sched/fair: Fix O(nr_cgroups) in the load balancing path
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
99 * The margin used when comparing utilization with CPU capacity:
100 * util * margin < capacity * 1024
101 *
102 * (default: ~20%)
103 */
104static unsigned int capacity_margin = 1280;
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
251static inline struct task_struct *task_of(struct sched_entity *se)
252{
9148a3a1 253 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
254 return container_of(se, struct task_struct, se);
255}
256
b758149c
PZ
257/* Walk up scheduling entities hierarchy */
258#define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262{
263 return p->se.cfs_rq;
264}
265
266/* runqueue on which this entity is (to be) queued */
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 return se->cfs_rq;
270}
271
272/* runqueue "owned" by this group */
273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274{
275 return grp->my_q;
276}
277
f6783319 278static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 279{
5d299eab
PZ
280 struct rq *rq = rq_of(cfs_rq);
281 int cpu = cpu_of(rq);
282
283 if (cfs_rq->on_list)
f6783319 284 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
285
286 cfs_rq->on_list = 1;
287
288 /*
289 * Ensure we either appear before our parent (if already
290 * enqueued) or force our parent to appear after us when it is
291 * enqueued. The fact that we always enqueue bottom-up
292 * reduces this to two cases and a special case for the root
293 * cfs_rq. Furthermore, it also means that we will always reset
294 * tmp_alone_branch either when the branch is connected
295 * to a tree or when we reach the top of the tree
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 299 /*
5d299eab
PZ
300 * If parent is already on the list, we add the child
301 * just before. Thanks to circular linked property of
302 * the list, this means to put the child at the tail
303 * of the list that starts by parent.
67e86250 304 */
5d299eab
PZ
305 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
306 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
307 /*
308 * The branch is now connected to its tree so we can
309 * reset tmp_alone_branch to the beginning of the
310 * list.
311 */
312 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 313 return true;
5d299eab 314 }
3d4b47b4 315
5d299eab
PZ
316 if (!cfs_rq->tg->parent) {
317 /*
318 * cfs rq without parent should be put
319 * at the tail of the list.
320 */
321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 &rq->leaf_cfs_rq_list);
323 /*
324 * We have reach the top of a tree so we can reset
325 * tmp_alone_branch to the beginning of the list.
326 */
327 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 328 return true;
3d4b47b4 329 }
5d299eab
PZ
330
331 /*
332 * The parent has not already been added so we want to
333 * make sure that it will be put after us.
334 * tmp_alone_branch points to the begin of the branch
335 * where we will add parent.
336 */
337 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
338 /*
339 * update tmp_alone_branch to points to the new begin
340 * of the branch
341 */
342 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 343 return false;
3d4b47b4
PZ
344}
345
346static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
347{
348 if (cfs_rq->on_list) {
31bc6aea
VG
349 struct rq *rq = rq_of(cfs_rq);
350
351 /*
352 * With cfs_rq being unthrottled/throttled during an enqueue,
353 * it can happen the tmp_alone_branch points the a leaf that
354 * we finally want to del. In this case, tmp_alone_branch moves
355 * to the prev element but it will point to rq->leaf_cfs_rq_list
356 * at the end of the enqueue.
357 */
358 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
359 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
360
3d4b47b4
PZ
361 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
362 cfs_rq->on_list = 0;
363 }
364}
365
5d299eab
PZ
366static inline void assert_list_leaf_cfs_rq(struct rq *rq)
367{
368 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
369}
370
039ae8bc
VG
371/* Iterate thr' all leaf cfs_rq's on a runqueue */
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
b758149c
PZ
430#define for_each_sched_entity(se) \
431 for (; se; se = NULL)
bf0f6f24 432
b758149c 433static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 434{
b758149c 435 return &task_rq(p)->cfs;
bf0f6f24
IM
436}
437
b758149c
PZ
438static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
439{
440 struct task_struct *p = task_of(se);
441 struct rq *rq = task_rq(p);
442
443 return &rq->cfs;
444}
445
446/* runqueue "owned" by this group */
447static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
448{
449 return NULL;
450}
451
f6783319 452static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 453{
f6783319 454 return true;
3d4b47b4
PZ
455}
456
457static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
458{
459}
460
5d299eab
PZ
461static inline void assert_list_leaf_cfs_rq(struct rq *rq)
462{
463}
464
039ae8bc
VG
465#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
466 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 467
b758149c
PZ
468static inline struct sched_entity *parent_entity(struct sched_entity *se)
469{
470 return NULL;
471}
472
464b7527
PZ
473static inline void
474find_matching_se(struct sched_entity **se, struct sched_entity **pse)
475{
476}
477
b758149c
PZ
478#endif /* CONFIG_FAIR_GROUP_SCHED */
479
6c16a6dc 480static __always_inline
9dbdb155 481void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
482
483/**************************************************************
484 * Scheduling class tree data structure manipulation methods:
485 */
486
1bf08230 487static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 488{
1bf08230 489 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 490 if (delta > 0)
1bf08230 491 max_vruntime = vruntime;
02e0431a 492
1bf08230 493 return max_vruntime;
02e0431a
PZ
494}
495
0702e3eb 496static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
497{
498 s64 delta = (s64)(vruntime - min_vruntime);
499 if (delta < 0)
500 min_vruntime = vruntime;
501
502 return min_vruntime;
503}
504
54fdc581
FC
505static inline int entity_before(struct sched_entity *a,
506 struct sched_entity *b)
507{
508 return (s64)(a->vruntime - b->vruntime) < 0;
509}
510
1af5f730
PZ
511static void update_min_vruntime(struct cfs_rq *cfs_rq)
512{
b60205c7 513 struct sched_entity *curr = cfs_rq->curr;
bfb06889 514 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 515
1af5f730
PZ
516 u64 vruntime = cfs_rq->min_vruntime;
517
b60205c7
PZ
518 if (curr) {
519 if (curr->on_rq)
520 vruntime = curr->vruntime;
521 else
522 curr = NULL;
523 }
1af5f730 524
bfb06889
DB
525 if (leftmost) { /* non-empty tree */
526 struct sched_entity *se;
527 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 528
b60205c7 529 if (!curr)
1af5f730
PZ
530 vruntime = se->vruntime;
531 else
532 vruntime = min_vruntime(vruntime, se->vruntime);
533 }
534
1bf08230 535 /* ensure we never gain time by being placed backwards. */
1af5f730 536 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
537#ifndef CONFIG_64BIT
538 smp_wmb();
539 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
540#endif
1af5f730
PZ
541}
542
bf0f6f24
IM
543/*
544 * Enqueue an entity into the rb-tree:
545 */
0702e3eb 546static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 547{
bfb06889 548 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
549 struct rb_node *parent = NULL;
550 struct sched_entity *entry;
bfb06889 551 bool leftmost = true;
bf0f6f24
IM
552
553 /*
554 * Find the right place in the rbtree:
555 */
556 while (*link) {
557 parent = *link;
558 entry = rb_entry(parent, struct sched_entity, run_node);
559 /*
560 * We dont care about collisions. Nodes with
561 * the same key stay together.
562 */
2bd2d6f2 563 if (entity_before(se, entry)) {
bf0f6f24
IM
564 link = &parent->rb_left;
565 } else {
566 link = &parent->rb_right;
bfb06889 567 leftmost = false;
bf0f6f24
IM
568 }
569 }
570
bf0f6f24 571 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
572 rb_insert_color_cached(&se->run_node,
573 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
574}
575
0702e3eb 576static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 577{
bfb06889 578 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
579}
580
029632fb 581struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 582{
bfb06889 583 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
584
585 if (!left)
586 return NULL;
587
588 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
589}
590
ac53db59
RR
591static struct sched_entity *__pick_next_entity(struct sched_entity *se)
592{
593 struct rb_node *next = rb_next(&se->run_node);
594
595 if (!next)
596 return NULL;
597
598 return rb_entry(next, struct sched_entity, run_node);
599}
600
601#ifdef CONFIG_SCHED_DEBUG
029632fb 602struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 603{
bfb06889 604 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 605
70eee74b
BS
606 if (!last)
607 return NULL;
7eee3e67
IM
608
609 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
610}
611
bf0f6f24
IM
612/**************************************************************
613 * Scheduling class statistics methods:
614 */
615
acb4a848 616int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 617 void __user *buffer, size_t *lenp,
b2be5e96
PZ
618 loff_t *ppos)
619{
8d65af78 620 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 621 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
622
623 if (ret || !write)
624 return ret;
625
626 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
627 sysctl_sched_min_granularity);
628
acb4a848
CE
629#define WRT_SYSCTL(name) \
630 (normalized_sysctl_##name = sysctl_##name / (factor))
631 WRT_SYSCTL(sched_min_granularity);
632 WRT_SYSCTL(sched_latency);
633 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
634#undef WRT_SYSCTL
635
b2be5e96
PZ
636 return 0;
637}
638#endif
647e7cac 639
a7be37ac 640/*
f9c0b095 641 * delta /= w
a7be37ac 642 */
9dbdb155 643static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 644{
f9c0b095 645 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 646 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
647
648 return delta;
649}
650
647e7cac
IM
651/*
652 * The idea is to set a period in which each task runs once.
653 *
532b1858 654 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
655 * this period because otherwise the slices get too small.
656 *
657 * p = (nr <= nl) ? l : l*nr/nl
658 */
4d78e7b6
PZ
659static u64 __sched_period(unsigned long nr_running)
660{
8e2b0bf3
BF
661 if (unlikely(nr_running > sched_nr_latency))
662 return nr_running * sysctl_sched_min_granularity;
663 else
664 return sysctl_sched_latency;
4d78e7b6
PZ
665}
666
647e7cac
IM
667/*
668 * We calculate the wall-time slice from the period by taking a part
669 * proportional to the weight.
670 *
f9c0b095 671 * s = p*P[w/rw]
647e7cac 672 */
6d0f0ebd 673static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 674{
0a582440 675 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 676
0a582440 677 for_each_sched_entity(se) {
6272d68c 678 struct load_weight *load;
3104bf03 679 struct load_weight lw;
6272d68c
LM
680
681 cfs_rq = cfs_rq_of(se);
682 load = &cfs_rq->load;
f9c0b095 683
0a582440 684 if (unlikely(!se->on_rq)) {
3104bf03 685 lw = cfs_rq->load;
0a582440
MG
686
687 update_load_add(&lw, se->load.weight);
688 load = &lw;
689 }
9dbdb155 690 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
691 }
692 return slice;
bf0f6f24
IM
693}
694
647e7cac 695/*
660cc00f 696 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 697 *
f9c0b095 698 * vs = s/w
647e7cac 699 */
f9c0b095 700static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 701{
f9c0b095 702 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
703}
704
c0796298 705#include "pelt.h"
23127296 706#ifdef CONFIG_SMP
283e2ed3 707
772bd008 708static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 709static unsigned long task_h_load(struct task_struct *p);
3b1baa64 710static unsigned long capacity_of(int cpu);
fb13c7ee 711
540247fb
YD
712/* Give new sched_entity start runnable values to heavy its load in infant time */
713void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 714{
540247fb 715 struct sched_avg *sa = &se->avg;
a75cdaa9 716
f207934f
PZ
717 memset(sa, 0, sizeof(*sa));
718
b5a9b340 719 /*
dfcb245e 720 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 721 * they get a chance to stabilize to their real load level.
dfcb245e 722 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
723 * nothing has been attached to the task group yet.
724 */
725 if (entity_is_task(se))
1ea6c46a 726 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 727
f207934f
PZ
728 se->runnable_weight = se->load.weight;
729
9d89c257 730 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 731}
7ea241af 732
7dc603c9 733static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 734static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 735
2b8c41da
YD
736/*
737 * With new tasks being created, their initial util_avgs are extrapolated
738 * based on the cfs_rq's current util_avg:
739 *
740 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
741 *
742 * However, in many cases, the above util_avg does not give a desired
743 * value. Moreover, the sum of the util_avgs may be divergent, such
744 * as when the series is a harmonic series.
745 *
746 * To solve this problem, we also cap the util_avg of successive tasks to
747 * only 1/2 of the left utilization budget:
748 *
8fe5c5a9 749 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 750 *
8fe5c5a9 751 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 752 *
8fe5c5a9
QP
753 * For example, for a CPU with 1024 of capacity, a simplest series from
754 * the beginning would be like:
2b8c41da
YD
755 *
756 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
757 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
758 *
759 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
760 * if util_avg > util_avg_cap.
761 */
762void post_init_entity_util_avg(struct sched_entity *se)
763{
764 struct cfs_rq *cfs_rq = cfs_rq_of(se);
765 struct sched_avg *sa = &se->avg;
8fe5c5a9
QP
766 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
767 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
768
769 if (cap > 0) {
770 if (cfs_rq->avg.util_avg != 0) {
771 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
772 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
773
774 if (sa->util_avg > cap)
775 sa->util_avg = cap;
776 } else {
777 sa->util_avg = cap;
778 }
2b8c41da 779 }
7dc603c9
PZ
780
781 if (entity_is_task(se)) {
782 struct task_struct *p = task_of(se);
783 if (p->sched_class != &fair_sched_class) {
784 /*
785 * For !fair tasks do:
786 *
3a123bbb 787 update_cfs_rq_load_avg(now, cfs_rq);
ea14b57e 788 attach_entity_load_avg(cfs_rq, se, 0);
7dc603c9
PZ
789 switched_from_fair(rq, p);
790 *
791 * such that the next switched_to_fair() has the
792 * expected state.
793 */
23127296 794 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
7dc603c9
PZ
795 return;
796 }
797 }
798
df217913 799 attach_entity_cfs_rq(se);
2b8c41da
YD
800}
801
7dc603c9 802#else /* !CONFIG_SMP */
540247fb 803void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
804{
805}
2b8c41da
YD
806void post_init_entity_util_avg(struct sched_entity *se)
807{
808}
3d30544f
PZ
809static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
810{
811}
7dc603c9 812#endif /* CONFIG_SMP */
a75cdaa9 813
bf0f6f24 814/*
9dbdb155 815 * Update the current task's runtime statistics.
bf0f6f24 816 */
b7cc0896 817static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 818{
429d43bc 819 struct sched_entity *curr = cfs_rq->curr;
78becc27 820 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 821 u64 delta_exec;
bf0f6f24
IM
822
823 if (unlikely(!curr))
824 return;
825
9dbdb155
PZ
826 delta_exec = now - curr->exec_start;
827 if (unlikely((s64)delta_exec <= 0))
34f28ecd 828 return;
bf0f6f24 829
8ebc91d9 830 curr->exec_start = now;
d842de87 831
9dbdb155
PZ
832 schedstat_set(curr->statistics.exec_max,
833 max(delta_exec, curr->statistics.exec_max));
834
835 curr->sum_exec_runtime += delta_exec;
ae92882e 836 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
837
838 curr->vruntime += calc_delta_fair(delta_exec, curr);
839 update_min_vruntime(cfs_rq);
840
d842de87
SV
841 if (entity_is_task(curr)) {
842 struct task_struct *curtask = task_of(curr);
843
f977bb49 844 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 845 cgroup_account_cputime(curtask, delta_exec);
f06febc9 846 account_group_exec_runtime(curtask, delta_exec);
d842de87 847 }
ec12cb7f
PT
848
849 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
850}
851
6e998916
SG
852static void update_curr_fair(struct rq *rq)
853{
854 update_curr(cfs_rq_of(&rq->curr->se));
855}
856
bf0f6f24 857static inline void
5870db5b 858update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 859{
4fa8d299
JP
860 u64 wait_start, prev_wait_start;
861
862 if (!schedstat_enabled())
863 return;
864
865 wait_start = rq_clock(rq_of(cfs_rq));
866 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
867
868 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
869 likely(wait_start > prev_wait_start))
870 wait_start -= prev_wait_start;
3ea94de1 871
2ed41a55 872 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
873}
874
4fa8d299 875static inline void
3ea94de1
JP
876update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878 struct task_struct *p;
cb251765
MG
879 u64 delta;
880
4fa8d299
JP
881 if (!schedstat_enabled())
882 return;
883
884 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
885
886 if (entity_is_task(se)) {
887 p = task_of(se);
888 if (task_on_rq_migrating(p)) {
889 /*
890 * Preserve migrating task's wait time so wait_start
891 * time stamp can be adjusted to accumulate wait time
892 * prior to migration.
893 */
2ed41a55 894 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
895 return;
896 }
897 trace_sched_stat_wait(p, delta);
898 }
899
2ed41a55 900 __schedstat_set(se->statistics.wait_max,
4fa8d299 901 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
902 __schedstat_inc(se->statistics.wait_count);
903 __schedstat_add(se->statistics.wait_sum, delta);
904 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 905}
3ea94de1 906
4fa8d299 907static inline void
1a3d027c
JP
908update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
909{
910 struct task_struct *tsk = NULL;
4fa8d299
JP
911 u64 sleep_start, block_start;
912
913 if (!schedstat_enabled())
914 return;
915
916 sleep_start = schedstat_val(se->statistics.sleep_start);
917 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
918
919 if (entity_is_task(se))
920 tsk = task_of(se);
921
4fa8d299
JP
922 if (sleep_start) {
923 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
924
925 if ((s64)delta < 0)
926 delta = 0;
927
4fa8d299 928 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 929 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 930
2ed41a55
PZ
931 __schedstat_set(se->statistics.sleep_start, 0);
932 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
933
934 if (tsk) {
935 account_scheduler_latency(tsk, delta >> 10, 1);
936 trace_sched_stat_sleep(tsk, delta);
937 }
938 }
4fa8d299
JP
939 if (block_start) {
940 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
941
942 if ((s64)delta < 0)
943 delta = 0;
944
4fa8d299 945 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 946 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 947
2ed41a55
PZ
948 __schedstat_set(se->statistics.block_start, 0);
949 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
950
951 if (tsk) {
952 if (tsk->in_iowait) {
2ed41a55
PZ
953 __schedstat_add(se->statistics.iowait_sum, delta);
954 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
955 trace_sched_stat_iowait(tsk, delta);
956 }
957
958 trace_sched_stat_blocked(tsk, delta);
959
960 /*
961 * Blocking time is in units of nanosecs, so shift by
962 * 20 to get a milliseconds-range estimation of the
963 * amount of time that the task spent sleeping:
964 */
965 if (unlikely(prof_on == SLEEP_PROFILING)) {
966 profile_hits(SLEEP_PROFILING,
967 (void *)get_wchan(tsk),
968 delta >> 20);
969 }
970 account_scheduler_latency(tsk, delta >> 10, 0);
971 }
972 }
3ea94de1 973}
3ea94de1 974
bf0f6f24
IM
975/*
976 * Task is being enqueued - update stats:
977 */
cb251765 978static inline void
1a3d027c 979update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 980{
4fa8d299
JP
981 if (!schedstat_enabled())
982 return;
983
bf0f6f24
IM
984 /*
985 * Are we enqueueing a waiting task? (for current tasks
986 * a dequeue/enqueue event is a NOP)
987 */
429d43bc 988 if (se != cfs_rq->curr)
5870db5b 989 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
990
991 if (flags & ENQUEUE_WAKEUP)
992 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
993}
994
bf0f6f24 995static inline void
cb251765 996update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 997{
4fa8d299
JP
998
999 if (!schedstat_enabled())
1000 return;
1001
bf0f6f24
IM
1002 /*
1003 * Mark the end of the wait period if dequeueing a
1004 * waiting task:
1005 */
429d43bc 1006 if (se != cfs_rq->curr)
9ef0a961 1007 update_stats_wait_end(cfs_rq, se);
cb251765 1008
4fa8d299
JP
1009 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1010 struct task_struct *tsk = task_of(se);
cb251765 1011
4fa8d299 1012 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1013 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1014 rq_clock(rq_of(cfs_rq)));
1015 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1016 __schedstat_set(se->statistics.block_start,
4fa8d299 1017 rq_clock(rq_of(cfs_rq)));
cb251765 1018 }
cb251765
MG
1019}
1020
bf0f6f24
IM
1021/*
1022 * We are picking a new current task - update its stats:
1023 */
1024static inline void
79303e9e 1025update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1026{
1027 /*
1028 * We are starting a new run period:
1029 */
78becc27 1030 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1031}
1032
bf0f6f24
IM
1033/**************************************************
1034 * Scheduling class queueing methods:
1035 */
1036
cbee9f88
PZ
1037#ifdef CONFIG_NUMA_BALANCING
1038/*
598f0ec0
MG
1039 * Approximate time to scan a full NUMA task in ms. The task scan period is
1040 * calculated based on the tasks virtual memory size and
1041 * numa_balancing_scan_size.
cbee9f88 1042 */
598f0ec0
MG
1043unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1044unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1045
1046/* Portion of address space to scan in MB */
1047unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1048
4b96a29b
PZ
1049/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1050unsigned int sysctl_numa_balancing_scan_delay = 1000;
1051
b5dd77c8 1052struct numa_group {
c45a7795 1053 refcount_t refcount;
b5dd77c8
RR
1054
1055 spinlock_t lock; /* nr_tasks, tasks */
1056 int nr_tasks;
1057 pid_t gid;
1058 int active_nodes;
1059
1060 struct rcu_head rcu;
1061 unsigned long total_faults;
1062 unsigned long max_faults_cpu;
1063 /*
1064 * Faults_cpu is used to decide whether memory should move
1065 * towards the CPU. As a consequence, these stats are weighted
1066 * more by CPU use than by memory faults.
1067 */
1068 unsigned long *faults_cpu;
1069 unsigned long faults[0];
1070};
1071
1072static inline unsigned long group_faults_priv(struct numa_group *ng);
1073static inline unsigned long group_faults_shared(struct numa_group *ng);
1074
598f0ec0
MG
1075static unsigned int task_nr_scan_windows(struct task_struct *p)
1076{
1077 unsigned long rss = 0;
1078 unsigned long nr_scan_pages;
1079
1080 /*
1081 * Calculations based on RSS as non-present and empty pages are skipped
1082 * by the PTE scanner and NUMA hinting faults should be trapped based
1083 * on resident pages
1084 */
1085 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1086 rss = get_mm_rss(p->mm);
1087 if (!rss)
1088 rss = nr_scan_pages;
1089
1090 rss = round_up(rss, nr_scan_pages);
1091 return rss / nr_scan_pages;
1092}
1093
1094/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1095#define MAX_SCAN_WINDOW 2560
1096
1097static unsigned int task_scan_min(struct task_struct *p)
1098{
316c1608 1099 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1100 unsigned int scan, floor;
1101 unsigned int windows = 1;
1102
64192658
KT
1103 if (scan_size < MAX_SCAN_WINDOW)
1104 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1105 floor = 1000 / windows;
1106
1107 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1108 return max_t(unsigned int, floor, scan);
1109}
1110
b5dd77c8
RR
1111static unsigned int task_scan_start(struct task_struct *p)
1112{
1113 unsigned long smin = task_scan_min(p);
1114 unsigned long period = smin;
1115
1116 /* Scale the maximum scan period with the amount of shared memory. */
1117 if (p->numa_group) {
1118 struct numa_group *ng = p->numa_group;
1119 unsigned long shared = group_faults_shared(ng);
1120 unsigned long private = group_faults_priv(ng);
1121
c45a7795 1122 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1123 period *= shared + 1;
1124 period /= private + shared + 1;
1125 }
1126
1127 return max(smin, period);
1128}
1129
598f0ec0
MG
1130static unsigned int task_scan_max(struct task_struct *p)
1131{
b5dd77c8
RR
1132 unsigned long smin = task_scan_min(p);
1133 unsigned long smax;
598f0ec0
MG
1134
1135 /* Watch for min being lower than max due to floor calculations */
1136 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1137
1138 /* Scale the maximum scan period with the amount of shared memory. */
1139 if (p->numa_group) {
1140 struct numa_group *ng = p->numa_group;
1141 unsigned long shared = group_faults_shared(ng);
1142 unsigned long private = group_faults_priv(ng);
1143 unsigned long period = smax;
1144
c45a7795 1145 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1146 period *= shared + 1;
1147 period /= private + shared + 1;
1148
1149 smax = max(smax, period);
1150 }
1151
598f0ec0
MG
1152 return max(smin, smax);
1153}
1154
13784475
MG
1155void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1156{
1157 int mm_users = 0;
1158 struct mm_struct *mm = p->mm;
1159
1160 if (mm) {
1161 mm_users = atomic_read(&mm->mm_users);
1162 if (mm_users == 1) {
1163 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1164 mm->numa_scan_seq = 0;
1165 }
1166 }
1167 p->node_stamp = 0;
1168 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1169 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1170 p->numa_work.next = &p->numa_work;
1171 p->numa_faults = NULL;
1172 p->numa_group = NULL;
1173 p->last_task_numa_placement = 0;
1174 p->last_sum_exec_runtime = 0;
1175
1176 /* New address space, reset the preferred nid */
1177 if (!(clone_flags & CLONE_VM)) {
1178 p->numa_preferred_nid = -1;
1179 return;
1180 }
1181
1182 /*
1183 * New thread, keep existing numa_preferred_nid which should be copied
1184 * already by arch_dup_task_struct but stagger when scans start.
1185 */
1186 if (mm) {
1187 unsigned int delay;
1188
1189 delay = min_t(unsigned int, task_scan_max(current),
1190 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1191 delay += 2 * TICK_NSEC;
1192 p->node_stamp = delay;
1193 }
1194}
1195
0ec8aa00
PZ
1196static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1197{
1198 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1199 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1200}
1201
1202static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1203{
1204 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1205 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1206}
1207
be1e4e76
RR
1208/* Shared or private faults. */
1209#define NR_NUMA_HINT_FAULT_TYPES 2
1210
1211/* Memory and CPU locality */
1212#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1213
1214/* Averaged statistics, and temporary buffers. */
1215#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1216
e29cf08b
MG
1217pid_t task_numa_group_id(struct task_struct *p)
1218{
1219 return p->numa_group ? p->numa_group->gid : 0;
1220}
1221
44dba3d5 1222/*
97fb7a0a 1223 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1224 * occupy the first half of the array. The second half of the
1225 * array is for current counters, which are averaged into the
1226 * first set by task_numa_placement.
1227 */
1228static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1229{
44dba3d5 1230 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1231}
1232
1233static inline unsigned long task_faults(struct task_struct *p, int nid)
1234{
44dba3d5 1235 if (!p->numa_faults)
ac8e895b
MG
1236 return 0;
1237
44dba3d5
IM
1238 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1239 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1240}
1241
83e1d2cd
MG
1242static inline unsigned long group_faults(struct task_struct *p, int nid)
1243{
1244 if (!p->numa_group)
1245 return 0;
1246
44dba3d5
IM
1247 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1248 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1249}
1250
20e07dea
RR
1251static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1252{
44dba3d5
IM
1253 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1254 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1255}
1256
b5dd77c8
RR
1257static inline unsigned long group_faults_priv(struct numa_group *ng)
1258{
1259 unsigned long faults = 0;
1260 int node;
1261
1262 for_each_online_node(node) {
1263 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1264 }
1265
1266 return faults;
1267}
1268
1269static inline unsigned long group_faults_shared(struct numa_group *ng)
1270{
1271 unsigned long faults = 0;
1272 int node;
1273
1274 for_each_online_node(node) {
1275 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1276 }
1277
1278 return faults;
1279}
1280
4142c3eb
RR
1281/*
1282 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1283 * considered part of a numa group's pseudo-interleaving set. Migrations
1284 * between these nodes are slowed down, to allow things to settle down.
1285 */
1286#define ACTIVE_NODE_FRACTION 3
1287
1288static bool numa_is_active_node(int nid, struct numa_group *ng)
1289{
1290 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1291}
1292
6c6b1193
RR
1293/* Handle placement on systems where not all nodes are directly connected. */
1294static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1295 int maxdist, bool task)
1296{
1297 unsigned long score = 0;
1298 int node;
1299
1300 /*
1301 * All nodes are directly connected, and the same distance
1302 * from each other. No need for fancy placement algorithms.
1303 */
1304 if (sched_numa_topology_type == NUMA_DIRECT)
1305 return 0;
1306
1307 /*
1308 * This code is called for each node, introducing N^2 complexity,
1309 * which should be ok given the number of nodes rarely exceeds 8.
1310 */
1311 for_each_online_node(node) {
1312 unsigned long faults;
1313 int dist = node_distance(nid, node);
1314
1315 /*
1316 * The furthest away nodes in the system are not interesting
1317 * for placement; nid was already counted.
1318 */
1319 if (dist == sched_max_numa_distance || node == nid)
1320 continue;
1321
1322 /*
1323 * On systems with a backplane NUMA topology, compare groups
1324 * of nodes, and move tasks towards the group with the most
1325 * memory accesses. When comparing two nodes at distance
1326 * "hoplimit", only nodes closer by than "hoplimit" are part
1327 * of each group. Skip other nodes.
1328 */
1329 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1330 dist >= maxdist)
6c6b1193
RR
1331 continue;
1332
1333 /* Add up the faults from nearby nodes. */
1334 if (task)
1335 faults = task_faults(p, node);
1336 else
1337 faults = group_faults(p, node);
1338
1339 /*
1340 * On systems with a glueless mesh NUMA topology, there are
1341 * no fixed "groups of nodes". Instead, nodes that are not
1342 * directly connected bounce traffic through intermediate
1343 * nodes; a numa_group can occupy any set of nodes.
1344 * The further away a node is, the less the faults count.
1345 * This seems to result in good task placement.
1346 */
1347 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1348 faults *= (sched_max_numa_distance - dist);
1349 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1350 }
1351
1352 score += faults;
1353 }
1354
1355 return score;
1356}
1357
83e1d2cd
MG
1358/*
1359 * These return the fraction of accesses done by a particular task, or
1360 * task group, on a particular numa node. The group weight is given a
1361 * larger multiplier, in order to group tasks together that are almost
1362 * evenly spread out between numa nodes.
1363 */
7bd95320
RR
1364static inline unsigned long task_weight(struct task_struct *p, int nid,
1365 int dist)
83e1d2cd 1366{
7bd95320 1367 unsigned long faults, total_faults;
83e1d2cd 1368
44dba3d5 1369 if (!p->numa_faults)
83e1d2cd
MG
1370 return 0;
1371
1372 total_faults = p->total_numa_faults;
1373
1374 if (!total_faults)
1375 return 0;
1376
7bd95320 1377 faults = task_faults(p, nid);
6c6b1193
RR
1378 faults += score_nearby_nodes(p, nid, dist, true);
1379
7bd95320 1380 return 1000 * faults / total_faults;
83e1d2cd
MG
1381}
1382
7bd95320
RR
1383static inline unsigned long group_weight(struct task_struct *p, int nid,
1384 int dist)
83e1d2cd 1385{
7bd95320
RR
1386 unsigned long faults, total_faults;
1387
1388 if (!p->numa_group)
1389 return 0;
1390
1391 total_faults = p->numa_group->total_faults;
1392
1393 if (!total_faults)
83e1d2cd
MG
1394 return 0;
1395
7bd95320 1396 faults = group_faults(p, nid);
6c6b1193
RR
1397 faults += score_nearby_nodes(p, nid, dist, false);
1398
7bd95320 1399 return 1000 * faults / total_faults;
83e1d2cd
MG
1400}
1401
10f39042
RR
1402bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1403 int src_nid, int dst_cpu)
1404{
1405 struct numa_group *ng = p->numa_group;
1406 int dst_nid = cpu_to_node(dst_cpu);
1407 int last_cpupid, this_cpupid;
1408
1409 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1410 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1411
1412 /*
1413 * Allow first faults or private faults to migrate immediately early in
1414 * the lifetime of a task. The magic number 4 is based on waiting for
1415 * two full passes of the "multi-stage node selection" test that is
1416 * executed below.
1417 */
1418 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1419 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1420 return true;
10f39042
RR
1421
1422 /*
1423 * Multi-stage node selection is used in conjunction with a periodic
1424 * migration fault to build a temporal task<->page relation. By using
1425 * a two-stage filter we remove short/unlikely relations.
1426 *
1427 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1428 * a task's usage of a particular page (n_p) per total usage of this
1429 * page (n_t) (in a given time-span) to a probability.
1430 *
1431 * Our periodic faults will sample this probability and getting the
1432 * same result twice in a row, given these samples are fully
1433 * independent, is then given by P(n)^2, provided our sample period
1434 * is sufficiently short compared to the usage pattern.
1435 *
1436 * This quadric squishes small probabilities, making it less likely we
1437 * act on an unlikely task<->page relation.
1438 */
10f39042
RR
1439 if (!cpupid_pid_unset(last_cpupid) &&
1440 cpupid_to_nid(last_cpupid) != dst_nid)
1441 return false;
1442
1443 /* Always allow migrate on private faults */
1444 if (cpupid_match_pid(p, last_cpupid))
1445 return true;
1446
1447 /* A shared fault, but p->numa_group has not been set up yet. */
1448 if (!ng)
1449 return true;
1450
1451 /*
4142c3eb
RR
1452 * Destination node is much more heavily used than the source
1453 * node? Allow migration.
10f39042 1454 */
4142c3eb
RR
1455 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1456 ACTIVE_NODE_FRACTION)
10f39042
RR
1457 return true;
1458
1459 /*
4142c3eb
RR
1460 * Distribute memory according to CPU & memory use on each node,
1461 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1462 *
1463 * faults_cpu(dst) 3 faults_cpu(src)
1464 * --------------- * - > ---------------
1465 * faults_mem(dst) 4 faults_mem(src)
10f39042 1466 */
4142c3eb
RR
1467 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1468 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1469}
1470
c7132dd6 1471static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1472static unsigned long source_load(int cpu, int type);
1473static unsigned long target_load(int cpu, int type);
58d081b5 1474
fb13c7ee 1475/* Cached statistics for all CPUs within a node */
58d081b5
MG
1476struct numa_stats {
1477 unsigned long load;
fb13c7ee
MG
1478
1479 /* Total compute capacity of CPUs on a node */
5ef20ca1 1480 unsigned long compute_capacity;
58d081b5 1481};
e6628d5b 1482
fb13c7ee
MG
1483/*
1484 * XXX borrowed from update_sg_lb_stats
1485 */
1486static void update_numa_stats(struct numa_stats *ns, int nid)
1487{
d90707eb 1488 int cpu;
fb13c7ee
MG
1489
1490 memset(ns, 0, sizeof(*ns));
1491 for_each_cpu(cpu, cpumask_of_node(nid)) {
1492 struct rq *rq = cpu_rq(cpu);
1493
c7132dd6 1494 ns->load += weighted_cpuload(rq);
ced549fa 1495 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1496 }
1497
fb13c7ee
MG
1498}
1499
58d081b5
MG
1500struct task_numa_env {
1501 struct task_struct *p;
e6628d5b 1502
58d081b5
MG
1503 int src_cpu, src_nid;
1504 int dst_cpu, dst_nid;
e6628d5b 1505
58d081b5 1506 struct numa_stats src_stats, dst_stats;
e6628d5b 1507
40ea2b42 1508 int imbalance_pct;
7bd95320 1509 int dist;
fb13c7ee
MG
1510
1511 struct task_struct *best_task;
1512 long best_imp;
58d081b5
MG
1513 int best_cpu;
1514};
1515
fb13c7ee
MG
1516static void task_numa_assign(struct task_numa_env *env,
1517 struct task_struct *p, long imp)
1518{
a4739eca
SD
1519 struct rq *rq = cpu_rq(env->dst_cpu);
1520
1521 /* Bail out if run-queue part of active NUMA balance. */
1522 if (xchg(&rq->numa_migrate_on, 1))
1523 return;
1524
1525 /*
1526 * Clear previous best_cpu/rq numa-migrate flag, since task now
1527 * found a better CPU to move/swap.
1528 */
1529 if (env->best_cpu != -1) {
1530 rq = cpu_rq(env->best_cpu);
1531 WRITE_ONCE(rq->numa_migrate_on, 0);
1532 }
1533
fb13c7ee
MG
1534 if (env->best_task)
1535 put_task_struct(env->best_task);
bac78573
ON
1536 if (p)
1537 get_task_struct(p);
fb13c7ee
MG
1538
1539 env->best_task = p;
1540 env->best_imp = imp;
1541 env->best_cpu = env->dst_cpu;
1542}
1543
28a21745 1544static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1545 struct task_numa_env *env)
1546{
e4991b24
RR
1547 long imb, old_imb;
1548 long orig_src_load, orig_dst_load;
28a21745
RR
1549 long src_capacity, dst_capacity;
1550
1551 /*
1552 * The load is corrected for the CPU capacity available on each node.
1553 *
1554 * src_load dst_load
1555 * ------------ vs ---------
1556 * src_capacity dst_capacity
1557 */
1558 src_capacity = env->src_stats.compute_capacity;
1559 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1560
5f95ba7a 1561 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1562
28a21745 1563 orig_src_load = env->src_stats.load;
e4991b24 1564 orig_dst_load = env->dst_stats.load;
28a21745 1565
5f95ba7a 1566 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1567
1568 /* Would this change make things worse? */
1569 return (imb > old_imb);
e63da036
RR
1570}
1571
6fd98e77
SD
1572/*
1573 * Maximum NUMA importance can be 1998 (2*999);
1574 * SMALLIMP @ 30 would be close to 1998/64.
1575 * Used to deter task migration.
1576 */
1577#define SMALLIMP 30
1578
fb13c7ee
MG
1579/*
1580 * This checks if the overall compute and NUMA accesses of the system would
1581 * be improved if the source tasks was migrated to the target dst_cpu taking
1582 * into account that it might be best if task running on the dst_cpu should
1583 * be exchanged with the source task
1584 */
887c290e 1585static void task_numa_compare(struct task_numa_env *env,
305c1fac 1586 long taskimp, long groupimp, bool maymove)
fb13c7ee 1587{
fb13c7ee
MG
1588 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1589 struct task_struct *cur;
28a21745 1590 long src_load, dst_load;
fb13c7ee 1591 long load;
1c5d3eb3 1592 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1593 long moveimp = imp;
7bd95320 1594 int dist = env->dist;
fb13c7ee 1595
a4739eca
SD
1596 if (READ_ONCE(dst_rq->numa_migrate_on))
1597 return;
1598
fb13c7ee 1599 rcu_read_lock();
bac78573
ON
1600 cur = task_rcu_dereference(&dst_rq->curr);
1601 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1602 cur = NULL;
1603
7af68335
PZ
1604 /*
1605 * Because we have preemption enabled we can get migrated around and
1606 * end try selecting ourselves (current == env->p) as a swap candidate.
1607 */
1608 if (cur == env->p)
1609 goto unlock;
1610
305c1fac 1611 if (!cur) {
6fd98e77 1612 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1613 goto assign;
1614 else
1615 goto unlock;
1616 }
1617
fb13c7ee
MG
1618 /*
1619 * "imp" is the fault differential for the source task between the
1620 * source and destination node. Calculate the total differential for
1621 * the source task and potential destination task. The more negative
305c1fac 1622 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1623 * be incurred if the tasks were swapped.
1624 */
305c1fac
SD
1625 /* Skip this swap candidate if cannot move to the source cpu */
1626 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1627 goto unlock;
fb13c7ee 1628
305c1fac
SD
1629 /*
1630 * If dst and source tasks are in the same NUMA group, or not
1631 * in any group then look only at task weights.
1632 */
1633 if (cur->numa_group == env->p->numa_group) {
1634 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1635 task_weight(cur, env->dst_nid, dist);
887c290e 1636 /*
305c1fac
SD
1637 * Add some hysteresis to prevent swapping the
1638 * tasks within a group over tiny differences.
887c290e 1639 */
305c1fac
SD
1640 if (cur->numa_group)
1641 imp -= imp / 16;
1642 } else {
1643 /*
1644 * Compare the group weights. If a task is all by itself
1645 * (not part of a group), use the task weight instead.
1646 */
1647 if (cur->numa_group && env->p->numa_group)
1648 imp += group_weight(cur, env->src_nid, dist) -
1649 group_weight(cur, env->dst_nid, dist);
1650 else
1651 imp += task_weight(cur, env->src_nid, dist) -
1652 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1653 }
1654
305c1fac 1655 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1656 imp = moveimp;
305c1fac 1657 cur = NULL;
fb13c7ee 1658 goto assign;
305c1fac 1659 }
fb13c7ee 1660
6fd98e77
SD
1661 /*
1662 * If the NUMA importance is less than SMALLIMP,
1663 * task migration might only result in ping pong
1664 * of tasks and also hurt performance due to cache
1665 * misses.
1666 */
1667 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1668 goto unlock;
1669
fb13c7ee
MG
1670 /*
1671 * In the overloaded case, try and keep the load balanced.
1672 */
305c1fac
SD
1673 load = task_h_load(env->p) - task_h_load(cur);
1674 if (!load)
1675 goto assign;
1676
e720fff6
PZ
1677 dst_load = env->dst_stats.load + load;
1678 src_load = env->src_stats.load - load;
fb13c7ee 1679
28a21745 1680 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1681 goto unlock;
1682
305c1fac 1683assign:
ba7e5a27
RR
1684 /*
1685 * One idle CPU per node is evaluated for a task numa move.
1686 * Call select_idle_sibling to maybe find a better one.
1687 */
10e2f1ac
PZ
1688 if (!cur) {
1689 /*
97fb7a0a 1690 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1691 * can be used from IRQ context.
1692 */
1693 local_irq_disable();
772bd008
MR
1694 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1695 env->dst_cpu);
10e2f1ac
PZ
1696 local_irq_enable();
1697 }
ba7e5a27 1698
fb13c7ee
MG
1699 task_numa_assign(env, cur, imp);
1700unlock:
1701 rcu_read_unlock();
1702}
1703
887c290e
RR
1704static void task_numa_find_cpu(struct task_numa_env *env,
1705 long taskimp, long groupimp)
2c8a50aa 1706{
305c1fac
SD
1707 long src_load, dst_load, load;
1708 bool maymove = false;
2c8a50aa
MG
1709 int cpu;
1710
305c1fac
SD
1711 load = task_h_load(env->p);
1712 dst_load = env->dst_stats.load + load;
1713 src_load = env->src_stats.load - load;
1714
1715 /*
1716 * If the improvement from just moving env->p direction is better
1717 * than swapping tasks around, check if a move is possible.
1718 */
1719 maymove = !load_too_imbalanced(src_load, dst_load, env);
1720
2c8a50aa
MG
1721 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1722 /* Skip this CPU if the source task cannot migrate */
0c98d344 1723 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1724 continue;
1725
1726 env->dst_cpu = cpu;
305c1fac 1727 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1728 }
1729}
1730
58d081b5
MG
1731static int task_numa_migrate(struct task_struct *p)
1732{
58d081b5
MG
1733 struct task_numa_env env = {
1734 .p = p,
fb13c7ee 1735
58d081b5 1736 .src_cpu = task_cpu(p),
b32e86b4 1737 .src_nid = task_node(p),
fb13c7ee
MG
1738
1739 .imbalance_pct = 112,
1740
1741 .best_task = NULL,
1742 .best_imp = 0,
4142c3eb 1743 .best_cpu = -1,
58d081b5
MG
1744 };
1745 struct sched_domain *sd;
a4739eca 1746 struct rq *best_rq;
887c290e 1747 unsigned long taskweight, groupweight;
7bd95320 1748 int nid, ret, dist;
887c290e 1749 long taskimp, groupimp;
e6628d5b 1750
58d081b5 1751 /*
fb13c7ee
MG
1752 * Pick the lowest SD_NUMA domain, as that would have the smallest
1753 * imbalance and would be the first to start moving tasks about.
1754 *
1755 * And we want to avoid any moving of tasks about, as that would create
1756 * random movement of tasks -- counter the numa conditions we're trying
1757 * to satisfy here.
58d081b5
MG
1758 */
1759 rcu_read_lock();
fb13c7ee 1760 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1761 if (sd)
1762 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1763 rcu_read_unlock();
1764
46a73e8a
RR
1765 /*
1766 * Cpusets can break the scheduler domain tree into smaller
1767 * balance domains, some of which do not cross NUMA boundaries.
1768 * Tasks that are "trapped" in such domains cannot be migrated
1769 * elsewhere, so there is no point in (re)trying.
1770 */
1771 if (unlikely(!sd)) {
8cd45eee 1772 sched_setnuma(p, task_node(p));
46a73e8a
RR
1773 return -EINVAL;
1774 }
1775
2c8a50aa 1776 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1777 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1778 taskweight = task_weight(p, env.src_nid, dist);
1779 groupweight = group_weight(p, env.src_nid, dist);
1780 update_numa_stats(&env.src_stats, env.src_nid);
1781 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1782 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1783 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1784
a43455a1 1785 /* Try to find a spot on the preferred nid. */
2d4056fa 1786 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1787
9de05d48
RR
1788 /*
1789 * Look at other nodes in these cases:
1790 * - there is no space available on the preferred_nid
1791 * - the task is part of a numa_group that is interleaved across
1792 * multiple NUMA nodes; in order to better consolidate the group,
1793 * we need to check other locations.
1794 */
4142c3eb 1795 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1796 for_each_online_node(nid) {
1797 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1798 continue;
58d081b5 1799
7bd95320 1800 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1801 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1802 dist != env.dist) {
1803 taskweight = task_weight(p, env.src_nid, dist);
1804 groupweight = group_weight(p, env.src_nid, dist);
1805 }
7bd95320 1806
83e1d2cd 1807 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1808 taskimp = task_weight(p, nid, dist) - taskweight;
1809 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1810 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1811 continue;
1812
7bd95320 1813 env.dist = dist;
2c8a50aa
MG
1814 env.dst_nid = nid;
1815 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1816 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1817 }
1818 }
1819
68d1b02a
RR
1820 /*
1821 * If the task is part of a workload that spans multiple NUMA nodes,
1822 * and is migrating into one of the workload's active nodes, remember
1823 * this node as the task's preferred numa node, so the workload can
1824 * settle down.
1825 * A task that migrated to a second choice node will be better off
1826 * trying for a better one later. Do not set the preferred node here.
1827 */
db015dae
RR
1828 if (p->numa_group) {
1829 if (env.best_cpu == -1)
1830 nid = env.src_nid;
1831 else
8cd45eee 1832 nid = cpu_to_node(env.best_cpu);
db015dae 1833
8cd45eee
SD
1834 if (nid != p->numa_preferred_nid)
1835 sched_setnuma(p, nid);
db015dae
RR
1836 }
1837
1838 /* No better CPU than the current one was found. */
1839 if (env.best_cpu == -1)
1840 return -EAGAIN;
0ec8aa00 1841
a4739eca 1842 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1843 if (env.best_task == NULL) {
286549dc 1844 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1845 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1846 if (ret != 0)
1847 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1848 return ret;
1849 }
1850
0ad4e3df 1851 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1852 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1853
286549dc
MG
1854 if (ret != 0)
1855 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1856 put_task_struct(env.best_task);
1857 return ret;
e6628d5b
MG
1858}
1859
6b9a7460
MG
1860/* Attempt to migrate a task to a CPU on the preferred node. */
1861static void numa_migrate_preferred(struct task_struct *p)
1862{
5085e2a3
RR
1863 unsigned long interval = HZ;
1864
2739d3ee 1865 /* This task has no NUMA fault statistics yet */
44dba3d5 1866 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1867 return;
1868
2739d3ee 1869 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1870 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1871 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1872
1873 /* Success if task is already running on preferred CPU */
de1b301a 1874 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1875 return;
1876
1877 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1878 task_numa_migrate(p);
6b9a7460
MG
1879}
1880
20e07dea 1881/*
4142c3eb 1882 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1883 * tracking the nodes from which NUMA hinting faults are triggered. This can
1884 * be different from the set of nodes where the workload's memory is currently
1885 * located.
20e07dea 1886 */
4142c3eb 1887static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1888{
1889 unsigned long faults, max_faults = 0;
4142c3eb 1890 int nid, active_nodes = 0;
20e07dea
RR
1891
1892 for_each_online_node(nid) {
1893 faults = group_faults_cpu(numa_group, nid);
1894 if (faults > max_faults)
1895 max_faults = faults;
1896 }
1897
1898 for_each_online_node(nid) {
1899 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1900 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1901 active_nodes++;
20e07dea 1902 }
4142c3eb
RR
1903
1904 numa_group->max_faults_cpu = max_faults;
1905 numa_group->active_nodes = active_nodes;
20e07dea
RR
1906}
1907
04bb2f94
RR
1908/*
1909 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1910 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1911 * period will be for the next scan window. If local/(local+remote) ratio is
1912 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1913 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1914 */
1915#define NUMA_PERIOD_SLOTS 10
a22b4b01 1916#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1917
1918/*
1919 * Increase the scan period (slow down scanning) if the majority of
1920 * our memory is already on our local node, or if the majority of
1921 * the page accesses are shared with other processes.
1922 * Otherwise, decrease the scan period.
1923 */
1924static void update_task_scan_period(struct task_struct *p,
1925 unsigned long shared, unsigned long private)
1926{
1927 unsigned int period_slot;
37ec97de 1928 int lr_ratio, ps_ratio;
04bb2f94
RR
1929 int diff;
1930
1931 unsigned long remote = p->numa_faults_locality[0];
1932 unsigned long local = p->numa_faults_locality[1];
1933
1934 /*
1935 * If there were no record hinting faults then either the task is
1936 * completely idle or all activity is areas that are not of interest
074c2381
MG
1937 * to automatic numa balancing. Related to that, if there were failed
1938 * migration then it implies we are migrating too quickly or the local
1939 * node is overloaded. In either case, scan slower
04bb2f94 1940 */
074c2381 1941 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1942 p->numa_scan_period = min(p->numa_scan_period_max,
1943 p->numa_scan_period << 1);
1944
1945 p->mm->numa_next_scan = jiffies +
1946 msecs_to_jiffies(p->numa_scan_period);
1947
1948 return;
1949 }
1950
1951 /*
1952 * Prepare to scale scan period relative to the current period.
1953 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1954 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1955 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1956 */
1957 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1958 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1959 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1960
1961 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1962 /*
1963 * Most memory accesses are local. There is no need to
1964 * do fast NUMA scanning, since memory is already local.
1965 */
1966 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1967 if (!slot)
1968 slot = 1;
1969 diff = slot * period_slot;
1970 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1971 /*
1972 * Most memory accesses are shared with other tasks.
1973 * There is no point in continuing fast NUMA scanning,
1974 * since other tasks may just move the memory elsewhere.
1975 */
1976 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1977 if (!slot)
1978 slot = 1;
1979 diff = slot * period_slot;
1980 } else {
04bb2f94 1981 /*
37ec97de
RR
1982 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1983 * yet they are not on the local NUMA node. Speed up
1984 * NUMA scanning to get the memory moved over.
04bb2f94 1985 */
37ec97de
RR
1986 int ratio = max(lr_ratio, ps_ratio);
1987 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1988 }
1989
1990 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1991 task_scan_min(p), task_scan_max(p));
1992 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1993}
1994
7e2703e6
RR
1995/*
1996 * Get the fraction of time the task has been running since the last
1997 * NUMA placement cycle. The scheduler keeps similar statistics, but
1998 * decays those on a 32ms period, which is orders of magnitude off
1999 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2000 * stats only if the task is so new there are no NUMA statistics yet.
2001 */
2002static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2003{
2004 u64 runtime, delta, now;
2005 /* Use the start of this time slice to avoid calculations. */
2006 now = p->se.exec_start;
2007 runtime = p->se.sum_exec_runtime;
2008
2009 if (p->last_task_numa_placement) {
2010 delta = runtime - p->last_sum_exec_runtime;
2011 *period = now - p->last_task_numa_placement;
2012 } else {
c7b50216 2013 delta = p->se.avg.load_sum;
9d89c257 2014 *period = LOAD_AVG_MAX;
7e2703e6
RR
2015 }
2016
2017 p->last_sum_exec_runtime = runtime;
2018 p->last_task_numa_placement = now;
2019
2020 return delta;
2021}
2022
54009416
RR
2023/*
2024 * Determine the preferred nid for a task in a numa_group. This needs to
2025 * be done in a way that produces consistent results with group_weight,
2026 * otherwise workloads might not converge.
2027 */
2028static int preferred_group_nid(struct task_struct *p, int nid)
2029{
2030 nodemask_t nodes;
2031 int dist;
2032
2033 /* Direct connections between all NUMA nodes. */
2034 if (sched_numa_topology_type == NUMA_DIRECT)
2035 return nid;
2036
2037 /*
2038 * On a system with glueless mesh NUMA topology, group_weight
2039 * scores nodes according to the number of NUMA hinting faults on
2040 * both the node itself, and on nearby nodes.
2041 */
2042 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2043 unsigned long score, max_score = 0;
2044 int node, max_node = nid;
2045
2046 dist = sched_max_numa_distance;
2047
2048 for_each_online_node(node) {
2049 score = group_weight(p, node, dist);
2050 if (score > max_score) {
2051 max_score = score;
2052 max_node = node;
2053 }
2054 }
2055 return max_node;
2056 }
2057
2058 /*
2059 * Finding the preferred nid in a system with NUMA backplane
2060 * interconnect topology is more involved. The goal is to locate
2061 * tasks from numa_groups near each other in the system, and
2062 * untangle workloads from different sides of the system. This requires
2063 * searching down the hierarchy of node groups, recursively searching
2064 * inside the highest scoring group of nodes. The nodemask tricks
2065 * keep the complexity of the search down.
2066 */
2067 nodes = node_online_map;
2068 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2069 unsigned long max_faults = 0;
81907478 2070 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2071 int a, b;
2072
2073 /* Are there nodes at this distance from each other? */
2074 if (!find_numa_distance(dist))
2075 continue;
2076
2077 for_each_node_mask(a, nodes) {
2078 unsigned long faults = 0;
2079 nodemask_t this_group;
2080 nodes_clear(this_group);
2081
2082 /* Sum group's NUMA faults; includes a==b case. */
2083 for_each_node_mask(b, nodes) {
2084 if (node_distance(a, b) < dist) {
2085 faults += group_faults(p, b);
2086 node_set(b, this_group);
2087 node_clear(b, nodes);
2088 }
2089 }
2090
2091 /* Remember the top group. */
2092 if (faults > max_faults) {
2093 max_faults = faults;
2094 max_group = this_group;
2095 /*
2096 * subtle: at the smallest distance there is
2097 * just one node left in each "group", the
2098 * winner is the preferred nid.
2099 */
2100 nid = a;
2101 }
2102 }
2103 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2104 if (!max_faults)
2105 break;
54009416
RR
2106 nodes = max_group;
2107 }
2108 return nid;
2109}
2110
cbee9f88
PZ
2111static void task_numa_placement(struct task_struct *p)
2112{
f03bb676
SD
2113 int seq, nid, max_nid = -1;
2114 unsigned long max_faults = 0;
04bb2f94 2115 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2116 unsigned long total_faults;
2117 u64 runtime, period;
7dbd13ed 2118 spinlock_t *group_lock = NULL;
cbee9f88 2119
7e5a2c17
JL
2120 /*
2121 * The p->mm->numa_scan_seq field gets updated without
2122 * exclusive access. Use READ_ONCE() here to ensure
2123 * that the field is read in a single access:
2124 */
316c1608 2125 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2126 if (p->numa_scan_seq == seq)
2127 return;
2128 p->numa_scan_seq = seq;
598f0ec0 2129 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2130
7e2703e6
RR
2131 total_faults = p->numa_faults_locality[0] +
2132 p->numa_faults_locality[1];
2133 runtime = numa_get_avg_runtime(p, &period);
2134
7dbd13ed
MG
2135 /* If the task is part of a group prevent parallel updates to group stats */
2136 if (p->numa_group) {
2137 group_lock = &p->numa_group->lock;
60e69eed 2138 spin_lock_irq(group_lock);
7dbd13ed
MG
2139 }
2140
688b7585
MG
2141 /* Find the node with the highest number of faults */
2142 for_each_online_node(nid) {
44dba3d5
IM
2143 /* Keep track of the offsets in numa_faults array */
2144 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2145 unsigned long faults = 0, group_faults = 0;
44dba3d5 2146 int priv;
745d6147 2147
be1e4e76 2148 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2149 long diff, f_diff, f_weight;
8c8a743c 2150
44dba3d5
IM
2151 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2152 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2153 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2154 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2155
ac8e895b 2156 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2157 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2158 fault_types[priv] += p->numa_faults[membuf_idx];
2159 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2160
7e2703e6
RR
2161 /*
2162 * Normalize the faults_from, so all tasks in a group
2163 * count according to CPU use, instead of by the raw
2164 * number of faults. Tasks with little runtime have
2165 * little over-all impact on throughput, and thus their
2166 * faults are less important.
2167 */
2168 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2169 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2170 (total_faults + 1);
44dba3d5
IM
2171 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2172 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2173
44dba3d5
IM
2174 p->numa_faults[mem_idx] += diff;
2175 p->numa_faults[cpu_idx] += f_diff;
2176 faults += p->numa_faults[mem_idx];
83e1d2cd 2177 p->total_numa_faults += diff;
8c8a743c 2178 if (p->numa_group) {
44dba3d5
IM
2179 /*
2180 * safe because we can only change our own group
2181 *
2182 * mem_idx represents the offset for a given
2183 * nid and priv in a specific region because it
2184 * is at the beginning of the numa_faults array.
2185 */
2186 p->numa_group->faults[mem_idx] += diff;
2187 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2188 p->numa_group->total_faults += diff;
44dba3d5 2189 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2190 }
ac8e895b
MG
2191 }
2192
f03bb676
SD
2193 if (!p->numa_group) {
2194 if (faults > max_faults) {
2195 max_faults = faults;
2196 max_nid = nid;
2197 }
2198 } else if (group_faults > max_faults) {
2199 max_faults = group_faults;
688b7585
MG
2200 max_nid = nid;
2201 }
83e1d2cd
MG
2202 }
2203
7dbd13ed 2204 if (p->numa_group) {
4142c3eb 2205 numa_group_count_active_nodes(p->numa_group);
60e69eed 2206 spin_unlock_irq(group_lock);
f03bb676 2207 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2208 }
2209
bb97fc31
RR
2210 if (max_faults) {
2211 /* Set the new preferred node */
2212 if (max_nid != p->numa_preferred_nid)
2213 sched_setnuma(p, max_nid);
3a7053b3 2214 }
30619c89
SD
2215
2216 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2217}
2218
8c8a743c
PZ
2219static inline int get_numa_group(struct numa_group *grp)
2220{
c45a7795 2221 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2222}
2223
2224static inline void put_numa_group(struct numa_group *grp)
2225{
c45a7795 2226 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2227 kfree_rcu(grp, rcu);
2228}
2229
3e6a9418
MG
2230static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2231 int *priv)
8c8a743c
PZ
2232{
2233 struct numa_group *grp, *my_grp;
2234 struct task_struct *tsk;
2235 bool join = false;
2236 int cpu = cpupid_to_cpu(cpupid);
2237 int i;
2238
2239 if (unlikely(!p->numa_group)) {
2240 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2241 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2242
2243 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2244 if (!grp)
2245 return;
2246
c45a7795 2247 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2248 grp->active_nodes = 1;
2249 grp->max_faults_cpu = 0;
8c8a743c 2250 spin_lock_init(&grp->lock);
e29cf08b 2251 grp->gid = p->pid;
50ec8a40 2252 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2253 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2254 nr_node_ids;
8c8a743c 2255
be1e4e76 2256 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2257 grp->faults[i] = p->numa_faults[i];
8c8a743c 2258
989348b5 2259 grp->total_faults = p->total_numa_faults;
83e1d2cd 2260
8c8a743c
PZ
2261 grp->nr_tasks++;
2262 rcu_assign_pointer(p->numa_group, grp);
2263 }
2264
2265 rcu_read_lock();
316c1608 2266 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2267
2268 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2269 goto no_join;
8c8a743c
PZ
2270
2271 grp = rcu_dereference(tsk->numa_group);
2272 if (!grp)
3354781a 2273 goto no_join;
8c8a743c
PZ
2274
2275 my_grp = p->numa_group;
2276 if (grp == my_grp)
3354781a 2277 goto no_join;
8c8a743c
PZ
2278
2279 /*
2280 * Only join the other group if its bigger; if we're the bigger group,
2281 * the other task will join us.
2282 */
2283 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2284 goto no_join;
8c8a743c
PZ
2285
2286 /*
2287 * Tie-break on the grp address.
2288 */
2289 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2290 goto no_join;
8c8a743c 2291
dabe1d99
RR
2292 /* Always join threads in the same process. */
2293 if (tsk->mm == current->mm)
2294 join = true;
2295
2296 /* Simple filter to avoid false positives due to PID collisions */
2297 if (flags & TNF_SHARED)
2298 join = true;
8c8a743c 2299
3e6a9418
MG
2300 /* Update priv based on whether false sharing was detected */
2301 *priv = !join;
2302
dabe1d99 2303 if (join && !get_numa_group(grp))
3354781a 2304 goto no_join;
8c8a743c 2305
8c8a743c
PZ
2306 rcu_read_unlock();
2307
2308 if (!join)
2309 return;
2310
60e69eed
MG
2311 BUG_ON(irqs_disabled());
2312 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2313
be1e4e76 2314 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2315 my_grp->faults[i] -= p->numa_faults[i];
2316 grp->faults[i] += p->numa_faults[i];
8c8a743c 2317 }
989348b5
MG
2318 my_grp->total_faults -= p->total_numa_faults;
2319 grp->total_faults += p->total_numa_faults;
8c8a743c 2320
8c8a743c
PZ
2321 my_grp->nr_tasks--;
2322 grp->nr_tasks++;
2323
2324 spin_unlock(&my_grp->lock);
60e69eed 2325 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2326
2327 rcu_assign_pointer(p->numa_group, grp);
2328
2329 put_numa_group(my_grp);
3354781a
PZ
2330 return;
2331
2332no_join:
2333 rcu_read_unlock();
2334 return;
8c8a743c
PZ
2335}
2336
2337void task_numa_free(struct task_struct *p)
2338{
2339 struct numa_group *grp = p->numa_group;
44dba3d5 2340 void *numa_faults = p->numa_faults;
e9dd685c
SR
2341 unsigned long flags;
2342 int i;
8c8a743c
PZ
2343
2344 if (grp) {
e9dd685c 2345 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2346 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2347 grp->faults[i] -= p->numa_faults[i];
989348b5 2348 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2349
8c8a743c 2350 grp->nr_tasks--;
e9dd685c 2351 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2352 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2353 put_numa_group(grp);
2354 }
2355
44dba3d5 2356 p->numa_faults = NULL;
82727018 2357 kfree(numa_faults);
8c8a743c
PZ
2358}
2359
cbee9f88
PZ
2360/*
2361 * Got a PROT_NONE fault for a page on @node.
2362 */
58b46da3 2363void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2364{
2365 struct task_struct *p = current;
6688cc05 2366 bool migrated = flags & TNF_MIGRATED;
58b46da3 2367 int cpu_node = task_node(current);
792568ec 2368 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2369 struct numa_group *ng;
ac8e895b 2370 int priv;
cbee9f88 2371
2a595721 2372 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2373 return;
2374
9ff1d9ff
MG
2375 /* for example, ksmd faulting in a user's mm */
2376 if (!p->mm)
2377 return;
2378
f809ca9a 2379 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2380 if (unlikely(!p->numa_faults)) {
2381 int size = sizeof(*p->numa_faults) *
be1e4e76 2382 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2383
44dba3d5
IM
2384 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2385 if (!p->numa_faults)
f809ca9a 2386 return;
745d6147 2387
83e1d2cd 2388 p->total_numa_faults = 0;
04bb2f94 2389 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2390 }
cbee9f88 2391
8c8a743c
PZ
2392 /*
2393 * First accesses are treated as private, otherwise consider accesses
2394 * to be private if the accessing pid has not changed
2395 */
2396 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2397 priv = 1;
2398 } else {
2399 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2400 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2401 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2402 }
2403
792568ec
RR
2404 /*
2405 * If a workload spans multiple NUMA nodes, a shared fault that
2406 * occurs wholly within the set of nodes that the workload is
2407 * actively using should be counted as local. This allows the
2408 * scan rate to slow down when a workload has settled down.
2409 */
4142c3eb
RR
2410 ng = p->numa_group;
2411 if (!priv && !local && ng && ng->active_nodes > 1 &&
2412 numa_is_active_node(cpu_node, ng) &&
2413 numa_is_active_node(mem_node, ng))
792568ec
RR
2414 local = 1;
2415
2739d3ee 2416 /*
e1ff516a
YW
2417 * Retry to migrate task to preferred node periodically, in case it
2418 * previously failed, or the scheduler moved us.
2739d3ee 2419 */
b6a60cf3
SD
2420 if (time_after(jiffies, p->numa_migrate_retry)) {
2421 task_numa_placement(p);
6b9a7460 2422 numa_migrate_preferred(p);
b6a60cf3 2423 }
6b9a7460 2424
b32e86b4
IM
2425 if (migrated)
2426 p->numa_pages_migrated += pages;
074c2381
MG
2427 if (flags & TNF_MIGRATE_FAIL)
2428 p->numa_faults_locality[2] += pages;
b32e86b4 2429
44dba3d5
IM
2430 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2431 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2432 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2433}
2434
6e5fb223
PZ
2435static void reset_ptenuma_scan(struct task_struct *p)
2436{
7e5a2c17
JL
2437 /*
2438 * We only did a read acquisition of the mmap sem, so
2439 * p->mm->numa_scan_seq is written to without exclusive access
2440 * and the update is not guaranteed to be atomic. That's not
2441 * much of an issue though, since this is just used for
2442 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2443 * expensive, to avoid any form of compiler optimizations:
2444 */
316c1608 2445 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2446 p->mm->numa_scan_offset = 0;
2447}
2448
cbee9f88
PZ
2449/*
2450 * The expensive part of numa migration is done from task_work context.
2451 * Triggered from task_tick_numa().
2452 */
2453void task_numa_work(struct callback_head *work)
2454{
2455 unsigned long migrate, next_scan, now = jiffies;
2456 struct task_struct *p = current;
2457 struct mm_struct *mm = p->mm;
51170840 2458 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2459 struct vm_area_struct *vma;
9f40604c 2460 unsigned long start, end;
598f0ec0 2461 unsigned long nr_pte_updates = 0;
4620f8c1 2462 long pages, virtpages;
cbee9f88 2463
9148a3a1 2464 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2465
2466 work->next = work; /* protect against double add */
2467 /*
2468 * Who cares about NUMA placement when they're dying.
2469 *
2470 * NOTE: make sure not to dereference p->mm before this check,
2471 * exit_task_work() happens _after_ exit_mm() so we could be called
2472 * without p->mm even though we still had it when we enqueued this
2473 * work.
2474 */
2475 if (p->flags & PF_EXITING)
2476 return;
2477
930aa174 2478 if (!mm->numa_next_scan) {
7e8d16b6
MG
2479 mm->numa_next_scan = now +
2480 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2481 }
2482
cbee9f88
PZ
2483 /*
2484 * Enforce maximal scan/migration frequency..
2485 */
2486 migrate = mm->numa_next_scan;
2487 if (time_before(now, migrate))
2488 return;
2489
598f0ec0
MG
2490 if (p->numa_scan_period == 0) {
2491 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2492 p->numa_scan_period = task_scan_start(p);
598f0ec0 2493 }
cbee9f88 2494
fb003b80 2495 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2496 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2497 return;
2498
19a78d11
PZ
2499 /*
2500 * Delay this task enough that another task of this mm will likely win
2501 * the next time around.
2502 */
2503 p->node_stamp += 2 * TICK_NSEC;
2504
9f40604c
MG
2505 start = mm->numa_scan_offset;
2506 pages = sysctl_numa_balancing_scan_size;
2507 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2508 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2509 if (!pages)
2510 return;
cbee9f88 2511
4620f8c1 2512
8655d549
VB
2513 if (!down_read_trylock(&mm->mmap_sem))
2514 return;
9f40604c 2515 vma = find_vma(mm, start);
6e5fb223
PZ
2516 if (!vma) {
2517 reset_ptenuma_scan(p);
9f40604c 2518 start = 0;
6e5fb223
PZ
2519 vma = mm->mmap;
2520 }
9f40604c 2521 for (; vma; vma = vma->vm_next) {
6b79c57b 2522 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2523 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2524 continue;
6b79c57b 2525 }
6e5fb223 2526
4591ce4f
MG
2527 /*
2528 * Shared library pages mapped by multiple processes are not
2529 * migrated as it is expected they are cache replicated. Avoid
2530 * hinting faults in read-only file-backed mappings or the vdso
2531 * as migrating the pages will be of marginal benefit.
2532 */
2533 if (!vma->vm_mm ||
2534 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2535 continue;
2536
3c67f474
MG
2537 /*
2538 * Skip inaccessible VMAs to avoid any confusion between
2539 * PROT_NONE and NUMA hinting ptes
2540 */
2541 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2542 continue;
4591ce4f 2543
9f40604c
MG
2544 do {
2545 start = max(start, vma->vm_start);
2546 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2547 end = min(end, vma->vm_end);
4620f8c1 2548 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2549
2550 /*
4620f8c1
RR
2551 * Try to scan sysctl_numa_balancing_size worth of
2552 * hpages that have at least one present PTE that
2553 * is not already pte-numa. If the VMA contains
2554 * areas that are unused or already full of prot_numa
2555 * PTEs, scan up to virtpages, to skip through those
2556 * areas faster.
598f0ec0
MG
2557 */
2558 if (nr_pte_updates)
2559 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2560 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2561
9f40604c 2562 start = end;
4620f8c1 2563 if (pages <= 0 || virtpages <= 0)
9f40604c 2564 goto out;
3cf1962c
RR
2565
2566 cond_resched();
9f40604c 2567 } while (end != vma->vm_end);
cbee9f88 2568 }
6e5fb223 2569
9f40604c 2570out:
6e5fb223 2571 /*
c69307d5
PZ
2572 * It is possible to reach the end of the VMA list but the last few
2573 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2574 * would find the !migratable VMA on the next scan but not reset the
2575 * scanner to the start so check it now.
6e5fb223
PZ
2576 */
2577 if (vma)
9f40604c 2578 mm->numa_scan_offset = start;
6e5fb223
PZ
2579 else
2580 reset_ptenuma_scan(p);
2581 up_read(&mm->mmap_sem);
51170840
RR
2582
2583 /*
2584 * Make sure tasks use at least 32x as much time to run other code
2585 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2586 * Usually update_task_scan_period slows down scanning enough; on an
2587 * overloaded system we need to limit overhead on a per task basis.
2588 */
2589 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2590 u64 diff = p->se.sum_exec_runtime - runtime;
2591 p->node_stamp += 32 * diff;
2592 }
cbee9f88
PZ
2593}
2594
2595/*
2596 * Drive the periodic memory faults..
2597 */
2598void task_tick_numa(struct rq *rq, struct task_struct *curr)
2599{
2600 struct callback_head *work = &curr->numa_work;
2601 u64 period, now;
2602
2603 /*
2604 * We don't care about NUMA placement if we don't have memory.
2605 */
2606 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2607 return;
2608
2609 /*
2610 * Using runtime rather than walltime has the dual advantage that
2611 * we (mostly) drive the selection from busy threads and that the
2612 * task needs to have done some actual work before we bother with
2613 * NUMA placement.
2614 */
2615 now = curr->se.sum_exec_runtime;
2616 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2617
25b3e5a3 2618 if (now > curr->node_stamp + period) {
4b96a29b 2619 if (!curr->node_stamp)
b5dd77c8 2620 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2621 curr->node_stamp += period;
cbee9f88
PZ
2622
2623 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2624 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2625 task_work_add(curr, work, true);
2626 }
2627 }
2628}
3fed382b 2629
3f9672ba
SD
2630static void update_scan_period(struct task_struct *p, int new_cpu)
2631{
2632 int src_nid = cpu_to_node(task_cpu(p));
2633 int dst_nid = cpu_to_node(new_cpu);
2634
05cbdf4f
MG
2635 if (!static_branch_likely(&sched_numa_balancing))
2636 return;
2637
3f9672ba
SD
2638 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2639 return;
2640
05cbdf4f
MG
2641 if (src_nid == dst_nid)
2642 return;
2643
2644 /*
2645 * Allow resets if faults have been trapped before one scan
2646 * has completed. This is most likely due to a new task that
2647 * is pulled cross-node due to wakeups or load balancing.
2648 */
2649 if (p->numa_scan_seq) {
2650 /*
2651 * Avoid scan adjustments if moving to the preferred
2652 * node or if the task was not previously running on
2653 * the preferred node.
2654 */
2655 if (dst_nid == p->numa_preferred_nid ||
2656 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2657 return;
2658 }
2659
2660 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2661}
2662
cbee9f88
PZ
2663#else
2664static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2665{
2666}
0ec8aa00
PZ
2667
2668static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2669{
2670}
2671
2672static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2673{
2674}
3fed382b 2675
3f9672ba
SD
2676static inline void update_scan_period(struct task_struct *p, int new_cpu)
2677{
2678}
2679
cbee9f88
PZ
2680#endif /* CONFIG_NUMA_BALANCING */
2681
30cfdcfc
DA
2682static void
2683account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2684{
2685 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2686 if (!parent_entity(se))
029632fb 2687 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2688#ifdef CONFIG_SMP
0ec8aa00
PZ
2689 if (entity_is_task(se)) {
2690 struct rq *rq = rq_of(cfs_rq);
2691
2692 account_numa_enqueue(rq, task_of(se));
2693 list_add(&se->group_node, &rq->cfs_tasks);
2694 }
367456c7 2695#endif
30cfdcfc 2696 cfs_rq->nr_running++;
30cfdcfc
DA
2697}
2698
2699static void
2700account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2701{
2702 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2703 if (!parent_entity(se))
029632fb 2704 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2705#ifdef CONFIG_SMP
0ec8aa00
PZ
2706 if (entity_is_task(se)) {
2707 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2708 list_del_init(&se->group_node);
0ec8aa00 2709 }
bfdb198c 2710#endif
30cfdcfc 2711 cfs_rq->nr_running--;
30cfdcfc
DA
2712}
2713
8d5b9025
PZ
2714/*
2715 * Signed add and clamp on underflow.
2716 *
2717 * Explicitly do a load-store to ensure the intermediate value never hits
2718 * memory. This allows lockless observations without ever seeing the negative
2719 * values.
2720 */
2721#define add_positive(_ptr, _val) do { \
2722 typeof(_ptr) ptr = (_ptr); \
2723 typeof(_val) val = (_val); \
2724 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2725 \
2726 res = var + val; \
2727 \
2728 if (val < 0 && res > var) \
2729 res = 0; \
2730 \
2731 WRITE_ONCE(*ptr, res); \
2732} while (0)
2733
2734/*
2735 * Unsigned subtract and clamp on underflow.
2736 *
2737 * Explicitly do a load-store to ensure the intermediate value never hits
2738 * memory. This allows lockless observations without ever seeing the negative
2739 * values.
2740 */
2741#define sub_positive(_ptr, _val) do { \
2742 typeof(_ptr) ptr = (_ptr); \
2743 typeof(*ptr) val = (_val); \
2744 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2745 res = var - val; \
2746 if (res > var) \
2747 res = 0; \
2748 WRITE_ONCE(*ptr, res); \
2749} while (0)
2750
b5c0ce7b
PB
2751/*
2752 * Remove and clamp on negative, from a local variable.
2753 *
2754 * A variant of sub_positive(), which does not use explicit load-store
2755 * and is thus optimized for local variable updates.
2756 */
2757#define lsub_positive(_ptr, _val) do { \
2758 typeof(_ptr) ptr = (_ptr); \
2759 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2760} while (0)
2761
8d5b9025 2762#ifdef CONFIG_SMP
8d5b9025
PZ
2763static inline void
2764enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2765{
1ea6c46a
PZ
2766 cfs_rq->runnable_weight += se->runnable_weight;
2767
2768 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2769 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2770}
2771
2772static inline void
2773dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2774{
1ea6c46a
PZ
2775 cfs_rq->runnable_weight -= se->runnable_weight;
2776
2777 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2778 sub_positive(&cfs_rq->avg.runnable_load_sum,
2779 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2780}
2781
2782static inline void
2783enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2784{
2785 cfs_rq->avg.load_avg += se->avg.load_avg;
2786 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2787}
2788
2789static inline void
2790dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2791{
2792 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2793 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2794}
2795#else
2796static inline void
2797enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2798static inline void
2799dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2800static inline void
2801enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2802static inline void
2803dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2804#endif
2805
9059393e 2806static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2807 unsigned long weight, unsigned long runnable)
9059393e
VG
2808{
2809 if (se->on_rq) {
2810 /* commit outstanding execution time */
2811 if (cfs_rq->curr == se)
2812 update_curr(cfs_rq);
2813 account_entity_dequeue(cfs_rq, se);
2814 dequeue_runnable_load_avg(cfs_rq, se);
2815 }
2816 dequeue_load_avg(cfs_rq, se);
2817
1ea6c46a 2818 se->runnable_weight = runnable;
9059393e
VG
2819 update_load_set(&se->load, weight);
2820
2821#ifdef CONFIG_SMP
1ea6c46a
PZ
2822 do {
2823 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2824
2825 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2826 se->avg.runnable_load_avg =
2827 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2828 } while (0);
9059393e
VG
2829#endif
2830
2831 enqueue_load_avg(cfs_rq, se);
2832 if (se->on_rq) {
2833 account_entity_enqueue(cfs_rq, se);
2834 enqueue_runnable_load_avg(cfs_rq, se);
2835 }
2836}
2837
2838void reweight_task(struct task_struct *p, int prio)
2839{
2840 struct sched_entity *se = &p->se;
2841 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2842 struct load_weight *load = &se->load;
2843 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2844
1ea6c46a 2845 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2846 load->inv_weight = sched_prio_to_wmult[prio];
2847}
2848
3ff6dcac 2849#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2850#ifdef CONFIG_SMP
cef27403
PZ
2851/*
2852 * All this does is approximate the hierarchical proportion which includes that
2853 * global sum we all love to hate.
2854 *
2855 * That is, the weight of a group entity, is the proportional share of the
2856 * group weight based on the group runqueue weights. That is:
2857 *
2858 * tg->weight * grq->load.weight
2859 * ge->load.weight = ----------------------------- (1)
2860 * \Sum grq->load.weight
2861 *
2862 * Now, because computing that sum is prohibitively expensive to compute (been
2863 * there, done that) we approximate it with this average stuff. The average
2864 * moves slower and therefore the approximation is cheaper and more stable.
2865 *
2866 * So instead of the above, we substitute:
2867 *
2868 * grq->load.weight -> grq->avg.load_avg (2)
2869 *
2870 * which yields the following:
2871 *
2872 * tg->weight * grq->avg.load_avg
2873 * ge->load.weight = ------------------------------ (3)
2874 * tg->load_avg
2875 *
2876 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2877 *
2878 * That is shares_avg, and it is right (given the approximation (2)).
2879 *
2880 * The problem with it is that because the average is slow -- it was designed
2881 * to be exactly that of course -- this leads to transients in boundary
2882 * conditions. In specific, the case where the group was idle and we start the
2883 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2884 * yielding bad latency etc..
2885 *
2886 * Now, in that special case (1) reduces to:
2887 *
2888 * tg->weight * grq->load.weight
17de4ee0 2889 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2890 * grp->load.weight
2891 *
2892 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2893 *
2894 * So what we do is modify our approximation (3) to approach (4) in the (near)
2895 * UP case, like:
2896 *
2897 * ge->load.weight =
2898 *
2899 * tg->weight * grq->load.weight
2900 * --------------------------------------------------- (5)
2901 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2902 *
17de4ee0
PZ
2903 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2904 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2905 *
2906 *
2907 * tg->weight * grq->load.weight
2908 * ge->load.weight = ----------------------------- (6)
2909 * tg_load_avg'
2910 *
2911 * Where:
2912 *
2913 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2914 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2915 *
2916 * And that is shares_weight and is icky. In the (near) UP case it approaches
2917 * (4) while in the normal case it approaches (3). It consistently
2918 * overestimates the ge->load.weight and therefore:
2919 *
2920 * \Sum ge->load.weight >= tg->weight
2921 *
2922 * hence icky!
2923 */
2c8e4dce 2924static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2925{
7c80cfc9
PZ
2926 long tg_weight, tg_shares, load, shares;
2927 struct task_group *tg = cfs_rq->tg;
2928
2929 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2930
3d4b60d3 2931 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2932
ea1dc6fc 2933 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2934
ea1dc6fc
PZ
2935 /* Ensure tg_weight >= load */
2936 tg_weight -= cfs_rq->tg_load_avg_contrib;
2937 tg_weight += load;
3ff6dcac 2938
7c80cfc9 2939 shares = (tg_shares * load);
cf5f0acf
PZ
2940 if (tg_weight)
2941 shares /= tg_weight;
3ff6dcac 2942
b8fd8423
DE
2943 /*
2944 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2945 * of a group with small tg->shares value. It is a floor value which is
2946 * assigned as a minimum load.weight to the sched_entity representing
2947 * the group on a CPU.
2948 *
2949 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2950 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2951 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2952 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2953 * instead of 0.
2954 */
7c80cfc9 2955 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2956}
2c8e4dce
JB
2957
2958/*
17de4ee0
PZ
2959 * This calculates the effective runnable weight for a group entity based on
2960 * the group entity weight calculated above.
2961 *
2962 * Because of the above approximation (2), our group entity weight is
2963 * an load_avg based ratio (3). This means that it includes blocked load and
2964 * does not represent the runnable weight.
2965 *
2966 * Approximate the group entity's runnable weight per ratio from the group
2967 * runqueue:
2968 *
2969 * grq->avg.runnable_load_avg
2970 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2971 * grq->avg.load_avg
2972 *
2973 * However, analogous to above, since the avg numbers are slow, this leads to
2974 * transients in the from-idle case. Instead we use:
2975 *
2976 * ge->runnable_weight = ge->load.weight *
2977 *
2978 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2979 * ----------------------------------------------------- (8)
2980 * max(grq->avg.load_avg, grq->load.weight)
2981 *
2982 * Where these max() serve both to use the 'instant' values to fix the slow
2983 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
2984 */
2985static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2986{
17de4ee0
PZ
2987 long runnable, load_avg;
2988
2989 load_avg = max(cfs_rq->avg.load_avg,
2990 scale_load_down(cfs_rq->load.weight));
2991
2992 runnable = max(cfs_rq->avg.runnable_load_avg,
2993 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
2994
2995 runnable *= shares;
2996 if (load_avg)
2997 runnable /= load_avg;
17de4ee0 2998
2c8e4dce
JB
2999 return clamp_t(long, runnable, MIN_SHARES, shares);
3000}
387f77cc 3001#endif /* CONFIG_SMP */
ea1dc6fc 3002
82958366
PT
3003static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3004
1ea6c46a
PZ
3005/*
3006 * Recomputes the group entity based on the current state of its group
3007 * runqueue.
3008 */
3009static void update_cfs_group(struct sched_entity *se)
2069dd75 3010{
1ea6c46a
PZ
3011 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3012 long shares, runnable;
2069dd75 3013
1ea6c46a 3014 if (!gcfs_rq)
89ee048f
VG
3015 return;
3016
1ea6c46a 3017 if (throttled_hierarchy(gcfs_rq))
2069dd75 3018 return;
89ee048f 3019
3ff6dcac 3020#ifndef CONFIG_SMP
1ea6c46a 3021 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3022
3023 if (likely(se->load.weight == shares))
3ff6dcac 3024 return;
7c80cfc9 3025#else
2c8e4dce
JB
3026 shares = calc_group_shares(gcfs_rq);
3027 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3028#endif
2069dd75 3029
1ea6c46a 3030 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3031}
89ee048f 3032
2069dd75 3033#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3034static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3035{
3036}
3037#endif /* CONFIG_FAIR_GROUP_SCHED */
3038
ea14b57e 3039static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3040{
43964409
LT
3041 struct rq *rq = rq_of(cfs_rq);
3042
ea14b57e 3043 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3044 /*
3045 * There are a few boundary cases this might miss but it should
3046 * get called often enough that that should (hopefully) not be
9783be2c 3047 * a real problem.
a030d738
VK
3048 *
3049 * It will not get called when we go idle, because the idle
3050 * thread is a different class (!fair), nor will the utilization
3051 * number include things like RT tasks.
3052 *
3053 * As is, the util number is not freq-invariant (we'd have to
3054 * implement arch_scale_freq_capacity() for that).
3055 *
3056 * See cpu_util().
3057 */
ea14b57e 3058 cpufreq_update_util(rq, flags);
a030d738
VK
3059 }
3060}
3061
141965c7 3062#ifdef CONFIG_SMP
c566e8e9 3063#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3064/**
3065 * update_tg_load_avg - update the tg's load avg
3066 * @cfs_rq: the cfs_rq whose avg changed
3067 * @force: update regardless of how small the difference
3068 *
3069 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3070 * However, because tg->load_avg is a global value there are performance
3071 * considerations.
3072 *
3073 * In order to avoid having to look at the other cfs_rq's, we use a
3074 * differential update where we store the last value we propagated. This in
3075 * turn allows skipping updates if the differential is 'small'.
3076 *
815abf5a 3077 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3078 */
9d89c257 3079static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3080{
9d89c257 3081 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3082
aa0b7ae0
WL
3083 /*
3084 * No need to update load_avg for root_task_group as it is not used.
3085 */
3086 if (cfs_rq->tg == &root_task_group)
3087 return;
3088
9d89c257
YD
3089 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3090 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3091 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3092 }
8165e145 3093}
f5f9739d 3094
ad936d86 3095/*
97fb7a0a 3096 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3097 * caller only guarantees p->pi_lock is held; no other assumptions,
3098 * including the state of rq->lock, should be made.
3099 */
3100void set_task_rq_fair(struct sched_entity *se,
3101 struct cfs_rq *prev, struct cfs_rq *next)
3102{
0ccb977f
PZ
3103 u64 p_last_update_time;
3104 u64 n_last_update_time;
3105
ad936d86
BP
3106 if (!sched_feat(ATTACH_AGE_LOAD))
3107 return;
3108
3109 /*
3110 * We are supposed to update the task to "current" time, then its up to
3111 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3112 * getting what current time is, so simply throw away the out-of-date
3113 * time. This will result in the wakee task is less decayed, but giving
3114 * the wakee more load sounds not bad.
3115 */
0ccb977f
PZ
3116 if (!(se->avg.last_update_time && prev))
3117 return;
ad936d86
BP
3118
3119#ifndef CONFIG_64BIT
0ccb977f 3120 {
ad936d86
BP
3121 u64 p_last_update_time_copy;
3122 u64 n_last_update_time_copy;
3123
3124 do {
3125 p_last_update_time_copy = prev->load_last_update_time_copy;
3126 n_last_update_time_copy = next->load_last_update_time_copy;
3127
3128 smp_rmb();
3129
3130 p_last_update_time = prev->avg.last_update_time;
3131 n_last_update_time = next->avg.last_update_time;
3132
3133 } while (p_last_update_time != p_last_update_time_copy ||
3134 n_last_update_time != n_last_update_time_copy);
0ccb977f 3135 }
ad936d86 3136#else
0ccb977f
PZ
3137 p_last_update_time = prev->avg.last_update_time;
3138 n_last_update_time = next->avg.last_update_time;
ad936d86 3139#endif
23127296 3140 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3141 se->avg.last_update_time = n_last_update_time;
ad936d86 3142}
09a43ace 3143
0e2d2aaa
PZ
3144
3145/*
3146 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3147 * propagate its contribution. The key to this propagation is the invariant
3148 * that for each group:
3149 *
3150 * ge->avg == grq->avg (1)
3151 *
3152 * _IFF_ we look at the pure running and runnable sums. Because they
3153 * represent the very same entity, just at different points in the hierarchy.
3154 *
a4c3c049
VG
3155 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3156 * sum over (but still wrong, because the group entity and group rq do not have
3157 * their PELT windows aligned).
0e2d2aaa
PZ
3158 *
3159 * However, update_tg_cfs_runnable() is more complex. So we have:
3160 *
3161 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3162 *
3163 * And since, like util, the runnable part should be directly transferable,
3164 * the following would _appear_ to be the straight forward approach:
3165 *
a4c3c049 3166 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3167 *
3168 * And per (1) we have:
3169 *
a4c3c049 3170 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3171 *
3172 * Which gives:
3173 *
3174 * ge->load.weight * grq->avg.load_avg
3175 * ge->avg.load_avg = ----------------------------------- (4)
3176 * grq->load.weight
3177 *
3178 * Except that is wrong!
3179 *
3180 * Because while for entities historical weight is not important and we
3181 * really only care about our future and therefore can consider a pure
3182 * runnable sum, runqueues can NOT do this.
3183 *
3184 * We specifically want runqueues to have a load_avg that includes
3185 * historical weights. Those represent the blocked load, the load we expect
3186 * to (shortly) return to us. This only works by keeping the weights as
3187 * integral part of the sum. We therefore cannot decompose as per (3).
3188 *
a4c3c049
VG
3189 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3190 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3191 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3192 * runnable section of these tasks overlap (or not). If they were to perfectly
3193 * align the rq as a whole would be runnable 2/3 of the time. If however we
3194 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3195 *
a4c3c049 3196 * So we'll have to approximate.. :/
0e2d2aaa 3197 *
a4c3c049 3198 * Given the constraint:
0e2d2aaa 3199 *
a4c3c049 3200 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3201 *
a4c3c049
VG
3202 * We can construct a rule that adds runnable to a rq by assuming minimal
3203 * overlap.
0e2d2aaa 3204 *
a4c3c049 3205 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3206 *
a4c3c049 3207 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3208 *
a4c3c049 3209 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3210 *
0e2d2aaa
PZ
3211 */
3212
09a43ace 3213static inline void
0e2d2aaa 3214update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3215{
09a43ace
VG
3216 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3217
3218 /* Nothing to update */
3219 if (!delta)
3220 return;
3221
a4c3c049
VG
3222 /*
3223 * The relation between sum and avg is:
3224 *
3225 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3226 *
3227 * however, the PELT windows are not aligned between grq and gse.
3228 */
3229
09a43ace
VG
3230 /* Set new sched_entity's utilization */
3231 se->avg.util_avg = gcfs_rq->avg.util_avg;
3232 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3233
3234 /* Update parent cfs_rq utilization */
3235 add_positive(&cfs_rq->avg.util_avg, delta);
3236 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3237}
3238
09a43ace 3239static inline void
0e2d2aaa 3240update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3241{
a4c3c049
VG
3242 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3243 unsigned long runnable_load_avg, load_avg;
3244 u64 runnable_load_sum, load_sum = 0;
3245 s64 delta_sum;
09a43ace 3246
0e2d2aaa
PZ
3247 if (!runnable_sum)
3248 return;
09a43ace 3249
0e2d2aaa 3250 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3251
a4c3c049
VG
3252 if (runnable_sum >= 0) {
3253 /*
3254 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3255 * the CPU is saturated running == runnable.
3256 */
3257 runnable_sum += se->avg.load_sum;
3258 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3259 } else {
3260 /*
3261 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3262 * assuming all tasks are equally runnable.
3263 */
3264 if (scale_load_down(gcfs_rq->load.weight)) {
3265 load_sum = div_s64(gcfs_rq->avg.load_sum,
3266 scale_load_down(gcfs_rq->load.weight));
3267 }
3268
3269 /* But make sure to not inflate se's runnable */
3270 runnable_sum = min(se->avg.load_sum, load_sum);
3271 }
3272
3273 /*
3274 * runnable_sum can't be lower than running_sum
23127296
VG
3275 * Rescale running sum to be in the same range as runnable sum
3276 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3277 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3278 */
23127296 3279 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3280 runnable_sum = max(runnable_sum, running_sum);
3281
0e2d2aaa
PZ
3282 load_sum = (s64)se_weight(se) * runnable_sum;
3283 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3284
a4c3c049
VG
3285 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3286 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3287
a4c3c049
VG
3288 se->avg.load_sum = runnable_sum;
3289 se->avg.load_avg = load_avg;
3290 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3291 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3292
1ea6c46a
PZ
3293 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3294 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3295 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3296 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3297
a4c3c049
VG
3298 se->avg.runnable_load_sum = runnable_sum;
3299 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3300
09a43ace 3301 if (se->on_rq) {
a4c3c049
VG
3302 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3303 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3304 }
3305}
3306
0e2d2aaa 3307static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3308{
0e2d2aaa
PZ
3309 cfs_rq->propagate = 1;
3310 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3311}
3312
3313/* Update task and its cfs_rq load average */
3314static inline int propagate_entity_load_avg(struct sched_entity *se)
3315{
0e2d2aaa 3316 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3317
3318 if (entity_is_task(se))
3319 return 0;
3320
0e2d2aaa
PZ
3321 gcfs_rq = group_cfs_rq(se);
3322 if (!gcfs_rq->propagate)
09a43ace
VG
3323 return 0;
3324
0e2d2aaa
PZ
3325 gcfs_rq->propagate = 0;
3326
09a43ace
VG
3327 cfs_rq = cfs_rq_of(se);
3328
0e2d2aaa 3329 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3330
0e2d2aaa
PZ
3331 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3332 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3333
3334 return 1;
3335}
3336
bc427898
VG
3337/*
3338 * Check if we need to update the load and the utilization of a blocked
3339 * group_entity:
3340 */
3341static inline bool skip_blocked_update(struct sched_entity *se)
3342{
3343 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3344
3345 /*
3346 * If sched_entity still have not zero load or utilization, we have to
3347 * decay it:
3348 */
3349 if (se->avg.load_avg || se->avg.util_avg)
3350 return false;
3351
3352 /*
3353 * If there is a pending propagation, we have to update the load and
3354 * the utilization of the sched_entity:
3355 */
0e2d2aaa 3356 if (gcfs_rq->propagate)
bc427898
VG
3357 return false;
3358
3359 /*
3360 * Otherwise, the load and the utilization of the sched_entity is
3361 * already zero and there is no pending propagation, so it will be a
3362 * waste of time to try to decay it:
3363 */
3364 return true;
3365}
3366
6e83125c 3367#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3368
9d89c257 3369static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3370
3371static inline int propagate_entity_load_avg(struct sched_entity *se)
3372{
3373 return 0;
3374}
3375
0e2d2aaa 3376static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3377
6e83125c 3378#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3379
3d30544f
PZ
3380/**
3381 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3382 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3383 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3384 *
3385 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3386 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3387 * post_init_entity_util_avg().
3388 *
3389 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3390 *
7c3edd2c
PZ
3391 * Returns true if the load decayed or we removed load.
3392 *
3393 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3394 * call update_tg_load_avg() when this function returns true.
3d30544f 3395 */
a2c6c91f 3396static inline int
3a123bbb 3397update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3398{
0e2d2aaa 3399 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3400 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3401 int decayed = 0;
2dac754e 3402
2a2f5d4e
PZ
3403 if (cfs_rq->removed.nr) {
3404 unsigned long r;
9a2dd585 3405 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3406
3407 raw_spin_lock(&cfs_rq->removed.lock);
3408 swap(cfs_rq->removed.util_avg, removed_util);
3409 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3410 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3411 cfs_rq->removed.nr = 0;
3412 raw_spin_unlock(&cfs_rq->removed.lock);
3413
2a2f5d4e 3414 r = removed_load;
89741892 3415 sub_positive(&sa->load_avg, r);
9a2dd585 3416 sub_positive(&sa->load_sum, r * divider);
2dac754e 3417
2a2f5d4e 3418 r = removed_util;
89741892 3419 sub_positive(&sa->util_avg, r);
9a2dd585 3420 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3421
0e2d2aaa 3422 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3423
3424 decayed = 1;
9d89c257 3425 }
36ee28e4 3426
23127296 3427 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3428
9d89c257
YD
3429#ifndef CONFIG_64BIT
3430 smp_wmb();
3431 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3432#endif
36ee28e4 3433
2a2f5d4e 3434 if (decayed)
ea14b57e 3435 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3436
2a2f5d4e 3437 return decayed;
21e96f88
SM
3438}
3439
3d30544f
PZ
3440/**
3441 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3442 * @cfs_rq: cfs_rq to attach to
3443 * @se: sched_entity to attach
882a78a9 3444 * @flags: migration hints
3d30544f
PZ
3445 *
3446 * Must call update_cfs_rq_load_avg() before this, since we rely on
3447 * cfs_rq->avg.last_update_time being current.
3448 */
ea14b57e 3449static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3450{
f207934f
PZ
3451 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3452
3453 /*
3454 * When we attach the @se to the @cfs_rq, we must align the decay
3455 * window because without that, really weird and wonderful things can
3456 * happen.
3457 *
3458 * XXX illustrate
3459 */
a05e8c51 3460 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3461 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3462
3463 /*
3464 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3465 * period_contrib. This isn't strictly correct, but since we're
3466 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3467 * _sum a little.
3468 */
3469 se->avg.util_sum = se->avg.util_avg * divider;
3470
3471 se->avg.load_sum = divider;
3472 if (se_weight(se)) {
3473 se->avg.load_sum =
3474 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3475 }
3476
3477 se->avg.runnable_load_sum = se->avg.load_sum;
3478
8d5b9025 3479 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3480 cfs_rq->avg.util_avg += se->avg.util_avg;
3481 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3482
3483 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3484
ea14b57e 3485 cfs_rq_util_change(cfs_rq, flags);
a05e8c51
BP
3486}
3487
3d30544f
PZ
3488/**
3489 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3490 * @cfs_rq: cfs_rq to detach from
3491 * @se: sched_entity to detach
3492 *
3493 * Must call update_cfs_rq_load_avg() before this, since we rely on
3494 * cfs_rq->avg.last_update_time being current.
3495 */
a05e8c51
BP
3496static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3497{
8d5b9025 3498 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3499 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3500 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3501
3502 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3503
ea14b57e 3504 cfs_rq_util_change(cfs_rq, 0);
a05e8c51
BP
3505}
3506
b382a531
PZ
3507/*
3508 * Optional action to be done while updating the load average
3509 */
3510#define UPDATE_TG 0x1
3511#define SKIP_AGE_LOAD 0x2
3512#define DO_ATTACH 0x4
3513
3514/* Update task and its cfs_rq load average */
3515static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3516{
23127296 3517 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3518 int decayed;
3519
3520 /*
3521 * Track task load average for carrying it to new CPU after migrated, and
3522 * track group sched_entity load average for task_h_load calc in migration
3523 */
3524 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3525 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3526
3527 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3528 decayed |= propagate_entity_load_avg(se);
3529
3530 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3531
ea14b57e
PZ
3532 /*
3533 * DO_ATTACH means we're here from enqueue_entity().
3534 * !last_update_time means we've passed through
3535 * migrate_task_rq_fair() indicating we migrated.
3536 *
3537 * IOW we're enqueueing a task on a new CPU.
3538 */
3539 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3540 update_tg_load_avg(cfs_rq, 0);
3541
3542 } else if (decayed && (flags & UPDATE_TG))
3543 update_tg_load_avg(cfs_rq, 0);
3544}
3545
9d89c257 3546#ifndef CONFIG_64BIT
0905f04e
YD
3547static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3548{
9d89c257 3549 u64 last_update_time_copy;
0905f04e 3550 u64 last_update_time;
9ee474f5 3551
9d89c257
YD
3552 do {
3553 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3554 smp_rmb();
3555 last_update_time = cfs_rq->avg.last_update_time;
3556 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3557
3558 return last_update_time;
3559}
9d89c257 3560#else
0905f04e
YD
3561static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3562{
3563 return cfs_rq->avg.last_update_time;
3564}
9d89c257
YD
3565#endif
3566
104cb16d
MR
3567/*
3568 * Synchronize entity load avg of dequeued entity without locking
3569 * the previous rq.
3570 */
3571void sync_entity_load_avg(struct sched_entity *se)
3572{
3573 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3574 u64 last_update_time;
3575
3576 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3577 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3578}
3579
0905f04e
YD
3580/*
3581 * Task first catches up with cfs_rq, and then subtract
3582 * itself from the cfs_rq (task must be off the queue now).
3583 */
3584void remove_entity_load_avg(struct sched_entity *se)
3585{
3586 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3587 unsigned long flags;
0905f04e
YD
3588
3589 /*
7dc603c9
PZ
3590 * tasks cannot exit without having gone through wake_up_new_task() ->
3591 * post_init_entity_util_avg() which will have added things to the
3592 * cfs_rq, so we can remove unconditionally.
3593 *
3594 * Similarly for groups, they will have passed through
3595 * post_init_entity_util_avg() before unregister_sched_fair_group()
3596 * calls this.
0905f04e 3597 */
0905f04e 3598
104cb16d 3599 sync_entity_load_avg(se);
2a2f5d4e
PZ
3600
3601 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3602 ++cfs_rq->removed.nr;
3603 cfs_rq->removed.util_avg += se->avg.util_avg;
3604 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3605 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3606 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3607}
642dbc39 3608
7ea241af
YD
3609static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3610{
1ea6c46a 3611 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3612}
3613
3614static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3615{
3616 return cfs_rq->avg.load_avg;
3617}
3618
46f69fa3 3619static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3620
7f65ea42
PB
3621static inline unsigned long task_util(struct task_struct *p)
3622{
3623 return READ_ONCE(p->se.avg.util_avg);
3624}
3625
3626static inline unsigned long _task_util_est(struct task_struct *p)
3627{
3628 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3629
92a801e5 3630 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3631}
3632
3633static inline unsigned long task_util_est(struct task_struct *p)
3634{
3635 return max(task_util(p), _task_util_est(p));
3636}
3637
3638static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3639 struct task_struct *p)
3640{
3641 unsigned int enqueued;
3642
3643 if (!sched_feat(UTIL_EST))
3644 return;
3645
3646 /* Update root cfs_rq's estimated utilization */
3647 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3648 enqueued += _task_util_est(p);
7f65ea42
PB
3649 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3650}
3651
3652/*
3653 * Check if a (signed) value is within a specified (unsigned) margin,
3654 * based on the observation that:
3655 *
3656 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3657 *
3658 * NOTE: this only works when value + maring < INT_MAX.
3659 */
3660static inline bool within_margin(int value, int margin)
3661{
3662 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3663}
3664
3665static void
3666util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3667{
3668 long last_ewma_diff;
3669 struct util_est ue;
10a35e68 3670 int cpu;
7f65ea42
PB
3671
3672 if (!sched_feat(UTIL_EST))
3673 return;
3674
3482d98b
VG
3675 /* Update root cfs_rq's estimated utilization */
3676 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3677 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3678 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3679
3680 /*
3681 * Skip update of task's estimated utilization when the task has not
3682 * yet completed an activation, e.g. being migrated.
3683 */
3684 if (!task_sleep)
3685 return;
3686
d519329f
PB
3687 /*
3688 * If the PELT values haven't changed since enqueue time,
3689 * skip the util_est update.
3690 */
3691 ue = p->se.avg.util_est;
3692 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3693 return;
3694
7f65ea42
PB
3695 /*
3696 * Skip update of task's estimated utilization when its EWMA is
3697 * already ~1% close to its last activation value.
3698 */
d519329f 3699 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3700 last_ewma_diff = ue.enqueued - ue.ewma;
3701 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3702 return;
3703
10a35e68
VG
3704 /*
3705 * To avoid overestimation of actual task utilization, skip updates if
3706 * we cannot grant there is idle time in this CPU.
3707 */
3708 cpu = cpu_of(rq_of(cfs_rq));
3709 if (task_util(p) > capacity_orig_of(cpu))
3710 return;
3711
7f65ea42
PB
3712 /*
3713 * Update Task's estimated utilization
3714 *
3715 * When *p completes an activation we can consolidate another sample
3716 * of the task size. This is done by storing the current PELT value
3717 * as ue.enqueued and by using this value to update the Exponential
3718 * Weighted Moving Average (EWMA):
3719 *
3720 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3721 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3722 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3723 * = w * ( last_ewma_diff ) + ewma(t-1)
3724 * = w * (last_ewma_diff + ewma(t-1) / w)
3725 *
3726 * Where 'w' is the weight of new samples, which is configured to be
3727 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3728 */
3729 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3730 ue.ewma += last_ewma_diff;
3731 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3732 WRITE_ONCE(p->se.avg.util_est, ue);
3733}
3734
3b1baa64
MR
3735static inline int task_fits_capacity(struct task_struct *p, long capacity)
3736{
3737 return capacity * 1024 > task_util_est(p) * capacity_margin;
3738}
3739
3740static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3741{
3742 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3743 return;
3744
3745 if (!p) {
3746 rq->misfit_task_load = 0;
3747 return;
3748 }
3749
3750 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3751 rq->misfit_task_load = 0;
3752 return;
3753 }
3754
3755 rq->misfit_task_load = task_h_load(p);
3756}
3757
38033c37
PZ
3758#else /* CONFIG_SMP */
3759
d31b1a66
VG
3760#define UPDATE_TG 0x0
3761#define SKIP_AGE_LOAD 0x0
b382a531 3762#define DO_ATTACH 0x0
d31b1a66 3763
88c0616e 3764static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3765{
ea14b57e 3766 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3767}
3768
9d89c257 3769static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3770
a05e8c51 3771static inline void
ea14b57e 3772attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3773static inline void
3774detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3775
46f69fa3 3776static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3777{
3778 return 0;
3779}
3780
7f65ea42
PB
3781static inline void
3782util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3783
3784static inline void
3785util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3786 bool task_sleep) {}
3b1baa64 3787static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3788
38033c37 3789#endif /* CONFIG_SMP */
9d85f21c 3790
ddc97297
PZ
3791static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3792{
3793#ifdef CONFIG_SCHED_DEBUG
3794 s64 d = se->vruntime - cfs_rq->min_vruntime;
3795
3796 if (d < 0)
3797 d = -d;
3798
3799 if (d > 3*sysctl_sched_latency)
ae92882e 3800 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3801#endif
3802}
3803
aeb73b04
PZ
3804static void
3805place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3806{
1af5f730 3807 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3808
2cb8600e
PZ
3809 /*
3810 * The 'current' period is already promised to the current tasks,
3811 * however the extra weight of the new task will slow them down a
3812 * little, place the new task so that it fits in the slot that
3813 * stays open at the end.
3814 */
94dfb5e7 3815 if (initial && sched_feat(START_DEBIT))
f9c0b095 3816 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3817
a2e7a7eb 3818 /* sleeps up to a single latency don't count. */
5ca9880c 3819 if (!initial) {
a2e7a7eb 3820 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3821
a2e7a7eb
MG
3822 /*
3823 * Halve their sleep time's effect, to allow
3824 * for a gentler effect of sleepers:
3825 */
3826 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3827 thresh >>= 1;
51e0304c 3828
a2e7a7eb 3829 vruntime -= thresh;
aeb73b04
PZ
3830 }
3831
b5d9d734 3832 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3833 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3834}
3835
d3d9dc33
PT
3836static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3837
cb251765
MG
3838static inline void check_schedstat_required(void)
3839{
3840#ifdef CONFIG_SCHEDSTATS
3841 if (schedstat_enabled())
3842 return;
3843
3844 /* Force schedstat enabled if a dependent tracepoint is active */
3845 if (trace_sched_stat_wait_enabled() ||
3846 trace_sched_stat_sleep_enabled() ||
3847 trace_sched_stat_iowait_enabled() ||
3848 trace_sched_stat_blocked_enabled() ||
3849 trace_sched_stat_runtime_enabled()) {
eda8dca5 3850 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3851 "stat_blocked and stat_runtime require the "
f67abed5 3852 "kernel parameter schedstats=enable or "
cb251765
MG
3853 "kernel.sched_schedstats=1\n");
3854 }
3855#endif
3856}
3857
b5179ac7
PZ
3858
3859/*
3860 * MIGRATION
3861 *
3862 * dequeue
3863 * update_curr()
3864 * update_min_vruntime()
3865 * vruntime -= min_vruntime
3866 *
3867 * enqueue
3868 * update_curr()
3869 * update_min_vruntime()
3870 * vruntime += min_vruntime
3871 *
3872 * this way the vruntime transition between RQs is done when both
3873 * min_vruntime are up-to-date.
3874 *
3875 * WAKEUP (remote)
3876 *
59efa0ba 3877 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3878 * vruntime -= min_vruntime
3879 *
3880 * enqueue
3881 * update_curr()
3882 * update_min_vruntime()
3883 * vruntime += min_vruntime
3884 *
3885 * this way we don't have the most up-to-date min_vruntime on the originating
3886 * CPU and an up-to-date min_vruntime on the destination CPU.
3887 */
3888
bf0f6f24 3889static void
88ec22d3 3890enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3891{
2f950354
PZ
3892 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3893 bool curr = cfs_rq->curr == se;
3894
88ec22d3 3895 /*
2f950354
PZ
3896 * If we're the current task, we must renormalise before calling
3897 * update_curr().
88ec22d3 3898 */
2f950354 3899 if (renorm && curr)
88ec22d3
PZ
3900 se->vruntime += cfs_rq->min_vruntime;
3901
2f950354
PZ
3902 update_curr(cfs_rq);
3903
bf0f6f24 3904 /*
2f950354
PZ
3905 * Otherwise, renormalise after, such that we're placed at the current
3906 * moment in time, instead of some random moment in the past. Being
3907 * placed in the past could significantly boost this task to the
3908 * fairness detriment of existing tasks.
bf0f6f24 3909 */
2f950354
PZ
3910 if (renorm && !curr)
3911 se->vruntime += cfs_rq->min_vruntime;
3912
89ee048f
VG
3913 /*
3914 * When enqueuing a sched_entity, we must:
3915 * - Update loads to have both entity and cfs_rq synced with now.
3916 * - Add its load to cfs_rq->runnable_avg
3917 * - For group_entity, update its weight to reflect the new share of
3918 * its group cfs_rq
3919 * - Add its new weight to cfs_rq->load.weight
3920 */
b382a531 3921 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3922 update_cfs_group(se);
b5b3e35f 3923 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3924 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3925
1a3d027c 3926 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3927 place_entity(cfs_rq, se, 0);
bf0f6f24 3928
cb251765 3929 check_schedstat_required();
4fa8d299
JP
3930 update_stats_enqueue(cfs_rq, se, flags);
3931 check_spread(cfs_rq, se);
2f950354 3932 if (!curr)
83b699ed 3933 __enqueue_entity(cfs_rq, se);
2069dd75 3934 se->on_rq = 1;
3d4b47b4 3935
d3d9dc33 3936 if (cfs_rq->nr_running == 1) {
3d4b47b4 3937 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3938 check_enqueue_throttle(cfs_rq);
3939 }
bf0f6f24
IM
3940}
3941
2c13c919 3942static void __clear_buddies_last(struct sched_entity *se)
2002c695 3943{
2c13c919
RR
3944 for_each_sched_entity(se) {
3945 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3946 if (cfs_rq->last != se)
2c13c919 3947 break;
f1044799
PZ
3948
3949 cfs_rq->last = NULL;
2c13c919
RR
3950 }
3951}
2002c695 3952
2c13c919
RR
3953static void __clear_buddies_next(struct sched_entity *se)
3954{
3955 for_each_sched_entity(se) {
3956 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3957 if (cfs_rq->next != se)
2c13c919 3958 break;
f1044799
PZ
3959
3960 cfs_rq->next = NULL;
2c13c919 3961 }
2002c695
PZ
3962}
3963
ac53db59
RR
3964static void __clear_buddies_skip(struct sched_entity *se)
3965{
3966 for_each_sched_entity(se) {
3967 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3968 if (cfs_rq->skip != se)
ac53db59 3969 break;
f1044799
PZ
3970
3971 cfs_rq->skip = NULL;
ac53db59
RR
3972 }
3973}
3974
a571bbea
PZ
3975static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3976{
2c13c919
RR
3977 if (cfs_rq->last == se)
3978 __clear_buddies_last(se);
3979
3980 if (cfs_rq->next == se)
3981 __clear_buddies_next(se);
ac53db59
RR
3982
3983 if (cfs_rq->skip == se)
3984 __clear_buddies_skip(se);
a571bbea
PZ
3985}
3986
6c16a6dc 3987static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3988
bf0f6f24 3989static void
371fd7e7 3990dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3991{
a2a2d680
DA
3992 /*
3993 * Update run-time statistics of the 'current'.
3994 */
3995 update_curr(cfs_rq);
89ee048f
VG
3996
3997 /*
3998 * When dequeuing a sched_entity, we must:
3999 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
4000 * - Subtract its load from the cfs_rq->runnable_avg.
4001 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4002 * - For group entity, update its weight to reflect the new share
4003 * of its group cfs_rq.
4004 */
88c0616e 4005 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4006 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4007
4fa8d299 4008 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4009
2002c695 4010 clear_buddies(cfs_rq, se);
4793241b 4011
83b699ed 4012 if (se != cfs_rq->curr)
30cfdcfc 4013 __dequeue_entity(cfs_rq, se);
17bc14b7 4014 se->on_rq = 0;
30cfdcfc 4015 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4016
4017 /*
b60205c7
PZ
4018 * Normalize after update_curr(); which will also have moved
4019 * min_vruntime if @se is the one holding it back. But before doing
4020 * update_min_vruntime() again, which will discount @se's position and
4021 * can move min_vruntime forward still more.
88ec22d3 4022 */
371fd7e7 4023 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4024 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4025
d8b4986d
PT
4026 /* return excess runtime on last dequeue */
4027 return_cfs_rq_runtime(cfs_rq);
4028
1ea6c46a 4029 update_cfs_group(se);
b60205c7
PZ
4030
4031 /*
4032 * Now advance min_vruntime if @se was the entity holding it back,
4033 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4034 * put back on, and if we advance min_vruntime, we'll be placed back
4035 * further than we started -- ie. we'll be penalized.
4036 */
9845c49c 4037 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4038 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4039}
4040
4041/*
4042 * Preempt the current task with a newly woken task if needed:
4043 */
7c92e54f 4044static void
2e09bf55 4045check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4046{
11697830 4047 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4048 struct sched_entity *se;
4049 s64 delta;
11697830 4050
6d0f0ebd 4051 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4052 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4053 if (delta_exec > ideal_runtime) {
8875125e 4054 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4055 /*
4056 * The current task ran long enough, ensure it doesn't get
4057 * re-elected due to buddy favours.
4058 */
4059 clear_buddies(cfs_rq, curr);
f685ceac
MG
4060 return;
4061 }
4062
4063 /*
4064 * Ensure that a task that missed wakeup preemption by a
4065 * narrow margin doesn't have to wait for a full slice.
4066 * This also mitigates buddy induced latencies under load.
4067 */
f685ceac
MG
4068 if (delta_exec < sysctl_sched_min_granularity)
4069 return;
4070
f4cfb33e
WX
4071 se = __pick_first_entity(cfs_rq);
4072 delta = curr->vruntime - se->vruntime;
f685ceac 4073
f4cfb33e
WX
4074 if (delta < 0)
4075 return;
d7d82944 4076
f4cfb33e 4077 if (delta > ideal_runtime)
8875125e 4078 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4079}
4080
83b699ed 4081static void
8494f412 4082set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4083{
83b699ed
SV
4084 /* 'current' is not kept within the tree. */
4085 if (se->on_rq) {
4086 /*
4087 * Any task has to be enqueued before it get to execute on
4088 * a CPU. So account for the time it spent waiting on the
4089 * runqueue.
4090 */
4fa8d299 4091 update_stats_wait_end(cfs_rq, se);
83b699ed 4092 __dequeue_entity(cfs_rq, se);
88c0616e 4093 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4094 }
4095
79303e9e 4096 update_stats_curr_start(cfs_rq, se);
429d43bc 4097 cfs_rq->curr = se;
4fa8d299 4098
eba1ed4b
IM
4099 /*
4100 * Track our maximum slice length, if the CPU's load is at
4101 * least twice that of our own weight (i.e. dont track it
4102 * when there are only lesser-weight tasks around):
4103 */
cb251765 4104 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4105 schedstat_set(se->statistics.slice_max,
4106 max((u64)schedstat_val(se->statistics.slice_max),
4107 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4108 }
4fa8d299 4109
4a55b450 4110 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4111}
4112
3f3a4904
PZ
4113static int
4114wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4115
ac53db59
RR
4116/*
4117 * Pick the next process, keeping these things in mind, in this order:
4118 * 1) keep things fair between processes/task groups
4119 * 2) pick the "next" process, since someone really wants that to run
4120 * 3) pick the "last" process, for cache locality
4121 * 4) do not run the "skip" process, if something else is available
4122 */
678d5718
PZ
4123static struct sched_entity *
4124pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4125{
678d5718
PZ
4126 struct sched_entity *left = __pick_first_entity(cfs_rq);
4127 struct sched_entity *se;
4128
4129 /*
4130 * If curr is set we have to see if its left of the leftmost entity
4131 * still in the tree, provided there was anything in the tree at all.
4132 */
4133 if (!left || (curr && entity_before(curr, left)))
4134 left = curr;
4135
4136 se = left; /* ideally we run the leftmost entity */
f4b6755f 4137
ac53db59
RR
4138 /*
4139 * Avoid running the skip buddy, if running something else can
4140 * be done without getting too unfair.
4141 */
4142 if (cfs_rq->skip == se) {
678d5718
PZ
4143 struct sched_entity *second;
4144
4145 if (se == curr) {
4146 second = __pick_first_entity(cfs_rq);
4147 } else {
4148 second = __pick_next_entity(se);
4149 if (!second || (curr && entity_before(curr, second)))
4150 second = curr;
4151 }
4152
ac53db59
RR
4153 if (second && wakeup_preempt_entity(second, left) < 1)
4154 se = second;
4155 }
aa2ac252 4156
f685ceac
MG
4157 /*
4158 * Prefer last buddy, try to return the CPU to a preempted task.
4159 */
4160 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4161 se = cfs_rq->last;
4162
ac53db59
RR
4163 /*
4164 * Someone really wants this to run. If it's not unfair, run it.
4165 */
4166 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4167 se = cfs_rq->next;
4168
f685ceac 4169 clear_buddies(cfs_rq, se);
4793241b
PZ
4170
4171 return se;
aa2ac252
PZ
4172}
4173
678d5718 4174static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4175
ab6cde26 4176static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4177{
4178 /*
4179 * If still on the runqueue then deactivate_task()
4180 * was not called and update_curr() has to be done:
4181 */
4182 if (prev->on_rq)
b7cc0896 4183 update_curr(cfs_rq);
bf0f6f24 4184
d3d9dc33
PT
4185 /* throttle cfs_rqs exceeding runtime */
4186 check_cfs_rq_runtime(cfs_rq);
4187
4fa8d299 4188 check_spread(cfs_rq, prev);
cb251765 4189
30cfdcfc 4190 if (prev->on_rq) {
4fa8d299 4191 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4192 /* Put 'current' back into the tree. */
4193 __enqueue_entity(cfs_rq, prev);
9d85f21c 4194 /* in !on_rq case, update occurred at dequeue */
88c0616e 4195 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4196 }
429d43bc 4197 cfs_rq->curr = NULL;
bf0f6f24
IM
4198}
4199
8f4d37ec
PZ
4200static void
4201entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4202{
bf0f6f24 4203 /*
30cfdcfc 4204 * Update run-time statistics of the 'current'.
bf0f6f24 4205 */
30cfdcfc 4206 update_curr(cfs_rq);
bf0f6f24 4207
9d85f21c
PT
4208 /*
4209 * Ensure that runnable average is periodically updated.
4210 */
88c0616e 4211 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4212 update_cfs_group(curr);
9d85f21c 4213
8f4d37ec
PZ
4214#ifdef CONFIG_SCHED_HRTICK
4215 /*
4216 * queued ticks are scheduled to match the slice, so don't bother
4217 * validating it and just reschedule.
4218 */
983ed7a6 4219 if (queued) {
8875125e 4220 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4221 return;
4222 }
8f4d37ec
PZ
4223 /*
4224 * don't let the period tick interfere with the hrtick preemption
4225 */
4226 if (!sched_feat(DOUBLE_TICK) &&
4227 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4228 return;
4229#endif
4230
2c2efaed 4231 if (cfs_rq->nr_running > 1)
2e09bf55 4232 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4233}
4234
ab84d31e
PT
4235
4236/**************************************************
4237 * CFS bandwidth control machinery
4238 */
4239
4240#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4241
e9666d10 4242#ifdef CONFIG_JUMP_LABEL
c5905afb 4243static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4244
4245static inline bool cfs_bandwidth_used(void)
4246{
c5905afb 4247 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4248}
4249
1ee14e6c 4250void cfs_bandwidth_usage_inc(void)
029632fb 4251{
ce48c146 4252 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4253}
4254
4255void cfs_bandwidth_usage_dec(void)
4256{
ce48c146 4257 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4258}
e9666d10 4259#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4260static bool cfs_bandwidth_used(void)
4261{
4262 return true;
4263}
4264
1ee14e6c
BS
4265void cfs_bandwidth_usage_inc(void) {}
4266void cfs_bandwidth_usage_dec(void) {}
e9666d10 4267#endif /* CONFIG_JUMP_LABEL */
029632fb 4268
ab84d31e
PT
4269/*
4270 * default period for cfs group bandwidth.
4271 * default: 0.1s, units: nanoseconds
4272 */
4273static inline u64 default_cfs_period(void)
4274{
4275 return 100000000ULL;
4276}
ec12cb7f
PT
4277
4278static inline u64 sched_cfs_bandwidth_slice(void)
4279{
4280 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4281}
4282
a9cf55b2
PT
4283/*
4284 * Replenish runtime according to assigned quota and update expiration time.
4285 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4286 * additional synchronization around rq->lock.
4287 *
4288 * requires cfs_b->lock
4289 */
029632fb 4290void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4291{
4292 u64 now;
4293
4294 if (cfs_b->quota == RUNTIME_INF)
4295 return;
4296
4297 now = sched_clock_cpu(smp_processor_id());
4298 cfs_b->runtime = cfs_b->quota;
4299 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4300 cfs_b->expires_seq++;
a9cf55b2
PT
4301}
4302
029632fb
PZ
4303static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4304{
4305 return &tg->cfs_bandwidth;
4306}
4307
f1b17280
PT
4308/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4309static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4310{
4311 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4312 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4313
78becc27 4314 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4315}
4316
85dac906
PT
4317/* returns 0 on failure to allocate runtime */
4318static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4319{
4320 struct task_group *tg = cfs_rq->tg;
4321 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4322 u64 amount = 0, min_amount, expires;
512ac999 4323 int expires_seq;
ec12cb7f
PT
4324
4325 /* note: this is a positive sum as runtime_remaining <= 0 */
4326 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4327
4328 raw_spin_lock(&cfs_b->lock);
4329 if (cfs_b->quota == RUNTIME_INF)
4330 amount = min_amount;
58088ad0 4331 else {
77a4d1a1 4332 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4333
4334 if (cfs_b->runtime > 0) {
4335 amount = min(cfs_b->runtime, min_amount);
4336 cfs_b->runtime -= amount;
4337 cfs_b->idle = 0;
4338 }
ec12cb7f 4339 }
512ac999 4340 expires_seq = cfs_b->expires_seq;
a9cf55b2 4341 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4342 raw_spin_unlock(&cfs_b->lock);
4343
4344 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4345 /*
4346 * we may have advanced our local expiration to account for allowed
4347 * spread between our sched_clock and the one on which runtime was
4348 * issued.
4349 */
512ac999
XP
4350 if (cfs_rq->expires_seq != expires_seq) {
4351 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4352 cfs_rq->runtime_expires = expires;
512ac999 4353 }
85dac906
PT
4354
4355 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4356}
4357
a9cf55b2
PT
4358/*
4359 * Note: This depends on the synchronization provided by sched_clock and the
4360 * fact that rq->clock snapshots this value.
4361 */
4362static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4363{
a9cf55b2 4364 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4365
4366 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4367 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4368 return;
4369
a9cf55b2
PT
4370 if (cfs_rq->runtime_remaining < 0)
4371 return;
4372
4373 /*
4374 * If the local deadline has passed we have to consider the
4375 * possibility that our sched_clock is 'fast' and the global deadline
4376 * has not truly expired.
4377 *
4378 * Fortunately we can check determine whether this the case by checking
512ac999 4379 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4380 */
512ac999 4381 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4382 /* extend local deadline, drift is bounded above by 2 ticks */
4383 cfs_rq->runtime_expires += TICK_NSEC;
4384 } else {
4385 /* global deadline is ahead, expiration has passed */
4386 cfs_rq->runtime_remaining = 0;
4387 }
4388}
4389
9dbdb155 4390static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4391{
4392 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4393 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4394 expire_cfs_rq_runtime(cfs_rq);
4395
4396 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4397 return;
4398
85dac906
PT
4399 /*
4400 * if we're unable to extend our runtime we resched so that the active
4401 * hierarchy can be throttled
4402 */
4403 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4404 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4405}
4406
6c16a6dc 4407static __always_inline
9dbdb155 4408void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4409{
56f570e5 4410 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4411 return;
4412
4413 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4414}
4415
85dac906
PT
4416static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4417{
56f570e5 4418 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4419}
4420
64660c86
PT
4421/* check whether cfs_rq, or any parent, is throttled */
4422static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4423{
56f570e5 4424 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4425}
4426
4427/*
4428 * Ensure that neither of the group entities corresponding to src_cpu or
4429 * dest_cpu are members of a throttled hierarchy when performing group
4430 * load-balance operations.
4431 */
4432static inline int throttled_lb_pair(struct task_group *tg,
4433 int src_cpu, int dest_cpu)
4434{
4435 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4436
4437 src_cfs_rq = tg->cfs_rq[src_cpu];
4438 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4439
4440 return throttled_hierarchy(src_cfs_rq) ||
4441 throttled_hierarchy(dest_cfs_rq);
4442}
4443
64660c86
PT
4444static int tg_unthrottle_up(struct task_group *tg, void *data)
4445{
4446 struct rq *rq = data;
4447 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4448
4449 cfs_rq->throttle_count--;
64660c86 4450 if (!cfs_rq->throttle_count) {
f1b17280 4451 /* adjust cfs_rq_clock_task() */
78becc27 4452 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4453 cfs_rq->throttled_clock_task;
31bc6aea
VG
4454
4455 /* Add cfs_rq with already running entity in the list */
4456 if (cfs_rq->nr_running >= 1)
4457 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4458 }
64660c86
PT
4459
4460 return 0;
4461}
4462
4463static int tg_throttle_down(struct task_group *tg, void *data)
4464{
4465 struct rq *rq = data;
4466 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4467
82958366 4468 /* group is entering throttled state, stop time */
31bc6aea 4469 if (!cfs_rq->throttle_count) {
78becc27 4470 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4471 list_del_leaf_cfs_rq(cfs_rq);
4472 }
64660c86
PT
4473 cfs_rq->throttle_count++;
4474
4475 return 0;
4476}
4477
d3d9dc33 4478static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4479{
4480 struct rq *rq = rq_of(cfs_rq);
4481 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4482 struct sched_entity *se;
4483 long task_delta, dequeue = 1;
77a4d1a1 4484 bool empty;
85dac906
PT
4485
4486 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4487
f1b17280 4488 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4489 rcu_read_lock();
4490 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4491 rcu_read_unlock();
85dac906
PT
4492
4493 task_delta = cfs_rq->h_nr_running;
4494 for_each_sched_entity(se) {
4495 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4496 /* throttled entity or throttle-on-deactivate */
4497 if (!se->on_rq)
4498 break;
4499
4500 if (dequeue)
4501 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4502 qcfs_rq->h_nr_running -= task_delta;
4503
4504 if (qcfs_rq->load.weight)
4505 dequeue = 0;
4506 }
4507
4508 if (!se)
72465447 4509 sub_nr_running(rq, task_delta);
85dac906
PT
4510
4511 cfs_rq->throttled = 1;
78becc27 4512 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4513 raw_spin_lock(&cfs_b->lock);
d49db342 4514 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4515
c06f04c7
BS
4516 /*
4517 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4518 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4519 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4520 */
baa9be4f
PA
4521 if (cfs_b->distribute_running)
4522 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4523 else
4524 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4525
4526 /*
4527 * If we're the first throttled task, make sure the bandwidth
4528 * timer is running.
4529 */
4530 if (empty)
4531 start_cfs_bandwidth(cfs_b);
4532
85dac906
PT
4533 raw_spin_unlock(&cfs_b->lock);
4534}
4535
029632fb 4536void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4537{
4538 struct rq *rq = rq_of(cfs_rq);
4539 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4540 struct sched_entity *se;
4541 int enqueue = 1;
4542 long task_delta;
4543
22b958d8 4544 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4545
4546 cfs_rq->throttled = 0;
1a55af2e
FW
4547
4548 update_rq_clock(rq);
4549
671fd9da 4550 raw_spin_lock(&cfs_b->lock);
78becc27 4551 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4552 list_del_rcu(&cfs_rq->throttled_list);
4553 raw_spin_unlock(&cfs_b->lock);
4554
64660c86
PT
4555 /* update hierarchical throttle state */
4556 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4557
671fd9da
PT
4558 if (!cfs_rq->load.weight)
4559 return;
4560
4561 task_delta = cfs_rq->h_nr_running;
4562 for_each_sched_entity(se) {
4563 if (se->on_rq)
4564 enqueue = 0;
4565
4566 cfs_rq = cfs_rq_of(se);
4567 if (enqueue)
4568 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4569 cfs_rq->h_nr_running += task_delta;
4570
4571 if (cfs_rq_throttled(cfs_rq))
4572 break;
4573 }
4574
31bc6aea
VG
4575 assert_list_leaf_cfs_rq(rq);
4576
671fd9da 4577 if (!se)
72465447 4578 add_nr_running(rq, task_delta);
671fd9da 4579
97fb7a0a 4580 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4581 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4582 resched_curr(rq);
671fd9da
PT
4583}
4584
4585static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4586 u64 remaining, u64 expires)
4587{
4588 struct cfs_rq *cfs_rq;
c06f04c7
BS
4589 u64 runtime;
4590 u64 starting_runtime = remaining;
671fd9da
PT
4591
4592 rcu_read_lock();
4593 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4594 throttled_list) {
4595 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4596 struct rq_flags rf;
671fd9da 4597
c0ad4aa4 4598 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4599 if (!cfs_rq_throttled(cfs_rq))
4600 goto next;
4601
4602 runtime = -cfs_rq->runtime_remaining + 1;
4603 if (runtime > remaining)
4604 runtime = remaining;
4605 remaining -= runtime;
4606
4607 cfs_rq->runtime_remaining += runtime;
4608 cfs_rq->runtime_expires = expires;
4609
4610 /* we check whether we're throttled above */
4611 if (cfs_rq->runtime_remaining > 0)
4612 unthrottle_cfs_rq(cfs_rq);
4613
4614next:
c0ad4aa4 4615 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4616
4617 if (!remaining)
4618 break;
4619 }
4620 rcu_read_unlock();
4621
c06f04c7 4622 return starting_runtime - remaining;
671fd9da
PT
4623}
4624
58088ad0
PT
4625/*
4626 * Responsible for refilling a task_group's bandwidth and unthrottling its
4627 * cfs_rqs as appropriate. If there has been no activity within the last
4628 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4629 * used to track this state.
4630 */
c0ad4aa4 4631static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4632{
671fd9da 4633 u64 runtime, runtime_expires;
51f2176d 4634 int throttled;
58088ad0 4635
58088ad0
PT
4636 /* no need to continue the timer with no bandwidth constraint */
4637 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4638 goto out_deactivate;
58088ad0 4639
671fd9da 4640 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4641 cfs_b->nr_periods += overrun;
671fd9da 4642
51f2176d
BS
4643 /*
4644 * idle depends on !throttled (for the case of a large deficit), and if
4645 * we're going inactive then everything else can be deferred
4646 */
4647 if (cfs_b->idle && !throttled)
4648 goto out_deactivate;
a9cf55b2
PT
4649
4650 __refill_cfs_bandwidth_runtime(cfs_b);
4651
671fd9da
PT
4652 if (!throttled) {
4653 /* mark as potentially idle for the upcoming period */
4654 cfs_b->idle = 1;
51f2176d 4655 return 0;
671fd9da
PT
4656 }
4657
e8da1b18
NR
4658 /* account preceding periods in which throttling occurred */
4659 cfs_b->nr_throttled += overrun;
4660
671fd9da 4661 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4662
4663 /*
c06f04c7
BS
4664 * This check is repeated as we are holding onto the new bandwidth while
4665 * we unthrottle. This can potentially race with an unthrottled group
4666 * trying to acquire new bandwidth from the global pool. This can result
4667 * in us over-using our runtime if it is all used during this loop, but
4668 * only by limited amounts in that extreme case.
671fd9da 4669 */
baa9be4f 4670 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4671 runtime = cfs_b->runtime;
baa9be4f 4672 cfs_b->distribute_running = 1;
c0ad4aa4 4673 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da
PT
4674 /* we can't nest cfs_b->lock while distributing bandwidth */
4675 runtime = distribute_cfs_runtime(cfs_b, runtime,
4676 runtime_expires);
c0ad4aa4 4677 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4678
baa9be4f 4679 cfs_b->distribute_running = 0;
671fd9da 4680 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4681
b5c0ce7b 4682 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4683 }
58088ad0 4684
671fd9da
PT
4685 /*
4686 * While we are ensured activity in the period following an
4687 * unthrottle, this also covers the case in which the new bandwidth is
4688 * insufficient to cover the existing bandwidth deficit. (Forcing the
4689 * timer to remain active while there are any throttled entities.)
4690 */
4691 cfs_b->idle = 0;
58088ad0 4692
51f2176d
BS
4693 return 0;
4694
4695out_deactivate:
51f2176d 4696 return 1;
58088ad0 4697}
d3d9dc33 4698
d8b4986d
PT
4699/* a cfs_rq won't donate quota below this amount */
4700static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4701/* minimum remaining period time to redistribute slack quota */
4702static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4703/* how long we wait to gather additional slack before distributing */
4704static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4705
db06e78c
BS
4706/*
4707 * Are we near the end of the current quota period?
4708 *
4709 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4710 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4711 * migrate_hrtimers, base is never cleared, so we are fine.
4712 */
d8b4986d
PT
4713static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4714{
4715 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4716 u64 remaining;
4717
4718 /* if the call-back is running a quota refresh is already occurring */
4719 if (hrtimer_callback_running(refresh_timer))
4720 return 1;
4721
4722 /* is a quota refresh about to occur? */
4723 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4724 if (remaining < min_expire)
4725 return 1;
4726
4727 return 0;
4728}
4729
4730static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4731{
4732 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4733
4734 /* if there's a quota refresh soon don't bother with slack */
4735 if (runtime_refresh_within(cfs_b, min_left))
4736 return;
4737
4cfafd30
PZ
4738 hrtimer_start(&cfs_b->slack_timer,
4739 ns_to_ktime(cfs_bandwidth_slack_period),
4740 HRTIMER_MODE_REL);
d8b4986d
PT
4741}
4742
4743/* we know any runtime found here is valid as update_curr() precedes return */
4744static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4745{
4746 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4747 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4748
4749 if (slack_runtime <= 0)
4750 return;
4751
4752 raw_spin_lock(&cfs_b->lock);
4753 if (cfs_b->quota != RUNTIME_INF &&
4754 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4755 cfs_b->runtime += slack_runtime;
4756
4757 /* we are under rq->lock, defer unthrottling using a timer */
4758 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4759 !list_empty(&cfs_b->throttled_cfs_rq))
4760 start_cfs_slack_bandwidth(cfs_b);
4761 }
4762 raw_spin_unlock(&cfs_b->lock);
4763
4764 /* even if it's not valid for return we don't want to try again */
4765 cfs_rq->runtime_remaining -= slack_runtime;
4766}
4767
4768static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4769{
56f570e5
PT
4770 if (!cfs_bandwidth_used())
4771 return;
4772
fccfdc6f 4773 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4774 return;
4775
4776 __return_cfs_rq_runtime(cfs_rq);
4777}
4778
4779/*
4780 * This is done with a timer (instead of inline with bandwidth return) since
4781 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4782 */
4783static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4784{
4785 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4786 unsigned long flags;
d8b4986d
PT
4787 u64 expires;
4788
4789 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4790 raw_spin_lock_irqsave(&cfs_b->lock, flags);
baa9be4f 4791 if (cfs_b->distribute_running) {
c0ad4aa4 4792 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4793 return;
4794 }
4795
db06e78c 4796 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4797 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4798 return;
db06e78c 4799 }
d8b4986d 4800
c06f04c7 4801 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4802 runtime = cfs_b->runtime;
c06f04c7 4803
d8b4986d 4804 expires = cfs_b->runtime_expires;
baa9be4f
PA
4805 if (runtime)
4806 cfs_b->distribute_running = 1;
4807
c0ad4aa4 4808 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4809
4810 if (!runtime)
4811 return;
4812
4813 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4814
c0ad4aa4 4815 raw_spin_lock_irqsave(&cfs_b->lock, flags);
d8b4986d 4816 if (expires == cfs_b->runtime_expires)
b5c0ce7b 4817 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4818 cfs_b->distribute_running = 0;
c0ad4aa4 4819 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4820}
4821
d3d9dc33
PT
4822/*
4823 * When a group wakes up we want to make sure that its quota is not already
4824 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4825 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4826 */
4827static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4828{
56f570e5
PT
4829 if (!cfs_bandwidth_used())
4830 return;
4831
d3d9dc33
PT
4832 /* an active group must be handled by the update_curr()->put() path */
4833 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4834 return;
4835
4836 /* ensure the group is not already throttled */
4837 if (cfs_rq_throttled(cfs_rq))
4838 return;
4839
4840 /* update runtime allocation */
4841 account_cfs_rq_runtime(cfs_rq, 0);
4842 if (cfs_rq->runtime_remaining <= 0)
4843 throttle_cfs_rq(cfs_rq);
4844}
4845
55e16d30
PZ
4846static void sync_throttle(struct task_group *tg, int cpu)
4847{
4848 struct cfs_rq *pcfs_rq, *cfs_rq;
4849
4850 if (!cfs_bandwidth_used())
4851 return;
4852
4853 if (!tg->parent)
4854 return;
4855
4856 cfs_rq = tg->cfs_rq[cpu];
4857 pcfs_rq = tg->parent->cfs_rq[cpu];
4858
4859 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4860 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4861}
4862
d3d9dc33 4863/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4864static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4865{
56f570e5 4866 if (!cfs_bandwidth_used())
678d5718 4867 return false;
56f570e5 4868
d3d9dc33 4869 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4870 return false;
d3d9dc33
PT
4871
4872 /*
4873 * it's possible for a throttled entity to be forced into a running
4874 * state (e.g. set_curr_task), in this case we're finished.
4875 */
4876 if (cfs_rq_throttled(cfs_rq))
678d5718 4877 return true;
d3d9dc33
PT
4878
4879 throttle_cfs_rq(cfs_rq);
678d5718 4880 return true;
d3d9dc33 4881}
029632fb 4882
029632fb
PZ
4883static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4884{
4885 struct cfs_bandwidth *cfs_b =
4886 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4887
029632fb
PZ
4888 do_sched_cfs_slack_timer(cfs_b);
4889
4890 return HRTIMER_NORESTART;
4891}
4892
4893static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4894{
4895 struct cfs_bandwidth *cfs_b =
4896 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4897 unsigned long flags;
029632fb
PZ
4898 int overrun;
4899 int idle = 0;
4900
c0ad4aa4 4901 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4902 for (;;) {
77a4d1a1 4903 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4904 if (!overrun)
4905 break;
4906
c0ad4aa4 4907 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 4908 }
4cfafd30
PZ
4909 if (idle)
4910 cfs_b->period_active = 0;
c0ad4aa4 4911 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
4912
4913 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4914}
4915
4916void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4917{
4918 raw_spin_lock_init(&cfs_b->lock);
4919 cfs_b->runtime = 0;
4920 cfs_b->quota = RUNTIME_INF;
4921 cfs_b->period = ns_to_ktime(default_cfs_period());
4922
4923 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4924 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4925 cfs_b->period_timer.function = sched_cfs_period_timer;
4926 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4927 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4928 cfs_b->distribute_running = 0;
029632fb
PZ
4929}
4930
4931static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4932{
4933 cfs_rq->runtime_enabled = 0;
4934 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4935}
4936
77a4d1a1 4937void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4938{
f1d1be8a
XP
4939 u64 overrun;
4940
4cfafd30 4941 lockdep_assert_held(&cfs_b->lock);
029632fb 4942
f1d1be8a
XP
4943 if (cfs_b->period_active)
4944 return;
4945
4946 cfs_b->period_active = 1;
4947 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4948 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4949 cfs_b->expires_seq++;
4950 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4951}
4952
4953static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4954{
7f1a169b
TH
4955 /* init_cfs_bandwidth() was not called */
4956 if (!cfs_b->throttled_cfs_rq.next)
4957 return;
4958
029632fb
PZ
4959 hrtimer_cancel(&cfs_b->period_timer);
4960 hrtimer_cancel(&cfs_b->slack_timer);
4961}
4962
502ce005 4963/*
97fb7a0a 4964 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
4965 *
4966 * The race is harmless, since modifying bandwidth settings of unhooked group
4967 * bits doesn't do much.
4968 */
4969
4970/* cpu online calback */
0e59bdae
KT
4971static void __maybe_unused update_runtime_enabled(struct rq *rq)
4972{
502ce005 4973 struct task_group *tg;
0e59bdae 4974
502ce005
PZ
4975 lockdep_assert_held(&rq->lock);
4976
4977 rcu_read_lock();
4978 list_for_each_entry_rcu(tg, &task_groups, list) {
4979 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4980 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4981
4982 raw_spin_lock(&cfs_b->lock);
4983 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4984 raw_spin_unlock(&cfs_b->lock);
4985 }
502ce005 4986 rcu_read_unlock();
0e59bdae
KT
4987}
4988
502ce005 4989/* cpu offline callback */
38dc3348 4990static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4991{
502ce005
PZ
4992 struct task_group *tg;
4993
4994 lockdep_assert_held(&rq->lock);
4995
4996 rcu_read_lock();
4997 list_for_each_entry_rcu(tg, &task_groups, list) {
4998 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4999
029632fb
PZ
5000 if (!cfs_rq->runtime_enabled)
5001 continue;
5002
5003 /*
5004 * clock_task is not advancing so we just need to make sure
5005 * there's some valid quota amount
5006 */
51f2176d 5007 cfs_rq->runtime_remaining = 1;
0e59bdae 5008 /*
97fb7a0a 5009 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5010 * in take_cpu_down(), so we prevent new cfs throttling here.
5011 */
5012 cfs_rq->runtime_enabled = 0;
5013
029632fb
PZ
5014 if (cfs_rq_throttled(cfs_rq))
5015 unthrottle_cfs_rq(cfs_rq);
5016 }
502ce005 5017 rcu_read_unlock();
029632fb
PZ
5018}
5019
5020#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5021
5022static inline bool cfs_bandwidth_used(void)
5023{
5024 return false;
5025}
5026
f1b17280
PT
5027static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5028{
78becc27 5029 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
5030}
5031
9dbdb155 5032static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5033static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5034static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5035static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5036static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5037
5038static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5039{
5040 return 0;
5041}
64660c86
PT
5042
5043static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5044{
5045 return 0;
5046}
5047
5048static inline int throttled_lb_pair(struct task_group *tg,
5049 int src_cpu, int dest_cpu)
5050{
5051 return 0;
5052}
029632fb
PZ
5053
5054void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5055
5056#ifdef CONFIG_FAIR_GROUP_SCHED
5057static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5058#endif
5059
029632fb
PZ
5060static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5061{
5062 return NULL;
5063}
5064static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5065static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5066static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5067
5068#endif /* CONFIG_CFS_BANDWIDTH */
5069
bf0f6f24
IM
5070/**************************************************
5071 * CFS operations on tasks:
5072 */
5073
8f4d37ec
PZ
5074#ifdef CONFIG_SCHED_HRTICK
5075static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5076{
8f4d37ec
PZ
5077 struct sched_entity *se = &p->se;
5078 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5079
9148a3a1 5080 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5081
8bf46a39 5082 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5083 u64 slice = sched_slice(cfs_rq, se);
5084 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5085 s64 delta = slice - ran;
5086
5087 if (delta < 0) {
5088 if (rq->curr == p)
8875125e 5089 resched_curr(rq);
8f4d37ec
PZ
5090 return;
5091 }
31656519 5092 hrtick_start(rq, delta);
8f4d37ec
PZ
5093 }
5094}
a4c2f00f
PZ
5095
5096/*
5097 * called from enqueue/dequeue and updates the hrtick when the
5098 * current task is from our class and nr_running is low enough
5099 * to matter.
5100 */
5101static void hrtick_update(struct rq *rq)
5102{
5103 struct task_struct *curr = rq->curr;
5104
b39e66ea 5105 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5106 return;
5107
5108 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5109 hrtick_start_fair(rq, curr);
5110}
55e12e5e 5111#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5112static inline void
5113hrtick_start_fair(struct rq *rq, struct task_struct *p)
5114{
5115}
a4c2f00f
PZ
5116
5117static inline void hrtick_update(struct rq *rq)
5118{
5119}
8f4d37ec
PZ
5120#endif
5121
2802bf3c
MR
5122#ifdef CONFIG_SMP
5123static inline unsigned long cpu_util(int cpu);
5124static unsigned long capacity_of(int cpu);
5125
5126static inline bool cpu_overutilized(int cpu)
5127{
5128 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5129}
5130
5131static inline void update_overutilized_status(struct rq *rq)
5132{
5133 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5134 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5135}
5136#else
5137static inline void update_overutilized_status(struct rq *rq) { }
5138#endif
5139
bf0f6f24
IM
5140/*
5141 * The enqueue_task method is called before nr_running is
5142 * increased. Here we update the fair scheduling stats and
5143 * then put the task into the rbtree:
5144 */
ea87bb78 5145static void
371fd7e7 5146enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5147{
5148 struct cfs_rq *cfs_rq;
62fb1851 5149 struct sched_entity *se = &p->se;
bf0f6f24 5150
2539fc82
PB
5151 /*
5152 * The code below (indirectly) updates schedutil which looks at
5153 * the cfs_rq utilization to select a frequency.
5154 * Let's add the task's estimated utilization to the cfs_rq's
5155 * estimated utilization, before we update schedutil.
5156 */
5157 util_est_enqueue(&rq->cfs, p);
5158
8c34ab19
RW
5159 /*
5160 * If in_iowait is set, the code below may not trigger any cpufreq
5161 * utilization updates, so do it here explicitly with the IOWAIT flag
5162 * passed.
5163 */
5164 if (p->in_iowait)
674e7541 5165 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5166
bf0f6f24 5167 for_each_sched_entity(se) {
62fb1851 5168 if (se->on_rq)
bf0f6f24
IM
5169 break;
5170 cfs_rq = cfs_rq_of(se);
88ec22d3 5171 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5172
5173 /*
5174 * end evaluation on encountering a throttled cfs_rq
5175 *
5176 * note: in the case of encountering a throttled cfs_rq we will
5177 * post the final h_nr_running increment below.
e210bffd 5178 */
85dac906
PT
5179 if (cfs_rq_throttled(cfs_rq))
5180 break;
953bfcd1 5181 cfs_rq->h_nr_running++;
85dac906 5182
88ec22d3 5183 flags = ENQUEUE_WAKEUP;
bf0f6f24 5184 }
8f4d37ec 5185
2069dd75 5186 for_each_sched_entity(se) {
0f317143 5187 cfs_rq = cfs_rq_of(se);
953bfcd1 5188 cfs_rq->h_nr_running++;
2069dd75 5189
85dac906
PT
5190 if (cfs_rq_throttled(cfs_rq))
5191 break;
5192
88c0616e 5193 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5194 update_cfs_group(se);
2069dd75
PZ
5195 }
5196
2802bf3c 5197 if (!se) {
72465447 5198 add_nr_running(rq, 1);
2802bf3c
MR
5199 /*
5200 * Since new tasks are assigned an initial util_avg equal to
5201 * half of the spare capacity of their CPU, tiny tasks have the
5202 * ability to cross the overutilized threshold, which will
5203 * result in the load balancer ruining all the task placement
5204 * done by EAS. As a way to mitigate that effect, do not account
5205 * for the first enqueue operation of new tasks during the
5206 * overutilized flag detection.
5207 *
5208 * A better way of solving this problem would be to wait for
5209 * the PELT signals of tasks to converge before taking them
5210 * into account, but that is not straightforward to implement,
5211 * and the following generally works well enough in practice.
5212 */
5213 if (flags & ENQUEUE_WAKEUP)
5214 update_overutilized_status(rq);
5215
5216 }
cd126afe 5217
f6783319
VG
5218 if (cfs_bandwidth_used()) {
5219 /*
5220 * When bandwidth control is enabled; the cfs_rq_throttled()
5221 * breaks in the above iteration can result in incomplete
5222 * leaf list maintenance, resulting in triggering the assertion
5223 * below.
5224 */
5225 for_each_sched_entity(se) {
5226 cfs_rq = cfs_rq_of(se);
5227
5228 if (list_add_leaf_cfs_rq(cfs_rq))
5229 break;
5230 }
5231 }
5232
5d299eab
PZ
5233 assert_list_leaf_cfs_rq(rq);
5234
a4c2f00f 5235 hrtick_update(rq);
bf0f6f24
IM
5236}
5237
2f36825b
VP
5238static void set_next_buddy(struct sched_entity *se);
5239
bf0f6f24
IM
5240/*
5241 * The dequeue_task method is called before nr_running is
5242 * decreased. We remove the task from the rbtree and
5243 * update the fair scheduling stats:
5244 */
371fd7e7 5245static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5246{
5247 struct cfs_rq *cfs_rq;
62fb1851 5248 struct sched_entity *se = &p->se;
2f36825b 5249 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5250
5251 for_each_sched_entity(se) {
5252 cfs_rq = cfs_rq_of(se);
371fd7e7 5253 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5254
5255 /*
5256 * end evaluation on encountering a throttled cfs_rq
5257 *
5258 * note: in the case of encountering a throttled cfs_rq we will
5259 * post the final h_nr_running decrement below.
5260 */
5261 if (cfs_rq_throttled(cfs_rq))
5262 break;
953bfcd1 5263 cfs_rq->h_nr_running--;
2069dd75 5264
bf0f6f24 5265 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5266 if (cfs_rq->load.weight) {
754bd598
KK
5267 /* Avoid re-evaluating load for this entity: */
5268 se = parent_entity(se);
2f36825b
VP
5269 /*
5270 * Bias pick_next to pick a task from this cfs_rq, as
5271 * p is sleeping when it is within its sched_slice.
5272 */
754bd598
KK
5273 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5274 set_next_buddy(se);
bf0f6f24 5275 break;
2f36825b 5276 }
371fd7e7 5277 flags |= DEQUEUE_SLEEP;
bf0f6f24 5278 }
8f4d37ec 5279
2069dd75 5280 for_each_sched_entity(se) {
0f317143 5281 cfs_rq = cfs_rq_of(se);
953bfcd1 5282 cfs_rq->h_nr_running--;
2069dd75 5283
85dac906
PT
5284 if (cfs_rq_throttled(cfs_rq))
5285 break;
5286
88c0616e 5287 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5288 update_cfs_group(se);
2069dd75
PZ
5289 }
5290
cd126afe 5291 if (!se)
72465447 5292 sub_nr_running(rq, 1);
cd126afe 5293
7f65ea42 5294 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5295 hrtick_update(rq);
bf0f6f24
IM
5296}
5297
e7693a36 5298#ifdef CONFIG_SMP
10e2f1ac
PZ
5299
5300/* Working cpumask for: load_balance, load_balance_newidle. */
5301DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5302DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5303
9fd81dd5 5304#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5305/*
5306 * per rq 'load' arrray crap; XXX kill this.
5307 */
5308
5309/*
d937cdc5 5310 * The exact cpuload calculated at every tick would be:
3289bdb4 5311 *
d937cdc5
PZ
5312 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5313 *
97fb7a0a
IM
5314 * If a CPU misses updates for n ticks (as it was idle) and update gets
5315 * called on the n+1-th tick when CPU may be busy, then we have:
d937cdc5
PZ
5316 *
5317 * load_n = (1 - 1/2^i)^n * load_0
5318 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5319 *
5320 * decay_load_missed() below does efficient calculation of
3289bdb4 5321 *
d937cdc5
PZ
5322 * load' = (1 - 1/2^i)^n * load
5323 *
5324 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5325 * This allows us to precompute the above in said factors, thereby allowing the
5326 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5327 * fixed_power_int())
3289bdb4 5328 *
d937cdc5 5329 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5330 */
5331#define DEGRADE_SHIFT 7
d937cdc5
PZ
5332
5333static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5334static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5335 { 0, 0, 0, 0, 0, 0, 0, 0 },
5336 { 64, 32, 8, 0, 0, 0, 0, 0 },
5337 { 96, 72, 40, 12, 1, 0, 0, 0 },
5338 { 112, 98, 75, 43, 15, 1, 0, 0 },
5339 { 120, 112, 98, 76, 45, 16, 2, 0 }
5340};
3289bdb4
PZ
5341
5342/*
5343 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5344 * would be when CPU is idle and so we just decay the old load without
5345 * adding any new load.
5346 */
5347static unsigned long
5348decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5349{
5350 int j = 0;
5351
5352 if (!missed_updates)
5353 return load;
5354
5355 if (missed_updates >= degrade_zero_ticks[idx])
5356 return 0;
5357
5358 if (idx == 1)
5359 return load >> missed_updates;
5360
5361 while (missed_updates) {
5362 if (missed_updates % 2)
5363 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5364
5365 missed_updates >>= 1;
5366 j++;
5367 }
5368 return load;
5369}
e022e0d3
PZ
5370
5371static struct {
5372 cpumask_var_t idle_cpus_mask;
5373 atomic_t nr_cpus;
f643ea22 5374 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5375 unsigned long next_balance; /* in jiffy units */
f643ea22 5376 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5377} nohz ____cacheline_aligned;
5378
9fd81dd5 5379#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5380
59543275 5381/**
cee1afce 5382 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5383 * @this_rq: The rq to update statistics for
5384 * @this_load: The current load
5385 * @pending_updates: The number of missed updates
59543275 5386 *
3289bdb4 5387 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5388 * scheduler tick (TICK_NSEC).
5389 *
5390 * This function computes a decaying average:
5391 *
5392 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5393 *
5394 * Because of NOHZ it might not get called on every tick which gives need for
5395 * the @pending_updates argument.
5396 *
5397 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5398 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5399 * = A * (A * load[i]_n-2 + B) + B
5400 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5401 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5402 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5403 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5404 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5405 *
5406 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5407 * any change in load would have resulted in the tick being turned back on.
5408 *
5409 * For regular NOHZ, this reduces to:
5410 *
5411 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5412 *
5413 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5414 * term.
3289bdb4 5415 */
1f41906a
FW
5416static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5417 unsigned long pending_updates)
3289bdb4 5418{
9fd81dd5 5419 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5420 int i, scale;
5421
5422 this_rq->nr_load_updates++;
5423
5424 /* Update our load: */
5425 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5426 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5427 unsigned long old_load, new_load;
5428
5429 /* scale is effectively 1 << i now, and >> i divides by scale */
5430
7400d3bb 5431 old_load = this_rq->cpu_load[i];
9fd81dd5 5432#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5433 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5434 if (tickless_load) {
5435 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5436 /*
5437 * old_load can never be a negative value because a
5438 * decayed tickless_load cannot be greater than the
5439 * original tickless_load.
5440 */
5441 old_load += tickless_load;
5442 }
9fd81dd5 5443#endif
3289bdb4
PZ
5444 new_load = this_load;
5445 /*
5446 * Round up the averaging division if load is increasing. This
5447 * prevents us from getting stuck on 9 if the load is 10, for
5448 * example.
5449 */
5450 if (new_load > old_load)
5451 new_load += scale - 1;
5452
5453 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5454 }
3289bdb4
PZ
5455}
5456
7ea241af 5457/* Used instead of source_load when we know the type == 0 */
c7132dd6 5458static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5459{
c7132dd6 5460 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5461}
5462
3289bdb4 5463#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5464/*
5465 * There is no sane way to deal with nohz on smp when using jiffies because the
97fb7a0a 5466 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
1f41906a
FW
5467 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5468 *
5469 * Therefore we need to avoid the delta approach from the regular tick when
5470 * possible since that would seriously skew the load calculation. This is why we
5471 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5472 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5473 * loop exit, nohz_idle_balance, nohz full exit...)
5474 *
5475 * This means we might still be one tick off for nohz periods.
5476 */
5477
5478static void cpu_load_update_nohz(struct rq *this_rq,
5479 unsigned long curr_jiffies,
5480 unsigned long load)
be68a682
FW
5481{
5482 unsigned long pending_updates;
5483
5484 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5485 if (pending_updates) {
5486 this_rq->last_load_update_tick = curr_jiffies;
5487 /*
5488 * In the regular NOHZ case, we were idle, this means load 0.
5489 * In the NOHZ_FULL case, we were non-idle, we should consider
5490 * its weighted load.
5491 */
1f41906a 5492 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5493 }
5494}
5495
3289bdb4
PZ
5496/*
5497 * Called from nohz_idle_balance() to update the load ratings before doing the
5498 * idle balance.
5499 */
cee1afce 5500static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5501{
3289bdb4
PZ
5502 /*
5503 * bail if there's load or we're actually up-to-date.
5504 */
c7132dd6 5505 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5506 return;
5507
1f41906a 5508 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5509}
5510
5511/*
1f41906a
FW
5512 * Record CPU load on nohz entry so we know the tickless load to account
5513 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5514 * than other cpu_load[idx] but it should be fine as cpu_load readers
5515 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5516 */
1f41906a 5517void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5518{
5519 struct rq *this_rq = this_rq();
1f41906a
FW
5520
5521 /*
5522 * This is all lockless but should be fine. If weighted_cpuload changes
5523 * concurrently we'll exit nohz. And cpu_load write can race with
5524 * cpu_load_update_idle() but both updater would be writing the same.
5525 */
c7132dd6 5526 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5527}
5528
5529/*
5530 * Account the tickless load in the end of a nohz frame.
5531 */
5532void cpu_load_update_nohz_stop(void)
5533{
316c1608 5534 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5535 struct rq *this_rq = this_rq();
5536 unsigned long load;
8a8c69c3 5537 struct rq_flags rf;
3289bdb4
PZ
5538
5539 if (curr_jiffies == this_rq->last_load_update_tick)
5540 return;
5541
c7132dd6 5542 load = weighted_cpuload(this_rq);
8a8c69c3 5543 rq_lock(this_rq, &rf);
b52fad2d 5544 update_rq_clock(this_rq);
1f41906a 5545 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5546 rq_unlock(this_rq, &rf);
3289bdb4 5547}
1f41906a
FW
5548#else /* !CONFIG_NO_HZ_COMMON */
5549static inline void cpu_load_update_nohz(struct rq *this_rq,
5550 unsigned long curr_jiffies,
5551 unsigned long load) { }
5552#endif /* CONFIG_NO_HZ_COMMON */
5553
5554static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5555{
9fd81dd5 5556#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5557 /* See the mess around cpu_load_update_nohz(). */
5558 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5559#endif
1f41906a
FW
5560 cpu_load_update(this_rq, load, 1);
5561}
3289bdb4
PZ
5562
5563/*
5564 * Called from scheduler_tick()
5565 */
cee1afce 5566void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5567{
c7132dd6 5568 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5569
5570 if (tick_nohz_tick_stopped())
5571 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5572 else
5573 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5574}
5575
029632fb 5576/*
97fb7a0a 5577 * Return a low guess at the load of a migration-source CPU weighted
029632fb
PZ
5578 * according to the scheduling class and "nice" value.
5579 *
5580 * We want to under-estimate the load of migration sources, to
5581 * balance conservatively.
5582 */
5583static unsigned long source_load(int cpu, int type)
5584{
5585 struct rq *rq = cpu_rq(cpu);
c7132dd6 5586 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5587
5588 if (type == 0 || !sched_feat(LB_BIAS))
5589 return total;
5590
5591 return min(rq->cpu_load[type-1], total);
5592}
5593
5594/*
97fb7a0a 5595 * Return a high guess at the load of a migration-target CPU weighted
029632fb
PZ
5596 * according to the scheduling class and "nice" value.
5597 */
5598static unsigned long target_load(int cpu, int type)
5599{
5600 struct rq *rq = cpu_rq(cpu);
c7132dd6 5601 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5602
5603 if (type == 0 || !sched_feat(LB_BIAS))
5604 return total;
5605
5606 return max(rq->cpu_load[type-1], total);
5607}
5608
ced549fa 5609static unsigned long capacity_of(int cpu)
029632fb 5610{
ced549fa 5611 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5612}
5613
5614static unsigned long cpu_avg_load_per_task(int cpu)
5615{
5616 struct rq *rq = cpu_rq(cpu);
316c1608 5617 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5618 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5619
5620 if (nr_running)
b92486cb 5621 return load_avg / nr_running;
029632fb
PZ
5622
5623 return 0;
5624}
5625
c58d25f3
PZ
5626static void record_wakee(struct task_struct *p)
5627{
5628 /*
5629 * Only decay a single time; tasks that have less then 1 wakeup per
5630 * jiffy will not have built up many flips.
5631 */
5632 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5633 current->wakee_flips >>= 1;
5634 current->wakee_flip_decay_ts = jiffies;
5635 }
5636
5637 if (current->last_wakee != p) {
5638 current->last_wakee = p;
5639 current->wakee_flips++;
5640 }
5641}
5642
63b0e9ed
MG
5643/*
5644 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5645 *
63b0e9ed 5646 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5647 * at a frequency roughly N times higher than one of its wakees.
5648 *
5649 * In order to determine whether we should let the load spread vs consolidating
5650 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5651 * partner, and a factor of lls_size higher frequency in the other.
5652 *
5653 * With both conditions met, we can be relatively sure that the relationship is
5654 * non-monogamous, with partner count exceeding socket size.
5655 *
5656 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5657 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5658 * socket size.
63b0e9ed 5659 */
62470419
MW
5660static int wake_wide(struct task_struct *p)
5661{
63b0e9ed
MG
5662 unsigned int master = current->wakee_flips;
5663 unsigned int slave = p->wakee_flips;
7d9ffa89 5664 int factor = this_cpu_read(sd_llc_size);
62470419 5665
63b0e9ed
MG
5666 if (master < slave)
5667 swap(master, slave);
5668 if (slave < factor || master < slave * factor)
5669 return 0;
5670 return 1;
62470419
MW
5671}
5672
90001d67 5673/*
d153b153
PZ
5674 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5675 * soonest. For the purpose of speed we only consider the waking and previous
5676 * CPU.
90001d67 5677 *
7332dec0
MG
5678 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5679 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5680 *
5681 * wake_affine_weight() - considers the weight to reflect the average
5682 * scheduling latency of the CPUs. This seems to work
5683 * for the overloaded case.
90001d67 5684 */
3b76c4a3 5685static int
89a55f56 5686wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5687{
7332dec0
MG
5688 /*
5689 * If this_cpu is idle, it implies the wakeup is from interrupt
5690 * context. Only allow the move if cache is shared. Otherwise an
5691 * interrupt intensive workload could force all tasks onto one
5692 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5693 *
5694 * If the prev_cpu is idle and cache affine then avoid a migration.
5695 * There is no guarantee that the cache hot data from an interrupt
5696 * is more important than cache hot data on the prev_cpu and from
5697 * a cpufreq perspective, it's better to have higher utilisation
5698 * on one CPU.
7332dec0 5699 */
943d355d
RJ
5700 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5701 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5702
d153b153 5703 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5704 return this_cpu;
90001d67 5705
3b76c4a3 5706 return nr_cpumask_bits;
90001d67
PZ
5707}
5708
3b76c4a3 5709static int
f2cdd9cc
PZ
5710wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5711 int this_cpu, int prev_cpu, int sync)
90001d67 5712{
90001d67
PZ
5713 s64 this_eff_load, prev_eff_load;
5714 unsigned long task_load;
5715
f2cdd9cc 5716 this_eff_load = target_load(this_cpu, sd->wake_idx);
90001d67 5717
90001d67
PZ
5718 if (sync) {
5719 unsigned long current_load = task_h_load(current);
5720
f2cdd9cc 5721 if (current_load > this_eff_load)
3b76c4a3 5722 return this_cpu;
90001d67 5723
f2cdd9cc 5724 this_eff_load -= current_load;
90001d67
PZ
5725 }
5726
90001d67
PZ
5727 task_load = task_h_load(p);
5728
f2cdd9cc
PZ
5729 this_eff_load += task_load;
5730 if (sched_feat(WA_BIAS))
5731 this_eff_load *= 100;
5732 this_eff_load *= capacity_of(prev_cpu);
90001d67 5733
eeb60398 5734 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
f2cdd9cc
PZ
5735 prev_eff_load -= task_load;
5736 if (sched_feat(WA_BIAS))
5737 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5738 prev_eff_load *= capacity_of(this_cpu);
90001d67 5739
082f764a
MG
5740 /*
5741 * If sync, adjust the weight of prev_eff_load such that if
5742 * prev_eff == this_eff that select_idle_sibling() will consider
5743 * stacking the wakee on top of the waker if no other CPU is
5744 * idle.
5745 */
5746 if (sync)
5747 prev_eff_load += 1;
5748
5749 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5750}
5751
772bd008 5752static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5753 int this_cpu, int prev_cpu, int sync)
098fb9db 5754{
3b76c4a3 5755 int target = nr_cpumask_bits;
098fb9db 5756
89a55f56 5757 if (sched_feat(WA_IDLE))
3b76c4a3 5758 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5759
3b76c4a3
MG
5760 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5761 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5762
ae92882e 5763 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5764 if (target == nr_cpumask_bits)
5765 return prev_cpu;
098fb9db 5766
3b76c4a3
MG
5767 schedstat_inc(sd->ttwu_move_affine);
5768 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5769 return target;
098fb9db
IM
5770}
5771
c469933e 5772static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5773
c469933e 5774static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5775{
c469933e 5776 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5777}
5778
aaee1203
PZ
5779/*
5780 * find_idlest_group finds and returns the least busy CPU group within the
5781 * domain.
6fee85cc
BJ
5782 *
5783 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5784 */
5785static struct sched_group *
78e7ed53 5786find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5787 int this_cpu, int sd_flag)
e7693a36 5788{
b3bd3de6 5789 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5790 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5791 unsigned long min_runnable_load = ULONG_MAX;
5792 unsigned long this_runnable_load = ULONG_MAX;
5793 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5794 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5795 int load_idx = sd->forkexec_idx;
6b94780e
VG
5796 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5797 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5798 (sd->imbalance_pct-100) / 100;
e7693a36 5799
c44f2a02
VG
5800 if (sd_flag & SD_BALANCE_WAKE)
5801 load_idx = sd->wake_idx;
5802
aaee1203 5803 do {
6b94780e
VG
5804 unsigned long load, avg_load, runnable_load;
5805 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5806 int local_group;
5807 int i;
e7693a36 5808
aaee1203 5809 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5810 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5811 &p->cpus_allowed))
aaee1203
PZ
5812 continue;
5813
5814 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5815 sched_group_span(group));
aaee1203 5816
6a0b19c0
MR
5817 /*
5818 * Tally up the load of all CPUs in the group and find
5819 * the group containing the CPU with most spare capacity.
5820 */
aaee1203 5821 avg_load = 0;
6b94780e 5822 runnable_load = 0;
6a0b19c0 5823 max_spare_cap = 0;
aaee1203 5824
ae4df9d6 5825 for_each_cpu(i, sched_group_span(group)) {
97fb7a0a 5826 /* Bias balancing toward CPUs of our domain */
aaee1203
PZ
5827 if (local_group)
5828 load = source_load(i, load_idx);
5829 else
5830 load = target_load(i, load_idx);
5831
6b94780e
VG
5832 runnable_load += load;
5833
5834 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5835
c469933e 5836 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5837
5838 if (spare_cap > max_spare_cap)
5839 max_spare_cap = spare_cap;
aaee1203
PZ
5840 }
5841
63b2ca30 5842 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5843 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5844 group->sgc->capacity;
5845 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5846 group->sgc->capacity;
aaee1203
PZ
5847
5848 if (local_group) {
6b94780e
VG
5849 this_runnable_load = runnable_load;
5850 this_avg_load = avg_load;
6a0b19c0
MR
5851 this_spare = max_spare_cap;
5852 } else {
6b94780e
VG
5853 if (min_runnable_load > (runnable_load + imbalance)) {
5854 /*
5855 * The runnable load is significantly smaller
97fb7a0a 5856 * so we can pick this new CPU:
6b94780e
VG
5857 */
5858 min_runnable_load = runnable_load;
5859 min_avg_load = avg_load;
5860 idlest = group;
5861 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5862 (100*min_avg_load > imbalance_scale*avg_load)) {
5863 /*
5864 * The runnable loads are close so take the
97fb7a0a 5865 * blocked load into account through avg_load:
6b94780e
VG
5866 */
5867 min_avg_load = avg_load;
6a0b19c0
MR
5868 idlest = group;
5869 }
5870
5871 if (most_spare < max_spare_cap) {
5872 most_spare = max_spare_cap;
5873 most_spare_sg = group;
5874 }
aaee1203
PZ
5875 }
5876 } while (group = group->next, group != sd->groups);
5877
6a0b19c0
MR
5878 /*
5879 * The cross-over point between using spare capacity or least load
5880 * is too conservative for high utilization tasks on partially
5881 * utilized systems if we require spare_capacity > task_util(p),
5882 * so we allow for some task stuffing by using
5883 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5884 *
5885 * Spare capacity can't be used for fork because the utilization has
5886 * not been set yet, we must first select a rq to compute the initial
5887 * utilization.
6a0b19c0 5888 */
f519a3f1
VG
5889 if (sd_flag & SD_BALANCE_FORK)
5890 goto skip_spare;
5891
6a0b19c0 5892 if (this_spare > task_util(p) / 2 &&
6b94780e 5893 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5894 return NULL;
6b94780e
VG
5895
5896 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5897 return most_spare_sg;
5898
f519a3f1 5899skip_spare:
6b94780e
VG
5900 if (!idlest)
5901 return NULL;
5902
2c833627
MG
5903 /*
5904 * When comparing groups across NUMA domains, it's possible for the
5905 * local domain to be very lightly loaded relative to the remote
5906 * domains but "imbalance" skews the comparison making remote CPUs
5907 * look much more favourable. When considering cross-domain, add
5908 * imbalance to the runnable load on the remote node and consider
5909 * staying local.
5910 */
5911 if ((sd->flags & SD_NUMA) &&
5912 min_runnable_load + imbalance >= this_runnable_load)
5913 return NULL;
5914
6b94780e 5915 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5916 return NULL;
6b94780e
VG
5917
5918 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5919 (100*this_avg_load < imbalance_scale*min_avg_load))
5920 return NULL;
5921
aaee1203
PZ
5922 return idlest;
5923}
5924
5925/*
97fb7a0a 5926 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5927 */
5928static int
18bd1b4b 5929find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5930{
5931 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5932 unsigned int min_exit_latency = UINT_MAX;
5933 u64 latest_idle_timestamp = 0;
5934 int least_loaded_cpu = this_cpu;
5935 int shallowest_idle_cpu = -1;
aaee1203
PZ
5936 int i;
5937
eaecf41f
MR
5938 /* Check if we have any choice: */
5939 if (group->group_weight == 1)
ae4df9d6 5940 return cpumask_first(sched_group_span(group));
eaecf41f 5941
aaee1203 5942 /* Traverse only the allowed CPUs */
ae4df9d6 5943 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
943d355d 5944 if (available_idle_cpu(i)) {
83a0a96a
NP
5945 struct rq *rq = cpu_rq(i);
5946 struct cpuidle_state *idle = idle_get_state(rq);
5947 if (idle && idle->exit_latency < min_exit_latency) {
5948 /*
5949 * We give priority to a CPU whose idle state
5950 * has the smallest exit latency irrespective
5951 * of any idle timestamp.
5952 */
5953 min_exit_latency = idle->exit_latency;
5954 latest_idle_timestamp = rq->idle_stamp;
5955 shallowest_idle_cpu = i;
5956 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5957 rq->idle_stamp > latest_idle_timestamp) {
5958 /*
5959 * If equal or no active idle state, then
5960 * the most recently idled CPU might have
5961 * a warmer cache.
5962 */
5963 latest_idle_timestamp = rq->idle_stamp;
5964 shallowest_idle_cpu = i;
5965 }
9f96742a 5966 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5967 load = weighted_cpuload(cpu_rq(i));
18cec7e0 5968 if (load < min_load) {
83a0a96a
NP
5969 min_load = load;
5970 least_loaded_cpu = i;
5971 }
e7693a36
GH
5972 }
5973 }
5974
83a0a96a 5975 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5976}
e7693a36 5977
18bd1b4b
BJ
5978static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5979 int cpu, int prev_cpu, int sd_flag)
5980{
93f50f90 5981 int new_cpu = cpu;
18bd1b4b 5982
6fee85cc
BJ
5983 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5984 return prev_cpu;
5985
c976a862 5986 /*
c469933e
PB
5987 * We need task's util for capacity_spare_without, sync it up to
5988 * prev_cpu's last_update_time.
c976a862
VK
5989 */
5990 if (!(sd_flag & SD_BALANCE_FORK))
5991 sync_entity_load_avg(&p->se);
5992
18bd1b4b
BJ
5993 while (sd) {
5994 struct sched_group *group;
5995 struct sched_domain *tmp;
5996 int weight;
5997
5998 if (!(sd->flags & sd_flag)) {
5999 sd = sd->child;
6000 continue;
6001 }
6002
6003 group = find_idlest_group(sd, p, cpu, sd_flag);
6004 if (!group) {
6005 sd = sd->child;
6006 continue;
6007 }
6008
6009 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 6010 if (new_cpu == cpu) {
97fb7a0a 6011 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
6012 sd = sd->child;
6013 continue;
6014 }
6015
97fb7a0a 6016 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6017 cpu = new_cpu;
6018 weight = sd->span_weight;
6019 sd = NULL;
6020 for_each_domain(cpu, tmp) {
6021 if (weight <= tmp->span_weight)
6022 break;
6023 if (tmp->flags & sd_flag)
6024 sd = tmp;
6025 }
18bd1b4b
BJ
6026 }
6027
6028 return new_cpu;
6029}
6030
10e2f1ac 6031#ifdef CONFIG_SCHED_SMT
ba2591a5 6032DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6033EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6034
6035static inline void set_idle_cores(int cpu, int val)
6036{
6037 struct sched_domain_shared *sds;
6038
6039 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6040 if (sds)
6041 WRITE_ONCE(sds->has_idle_cores, val);
6042}
6043
6044static inline bool test_idle_cores(int cpu, bool def)
6045{
6046 struct sched_domain_shared *sds;
6047
6048 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6049 if (sds)
6050 return READ_ONCE(sds->has_idle_cores);
6051
6052 return def;
6053}
6054
6055/*
6056 * Scans the local SMT mask to see if the entire core is idle, and records this
6057 * information in sd_llc_shared->has_idle_cores.
6058 *
6059 * Since SMT siblings share all cache levels, inspecting this limited remote
6060 * state should be fairly cheap.
6061 */
1b568f0a 6062void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6063{
6064 int core = cpu_of(rq);
6065 int cpu;
6066
6067 rcu_read_lock();
6068 if (test_idle_cores(core, true))
6069 goto unlock;
6070
6071 for_each_cpu(cpu, cpu_smt_mask(core)) {
6072 if (cpu == core)
6073 continue;
6074
943d355d 6075 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6076 goto unlock;
6077 }
6078
6079 set_idle_cores(core, 1);
6080unlock:
6081 rcu_read_unlock();
6082}
6083
6084/*
6085 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6086 * there are no idle cores left in the system; tracked through
6087 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6088 */
6089static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6090{
6091 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6092 int core, cpu;
10e2f1ac 6093
1b568f0a
PZ
6094 if (!static_branch_likely(&sched_smt_present))
6095 return -1;
6096
10e2f1ac
PZ
6097 if (!test_idle_cores(target, false))
6098 return -1;
6099
0c98d344 6100 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 6101
c743f0a5 6102 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6103 bool idle = true;
6104
6105 for_each_cpu(cpu, cpu_smt_mask(core)) {
6106 cpumask_clear_cpu(cpu, cpus);
943d355d 6107 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6108 idle = false;
6109 }
6110
6111 if (idle)
6112 return core;
6113 }
6114
6115 /*
6116 * Failed to find an idle core; stop looking for one.
6117 */
6118 set_idle_cores(target, 0);
6119
6120 return -1;
6121}
6122
6123/*
6124 * Scan the local SMT mask for idle CPUs.
6125 */
6126static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6127{
6128 int cpu;
6129
1b568f0a
PZ
6130 if (!static_branch_likely(&sched_smt_present))
6131 return -1;
6132
10e2f1ac 6133 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 6134 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6135 continue;
943d355d 6136 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6137 return cpu;
6138 }
6139
6140 return -1;
6141}
6142
6143#else /* CONFIG_SCHED_SMT */
6144
6145static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6146{
6147 return -1;
6148}
6149
6150static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6151{
6152 return -1;
6153}
6154
6155#endif /* CONFIG_SCHED_SMT */
6156
6157/*
6158 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6159 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6160 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6161 */
10e2f1ac
PZ
6162static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6163{
9cfb38a7 6164 struct sched_domain *this_sd;
1ad3aaf3 6165 u64 avg_cost, avg_idle;
10e2f1ac
PZ
6166 u64 time, cost;
6167 s64 delta;
1ad3aaf3 6168 int cpu, nr = INT_MAX;
10e2f1ac 6169
9cfb38a7
WL
6170 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6171 if (!this_sd)
6172 return -1;
6173
10e2f1ac
PZ
6174 /*
6175 * Due to large variance we need a large fuzz factor; hackbench in
6176 * particularly is sensitive here.
6177 */
1ad3aaf3
PZ
6178 avg_idle = this_rq()->avg_idle / 512;
6179 avg_cost = this_sd->avg_scan_cost + 1;
6180
6181 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6182 return -1;
6183
1ad3aaf3
PZ
6184 if (sched_feat(SIS_PROP)) {
6185 u64 span_avg = sd->span_weight * avg_idle;
6186 if (span_avg > 4*avg_cost)
6187 nr = div_u64(span_avg, avg_cost);
6188 else
6189 nr = 4;
6190 }
6191
10e2f1ac
PZ
6192 time = local_clock();
6193
c743f0a5 6194 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6195 if (!--nr)
6196 return -1;
0c98d344 6197 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6198 continue;
943d355d 6199 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6200 break;
6201 }
6202
6203 time = local_clock() - time;
6204 cost = this_sd->avg_scan_cost;
6205 delta = (s64)(time - cost) / 8;
6206 this_sd->avg_scan_cost += delta;
6207
6208 return cpu;
6209}
6210
6211/*
6212 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6213 */
772bd008 6214static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6215{
99bd5e2f 6216 struct sched_domain *sd;
32e839dd 6217 int i, recent_used_cpu;
a50bde51 6218
943d355d 6219 if (available_idle_cpu(target))
e0a79f52 6220 return target;
99bd5e2f
SS
6221
6222 /*
97fb7a0a 6223 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6224 */
943d355d 6225 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 6226 return prev;
a50bde51 6227
97fb7a0a 6228 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6229 recent_used_cpu = p->recent_used_cpu;
6230 if (recent_used_cpu != prev &&
6231 recent_used_cpu != target &&
6232 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6233 available_idle_cpu(recent_used_cpu) &&
32e839dd
MG
6234 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6235 /*
6236 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6237 * candidate for the next wake:
32e839dd
MG
6238 */
6239 p->recent_used_cpu = prev;
6240 return recent_used_cpu;
6241 }
6242
518cd623 6243 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6244 if (!sd)
6245 return target;
772bd008 6246
10e2f1ac
PZ
6247 i = select_idle_core(p, sd, target);
6248 if ((unsigned)i < nr_cpumask_bits)
6249 return i;
37407ea7 6250
10e2f1ac
PZ
6251 i = select_idle_cpu(p, sd, target);
6252 if ((unsigned)i < nr_cpumask_bits)
6253 return i;
6254
6255 i = select_idle_smt(p, sd, target);
6256 if ((unsigned)i < nr_cpumask_bits)
6257 return i;
970e1789 6258
a50bde51
PZ
6259 return target;
6260}
231678b7 6261
f9be3e59
PB
6262/**
6263 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6264 * @cpu: the CPU to get the utilization of
6265 *
6266 * The unit of the return value must be the one of capacity so we can compare
6267 * the utilization with the capacity of the CPU that is available for CFS task
6268 * (ie cpu_capacity).
231678b7
DE
6269 *
6270 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6271 * recent utilization of currently non-runnable tasks on a CPU. It represents
6272 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6273 * capacity_orig is the cpu_capacity available at the highest frequency
6274 * (arch_scale_freq_capacity()).
6275 * The utilization of a CPU converges towards a sum equal to or less than the
6276 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6277 * the running time on this CPU scaled by capacity_curr.
6278 *
f9be3e59
PB
6279 * The estimated utilization of a CPU is defined to be the maximum between its
6280 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6281 * currently RUNNABLE on that CPU.
6282 * This allows to properly represent the expected utilization of a CPU which
6283 * has just got a big task running since a long sleep period. At the same time
6284 * however it preserves the benefits of the "blocked utilization" in
6285 * describing the potential for other tasks waking up on the same CPU.
6286 *
231678b7
DE
6287 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6288 * higher than capacity_orig because of unfortunate rounding in
6289 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6290 * the average stabilizes with the new running time. We need to check that the
6291 * utilization stays within the range of [0..capacity_orig] and cap it if
6292 * necessary. Without utilization capping, a group could be seen as overloaded
6293 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6294 * available capacity. We allow utilization to overshoot capacity_curr (but not
6295 * capacity_orig) as it useful for predicting the capacity required after task
6296 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6297 *
6298 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6299 */
f9be3e59 6300static inline unsigned long cpu_util(int cpu)
8bb5b00c 6301{
f9be3e59
PB
6302 struct cfs_rq *cfs_rq;
6303 unsigned int util;
6304
6305 cfs_rq = &cpu_rq(cpu)->cfs;
6306 util = READ_ONCE(cfs_rq->avg.util_avg);
6307
6308 if (sched_feat(UTIL_EST))
6309 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6310
f9be3e59 6311 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6312}
a50bde51 6313
104cb16d 6314/*
c469933e
PB
6315 * cpu_util_without: compute cpu utilization without any contributions from *p
6316 * @cpu: the CPU which utilization is requested
6317 * @p: the task which utilization should be discounted
6318 *
6319 * The utilization of a CPU is defined by the utilization of tasks currently
6320 * enqueued on that CPU as well as tasks which are currently sleeping after an
6321 * execution on that CPU.
6322 *
6323 * This method returns the utilization of the specified CPU by discounting the
6324 * utilization of the specified task, whenever the task is currently
6325 * contributing to the CPU utilization.
104cb16d 6326 */
c469933e 6327static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6328{
f9be3e59
PB
6329 struct cfs_rq *cfs_rq;
6330 unsigned int util;
104cb16d
MR
6331
6332 /* Task has no contribution or is new */
f9be3e59 6333 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6334 return cpu_util(cpu);
6335
f9be3e59
PB
6336 cfs_rq = &cpu_rq(cpu)->cfs;
6337 util = READ_ONCE(cfs_rq->avg.util_avg);
6338
c469933e 6339 /* Discount task's util from CPU's util */
b5c0ce7b 6340 lsub_positive(&util, task_util(p));
104cb16d 6341
f9be3e59
PB
6342 /*
6343 * Covered cases:
6344 *
6345 * a) if *p is the only task sleeping on this CPU, then:
6346 * cpu_util (== task_util) > util_est (== 0)
6347 * and thus we return:
c469933e 6348 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6349 *
6350 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6351 * IDLE, then:
6352 * cpu_util >= task_util
6353 * cpu_util > util_est (== 0)
6354 * and thus we discount *p's blocked utilization to return:
c469933e 6355 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6356 *
6357 * c) if other tasks are RUNNABLE on that CPU and
6358 * util_est > cpu_util
6359 * then we use util_est since it returns a more restrictive
6360 * estimation of the spare capacity on that CPU, by just
6361 * considering the expected utilization of tasks already
6362 * runnable on that CPU.
6363 *
6364 * Cases a) and b) are covered by the above code, while case c) is
6365 * covered by the following code when estimated utilization is
6366 * enabled.
6367 */
c469933e
PB
6368 if (sched_feat(UTIL_EST)) {
6369 unsigned int estimated =
6370 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6371
6372 /*
6373 * Despite the following checks we still have a small window
6374 * for a possible race, when an execl's select_task_rq_fair()
6375 * races with LB's detach_task():
6376 *
6377 * detach_task()
6378 * p->on_rq = TASK_ON_RQ_MIGRATING;
6379 * ---------------------------------- A
6380 * deactivate_task() \
6381 * dequeue_task() + RaceTime
6382 * util_est_dequeue() /
6383 * ---------------------------------- B
6384 *
6385 * The additional check on "current == p" it's required to
6386 * properly fix the execl regression and it helps in further
6387 * reducing the chances for the above race.
6388 */
b5c0ce7b
PB
6389 if (unlikely(task_on_rq_queued(p) || current == p))
6390 lsub_positive(&estimated, _task_util_est(p));
6391
c469933e
PB
6392 util = max(util, estimated);
6393 }
f9be3e59
PB
6394
6395 /*
6396 * Utilization (estimated) can exceed the CPU capacity, thus let's
6397 * clamp to the maximum CPU capacity to ensure consistency with
6398 * the cpu_util call.
6399 */
6400 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6401}
6402
3273163c
MR
6403/*
6404 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6405 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6406 *
6407 * In that case WAKE_AFFINE doesn't make sense and we'll let
6408 * BALANCE_WAKE sort things out.
6409 */
6410static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6411{
6412 long min_cap, max_cap;
6413
df054e84
MR
6414 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6415 return 0;
6416
3273163c
MR
6417 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6418 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6419
6420 /* Minimum capacity is close to max, no need to abort wake_affine */
6421 if (max_cap - min_cap < max_cap >> 3)
6422 return 0;
6423
104cb16d
MR
6424 /* Bring task utilization in sync with prev_cpu */
6425 sync_entity_load_avg(&p->se);
6426
3b1baa64 6427 return !task_fits_capacity(p, min_cap);
3273163c
MR
6428}
6429
390031e4
QP
6430/*
6431 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6432 * to @dst_cpu.
6433 */
6434static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6435{
6436 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6437 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6438
6439 /*
6440 * If @p migrates from @cpu to another, remove its contribution. Or,
6441 * if @p migrates from another CPU to @cpu, add its contribution. In
6442 * the other cases, @cpu is not impacted by the migration, so the
6443 * util_avg should already be correct.
6444 */
6445 if (task_cpu(p) == cpu && dst_cpu != cpu)
6446 sub_positive(&util, task_util(p));
6447 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6448 util += task_util(p);
6449
6450 if (sched_feat(UTIL_EST)) {
6451 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6452
6453 /*
6454 * During wake-up, the task isn't enqueued yet and doesn't
6455 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6456 * so just add it (if needed) to "simulate" what will be
6457 * cpu_util() after the task has been enqueued.
6458 */
6459 if (dst_cpu == cpu)
6460 util_est += _task_util_est(p);
6461
6462 util = max(util, util_est);
6463 }
6464
6465 return min(util, capacity_orig_of(cpu));
6466}
6467
6468/*
6469 * compute_energy(): Estimates the energy that would be consumed if @p was
6470 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6471 * landscape of the * CPUs after the task migration, and uses the Energy Model
6472 * to compute what would be the energy if we decided to actually migrate that
6473 * task.
6474 */
6475static long
6476compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6477{
6478 long util, max_util, sum_util, energy = 0;
6479 int cpu;
6480
6481 for (; pd; pd = pd->next) {
6482 max_util = sum_util = 0;
6483 /*
6484 * The capacity state of CPUs of the current rd can be driven by
6485 * CPUs of another rd if they belong to the same performance
6486 * domain. So, account for the utilization of these CPUs too
6487 * by masking pd with cpu_online_mask instead of the rd span.
6488 *
6489 * If an entire performance domain is outside of the current rd,
6490 * it will not appear in its pd list and will not be accounted
6491 * by compute_energy().
6492 */
6493 for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6494 util = cpu_util_next(cpu, p, dst_cpu);
6495 util = schedutil_energy_util(cpu, util);
6496 max_util = max(util, max_util);
6497 sum_util += util;
6498 }
6499
6500 energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6501 }
6502
6503 return energy;
6504}
6505
732cd75b
QP
6506/*
6507 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6508 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6509 * spare capacity in each performance domain and uses it as a potential
6510 * candidate to execute the task. Then, it uses the Energy Model to figure
6511 * out which of the CPU candidates is the most energy-efficient.
6512 *
6513 * The rationale for this heuristic is as follows. In a performance domain,
6514 * all the most energy efficient CPU candidates (according to the Energy
6515 * Model) are those for which we'll request a low frequency. When there are
6516 * several CPUs for which the frequency request will be the same, we don't
6517 * have enough data to break the tie between them, because the Energy Model
6518 * only includes active power costs. With this model, if we assume that
6519 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6520 * the maximum spare capacity in a performance domain is guaranteed to be among
6521 * the best candidates of the performance domain.
6522 *
6523 * In practice, it could be preferable from an energy standpoint to pack
6524 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6525 * but that could also hurt our chances to go cluster idle, and we have no
6526 * ways to tell with the current Energy Model if this is actually a good
6527 * idea or not. So, find_energy_efficient_cpu() basically favors
6528 * cluster-packing, and spreading inside a cluster. That should at least be
6529 * a good thing for latency, and this is consistent with the idea that most
6530 * of the energy savings of EAS come from the asymmetry of the system, and
6531 * not so much from breaking the tie between identical CPUs. That's also the
6532 * reason why EAS is enabled in the topology code only for systems where
6533 * SD_ASYM_CPUCAPACITY is set.
6534 *
6535 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6536 * they don't have any useful utilization data yet and it's not possible to
6537 * forecast their impact on energy consumption. Consequently, they will be
6538 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6539 * to be energy-inefficient in some use-cases. The alternative would be to
6540 * bias new tasks towards specific types of CPUs first, or to try to infer
6541 * their util_avg from the parent task, but those heuristics could hurt
6542 * other use-cases too. So, until someone finds a better way to solve this,
6543 * let's keep things simple by re-using the existing slow path.
6544 */
6545
6546static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6547{
6548 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6549 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6550 int cpu, best_energy_cpu = prev_cpu;
6551 struct perf_domain *head, *pd;
6552 unsigned long cpu_cap, util;
6553 struct sched_domain *sd;
6554
6555 rcu_read_lock();
6556 pd = rcu_dereference(rd->pd);
6557 if (!pd || READ_ONCE(rd->overutilized))
6558 goto fail;
6559 head = pd;
6560
6561 /*
6562 * Energy-aware wake-up happens on the lowest sched_domain starting
6563 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6564 */
6565 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6566 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6567 sd = sd->parent;
6568 if (!sd)
6569 goto fail;
6570
6571 sync_entity_load_avg(&p->se);
6572 if (!task_util_est(p))
6573 goto unlock;
6574
6575 for (; pd; pd = pd->next) {
6576 unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6577 int max_spare_cap_cpu = -1;
6578
6579 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6580 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6581 continue;
6582
6583 /* Skip CPUs that will be overutilized. */
6584 util = cpu_util_next(cpu, p, cpu);
6585 cpu_cap = capacity_of(cpu);
6586 if (cpu_cap * 1024 < util * capacity_margin)
6587 continue;
6588
6589 /* Always use prev_cpu as a candidate. */
6590 if (cpu == prev_cpu) {
6591 prev_energy = compute_energy(p, prev_cpu, head);
6592 best_energy = min(best_energy, prev_energy);
6593 continue;
6594 }
6595
6596 /*
6597 * Find the CPU with the maximum spare capacity in
6598 * the performance domain
6599 */
6600 spare_cap = cpu_cap - util;
6601 if (spare_cap > max_spare_cap) {
6602 max_spare_cap = spare_cap;
6603 max_spare_cap_cpu = cpu;
6604 }
6605 }
6606
6607 /* Evaluate the energy impact of using this CPU. */
6608 if (max_spare_cap_cpu >= 0) {
6609 cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6610 if (cur_energy < best_energy) {
6611 best_energy = cur_energy;
6612 best_energy_cpu = max_spare_cap_cpu;
6613 }
6614 }
6615 }
6616unlock:
6617 rcu_read_unlock();
6618
6619 /*
6620 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6621 * least 6% of the energy used by prev_cpu.
6622 */
6623 if (prev_energy == ULONG_MAX)
6624 return best_energy_cpu;
6625
6626 if ((prev_energy - best_energy) > (prev_energy >> 4))
6627 return best_energy_cpu;
6628
6629 return prev_cpu;
6630
6631fail:
6632 rcu_read_unlock();
6633
6634 return -1;
6635}
6636
aaee1203 6637/*
de91b9cb
MR
6638 * select_task_rq_fair: Select target runqueue for the waking task in domains
6639 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6640 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6641 *
97fb7a0a
IM
6642 * Balances load by selecting the idlest CPU in the idlest group, or under
6643 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6644 *
97fb7a0a 6645 * Returns the target CPU number.
aaee1203
PZ
6646 *
6647 * preempt must be disabled.
6648 */
0017d735 6649static int
ac66f547 6650select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6651{
f1d88b44 6652 struct sched_domain *tmp, *sd = NULL;
c88d5910 6653 int cpu = smp_processor_id();
63b0e9ed 6654 int new_cpu = prev_cpu;
99bd5e2f 6655 int want_affine = 0;
24d0c1d6 6656 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6657
c58d25f3
PZ
6658 if (sd_flag & SD_BALANCE_WAKE) {
6659 record_wakee(p);
732cd75b 6660
f8a696f2 6661 if (sched_energy_enabled()) {
732cd75b
QP
6662 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6663 if (new_cpu >= 0)
6664 return new_cpu;
6665 new_cpu = prev_cpu;
6666 }
6667
6668 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6669 cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6670 }
aaee1203 6671
dce840a0 6672 rcu_read_lock();
aaee1203 6673 for_each_domain(cpu, tmp) {
e4f42888 6674 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6675 break;
e4f42888 6676
fe3bcfe1 6677 /*
97fb7a0a 6678 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6679 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6680 */
99bd5e2f
SS
6681 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6682 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6683 if (cpu != prev_cpu)
6684 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6685
6686 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6687 break;
f03542a7 6688 }
29cd8bae 6689
f03542a7 6690 if (tmp->flags & sd_flag)
29cd8bae 6691 sd = tmp;
63b0e9ed
MG
6692 else if (!want_affine)
6693 break;
29cd8bae
PZ
6694 }
6695
f1d88b44
VK
6696 if (unlikely(sd)) {
6697 /* Slow path */
18bd1b4b 6698 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6699 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6700 /* Fast path */
6701
6702 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6703
6704 if (want_affine)
6705 current->recent_used_cpu = cpu;
e7693a36 6706 }
dce840a0 6707 rcu_read_unlock();
e7693a36 6708
c88d5910 6709 return new_cpu;
e7693a36 6710}
0a74bef8 6711
144d8487
PZ
6712static void detach_entity_cfs_rq(struct sched_entity *se);
6713
0a74bef8 6714/*
97fb7a0a 6715 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6716 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6717 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6718 */
3f9672ba 6719static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6720{
59efa0ba
PZ
6721 /*
6722 * As blocked tasks retain absolute vruntime the migration needs to
6723 * deal with this by subtracting the old and adding the new
6724 * min_vruntime -- the latter is done by enqueue_entity() when placing
6725 * the task on the new runqueue.
6726 */
6727 if (p->state == TASK_WAKING) {
6728 struct sched_entity *se = &p->se;
6729 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6730 u64 min_vruntime;
6731
6732#ifndef CONFIG_64BIT
6733 u64 min_vruntime_copy;
6734
6735 do {
6736 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6737 smp_rmb();
6738 min_vruntime = cfs_rq->min_vruntime;
6739 } while (min_vruntime != min_vruntime_copy);
6740#else
6741 min_vruntime = cfs_rq->min_vruntime;
6742#endif
6743
6744 se->vruntime -= min_vruntime;
6745 }
6746
144d8487
PZ
6747 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6748 /*
6749 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6750 * rq->lock and can modify state directly.
6751 */
6752 lockdep_assert_held(&task_rq(p)->lock);
6753 detach_entity_cfs_rq(&p->se);
6754
6755 } else {
6756 /*
6757 * We are supposed to update the task to "current" time, then
6758 * its up to date and ready to go to new CPU/cfs_rq. But we
6759 * have difficulty in getting what current time is, so simply
6760 * throw away the out-of-date time. This will result in the
6761 * wakee task is less decayed, but giving the wakee more load
6762 * sounds not bad.
6763 */
6764 remove_entity_load_avg(&p->se);
6765 }
9d89c257
YD
6766
6767 /* Tell new CPU we are migrated */
6768 p->se.avg.last_update_time = 0;
3944a927
BS
6769
6770 /* We have migrated, no longer consider this task hot */
9d89c257 6771 p->se.exec_start = 0;
3f9672ba
SD
6772
6773 update_scan_period(p, new_cpu);
0a74bef8 6774}
12695578
YD
6775
6776static void task_dead_fair(struct task_struct *p)
6777{
6778 remove_entity_load_avg(&p->se);
6779}
e7693a36
GH
6780#endif /* CONFIG_SMP */
6781
a555e9d8 6782static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6783{
6784 unsigned long gran = sysctl_sched_wakeup_granularity;
6785
6786 /*
e52fb7c0
PZ
6787 * Since its curr running now, convert the gran from real-time
6788 * to virtual-time in his units.
13814d42
MG
6789 *
6790 * By using 'se' instead of 'curr' we penalize light tasks, so
6791 * they get preempted easier. That is, if 'se' < 'curr' then
6792 * the resulting gran will be larger, therefore penalizing the
6793 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6794 * be smaller, again penalizing the lighter task.
6795 *
6796 * This is especially important for buddies when the leftmost
6797 * task is higher priority than the buddy.
0bbd3336 6798 */
f4ad9bd2 6799 return calc_delta_fair(gran, se);
0bbd3336
PZ
6800}
6801
464b7527
PZ
6802/*
6803 * Should 'se' preempt 'curr'.
6804 *
6805 * |s1
6806 * |s2
6807 * |s3
6808 * g
6809 * |<--->|c
6810 *
6811 * w(c, s1) = -1
6812 * w(c, s2) = 0
6813 * w(c, s3) = 1
6814 *
6815 */
6816static int
6817wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6818{
6819 s64 gran, vdiff = curr->vruntime - se->vruntime;
6820
6821 if (vdiff <= 0)
6822 return -1;
6823
a555e9d8 6824 gran = wakeup_gran(se);
464b7527
PZ
6825 if (vdiff > gran)
6826 return 1;
6827
6828 return 0;
6829}
6830
02479099
PZ
6831static void set_last_buddy(struct sched_entity *se)
6832{
1da1843f 6833 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6834 return;
6835
c5ae366e
DA
6836 for_each_sched_entity(se) {
6837 if (SCHED_WARN_ON(!se->on_rq))
6838 return;
69c80f3e 6839 cfs_rq_of(se)->last = se;
c5ae366e 6840 }
02479099
PZ
6841}
6842
6843static void set_next_buddy(struct sched_entity *se)
6844{
1da1843f 6845 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6846 return;
6847
c5ae366e
DA
6848 for_each_sched_entity(se) {
6849 if (SCHED_WARN_ON(!se->on_rq))
6850 return;
69c80f3e 6851 cfs_rq_of(se)->next = se;
c5ae366e 6852 }
02479099
PZ
6853}
6854
ac53db59
RR
6855static void set_skip_buddy(struct sched_entity *se)
6856{
69c80f3e
VP
6857 for_each_sched_entity(se)
6858 cfs_rq_of(se)->skip = se;
ac53db59
RR
6859}
6860
bf0f6f24
IM
6861/*
6862 * Preempt the current task with a newly woken task if needed:
6863 */
5a9b86f6 6864static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6865{
6866 struct task_struct *curr = rq->curr;
8651a86c 6867 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6868 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6869 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6870 int next_buddy_marked = 0;
bf0f6f24 6871
4ae7d5ce
IM
6872 if (unlikely(se == pse))
6873 return;
6874
5238cdd3 6875 /*
163122b7 6876 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6877 * unconditionally check_prempt_curr() after an enqueue (which may have
6878 * lead to a throttle). This both saves work and prevents false
6879 * next-buddy nomination below.
6880 */
6881 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6882 return;
6883
2f36825b 6884 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6885 set_next_buddy(pse);
2f36825b
VP
6886 next_buddy_marked = 1;
6887 }
57fdc26d 6888
aec0a514
BR
6889 /*
6890 * We can come here with TIF_NEED_RESCHED already set from new task
6891 * wake up path.
5238cdd3
PT
6892 *
6893 * Note: this also catches the edge-case of curr being in a throttled
6894 * group (e.g. via set_curr_task), since update_curr() (in the
6895 * enqueue of curr) will have resulted in resched being set. This
6896 * prevents us from potentially nominating it as a false LAST_BUDDY
6897 * below.
aec0a514
BR
6898 */
6899 if (test_tsk_need_resched(curr))
6900 return;
6901
a2f5c9ab 6902 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6903 if (unlikely(task_has_idle_policy(curr)) &&
6904 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6905 goto preempt;
6906
91c234b4 6907 /*
a2f5c9ab
DH
6908 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6909 * is driven by the tick):
91c234b4 6910 */
8ed92e51 6911 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6912 return;
bf0f6f24 6913
464b7527 6914 find_matching_se(&se, &pse);
9bbd7374 6915 update_curr(cfs_rq_of(se));
002f128b 6916 BUG_ON(!pse);
2f36825b
VP
6917 if (wakeup_preempt_entity(se, pse) == 1) {
6918 /*
6919 * Bias pick_next to pick the sched entity that is
6920 * triggering this preemption.
6921 */
6922 if (!next_buddy_marked)
6923 set_next_buddy(pse);
3a7e73a2 6924 goto preempt;
2f36825b 6925 }
464b7527 6926
3a7e73a2 6927 return;
a65ac745 6928
3a7e73a2 6929preempt:
8875125e 6930 resched_curr(rq);
3a7e73a2
PZ
6931 /*
6932 * Only set the backward buddy when the current task is still
6933 * on the rq. This can happen when a wakeup gets interleaved
6934 * with schedule on the ->pre_schedule() or idle_balance()
6935 * point, either of which can * drop the rq lock.
6936 *
6937 * Also, during early boot the idle thread is in the fair class,
6938 * for obvious reasons its a bad idea to schedule back to it.
6939 */
6940 if (unlikely(!se->on_rq || curr == rq->idle))
6941 return;
6942
6943 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6944 set_last_buddy(se);
bf0f6f24
IM
6945}
6946
606dba2e 6947static struct task_struct *
d8ac8971 6948pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6949{
6950 struct cfs_rq *cfs_rq = &rq->cfs;
6951 struct sched_entity *se;
678d5718 6952 struct task_struct *p;
37e117c0 6953 int new_tasks;
678d5718 6954
6e83125c 6955again:
678d5718 6956 if (!cfs_rq->nr_running)
38033c37 6957 goto idle;
678d5718 6958
9674f5ca 6959#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6960 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6961 goto simple;
6962
6963 /*
6964 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6965 * likely that a next task is from the same cgroup as the current.
6966 *
6967 * Therefore attempt to avoid putting and setting the entire cgroup
6968 * hierarchy, only change the part that actually changes.
6969 */
6970
6971 do {
6972 struct sched_entity *curr = cfs_rq->curr;
6973
6974 /*
6975 * Since we got here without doing put_prev_entity() we also
6976 * have to consider cfs_rq->curr. If it is still a runnable
6977 * entity, update_curr() will update its vruntime, otherwise
6978 * forget we've ever seen it.
6979 */
54d27365
BS
6980 if (curr) {
6981 if (curr->on_rq)
6982 update_curr(cfs_rq);
6983 else
6984 curr = NULL;
678d5718 6985
54d27365
BS
6986 /*
6987 * This call to check_cfs_rq_runtime() will do the
6988 * throttle and dequeue its entity in the parent(s).
9674f5ca 6989 * Therefore the nr_running test will indeed
54d27365
BS
6990 * be correct.
6991 */
9674f5ca
VK
6992 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6993 cfs_rq = &rq->cfs;
6994
6995 if (!cfs_rq->nr_running)
6996 goto idle;
6997
54d27365 6998 goto simple;
9674f5ca 6999 }
54d27365 7000 }
678d5718
PZ
7001
7002 se = pick_next_entity(cfs_rq, curr);
7003 cfs_rq = group_cfs_rq(se);
7004 } while (cfs_rq);
7005
7006 p = task_of(se);
7007
7008 /*
7009 * Since we haven't yet done put_prev_entity and if the selected task
7010 * is a different task than we started out with, try and touch the
7011 * least amount of cfs_rqs.
7012 */
7013 if (prev != p) {
7014 struct sched_entity *pse = &prev->se;
7015
7016 while (!(cfs_rq = is_same_group(se, pse))) {
7017 int se_depth = se->depth;
7018 int pse_depth = pse->depth;
7019
7020 if (se_depth <= pse_depth) {
7021 put_prev_entity(cfs_rq_of(pse), pse);
7022 pse = parent_entity(pse);
7023 }
7024 if (se_depth >= pse_depth) {
7025 set_next_entity(cfs_rq_of(se), se);
7026 se = parent_entity(se);
7027 }
7028 }
7029
7030 put_prev_entity(cfs_rq, pse);
7031 set_next_entity(cfs_rq, se);
7032 }
7033
93824900 7034 goto done;
678d5718 7035simple:
678d5718 7036#endif
bf0f6f24 7037
3f1d2a31 7038 put_prev_task(rq, prev);
606dba2e 7039
bf0f6f24 7040 do {
678d5718 7041 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7042 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7043 cfs_rq = group_cfs_rq(se);
7044 } while (cfs_rq);
7045
8f4d37ec 7046 p = task_of(se);
678d5718 7047
13a453c2 7048done: __maybe_unused;
93824900
UR
7049#ifdef CONFIG_SMP
7050 /*
7051 * Move the next running task to the front of
7052 * the list, so our cfs_tasks list becomes MRU
7053 * one.
7054 */
7055 list_move(&p->se.group_node, &rq->cfs_tasks);
7056#endif
7057
b39e66ea
MG
7058 if (hrtick_enabled(rq))
7059 hrtick_start_fair(rq, p);
8f4d37ec 7060
3b1baa64
MR
7061 update_misfit_status(p, rq);
7062
8f4d37ec 7063 return p;
38033c37
PZ
7064
7065idle:
3b1baa64 7066 update_misfit_status(NULL, rq);
46f69fa3
MF
7067 new_tasks = idle_balance(rq, rf);
7068
37e117c0
PZ
7069 /*
7070 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7071 * possible for any higher priority task to appear. In that case we
7072 * must re-start the pick_next_entity() loop.
7073 */
e4aa358b 7074 if (new_tasks < 0)
37e117c0
PZ
7075 return RETRY_TASK;
7076
e4aa358b 7077 if (new_tasks > 0)
38033c37 7078 goto again;
38033c37 7079
23127296
VG
7080 /*
7081 * rq is about to be idle, check if we need to update the
7082 * lost_idle_time of clock_pelt
7083 */
7084 update_idle_rq_clock_pelt(rq);
7085
38033c37 7086 return NULL;
bf0f6f24
IM
7087}
7088
7089/*
7090 * Account for a descheduled task:
7091 */
31ee529c 7092static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7093{
7094 struct sched_entity *se = &prev->se;
7095 struct cfs_rq *cfs_rq;
7096
7097 for_each_sched_entity(se) {
7098 cfs_rq = cfs_rq_of(se);
ab6cde26 7099 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7100 }
7101}
7102
ac53db59
RR
7103/*
7104 * sched_yield() is very simple
7105 *
7106 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7107 */
7108static void yield_task_fair(struct rq *rq)
7109{
7110 struct task_struct *curr = rq->curr;
7111 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7112 struct sched_entity *se = &curr->se;
7113
7114 /*
7115 * Are we the only task in the tree?
7116 */
7117 if (unlikely(rq->nr_running == 1))
7118 return;
7119
7120 clear_buddies(cfs_rq, se);
7121
7122 if (curr->policy != SCHED_BATCH) {
7123 update_rq_clock(rq);
7124 /*
7125 * Update run-time statistics of the 'current'.
7126 */
7127 update_curr(cfs_rq);
916671c0
MG
7128 /*
7129 * Tell update_rq_clock() that we've just updated,
7130 * so we don't do microscopic update in schedule()
7131 * and double the fastpath cost.
7132 */
adcc8da8 7133 rq_clock_skip_update(rq);
ac53db59
RR
7134 }
7135
7136 set_skip_buddy(se);
7137}
7138
d95f4122
MG
7139static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7140{
7141 struct sched_entity *se = &p->se;
7142
5238cdd3
PT
7143 /* throttled hierarchies are not runnable */
7144 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7145 return false;
7146
7147 /* Tell the scheduler that we'd really like pse to run next. */
7148 set_next_buddy(se);
7149
d95f4122
MG
7150 yield_task_fair(rq);
7151
7152 return true;
7153}
7154
681f3e68 7155#ifdef CONFIG_SMP
bf0f6f24 7156/**************************************************
e9c84cb8
PZ
7157 * Fair scheduling class load-balancing methods.
7158 *
7159 * BASICS
7160 *
7161 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7162 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7163 * time to each task. This is expressed in the following equation:
7164 *
7165 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7166 *
97fb7a0a 7167 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7168 * W_i,0 is defined as:
7169 *
7170 * W_i,0 = \Sum_j w_i,j (2)
7171 *
97fb7a0a 7172 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7173 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7174 *
7175 * The weight average is an exponential decay average of the instantaneous
7176 * weight:
7177 *
7178 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7179 *
97fb7a0a 7180 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7181 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7182 * can also include other factors [XXX].
7183 *
7184 * To achieve this balance we define a measure of imbalance which follows
7185 * directly from (1):
7186 *
ced549fa 7187 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7188 *
7189 * We them move tasks around to minimize the imbalance. In the continuous
7190 * function space it is obvious this converges, in the discrete case we get
7191 * a few fun cases generally called infeasible weight scenarios.
7192 *
7193 * [XXX expand on:
7194 * - infeasible weights;
7195 * - local vs global optima in the discrete case. ]
7196 *
7197 *
7198 * SCHED DOMAINS
7199 *
7200 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7201 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7202 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7203 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7204 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7205 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7206 * the groups.
7207 *
7208 * This yields:
7209 *
7210 * log_2 n 1 n
7211 * \Sum { --- * --- * 2^i } = O(n) (5)
7212 * i = 0 2^i 2^i
7213 * `- size of each group
97fb7a0a 7214 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7215 * | `- freq
7216 * `- sum over all levels
7217 *
7218 * Coupled with a limit on how many tasks we can migrate every balance pass,
7219 * this makes (5) the runtime complexity of the balancer.
7220 *
7221 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7222 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7223 *
7224 * The adjacency matrix of the resulting graph is given by:
7225 *
97a7142f 7226 * log_2 n
e9c84cb8
PZ
7227 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7228 * k = 0
7229 *
7230 * And you'll find that:
7231 *
7232 * A^(log_2 n)_i,j != 0 for all i,j (7)
7233 *
97fb7a0a 7234 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7235 * The task movement gives a factor of O(m), giving a convergence complexity
7236 * of:
7237 *
7238 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7239 *
7240 *
7241 * WORK CONSERVING
7242 *
7243 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7244 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7245 * tree itself instead of relying on other CPUs to bring it work.
7246 *
7247 * This adds some complexity to both (5) and (8) but it reduces the total idle
7248 * time.
7249 *
7250 * [XXX more?]
7251 *
7252 *
7253 * CGROUPS
7254 *
7255 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7256 *
7257 * s_k,i
7258 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7259 * S_k
7260 *
7261 * Where
7262 *
7263 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7264 *
97fb7a0a 7265 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7266 *
7267 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7268 * property.
7269 *
7270 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7271 * rewrite all of this once again.]
97a7142f 7272 */
bf0f6f24 7273
ed387b78
HS
7274static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7275
0ec8aa00
PZ
7276enum fbq_type { regular, remote, all };
7277
3b1baa64
MR
7278enum group_type {
7279 group_other = 0,
7280 group_misfit_task,
7281 group_imbalanced,
7282 group_overloaded,
7283};
7284
ddcdf6e7 7285#define LBF_ALL_PINNED 0x01
367456c7 7286#define LBF_NEED_BREAK 0x02
6263322c
PZ
7287#define LBF_DST_PINNED 0x04
7288#define LBF_SOME_PINNED 0x08
e022e0d3 7289#define LBF_NOHZ_STATS 0x10
f643ea22 7290#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7291
7292struct lb_env {
7293 struct sched_domain *sd;
7294
ddcdf6e7 7295 struct rq *src_rq;
85c1e7da 7296 int src_cpu;
ddcdf6e7
PZ
7297
7298 int dst_cpu;
7299 struct rq *dst_rq;
7300
88b8dac0
SV
7301 struct cpumask *dst_grpmask;
7302 int new_dst_cpu;
ddcdf6e7 7303 enum cpu_idle_type idle;
bd939f45 7304 long imbalance;
b9403130
MW
7305 /* The set of CPUs under consideration for load-balancing */
7306 struct cpumask *cpus;
7307
ddcdf6e7 7308 unsigned int flags;
367456c7
PZ
7309
7310 unsigned int loop;
7311 unsigned int loop_break;
7312 unsigned int loop_max;
0ec8aa00
PZ
7313
7314 enum fbq_type fbq_type;
cad68e55 7315 enum group_type src_grp_type;
163122b7 7316 struct list_head tasks;
ddcdf6e7
PZ
7317};
7318
029632fb
PZ
7319/*
7320 * Is this task likely cache-hot:
7321 */
5d5e2b1b 7322static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7323{
7324 s64 delta;
7325
e5673f28
KT
7326 lockdep_assert_held(&env->src_rq->lock);
7327
029632fb
PZ
7328 if (p->sched_class != &fair_sched_class)
7329 return 0;
7330
1da1843f 7331 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7332 return 0;
7333
7334 /*
7335 * Buddy candidates are cache hot:
7336 */
5d5e2b1b 7337 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7338 (&p->se == cfs_rq_of(&p->se)->next ||
7339 &p->se == cfs_rq_of(&p->se)->last))
7340 return 1;
7341
7342 if (sysctl_sched_migration_cost == -1)
7343 return 1;
7344 if (sysctl_sched_migration_cost == 0)
7345 return 0;
7346
5d5e2b1b 7347 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7348
7349 return delta < (s64)sysctl_sched_migration_cost;
7350}
7351
3a7053b3 7352#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7353/*
2a1ed24c
SD
7354 * Returns 1, if task migration degrades locality
7355 * Returns 0, if task migration improves locality i.e migration preferred.
7356 * Returns -1, if task migration is not affected by locality.
c1ceac62 7357 */
2a1ed24c 7358static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7359{
b1ad065e 7360 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7361 unsigned long src_weight, dst_weight;
7362 int src_nid, dst_nid, dist;
3a7053b3 7363
2a595721 7364 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7365 return -1;
7366
c3b9bc5b 7367 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7368 return -1;
7a0f3083
MG
7369
7370 src_nid = cpu_to_node(env->src_cpu);
7371 dst_nid = cpu_to_node(env->dst_cpu);
7372
83e1d2cd 7373 if (src_nid == dst_nid)
2a1ed24c 7374 return -1;
7a0f3083 7375
2a1ed24c
SD
7376 /* Migrating away from the preferred node is always bad. */
7377 if (src_nid == p->numa_preferred_nid) {
7378 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7379 return 1;
7380 else
7381 return -1;
7382 }
b1ad065e 7383
c1ceac62
RR
7384 /* Encourage migration to the preferred node. */
7385 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7386 return 0;
b1ad065e 7387
739294fb 7388 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7389 if (env->idle == CPU_IDLE)
739294fb
RR
7390 return -1;
7391
f35678b6 7392 dist = node_distance(src_nid, dst_nid);
c1ceac62 7393 if (numa_group) {
f35678b6
SD
7394 src_weight = group_weight(p, src_nid, dist);
7395 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7396 } else {
f35678b6
SD
7397 src_weight = task_weight(p, src_nid, dist);
7398 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7399 }
7400
f35678b6 7401 return dst_weight < src_weight;
7a0f3083
MG
7402}
7403
3a7053b3 7404#else
2a1ed24c 7405static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7406 struct lb_env *env)
7407{
2a1ed24c 7408 return -1;
7a0f3083 7409}
3a7053b3
MG
7410#endif
7411
1e3c88bd
PZ
7412/*
7413 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7414 */
7415static
8e45cb54 7416int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7417{
2a1ed24c 7418 int tsk_cache_hot;
e5673f28
KT
7419
7420 lockdep_assert_held(&env->src_rq->lock);
7421
1e3c88bd
PZ
7422 /*
7423 * We do not migrate tasks that are:
d3198084 7424 * 1) throttled_lb_pair, or
1e3c88bd 7425 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
7426 * 3) running (obviously), or
7427 * 4) are cache-hot on their current CPU.
1e3c88bd 7428 */
d3198084
JK
7429 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7430 return 0;
7431
0c98d344 7432 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 7433 int cpu;
88b8dac0 7434
ae92882e 7435 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7436
6263322c
PZ
7437 env->flags |= LBF_SOME_PINNED;
7438
88b8dac0 7439 /*
97fb7a0a 7440 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7441 * our sched_group. We may want to revisit it if we couldn't
7442 * meet load balance goals by pulling other tasks on src_cpu.
7443 *
65a4433a
JH
7444 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7445 * already computed one in current iteration.
88b8dac0 7446 */
65a4433a 7447 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7448 return 0;
7449
97fb7a0a 7450 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7451 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 7452 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 7453 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7454 env->new_dst_cpu = cpu;
7455 break;
7456 }
88b8dac0 7457 }
e02e60c1 7458
1e3c88bd
PZ
7459 return 0;
7460 }
88b8dac0
SV
7461
7462 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7463 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7464
ddcdf6e7 7465 if (task_running(env->src_rq, p)) {
ae92882e 7466 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7467 return 0;
7468 }
7469
7470 /*
7471 * Aggressive migration if:
3a7053b3
MG
7472 * 1) destination numa is preferred
7473 * 2) task is cache cold, or
7474 * 3) too many balance attempts have failed.
1e3c88bd 7475 */
2a1ed24c
SD
7476 tsk_cache_hot = migrate_degrades_locality(p, env);
7477 if (tsk_cache_hot == -1)
7478 tsk_cache_hot = task_hot(p, env);
3a7053b3 7479
2a1ed24c 7480 if (tsk_cache_hot <= 0 ||
7a96c231 7481 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7482 if (tsk_cache_hot == 1) {
ae92882e
JP
7483 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7484 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7485 }
1e3c88bd
PZ
7486 return 1;
7487 }
7488
ae92882e 7489 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7490 return 0;
1e3c88bd
PZ
7491}
7492
897c395f 7493/*
163122b7
KT
7494 * detach_task() -- detach the task for the migration specified in env
7495 */
7496static void detach_task(struct task_struct *p, struct lb_env *env)
7497{
7498 lockdep_assert_held(&env->src_rq->lock);
7499
163122b7 7500 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 7501 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7502 set_task_cpu(p, env->dst_cpu);
7503}
7504
897c395f 7505/*
e5673f28 7506 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7507 * part of active balancing operations within "domain".
897c395f 7508 *
e5673f28 7509 * Returns a task if successful and NULL otherwise.
897c395f 7510 */
e5673f28 7511static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7512{
93824900 7513 struct task_struct *p;
897c395f 7514
e5673f28
KT
7515 lockdep_assert_held(&env->src_rq->lock);
7516
93824900
UR
7517 list_for_each_entry_reverse(p,
7518 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7519 if (!can_migrate_task(p, env))
7520 continue;
897c395f 7521
163122b7 7522 detach_task(p, env);
e5673f28 7523
367456c7 7524 /*
e5673f28 7525 * Right now, this is only the second place where
163122b7 7526 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7527 * so we can safely collect stats here rather than
163122b7 7528 * inside detach_tasks().
367456c7 7529 */
ae92882e 7530 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7531 return p;
897c395f 7532 }
e5673f28 7533 return NULL;
897c395f
PZ
7534}
7535
eb95308e
PZ
7536static const unsigned int sched_nr_migrate_break = 32;
7537
5d6523eb 7538/*
163122b7
KT
7539 * detach_tasks() -- tries to detach up to imbalance weighted load from
7540 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7541 *
163122b7 7542 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7543 */
163122b7 7544static int detach_tasks(struct lb_env *env)
1e3c88bd 7545{
5d6523eb
PZ
7546 struct list_head *tasks = &env->src_rq->cfs_tasks;
7547 struct task_struct *p;
367456c7 7548 unsigned long load;
163122b7
KT
7549 int detached = 0;
7550
7551 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7552
bd939f45 7553 if (env->imbalance <= 0)
5d6523eb 7554 return 0;
1e3c88bd 7555
5d6523eb 7556 while (!list_empty(tasks)) {
985d3a4c
YD
7557 /*
7558 * We don't want to steal all, otherwise we may be treated likewise,
7559 * which could at worst lead to a livelock crash.
7560 */
7561 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7562 break;
7563
93824900 7564 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7565
367456c7
PZ
7566 env->loop++;
7567 /* We've more or less seen every task there is, call it quits */
5d6523eb 7568 if (env->loop > env->loop_max)
367456c7 7569 break;
5d6523eb
PZ
7570
7571 /* take a breather every nr_migrate tasks */
367456c7 7572 if (env->loop > env->loop_break) {
eb95308e 7573 env->loop_break += sched_nr_migrate_break;
8e45cb54 7574 env->flags |= LBF_NEED_BREAK;
ee00e66f 7575 break;
a195f004 7576 }
1e3c88bd 7577
d3198084 7578 if (!can_migrate_task(p, env))
367456c7
PZ
7579 goto next;
7580
7581 load = task_h_load(p);
5d6523eb 7582
eb95308e 7583 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7584 goto next;
7585
bd939f45 7586 if ((load / 2) > env->imbalance)
367456c7 7587 goto next;
1e3c88bd 7588
163122b7
KT
7589 detach_task(p, env);
7590 list_add(&p->se.group_node, &env->tasks);
7591
7592 detached++;
bd939f45 7593 env->imbalance -= load;
1e3c88bd
PZ
7594
7595#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7596 /*
7597 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7598 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7599 * the critical section.
7600 */
5d6523eb 7601 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7602 break;
1e3c88bd
PZ
7603#endif
7604
ee00e66f
PZ
7605 /*
7606 * We only want to steal up to the prescribed amount of
7607 * weighted load.
7608 */
bd939f45 7609 if (env->imbalance <= 0)
ee00e66f 7610 break;
367456c7
PZ
7611
7612 continue;
7613next:
93824900 7614 list_move(&p->se.group_node, tasks);
1e3c88bd 7615 }
5d6523eb 7616
1e3c88bd 7617 /*
163122b7
KT
7618 * Right now, this is one of only two places we collect this stat
7619 * so we can safely collect detach_one_task() stats here rather
7620 * than inside detach_one_task().
1e3c88bd 7621 */
ae92882e 7622 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7623
163122b7
KT
7624 return detached;
7625}
7626
7627/*
7628 * attach_task() -- attach the task detached by detach_task() to its new rq.
7629 */
7630static void attach_task(struct rq *rq, struct task_struct *p)
7631{
7632 lockdep_assert_held(&rq->lock);
7633
7634 BUG_ON(task_rq(p) != rq);
5704ac0a 7635 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7636 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7637 check_preempt_curr(rq, p, 0);
7638}
7639
7640/*
7641 * attach_one_task() -- attaches the task returned from detach_one_task() to
7642 * its new rq.
7643 */
7644static void attach_one_task(struct rq *rq, struct task_struct *p)
7645{
8a8c69c3
PZ
7646 struct rq_flags rf;
7647
7648 rq_lock(rq, &rf);
5704ac0a 7649 update_rq_clock(rq);
163122b7 7650 attach_task(rq, p);
8a8c69c3 7651 rq_unlock(rq, &rf);
163122b7
KT
7652}
7653
7654/*
7655 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7656 * new rq.
7657 */
7658static void attach_tasks(struct lb_env *env)
7659{
7660 struct list_head *tasks = &env->tasks;
7661 struct task_struct *p;
8a8c69c3 7662 struct rq_flags rf;
163122b7 7663
8a8c69c3 7664 rq_lock(env->dst_rq, &rf);
5704ac0a 7665 update_rq_clock(env->dst_rq);
163122b7
KT
7666
7667 while (!list_empty(tasks)) {
7668 p = list_first_entry(tasks, struct task_struct, se.group_node);
7669 list_del_init(&p->se.group_node);
1e3c88bd 7670
163122b7
KT
7671 attach_task(env->dst_rq, p);
7672 }
7673
8a8c69c3 7674 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7675}
7676
1936c53c
VG
7677static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7678{
7679 if (cfs_rq->avg.load_avg)
7680 return true;
7681
7682 if (cfs_rq->avg.util_avg)
7683 return true;
7684
7685 return false;
7686}
7687
91c27493 7688static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7689{
7690 if (READ_ONCE(rq->avg_rt.util_avg))
7691 return true;
7692
3727e0e1
VG
7693 if (READ_ONCE(rq->avg_dl.util_avg))
7694 return true;
7695
11d4afd4 7696#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7697 if (READ_ONCE(rq->avg_irq.util_avg))
7698 return true;
7699#endif
7700
371bf427
VG
7701 return false;
7702}
7703
1936c53c
VG
7704#ifdef CONFIG_FAIR_GROUP_SCHED
7705
039ae8bc
VG
7706static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7707{
7708 if (cfs_rq->load.weight)
7709 return false;
7710
7711 if (cfs_rq->avg.load_sum)
7712 return false;
7713
7714 if (cfs_rq->avg.util_sum)
7715 return false;
7716
7717 if (cfs_rq->avg.runnable_load_sum)
7718 return false;
7719
7720 return true;
7721}
7722
48a16753 7723static void update_blocked_averages(int cpu)
9e3081ca 7724{
9e3081ca 7725 struct rq *rq = cpu_rq(cpu);
039ae8bc 7726 struct cfs_rq *cfs_rq, *pos;
12b04875 7727 const struct sched_class *curr_class;
8a8c69c3 7728 struct rq_flags rf;
f643ea22 7729 bool done = true;
9e3081ca 7730
8a8c69c3 7731 rq_lock_irqsave(rq, &rf);
48a16753 7732 update_rq_clock(rq);
9d89c257 7733
9763b67f
PZ
7734 /*
7735 * Iterates the task_group tree in a bottom up fashion, see
7736 * list_add_leaf_cfs_rq() for details.
7737 */
039ae8bc 7738 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7739 struct sched_entity *se;
7740
23127296 7741 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
9d89c257 7742 update_tg_load_avg(cfs_rq, 0);
4e516076 7743
bc427898
VG
7744 /* Propagate pending load changes to the parent, if any: */
7745 se = cfs_rq->tg->se[cpu];
7746 if (se && !skip_blocked_update(se))
88c0616e 7747 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7748
039ae8bc
VG
7749 /*
7750 * There can be a lot of idle CPU cgroups. Don't let fully
7751 * decayed cfs_rqs linger on the list.
7752 */
7753 if (cfs_rq_is_decayed(cfs_rq))
7754 list_del_leaf_cfs_rq(cfs_rq);
7755
1936c53c
VG
7756 /* Don't need periodic decay once load/util_avg are null */
7757 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7758 done = false;
9d89c257 7759 }
12b04875
VG
7760
7761 curr_class = rq->curr->sched_class;
23127296
VG
7762 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7763 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7764 update_irq_load_avg(rq, 0);
371bf427 7765 /* Don't need periodic decay once load/util_avg are null */
91c27493 7766 if (others_have_blocked(rq))
371bf427 7767 done = false;
e022e0d3
PZ
7768
7769#ifdef CONFIG_NO_HZ_COMMON
7770 rq->last_blocked_load_update_tick = jiffies;
f643ea22
VG
7771 if (done)
7772 rq->has_blocked_load = 0;
e022e0d3 7773#endif
8a8c69c3 7774 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7775}
7776
9763b67f 7777/*
68520796 7778 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7779 * This needs to be done in a top-down fashion because the load of a child
7780 * group is a fraction of its parents load.
7781 */
68520796 7782static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7783{
68520796
VD
7784 struct rq *rq = rq_of(cfs_rq);
7785 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7786 unsigned long now = jiffies;
68520796 7787 unsigned long load;
a35b6466 7788
68520796 7789 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7790 return;
7791
68520796
VD
7792 cfs_rq->h_load_next = NULL;
7793 for_each_sched_entity(se) {
7794 cfs_rq = cfs_rq_of(se);
7795 cfs_rq->h_load_next = se;
7796 if (cfs_rq->last_h_load_update == now)
7797 break;
7798 }
a35b6466 7799
68520796 7800 if (!se) {
7ea241af 7801 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7802 cfs_rq->last_h_load_update = now;
7803 }
7804
7805 while ((se = cfs_rq->h_load_next) != NULL) {
7806 load = cfs_rq->h_load;
7ea241af
YD
7807 load = div64_ul(load * se->avg.load_avg,
7808 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7809 cfs_rq = group_cfs_rq(se);
7810 cfs_rq->h_load = load;
7811 cfs_rq->last_h_load_update = now;
7812 }
9763b67f
PZ
7813}
7814
367456c7 7815static unsigned long task_h_load(struct task_struct *p)
230059de 7816{
367456c7 7817 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7818
68520796 7819 update_cfs_rq_h_load(cfs_rq);
9d89c257 7820 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7821 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7822}
7823#else
48a16753 7824static inline void update_blocked_averages(int cpu)
9e3081ca 7825{
6c1d47c0
VG
7826 struct rq *rq = cpu_rq(cpu);
7827 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7828 const struct sched_class *curr_class;
8a8c69c3 7829 struct rq_flags rf;
6c1d47c0 7830
8a8c69c3 7831 rq_lock_irqsave(rq, &rf);
6c1d47c0 7832 update_rq_clock(rq);
23127296 7833 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
12b04875
VG
7834
7835 curr_class = rq->curr->sched_class;
23127296
VG
7836 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7837 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7838 update_irq_load_avg(rq, 0);
e022e0d3
PZ
7839#ifdef CONFIG_NO_HZ_COMMON
7840 rq->last_blocked_load_update_tick = jiffies;
91c27493 7841 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
f643ea22 7842 rq->has_blocked_load = 0;
e022e0d3 7843#endif
8a8c69c3 7844 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7845}
7846
367456c7 7847static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7848{
9d89c257 7849 return p->se.avg.load_avg;
1e3c88bd 7850}
230059de 7851#endif
1e3c88bd 7852
1e3c88bd 7853/********** Helpers for find_busiest_group ************************/
caeb178c 7854
1e3c88bd
PZ
7855/*
7856 * sg_lb_stats - stats of a sched_group required for load_balancing
7857 */
7858struct sg_lb_stats {
7859 unsigned long avg_load; /*Avg load across the CPUs of the group */
7860 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7861 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7862 unsigned long load_per_task;
63b2ca30 7863 unsigned long group_capacity;
9e91d61d 7864 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7865 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7866 unsigned int idle_cpus;
7867 unsigned int group_weight;
caeb178c 7868 enum group_type group_type;
ea67821b 7869 int group_no_capacity;
3b1baa64 7870 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7871#ifdef CONFIG_NUMA_BALANCING
7872 unsigned int nr_numa_running;
7873 unsigned int nr_preferred_running;
7874#endif
1e3c88bd
PZ
7875};
7876
56cf515b
JK
7877/*
7878 * sd_lb_stats - Structure to store the statistics of a sched_domain
7879 * during load balancing.
7880 */
7881struct sd_lb_stats {
7882 struct sched_group *busiest; /* Busiest group in this sd */
7883 struct sched_group *local; /* Local group in this sd */
90001d67 7884 unsigned long total_running;
56cf515b 7885 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7886 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7887 unsigned long avg_load; /* Average load across all groups in sd */
7888
56cf515b 7889 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7890 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7891};
7892
147c5fc2
PZ
7893static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7894{
7895 /*
7896 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7897 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7898 * We must however clear busiest_stat::avg_load because
7899 * update_sd_pick_busiest() reads this before assignment.
7900 */
7901 *sds = (struct sd_lb_stats){
7902 .busiest = NULL,
7903 .local = NULL,
90001d67 7904 .total_running = 0UL,
147c5fc2 7905 .total_load = 0UL,
63b2ca30 7906 .total_capacity = 0UL,
147c5fc2
PZ
7907 .busiest_stat = {
7908 .avg_load = 0UL,
caeb178c
RR
7909 .sum_nr_running = 0,
7910 .group_type = group_other,
147c5fc2
PZ
7911 },
7912 };
7913}
7914
1e3c88bd
PZ
7915/**
7916 * get_sd_load_idx - Obtain the load index for a given sched domain.
7917 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7918 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7919 *
7920 * Return: The load index.
1e3c88bd
PZ
7921 */
7922static inline int get_sd_load_idx(struct sched_domain *sd,
7923 enum cpu_idle_type idle)
7924{
7925 int load_idx;
7926
7927 switch (idle) {
7928 case CPU_NOT_IDLE:
7929 load_idx = sd->busy_idx;
7930 break;
7931
7932 case CPU_NEWLY_IDLE:
7933 load_idx = sd->newidle_idx;
7934 break;
7935 default:
7936 load_idx = sd->idle_idx;
7937 break;
7938 }
7939
7940 return load_idx;
7941}
7942
287cdaac 7943static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7944{
7945 struct rq *rq = cpu_rq(cpu);
287cdaac 7946 unsigned long max = arch_scale_cpu_capacity(sd, cpu);
523e979d 7947 unsigned long used, free;
523e979d 7948 unsigned long irq;
b654f7de 7949
2e62c474 7950 irq = cpu_util_irq(rq);
cadefd3d 7951
523e979d
VG
7952 if (unlikely(irq >= max))
7953 return 1;
aa483808 7954
523e979d
VG
7955 used = READ_ONCE(rq->avg_rt.util_avg);
7956 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7957
523e979d
VG
7958 if (unlikely(used >= max))
7959 return 1;
1e3c88bd 7960
523e979d 7961 free = max - used;
2e62c474
VG
7962
7963 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7964}
7965
ced549fa 7966static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7967{
287cdaac 7968 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7969 struct sched_group *sdg = sd->groups;
7970
523e979d 7971 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd 7972
ced549fa
NP
7973 if (!capacity)
7974 capacity = 1;
1e3c88bd 7975
ced549fa
NP
7976 cpu_rq(cpu)->cpu_capacity = capacity;
7977 sdg->sgc->capacity = capacity;
bf475ce0 7978 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7979 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7980}
7981
63b2ca30 7982void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7983{
7984 struct sched_domain *child = sd->child;
7985 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7986 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7987 unsigned long interval;
7988
7989 interval = msecs_to_jiffies(sd->balance_interval);
7990 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7991 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7992
7993 if (!child) {
ced549fa 7994 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7995 return;
7996 }
7997
dc7ff76e 7998 capacity = 0;
bf475ce0 7999 min_capacity = ULONG_MAX;
e3d6d0cb 8000 max_capacity = 0;
1e3c88bd 8001
74a5ce20
PZ
8002 if (child->flags & SD_OVERLAP) {
8003 /*
8004 * SD_OVERLAP domains cannot assume that child groups
8005 * span the current group.
8006 */
8007
ae4df9d6 8008 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 8009 struct sched_group_capacity *sgc;
9abf24d4 8010 struct rq *rq = cpu_rq(cpu);
863bffc8 8011
9abf24d4 8012 /*
63b2ca30 8013 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
8014 * gets here before we've attached the domains to the
8015 * runqueues.
8016 *
ced549fa
NP
8017 * Use capacity_of(), which is set irrespective of domains
8018 * in update_cpu_capacity().
9abf24d4 8019 *
dc7ff76e 8020 * This avoids capacity from being 0 and
9abf24d4 8021 * causing divide-by-zero issues on boot.
9abf24d4
SD
8022 */
8023 if (unlikely(!rq->sd)) {
ced549fa 8024 capacity += capacity_of(cpu);
bf475ce0
MR
8025 } else {
8026 sgc = rq->sd->groups->sgc;
8027 capacity += sgc->capacity;
9abf24d4 8028 }
863bffc8 8029
bf475ce0 8030 min_capacity = min(capacity, min_capacity);
e3d6d0cb 8031 max_capacity = max(capacity, max_capacity);
863bffc8 8032 }
74a5ce20
PZ
8033 } else {
8034 /*
8035 * !SD_OVERLAP domains can assume that child groups
8036 * span the current group.
97a7142f 8037 */
74a5ce20
PZ
8038
8039 group = child->groups;
8040 do {
bf475ce0
MR
8041 struct sched_group_capacity *sgc = group->sgc;
8042
8043 capacity += sgc->capacity;
8044 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8045 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8046 group = group->next;
8047 } while (group != child->groups);
8048 }
1e3c88bd 8049
63b2ca30 8050 sdg->sgc->capacity = capacity;
bf475ce0 8051 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8052 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8053}
8054
9d5efe05 8055/*
ea67821b
VG
8056 * Check whether the capacity of the rq has been noticeably reduced by side
8057 * activity. The imbalance_pct is used for the threshold.
8058 * Return true is the capacity is reduced
9d5efe05
SV
8059 */
8060static inline int
ea67821b 8061check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8062{
ea67821b
VG
8063 return ((rq->cpu_capacity * sd->imbalance_pct) <
8064 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8065}
8066
30ce5dab
PZ
8067/*
8068 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 8069 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab 8070 *
97fb7a0a
IM
8071 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8072 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8073 * Something like:
8074 *
2b4d5b25
IM
8075 * { 0 1 2 3 } { 4 5 6 7 }
8076 * * * * *
30ce5dab
PZ
8077 *
8078 * If we were to balance group-wise we'd place two tasks in the first group and
8079 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8080 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8081 *
8082 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8083 * by noticing the lower domain failed to reach balance and had difficulty
8084 * moving tasks due to affinity constraints.
30ce5dab
PZ
8085 *
8086 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8087 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8088 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8089 * to create an effective group imbalance.
8090 *
8091 * This is a somewhat tricky proposition since the next run might not find the
8092 * group imbalance and decide the groups need to be balanced again. A most
8093 * subtle and fragile situation.
8094 */
8095
6263322c 8096static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8097{
63b2ca30 8098 return group->sgc->imbalance;
30ce5dab
PZ
8099}
8100
b37d9316 8101/*
ea67821b
VG
8102 * group_has_capacity returns true if the group has spare capacity that could
8103 * be used by some tasks.
8104 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8105 * smaller than the number of CPUs or if the utilization is lower than the
8106 * available capacity for CFS tasks.
ea67821b
VG
8107 * For the latter, we use a threshold to stabilize the state, to take into
8108 * account the variance of the tasks' load and to return true if the available
8109 * capacity in meaningful for the load balancer.
8110 * As an example, an available capacity of 1% can appear but it doesn't make
8111 * any benefit for the load balance.
b37d9316 8112 */
ea67821b
VG
8113static inline bool
8114group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 8115{
ea67821b
VG
8116 if (sgs->sum_nr_running < sgs->group_weight)
8117 return true;
c61037e9 8118
ea67821b 8119 if ((sgs->group_capacity * 100) >
9e91d61d 8120 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 8121 return true;
b37d9316 8122
ea67821b
VG
8123 return false;
8124}
8125
8126/*
8127 * group_is_overloaded returns true if the group has more tasks than it can
8128 * handle.
8129 * group_is_overloaded is not equals to !group_has_capacity because a group
8130 * with the exact right number of tasks, has no more spare capacity but is not
8131 * overloaded so both group_has_capacity and group_is_overloaded return
8132 * false.
8133 */
8134static inline bool
8135group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8136{
8137 if (sgs->sum_nr_running <= sgs->group_weight)
8138 return false;
b37d9316 8139
ea67821b 8140 if ((sgs->group_capacity * 100) <
9e91d61d 8141 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 8142 return true;
b37d9316 8143
ea67821b 8144 return false;
b37d9316
PZ
8145}
8146
9e0994c0 8147/*
e3d6d0cb 8148 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8149 * per-CPU capacity than sched_group ref.
8150 */
8151static inline bool
e3d6d0cb 8152group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0
MR
8153{
8154 return sg->sgc->min_capacity * capacity_margin <
8155 ref->sgc->min_capacity * 1024;
8156}
8157
e3d6d0cb
MR
8158/*
8159 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8160 * per-CPU capacity_orig than sched_group ref.
8161 */
8162static inline bool
8163group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8164{
8165 return sg->sgc->max_capacity * capacity_margin <
8166 ref->sgc->max_capacity * 1024;
8167}
8168
79a89f92
LY
8169static inline enum
8170group_type group_classify(struct sched_group *group,
8171 struct sg_lb_stats *sgs)
caeb178c 8172{
ea67821b 8173 if (sgs->group_no_capacity)
caeb178c
RR
8174 return group_overloaded;
8175
8176 if (sg_imbalanced(group))
8177 return group_imbalanced;
8178
3b1baa64
MR
8179 if (sgs->group_misfit_task_load)
8180 return group_misfit_task;
8181
caeb178c
RR
8182 return group_other;
8183}
8184
63928384 8185static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8186{
8187#ifdef CONFIG_NO_HZ_COMMON
8188 unsigned int cpu = rq->cpu;
8189
f643ea22
VG
8190 if (!rq->has_blocked_load)
8191 return false;
8192
e022e0d3 8193 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8194 return false;
e022e0d3 8195
63928384 8196 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8197 return true;
e022e0d3
PZ
8198
8199 update_blocked_averages(cpu);
f643ea22
VG
8200
8201 return rq->has_blocked_load;
8202#else
8203 return false;
e022e0d3
PZ
8204#endif
8205}
8206
1e3c88bd
PZ
8207/**
8208 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8209 * @env: The load balancing environment.
1e3c88bd 8210 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8211 * @sgs: variable to hold the statistics for this group.
630246a0 8212 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8213 */
bd939f45 8214static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8215 struct sched_group *group,
8216 struct sg_lb_stats *sgs,
8217 int *sg_status)
1e3c88bd 8218{
630246a0
QP
8219 int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8220 int load_idx = get_sd_load_idx(env->sd, env->idle);
30ce5dab 8221 unsigned long load;
a426f99c 8222 int i, nr_running;
1e3c88bd 8223
b72ff13c
PZ
8224 memset(sgs, 0, sizeof(*sgs));
8225
ae4df9d6 8226 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8227 struct rq *rq = cpu_rq(i);
8228
63928384 8229 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8230 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8231
97fb7a0a 8232 /* Bias balancing toward CPUs of our domain: */
6263322c 8233 if (local_group)
04f733b4 8234 load = target_load(i, load_idx);
6263322c 8235 else
1e3c88bd 8236 load = source_load(i, load_idx);
1e3c88bd
PZ
8237
8238 sgs->group_load += load;
9e91d61d 8239 sgs->group_util += cpu_util(i);
65fdac08 8240 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 8241
a426f99c
WL
8242 nr_running = rq->nr_running;
8243 if (nr_running > 1)
630246a0 8244 *sg_status |= SG_OVERLOAD;
4486edd1 8245
2802bf3c
MR
8246 if (cpu_overutilized(i))
8247 *sg_status |= SG_OVERUTILIZED;
4486edd1 8248
0ec8aa00
PZ
8249#ifdef CONFIG_NUMA_BALANCING
8250 sgs->nr_numa_running += rq->nr_numa_running;
8251 sgs->nr_preferred_running += rq->nr_preferred_running;
8252#endif
c7132dd6 8253 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
8254 /*
8255 * No need to call idle_cpu() if nr_running is not 0
8256 */
8257 if (!nr_running && idle_cpu(i))
aae6d3dd 8258 sgs->idle_cpus++;
3b1baa64
MR
8259
8260 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8261 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8262 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8263 *sg_status |= SG_OVERLOAD;
757ffdd7 8264 }
1e3c88bd
PZ
8265 }
8266
63b2ca30
NP
8267 /* Adjust by relative CPU capacity of the group */
8268 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 8269 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 8270
dd5feea1 8271 if (sgs->sum_nr_running)
38d0f770 8272 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 8273
aae6d3dd 8274 sgs->group_weight = group->group_weight;
b37d9316 8275
ea67821b 8276 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 8277 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
8278}
8279
532cb4c4
MN
8280/**
8281 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8282 * @env: The load balancing environment.
532cb4c4
MN
8283 * @sds: sched_domain statistics
8284 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8285 * @sgs: sched_group statistics
532cb4c4
MN
8286 *
8287 * Determine if @sg is a busier group than the previously selected
8288 * busiest group.
e69f6186
YB
8289 *
8290 * Return: %true if @sg is a busier group than the previously selected
8291 * busiest group. %false otherwise.
532cb4c4 8292 */
bd939f45 8293static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8294 struct sd_lb_stats *sds,
8295 struct sched_group *sg,
bd939f45 8296 struct sg_lb_stats *sgs)
532cb4c4 8297{
caeb178c 8298 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8299
cad68e55
MR
8300 /*
8301 * Don't try to pull misfit tasks we can't help.
8302 * We can use max_capacity here as reduction in capacity on some
8303 * CPUs in the group should either be possible to resolve
8304 * internally or be covered by avg_load imbalance (eventually).
8305 */
8306 if (sgs->group_type == group_misfit_task &&
8307 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8308 !group_has_capacity(env, &sds->local_stat)))
8309 return false;
8310
caeb178c 8311 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8312 return true;
8313
caeb178c
RR
8314 if (sgs->group_type < busiest->group_type)
8315 return false;
8316
8317 if (sgs->avg_load <= busiest->avg_load)
8318 return false;
8319
9e0994c0
MR
8320 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8321 goto asym_packing;
8322
8323 /*
8324 * Candidate sg has no more than one task per CPU and
8325 * has higher per-CPU capacity. Migrating tasks to less
8326 * capable CPUs may harm throughput. Maximize throughput,
8327 * power/energy consequences are not considered.
8328 */
8329 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 8330 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
8331 return false;
8332
cad68e55
MR
8333 /*
8334 * If we have more than one misfit sg go with the biggest misfit.
8335 */
8336 if (sgs->group_type == group_misfit_task &&
8337 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
8338 return false;
8339
8340asym_packing:
caeb178c
RR
8341 /* This is the busiest node in its class. */
8342 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8343 return true;
8344
97fb7a0a 8345 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
8346 if (env->idle == CPU_NOT_IDLE)
8347 return true;
532cb4c4 8348 /*
afe06efd
TC
8349 * ASYM_PACKING needs to move all the work to the highest
8350 * prority CPUs in the group, therefore mark all groups
8351 * of lower priority than ourself as busy.
532cb4c4 8352 */
afe06efd
TC
8353 if (sgs->sum_nr_running &&
8354 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
8355 if (!sds->busiest)
8356 return true;
8357
97fb7a0a 8358 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8359 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8360 sg->asym_prefer_cpu))
532cb4c4
MN
8361 return true;
8362 }
8363
8364 return false;
8365}
8366
0ec8aa00
PZ
8367#ifdef CONFIG_NUMA_BALANCING
8368static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8369{
8370 if (sgs->sum_nr_running > sgs->nr_numa_running)
8371 return regular;
8372 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8373 return remote;
8374 return all;
8375}
8376
8377static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8378{
8379 if (rq->nr_running > rq->nr_numa_running)
8380 return regular;
8381 if (rq->nr_running > rq->nr_preferred_running)
8382 return remote;
8383 return all;
8384}
8385#else
8386static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8387{
8388 return all;
8389}
8390
8391static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8392{
8393 return regular;
8394}
8395#endif /* CONFIG_NUMA_BALANCING */
8396
1e3c88bd 8397/**
461819ac 8398 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8399 * @env: The load balancing environment.
1e3c88bd
PZ
8400 * @sds: variable to hold the statistics for this sched_domain.
8401 */
0ec8aa00 8402static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8403{
bd939f45
PZ
8404 struct sched_domain *child = env->sd->child;
8405 struct sched_group *sg = env->sd->groups;
05b40e05 8406 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8407 struct sg_lb_stats tmp_sgs;
dbbad719 8408 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
630246a0 8409 int sg_status = 0;
1e3c88bd 8410
e022e0d3 8411#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8412 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8413 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8414#endif
8415
1e3c88bd 8416 do {
56cf515b 8417 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8418 int local_group;
8419
ae4df9d6 8420 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8421 if (local_group) {
8422 sds->local = sg;
05b40e05 8423 sgs = local;
b72ff13c
PZ
8424
8425 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8426 time_after_eq(jiffies, sg->sgc->next_update))
8427 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8428 }
1e3c88bd 8429
630246a0 8430 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8431
b72ff13c
PZ
8432 if (local_group)
8433 goto next_group;
8434
1e3c88bd
PZ
8435 /*
8436 * In case the child domain prefers tasks go to siblings
ea67821b 8437 * first, lower the sg capacity so that we'll try
75dd321d
NR
8438 * and move all the excess tasks away. We lower the capacity
8439 * of a group only if the local group has the capacity to fit
ea67821b
VG
8440 * these excess tasks. The extra check prevents the case where
8441 * you always pull from the heaviest group when it is already
8442 * under-utilized (possible with a large weight task outweighs
8443 * the tasks on the system).
1e3c88bd 8444 */
b72ff13c 8445 if (prefer_sibling && sds->local &&
05b40e05
SD
8446 group_has_capacity(env, local) &&
8447 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8448 sgs->group_no_capacity = 1;
79a89f92 8449 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8450 }
1e3c88bd 8451
b72ff13c 8452 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8453 sds->busiest = sg;
56cf515b 8454 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8455 }
8456
b72ff13c
PZ
8457next_group:
8458 /* Now, start updating sd_lb_stats */
90001d67 8459 sds->total_running += sgs->sum_nr_running;
b72ff13c 8460 sds->total_load += sgs->group_load;
63b2ca30 8461 sds->total_capacity += sgs->group_capacity;
b72ff13c 8462
532cb4c4 8463 sg = sg->next;
bd939f45 8464 } while (sg != env->sd->groups);
0ec8aa00 8465
f643ea22
VG
8466#ifdef CONFIG_NO_HZ_COMMON
8467 if ((env->flags & LBF_NOHZ_AGAIN) &&
8468 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8469
8470 WRITE_ONCE(nohz.next_blocked,
8471 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8472 }
8473#endif
8474
0ec8aa00
PZ
8475 if (env->sd->flags & SD_NUMA)
8476 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8477
8478 if (!env->sd->parent) {
2802bf3c
MR
8479 struct root_domain *rd = env->dst_rq->rd;
8480
4486edd1 8481 /* update overload indicator if we are at root domain */
2802bf3c
MR
8482 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8483
8484 /* Update over-utilization (tipping point, U >= 0) indicator */
8485 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8486 } else if (sg_status & SG_OVERUTILIZED) {
8487 WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
4486edd1 8488 }
532cb4c4
MN
8489}
8490
532cb4c4
MN
8491/**
8492 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8493 * sched domain.
532cb4c4
MN
8494 *
8495 * This is primarily intended to used at the sibling level. Some
8496 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8497 * case of POWER7, it can move to lower SMT modes only when higher
8498 * threads are idle. When in lower SMT modes, the threads will
8499 * perform better since they share less core resources. Hence when we
8500 * have idle threads, we want them to be the higher ones.
8501 *
8502 * This packing function is run on idle threads. It checks to see if
8503 * the busiest CPU in this domain (core in the P7 case) has a higher
8504 * CPU number than the packing function is being run on. Here we are
8505 * assuming lower CPU number will be equivalent to lower a SMT thread
8506 * number.
8507 *
e69f6186 8508 * Return: 1 when packing is required and a task should be moved to
46123355 8509 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8510 *
cd96891d 8511 * @env: The load balancing environment.
532cb4c4 8512 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8513 */
bd939f45 8514static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8515{
8516 int busiest_cpu;
8517
bd939f45 8518 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8519 return 0;
8520
1f621e02
SD
8521 if (env->idle == CPU_NOT_IDLE)
8522 return 0;
8523
532cb4c4
MN
8524 if (!sds->busiest)
8525 return 0;
8526
afe06efd
TC
8527 busiest_cpu = sds->busiest->asym_prefer_cpu;
8528 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8529 return 0;
8530
4ad4e481 8531 env->imbalance = sds->busiest_stat.group_load;
bd939f45 8532
532cb4c4 8533 return 1;
1e3c88bd
PZ
8534}
8535
8536/**
8537 * fix_small_imbalance - Calculate the minor imbalance that exists
8538 * amongst the groups of a sched_domain, during
8539 * load balancing.
cd96891d 8540 * @env: The load balancing environment.
1e3c88bd 8541 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8542 */
bd939f45
PZ
8543static inline
8544void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8545{
63b2ca30 8546 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8547 unsigned int imbn = 2;
dd5feea1 8548 unsigned long scaled_busy_load_per_task;
56cf515b 8549 struct sg_lb_stats *local, *busiest;
1e3c88bd 8550
56cf515b
JK
8551 local = &sds->local_stat;
8552 busiest = &sds->busiest_stat;
1e3c88bd 8553
56cf515b
JK
8554 if (!local->sum_nr_running)
8555 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8556 else if (busiest->load_per_task > local->load_per_task)
8557 imbn = 1;
dd5feea1 8558
56cf515b 8559 scaled_busy_load_per_task =
ca8ce3d0 8560 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8561 busiest->group_capacity;
56cf515b 8562
3029ede3
VD
8563 if (busiest->avg_load + scaled_busy_load_per_task >=
8564 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8565 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8566 return;
8567 }
8568
8569 /*
8570 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8571 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8572 * moving them.
8573 */
8574
63b2ca30 8575 capa_now += busiest->group_capacity *
56cf515b 8576 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8577 capa_now += local->group_capacity *
56cf515b 8578 min(local->load_per_task, local->avg_load);
ca8ce3d0 8579 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8580
8581 /* Amount of load we'd subtract */
a2cd4260 8582 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8583 capa_move += busiest->group_capacity *
56cf515b 8584 min(busiest->load_per_task,
a2cd4260 8585 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8586 }
1e3c88bd
PZ
8587
8588 /* Amount of load we'd add */
63b2ca30 8589 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8590 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8591 tmp = (busiest->avg_load * busiest->group_capacity) /
8592 local->group_capacity;
56cf515b 8593 } else {
ca8ce3d0 8594 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8595 local->group_capacity;
56cf515b 8596 }
63b2ca30 8597 capa_move += local->group_capacity *
3ae11c90 8598 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8599 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8600
8601 /* Move if we gain throughput */
63b2ca30 8602 if (capa_move > capa_now)
56cf515b 8603 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8604}
8605
8606/**
8607 * calculate_imbalance - Calculate the amount of imbalance present within the
8608 * groups of a given sched_domain during load balance.
bd939f45 8609 * @env: load balance environment
1e3c88bd 8610 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8611 */
bd939f45 8612static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8613{
dd5feea1 8614 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8615 struct sg_lb_stats *local, *busiest;
8616
8617 local = &sds->local_stat;
56cf515b 8618 busiest = &sds->busiest_stat;
dd5feea1 8619
caeb178c 8620 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8621 /*
8622 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8623 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8624 */
56cf515b
JK
8625 busiest->load_per_task =
8626 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8627 }
8628
1e3c88bd 8629 /*
885e542c
DE
8630 * Avg load of busiest sg can be less and avg load of local sg can
8631 * be greater than avg load across all sgs of sd because avg load
8632 * factors in sg capacity and sgs with smaller group_type are
8633 * skipped when updating the busiest sg:
1e3c88bd 8634 */
cad68e55
MR
8635 if (busiest->group_type != group_misfit_task &&
8636 (busiest->avg_load <= sds->avg_load ||
8637 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8638 env->imbalance = 0;
8639 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8640 }
8641
9a5d9ba6 8642 /*
97fb7a0a 8643 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8644 */
8645 if (busiest->group_type == group_overloaded &&
8646 local->group_type == group_overloaded) {
1be0eb2a 8647 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8648 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8649 load_above_capacity -= busiest->group_capacity;
26656215 8650 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8651 load_above_capacity /= busiest->group_capacity;
8652 } else
ea67821b 8653 load_above_capacity = ~0UL;
dd5feea1
SS
8654 }
8655
8656 /*
97fb7a0a 8657 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8658 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8659 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8660 * we also don't want to reduce the group load below the group
8661 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8662 */
30ce5dab 8663 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8664
8665 /* How much load to actually move to equalise the imbalance */
56cf515b 8666 env->imbalance = min(
63b2ca30
NP
8667 max_pull * busiest->group_capacity,
8668 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8669 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8670
cad68e55
MR
8671 /* Boost imbalance to allow misfit task to be balanced. */
8672 if (busiest->group_type == group_misfit_task) {
8673 env->imbalance = max_t(long, env->imbalance,
8674 busiest->group_misfit_task_load);
8675 }
8676
1e3c88bd
PZ
8677 /*
8678 * if *imbalance is less than the average load per runnable task
25985edc 8679 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8680 * a think about bumping its value to force at least one task to be
8681 * moved
8682 */
56cf515b 8683 if (env->imbalance < busiest->load_per_task)
bd939f45 8684 return fix_small_imbalance(env, sds);
1e3c88bd 8685}
fab47622 8686
1e3c88bd
PZ
8687/******* find_busiest_group() helpers end here *********************/
8688
8689/**
8690 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8691 * if there is an imbalance.
1e3c88bd
PZ
8692 *
8693 * Also calculates the amount of weighted load which should be moved
8694 * to restore balance.
8695 *
cd96891d 8696 * @env: The load balancing environment.
1e3c88bd 8697 *
e69f6186 8698 * Return: - The busiest group if imbalance exists.
1e3c88bd 8699 */
56cf515b 8700static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8701{
56cf515b 8702 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8703 struct sd_lb_stats sds;
8704
147c5fc2 8705 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8706
8707 /*
8708 * Compute the various statistics relavent for load balancing at
8709 * this level.
8710 */
23f0d209 8711 update_sd_lb_stats(env, &sds);
2802bf3c 8712
f8a696f2 8713 if (sched_energy_enabled()) {
2802bf3c
MR
8714 struct root_domain *rd = env->dst_rq->rd;
8715
8716 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8717 goto out_balanced;
8718 }
8719
56cf515b
JK
8720 local = &sds.local_stat;
8721 busiest = &sds.busiest_stat;
1e3c88bd 8722
ea67821b 8723 /* ASYM feature bypasses nice load balance check */
1f621e02 8724 if (check_asym_packing(env, &sds))
532cb4c4
MN
8725 return sds.busiest;
8726
cc57aa8f 8727 /* There is no busy sibling group to pull tasks from */
56cf515b 8728 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8729 goto out_balanced;
8730
90001d67 8731 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8732 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8733 / sds.total_capacity;
b0432d8f 8734
866ab43e
PZ
8735 /*
8736 * If the busiest group is imbalanced the below checks don't
30ce5dab 8737 * work because they assume all things are equal, which typically
866ab43e
PZ
8738 * isn't true due to cpus_allowed constraints and the like.
8739 */
caeb178c 8740 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8741 goto force_balance;
8742
583ffd99
BJ
8743 /*
8744 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8745 * capacities from resulting in underutilization due to avg_load.
8746 */
8747 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8748 busiest->group_no_capacity)
fab47622
NR
8749 goto force_balance;
8750
cad68e55
MR
8751 /* Misfit tasks should be dealt with regardless of the avg load */
8752 if (busiest->group_type == group_misfit_task)
8753 goto force_balance;
8754
cc57aa8f 8755 /*
9c58c79a 8756 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8757 * don't try and pull any tasks.
8758 */
56cf515b 8759 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8760 goto out_balanced;
8761
cc57aa8f
PZ
8762 /*
8763 * Don't pull any tasks if this group is already above the domain
8764 * average load.
8765 */
56cf515b 8766 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8767 goto out_balanced;
8768
bd939f45 8769 if (env->idle == CPU_IDLE) {
aae6d3dd 8770 /*
97fb7a0a 8771 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8772 * and there is no imbalance between this and busiest group
97fb7a0a 8773 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8774 * significant if the diff is greater than 1 otherwise we
8775 * might end up to just move the imbalance on another group
aae6d3dd 8776 */
43f4d666
VG
8777 if ((busiest->group_type != group_overloaded) &&
8778 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8779 goto out_balanced;
c186fafe
PZ
8780 } else {
8781 /*
8782 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8783 * imbalance_pct to be conservative.
8784 */
56cf515b
JK
8785 if (100 * busiest->avg_load <=
8786 env->sd->imbalance_pct * local->avg_load)
c186fafe 8787 goto out_balanced;
aae6d3dd 8788 }
1e3c88bd 8789
fab47622 8790force_balance:
1e3c88bd 8791 /* Looks like there is an imbalance. Compute it */
cad68e55 8792 env->src_grp_type = busiest->group_type;
bd939f45 8793 calculate_imbalance(env, &sds);
bb3485c8 8794 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8795
8796out_balanced:
bd939f45 8797 env->imbalance = 0;
1e3c88bd
PZ
8798 return NULL;
8799}
8800
8801/*
97fb7a0a 8802 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8803 */
bd939f45 8804static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8805 struct sched_group *group)
1e3c88bd
PZ
8806{
8807 struct rq *busiest = NULL, *rq;
ced549fa 8808 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8809 int i;
8810
ae4df9d6 8811 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8812 unsigned long capacity, wl;
0ec8aa00
PZ
8813 enum fbq_type rt;
8814
8815 rq = cpu_rq(i);
8816 rt = fbq_classify_rq(rq);
1e3c88bd 8817
0ec8aa00
PZ
8818 /*
8819 * We classify groups/runqueues into three groups:
8820 * - regular: there are !numa tasks
8821 * - remote: there are numa tasks that run on the 'wrong' node
8822 * - all: there is no distinction
8823 *
8824 * In order to avoid migrating ideally placed numa tasks,
8825 * ignore those when there's better options.
8826 *
8827 * If we ignore the actual busiest queue to migrate another
8828 * task, the next balance pass can still reduce the busiest
8829 * queue by moving tasks around inside the node.
8830 *
8831 * If we cannot move enough load due to this classification
8832 * the next pass will adjust the group classification and
8833 * allow migration of more tasks.
8834 *
8835 * Both cases only affect the total convergence complexity.
8836 */
8837 if (rt > env->fbq_type)
8838 continue;
8839
cad68e55
MR
8840 /*
8841 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8842 * seek the "biggest" misfit task.
8843 */
8844 if (env->src_grp_type == group_misfit_task) {
8845 if (rq->misfit_task_load > busiest_load) {
8846 busiest_load = rq->misfit_task_load;
8847 busiest = rq;
8848 }
8849
8850 continue;
8851 }
8852
ced549fa 8853 capacity = capacity_of(i);
9d5efe05 8854
4ad3831a
CR
8855 /*
8856 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8857 * eventually lead to active_balancing high->low capacity.
8858 * Higher per-CPU capacity is considered better than balancing
8859 * average load.
8860 */
8861 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8862 capacity_of(env->dst_cpu) < capacity &&
8863 rq->nr_running == 1)
8864 continue;
8865
c7132dd6 8866 wl = weighted_cpuload(rq);
1e3c88bd 8867
6e40f5bb
TG
8868 /*
8869 * When comparing with imbalance, use weighted_cpuload()
97fb7a0a 8870 * which is not scaled with the CPU capacity.
6e40f5bb 8871 */
ea67821b
VG
8872
8873 if (rq->nr_running == 1 && wl > env->imbalance &&
8874 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8875 continue;
8876
6e40f5bb 8877 /*
97fb7a0a
IM
8878 * For the load comparisons with the other CPU's, consider
8879 * the weighted_cpuload() scaled with the CPU capacity, so
8880 * that the load can be moved away from the CPU that is
ced549fa 8881 * potentially running at a lower capacity.
95a79b80 8882 *
ced549fa 8883 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8884 * multiplication to rid ourselves of the division works out
ced549fa
NP
8885 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8886 * our previous maximum.
6e40f5bb 8887 */
ced549fa 8888 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8889 busiest_load = wl;
ced549fa 8890 busiest_capacity = capacity;
1e3c88bd
PZ
8891 busiest = rq;
8892 }
8893 }
8894
8895 return busiest;
8896}
8897
8898/*
8899 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8900 * so long as it is large enough.
8901 */
8902#define MAX_PINNED_INTERVAL 512
8903
46a745d9
VG
8904static inline bool
8905asym_active_balance(struct lb_env *env)
1af3ed3d 8906{
46a745d9
VG
8907 /*
8908 * ASYM_PACKING needs to force migrate tasks from busy but
8909 * lower priority CPUs in order to pack all tasks in the
8910 * highest priority CPUs.
8911 */
8912 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8913 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8914}
bd939f45 8915
46a745d9
VG
8916static inline bool
8917voluntary_active_balance(struct lb_env *env)
8918{
8919 struct sched_domain *sd = env->sd;
532cb4c4 8920
46a745d9
VG
8921 if (asym_active_balance(env))
8922 return 1;
1af3ed3d 8923
1aaf90a4
VG
8924 /*
8925 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8926 * It's worth migrating the task if the src_cpu's capacity is reduced
8927 * because of other sched_class or IRQs if more capacity stays
8928 * available on dst_cpu.
8929 */
8930 if ((env->idle != CPU_NOT_IDLE) &&
8931 (env->src_rq->cfs.h_nr_running == 1)) {
8932 if ((check_cpu_capacity(env->src_rq, sd)) &&
8933 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8934 return 1;
8935 }
8936
cad68e55
MR
8937 if (env->src_grp_type == group_misfit_task)
8938 return 1;
8939
46a745d9
VG
8940 return 0;
8941}
8942
8943static int need_active_balance(struct lb_env *env)
8944{
8945 struct sched_domain *sd = env->sd;
8946
8947 if (voluntary_active_balance(env))
8948 return 1;
8949
1af3ed3d
PZ
8950 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8951}
8952
969c7921
TH
8953static int active_load_balance_cpu_stop(void *data);
8954
23f0d209
JK
8955static int should_we_balance(struct lb_env *env)
8956{
8957 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8958 int cpu, balance_cpu = -1;
8959
024c9d2f
PZ
8960 /*
8961 * Ensure the balancing environment is consistent; can happen
8962 * when the softirq triggers 'during' hotplug.
8963 */
8964 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8965 return 0;
8966
23f0d209 8967 /*
97fb7a0a 8968 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8969 * to do the newly idle load balance.
8970 */
8971 if (env->idle == CPU_NEWLY_IDLE)
8972 return 1;
8973
97fb7a0a 8974 /* Try to find first idle CPU */
e5c14b1f 8975 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8976 if (!idle_cpu(cpu))
23f0d209
JK
8977 continue;
8978
8979 balance_cpu = cpu;
8980 break;
8981 }
8982
8983 if (balance_cpu == -1)
8984 balance_cpu = group_balance_cpu(sg);
8985
8986 /*
97fb7a0a 8987 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8988 * is eligible for doing load balancing at this and above domains.
8989 */
b0cff9d8 8990 return balance_cpu == env->dst_cpu;
23f0d209
JK
8991}
8992
1e3c88bd
PZ
8993/*
8994 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8995 * tasks if there is an imbalance.
8996 */
8997static int load_balance(int this_cpu, struct rq *this_rq,
8998 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8999 int *continue_balancing)
1e3c88bd 9000{
88b8dac0 9001 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9002 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9003 struct sched_group *group;
1e3c88bd 9004 struct rq *busiest;
8a8c69c3 9005 struct rq_flags rf;
4ba29684 9006 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9007
8e45cb54
PZ
9008 struct lb_env env = {
9009 .sd = sd,
ddcdf6e7
PZ
9010 .dst_cpu = this_cpu,
9011 .dst_rq = this_rq,
ae4df9d6 9012 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9013 .idle = idle,
eb95308e 9014 .loop_break = sched_nr_migrate_break,
b9403130 9015 .cpus = cpus,
0ec8aa00 9016 .fbq_type = all,
163122b7 9017 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9018 };
9019
65a4433a 9020 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9021
ae92882e 9022 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9023
9024redo:
23f0d209
JK
9025 if (!should_we_balance(&env)) {
9026 *continue_balancing = 0;
1e3c88bd 9027 goto out_balanced;
23f0d209 9028 }
1e3c88bd 9029
23f0d209 9030 group = find_busiest_group(&env);
1e3c88bd 9031 if (!group) {
ae92882e 9032 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9033 goto out_balanced;
9034 }
9035
b9403130 9036 busiest = find_busiest_queue(&env, group);
1e3c88bd 9037 if (!busiest) {
ae92882e 9038 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9039 goto out_balanced;
9040 }
9041
78feefc5 9042 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9043
ae92882e 9044 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9045
1aaf90a4
VG
9046 env.src_cpu = busiest->cpu;
9047 env.src_rq = busiest;
9048
1e3c88bd
PZ
9049 ld_moved = 0;
9050 if (busiest->nr_running > 1) {
9051 /*
9052 * Attempt to move tasks. If find_busiest_group has found
9053 * an imbalance but busiest->nr_running <= 1, the group is
9054 * still unbalanced. ld_moved simply stays zero, so it is
9055 * correctly treated as an imbalance.
9056 */
8e45cb54 9057 env.flags |= LBF_ALL_PINNED;
c82513e5 9058 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9059
5d6523eb 9060more_balance:
8a8c69c3 9061 rq_lock_irqsave(busiest, &rf);
3bed5e21 9062 update_rq_clock(busiest);
88b8dac0
SV
9063
9064 /*
9065 * cur_ld_moved - load moved in current iteration
9066 * ld_moved - cumulative load moved across iterations
9067 */
163122b7 9068 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9069
9070 /*
163122b7
KT
9071 * We've detached some tasks from busiest_rq. Every
9072 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9073 * unlock busiest->lock, and we are able to be sure
9074 * that nobody can manipulate the tasks in parallel.
9075 * See task_rq_lock() family for the details.
1e3c88bd 9076 */
163122b7 9077
8a8c69c3 9078 rq_unlock(busiest, &rf);
163122b7
KT
9079
9080 if (cur_ld_moved) {
9081 attach_tasks(&env);
9082 ld_moved += cur_ld_moved;
9083 }
9084
8a8c69c3 9085 local_irq_restore(rf.flags);
88b8dac0 9086
f1cd0858
JK
9087 if (env.flags & LBF_NEED_BREAK) {
9088 env.flags &= ~LBF_NEED_BREAK;
9089 goto more_balance;
9090 }
9091
88b8dac0
SV
9092 /*
9093 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9094 * us and move them to an alternate dst_cpu in our sched_group
9095 * where they can run. The upper limit on how many times we
97fb7a0a 9096 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9097 * sched_group.
9098 *
9099 * This changes load balance semantics a bit on who can move
9100 * load to a given_cpu. In addition to the given_cpu itself
9101 * (or a ilb_cpu acting on its behalf where given_cpu is
9102 * nohz-idle), we now have balance_cpu in a position to move
9103 * load to given_cpu. In rare situations, this may cause
9104 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9105 * _independently_ and at _same_ time to move some load to
9106 * given_cpu) causing exceess load to be moved to given_cpu.
9107 * This however should not happen so much in practice and
9108 * moreover subsequent load balance cycles should correct the
9109 * excess load moved.
9110 */
6263322c 9111 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9112
97fb7a0a 9113 /* Prevent to re-select dst_cpu via env's CPUs */
7aff2e3a
VD
9114 cpumask_clear_cpu(env.dst_cpu, env.cpus);
9115
78feefc5 9116 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9117 env.dst_cpu = env.new_dst_cpu;
6263322c 9118 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9119 env.loop = 0;
9120 env.loop_break = sched_nr_migrate_break;
e02e60c1 9121
88b8dac0
SV
9122 /*
9123 * Go back to "more_balance" rather than "redo" since we
9124 * need to continue with same src_cpu.
9125 */
9126 goto more_balance;
9127 }
1e3c88bd 9128
6263322c
PZ
9129 /*
9130 * We failed to reach balance because of affinity.
9131 */
9132 if (sd_parent) {
63b2ca30 9133 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9134
afdeee05 9135 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9136 *group_imbalance = 1;
6263322c
PZ
9137 }
9138
1e3c88bd 9139 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9140 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 9141 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9142 /*
9143 * Attempting to continue load balancing at the current
9144 * sched_domain level only makes sense if there are
9145 * active CPUs remaining as possible busiest CPUs to
9146 * pull load from which are not contained within the
9147 * destination group that is receiving any migrated
9148 * load.
9149 */
9150 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9151 env.loop = 0;
9152 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9153 goto redo;
bbf18b19 9154 }
afdeee05 9155 goto out_all_pinned;
1e3c88bd
PZ
9156 }
9157 }
9158
9159 if (!ld_moved) {
ae92882e 9160 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9161 /*
9162 * Increment the failure counter only on periodic balance.
9163 * We do not want newidle balance, which can be very
9164 * frequent, pollute the failure counter causing
9165 * excessive cache_hot migrations and active balances.
9166 */
9167 if (idle != CPU_NEWLY_IDLE)
9168 sd->nr_balance_failed++;
1e3c88bd 9169
bd939f45 9170 if (need_active_balance(&env)) {
8a8c69c3
PZ
9171 unsigned long flags;
9172
1e3c88bd
PZ
9173 raw_spin_lock_irqsave(&busiest->lock, flags);
9174
97fb7a0a
IM
9175 /*
9176 * Don't kick the active_load_balance_cpu_stop,
9177 * if the curr task on busiest CPU can't be
9178 * moved to this_cpu:
1e3c88bd 9179 */
0c98d344 9180 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
9181 raw_spin_unlock_irqrestore(&busiest->lock,
9182 flags);
8e45cb54 9183 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9184 goto out_one_pinned;
9185 }
9186
969c7921
TH
9187 /*
9188 * ->active_balance synchronizes accesses to
9189 * ->active_balance_work. Once set, it's cleared
9190 * only after active load balance is finished.
9191 */
1e3c88bd
PZ
9192 if (!busiest->active_balance) {
9193 busiest->active_balance = 1;
9194 busiest->push_cpu = this_cpu;
9195 active_balance = 1;
9196 }
9197 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9198
bd939f45 9199 if (active_balance) {
969c7921
TH
9200 stop_one_cpu_nowait(cpu_of(busiest),
9201 active_load_balance_cpu_stop, busiest,
9202 &busiest->active_balance_work);
bd939f45 9203 }
1e3c88bd 9204
d02c0711 9205 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9206 sd->nr_balance_failed = sd->cache_nice_tries+1;
9207 }
9208 } else
9209 sd->nr_balance_failed = 0;
9210
46a745d9 9211 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9212 /* We were unbalanced, so reset the balancing interval */
9213 sd->balance_interval = sd->min_interval;
9214 } else {
9215 /*
9216 * If we've begun active balancing, start to back off. This
9217 * case may not be covered by the all_pinned logic if there
9218 * is only 1 task on the busy runqueue (because we don't call
163122b7 9219 * detach_tasks).
1e3c88bd
PZ
9220 */
9221 if (sd->balance_interval < sd->max_interval)
9222 sd->balance_interval *= 2;
9223 }
9224
1e3c88bd
PZ
9225 goto out;
9226
9227out_balanced:
afdeee05
VG
9228 /*
9229 * We reach balance although we may have faced some affinity
9230 * constraints. Clear the imbalance flag if it was set.
9231 */
9232 if (sd_parent) {
9233 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9234
9235 if (*group_imbalance)
9236 *group_imbalance = 0;
9237 }
9238
9239out_all_pinned:
9240 /*
9241 * We reach balance because all tasks are pinned at this level so
9242 * we can't migrate them. Let the imbalance flag set so parent level
9243 * can try to migrate them.
9244 */
ae92882e 9245 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9246
9247 sd->nr_balance_failed = 0;
9248
9249out_one_pinned:
3f130a37
VS
9250 ld_moved = 0;
9251
9252 /*
9253 * idle_balance() disregards balance intervals, so we could repeatedly
9254 * reach this code, which would lead to balance_interval skyrocketting
9255 * in a short amount of time. Skip the balance_interval increase logic
9256 * to avoid that.
9257 */
9258 if (env.idle == CPU_NEWLY_IDLE)
9259 goto out;
9260
1e3c88bd 9261 /* tune up the balancing interval */
47b7aee1
VS
9262 if ((env.flags & LBF_ALL_PINNED &&
9263 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9264 sd->balance_interval < sd->max_interval)
1e3c88bd 9265 sd->balance_interval *= 2;
1e3c88bd 9266out:
1e3c88bd
PZ
9267 return ld_moved;
9268}
9269
52a08ef1
JL
9270static inline unsigned long
9271get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9272{
9273 unsigned long interval = sd->balance_interval;
9274
9275 if (cpu_busy)
9276 interval *= sd->busy_factor;
9277
9278 /* scale ms to jiffies */
9279 interval = msecs_to_jiffies(interval);
9280 interval = clamp(interval, 1UL, max_load_balance_interval);
9281
9282 return interval;
9283}
9284
9285static inline void
31851a98 9286update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9287{
9288 unsigned long interval, next;
9289
31851a98
LY
9290 /* used by idle balance, so cpu_busy = 0 */
9291 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9292 next = sd->last_balance + interval;
9293
9294 if (time_after(*next_balance, next))
9295 *next_balance = next;
9296}
9297
1e3c88bd 9298/*
97fb7a0a 9299 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9300 * running tasks off the busiest CPU onto idle CPUs. It requires at
9301 * least 1 task to be running on each physical CPU where possible, and
9302 * avoids physical / logical imbalances.
1e3c88bd 9303 */
969c7921 9304static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9305{
969c7921
TH
9306 struct rq *busiest_rq = data;
9307 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9308 int target_cpu = busiest_rq->push_cpu;
969c7921 9309 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9310 struct sched_domain *sd;
e5673f28 9311 struct task_struct *p = NULL;
8a8c69c3 9312 struct rq_flags rf;
969c7921 9313
8a8c69c3 9314 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9315 /*
9316 * Between queueing the stop-work and running it is a hole in which
9317 * CPUs can become inactive. We should not move tasks from or to
9318 * inactive CPUs.
9319 */
9320 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9321 goto out_unlock;
969c7921 9322
97fb7a0a 9323 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9324 if (unlikely(busiest_cpu != smp_processor_id() ||
9325 !busiest_rq->active_balance))
9326 goto out_unlock;
1e3c88bd
PZ
9327
9328 /* Is there any task to move? */
9329 if (busiest_rq->nr_running <= 1)
969c7921 9330 goto out_unlock;
1e3c88bd
PZ
9331
9332 /*
9333 * This condition is "impossible", if it occurs
9334 * we need to fix it. Originally reported by
97fb7a0a 9335 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9336 */
9337 BUG_ON(busiest_rq == target_rq);
9338
1e3c88bd 9339 /* Search for an sd spanning us and the target CPU. */
dce840a0 9340 rcu_read_lock();
1e3c88bd
PZ
9341 for_each_domain(target_cpu, sd) {
9342 if ((sd->flags & SD_LOAD_BALANCE) &&
9343 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9344 break;
9345 }
9346
9347 if (likely(sd)) {
8e45cb54
PZ
9348 struct lb_env env = {
9349 .sd = sd,
ddcdf6e7
PZ
9350 .dst_cpu = target_cpu,
9351 .dst_rq = target_rq,
9352 .src_cpu = busiest_rq->cpu,
9353 .src_rq = busiest_rq,
8e45cb54 9354 .idle = CPU_IDLE,
65a4433a
JH
9355 /*
9356 * can_migrate_task() doesn't need to compute new_dst_cpu
9357 * for active balancing. Since we have CPU_IDLE, but no
9358 * @dst_grpmask we need to make that test go away with lying
9359 * about DST_PINNED.
9360 */
9361 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9362 };
9363
ae92882e 9364 schedstat_inc(sd->alb_count);
3bed5e21 9365 update_rq_clock(busiest_rq);
1e3c88bd 9366
e5673f28 9367 p = detach_one_task(&env);
d02c0711 9368 if (p) {
ae92882e 9369 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9370 /* Active balancing done, reset the failure counter. */
9371 sd->nr_balance_failed = 0;
9372 } else {
ae92882e 9373 schedstat_inc(sd->alb_failed);
d02c0711 9374 }
1e3c88bd 9375 }
dce840a0 9376 rcu_read_unlock();
969c7921
TH
9377out_unlock:
9378 busiest_rq->active_balance = 0;
8a8c69c3 9379 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9380
9381 if (p)
9382 attach_one_task(target_rq, p);
9383
9384 local_irq_enable();
9385
969c7921 9386 return 0;
1e3c88bd
PZ
9387}
9388
af3fe03c
PZ
9389static DEFINE_SPINLOCK(balancing);
9390
9391/*
9392 * Scale the max load_balance interval with the number of CPUs in the system.
9393 * This trades load-balance latency on larger machines for less cross talk.
9394 */
9395void update_max_interval(void)
9396{
9397 max_load_balance_interval = HZ*num_online_cpus()/10;
9398}
9399
9400/*
9401 * It checks each scheduling domain to see if it is due to be balanced,
9402 * and initiates a balancing operation if so.
9403 *
9404 * Balancing parameters are set up in init_sched_domains.
9405 */
9406static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9407{
9408 int continue_balancing = 1;
9409 int cpu = rq->cpu;
9410 unsigned long interval;
9411 struct sched_domain *sd;
9412 /* Earliest time when we have to do rebalance again */
9413 unsigned long next_balance = jiffies + 60*HZ;
9414 int update_next_balance = 0;
9415 int need_serialize, need_decay = 0;
9416 u64 max_cost = 0;
9417
9418 rcu_read_lock();
9419 for_each_domain(cpu, sd) {
9420 /*
9421 * Decay the newidle max times here because this is a regular
9422 * visit to all the domains. Decay ~1% per second.
9423 */
9424 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9425 sd->max_newidle_lb_cost =
9426 (sd->max_newidle_lb_cost * 253) / 256;
9427 sd->next_decay_max_lb_cost = jiffies + HZ;
9428 need_decay = 1;
9429 }
9430 max_cost += sd->max_newidle_lb_cost;
9431
9432 if (!(sd->flags & SD_LOAD_BALANCE))
9433 continue;
9434
9435 /*
9436 * Stop the load balance at this level. There is another
9437 * CPU in our sched group which is doing load balancing more
9438 * actively.
9439 */
9440 if (!continue_balancing) {
9441 if (need_decay)
9442 continue;
9443 break;
9444 }
9445
9446 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9447
9448 need_serialize = sd->flags & SD_SERIALIZE;
9449 if (need_serialize) {
9450 if (!spin_trylock(&balancing))
9451 goto out;
9452 }
9453
9454 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9455 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9456 /*
9457 * The LBF_DST_PINNED logic could have changed
9458 * env->dst_cpu, so we can't know our idle
9459 * state even if we migrated tasks. Update it.
9460 */
9461 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9462 }
9463 sd->last_balance = jiffies;
9464 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9465 }
9466 if (need_serialize)
9467 spin_unlock(&balancing);
9468out:
9469 if (time_after(next_balance, sd->last_balance + interval)) {
9470 next_balance = sd->last_balance + interval;
9471 update_next_balance = 1;
9472 }
9473 }
9474 if (need_decay) {
9475 /*
9476 * Ensure the rq-wide value also decays but keep it at a
9477 * reasonable floor to avoid funnies with rq->avg_idle.
9478 */
9479 rq->max_idle_balance_cost =
9480 max((u64)sysctl_sched_migration_cost, max_cost);
9481 }
9482 rcu_read_unlock();
9483
9484 /*
9485 * next_balance will be updated only when there is a need.
9486 * When the cpu is attached to null domain for ex, it will not be
9487 * updated.
9488 */
9489 if (likely(update_next_balance)) {
9490 rq->next_balance = next_balance;
9491
9492#ifdef CONFIG_NO_HZ_COMMON
9493 /*
9494 * If this CPU has been elected to perform the nohz idle
9495 * balance. Other idle CPUs have already rebalanced with
9496 * nohz_idle_balance() and nohz.next_balance has been
9497 * updated accordingly. This CPU is now running the idle load
9498 * balance for itself and we need to update the
9499 * nohz.next_balance accordingly.
9500 */
9501 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9502 nohz.next_balance = rq->next_balance;
9503#endif
9504 }
9505}
9506
d987fc7f
MG
9507static inline int on_null_domain(struct rq *rq)
9508{
9509 return unlikely(!rcu_dereference_sched(rq->sd));
9510}
9511
3451d024 9512#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9513/*
9514 * idle load balancing details
83cd4fe2
VP
9515 * - When one of the busy CPUs notice that there may be an idle rebalancing
9516 * needed, they will kick the idle load balancer, which then does idle
9517 * load balancing for all the idle CPUs.
9518 */
1e3c88bd 9519
3dd0337d 9520static inline int find_new_ilb(void)
1e3c88bd 9521{
0b005cf5 9522 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 9523
786d6dc7
SS
9524 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9525 return ilb;
9526
9527 return nr_cpu_ids;
1e3c88bd 9528}
1e3c88bd 9529
83cd4fe2
VP
9530/*
9531 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9532 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9533 * CPU (if there is one).
9534 */
a4064fb6 9535static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9536{
9537 int ilb_cpu;
9538
9539 nohz.next_balance++;
9540
3dd0337d 9541 ilb_cpu = find_new_ilb();
83cd4fe2 9542
0b005cf5
SS
9543 if (ilb_cpu >= nr_cpu_ids)
9544 return;
83cd4fe2 9545
a4064fb6 9546 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9547 if (flags & NOHZ_KICK_MASK)
1c792db7 9548 return;
4550487a 9549
1c792db7
SS
9550 /*
9551 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9552 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9553 * is idle. And the softirq performing nohz idle load balance
9554 * will be run before returning from the IPI.
9555 */
9556 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9557}
9558
9559/*
9560 * Current heuristic for kicking the idle load balancer in the presence
9561 * of an idle cpu in the system.
9562 * - This rq has more than one task.
9563 * - This rq has at least one CFS task and the capacity of the CPU is
9564 * significantly reduced because of RT tasks or IRQs.
9565 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9566 * multiple busy cpu.
9567 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9568 * domain span are idle.
9569 */
9570static void nohz_balancer_kick(struct rq *rq)
9571{
9572 unsigned long now = jiffies;
9573 struct sched_domain_shared *sds;
9574 struct sched_domain *sd;
9575 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9576 unsigned int flags = 0;
4550487a
PZ
9577
9578 if (unlikely(rq->idle_balance))
9579 return;
9580
9581 /*
9582 * We may be recently in ticked or tickless idle mode. At the first
9583 * busy tick after returning from idle, we will update the busy stats.
9584 */
00357f5e 9585 nohz_balance_exit_idle(rq);
4550487a
PZ
9586
9587 /*
9588 * None are in tickless mode and hence no need for NOHZ idle load
9589 * balancing.
9590 */
9591 if (likely(!atomic_read(&nohz.nr_cpus)))
9592 return;
9593
f643ea22
VG
9594 if (READ_ONCE(nohz.has_blocked) &&
9595 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9596 flags = NOHZ_STATS_KICK;
9597
4550487a 9598 if (time_before(now, nohz.next_balance))
a4064fb6 9599 goto out;
4550487a 9600
5fbdfae5 9601 if (rq->nr_running >= 2 || rq->misfit_task_load) {
a4064fb6 9602 flags = NOHZ_KICK_MASK;
4550487a
PZ
9603 goto out;
9604 }
9605
9606 rcu_read_lock();
9607 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9608 if (sds) {
9609 /*
9610 * XXX: write a coherent comment on why we do this.
9611 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9612 */
9613 nr_busy = atomic_read(&sds->nr_busy_cpus);
9614 if (nr_busy > 1) {
a4064fb6 9615 flags = NOHZ_KICK_MASK;
4550487a
PZ
9616 goto unlock;
9617 }
9618
9619 }
9620
9621 sd = rcu_dereference(rq->sd);
9622 if (sd) {
9623 if ((rq->cfs.h_nr_running >= 1) &&
9624 check_cpu_capacity(rq, sd)) {
a4064fb6 9625 flags = NOHZ_KICK_MASK;
4550487a
PZ
9626 goto unlock;
9627 }
9628 }
9629
011b27bb 9630 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a
PZ
9631 if (sd) {
9632 for_each_cpu(i, sched_domain_span(sd)) {
9633 if (i == cpu ||
9634 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9635 continue;
9636
9637 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9638 flags = NOHZ_KICK_MASK;
4550487a
PZ
9639 goto unlock;
9640 }
9641 }
9642 }
9643unlock:
9644 rcu_read_unlock();
9645out:
a4064fb6
PZ
9646 if (flags)
9647 kick_ilb(flags);
83cd4fe2
VP
9648}
9649
00357f5e 9650static void set_cpu_sd_state_busy(int cpu)
71325960 9651{
00357f5e 9652 struct sched_domain *sd;
a22e47a4 9653
00357f5e
PZ
9654 rcu_read_lock();
9655 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9656
00357f5e
PZ
9657 if (!sd || !sd->nohz_idle)
9658 goto unlock;
9659 sd->nohz_idle = 0;
9660
9661 atomic_inc(&sd->shared->nr_busy_cpus);
9662unlock:
9663 rcu_read_unlock();
71325960
SS
9664}
9665
00357f5e
PZ
9666void nohz_balance_exit_idle(struct rq *rq)
9667{
9668 SCHED_WARN_ON(rq != this_rq());
9669
9670 if (likely(!rq->nohz_tick_stopped))
9671 return;
9672
9673 rq->nohz_tick_stopped = 0;
9674 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9675 atomic_dec(&nohz.nr_cpus);
9676
9677 set_cpu_sd_state_busy(rq->cpu);
9678}
9679
9680static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9681{
9682 struct sched_domain *sd;
69e1e811 9683
69e1e811 9684 rcu_read_lock();
0e369d75 9685 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9686
9687 if (!sd || sd->nohz_idle)
9688 goto unlock;
9689 sd->nohz_idle = 1;
9690
0e369d75 9691 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9692unlock:
69e1e811
SS
9693 rcu_read_unlock();
9694}
9695
1e3c88bd 9696/*
97fb7a0a 9697 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9698 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9699 */
c1cc017c 9700void nohz_balance_enter_idle(int cpu)
1e3c88bd 9701{
00357f5e
PZ
9702 struct rq *rq = cpu_rq(cpu);
9703
9704 SCHED_WARN_ON(cpu != smp_processor_id());
9705
97fb7a0a 9706 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9707 if (!cpu_active(cpu))
9708 return;
9709
387bc8b5 9710 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9711 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9712 return;
9713
f643ea22
VG
9714 /*
9715 * Can be set safely without rq->lock held
9716 * If a clear happens, it will have evaluated last additions because
9717 * rq->lock is held during the check and the clear
9718 */
9719 rq->has_blocked_load = 1;
9720
9721 /*
9722 * The tick is still stopped but load could have been added in the
9723 * meantime. We set the nohz.has_blocked flag to trig a check of the
9724 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9725 * of nohz.has_blocked can only happen after checking the new load
9726 */
00357f5e 9727 if (rq->nohz_tick_stopped)
f643ea22 9728 goto out;
1e3c88bd 9729
97fb7a0a 9730 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9731 if (on_null_domain(rq))
d987fc7f
MG
9732 return;
9733
00357f5e
PZ
9734 rq->nohz_tick_stopped = 1;
9735
c1cc017c
AS
9736 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9737 atomic_inc(&nohz.nr_cpus);
00357f5e 9738
f643ea22
VG
9739 /*
9740 * Ensures that if nohz_idle_balance() fails to observe our
9741 * @idle_cpus_mask store, it must observe the @has_blocked
9742 * store.
9743 */
9744 smp_mb__after_atomic();
9745
00357f5e 9746 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9747
9748out:
9749 /*
9750 * Each time a cpu enter idle, we assume that it has blocked load and
9751 * enable the periodic update of the load of idle cpus
9752 */
9753 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9754}
1e3c88bd 9755
1e3c88bd 9756/*
31e77c93
VG
9757 * Internal function that runs load balance for all idle cpus. The load balance
9758 * can be a simple update of blocked load or a complete load balance with
9759 * tasks movement depending of flags.
9760 * The function returns false if the loop has stopped before running
9761 * through all idle CPUs.
1e3c88bd 9762 */
31e77c93
VG
9763static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9764 enum cpu_idle_type idle)
83cd4fe2 9765{
c5afb6a8 9766 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9767 unsigned long now = jiffies;
9768 unsigned long next_balance = now + 60*HZ;
f643ea22 9769 bool has_blocked_load = false;
c5afb6a8 9770 int update_next_balance = 0;
b7031a02 9771 int this_cpu = this_rq->cpu;
b7031a02 9772 int balance_cpu;
31e77c93 9773 int ret = false;
b7031a02 9774 struct rq *rq;
83cd4fe2 9775
b7031a02 9776 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9777
f643ea22
VG
9778 /*
9779 * We assume there will be no idle load after this update and clear
9780 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9781 * set the has_blocked flag and trig another update of idle load.
9782 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9783 * setting the flag, we are sure to not clear the state and not
9784 * check the load of an idle cpu.
9785 */
9786 WRITE_ONCE(nohz.has_blocked, 0);
9787
9788 /*
9789 * Ensures that if we miss the CPU, we must see the has_blocked
9790 * store from nohz_balance_enter_idle().
9791 */
9792 smp_mb();
9793
83cd4fe2 9794 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9795 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9796 continue;
9797
9798 /*
97fb7a0a
IM
9799 * If this CPU gets work to do, stop the load balancing
9800 * work being done for other CPUs. Next load
83cd4fe2
VP
9801 * balancing owner will pick it up.
9802 */
f643ea22
VG
9803 if (need_resched()) {
9804 has_blocked_load = true;
9805 goto abort;
9806 }
83cd4fe2 9807
5ed4f1d9
VG
9808 rq = cpu_rq(balance_cpu);
9809
63928384 9810 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9811
ed61bbc6
TC
9812 /*
9813 * If time for next balance is due,
9814 * do the balance.
9815 */
9816 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9817 struct rq_flags rf;
9818
31e77c93 9819 rq_lock_irqsave(rq, &rf);
ed61bbc6 9820 update_rq_clock(rq);
cee1afce 9821 cpu_load_update_idle(rq);
31e77c93 9822 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9823
b7031a02
PZ
9824 if (flags & NOHZ_BALANCE_KICK)
9825 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9826 }
83cd4fe2 9827
c5afb6a8
VG
9828 if (time_after(next_balance, rq->next_balance)) {
9829 next_balance = rq->next_balance;
9830 update_next_balance = 1;
9831 }
83cd4fe2 9832 }
c5afb6a8 9833
31e77c93
VG
9834 /* Newly idle CPU doesn't need an update */
9835 if (idle != CPU_NEWLY_IDLE) {
9836 update_blocked_averages(this_cpu);
9837 has_blocked_load |= this_rq->has_blocked_load;
9838 }
9839
b7031a02
PZ
9840 if (flags & NOHZ_BALANCE_KICK)
9841 rebalance_domains(this_rq, CPU_IDLE);
9842
f643ea22
VG
9843 WRITE_ONCE(nohz.next_blocked,
9844 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9845
31e77c93
VG
9846 /* The full idle balance loop has been done */
9847 ret = true;
9848
f643ea22
VG
9849abort:
9850 /* There is still blocked load, enable periodic update */
9851 if (has_blocked_load)
9852 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9853
c5afb6a8
VG
9854 /*
9855 * next_balance will be updated only when there is a need.
9856 * When the CPU is attached to null domain for ex, it will not be
9857 * updated.
9858 */
9859 if (likely(update_next_balance))
9860 nohz.next_balance = next_balance;
b7031a02 9861
31e77c93
VG
9862 return ret;
9863}
9864
9865/*
9866 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9867 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9868 */
9869static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9870{
9871 int this_cpu = this_rq->cpu;
9872 unsigned int flags;
9873
9874 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9875 return false;
9876
9877 if (idle != CPU_IDLE) {
9878 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9879 return false;
9880 }
9881
80eb8657 9882 /* could be _relaxed() */
31e77c93
VG
9883 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9884 if (!(flags & NOHZ_KICK_MASK))
9885 return false;
9886
9887 _nohz_idle_balance(this_rq, flags, idle);
9888
b7031a02 9889 return true;
83cd4fe2 9890}
31e77c93
VG
9891
9892static void nohz_newidle_balance(struct rq *this_rq)
9893{
9894 int this_cpu = this_rq->cpu;
9895
9896 /*
9897 * This CPU doesn't want to be disturbed by scheduler
9898 * housekeeping
9899 */
9900 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9901 return;
9902
9903 /* Will wake up very soon. No time for doing anything else*/
9904 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9905 return;
9906
9907 /* Don't need to update blocked load of idle CPUs*/
9908 if (!READ_ONCE(nohz.has_blocked) ||
9909 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9910 return;
9911
9912 raw_spin_unlock(&this_rq->lock);
9913 /*
9914 * This CPU is going to be idle and blocked load of idle CPUs
9915 * need to be updated. Run the ilb locally as it is a good
9916 * candidate for ilb instead of waking up another idle CPU.
9917 * Kick an normal ilb if we failed to do the update.
9918 */
9919 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9920 kick_ilb(NOHZ_STATS_KICK);
9921 raw_spin_lock(&this_rq->lock);
9922}
9923
dd707247
PZ
9924#else /* !CONFIG_NO_HZ_COMMON */
9925static inline void nohz_balancer_kick(struct rq *rq) { }
9926
31e77c93 9927static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9928{
9929 return false;
9930}
31e77c93
VG
9931
9932static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9933#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9934
47ea5412
PZ
9935/*
9936 * idle_balance is called by schedule() if this_cpu is about to become
9937 * idle. Attempts to pull tasks from other CPUs.
9938 */
9939static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9940{
9941 unsigned long next_balance = jiffies + HZ;
9942 int this_cpu = this_rq->cpu;
9943 struct sched_domain *sd;
9944 int pulled_task = 0;
9945 u64 curr_cost = 0;
9946
9947 /*
9948 * We must set idle_stamp _before_ calling idle_balance(), such that we
9949 * measure the duration of idle_balance() as idle time.
9950 */
9951 this_rq->idle_stamp = rq_clock(this_rq);
9952
9953 /*
9954 * Do not pull tasks towards !active CPUs...
9955 */
9956 if (!cpu_active(this_cpu))
9957 return 0;
9958
9959 /*
9960 * This is OK, because current is on_cpu, which avoids it being picked
9961 * for load-balance and preemption/IRQs are still disabled avoiding
9962 * further scheduler activity on it and we're being very careful to
9963 * re-start the picking loop.
9964 */
9965 rq_unpin_lock(this_rq, rf);
9966
9967 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9968 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9969
47ea5412
PZ
9970 rcu_read_lock();
9971 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9972 if (sd)
9973 update_next_balance(sd, &next_balance);
9974 rcu_read_unlock();
9975
31e77c93
VG
9976 nohz_newidle_balance(this_rq);
9977
47ea5412
PZ
9978 goto out;
9979 }
9980
9981 raw_spin_unlock(&this_rq->lock);
9982
9983 update_blocked_averages(this_cpu);
9984 rcu_read_lock();
9985 for_each_domain(this_cpu, sd) {
9986 int continue_balancing = 1;
9987 u64 t0, domain_cost;
9988
9989 if (!(sd->flags & SD_LOAD_BALANCE))
9990 continue;
9991
9992 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9993 update_next_balance(sd, &next_balance);
9994 break;
9995 }
9996
9997 if (sd->flags & SD_BALANCE_NEWIDLE) {
9998 t0 = sched_clock_cpu(this_cpu);
9999
10000 pulled_task = load_balance(this_cpu, this_rq,
10001 sd, CPU_NEWLY_IDLE,
10002 &continue_balancing);
10003
10004 domain_cost = sched_clock_cpu(this_cpu) - t0;
10005 if (domain_cost > sd->max_newidle_lb_cost)
10006 sd->max_newidle_lb_cost = domain_cost;
10007
10008 curr_cost += domain_cost;
10009 }
10010
10011 update_next_balance(sd, &next_balance);
10012
10013 /*
10014 * Stop searching for tasks to pull if there are
10015 * now runnable tasks on this rq.
10016 */
10017 if (pulled_task || this_rq->nr_running > 0)
10018 break;
10019 }
10020 rcu_read_unlock();
10021
10022 raw_spin_lock(&this_rq->lock);
10023
10024 if (curr_cost > this_rq->max_idle_balance_cost)
10025 this_rq->max_idle_balance_cost = curr_cost;
10026
457be908 10027out:
47ea5412
PZ
10028 /*
10029 * While browsing the domains, we released the rq lock, a task could
10030 * have been enqueued in the meantime. Since we're not going idle,
10031 * pretend we pulled a task.
10032 */
10033 if (this_rq->cfs.h_nr_running && !pulled_task)
10034 pulled_task = 1;
10035
47ea5412
PZ
10036 /* Move the next balance forward */
10037 if (time_after(this_rq->next_balance, next_balance))
10038 this_rq->next_balance = next_balance;
10039
10040 /* Is there a task of a high priority class? */
10041 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10042 pulled_task = -1;
10043
10044 if (pulled_task)
10045 this_rq->idle_stamp = 0;
10046
10047 rq_repin_lock(this_rq, rf);
10048
10049 return pulled_task;
10050}
10051
83cd4fe2
VP
10052/*
10053 * run_rebalance_domains is triggered when needed from the scheduler tick.
10054 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10055 */
0766f788 10056static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10057{
208cb16b 10058 struct rq *this_rq = this_rq();
6eb57e0d 10059 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10060 CPU_IDLE : CPU_NOT_IDLE;
10061
1e3c88bd 10062 /*
97fb7a0a
IM
10063 * If this CPU has a pending nohz_balance_kick, then do the
10064 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10065 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10066 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10067 * load balance only within the local sched_domain hierarchy
10068 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10069 */
b7031a02
PZ
10070 if (nohz_idle_balance(this_rq, idle))
10071 return;
10072
10073 /* normal load balance */
10074 update_blocked_averages(this_rq->cpu);
d4573c3e 10075 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10076}
10077
1e3c88bd
PZ
10078/*
10079 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10080 */
7caff66f 10081void trigger_load_balance(struct rq *rq)
1e3c88bd 10082{
1e3c88bd 10083 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10084 if (unlikely(on_null_domain(rq)))
10085 return;
10086
10087 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10088 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10089
10090 nohz_balancer_kick(rq);
1e3c88bd
PZ
10091}
10092
0bcdcf28
CE
10093static void rq_online_fair(struct rq *rq)
10094{
10095 update_sysctl();
0e59bdae
KT
10096
10097 update_runtime_enabled(rq);
0bcdcf28
CE
10098}
10099
10100static void rq_offline_fair(struct rq *rq)
10101{
10102 update_sysctl();
a4c96ae3
PB
10103
10104 /* Ensure any throttled groups are reachable by pick_next_task */
10105 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10106}
10107
55e12e5e 10108#endif /* CONFIG_SMP */
e1d1484f 10109
bf0f6f24 10110/*
d84b3131
FW
10111 * scheduler tick hitting a task of our scheduling class.
10112 *
10113 * NOTE: This function can be called remotely by the tick offload that
10114 * goes along full dynticks. Therefore no local assumption can be made
10115 * and everything must be accessed through the @rq and @curr passed in
10116 * parameters.
bf0f6f24 10117 */
8f4d37ec 10118static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10119{
10120 struct cfs_rq *cfs_rq;
10121 struct sched_entity *se = &curr->se;
10122
10123 for_each_sched_entity(se) {
10124 cfs_rq = cfs_rq_of(se);
8f4d37ec 10125 entity_tick(cfs_rq, se, queued);
bf0f6f24 10126 }
18bf2805 10127
b52da86e 10128 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10129 task_tick_numa(rq, curr);
3b1baa64
MR
10130
10131 update_misfit_status(curr, rq);
2802bf3c 10132 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10133}
10134
10135/*
cd29fe6f
PZ
10136 * called on fork with the child task as argument from the parent's context
10137 * - child not yet on the tasklist
10138 * - preemption disabled
bf0f6f24 10139 */
cd29fe6f 10140static void task_fork_fair(struct task_struct *p)
bf0f6f24 10141{
4fc420c9
DN
10142 struct cfs_rq *cfs_rq;
10143 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10144 struct rq *rq = this_rq();
8a8c69c3 10145 struct rq_flags rf;
bf0f6f24 10146
8a8c69c3 10147 rq_lock(rq, &rf);
861d034e
PZ
10148 update_rq_clock(rq);
10149
4fc420c9
DN
10150 cfs_rq = task_cfs_rq(current);
10151 curr = cfs_rq->curr;
e210bffd
PZ
10152 if (curr) {
10153 update_curr(cfs_rq);
b5d9d734 10154 se->vruntime = curr->vruntime;
e210bffd 10155 }
aeb73b04 10156 place_entity(cfs_rq, se, 1);
4d78e7b6 10157
cd29fe6f 10158 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10159 /*
edcb60a3
IM
10160 * Upon rescheduling, sched_class::put_prev_task() will place
10161 * 'current' within the tree based on its new key value.
10162 */
4d78e7b6 10163 swap(curr->vruntime, se->vruntime);
8875125e 10164 resched_curr(rq);
4d78e7b6 10165 }
bf0f6f24 10166
88ec22d3 10167 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10168 rq_unlock(rq, &rf);
bf0f6f24
IM
10169}
10170
cb469845
SR
10171/*
10172 * Priority of the task has changed. Check to see if we preempt
10173 * the current task.
10174 */
da7a735e
PZ
10175static void
10176prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10177{
da0c1e65 10178 if (!task_on_rq_queued(p))
da7a735e
PZ
10179 return;
10180
cb469845
SR
10181 /*
10182 * Reschedule if we are currently running on this runqueue and
10183 * our priority decreased, or if we are not currently running on
10184 * this runqueue and our priority is higher than the current's
10185 */
da7a735e 10186 if (rq->curr == p) {
cb469845 10187 if (p->prio > oldprio)
8875125e 10188 resched_curr(rq);
cb469845 10189 } else
15afe09b 10190 check_preempt_curr(rq, p, 0);
cb469845
SR
10191}
10192
daa59407 10193static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10194{
10195 struct sched_entity *se = &p->se;
da7a735e
PZ
10196
10197 /*
daa59407
BP
10198 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10199 * the dequeue_entity(.flags=0) will already have normalized the
10200 * vruntime.
10201 */
10202 if (p->on_rq)
10203 return true;
10204
10205 /*
10206 * When !on_rq, vruntime of the task has usually NOT been normalized.
10207 * But there are some cases where it has already been normalized:
da7a735e 10208 *
daa59407
BP
10209 * - A forked child which is waiting for being woken up by
10210 * wake_up_new_task().
10211 * - A task which has been woken up by try_to_wake_up() and
10212 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10213 */
d0cdb3ce
SM
10214 if (!se->sum_exec_runtime ||
10215 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10216 return true;
10217
10218 return false;
10219}
10220
09a43ace
VG
10221#ifdef CONFIG_FAIR_GROUP_SCHED
10222/*
10223 * Propagate the changes of the sched_entity across the tg tree to make it
10224 * visible to the root
10225 */
10226static void propagate_entity_cfs_rq(struct sched_entity *se)
10227{
10228 struct cfs_rq *cfs_rq;
10229
10230 /* Start to propagate at parent */
10231 se = se->parent;
10232
10233 for_each_sched_entity(se) {
10234 cfs_rq = cfs_rq_of(se);
10235
10236 if (cfs_rq_throttled(cfs_rq))
10237 break;
10238
88c0616e 10239 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10240 }
10241}
10242#else
10243static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10244#endif
10245
df217913 10246static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10247{
daa59407
BP
10248 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10249
9d89c257 10250 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10251 update_load_avg(cfs_rq, se, 0);
a05e8c51 10252 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10253 update_tg_load_avg(cfs_rq, false);
09a43ace 10254 propagate_entity_cfs_rq(se);
da7a735e
PZ
10255}
10256
df217913 10257static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10258{
daa59407 10259 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10260
10261#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10262 /*
10263 * Since the real-depth could have been changed (only FAIR
10264 * class maintain depth value), reset depth properly.
10265 */
10266 se->depth = se->parent ? se->parent->depth + 1 : 0;
10267#endif
7855a35a 10268
df217913 10269 /* Synchronize entity with its cfs_rq */
88c0616e 10270 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10271 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10272 update_tg_load_avg(cfs_rq, false);
09a43ace 10273 propagate_entity_cfs_rq(se);
df217913
VG
10274}
10275
10276static void detach_task_cfs_rq(struct task_struct *p)
10277{
10278 struct sched_entity *se = &p->se;
10279 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10280
10281 if (!vruntime_normalized(p)) {
10282 /*
10283 * Fix up our vruntime so that the current sleep doesn't
10284 * cause 'unlimited' sleep bonus.
10285 */
10286 place_entity(cfs_rq, se, 0);
10287 se->vruntime -= cfs_rq->min_vruntime;
10288 }
10289
10290 detach_entity_cfs_rq(se);
10291}
10292
10293static void attach_task_cfs_rq(struct task_struct *p)
10294{
10295 struct sched_entity *se = &p->se;
10296 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10297
10298 attach_entity_cfs_rq(se);
daa59407
BP
10299
10300 if (!vruntime_normalized(p))
10301 se->vruntime += cfs_rq->min_vruntime;
10302}
6efdb105 10303
daa59407
BP
10304static void switched_from_fair(struct rq *rq, struct task_struct *p)
10305{
10306 detach_task_cfs_rq(p);
10307}
10308
10309static void switched_to_fair(struct rq *rq, struct task_struct *p)
10310{
10311 attach_task_cfs_rq(p);
7855a35a 10312
daa59407 10313 if (task_on_rq_queued(p)) {
7855a35a 10314 /*
daa59407
BP
10315 * We were most likely switched from sched_rt, so
10316 * kick off the schedule if running, otherwise just see
10317 * if we can still preempt the current task.
7855a35a 10318 */
daa59407
BP
10319 if (rq->curr == p)
10320 resched_curr(rq);
10321 else
10322 check_preempt_curr(rq, p, 0);
7855a35a 10323 }
cb469845
SR
10324}
10325
83b699ed
SV
10326/* Account for a task changing its policy or group.
10327 *
10328 * This routine is mostly called to set cfs_rq->curr field when a task
10329 * migrates between groups/classes.
10330 */
10331static void set_curr_task_fair(struct rq *rq)
10332{
10333 struct sched_entity *se = &rq->curr->se;
10334
ec12cb7f
PT
10335 for_each_sched_entity(se) {
10336 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10337
10338 set_next_entity(cfs_rq, se);
10339 /* ensure bandwidth has been allocated on our new cfs_rq */
10340 account_cfs_rq_runtime(cfs_rq, 0);
10341 }
83b699ed
SV
10342}
10343
029632fb
PZ
10344void init_cfs_rq(struct cfs_rq *cfs_rq)
10345{
bfb06889 10346 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10347 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10348#ifndef CONFIG_64BIT
10349 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10350#endif
141965c7 10351#ifdef CONFIG_SMP
2a2f5d4e 10352 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10353#endif
029632fb
PZ
10354}
10355
810b3817 10356#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10357static void task_set_group_fair(struct task_struct *p)
10358{
10359 struct sched_entity *se = &p->se;
10360
10361 set_task_rq(p, task_cpu(p));
10362 se->depth = se->parent ? se->parent->depth + 1 : 0;
10363}
10364
bc54da21 10365static void task_move_group_fair(struct task_struct *p)
810b3817 10366{
daa59407 10367 detach_task_cfs_rq(p);
b2b5ce02 10368 set_task_rq(p, task_cpu(p));
6efdb105
BP
10369
10370#ifdef CONFIG_SMP
10371 /* Tell se's cfs_rq has been changed -- migrated */
10372 p->se.avg.last_update_time = 0;
10373#endif
daa59407 10374 attach_task_cfs_rq(p);
810b3817 10375}
029632fb 10376
ea86cb4b
VG
10377static void task_change_group_fair(struct task_struct *p, int type)
10378{
10379 switch (type) {
10380 case TASK_SET_GROUP:
10381 task_set_group_fair(p);
10382 break;
10383
10384 case TASK_MOVE_GROUP:
10385 task_move_group_fair(p);
10386 break;
10387 }
10388}
10389
029632fb
PZ
10390void free_fair_sched_group(struct task_group *tg)
10391{
10392 int i;
10393
10394 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10395
10396 for_each_possible_cpu(i) {
10397 if (tg->cfs_rq)
10398 kfree(tg->cfs_rq[i]);
6fe1f348 10399 if (tg->se)
029632fb
PZ
10400 kfree(tg->se[i]);
10401 }
10402
10403 kfree(tg->cfs_rq);
10404 kfree(tg->se);
10405}
10406
10407int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10408{
029632fb 10409 struct sched_entity *se;
b7fa30c9 10410 struct cfs_rq *cfs_rq;
029632fb
PZ
10411 int i;
10412
6396bb22 10413 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10414 if (!tg->cfs_rq)
10415 goto err;
6396bb22 10416 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10417 if (!tg->se)
10418 goto err;
10419
10420 tg->shares = NICE_0_LOAD;
10421
10422 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10423
10424 for_each_possible_cpu(i) {
10425 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10426 GFP_KERNEL, cpu_to_node(i));
10427 if (!cfs_rq)
10428 goto err;
10429
10430 se = kzalloc_node(sizeof(struct sched_entity),
10431 GFP_KERNEL, cpu_to_node(i));
10432 if (!se)
10433 goto err_free_rq;
10434
10435 init_cfs_rq(cfs_rq);
10436 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10437 init_entity_runnable_average(se);
029632fb
PZ
10438 }
10439
10440 return 1;
10441
10442err_free_rq:
10443 kfree(cfs_rq);
10444err:
10445 return 0;
10446}
10447
8663e24d
PZ
10448void online_fair_sched_group(struct task_group *tg)
10449{
10450 struct sched_entity *se;
10451 struct rq *rq;
10452 int i;
10453
10454 for_each_possible_cpu(i) {
10455 rq = cpu_rq(i);
10456 se = tg->se[i];
10457
10458 raw_spin_lock_irq(&rq->lock);
4126bad6 10459 update_rq_clock(rq);
d0326691 10460 attach_entity_cfs_rq(se);
55e16d30 10461 sync_throttle(tg, i);
8663e24d
PZ
10462 raw_spin_unlock_irq(&rq->lock);
10463 }
10464}
10465
6fe1f348 10466void unregister_fair_sched_group(struct task_group *tg)
029632fb 10467{
029632fb 10468 unsigned long flags;
6fe1f348
PZ
10469 struct rq *rq;
10470 int cpu;
029632fb 10471
6fe1f348
PZ
10472 for_each_possible_cpu(cpu) {
10473 if (tg->se[cpu])
10474 remove_entity_load_avg(tg->se[cpu]);
029632fb 10475
6fe1f348
PZ
10476 /*
10477 * Only empty task groups can be destroyed; so we can speculatively
10478 * check on_list without danger of it being re-added.
10479 */
10480 if (!tg->cfs_rq[cpu]->on_list)
10481 continue;
10482
10483 rq = cpu_rq(cpu);
10484
10485 raw_spin_lock_irqsave(&rq->lock, flags);
10486 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10487 raw_spin_unlock_irqrestore(&rq->lock, flags);
10488 }
029632fb
PZ
10489}
10490
10491void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10492 struct sched_entity *se, int cpu,
10493 struct sched_entity *parent)
10494{
10495 struct rq *rq = cpu_rq(cpu);
10496
10497 cfs_rq->tg = tg;
10498 cfs_rq->rq = rq;
029632fb
PZ
10499 init_cfs_rq_runtime(cfs_rq);
10500
10501 tg->cfs_rq[cpu] = cfs_rq;
10502 tg->se[cpu] = se;
10503
10504 /* se could be NULL for root_task_group */
10505 if (!se)
10506 return;
10507
fed14d45 10508 if (!parent) {
029632fb 10509 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10510 se->depth = 0;
10511 } else {
029632fb 10512 se->cfs_rq = parent->my_q;
fed14d45
PZ
10513 se->depth = parent->depth + 1;
10514 }
029632fb
PZ
10515
10516 se->my_q = cfs_rq;
0ac9b1c2
PT
10517 /* guarantee group entities always have weight */
10518 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10519 se->parent = parent;
10520}
10521
10522static DEFINE_MUTEX(shares_mutex);
10523
10524int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10525{
10526 int i;
029632fb
PZ
10527
10528 /*
10529 * We can't change the weight of the root cgroup.
10530 */
10531 if (!tg->se[0])
10532 return -EINVAL;
10533
10534 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10535
10536 mutex_lock(&shares_mutex);
10537 if (tg->shares == shares)
10538 goto done;
10539
10540 tg->shares = shares;
10541 for_each_possible_cpu(i) {
10542 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10543 struct sched_entity *se = tg->se[i];
10544 struct rq_flags rf;
029632fb 10545
029632fb 10546 /* Propagate contribution to hierarchy */
8a8c69c3 10547 rq_lock_irqsave(rq, &rf);
71b1da46 10548 update_rq_clock(rq);
89ee048f 10549 for_each_sched_entity(se) {
88c0616e 10550 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10551 update_cfs_group(se);
89ee048f 10552 }
8a8c69c3 10553 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10554 }
10555
10556done:
10557 mutex_unlock(&shares_mutex);
10558 return 0;
10559}
10560#else /* CONFIG_FAIR_GROUP_SCHED */
10561
10562void free_fair_sched_group(struct task_group *tg) { }
10563
10564int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10565{
10566 return 1;
10567}
10568
8663e24d
PZ
10569void online_fair_sched_group(struct task_group *tg) { }
10570
6fe1f348 10571void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10572
10573#endif /* CONFIG_FAIR_GROUP_SCHED */
10574
810b3817 10575
6d686f45 10576static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10577{
10578 struct sched_entity *se = &task->se;
0d721cea
PW
10579 unsigned int rr_interval = 0;
10580
10581 /*
10582 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10583 * idle runqueue:
10584 */
0d721cea 10585 if (rq->cfs.load.weight)
a59f4e07 10586 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10587
10588 return rr_interval;
10589}
10590
bf0f6f24
IM
10591/*
10592 * All the scheduling class methods:
10593 */
029632fb 10594const struct sched_class fair_sched_class = {
5522d5d5 10595 .next = &idle_sched_class,
bf0f6f24
IM
10596 .enqueue_task = enqueue_task_fair,
10597 .dequeue_task = dequeue_task_fair,
10598 .yield_task = yield_task_fair,
d95f4122 10599 .yield_to_task = yield_to_task_fair,
bf0f6f24 10600
2e09bf55 10601 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10602
10603 .pick_next_task = pick_next_task_fair,
10604 .put_prev_task = put_prev_task_fair,
10605
681f3e68 10606#ifdef CONFIG_SMP
4ce72a2c 10607 .select_task_rq = select_task_rq_fair,
0a74bef8 10608 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10609
0bcdcf28
CE
10610 .rq_online = rq_online_fair,
10611 .rq_offline = rq_offline_fair,
88ec22d3 10612
12695578 10613 .task_dead = task_dead_fair,
c5b28038 10614 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10615#endif
bf0f6f24 10616
83b699ed 10617 .set_curr_task = set_curr_task_fair,
bf0f6f24 10618 .task_tick = task_tick_fair,
cd29fe6f 10619 .task_fork = task_fork_fair,
cb469845
SR
10620
10621 .prio_changed = prio_changed_fair,
da7a735e 10622 .switched_from = switched_from_fair,
cb469845 10623 .switched_to = switched_to_fair,
810b3817 10624
0d721cea
PW
10625 .get_rr_interval = get_rr_interval_fair,
10626
6e998916
SG
10627 .update_curr = update_curr_fair,
10628
810b3817 10629#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10630 .task_change_group = task_change_group_fair,
810b3817 10631#endif
bf0f6f24
IM
10632};
10633
10634#ifdef CONFIG_SCHED_DEBUG
029632fb 10635void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10636{
039ae8bc 10637 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10638
5973e5b9 10639 rcu_read_lock();
039ae8bc 10640 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10641 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10642 rcu_read_unlock();
bf0f6f24 10643}
397f2378
SD
10644
10645#ifdef CONFIG_NUMA_BALANCING
10646void show_numa_stats(struct task_struct *p, struct seq_file *m)
10647{
10648 int node;
10649 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10650
10651 for_each_online_node(node) {
10652 if (p->numa_faults) {
10653 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10654 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10655 }
10656 if (p->numa_group) {
10657 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10658 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10659 }
10660 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10661 }
10662}
10663#endif /* CONFIG_NUMA_BALANCING */
10664#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10665
10666__init void init_sched_fair_class(void)
10667{
10668#ifdef CONFIG_SMP
10669 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10670
3451d024 10671#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10672 nohz.next_balance = jiffies;
f643ea22 10673 nohz.next_blocked = jiffies;
029632fb 10674 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10675#endif
10676#endif /* SMP */
10677
10678}