sched/deadline: Add SCHED_DEADLINE structures & implementation
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Michael Trimarchi <michael@amarulasolutions.com>,
14 * Fabio Checconi <fchecconi@gmail.com>
15 */
16#include "sched.h"
17
18static inline int dl_time_before(u64 a, u64 b)
19{
20 return (s64)(a - b) < 0;
21}
22
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
53void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
54{
55 dl_rq->rb_root = RB_ROOT;
56}
57
58static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
59static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
60static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
61 int flags);
62
63/*
64 * We are being explicitly informed that a new instance is starting,
65 * and this means that:
66 * - the absolute deadline of the entity has to be placed at
67 * current time + relative deadline;
68 * - the runtime of the entity has to be set to the maximum value.
69 *
70 * The capability of specifying such event is useful whenever a -deadline
71 * entity wants to (try to!) synchronize its behaviour with the scheduler's
72 * one, and to (try to!) reconcile itself with its own scheduling
73 * parameters.
74 */
75static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
76{
77 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
78 struct rq *rq = rq_of_dl_rq(dl_rq);
79
80 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
81
82 /*
83 * We use the regular wall clock time to set deadlines in the
84 * future; in fact, we must consider execution overheads (time
85 * spent on hardirq context, etc.).
86 */
87 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
88 dl_se->runtime = dl_se->dl_runtime;
89 dl_se->dl_new = 0;
90}
91
92/*
93 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
94 * possibility of a entity lasting more than what it declared, and thus
95 * exhausting its runtime.
96 *
97 * Here we are interested in making runtime overrun possible, but we do
98 * not want a entity which is misbehaving to affect the scheduling of all
99 * other entities.
100 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
101 * is used, in order to confine each entity within its own bandwidth.
102 *
103 * This function deals exactly with that, and ensures that when the runtime
104 * of a entity is replenished, its deadline is also postponed. That ensures
105 * the overrunning entity can't interfere with other entity in the system and
106 * can't make them miss their deadlines. Reasons why this kind of overruns
107 * could happen are, typically, a entity voluntarily trying to overcome its
108 * runtime, or it just underestimated it during sched_setscheduler_ex().
109 */
110static void replenish_dl_entity(struct sched_dl_entity *dl_se)
111{
112 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
113 struct rq *rq = rq_of_dl_rq(dl_rq);
114
115 /*
116 * We keep moving the deadline away until we get some
117 * available runtime for the entity. This ensures correct
118 * handling of situations where the runtime overrun is
119 * arbitrary large.
120 */
121 while (dl_se->runtime <= 0) {
122 dl_se->deadline += dl_se->dl_deadline;
123 dl_se->runtime += dl_se->dl_runtime;
124 }
125
126 /*
127 * At this point, the deadline really should be "in
128 * the future" with respect to rq->clock. If it's
129 * not, we are, for some reason, lagging too much!
130 * Anyway, after having warn userspace abut that,
131 * we still try to keep the things running by
132 * resetting the deadline and the budget of the
133 * entity.
134 */
135 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
136 static bool lag_once = false;
137
138 if (!lag_once) {
139 lag_once = true;
140 printk_sched("sched: DL replenish lagged to much\n");
141 }
142 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
143 dl_se->runtime = dl_se->dl_runtime;
144 }
145}
146
147/*
148 * Here we check if --at time t-- an entity (which is probably being
149 * [re]activated or, in general, enqueued) can use its remaining runtime
150 * and its current deadline _without_ exceeding the bandwidth it is
151 * assigned (function returns true if it can't). We are in fact applying
152 * one of the CBS rules: when a task wakes up, if the residual runtime
153 * over residual deadline fits within the allocated bandwidth, then we
154 * can keep the current (absolute) deadline and residual budget without
155 * disrupting the schedulability of the system. Otherwise, we should
156 * refill the runtime and set the deadline a period in the future,
157 * because keeping the current (absolute) deadline of the task would
158 * result in breaking guarantees promised to other tasks.
159 *
160 * This function returns true if:
161 *
162 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
163 *
164 * IOW we can't recycle current parameters.
165 */
166static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
167{
168 u64 left, right;
169
170 /*
171 * left and right are the two sides of the equation above,
172 * after a bit of shuffling to use multiplications instead
173 * of divisions.
174 *
175 * Note that none of the time values involved in the two
176 * multiplications are absolute: dl_deadline and dl_runtime
177 * are the relative deadline and the maximum runtime of each
178 * instance, runtime is the runtime left for the last instance
179 * and (deadline - t), since t is rq->clock, is the time left
180 * to the (absolute) deadline. Even if overflowing the u64 type
181 * is very unlikely to occur in both cases, here we scale down
182 * as we want to avoid that risk at all. Scaling down by 10
183 * means that we reduce granularity to 1us. We are fine with it,
184 * since this is only a true/false check and, anyway, thinking
185 * of anything below microseconds resolution is actually fiction
186 * (but still we want to give the user that illusion >;).
187 */
188 left = (dl_se->dl_deadline >> 10) * (dl_se->runtime >> 10);
189 right = ((dl_se->deadline - t) >> 10) * (dl_se->dl_runtime >> 10);
190
191 return dl_time_before(right, left);
192}
193
194/*
195 * When a -deadline entity is queued back on the runqueue, its runtime and
196 * deadline might need updating.
197 *
198 * The policy here is that we update the deadline of the entity only if:
199 * - the current deadline is in the past,
200 * - using the remaining runtime with the current deadline would make
201 * the entity exceed its bandwidth.
202 */
203static void update_dl_entity(struct sched_dl_entity *dl_se)
204{
205 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
206 struct rq *rq = rq_of_dl_rq(dl_rq);
207
208 /*
209 * The arrival of a new instance needs special treatment, i.e.,
210 * the actual scheduling parameters have to be "renewed".
211 */
212 if (dl_se->dl_new) {
213 setup_new_dl_entity(dl_se);
214 return;
215 }
216
217 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
218 dl_entity_overflow(dl_se, rq_clock(rq))) {
219 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
220 dl_se->runtime = dl_se->dl_runtime;
221 }
222}
223
224/*
225 * If the entity depleted all its runtime, and if we want it to sleep
226 * while waiting for some new execution time to become available, we
227 * set the bandwidth enforcement timer to the replenishment instant
228 * and try to activate it.
229 *
230 * Notice that it is important for the caller to know if the timer
231 * actually started or not (i.e., the replenishment instant is in
232 * the future or in the past).
233 */
234static int start_dl_timer(struct sched_dl_entity *dl_se)
235{
236 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
237 struct rq *rq = rq_of_dl_rq(dl_rq);
238 ktime_t now, act;
239 ktime_t soft, hard;
240 unsigned long range;
241 s64 delta;
242
243 /*
244 * We want the timer to fire at the deadline, but considering
245 * that it is actually coming from rq->clock and not from
246 * hrtimer's time base reading.
247 */
248 act = ns_to_ktime(dl_se->deadline);
249 now = hrtimer_cb_get_time(&dl_se->dl_timer);
250 delta = ktime_to_ns(now) - rq_clock(rq);
251 act = ktime_add_ns(act, delta);
252
253 /*
254 * If the expiry time already passed, e.g., because the value
255 * chosen as the deadline is too small, don't even try to
256 * start the timer in the past!
257 */
258 if (ktime_us_delta(act, now) < 0)
259 return 0;
260
261 hrtimer_set_expires(&dl_se->dl_timer, act);
262
263 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
264 hard = hrtimer_get_expires(&dl_se->dl_timer);
265 range = ktime_to_ns(ktime_sub(hard, soft));
266 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
267 range, HRTIMER_MODE_ABS, 0);
268
269 return hrtimer_active(&dl_se->dl_timer);
270}
271
272/*
273 * This is the bandwidth enforcement timer callback. If here, we know
274 * a task is not on its dl_rq, since the fact that the timer was running
275 * means the task is throttled and needs a runtime replenishment.
276 *
277 * However, what we actually do depends on the fact the task is active,
278 * (it is on its rq) or has been removed from there by a call to
279 * dequeue_task_dl(). In the former case we must issue the runtime
280 * replenishment and add the task back to the dl_rq; in the latter, we just
281 * do nothing but clearing dl_throttled, so that runtime and deadline
282 * updating (and the queueing back to dl_rq) will be done by the
283 * next call to enqueue_task_dl().
284 */
285static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
286{
287 struct sched_dl_entity *dl_se = container_of(timer,
288 struct sched_dl_entity,
289 dl_timer);
290 struct task_struct *p = dl_task_of(dl_se);
291 struct rq *rq = task_rq(p);
292 raw_spin_lock(&rq->lock);
293
294 /*
295 * We need to take care of a possible races here. In fact, the
296 * task might have changed its scheduling policy to something
297 * different from SCHED_DEADLINE or changed its reservation
298 * parameters (through sched_setscheduler()).
299 */
300 if (!dl_task(p) || dl_se->dl_new)
301 goto unlock;
302
303 sched_clock_tick();
304 update_rq_clock(rq);
305 dl_se->dl_throttled = 0;
306 if (p->on_rq) {
307 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
308 if (task_has_dl_policy(rq->curr))
309 check_preempt_curr_dl(rq, p, 0);
310 else
311 resched_task(rq->curr);
312 }
313unlock:
314 raw_spin_unlock(&rq->lock);
315
316 return HRTIMER_NORESTART;
317}
318
319void init_dl_task_timer(struct sched_dl_entity *dl_se)
320{
321 struct hrtimer *timer = &dl_se->dl_timer;
322
323 if (hrtimer_active(timer)) {
324 hrtimer_try_to_cancel(timer);
325 return;
326 }
327
328 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
329 timer->function = dl_task_timer;
330}
331
332static
333int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
334{
335 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
336 int rorun = dl_se->runtime <= 0;
337
338 if (!rorun && !dmiss)
339 return 0;
340
341 /*
342 * If we are beyond our current deadline and we are still
343 * executing, then we have already used some of the runtime of
344 * the next instance. Thus, if we do not account that, we are
345 * stealing bandwidth from the system at each deadline miss!
346 */
347 if (dmiss) {
348 dl_se->runtime = rorun ? dl_se->runtime : 0;
349 dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
350 }
351
352 return 1;
353}
354
355/*
356 * Update the current task's runtime statistics (provided it is still
357 * a -deadline task and has not been removed from the dl_rq).
358 */
359static void update_curr_dl(struct rq *rq)
360{
361 struct task_struct *curr = rq->curr;
362 struct sched_dl_entity *dl_se = &curr->dl;
363 u64 delta_exec;
364
365 if (!dl_task(curr) || !on_dl_rq(dl_se))
366 return;
367
368 /*
369 * Consumed budget is computed considering the time as
370 * observed by schedulable tasks (excluding time spent
371 * in hardirq context, etc.). Deadlines are instead
372 * computed using hard walltime. This seems to be the more
373 * natural solution, but the full ramifications of this
374 * approach need further study.
375 */
376 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
377 if (unlikely((s64)delta_exec < 0))
378 delta_exec = 0;
379
380 schedstat_set(curr->se.statistics.exec_max,
381 max(curr->se.statistics.exec_max, delta_exec));
382
383 curr->se.sum_exec_runtime += delta_exec;
384 account_group_exec_runtime(curr, delta_exec);
385
386 curr->se.exec_start = rq_clock_task(rq);
387 cpuacct_charge(curr, delta_exec);
388
389 dl_se->runtime -= delta_exec;
390 if (dl_runtime_exceeded(rq, dl_se)) {
391 __dequeue_task_dl(rq, curr, 0);
392 if (likely(start_dl_timer(dl_se)))
393 dl_se->dl_throttled = 1;
394 else
395 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
396
397 if (!is_leftmost(curr, &rq->dl))
398 resched_task(curr);
399 }
400}
401
402static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
403{
404 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
405 struct rb_node **link = &dl_rq->rb_root.rb_node;
406 struct rb_node *parent = NULL;
407 struct sched_dl_entity *entry;
408 int leftmost = 1;
409
410 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
411
412 while (*link) {
413 parent = *link;
414 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
415 if (dl_time_before(dl_se->deadline, entry->deadline))
416 link = &parent->rb_left;
417 else {
418 link = &parent->rb_right;
419 leftmost = 0;
420 }
421 }
422
423 if (leftmost)
424 dl_rq->rb_leftmost = &dl_se->rb_node;
425
426 rb_link_node(&dl_se->rb_node, parent, link);
427 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
428
429 dl_rq->dl_nr_running++;
430}
431
432static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
433{
434 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
435
436 if (RB_EMPTY_NODE(&dl_se->rb_node))
437 return;
438
439 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
440 struct rb_node *next_node;
441
442 next_node = rb_next(&dl_se->rb_node);
443 dl_rq->rb_leftmost = next_node;
444 }
445
446 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
447 RB_CLEAR_NODE(&dl_se->rb_node);
448
449 dl_rq->dl_nr_running--;
450}
451
452static void
453enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
454{
455 BUG_ON(on_dl_rq(dl_se));
456
457 /*
458 * If this is a wakeup or a new instance, the scheduling
459 * parameters of the task might need updating. Otherwise,
460 * we want a replenishment of its runtime.
461 */
462 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
463 replenish_dl_entity(dl_se);
464 else
465 update_dl_entity(dl_se);
466
467 __enqueue_dl_entity(dl_se);
468}
469
470static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
471{
472 __dequeue_dl_entity(dl_se);
473}
474
475static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
476{
477 /*
478 * If p is throttled, we do nothing. In fact, if it exhausted
479 * its budget it needs a replenishment and, since it now is on
480 * its rq, the bandwidth timer callback (which clearly has not
481 * run yet) will take care of this.
482 */
483 if (p->dl.dl_throttled)
484 return;
485
486 enqueue_dl_entity(&p->dl, flags);
487 inc_nr_running(rq);
488}
489
490static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
491{
492 dequeue_dl_entity(&p->dl);
493}
494
495static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
496{
497 update_curr_dl(rq);
498 __dequeue_task_dl(rq, p, flags);
499
500 dec_nr_running(rq);
501}
502
503/*
504 * Yield task semantic for -deadline tasks is:
505 *
506 * get off from the CPU until our next instance, with
507 * a new runtime. This is of little use now, since we
508 * don't have a bandwidth reclaiming mechanism. Anyway,
509 * bandwidth reclaiming is planned for the future, and
510 * yield_task_dl will indicate that some spare budget
511 * is available for other task instances to use it.
512 */
513static void yield_task_dl(struct rq *rq)
514{
515 struct task_struct *p = rq->curr;
516
517 /*
518 * We make the task go to sleep until its current deadline by
519 * forcing its runtime to zero. This way, update_curr_dl() stops
520 * it and the bandwidth timer will wake it up and will give it
521 * new scheduling parameters (thanks to dl_new=1).
522 */
523 if (p->dl.runtime > 0) {
524 rq->curr->dl.dl_new = 1;
525 p->dl.runtime = 0;
526 }
527 update_curr_dl(rq);
528}
529
530/*
531 * Only called when both the current and waking task are -deadline
532 * tasks.
533 */
534static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
535 int flags)
536{
537 if (dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
538 resched_task(rq->curr);
539}
540
541#ifdef CONFIG_SCHED_HRTICK
542static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
543{
544 s64 delta = p->dl.dl_runtime - p->dl.runtime;
545
546 if (delta > 10000)
547 hrtick_start(rq, p->dl.runtime);
548}
549#endif
550
551static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
552 struct dl_rq *dl_rq)
553{
554 struct rb_node *left = dl_rq->rb_leftmost;
555
556 if (!left)
557 return NULL;
558
559 return rb_entry(left, struct sched_dl_entity, rb_node);
560}
561
562struct task_struct *pick_next_task_dl(struct rq *rq)
563{
564 struct sched_dl_entity *dl_se;
565 struct task_struct *p;
566 struct dl_rq *dl_rq;
567
568 dl_rq = &rq->dl;
569
570 if (unlikely(!dl_rq->dl_nr_running))
571 return NULL;
572
573 dl_se = pick_next_dl_entity(rq, dl_rq);
574 BUG_ON(!dl_se);
575
576 p = dl_task_of(dl_se);
577 p->se.exec_start = rq_clock_task(rq);
578#ifdef CONFIG_SCHED_HRTICK
579 if (hrtick_enabled(rq))
580 start_hrtick_dl(rq, p);
581#endif
582 return p;
583}
584
585static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
586{
587 update_curr_dl(rq);
588}
589
590static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
591{
592 update_curr_dl(rq);
593
594#ifdef CONFIG_SCHED_HRTICK
595 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
596 start_hrtick_dl(rq, p);
597#endif
598}
599
600static void task_fork_dl(struct task_struct *p)
601{
602 /*
603 * SCHED_DEADLINE tasks cannot fork and this is achieved through
604 * sched_fork()
605 */
606}
607
608static void task_dead_dl(struct task_struct *p)
609{
610 struct hrtimer *timer = &p->dl.dl_timer;
611
612 if (hrtimer_active(timer))
613 hrtimer_try_to_cancel(timer);
614}
615
616static void set_curr_task_dl(struct rq *rq)
617{
618 struct task_struct *p = rq->curr;
619
620 p->se.exec_start = rq_clock_task(rq);
621}
622
623static void switched_from_dl(struct rq *rq, struct task_struct *p)
624{
625 if (hrtimer_active(&p->dl.dl_timer))
626 hrtimer_try_to_cancel(&p->dl.dl_timer);
627}
628
629static void switched_to_dl(struct rq *rq, struct task_struct *p)
630{
631 /*
632 * If p is throttled, don't consider the possibility
633 * of preempting rq->curr, the check will be done right
634 * after its runtime will get replenished.
635 */
636 if (unlikely(p->dl.dl_throttled))
637 return;
638
639 if (p->on_rq || rq->curr != p) {
640 if (task_has_dl_policy(rq->curr))
641 check_preempt_curr_dl(rq, p, 0);
642 else
643 resched_task(rq->curr);
644 }
645}
646
647static void prio_changed_dl(struct rq *rq, struct task_struct *p,
648 int oldprio)
649{
650 switched_to_dl(rq, p);
651}
652
653#ifdef CONFIG_SMP
654static int
655select_task_rq_dl(struct task_struct *p, int prev_cpu, int sd_flag, int flags)
656{
657 return task_cpu(p);
658}
659#endif
660
661const struct sched_class dl_sched_class = {
662 .next = &rt_sched_class,
663 .enqueue_task = enqueue_task_dl,
664 .dequeue_task = dequeue_task_dl,
665 .yield_task = yield_task_dl,
666
667 .check_preempt_curr = check_preempt_curr_dl,
668
669 .pick_next_task = pick_next_task_dl,
670 .put_prev_task = put_prev_task_dl,
671
672#ifdef CONFIG_SMP
673 .select_task_rq = select_task_rq_dl,
674#endif
675
676 .set_curr_task = set_curr_task_dl,
677 .task_tick = task_tick_dl,
678 .task_fork = task_fork_dl,
679 .task_dead = task_dead_dl,
680
681 .prio_changed = prio_changed_dl,
682 .switched_from = switched_from_dl,
683 .switched_to = switched_to_dl,
684};