sched: Fix docbook parameter annotation error in wait.h
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
332ac17e
DF
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
60extern unsigned long to_ratio(u64 period, u64 runtime);
61
62void init_dl_bw(struct dl_bw *dl_b)
63{
64 raw_spin_lock_init(&dl_b->lock);
65 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 66 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
67 dl_b->bw = -1;
68 else
1724813d 69 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
70 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
71 dl_b->total_bw = 0;
72}
73
aab03e05
DF
74void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
75{
76 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
77
78#ifdef CONFIG_SMP
79 /* zero means no -deadline tasks */
80 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
81
82 dl_rq->dl_nr_migratory = 0;
83 dl_rq->overloaded = 0;
84 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
85#else
86 init_dl_bw(&dl_rq->dl_bw);
1baca4ce
JL
87#endif
88}
89
90#ifdef CONFIG_SMP
91
92static inline int dl_overloaded(struct rq *rq)
93{
94 return atomic_read(&rq->rd->dlo_count);
95}
96
97static inline void dl_set_overload(struct rq *rq)
98{
99 if (!rq->online)
100 return;
101
102 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
103 /*
104 * Must be visible before the overload count is
105 * set (as in sched_rt.c).
106 *
107 * Matched by the barrier in pull_dl_task().
108 */
109 smp_wmb();
110 atomic_inc(&rq->rd->dlo_count);
111}
112
113static inline void dl_clear_overload(struct rq *rq)
114{
115 if (!rq->online)
116 return;
117
118 atomic_dec(&rq->rd->dlo_count);
119 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120}
121
122static void update_dl_migration(struct dl_rq *dl_rq)
123{
124 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_total > 1) {
125 if (!dl_rq->overloaded) {
126 dl_set_overload(rq_of_dl_rq(dl_rq));
127 dl_rq->overloaded = 1;
128 }
129 } else if (dl_rq->overloaded) {
130 dl_clear_overload(rq_of_dl_rq(dl_rq));
131 dl_rq->overloaded = 0;
132 }
133}
134
135static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136{
137 struct task_struct *p = dl_task_of(dl_se);
138 dl_rq = &rq_of_dl_rq(dl_rq)->dl;
139
140 dl_rq->dl_nr_total++;
141 if (p->nr_cpus_allowed > 1)
142 dl_rq->dl_nr_migratory++;
143
144 update_dl_migration(dl_rq);
145}
146
147static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
148{
149 struct task_struct *p = dl_task_of(dl_se);
150 dl_rq = &rq_of_dl_rq(dl_rq)->dl;
151
152 dl_rq->dl_nr_total--;
153 if (p->nr_cpus_allowed > 1)
154 dl_rq->dl_nr_migratory--;
155
156 update_dl_migration(dl_rq);
157}
158
159/*
160 * The list of pushable -deadline task is not a plist, like in
161 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
162 */
163static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
164{
165 struct dl_rq *dl_rq = &rq->dl;
166 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
167 struct rb_node *parent = NULL;
168 struct task_struct *entry;
169 int leftmost = 1;
170
171 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
172
173 while (*link) {
174 parent = *link;
175 entry = rb_entry(parent, struct task_struct,
176 pushable_dl_tasks);
177 if (dl_entity_preempt(&p->dl, &entry->dl))
178 link = &parent->rb_left;
179 else {
180 link = &parent->rb_right;
181 leftmost = 0;
182 }
183 }
184
185 if (leftmost)
186 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
187
188 rb_link_node(&p->pushable_dl_tasks, parent, link);
189 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
190}
191
1baca4ce
JL
192static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
193{
194 struct dl_rq *dl_rq = &rq->dl;
195
196 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
197 return;
198
199 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
200 struct rb_node *next_node;
201
202 next_node = rb_next(&p->pushable_dl_tasks);
203 dl_rq->pushable_dl_tasks_leftmost = next_node;
204 }
205
206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 RB_CLEAR_NODE(&p->pushable_dl_tasks);
208}
209
210static inline int has_pushable_dl_tasks(struct rq *rq)
211{
212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213}
214
215static int push_dl_task(struct rq *rq);
216
217#else
218
219static inline
220void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
221{
222}
223
224static inline
225void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
226{
227}
228
229static inline
230void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
231{
232}
233
234static inline
235void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
236{
237}
238
239#endif /* CONFIG_SMP */
240
aab03e05
DF
241static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
242static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
243static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
244 int flags);
245
246/*
247 * We are being explicitly informed that a new instance is starting,
248 * and this means that:
249 * - the absolute deadline of the entity has to be placed at
250 * current time + relative deadline;
251 * - the runtime of the entity has to be set to the maximum value.
252 *
253 * The capability of specifying such event is useful whenever a -deadline
254 * entity wants to (try to!) synchronize its behaviour with the scheduler's
255 * one, and to (try to!) reconcile itself with its own scheduling
256 * parameters.
257 */
2d3d891d
DF
258static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
259 struct sched_dl_entity *pi_se)
aab03e05
DF
260{
261 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
262 struct rq *rq = rq_of_dl_rq(dl_rq);
263
264 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
265
266 /*
267 * We use the regular wall clock time to set deadlines in the
268 * future; in fact, we must consider execution overheads (time
269 * spent on hardirq context, etc.).
270 */
2d3d891d
DF
271 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
272 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
273 dl_se->dl_new = 0;
274}
275
276/*
277 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
278 * possibility of a entity lasting more than what it declared, and thus
279 * exhausting its runtime.
280 *
281 * Here we are interested in making runtime overrun possible, but we do
282 * not want a entity which is misbehaving to affect the scheduling of all
283 * other entities.
284 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
285 * is used, in order to confine each entity within its own bandwidth.
286 *
287 * This function deals exactly with that, and ensures that when the runtime
288 * of a entity is replenished, its deadline is also postponed. That ensures
289 * the overrunning entity can't interfere with other entity in the system and
290 * can't make them miss their deadlines. Reasons why this kind of overruns
291 * could happen are, typically, a entity voluntarily trying to overcome its
292 * runtime, or it just underestimated it during sched_setscheduler_ex().
293 */
2d3d891d
DF
294static void replenish_dl_entity(struct sched_dl_entity *dl_se,
295 struct sched_dl_entity *pi_se)
aab03e05
DF
296{
297 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
298 struct rq *rq = rq_of_dl_rq(dl_rq);
299
2d3d891d
DF
300 BUG_ON(pi_se->dl_runtime <= 0);
301
302 /*
303 * This could be the case for a !-dl task that is boosted.
304 * Just go with full inherited parameters.
305 */
306 if (dl_se->dl_deadline == 0) {
307 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
308 dl_se->runtime = pi_se->dl_runtime;
309 }
310
aab03e05
DF
311 /*
312 * We keep moving the deadline away until we get some
313 * available runtime for the entity. This ensures correct
314 * handling of situations where the runtime overrun is
315 * arbitrary large.
316 */
317 while (dl_se->runtime <= 0) {
2d3d891d
DF
318 dl_se->deadline += pi_se->dl_period;
319 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
320 }
321
322 /*
323 * At this point, the deadline really should be "in
324 * the future" with respect to rq->clock. If it's
325 * not, we are, for some reason, lagging too much!
326 * Anyway, after having warn userspace abut that,
327 * we still try to keep the things running by
328 * resetting the deadline and the budget of the
329 * entity.
330 */
331 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
332 static bool lag_once = false;
333
334 if (!lag_once) {
335 lag_once = true;
336 printk_sched("sched: DL replenish lagged to much\n");
337 }
2d3d891d
DF
338 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
339 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
340 }
341}
342
343/*
344 * Here we check if --at time t-- an entity (which is probably being
345 * [re]activated or, in general, enqueued) can use its remaining runtime
346 * and its current deadline _without_ exceeding the bandwidth it is
347 * assigned (function returns true if it can't). We are in fact applying
348 * one of the CBS rules: when a task wakes up, if the residual runtime
349 * over residual deadline fits within the allocated bandwidth, then we
350 * can keep the current (absolute) deadline and residual budget without
351 * disrupting the schedulability of the system. Otherwise, we should
352 * refill the runtime and set the deadline a period in the future,
353 * because keeping the current (absolute) deadline of the task would
354 * result in breaking guarantees promised to other tasks.
355 *
356 * This function returns true if:
357 *
755378a4 358 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
359 *
360 * IOW we can't recycle current parameters.
755378a4
HG
361 *
362 * Notice that the bandwidth check is done against the period. For
363 * task with deadline equal to period this is the same of using
364 * dl_deadline instead of dl_period in the equation above.
aab03e05 365 */
2d3d891d
DF
366static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
367 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
368{
369 u64 left, right;
370
371 /*
372 * left and right are the two sides of the equation above,
373 * after a bit of shuffling to use multiplications instead
374 * of divisions.
375 *
376 * Note that none of the time values involved in the two
377 * multiplications are absolute: dl_deadline and dl_runtime
378 * are the relative deadline and the maximum runtime of each
379 * instance, runtime is the runtime left for the last instance
380 * and (deadline - t), since t is rq->clock, is the time left
381 * to the (absolute) deadline. Even if overflowing the u64 type
382 * is very unlikely to occur in both cases, here we scale down
383 * as we want to avoid that risk at all. Scaling down by 10
384 * means that we reduce granularity to 1us. We are fine with it,
385 * since this is only a true/false check and, anyway, thinking
386 * of anything below microseconds resolution is actually fiction
387 * (but still we want to give the user that illusion >;).
388 */
332ac17e
DF
389 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
390 right = ((dl_se->deadline - t) >> DL_SCALE) *
391 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
392
393 return dl_time_before(right, left);
394}
395
396/*
397 * When a -deadline entity is queued back on the runqueue, its runtime and
398 * deadline might need updating.
399 *
400 * The policy here is that we update the deadline of the entity only if:
401 * - the current deadline is in the past,
402 * - using the remaining runtime with the current deadline would make
403 * the entity exceed its bandwidth.
404 */
2d3d891d
DF
405static void update_dl_entity(struct sched_dl_entity *dl_se,
406 struct sched_dl_entity *pi_se)
aab03e05
DF
407{
408 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
409 struct rq *rq = rq_of_dl_rq(dl_rq);
410
411 /*
412 * The arrival of a new instance needs special treatment, i.e.,
413 * the actual scheduling parameters have to be "renewed".
414 */
415 if (dl_se->dl_new) {
2d3d891d 416 setup_new_dl_entity(dl_se, pi_se);
aab03e05
DF
417 return;
418 }
419
420 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
421 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
422 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
423 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
424 }
425}
426
427/*
428 * If the entity depleted all its runtime, and if we want it to sleep
429 * while waiting for some new execution time to become available, we
430 * set the bandwidth enforcement timer to the replenishment instant
431 * and try to activate it.
432 *
433 * Notice that it is important for the caller to know if the timer
434 * actually started or not (i.e., the replenishment instant is in
435 * the future or in the past).
436 */
2d3d891d 437static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
aab03e05
DF
438{
439 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
440 struct rq *rq = rq_of_dl_rq(dl_rq);
441 ktime_t now, act;
442 ktime_t soft, hard;
443 unsigned long range;
444 s64 delta;
445
2d3d891d
DF
446 if (boosted)
447 return 0;
aab03e05
DF
448 /*
449 * We want the timer to fire at the deadline, but considering
450 * that it is actually coming from rq->clock and not from
451 * hrtimer's time base reading.
452 */
453 act = ns_to_ktime(dl_se->deadline);
454 now = hrtimer_cb_get_time(&dl_se->dl_timer);
455 delta = ktime_to_ns(now) - rq_clock(rq);
456 act = ktime_add_ns(act, delta);
457
458 /*
459 * If the expiry time already passed, e.g., because the value
460 * chosen as the deadline is too small, don't even try to
461 * start the timer in the past!
462 */
463 if (ktime_us_delta(act, now) < 0)
464 return 0;
465
466 hrtimer_set_expires(&dl_se->dl_timer, act);
467
468 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
469 hard = hrtimer_get_expires(&dl_se->dl_timer);
470 range = ktime_to_ns(ktime_sub(hard, soft));
471 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
472 range, HRTIMER_MODE_ABS, 0);
473
474 return hrtimer_active(&dl_se->dl_timer);
475}
476
477/*
478 * This is the bandwidth enforcement timer callback. If here, we know
479 * a task is not on its dl_rq, since the fact that the timer was running
480 * means the task is throttled and needs a runtime replenishment.
481 *
482 * However, what we actually do depends on the fact the task is active,
483 * (it is on its rq) or has been removed from there by a call to
484 * dequeue_task_dl(). In the former case we must issue the runtime
485 * replenishment and add the task back to the dl_rq; in the latter, we just
486 * do nothing but clearing dl_throttled, so that runtime and deadline
487 * updating (and the queueing back to dl_rq) will be done by the
488 * next call to enqueue_task_dl().
489 */
490static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
491{
492 struct sched_dl_entity *dl_se = container_of(timer,
493 struct sched_dl_entity,
494 dl_timer);
495 struct task_struct *p = dl_task_of(dl_se);
496 struct rq *rq = task_rq(p);
497 raw_spin_lock(&rq->lock);
498
499 /*
500 * We need to take care of a possible races here. In fact, the
501 * task might have changed its scheduling policy to something
502 * different from SCHED_DEADLINE or changed its reservation
503 * parameters (through sched_setscheduler()).
504 */
505 if (!dl_task(p) || dl_se->dl_new)
506 goto unlock;
507
508 sched_clock_tick();
509 update_rq_clock(rq);
510 dl_se->dl_throttled = 0;
511 if (p->on_rq) {
512 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
513 if (task_has_dl_policy(rq->curr))
514 check_preempt_curr_dl(rq, p, 0);
515 else
516 resched_task(rq->curr);
1baca4ce
JL
517#ifdef CONFIG_SMP
518 /*
519 * Queueing this task back might have overloaded rq,
520 * check if we need to kick someone away.
521 */
522 if (has_pushable_dl_tasks(rq))
523 push_dl_task(rq);
524#endif
aab03e05
DF
525 }
526unlock:
527 raw_spin_unlock(&rq->lock);
528
529 return HRTIMER_NORESTART;
530}
531
532void init_dl_task_timer(struct sched_dl_entity *dl_se)
533{
534 struct hrtimer *timer = &dl_se->dl_timer;
535
536 if (hrtimer_active(timer)) {
537 hrtimer_try_to_cancel(timer);
538 return;
539 }
540
541 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
542 timer->function = dl_task_timer;
543}
544
545static
546int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
547{
548 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
549 int rorun = dl_se->runtime <= 0;
550
551 if (!rorun && !dmiss)
552 return 0;
553
554 /*
555 * If we are beyond our current deadline and we are still
556 * executing, then we have already used some of the runtime of
557 * the next instance. Thus, if we do not account that, we are
558 * stealing bandwidth from the system at each deadline miss!
559 */
560 if (dmiss) {
561 dl_se->runtime = rorun ? dl_se->runtime : 0;
562 dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
563 }
564
565 return 1;
566}
567
568/*
569 * Update the current task's runtime statistics (provided it is still
570 * a -deadline task and has not been removed from the dl_rq).
571 */
572static void update_curr_dl(struct rq *rq)
573{
574 struct task_struct *curr = rq->curr;
575 struct sched_dl_entity *dl_se = &curr->dl;
576 u64 delta_exec;
577
578 if (!dl_task(curr) || !on_dl_rq(dl_se))
579 return;
580
581 /*
582 * Consumed budget is computed considering the time as
583 * observed by schedulable tasks (excluding time spent
584 * in hardirq context, etc.). Deadlines are instead
585 * computed using hard walltime. This seems to be the more
586 * natural solution, but the full ramifications of this
587 * approach need further study.
588 */
589 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
590 if (unlikely((s64)delta_exec < 0))
591 delta_exec = 0;
592
593 schedstat_set(curr->se.statistics.exec_max,
594 max(curr->se.statistics.exec_max, delta_exec));
595
596 curr->se.sum_exec_runtime += delta_exec;
597 account_group_exec_runtime(curr, delta_exec);
598
599 curr->se.exec_start = rq_clock_task(rq);
600 cpuacct_charge(curr, delta_exec);
601
239be4a9
DF
602 sched_rt_avg_update(rq, delta_exec);
603
aab03e05
DF
604 dl_se->runtime -= delta_exec;
605 if (dl_runtime_exceeded(rq, dl_se)) {
606 __dequeue_task_dl(rq, curr, 0);
2d3d891d 607 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
aab03e05
DF
608 dl_se->dl_throttled = 1;
609 else
610 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
611
612 if (!is_leftmost(curr, &rq->dl))
613 resched_task(curr);
614 }
1724813d
PZ
615
616 /*
617 * Because -- for now -- we share the rt bandwidth, we need to
618 * account our runtime there too, otherwise actual rt tasks
619 * would be able to exceed the shared quota.
620 *
621 * Account to the root rt group for now.
622 *
623 * The solution we're working towards is having the RT groups scheduled
624 * using deadline servers -- however there's a few nasties to figure
625 * out before that can happen.
626 */
627 if (rt_bandwidth_enabled()) {
628 struct rt_rq *rt_rq = &rq->rt;
629
630 raw_spin_lock(&rt_rq->rt_runtime_lock);
631 rt_rq->rt_time += delta_exec;
632 /*
633 * We'll let actual RT tasks worry about the overflow here, we
634 * have our own CBS to keep us inline -- see above.
635 */
636 raw_spin_unlock(&rt_rq->rt_runtime_lock);
637 }
aab03e05
DF
638}
639
1baca4ce
JL
640#ifdef CONFIG_SMP
641
642static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
643
644static inline u64 next_deadline(struct rq *rq)
645{
646 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
647
648 if (next && dl_prio(next->prio))
649 return next->dl.deadline;
650 else
651 return 0;
652}
653
654static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
655{
656 struct rq *rq = rq_of_dl_rq(dl_rq);
657
658 if (dl_rq->earliest_dl.curr == 0 ||
659 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
660 /*
661 * If the dl_rq had no -deadline tasks, or if the new task
662 * has shorter deadline than the current one on dl_rq, we
663 * know that the previous earliest becomes our next earliest,
664 * as the new task becomes the earliest itself.
665 */
666 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
667 dl_rq->earliest_dl.curr = deadline;
6bfd6d72 668 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
1baca4ce
JL
669 } else if (dl_rq->earliest_dl.next == 0 ||
670 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
671 /*
672 * On the other hand, if the new -deadline task has a
673 * a later deadline than the earliest one on dl_rq, but
674 * it is earlier than the next (if any), we must
675 * recompute the next-earliest.
676 */
677 dl_rq->earliest_dl.next = next_deadline(rq);
678 }
679}
680
681static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
682{
683 struct rq *rq = rq_of_dl_rq(dl_rq);
684
685 /*
686 * Since we may have removed our earliest (and/or next earliest)
687 * task we must recompute them.
688 */
689 if (!dl_rq->dl_nr_running) {
690 dl_rq->earliest_dl.curr = 0;
691 dl_rq->earliest_dl.next = 0;
6bfd6d72 692 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
693 } else {
694 struct rb_node *leftmost = dl_rq->rb_leftmost;
695 struct sched_dl_entity *entry;
696
697 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
698 dl_rq->earliest_dl.curr = entry->deadline;
699 dl_rq->earliest_dl.next = next_deadline(rq);
6bfd6d72 700 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
1baca4ce
JL
701 }
702}
703
704#else
705
706static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
707static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
708
709#endif /* CONFIG_SMP */
710
711static inline
712void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
713{
714 int prio = dl_task_of(dl_se)->prio;
715 u64 deadline = dl_se->deadline;
716
717 WARN_ON(!dl_prio(prio));
718 dl_rq->dl_nr_running++;
719
720 inc_dl_deadline(dl_rq, deadline);
721 inc_dl_migration(dl_se, dl_rq);
722}
723
724static inline
725void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
726{
727 int prio = dl_task_of(dl_se)->prio;
728
729 WARN_ON(!dl_prio(prio));
730 WARN_ON(!dl_rq->dl_nr_running);
731 dl_rq->dl_nr_running--;
732
733 dec_dl_deadline(dl_rq, dl_se->deadline);
734 dec_dl_migration(dl_se, dl_rq);
735}
736
aab03e05
DF
737static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
738{
739 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
740 struct rb_node **link = &dl_rq->rb_root.rb_node;
741 struct rb_node *parent = NULL;
742 struct sched_dl_entity *entry;
743 int leftmost = 1;
744
745 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
746
747 while (*link) {
748 parent = *link;
749 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
750 if (dl_time_before(dl_se->deadline, entry->deadline))
751 link = &parent->rb_left;
752 else {
753 link = &parent->rb_right;
754 leftmost = 0;
755 }
756 }
757
758 if (leftmost)
759 dl_rq->rb_leftmost = &dl_se->rb_node;
760
761 rb_link_node(&dl_se->rb_node, parent, link);
762 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
763
1baca4ce 764 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
765}
766
767static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
768{
769 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
770
771 if (RB_EMPTY_NODE(&dl_se->rb_node))
772 return;
773
774 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
775 struct rb_node *next_node;
776
777 next_node = rb_next(&dl_se->rb_node);
778 dl_rq->rb_leftmost = next_node;
779 }
780
781 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
782 RB_CLEAR_NODE(&dl_se->rb_node);
783
1baca4ce 784 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
785}
786
787static void
2d3d891d
DF
788enqueue_dl_entity(struct sched_dl_entity *dl_se,
789 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
790{
791 BUG_ON(on_dl_rq(dl_se));
792
793 /*
794 * If this is a wakeup or a new instance, the scheduling
795 * parameters of the task might need updating. Otherwise,
796 * we want a replenishment of its runtime.
797 */
798 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
2d3d891d 799 replenish_dl_entity(dl_se, pi_se);
aab03e05 800 else
2d3d891d 801 update_dl_entity(dl_se, pi_se);
aab03e05
DF
802
803 __enqueue_dl_entity(dl_se);
804}
805
806static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
807{
808 __dequeue_dl_entity(dl_se);
809}
810
811static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
812{
2d3d891d
DF
813 struct task_struct *pi_task = rt_mutex_get_top_task(p);
814 struct sched_dl_entity *pi_se = &p->dl;
815
816 /*
817 * Use the scheduling parameters of the top pi-waiter
818 * task if we have one and its (relative) deadline is
819 * smaller than our one... OTW we keep our runtime and
820 * deadline.
821 */
822 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
823 pi_se = &pi_task->dl;
824
aab03e05
DF
825 /*
826 * If p is throttled, we do nothing. In fact, if it exhausted
827 * its budget it needs a replenishment and, since it now is on
828 * its rq, the bandwidth timer callback (which clearly has not
829 * run yet) will take care of this.
830 */
831 if (p->dl.dl_throttled)
832 return;
833
2d3d891d 834 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce
JL
835
836 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
837 enqueue_pushable_dl_task(rq, p);
838
aab03e05
DF
839 inc_nr_running(rq);
840}
841
842static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
843{
844 dequeue_dl_entity(&p->dl);
1baca4ce 845 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
846}
847
848static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
849{
850 update_curr_dl(rq);
851 __dequeue_task_dl(rq, p, flags);
852
853 dec_nr_running(rq);
854}
855
856/*
857 * Yield task semantic for -deadline tasks is:
858 *
859 * get off from the CPU until our next instance, with
860 * a new runtime. This is of little use now, since we
861 * don't have a bandwidth reclaiming mechanism. Anyway,
862 * bandwidth reclaiming is planned for the future, and
863 * yield_task_dl will indicate that some spare budget
864 * is available for other task instances to use it.
865 */
866static void yield_task_dl(struct rq *rq)
867{
868 struct task_struct *p = rq->curr;
869
870 /*
871 * We make the task go to sleep until its current deadline by
872 * forcing its runtime to zero. This way, update_curr_dl() stops
873 * it and the bandwidth timer will wake it up and will give it
874 * new scheduling parameters (thanks to dl_new=1).
875 */
876 if (p->dl.runtime > 0) {
877 rq->curr->dl.dl_new = 1;
878 p->dl.runtime = 0;
879 }
880 update_curr_dl(rq);
881}
882
1baca4ce
JL
883#ifdef CONFIG_SMP
884
885static int find_later_rq(struct task_struct *task);
1baca4ce
JL
886
887static int
888select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
889{
890 struct task_struct *curr;
891 struct rq *rq;
892
893 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
894 goto out;
895
896 rq = cpu_rq(cpu);
897
898 rcu_read_lock();
899 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
900
901 /*
902 * If we are dealing with a -deadline task, we must
903 * decide where to wake it up.
904 * If it has a later deadline and the current task
905 * on this rq can't move (provided the waking task
906 * can!) we prefer to send it somewhere else. On the
907 * other hand, if it has a shorter deadline, we
908 * try to make it stay here, it might be important.
909 */
910 if (unlikely(dl_task(curr)) &&
911 (curr->nr_cpus_allowed < 2 ||
912 !dl_entity_preempt(&p->dl, &curr->dl)) &&
913 (p->nr_cpus_allowed > 1)) {
914 int target = find_later_rq(p);
915
916 if (target != -1)
917 cpu = target;
918 }
919 rcu_read_unlock();
920
921out:
922 return cpu;
923}
924
925static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
926{
927 /*
928 * Current can't be migrated, useless to reschedule,
929 * let's hope p can move out.
930 */
931 if (rq->curr->nr_cpus_allowed == 1 ||
6bfd6d72 932 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
933 return;
934
935 /*
936 * p is migratable, so let's not schedule it and
937 * see if it is pushed or pulled somewhere else.
938 */
939 if (p->nr_cpus_allowed != 1 &&
6bfd6d72 940 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
941 return;
942
943 resched_task(rq->curr);
944}
945
946#endif /* CONFIG_SMP */
947
aab03e05
DF
948/*
949 * Only called when both the current and waking task are -deadline
950 * tasks.
951 */
952static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
953 int flags)
954{
1baca4ce 955 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
aab03e05 956 resched_task(rq->curr);
1baca4ce
JL
957 return;
958 }
959
960#ifdef CONFIG_SMP
961 /*
962 * In the unlikely case current and p have the same deadline
963 * let us try to decide what's the best thing to do...
964 */
332ac17e
DF
965 if ((p->dl.deadline == rq->curr->dl.deadline) &&
966 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
967 check_preempt_equal_dl(rq, p);
968#endif /* CONFIG_SMP */
aab03e05
DF
969}
970
971#ifdef CONFIG_SCHED_HRTICK
972static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
973{
974 s64 delta = p->dl.dl_runtime - p->dl.runtime;
975
976 if (delta > 10000)
977 hrtick_start(rq, p->dl.runtime);
978}
979#endif
980
981static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
982 struct dl_rq *dl_rq)
983{
984 struct rb_node *left = dl_rq->rb_leftmost;
985
986 if (!left)
987 return NULL;
988
989 return rb_entry(left, struct sched_dl_entity, rb_node);
990}
991
992struct task_struct *pick_next_task_dl(struct rq *rq)
993{
994 struct sched_dl_entity *dl_se;
995 struct task_struct *p;
996 struct dl_rq *dl_rq;
997
998 dl_rq = &rq->dl;
999
1000 if (unlikely(!dl_rq->dl_nr_running))
1001 return NULL;
1002
1003 dl_se = pick_next_dl_entity(rq, dl_rq);
1004 BUG_ON(!dl_se);
1005
1006 p = dl_task_of(dl_se);
1007 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1008
1009 /* Running task will never be pushed. */
71362650 1010 dequeue_pushable_dl_task(rq, p);
1baca4ce 1011
aab03e05
DF
1012#ifdef CONFIG_SCHED_HRTICK
1013 if (hrtick_enabled(rq))
1014 start_hrtick_dl(rq, p);
1015#endif
1baca4ce
JL
1016
1017#ifdef CONFIG_SMP
1018 rq->post_schedule = has_pushable_dl_tasks(rq);
1019#endif /* CONFIG_SMP */
1020
aab03e05
DF
1021 return p;
1022}
1023
1024static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1025{
1026 update_curr_dl(rq);
1baca4ce
JL
1027
1028 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1029 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1030}
1031
1032static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1033{
1034 update_curr_dl(rq);
1035
1036#ifdef CONFIG_SCHED_HRTICK
1037 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1038 start_hrtick_dl(rq, p);
1039#endif
1040}
1041
1042static void task_fork_dl(struct task_struct *p)
1043{
1044 /*
1045 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1046 * sched_fork()
1047 */
1048}
1049
1050static void task_dead_dl(struct task_struct *p)
1051{
1052 struct hrtimer *timer = &p->dl.dl_timer;
332ac17e
DF
1053 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1054
1055 /*
1056 * Since we are TASK_DEAD we won't slip out of the domain!
1057 */
1058 raw_spin_lock_irq(&dl_b->lock);
1059 dl_b->total_bw -= p->dl.dl_bw;
1060 raw_spin_unlock_irq(&dl_b->lock);
aab03e05 1061
2d3d891d 1062 hrtimer_cancel(timer);
aab03e05
DF
1063}
1064
1065static void set_curr_task_dl(struct rq *rq)
1066{
1067 struct task_struct *p = rq->curr;
1068
1069 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1070
1071 /* You can't push away the running task */
1072 dequeue_pushable_dl_task(rq, p);
1073}
1074
1075#ifdef CONFIG_SMP
1076
1077/* Only try algorithms three times */
1078#define DL_MAX_TRIES 3
1079
1080static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1081{
1082 if (!task_running(rq, p) &&
1083 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1084 (p->nr_cpus_allowed > 1))
1085 return 1;
1086
1087 return 0;
1088}
1089
1090/* Returns the second earliest -deadline task, NULL otherwise */
1091static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1092{
1093 struct rb_node *next_node = rq->dl.rb_leftmost;
1094 struct sched_dl_entity *dl_se;
1095 struct task_struct *p = NULL;
1096
1097next_node:
1098 next_node = rb_next(next_node);
1099 if (next_node) {
1100 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1101 p = dl_task_of(dl_se);
1102
1103 if (pick_dl_task(rq, p, cpu))
1104 return p;
1105
1106 goto next_node;
1107 }
1108
1109 return NULL;
1110}
1111
1baca4ce
JL
1112static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1113
1114static int find_later_rq(struct task_struct *task)
1115{
1116 struct sched_domain *sd;
1117 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1118 int this_cpu = smp_processor_id();
1119 int best_cpu, cpu = task_cpu(task);
1120
1121 /* Make sure the mask is initialized first */
1122 if (unlikely(!later_mask))
1123 return -1;
1124
1125 if (task->nr_cpus_allowed == 1)
1126 return -1;
1127
6bfd6d72
JL
1128 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1129 task, later_mask);
1baca4ce
JL
1130 if (best_cpu == -1)
1131 return -1;
1132
1133 /*
1134 * If we are here, some target has been found,
1135 * the most suitable of which is cached in best_cpu.
1136 * This is, among the runqueues where the current tasks
1137 * have later deadlines than the task's one, the rq
1138 * with the latest possible one.
1139 *
1140 * Now we check how well this matches with task's
1141 * affinity and system topology.
1142 *
1143 * The last cpu where the task run is our first
1144 * guess, since it is most likely cache-hot there.
1145 */
1146 if (cpumask_test_cpu(cpu, later_mask))
1147 return cpu;
1148 /*
1149 * Check if this_cpu is to be skipped (i.e., it is
1150 * not in the mask) or not.
1151 */
1152 if (!cpumask_test_cpu(this_cpu, later_mask))
1153 this_cpu = -1;
1154
1155 rcu_read_lock();
1156 for_each_domain(cpu, sd) {
1157 if (sd->flags & SD_WAKE_AFFINE) {
1158
1159 /*
1160 * If possible, preempting this_cpu is
1161 * cheaper than migrating.
1162 */
1163 if (this_cpu != -1 &&
1164 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1165 rcu_read_unlock();
1166 return this_cpu;
1167 }
1168
1169 /*
1170 * Last chance: if best_cpu is valid and is
1171 * in the mask, that becomes our choice.
1172 */
1173 if (best_cpu < nr_cpu_ids &&
1174 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1175 rcu_read_unlock();
1176 return best_cpu;
1177 }
1178 }
1179 }
1180 rcu_read_unlock();
1181
1182 /*
1183 * At this point, all our guesses failed, we just return
1184 * 'something', and let the caller sort the things out.
1185 */
1186 if (this_cpu != -1)
1187 return this_cpu;
1188
1189 cpu = cpumask_any(later_mask);
1190 if (cpu < nr_cpu_ids)
1191 return cpu;
1192
1193 return -1;
1194}
1195
1196/* Locks the rq it finds */
1197static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1198{
1199 struct rq *later_rq = NULL;
1200 int tries;
1201 int cpu;
1202
1203 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1204 cpu = find_later_rq(task);
1205
1206 if ((cpu == -1) || (cpu == rq->cpu))
1207 break;
1208
1209 later_rq = cpu_rq(cpu);
1210
1211 /* Retry if something changed. */
1212 if (double_lock_balance(rq, later_rq)) {
1213 if (unlikely(task_rq(task) != rq ||
1214 !cpumask_test_cpu(later_rq->cpu,
1215 &task->cpus_allowed) ||
1216 task_running(rq, task) || !task->on_rq)) {
1217 double_unlock_balance(rq, later_rq);
1218 later_rq = NULL;
1219 break;
1220 }
1221 }
1222
1223 /*
1224 * If the rq we found has no -deadline task, or
1225 * its earliest one has a later deadline than our
1226 * task, the rq is a good one.
1227 */
1228 if (!later_rq->dl.dl_nr_running ||
1229 dl_time_before(task->dl.deadline,
1230 later_rq->dl.earliest_dl.curr))
1231 break;
1232
1233 /* Otherwise we try again. */
1234 double_unlock_balance(rq, later_rq);
1235 later_rq = NULL;
1236 }
1237
1238 return later_rq;
1239}
1240
1241static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1242{
1243 struct task_struct *p;
1244
1245 if (!has_pushable_dl_tasks(rq))
1246 return NULL;
1247
1248 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1249 struct task_struct, pushable_dl_tasks);
1250
1251 BUG_ON(rq->cpu != task_cpu(p));
1252 BUG_ON(task_current(rq, p));
1253 BUG_ON(p->nr_cpus_allowed <= 1);
1254
332ac17e 1255 BUG_ON(!p->on_rq);
1baca4ce
JL
1256 BUG_ON(!dl_task(p));
1257
1258 return p;
1259}
1260
1261/*
1262 * See if the non running -deadline tasks on this rq
1263 * can be sent to some other CPU where they can preempt
1264 * and start executing.
1265 */
1266static int push_dl_task(struct rq *rq)
1267{
1268 struct task_struct *next_task;
1269 struct rq *later_rq;
1270
1271 if (!rq->dl.overloaded)
1272 return 0;
1273
1274 next_task = pick_next_pushable_dl_task(rq);
1275 if (!next_task)
1276 return 0;
1277
1278retry:
1279 if (unlikely(next_task == rq->curr)) {
1280 WARN_ON(1);
1281 return 0;
1282 }
1283
1284 /*
1285 * If next_task preempts rq->curr, and rq->curr
1286 * can move away, it makes sense to just reschedule
1287 * without going further in pushing next_task.
1288 */
1289 if (dl_task(rq->curr) &&
1290 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1291 rq->curr->nr_cpus_allowed > 1) {
1292 resched_task(rq->curr);
1293 return 0;
1294 }
1295
1296 /* We might release rq lock */
1297 get_task_struct(next_task);
1298
1299 /* Will lock the rq it'll find */
1300 later_rq = find_lock_later_rq(next_task, rq);
1301 if (!later_rq) {
1302 struct task_struct *task;
1303
1304 /*
1305 * We must check all this again, since
1306 * find_lock_later_rq releases rq->lock and it is
1307 * then possible that next_task has migrated.
1308 */
1309 task = pick_next_pushable_dl_task(rq);
1310 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1311 /*
1312 * The task is still there. We don't try
1313 * again, some other cpu will pull it when ready.
1314 */
1315 dequeue_pushable_dl_task(rq, next_task);
1316 goto out;
1317 }
1318
1319 if (!task)
1320 /* No more tasks */
1321 goto out;
1322
1323 put_task_struct(next_task);
1324 next_task = task;
1325 goto retry;
1326 }
1327
1328 deactivate_task(rq, next_task, 0);
1329 set_task_cpu(next_task, later_rq->cpu);
1330 activate_task(later_rq, next_task, 0);
1331
1332 resched_task(later_rq->curr);
1333
1334 double_unlock_balance(rq, later_rq);
1335
1336out:
1337 put_task_struct(next_task);
1338
1339 return 1;
1340}
1341
1342static void push_dl_tasks(struct rq *rq)
1343{
1344 /* Terminates as it moves a -deadline task */
1345 while (push_dl_task(rq))
1346 ;
aab03e05
DF
1347}
1348
1baca4ce
JL
1349static int pull_dl_task(struct rq *this_rq)
1350{
1351 int this_cpu = this_rq->cpu, ret = 0, cpu;
1352 struct task_struct *p;
1353 struct rq *src_rq;
1354 u64 dmin = LONG_MAX;
1355
1356 if (likely(!dl_overloaded(this_rq)))
1357 return 0;
1358
1359 /*
1360 * Match the barrier from dl_set_overloaded; this guarantees that if we
1361 * see overloaded we must also see the dlo_mask bit.
1362 */
1363 smp_rmb();
1364
1365 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1366 if (this_cpu == cpu)
1367 continue;
1368
1369 src_rq = cpu_rq(cpu);
1370
1371 /*
1372 * It looks racy, abd it is! However, as in sched_rt.c,
1373 * we are fine with this.
1374 */
1375 if (this_rq->dl.dl_nr_running &&
1376 dl_time_before(this_rq->dl.earliest_dl.curr,
1377 src_rq->dl.earliest_dl.next))
1378 continue;
1379
1380 /* Might drop this_rq->lock */
1381 double_lock_balance(this_rq, src_rq);
1382
1383 /*
1384 * If there are no more pullable tasks on the
1385 * rq, we're done with it.
1386 */
1387 if (src_rq->dl.dl_nr_running <= 1)
1388 goto skip;
1389
1390 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1391
1392 /*
1393 * We found a task to be pulled if:
1394 * - it preempts our current (if there's one),
1395 * - it will preempt the last one we pulled (if any).
1396 */
1397 if (p && dl_time_before(p->dl.deadline, dmin) &&
1398 (!this_rq->dl.dl_nr_running ||
1399 dl_time_before(p->dl.deadline,
1400 this_rq->dl.earliest_dl.curr))) {
1401 WARN_ON(p == src_rq->curr);
332ac17e 1402 WARN_ON(!p->on_rq);
1baca4ce
JL
1403
1404 /*
1405 * Then we pull iff p has actually an earlier
1406 * deadline than the current task of its runqueue.
1407 */
1408 if (dl_time_before(p->dl.deadline,
1409 src_rq->curr->dl.deadline))
1410 goto skip;
1411
1412 ret = 1;
1413
1414 deactivate_task(src_rq, p, 0);
1415 set_task_cpu(p, this_cpu);
1416 activate_task(this_rq, p, 0);
1417 dmin = p->dl.deadline;
1418
1419 /* Is there any other task even earlier? */
1420 }
1421skip:
1422 double_unlock_balance(this_rq, src_rq);
1423 }
1424
1425 return ret;
1426}
1427
1428static void pre_schedule_dl(struct rq *rq, struct task_struct *prev)
1429{
1430 /* Try to pull other tasks here */
1431 if (dl_task(prev))
1432 pull_dl_task(rq);
1433}
1434
1435static void post_schedule_dl(struct rq *rq)
1436{
1437 push_dl_tasks(rq);
1438}
1439
1440/*
1441 * Since the task is not running and a reschedule is not going to happen
1442 * anytime soon on its runqueue, we try pushing it away now.
1443 */
1444static void task_woken_dl(struct rq *rq, struct task_struct *p)
1445{
1446 if (!task_running(rq, p) &&
1447 !test_tsk_need_resched(rq->curr) &&
1448 has_pushable_dl_tasks(rq) &&
1449 p->nr_cpus_allowed > 1 &&
1450 dl_task(rq->curr) &&
1451 (rq->curr->nr_cpus_allowed < 2 ||
1452 dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1453 push_dl_tasks(rq);
1454 }
1455}
1456
1457static void set_cpus_allowed_dl(struct task_struct *p,
1458 const struct cpumask *new_mask)
1459{
1460 struct rq *rq;
1461 int weight;
1462
1463 BUG_ON(!dl_task(p));
1464
1465 /*
1466 * Update only if the task is actually running (i.e.,
1467 * it is on the rq AND it is not throttled).
1468 */
1469 if (!on_dl_rq(&p->dl))
1470 return;
1471
1472 weight = cpumask_weight(new_mask);
1473
1474 /*
1475 * Only update if the process changes its state from whether it
1476 * can migrate or not.
1477 */
1478 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1479 return;
1480
1481 rq = task_rq(p);
1482
1483 /*
1484 * The process used to be able to migrate OR it can now migrate
1485 */
1486 if (weight <= 1) {
1487 if (!task_current(rq, p))
1488 dequeue_pushable_dl_task(rq, p);
1489 BUG_ON(!rq->dl.dl_nr_migratory);
1490 rq->dl.dl_nr_migratory--;
1491 } else {
1492 if (!task_current(rq, p))
1493 enqueue_pushable_dl_task(rq, p);
1494 rq->dl.dl_nr_migratory++;
1495 }
1496
1497 update_dl_migration(&rq->dl);
1498}
1499
1500/* Assumes rq->lock is held */
1501static void rq_online_dl(struct rq *rq)
1502{
1503 if (rq->dl.overloaded)
1504 dl_set_overload(rq);
6bfd6d72
JL
1505
1506 if (rq->dl.dl_nr_running > 0)
1507 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1baca4ce
JL
1508}
1509
1510/* Assumes rq->lock is held */
1511static void rq_offline_dl(struct rq *rq)
1512{
1513 if (rq->dl.overloaded)
1514 dl_clear_overload(rq);
6bfd6d72
JL
1515
1516 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
1517}
1518
1519void init_sched_dl_class(void)
1520{
1521 unsigned int i;
1522
1523 for_each_possible_cpu(i)
1524 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1525 GFP_KERNEL, cpu_to_node(i));
1526}
1527
1528#endif /* CONFIG_SMP */
1529
aab03e05
DF
1530static void switched_from_dl(struct rq *rq, struct task_struct *p)
1531{
1baca4ce 1532 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
aab03e05 1533 hrtimer_try_to_cancel(&p->dl.dl_timer);
1baca4ce
JL
1534
1535#ifdef CONFIG_SMP
1536 /*
1537 * Since this might be the only -deadline task on the rq,
1538 * this is the right place to try to pull some other one
1539 * from an overloaded cpu, if any.
1540 */
1541 if (!rq->dl.dl_nr_running)
1542 pull_dl_task(rq);
1543#endif
aab03e05
DF
1544}
1545
1baca4ce
JL
1546/*
1547 * When switching to -deadline, we may overload the rq, then
1548 * we try to push someone off, if possible.
1549 */
aab03e05
DF
1550static void switched_to_dl(struct rq *rq, struct task_struct *p)
1551{
1baca4ce
JL
1552 int check_resched = 1;
1553
aab03e05
DF
1554 /*
1555 * If p is throttled, don't consider the possibility
1556 * of preempting rq->curr, the check will be done right
1557 * after its runtime will get replenished.
1558 */
1559 if (unlikely(p->dl.dl_throttled))
1560 return;
1561
1562 if (p->on_rq || rq->curr != p) {
1baca4ce
JL
1563#ifdef CONFIG_SMP
1564 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1565 /* Only reschedule if pushing failed */
1566 check_resched = 0;
1567#endif /* CONFIG_SMP */
1568 if (check_resched && task_has_dl_policy(rq->curr))
aab03e05 1569 check_preempt_curr_dl(rq, p, 0);
aab03e05
DF
1570 }
1571}
1572
1baca4ce
JL
1573/*
1574 * If the scheduling parameters of a -deadline task changed,
1575 * a push or pull operation might be needed.
1576 */
aab03e05
DF
1577static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1578 int oldprio)
1579{
1baca4ce 1580 if (p->on_rq || rq->curr == p) {
aab03e05 1581#ifdef CONFIG_SMP
1baca4ce
JL
1582 /*
1583 * This might be too much, but unfortunately
1584 * we don't have the old deadline value, and
1585 * we can't argue if the task is increasing
1586 * or lowering its prio, so...
1587 */
1588 if (!rq->dl.overloaded)
1589 pull_dl_task(rq);
1590
1591 /*
1592 * If we now have a earlier deadline task than p,
1593 * then reschedule, provided p is still on this
1594 * runqueue.
1595 */
1596 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1597 rq->curr == p)
1598 resched_task(p);
1599#else
1600 /*
1601 * Again, we don't know if p has a earlier
1602 * or later deadline, so let's blindly set a
1603 * (maybe not needed) rescheduling point.
1604 */
1605 resched_task(p);
1606#endif /* CONFIG_SMP */
1607 } else
1608 switched_to_dl(rq, p);
aab03e05 1609}
aab03e05
DF
1610
1611const struct sched_class dl_sched_class = {
1612 .next = &rt_sched_class,
1613 .enqueue_task = enqueue_task_dl,
1614 .dequeue_task = dequeue_task_dl,
1615 .yield_task = yield_task_dl,
1616
1617 .check_preempt_curr = check_preempt_curr_dl,
1618
1619 .pick_next_task = pick_next_task_dl,
1620 .put_prev_task = put_prev_task_dl,
1621
1622#ifdef CONFIG_SMP
1623 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1624 .set_cpus_allowed = set_cpus_allowed_dl,
1625 .rq_online = rq_online_dl,
1626 .rq_offline = rq_offline_dl,
1627 .pre_schedule = pre_schedule_dl,
1628 .post_schedule = post_schedule_dl,
1629 .task_woken = task_woken_dl,
aab03e05
DF
1630#endif
1631
1632 .set_curr_task = set_curr_task_dl,
1633 .task_tick = task_tick_dl,
1634 .task_fork = task_fork_dl,
1635 .task_dead = task_dead_dl,
1636
1637 .prio_changed = prio_changed_dl,
1638 .switched_from = switched_from_dl,
1639 .switched_to = switched_to_dl,
1640};