sched/deadline: Switch CPU's presence test order
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
332ac17e
DF
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
60extern unsigned long to_ratio(u64 period, u64 runtime);
61
62void init_dl_bw(struct dl_bw *dl_b)
63{
64 raw_spin_lock_init(&dl_b->lock);
65 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 66 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
67 dl_b->bw = -1;
68 else
1724813d 69 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
70 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
71 dl_b->total_bw = 0;
72}
73
aab03e05
DF
74void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
75{
76 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
77
78#ifdef CONFIG_SMP
79 /* zero means no -deadline tasks */
80 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
81
82 dl_rq->dl_nr_migratory = 0;
83 dl_rq->overloaded = 0;
84 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
85#else
86 init_dl_bw(&dl_rq->dl_bw);
1baca4ce
JL
87#endif
88}
89
90#ifdef CONFIG_SMP
91
92static inline int dl_overloaded(struct rq *rq)
93{
94 return atomic_read(&rq->rd->dlo_count);
95}
96
97static inline void dl_set_overload(struct rq *rq)
98{
99 if (!rq->online)
100 return;
101
102 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
103 /*
104 * Must be visible before the overload count is
105 * set (as in sched_rt.c).
106 *
107 * Matched by the barrier in pull_dl_task().
108 */
109 smp_wmb();
110 atomic_inc(&rq->rd->dlo_count);
111}
112
113static inline void dl_clear_overload(struct rq *rq)
114{
115 if (!rq->online)
116 return;
117
118 atomic_dec(&rq->rd->dlo_count);
119 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120}
121
122static void update_dl_migration(struct dl_rq *dl_rq)
123{
995b9ea4 124 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
125 if (!dl_rq->overloaded) {
126 dl_set_overload(rq_of_dl_rq(dl_rq));
127 dl_rq->overloaded = 1;
128 }
129 } else if (dl_rq->overloaded) {
130 dl_clear_overload(rq_of_dl_rq(dl_rq));
131 dl_rq->overloaded = 0;
132 }
133}
134
135static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136{
137 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 138
1baca4ce
JL
139 if (p->nr_cpus_allowed > 1)
140 dl_rq->dl_nr_migratory++;
141
142 update_dl_migration(dl_rq);
143}
144
145static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
146{
147 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 148
1baca4ce
JL
149 if (p->nr_cpus_allowed > 1)
150 dl_rq->dl_nr_migratory--;
151
152 update_dl_migration(dl_rq);
153}
154
155/*
156 * The list of pushable -deadline task is not a plist, like in
157 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
158 */
159static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
160{
161 struct dl_rq *dl_rq = &rq->dl;
162 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
163 struct rb_node *parent = NULL;
164 struct task_struct *entry;
165 int leftmost = 1;
166
167 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
168
169 while (*link) {
170 parent = *link;
171 entry = rb_entry(parent, struct task_struct,
172 pushable_dl_tasks);
173 if (dl_entity_preempt(&p->dl, &entry->dl))
174 link = &parent->rb_left;
175 else {
176 link = &parent->rb_right;
177 leftmost = 0;
178 }
179 }
180
181 if (leftmost)
182 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
183
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
186}
187
1baca4ce
JL
188static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189{
190 struct dl_rq *dl_rq = &rq->dl;
191
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
194
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
197
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 }
201
202 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
203 RB_CLEAR_NODE(&p->pushable_dl_tasks);
204}
205
206static inline int has_pushable_dl_tasks(struct rq *rq)
207{
208 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
209}
210
211static int push_dl_task(struct rq *rq);
212
213#else
214
215static inline
216void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
217{
218}
219
220static inline
221void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
222{
223}
224
225static inline
226void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
227{
228}
229
230static inline
231void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
232{
233}
234
235#endif /* CONFIG_SMP */
236
aab03e05
DF
237static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
238static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
239static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
240 int flags);
241
242/*
243 * We are being explicitly informed that a new instance is starting,
244 * and this means that:
245 * - the absolute deadline of the entity has to be placed at
246 * current time + relative deadline;
247 * - the runtime of the entity has to be set to the maximum value.
248 *
249 * The capability of specifying such event is useful whenever a -deadline
250 * entity wants to (try to!) synchronize its behaviour with the scheduler's
251 * one, and to (try to!) reconcile itself with its own scheduling
252 * parameters.
253 */
2d3d891d
DF
254static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
255 struct sched_dl_entity *pi_se)
aab03e05
DF
256{
257 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
258 struct rq *rq = rq_of_dl_rq(dl_rq);
259
260 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
261
262 /*
263 * We use the regular wall clock time to set deadlines in the
264 * future; in fact, we must consider execution overheads (time
265 * spent on hardirq context, etc.).
266 */
2d3d891d
DF
267 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
268 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
269 dl_se->dl_new = 0;
270}
271
272/*
273 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
274 * possibility of a entity lasting more than what it declared, and thus
275 * exhausting its runtime.
276 *
277 * Here we are interested in making runtime overrun possible, but we do
278 * not want a entity which is misbehaving to affect the scheduling of all
279 * other entities.
280 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
281 * is used, in order to confine each entity within its own bandwidth.
282 *
283 * This function deals exactly with that, and ensures that when the runtime
284 * of a entity is replenished, its deadline is also postponed. That ensures
285 * the overrunning entity can't interfere with other entity in the system and
286 * can't make them miss their deadlines. Reasons why this kind of overruns
287 * could happen are, typically, a entity voluntarily trying to overcome its
288 * runtime, or it just underestimated it during sched_setscheduler_ex().
289 */
2d3d891d
DF
290static void replenish_dl_entity(struct sched_dl_entity *dl_se,
291 struct sched_dl_entity *pi_se)
aab03e05
DF
292{
293 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
294 struct rq *rq = rq_of_dl_rq(dl_rq);
295
2d3d891d
DF
296 BUG_ON(pi_se->dl_runtime <= 0);
297
298 /*
299 * This could be the case for a !-dl task that is boosted.
300 * Just go with full inherited parameters.
301 */
302 if (dl_se->dl_deadline == 0) {
303 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
304 dl_se->runtime = pi_se->dl_runtime;
305 }
306
aab03e05
DF
307 /*
308 * We keep moving the deadline away until we get some
309 * available runtime for the entity. This ensures correct
310 * handling of situations where the runtime overrun is
311 * arbitrary large.
312 */
313 while (dl_se->runtime <= 0) {
2d3d891d
DF
314 dl_se->deadline += pi_se->dl_period;
315 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
316 }
317
318 /*
319 * At this point, the deadline really should be "in
320 * the future" with respect to rq->clock. If it's
321 * not, we are, for some reason, lagging too much!
322 * Anyway, after having warn userspace abut that,
323 * we still try to keep the things running by
324 * resetting the deadline and the budget of the
325 * entity.
326 */
327 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
328 static bool lag_once = false;
329
330 if (!lag_once) {
331 lag_once = true;
332 printk_sched("sched: DL replenish lagged to much\n");
333 }
2d3d891d
DF
334 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
335 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
336 }
337}
338
339/*
340 * Here we check if --at time t-- an entity (which is probably being
341 * [re]activated or, in general, enqueued) can use its remaining runtime
342 * and its current deadline _without_ exceeding the bandwidth it is
343 * assigned (function returns true if it can't). We are in fact applying
344 * one of the CBS rules: when a task wakes up, if the residual runtime
345 * over residual deadline fits within the allocated bandwidth, then we
346 * can keep the current (absolute) deadline and residual budget without
347 * disrupting the schedulability of the system. Otherwise, we should
348 * refill the runtime and set the deadline a period in the future,
349 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
350 * result in breaking guarantees promised to other tasks (refer to
351 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
352 *
353 * This function returns true if:
354 *
755378a4 355 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
356 *
357 * IOW we can't recycle current parameters.
755378a4
HG
358 *
359 * Notice that the bandwidth check is done against the period. For
360 * task with deadline equal to period this is the same of using
361 * dl_deadline instead of dl_period in the equation above.
aab03e05 362 */
2d3d891d
DF
363static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
364 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
365{
366 u64 left, right;
367
368 /*
369 * left and right are the two sides of the equation above,
370 * after a bit of shuffling to use multiplications instead
371 * of divisions.
372 *
373 * Note that none of the time values involved in the two
374 * multiplications are absolute: dl_deadline and dl_runtime
375 * are the relative deadline and the maximum runtime of each
376 * instance, runtime is the runtime left for the last instance
377 * and (deadline - t), since t is rq->clock, is the time left
378 * to the (absolute) deadline. Even if overflowing the u64 type
379 * is very unlikely to occur in both cases, here we scale down
380 * as we want to avoid that risk at all. Scaling down by 10
381 * means that we reduce granularity to 1us. We are fine with it,
382 * since this is only a true/false check and, anyway, thinking
383 * of anything below microseconds resolution is actually fiction
384 * (but still we want to give the user that illusion >;).
385 */
332ac17e
DF
386 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
387 right = ((dl_se->deadline - t) >> DL_SCALE) *
388 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
389
390 return dl_time_before(right, left);
391}
392
393/*
394 * When a -deadline entity is queued back on the runqueue, its runtime and
395 * deadline might need updating.
396 *
397 * The policy here is that we update the deadline of the entity only if:
398 * - the current deadline is in the past,
399 * - using the remaining runtime with the current deadline would make
400 * the entity exceed its bandwidth.
401 */
2d3d891d
DF
402static void update_dl_entity(struct sched_dl_entity *dl_se,
403 struct sched_dl_entity *pi_se)
aab03e05
DF
404{
405 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
406 struct rq *rq = rq_of_dl_rq(dl_rq);
407
408 /*
409 * The arrival of a new instance needs special treatment, i.e.,
410 * the actual scheduling parameters have to be "renewed".
411 */
412 if (dl_se->dl_new) {
2d3d891d 413 setup_new_dl_entity(dl_se, pi_se);
aab03e05
DF
414 return;
415 }
416
417 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
418 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
419 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
420 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
421 }
422}
423
424/*
425 * If the entity depleted all its runtime, and if we want it to sleep
426 * while waiting for some new execution time to become available, we
427 * set the bandwidth enforcement timer to the replenishment instant
428 * and try to activate it.
429 *
430 * Notice that it is important for the caller to know if the timer
431 * actually started or not (i.e., the replenishment instant is in
432 * the future or in the past).
433 */
2d3d891d 434static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
aab03e05
DF
435{
436 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
437 struct rq *rq = rq_of_dl_rq(dl_rq);
438 ktime_t now, act;
439 ktime_t soft, hard;
440 unsigned long range;
441 s64 delta;
442
2d3d891d
DF
443 if (boosted)
444 return 0;
aab03e05
DF
445 /*
446 * We want the timer to fire at the deadline, but considering
447 * that it is actually coming from rq->clock and not from
448 * hrtimer's time base reading.
449 */
450 act = ns_to_ktime(dl_se->deadline);
451 now = hrtimer_cb_get_time(&dl_se->dl_timer);
452 delta = ktime_to_ns(now) - rq_clock(rq);
453 act = ktime_add_ns(act, delta);
454
455 /*
456 * If the expiry time already passed, e.g., because the value
457 * chosen as the deadline is too small, don't even try to
458 * start the timer in the past!
459 */
460 if (ktime_us_delta(act, now) < 0)
461 return 0;
462
463 hrtimer_set_expires(&dl_se->dl_timer, act);
464
465 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
466 hard = hrtimer_get_expires(&dl_se->dl_timer);
467 range = ktime_to_ns(ktime_sub(hard, soft));
468 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
469 range, HRTIMER_MODE_ABS, 0);
470
471 return hrtimer_active(&dl_se->dl_timer);
472}
473
474/*
475 * This is the bandwidth enforcement timer callback. If here, we know
476 * a task is not on its dl_rq, since the fact that the timer was running
477 * means the task is throttled and needs a runtime replenishment.
478 *
479 * However, what we actually do depends on the fact the task is active,
480 * (it is on its rq) or has been removed from there by a call to
481 * dequeue_task_dl(). In the former case we must issue the runtime
482 * replenishment and add the task back to the dl_rq; in the latter, we just
483 * do nothing but clearing dl_throttled, so that runtime and deadline
484 * updating (and the queueing back to dl_rq) will be done by the
485 * next call to enqueue_task_dl().
486 */
487static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
488{
489 struct sched_dl_entity *dl_se = container_of(timer,
490 struct sched_dl_entity,
491 dl_timer);
492 struct task_struct *p = dl_task_of(dl_se);
493 struct rq *rq = task_rq(p);
494 raw_spin_lock(&rq->lock);
495
496 /*
497 * We need to take care of a possible races here. In fact, the
498 * task might have changed its scheduling policy to something
499 * different from SCHED_DEADLINE or changed its reservation
500 * parameters (through sched_setscheduler()).
501 */
502 if (!dl_task(p) || dl_se->dl_new)
503 goto unlock;
504
505 sched_clock_tick();
506 update_rq_clock(rq);
507 dl_se->dl_throttled = 0;
508 if (p->on_rq) {
509 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
510 if (task_has_dl_policy(rq->curr))
511 check_preempt_curr_dl(rq, p, 0);
512 else
513 resched_task(rq->curr);
1baca4ce
JL
514#ifdef CONFIG_SMP
515 /*
516 * Queueing this task back might have overloaded rq,
517 * check if we need to kick someone away.
518 */
519 if (has_pushable_dl_tasks(rq))
520 push_dl_task(rq);
521#endif
aab03e05
DF
522 }
523unlock:
524 raw_spin_unlock(&rq->lock);
525
526 return HRTIMER_NORESTART;
527}
528
529void init_dl_task_timer(struct sched_dl_entity *dl_se)
530{
531 struct hrtimer *timer = &dl_se->dl_timer;
532
533 if (hrtimer_active(timer)) {
534 hrtimer_try_to_cancel(timer);
535 return;
536 }
537
538 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
539 timer->function = dl_task_timer;
540}
541
542static
543int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
544{
545 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
546 int rorun = dl_se->runtime <= 0;
547
548 if (!rorun && !dmiss)
549 return 0;
550
551 /*
552 * If we are beyond our current deadline and we are still
553 * executing, then we have already used some of the runtime of
554 * the next instance. Thus, if we do not account that, we are
555 * stealing bandwidth from the system at each deadline miss!
556 */
557 if (dmiss) {
558 dl_se->runtime = rorun ? dl_se->runtime : 0;
559 dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
560 }
561
562 return 1;
563}
564
565/*
566 * Update the current task's runtime statistics (provided it is still
567 * a -deadline task and has not been removed from the dl_rq).
568 */
569static void update_curr_dl(struct rq *rq)
570{
571 struct task_struct *curr = rq->curr;
572 struct sched_dl_entity *dl_se = &curr->dl;
573 u64 delta_exec;
574
575 if (!dl_task(curr) || !on_dl_rq(dl_se))
576 return;
577
578 /*
579 * Consumed budget is computed considering the time as
580 * observed by schedulable tasks (excluding time spent
581 * in hardirq context, etc.). Deadlines are instead
582 * computed using hard walltime. This seems to be the more
583 * natural solution, but the full ramifications of this
584 * approach need further study.
585 */
586 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
587 if (unlikely((s64)delta_exec < 0))
588 delta_exec = 0;
589
590 schedstat_set(curr->se.statistics.exec_max,
591 max(curr->se.statistics.exec_max, delta_exec));
592
593 curr->se.sum_exec_runtime += delta_exec;
594 account_group_exec_runtime(curr, delta_exec);
595
596 curr->se.exec_start = rq_clock_task(rq);
597 cpuacct_charge(curr, delta_exec);
598
239be4a9
DF
599 sched_rt_avg_update(rq, delta_exec);
600
aab03e05
DF
601 dl_se->runtime -= delta_exec;
602 if (dl_runtime_exceeded(rq, dl_se)) {
603 __dequeue_task_dl(rq, curr, 0);
2d3d891d 604 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
aab03e05
DF
605 dl_se->dl_throttled = 1;
606 else
607 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
608
609 if (!is_leftmost(curr, &rq->dl))
610 resched_task(curr);
611 }
1724813d
PZ
612
613 /*
614 * Because -- for now -- we share the rt bandwidth, we need to
615 * account our runtime there too, otherwise actual rt tasks
616 * would be able to exceed the shared quota.
617 *
618 * Account to the root rt group for now.
619 *
620 * The solution we're working towards is having the RT groups scheduled
621 * using deadline servers -- however there's a few nasties to figure
622 * out before that can happen.
623 */
624 if (rt_bandwidth_enabled()) {
625 struct rt_rq *rt_rq = &rq->rt;
626
627 raw_spin_lock(&rt_rq->rt_runtime_lock);
628 rt_rq->rt_time += delta_exec;
629 /*
630 * We'll let actual RT tasks worry about the overflow here, we
631 * have our own CBS to keep us inline -- see above.
632 */
633 raw_spin_unlock(&rt_rq->rt_runtime_lock);
634 }
aab03e05
DF
635}
636
1baca4ce
JL
637#ifdef CONFIG_SMP
638
639static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
640
641static inline u64 next_deadline(struct rq *rq)
642{
643 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
644
645 if (next && dl_prio(next->prio))
646 return next->dl.deadline;
647 else
648 return 0;
649}
650
651static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
652{
653 struct rq *rq = rq_of_dl_rq(dl_rq);
654
655 if (dl_rq->earliest_dl.curr == 0 ||
656 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
657 /*
658 * If the dl_rq had no -deadline tasks, or if the new task
659 * has shorter deadline than the current one on dl_rq, we
660 * know that the previous earliest becomes our next earliest,
661 * as the new task becomes the earliest itself.
662 */
663 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
664 dl_rq->earliest_dl.curr = deadline;
6bfd6d72 665 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
1baca4ce
JL
666 } else if (dl_rq->earliest_dl.next == 0 ||
667 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
668 /*
669 * On the other hand, if the new -deadline task has a
670 * a later deadline than the earliest one on dl_rq, but
671 * it is earlier than the next (if any), we must
672 * recompute the next-earliest.
673 */
674 dl_rq->earliest_dl.next = next_deadline(rq);
675 }
676}
677
678static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
679{
680 struct rq *rq = rq_of_dl_rq(dl_rq);
681
682 /*
683 * Since we may have removed our earliest (and/or next earliest)
684 * task we must recompute them.
685 */
686 if (!dl_rq->dl_nr_running) {
687 dl_rq->earliest_dl.curr = 0;
688 dl_rq->earliest_dl.next = 0;
6bfd6d72 689 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
690 } else {
691 struct rb_node *leftmost = dl_rq->rb_leftmost;
692 struct sched_dl_entity *entry;
693
694 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
695 dl_rq->earliest_dl.curr = entry->deadline;
696 dl_rq->earliest_dl.next = next_deadline(rq);
6bfd6d72 697 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
1baca4ce
JL
698 }
699}
700
701#else
702
703static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
704static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
705
706#endif /* CONFIG_SMP */
707
708static inline
709void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
710{
711 int prio = dl_task_of(dl_se)->prio;
712 u64 deadline = dl_se->deadline;
713
714 WARN_ON(!dl_prio(prio));
715 dl_rq->dl_nr_running++;
3d5f35bd 716 inc_nr_running(rq_of_dl_rq(dl_rq));
1baca4ce
JL
717
718 inc_dl_deadline(dl_rq, deadline);
719 inc_dl_migration(dl_se, dl_rq);
720}
721
722static inline
723void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
724{
725 int prio = dl_task_of(dl_se)->prio;
726
727 WARN_ON(!dl_prio(prio));
728 WARN_ON(!dl_rq->dl_nr_running);
729 dl_rq->dl_nr_running--;
3d5f35bd 730 dec_nr_running(rq_of_dl_rq(dl_rq));
1baca4ce
JL
731
732 dec_dl_deadline(dl_rq, dl_se->deadline);
733 dec_dl_migration(dl_se, dl_rq);
734}
735
aab03e05
DF
736static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
737{
738 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
739 struct rb_node **link = &dl_rq->rb_root.rb_node;
740 struct rb_node *parent = NULL;
741 struct sched_dl_entity *entry;
742 int leftmost = 1;
743
744 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
745
746 while (*link) {
747 parent = *link;
748 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
749 if (dl_time_before(dl_se->deadline, entry->deadline))
750 link = &parent->rb_left;
751 else {
752 link = &parent->rb_right;
753 leftmost = 0;
754 }
755 }
756
757 if (leftmost)
758 dl_rq->rb_leftmost = &dl_se->rb_node;
759
760 rb_link_node(&dl_se->rb_node, parent, link);
761 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
762
1baca4ce 763 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
764}
765
766static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
767{
768 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
769
770 if (RB_EMPTY_NODE(&dl_se->rb_node))
771 return;
772
773 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
774 struct rb_node *next_node;
775
776 next_node = rb_next(&dl_se->rb_node);
777 dl_rq->rb_leftmost = next_node;
778 }
779
780 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
781 RB_CLEAR_NODE(&dl_se->rb_node);
782
1baca4ce 783 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
784}
785
786static void
2d3d891d
DF
787enqueue_dl_entity(struct sched_dl_entity *dl_se,
788 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
789{
790 BUG_ON(on_dl_rq(dl_se));
791
792 /*
793 * If this is a wakeup or a new instance, the scheduling
794 * parameters of the task might need updating. Otherwise,
795 * we want a replenishment of its runtime.
796 */
797 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
2d3d891d 798 replenish_dl_entity(dl_se, pi_se);
aab03e05 799 else
2d3d891d 800 update_dl_entity(dl_se, pi_se);
aab03e05
DF
801
802 __enqueue_dl_entity(dl_se);
803}
804
805static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
806{
807 __dequeue_dl_entity(dl_se);
808}
809
810static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
811{
2d3d891d
DF
812 struct task_struct *pi_task = rt_mutex_get_top_task(p);
813 struct sched_dl_entity *pi_se = &p->dl;
814
815 /*
816 * Use the scheduling parameters of the top pi-waiter
817 * task if we have one and its (relative) deadline is
818 * smaller than our one... OTW we keep our runtime and
819 * deadline.
820 */
821 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
822 pi_se = &pi_task->dl;
823
aab03e05
DF
824 /*
825 * If p is throttled, we do nothing. In fact, if it exhausted
826 * its budget it needs a replenishment and, since it now is on
827 * its rq, the bandwidth timer callback (which clearly has not
828 * run yet) will take care of this.
829 */
830 if (p->dl.dl_throttled)
831 return;
832
2d3d891d 833 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce
JL
834
835 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
836 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
837}
838
839static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
840{
841 dequeue_dl_entity(&p->dl);
1baca4ce 842 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
843}
844
845static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
846{
847 update_curr_dl(rq);
848 __dequeue_task_dl(rq, p, flags);
aab03e05
DF
849}
850
851/*
852 * Yield task semantic for -deadline tasks is:
853 *
854 * get off from the CPU until our next instance, with
855 * a new runtime. This is of little use now, since we
856 * don't have a bandwidth reclaiming mechanism. Anyway,
857 * bandwidth reclaiming is planned for the future, and
858 * yield_task_dl will indicate that some spare budget
859 * is available for other task instances to use it.
860 */
861static void yield_task_dl(struct rq *rq)
862{
863 struct task_struct *p = rq->curr;
864
865 /*
866 * We make the task go to sleep until its current deadline by
867 * forcing its runtime to zero. This way, update_curr_dl() stops
868 * it and the bandwidth timer will wake it up and will give it
869 * new scheduling parameters (thanks to dl_new=1).
870 */
871 if (p->dl.runtime > 0) {
872 rq->curr->dl.dl_new = 1;
873 p->dl.runtime = 0;
874 }
875 update_curr_dl(rq);
876}
877
1baca4ce
JL
878#ifdef CONFIG_SMP
879
880static int find_later_rq(struct task_struct *task);
1baca4ce
JL
881
882static int
883select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
884{
885 struct task_struct *curr;
886 struct rq *rq;
887
888 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
889 goto out;
890
891 rq = cpu_rq(cpu);
892
893 rcu_read_lock();
894 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
895
896 /*
897 * If we are dealing with a -deadline task, we must
898 * decide where to wake it up.
899 * If it has a later deadline and the current task
900 * on this rq can't move (provided the waking task
901 * can!) we prefer to send it somewhere else. On the
902 * other hand, if it has a shorter deadline, we
903 * try to make it stay here, it might be important.
904 */
905 if (unlikely(dl_task(curr)) &&
906 (curr->nr_cpus_allowed < 2 ||
907 !dl_entity_preempt(&p->dl, &curr->dl)) &&
908 (p->nr_cpus_allowed > 1)) {
909 int target = find_later_rq(p);
910
911 if (target != -1)
912 cpu = target;
913 }
914 rcu_read_unlock();
915
916out:
917 return cpu;
918}
919
920static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
921{
922 /*
923 * Current can't be migrated, useless to reschedule,
924 * let's hope p can move out.
925 */
926 if (rq->curr->nr_cpus_allowed == 1 ||
6bfd6d72 927 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
928 return;
929
930 /*
931 * p is migratable, so let's not schedule it and
932 * see if it is pushed or pulled somewhere else.
933 */
934 if (p->nr_cpus_allowed != 1 &&
6bfd6d72 935 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
936 return;
937
938 resched_task(rq->curr);
939}
940
941#endif /* CONFIG_SMP */
942
aab03e05
DF
943/*
944 * Only called when both the current and waking task are -deadline
945 * tasks.
946 */
947static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
948 int flags)
949{
1baca4ce 950 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
aab03e05 951 resched_task(rq->curr);
1baca4ce
JL
952 return;
953 }
954
955#ifdef CONFIG_SMP
956 /*
957 * In the unlikely case current and p have the same deadline
958 * let us try to decide what's the best thing to do...
959 */
332ac17e
DF
960 if ((p->dl.deadline == rq->curr->dl.deadline) &&
961 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
962 check_preempt_equal_dl(rq, p);
963#endif /* CONFIG_SMP */
aab03e05
DF
964}
965
966#ifdef CONFIG_SCHED_HRTICK
967static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
968{
969 s64 delta = p->dl.dl_runtime - p->dl.runtime;
970
971 if (delta > 10000)
972 hrtick_start(rq, p->dl.runtime);
973}
974#endif
975
976static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
977 struct dl_rq *dl_rq)
978{
979 struct rb_node *left = dl_rq->rb_leftmost;
980
981 if (!left)
982 return NULL;
983
984 return rb_entry(left, struct sched_dl_entity, rb_node);
985}
986
987struct task_struct *pick_next_task_dl(struct rq *rq)
988{
989 struct sched_dl_entity *dl_se;
990 struct task_struct *p;
991 struct dl_rq *dl_rq;
992
993 dl_rq = &rq->dl;
994
995 if (unlikely(!dl_rq->dl_nr_running))
996 return NULL;
997
998 dl_se = pick_next_dl_entity(rq, dl_rq);
999 BUG_ON(!dl_se);
1000
1001 p = dl_task_of(dl_se);
1002 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1003
1004 /* Running task will never be pushed. */
71362650 1005 dequeue_pushable_dl_task(rq, p);
1baca4ce 1006
aab03e05
DF
1007#ifdef CONFIG_SCHED_HRTICK
1008 if (hrtick_enabled(rq))
1009 start_hrtick_dl(rq, p);
1010#endif
1baca4ce
JL
1011
1012#ifdef CONFIG_SMP
1013 rq->post_schedule = has_pushable_dl_tasks(rq);
1014#endif /* CONFIG_SMP */
1015
aab03e05
DF
1016 return p;
1017}
1018
1019static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1020{
1021 update_curr_dl(rq);
1baca4ce
JL
1022
1023 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1024 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1025}
1026
1027static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1028{
1029 update_curr_dl(rq);
1030
1031#ifdef CONFIG_SCHED_HRTICK
1032 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1033 start_hrtick_dl(rq, p);
1034#endif
1035}
1036
1037static void task_fork_dl(struct task_struct *p)
1038{
1039 /*
1040 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1041 * sched_fork()
1042 */
1043}
1044
1045static void task_dead_dl(struct task_struct *p)
1046{
1047 struct hrtimer *timer = &p->dl.dl_timer;
332ac17e
DF
1048 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1049
1050 /*
1051 * Since we are TASK_DEAD we won't slip out of the domain!
1052 */
1053 raw_spin_lock_irq(&dl_b->lock);
1054 dl_b->total_bw -= p->dl.dl_bw;
1055 raw_spin_unlock_irq(&dl_b->lock);
aab03e05 1056
2d3d891d 1057 hrtimer_cancel(timer);
aab03e05
DF
1058}
1059
1060static void set_curr_task_dl(struct rq *rq)
1061{
1062 struct task_struct *p = rq->curr;
1063
1064 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1065
1066 /* You can't push away the running task */
1067 dequeue_pushable_dl_task(rq, p);
1068}
1069
1070#ifdef CONFIG_SMP
1071
1072/* Only try algorithms three times */
1073#define DL_MAX_TRIES 3
1074
1075static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1076{
1077 if (!task_running(rq, p) &&
1078 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1079 (p->nr_cpus_allowed > 1))
1080 return 1;
1081
1082 return 0;
1083}
1084
1085/* Returns the second earliest -deadline task, NULL otherwise */
1086static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1087{
1088 struct rb_node *next_node = rq->dl.rb_leftmost;
1089 struct sched_dl_entity *dl_se;
1090 struct task_struct *p = NULL;
1091
1092next_node:
1093 next_node = rb_next(next_node);
1094 if (next_node) {
1095 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1096 p = dl_task_of(dl_se);
1097
1098 if (pick_dl_task(rq, p, cpu))
1099 return p;
1100
1101 goto next_node;
1102 }
1103
1104 return NULL;
1105}
1106
1baca4ce
JL
1107static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1108
1109static int find_later_rq(struct task_struct *task)
1110{
1111 struct sched_domain *sd;
1112 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1113 int this_cpu = smp_processor_id();
1114 int best_cpu, cpu = task_cpu(task);
1115
1116 /* Make sure the mask is initialized first */
1117 if (unlikely(!later_mask))
1118 return -1;
1119
1120 if (task->nr_cpus_allowed == 1)
1121 return -1;
1122
6bfd6d72
JL
1123 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1124 task, later_mask);
1baca4ce
JL
1125 if (best_cpu == -1)
1126 return -1;
1127
1128 /*
1129 * If we are here, some target has been found,
1130 * the most suitable of which is cached in best_cpu.
1131 * This is, among the runqueues where the current tasks
1132 * have later deadlines than the task's one, the rq
1133 * with the latest possible one.
1134 *
1135 * Now we check how well this matches with task's
1136 * affinity and system topology.
1137 *
1138 * The last cpu where the task run is our first
1139 * guess, since it is most likely cache-hot there.
1140 */
1141 if (cpumask_test_cpu(cpu, later_mask))
1142 return cpu;
1143 /*
1144 * Check if this_cpu is to be skipped (i.e., it is
1145 * not in the mask) or not.
1146 */
1147 if (!cpumask_test_cpu(this_cpu, later_mask))
1148 this_cpu = -1;
1149
1150 rcu_read_lock();
1151 for_each_domain(cpu, sd) {
1152 if (sd->flags & SD_WAKE_AFFINE) {
1153
1154 /*
1155 * If possible, preempting this_cpu is
1156 * cheaper than migrating.
1157 */
1158 if (this_cpu != -1 &&
1159 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1160 rcu_read_unlock();
1161 return this_cpu;
1162 }
1163
1164 /*
1165 * Last chance: if best_cpu is valid and is
1166 * in the mask, that becomes our choice.
1167 */
1168 if (best_cpu < nr_cpu_ids &&
1169 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1170 rcu_read_unlock();
1171 return best_cpu;
1172 }
1173 }
1174 }
1175 rcu_read_unlock();
1176
1177 /*
1178 * At this point, all our guesses failed, we just return
1179 * 'something', and let the caller sort the things out.
1180 */
1181 if (this_cpu != -1)
1182 return this_cpu;
1183
1184 cpu = cpumask_any(later_mask);
1185 if (cpu < nr_cpu_ids)
1186 return cpu;
1187
1188 return -1;
1189}
1190
1191/* Locks the rq it finds */
1192static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1193{
1194 struct rq *later_rq = NULL;
1195 int tries;
1196 int cpu;
1197
1198 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1199 cpu = find_later_rq(task);
1200
1201 if ((cpu == -1) || (cpu == rq->cpu))
1202 break;
1203
1204 later_rq = cpu_rq(cpu);
1205
1206 /* Retry if something changed. */
1207 if (double_lock_balance(rq, later_rq)) {
1208 if (unlikely(task_rq(task) != rq ||
1209 !cpumask_test_cpu(later_rq->cpu,
1210 &task->cpus_allowed) ||
1211 task_running(rq, task) || !task->on_rq)) {
1212 double_unlock_balance(rq, later_rq);
1213 later_rq = NULL;
1214 break;
1215 }
1216 }
1217
1218 /*
1219 * If the rq we found has no -deadline task, or
1220 * its earliest one has a later deadline than our
1221 * task, the rq is a good one.
1222 */
1223 if (!later_rq->dl.dl_nr_running ||
1224 dl_time_before(task->dl.deadline,
1225 later_rq->dl.earliest_dl.curr))
1226 break;
1227
1228 /* Otherwise we try again. */
1229 double_unlock_balance(rq, later_rq);
1230 later_rq = NULL;
1231 }
1232
1233 return later_rq;
1234}
1235
1236static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1237{
1238 struct task_struct *p;
1239
1240 if (!has_pushable_dl_tasks(rq))
1241 return NULL;
1242
1243 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1244 struct task_struct, pushable_dl_tasks);
1245
1246 BUG_ON(rq->cpu != task_cpu(p));
1247 BUG_ON(task_current(rq, p));
1248 BUG_ON(p->nr_cpus_allowed <= 1);
1249
332ac17e 1250 BUG_ON(!p->on_rq);
1baca4ce
JL
1251 BUG_ON(!dl_task(p));
1252
1253 return p;
1254}
1255
1256/*
1257 * See if the non running -deadline tasks on this rq
1258 * can be sent to some other CPU where they can preempt
1259 * and start executing.
1260 */
1261static int push_dl_task(struct rq *rq)
1262{
1263 struct task_struct *next_task;
1264 struct rq *later_rq;
1265
1266 if (!rq->dl.overloaded)
1267 return 0;
1268
1269 next_task = pick_next_pushable_dl_task(rq);
1270 if (!next_task)
1271 return 0;
1272
1273retry:
1274 if (unlikely(next_task == rq->curr)) {
1275 WARN_ON(1);
1276 return 0;
1277 }
1278
1279 /*
1280 * If next_task preempts rq->curr, and rq->curr
1281 * can move away, it makes sense to just reschedule
1282 * without going further in pushing next_task.
1283 */
1284 if (dl_task(rq->curr) &&
1285 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1286 rq->curr->nr_cpus_allowed > 1) {
1287 resched_task(rq->curr);
1288 return 0;
1289 }
1290
1291 /* We might release rq lock */
1292 get_task_struct(next_task);
1293
1294 /* Will lock the rq it'll find */
1295 later_rq = find_lock_later_rq(next_task, rq);
1296 if (!later_rq) {
1297 struct task_struct *task;
1298
1299 /*
1300 * We must check all this again, since
1301 * find_lock_later_rq releases rq->lock and it is
1302 * then possible that next_task has migrated.
1303 */
1304 task = pick_next_pushable_dl_task(rq);
1305 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1306 /*
1307 * The task is still there. We don't try
1308 * again, some other cpu will pull it when ready.
1309 */
1310 dequeue_pushable_dl_task(rq, next_task);
1311 goto out;
1312 }
1313
1314 if (!task)
1315 /* No more tasks */
1316 goto out;
1317
1318 put_task_struct(next_task);
1319 next_task = task;
1320 goto retry;
1321 }
1322
1323 deactivate_task(rq, next_task, 0);
1324 set_task_cpu(next_task, later_rq->cpu);
1325 activate_task(later_rq, next_task, 0);
1326
1327 resched_task(later_rq->curr);
1328
1329 double_unlock_balance(rq, later_rq);
1330
1331out:
1332 put_task_struct(next_task);
1333
1334 return 1;
1335}
1336
1337static void push_dl_tasks(struct rq *rq)
1338{
1339 /* Terminates as it moves a -deadline task */
1340 while (push_dl_task(rq))
1341 ;
aab03e05
DF
1342}
1343
1baca4ce
JL
1344static int pull_dl_task(struct rq *this_rq)
1345{
1346 int this_cpu = this_rq->cpu, ret = 0, cpu;
1347 struct task_struct *p;
1348 struct rq *src_rq;
1349 u64 dmin = LONG_MAX;
1350
1351 if (likely(!dl_overloaded(this_rq)))
1352 return 0;
1353
1354 /*
1355 * Match the barrier from dl_set_overloaded; this guarantees that if we
1356 * see overloaded we must also see the dlo_mask bit.
1357 */
1358 smp_rmb();
1359
1360 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1361 if (this_cpu == cpu)
1362 continue;
1363
1364 src_rq = cpu_rq(cpu);
1365
1366 /*
1367 * It looks racy, abd it is! However, as in sched_rt.c,
1368 * we are fine with this.
1369 */
1370 if (this_rq->dl.dl_nr_running &&
1371 dl_time_before(this_rq->dl.earliest_dl.curr,
1372 src_rq->dl.earliest_dl.next))
1373 continue;
1374
1375 /* Might drop this_rq->lock */
1376 double_lock_balance(this_rq, src_rq);
1377
1378 /*
1379 * If there are no more pullable tasks on the
1380 * rq, we're done with it.
1381 */
1382 if (src_rq->dl.dl_nr_running <= 1)
1383 goto skip;
1384
1385 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1386
1387 /*
1388 * We found a task to be pulled if:
1389 * - it preempts our current (if there's one),
1390 * - it will preempt the last one we pulled (if any).
1391 */
1392 if (p && dl_time_before(p->dl.deadline, dmin) &&
1393 (!this_rq->dl.dl_nr_running ||
1394 dl_time_before(p->dl.deadline,
1395 this_rq->dl.earliest_dl.curr))) {
1396 WARN_ON(p == src_rq->curr);
332ac17e 1397 WARN_ON(!p->on_rq);
1baca4ce
JL
1398
1399 /*
1400 * Then we pull iff p has actually an earlier
1401 * deadline than the current task of its runqueue.
1402 */
1403 if (dl_time_before(p->dl.deadline,
1404 src_rq->curr->dl.deadline))
1405 goto skip;
1406
1407 ret = 1;
1408
1409 deactivate_task(src_rq, p, 0);
1410 set_task_cpu(p, this_cpu);
1411 activate_task(this_rq, p, 0);
1412 dmin = p->dl.deadline;
1413
1414 /* Is there any other task even earlier? */
1415 }
1416skip:
1417 double_unlock_balance(this_rq, src_rq);
1418 }
1419
1420 return ret;
1421}
1422
1423static void pre_schedule_dl(struct rq *rq, struct task_struct *prev)
1424{
1425 /* Try to pull other tasks here */
1426 if (dl_task(prev))
1427 pull_dl_task(rq);
1428}
1429
1430static void post_schedule_dl(struct rq *rq)
1431{
1432 push_dl_tasks(rq);
1433}
1434
1435/*
1436 * Since the task is not running and a reschedule is not going to happen
1437 * anytime soon on its runqueue, we try pushing it away now.
1438 */
1439static void task_woken_dl(struct rq *rq, struct task_struct *p)
1440{
1441 if (!task_running(rq, p) &&
1442 !test_tsk_need_resched(rq->curr) &&
1443 has_pushable_dl_tasks(rq) &&
1444 p->nr_cpus_allowed > 1 &&
1445 dl_task(rq->curr) &&
1446 (rq->curr->nr_cpus_allowed < 2 ||
1447 dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1448 push_dl_tasks(rq);
1449 }
1450}
1451
1452static void set_cpus_allowed_dl(struct task_struct *p,
1453 const struct cpumask *new_mask)
1454{
1455 struct rq *rq;
1456 int weight;
1457
1458 BUG_ON(!dl_task(p));
1459
1460 /*
1461 * Update only if the task is actually running (i.e.,
1462 * it is on the rq AND it is not throttled).
1463 */
1464 if (!on_dl_rq(&p->dl))
1465 return;
1466
1467 weight = cpumask_weight(new_mask);
1468
1469 /*
1470 * Only update if the process changes its state from whether it
1471 * can migrate or not.
1472 */
1473 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1474 return;
1475
1476 rq = task_rq(p);
1477
1478 /*
1479 * The process used to be able to migrate OR it can now migrate
1480 */
1481 if (weight <= 1) {
1482 if (!task_current(rq, p))
1483 dequeue_pushable_dl_task(rq, p);
1484 BUG_ON(!rq->dl.dl_nr_migratory);
1485 rq->dl.dl_nr_migratory--;
1486 } else {
1487 if (!task_current(rq, p))
1488 enqueue_pushable_dl_task(rq, p);
1489 rq->dl.dl_nr_migratory++;
1490 }
1491
1492 update_dl_migration(&rq->dl);
1493}
1494
1495/* Assumes rq->lock is held */
1496static void rq_online_dl(struct rq *rq)
1497{
1498 if (rq->dl.overloaded)
1499 dl_set_overload(rq);
6bfd6d72
JL
1500
1501 if (rq->dl.dl_nr_running > 0)
1502 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1baca4ce
JL
1503}
1504
1505/* Assumes rq->lock is held */
1506static void rq_offline_dl(struct rq *rq)
1507{
1508 if (rq->dl.overloaded)
1509 dl_clear_overload(rq);
6bfd6d72
JL
1510
1511 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
1512}
1513
1514void init_sched_dl_class(void)
1515{
1516 unsigned int i;
1517
1518 for_each_possible_cpu(i)
1519 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1520 GFP_KERNEL, cpu_to_node(i));
1521}
1522
1523#endif /* CONFIG_SMP */
1524
aab03e05
DF
1525static void switched_from_dl(struct rq *rq, struct task_struct *p)
1526{
1baca4ce 1527 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
aab03e05 1528 hrtimer_try_to_cancel(&p->dl.dl_timer);
1baca4ce
JL
1529
1530#ifdef CONFIG_SMP
1531 /*
1532 * Since this might be the only -deadline task on the rq,
1533 * this is the right place to try to pull some other one
1534 * from an overloaded cpu, if any.
1535 */
1536 if (!rq->dl.dl_nr_running)
1537 pull_dl_task(rq);
1538#endif
aab03e05
DF
1539}
1540
1baca4ce
JL
1541/*
1542 * When switching to -deadline, we may overload the rq, then
1543 * we try to push someone off, if possible.
1544 */
aab03e05
DF
1545static void switched_to_dl(struct rq *rq, struct task_struct *p)
1546{
1baca4ce
JL
1547 int check_resched = 1;
1548
aab03e05
DF
1549 /*
1550 * If p is throttled, don't consider the possibility
1551 * of preempting rq->curr, the check will be done right
1552 * after its runtime will get replenished.
1553 */
1554 if (unlikely(p->dl.dl_throttled))
1555 return;
1556
1557 if (p->on_rq || rq->curr != p) {
1baca4ce
JL
1558#ifdef CONFIG_SMP
1559 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1560 /* Only reschedule if pushing failed */
1561 check_resched = 0;
1562#endif /* CONFIG_SMP */
1563 if (check_resched && task_has_dl_policy(rq->curr))
aab03e05 1564 check_preempt_curr_dl(rq, p, 0);
aab03e05
DF
1565 }
1566}
1567
1baca4ce
JL
1568/*
1569 * If the scheduling parameters of a -deadline task changed,
1570 * a push or pull operation might be needed.
1571 */
aab03e05
DF
1572static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1573 int oldprio)
1574{
1baca4ce 1575 if (p->on_rq || rq->curr == p) {
aab03e05 1576#ifdef CONFIG_SMP
1baca4ce
JL
1577 /*
1578 * This might be too much, but unfortunately
1579 * we don't have the old deadline value, and
1580 * we can't argue if the task is increasing
1581 * or lowering its prio, so...
1582 */
1583 if (!rq->dl.overloaded)
1584 pull_dl_task(rq);
1585
1586 /*
1587 * If we now have a earlier deadline task than p,
1588 * then reschedule, provided p is still on this
1589 * runqueue.
1590 */
1591 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1592 rq->curr == p)
1593 resched_task(p);
1594#else
1595 /*
1596 * Again, we don't know if p has a earlier
1597 * or later deadline, so let's blindly set a
1598 * (maybe not needed) rescheduling point.
1599 */
1600 resched_task(p);
1601#endif /* CONFIG_SMP */
1602 } else
1603 switched_to_dl(rq, p);
aab03e05 1604}
aab03e05
DF
1605
1606const struct sched_class dl_sched_class = {
1607 .next = &rt_sched_class,
1608 .enqueue_task = enqueue_task_dl,
1609 .dequeue_task = dequeue_task_dl,
1610 .yield_task = yield_task_dl,
1611
1612 .check_preempt_curr = check_preempt_curr_dl,
1613
1614 .pick_next_task = pick_next_task_dl,
1615 .put_prev_task = put_prev_task_dl,
1616
1617#ifdef CONFIG_SMP
1618 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1619 .set_cpus_allowed = set_cpus_allowed_dl,
1620 .rq_online = rq_online_dl,
1621 .rq_offline = rq_offline_dl,
1622 .pre_schedule = pre_schedule_dl,
1623 .post_schedule = post_schedule_dl,
1624 .task_woken = task_woken_dl,
aab03e05
DF
1625#endif
1626
1627 .set_curr_task = set_curr_task_dl,
1628 .task_tick = task_tick_dl,
1629 .task_fork = task_fork_dl,
1630 .task_dead = task_dead_dl,
1631
1632 .prio_changed = prio_changed_dl,
1633 .switched_from = switched_from_dl,
1634 .switched_to = switched_to_dl,
1635};