 }
5d6523eb 7103
1e3c88bd 7104 /*
163122b7
KT
7105 * Right now, this is one of only two places we collect this stat
7106 * so we can safely collect detach_one_task() stats here rather
7107 * than inside detach_one_task().
1e3c88bd 7108 */
ae92882e 7109 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7110
163122b7
KT
7111 return detached;
7112}
7113
7114/*
7115 * attach_task() -- attach the task detached by detach_task() to its new rq.
7116 */
7117static void attach_task(struct rq *rq, struct task_struct *p)
7118{
7119 lockdep_assert_held(&rq->lock);
7120
7121 BUG_ON(task_rq(p) != rq);
5704ac0a 7122 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7123 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7124 check_preempt_curr(rq, p, 0);
7125}
7126
7127/*
7128 * attach_one_task() -- attaches the task returned from detach_one_task() to
7129 * its new rq.
7130 */
7131static void attach_one_task(struct rq *rq, struct task_struct *p)
7132{
8a8c69c3
PZ
7133 struct rq_flags rf;
7134
7135 rq_lock(rq, &rf);
5704ac0a 7136 update_rq_clock(rq);
163122b7 7137 attach_task(rq, p);
8a8c69c3 7138 rq_unlock(rq, &rf);
163122b7
KT
7139}
7140
7141/*
7142 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7143 * new rq.
7144 */
7145static void attach_tasks(struct lb_env *env)
7146{
7147 struct list_head *tasks = &env->tasks;
7148 struct task_struct *p;
8a8c69c3 7149 struct rq_flags rf;
163122b7 7150
8a8c69c3 7151 rq_lock(env->dst_rq, &rf);
5704ac0a 7152 update_rq_clock(env->dst_rq);
163122b7
KT
7153
7154 while (!list_empty(tasks)) {
7155 p = list_first_entry(tasks, struct task_struct, se.group_node);
7156 list_del_init(&p->se.group_node);
1e3c88bd 7157
163122b7
KT
7158 attach_task(env->dst_rq, p);
7159 }
7160
8a8c69c3 7161 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7162}
7163
230059de 7164#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
7165
7166static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7167{
7168 if (cfs_rq->load.weight)
7169 return false;
7170
7171 if (cfs_rq->avg.load_sum)
7172 return false;
7173
7174 if (cfs_rq->avg.util_sum)
7175 return false;
7176
7177 if (cfs_rq->runnable_load_sum)
7178 return false;
7179
7180 return true;
7181}
7182
48a16753 7183static void update_blocked_averages(int cpu)
9e3081ca 7184{
9e3081ca 7185 struct rq *rq = cpu_rq(cpu);
a9e7f654 7186 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 7187 struct rq_flags rf;
9e3081ca 7188
8a8c69c3 7189 rq_lock_irqsave(rq, &rf);
48a16753 7190 update_rq_clock(rq);
9d89c257 7191
9763b67f
PZ
7192 /*
7193 * Iterates the task_group tree in a bottom up fashion, see
7194 * list_add_leaf_cfs_rq() for details.
7195 */
a9e7f654 7196 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7197 struct sched_entity *se;
7198
9d89c257
YD
7199 /* throttled entities do not contribute to load */
7200 if (throttled_hierarchy(cfs_rq))
7201 continue;
48a16753 7202
3a123bbb 7203 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7204 update_tg_load_avg(cfs_rq, 0);
4e516076 7205
bc427898
VG
7206 /* Propagate pending load changes to the parent, if any: */
7207 se = cfs_rq->tg->se[cpu];
7208 if (se && !skip_blocked_update(se))
88c0616e 7209 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654
TH
7210
7211 /*
7212 * There can be a lot of idle CPU cgroups. Don't let fully
7213 * decayed cfs_rqs linger on the list.
7214 */
7215 if (cfs_rq_is_decayed(cfs_rq))
7216 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 7217 }
8a8c69c3 7218 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7219}
7220
9763b67f 7221/*
68520796 7222 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7223 * This needs to be done in a top-down fashion because the load of a child
7224 * group is a fraction of its parents load.
7225 */
68520796 7226static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7227{
68520796
VD
7228 struct rq *rq = rq_of(cfs_rq);
7229 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7230 unsigned long now = jiffies;
68520796 7231 unsigned long load;
a35b6466 7232
68520796 7233 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7234 return;
7235
68520796
VD
7236 cfs_rq->h_load_next = NULL;
7237 for_each_sched_entity(se) {
7238 cfs_rq = cfs_rq_of(se);
7239 cfs_rq->h_load_next = se;
7240 if (cfs_rq->last_h_load_update == now)
7241 break;
7242 }
a35b6466 7243
68520796 7244 if (!se) {
7ea241af 7245 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7246 cfs_rq->last_h_load_update = now;
7247 }
7248
7249 while ((se = cfs_rq->h_load_next) != NULL) {
7250 load = cfs_rq->h_load;
7ea241af
YD
7251 load = div64_ul(load * se->avg.load_avg,
7252 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7253 cfs_rq = group_cfs_rq(se);
7254 cfs_rq->h_load = load;
7255 cfs_rq->last_h_load_update = now;
7256 }
9763b67f
PZ
7257}
7258
367456c7 7259static unsigned long task_h_load(struct task_struct *p)
230059de 7260{
367456c7 7261 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7262
68520796 7263 update_cfs_rq_h_load(cfs_rq);
9d89c257 7264 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7265 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7266}
7267#else
48a16753 7268static inline void update_blocked_averages(int cpu)
9e3081ca 7269{
6c1d47c0
VG
7270 struct rq *rq = cpu_rq(cpu);
7271 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7272 struct rq_flags rf;
6c1d47c0 7273
8a8c69c3 7274 rq_lock_irqsave(rq, &rf);
6c1d47c0 7275 update_rq_clock(rq);
3a123bbb 7276 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
8a8c69c3 7277 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7278}
7279
367456c7 7280static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7281{
9d89c257 7282 return p->se.avg.load_avg;
1e3c88bd 7283}
230059de 7284#endif
1e3c88bd 7285
1e3c88bd 7286/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7287
7288enum group_type {
7289 group_other = 0,
7290 group_imbalanced,
7291 group_overloaded,
7292};
7293
1e3c88bd
PZ
7294/*
7295 * sg_lb_stats - stats of a sched_group required for load_balancing
7296 */
7297struct sg_lb_stats {
7298 unsigned long avg_load; /*Avg load across the CPUs of the group */
7299 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7300 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7301 unsigned long load_per_task;
63b2ca30 7302 unsigned long group_capacity;
9e91d61d 7303 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7304 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7305 unsigned int idle_cpus;
7306 unsigned int group_weight;
caeb178c 7307 enum group_type group_type;
ea67821b 7308 int group_no_capacity;
0ec8aa00
PZ
7309#ifdef CONFIG_NUMA_BALANCING
7310 unsigned int nr_numa_running;
7311 unsigned int nr_preferred_running;
7312#endif
1e3c88bd
PZ
7313};
7314
56cf515b
JK
7315/*
7316 * sd_lb_stats - Structure to store the statistics of a sched_domain
7317 * during load balancing.
7318 */
7319struct sd_lb_stats {
7320 struct sched_group *busiest; /* Busiest group in this sd */
7321 struct sched_group *local; /* Local group in this sd */
90001d67 7322 unsigned long total_running;
56cf515b 7323 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7324 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7325 unsigned long avg_load; /* Average load across all groups in sd */
7326
56cf515b 7327 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7328 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7329};
7330
147c5fc2
PZ
7331static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7332{
7333 /*
7334 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7335 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7336 * We must however clear busiest_stat::avg_load because
7337 * update_sd_pick_busiest() reads this before assignment.
7338 */
7339 *sds = (struct sd_lb_stats){
7340 .busiest = NULL,
7341 .local = NULL,
90001d67 7342 .total_running = 0UL,
147c5fc2 7343 .total_load = 0UL,
63b2ca30 7344 .total_capacity = 0UL,
147c5fc2
PZ
7345 .busiest_stat = {
7346 .avg_load = 0UL,
caeb178c
RR
7347 .sum_nr_running = 0,
7348 .group_type = group_other,
147c5fc2
PZ
7349 },
7350 };
7351}
7352
1e3c88bd
PZ
7353/**
7354 * get_sd_load_idx - Obtain the load index for a given sched domain.
7355 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7356 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7357 *
7358 * Return: The load index.
1e3c88bd
PZ
7359 */
7360static inline int get_sd_load_idx(struct sched_domain *sd,
7361 enum cpu_idle_type idle)
7362{
7363 int load_idx;
7364
7365 switch (idle) {
7366 case CPU_NOT_IDLE:
7367 load_idx = sd->busy_idx;
7368 break;
7369
7370 case CPU_NEWLY_IDLE:
7371 load_idx = sd->newidle_idx;
7372 break;
7373 default:
7374 load_idx = sd->idle_idx;
7375 break;
7376 }
7377
7378 return load_idx;
7379}
7380
ced549fa 7381static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7382{
7383 struct rq *rq = cpu_rq(cpu);
b5b4860d 7384 u64 total, used, age_stamp, avg;
cadefd3d 7385 s64 delta;
1e3c88bd 7386
b654f7de
PZ
7387 /*
7388 * Since we're reading these variables without serialization make sure
7389 * we read them once before doing sanity checks on them.
7390 */
316c1608
JL
7391 age_stamp = READ_ONCE(rq->age_stamp);
7392 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7393 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7394
cadefd3d
PZ
7395 if (unlikely(delta < 0))
7396 delta = 0;
7397
7398 total = sched_avg_period() + delta;
aa483808 7399
b5b4860d 7400 used = div_u64(avg, total);
1e3c88bd 7401
b5b4860d
VG
7402 if (likely(used < SCHED_CAPACITY_SCALE))
7403 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7404
b5b4860d 7405 return 1;
1e3c88bd
PZ
7406}
7407
ced549fa 7408static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7409{
8cd5601c 7410 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7411 struct sched_group *sdg = sd->groups;
7412
ca6d75e6 7413 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7414
ced549fa 7415 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7416 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7417
ced549fa
NP
7418 if (!capacity)
7419 capacity = 1;
1e3c88bd 7420
ced549fa
NP
7421 cpu_rq(cpu)->cpu_capacity = capacity;
7422 sdg->sgc->capacity = capacity;
bf475ce0 7423 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7424}
7425
63b2ca30 7426void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7427{
7428 struct sched_domain *child = sd->child;
7429 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7430 unsigned long capacity, min_capacity;
4ec4412e
VG
7431 unsigned long interval;
7432
7433 interval = msecs_to_jiffies(sd->balance_interval);
7434 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7435 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7436
7437 if (!child) {
ced549fa 7438 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7439 return;
7440 }
7441
dc7ff76e 7442 capacity = 0;
bf475ce0 7443 min_capacity = ULONG_MAX;
1e3c88bd 7444
74a5ce20
PZ
7445 if (child->flags & SD_OVERLAP) {
7446 /*
7447 * SD_OVERLAP domains cannot assume that child groups
7448 * span the current group.
7449 */
7450
ae4df9d6 7451 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7452 struct sched_group_capacity *sgc;
9abf24d4 7453 struct rq *rq = cpu_rq(cpu);
863bffc8 7454
9abf24d4 7455 /*
63b2ca30 7456 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7457 * gets here before we've attached the domains to the
7458 * runqueues.
7459 *
ced549fa
NP
7460 * Use capacity_of(), which is set irrespective of domains
7461 * in update_cpu_capacity().
9abf24d4 7462 *
dc7ff76e 7463 * This avoids capacity from being 0 and
9abf24d4 7464 * causing divide-by-zero issues on boot.
9abf24d4
SD
7465 */
7466 if (unlikely(!rq->sd)) {
ced549fa 7467 capacity += capacity_of(cpu);
bf475ce0
MR
7468 } else {
7469 sgc = rq->sd->groups->sgc;
7470 capacity += sgc->capacity;
9abf24d4 7471 }
863bffc8 7472
bf475ce0 7473 min_capacity = min(capacity, min_capacity);
863bffc8 7474 }
74a5ce20
PZ
7475 } else {
7476 /*
7477 * !SD_OVERLAP domains can assume that child groups
7478 * span the current group.
97a7142f 7479 */
74a5ce20
PZ
7480
7481 group = child->groups;
7482 do {
bf475ce0
MR
7483 struct sched_group_capacity *sgc = group->sgc;
7484
7485 capacity += sgc->capacity;
7486 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7487 group = group->next;
7488 } while (group != child->groups);
7489 }
1e3c88bd 7490
63b2ca30 7491 sdg->sgc->capacity = capacity;
bf475ce0 7492 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7493}
7494
9d5efe05 7495/*
ea67821b
VG
7496 * Check whether the capacity of the rq has been noticeably reduced by side
7497 * activity. The imbalance_pct is used for the threshold.
7498 * Return true is the capacity is reduced
9d5efe05
SV
7499 */
7500static inline int
ea67821b 7501check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7502{
ea67821b
VG
7503 return ((rq->cpu_capacity * sd->imbalance_pct) <
7504 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7505}
7506
30ce5dab
PZ
7507/*
7508 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7509 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7510 *
7511 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7512 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7513 * Something like:
7514 *
2b4d5b25
IM
7515 * { 0 1 2 3 } { 4 5 6 7 }
7516 * * * * *
30ce5dab
PZ
7517 *
7518 * If we were to balance group-wise we'd place two tasks in the first group and
7519 * two tasks in the second group. Clearly this is undesired as it will overload
7520 * cpu 3 and leave one of the cpus in the second group unused.
7521 *
7522 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7523 * by noticing the lower domain failed to reach balance and had difficulty
7524 * moving tasks due to affinity constraints.
30ce5dab
PZ
7525 *
7526 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7527 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7528 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7529 * to create an effective group imbalance.
7530 *
7531 * This is a somewhat tricky proposition since the next run might not find the
7532 * group imbalance and decide the groups need to be balanced again. A most
7533 * subtle and fragile situation.
7534 */
7535
6263322c 7536static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7537{
63b2ca30 7538 return group->sgc->imbalance;
30ce5dab
PZ
7539}
7540
b37d9316 7541/*
ea67821b
VG
7542 * group_has_capacity returns true if the group has spare capacity that could
7543 * be used by some tasks.
7544 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7545 * smaller than the number of CPUs or if the utilization is lower than the
7546 * available capacity for CFS tasks.
ea67821b
VG
7547 * For the latter, we use a threshold to stabilize the state, to take into
7548 * account the variance of the tasks' load and to return true if the available
7549 * capacity in meaningful for the load balancer.
7550 * As an example, an available capacity of 1% can appear but it doesn't make
7551 * any benefit for the load balance.
b37d9316 7552 */
ea67821b
VG
7553static inline bool
7554group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7555{
ea67821b
VG
7556 if (sgs->sum_nr_running < sgs->group_weight)
7557 return true;
c61037e9 7558
ea67821b 7559 if ((sgs->group_capacity * 100) >
9e91d61d 7560 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7561 return true;
b37d9316 7562
ea67821b
VG
7563 return false;
7564}
7565
7566/*
7567 * group_is_overloaded returns true if the group has more tasks than it can
7568 * handle.
7569 * group_is_overloaded is not equals to !group_has_capacity because a group
7570 * with the exact right number of tasks, has no more spare capacity but is not
7571 * overloaded so both group_has_capacity and group_is_overloaded return
7572 * false.
7573 */
7574static inline bool
7575group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7576{
7577 if (sgs->sum_nr_running <= sgs->group_weight)
7578 return false;
b37d9316 7579
ea67821b 7580 if ((sgs->group_capacity * 100) <
9e91d61d 7581 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7582 return true;
b37d9316 7583
ea67821b 7584 return false;
b37d9316
PZ
7585}
7586
9e0994c0
MR
7587/*
7588 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7589 * per-CPU capacity than sched_group ref.
7590 */
7591static inline bool
7592group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7593{
7594 return sg->sgc->min_capacity * capacity_margin <
7595 ref->sgc->min_capacity * 1024;
7596}
7597
79a89f92
LY
7598static inline enum
7599group_type group_classify(struct sched_group *group,
7600 struct sg_lb_stats *sgs)
caeb178c 7601{
ea67821b 7602 if (sgs->group_no_capacity)
caeb178c
RR
7603 return group_overloaded;
7604
7605 if (sg_imbalanced(group))
7606 return group_imbalanced;
7607
7608 return group_other;
7609}
7610
1e3c88bd
PZ
7611/**
7612 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7613 * @env: The load balancing environment.
1e3c88bd 7614 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7615 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7616 * @local_group: Does group contain this_cpu.
1e3c88bd 7617 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7618 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7619 */
bd939f45
PZ
7620static inline void update_sg_lb_stats(struct lb_env *env,
7621 struct sched_group *group, int load_idx,
4486edd1
TC
7622 int local_group, struct sg_lb_stats *sgs,
7623 bool *overload)
1e3c88bd 7624{
30ce5dab 7625 unsigned long load;
a426f99c 7626 int i, nr_running;
1e3c88bd 7627
b72ff13c
PZ
7628 memset(sgs, 0, sizeof(*sgs));
7629
ae4df9d6 7630 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7631 struct rq *rq = cpu_rq(i);
7632
1e3c88bd 7633 /* Bias balancing toward cpus of our domain */
6263322c 7634 if (local_group)
04f733b4 7635 load = target_load(i, load_idx);
6263322c 7636 else
1e3c88bd 7637 load = source_load(i, load_idx);
1e3c88bd
PZ
7638
7639 sgs->group_load += load;
9e91d61d 7640 sgs->group_util += cpu_util(i);
65fdac08 7641 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7642
a426f99c
WL
7643 nr_running = rq->nr_running;
7644 if (nr_running > 1)
4486edd1
TC
7645 *overload = true;
7646
0ec8aa00
PZ
7647#ifdef CONFIG_NUMA_BALANCING
7648 sgs->nr_numa_running += rq->nr_numa_running;
7649 sgs->nr_preferred_running += rq->nr_preferred_running;
7650#endif
c7132dd6 7651 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7652 /*
7653 * No need to call idle_cpu() if nr_running is not 0
7654 */
7655 if (!nr_running && idle_cpu(i))
aae6d3dd 7656 sgs->idle_cpus++;
1e3c88bd
PZ
7657 }
7658
63b2ca30
NP
7659 /* Adjust by relative CPU capacity of the group */
7660 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7661 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7662
dd5feea1 7663 if (sgs->sum_nr_running)
38d0f770 7664 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7665
aae6d3dd 7666 sgs->group_weight = group->group_weight;
b37d9316 7667
ea67821b 7668 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7669 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7670}
7671
532cb4c4
MN
7672/**
7673 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7674 * @env: The load balancing environment.
532cb4c4
MN
7675 * @sds: sched_domain statistics
7676 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7677 * @sgs: sched_group statistics
532cb4c4
MN
7678 *
7679 * Determine if @sg is a busier group than the previously selected
7680 * busiest group.
e69f6186
YB
7681 *
7682 * Return: %true if @sg is a busier group than the previously selected
7683 * busiest group. %false otherwise.
532cb4c4 7684 */
bd939f45 7685static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7686 struct sd_lb_stats *sds,
7687 struct sched_group *sg,
bd939f45 7688 struct sg_lb_stats *sgs)
532cb4c4 7689{
caeb178c 7690 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7691
caeb178c 7692 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7693 return true;
7694
caeb178c
RR
7695 if (sgs->group_type < busiest->group_type)
7696 return false;
7697
7698 if (sgs->avg_load <= busiest->avg_load)
7699 return false;
7700
9e0994c0
MR
7701 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7702 goto asym_packing;
7703
7704 /*
7705 * Candidate sg has no more than one task per CPU and
7706 * has higher per-CPU capacity. Migrating tasks to less
7707 * capable CPUs may harm throughput. Maximize throughput,
7708 * power/energy consequences are not considered.
7709 */
7710 if (sgs->sum_nr_running <= sgs->group_weight &&
7711 group_smaller_cpu_capacity(sds->local, sg))
7712 return false;
7713
7714asym_packing:
caeb178c
RR
7715 /* This is the busiest node in its class. */
7716 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7717 return true;
7718
1f621e02
SD
7719 /* No ASYM_PACKING if target cpu is already busy */
7720 if (env->idle == CPU_NOT_IDLE)
7721 return true;
532cb4c4 7722 /*
afe06efd
TC
7723 * ASYM_PACKING needs to move all the work to the highest
7724 * prority CPUs in the group, therefore mark all groups
7725 * of lower priority than ourself as busy.
532cb4c4 7726 */
afe06efd
TC
7727 if (sgs->sum_nr_running &&
7728 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7729 if (!sds->busiest)
7730 return true;
7731
afe06efd
TC
7732 /* Prefer to move from lowest priority cpu's work */
7733 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7734 sg->asym_prefer_cpu))
532cb4c4
MN
7735 return true;
7736 }
7737
7738 return false;
7739}
7740
0ec8aa00
PZ
7741#ifdef CONFIG_NUMA_BALANCING
7742static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7743{
7744 if (sgs->sum_nr_running > sgs->nr_numa_running)
7745 return regular;
7746 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7747 return remote;
7748 return all;
7749}
7750
7751static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7752{
7753 if (rq->nr_running > rq->nr_numa_running)
7754 return regular;
7755 if (rq->nr_running > rq->nr_preferred_running)
7756 return remote;
7757 return all;
7758}
7759#else
7760static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7761{
7762 return all;
7763}
7764
7765static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7766{
7767 return regular;
7768}
7769#endif /* CONFIG_NUMA_BALANCING */
7770
1e3c88bd 7771/**
461819ac 7772 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7773 * @env: The load balancing environment.
1e3c88bd
PZ
7774 * @sds: variable to hold the statistics for this sched_domain.
7775 */
0ec8aa00 7776static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7777{
90001d67 7778 struct sched_domain_shared *shared = env->sd->shared;
bd939f45
PZ
7779 struct sched_domain *child = env->sd->child;
7780 struct sched_group *sg = env->sd->groups;
05b40e05 7781 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7782 struct sg_lb_stats tmp_sgs;
1e3c88bd 7783 int load_idx, prefer_sibling = 0;
4486edd1 7784 bool overload = false;
1e3c88bd
PZ
7785
7786 if (child && child->flags & SD_PREFER_SIBLING)
7787 prefer_sibling = 1;
7788
bd939f45 7789 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7790
7791 do {
56cf515b 7792 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7793 int local_group;
7794
ae4df9d6 7795 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7796 if (local_group) {
7797 sds->local = sg;
05b40e05 7798 sgs = local;
b72ff13c
PZ
7799
7800 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7801 time_after_eq(jiffies, sg->sgc->next_update))
7802 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7803 }
1e3c88bd 7804
4486edd1
TC
7805 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7806 &overload);
1e3c88bd 7807
b72ff13c
PZ
7808 if (local_group)
7809 goto next_group;
7810
1e3c88bd
PZ
7811 /*
7812 * In case the child domain prefers tasks go to siblings
ea67821b 7813 * first, lower the sg capacity so that we'll try
75dd321d
NR
7814 * and move all the excess tasks away. We lower the capacity
7815 * of a group only if the local group has the capacity to fit
ea67821b
VG
7816 * these excess tasks. The extra check prevents the case where
7817 * you always pull from the heaviest group when it is already
7818 * under-utilized (possible with a large weight task outweighs
7819 * the tasks on the system).
1e3c88bd 7820 */
b72ff13c 7821 if (prefer_sibling && sds->local &&
05b40e05
SD
7822 group_has_capacity(env, local) &&
7823 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7824 sgs->group_no_capacity = 1;
79a89f92 7825 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7826 }
1e3c88bd 7827
b72ff13c 7828 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7829 sds->busiest = sg;
56cf515b 7830 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7831 }
7832
b72ff13c
PZ
7833next_group:
7834 /* Now, start updating sd_lb_stats */
90001d67 7835 sds->total_running += sgs->sum_nr_running;
b72ff13c 7836 sds->total_load += sgs->group_load;
63b2ca30 7837 sds->total_capacity += sgs->group_capacity;
b72ff13c 7838
532cb4c4 7839 sg = sg->next;
bd939f45 7840 } while (sg != env->sd->groups);
0ec8aa00
PZ
7841
7842 if (env->sd->flags & SD_NUMA)
7843 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7844
7845 if (!env->sd->parent) {
7846 /* update overload indicator if we are at root domain */
7847 if (env->dst_rq->rd->overload != overload)
7848 env->dst_rq->rd->overload = overload;
7849 }
7850
90001d67
PZ
7851 if (!shared)
7852 return;
7853
7854 /*
7855 * Since these are sums over groups they can contain some CPUs
7856 * multiple times for the NUMA domains.
7857 *
7858 * Currently only wake_affine_llc() and find_busiest_group()
7859 * uses these numbers, only the last is affected by this problem.
7860 *
7861 * XXX fix that.
7862 */
7863 WRITE_ONCE(shared->nr_running, sds->total_running);
7864 WRITE_ONCE(shared->load, sds->total_load);
7865 WRITE_ONCE(shared->capacity, sds->total_capacity);
532cb4c4
MN
7866}
7867
532cb4c4
MN
7868/**
7869 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7870 * sched domain.
532cb4c4
MN
7871 *
7872 * This is primarily intended to used at the sibling level. Some
7873 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7874 * case of POWER7, it can move to lower SMT modes only when higher
7875 * threads are idle. When in lower SMT modes, the threads will
7876 * perform better since they share less core resources. Hence when we
7877 * have idle threads, we want them to be the higher ones.
7878 *
7879 * This packing function is run on idle threads. It checks to see if
7880 * the busiest CPU in this domain (core in the P7 case) has a higher
7881 * CPU number than the packing function is being run on. Here we are
7882 * assuming lower CPU number will be equivalent to lower a SMT thread
7883 * number.
7884 *
e69f6186 7885 * Return: 1 when packing is required and a task should be moved to
46123355 7886 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 7887 *
cd96891d 7888 * @env: The load balancing environment.
532cb4c4 7889 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7890 */
bd939f45 7891static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7892{
7893 int busiest_cpu;
7894
bd939f45 7895 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7896 return 0;
7897
1f621e02
SD
7898 if (env->idle == CPU_NOT_IDLE)
7899 return 0;
7900
532cb4c4
MN
7901 if (!sds->busiest)
7902 return 0;
7903
afe06efd
TC
7904 busiest_cpu = sds->busiest->asym_prefer_cpu;
7905 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7906 return 0;
7907
bd939f45 7908 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7909 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7910 SCHED_CAPACITY_SCALE);
bd939f45 7911
532cb4c4 7912 return 1;
1e3c88bd
PZ
7913}
7914
7915/**
7916 * fix_small_imbalance - Calculate the minor imbalance that exists
7917 * amongst the groups of a sched_domain, during
7918 * load balancing.
cd96891d 7919 * @env: The load balancing environment.
1e3c88bd 7920 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7921 */
bd939f45
PZ
7922static inline
7923void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7924{
63b2ca30 7925 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7926 unsigned int imbn = 2;
dd5feea1 7927 unsigned long scaled_busy_load_per_task;
56cf515b 7928 struct sg_lb_stats *local, *busiest;
1e3c88bd 7929
56cf515b
JK
7930 local = &sds->local_stat;
7931 busiest = &sds->busiest_stat;
1e3c88bd 7932
56cf515b
JK
7933 if (!local->sum_nr_running)
7934 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7935 else if (busiest->load_per_task > local->load_per_task)
7936 imbn = 1;
dd5feea1 7937
56cf515b 7938 scaled_busy_load_per_task =
ca8ce3d0 7939 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7940 busiest->group_capacity;
56cf515b 7941
3029ede3
VD
7942 if (busiest->avg_load + scaled_busy_load_per_task >=
7943 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7944 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7945 return;
7946 }
7947
7948 /*
7949 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7950 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7951 * moving them.
7952 */
7953
63b2ca30 7954 capa_now += busiest->group_capacity *
56cf515b 7955 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7956 capa_now += local->group_capacity *
56cf515b 7957 min(local->load_per_task, local->avg_load);
ca8ce3d0 7958 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7959
7960 /* Amount of load we'd subtract */
a2cd4260 7961 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7962 capa_move += busiest->group_capacity *
56cf515b 7963 min(busiest->load_per_task,
a2cd4260 7964 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7965 }
1e3c88bd
PZ
7966
7967 /* Amount of load we'd add */
63b2ca30 7968 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7969 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7970 tmp = (busiest->avg_load * busiest->group_capacity) /
7971 local->group_capacity;
56cf515b 7972 } else {
ca8ce3d0 7973 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7974 local->group_capacity;
56cf515b 7975 }
63b2ca30 7976 capa_move += local->group_capacity *
3ae11c90 7977 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7978 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7979
7980 /* Move if we gain throughput */
63b2ca30 7981 if (capa_move > capa_now)
56cf515b 7982 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7983}
7984
7985/**
7986 * calculate_imbalance - Calculate the amount of imbalance present within the
7987 * groups of a given sched_domain during load balance.
bd939f45 7988 * @env: load balance environment
1e3c88bd 7989 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7990 */
bd939f45 7991static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7992{
dd5feea1 7993 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7994 struct sg_lb_stats *local, *busiest;
7995
7996 local = &sds->local_stat;
56cf515b 7997 busiest = &sds->busiest_stat;
dd5feea1 7998
caeb178c 7999 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8000 /*
8001 * In the group_imb case we cannot rely on group-wide averages
8002 * to ensure cpu-load equilibrium, look at wider averages. XXX
8003 */
56cf515b
JK
8004 busiest->load_per_task =
8005 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8006 }
8007
1e3c88bd 8008 /*
885e542c
DE
8009 * Avg load of busiest sg can be less and avg load of local sg can
8010 * be greater than avg load across all sgs of sd because avg load
8011 * factors in sg capacity and sgs with smaller group_type are
8012 * skipped when updating the busiest sg:
1e3c88bd 8013 */
b1885550
VD
8014 if (busiest->avg_load <= sds->avg_load ||
8015 local->avg_load >= sds->avg_load) {
bd939f45
PZ
8016 env->imbalance = 0;
8017 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8018 }
8019
9a5d9ba6
PZ
8020 /*
8021 * If there aren't any idle cpus, avoid creating some.
8022 */
8023 if (busiest->group_type == group_overloaded &&
8024 local->group_type == group_overloaded) {
1be0eb2a 8025 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8026 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8027 load_above_capacity -= busiest->group_capacity;
26656215 8028 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8029 load_above_capacity /= busiest->group_capacity;
8030 } else
ea67821b 8031 load_above_capacity = ~0UL;
dd5feea1
SS
8032 }
8033
8034 /*
8035 * We're trying to get all the cpus to the average_load, so we don't
8036 * want to push ourselves above the average load, nor do we wish to
8037 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
8038 * we also don't want to reduce the group load below the group
8039 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8040 */
30ce5dab 8041 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8042
8043 /* How much load to actually move to equalise the imbalance */
56cf515b 8044 env->imbalance = min(
63b2ca30
NP
8045 max_pull * busiest->group_capacity,
8046 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8047 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8048
8049 /*
8050 * if *imbalance is less than the average load per runnable task
25985edc 8051 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8052 * a think about bumping its value to force at least one task to be
8053 * moved
8054 */
56cf515b 8055 if (env->imbalance < busiest->load_per_task)
bd939f45 8056 return fix_small_imbalance(env, sds);
1e3c88bd 8057}
fab47622 8058
1e3c88bd
PZ
8059/******* find_busiest_group() helpers end here *********************/
8060
8061/**
8062 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8063 * if there is an imbalance.
1e3c88bd
PZ
8064 *
8065 * Also calculates the amount of weighted load which should be moved
8066 * to restore balance.
8067 *
cd96891d 8068 * @env: The load balancing environment.
1e3c88bd 8069 *
e69f6186 8070 * Return: - The busiest group if imbalance exists.
1e3c88bd 8071 */
56cf515b 8072static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8073{
56cf515b 8074 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8075 struct sd_lb_stats sds;
8076
147c5fc2 8077 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8078
8079 /*
8080 * Compute the various statistics relavent for load balancing at
8081 * this level.
8082 */
23f0d209 8083 update_sd_lb_stats(env, &sds);
56cf515b
JK
8084 local = &sds.local_stat;
8085 busiest = &sds.busiest_stat;
1e3c88bd 8086
ea67821b 8087 /* ASYM feature bypasses nice load balance check */
1f621e02 8088 if (check_asym_packing(env, &sds))
532cb4c4
MN
8089 return sds.busiest;
8090
cc57aa8f 8091 /* There is no busy sibling group to pull tasks from */
56cf515b 8092 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8093 goto out_balanced;
8094
90001d67 8095 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8096 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8097 / sds.total_capacity;
b0432d8f 8098
866ab43e
PZ
8099 /*
8100 * If the busiest group is imbalanced the below checks don't
30ce5dab 8101 * work because they assume all things are equal, which typically
866ab43e
PZ
8102 * isn't true due to cpus_allowed constraints and the like.
8103 */
caeb178c 8104 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8105 goto force_balance;
8106
cc57aa8f 8107 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
8108 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
8109 busiest->group_no_capacity)
fab47622
NR
8110 goto force_balance;
8111
cc57aa8f 8112 /*
9c58c79a 8113 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8114 * don't try and pull any tasks.
8115 */
56cf515b 8116 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8117 goto out_balanced;
8118
cc57aa8f
PZ
8119 /*
8120 * Don't pull any tasks if this group is already above the domain
8121 * average load.
8122 */
56cf515b 8123 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8124 goto out_balanced;
8125
bd939f45 8126 if (env->idle == CPU_IDLE) {
aae6d3dd 8127 /*
43f4d666
VG
8128 * This cpu is idle. If the busiest group is not overloaded
8129 * and there is no imbalance between this and busiest group
8130 * wrt idle cpus, it is balanced. The imbalance becomes
8131 * significant if the diff is greater than 1 otherwise we
8132 * might end up to just move the imbalance on another group
aae6d3dd 8133 */
43f4d666
VG
8134 if ((busiest->group_type != group_overloaded) &&
8135 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8136 goto out_balanced;
c186fafe
PZ
8137 } else {
8138 /*
8139 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8140 * imbalance_pct to be conservative.
8141 */
56cf515b
JK
8142 if (100 * busiest->avg_load <=
8143 env->sd->imbalance_pct * local->avg_load)
c186fafe 8144 goto out_balanced;
aae6d3dd 8145 }
1e3c88bd 8146
fab47622 8147force_balance:
1e3c88bd 8148 /* Looks like there is an imbalance. Compute it */
bd939f45 8149 calculate_imbalance(env, &sds);
1e3c88bd
PZ
8150 return sds.busiest;
8151
8152out_balanced:
bd939f45 8153 env->imbalance = 0;
1e3c88bd
PZ
8154 return NULL;
8155}
8156
8157/*
8158 * find_busiest_queue - find the busiest runqueue among the cpus in group.
8159 */
bd939f45 8160static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8161 struct sched_group *group)
1e3c88bd
PZ
8162{
8163 struct rq *busiest = NULL, *rq;
ced549fa 8164 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8165 int i;
8166
ae4df9d6 8167 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8168 unsigned long capacity, wl;
0ec8aa00
PZ
8169 enum fbq_type rt;
8170
8171 rq = cpu_rq(i);
8172 rt = fbq_classify_rq(rq);
1e3c88bd 8173
0ec8aa00
PZ
8174 /*
8175 * We classify groups/runqueues into three groups:
8176 * - regular: there are !numa tasks
8177 * - remote: there are numa tasks that run on the 'wrong' node
8178 * - all: there is no distinction
8179 *
8180 * In order to avoid migrating ideally placed numa tasks,
8181 * ignore those when there's better options.
8182 *
8183 * If we ignore the actual busiest queue to migrate another
8184 * task, the next balance pass can still reduce the busiest
8185 * queue by moving tasks around inside the node.
8186 *
8187 * If we cannot move enough load due to this classification
8188 * the next pass will adjust the group classification and
8189 * allow migration of more tasks.
8190 *
8191 * Both cases only affect the total convergence complexity.
8192 */
8193 if (rt > env->fbq_type)
8194 continue;
8195
ced549fa 8196 capacity = capacity_of(i);
9d5efe05 8197
c7132dd6 8198 wl = weighted_cpuload(rq);
1e3c88bd 8199
6e40f5bb
TG
8200 /*
8201 * When comparing with imbalance, use weighted_cpuload()
ced549fa 8202 * which is not scaled with the cpu capacity.
6e40f5bb 8203 */
ea67821b
VG
8204
8205 if (rq->nr_running == 1 && wl > env->imbalance &&
8206 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8207 continue;
8208
6e40f5bb
TG
8209 /*
8210 * For the load comparisons with the other cpu's, consider
ced549fa
NP
8211 * the weighted_cpuload() scaled with the cpu capacity, so
8212 * that the load can be moved away from the cpu that is
8213 * potentially running at a lower capacity.
95a79b80 8214 *
ced549fa 8215 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8216 * multiplication to rid ourselves of the division works out
ced549fa
NP
8217 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8218 * our previous maximum.
6e40f5bb 8219 */
ced549fa 8220 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8221 busiest_load = wl;
ced549fa 8222 busiest_capacity = capacity;
1e3c88bd
PZ
8223 busiest = rq;
8224 }
8225 }
8226
8227 return busiest;
8228}
8229
8230/*
8231 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8232 * so long as it is large enough.
8233 */
8234#define MAX_PINNED_INTERVAL 512
8235
bd939f45 8236static int need_active_balance(struct lb_env *env)
1af3ed3d 8237{
bd939f45
PZ
8238 struct sched_domain *sd = env->sd;
8239
8240 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8241
8242 /*
8243 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8244 * lower priority CPUs in order to pack all tasks in the
8245 * highest priority CPUs.
532cb4c4 8246 */
afe06efd
TC
8247 if ((sd->flags & SD_ASYM_PACKING) &&
8248 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8249 return 1;
1af3ed3d
PZ
8250 }
8251
1aaf90a4
VG
8252 /*
8253 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8254 * It's worth migrating the task if the src_cpu's capacity is reduced
8255 * because of other sched_class or IRQs if more capacity stays
8256 * available on dst_cpu.
8257 */
8258 if ((env->idle != CPU_NOT_IDLE) &&
8259 (env->src_rq->cfs.h_nr_running == 1)) {
8260 if ((check_cpu_capacity(env->src_rq, sd)) &&
8261 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8262 return 1;
8263 }
8264
1af3ed3d
PZ
8265 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8266}
8267
969c7921
TH
8268static int active_load_balance_cpu_stop(void *data);
8269
23f0d209
JK
8270static int should_we_balance(struct lb_env *env)
8271{
8272 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8273 int cpu, balance_cpu = -1;
8274
8275 /*
8276 * In the newly idle case, we will allow all the cpu's
8277 * to do the newly idle load balance.
8278 */
8279 if (env->idle == CPU_NEWLY_IDLE)
8280 return 1;
8281
23f0d209 8282 /* Try to find first idle cpu */
e5c14b1f 8283 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8284 if (!idle_cpu(cpu))
23f0d209
JK
8285 continue;
8286
8287 balance_cpu = cpu;
8288 break;
8289 }
8290
8291 if (balance_cpu == -1)
8292 balance_cpu = group_balance_cpu(sg);
8293
8294 /*
8295 * First idle cpu or the first cpu(busiest) in this sched group
8296 * is eligible for doing load balancing at this and above domains.
8297 */
b0cff9d8 8298 return balance_cpu == env->dst_cpu;
23f0d209
JK
8299}
8300
1e3c88bd
PZ
8301/*
8302 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8303 * tasks if there is an imbalance.
8304 */
8305static int load_balance(int this_cpu, struct rq *this_rq,
8306 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8307 int *continue_balancing)
1e3c88bd 8308{
88b8dac0 8309 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8310 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8311 struct sched_group *group;
1e3c88bd 8312 struct rq *busiest;
8a8c69c3 8313 struct rq_flags rf;
4ba29684 8314 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8315
8e45cb54
PZ
8316 struct lb_env env = {
8317 .sd = sd,
ddcdf6e7
PZ
8318 .dst_cpu = this_cpu,
8319 .dst_rq = this_rq,
ae4df9d6 8320 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8321 .idle = idle,
eb95308e 8322 .loop_break = sched_nr_migrate_break,
b9403130 8323 .cpus = cpus,
0ec8aa00 8324 .fbq_type = all,
163122b7 8325 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8326 };
8327
65a4433a 8328 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8329
ae92882e 8330 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8331
8332redo:
23f0d209
JK
8333 if (!should_we_balance(&env)) {
8334 *continue_balancing = 0;
1e3c88bd 8335 goto out_balanced;
23f0d209 8336 }
1e3c88bd 8337
23f0d209 8338 group = find_busiest_group(&env);
1e3c88bd 8339 if (!group) {
ae92882e 8340 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8341 goto out_balanced;
8342 }
8343
b9403130 8344 busiest = find_busiest_queue(&env, group);
1e3c88bd 8345 if (!busiest) {
ae92882e 8346 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8347 goto out_balanced;
8348 }
8349
78feefc5 8350 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8351
ae92882e 8352 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8353
1aaf90a4
VG
8354 env.src_cpu = busiest->cpu;
8355 env.src_rq = busiest;
8356
1e3c88bd
PZ
8357 ld_moved = 0;
8358 if (busiest->nr_running > 1) {
8359 /*
8360 * Attempt to move tasks. If find_busiest_group has found
8361 * an imbalance but busiest->nr_running <= 1, the group is
8362 * still unbalanced. ld_moved simply stays zero, so it is
8363 * correctly treated as an imbalance.
8364 */
8e45cb54 8365 env.flags |= LBF_ALL_PINNED;
c82513e5 8366 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8367
5d6523eb 8368more_balance:
8a8c69c3 8369 rq_lock_irqsave(busiest, &rf);
3bed5e21 8370 update_rq_clock(busiest);
88b8dac0
SV
8371
8372 /*
8373 * cur_ld_moved - load moved in current iteration
8374 * ld_moved - cumulative load moved across iterations
8375 */
163122b7 8376 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8377
8378 /*
163122b7
KT
8379 * We've detached some tasks from busiest_rq. Every
8380 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8381 * unlock busiest->lock, and we are able to be sure
8382 * that nobody can manipulate the tasks in parallel.
8383 * See task_rq_lock() family for the details.
1e3c88bd 8384 */
163122b7 8385
8a8c69c3 8386 rq_unlock(busiest, &rf);
163122b7
KT
8387
8388 if (cur_ld_moved) {
8389 attach_tasks(&env);
8390 ld_moved += cur_ld_moved;
8391 }
8392
8a8c69c3 8393 local_irq_restore(rf.flags);
88b8dac0 8394
f1cd0858
JK
8395 if (env.flags & LBF_NEED_BREAK) {
8396 env.flags &= ~LBF_NEED_BREAK;
8397 goto more_balance;
8398 }
8399
88b8dac0
SV
8400 /*
8401 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8402 * us and move them to an alternate dst_cpu in our sched_group
8403 * where they can run. The upper limit on how many times we
8404 * iterate on same src_cpu is dependent on number of cpus in our
8405 * sched_group.
8406 *
8407 * This changes load balance semantics a bit on who can move
8408 * load to a given_cpu. In addition to the given_cpu itself
8409 * (or a ilb_cpu acting on its behalf where given_cpu is
8410 * nohz-idle), we now have balance_cpu in a position to move
8411 * load to given_cpu. In rare situations, this may cause
8412 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8413 * _independently_ and at _same_ time to move some load to
8414 * given_cpu) causing exceess load to be moved to given_cpu.
8415 * This however should not happen so much in practice and
8416 * moreover subsequent load balance cycles should correct the
8417 * excess load moved.
8418 */
6263322c 8419 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8420
7aff2e3a
VD
8421 /* Prevent to re-select dst_cpu via env's cpus */
8422 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8423
78feefc5 8424 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8425 env.dst_cpu = env.new_dst_cpu;
6263322c 8426 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8427 env.loop = 0;
8428 env.loop_break = sched_nr_migrate_break;
e02e60c1 8429
88b8dac0
SV
8430 /*
8431 * Go back to "more_balance" rather than "redo" since we
8432 * need to continue with same src_cpu.
8433 */
8434 goto more_balance;
8435 }
1e3c88bd 8436
6263322c
PZ
8437 /*
8438 * We failed to reach balance because of affinity.
8439 */
8440 if (sd_parent) {
63b2ca30 8441 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8442
afdeee05 8443 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8444 *group_imbalance = 1;
6263322c
PZ
8445 }
8446
1e3c88bd 8447 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8448 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8449 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8450 /*
8451 * Attempting to continue load balancing at the current
8452 * sched_domain level only makes sense if there are
8453 * active CPUs remaining as possible busiest CPUs to
8454 * pull load from which are not contained within the
8455 * destination group that is receiving any migrated
8456 * load.
8457 */
8458 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8459 env.loop = 0;
8460 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8461 goto redo;
bbf18b19 8462 }
afdeee05 8463 goto out_all_pinned;
1e3c88bd
PZ
8464 }
8465 }
8466
8467 if (!ld_moved) {
ae92882e 8468 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8469 /*
8470 * Increment the failure counter only on periodic balance.
8471 * We do not want newidle balance, which can be very
8472 * frequent, pollute the failure counter causing
8473 * excessive cache_hot migrations and active balances.
8474 */
8475 if (idle != CPU_NEWLY_IDLE)
8476 sd->nr_balance_failed++;
1e3c88bd 8477
bd939f45 8478 if (need_active_balance(&env)) {
8a8c69c3
PZ
8479 unsigned long flags;
8480
1e3c88bd
PZ
8481 raw_spin_lock_irqsave(&busiest->lock, flags);
8482
969c7921
TH
8483 /* don't kick the active_load_balance_cpu_stop,
8484 * if the curr task on busiest cpu can't be
8485 * moved to this_cpu
1e3c88bd 8486 */
0c98d344 8487 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8488 raw_spin_unlock_irqrestore(&busiest->lock,
8489 flags);
8e45cb54 8490 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8491 goto out_one_pinned;
8492 }
8493
969c7921
TH
8494 /*
8495 * ->active_balance synchronizes accesses to
8496 * ->active_balance_work. Once set, it's cleared
8497 * only after active load balance is finished.
8498 */
1e3c88bd
PZ
8499 if (!busiest->active_balance) {
8500 busiest->active_balance = 1;
8501 busiest->push_cpu = this_cpu;
8502 active_balance = 1;
8503 }
8504 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8505
bd939f45 8506 if (active_balance) {
969c7921
TH
8507 stop_one_cpu_nowait(cpu_of(busiest),
8508 active_load_balance_cpu_stop, busiest,
8509 &busiest->active_balance_work);
bd939f45 8510 }
1e3c88bd 8511
d02c0711 8512 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8513 sd->nr_balance_failed = sd->cache_nice_tries+1;
8514 }
8515 } else
8516 sd->nr_balance_failed = 0;
8517
8518 if (likely(!active_balance)) {
8519 /* We were unbalanced, so reset the balancing interval */
8520 sd->balance_interval = sd->min_interval;
8521 } else {
8522 /*
8523 * If we've begun active balancing, start to back off. This
8524 * case may not be covered by the all_pinned logic if there
8525 * is only 1 task on the busy runqueue (because we don't call
163122b7 8526 * detach_tasks).
1e3c88bd
PZ
8527 */
8528 if (sd->balance_interval < sd->max_interval)
8529 sd->balance_interval *= 2;
8530 }
8531
1e3c88bd
PZ
8532 goto out;
8533
8534out_balanced:
afdeee05
VG
8535 /*
8536 * We reach balance although we may have faced some affinity
8537 * constraints. Clear the imbalance flag if it was set.
8538 */
8539 if (sd_parent) {
8540 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8541
8542 if (*group_imbalance)
8543 *group_imbalance = 0;
8544 }
8545
8546out_all_pinned:
8547 /*
8548 * We reach balance because all tasks are pinned at this level so
8549 * we can't migrate them. Let the imbalance flag set so parent level
8550 * can try to migrate them.
8551 */
ae92882e 8552 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8553
8554 sd->nr_balance_failed = 0;
8555
8556out_one_pinned:
8557 /* tune up the balancing interval */
8e45cb54 8558 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8559 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8560 (sd->balance_interval < sd->max_interval))
8561 sd->balance_interval *= 2;
8562
46e49b38 8563 ld_moved = 0;
1e3c88bd 8564out:
1e3c88bd
PZ
8565 return ld_moved;
8566}
8567
52a08ef1
JL
8568static inline unsigned long
8569get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8570{
8571 unsigned long interval = sd->balance_interval;
8572
8573 if (cpu_busy)
8574 interval *= sd->busy_factor;
8575
8576 /* scale ms to jiffies */
8577 interval = msecs_to_jiffies(interval);
8578 interval = clamp(interval, 1UL, max_load_balance_interval);
8579
8580 return interval;
8581}
8582
8583static inline void
31851a98 8584update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8585{
8586 unsigned long interval, next;
8587
31851a98
LY
8588 /* used by idle balance, so cpu_busy = 0 */
8589 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8590 next = sd->last_balance + interval;
8591
8592 if (time_after(*next_balance, next))
8593 *next_balance = next;
8594}
8595
1e3c88bd
PZ
8596/*
8597 * idle_balance is called by schedule() if this_cpu is about to become
8598 * idle. Attempts to pull tasks from other CPUs.
8599 */
46f69fa3 8600static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8601{
52a08ef1
JL
8602 unsigned long next_balance = jiffies + HZ;
8603 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8604 struct sched_domain *sd;
8605 int pulled_task = 0;
9bd721c5 8606 u64 curr_cost = 0;
1e3c88bd 8607
6e83125c
PZ
8608 /*
8609 * We must set idle_stamp _before_ calling idle_balance(), such that we
8610 * measure the duration of idle_balance() as idle time.
8611 */
8612 this_rq->idle_stamp = rq_clock(this_rq);
8613
2800486e
PZ
8614 /*
8615 * Do not pull tasks towards !active CPUs...
8616 */
8617 if (!cpu_active(this_cpu))
8618 return 0;
8619
46f69fa3
MF
8620 /*
8621 * This is OK, because current is on_cpu, which avoids it being picked
8622 * for load-balance and preemption/IRQs are still disabled avoiding
8623 * further scheduler activity on it and we're being very careful to
8624 * re-start the picking loop.
8625 */
8626 rq_unpin_lock(this_rq, rf);
8627
4486edd1
TC
8628 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8629 !this_rq->rd->overload) {
52a08ef1
JL
8630 rcu_read_lock();
8631 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8632 if (sd)
31851a98 8633 update_next_balance(sd, &next_balance);
52a08ef1
JL
8634 rcu_read_unlock();
8635
6e83125c 8636 goto out;
52a08ef1 8637 }
1e3c88bd 8638
f492e12e
PZ
8639 raw_spin_unlock(&this_rq->lock);
8640
48a16753 8641 update_blocked_averages(this_cpu);
dce840a0 8642 rcu_read_lock();
1e3c88bd 8643 for_each_domain(this_cpu, sd) {
23f0d209 8644 int continue_balancing = 1;
9bd721c5 8645 u64 t0, domain_cost;
1e3c88bd
PZ
8646
8647 if (!(sd->flags & SD_LOAD_BALANCE))
8648 continue;
8649
52a08ef1 8650 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8651 update_next_balance(sd, &next_balance);
9bd721c5 8652 break;
52a08ef1 8653 }
9bd721c5 8654
f492e12e 8655 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8656 t0 = sched_clock_cpu(this_cpu);
8657
f492e12e 8658 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8659 sd, CPU_NEWLY_IDLE,
8660 &continue_balancing);
9bd721c5
JL
8661
8662 domain_cost = sched_clock_cpu(this_cpu) - t0;
8663 if (domain_cost > sd->max_newidle_lb_cost)
8664 sd->max_newidle_lb_cost = domain_cost;
8665
8666 curr_cost += domain_cost;
f492e12e 8667 }
1e3c88bd 8668
31851a98 8669 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8670
8671 /*
8672 * Stop searching for tasks to pull if there are
8673 * now runnable tasks on this rq.
8674 */
8675 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8676 break;
1e3c88bd 8677 }
dce840a0 8678 rcu_read_unlock();
f492e12e
PZ
8679
8680 raw_spin_lock(&this_rq->lock);
8681
0e5b5337
JL
8682 if (curr_cost > this_rq->max_idle_balance_cost)
8683 this_rq->max_idle_balance_cost = curr_cost;
8684
e5fc6611 8685 /*
0e5b5337
JL
8686 * While browsing the domains, we released the rq lock, a task could
8687 * have been enqueued in the meantime. Since we're not going idle,
8688 * pretend we pulled a task.
e5fc6611 8689 */
0e5b5337 8690 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8691 pulled_task = 1;
e5fc6611 8692
52a08ef1
JL
8693out:
8694 /* Move the next balance forward */
8695 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8696 this_rq->next_balance = next_balance;
9bd721c5 8697
e4aa358b 8698 /* Is there a task of a high priority class? */
46383648 8699 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8700 pulled_task = -1;
8701
38c6ade2 8702 if (pulled_task)
6e83125c
PZ
8703 this_rq->idle_stamp = 0;
8704
46f69fa3
MF
8705 rq_repin_lock(this_rq, rf);
8706
3c4017c1 8707 return pulled_task;
1e3c88bd
PZ
8708}
8709
8710/*
969c7921
TH
8711 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8712 * running tasks off the busiest CPU onto idle CPUs. It requires at
8713 * least 1 task to be running on each physical CPU where possible, and
8714 * avoids physical / logical imbalances.
1e3c88bd 8715 */
969c7921 8716static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8717{
969c7921
TH
8718 struct rq *busiest_rq = data;
8719 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8720 int target_cpu = busiest_rq->push_cpu;
969c7921 8721 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8722 struct sched_domain *sd;
e5673f28 8723 struct task_struct *p = NULL;
8a8c69c3 8724 struct rq_flags rf;
969c7921 8725
8a8c69c3 8726 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
8727 /*
8728 * Between queueing the stop-work and running it is a hole in which
8729 * CPUs can become inactive. We should not move tasks from or to
8730 * inactive CPUs.
8731 */
8732 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8733 goto out_unlock;
969c7921
TH
8734
8735 /* make sure the requested cpu hasn't gone down in the meantime */
8736 if (unlikely(busiest_cpu != smp_processor_id() ||
8737 !busiest_rq->active_balance))
8738 goto out_unlock;
1e3c88bd
PZ
8739
8740 /* Is there any task to move? */
8741 if (busiest_rq->nr_running <= 1)
969c7921 8742 goto out_unlock;
1e3c88bd
PZ
8743
8744 /*
8745 * This condition is "impossible", if it occurs
8746 * we need to fix it. Originally reported by
8747 * Bjorn Helgaas on a 128-cpu setup.
8748 */
8749 BUG_ON(busiest_rq == target_rq);
8750
1e3c88bd 8751 /* Search for an sd spanning us and the target CPU. */
dce840a0 8752 rcu_read_lock();
1e3c88bd
PZ
8753 for_each_domain(target_cpu, sd) {
8754 if ((sd->flags & SD_LOAD_BALANCE) &&
8755 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8756 break;
8757 }
8758
8759 if (likely(sd)) {
8e45cb54
PZ
8760 struct lb_env env = {
8761 .sd = sd,
ddcdf6e7
PZ
8762 .dst_cpu = target_cpu,
8763 .dst_rq = target_rq,
8764 .src_cpu = busiest_rq->cpu,
8765 .src_rq = busiest_rq,
8e45cb54 8766 .idle = CPU_IDLE,
65a4433a
JH
8767 /*
8768 * can_migrate_task() doesn't need to compute new_dst_cpu
8769 * for active balancing. Since we have CPU_IDLE, but no
8770 * @dst_grpmask we need to make that test go away with lying
8771 * about DST_PINNED.
8772 */
8773 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8774 };
8775
ae92882e 8776 schedstat_inc(sd->alb_count);
3bed5e21 8777 update_rq_clock(busiest_rq);
1e3c88bd 8778
e5673f28 8779 p = detach_one_task(&env);
d02c0711 8780 if (p) {
ae92882e 8781 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8782 /* Active balancing done, reset the failure counter. */
8783 sd->nr_balance_failed = 0;
8784 } else {
ae92882e 8785 schedstat_inc(sd->alb_failed);
d02c0711 8786 }
1e3c88bd 8787 }
dce840a0 8788 rcu_read_unlock();
969c7921
TH
8789out_unlock:
8790 busiest_rq->active_balance = 0;
8a8c69c3 8791 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8792
8793 if (p)
8794 attach_one_task(target_rq, p);
8795
8796 local_irq_enable();
8797
969c7921 8798 return 0;
1e3c88bd
PZ
8799}
8800
d987fc7f
MG
8801static inline int on_null_domain(struct rq *rq)
8802{
8803 return unlikely(!rcu_dereference_sched(rq->sd));
8804}
8805
3451d024 8806#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8807/*
8808 * idle load balancing details
83cd4fe2
VP
8809 * - When one of the busy CPUs notice that there may be an idle rebalancing
8810 * needed, they will kick the idle load balancer, which then does idle
8811 * load balancing for all the idle CPUs.
8812 */
1e3c88bd 8813static struct {
83cd4fe2 8814 cpumask_var_t idle_cpus_mask;
0b005cf5 8815 atomic_t nr_cpus;
83cd4fe2
VP
8816 unsigned long next_balance; /* in jiffy units */
8817} nohz ____cacheline_aligned;
1e3c88bd 8818
3dd0337d 8819static inline int find_new_ilb(void)
1e3c88bd 8820{
0b005cf5 8821 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8822
786d6dc7
SS
8823 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8824 return ilb;
8825
8826 return nr_cpu_ids;
1e3c88bd 8827}
1e3c88bd 8828
83cd4fe2
VP
8829/*
8830 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8831 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8832 * CPU (if there is one).
8833 */
0aeeeeba 8834static void nohz_balancer_kick(void)
83cd4fe2
VP
8835{
8836 int ilb_cpu;
8837
8838 nohz.next_balance++;
8839
3dd0337d 8840 ilb_cpu = find_new_ilb();
83cd4fe2 8841
0b005cf5
SS
8842 if (ilb_cpu >= nr_cpu_ids)
8843 return;
83cd4fe2 8844
cd490c5b 8845 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8846 return;
8847 /*
8848 * Use smp_send_reschedule() instead of resched_cpu().
8849 * This way we generate a sched IPI on the target cpu which
8850 * is idle. And the softirq performing nohz idle load balance
8851 * will be run before returning from the IPI.
8852 */
8853 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8854 return;
8855}
8856
20a5c8cc 8857void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8858{
8859 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8860 /*
8861 * Completely isolated CPUs don't ever set, so we must test.
8862 */
8863 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8864 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8865 atomic_dec(&nohz.nr_cpus);
8866 }
71325960
SS
8867 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8868 }
8869}
8870
69e1e811
SS
8871static inline void set_cpu_sd_state_busy(void)
8872{
8873 struct sched_domain *sd;
37dc6b50 8874 int cpu = smp_processor_id();
69e1e811 8875
69e1e811 8876 rcu_read_lock();
0e369d75 8877 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8878
8879 if (!sd || !sd->nohz_idle)
8880 goto unlock;
8881 sd->nohz_idle = 0;
8882
0e369d75 8883 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8884unlock:
69e1e811
SS
8885 rcu_read_unlock();
8886}
8887
8888void set_cpu_sd_state_idle(void)
8889{
8890 struct sched_domain *sd;
37dc6b50 8891 int cpu = smp_processor_id();
69e1e811 8892
69e1e811 8893 rcu_read_lock();
0e369d75 8894 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8895
8896 if (!sd || sd->nohz_idle)
8897 goto unlock;
8898 sd->nohz_idle = 1;
8899
0e369d75 8900 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8901unlock:
69e1e811
SS
8902 rcu_read_unlock();
8903}
8904
1e3c88bd 8905/*
c1cc017c 8906 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8907 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8908 */
c1cc017c 8909void nohz_balance_enter_idle(int cpu)
1e3c88bd 8910{
71325960
SS
8911 /*
8912 * If this cpu is going down, then nothing needs to be done.
8913 */
8914 if (!cpu_active(cpu))
8915 return;
8916
387bc8b5
FW
8917 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8918 if (!is_housekeeping_cpu(cpu))
8919 return;
8920
c1cc017c
AS
8921 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8922 return;
1e3c88bd 8923
d987fc7f
MG
8924 /*
8925 * If we're a completely isolated CPU, we don't play.
8926 */
8927 if (on_null_domain(cpu_rq(cpu)))
8928 return;
8929
c1cc017c
AS
8930 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8931 atomic_inc(&nohz.nr_cpus);
8932 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8933}
8934#endif
8935
8936static DEFINE_SPINLOCK(balancing);
8937
49c022e6
PZ
8938/*
8939 * Scale the max load_balance interval with the number of CPUs in the system.
8940 * This trades load-balance latency on larger machines for less cross talk.
8941 */
029632fb 8942void update_max_interval(void)
49c022e6
PZ
8943{
8944 max_load_balance_interval = HZ*num_online_cpus()/10;
8945}
8946
1e3c88bd
PZ
8947/*
8948 * It checks each scheduling domain to see if it is due to be balanced,
8949 * and initiates a balancing operation if so.
8950 *
b9b0853a 8951 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8952 */
f7ed0a89 8953static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8954{
23f0d209 8955 int continue_balancing = 1;
f7ed0a89 8956 int cpu = rq->cpu;
1e3c88bd 8957 unsigned long interval;
04f733b4 8958 struct sched_domain *sd;
1e3c88bd
PZ
8959 /* Earliest time when we have to do rebalance again */
8960 unsigned long next_balance = jiffies + 60*HZ;
8961 int update_next_balance = 0;
f48627e6
JL
8962 int need_serialize, need_decay = 0;
8963 u64 max_cost = 0;
1e3c88bd 8964
48a16753 8965 update_blocked_averages(cpu);
2069dd75 8966
dce840a0 8967 rcu_read_lock();
1e3c88bd 8968 for_each_domain(cpu, sd) {
f48627e6
JL
8969 /*
8970 * Decay the newidle max times here because this is a regular
8971 * visit to all the domains. Decay ~1% per second.
8972 */
8973 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8974 sd->max_newidle_lb_cost =
8975 (sd->max_newidle_lb_cost * 253) / 256;
8976 sd->next_decay_max_lb_cost = jiffies + HZ;
8977 need_decay = 1;
8978 }
8979 max_cost += sd->max_newidle_lb_cost;
8980
1e3c88bd
PZ
8981 if (!(sd->flags & SD_LOAD_BALANCE))
8982 continue;
8983
f48627e6
JL
8984 /*
8985 * Stop the load balance at this level. There is another
8986 * CPU in our sched group which is doing load balancing more
8987 * actively.
8988 */
8989 if (!continue_balancing) {
8990 if (need_decay)
8991 continue;
8992 break;
8993 }
8994
52a08ef1 8995 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8996
8997 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8998 if (need_serialize) {
8999 if (!spin_trylock(&balancing))
9000 goto out;
9001 }
9002
9003 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 9004 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 9005 /*
6263322c 9006 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
9007 * env->dst_cpu, so we can't know our idle
9008 * state even if we migrated tasks. Update it.
1e3c88bd 9009 */
de5eb2dd 9010 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
9011 }
9012 sd->last_balance = jiffies;
52a08ef1 9013 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
9014 }
9015 if (need_serialize)
9016 spin_unlock(&balancing);
9017out:
9018 if (time_after(next_balance, sd->last_balance + interval)) {
9019 next_balance = sd->last_balance + interval;
9020 update_next_balance = 1;
9021 }
f48627e6
JL
9022 }
9023 if (need_decay) {
1e3c88bd 9024 /*
f48627e6
JL
9025 * Ensure the rq-wide value also decays but keep it at a
9026 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 9027 */
f48627e6
JL
9028 rq->max_idle_balance_cost =
9029 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 9030 }
dce840a0 9031 rcu_read_unlock();
1e3c88bd
PZ
9032
9033 /*
9034 * next_balance will be updated only when there is a need.
9035 * When the cpu is attached to null domain for ex, it will not be
9036 * updated.
9037 */
c5afb6a8 9038 if (likely(update_next_balance)) {
1e3c88bd 9039 rq->next_balance = next_balance;
c5afb6a8
VG
9040
9041#ifdef CONFIG_NO_HZ_COMMON
9042 /*
9043 * If this CPU has been elected to perform the nohz idle
9044 * balance. Other idle CPUs have already rebalanced with
9045 * nohz_idle_balance() and nohz.next_balance has been
9046 * updated accordingly. This CPU is now running the idle load
9047 * balance for itself and we need to update the
9048 * nohz.next_balance accordingly.
9049 */
9050 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9051 nohz.next_balance = rq->next_balance;
9052#endif
9053 }
1e3c88bd
PZ
9054}
9055
3451d024 9056#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 9057/*
3451d024 9058 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
9059 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9060 */
208cb16b 9061static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 9062{
208cb16b 9063 int this_cpu = this_rq->cpu;
83cd4fe2
VP
9064 struct rq *rq;
9065 int balance_cpu;
c5afb6a8
VG
9066 /* Earliest time when we have to do rebalance again */
9067 unsigned long next_balance = jiffies + 60*HZ;
9068 int update_next_balance = 0;
83cd4fe2 9069
1c792db7
SS
9070 if (idle != CPU_IDLE ||
9071 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
9072 goto end;
83cd4fe2
VP
9073
9074 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9075 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9076 continue;
9077
9078 /*
9079 * If this cpu gets work to do, stop the load balancing
9080 * work being done for other cpus. Next load
9081 * balancing owner will pick it up.
9082 */
1c792db7 9083 if (need_resched())
83cd4fe2 9084 break;
83cd4fe2 9085
5ed4f1d9
VG
9086 rq = cpu_rq(balance_cpu);
9087
ed61bbc6
TC
9088 /*
9089 * If time for next balance is due,
9090 * do the balance.
9091 */
9092 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9093 struct rq_flags rf;
9094
9095 rq_lock_irq(rq, &rf);
ed61bbc6 9096 update_rq_clock(rq);
cee1afce 9097 cpu_load_update_idle(rq);
8a8c69c3
PZ
9098 rq_unlock_irq(rq, &rf);
9099
ed61bbc6
TC
9100 rebalance_domains(rq, CPU_IDLE);
9101 }
83cd4fe2 9102
c5afb6a8
VG
9103 if (time_after(next_balance, rq->next_balance)) {
9104 next_balance = rq->next_balance;
9105 update_next_balance = 1;
9106 }
83cd4fe2 9107 }
c5afb6a8
VG
9108
9109 /*
9110 * next_balance will be updated only when there is a need.
9111 * When the CPU is attached to null domain for ex, it will not be
9112 * updated.
9113 */
9114 if (likely(update_next_balance))
9115 nohz.next_balance = next_balance;
1c792db7
SS
9116end:
9117 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
9118}
9119
9120/*
0b005cf5 9121 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 9122 * of an idle cpu in the system.
0b005cf5 9123 * - This rq has more than one task.
1aaf90a4
VG
9124 * - This rq has at least one CFS task and the capacity of the CPU is
9125 * significantly reduced because of RT tasks or IRQs.
9126 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9127 * multiple busy cpu.
0b005cf5
SS
9128 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9129 * domain span are idle.
83cd4fe2 9130 */
1aaf90a4 9131static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
9132{
9133 unsigned long now = jiffies;
0e369d75 9134 struct sched_domain_shared *sds;
0b005cf5 9135 struct sched_domain *sd;
afe06efd 9136 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 9137 bool kick = false;
83cd4fe2 9138
4a725627 9139 if (unlikely(rq->idle_balance))
1aaf90a4 9140 return false;
83cd4fe2 9141
1c792db7
SS
9142 /*
9143 * We may be recently in ticked or tickless idle mode. At the first
9144 * busy tick after returning from idle, we will update the busy stats.
9145 */
69e1e811 9146 set_cpu_sd_state_busy();
c1cc017c 9147 nohz_balance_exit_idle(cpu);
0b005cf5
SS
9148
9149 /*
9150 * None are in tickless mode and hence no need for NOHZ idle load
9151 * balancing.
9152 */
9153 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 9154 return false;
1c792db7
SS
9155
9156 if (time_before(now, nohz.next_balance))
1aaf90a4 9157 return false;
83cd4fe2 9158
0b005cf5 9159 if (rq->nr_running >= 2)
1aaf90a4 9160 return true;
83cd4fe2 9161
067491b7 9162 rcu_read_lock();
0e369d75
PZ
9163 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9164 if (sds) {
9165 /*
9166 * XXX: write a coherent comment on why we do this.
9167 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9168 */
9169 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
9170 if (nr_busy > 1) {
9171 kick = true;
9172 goto unlock;
9173 }
9174
83cd4fe2 9175 }
37dc6b50 9176
1aaf90a4
VG
9177 sd = rcu_dereference(rq->sd);
9178 if (sd) {
9179 if ((rq->cfs.h_nr_running >= 1) &&
9180 check_cpu_capacity(rq, sd)) {
9181 kick = true;
9182 goto unlock;
9183 }
9184 }
37dc6b50 9185
1aaf90a4 9186 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
9187 if (sd) {
9188 for_each_cpu(i, sched_domain_span(sd)) {
9189 if (i == cpu ||
9190 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9191 continue;
067491b7 9192
afe06efd
TC
9193 if (sched_asym_prefer(i, cpu)) {
9194 kick = true;
9195 goto unlock;
9196 }
9197 }
9198 }
1aaf90a4 9199unlock:
067491b7 9200 rcu_read_unlock();
1aaf90a4 9201 return kick;
83cd4fe2
VP
9202}
9203#else
208cb16b 9204static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
9205#endif
9206
9207/*
9208 * run_rebalance_domains is triggered when needed from the scheduler tick.
9209 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9210 */
0766f788 9211static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9212{
208cb16b 9213 struct rq *this_rq = this_rq();
6eb57e0d 9214 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9215 CPU_IDLE : CPU_NOT_IDLE;
9216
1e3c88bd 9217 /*
83cd4fe2 9218 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 9219 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
9220 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9221 * give the idle cpus a chance to load balance. Else we may
9222 * load balance only within the local sched_domain hierarchy
9223 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9224 */
208cb16b 9225 nohz_idle_balance(this_rq, idle);
d4573c3e 9226 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9227}
9228
1e3c88bd
PZ
9229/*
9230 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9231 */
7caff66f 9232void trigger_load_balance(struct rq *rq)
1e3c88bd 9233{
1e3c88bd 9234 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9235 if (unlikely(on_null_domain(rq)))
9236 return;
9237
9238 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9239 raise_softirq(SCHED_SOFTIRQ);
3451d024 9240#ifdef CONFIG_NO_HZ_COMMON
c726099e 9241 if (nohz_kick_needed(rq))
0aeeeeba 9242 nohz_balancer_kick();
83cd4fe2 9243#endif
1e3c88bd
PZ
9244}
9245
0bcdcf28
CE
9246static void rq_online_fair(struct rq *rq)
9247{
9248 update_sysctl();
0e59bdae
KT
9249
9250 update_runtime_enabled(rq);
0bcdcf28
CE
9251}
9252
9253static void rq_offline_fair(struct rq *rq)
9254{
9255 update_sysctl();
a4c96ae3
PB
9256
9257 /* Ensure any throttled groups are reachable by pick_next_task */
9258 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9259}
9260
55e12e5e 9261#endif /* CONFIG_SMP */
e1d1484f 9262
bf0f6f24
IM
9263/*
9264 * scheduler tick hitting a task of our scheduling class:
9265 */
8f4d37ec 9266static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9267{
9268 struct cfs_rq *cfs_rq;
9269 struct sched_entity *se = &curr->se;
9270
9271 for_each_sched_entity(se) {
9272 cfs_rq = cfs_rq_of(se);
8f4d37ec 9273 entity_tick(cfs_rq, se, queued);
bf0f6f24 9274 }
18bf2805 9275
b52da86e 9276 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9277 task_tick_numa(rq, curr);
bf0f6f24
IM
9278}
9279
9280/*
cd29fe6f
PZ
9281 * called on fork with the child task as argument from the parent's context
9282 * - child not yet on the tasklist
9283 * - preemption disabled
bf0f6f24 9284 */
cd29fe6f 9285static void task_fork_fair(struct task_struct *p)
bf0f6f24 9286{
4fc420c9
DN
9287 struct cfs_rq *cfs_rq;
9288 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9289 struct rq *rq = this_rq();
8a8c69c3 9290 struct rq_flags rf;
bf0f6f24 9291
8a8c69c3 9292 rq_lock(rq, &rf);
861d034e
PZ
9293 update_rq_clock(rq);
9294
4fc420c9
DN
9295 cfs_rq = task_cfs_rq(current);
9296 curr = cfs_rq->curr;
e210bffd
PZ
9297 if (curr) {
9298 update_curr(cfs_rq);
b5d9d734 9299 se->vruntime = curr->vruntime;
e210bffd 9300 }
aeb73b04 9301 place_entity(cfs_rq, se, 1);
4d78e7b6 9302
cd29fe6f 9303 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9304 /*
edcb60a3
IM
9305 * Upon rescheduling, sched_class::put_prev_task() will place
9306 * 'current' within the tree based on its new key value.
9307 */
4d78e7b6 9308 swap(curr->vruntime, se->vruntime);
8875125e 9309 resched_curr(rq);
4d78e7b6 9310 }
bf0f6f24 9311
88ec22d3 9312 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9313 rq_unlock(rq, &rf);
bf0f6f24
IM
9314}
9315
cb469845
SR
9316/*
9317 * Priority of the task has changed. Check to see if we preempt
9318 * the current task.
9319 */
da7a735e
PZ
9320static void
9321prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9322{
da0c1e65 9323 if (!task_on_rq_queued(p))
da7a735e
PZ
9324 return;
9325
cb469845
SR
9326 /*
9327 * Reschedule if we are currently running on this runqueue and
9328 * our priority decreased, or if we are not currently running on
9329 * this runqueue and our priority is higher than the current's
9330 */
da7a735e 9331 if (rq->curr == p) {
cb469845 9332 if (p->prio > oldprio)
8875125e 9333 resched_curr(rq);
cb469845 9334 } else
15afe09b 9335 check_preempt_curr(rq, p, 0);
cb469845
SR
9336}
9337
daa59407 9338static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9339{
9340 struct sched_entity *se = &p->se;
da7a735e
PZ
9341
9342 /*
daa59407
BP
9343 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9344 * the dequeue_entity(.flags=0) will already have normalized the
9345 * vruntime.
9346 */
9347 if (p->on_rq)
9348 return true;
9349
9350 /*
9351 * When !on_rq, vruntime of the task has usually NOT been normalized.
9352 * But there are some cases where it has already been normalized:
da7a735e 9353 *
daa59407
BP
9354 * - A forked child which is waiting for being woken up by
9355 * wake_up_new_task().
9356 * - A task which has been woken up by try_to_wake_up() and
9357 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9358 */
daa59407
BP
9359 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9360 return true;
9361
9362 return false;
9363}
9364
09a43ace
VG
9365#ifdef CONFIG_FAIR_GROUP_SCHED
9366/*
9367 * Propagate the changes of the sched_entity across the tg tree to make it
9368 * visible to the root
9369 */
9370static void propagate_entity_cfs_rq(struct sched_entity *se)
9371{
9372 struct cfs_rq *cfs_rq;
9373
9374 /* Start to propagate at parent */
9375 se = se->parent;
9376
9377 for_each_sched_entity(se) {
9378 cfs_rq = cfs_rq_of(se);
9379
9380 if (cfs_rq_throttled(cfs_rq))
9381 break;
9382
88c0616e 9383 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
9384 }
9385}
9386#else
9387static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9388#endif
9389
df217913 9390static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9391{
daa59407
BP
9392 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9393
9d89c257 9394 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 9395 update_load_avg(cfs_rq, se, 0);
a05e8c51 9396 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9397 update_tg_load_avg(cfs_rq, false);
09a43ace 9398 propagate_entity_cfs_rq(se);
da7a735e
PZ
9399}
9400
df217913 9401static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9402{
daa59407 9403 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9404
9405#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9406 /*
9407 * Since the real-depth could have been changed (only FAIR
9408 * class maintain depth value), reset depth properly.
9409 */
9410 se->depth = se->parent ? se->parent->depth + 1 : 0;
9411#endif
7855a35a 9412
df217913 9413 /* Synchronize entity with its cfs_rq */
88c0616e 9414 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9415 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9416 update_tg_load_avg(cfs_rq, false);
09a43ace 9417 propagate_entity_cfs_rq(se);
df217913
VG
9418}
9419
9420static void detach_task_cfs_rq(struct task_struct *p)
9421{
9422 struct sched_entity *se = &p->se;
9423 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9424
9425 if (!vruntime_normalized(p)) {
9426 /*
9427 * Fix up our vruntime so that the current sleep doesn't
9428 * cause 'unlimited' sleep bonus.
9429 */
9430 place_entity(cfs_rq, se, 0);
9431 se->vruntime -= cfs_rq->min_vruntime;
9432 }
9433
9434 detach_entity_cfs_rq(se);
9435}
9436
9437static void attach_task_cfs_rq(struct task_struct *p)
9438{
9439 struct sched_entity *se = &p->se;
9440 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9441
9442 attach_entity_cfs_rq(se);
daa59407
BP
9443
9444 if (!vruntime_normalized(p))
9445 se->vruntime += cfs_rq->min_vruntime;
9446}
6efdb105 9447
daa59407
BP
9448static void switched_from_fair(struct rq *rq, struct task_struct *p)
9449{
9450 detach_task_cfs_rq(p);
9451}
9452
9453static void switched_to_fair(struct rq *rq, struct task_struct *p)
9454{
9455 attach_task_cfs_rq(p);
7855a35a 9456
daa59407 9457 if (task_on_rq_queued(p)) {
7855a35a 9458 /*
daa59407
BP
9459 * We were most likely switched from sched_rt, so
9460 * kick off the schedule if running, otherwise just see
9461 * if we can still preempt the current task.
7855a35a 9462 */
daa59407
BP
9463 if (rq->curr == p)
9464 resched_curr(rq);
9465 else
9466 check_preempt_curr(rq, p, 0);
7855a35a 9467 }
cb469845
SR
9468}
9469
83b699ed
SV
9470/* Account for a task changing its policy or group.
9471 *
9472 * This routine is mostly called to set cfs_rq->curr field when a task
9473 * migrates between groups/classes.
9474 */
9475static void set_curr_task_fair(struct rq *rq)
9476{
9477 struct sched_entity *se = &rq->curr->se;
9478
ec12cb7f
PT
9479 for_each_sched_entity(se) {
9480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9481
9482 set_next_entity(cfs_rq, se);
9483 /* ensure bandwidth has been allocated on our new cfs_rq */
9484 account_cfs_rq_runtime(cfs_rq, 0);
9485 }
83b699ed
SV
9486}
9487
029632fb
PZ
9488void init_cfs_rq(struct cfs_rq *cfs_rq)
9489{
bfb06889 9490 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
9491 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9492#ifndef CONFIG_64BIT
9493 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9494#endif
141965c7 9495#ifdef CONFIG_SMP
2a2f5d4e 9496 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 9497#endif
029632fb
PZ
9498}
9499
810b3817 9500#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9501static void task_set_group_fair(struct task_struct *p)
9502{
9503 struct sched_entity *se = &p->se;
9504
9505 set_task_rq(p, task_cpu(p));
9506 se->depth = se->parent ? se->parent->depth + 1 : 0;
9507}
9508
bc54da21 9509static void task_move_group_fair(struct task_struct *p)
810b3817 9510{
daa59407 9511 detach_task_cfs_rq(p);
b2b5ce02 9512 set_task_rq(p, task_cpu(p));
6efdb105
BP
9513
9514#ifdef CONFIG_SMP
9515 /* Tell se's cfs_rq has been changed -- migrated */
9516 p->se.avg.last_update_time = 0;
9517#endif
daa59407 9518 attach_task_cfs_rq(p);
810b3817 9519}
029632fb 9520
ea86cb4b
VG
9521static void task_change_group_fair(struct task_struct *p, int type)
9522{
9523 switch (type) {
9524 case TASK_SET_GROUP:
9525 task_set_group_fair(p);
9526 break;
9527
9528 case TASK_MOVE_GROUP:
9529 task_move_group_fair(p);
9530 break;
9531 }
9532}
9533
029632fb
PZ
9534void free_fair_sched_group(struct task_group *tg)
9535{
9536 int i;
9537
9538 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9539
9540 for_each_possible_cpu(i) {
9541 if (tg->cfs_rq)
9542 kfree(tg->cfs_rq[i]);
6fe1f348 9543 if (tg->se)
029632fb
PZ
9544 kfree(tg->se[i]);
9545 }
9546
9547 kfree(tg->cfs_rq);
9548 kfree(tg->se);
9549}
9550
9551int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9552{
029632fb 9553 struct sched_entity *se;
b7fa30c9 9554 struct cfs_rq *cfs_rq;
029632fb
PZ
9555 int i;
9556
9557 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9558 if (!tg->cfs_rq)
9559 goto err;
9560 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9561 if (!tg->se)
9562 goto err;
9563
9564 tg->shares = NICE_0_LOAD;
9565
9566 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9567
9568 for_each_possible_cpu(i) {
9569 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9570 GFP_KERNEL, cpu_to_node(i));
9571 if (!cfs_rq)
9572 goto err;
9573
9574 se = kzalloc_node(sizeof(struct sched_entity),
9575 GFP_KERNEL, cpu_to_node(i));
9576 if (!se)
9577 goto err_free_rq;
9578
9579 init_cfs_rq(cfs_rq);
9580 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9581 init_entity_runnable_average(se);
029632fb
PZ
9582 }
9583
9584 return 1;
9585
9586err_free_rq:
9587 kfree(cfs_rq);
9588err:
9589 return 0;
9590}
9591
8663e24d
PZ
9592void online_fair_sched_group(struct task_group *tg)
9593{
9594 struct sched_entity *se;
9595 struct rq *rq;
9596 int i;
9597
9598 for_each_possible_cpu(i) {
9599 rq = cpu_rq(i);
9600 se = tg->se[i];
9601
9602 raw_spin_lock_irq(&rq->lock);
4126bad6 9603 update_rq_clock(rq);
d0326691 9604 attach_entity_cfs_rq(se);
55e16d30 9605 sync_throttle(tg, i);
8663e24d
PZ
9606 raw_spin_unlock_irq(&rq->lock);
9607 }
9608}
9609
6fe1f348 9610void unregister_fair_sched_group(struct task_group *tg)
029632fb 9611{
029632fb 9612 unsigned long flags;
6fe1f348
PZ
9613 struct rq *rq;
9614 int cpu;
029632fb 9615
6fe1f348
PZ
9616 for_each_possible_cpu(cpu) {
9617 if (tg->se[cpu])
9618 remove_entity_load_avg(tg->se[cpu]);
029632fb 9619
6fe1f348
PZ
9620 /*
9621 * Only empty task groups can be destroyed; so we can speculatively
9622 * check on_list without danger of it being re-added.
9623 */
9624 if (!tg->cfs_rq[cpu]->on_list)
9625 continue;
9626
9627 rq = cpu_rq(cpu);
9628
9629 raw_spin_lock_irqsave(&rq->lock, flags);
9630 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9631 raw_spin_unlock_irqrestore(&rq->lock, flags);
9632 }
029632fb
PZ
9633}
9634
9635void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9636 struct sched_entity *se, int cpu,
9637 struct sched_entity *parent)
9638{
9639 struct rq *rq = cpu_rq(cpu);
9640
9641 cfs_rq->tg = tg;
9642 cfs_rq->rq = rq;
029632fb
PZ
9643 init_cfs_rq_runtime(cfs_rq);
9644
9645 tg->cfs_rq[cpu] = cfs_rq;
9646 tg->se[cpu] = se;
9647
9648 /* se could be NULL for root_task_group */
9649 if (!se)
9650 return;
9651
fed14d45 9652 if (!parent) {
029632fb 9653 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9654 se->depth = 0;
9655 } else {
029632fb 9656 se->cfs_rq = parent->my_q;
fed14d45
PZ
9657 se->depth = parent->depth + 1;
9658 }
029632fb
PZ
9659
9660 se->my_q = cfs_rq;
0ac9b1c2
PT
9661 /* guarantee group entities always have weight */
9662 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9663 se->parent = parent;
9664}
9665
9666static DEFINE_MUTEX(shares_mutex);
9667
9668int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9669{
9670 int i;
029632fb
PZ
9671
9672 /*
9673 * We can't change the weight of the root cgroup.
9674 */
9675 if (!tg->se[0])
9676 return -EINVAL;
9677
9678 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9679
9680 mutex_lock(&shares_mutex);
9681 if (tg->shares == shares)
9682 goto done;
9683
9684 tg->shares = shares;
9685 for_each_possible_cpu(i) {
9686 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9687 struct sched_entity *se = tg->se[i];
9688 struct rq_flags rf;
029632fb 9689
029632fb 9690 /* Propagate contribution to hierarchy */
8a8c69c3 9691 rq_lock_irqsave(rq, &rf);
71b1da46 9692 update_rq_clock(rq);
89ee048f 9693 for_each_sched_entity(se) {
88c0616e 9694 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
89ee048f
VG
9695 update_cfs_shares(se);
9696 }
8a8c69c3 9697 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9698 }
9699
9700done:
9701 mutex_unlock(&shares_mutex);
9702 return 0;
9703}
9704#else /* CONFIG_FAIR_GROUP_SCHED */
9705
9706void free_fair_sched_group(struct task_group *tg) { }
9707
9708int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9709{
9710 return 1;
9711}
9712
8663e24d
PZ
9713void online_fair_sched_group(struct task_group *tg) { }
9714
6fe1f348 9715void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9716
9717#endif /* CONFIG_FAIR_GROUP_SCHED */
9718
810b3817 9719
6d686f45 9720static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9721{
9722 struct sched_entity *se = &task->se;
0d721cea
PW
9723 unsigned int rr_interval = 0;
9724
9725 /*
9726 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9727 * idle runqueue:
9728 */
0d721cea 9729 if (rq->cfs.load.weight)
a59f4e07 9730 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9731
9732 return rr_interval;
9733}
9734
bf0f6f24
IM
9735/*
9736 * All the scheduling class methods:
9737 */
029632fb 9738const struct sched_class fair_sched_class = {
5522d5d5 9739 .next = &idle_sched_class,
bf0f6f24
IM
9740 .enqueue_task = enqueue_task_fair,
9741 .dequeue_task = dequeue_task_fair,
9742 .yield_task = yield_task_fair,
d95f4122 9743 .yield_to_task = yield_to_task_fair,
bf0f6f24 9744
2e09bf55 9745 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9746
9747 .pick_next_task = pick_next_task_fair,
9748 .put_prev_task = put_prev_task_fair,
9749
681f3e68 9750#ifdef CONFIG_SMP
4ce72a2c 9751 .select_task_rq = select_task_rq_fair,
0a74bef8 9752 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9753
0bcdcf28
CE
9754 .rq_online = rq_online_fair,
9755 .rq_offline = rq_offline_fair,
88ec22d3 9756
12695578 9757 .task_dead = task_dead_fair,
c5b28038 9758 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9759#endif
bf0f6f24 9760
83b699ed 9761 .set_curr_task = set_curr_task_fair,
bf0f6f24 9762 .task_tick = task_tick_fair,
cd29fe6f 9763 .task_fork = task_fork_fair,
cb469845
SR
9764
9765 .prio_changed = prio_changed_fair,
da7a735e 9766 .switched_from = switched_from_fair,
cb469845 9767 .switched_to = switched_to_fair,
810b3817 9768
0d721cea
PW
9769 .get_rr_interval = get_rr_interval_fair,
9770
6e998916
SG
9771 .update_curr = update_curr_fair,
9772
810b3817 9773#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9774 .task_change_group = task_change_group_fair,
810b3817 9775#endif
bf0f6f24
IM
9776};
9777
9778#ifdef CONFIG_SCHED_DEBUG
029632fb 9779void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9780{
a9e7f654 9781 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9782
5973e5b9 9783 rcu_read_lock();
a9e7f654 9784 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9785 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9786 rcu_read_unlock();
bf0f6f24 9787}
397f2378
SD
9788
9789#ifdef CONFIG_NUMA_BALANCING
9790void show_numa_stats(struct task_struct *p, struct seq_file *m)
9791{
9792 int node;
9793 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9794
9795 for_each_online_node(node) {
9796 if (p->numa_faults) {
9797 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9798 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9799 }
9800 if (p->numa_group) {
9801 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9802 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9803 }
9804 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9805 }
9806}
9807#endif /* CONFIG_NUMA_BALANCING */
9808#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9809
9810__init void init_sched_fair_class(void)
9811{
9812#ifdef CONFIG_SMP
9813 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9814
3451d024 9815#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9816 nohz.next_balance = jiffies;
029632fb 9817 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9818#endif
9819#endif /* SMP */
9820
9821}