sched/fair: Remove stale power aware scheduling comments
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
172895e6 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
7ea241af
YD
738static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 740#else
540247fb 741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
742{
743}
2b8c41da
YD
744void post_init_entity_util_avg(struct sched_entity *se)
745{
746}
a75cdaa9
AS
747#endif
748
bf0f6f24 749/*
9dbdb155 750 * Update the current task's runtime statistics.
bf0f6f24 751 */
b7cc0896 752static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 753{
429d43bc 754 struct sched_entity *curr = cfs_rq->curr;
78becc27 755 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 756 u64 delta_exec;
bf0f6f24
IM
757
758 if (unlikely(!curr))
759 return;
760
9dbdb155
PZ
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
34f28ecd 763 return;
bf0f6f24 764
8ebc91d9 765 curr->exec_start = now;
d842de87 766
9dbdb155
PZ
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
d842de87
SV
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
f977bb49 779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 780 cpuacct_charge(curtask, delta_exec);
f06febc9 781 account_group_exec_runtime(curtask, delta_exec);
d842de87 782 }
ec12cb7f
PT
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
785}
786
6e998916
SG
787static void update_curr_fair(struct rq *rq)
788{
789 update_curr(cfs_rq_of(&rq->curr->se));
790}
791
3ea94de1 792#ifdef CONFIG_SCHEDSTATS
bf0f6f24 793static inline void
5870db5b 794update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 795{
3ea94de1
JP
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
bf0f6f24
IM
803}
804
3ea94de1
JP
805static void
806update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 struct task_struct *p;
cb251765
MG
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831}
3ea94de1 832
bf0f6f24
IM
833/*
834 * Task is being enqueued - update stats:
835 */
cb251765
MG
836static inline void
837update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 838{
bf0f6f24
IM
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
429d43bc 843 if (se != cfs_rq->curr)
5870db5b 844 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
845}
846
bf0f6f24 847static inline void
cb251765 848update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 849{
bf0f6f24
IM
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
429d43bc 854 if (se != cfs_rq->curr)
9ef0a961 855 update_stats_wait_end(cfs_rq, se);
cb251765
MG
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868}
869#else
870static inline void
871update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872{
873}
874
875static inline void
876update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878}
879
880static inline void
881update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882{
883}
884
885static inline void
886update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887{
bf0f6f24 888}
cb251765 889#endif
bf0f6f24
IM
890
891/*
892 * We are picking a new current task - update its stats:
893 */
894static inline void
79303e9e 895update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
896{
897 /*
898 * We are starting a new run period:
899 */
78becc27 900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
901}
902
bf0f6f24
IM
903/**************************************************
904 * Scheduling class queueing methods:
905 */
906
cbee9f88
PZ
907#ifdef CONFIG_NUMA_BALANCING
908/*
598f0ec0
MG
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
cbee9f88 912 */
598f0ec0
MG
913unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
915
916/* Portion of address space to scan in MB */
917unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 918
4b96a29b
PZ
919/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
598f0ec0
MG
922static unsigned int task_nr_scan_windows(struct task_struct *p)
923{
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939}
940
941/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942#define MAX_SCAN_WINDOW 2560
943
944static unsigned int task_scan_min(struct task_struct *p)
945{
316c1608 946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
64192658
KT
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956}
957
958static unsigned int task_scan_max(struct task_struct *p)
959{
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966}
967
0ec8aa00
PZ
968static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969{
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972}
973
974static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975{
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978}
979
8c8a743c
PZ
980struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
e29cf08b 985 pid_t gid;
4142c3eb 986 int active_nodes;
8c8a743c
PZ
987
988 struct rcu_head rcu;
989348b5 989 unsigned long total_faults;
4142c3eb 990 unsigned long max_faults_cpu;
7e2703e6
RR
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
50ec8a40 996 unsigned long *faults_cpu;
989348b5 997 unsigned long faults[0];
8c8a743c
PZ
998};
999
be1e4e76
RR
1000/* Shared or private faults. */
1001#define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003/* Memory and CPU locality */
1004#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006/* Averaged statistics, and temporary buffers. */
1007#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
e29cf08b
MG
1009pid_t task_numa_group_id(struct task_struct *p)
1010{
1011 return p->numa_group ? p->numa_group->gid : 0;
1012}
1013
44dba3d5
IM
1014/*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1021{
44dba3d5 1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1023}
1024
1025static inline unsigned long task_faults(struct task_struct *p, int nid)
1026{
44dba3d5 1027 if (!p->numa_faults)
ac8e895b
MG
1028 return 0;
1029
44dba3d5
IM
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1032}
1033
83e1d2cd
MG
1034static inline unsigned long group_faults(struct task_struct *p, int nid)
1035{
1036 if (!p->numa_group)
1037 return 0;
1038
44dba3d5
IM
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1041}
1042
20e07dea
RR
1043static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044{
44dba3d5
IM
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1047}
1048
4142c3eb
RR
1049/*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054#define ACTIVE_NODE_FRACTION 3
1055
1056static bool numa_is_active_node(int nid, struct numa_group *ng)
1057{
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059}
1060
6c6b1193
RR
1061/* Handle placement on systems where not all nodes are directly connected. */
1062static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064{
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124}
1125
83e1d2cd
MG
1126/*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
7bd95320
RR
1132static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
83e1d2cd 1134{
7bd95320 1135 unsigned long faults, total_faults;
83e1d2cd 1136
44dba3d5 1137 if (!p->numa_faults)
83e1d2cd
MG
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
7bd95320 1145 faults = task_faults(p, nid);
6c6b1193
RR
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
7bd95320 1148 return 1000 * faults / total_faults;
83e1d2cd
MG
1149}
1150
7bd95320
RR
1151static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
83e1d2cd 1153{
7bd95320
RR
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
83e1d2cd
MG
1162 return 0;
1163
7bd95320 1164 faults = group_faults(p, nid);
6c6b1193
RR
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
7bd95320 1167 return 1000 * faults / total_faults;
83e1d2cd
MG
1168}
1169
10f39042
RR
1170bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172{
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
4142c3eb
RR
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
10f39042 1212 */
4142c3eb
RR
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
10f39042
RR
1215 return true;
1216
1217 /*
4142c3eb
RR
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
10f39042 1224 */
4142c3eb
RR
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1227}
1228
e6628d5b 1229static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1230static unsigned long source_load(int cpu, int type);
1231static unsigned long target_load(int cpu, int type);
ced549fa 1232static unsigned long capacity_of(int cpu);
58d081b5
MG
1233static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
fb13c7ee 1235/* Cached statistics for all CPUs within a node */
58d081b5 1236struct numa_stats {
fb13c7ee 1237 unsigned long nr_running;
58d081b5 1238 unsigned long load;
fb13c7ee
MG
1239
1240 /* Total compute capacity of CPUs on a node */
5ef20ca1 1241 unsigned long compute_capacity;
fb13c7ee
MG
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1244 unsigned long task_capacity;
1b6a7495 1245 int has_free_capacity;
58d081b5 1246};
e6628d5b 1247
fb13c7ee
MG
1248/*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251static void update_numa_stats(struct numa_stats *ns, int nid)
1252{
83d7f242
RR
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
fb13c7ee
MG
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
ced549fa 1262 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1263
1264 cpus++;
fb13c7ee
MG
1265 }
1266
5eca82a9
PZ
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1b6a7495
NP
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
5eca82a9
PZ
1274 */
1275 if (!cpus)
1276 return;
1277
83d7f242
RR
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1285}
1286
58d081b5
MG
1287struct task_numa_env {
1288 struct task_struct *p;
e6628d5b 1289
58d081b5
MG
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
e6628d5b 1292
58d081b5 1293 struct numa_stats src_stats, dst_stats;
e6628d5b 1294
40ea2b42 1295 int imbalance_pct;
7bd95320 1296 int dist;
fb13c7ee
MG
1297
1298 struct task_struct *best_task;
1299 long best_imp;
58d081b5
MG
1300 int best_cpu;
1301};
1302
fb13c7ee
MG
1303static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305{
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
fb13c7ee
MG
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312}
1313
28a21745 1314static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1315 struct task_numa_env *env)
1316{
e4991b24
RR
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
28a21745
RR
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1330
1331 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
e63da036
RR
1334
1335 /* Is the difference below the threshold? */
e4991b24
RR
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
e4991b24 1343 * Compare it with the old imbalance.
e63da036 1344 */
28a21745 1345 orig_src_load = env->src_stats.load;
e4991b24 1346 orig_dst_load = env->dst_stats.load;
28a21745 1347
e4991b24
RR
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
e63da036 1350
e4991b24
RR
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
e63da036
RR
1356}
1357
fb13c7ee
MG
1358/*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
887c290e
RR
1364static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
fb13c7ee
MG
1366{
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
28a21745 1370 long src_load, dst_load;
fb13c7ee 1371 long load;
1c5d3eb3 1372 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1373 long moveimp = imp;
7bd95320 1374 int dist = env->dist;
1dff76b9 1375 bool assigned = false;
fb13c7ee
MG
1376
1377 rcu_read_lock();
1effd9f1
KT
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1dff76b9 1382 * No need to move the exiting task or idle task.
1effd9f1
KT
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1385 cur = NULL;
1dff76b9
GG
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1effd9f1 1399 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1400
7af68335
PZ
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
fb13c7ee
MG
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
887c290e
RR
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1422 * in any group then look only at task weights.
887c290e 1423 */
ca28aa53 1424 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
887c290e 1433 } else {
ca28aa53
RR
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
ca28aa53 1439 if (cur->numa_group)
7bd95320
RR
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
ca28aa53 1442 else
7bd95320
RR
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
887c290e 1445 }
fb13c7ee
MG
1446 }
1447
0132c3e1 1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
b932c03c 1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1454 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
fb13c7ee
MG
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468balance:
e720fff6
PZ
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
fb13c7ee 1472
0132c3e1
RR
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1dff76b9 1482 put_task_struct(cur);
0132c3e1
RR
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
fb13c7ee 1491 if (cur) {
e720fff6
PZ
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
fb13c7ee
MG
1495 }
1496
28a21745 1497 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1498 goto unlock;
1499
ba7e5a27
RR
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
fb13c7ee 1507assign:
1dff76b9 1508 assigned = true;
fb13c7ee
MG
1509 task_numa_assign(env, cur, imp);
1510unlock:
1511 rcu_read_unlock();
1dff76b9
GG
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
fb13c7ee
MG
1518}
1519
887c290e
RR
1520static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
2c8a50aa
MG
1522{
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
887c290e 1531 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1532 }
1533}
1534
6f9aad0b
RR
1535/* Only move tasks to a NUMA node less busy than the current node. */
1536static bool numa_has_capacity(struct task_numa_env *env)
1537{
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
44dcb04f
SD
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1555 return true;
1556
1557 return false;
1558}
1559
58d081b5
MG
1560static int task_numa_migrate(struct task_struct *p)
1561{
58d081b5
MG
1562 struct task_numa_env env = {
1563 .p = p,
fb13c7ee 1564
58d081b5 1565 .src_cpu = task_cpu(p),
b32e86b4 1566 .src_nid = task_node(p),
fb13c7ee
MG
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
4142c3eb 1572 .best_cpu = -1,
58d081b5
MG
1573 };
1574 struct sched_domain *sd;
887c290e 1575 unsigned long taskweight, groupweight;
7bd95320 1576 int nid, ret, dist;
887c290e 1577 long taskimp, groupimp;
e6628d5b 1578
58d081b5 1579 /*
fb13c7ee
MG
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
58d081b5
MG
1586 */
1587 rcu_read_lock();
fb13c7ee 1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1591 rcu_read_unlock();
1592
46a73e8a
RR
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
de1b301a 1600 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1601 return -EINVAL;
1602 }
1603
2c8a50aa 1604 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1611 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1612
a43455a1 1613 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1616
9de05d48
RR
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
4142c3eb 1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
58d081b5 1628
7bd95320 1629 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
7bd95320 1635
83e1d2cd 1636 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1639 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1640 continue;
1641
7bd95320 1642 env.dist = dist;
2c8a50aa
MG
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1647 }
1648 }
1649
68d1b02a
RR
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
db015dae 1658 if (p->numa_group) {
4142c3eb
RR
1659 struct numa_group *ng = p->numa_group;
1660
db015dae
RR
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
4142c3eb 1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
0ec8aa00 1673
04bb2f94
RR
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
fb13c7ee 1680 if (env.best_task == NULL) {
286549dc
MG
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
286549dc
MG
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1690 put_task_struct(env.best_task);
1691 return ret;
e6628d5b
MG
1692}
1693
6b9a7460
MG
1694/* Attempt to migrate a task to a CPU on the preferred node. */
1695static void numa_migrate_preferred(struct task_struct *p)
1696{
5085e2a3
RR
1697 unsigned long interval = HZ;
1698
2739d3ee 1699 /* This task has no NUMA fault statistics yet */
44dba3d5 1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1701 return;
1702
2739d3ee 1703 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1706
1707 /* Success if task is already running on preferred CPU */
de1b301a 1708 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1712 task_numa_migrate(p);
6b9a7460
MG
1713}
1714
20e07dea 1715/*
4142c3eb 1716 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
20e07dea 1720 */
4142c3eb 1721static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1722{
1723 unsigned long faults, max_faults = 0;
4142c3eb 1724 int nid, active_nodes = 0;
20e07dea
RR
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
20e07dea 1736 }
4142c3eb
RR
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
20e07dea
RR
1740}
1741
04bb2f94
RR
1742/*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1748 */
1749#define NUMA_PERIOD_SLOTS 10
a22b4b01 1750#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1751
1752/*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760{
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
074c2381
MG
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
04bb2f94 1774 */
074c2381 1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
2847c90e 1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816}
1817
7e2703e6
RR
1818/*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826{
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
9d89c257
YD
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
7e2703e6
RR
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844}
1845
54009416
RR
1846/*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851static int preferred_group_nid(struct task_struct *p, int nid)
1852{
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
81907478 1893 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1927 if (!max_faults)
1928 break;
54009416
RR
1929 nodes = max_group;
1930 }
1931 return nid;
1932}
1933
cbee9f88
PZ
1934static void task_numa_placement(struct task_struct *p)
1935{
83e1d2cd
MG
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1938 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1939 unsigned long total_faults;
1940 u64 runtime, period;
7dbd13ed 1941 spinlock_t *group_lock = NULL;
cbee9f88 1942
7e5a2c17
JL
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
316c1608 1948 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
598f0ec0 1952 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1953
7e2703e6
RR
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
7dbd13ed
MG
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
60e69eed 1961 spin_lock_irq(group_lock);
7dbd13ed
MG
1962 }
1963
688b7585
MG
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
44dba3d5
IM
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1968 unsigned long faults = 0, group_faults = 0;
44dba3d5 1969 int priv;
745d6147 1970
be1e4e76 1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1972 long diff, f_diff, f_weight;
8c8a743c 1973
44dba3d5
IM
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1978
ac8e895b 1979 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1983
7e2703e6
RR
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1993 (total_faults + 1);
44dba3d5
IM
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1996
44dba3d5
IM
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
83e1d2cd 2000 p->total_numa_faults += diff;
8c8a743c 2001 if (p->numa_group) {
44dba3d5
IM
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2011 p->numa_group->total_faults += diff;
44dba3d5 2012 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2013 }
ac8e895b
MG
2014 }
2015
688b7585
MG
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
83e1d2cd
MG
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
04bb2f94
RR
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
7dbd13ed 2029 if (p->numa_group) {
4142c3eb 2030 numa_group_count_active_nodes(p->numa_group);
60e69eed 2031 spin_unlock_irq(group_lock);
54009416 2032 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2033 }
2034
bb97fc31
RR
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
3a7053b3 2042 }
cbee9f88
PZ
2043}
2044
8c8a743c
PZ
2045static inline int get_numa_group(struct numa_group *grp)
2046{
2047 return atomic_inc_not_zero(&grp->refcount);
2048}
2049
2050static inline void put_numa_group(struct numa_group *grp)
2051{
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054}
2055
3e6a9418
MG
2056static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
8c8a743c
PZ
2058{
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2067 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
8c8a743c 2076 spin_lock_init(&grp->lock);
e29cf08b 2077 grp->gid = p->pid;
50ec8a40 2078 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
8c8a743c 2081
be1e4e76 2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2083 grp->faults[i] = p->numa_faults[i];
8c8a743c 2084
989348b5 2085 grp->total_faults = p->total_numa_faults;
83e1d2cd 2086
8c8a743c
PZ
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
316c1608 2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2095 goto no_join;
8c8a743c
PZ
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
3354781a 2099 goto no_join;
8c8a743c
PZ
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
3354781a 2103 goto no_join;
8c8a743c
PZ
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2110 goto no_join;
8c8a743c
PZ
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2116 goto no_join;
8c8a743c 2117
dabe1d99
RR
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
8c8a743c 2125
3e6a9418
MG
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
dabe1d99 2129 if (join && !get_numa_group(grp))
3354781a 2130 goto no_join;
8c8a743c 2131
8c8a743c
PZ
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
60e69eed
MG
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2139
be1e4e76 2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
8c8a743c 2143 }
989348b5
MG
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
8c8a743c 2146
8c8a743c
PZ
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
60e69eed 2151 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
3354781a
PZ
2156 return;
2157
2158no_join:
2159 rcu_read_unlock();
2160 return;
8c8a743c
PZ
2161}
2162
2163void task_numa_free(struct task_struct *p)
2164{
2165 struct numa_group *grp = p->numa_group;
44dba3d5 2166 void *numa_faults = p->numa_faults;
e9dd685c
SR
2167 unsigned long flags;
2168 int i;
8c8a743c
PZ
2169
2170 if (grp) {
e9dd685c 2171 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2173 grp->faults[i] -= p->numa_faults[i];
989348b5 2174 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2175
8c8a743c 2176 grp->nr_tasks--;
e9dd685c 2177 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2178 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2179 put_numa_group(grp);
2180 }
2181
44dba3d5 2182 p->numa_faults = NULL;
82727018 2183 kfree(numa_faults);
8c8a743c
PZ
2184}
2185
cbee9f88
PZ
2186/*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
58b46da3 2189void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2190{
2191 struct task_struct *p = current;
6688cc05 2192 bool migrated = flags & TNF_MIGRATED;
58b46da3 2193 int cpu_node = task_node(current);
792568ec 2194 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2195 struct numa_group *ng;
ac8e895b 2196 int priv;
cbee9f88 2197
2a595721 2198 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2199 return;
2200
9ff1d9ff
MG
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
f809ca9a 2205 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
be1e4e76 2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2209
44dba3d5
IM
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
f809ca9a 2212 return;
745d6147 2213
83e1d2cd 2214 p->total_numa_faults = 0;
04bb2f94 2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2216 }
cbee9f88 2217
8c8a743c
PZ
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2226 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2227 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2228 }
2229
792568ec
RR
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
4142c3eb
RR
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
792568ec
RR
2240 local = 1;
2241
cbee9f88 2242 task_numa_placement(p);
f809ca9a 2243
2739d3ee
RR
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2249 numa_migrate_preferred(p);
2250
b32e86b4
IM
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
074c2381
MG
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
b32e86b4 2255
44dba3d5
IM
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2258 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2259}
2260
6e5fb223
PZ
2261static void reset_ptenuma_scan(struct task_struct *p)
2262{
7e5a2c17
JL
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
316c1608 2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2272 p->mm->numa_scan_offset = 0;
2273}
2274
cbee9f88
PZ
2275/*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279void task_numa_work(struct callback_head *work)
2280{
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
51170840 2284 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2285 struct vm_area_struct *vma;
9f40604c 2286 unsigned long start, end;
598f0ec0 2287 unsigned long nr_pte_updates = 0;
4620f8c1 2288 long pages, virtpages;
cbee9f88
PZ
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
930aa174 2304 if (!mm->numa_next_scan) {
7e8d16b6
MG
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2307 }
2308
cbee9f88
PZ
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
598f0ec0
MG
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
cbee9f88 2320
fb003b80 2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
19a78d11
PZ
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
9f40604c
MG
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2334 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2335 if (!pages)
2336 return;
cbee9f88 2337
4620f8c1 2338
6e5fb223 2339 down_read(&mm->mmap_sem);
9f40604c 2340 vma = find_vma(mm, start);
6e5fb223
PZ
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
9f40604c 2343 start = 0;
6e5fb223
PZ
2344 vma = mm->mmap;
2345 }
9f40604c 2346 for (; vma; vma = vma->vm_next) {
6b79c57b 2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2349 continue;
6b79c57b 2350 }
6e5fb223 2351
4591ce4f
MG
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
3c67f474
MG
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
4591ce4f 2368
9f40604c
MG
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
4620f8c1 2373 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2374
2375 /*
4620f8c1
RR
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
598f0ec0
MG
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2385 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2386
9f40604c 2387 start = end;
4620f8c1 2388 if (pages <= 0 || virtpages <= 0)
9f40604c 2389 goto out;
3cf1962c
RR
2390
2391 cond_resched();
9f40604c 2392 } while (end != vma->vm_end);
cbee9f88 2393 }
6e5fb223 2394
9f40604c 2395out:
6e5fb223 2396 /*
c69307d5
PZ
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
6e5fb223
PZ
2401 */
2402 if (vma)
9f40604c 2403 mm->numa_scan_offset = start;
6e5fb223
PZ
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
51170840
RR
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
cbee9f88
PZ
2418}
2419
2420/*
2421 * Drive the periodic memory faults..
2422 */
2423void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424{
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
25b3e5a3 2443 if (now > curr->node_stamp + period) {
4b96a29b 2444 if (!curr->node_stamp)
598f0ec0 2445 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2446 curr->node_stamp += period;
cbee9f88
PZ
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453}
2454#else
2455static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456{
2457}
0ec8aa00
PZ
2458
2459static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460{
2461}
2462
2463static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464{
2465}
cbee9f88
PZ
2466#endif /* CONFIG_NUMA_BALANCING */
2467
30cfdcfc
DA
2468static void
2469account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470{
2471 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2472 if (!parent_entity(se))
029632fb 2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2474#ifdef CONFIG_SMP
0ec8aa00
PZ
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
367456c7 2481#endif
30cfdcfc 2482 cfs_rq->nr_running++;
30cfdcfc
DA
2483}
2484
2485static void
2486account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2489 if (!parent_entity(se))
029632fb 2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2491#ifdef CONFIG_SMP
0ec8aa00
PZ
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2494 list_del_init(&se->group_node);
0ec8aa00 2495 }
bfdb198c 2496#endif
30cfdcfc 2497 cfs_rq->nr_running--;
30cfdcfc
DA
2498}
2499
3ff6dcac
YZ
2500#ifdef CONFIG_FAIR_GROUP_SCHED
2501# ifdef CONFIG_SMP
cf5f0acf
PZ
2502static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503{
2504 long tg_weight;
2505
2506 /*
9d89c257
YD
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2510 */
bf5b986e 2511 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2513 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2514
2515 return tg_weight;
2516}
2517
6d5ab293 2518static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2519{
cf5f0acf 2520 long tg_weight, load, shares;
3ff6dcac 2521
cf5f0acf 2522 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2523 load = cfs_rq->load.weight;
3ff6dcac 2524
3ff6dcac 2525 shares = (tg->shares * load);
cf5f0acf
PZ
2526 if (tg_weight)
2527 shares /= tg_weight;
3ff6dcac
YZ
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535}
3ff6dcac 2536# else /* CONFIG_SMP */
6d5ab293 2537static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2538{
2539 return tg->shares;
2540}
3ff6dcac 2541# endif /* CONFIG_SMP */
2069dd75
PZ
2542static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544{
19e5eebb
PT
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2069dd75 2549 account_entity_dequeue(cfs_rq, se);
19e5eebb 2550 }
2069dd75
PZ
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556}
2557
82958366
PT
2558static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
6d5ab293 2560static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2561{
2562 struct task_group *tg;
2563 struct sched_entity *se;
3ff6dcac 2564 long shares;
2069dd75 2565
2069dd75
PZ
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2568 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2569 return;
3ff6dcac
YZ
2570#ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573#endif
6d5ab293 2574 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577}
2578#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2579static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2580{
2581}
2582#endif /* CONFIG_FAIR_GROUP_SCHED */
2583
141965c7 2584#ifdef CONFIG_SMP
5b51f2f8
PT
2585/* Precomputed fixed inverse multiplies for multiplication by y^n */
2586static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593};
2594
2595/*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603};
2604
7b20b916
YD
2605/*
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608 * were generated:
2609 */
2610static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2613};
2614
9d85f21c
PT
2615/*
2616 * Approximate:
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2618 */
2619static __always_inline u64 decay_load(u64 val, u64 n)
2620{
5b51f2f8
PT
2621 unsigned int local_n;
2622
2623 if (!n)
2624 return val;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 return 0;
2627
2628 /* after bounds checking we can collapse to 32-bit */
2629 local_n = n;
2630
2631 /*
2632 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2635 *
2636 * To achieve constant time decay_load.
2637 */
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2641 }
2642
9d89c257
YD
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 return val;
5b51f2f8
PT
2645}
2646
2647/*
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2650 *
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2653 */
2654static u32 __compute_runnable_contrib(u64 n)
2655{
2656 u32 contrib = 0;
2657
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2662
7b20b916
YD
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2668}
2669
54a21385 2670#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2671
9d85f21c
PT
2672/*
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677 *
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679 * p0 p1 p2
2680 * (now) (~1ms ago) (~2ms ago)
2681 *
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2683 *
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687 *
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2689 * y^32 = 0.5
2690 *
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2693 * (u_0).
2694 *
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699 */
9d89c257
YD
2700static __always_inline int
2701__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2703{
e0f5f3af 2704 u64 delta, scaled_delta, periods;
9d89c257 2705 u32 contrib;
6115c793 2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2707 unsigned long scale_freq, scale_cpu;
9d85f21c 2708
9d89c257 2709 delta = now - sa->last_update_time;
9d85f21c
PT
2710 /*
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2713 */
2714 if ((s64)delta < 0) {
9d89c257 2715 sa->last_update_time = now;
9d85f21c
PT
2716 return 0;
2717 }
2718
2719 /*
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2722 */
2723 delta >>= 10;
2724 if (!delta)
2725 return 0;
9d89c257 2726 sa->last_update_time = now;
9d85f21c 2727
6f2b0452
DE
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730
9d85f21c 2731 /* delta_w is the amount already accumulated against our next period */
9d89c257 2732 delta_w = sa->period_contrib;
9d85f21c 2733 if (delta + delta_w >= 1024) {
9d85f21c
PT
2734 decayed = 1;
2735
9d89c257
YD
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2738
9d85f21c
PT
2739 /*
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2743 */
2744 delta_w = 1024 - delta_w;
54a21385 2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2746 if (weight) {
e0f5f3af
DE
2747 sa->load_sum += weight * scaled_delta_w;
2748 if (cfs_rq) {
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2751 }
13962234 2752 }
36ee28e4 2753 if (running)
006cdf02 2754 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2755
2756 delta -= delta_w;
2757
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2760 delta %= 1024;
2761
9d89c257 2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2763 if (cfs_rq) {
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 }
9d89c257 2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2768
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2770 contrib = __compute_runnable_contrib(periods);
54a21385 2771 contrib = cap_scale(contrib, scale_freq);
13962234 2772 if (weight) {
9d89c257 2773 sa->load_sum += weight * contrib;
13962234
YD
2774 if (cfs_rq)
2775 cfs_rq->runnable_load_sum += weight * contrib;
2776 }
36ee28e4 2777 if (running)
006cdf02 2778 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2779 }
2780
2781 /* Remainder of delta accrued against u_0` */
54a21385 2782 scaled_delta = cap_scale(delta, scale_freq);
13962234 2783 if (weight) {
e0f5f3af 2784 sa->load_sum += weight * scaled_delta;
13962234 2785 if (cfs_rq)
e0f5f3af 2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2787 }
36ee28e4 2788 if (running)
006cdf02 2789 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2790
9d89c257 2791 sa->period_contrib += delta;
9ee474f5 2792
9d89c257
YD
2793 if (decayed) {
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2795 if (cfs_rq) {
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 }
006cdf02 2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2800 }
aff3e498 2801
9d89c257 2802 return decayed;
9ee474f5
PT
2803}
2804
c566e8e9 2805#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2806/*
9d89c257
YD
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
bb17f655 2809 */
9d89c257 2810static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2811{
9d89c257 2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2813
aa0b7ae0
WL
2814 /*
2815 * No need to update load_avg for root_task_group as it is not used.
2816 */
2817 if (cfs_rq->tg == &root_task_group)
2818 return;
2819
9d89c257
YD
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2823 }
8165e145 2824}
f5f9739d 2825
ad936d86
BP
2826/*
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2830 */
2831void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2833{
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2835 return;
2836
2837 /*
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2843 */
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2847
2848#ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2851
2852 do {
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2855
2856 smp_rmb();
2857
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2860
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2863#else
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2866#endif
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2870 }
2871}
6e83125c 2872#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2873static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2874#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2875
9d89c257 2876static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2877
a2c6c91f
SM
2878static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2879{
2880 struct rq *rq = rq_of(cfs_rq);
2881 int cpu = cpu_of(rq);
2882
2883 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2884 unsigned long max = rq->cpu_capacity_orig;
2885
2886 /*
2887 * There are a few boundary cases this might miss but it should
2888 * get called often enough that that should (hopefully) not be
2889 * a real problem -- added to that it only calls on the local
2890 * CPU, so if we enqueue remotely we'll miss an update, but
2891 * the next tick/schedule should update.
2892 *
2893 * It will not get called when we go idle, because the idle
2894 * thread is a different class (!fair), nor will the utilization
2895 * number include things like RT tasks.
2896 *
2897 * As is, the util number is not freq-invariant (we'd have to
2898 * implement arch_scale_freq_capacity() for that).
2899 *
2900 * See cpu_util().
2901 */
2902 cpufreq_update_util(rq_clock(rq),
2903 min(cfs_rq->avg.util_avg, max), max);
2904 }
2905}
2906
9d89c257 2907/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2908static inline int
2909update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2910{
9d89c257 2911 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2912 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2913
9d89c257 2914 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2915 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2916 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2917 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2918 removed_load = 1;
8165e145 2919 }
2dac754e 2920
9d89c257
YD
2921 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2922 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2923 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2924 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2925 removed_util = 1;
9d89c257 2926 }
36ee28e4 2927
a2c6c91f 2928 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2929 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2930
9d89c257
YD
2931#ifndef CONFIG_64BIT
2932 smp_wmb();
2933 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2934#endif
36ee28e4 2935
a2c6c91f
SM
2936 if (update_freq && (decayed || removed_util))
2937 cfs_rq_util_change(cfs_rq);
21e96f88 2938
41e0d37f 2939 return decayed || removed_load;
21e96f88
SM
2940}
2941
2942/* Update task and its cfs_rq load average */
2943static inline void update_load_avg(struct sched_entity *se, int update_tg)
2944{
2945 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2946 u64 now = cfs_rq_clock_task(cfs_rq);
2947 struct rq *rq = rq_of(cfs_rq);
2948 int cpu = cpu_of(rq);
2949
2950 /*
2951 * Track task load average for carrying it to new CPU after migrated, and
2952 * track group sched_entity load average for task_h_load calc in migration
2953 */
2954 __update_load_avg(now, cpu, &se->avg,
2955 se->on_rq * scale_load_down(se->load.weight),
2956 cfs_rq->curr == se, NULL);
2957
a2c6c91f 2958 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2959 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2960}
2961
a05e8c51
BP
2962static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2963{
a9280514
PZ
2964 if (!sched_feat(ATTACH_AGE_LOAD))
2965 goto skip_aging;
2966
6efdb105
BP
2967 /*
2968 * If we got migrated (either between CPUs or between cgroups) we'll
2969 * have aged the average right before clearing @last_update_time.
2970 */
2971 if (se->avg.last_update_time) {
2972 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2973 &se->avg, 0, 0, NULL);
2974
2975 /*
2976 * XXX: we could have just aged the entire load away if we've been
2977 * absent from the fair class for too long.
2978 */
2979 }
2980
a9280514 2981skip_aging:
a05e8c51
BP
2982 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2983 cfs_rq->avg.load_avg += se->avg.load_avg;
2984 cfs_rq->avg.load_sum += se->avg.load_sum;
2985 cfs_rq->avg.util_avg += se->avg.util_avg;
2986 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
2987
2988 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2989}
2990
2991static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2992{
2993 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2994 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2995 cfs_rq->curr == se, NULL);
2996
2997 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2998 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2999 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
3000 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
a2c6c91f
SM
3001
3002 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3003}
3004
9d89c257
YD
3005/* Add the load generated by se into cfs_rq's load average */
3006static inline void
3007enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3008{
9d89c257
YD
3009 struct sched_avg *sa = &se->avg;
3010 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3011 int migrated, decayed;
9ee474f5 3012
a05e8c51
BP
3013 migrated = !sa->last_update_time;
3014 if (!migrated) {
9d89c257 3015 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3016 se->on_rq * scale_load_down(se->load.weight),
3017 cfs_rq->curr == se, NULL);
aff3e498 3018 }
c566e8e9 3019
a2c6c91f 3020 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3021
13962234
YD
3022 cfs_rq->runnable_load_avg += sa->load_avg;
3023 cfs_rq->runnable_load_sum += sa->load_sum;
3024
a05e8c51
BP
3025 if (migrated)
3026 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3027
9d89c257
YD
3028 if (decayed || migrated)
3029 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3030}
3031
13962234
YD
3032/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3033static inline void
3034dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3035{
3036 update_load_avg(se, 1);
3037
3038 cfs_rq->runnable_load_avg =
3039 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3040 cfs_rq->runnable_load_sum =
a05e8c51 3041 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3042}
3043
9d89c257 3044#ifndef CONFIG_64BIT
0905f04e
YD
3045static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3046{
9d89c257 3047 u64 last_update_time_copy;
0905f04e 3048 u64 last_update_time;
9ee474f5 3049
9d89c257
YD
3050 do {
3051 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3052 smp_rmb();
3053 last_update_time = cfs_rq->avg.last_update_time;
3054 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3055
3056 return last_update_time;
3057}
9d89c257 3058#else
0905f04e
YD
3059static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3060{
3061 return cfs_rq->avg.last_update_time;
3062}
9d89c257
YD
3063#endif
3064
0905f04e
YD
3065/*
3066 * Task first catches up with cfs_rq, and then subtract
3067 * itself from the cfs_rq (task must be off the queue now).
3068 */
3069void remove_entity_load_avg(struct sched_entity *se)
3070{
3071 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3072 u64 last_update_time;
3073
3074 /*
3075 * Newly created task or never used group entity should not be removed
3076 * from its (source) cfs_rq
3077 */
3078 if (se->avg.last_update_time == 0)
3079 return;
3080
3081 last_update_time = cfs_rq_last_update_time(cfs_rq);
3082
13962234 3083 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3084 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3085 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3086}
642dbc39 3087
7ea241af
YD
3088static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3089{
3090 return cfs_rq->runnable_load_avg;
3091}
3092
3093static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3094{
3095 return cfs_rq->avg.load_avg;
3096}
3097
6e83125c
PZ
3098static int idle_balance(struct rq *this_rq);
3099
38033c37
PZ
3100#else /* CONFIG_SMP */
3101
9d89c257
YD
3102static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3103static inline void
3104enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3105static inline void
3106dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3107static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3108
a05e8c51
BP
3109static inline void
3110attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3111static inline void
3112detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3113
6e83125c
PZ
3114static inline int idle_balance(struct rq *rq)
3115{
3116 return 0;
3117}
3118
38033c37 3119#endif /* CONFIG_SMP */
9d85f21c 3120
2396af69 3121static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3122{
bf0f6f24 3123#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3124 struct task_struct *tsk = NULL;
3125
3126 if (entity_is_task(se))
3127 tsk = task_of(se);
3128
41acab88 3129 if (se->statistics.sleep_start) {
78becc27 3130 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3131
3132 if ((s64)delta < 0)
3133 delta = 0;
3134
41acab88
LDM
3135 if (unlikely(delta > se->statistics.sleep_max))
3136 se->statistics.sleep_max = delta;
bf0f6f24 3137
8c79a045 3138 se->statistics.sleep_start = 0;
41acab88 3139 se->statistics.sum_sleep_runtime += delta;
9745512c 3140
768d0c27 3141 if (tsk) {
e414314c 3142 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3143 trace_sched_stat_sleep(tsk, delta);
3144 }
bf0f6f24 3145 }
41acab88 3146 if (se->statistics.block_start) {
78becc27 3147 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3148
3149 if ((s64)delta < 0)
3150 delta = 0;
3151
41acab88
LDM
3152 if (unlikely(delta > se->statistics.block_max))
3153 se->statistics.block_max = delta;
bf0f6f24 3154
8c79a045 3155 se->statistics.block_start = 0;
41acab88 3156 se->statistics.sum_sleep_runtime += delta;
30084fbd 3157
e414314c 3158 if (tsk) {
8f0dfc34 3159 if (tsk->in_iowait) {
41acab88
LDM
3160 se->statistics.iowait_sum += delta;
3161 se->statistics.iowait_count++;
768d0c27 3162 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3163 }
3164
b781a602
AV
3165 trace_sched_stat_blocked(tsk, delta);
3166
e414314c
PZ
3167 /*
3168 * Blocking time is in units of nanosecs, so shift by
3169 * 20 to get a milliseconds-range estimation of the
3170 * amount of time that the task spent sleeping:
3171 */
3172 if (unlikely(prof_on == SLEEP_PROFILING)) {
3173 profile_hits(SLEEP_PROFILING,
3174 (void *)get_wchan(tsk),
3175 delta >> 20);
3176 }
3177 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3178 }
bf0f6f24
IM
3179 }
3180#endif
3181}
3182
ddc97297
PZ
3183static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3184{
3185#ifdef CONFIG_SCHED_DEBUG
3186 s64 d = se->vruntime - cfs_rq->min_vruntime;
3187
3188 if (d < 0)
3189 d = -d;
3190
3191 if (d > 3*sysctl_sched_latency)
3192 schedstat_inc(cfs_rq, nr_spread_over);
3193#endif
3194}
3195
aeb73b04
PZ
3196static void
3197place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3198{
1af5f730 3199 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3200
2cb8600e
PZ
3201 /*
3202 * The 'current' period is already promised to the current tasks,
3203 * however the extra weight of the new task will slow them down a
3204 * little, place the new task so that it fits in the slot that
3205 * stays open at the end.
3206 */
94dfb5e7 3207 if (initial && sched_feat(START_DEBIT))
f9c0b095 3208 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3209
a2e7a7eb 3210 /* sleeps up to a single latency don't count. */
5ca9880c 3211 if (!initial) {
a2e7a7eb 3212 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3213
a2e7a7eb
MG
3214 /*
3215 * Halve their sleep time's effect, to allow
3216 * for a gentler effect of sleepers:
3217 */
3218 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3219 thresh >>= 1;
51e0304c 3220
a2e7a7eb 3221 vruntime -= thresh;
aeb73b04
PZ
3222 }
3223
b5d9d734 3224 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3225 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3226}
3227
d3d9dc33
PT
3228static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3229
cb251765
MG
3230static inline void check_schedstat_required(void)
3231{
3232#ifdef CONFIG_SCHEDSTATS
3233 if (schedstat_enabled())
3234 return;
3235
3236 /* Force schedstat enabled if a dependent tracepoint is active */
3237 if (trace_sched_stat_wait_enabled() ||
3238 trace_sched_stat_sleep_enabled() ||
3239 trace_sched_stat_iowait_enabled() ||
3240 trace_sched_stat_blocked_enabled() ||
3241 trace_sched_stat_runtime_enabled()) {
3242 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3243 "stat_blocked and stat_runtime require the "
3244 "kernel parameter schedstats=enabled or "
3245 "kernel.sched_schedstats=1\n");
3246 }
3247#endif
3248}
3249
bf0f6f24 3250static void
88ec22d3 3251enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3252{
3a47d512
PZ
3253 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
3254 bool curr = cfs_rq->curr == se;
3255
88ec22d3 3256 /*
3a47d512
PZ
3257 * If we're the current task, we must renormalise before calling
3258 * update_curr().
88ec22d3 3259 */
3a47d512 3260 if (renorm && curr)
88ec22d3
PZ
3261 se->vruntime += cfs_rq->min_vruntime;
3262
3a47d512
PZ
3263 update_curr(cfs_rq);
3264
bf0f6f24 3265 /*
3a47d512
PZ
3266 * Otherwise, renormalise after, such that we're placed at the current
3267 * moment in time, instead of some random moment in the past.
bf0f6f24 3268 */
3a47d512
PZ
3269 if (renorm && !curr)
3270 se->vruntime += cfs_rq->min_vruntime;
3271
9d89c257 3272 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3273 account_entity_enqueue(cfs_rq, se);
3274 update_cfs_shares(cfs_rq);
bf0f6f24 3275
88ec22d3 3276 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3277 place_entity(cfs_rq, se, 0);
cb251765
MG
3278 if (schedstat_enabled())
3279 enqueue_sleeper(cfs_rq, se);
e9acbff6 3280 }
bf0f6f24 3281
cb251765
MG
3282 check_schedstat_required();
3283 if (schedstat_enabled()) {
3284 update_stats_enqueue(cfs_rq, se);
3285 check_spread(cfs_rq, se);
3286 }
3a47d512 3287 if (!curr)
83b699ed 3288 __enqueue_entity(cfs_rq, se);
2069dd75 3289 se->on_rq = 1;
3d4b47b4 3290
d3d9dc33 3291 if (cfs_rq->nr_running == 1) {
3d4b47b4 3292 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3293 check_enqueue_throttle(cfs_rq);
3294 }
bf0f6f24
IM
3295}
3296
2c13c919 3297static void __clear_buddies_last(struct sched_entity *se)
2002c695 3298{
2c13c919
RR
3299 for_each_sched_entity(se) {
3300 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3301 if (cfs_rq->last != se)
2c13c919 3302 break;
f1044799
PZ
3303
3304 cfs_rq->last = NULL;
2c13c919
RR
3305 }
3306}
2002c695 3307
2c13c919
RR
3308static void __clear_buddies_next(struct sched_entity *se)
3309{
3310 for_each_sched_entity(se) {
3311 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3312 if (cfs_rq->next != se)
2c13c919 3313 break;
f1044799
PZ
3314
3315 cfs_rq->next = NULL;
2c13c919 3316 }
2002c695
PZ
3317}
3318
ac53db59
RR
3319static void __clear_buddies_skip(struct sched_entity *se)
3320{
3321 for_each_sched_entity(se) {
3322 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3323 if (cfs_rq->skip != se)
ac53db59 3324 break;
f1044799
PZ
3325
3326 cfs_rq->skip = NULL;
ac53db59
RR
3327 }
3328}
3329
a571bbea
PZ
3330static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3331{
2c13c919
RR
3332 if (cfs_rq->last == se)
3333 __clear_buddies_last(se);
3334
3335 if (cfs_rq->next == se)
3336 __clear_buddies_next(se);
ac53db59
RR
3337
3338 if (cfs_rq->skip == se)
3339 __clear_buddies_skip(se);
a571bbea
PZ
3340}
3341
6c16a6dc 3342static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3343
bf0f6f24 3344static void
371fd7e7 3345dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3346{
a2a2d680
DA
3347 /*
3348 * Update run-time statistics of the 'current'.
3349 */
3350 update_curr(cfs_rq);
13962234 3351 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3352
cb251765
MG
3353 if (schedstat_enabled())
3354 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3355
2002c695 3356 clear_buddies(cfs_rq, se);
4793241b 3357
83b699ed 3358 if (se != cfs_rq->curr)
30cfdcfc 3359 __dequeue_entity(cfs_rq, se);
17bc14b7 3360 se->on_rq = 0;
30cfdcfc 3361 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3362
3363 /*
3364 * Normalize the entity after updating the min_vruntime because the
3365 * update can refer to the ->curr item and we need to reflect this
3366 * movement in our normalized position.
3367 */
371fd7e7 3368 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3369 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3370
d8b4986d
PT
3371 /* return excess runtime on last dequeue */
3372 return_cfs_rq_runtime(cfs_rq);
3373
1e876231 3374 update_min_vruntime(cfs_rq);
17bc14b7 3375 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3376}
3377
3378/*
3379 * Preempt the current task with a newly woken task if needed:
3380 */
7c92e54f 3381static void
2e09bf55 3382check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3383{
11697830 3384 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3385 struct sched_entity *se;
3386 s64 delta;
11697830 3387
6d0f0ebd 3388 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3389 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3390 if (delta_exec > ideal_runtime) {
8875125e 3391 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3392 /*
3393 * The current task ran long enough, ensure it doesn't get
3394 * re-elected due to buddy favours.
3395 */
3396 clear_buddies(cfs_rq, curr);
f685ceac
MG
3397 return;
3398 }
3399
3400 /*
3401 * Ensure that a task that missed wakeup preemption by a
3402 * narrow margin doesn't have to wait for a full slice.
3403 * This also mitigates buddy induced latencies under load.
3404 */
f685ceac
MG
3405 if (delta_exec < sysctl_sched_min_granularity)
3406 return;
3407
f4cfb33e
WX
3408 se = __pick_first_entity(cfs_rq);
3409 delta = curr->vruntime - se->vruntime;
f685ceac 3410
f4cfb33e
WX
3411 if (delta < 0)
3412 return;
d7d82944 3413
f4cfb33e 3414 if (delta > ideal_runtime)
8875125e 3415 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3416}
3417
83b699ed 3418static void
8494f412 3419set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3420{
83b699ed
SV
3421 /* 'current' is not kept within the tree. */
3422 if (se->on_rq) {
3423 /*
3424 * Any task has to be enqueued before it get to execute on
3425 * a CPU. So account for the time it spent waiting on the
3426 * runqueue.
3427 */
cb251765
MG
3428 if (schedstat_enabled())
3429 update_stats_wait_end(cfs_rq, se);
83b699ed 3430 __dequeue_entity(cfs_rq, se);
9d89c257 3431 update_load_avg(se, 1);
83b699ed
SV
3432 }
3433
79303e9e 3434 update_stats_curr_start(cfs_rq, se);
429d43bc 3435 cfs_rq->curr = se;
eba1ed4b
IM
3436#ifdef CONFIG_SCHEDSTATS
3437 /*
3438 * Track our maximum slice length, if the CPU's load is at
3439 * least twice that of our own weight (i.e. dont track it
3440 * when there are only lesser-weight tasks around):
3441 */
cb251765 3442 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3443 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3444 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3445 }
3446#endif
4a55b450 3447 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3448}
3449
3f3a4904
PZ
3450static int
3451wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3452
ac53db59
RR
3453/*
3454 * Pick the next process, keeping these things in mind, in this order:
3455 * 1) keep things fair between processes/task groups
3456 * 2) pick the "next" process, since someone really wants that to run
3457 * 3) pick the "last" process, for cache locality
3458 * 4) do not run the "skip" process, if something else is available
3459 */
678d5718
PZ
3460static struct sched_entity *
3461pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3462{
678d5718
PZ
3463 struct sched_entity *left = __pick_first_entity(cfs_rq);
3464 struct sched_entity *se;
3465
3466 /*
3467 * If curr is set we have to see if its left of the leftmost entity
3468 * still in the tree, provided there was anything in the tree at all.
3469 */
3470 if (!left || (curr && entity_before(curr, left)))
3471 left = curr;
3472
3473 se = left; /* ideally we run the leftmost entity */
f4b6755f 3474
ac53db59
RR
3475 /*
3476 * Avoid running the skip buddy, if running something else can
3477 * be done without getting too unfair.
3478 */
3479 if (cfs_rq->skip == se) {
678d5718
PZ
3480 struct sched_entity *second;
3481
3482 if (se == curr) {
3483 second = __pick_first_entity(cfs_rq);
3484 } else {
3485 second = __pick_next_entity(se);
3486 if (!second || (curr && entity_before(curr, second)))
3487 second = curr;
3488 }
3489
ac53db59
RR
3490 if (second && wakeup_preempt_entity(second, left) < 1)
3491 se = second;
3492 }
aa2ac252 3493
f685ceac
MG
3494 /*
3495 * Prefer last buddy, try to return the CPU to a preempted task.
3496 */
3497 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3498 se = cfs_rq->last;
3499
ac53db59
RR
3500 /*
3501 * Someone really wants this to run. If it's not unfair, run it.
3502 */
3503 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3504 se = cfs_rq->next;
3505
f685ceac 3506 clear_buddies(cfs_rq, se);
4793241b
PZ
3507
3508 return se;
aa2ac252
PZ
3509}
3510
678d5718 3511static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3512
ab6cde26 3513static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3514{
3515 /*
3516 * If still on the runqueue then deactivate_task()
3517 * was not called and update_curr() has to be done:
3518 */
3519 if (prev->on_rq)
b7cc0896 3520 update_curr(cfs_rq);
bf0f6f24 3521
d3d9dc33
PT
3522 /* throttle cfs_rqs exceeding runtime */
3523 check_cfs_rq_runtime(cfs_rq);
3524
cb251765
MG
3525 if (schedstat_enabled()) {
3526 check_spread(cfs_rq, prev);
3527 if (prev->on_rq)
3528 update_stats_wait_start(cfs_rq, prev);
3529 }
3530
30cfdcfc 3531 if (prev->on_rq) {
30cfdcfc
DA
3532 /* Put 'current' back into the tree. */
3533 __enqueue_entity(cfs_rq, prev);
9d85f21c 3534 /* in !on_rq case, update occurred at dequeue */
9d89c257 3535 update_load_avg(prev, 0);
30cfdcfc 3536 }
429d43bc 3537 cfs_rq->curr = NULL;
bf0f6f24
IM
3538}
3539
8f4d37ec
PZ
3540static void
3541entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3542{
bf0f6f24 3543 /*
30cfdcfc 3544 * Update run-time statistics of the 'current'.
bf0f6f24 3545 */
30cfdcfc 3546 update_curr(cfs_rq);
bf0f6f24 3547
9d85f21c
PT
3548 /*
3549 * Ensure that runnable average is periodically updated.
3550 */
9d89c257 3551 update_load_avg(curr, 1);
bf0bd948 3552 update_cfs_shares(cfs_rq);
9d85f21c 3553
8f4d37ec
PZ
3554#ifdef CONFIG_SCHED_HRTICK
3555 /*
3556 * queued ticks are scheduled to match the slice, so don't bother
3557 * validating it and just reschedule.
3558 */
983ed7a6 3559 if (queued) {
8875125e 3560 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3561 return;
3562 }
8f4d37ec
PZ
3563 /*
3564 * don't let the period tick interfere with the hrtick preemption
3565 */
3566 if (!sched_feat(DOUBLE_TICK) &&
3567 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3568 return;
3569#endif
3570
2c2efaed 3571 if (cfs_rq->nr_running > 1)
2e09bf55 3572 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3573}
3574
ab84d31e
PT
3575
3576/**************************************************
3577 * CFS bandwidth control machinery
3578 */
3579
3580#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3581
3582#ifdef HAVE_JUMP_LABEL
c5905afb 3583static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3584
3585static inline bool cfs_bandwidth_used(void)
3586{
c5905afb 3587 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3588}
3589
1ee14e6c 3590void cfs_bandwidth_usage_inc(void)
029632fb 3591{
1ee14e6c
BS
3592 static_key_slow_inc(&__cfs_bandwidth_used);
3593}
3594
3595void cfs_bandwidth_usage_dec(void)
3596{
3597 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3598}
3599#else /* HAVE_JUMP_LABEL */
3600static bool cfs_bandwidth_used(void)
3601{
3602 return true;
3603}
3604
1ee14e6c
BS
3605void cfs_bandwidth_usage_inc(void) {}
3606void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3607#endif /* HAVE_JUMP_LABEL */
3608
ab84d31e
PT
3609/*
3610 * default period for cfs group bandwidth.
3611 * default: 0.1s, units: nanoseconds
3612 */
3613static inline u64 default_cfs_period(void)
3614{
3615 return 100000000ULL;
3616}
ec12cb7f
PT
3617
3618static inline u64 sched_cfs_bandwidth_slice(void)
3619{
3620 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3621}
3622
a9cf55b2
PT
3623/*
3624 * Replenish runtime according to assigned quota and update expiration time.
3625 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3626 * additional synchronization around rq->lock.
3627 *
3628 * requires cfs_b->lock
3629 */
029632fb 3630void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3631{
3632 u64 now;
3633
3634 if (cfs_b->quota == RUNTIME_INF)
3635 return;
3636
3637 now = sched_clock_cpu(smp_processor_id());
3638 cfs_b->runtime = cfs_b->quota;
3639 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3640}
3641
029632fb
PZ
3642static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3643{
3644 return &tg->cfs_bandwidth;
3645}
3646
f1b17280
PT
3647/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3648static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3649{
3650 if (unlikely(cfs_rq->throttle_count))
3651 return cfs_rq->throttled_clock_task;
3652
78becc27 3653 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3654}
3655
85dac906
PT
3656/* returns 0 on failure to allocate runtime */
3657static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3658{
3659 struct task_group *tg = cfs_rq->tg;
3660 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3661 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3662
3663 /* note: this is a positive sum as runtime_remaining <= 0 */
3664 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3665
3666 raw_spin_lock(&cfs_b->lock);
3667 if (cfs_b->quota == RUNTIME_INF)
3668 amount = min_amount;
58088ad0 3669 else {
77a4d1a1 3670 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3671
3672 if (cfs_b->runtime > 0) {
3673 amount = min(cfs_b->runtime, min_amount);
3674 cfs_b->runtime -= amount;
3675 cfs_b->idle = 0;
3676 }
ec12cb7f 3677 }
a9cf55b2 3678 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3679 raw_spin_unlock(&cfs_b->lock);
3680
3681 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3682 /*
3683 * we may have advanced our local expiration to account for allowed
3684 * spread between our sched_clock and the one on which runtime was
3685 * issued.
3686 */
3687 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3688 cfs_rq->runtime_expires = expires;
85dac906
PT
3689
3690 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3691}
3692
a9cf55b2
PT
3693/*
3694 * Note: This depends on the synchronization provided by sched_clock and the
3695 * fact that rq->clock snapshots this value.
3696 */
3697static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3698{
a9cf55b2 3699 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3700
3701 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3702 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3703 return;
3704
a9cf55b2
PT
3705 if (cfs_rq->runtime_remaining < 0)
3706 return;
3707
3708 /*
3709 * If the local deadline has passed we have to consider the
3710 * possibility that our sched_clock is 'fast' and the global deadline
3711 * has not truly expired.
3712 *
3713 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3714 * whether the global deadline has advanced. It is valid to compare
3715 * cfs_b->runtime_expires without any locks since we only care about
3716 * exact equality, so a partial write will still work.
a9cf55b2
PT
3717 */
3718
51f2176d 3719 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3720 /* extend local deadline, drift is bounded above by 2 ticks */
3721 cfs_rq->runtime_expires += TICK_NSEC;
3722 } else {
3723 /* global deadline is ahead, expiration has passed */
3724 cfs_rq->runtime_remaining = 0;
3725 }
3726}
3727
9dbdb155 3728static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3729{
3730 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3731 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3732 expire_cfs_rq_runtime(cfs_rq);
3733
3734 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3735 return;
3736
85dac906
PT
3737 /*
3738 * if we're unable to extend our runtime we resched so that the active
3739 * hierarchy can be throttled
3740 */
3741 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3742 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3743}
3744
6c16a6dc 3745static __always_inline
9dbdb155 3746void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3747{
56f570e5 3748 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3749 return;
3750
3751 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3752}
3753
85dac906
PT
3754static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3755{
56f570e5 3756 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3757}
3758
64660c86
PT
3759/* check whether cfs_rq, or any parent, is throttled */
3760static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3761{
56f570e5 3762 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3763}
3764
3765/*
3766 * Ensure that neither of the group entities corresponding to src_cpu or
3767 * dest_cpu are members of a throttled hierarchy when performing group
3768 * load-balance operations.
3769 */
3770static inline int throttled_lb_pair(struct task_group *tg,
3771 int src_cpu, int dest_cpu)
3772{
3773 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3774
3775 src_cfs_rq = tg->cfs_rq[src_cpu];
3776 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3777
3778 return throttled_hierarchy(src_cfs_rq) ||
3779 throttled_hierarchy(dest_cfs_rq);
3780}
3781
3782/* updated child weight may affect parent so we have to do this bottom up */
3783static int tg_unthrottle_up(struct task_group *tg, void *data)
3784{
3785 struct rq *rq = data;
3786 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3787
3788 cfs_rq->throttle_count--;
3789#ifdef CONFIG_SMP
3790 if (!cfs_rq->throttle_count) {
f1b17280 3791 /* adjust cfs_rq_clock_task() */
78becc27 3792 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3793 cfs_rq->throttled_clock_task;
64660c86
PT
3794 }
3795#endif
3796
3797 return 0;
3798}
3799
3800static int tg_throttle_down(struct task_group *tg, void *data)
3801{
3802 struct rq *rq = data;
3803 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3804
82958366
PT
3805 /* group is entering throttled state, stop time */
3806 if (!cfs_rq->throttle_count)
78becc27 3807 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3808 cfs_rq->throttle_count++;
3809
3810 return 0;
3811}
3812
d3d9dc33 3813static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3814{
3815 struct rq *rq = rq_of(cfs_rq);
3816 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3817 struct sched_entity *se;
3818 long task_delta, dequeue = 1;
77a4d1a1 3819 bool empty;
85dac906
PT
3820
3821 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3822
f1b17280 3823 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3824 rcu_read_lock();
3825 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3826 rcu_read_unlock();
85dac906
PT
3827
3828 task_delta = cfs_rq->h_nr_running;
3829 for_each_sched_entity(se) {
3830 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3831 /* throttled entity or throttle-on-deactivate */
3832 if (!se->on_rq)
3833 break;
3834
3835 if (dequeue)
3836 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3837 qcfs_rq->h_nr_running -= task_delta;
3838
3839 if (qcfs_rq->load.weight)
3840 dequeue = 0;
3841 }
3842
3843 if (!se)
72465447 3844 sub_nr_running(rq, task_delta);
85dac906
PT
3845
3846 cfs_rq->throttled = 1;
78becc27 3847 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3848 raw_spin_lock(&cfs_b->lock);
d49db342 3849 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3850
c06f04c7
BS
3851 /*
3852 * Add to the _head_ of the list, so that an already-started
3853 * distribute_cfs_runtime will not see us
3854 */
3855 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3856
3857 /*
3858 * If we're the first throttled task, make sure the bandwidth
3859 * timer is running.
3860 */
3861 if (empty)
3862 start_cfs_bandwidth(cfs_b);
3863
85dac906
PT
3864 raw_spin_unlock(&cfs_b->lock);
3865}
3866
029632fb 3867void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3868{
3869 struct rq *rq = rq_of(cfs_rq);
3870 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3871 struct sched_entity *se;
3872 int enqueue = 1;
3873 long task_delta;
3874
22b958d8 3875 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3876
3877 cfs_rq->throttled = 0;
1a55af2e
FW
3878
3879 update_rq_clock(rq);
3880
671fd9da 3881 raw_spin_lock(&cfs_b->lock);
78becc27 3882 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3883 list_del_rcu(&cfs_rq->throttled_list);
3884 raw_spin_unlock(&cfs_b->lock);
3885
64660c86
PT
3886 /* update hierarchical throttle state */
3887 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3888
671fd9da
PT
3889 if (!cfs_rq->load.weight)
3890 return;
3891
3892 task_delta = cfs_rq->h_nr_running;
3893 for_each_sched_entity(se) {
3894 if (se->on_rq)
3895 enqueue = 0;
3896
3897 cfs_rq = cfs_rq_of(se);
3898 if (enqueue)
3899 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3900 cfs_rq->h_nr_running += task_delta;
3901
3902 if (cfs_rq_throttled(cfs_rq))
3903 break;
3904 }
3905
3906 if (!se)
72465447 3907 add_nr_running(rq, task_delta);
671fd9da
PT
3908
3909 /* determine whether we need to wake up potentially idle cpu */
3910 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3911 resched_curr(rq);
671fd9da
PT
3912}
3913
3914static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3915 u64 remaining, u64 expires)
3916{
3917 struct cfs_rq *cfs_rq;
c06f04c7
BS
3918 u64 runtime;
3919 u64 starting_runtime = remaining;
671fd9da
PT
3920
3921 rcu_read_lock();
3922 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3923 throttled_list) {
3924 struct rq *rq = rq_of(cfs_rq);
3925
3926 raw_spin_lock(&rq->lock);
3927 if (!cfs_rq_throttled(cfs_rq))
3928 goto next;
3929
3930 runtime = -cfs_rq->runtime_remaining + 1;
3931 if (runtime > remaining)
3932 runtime = remaining;
3933 remaining -= runtime;
3934
3935 cfs_rq->runtime_remaining += runtime;
3936 cfs_rq->runtime_expires = expires;
3937
3938 /* we check whether we're throttled above */
3939 if (cfs_rq->runtime_remaining > 0)
3940 unthrottle_cfs_rq(cfs_rq);
3941
3942next:
3943 raw_spin_unlock(&rq->lock);
3944
3945 if (!remaining)
3946 break;
3947 }
3948 rcu_read_unlock();
3949
c06f04c7 3950 return starting_runtime - remaining;
671fd9da
PT
3951}
3952
58088ad0
PT
3953/*
3954 * Responsible for refilling a task_group's bandwidth and unthrottling its
3955 * cfs_rqs as appropriate. If there has been no activity within the last
3956 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3957 * used to track this state.
3958 */
3959static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3960{
671fd9da 3961 u64 runtime, runtime_expires;
51f2176d 3962 int throttled;
58088ad0 3963
58088ad0
PT
3964 /* no need to continue the timer with no bandwidth constraint */
3965 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3966 goto out_deactivate;
58088ad0 3967
671fd9da 3968 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3969 cfs_b->nr_periods += overrun;
671fd9da 3970
51f2176d
BS
3971 /*
3972 * idle depends on !throttled (for the case of a large deficit), and if
3973 * we're going inactive then everything else can be deferred
3974 */
3975 if (cfs_b->idle && !throttled)
3976 goto out_deactivate;
a9cf55b2
PT
3977
3978 __refill_cfs_bandwidth_runtime(cfs_b);
3979
671fd9da
PT
3980 if (!throttled) {
3981 /* mark as potentially idle for the upcoming period */
3982 cfs_b->idle = 1;
51f2176d 3983 return 0;
671fd9da
PT
3984 }
3985
e8da1b18
NR
3986 /* account preceding periods in which throttling occurred */
3987 cfs_b->nr_throttled += overrun;
3988
671fd9da 3989 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3990
3991 /*
c06f04c7
BS
3992 * This check is repeated as we are holding onto the new bandwidth while
3993 * we unthrottle. This can potentially race with an unthrottled group
3994 * trying to acquire new bandwidth from the global pool. This can result
3995 * in us over-using our runtime if it is all used during this loop, but
3996 * only by limited amounts in that extreme case.
671fd9da 3997 */
c06f04c7
BS
3998 while (throttled && cfs_b->runtime > 0) {
3999 runtime = cfs_b->runtime;
671fd9da
PT
4000 raw_spin_unlock(&cfs_b->lock);
4001 /* we can't nest cfs_b->lock while distributing bandwidth */
4002 runtime = distribute_cfs_runtime(cfs_b, runtime,
4003 runtime_expires);
4004 raw_spin_lock(&cfs_b->lock);
4005
4006 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4007
4008 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4009 }
58088ad0 4010
671fd9da
PT
4011 /*
4012 * While we are ensured activity in the period following an
4013 * unthrottle, this also covers the case in which the new bandwidth is
4014 * insufficient to cover the existing bandwidth deficit. (Forcing the
4015 * timer to remain active while there are any throttled entities.)
4016 */
4017 cfs_b->idle = 0;
58088ad0 4018
51f2176d
BS
4019 return 0;
4020
4021out_deactivate:
51f2176d 4022 return 1;
58088ad0 4023}
d3d9dc33 4024
d8b4986d
PT
4025/* a cfs_rq won't donate quota below this amount */
4026static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4027/* minimum remaining period time to redistribute slack quota */
4028static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4029/* how long we wait to gather additional slack before distributing */
4030static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4031
db06e78c
BS
4032/*
4033 * Are we near the end of the current quota period?
4034 *
4035 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4036 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4037 * migrate_hrtimers, base is never cleared, so we are fine.
4038 */
d8b4986d
PT
4039static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4040{
4041 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4042 u64 remaining;
4043
4044 /* if the call-back is running a quota refresh is already occurring */
4045 if (hrtimer_callback_running(refresh_timer))
4046 return 1;
4047
4048 /* is a quota refresh about to occur? */
4049 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4050 if (remaining < min_expire)
4051 return 1;
4052
4053 return 0;
4054}
4055
4056static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4057{
4058 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4059
4060 /* if there's a quota refresh soon don't bother with slack */
4061 if (runtime_refresh_within(cfs_b, min_left))
4062 return;
4063
4cfafd30
PZ
4064 hrtimer_start(&cfs_b->slack_timer,
4065 ns_to_ktime(cfs_bandwidth_slack_period),
4066 HRTIMER_MODE_REL);
d8b4986d
PT
4067}
4068
4069/* we know any runtime found here is valid as update_curr() precedes return */
4070static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4071{
4072 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4073 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4074
4075 if (slack_runtime <= 0)
4076 return;
4077
4078 raw_spin_lock(&cfs_b->lock);
4079 if (cfs_b->quota != RUNTIME_INF &&
4080 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4081 cfs_b->runtime += slack_runtime;
4082
4083 /* we are under rq->lock, defer unthrottling using a timer */
4084 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4085 !list_empty(&cfs_b->throttled_cfs_rq))
4086 start_cfs_slack_bandwidth(cfs_b);
4087 }
4088 raw_spin_unlock(&cfs_b->lock);
4089
4090 /* even if it's not valid for return we don't want to try again */
4091 cfs_rq->runtime_remaining -= slack_runtime;
4092}
4093
4094static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4095{
56f570e5
PT
4096 if (!cfs_bandwidth_used())
4097 return;
4098
fccfdc6f 4099 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4100 return;
4101
4102 __return_cfs_rq_runtime(cfs_rq);
4103}
4104
4105/*
4106 * This is done with a timer (instead of inline with bandwidth return) since
4107 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4108 */
4109static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4110{
4111 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4112 u64 expires;
4113
4114 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4115 raw_spin_lock(&cfs_b->lock);
4116 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4117 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4118 return;
db06e78c 4119 }
d8b4986d 4120
c06f04c7 4121 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4122 runtime = cfs_b->runtime;
c06f04c7 4123
d8b4986d
PT
4124 expires = cfs_b->runtime_expires;
4125 raw_spin_unlock(&cfs_b->lock);
4126
4127 if (!runtime)
4128 return;
4129
4130 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4131
4132 raw_spin_lock(&cfs_b->lock);
4133 if (expires == cfs_b->runtime_expires)
c06f04c7 4134 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4135 raw_spin_unlock(&cfs_b->lock);
4136}
4137
d3d9dc33
PT
4138/*
4139 * When a group wakes up we want to make sure that its quota is not already
4140 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4141 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4142 */
4143static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4144{
56f570e5
PT
4145 if (!cfs_bandwidth_used())
4146 return;
4147
d3d9dc33
PT
4148 /* an active group must be handled by the update_curr()->put() path */
4149 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4150 return;
4151
4152 /* ensure the group is not already throttled */
4153 if (cfs_rq_throttled(cfs_rq))
4154 return;
4155
4156 /* update runtime allocation */
4157 account_cfs_rq_runtime(cfs_rq, 0);
4158 if (cfs_rq->runtime_remaining <= 0)
4159 throttle_cfs_rq(cfs_rq);
4160}
4161
4162/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4163static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4164{
56f570e5 4165 if (!cfs_bandwidth_used())
678d5718 4166 return false;
56f570e5 4167
d3d9dc33 4168 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4169 return false;
d3d9dc33
PT
4170
4171 /*
4172 * it's possible for a throttled entity to be forced into a running
4173 * state (e.g. set_curr_task), in this case we're finished.
4174 */
4175 if (cfs_rq_throttled(cfs_rq))
678d5718 4176 return true;
d3d9dc33
PT
4177
4178 throttle_cfs_rq(cfs_rq);
678d5718 4179 return true;
d3d9dc33 4180}
029632fb 4181
029632fb
PZ
4182static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4183{
4184 struct cfs_bandwidth *cfs_b =
4185 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4186
029632fb
PZ
4187 do_sched_cfs_slack_timer(cfs_b);
4188
4189 return HRTIMER_NORESTART;
4190}
4191
4192static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4193{
4194 struct cfs_bandwidth *cfs_b =
4195 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4196 int overrun;
4197 int idle = 0;
4198
51f2176d 4199 raw_spin_lock(&cfs_b->lock);
029632fb 4200 for (;;) {
77a4d1a1 4201 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4202 if (!overrun)
4203 break;
4204
4205 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4206 }
4cfafd30
PZ
4207 if (idle)
4208 cfs_b->period_active = 0;
51f2176d 4209 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4210
4211 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4212}
4213
4214void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4215{
4216 raw_spin_lock_init(&cfs_b->lock);
4217 cfs_b->runtime = 0;
4218 cfs_b->quota = RUNTIME_INF;
4219 cfs_b->period = ns_to_ktime(default_cfs_period());
4220
4221 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4222 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4223 cfs_b->period_timer.function = sched_cfs_period_timer;
4224 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4225 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4226}
4227
4228static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4229{
4230 cfs_rq->runtime_enabled = 0;
4231 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4232}
4233
77a4d1a1 4234void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4235{
4cfafd30 4236 lockdep_assert_held(&cfs_b->lock);
029632fb 4237
4cfafd30
PZ
4238 if (!cfs_b->period_active) {
4239 cfs_b->period_active = 1;
4240 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4241 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4242 }
029632fb
PZ
4243}
4244
4245static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4246{
7f1a169b
TH
4247 /* init_cfs_bandwidth() was not called */
4248 if (!cfs_b->throttled_cfs_rq.next)
4249 return;
4250
029632fb
PZ
4251 hrtimer_cancel(&cfs_b->period_timer);
4252 hrtimer_cancel(&cfs_b->slack_timer);
4253}
4254
0e59bdae
KT
4255static void __maybe_unused update_runtime_enabled(struct rq *rq)
4256{
4257 struct cfs_rq *cfs_rq;
4258
4259 for_each_leaf_cfs_rq(rq, cfs_rq) {
4260 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4261
4262 raw_spin_lock(&cfs_b->lock);
4263 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4264 raw_spin_unlock(&cfs_b->lock);
4265 }
4266}
4267
38dc3348 4268static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4269{
4270 struct cfs_rq *cfs_rq;
4271
4272 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4273 if (!cfs_rq->runtime_enabled)
4274 continue;
4275
4276 /*
4277 * clock_task is not advancing so we just need to make sure
4278 * there's some valid quota amount
4279 */
51f2176d 4280 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4281 /*
4282 * Offline rq is schedulable till cpu is completely disabled
4283 * in take_cpu_down(), so we prevent new cfs throttling here.
4284 */
4285 cfs_rq->runtime_enabled = 0;
4286
029632fb
PZ
4287 if (cfs_rq_throttled(cfs_rq))
4288 unthrottle_cfs_rq(cfs_rq);
4289 }
4290}
4291
4292#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4293static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4294{
78becc27 4295 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4296}
4297
9dbdb155 4298static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4299static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4300static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4301static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4302
4303static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4304{
4305 return 0;
4306}
64660c86
PT
4307
4308static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4309{
4310 return 0;
4311}
4312
4313static inline int throttled_lb_pair(struct task_group *tg,
4314 int src_cpu, int dest_cpu)
4315{
4316 return 0;
4317}
029632fb
PZ
4318
4319void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4320
4321#ifdef CONFIG_FAIR_GROUP_SCHED
4322static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4323#endif
4324
029632fb
PZ
4325static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4326{
4327 return NULL;
4328}
4329static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4330static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4331static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4332
4333#endif /* CONFIG_CFS_BANDWIDTH */
4334
bf0f6f24
IM
4335/**************************************************
4336 * CFS operations on tasks:
4337 */
4338
8f4d37ec
PZ
4339#ifdef CONFIG_SCHED_HRTICK
4340static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4341{
8f4d37ec
PZ
4342 struct sched_entity *se = &p->se;
4343 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4344
4345 WARN_ON(task_rq(p) != rq);
4346
b39e66ea 4347 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4348 u64 slice = sched_slice(cfs_rq, se);
4349 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4350 s64 delta = slice - ran;
4351
4352 if (delta < 0) {
4353 if (rq->curr == p)
8875125e 4354 resched_curr(rq);
8f4d37ec
PZ
4355 return;
4356 }
31656519 4357 hrtick_start(rq, delta);
8f4d37ec
PZ
4358 }
4359}
a4c2f00f
PZ
4360
4361/*
4362 * called from enqueue/dequeue and updates the hrtick when the
4363 * current task is from our class and nr_running is low enough
4364 * to matter.
4365 */
4366static void hrtick_update(struct rq *rq)
4367{
4368 struct task_struct *curr = rq->curr;
4369
b39e66ea 4370 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4371 return;
4372
4373 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4374 hrtick_start_fair(rq, curr);
4375}
55e12e5e 4376#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4377static inline void
4378hrtick_start_fair(struct rq *rq, struct task_struct *p)
4379{
4380}
a4c2f00f
PZ
4381
4382static inline void hrtick_update(struct rq *rq)
4383{
4384}
8f4d37ec
PZ
4385#endif
4386
bf0f6f24
IM
4387/*
4388 * The enqueue_task method is called before nr_running is
4389 * increased. Here we update the fair scheduling stats and
4390 * then put the task into the rbtree:
4391 */
ea87bb78 4392static void
371fd7e7 4393enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4394{
4395 struct cfs_rq *cfs_rq;
62fb1851 4396 struct sched_entity *se = &p->se;
bf0f6f24
IM
4397
4398 for_each_sched_entity(se) {
62fb1851 4399 if (se->on_rq)
bf0f6f24
IM
4400 break;
4401 cfs_rq = cfs_rq_of(se);
88ec22d3 4402 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4403
4404 /*
4405 * end evaluation on encountering a throttled cfs_rq
4406 *
4407 * note: in the case of encountering a throttled cfs_rq we will
4408 * post the final h_nr_running increment below.
4409 */
4410 if (cfs_rq_throttled(cfs_rq))
4411 break;
953bfcd1 4412 cfs_rq->h_nr_running++;
85dac906 4413
88ec22d3 4414 flags = ENQUEUE_WAKEUP;
bf0f6f24 4415 }
8f4d37ec 4416
2069dd75 4417 for_each_sched_entity(se) {
0f317143 4418 cfs_rq = cfs_rq_of(se);
953bfcd1 4419 cfs_rq->h_nr_running++;
2069dd75 4420
85dac906
PT
4421 if (cfs_rq_throttled(cfs_rq))
4422 break;
4423
9d89c257 4424 update_load_avg(se, 1);
17bc14b7 4425 update_cfs_shares(cfs_rq);
2069dd75
PZ
4426 }
4427
cd126afe 4428 if (!se)
72465447 4429 add_nr_running(rq, 1);
cd126afe 4430
a4c2f00f 4431 hrtick_update(rq);
bf0f6f24
IM
4432}
4433
2f36825b
VP
4434static void set_next_buddy(struct sched_entity *se);
4435
bf0f6f24
IM
4436/*
4437 * The dequeue_task method is called before nr_running is
4438 * decreased. We remove the task from the rbtree and
4439 * update the fair scheduling stats:
4440 */
371fd7e7 4441static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4442{
4443 struct cfs_rq *cfs_rq;
62fb1851 4444 struct sched_entity *se = &p->se;
2f36825b 4445 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4446
4447 for_each_sched_entity(se) {
4448 cfs_rq = cfs_rq_of(se);
371fd7e7 4449 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4450
4451 /*
4452 * end evaluation on encountering a throttled cfs_rq
4453 *
4454 * note: in the case of encountering a throttled cfs_rq we will
4455 * post the final h_nr_running decrement below.
4456 */
4457 if (cfs_rq_throttled(cfs_rq))
4458 break;
953bfcd1 4459 cfs_rq->h_nr_running--;
2069dd75 4460
bf0f6f24 4461 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4462 if (cfs_rq->load.weight) {
4463 /*
4464 * Bias pick_next to pick a task from this cfs_rq, as
4465 * p is sleeping when it is within its sched_slice.
4466 */
4467 if (task_sleep && parent_entity(se))
4468 set_next_buddy(parent_entity(se));
9598c82d
PT
4469
4470 /* avoid re-evaluating load for this entity */
4471 se = parent_entity(se);
bf0f6f24 4472 break;
2f36825b 4473 }
371fd7e7 4474 flags |= DEQUEUE_SLEEP;
bf0f6f24 4475 }
8f4d37ec 4476
2069dd75 4477 for_each_sched_entity(se) {
0f317143 4478 cfs_rq = cfs_rq_of(se);
953bfcd1 4479 cfs_rq->h_nr_running--;
2069dd75 4480
85dac906
PT
4481 if (cfs_rq_throttled(cfs_rq))
4482 break;
4483
9d89c257 4484 update_load_avg(se, 1);
17bc14b7 4485 update_cfs_shares(cfs_rq);
2069dd75
PZ
4486 }
4487
cd126afe 4488 if (!se)
72465447 4489 sub_nr_running(rq, 1);
cd126afe 4490
a4c2f00f 4491 hrtick_update(rq);
bf0f6f24
IM
4492}
4493
e7693a36 4494#ifdef CONFIG_SMP
9fd81dd5 4495#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4496/*
4497 * per rq 'load' arrray crap; XXX kill this.
4498 */
4499
4500/*
d937cdc5 4501 * The exact cpuload calculated at every tick would be:
3289bdb4 4502 *
d937cdc5
PZ
4503 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4504 *
4505 * If a cpu misses updates for n ticks (as it was idle) and update gets
4506 * called on the n+1-th tick when cpu may be busy, then we have:
4507 *
4508 * load_n = (1 - 1/2^i)^n * load_0
4509 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4510 *
4511 * decay_load_missed() below does efficient calculation of
3289bdb4 4512 *
d937cdc5
PZ
4513 * load' = (1 - 1/2^i)^n * load
4514 *
4515 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4516 * This allows us to precompute the above in said factors, thereby allowing the
4517 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4518 * fixed_power_int())
3289bdb4 4519 *
d937cdc5 4520 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4521 */
4522#define DEGRADE_SHIFT 7
d937cdc5
PZ
4523
4524static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4525static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4526 { 0, 0, 0, 0, 0, 0, 0, 0 },
4527 { 64, 32, 8, 0, 0, 0, 0, 0 },
4528 { 96, 72, 40, 12, 1, 0, 0, 0 },
4529 { 112, 98, 75, 43, 15, 1, 0, 0 },
4530 { 120, 112, 98, 76, 45, 16, 2, 0 }
4531};
3289bdb4
PZ
4532
4533/*
4534 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4535 * would be when CPU is idle and so we just decay the old load without
4536 * adding any new load.
4537 */
4538static unsigned long
4539decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4540{
4541 int j = 0;
4542
4543 if (!missed_updates)
4544 return load;
4545
4546 if (missed_updates >= degrade_zero_ticks[idx])
4547 return 0;
4548
4549 if (idx == 1)
4550 return load >> missed_updates;
4551
4552 while (missed_updates) {
4553 if (missed_updates % 2)
4554 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4555
4556 missed_updates >>= 1;
4557 j++;
4558 }
4559 return load;
4560}
9fd81dd5 4561#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4562
59543275 4563/**
cee1afce 4564 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4565 * @this_rq: The rq to update statistics for
4566 * @this_load: The current load
4567 * @pending_updates: The number of missed updates
59543275 4568 *
3289bdb4 4569 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4570 * scheduler tick (TICK_NSEC).
4571 *
4572 * This function computes a decaying average:
4573 *
4574 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4575 *
4576 * Because of NOHZ it might not get called on every tick which gives need for
4577 * the @pending_updates argument.
4578 *
4579 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4580 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4581 * = A * (A * load[i]_n-2 + B) + B
4582 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4583 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4584 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4585 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4586 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4587 *
4588 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4589 * any change in load would have resulted in the tick being turned back on.
4590 *
4591 * For regular NOHZ, this reduces to:
4592 *
4593 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4594 *
4595 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4596 * term.
3289bdb4 4597 */
1f41906a
FW
4598static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4599 unsigned long pending_updates)
3289bdb4 4600{
9fd81dd5 4601 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4602 int i, scale;
4603
4604 this_rq->nr_load_updates++;
4605
4606 /* Update our load: */
4607 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4608 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4609 unsigned long old_load, new_load;
4610
4611 /* scale is effectively 1 << i now, and >> i divides by scale */
4612
7400d3bb 4613 old_load = this_rq->cpu_load[i];
9fd81dd5 4614#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4615 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4616 if (tickless_load) {
4617 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4618 /*
4619 * old_load can never be a negative value because a
4620 * decayed tickless_load cannot be greater than the
4621 * original tickless_load.
4622 */
4623 old_load += tickless_load;
4624 }
9fd81dd5 4625#endif
3289bdb4
PZ
4626 new_load = this_load;
4627 /*
4628 * Round up the averaging division if load is increasing. This
4629 * prevents us from getting stuck on 9 if the load is 10, for
4630 * example.
4631 */
4632 if (new_load > old_load)
4633 new_load += scale - 1;
4634
4635 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4636 }
4637
4638 sched_avg_update(this_rq);
4639}
4640
7ea241af
YD
4641/* Used instead of source_load when we know the type == 0 */
4642static unsigned long weighted_cpuload(const int cpu)
4643{
4644 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4645}
4646
3289bdb4 4647#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4648/*
4649 * There is no sane way to deal with nohz on smp when using jiffies because the
4650 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4651 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4652 *
4653 * Therefore we need to avoid the delta approach from the regular tick when
4654 * possible since that would seriously skew the load calculation. This is why we
4655 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4656 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4657 * loop exit, nohz_idle_balance, nohz full exit...)
4658 *
4659 * This means we might still be one tick off for nohz periods.
4660 */
4661
4662static void cpu_load_update_nohz(struct rq *this_rq,
4663 unsigned long curr_jiffies,
4664 unsigned long load)
be68a682
FW
4665{
4666 unsigned long pending_updates;
4667
4668 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4669 if (pending_updates) {
4670 this_rq->last_load_update_tick = curr_jiffies;
4671 /*
4672 * In the regular NOHZ case, we were idle, this means load 0.
4673 * In the NOHZ_FULL case, we were non-idle, we should consider
4674 * its weighted load.
4675 */
1f41906a 4676 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4677 }
4678}
4679
3289bdb4
PZ
4680/*
4681 * Called from nohz_idle_balance() to update the load ratings before doing the
4682 * idle balance.
4683 */
cee1afce 4684static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4685{
3289bdb4
PZ
4686 /*
4687 * bail if there's load or we're actually up-to-date.
4688 */
be68a682 4689 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4690 return;
4691
1f41906a 4692 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4693}
4694
4695/*
1f41906a
FW
4696 * Record CPU load on nohz entry so we know the tickless load to account
4697 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4698 * than other cpu_load[idx] but it should be fine as cpu_load readers
4699 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4700 */
1f41906a 4701void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4702{
4703 struct rq *this_rq = this_rq();
1f41906a
FW
4704
4705 /*
4706 * This is all lockless but should be fine. If weighted_cpuload changes
4707 * concurrently we'll exit nohz. And cpu_load write can race with
4708 * cpu_load_update_idle() but both updater would be writing the same.
4709 */
4710 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4711}
4712
4713/*
4714 * Account the tickless load in the end of a nohz frame.
4715 */
4716void cpu_load_update_nohz_stop(void)
4717{
316c1608 4718 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4719 struct rq *this_rq = this_rq();
4720 unsigned long load;
3289bdb4
PZ
4721
4722 if (curr_jiffies == this_rq->last_load_update_tick)
4723 return;
4724
1f41906a 4725 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4726 raw_spin_lock(&this_rq->lock);
b52fad2d 4727 update_rq_clock(this_rq);
1f41906a 4728 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4729 raw_spin_unlock(&this_rq->lock);
4730}
1f41906a
FW
4731#else /* !CONFIG_NO_HZ_COMMON */
4732static inline void cpu_load_update_nohz(struct rq *this_rq,
4733 unsigned long curr_jiffies,
4734 unsigned long load) { }
4735#endif /* CONFIG_NO_HZ_COMMON */
4736
4737static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4738{
9fd81dd5 4739#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4740 /* See the mess around cpu_load_update_nohz(). */
4741 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4742#endif
1f41906a
FW
4743 cpu_load_update(this_rq, load, 1);
4744}
3289bdb4
PZ
4745
4746/*
4747 * Called from scheduler_tick()
4748 */
cee1afce 4749void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4750{
7ea241af 4751 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4752
4753 if (tick_nohz_tick_stopped())
4754 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4755 else
4756 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4757}
4758
029632fb
PZ
4759/*
4760 * Return a low guess at the load of a migration-source cpu weighted
4761 * according to the scheduling class and "nice" value.
4762 *
4763 * We want to under-estimate the load of migration sources, to
4764 * balance conservatively.
4765 */
4766static unsigned long source_load(int cpu, int type)
4767{
4768 struct rq *rq = cpu_rq(cpu);
4769 unsigned long total = weighted_cpuload(cpu);
4770
4771 if (type == 0 || !sched_feat(LB_BIAS))
4772 return total;
4773
4774 return min(rq->cpu_load[type-1], total);
4775}
4776
4777/*
4778 * Return a high guess at the load of a migration-target cpu weighted
4779 * according to the scheduling class and "nice" value.
4780 */
4781static unsigned long target_load(int cpu, int type)
4782{
4783 struct rq *rq = cpu_rq(cpu);
4784 unsigned long total = weighted_cpuload(cpu);
4785
4786 if (type == 0 || !sched_feat(LB_BIAS))
4787 return total;
4788
4789 return max(rq->cpu_load[type-1], total);
4790}
4791
ced549fa 4792static unsigned long capacity_of(int cpu)
029632fb 4793{
ced549fa 4794 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4795}
4796
ca6d75e6
VG
4797static unsigned long capacity_orig_of(int cpu)
4798{
4799 return cpu_rq(cpu)->cpu_capacity_orig;
4800}
4801
029632fb
PZ
4802static unsigned long cpu_avg_load_per_task(int cpu)
4803{
4804 struct rq *rq = cpu_rq(cpu);
316c1608 4805 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4806 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4807
4808 if (nr_running)
b92486cb 4809 return load_avg / nr_running;
029632fb
PZ
4810
4811 return 0;
4812}
4813
62470419
MW
4814static void record_wakee(struct task_struct *p)
4815{
4816 /*
4817 * Rough decay (wiping) for cost saving, don't worry
4818 * about the boundary, really active task won't care
4819 * about the loss.
4820 */
2538d960 4821 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4822 current->wakee_flips >>= 1;
62470419
MW
4823 current->wakee_flip_decay_ts = jiffies;
4824 }
4825
4826 if (current->last_wakee != p) {
4827 current->last_wakee = p;
4828 current->wakee_flips++;
4829 }
4830}
098fb9db 4831
74f8e4b2 4832static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4833{
4834 struct sched_entity *se = &p->se;
4835 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4836 u64 min_vruntime;
4837
4838#ifndef CONFIG_64BIT
4839 u64 min_vruntime_copy;
88ec22d3 4840
3fe1698b
PZ
4841 do {
4842 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4843 smp_rmb();
4844 min_vruntime = cfs_rq->min_vruntime;
4845 } while (min_vruntime != min_vruntime_copy);
4846#else
4847 min_vruntime = cfs_rq->min_vruntime;
4848#endif
88ec22d3 4849
3fe1698b 4850 se->vruntime -= min_vruntime;
62470419 4851 record_wakee(p);
88ec22d3
PZ
4852}
4853
bb3469ac 4854#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4855/*
4856 * effective_load() calculates the load change as seen from the root_task_group
4857 *
4858 * Adding load to a group doesn't make a group heavier, but can cause movement
4859 * of group shares between cpus. Assuming the shares were perfectly aligned one
4860 * can calculate the shift in shares.
cf5f0acf
PZ
4861 *
4862 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4863 * on this @cpu and results in a total addition (subtraction) of @wg to the
4864 * total group weight.
4865 *
4866 * Given a runqueue weight distribution (rw_i) we can compute a shares
4867 * distribution (s_i) using:
4868 *
4869 * s_i = rw_i / \Sum rw_j (1)
4870 *
4871 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4872 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4873 * shares distribution (s_i):
4874 *
4875 * rw_i = { 2, 4, 1, 0 }
4876 * s_i = { 2/7, 4/7, 1/7, 0 }
4877 *
4878 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4879 * task used to run on and the CPU the waker is running on), we need to
4880 * compute the effect of waking a task on either CPU and, in case of a sync
4881 * wakeup, compute the effect of the current task going to sleep.
4882 *
4883 * So for a change of @wl to the local @cpu with an overall group weight change
4884 * of @wl we can compute the new shares distribution (s'_i) using:
4885 *
4886 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4887 *
4888 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4889 * differences in waking a task to CPU 0. The additional task changes the
4890 * weight and shares distributions like:
4891 *
4892 * rw'_i = { 3, 4, 1, 0 }
4893 * s'_i = { 3/8, 4/8, 1/8, 0 }
4894 *
4895 * We can then compute the difference in effective weight by using:
4896 *
4897 * dw_i = S * (s'_i - s_i) (3)
4898 *
4899 * Where 'S' is the group weight as seen by its parent.
4900 *
4901 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4902 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4903 * 4/7) times the weight of the group.
f5bfb7d9 4904 */
2069dd75 4905static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4906{
4be9daaa 4907 struct sched_entity *se = tg->se[cpu];
f1d239f7 4908
9722c2da 4909 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4910 return wl;
4911
4be9daaa 4912 for_each_sched_entity(se) {
cf5f0acf 4913 long w, W;
4be9daaa 4914
977dda7c 4915 tg = se->my_q->tg;
bb3469ac 4916
cf5f0acf
PZ
4917 /*
4918 * W = @wg + \Sum rw_j
4919 */
4920 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4921
cf5f0acf
PZ
4922 /*
4923 * w = rw_i + @wl
4924 */
7ea241af 4925 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4926
cf5f0acf
PZ
4927 /*
4928 * wl = S * s'_i; see (2)
4929 */
4930 if (W > 0 && w < W)
32a8df4e 4931 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4932 else
4933 wl = tg->shares;
940959e9 4934
cf5f0acf
PZ
4935 /*
4936 * Per the above, wl is the new se->load.weight value; since
4937 * those are clipped to [MIN_SHARES, ...) do so now. See
4938 * calc_cfs_shares().
4939 */
977dda7c
PT
4940 if (wl < MIN_SHARES)
4941 wl = MIN_SHARES;
cf5f0acf
PZ
4942
4943 /*
4944 * wl = dw_i = S * (s'_i - s_i); see (3)
4945 */
9d89c257 4946 wl -= se->avg.load_avg;
cf5f0acf
PZ
4947
4948 /*
4949 * Recursively apply this logic to all parent groups to compute
4950 * the final effective load change on the root group. Since
4951 * only the @tg group gets extra weight, all parent groups can
4952 * only redistribute existing shares. @wl is the shift in shares
4953 * resulting from this level per the above.
4954 */
4be9daaa 4955 wg = 0;
4be9daaa 4956 }
bb3469ac 4957
4be9daaa 4958 return wl;
bb3469ac
PZ
4959}
4960#else
4be9daaa 4961
58d081b5 4962static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4963{
83378269 4964 return wl;
bb3469ac 4965}
4be9daaa 4966
bb3469ac
PZ
4967#endif
4968
63b0e9ed
MG
4969/*
4970 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4971 * A waker of many should wake a different task than the one last awakened
4972 * at a frequency roughly N times higher than one of its wakees. In order
4973 * to determine whether we should let the load spread vs consolodating to
4974 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4975 * partner, and a factor of lls_size higher frequency in the other. With
4976 * both conditions met, we can be relatively sure that the relationship is
4977 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4978 * being client/server, worker/dispatcher, interrupt source or whatever is
4979 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4980 */
62470419
MW
4981static int wake_wide(struct task_struct *p)
4982{
63b0e9ed
MG
4983 unsigned int master = current->wakee_flips;
4984 unsigned int slave = p->wakee_flips;
7d9ffa89 4985 int factor = this_cpu_read(sd_llc_size);
62470419 4986
63b0e9ed
MG
4987 if (master < slave)
4988 swap(master, slave);
4989 if (slave < factor || master < slave * factor)
4990 return 0;
4991 return 1;
62470419
MW
4992}
4993
c88d5910 4994static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4995{
e37b6a7b 4996 s64 this_load, load;
bd61c98f 4997 s64 this_eff_load, prev_eff_load;
c88d5910 4998 int idx, this_cpu, prev_cpu;
c88d5910 4999 struct task_group *tg;
83378269 5000 unsigned long weight;
b3137bc8 5001 int balanced;
098fb9db 5002
c88d5910
PZ
5003 idx = sd->wake_idx;
5004 this_cpu = smp_processor_id();
5005 prev_cpu = task_cpu(p);
5006 load = source_load(prev_cpu, idx);
5007 this_load = target_load(this_cpu, idx);
098fb9db 5008
b3137bc8
MG
5009 /*
5010 * If sync wakeup then subtract the (maximum possible)
5011 * effect of the currently running task from the load
5012 * of the current CPU:
5013 */
83378269
PZ
5014 if (sync) {
5015 tg = task_group(current);
9d89c257 5016 weight = current->se.avg.load_avg;
83378269 5017
c88d5910 5018 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5019 load += effective_load(tg, prev_cpu, 0, -weight);
5020 }
b3137bc8 5021
83378269 5022 tg = task_group(p);
9d89c257 5023 weight = p->se.avg.load_avg;
b3137bc8 5024
71a29aa7
PZ
5025 /*
5026 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5027 * due to the sync cause above having dropped this_load to 0, we'll
5028 * always have an imbalance, but there's really nothing you can do
5029 * about that, so that's good too.
71a29aa7
PZ
5030 *
5031 * Otherwise check if either cpus are near enough in load to allow this
5032 * task to be woken on this_cpu.
5033 */
bd61c98f
VG
5034 this_eff_load = 100;
5035 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5036
bd61c98f
VG
5037 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5038 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5039
bd61c98f 5040 if (this_load > 0) {
e51fd5e2
PZ
5041 this_eff_load *= this_load +
5042 effective_load(tg, this_cpu, weight, weight);
5043
e51fd5e2 5044 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5045 }
e51fd5e2 5046
bd61c98f 5047 balanced = this_eff_load <= prev_eff_load;
098fb9db 5048
41acab88 5049 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5050
05bfb65f
VG
5051 if (!balanced)
5052 return 0;
098fb9db 5053
05bfb65f
VG
5054 schedstat_inc(sd, ttwu_move_affine);
5055 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5056
5057 return 1;
098fb9db
IM
5058}
5059
aaee1203
PZ
5060/*
5061 * find_idlest_group finds and returns the least busy CPU group within the
5062 * domain.
5063 */
5064static struct sched_group *
78e7ed53 5065find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5066 int this_cpu, int sd_flag)
e7693a36 5067{
b3bd3de6 5068 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5069 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5070 int load_idx = sd->forkexec_idx;
aaee1203 5071 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5072
c44f2a02
VG
5073 if (sd_flag & SD_BALANCE_WAKE)
5074 load_idx = sd->wake_idx;
5075
aaee1203
PZ
5076 do {
5077 unsigned long load, avg_load;
5078 int local_group;
5079 int i;
e7693a36 5080
aaee1203
PZ
5081 /* Skip over this group if it has no CPUs allowed */
5082 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5083 tsk_cpus_allowed(p)))
aaee1203
PZ
5084 continue;
5085
5086 local_group = cpumask_test_cpu(this_cpu,
5087 sched_group_cpus(group));
5088
5089 /* Tally up the load of all CPUs in the group */
5090 avg_load = 0;
5091
5092 for_each_cpu(i, sched_group_cpus(group)) {
5093 /* Bias balancing toward cpus of our domain */
5094 if (local_group)
5095 load = source_load(i, load_idx);
5096 else
5097 load = target_load(i, load_idx);
5098
5099 avg_load += load;
5100 }
5101
63b2ca30 5102 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5103 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5104
5105 if (local_group) {
5106 this_load = avg_load;
aaee1203
PZ
5107 } else if (avg_load < min_load) {
5108 min_load = avg_load;
5109 idlest = group;
5110 }
5111 } while (group = group->next, group != sd->groups);
5112
5113 if (!idlest || 100*this_load < imbalance*min_load)
5114 return NULL;
5115 return idlest;
5116}
5117
5118/*
5119 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5120 */
5121static int
5122find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5123{
5124 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5125 unsigned int min_exit_latency = UINT_MAX;
5126 u64 latest_idle_timestamp = 0;
5127 int least_loaded_cpu = this_cpu;
5128 int shallowest_idle_cpu = -1;
aaee1203
PZ
5129 int i;
5130
5131 /* Traverse only the allowed CPUs */
fa17b507 5132 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5133 if (idle_cpu(i)) {
5134 struct rq *rq = cpu_rq(i);
5135 struct cpuidle_state *idle = idle_get_state(rq);
5136 if (idle && idle->exit_latency < min_exit_latency) {
5137 /*
5138 * We give priority to a CPU whose idle state
5139 * has the smallest exit latency irrespective
5140 * of any idle timestamp.
5141 */
5142 min_exit_latency = idle->exit_latency;
5143 latest_idle_timestamp = rq->idle_stamp;
5144 shallowest_idle_cpu = i;
5145 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5146 rq->idle_stamp > latest_idle_timestamp) {
5147 /*
5148 * If equal or no active idle state, then
5149 * the most recently idled CPU might have
5150 * a warmer cache.
5151 */
5152 latest_idle_timestamp = rq->idle_stamp;
5153 shallowest_idle_cpu = i;
5154 }
9f96742a 5155 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5156 load = weighted_cpuload(i);
5157 if (load < min_load || (load == min_load && i == this_cpu)) {
5158 min_load = load;
5159 least_loaded_cpu = i;
5160 }
e7693a36
GH
5161 }
5162 }
5163
83a0a96a 5164 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5165}
e7693a36 5166
a50bde51
PZ
5167/*
5168 * Try and locate an idle CPU in the sched_domain.
5169 */
99bd5e2f 5170static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5171{
99bd5e2f 5172 struct sched_domain *sd;
37407ea7 5173 struct sched_group *sg;
e0a79f52 5174 int i = task_cpu(p);
a50bde51 5175
e0a79f52
MG
5176 if (idle_cpu(target))
5177 return target;
99bd5e2f
SS
5178
5179 /*
e0a79f52 5180 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5181 */
e0a79f52
MG
5182 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5183 return i;
a50bde51
PZ
5184
5185 /*
d4335581
MF
5186 * Otherwise, iterate the domains and find an eligible idle cpu.
5187 *
5188 * A completely idle sched group at higher domains is more
5189 * desirable than an idle group at a lower level, because lower
5190 * domains have smaller groups and usually share hardware
5191 * resources which causes tasks to contend on them, e.g. x86
5192 * hyperthread siblings in the lowest domain (SMT) can contend
5193 * on the shared cpu pipeline.
5194 *
5195 * However, while we prefer idle groups at higher domains
5196 * finding an idle cpu at the lowest domain is still better than
5197 * returning 'target', which we've already established, isn't
5198 * idle.
a50bde51 5199 */
518cd623 5200 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5201 for_each_lower_domain(sd) {
37407ea7
LT
5202 sg = sd->groups;
5203 do {
5204 if (!cpumask_intersects(sched_group_cpus(sg),
5205 tsk_cpus_allowed(p)))
5206 goto next;
5207
d4335581 5208 /* Ensure the entire group is idle */
37407ea7 5209 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5210 if (i == target || !idle_cpu(i))
37407ea7
LT
5211 goto next;
5212 }
970e1789 5213
d4335581
MF
5214 /*
5215 * It doesn't matter which cpu we pick, the
5216 * whole group is idle.
5217 */
37407ea7
LT
5218 target = cpumask_first_and(sched_group_cpus(sg),
5219 tsk_cpus_allowed(p));
5220 goto done;
5221next:
5222 sg = sg->next;
5223 } while (sg != sd->groups);
5224 }
5225done:
a50bde51
PZ
5226 return target;
5227}
231678b7 5228
8bb5b00c 5229/*
9e91d61d 5230 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5231 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5232 * compare the utilization with the capacity of the CPU that is available for
5233 * CFS task (ie cpu_capacity).
231678b7
DE
5234 *
5235 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5236 * recent utilization of currently non-runnable tasks on a CPU. It represents
5237 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5238 * capacity_orig is the cpu_capacity available at the highest frequency
5239 * (arch_scale_freq_capacity()).
5240 * The utilization of a CPU converges towards a sum equal to or less than the
5241 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5242 * the running time on this CPU scaled by capacity_curr.
5243 *
5244 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5245 * higher than capacity_orig because of unfortunate rounding in
5246 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5247 * the average stabilizes with the new running time. We need to check that the
5248 * utilization stays within the range of [0..capacity_orig] and cap it if
5249 * necessary. Without utilization capping, a group could be seen as overloaded
5250 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5251 * available capacity. We allow utilization to overshoot capacity_curr (but not
5252 * capacity_orig) as it useful for predicting the capacity required after task
5253 * migrations (scheduler-driven DVFS).
8bb5b00c 5254 */
9e91d61d 5255static int cpu_util(int cpu)
8bb5b00c 5256{
9e91d61d 5257 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5258 unsigned long capacity = capacity_orig_of(cpu);
5259
231678b7 5260 return (util >= capacity) ? capacity : util;
8bb5b00c 5261}
a50bde51 5262
aaee1203 5263/*
de91b9cb
MR
5264 * select_task_rq_fair: Select target runqueue for the waking task in domains
5265 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5266 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5267 *
de91b9cb
MR
5268 * Balances load by selecting the idlest cpu in the idlest group, or under
5269 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5270 *
de91b9cb 5271 * Returns the target cpu number.
aaee1203
PZ
5272 *
5273 * preempt must be disabled.
5274 */
0017d735 5275static int
ac66f547 5276select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5277{
29cd8bae 5278 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5279 int cpu = smp_processor_id();
63b0e9ed 5280 int new_cpu = prev_cpu;
99bd5e2f 5281 int want_affine = 0;
5158f4e4 5282 int sync = wake_flags & WF_SYNC;
c88d5910 5283
a8edd075 5284 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5285 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5286
dce840a0 5287 rcu_read_lock();
aaee1203 5288 for_each_domain(cpu, tmp) {
e4f42888 5289 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5290 break;
e4f42888 5291
fe3bcfe1 5292 /*
99bd5e2f
SS
5293 * If both cpu and prev_cpu are part of this domain,
5294 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5295 */
99bd5e2f
SS
5296 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5297 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5298 affine_sd = tmp;
29cd8bae 5299 break;
f03542a7 5300 }
29cd8bae 5301
f03542a7 5302 if (tmp->flags & sd_flag)
29cd8bae 5303 sd = tmp;
63b0e9ed
MG
5304 else if (!want_affine)
5305 break;
29cd8bae
PZ
5306 }
5307
63b0e9ed
MG
5308 if (affine_sd) {
5309 sd = NULL; /* Prefer wake_affine over balance flags */
5310 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5311 new_cpu = cpu;
8b911acd 5312 }
e7693a36 5313
63b0e9ed
MG
5314 if (!sd) {
5315 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5316 new_cpu = select_idle_sibling(p, new_cpu);
5317
5318 } else while (sd) {
aaee1203 5319 struct sched_group *group;
c88d5910 5320 int weight;
098fb9db 5321
0763a660 5322 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5323 sd = sd->child;
5324 continue;
5325 }
098fb9db 5326
c44f2a02 5327 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5328 if (!group) {
5329 sd = sd->child;
5330 continue;
5331 }
4ae7d5ce 5332
d7c33c49 5333 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5334 if (new_cpu == -1 || new_cpu == cpu) {
5335 /* Now try balancing at a lower domain level of cpu */
5336 sd = sd->child;
5337 continue;
e7693a36 5338 }
aaee1203
PZ
5339
5340 /* Now try balancing at a lower domain level of new_cpu */
5341 cpu = new_cpu;
669c55e9 5342 weight = sd->span_weight;
aaee1203
PZ
5343 sd = NULL;
5344 for_each_domain(cpu, tmp) {
669c55e9 5345 if (weight <= tmp->span_weight)
aaee1203 5346 break;
0763a660 5347 if (tmp->flags & sd_flag)
aaee1203
PZ
5348 sd = tmp;
5349 }
5350 /* while loop will break here if sd == NULL */
e7693a36 5351 }
dce840a0 5352 rcu_read_unlock();
e7693a36 5353
c88d5910 5354 return new_cpu;
e7693a36 5355}
0a74bef8
PT
5356
5357/*
5358 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5359 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5360 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5361 */
5a4fd036 5362static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5363{
aff3e498 5364 /*
9d89c257
YD
5365 * We are supposed to update the task to "current" time, then its up to date
5366 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5367 * what current time is, so simply throw away the out-of-date time. This
5368 * will result in the wakee task is less decayed, but giving the wakee more
5369 * load sounds not bad.
aff3e498 5370 */
9d89c257
YD
5371 remove_entity_load_avg(&p->se);
5372
5373 /* Tell new CPU we are migrated */
5374 p->se.avg.last_update_time = 0;
3944a927
BS
5375
5376 /* We have migrated, no longer consider this task hot */
9d89c257 5377 p->se.exec_start = 0;
0a74bef8 5378}
12695578
YD
5379
5380static void task_dead_fair(struct task_struct *p)
5381{
5382 remove_entity_load_avg(&p->se);
5383}
e7693a36
GH
5384#endif /* CONFIG_SMP */
5385
e52fb7c0
PZ
5386static unsigned long
5387wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5388{
5389 unsigned long gran = sysctl_sched_wakeup_granularity;
5390
5391 /*
e52fb7c0
PZ
5392 * Since its curr running now, convert the gran from real-time
5393 * to virtual-time in his units.
13814d42
MG
5394 *
5395 * By using 'se' instead of 'curr' we penalize light tasks, so
5396 * they get preempted easier. That is, if 'se' < 'curr' then
5397 * the resulting gran will be larger, therefore penalizing the
5398 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5399 * be smaller, again penalizing the lighter task.
5400 *
5401 * This is especially important for buddies when the leftmost
5402 * task is higher priority than the buddy.
0bbd3336 5403 */
f4ad9bd2 5404 return calc_delta_fair(gran, se);
0bbd3336
PZ
5405}
5406
464b7527
PZ
5407/*
5408 * Should 'se' preempt 'curr'.
5409 *
5410 * |s1
5411 * |s2
5412 * |s3
5413 * g
5414 * |<--->|c
5415 *
5416 * w(c, s1) = -1
5417 * w(c, s2) = 0
5418 * w(c, s3) = 1
5419 *
5420 */
5421static int
5422wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5423{
5424 s64 gran, vdiff = curr->vruntime - se->vruntime;
5425
5426 if (vdiff <= 0)
5427 return -1;
5428
e52fb7c0 5429 gran = wakeup_gran(curr, se);
464b7527
PZ
5430 if (vdiff > gran)
5431 return 1;
5432
5433 return 0;
5434}
5435
02479099
PZ
5436static void set_last_buddy(struct sched_entity *se)
5437{
69c80f3e
VP
5438 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5439 return;
5440
5441 for_each_sched_entity(se)
5442 cfs_rq_of(se)->last = se;
02479099
PZ
5443}
5444
5445static void set_next_buddy(struct sched_entity *se)
5446{
69c80f3e
VP
5447 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5448 return;
5449
5450 for_each_sched_entity(se)
5451 cfs_rq_of(se)->next = se;
02479099
PZ
5452}
5453
ac53db59
RR
5454static void set_skip_buddy(struct sched_entity *se)
5455{
69c80f3e
VP
5456 for_each_sched_entity(se)
5457 cfs_rq_of(se)->skip = se;
ac53db59
RR
5458}
5459
bf0f6f24
IM
5460/*
5461 * Preempt the current task with a newly woken task if needed:
5462 */
5a9b86f6 5463static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5464{
5465 struct task_struct *curr = rq->curr;
8651a86c 5466 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5467 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5468 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5469 int next_buddy_marked = 0;
bf0f6f24 5470
4ae7d5ce
IM
5471 if (unlikely(se == pse))
5472 return;
5473
5238cdd3 5474 /*
163122b7 5475 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5476 * unconditionally check_prempt_curr() after an enqueue (which may have
5477 * lead to a throttle). This both saves work and prevents false
5478 * next-buddy nomination below.
5479 */
5480 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5481 return;
5482
2f36825b 5483 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5484 set_next_buddy(pse);
2f36825b
VP
5485 next_buddy_marked = 1;
5486 }
57fdc26d 5487
aec0a514
BR
5488 /*
5489 * We can come here with TIF_NEED_RESCHED already set from new task
5490 * wake up path.
5238cdd3
PT
5491 *
5492 * Note: this also catches the edge-case of curr being in a throttled
5493 * group (e.g. via set_curr_task), since update_curr() (in the
5494 * enqueue of curr) will have resulted in resched being set. This
5495 * prevents us from potentially nominating it as a false LAST_BUDDY
5496 * below.
aec0a514
BR
5497 */
5498 if (test_tsk_need_resched(curr))
5499 return;
5500
a2f5c9ab
DH
5501 /* Idle tasks are by definition preempted by non-idle tasks. */
5502 if (unlikely(curr->policy == SCHED_IDLE) &&
5503 likely(p->policy != SCHED_IDLE))
5504 goto preempt;
5505
91c234b4 5506 /*
a2f5c9ab
DH
5507 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5508 * is driven by the tick):
91c234b4 5509 */
8ed92e51 5510 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5511 return;
bf0f6f24 5512
464b7527 5513 find_matching_se(&se, &pse);
9bbd7374 5514 update_curr(cfs_rq_of(se));
002f128b 5515 BUG_ON(!pse);
2f36825b
VP
5516 if (wakeup_preempt_entity(se, pse) == 1) {
5517 /*
5518 * Bias pick_next to pick the sched entity that is
5519 * triggering this preemption.
5520 */
5521 if (!next_buddy_marked)
5522 set_next_buddy(pse);
3a7e73a2 5523 goto preempt;
2f36825b 5524 }
464b7527 5525
3a7e73a2 5526 return;
a65ac745 5527
3a7e73a2 5528preempt:
8875125e 5529 resched_curr(rq);
3a7e73a2
PZ
5530 /*
5531 * Only set the backward buddy when the current task is still
5532 * on the rq. This can happen when a wakeup gets interleaved
5533 * with schedule on the ->pre_schedule() or idle_balance()
5534 * point, either of which can * drop the rq lock.
5535 *
5536 * Also, during early boot the idle thread is in the fair class,
5537 * for obvious reasons its a bad idea to schedule back to it.
5538 */
5539 if (unlikely(!se->on_rq || curr == rq->idle))
5540 return;
5541
5542 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5543 set_last_buddy(se);
bf0f6f24
IM
5544}
5545
606dba2e 5546static struct task_struct *
e7904a28 5547pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5548{
5549 struct cfs_rq *cfs_rq = &rq->cfs;
5550 struct sched_entity *se;
678d5718 5551 struct task_struct *p;
37e117c0 5552 int new_tasks;
678d5718 5553
6e83125c 5554again:
678d5718
PZ
5555#ifdef CONFIG_FAIR_GROUP_SCHED
5556 if (!cfs_rq->nr_running)
38033c37 5557 goto idle;
678d5718 5558
3f1d2a31 5559 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5560 goto simple;
5561
5562 /*
5563 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5564 * likely that a next task is from the same cgroup as the current.
5565 *
5566 * Therefore attempt to avoid putting and setting the entire cgroup
5567 * hierarchy, only change the part that actually changes.
5568 */
5569
5570 do {
5571 struct sched_entity *curr = cfs_rq->curr;
5572
5573 /*
5574 * Since we got here without doing put_prev_entity() we also
5575 * have to consider cfs_rq->curr. If it is still a runnable
5576 * entity, update_curr() will update its vruntime, otherwise
5577 * forget we've ever seen it.
5578 */
54d27365
BS
5579 if (curr) {
5580 if (curr->on_rq)
5581 update_curr(cfs_rq);
5582 else
5583 curr = NULL;
678d5718 5584
54d27365
BS
5585 /*
5586 * This call to check_cfs_rq_runtime() will do the
5587 * throttle and dequeue its entity in the parent(s).
5588 * Therefore the 'simple' nr_running test will indeed
5589 * be correct.
5590 */
5591 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5592 goto simple;
5593 }
678d5718
PZ
5594
5595 se = pick_next_entity(cfs_rq, curr);
5596 cfs_rq = group_cfs_rq(se);
5597 } while (cfs_rq);
5598
5599 p = task_of(se);
5600
5601 /*
5602 * Since we haven't yet done put_prev_entity and if the selected task
5603 * is a different task than we started out with, try and touch the
5604 * least amount of cfs_rqs.
5605 */
5606 if (prev != p) {
5607 struct sched_entity *pse = &prev->se;
5608
5609 while (!(cfs_rq = is_same_group(se, pse))) {
5610 int se_depth = se->depth;
5611 int pse_depth = pse->depth;
5612
5613 if (se_depth <= pse_depth) {
5614 put_prev_entity(cfs_rq_of(pse), pse);
5615 pse = parent_entity(pse);
5616 }
5617 if (se_depth >= pse_depth) {
5618 set_next_entity(cfs_rq_of(se), se);
5619 se = parent_entity(se);
5620 }
5621 }
5622
5623 put_prev_entity(cfs_rq, pse);
5624 set_next_entity(cfs_rq, se);
5625 }
5626
5627 if (hrtick_enabled(rq))
5628 hrtick_start_fair(rq, p);
5629
5630 return p;
5631simple:
5632 cfs_rq = &rq->cfs;
5633#endif
bf0f6f24 5634
36ace27e 5635 if (!cfs_rq->nr_running)
38033c37 5636 goto idle;
bf0f6f24 5637
3f1d2a31 5638 put_prev_task(rq, prev);
606dba2e 5639
bf0f6f24 5640 do {
678d5718 5641 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5642 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5643 cfs_rq = group_cfs_rq(se);
5644 } while (cfs_rq);
5645
8f4d37ec 5646 p = task_of(se);
678d5718 5647
b39e66ea
MG
5648 if (hrtick_enabled(rq))
5649 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5650
5651 return p;
38033c37
PZ
5652
5653idle:
cbce1a68
PZ
5654 /*
5655 * This is OK, because current is on_cpu, which avoids it being picked
5656 * for load-balance and preemption/IRQs are still disabled avoiding
5657 * further scheduler activity on it and we're being very careful to
5658 * re-start the picking loop.
5659 */
e7904a28 5660 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5661 new_tasks = idle_balance(rq);
e7904a28 5662 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5663 /*
5664 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5665 * possible for any higher priority task to appear. In that case we
5666 * must re-start the pick_next_entity() loop.
5667 */
e4aa358b 5668 if (new_tasks < 0)
37e117c0
PZ
5669 return RETRY_TASK;
5670
e4aa358b 5671 if (new_tasks > 0)
38033c37 5672 goto again;
38033c37
PZ
5673
5674 return NULL;
bf0f6f24
IM
5675}
5676
5677/*
5678 * Account for a descheduled task:
5679 */
31ee529c 5680static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5681{
5682 struct sched_entity *se = &prev->se;
5683 struct cfs_rq *cfs_rq;
5684
5685 for_each_sched_entity(se) {
5686 cfs_rq = cfs_rq_of(se);
ab6cde26 5687 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5688 }
5689}
5690
ac53db59
RR
5691/*
5692 * sched_yield() is very simple
5693 *
5694 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5695 */
5696static void yield_task_fair(struct rq *rq)
5697{
5698 struct task_struct *curr = rq->curr;
5699 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5700 struct sched_entity *se = &curr->se;
5701
5702 /*
5703 * Are we the only task in the tree?
5704 */
5705 if (unlikely(rq->nr_running == 1))
5706 return;
5707
5708 clear_buddies(cfs_rq, se);
5709
5710 if (curr->policy != SCHED_BATCH) {
5711 update_rq_clock(rq);
5712 /*
5713 * Update run-time statistics of the 'current'.
5714 */
5715 update_curr(cfs_rq);
916671c0
MG
5716 /*
5717 * Tell update_rq_clock() that we've just updated,
5718 * so we don't do microscopic update in schedule()
5719 * and double the fastpath cost.
5720 */
9edfbfed 5721 rq_clock_skip_update(rq, true);
ac53db59
RR
5722 }
5723
5724 set_skip_buddy(se);
5725}
5726
d95f4122
MG
5727static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5728{
5729 struct sched_entity *se = &p->se;
5730
5238cdd3
PT
5731 /* throttled hierarchies are not runnable */
5732 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5733 return false;
5734
5735 /* Tell the scheduler that we'd really like pse to run next. */
5736 set_next_buddy(se);
5737
d95f4122
MG
5738 yield_task_fair(rq);
5739
5740 return true;
5741}
5742
681f3e68 5743#ifdef CONFIG_SMP
bf0f6f24 5744/**************************************************
e9c84cb8
PZ
5745 * Fair scheduling class load-balancing methods.
5746 *
5747 * BASICS
5748 *
5749 * The purpose of load-balancing is to achieve the same basic fairness the
5750 * per-cpu scheduler provides, namely provide a proportional amount of compute
5751 * time to each task. This is expressed in the following equation:
5752 *
5753 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5754 *
5755 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5756 * W_i,0 is defined as:
5757 *
5758 * W_i,0 = \Sum_j w_i,j (2)
5759 *
5760 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5761 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5762 *
5763 * The weight average is an exponential decay average of the instantaneous
5764 * weight:
5765 *
5766 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5767 *
ced549fa 5768 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5769 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5770 * can also include other factors [XXX].
5771 *
5772 * To achieve this balance we define a measure of imbalance which follows
5773 * directly from (1):
5774 *
ced549fa 5775 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5776 *
5777 * We them move tasks around to minimize the imbalance. In the continuous
5778 * function space it is obvious this converges, in the discrete case we get
5779 * a few fun cases generally called infeasible weight scenarios.
5780 *
5781 * [XXX expand on:
5782 * - infeasible weights;
5783 * - local vs global optima in the discrete case. ]
5784 *
5785 *
5786 * SCHED DOMAINS
5787 *
5788 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5789 * for all i,j solution, we create a tree of cpus that follows the hardware
5790 * topology where each level pairs two lower groups (or better). This results
5791 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5792 * tree to only the first of the previous level and we decrease the frequency
5793 * of load-balance at each level inv. proportional to the number of cpus in
5794 * the groups.
5795 *
5796 * This yields:
5797 *
5798 * log_2 n 1 n
5799 * \Sum { --- * --- * 2^i } = O(n) (5)
5800 * i = 0 2^i 2^i
5801 * `- size of each group
5802 * | | `- number of cpus doing load-balance
5803 * | `- freq
5804 * `- sum over all levels
5805 *
5806 * Coupled with a limit on how many tasks we can migrate every balance pass,
5807 * this makes (5) the runtime complexity of the balancer.
5808 *
5809 * An important property here is that each CPU is still (indirectly) connected
5810 * to every other cpu in at most O(log n) steps:
5811 *
5812 * The adjacency matrix of the resulting graph is given by:
5813 *
5814 * log_2 n
5815 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5816 * k = 0
5817 *
5818 * And you'll find that:
5819 *
5820 * A^(log_2 n)_i,j != 0 for all i,j (7)
5821 *
5822 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5823 * The task movement gives a factor of O(m), giving a convergence complexity
5824 * of:
5825 *
5826 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5827 *
5828 *
5829 * WORK CONSERVING
5830 *
5831 * In order to avoid CPUs going idle while there's still work to do, new idle
5832 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5833 * tree itself instead of relying on other CPUs to bring it work.
5834 *
5835 * This adds some complexity to both (5) and (8) but it reduces the total idle
5836 * time.
5837 *
5838 * [XXX more?]
5839 *
5840 *
5841 * CGROUPS
5842 *
5843 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5844 *
5845 * s_k,i
5846 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5847 * S_k
5848 *
5849 * Where
5850 *
5851 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5852 *
5853 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5854 *
5855 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5856 * property.
5857 *
5858 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5859 * rewrite all of this once again.]
5860 */
bf0f6f24 5861
ed387b78
HS
5862static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5863
0ec8aa00
PZ
5864enum fbq_type { regular, remote, all };
5865
ddcdf6e7 5866#define LBF_ALL_PINNED 0x01
367456c7 5867#define LBF_NEED_BREAK 0x02
6263322c
PZ
5868#define LBF_DST_PINNED 0x04
5869#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5870
5871struct lb_env {
5872 struct sched_domain *sd;
5873
ddcdf6e7 5874 struct rq *src_rq;
85c1e7da 5875 int src_cpu;
ddcdf6e7
PZ
5876
5877 int dst_cpu;
5878 struct rq *dst_rq;
5879
88b8dac0
SV
5880 struct cpumask *dst_grpmask;
5881 int new_dst_cpu;
ddcdf6e7 5882 enum cpu_idle_type idle;
bd939f45 5883 long imbalance;
b9403130
MW
5884 /* The set of CPUs under consideration for load-balancing */
5885 struct cpumask *cpus;
5886
ddcdf6e7 5887 unsigned int flags;
367456c7
PZ
5888
5889 unsigned int loop;
5890 unsigned int loop_break;
5891 unsigned int loop_max;
0ec8aa00
PZ
5892
5893 enum fbq_type fbq_type;
163122b7 5894 struct list_head tasks;
ddcdf6e7
PZ
5895};
5896
029632fb
PZ
5897/*
5898 * Is this task likely cache-hot:
5899 */
5d5e2b1b 5900static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5901{
5902 s64 delta;
5903
e5673f28
KT
5904 lockdep_assert_held(&env->src_rq->lock);
5905
029632fb
PZ
5906 if (p->sched_class != &fair_sched_class)
5907 return 0;
5908
5909 if (unlikely(p->policy == SCHED_IDLE))
5910 return 0;
5911
5912 /*
5913 * Buddy candidates are cache hot:
5914 */
5d5e2b1b 5915 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5916 (&p->se == cfs_rq_of(&p->se)->next ||
5917 &p->se == cfs_rq_of(&p->se)->last))
5918 return 1;
5919
5920 if (sysctl_sched_migration_cost == -1)
5921 return 1;
5922 if (sysctl_sched_migration_cost == 0)
5923 return 0;
5924
5d5e2b1b 5925 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5926
5927 return delta < (s64)sysctl_sched_migration_cost;
5928}
5929
3a7053b3 5930#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5931/*
2a1ed24c
SD
5932 * Returns 1, if task migration degrades locality
5933 * Returns 0, if task migration improves locality i.e migration preferred.
5934 * Returns -1, if task migration is not affected by locality.
c1ceac62 5935 */
2a1ed24c 5936static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5937{
b1ad065e 5938 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5939 unsigned long src_faults, dst_faults;
3a7053b3
MG
5940 int src_nid, dst_nid;
5941
2a595721 5942 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5943 return -1;
5944
c3b9bc5b 5945 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5946 return -1;
7a0f3083
MG
5947
5948 src_nid = cpu_to_node(env->src_cpu);
5949 dst_nid = cpu_to_node(env->dst_cpu);
5950
83e1d2cd 5951 if (src_nid == dst_nid)
2a1ed24c 5952 return -1;
7a0f3083 5953
2a1ed24c
SD
5954 /* Migrating away from the preferred node is always bad. */
5955 if (src_nid == p->numa_preferred_nid) {
5956 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5957 return 1;
5958 else
5959 return -1;
5960 }
b1ad065e 5961
c1ceac62
RR
5962 /* Encourage migration to the preferred node. */
5963 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5964 return 0;
b1ad065e 5965
c1ceac62
RR
5966 if (numa_group) {
5967 src_faults = group_faults(p, src_nid);
5968 dst_faults = group_faults(p, dst_nid);
5969 } else {
5970 src_faults = task_faults(p, src_nid);
5971 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5972 }
5973
c1ceac62 5974 return dst_faults < src_faults;
7a0f3083
MG
5975}
5976
3a7053b3 5977#else
2a1ed24c 5978static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5979 struct lb_env *env)
5980{
2a1ed24c 5981 return -1;
7a0f3083 5982}
3a7053b3
MG
5983#endif
5984
1e3c88bd
PZ
5985/*
5986 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5987 */
5988static
8e45cb54 5989int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5990{
2a1ed24c 5991 int tsk_cache_hot;
e5673f28
KT
5992
5993 lockdep_assert_held(&env->src_rq->lock);
5994
1e3c88bd
PZ
5995 /*
5996 * We do not migrate tasks that are:
d3198084 5997 * 1) throttled_lb_pair, or
1e3c88bd 5998 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5999 * 3) running (obviously), or
6000 * 4) are cache-hot on their current CPU.
1e3c88bd 6001 */
d3198084
JK
6002 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6003 return 0;
6004
ddcdf6e7 6005 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6006 int cpu;
88b8dac0 6007
41acab88 6008 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6009
6263322c
PZ
6010 env->flags |= LBF_SOME_PINNED;
6011
88b8dac0
SV
6012 /*
6013 * Remember if this task can be migrated to any other cpu in
6014 * our sched_group. We may want to revisit it if we couldn't
6015 * meet load balance goals by pulling other tasks on src_cpu.
6016 *
6017 * Also avoid computing new_dst_cpu if we have already computed
6018 * one in current iteration.
6019 */
6263322c 6020 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6021 return 0;
6022
e02e60c1
JK
6023 /* Prevent to re-select dst_cpu via env's cpus */
6024 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6025 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6026 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6027 env->new_dst_cpu = cpu;
6028 break;
6029 }
88b8dac0 6030 }
e02e60c1 6031
1e3c88bd
PZ
6032 return 0;
6033 }
88b8dac0
SV
6034
6035 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6036 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6037
ddcdf6e7 6038 if (task_running(env->src_rq, p)) {
41acab88 6039 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6040 return 0;
6041 }
6042
6043 /*
6044 * Aggressive migration if:
3a7053b3
MG
6045 * 1) destination numa is preferred
6046 * 2) task is cache cold, or
6047 * 3) too many balance attempts have failed.
1e3c88bd 6048 */
2a1ed24c
SD
6049 tsk_cache_hot = migrate_degrades_locality(p, env);
6050 if (tsk_cache_hot == -1)
6051 tsk_cache_hot = task_hot(p, env);
3a7053b3 6052
2a1ed24c 6053 if (tsk_cache_hot <= 0 ||
7a96c231 6054 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6055 if (tsk_cache_hot == 1) {
3a7053b3
MG
6056 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6057 schedstat_inc(p, se.statistics.nr_forced_migrations);
6058 }
1e3c88bd
PZ
6059 return 1;
6060 }
6061
4e2dcb73
ZH
6062 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6063 return 0;
1e3c88bd
PZ
6064}
6065
897c395f 6066/*
163122b7
KT
6067 * detach_task() -- detach the task for the migration specified in env
6068 */
6069static void detach_task(struct task_struct *p, struct lb_env *env)
6070{
6071 lockdep_assert_held(&env->src_rq->lock);
6072
163122b7 6073 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6074 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6075 set_task_cpu(p, env->dst_cpu);
6076}
6077
897c395f 6078/*
e5673f28 6079 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6080 * part of active balancing operations within "domain".
897c395f 6081 *
e5673f28 6082 * Returns a task if successful and NULL otherwise.
897c395f 6083 */
e5673f28 6084static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6085{
6086 struct task_struct *p, *n;
897c395f 6087
e5673f28
KT
6088 lockdep_assert_held(&env->src_rq->lock);
6089
367456c7 6090 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6091 if (!can_migrate_task(p, env))
6092 continue;
897c395f 6093
163122b7 6094 detach_task(p, env);
e5673f28 6095
367456c7 6096 /*
e5673f28 6097 * Right now, this is only the second place where
163122b7 6098 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6099 * so we can safely collect stats here rather than
163122b7 6100 * inside detach_tasks().
367456c7
PZ
6101 */
6102 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6103 return p;
897c395f 6104 }
e5673f28 6105 return NULL;
897c395f
PZ
6106}
6107
eb95308e
PZ
6108static const unsigned int sched_nr_migrate_break = 32;
6109
5d6523eb 6110/*
163122b7
KT
6111 * detach_tasks() -- tries to detach up to imbalance weighted load from
6112 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6113 *
163122b7 6114 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6115 */
163122b7 6116static int detach_tasks(struct lb_env *env)
1e3c88bd 6117{
5d6523eb
PZ
6118 struct list_head *tasks = &env->src_rq->cfs_tasks;
6119 struct task_struct *p;
367456c7 6120 unsigned long load;
163122b7
KT
6121 int detached = 0;
6122
6123 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6124
bd939f45 6125 if (env->imbalance <= 0)
5d6523eb 6126 return 0;
1e3c88bd 6127
5d6523eb 6128 while (!list_empty(tasks)) {
985d3a4c
YD
6129 /*
6130 * We don't want to steal all, otherwise we may be treated likewise,
6131 * which could at worst lead to a livelock crash.
6132 */
6133 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6134 break;
6135
5d6523eb 6136 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6137
367456c7
PZ
6138 env->loop++;
6139 /* We've more or less seen every task there is, call it quits */
5d6523eb 6140 if (env->loop > env->loop_max)
367456c7 6141 break;
5d6523eb
PZ
6142
6143 /* take a breather every nr_migrate tasks */
367456c7 6144 if (env->loop > env->loop_break) {
eb95308e 6145 env->loop_break += sched_nr_migrate_break;
8e45cb54 6146 env->flags |= LBF_NEED_BREAK;
ee00e66f 6147 break;
a195f004 6148 }
1e3c88bd 6149
d3198084 6150 if (!can_migrate_task(p, env))
367456c7
PZ
6151 goto next;
6152
6153 load = task_h_load(p);
5d6523eb 6154
eb95308e 6155 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6156 goto next;
6157
bd939f45 6158 if ((load / 2) > env->imbalance)
367456c7 6159 goto next;
1e3c88bd 6160
163122b7
KT
6161 detach_task(p, env);
6162 list_add(&p->se.group_node, &env->tasks);
6163
6164 detached++;
bd939f45 6165 env->imbalance -= load;
1e3c88bd
PZ
6166
6167#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6168 /*
6169 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6170 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6171 * the critical section.
6172 */
5d6523eb 6173 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6174 break;
1e3c88bd
PZ
6175#endif
6176
ee00e66f
PZ
6177 /*
6178 * We only want to steal up to the prescribed amount of
6179 * weighted load.
6180 */
bd939f45 6181 if (env->imbalance <= 0)
ee00e66f 6182 break;
367456c7
PZ
6183
6184 continue;
6185next:
5d6523eb 6186 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6187 }
5d6523eb 6188
1e3c88bd 6189 /*
163122b7
KT
6190 * Right now, this is one of only two places we collect this stat
6191 * so we can safely collect detach_one_task() stats here rather
6192 * than inside detach_one_task().
1e3c88bd 6193 */
163122b7 6194 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6195
163122b7
KT
6196 return detached;
6197}
6198
6199/*
6200 * attach_task() -- attach the task detached by detach_task() to its new rq.
6201 */
6202static void attach_task(struct rq *rq, struct task_struct *p)
6203{
6204 lockdep_assert_held(&rq->lock);
6205
6206 BUG_ON(task_rq(p) != rq);
163122b7 6207 activate_task(rq, p, 0);
3ea94de1 6208 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6209 check_preempt_curr(rq, p, 0);
6210}
6211
6212/*
6213 * attach_one_task() -- attaches the task returned from detach_one_task() to
6214 * its new rq.
6215 */
6216static void attach_one_task(struct rq *rq, struct task_struct *p)
6217{
6218 raw_spin_lock(&rq->lock);
6219 attach_task(rq, p);
6220 raw_spin_unlock(&rq->lock);
6221}
6222
6223/*
6224 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6225 * new rq.
6226 */
6227static void attach_tasks(struct lb_env *env)
6228{
6229 struct list_head *tasks = &env->tasks;
6230 struct task_struct *p;
6231
6232 raw_spin_lock(&env->dst_rq->lock);
6233
6234 while (!list_empty(tasks)) {
6235 p = list_first_entry(tasks, struct task_struct, se.group_node);
6236 list_del_init(&p->se.group_node);
1e3c88bd 6237
163122b7
KT
6238 attach_task(env->dst_rq, p);
6239 }
6240
6241 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6242}
6243
230059de 6244#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6245static void update_blocked_averages(int cpu)
9e3081ca 6246{
9e3081ca 6247 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6248 struct cfs_rq *cfs_rq;
6249 unsigned long flags;
9e3081ca 6250
48a16753
PT
6251 raw_spin_lock_irqsave(&rq->lock, flags);
6252 update_rq_clock(rq);
9d89c257 6253
9763b67f
PZ
6254 /*
6255 * Iterates the task_group tree in a bottom up fashion, see
6256 * list_add_leaf_cfs_rq() for details.
6257 */
64660c86 6258 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6259 /* throttled entities do not contribute to load */
6260 if (throttled_hierarchy(cfs_rq))
6261 continue;
48a16753 6262
a2c6c91f 6263 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6264 update_tg_load_avg(cfs_rq, 0);
6265 }
48a16753 6266 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6267}
6268
9763b67f 6269/*
68520796 6270 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6271 * This needs to be done in a top-down fashion because the load of a child
6272 * group is a fraction of its parents load.
6273 */
68520796 6274static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6275{
68520796
VD
6276 struct rq *rq = rq_of(cfs_rq);
6277 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6278 unsigned long now = jiffies;
68520796 6279 unsigned long load;
a35b6466 6280
68520796 6281 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6282 return;
6283
68520796
VD
6284 cfs_rq->h_load_next = NULL;
6285 for_each_sched_entity(se) {
6286 cfs_rq = cfs_rq_of(se);
6287 cfs_rq->h_load_next = se;
6288 if (cfs_rq->last_h_load_update == now)
6289 break;
6290 }
a35b6466 6291
68520796 6292 if (!se) {
7ea241af 6293 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6294 cfs_rq->last_h_load_update = now;
6295 }
6296
6297 while ((se = cfs_rq->h_load_next) != NULL) {
6298 load = cfs_rq->h_load;
7ea241af
YD
6299 load = div64_ul(load * se->avg.load_avg,
6300 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6301 cfs_rq = group_cfs_rq(se);
6302 cfs_rq->h_load = load;
6303 cfs_rq->last_h_load_update = now;
6304 }
9763b67f
PZ
6305}
6306
367456c7 6307static unsigned long task_h_load(struct task_struct *p)
230059de 6308{
367456c7 6309 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6310
68520796 6311 update_cfs_rq_h_load(cfs_rq);
9d89c257 6312 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6313 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6314}
6315#else
48a16753 6316static inline void update_blocked_averages(int cpu)
9e3081ca 6317{
6c1d47c0
VG
6318 struct rq *rq = cpu_rq(cpu);
6319 struct cfs_rq *cfs_rq = &rq->cfs;
6320 unsigned long flags;
6321
6322 raw_spin_lock_irqsave(&rq->lock, flags);
6323 update_rq_clock(rq);
a2c6c91f 6324 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6325 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6326}
6327
367456c7 6328static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6329{
9d89c257 6330 return p->se.avg.load_avg;
1e3c88bd 6331}
230059de 6332#endif
1e3c88bd 6333
1e3c88bd 6334/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6335
6336enum group_type {
6337 group_other = 0,
6338 group_imbalanced,
6339 group_overloaded,
6340};
6341
1e3c88bd
PZ
6342/*
6343 * sg_lb_stats - stats of a sched_group required for load_balancing
6344 */
6345struct sg_lb_stats {
6346 unsigned long avg_load; /*Avg load across the CPUs of the group */
6347 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6348 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6349 unsigned long load_per_task;
63b2ca30 6350 unsigned long group_capacity;
9e91d61d 6351 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6352 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6353 unsigned int idle_cpus;
6354 unsigned int group_weight;
caeb178c 6355 enum group_type group_type;
ea67821b 6356 int group_no_capacity;
0ec8aa00
PZ
6357#ifdef CONFIG_NUMA_BALANCING
6358 unsigned int nr_numa_running;
6359 unsigned int nr_preferred_running;
6360#endif
1e3c88bd
PZ
6361};
6362
56cf515b
JK
6363/*
6364 * sd_lb_stats - Structure to store the statistics of a sched_domain
6365 * during load balancing.
6366 */
6367struct sd_lb_stats {
6368 struct sched_group *busiest; /* Busiest group in this sd */
6369 struct sched_group *local; /* Local group in this sd */
6370 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6371 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6372 unsigned long avg_load; /* Average load across all groups in sd */
6373
56cf515b 6374 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6375 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6376};
6377
147c5fc2
PZ
6378static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6379{
6380 /*
6381 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6382 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6383 * We must however clear busiest_stat::avg_load because
6384 * update_sd_pick_busiest() reads this before assignment.
6385 */
6386 *sds = (struct sd_lb_stats){
6387 .busiest = NULL,
6388 .local = NULL,
6389 .total_load = 0UL,
63b2ca30 6390 .total_capacity = 0UL,
147c5fc2
PZ
6391 .busiest_stat = {
6392 .avg_load = 0UL,
caeb178c
RR
6393 .sum_nr_running = 0,
6394 .group_type = group_other,
147c5fc2
PZ
6395 },
6396 };
6397}
6398
1e3c88bd
PZ
6399/**
6400 * get_sd_load_idx - Obtain the load index for a given sched domain.
6401 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6402 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6403 *
6404 * Return: The load index.
1e3c88bd
PZ
6405 */
6406static inline int get_sd_load_idx(struct sched_domain *sd,
6407 enum cpu_idle_type idle)
6408{
6409 int load_idx;
6410
6411 switch (idle) {
6412 case CPU_NOT_IDLE:
6413 load_idx = sd->busy_idx;
6414 break;
6415
6416 case CPU_NEWLY_IDLE:
6417 load_idx = sd->newidle_idx;
6418 break;
6419 default:
6420 load_idx = sd->idle_idx;
6421 break;
6422 }
6423
6424 return load_idx;
6425}
6426
ced549fa 6427static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6428{
6429 struct rq *rq = cpu_rq(cpu);
b5b4860d 6430 u64 total, used, age_stamp, avg;
cadefd3d 6431 s64 delta;
1e3c88bd 6432
b654f7de
PZ
6433 /*
6434 * Since we're reading these variables without serialization make sure
6435 * we read them once before doing sanity checks on them.
6436 */
316c1608
JL
6437 age_stamp = READ_ONCE(rq->age_stamp);
6438 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6439 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6440
cadefd3d
PZ
6441 if (unlikely(delta < 0))
6442 delta = 0;
6443
6444 total = sched_avg_period() + delta;
aa483808 6445
b5b4860d 6446 used = div_u64(avg, total);
1e3c88bd 6447
b5b4860d
VG
6448 if (likely(used < SCHED_CAPACITY_SCALE))
6449 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6450
b5b4860d 6451 return 1;
1e3c88bd
PZ
6452}
6453
ced549fa 6454static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6455{
8cd5601c 6456 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6457 struct sched_group *sdg = sd->groups;
6458
ca6d75e6 6459 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6460
ced549fa 6461 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6462 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6463
ced549fa
NP
6464 if (!capacity)
6465 capacity = 1;
1e3c88bd 6466
ced549fa
NP
6467 cpu_rq(cpu)->cpu_capacity = capacity;
6468 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6469}
6470
63b2ca30 6471void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6472{
6473 struct sched_domain *child = sd->child;
6474 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6475 unsigned long capacity;
4ec4412e
VG
6476 unsigned long interval;
6477
6478 interval = msecs_to_jiffies(sd->balance_interval);
6479 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6480 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6481
6482 if (!child) {
ced549fa 6483 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6484 return;
6485 }
6486
dc7ff76e 6487 capacity = 0;
1e3c88bd 6488
74a5ce20
PZ
6489 if (child->flags & SD_OVERLAP) {
6490 /*
6491 * SD_OVERLAP domains cannot assume that child groups
6492 * span the current group.
6493 */
6494
863bffc8 6495 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6496 struct sched_group_capacity *sgc;
9abf24d4 6497 struct rq *rq = cpu_rq(cpu);
863bffc8 6498
9abf24d4 6499 /*
63b2ca30 6500 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6501 * gets here before we've attached the domains to the
6502 * runqueues.
6503 *
ced549fa
NP
6504 * Use capacity_of(), which is set irrespective of domains
6505 * in update_cpu_capacity().
9abf24d4 6506 *
dc7ff76e 6507 * This avoids capacity from being 0 and
9abf24d4 6508 * causing divide-by-zero issues on boot.
9abf24d4
SD
6509 */
6510 if (unlikely(!rq->sd)) {
ced549fa 6511 capacity += capacity_of(cpu);
9abf24d4
SD
6512 continue;
6513 }
863bffc8 6514
63b2ca30 6515 sgc = rq->sd->groups->sgc;
63b2ca30 6516 capacity += sgc->capacity;
863bffc8 6517 }
74a5ce20
PZ
6518 } else {
6519 /*
6520 * !SD_OVERLAP domains can assume that child groups
6521 * span the current group.
6522 */
6523
6524 group = child->groups;
6525 do {
63b2ca30 6526 capacity += group->sgc->capacity;
74a5ce20
PZ
6527 group = group->next;
6528 } while (group != child->groups);
6529 }
1e3c88bd 6530
63b2ca30 6531 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6532}
6533
9d5efe05 6534/*
ea67821b
VG
6535 * Check whether the capacity of the rq has been noticeably reduced by side
6536 * activity. The imbalance_pct is used for the threshold.
6537 * Return true is the capacity is reduced
9d5efe05
SV
6538 */
6539static inline int
ea67821b 6540check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6541{
ea67821b
VG
6542 return ((rq->cpu_capacity * sd->imbalance_pct) <
6543 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6544}
6545
30ce5dab
PZ
6546/*
6547 * Group imbalance indicates (and tries to solve) the problem where balancing
6548 * groups is inadequate due to tsk_cpus_allowed() constraints.
6549 *
6550 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6551 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6552 * Something like:
6553 *
6554 * { 0 1 2 3 } { 4 5 6 7 }
6555 * * * * *
6556 *
6557 * If we were to balance group-wise we'd place two tasks in the first group and
6558 * two tasks in the second group. Clearly this is undesired as it will overload
6559 * cpu 3 and leave one of the cpus in the second group unused.
6560 *
6561 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6562 * by noticing the lower domain failed to reach balance and had difficulty
6563 * moving tasks due to affinity constraints.
30ce5dab
PZ
6564 *
6565 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6566 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6567 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6568 * to create an effective group imbalance.
6569 *
6570 * This is a somewhat tricky proposition since the next run might not find the
6571 * group imbalance and decide the groups need to be balanced again. A most
6572 * subtle and fragile situation.
6573 */
6574
6263322c 6575static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6576{
63b2ca30 6577 return group->sgc->imbalance;
30ce5dab
PZ
6578}
6579
b37d9316 6580/*
ea67821b
VG
6581 * group_has_capacity returns true if the group has spare capacity that could
6582 * be used by some tasks.
6583 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6584 * smaller than the number of CPUs or if the utilization is lower than the
6585 * available capacity for CFS tasks.
ea67821b
VG
6586 * For the latter, we use a threshold to stabilize the state, to take into
6587 * account the variance of the tasks' load and to return true if the available
6588 * capacity in meaningful for the load balancer.
6589 * As an example, an available capacity of 1% can appear but it doesn't make
6590 * any benefit for the load balance.
b37d9316 6591 */
ea67821b
VG
6592static inline bool
6593group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6594{
ea67821b
VG
6595 if (sgs->sum_nr_running < sgs->group_weight)
6596 return true;
c61037e9 6597
ea67821b 6598 if ((sgs->group_capacity * 100) >
9e91d61d 6599 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6600 return true;
b37d9316 6601
ea67821b
VG
6602 return false;
6603}
6604
6605/*
6606 * group_is_overloaded returns true if the group has more tasks than it can
6607 * handle.
6608 * group_is_overloaded is not equals to !group_has_capacity because a group
6609 * with the exact right number of tasks, has no more spare capacity but is not
6610 * overloaded so both group_has_capacity and group_is_overloaded return
6611 * false.
6612 */
6613static inline bool
6614group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6615{
6616 if (sgs->sum_nr_running <= sgs->group_weight)
6617 return false;
b37d9316 6618
ea67821b 6619 if ((sgs->group_capacity * 100) <
9e91d61d 6620 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6621 return true;
b37d9316 6622
ea67821b 6623 return false;
b37d9316
PZ
6624}
6625
79a89f92
LY
6626static inline enum
6627group_type group_classify(struct sched_group *group,
6628 struct sg_lb_stats *sgs)
caeb178c 6629{
ea67821b 6630 if (sgs->group_no_capacity)
caeb178c
RR
6631 return group_overloaded;
6632
6633 if (sg_imbalanced(group))
6634 return group_imbalanced;
6635
6636 return group_other;
6637}
6638
1e3c88bd
PZ
6639/**
6640 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6641 * @env: The load balancing environment.
1e3c88bd 6642 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6643 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6644 * @local_group: Does group contain this_cpu.
1e3c88bd 6645 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6646 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6647 */
bd939f45
PZ
6648static inline void update_sg_lb_stats(struct lb_env *env,
6649 struct sched_group *group, int load_idx,
4486edd1
TC
6650 int local_group, struct sg_lb_stats *sgs,
6651 bool *overload)
1e3c88bd 6652{
30ce5dab 6653 unsigned long load;
a426f99c 6654 int i, nr_running;
1e3c88bd 6655
b72ff13c
PZ
6656 memset(sgs, 0, sizeof(*sgs));
6657
b9403130 6658 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6659 struct rq *rq = cpu_rq(i);
6660
1e3c88bd 6661 /* Bias balancing toward cpus of our domain */
6263322c 6662 if (local_group)
04f733b4 6663 load = target_load(i, load_idx);
6263322c 6664 else
1e3c88bd 6665 load = source_load(i, load_idx);
1e3c88bd
PZ
6666
6667 sgs->group_load += load;
9e91d61d 6668 sgs->group_util += cpu_util(i);
65fdac08 6669 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6670
a426f99c
WL
6671 nr_running = rq->nr_running;
6672 if (nr_running > 1)
4486edd1
TC
6673 *overload = true;
6674
0ec8aa00
PZ
6675#ifdef CONFIG_NUMA_BALANCING
6676 sgs->nr_numa_running += rq->nr_numa_running;
6677 sgs->nr_preferred_running += rq->nr_preferred_running;
6678#endif
1e3c88bd 6679 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6680 /*
6681 * No need to call idle_cpu() if nr_running is not 0
6682 */
6683 if (!nr_running && idle_cpu(i))
aae6d3dd 6684 sgs->idle_cpus++;
1e3c88bd
PZ
6685 }
6686
63b2ca30
NP
6687 /* Adjust by relative CPU capacity of the group */
6688 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6689 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6690
dd5feea1 6691 if (sgs->sum_nr_running)
38d0f770 6692 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6693
aae6d3dd 6694 sgs->group_weight = group->group_weight;
b37d9316 6695
ea67821b 6696 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6697 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6698}
6699
532cb4c4
MN
6700/**
6701 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6702 * @env: The load balancing environment.
532cb4c4
MN
6703 * @sds: sched_domain statistics
6704 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6705 * @sgs: sched_group statistics
532cb4c4
MN
6706 *
6707 * Determine if @sg is a busier group than the previously selected
6708 * busiest group.
e69f6186
YB
6709 *
6710 * Return: %true if @sg is a busier group than the previously selected
6711 * busiest group. %false otherwise.
532cb4c4 6712 */
bd939f45 6713static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6714 struct sd_lb_stats *sds,
6715 struct sched_group *sg,
bd939f45 6716 struct sg_lb_stats *sgs)
532cb4c4 6717{
caeb178c 6718 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6719
caeb178c 6720 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6721 return true;
6722
caeb178c
RR
6723 if (sgs->group_type < busiest->group_type)
6724 return false;
6725
6726 if (sgs->avg_load <= busiest->avg_load)
6727 return false;
6728
6729 /* This is the busiest node in its class. */
6730 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6731 return true;
6732
1f621e02
SD
6733 /* No ASYM_PACKING if target cpu is already busy */
6734 if (env->idle == CPU_NOT_IDLE)
6735 return true;
532cb4c4
MN
6736 /*
6737 * ASYM_PACKING needs to move all the work to the lowest
6738 * numbered CPUs in the group, therefore mark all groups
6739 * higher than ourself as busy.
6740 */
caeb178c 6741 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6742 if (!sds->busiest)
6743 return true;
6744
1f621e02
SD
6745 /* Prefer to move from highest possible cpu's work */
6746 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6747 return true;
6748 }
6749
6750 return false;
6751}
6752
0ec8aa00
PZ
6753#ifdef CONFIG_NUMA_BALANCING
6754static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6755{
6756 if (sgs->sum_nr_running > sgs->nr_numa_running)
6757 return regular;
6758 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6759 return remote;
6760 return all;
6761}
6762
6763static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6764{
6765 if (rq->nr_running > rq->nr_numa_running)
6766 return regular;
6767 if (rq->nr_running > rq->nr_preferred_running)
6768 return remote;
6769 return all;
6770}
6771#else
6772static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6773{
6774 return all;
6775}
6776
6777static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6778{
6779 return regular;
6780}
6781#endif /* CONFIG_NUMA_BALANCING */
6782
1e3c88bd 6783/**
461819ac 6784 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6785 * @env: The load balancing environment.
1e3c88bd
PZ
6786 * @sds: variable to hold the statistics for this sched_domain.
6787 */
0ec8aa00 6788static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6789{
bd939f45
PZ
6790 struct sched_domain *child = env->sd->child;
6791 struct sched_group *sg = env->sd->groups;
56cf515b 6792 struct sg_lb_stats tmp_sgs;
1e3c88bd 6793 int load_idx, prefer_sibling = 0;
4486edd1 6794 bool overload = false;
1e3c88bd
PZ
6795
6796 if (child && child->flags & SD_PREFER_SIBLING)
6797 prefer_sibling = 1;
6798
bd939f45 6799 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6800
6801 do {
56cf515b 6802 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6803 int local_group;
6804
bd939f45 6805 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6806 if (local_group) {
6807 sds->local = sg;
6808 sgs = &sds->local_stat;
b72ff13c
PZ
6809
6810 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6811 time_after_eq(jiffies, sg->sgc->next_update))
6812 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6813 }
1e3c88bd 6814
4486edd1
TC
6815 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6816 &overload);
1e3c88bd 6817
b72ff13c
PZ
6818 if (local_group)
6819 goto next_group;
6820
1e3c88bd
PZ
6821 /*
6822 * In case the child domain prefers tasks go to siblings
ea67821b 6823 * first, lower the sg capacity so that we'll try
75dd321d
NR
6824 * and move all the excess tasks away. We lower the capacity
6825 * of a group only if the local group has the capacity to fit
ea67821b
VG
6826 * these excess tasks. The extra check prevents the case where
6827 * you always pull from the heaviest group when it is already
6828 * under-utilized (possible with a large weight task outweighs
6829 * the tasks on the system).
1e3c88bd 6830 */
b72ff13c 6831 if (prefer_sibling && sds->local &&
ea67821b
VG
6832 group_has_capacity(env, &sds->local_stat) &&
6833 (sgs->sum_nr_running > 1)) {
6834 sgs->group_no_capacity = 1;
79a89f92 6835 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6836 }
1e3c88bd 6837
b72ff13c 6838 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6839 sds->busiest = sg;
56cf515b 6840 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6841 }
6842
b72ff13c
PZ
6843next_group:
6844 /* Now, start updating sd_lb_stats */
6845 sds->total_load += sgs->group_load;
63b2ca30 6846 sds->total_capacity += sgs->group_capacity;
b72ff13c 6847
532cb4c4 6848 sg = sg->next;
bd939f45 6849 } while (sg != env->sd->groups);
0ec8aa00
PZ
6850
6851 if (env->sd->flags & SD_NUMA)
6852 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6853
6854 if (!env->sd->parent) {
6855 /* update overload indicator if we are at root domain */
6856 if (env->dst_rq->rd->overload != overload)
6857 env->dst_rq->rd->overload = overload;
6858 }
6859
532cb4c4
MN
6860}
6861
532cb4c4
MN
6862/**
6863 * check_asym_packing - Check to see if the group is packed into the
6864 * sched doman.
6865 *
6866 * This is primarily intended to used at the sibling level. Some
6867 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6868 * case of POWER7, it can move to lower SMT modes only when higher
6869 * threads are idle. When in lower SMT modes, the threads will
6870 * perform better since they share less core resources. Hence when we
6871 * have idle threads, we want them to be the higher ones.
6872 *
6873 * This packing function is run on idle threads. It checks to see if
6874 * the busiest CPU in this domain (core in the P7 case) has a higher
6875 * CPU number than the packing function is being run on. Here we are
6876 * assuming lower CPU number will be equivalent to lower a SMT thread
6877 * number.
6878 *
e69f6186 6879 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6880 * this CPU. The amount of the imbalance is returned in *imbalance.
6881 *
cd96891d 6882 * @env: The load balancing environment.
532cb4c4 6883 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6884 */
bd939f45 6885static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6886{
6887 int busiest_cpu;
6888
bd939f45 6889 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6890 return 0;
6891
1f621e02
SD
6892 if (env->idle == CPU_NOT_IDLE)
6893 return 0;
6894
532cb4c4
MN
6895 if (!sds->busiest)
6896 return 0;
6897
6898 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6899 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6900 return 0;
6901
bd939f45 6902 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6903 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6904 SCHED_CAPACITY_SCALE);
bd939f45 6905
532cb4c4 6906 return 1;
1e3c88bd
PZ
6907}
6908
6909/**
6910 * fix_small_imbalance - Calculate the minor imbalance that exists
6911 * amongst the groups of a sched_domain, during
6912 * load balancing.
cd96891d 6913 * @env: The load balancing environment.
1e3c88bd 6914 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6915 */
bd939f45
PZ
6916static inline
6917void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6918{
63b2ca30 6919 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6920 unsigned int imbn = 2;
dd5feea1 6921 unsigned long scaled_busy_load_per_task;
56cf515b 6922 struct sg_lb_stats *local, *busiest;
1e3c88bd 6923
56cf515b
JK
6924 local = &sds->local_stat;
6925 busiest = &sds->busiest_stat;
1e3c88bd 6926
56cf515b
JK
6927 if (!local->sum_nr_running)
6928 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6929 else if (busiest->load_per_task > local->load_per_task)
6930 imbn = 1;
dd5feea1 6931
56cf515b 6932 scaled_busy_load_per_task =
ca8ce3d0 6933 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6934 busiest->group_capacity;
56cf515b 6935
3029ede3
VD
6936 if (busiest->avg_load + scaled_busy_load_per_task >=
6937 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6938 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6939 return;
6940 }
6941
6942 /*
6943 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6944 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6945 * moving them.
6946 */
6947
63b2ca30 6948 capa_now += busiest->group_capacity *
56cf515b 6949 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6950 capa_now += local->group_capacity *
56cf515b 6951 min(local->load_per_task, local->avg_load);
ca8ce3d0 6952 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6953
6954 /* Amount of load we'd subtract */
a2cd4260 6955 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6956 capa_move += busiest->group_capacity *
56cf515b 6957 min(busiest->load_per_task,
a2cd4260 6958 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6959 }
1e3c88bd
PZ
6960
6961 /* Amount of load we'd add */
63b2ca30 6962 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6963 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6964 tmp = (busiest->avg_load * busiest->group_capacity) /
6965 local->group_capacity;
56cf515b 6966 } else {
ca8ce3d0 6967 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6968 local->group_capacity;
56cf515b 6969 }
63b2ca30 6970 capa_move += local->group_capacity *
3ae11c90 6971 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6972 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6973
6974 /* Move if we gain throughput */
63b2ca30 6975 if (capa_move > capa_now)
56cf515b 6976 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6977}
6978
6979/**
6980 * calculate_imbalance - Calculate the amount of imbalance present within the
6981 * groups of a given sched_domain during load balance.
bd939f45 6982 * @env: load balance environment
1e3c88bd 6983 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6984 */
bd939f45 6985static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6986{
dd5feea1 6987 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6988 struct sg_lb_stats *local, *busiest;
6989
6990 local = &sds->local_stat;
56cf515b 6991 busiest = &sds->busiest_stat;
dd5feea1 6992
caeb178c 6993 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6994 /*
6995 * In the group_imb case we cannot rely on group-wide averages
6996 * to ensure cpu-load equilibrium, look at wider averages. XXX
6997 */
56cf515b
JK
6998 busiest->load_per_task =
6999 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7000 }
7001
1e3c88bd
PZ
7002 /*
7003 * In the presence of smp nice balancing, certain scenarios can have
7004 * max load less than avg load(as we skip the groups at or below
ced549fa 7005 * its cpu_capacity, while calculating max_load..)
1e3c88bd 7006 */
b1885550
VD
7007 if (busiest->avg_load <= sds->avg_load ||
7008 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7009 env->imbalance = 0;
7010 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7011 }
7012
9a5d9ba6
PZ
7013 /*
7014 * If there aren't any idle cpus, avoid creating some.
7015 */
7016 if (busiest->group_type == group_overloaded &&
7017 local->group_type == group_overloaded) {
ea67821b 7018 load_above_capacity = busiest->sum_nr_running *
172895e6 7019 scale_load_down(NICE_0_LOAD);
ea67821b
VG
7020 if (load_above_capacity > busiest->group_capacity)
7021 load_above_capacity -= busiest->group_capacity;
7022 else
7023 load_above_capacity = ~0UL;
dd5feea1
SS
7024 }
7025
7026 /*
7027 * We're trying to get all the cpus to the average_load, so we don't
7028 * want to push ourselves above the average load, nor do we wish to
7029 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7030 * we also don't want to reduce the group load below the group
7031 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7032 */
30ce5dab 7033 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7034
7035 /* How much load to actually move to equalise the imbalance */
56cf515b 7036 env->imbalance = min(
63b2ca30
NP
7037 max_pull * busiest->group_capacity,
7038 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7039 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7040
7041 /*
7042 * if *imbalance is less than the average load per runnable task
25985edc 7043 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7044 * a think about bumping its value to force at least one task to be
7045 * moved
7046 */
56cf515b 7047 if (env->imbalance < busiest->load_per_task)
bd939f45 7048 return fix_small_imbalance(env, sds);
1e3c88bd 7049}
fab47622 7050
1e3c88bd
PZ
7051/******* find_busiest_group() helpers end here *********************/
7052
7053/**
7054 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7055 * if there is an imbalance.
1e3c88bd
PZ
7056 *
7057 * Also calculates the amount of weighted load which should be moved
7058 * to restore balance.
7059 *
cd96891d 7060 * @env: The load balancing environment.
1e3c88bd 7061 *
e69f6186 7062 * Return: - The busiest group if imbalance exists.
1e3c88bd 7063 */
56cf515b 7064static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7065{
56cf515b 7066 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7067 struct sd_lb_stats sds;
7068
147c5fc2 7069 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7070
7071 /*
7072 * Compute the various statistics relavent for load balancing at
7073 * this level.
7074 */
23f0d209 7075 update_sd_lb_stats(env, &sds);
56cf515b
JK
7076 local = &sds.local_stat;
7077 busiest = &sds.busiest_stat;
1e3c88bd 7078
ea67821b 7079 /* ASYM feature bypasses nice load balance check */
1f621e02 7080 if (check_asym_packing(env, &sds))
532cb4c4
MN
7081 return sds.busiest;
7082
cc57aa8f 7083 /* There is no busy sibling group to pull tasks from */
56cf515b 7084 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7085 goto out_balanced;
7086
ca8ce3d0
NP
7087 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7088 / sds.total_capacity;
b0432d8f 7089
866ab43e
PZ
7090 /*
7091 * If the busiest group is imbalanced the below checks don't
30ce5dab 7092 * work because they assume all things are equal, which typically
866ab43e
PZ
7093 * isn't true due to cpus_allowed constraints and the like.
7094 */
caeb178c 7095 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7096 goto force_balance;
7097
cc57aa8f 7098 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7099 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7100 busiest->group_no_capacity)
fab47622
NR
7101 goto force_balance;
7102
cc57aa8f 7103 /*
9c58c79a 7104 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7105 * don't try and pull any tasks.
7106 */
56cf515b 7107 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7108 goto out_balanced;
7109
cc57aa8f
PZ
7110 /*
7111 * Don't pull any tasks if this group is already above the domain
7112 * average load.
7113 */
56cf515b 7114 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7115 goto out_balanced;
7116
bd939f45 7117 if (env->idle == CPU_IDLE) {
aae6d3dd 7118 /*
43f4d666
VG
7119 * This cpu is idle. If the busiest group is not overloaded
7120 * and there is no imbalance between this and busiest group
7121 * wrt idle cpus, it is balanced. The imbalance becomes
7122 * significant if the diff is greater than 1 otherwise we
7123 * might end up to just move the imbalance on another group
aae6d3dd 7124 */
43f4d666
VG
7125 if ((busiest->group_type != group_overloaded) &&
7126 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7127 goto out_balanced;
c186fafe
PZ
7128 } else {
7129 /*
7130 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7131 * imbalance_pct to be conservative.
7132 */
56cf515b
JK
7133 if (100 * busiest->avg_load <=
7134 env->sd->imbalance_pct * local->avg_load)
c186fafe 7135 goto out_balanced;
aae6d3dd 7136 }
1e3c88bd 7137
fab47622 7138force_balance:
1e3c88bd 7139 /* Looks like there is an imbalance. Compute it */
bd939f45 7140 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7141 return sds.busiest;
7142
7143out_balanced:
bd939f45 7144 env->imbalance = 0;
1e3c88bd
PZ
7145 return NULL;
7146}
7147
7148/*
7149 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7150 */
bd939f45 7151static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7152 struct sched_group *group)
1e3c88bd
PZ
7153{
7154 struct rq *busiest = NULL, *rq;
ced549fa 7155 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7156 int i;
7157
6906a408 7158 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7159 unsigned long capacity, wl;
0ec8aa00
PZ
7160 enum fbq_type rt;
7161
7162 rq = cpu_rq(i);
7163 rt = fbq_classify_rq(rq);
1e3c88bd 7164
0ec8aa00
PZ
7165 /*
7166 * We classify groups/runqueues into three groups:
7167 * - regular: there are !numa tasks
7168 * - remote: there are numa tasks that run on the 'wrong' node
7169 * - all: there is no distinction
7170 *
7171 * In order to avoid migrating ideally placed numa tasks,
7172 * ignore those when there's better options.
7173 *
7174 * If we ignore the actual busiest queue to migrate another
7175 * task, the next balance pass can still reduce the busiest
7176 * queue by moving tasks around inside the node.
7177 *
7178 * If we cannot move enough load due to this classification
7179 * the next pass will adjust the group classification and
7180 * allow migration of more tasks.
7181 *
7182 * Both cases only affect the total convergence complexity.
7183 */
7184 if (rt > env->fbq_type)
7185 continue;
7186
ced549fa 7187 capacity = capacity_of(i);
9d5efe05 7188
6e40f5bb 7189 wl = weighted_cpuload(i);
1e3c88bd 7190
6e40f5bb
TG
7191 /*
7192 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7193 * which is not scaled with the cpu capacity.
6e40f5bb 7194 */
ea67821b
VG
7195
7196 if (rq->nr_running == 1 && wl > env->imbalance &&
7197 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7198 continue;
7199
6e40f5bb
TG
7200 /*
7201 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7202 * the weighted_cpuload() scaled with the cpu capacity, so
7203 * that the load can be moved away from the cpu that is
7204 * potentially running at a lower capacity.
95a79b80 7205 *
ced549fa 7206 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7207 * multiplication to rid ourselves of the division works out
ced549fa
NP
7208 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7209 * our previous maximum.
6e40f5bb 7210 */
ced549fa 7211 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7212 busiest_load = wl;
ced549fa 7213 busiest_capacity = capacity;
1e3c88bd
PZ
7214 busiest = rq;
7215 }
7216 }
7217
7218 return busiest;
7219}
7220
7221/*
7222 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7223 * so long as it is large enough.
7224 */
7225#define MAX_PINNED_INTERVAL 512
7226
7227/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7228DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7229
bd939f45 7230static int need_active_balance(struct lb_env *env)
1af3ed3d 7231{
bd939f45
PZ
7232 struct sched_domain *sd = env->sd;
7233
7234 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7235
7236 /*
7237 * ASYM_PACKING needs to force migrate tasks from busy but
7238 * higher numbered CPUs in order to pack all tasks in the
7239 * lowest numbered CPUs.
7240 */
bd939f45 7241 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7242 return 1;
1af3ed3d
PZ
7243 }
7244
1aaf90a4
VG
7245 /*
7246 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7247 * It's worth migrating the task if the src_cpu's capacity is reduced
7248 * because of other sched_class or IRQs if more capacity stays
7249 * available on dst_cpu.
7250 */
7251 if ((env->idle != CPU_NOT_IDLE) &&
7252 (env->src_rq->cfs.h_nr_running == 1)) {
7253 if ((check_cpu_capacity(env->src_rq, sd)) &&
7254 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7255 return 1;
7256 }
7257
1af3ed3d
PZ
7258 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7259}
7260
969c7921
TH
7261static int active_load_balance_cpu_stop(void *data);
7262
23f0d209
JK
7263static int should_we_balance(struct lb_env *env)
7264{
7265 struct sched_group *sg = env->sd->groups;
7266 struct cpumask *sg_cpus, *sg_mask;
7267 int cpu, balance_cpu = -1;
7268
7269 /*
7270 * In the newly idle case, we will allow all the cpu's
7271 * to do the newly idle load balance.
7272 */
7273 if (env->idle == CPU_NEWLY_IDLE)
7274 return 1;
7275
7276 sg_cpus = sched_group_cpus(sg);
7277 sg_mask = sched_group_mask(sg);
7278 /* Try to find first idle cpu */
7279 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7280 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7281 continue;
7282
7283 balance_cpu = cpu;
7284 break;
7285 }
7286
7287 if (balance_cpu == -1)
7288 balance_cpu = group_balance_cpu(sg);
7289
7290 /*
7291 * First idle cpu or the first cpu(busiest) in this sched group
7292 * is eligible for doing load balancing at this and above domains.
7293 */
b0cff9d8 7294 return balance_cpu == env->dst_cpu;
23f0d209
JK
7295}
7296
1e3c88bd
PZ
7297/*
7298 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7299 * tasks if there is an imbalance.
7300 */
7301static int load_balance(int this_cpu, struct rq *this_rq,
7302 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7303 int *continue_balancing)
1e3c88bd 7304{
88b8dac0 7305 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7306 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7307 struct sched_group *group;
1e3c88bd
PZ
7308 struct rq *busiest;
7309 unsigned long flags;
4ba29684 7310 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7311
8e45cb54
PZ
7312 struct lb_env env = {
7313 .sd = sd,
ddcdf6e7
PZ
7314 .dst_cpu = this_cpu,
7315 .dst_rq = this_rq,
88b8dac0 7316 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7317 .idle = idle,
eb95308e 7318 .loop_break = sched_nr_migrate_break,
b9403130 7319 .cpus = cpus,
0ec8aa00 7320 .fbq_type = all,
163122b7 7321 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7322 };
7323
cfc03118
JK
7324 /*
7325 * For NEWLY_IDLE load_balancing, we don't need to consider
7326 * other cpus in our group
7327 */
e02e60c1 7328 if (idle == CPU_NEWLY_IDLE)
cfc03118 7329 env.dst_grpmask = NULL;
cfc03118 7330
1e3c88bd
PZ
7331 cpumask_copy(cpus, cpu_active_mask);
7332
1e3c88bd
PZ
7333 schedstat_inc(sd, lb_count[idle]);
7334
7335redo:
23f0d209
JK
7336 if (!should_we_balance(&env)) {
7337 *continue_balancing = 0;
1e3c88bd 7338 goto out_balanced;
23f0d209 7339 }
1e3c88bd 7340
23f0d209 7341 group = find_busiest_group(&env);
1e3c88bd
PZ
7342 if (!group) {
7343 schedstat_inc(sd, lb_nobusyg[idle]);
7344 goto out_balanced;
7345 }
7346
b9403130 7347 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7348 if (!busiest) {
7349 schedstat_inc(sd, lb_nobusyq[idle]);
7350 goto out_balanced;
7351 }
7352
78feefc5 7353 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7354
bd939f45 7355 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7356
1aaf90a4
VG
7357 env.src_cpu = busiest->cpu;
7358 env.src_rq = busiest;
7359
1e3c88bd
PZ
7360 ld_moved = 0;
7361 if (busiest->nr_running > 1) {
7362 /*
7363 * Attempt to move tasks. If find_busiest_group has found
7364 * an imbalance but busiest->nr_running <= 1, the group is
7365 * still unbalanced. ld_moved simply stays zero, so it is
7366 * correctly treated as an imbalance.
7367 */
8e45cb54 7368 env.flags |= LBF_ALL_PINNED;
c82513e5 7369 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7370
5d6523eb 7371more_balance:
163122b7 7372 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7373
7374 /*
7375 * cur_ld_moved - load moved in current iteration
7376 * ld_moved - cumulative load moved across iterations
7377 */
163122b7 7378 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7379
7380 /*
163122b7
KT
7381 * We've detached some tasks from busiest_rq. Every
7382 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7383 * unlock busiest->lock, and we are able to be sure
7384 * that nobody can manipulate the tasks in parallel.
7385 * See task_rq_lock() family for the details.
1e3c88bd 7386 */
163122b7
KT
7387
7388 raw_spin_unlock(&busiest->lock);
7389
7390 if (cur_ld_moved) {
7391 attach_tasks(&env);
7392 ld_moved += cur_ld_moved;
7393 }
7394
1e3c88bd 7395 local_irq_restore(flags);
88b8dac0 7396
f1cd0858
JK
7397 if (env.flags & LBF_NEED_BREAK) {
7398 env.flags &= ~LBF_NEED_BREAK;
7399 goto more_balance;
7400 }
7401
88b8dac0
SV
7402 /*
7403 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7404 * us and move them to an alternate dst_cpu in our sched_group
7405 * where they can run. The upper limit on how many times we
7406 * iterate on same src_cpu is dependent on number of cpus in our
7407 * sched_group.
7408 *
7409 * This changes load balance semantics a bit on who can move
7410 * load to a given_cpu. In addition to the given_cpu itself
7411 * (or a ilb_cpu acting on its behalf where given_cpu is
7412 * nohz-idle), we now have balance_cpu in a position to move
7413 * load to given_cpu. In rare situations, this may cause
7414 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7415 * _independently_ and at _same_ time to move some load to
7416 * given_cpu) causing exceess load to be moved to given_cpu.
7417 * This however should not happen so much in practice and
7418 * moreover subsequent load balance cycles should correct the
7419 * excess load moved.
7420 */
6263322c 7421 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7422
7aff2e3a
VD
7423 /* Prevent to re-select dst_cpu via env's cpus */
7424 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7425
78feefc5 7426 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7427 env.dst_cpu = env.new_dst_cpu;
6263322c 7428 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7429 env.loop = 0;
7430 env.loop_break = sched_nr_migrate_break;
e02e60c1 7431
88b8dac0
SV
7432 /*
7433 * Go back to "more_balance" rather than "redo" since we
7434 * need to continue with same src_cpu.
7435 */
7436 goto more_balance;
7437 }
1e3c88bd 7438
6263322c
PZ
7439 /*
7440 * We failed to reach balance because of affinity.
7441 */
7442 if (sd_parent) {
63b2ca30 7443 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7444
afdeee05 7445 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7446 *group_imbalance = 1;
6263322c
PZ
7447 }
7448
1e3c88bd 7449 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7450 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7451 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7452 if (!cpumask_empty(cpus)) {
7453 env.loop = 0;
7454 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7455 goto redo;
bbf18b19 7456 }
afdeee05 7457 goto out_all_pinned;
1e3c88bd
PZ
7458 }
7459 }
7460
7461 if (!ld_moved) {
7462 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7463 /*
7464 * Increment the failure counter only on periodic balance.
7465 * We do not want newidle balance, which can be very
7466 * frequent, pollute the failure counter causing
7467 * excessive cache_hot migrations and active balances.
7468 */
7469 if (idle != CPU_NEWLY_IDLE)
7470 sd->nr_balance_failed++;
1e3c88bd 7471
bd939f45 7472 if (need_active_balance(&env)) {
1e3c88bd
PZ
7473 raw_spin_lock_irqsave(&busiest->lock, flags);
7474
969c7921
TH
7475 /* don't kick the active_load_balance_cpu_stop,
7476 * if the curr task on busiest cpu can't be
7477 * moved to this_cpu
1e3c88bd
PZ
7478 */
7479 if (!cpumask_test_cpu(this_cpu,
fa17b507 7480 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7481 raw_spin_unlock_irqrestore(&busiest->lock,
7482 flags);
8e45cb54 7483 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7484 goto out_one_pinned;
7485 }
7486
969c7921
TH
7487 /*
7488 * ->active_balance synchronizes accesses to
7489 * ->active_balance_work. Once set, it's cleared
7490 * only after active load balance is finished.
7491 */
1e3c88bd
PZ
7492 if (!busiest->active_balance) {
7493 busiest->active_balance = 1;
7494 busiest->push_cpu = this_cpu;
7495 active_balance = 1;
7496 }
7497 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7498
bd939f45 7499 if (active_balance) {
969c7921
TH
7500 stop_one_cpu_nowait(cpu_of(busiest),
7501 active_load_balance_cpu_stop, busiest,
7502 &busiest->active_balance_work);
bd939f45 7503 }
1e3c88bd 7504
d02c0711 7505 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7506 sd->nr_balance_failed = sd->cache_nice_tries+1;
7507 }
7508 } else
7509 sd->nr_balance_failed = 0;
7510
7511 if (likely(!active_balance)) {
7512 /* We were unbalanced, so reset the balancing interval */
7513 sd->balance_interval = sd->min_interval;
7514 } else {
7515 /*
7516 * If we've begun active balancing, start to back off. This
7517 * case may not be covered by the all_pinned logic if there
7518 * is only 1 task on the busy runqueue (because we don't call
163122b7 7519 * detach_tasks).
1e3c88bd
PZ
7520 */
7521 if (sd->balance_interval < sd->max_interval)
7522 sd->balance_interval *= 2;
7523 }
7524
1e3c88bd
PZ
7525 goto out;
7526
7527out_balanced:
afdeee05
VG
7528 /*
7529 * We reach balance although we may have faced some affinity
7530 * constraints. Clear the imbalance flag if it was set.
7531 */
7532 if (sd_parent) {
7533 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7534
7535 if (*group_imbalance)
7536 *group_imbalance = 0;
7537 }
7538
7539out_all_pinned:
7540 /*
7541 * We reach balance because all tasks are pinned at this level so
7542 * we can't migrate them. Let the imbalance flag set so parent level
7543 * can try to migrate them.
7544 */
1e3c88bd
PZ
7545 schedstat_inc(sd, lb_balanced[idle]);
7546
7547 sd->nr_balance_failed = 0;
7548
7549out_one_pinned:
7550 /* tune up the balancing interval */
8e45cb54 7551 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7552 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7553 (sd->balance_interval < sd->max_interval))
7554 sd->balance_interval *= 2;
7555
46e49b38 7556 ld_moved = 0;
1e3c88bd 7557out:
1e3c88bd
PZ
7558 return ld_moved;
7559}
7560
52a08ef1
JL
7561static inline unsigned long
7562get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7563{
7564 unsigned long interval = sd->balance_interval;
7565
7566 if (cpu_busy)
7567 interval *= sd->busy_factor;
7568
7569 /* scale ms to jiffies */
7570 interval = msecs_to_jiffies(interval);
7571 interval = clamp(interval, 1UL, max_load_balance_interval);
7572
7573 return interval;
7574}
7575
7576static inline void
7577update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7578{
7579 unsigned long interval, next;
7580
7581 interval = get_sd_balance_interval(sd, cpu_busy);
7582 next = sd->last_balance + interval;
7583
7584 if (time_after(*next_balance, next))
7585 *next_balance = next;
7586}
7587
1e3c88bd
PZ
7588/*
7589 * idle_balance is called by schedule() if this_cpu is about to become
7590 * idle. Attempts to pull tasks from other CPUs.
7591 */
6e83125c 7592static int idle_balance(struct rq *this_rq)
1e3c88bd 7593{
52a08ef1
JL
7594 unsigned long next_balance = jiffies + HZ;
7595 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7596 struct sched_domain *sd;
7597 int pulled_task = 0;
9bd721c5 7598 u64 curr_cost = 0;
1e3c88bd 7599
6e83125c
PZ
7600 /*
7601 * We must set idle_stamp _before_ calling idle_balance(), such that we
7602 * measure the duration of idle_balance() as idle time.
7603 */
7604 this_rq->idle_stamp = rq_clock(this_rq);
7605
4486edd1
TC
7606 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7607 !this_rq->rd->overload) {
52a08ef1
JL
7608 rcu_read_lock();
7609 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7610 if (sd)
7611 update_next_balance(sd, 0, &next_balance);
7612 rcu_read_unlock();
7613
6e83125c 7614 goto out;
52a08ef1 7615 }
1e3c88bd 7616
f492e12e
PZ
7617 raw_spin_unlock(&this_rq->lock);
7618
48a16753 7619 update_blocked_averages(this_cpu);
dce840a0 7620 rcu_read_lock();
1e3c88bd 7621 for_each_domain(this_cpu, sd) {
23f0d209 7622 int continue_balancing = 1;
9bd721c5 7623 u64 t0, domain_cost;
1e3c88bd
PZ
7624
7625 if (!(sd->flags & SD_LOAD_BALANCE))
7626 continue;
7627
52a08ef1
JL
7628 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7629 update_next_balance(sd, 0, &next_balance);
9bd721c5 7630 break;
52a08ef1 7631 }
9bd721c5 7632
f492e12e 7633 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7634 t0 = sched_clock_cpu(this_cpu);
7635
f492e12e 7636 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7637 sd, CPU_NEWLY_IDLE,
7638 &continue_balancing);
9bd721c5
JL
7639
7640 domain_cost = sched_clock_cpu(this_cpu) - t0;
7641 if (domain_cost > sd->max_newidle_lb_cost)
7642 sd->max_newidle_lb_cost = domain_cost;
7643
7644 curr_cost += domain_cost;
f492e12e 7645 }
1e3c88bd 7646
52a08ef1 7647 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7648
7649 /*
7650 * Stop searching for tasks to pull if there are
7651 * now runnable tasks on this rq.
7652 */
7653 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7654 break;
1e3c88bd 7655 }
dce840a0 7656 rcu_read_unlock();
f492e12e
PZ
7657
7658 raw_spin_lock(&this_rq->lock);
7659
0e5b5337
JL
7660 if (curr_cost > this_rq->max_idle_balance_cost)
7661 this_rq->max_idle_balance_cost = curr_cost;
7662
e5fc6611 7663 /*
0e5b5337
JL
7664 * While browsing the domains, we released the rq lock, a task could
7665 * have been enqueued in the meantime. Since we're not going idle,
7666 * pretend we pulled a task.
e5fc6611 7667 */
0e5b5337 7668 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7669 pulled_task = 1;
e5fc6611 7670
52a08ef1
JL
7671out:
7672 /* Move the next balance forward */
7673 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7674 this_rq->next_balance = next_balance;
9bd721c5 7675
e4aa358b 7676 /* Is there a task of a high priority class? */
46383648 7677 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7678 pulled_task = -1;
7679
38c6ade2 7680 if (pulled_task)
6e83125c
PZ
7681 this_rq->idle_stamp = 0;
7682
3c4017c1 7683 return pulled_task;
1e3c88bd
PZ
7684}
7685
7686/*
969c7921
TH
7687 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7688 * running tasks off the busiest CPU onto idle CPUs. It requires at
7689 * least 1 task to be running on each physical CPU where possible, and
7690 * avoids physical / logical imbalances.
1e3c88bd 7691 */
969c7921 7692static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7693{
969c7921
TH
7694 struct rq *busiest_rq = data;
7695 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7696 int target_cpu = busiest_rq->push_cpu;
969c7921 7697 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7698 struct sched_domain *sd;
e5673f28 7699 struct task_struct *p = NULL;
969c7921
TH
7700
7701 raw_spin_lock_irq(&busiest_rq->lock);
7702
7703 /* make sure the requested cpu hasn't gone down in the meantime */
7704 if (unlikely(busiest_cpu != smp_processor_id() ||
7705 !busiest_rq->active_balance))
7706 goto out_unlock;
1e3c88bd
PZ
7707
7708 /* Is there any task to move? */
7709 if (busiest_rq->nr_running <= 1)
969c7921 7710 goto out_unlock;
1e3c88bd
PZ
7711
7712 /*
7713 * This condition is "impossible", if it occurs
7714 * we need to fix it. Originally reported by
7715 * Bjorn Helgaas on a 128-cpu setup.
7716 */
7717 BUG_ON(busiest_rq == target_rq);
7718
1e3c88bd 7719 /* Search for an sd spanning us and the target CPU. */
dce840a0 7720 rcu_read_lock();
1e3c88bd
PZ
7721 for_each_domain(target_cpu, sd) {
7722 if ((sd->flags & SD_LOAD_BALANCE) &&
7723 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7724 break;
7725 }
7726
7727 if (likely(sd)) {
8e45cb54
PZ
7728 struct lb_env env = {
7729 .sd = sd,
ddcdf6e7
PZ
7730 .dst_cpu = target_cpu,
7731 .dst_rq = target_rq,
7732 .src_cpu = busiest_rq->cpu,
7733 .src_rq = busiest_rq,
8e45cb54
PZ
7734 .idle = CPU_IDLE,
7735 };
7736
1e3c88bd
PZ
7737 schedstat_inc(sd, alb_count);
7738
e5673f28 7739 p = detach_one_task(&env);
d02c0711 7740 if (p) {
1e3c88bd 7741 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7742 /* Active balancing done, reset the failure counter. */
7743 sd->nr_balance_failed = 0;
7744 } else {
1e3c88bd 7745 schedstat_inc(sd, alb_failed);
d02c0711 7746 }
1e3c88bd 7747 }
dce840a0 7748 rcu_read_unlock();
969c7921
TH
7749out_unlock:
7750 busiest_rq->active_balance = 0;
e5673f28
KT
7751 raw_spin_unlock(&busiest_rq->lock);
7752
7753 if (p)
7754 attach_one_task(target_rq, p);
7755
7756 local_irq_enable();
7757
969c7921 7758 return 0;
1e3c88bd
PZ
7759}
7760
d987fc7f
MG
7761static inline int on_null_domain(struct rq *rq)
7762{
7763 return unlikely(!rcu_dereference_sched(rq->sd));
7764}
7765
3451d024 7766#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7767/*
7768 * idle load balancing details
83cd4fe2
VP
7769 * - When one of the busy CPUs notice that there may be an idle rebalancing
7770 * needed, they will kick the idle load balancer, which then does idle
7771 * load balancing for all the idle CPUs.
7772 */
1e3c88bd 7773static struct {
83cd4fe2 7774 cpumask_var_t idle_cpus_mask;
0b005cf5 7775 atomic_t nr_cpus;
83cd4fe2
VP
7776 unsigned long next_balance; /* in jiffy units */
7777} nohz ____cacheline_aligned;
1e3c88bd 7778
3dd0337d 7779static inline int find_new_ilb(void)
1e3c88bd 7780{
0b005cf5 7781 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7782
786d6dc7
SS
7783 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7784 return ilb;
7785
7786 return nr_cpu_ids;
1e3c88bd 7787}
1e3c88bd 7788
83cd4fe2
VP
7789/*
7790 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7791 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7792 * CPU (if there is one).
7793 */
0aeeeeba 7794static void nohz_balancer_kick(void)
83cd4fe2
VP
7795{
7796 int ilb_cpu;
7797
7798 nohz.next_balance++;
7799
3dd0337d 7800 ilb_cpu = find_new_ilb();
83cd4fe2 7801
0b005cf5
SS
7802 if (ilb_cpu >= nr_cpu_ids)
7803 return;
83cd4fe2 7804
cd490c5b 7805 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7806 return;
7807 /*
7808 * Use smp_send_reschedule() instead of resched_cpu().
7809 * This way we generate a sched IPI on the target cpu which
7810 * is idle. And the softirq performing nohz idle load balance
7811 * will be run before returning from the IPI.
7812 */
7813 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7814 return;
7815}
7816
c1cc017c 7817static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7818{
7819 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7820 /*
7821 * Completely isolated CPUs don't ever set, so we must test.
7822 */
7823 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7824 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7825 atomic_dec(&nohz.nr_cpus);
7826 }
71325960
SS
7827 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7828 }
7829}
7830
69e1e811
SS
7831static inline void set_cpu_sd_state_busy(void)
7832{
7833 struct sched_domain *sd;
37dc6b50 7834 int cpu = smp_processor_id();
69e1e811 7835
69e1e811 7836 rcu_read_lock();
37dc6b50 7837 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7838
7839 if (!sd || !sd->nohz_idle)
7840 goto unlock;
7841 sd->nohz_idle = 0;
7842
63b2ca30 7843 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7844unlock:
69e1e811
SS
7845 rcu_read_unlock();
7846}
7847
7848void set_cpu_sd_state_idle(void)
7849{
7850 struct sched_domain *sd;
37dc6b50 7851 int cpu = smp_processor_id();
69e1e811 7852
69e1e811 7853 rcu_read_lock();
37dc6b50 7854 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7855
7856 if (!sd || sd->nohz_idle)
7857 goto unlock;
7858 sd->nohz_idle = 1;
7859
63b2ca30 7860 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7861unlock:
69e1e811
SS
7862 rcu_read_unlock();
7863}
7864
1e3c88bd 7865/*
c1cc017c 7866 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7867 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7868 */
c1cc017c 7869void nohz_balance_enter_idle(int cpu)
1e3c88bd 7870{
71325960
SS
7871 /*
7872 * If this cpu is going down, then nothing needs to be done.
7873 */
7874 if (!cpu_active(cpu))
7875 return;
7876
c1cc017c
AS
7877 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7878 return;
1e3c88bd 7879
d987fc7f
MG
7880 /*
7881 * If we're a completely isolated CPU, we don't play.
7882 */
7883 if (on_null_domain(cpu_rq(cpu)))
7884 return;
7885
c1cc017c
AS
7886 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7887 atomic_inc(&nohz.nr_cpus);
7888 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7889}
71325960 7890
0db0628d 7891static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7892 unsigned long action, void *hcpu)
7893{
7894 switch (action & ~CPU_TASKS_FROZEN) {
7895 case CPU_DYING:
c1cc017c 7896 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7897 return NOTIFY_OK;
7898 default:
7899 return NOTIFY_DONE;
7900 }
7901}
1e3c88bd
PZ
7902#endif
7903
7904static DEFINE_SPINLOCK(balancing);
7905
49c022e6
PZ
7906/*
7907 * Scale the max load_balance interval with the number of CPUs in the system.
7908 * This trades load-balance latency on larger machines for less cross talk.
7909 */
029632fb 7910void update_max_interval(void)
49c022e6
PZ
7911{
7912 max_load_balance_interval = HZ*num_online_cpus()/10;
7913}
7914
1e3c88bd
PZ
7915/*
7916 * It checks each scheduling domain to see if it is due to be balanced,
7917 * and initiates a balancing operation if so.
7918 *
b9b0853a 7919 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7920 */
f7ed0a89 7921static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7922{
23f0d209 7923 int continue_balancing = 1;
f7ed0a89 7924 int cpu = rq->cpu;
1e3c88bd 7925 unsigned long interval;
04f733b4 7926 struct sched_domain *sd;
1e3c88bd
PZ
7927 /* Earliest time when we have to do rebalance again */
7928 unsigned long next_balance = jiffies + 60*HZ;
7929 int update_next_balance = 0;
f48627e6
JL
7930 int need_serialize, need_decay = 0;
7931 u64 max_cost = 0;
1e3c88bd 7932
48a16753 7933 update_blocked_averages(cpu);
2069dd75 7934
dce840a0 7935 rcu_read_lock();
1e3c88bd 7936 for_each_domain(cpu, sd) {
f48627e6
JL
7937 /*
7938 * Decay the newidle max times here because this is a regular
7939 * visit to all the domains. Decay ~1% per second.
7940 */
7941 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7942 sd->max_newidle_lb_cost =
7943 (sd->max_newidle_lb_cost * 253) / 256;
7944 sd->next_decay_max_lb_cost = jiffies + HZ;
7945 need_decay = 1;
7946 }
7947 max_cost += sd->max_newidle_lb_cost;
7948
1e3c88bd
PZ
7949 if (!(sd->flags & SD_LOAD_BALANCE))
7950 continue;
7951
f48627e6
JL
7952 /*
7953 * Stop the load balance at this level. There is another
7954 * CPU in our sched group which is doing load balancing more
7955 * actively.
7956 */
7957 if (!continue_balancing) {
7958 if (need_decay)
7959 continue;
7960 break;
7961 }
7962
52a08ef1 7963 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7964
7965 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7966 if (need_serialize) {
7967 if (!spin_trylock(&balancing))
7968 goto out;
7969 }
7970
7971 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7972 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7973 /*
6263322c 7974 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7975 * env->dst_cpu, so we can't know our idle
7976 * state even if we migrated tasks. Update it.
1e3c88bd 7977 */
de5eb2dd 7978 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7979 }
7980 sd->last_balance = jiffies;
52a08ef1 7981 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7982 }
7983 if (need_serialize)
7984 spin_unlock(&balancing);
7985out:
7986 if (time_after(next_balance, sd->last_balance + interval)) {
7987 next_balance = sd->last_balance + interval;
7988 update_next_balance = 1;
7989 }
f48627e6
JL
7990 }
7991 if (need_decay) {
1e3c88bd 7992 /*
f48627e6
JL
7993 * Ensure the rq-wide value also decays but keep it at a
7994 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7995 */
f48627e6
JL
7996 rq->max_idle_balance_cost =
7997 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7998 }
dce840a0 7999 rcu_read_unlock();
1e3c88bd
PZ
8000
8001 /*
8002 * next_balance will be updated only when there is a need.
8003 * When the cpu is attached to null domain for ex, it will not be
8004 * updated.
8005 */
c5afb6a8 8006 if (likely(update_next_balance)) {
1e3c88bd 8007 rq->next_balance = next_balance;
c5afb6a8
VG
8008
8009#ifdef CONFIG_NO_HZ_COMMON
8010 /*
8011 * If this CPU has been elected to perform the nohz idle
8012 * balance. Other idle CPUs have already rebalanced with
8013 * nohz_idle_balance() and nohz.next_balance has been
8014 * updated accordingly. This CPU is now running the idle load
8015 * balance for itself and we need to update the
8016 * nohz.next_balance accordingly.
8017 */
8018 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8019 nohz.next_balance = rq->next_balance;
8020#endif
8021 }
1e3c88bd
PZ
8022}
8023
3451d024 8024#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8025/*
3451d024 8026 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8027 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8028 */
208cb16b 8029static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8030{
208cb16b 8031 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8032 struct rq *rq;
8033 int balance_cpu;
c5afb6a8
VG
8034 /* Earliest time when we have to do rebalance again */
8035 unsigned long next_balance = jiffies + 60*HZ;
8036 int update_next_balance = 0;
83cd4fe2 8037
1c792db7
SS
8038 if (idle != CPU_IDLE ||
8039 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8040 goto end;
83cd4fe2
VP
8041
8042 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8043 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8044 continue;
8045
8046 /*
8047 * If this cpu gets work to do, stop the load balancing
8048 * work being done for other cpus. Next load
8049 * balancing owner will pick it up.
8050 */
1c792db7 8051 if (need_resched())
83cd4fe2 8052 break;
83cd4fe2 8053
5ed4f1d9
VG
8054 rq = cpu_rq(balance_cpu);
8055
ed61bbc6
TC
8056 /*
8057 * If time for next balance is due,
8058 * do the balance.
8059 */
8060 if (time_after_eq(jiffies, rq->next_balance)) {
8061 raw_spin_lock_irq(&rq->lock);
8062 update_rq_clock(rq);
cee1afce 8063 cpu_load_update_idle(rq);
ed61bbc6
TC
8064 raw_spin_unlock_irq(&rq->lock);
8065 rebalance_domains(rq, CPU_IDLE);
8066 }
83cd4fe2 8067
c5afb6a8
VG
8068 if (time_after(next_balance, rq->next_balance)) {
8069 next_balance = rq->next_balance;
8070 update_next_balance = 1;
8071 }
83cd4fe2 8072 }
c5afb6a8
VG
8073
8074 /*
8075 * next_balance will be updated only when there is a need.
8076 * When the CPU is attached to null domain for ex, it will not be
8077 * updated.
8078 */
8079 if (likely(update_next_balance))
8080 nohz.next_balance = next_balance;
1c792db7
SS
8081end:
8082 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8083}
8084
8085/*
0b005cf5 8086 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8087 * of an idle cpu in the system.
0b005cf5 8088 * - This rq has more than one task.
1aaf90a4
VG
8089 * - This rq has at least one CFS task and the capacity of the CPU is
8090 * significantly reduced because of RT tasks or IRQs.
8091 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8092 * multiple busy cpu.
0b005cf5
SS
8093 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8094 * domain span are idle.
83cd4fe2 8095 */
1aaf90a4 8096static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8097{
8098 unsigned long now = jiffies;
0b005cf5 8099 struct sched_domain *sd;
63b2ca30 8100 struct sched_group_capacity *sgc;
4a725627 8101 int nr_busy, cpu = rq->cpu;
1aaf90a4 8102 bool kick = false;
83cd4fe2 8103
4a725627 8104 if (unlikely(rq->idle_balance))
1aaf90a4 8105 return false;
83cd4fe2 8106
1c792db7
SS
8107 /*
8108 * We may be recently in ticked or tickless idle mode. At the first
8109 * busy tick after returning from idle, we will update the busy stats.
8110 */
69e1e811 8111 set_cpu_sd_state_busy();
c1cc017c 8112 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8113
8114 /*
8115 * None are in tickless mode and hence no need for NOHZ idle load
8116 * balancing.
8117 */
8118 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8119 return false;
1c792db7
SS
8120
8121 if (time_before(now, nohz.next_balance))
1aaf90a4 8122 return false;
83cd4fe2 8123
0b005cf5 8124 if (rq->nr_running >= 2)
1aaf90a4 8125 return true;
83cd4fe2 8126
067491b7 8127 rcu_read_lock();
37dc6b50 8128 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8129 if (sd) {
63b2ca30
NP
8130 sgc = sd->groups->sgc;
8131 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8132
1aaf90a4
VG
8133 if (nr_busy > 1) {
8134 kick = true;
8135 goto unlock;
8136 }
8137
83cd4fe2 8138 }
37dc6b50 8139
1aaf90a4
VG
8140 sd = rcu_dereference(rq->sd);
8141 if (sd) {
8142 if ((rq->cfs.h_nr_running >= 1) &&
8143 check_cpu_capacity(rq, sd)) {
8144 kick = true;
8145 goto unlock;
8146 }
8147 }
37dc6b50 8148
1aaf90a4 8149 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8150 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8151 sched_domain_span(sd)) < cpu)) {
8152 kick = true;
8153 goto unlock;
8154 }
067491b7 8155
1aaf90a4 8156unlock:
067491b7 8157 rcu_read_unlock();
1aaf90a4 8158 return kick;
83cd4fe2
VP
8159}
8160#else
208cb16b 8161static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8162#endif
8163
8164/*
8165 * run_rebalance_domains is triggered when needed from the scheduler tick.
8166 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8167 */
1e3c88bd
PZ
8168static void run_rebalance_domains(struct softirq_action *h)
8169{
208cb16b 8170 struct rq *this_rq = this_rq();
6eb57e0d 8171 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8172 CPU_IDLE : CPU_NOT_IDLE;
8173
1e3c88bd 8174 /*
83cd4fe2 8175 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8176 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8177 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8178 * give the idle cpus a chance to load balance. Else we may
8179 * load balance only within the local sched_domain hierarchy
8180 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8181 */
208cb16b 8182 nohz_idle_balance(this_rq, idle);
d4573c3e 8183 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8184}
8185
1e3c88bd
PZ
8186/*
8187 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8188 */
7caff66f 8189void trigger_load_balance(struct rq *rq)
1e3c88bd 8190{
1e3c88bd 8191 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8192 if (unlikely(on_null_domain(rq)))
8193 return;
8194
8195 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8196 raise_softirq(SCHED_SOFTIRQ);
3451d024 8197#ifdef CONFIG_NO_HZ_COMMON
c726099e 8198 if (nohz_kick_needed(rq))
0aeeeeba 8199 nohz_balancer_kick();
83cd4fe2 8200#endif
1e3c88bd
PZ
8201}
8202
0bcdcf28
CE
8203static void rq_online_fair(struct rq *rq)
8204{
8205 update_sysctl();
0e59bdae
KT
8206
8207 update_runtime_enabled(rq);
0bcdcf28
CE
8208}
8209
8210static void rq_offline_fair(struct rq *rq)
8211{
8212 update_sysctl();
a4c96ae3
PB
8213
8214 /* Ensure any throttled groups are reachable by pick_next_task */
8215 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8216}
8217
55e12e5e 8218#endif /* CONFIG_SMP */
e1d1484f 8219
bf0f6f24
IM
8220/*
8221 * scheduler tick hitting a task of our scheduling class:
8222 */
8f4d37ec 8223static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8224{
8225 struct cfs_rq *cfs_rq;
8226 struct sched_entity *se = &curr->se;
8227
8228 for_each_sched_entity(se) {
8229 cfs_rq = cfs_rq_of(se);
8f4d37ec 8230 entity_tick(cfs_rq, se, queued);
bf0f6f24 8231 }
18bf2805 8232
b52da86e 8233 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8234 task_tick_numa(rq, curr);
bf0f6f24
IM
8235}
8236
8237/*
cd29fe6f
PZ
8238 * called on fork with the child task as argument from the parent's context
8239 * - child not yet on the tasklist
8240 * - preemption disabled
bf0f6f24 8241 */
cd29fe6f 8242static void task_fork_fair(struct task_struct *p)
bf0f6f24 8243{
4fc420c9
DN
8244 struct cfs_rq *cfs_rq;
8245 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8246 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8247 struct rq *rq = this_rq();
8248 unsigned long flags;
8249
05fa785c 8250 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8251
861d034e
PZ
8252 update_rq_clock(rq);
8253
4fc420c9
DN
8254 cfs_rq = task_cfs_rq(current);
8255 curr = cfs_rq->curr;
8256
6c9a27f5
DN
8257 /*
8258 * Not only the cpu but also the task_group of the parent might have
8259 * been changed after parent->se.parent,cfs_rq were copied to
8260 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8261 * of child point to valid ones.
8262 */
8263 rcu_read_lock();
8264 __set_task_cpu(p, this_cpu);
8265 rcu_read_unlock();
bf0f6f24 8266
7109c442 8267 update_curr(cfs_rq);
cd29fe6f 8268
b5d9d734
MG
8269 if (curr)
8270 se->vruntime = curr->vruntime;
aeb73b04 8271 place_entity(cfs_rq, se, 1);
4d78e7b6 8272
cd29fe6f 8273 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8274 /*
edcb60a3
IM
8275 * Upon rescheduling, sched_class::put_prev_task() will place
8276 * 'current' within the tree based on its new key value.
8277 */
4d78e7b6 8278 swap(curr->vruntime, se->vruntime);
8875125e 8279 resched_curr(rq);
4d78e7b6 8280 }
bf0f6f24 8281
88ec22d3
PZ
8282 se->vruntime -= cfs_rq->min_vruntime;
8283
05fa785c 8284 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8285}
8286
cb469845
SR
8287/*
8288 * Priority of the task has changed. Check to see if we preempt
8289 * the current task.
8290 */
da7a735e
PZ
8291static void
8292prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8293{
da0c1e65 8294 if (!task_on_rq_queued(p))
da7a735e
PZ
8295 return;
8296
cb469845
SR
8297 /*
8298 * Reschedule if we are currently running on this runqueue and
8299 * our priority decreased, or if we are not currently running on
8300 * this runqueue and our priority is higher than the current's
8301 */
da7a735e 8302 if (rq->curr == p) {
cb469845 8303 if (p->prio > oldprio)
8875125e 8304 resched_curr(rq);
cb469845 8305 } else
15afe09b 8306 check_preempt_curr(rq, p, 0);
cb469845
SR
8307}
8308
daa59407 8309static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8310{
8311 struct sched_entity *se = &p->se;
da7a735e
PZ
8312
8313 /*
daa59407
BP
8314 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8315 * the dequeue_entity(.flags=0) will already have normalized the
8316 * vruntime.
8317 */
8318 if (p->on_rq)
8319 return true;
8320
8321 /*
8322 * When !on_rq, vruntime of the task has usually NOT been normalized.
8323 * But there are some cases where it has already been normalized:
da7a735e 8324 *
daa59407
BP
8325 * - A forked child which is waiting for being woken up by
8326 * wake_up_new_task().
8327 * - A task which has been woken up by try_to_wake_up() and
8328 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8329 */
daa59407
BP
8330 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8331 return true;
8332
8333 return false;
8334}
8335
8336static void detach_task_cfs_rq(struct task_struct *p)
8337{
8338 struct sched_entity *se = &p->se;
8339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8340
8341 if (!vruntime_normalized(p)) {
da7a735e
PZ
8342 /*
8343 * Fix up our vruntime so that the current sleep doesn't
8344 * cause 'unlimited' sleep bonus.
8345 */
8346 place_entity(cfs_rq, se, 0);
8347 se->vruntime -= cfs_rq->min_vruntime;
8348 }
9ee474f5 8349
9d89c257 8350 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8351 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8352}
8353
daa59407 8354static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8355{
f36c019c 8356 struct sched_entity *se = &p->se;
daa59407 8357 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8358
8359#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8360 /*
8361 * Since the real-depth could have been changed (only FAIR
8362 * class maintain depth value), reset depth properly.
8363 */
8364 se->depth = se->parent ? se->parent->depth + 1 : 0;
8365#endif
7855a35a 8366
6efdb105 8367 /* Synchronize task with its cfs_rq */
daa59407
BP
8368 attach_entity_load_avg(cfs_rq, se);
8369
8370 if (!vruntime_normalized(p))
8371 se->vruntime += cfs_rq->min_vruntime;
8372}
6efdb105 8373
daa59407
BP
8374static void switched_from_fair(struct rq *rq, struct task_struct *p)
8375{
8376 detach_task_cfs_rq(p);
8377}
8378
8379static void switched_to_fair(struct rq *rq, struct task_struct *p)
8380{
8381 attach_task_cfs_rq(p);
7855a35a 8382
daa59407 8383 if (task_on_rq_queued(p)) {
7855a35a 8384 /*
daa59407
BP
8385 * We were most likely switched from sched_rt, so
8386 * kick off the schedule if running, otherwise just see
8387 * if we can still preempt the current task.
7855a35a 8388 */
daa59407
BP
8389 if (rq->curr == p)
8390 resched_curr(rq);
8391 else
8392 check_preempt_curr(rq, p, 0);
7855a35a 8393 }
cb469845
SR
8394}
8395
83b699ed
SV
8396/* Account for a task changing its policy or group.
8397 *
8398 * This routine is mostly called to set cfs_rq->curr field when a task
8399 * migrates between groups/classes.
8400 */
8401static void set_curr_task_fair(struct rq *rq)
8402{
8403 struct sched_entity *se = &rq->curr->se;
8404
ec12cb7f
PT
8405 for_each_sched_entity(se) {
8406 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8407
8408 set_next_entity(cfs_rq, se);
8409 /* ensure bandwidth has been allocated on our new cfs_rq */
8410 account_cfs_rq_runtime(cfs_rq, 0);
8411 }
83b699ed
SV
8412}
8413
029632fb
PZ
8414void init_cfs_rq(struct cfs_rq *cfs_rq)
8415{
8416 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8417 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8418#ifndef CONFIG_64BIT
8419 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8420#endif
141965c7 8421#ifdef CONFIG_SMP
9d89c257
YD
8422 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8423 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8424#endif
029632fb
PZ
8425}
8426
810b3817 8427#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8428static void task_move_group_fair(struct task_struct *p)
810b3817 8429{
daa59407 8430 detach_task_cfs_rq(p);
b2b5ce02 8431 set_task_rq(p, task_cpu(p));
6efdb105
BP
8432
8433#ifdef CONFIG_SMP
8434 /* Tell se's cfs_rq has been changed -- migrated */
8435 p->se.avg.last_update_time = 0;
8436#endif
daa59407 8437 attach_task_cfs_rq(p);
810b3817 8438}
029632fb
PZ
8439
8440void free_fair_sched_group(struct task_group *tg)
8441{
8442 int i;
8443
8444 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8445
8446 for_each_possible_cpu(i) {
8447 if (tg->cfs_rq)
8448 kfree(tg->cfs_rq[i]);
6fe1f348 8449 if (tg->se)
029632fb
PZ
8450 kfree(tg->se[i]);
8451 }
8452
8453 kfree(tg->cfs_rq);
8454 kfree(tg->se);
8455}
8456
8457int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8458{
8459 struct cfs_rq *cfs_rq;
8460 struct sched_entity *se;
8461 int i;
8462
8463 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8464 if (!tg->cfs_rq)
8465 goto err;
8466 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8467 if (!tg->se)
8468 goto err;
8469
8470 tg->shares = NICE_0_LOAD;
8471
8472 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8473
8474 for_each_possible_cpu(i) {
8475 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8476 GFP_KERNEL, cpu_to_node(i));
8477 if (!cfs_rq)
8478 goto err;
8479
8480 se = kzalloc_node(sizeof(struct sched_entity),
8481 GFP_KERNEL, cpu_to_node(i));
8482 if (!se)
8483 goto err_free_rq;
8484
8485 init_cfs_rq(cfs_rq);
8486 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8487 init_entity_runnable_average(se);
2b8c41da 8488 post_init_entity_util_avg(se);
029632fb
PZ
8489 }
8490
8491 return 1;
8492
8493err_free_rq:
8494 kfree(cfs_rq);
8495err:
8496 return 0;
8497}
8498
6fe1f348 8499void unregister_fair_sched_group(struct task_group *tg)
029632fb 8500{
029632fb 8501 unsigned long flags;
6fe1f348
PZ
8502 struct rq *rq;
8503 int cpu;
029632fb 8504
6fe1f348
PZ
8505 for_each_possible_cpu(cpu) {
8506 if (tg->se[cpu])
8507 remove_entity_load_avg(tg->se[cpu]);
029632fb 8508
6fe1f348
PZ
8509 /*
8510 * Only empty task groups can be destroyed; so we can speculatively
8511 * check on_list without danger of it being re-added.
8512 */
8513 if (!tg->cfs_rq[cpu]->on_list)
8514 continue;
8515
8516 rq = cpu_rq(cpu);
8517
8518 raw_spin_lock_irqsave(&rq->lock, flags);
8519 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8520 raw_spin_unlock_irqrestore(&rq->lock, flags);
8521 }
029632fb
PZ
8522}
8523
8524void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8525 struct sched_entity *se, int cpu,
8526 struct sched_entity *parent)
8527{
8528 struct rq *rq = cpu_rq(cpu);
8529
8530 cfs_rq->tg = tg;
8531 cfs_rq->rq = rq;
029632fb
PZ
8532 init_cfs_rq_runtime(cfs_rq);
8533
8534 tg->cfs_rq[cpu] = cfs_rq;
8535 tg->se[cpu] = se;
8536
8537 /* se could be NULL for root_task_group */
8538 if (!se)
8539 return;
8540
fed14d45 8541 if (!parent) {
029632fb 8542 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8543 se->depth = 0;
8544 } else {
029632fb 8545 se->cfs_rq = parent->my_q;
fed14d45
PZ
8546 se->depth = parent->depth + 1;
8547 }
029632fb
PZ
8548
8549 se->my_q = cfs_rq;
0ac9b1c2
PT
8550 /* guarantee group entities always have weight */
8551 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8552 se->parent = parent;
8553}
8554
8555static DEFINE_MUTEX(shares_mutex);
8556
8557int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8558{
8559 int i;
8560 unsigned long flags;
8561
8562 /*
8563 * We can't change the weight of the root cgroup.
8564 */
8565 if (!tg->se[0])
8566 return -EINVAL;
8567
8568 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8569
8570 mutex_lock(&shares_mutex);
8571 if (tg->shares == shares)
8572 goto done;
8573
8574 tg->shares = shares;
8575 for_each_possible_cpu(i) {
8576 struct rq *rq = cpu_rq(i);
8577 struct sched_entity *se;
8578
8579 se = tg->se[i];
8580 /* Propagate contribution to hierarchy */
8581 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8582
8583 /* Possible calls to update_curr() need rq clock */
8584 update_rq_clock(rq);
17bc14b7 8585 for_each_sched_entity(se)
029632fb
PZ
8586 update_cfs_shares(group_cfs_rq(se));
8587 raw_spin_unlock_irqrestore(&rq->lock, flags);
8588 }
8589
8590done:
8591 mutex_unlock(&shares_mutex);
8592 return 0;
8593}
8594#else /* CONFIG_FAIR_GROUP_SCHED */
8595
8596void free_fair_sched_group(struct task_group *tg) { }
8597
8598int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8599{
8600 return 1;
8601}
8602
6fe1f348 8603void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8604
8605#endif /* CONFIG_FAIR_GROUP_SCHED */
8606
810b3817 8607
6d686f45 8608static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8609{
8610 struct sched_entity *se = &task->se;
0d721cea
PW
8611 unsigned int rr_interval = 0;
8612
8613 /*
8614 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8615 * idle runqueue:
8616 */
0d721cea 8617 if (rq->cfs.load.weight)
a59f4e07 8618 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8619
8620 return rr_interval;
8621}
8622
bf0f6f24
IM
8623/*
8624 * All the scheduling class methods:
8625 */
029632fb 8626const struct sched_class fair_sched_class = {
5522d5d5 8627 .next = &idle_sched_class,
bf0f6f24
IM
8628 .enqueue_task = enqueue_task_fair,
8629 .dequeue_task = dequeue_task_fair,
8630 .yield_task = yield_task_fair,
d95f4122 8631 .yield_to_task = yield_to_task_fair,
bf0f6f24 8632
2e09bf55 8633 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8634
8635 .pick_next_task = pick_next_task_fair,
8636 .put_prev_task = put_prev_task_fair,
8637
681f3e68 8638#ifdef CONFIG_SMP
4ce72a2c 8639 .select_task_rq = select_task_rq_fair,
0a74bef8 8640 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8641
0bcdcf28
CE
8642 .rq_online = rq_online_fair,
8643 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8644
8645 .task_waking = task_waking_fair,
12695578 8646 .task_dead = task_dead_fair,
c5b28038 8647 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8648#endif
bf0f6f24 8649
83b699ed 8650 .set_curr_task = set_curr_task_fair,
bf0f6f24 8651 .task_tick = task_tick_fair,
cd29fe6f 8652 .task_fork = task_fork_fair,
cb469845
SR
8653
8654 .prio_changed = prio_changed_fair,
da7a735e 8655 .switched_from = switched_from_fair,
cb469845 8656 .switched_to = switched_to_fair,
810b3817 8657
0d721cea
PW
8658 .get_rr_interval = get_rr_interval_fair,
8659
6e998916
SG
8660 .update_curr = update_curr_fair,
8661
810b3817 8662#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8663 .task_move_group = task_move_group_fair,
810b3817 8664#endif
bf0f6f24
IM
8665};
8666
8667#ifdef CONFIG_SCHED_DEBUG
029632fb 8668void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8669{
bf0f6f24
IM
8670 struct cfs_rq *cfs_rq;
8671
5973e5b9 8672 rcu_read_lock();
c3b64f1e 8673 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8674 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8675 rcu_read_unlock();
bf0f6f24 8676}
397f2378
SD
8677
8678#ifdef CONFIG_NUMA_BALANCING
8679void show_numa_stats(struct task_struct *p, struct seq_file *m)
8680{
8681 int node;
8682 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8683
8684 for_each_online_node(node) {
8685 if (p->numa_faults) {
8686 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8687 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8688 }
8689 if (p->numa_group) {
8690 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8691 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8692 }
8693 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8694 }
8695}
8696#endif /* CONFIG_NUMA_BALANCING */
8697#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8698
8699__init void init_sched_fair_class(void)
8700{
8701#ifdef CONFIG_SMP
8702 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8703
3451d024 8704#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8705 nohz.next_balance = jiffies;
029632fb 8706 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8707 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8708#endif
8709#endif /* SMP */
8710
8711}