lockdep: Implement lock pinning
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
332ac17e
DF
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
332ac17e
DF
60void init_dl_bw(struct dl_bw *dl_b)
61{
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 64 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
65 dl_b->bw = -1;
66 else
1724813d 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70}
71
07c54f7a 72void init_dl_rq(struct dl_rq *dl_rq)
aab03e05
DF
73{
74 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
75
76#ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
83#else
84 init_dl_bw(&dl_rq->dl_bw);
1baca4ce
JL
85#endif
86}
87
88#ifdef CONFIG_SMP
89
90static inline int dl_overloaded(struct rq *rq)
91{
92 return atomic_read(&rq->rd->dlo_count);
93}
94
95static inline void dl_set_overload(struct rq *rq)
96{
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109}
110
111static inline void dl_clear_overload(struct rq *rq)
112{
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118}
119
120static void update_dl_migration(struct dl_rq *dl_rq)
121{
995b9ea4 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131}
132
133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134{
135 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 136
1baca4ce
JL
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141}
142
143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 146
1baca4ce
JL
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151}
152
153/*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158{
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
179 if (leftmost)
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181
182 rb_link_node(&p->pushable_dl_tasks, parent, link);
183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
184}
185
1baca4ce
JL
186static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
187{
188 struct dl_rq *dl_rq = &rq->dl;
189
190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 return;
192
193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 struct rb_node *next_node;
195
196 next_node = rb_next(&p->pushable_dl_tasks);
197 dl_rq->pushable_dl_tasks_leftmost = next_node;
198 }
199
200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 RB_CLEAR_NODE(&p->pushable_dl_tasks);
202}
203
204static inline int has_pushable_dl_tasks(struct rq *rq)
205{
206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
207}
208
209static int push_dl_task(struct rq *rq);
210
dc877341
PZ
211static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
212{
213 return dl_task(prev);
214}
215
9916e214
PZ
216static DEFINE_PER_CPU(struct callback_head, dl_push_head);
217static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
e3fca9e7
PZ
218
219static void push_dl_tasks(struct rq *);
9916e214 220static void pull_dl_task(struct rq *);
e3fca9e7
PZ
221
222static inline void queue_push_tasks(struct rq *rq)
dc877341 223{
e3fca9e7
PZ
224 if (!has_pushable_dl_tasks(rq))
225 return;
226
9916e214
PZ
227 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
228}
229
230static inline void queue_pull_task(struct rq *rq)
231{
232 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
dc877341
PZ
233}
234
fa9c9d10
WL
235static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
236
a649f237 237static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
fa9c9d10
WL
238{
239 struct rq *later_rq = NULL;
240 bool fallback = false;
241
242 later_rq = find_lock_later_rq(p, rq);
243
244 if (!later_rq) {
245 int cpu;
246
247 /*
248 * If we cannot preempt any rq, fall back to pick any
249 * online cpu.
250 */
251 fallback = true;
252 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
253 if (cpu >= nr_cpu_ids) {
254 /*
255 * Fail to find any suitable cpu.
256 * The task will never come back!
257 */
258 BUG_ON(dl_bandwidth_enabled());
259
260 /*
261 * If admission control is disabled we
262 * try a little harder to let the task
263 * run.
264 */
265 cpu = cpumask_any(cpu_active_mask);
266 }
267 later_rq = cpu_rq(cpu);
268 double_lock_balance(rq, later_rq);
269 }
270
a649f237
PZ
271 /*
272 * By now the task is replenished and enqueued; migrate it.
273 */
fa9c9d10
WL
274 deactivate_task(rq, p, 0);
275 set_task_cpu(p, later_rq->cpu);
a649f237 276 activate_task(later_rq, p, 0);
fa9c9d10
WL
277
278 if (!fallback)
279 resched_curr(later_rq);
280
a649f237
PZ
281 double_unlock_balance(later_rq, rq);
282
283 return later_rq;
fa9c9d10
WL
284}
285
1baca4ce
JL
286#else
287
288static inline
289void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
290{
291}
292
293static inline
294void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
295{
296}
297
298static inline
299void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
300{
301}
302
303static inline
304void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
305{
306}
307
dc877341
PZ
308static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
309{
310 return false;
311}
312
0ea60c20 313static inline void pull_dl_task(struct rq *rq)
dc877341 314{
dc877341
PZ
315}
316
e3fca9e7 317static inline void queue_push_tasks(struct rq *rq)
dc877341
PZ
318{
319}
9916e214
PZ
320
321static inline void queue_pull_task(struct rq *rq)
322{
323}
1baca4ce
JL
324#endif /* CONFIG_SMP */
325
aab03e05
DF
326static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
327static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
328static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
329 int flags);
330
331/*
332 * We are being explicitly informed that a new instance is starting,
333 * and this means that:
334 * - the absolute deadline of the entity has to be placed at
335 * current time + relative deadline;
336 * - the runtime of the entity has to be set to the maximum value.
337 *
338 * The capability of specifying such event is useful whenever a -deadline
339 * entity wants to (try to!) synchronize its behaviour with the scheduler's
340 * one, and to (try to!) reconcile itself with its own scheduling
341 * parameters.
342 */
2d3d891d
DF
343static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
344 struct sched_dl_entity *pi_se)
aab03e05
DF
345{
346 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
347 struct rq *rq = rq_of_dl_rq(dl_rq);
348
349 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
350
351 /*
352 * We use the regular wall clock time to set deadlines in the
353 * future; in fact, we must consider execution overheads (time
354 * spent on hardirq context, etc.).
355 */
2d3d891d
DF
356 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
357 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
358 dl_se->dl_new = 0;
359}
360
361/*
362 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
363 * possibility of a entity lasting more than what it declared, and thus
364 * exhausting its runtime.
365 *
366 * Here we are interested in making runtime overrun possible, but we do
367 * not want a entity which is misbehaving to affect the scheduling of all
368 * other entities.
369 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
370 * is used, in order to confine each entity within its own bandwidth.
371 *
372 * This function deals exactly with that, and ensures that when the runtime
373 * of a entity is replenished, its deadline is also postponed. That ensures
374 * the overrunning entity can't interfere with other entity in the system and
375 * can't make them miss their deadlines. Reasons why this kind of overruns
376 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 377 * runtime, or it just underestimated it during sched_setattr().
aab03e05 378 */
2d3d891d
DF
379static void replenish_dl_entity(struct sched_dl_entity *dl_se,
380 struct sched_dl_entity *pi_se)
aab03e05
DF
381{
382 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
383 struct rq *rq = rq_of_dl_rq(dl_rq);
384
2d3d891d
DF
385 BUG_ON(pi_se->dl_runtime <= 0);
386
387 /*
388 * This could be the case for a !-dl task that is boosted.
389 * Just go with full inherited parameters.
390 */
391 if (dl_se->dl_deadline == 0) {
392 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
393 dl_se->runtime = pi_se->dl_runtime;
394 }
395
aab03e05
DF
396 /*
397 * We keep moving the deadline away until we get some
398 * available runtime for the entity. This ensures correct
399 * handling of situations where the runtime overrun is
400 * arbitrary large.
401 */
402 while (dl_se->runtime <= 0) {
2d3d891d
DF
403 dl_se->deadline += pi_se->dl_period;
404 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
405 }
406
407 /*
408 * At this point, the deadline really should be "in
409 * the future" with respect to rq->clock. If it's
410 * not, we are, for some reason, lagging too much!
411 * Anyway, after having warn userspace abut that,
412 * we still try to keep the things running by
413 * resetting the deadline and the budget of the
414 * entity.
415 */
416 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c224815d 417 printk_deferred_once("sched: DL replenish lagged to much\n");
2d3d891d
DF
418 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
419 dl_se->runtime = pi_se->dl_runtime;
aab03e05 420 }
1019a359
PZ
421
422 if (dl_se->dl_yielded)
423 dl_se->dl_yielded = 0;
424 if (dl_se->dl_throttled)
425 dl_se->dl_throttled = 0;
aab03e05
DF
426}
427
428/*
429 * Here we check if --at time t-- an entity (which is probably being
430 * [re]activated or, in general, enqueued) can use its remaining runtime
431 * and its current deadline _without_ exceeding the bandwidth it is
432 * assigned (function returns true if it can't). We are in fact applying
433 * one of the CBS rules: when a task wakes up, if the residual runtime
434 * over residual deadline fits within the allocated bandwidth, then we
435 * can keep the current (absolute) deadline and residual budget without
436 * disrupting the schedulability of the system. Otherwise, we should
437 * refill the runtime and set the deadline a period in the future,
438 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
439 * result in breaking guarantees promised to other tasks (refer to
440 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
441 *
442 * This function returns true if:
443 *
755378a4 444 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
445 *
446 * IOW we can't recycle current parameters.
755378a4
HG
447 *
448 * Notice that the bandwidth check is done against the period. For
449 * task with deadline equal to period this is the same of using
450 * dl_deadline instead of dl_period in the equation above.
aab03e05 451 */
2d3d891d
DF
452static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
453 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
454{
455 u64 left, right;
456
457 /*
458 * left and right are the two sides of the equation above,
459 * after a bit of shuffling to use multiplications instead
460 * of divisions.
461 *
462 * Note that none of the time values involved in the two
463 * multiplications are absolute: dl_deadline and dl_runtime
464 * are the relative deadline and the maximum runtime of each
465 * instance, runtime is the runtime left for the last instance
466 * and (deadline - t), since t is rq->clock, is the time left
467 * to the (absolute) deadline. Even if overflowing the u64 type
468 * is very unlikely to occur in both cases, here we scale down
469 * as we want to avoid that risk at all. Scaling down by 10
470 * means that we reduce granularity to 1us. We are fine with it,
471 * since this is only a true/false check and, anyway, thinking
472 * of anything below microseconds resolution is actually fiction
473 * (but still we want to give the user that illusion >;).
474 */
332ac17e
DF
475 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
476 right = ((dl_se->deadline - t) >> DL_SCALE) *
477 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
478
479 return dl_time_before(right, left);
480}
481
482/*
483 * When a -deadline entity is queued back on the runqueue, its runtime and
484 * deadline might need updating.
485 *
486 * The policy here is that we update the deadline of the entity only if:
487 * - the current deadline is in the past,
488 * - using the remaining runtime with the current deadline would make
489 * the entity exceed its bandwidth.
490 */
2d3d891d
DF
491static void update_dl_entity(struct sched_dl_entity *dl_se,
492 struct sched_dl_entity *pi_se)
aab03e05
DF
493{
494 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
495 struct rq *rq = rq_of_dl_rq(dl_rq);
496
497 /*
498 * The arrival of a new instance needs special treatment, i.e.,
499 * the actual scheduling parameters have to be "renewed".
500 */
501 if (dl_se->dl_new) {
2d3d891d 502 setup_new_dl_entity(dl_se, pi_se);
aab03e05
DF
503 return;
504 }
505
506 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
507 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
508 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
509 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
510 }
511}
512
513/*
514 * If the entity depleted all its runtime, and if we want it to sleep
515 * while waiting for some new execution time to become available, we
516 * set the bandwidth enforcement timer to the replenishment instant
517 * and try to activate it.
518 *
519 * Notice that it is important for the caller to know if the timer
520 * actually started or not (i.e., the replenishment instant is in
521 * the future or in the past).
522 */
a649f237 523static int start_dl_timer(struct task_struct *p)
aab03e05 524{
a649f237
PZ
525 struct sched_dl_entity *dl_se = &p->dl;
526 struct hrtimer *timer = &dl_se->dl_timer;
527 struct rq *rq = task_rq(p);
aab03e05 528 ktime_t now, act;
aab03e05
DF
529 s64 delta;
530
a649f237
PZ
531 lockdep_assert_held(&rq->lock);
532
aab03e05
DF
533 /*
534 * We want the timer to fire at the deadline, but considering
535 * that it is actually coming from rq->clock and not from
536 * hrtimer's time base reading.
537 */
538 act = ns_to_ktime(dl_se->deadline);
a649f237 539 now = hrtimer_cb_get_time(timer);
aab03e05
DF
540 delta = ktime_to_ns(now) - rq_clock(rq);
541 act = ktime_add_ns(act, delta);
542
543 /*
544 * If the expiry time already passed, e.g., because the value
545 * chosen as the deadline is too small, don't even try to
546 * start the timer in the past!
547 */
548 if (ktime_us_delta(act, now) < 0)
549 return 0;
550
a649f237
PZ
551 /*
552 * !enqueued will guarantee another callback; even if one is already in
553 * progress. This ensures a balanced {get,put}_task_struct().
554 *
555 * The race against __run_timer() clearing the enqueued state is
556 * harmless because we're holding task_rq()->lock, therefore the timer
557 * expiring after we've done the check will wait on its task_rq_lock()
558 * and observe our state.
559 */
560 if (!hrtimer_is_queued(timer)) {
561 get_task_struct(p);
562 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
563 }
aab03e05 564
cc9684d3 565 return 1;
aab03e05
DF
566}
567
568/*
569 * This is the bandwidth enforcement timer callback. If here, we know
570 * a task is not on its dl_rq, since the fact that the timer was running
571 * means the task is throttled and needs a runtime replenishment.
572 *
573 * However, what we actually do depends on the fact the task is active,
574 * (it is on its rq) or has been removed from there by a call to
575 * dequeue_task_dl(). In the former case we must issue the runtime
576 * replenishment and add the task back to the dl_rq; in the latter, we just
577 * do nothing but clearing dl_throttled, so that runtime and deadline
578 * updating (and the queueing back to dl_rq) will be done by the
579 * next call to enqueue_task_dl().
580 */
581static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
582{
583 struct sched_dl_entity *dl_se = container_of(timer,
584 struct sched_dl_entity,
585 dl_timer);
586 struct task_struct *p = dl_task_of(dl_se);
3960c8c0 587 unsigned long flags;
0f397f2c 588 struct rq *rq;
3960c8c0 589
4cd57f97 590 rq = task_rq_lock(p, &flags);
0f397f2c 591
aab03e05 592 /*
a649f237
PZ
593 * The task might have changed its scheduling policy to something
594 * different than SCHED_DEADLINE (through switched_fromd_dl()).
595 */
596 if (!dl_task(p)) {
597 __dl_clear_params(p);
598 goto unlock;
599 }
600
601 /*
602 * This is possible if switched_from_dl() raced against a running
603 * callback that took the above !dl_task() path and we've since then
604 * switched back into SCHED_DEADLINE.
aee38ea9 605 *
a649f237 606 * There's nothing to do except drop our task reference.
aab03e05 607 */
a649f237 608 if (dl_se->dl_new)
aab03e05
DF
609 goto unlock;
610
a649f237
PZ
611 /*
612 * The task might have been boosted by someone else and might be in the
613 * boosting/deboosting path, its not throttled.
614 */
615 if (dl_se->dl_boosted)
616 goto unlock;
a79ec89f 617
fa9c9d10 618 /*
a649f237
PZ
619 * Spurious timer due to start_dl_timer() race; or we already received
620 * a replenishment from rt_mutex_setprio().
fa9c9d10 621 */
a649f237 622 if (!dl_se->dl_throttled)
fa9c9d10 623 goto unlock;
a649f237
PZ
624
625 sched_clock_tick();
626 update_rq_clock(rq);
fa9c9d10 627
a79ec89f
KT
628 /*
629 * If the throttle happened during sched-out; like:
630 *
631 * schedule()
632 * deactivate_task()
633 * dequeue_task_dl()
634 * update_curr_dl()
635 * start_dl_timer()
636 * __dequeue_task_dl()
637 * prev->on_rq = 0;
638 *
639 * We can be both throttled and !queued. Replenish the counter
640 * but do not enqueue -- wait for our wakeup to do that.
641 */
642 if (!task_on_rq_queued(p)) {
643 replenish_dl_entity(dl_se, dl_se);
644 goto unlock;
645 }
646
1019a359
PZ
647 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
648 if (dl_task(rq->curr))
649 check_preempt_curr_dl(rq, p, 0);
650 else
651 resched_curr(rq);
a649f237 652
1baca4ce 653#ifdef CONFIG_SMP
1019a359 654 /*
a649f237
PZ
655 * Perform balancing operations here; after the replenishments. We
656 * cannot drop rq->lock before this, otherwise the assertion in
657 * start_dl_timer() about not missing updates is not true.
658 *
659 * If we find that the rq the task was on is no longer available, we
660 * need to select a new rq.
661 *
662 * XXX figure out if select_task_rq_dl() deals with offline cpus.
663 */
664 if (unlikely(!rq->online))
665 rq = dl_task_offline_migration(rq, p);
666
667 /*
668 * Queueing this task back might have overloaded rq, check if we need
669 * to kick someone away.
1019a359
PZ
670 */
671 if (has_pushable_dl_tasks(rq))
672 push_dl_task(rq);
1baca4ce 673#endif
a649f237 674
aab03e05 675unlock:
4cd57f97 676 task_rq_unlock(rq, p, &flags);
aab03e05 677
a649f237
PZ
678 /*
679 * This can free the task_struct, including this hrtimer, do not touch
680 * anything related to that after this.
681 */
682 put_task_struct(p);
683
aab03e05
DF
684 return HRTIMER_NORESTART;
685}
686
687void init_dl_task_timer(struct sched_dl_entity *dl_se)
688{
689 struct hrtimer *timer = &dl_se->dl_timer;
690
aab03e05
DF
691 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
692 timer->function = dl_task_timer;
693}
694
695static
696int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
697{
269ad801 698 return (dl_se->runtime <= 0);
aab03e05
DF
699}
700
faa59937
JL
701extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
702
aab03e05
DF
703/*
704 * Update the current task's runtime statistics (provided it is still
705 * a -deadline task and has not been removed from the dl_rq).
706 */
707static void update_curr_dl(struct rq *rq)
708{
709 struct task_struct *curr = rq->curr;
710 struct sched_dl_entity *dl_se = &curr->dl;
711 u64 delta_exec;
712
713 if (!dl_task(curr) || !on_dl_rq(dl_se))
714 return;
715
716 /*
717 * Consumed budget is computed considering the time as
718 * observed by schedulable tasks (excluding time spent
719 * in hardirq context, etc.). Deadlines are instead
720 * computed using hard walltime. This seems to be the more
721 * natural solution, but the full ramifications of this
722 * approach need further study.
723 */
724 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
734ff2a7
KT
725 if (unlikely((s64)delta_exec <= 0))
726 return;
aab03e05
DF
727
728 schedstat_set(curr->se.statistics.exec_max,
729 max(curr->se.statistics.exec_max, delta_exec));
730
731 curr->se.sum_exec_runtime += delta_exec;
732 account_group_exec_runtime(curr, delta_exec);
733
734 curr->se.exec_start = rq_clock_task(rq);
735 cpuacct_charge(curr, delta_exec);
736
239be4a9
DF
737 sched_rt_avg_update(rq, delta_exec);
738
80496880 739 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
aab03e05 740 if (dl_runtime_exceeded(rq, dl_se)) {
1019a359 741 dl_se->dl_throttled = 1;
aab03e05 742 __dequeue_task_dl(rq, curr, 0);
a649f237 743 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
aab03e05
DF
744 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
745
746 if (!is_leftmost(curr, &rq->dl))
8875125e 747 resched_curr(rq);
aab03e05 748 }
1724813d
PZ
749
750 /*
751 * Because -- for now -- we share the rt bandwidth, we need to
752 * account our runtime there too, otherwise actual rt tasks
753 * would be able to exceed the shared quota.
754 *
755 * Account to the root rt group for now.
756 *
757 * The solution we're working towards is having the RT groups scheduled
758 * using deadline servers -- however there's a few nasties to figure
759 * out before that can happen.
760 */
761 if (rt_bandwidth_enabled()) {
762 struct rt_rq *rt_rq = &rq->rt;
763
764 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
765 /*
766 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
767 * have our own CBS to keep us inline; only account when RT
768 * bandwidth is relevant.
1724813d 769 */
faa59937
JL
770 if (sched_rt_bandwidth_account(rt_rq))
771 rt_rq->rt_time += delta_exec;
1724813d
PZ
772 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 }
aab03e05
DF
774}
775
1baca4ce
JL
776#ifdef CONFIG_SMP
777
778static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
779
780static inline u64 next_deadline(struct rq *rq)
781{
782 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
783
784 if (next && dl_prio(next->prio))
785 return next->dl.deadline;
786 else
787 return 0;
788}
789
790static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
791{
792 struct rq *rq = rq_of_dl_rq(dl_rq);
793
794 if (dl_rq->earliest_dl.curr == 0 ||
795 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
796 /*
797 * If the dl_rq had no -deadline tasks, or if the new task
798 * has shorter deadline than the current one on dl_rq, we
799 * know that the previous earliest becomes our next earliest,
800 * as the new task becomes the earliest itself.
801 */
802 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
803 dl_rq->earliest_dl.curr = deadline;
6bfd6d72 804 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
1baca4ce
JL
805 } else if (dl_rq->earliest_dl.next == 0 ||
806 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
807 /*
808 * On the other hand, if the new -deadline task has a
809 * a later deadline than the earliest one on dl_rq, but
810 * it is earlier than the next (if any), we must
811 * recompute the next-earliest.
812 */
813 dl_rq->earliest_dl.next = next_deadline(rq);
814 }
815}
816
817static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
818{
819 struct rq *rq = rq_of_dl_rq(dl_rq);
820
821 /*
822 * Since we may have removed our earliest (and/or next earliest)
823 * task we must recompute them.
824 */
825 if (!dl_rq->dl_nr_running) {
826 dl_rq->earliest_dl.curr = 0;
827 dl_rq->earliest_dl.next = 0;
6bfd6d72 828 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
829 } else {
830 struct rb_node *leftmost = dl_rq->rb_leftmost;
831 struct sched_dl_entity *entry;
832
833 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
834 dl_rq->earliest_dl.curr = entry->deadline;
835 dl_rq->earliest_dl.next = next_deadline(rq);
6bfd6d72 836 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
1baca4ce
JL
837 }
838}
839
840#else
841
842static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
843static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
844
845#endif /* CONFIG_SMP */
846
847static inline
848void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
849{
850 int prio = dl_task_of(dl_se)->prio;
851 u64 deadline = dl_se->deadline;
852
853 WARN_ON(!dl_prio(prio));
854 dl_rq->dl_nr_running++;
72465447 855 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
856
857 inc_dl_deadline(dl_rq, deadline);
858 inc_dl_migration(dl_se, dl_rq);
859}
860
861static inline
862void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
863{
864 int prio = dl_task_of(dl_se)->prio;
865
866 WARN_ON(!dl_prio(prio));
867 WARN_ON(!dl_rq->dl_nr_running);
868 dl_rq->dl_nr_running--;
72465447 869 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
870
871 dec_dl_deadline(dl_rq, dl_se->deadline);
872 dec_dl_migration(dl_se, dl_rq);
873}
874
aab03e05
DF
875static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
876{
877 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
878 struct rb_node **link = &dl_rq->rb_root.rb_node;
879 struct rb_node *parent = NULL;
880 struct sched_dl_entity *entry;
881 int leftmost = 1;
882
883 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
884
885 while (*link) {
886 parent = *link;
887 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
888 if (dl_time_before(dl_se->deadline, entry->deadline))
889 link = &parent->rb_left;
890 else {
891 link = &parent->rb_right;
892 leftmost = 0;
893 }
894 }
895
896 if (leftmost)
897 dl_rq->rb_leftmost = &dl_se->rb_node;
898
899 rb_link_node(&dl_se->rb_node, parent, link);
900 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
901
1baca4ce 902 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
903}
904
905static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
906{
907 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
908
909 if (RB_EMPTY_NODE(&dl_se->rb_node))
910 return;
911
912 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
913 struct rb_node *next_node;
914
915 next_node = rb_next(&dl_se->rb_node);
916 dl_rq->rb_leftmost = next_node;
917 }
918
919 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
920 RB_CLEAR_NODE(&dl_se->rb_node);
921
1baca4ce 922 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
923}
924
925static void
2d3d891d
DF
926enqueue_dl_entity(struct sched_dl_entity *dl_se,
927 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
928{
929 BUG_ON(on_dl_rq(dl_se));
930
931 /*
932 * If this is a wakeup or a new instance, the scheduling
933 * parameters of the task might need updating. Otherwise,
934 * we want a replenishment of its runtime.
935 */
6a503c3b 936 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
2d3d891d 937 update_dl_entity(dl_se, pi_se);
6a503c3b
LA
938 else if (flags & ENQUEUE_REPLENISH)
939 replenish_dl_entity(dl_se, pi_se);
aab03e05
DF
940
941 __enqueue_dl_entity(dl_se);
942}
943
944static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
945{
946 __dequeue_dl_entity(dl_se);
947}
948
949static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
950{
2d3d891d
DF
951 struct task_struct *pi_task = rt_mutex_get_top_task(p);
952 struct sched_dl_entity *pi_se = &p->dl;
953
954 /*
955 * Use the scheduling parameters of the top pi-waiter
956 * task if we have one and its (relative) deadline is
957 * smaller than our one... OTW we keep our runtime and
958 * deadline.
959 */
64be6f1f 960 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
2d3d891d 961 pi_se = &pi_task->dl;
64be6f1f
JL
962 } else if (!dl_prio(p->normal_prio)) {
963 /*
964 * Special case in which we have a !SCHED_DEADLINE task
965 * that is going to be deboosted, but exceedes its
966 * runtime while doing so. No point in replenishing
967 * it, as it's going to return back to its original
968 * scheduling class after this.
969 */
970 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
971 return;
972 }
2d3d891d 973
aab03e05
DF
974 /*
975 * If p is throttled, we do nothing. In fact, if it exhausted
976 * its budget it needs a replenishment and, since it now is on
977 * its rq, the bandwidth timer callback (which clearly has not
978 * run yet) will take care of this.
979 */
1019a359 980 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
aab03e05
DF
981 return;
982
2d3d891d 983 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce
JL
984
985 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
986 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
987}
988
989static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
990{
991 dequeue_dl_entity(&p->dl);
1baca4ce 992 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
993}
994
995static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
996{
997 update_curr_dl(rq);
998 __dequeue_task_dl(rq, p, flags);
aab03e05
DF
999}
1000
1001/*
1002 * Yield task semantic for -deadline tasks is:
1003 *
1004 * get off from the CPU until our next instance, with
1005 * a new runtime. This is of little use now, since we
1006 * don't have a bandwidth reclaiming mechanism. Anyway,
1007 * bandwidth reclaiming is planned for the future, and
1008 * yield_task_dl will indicate that some spare budget
1009 * is available for other task instances to use it.
1010 */
1011static void yield_task_dl(struct rq *rq)
1012{
1013 struct task_struct *p = rq->curr;
1014
1015 /*
1016 * We make the task go to sleep until its current deadline by
1017 * forcing its runtime to zero. This way, update_curr_dl() stops
1018 * it and the bandwidth timer will wake it up and will give it
5bfd126e 1019 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05
DF
1020 */
1021 if (p->dl.runtime > 0) {
5bfd126e 1022 rq->curr->dl.dl_yielded = 1;
aab03e05
DF
1023 p->dl.runtime = 0;
1024 }
6f1607f1 1025 update_rq_clock(rq);
aab03e05 1026 update_curr_dl(rq);
44fb085b
WL
1027 /*
1028 * Tell update_rq_clock() that we've just updated,
1029 * so we don't do microscopic update in schedule()
1030 * and double the fastpath cost.
1031 */
1032 rq_clock_skip_update(rq, true);
aab03e05
DF
1033}
1034
1baca4ce
JL
1035#ifdef CONFIG_SMP
1036
1037static int find_later_rq(struct task_struct *task);
1baca4ce
JL
1038
1039static int
1040select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1041{
1042 struct task_struct *curr;
1043 struct rq *rq;
1044
1d7e974c 1045 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
1046 goto out;
1047
1048 rq = cpu_rq(cpu);
1049
1050 rcu_read_lock();
316c1608 1051 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
1052
1053 /*
1054 * If we are dealing with a -deadline task, we must
1055 * decide where to wake it up.
1056 * If it has a later deadline and the current task
1057 * on this rq can't move (provided the waking task
1058 * can!) we prefer to send it somewhere else. On the
1059 * other hand, if it has a shorter deadline, we
1060 * try to make it stay here, it might be important.
1061 */
1062 if (unlikely(dl_task(curr)) &&
1063 (curr->nr_cpus_allowed < 2 ||
1064 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1065 (p->nr_cpus_allowed > 1)) {
1066 int target = find_later_rq(p);
1067
1068 if (target != -1)
1069 cpu = target;
1070 }
1071 rcu_read_unlock();
1072
1073out:
1074 return cpu;
1075}
1076
1077static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1078{
1079 /*
1080 * Current can't be migrated, useless to reschedule,
1081 * let's hope p can move out.
1082 */
1083 if (rq->curr->nr_cpus_allowed == 1 ||
6bfd6d72 1084 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
1085 return;
1086
1087 /*
1088 * p is migratable, so let's not schedule it and
1089 * see if it is pushed or pulled somewhere else.
1090 */
1091 if (p->nr_cpus_allowed != 1 &&
6bfd6d72 1092 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
1093 return;
1094
8875125e 1095 resched_curr(rq);
1baca4ce
JL
1096}
1097
1098#endif /* CONFIG_SMP */
1099
aab03e05
DF
1100/*
1101 * Only called when both the current and waking task are -deadline
1102 * tasks.
1103 */
1104static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1105 int flags)
1106{
1baca4ce 1107 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1108 resched_curr(rq);
1baca4ce
JL
1109 return;
1110 }
1111
1112#ifdef CONFIG_SMP
1113 /*
1114 * In the unlikely case current and p have the same deadline
1115 * let us try to decide what's the best thing to do...
1116 */
332ac17e
DF
1117 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1118 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1119 check_preempt_equal_dl(rq, p);
1120#endif /* CONFIG_SMP */
aab03e05
DF
1121}
1122
1123#ifdef CONFIG_SCHED_HRTICK
1124static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1125{
177ef2a6 1126 hrtick_start(rq, p->dl.runtime);
aab03e05 1127}
36ce9881
WL
1128#else /* !CONFIG_SCHED_HRTICK */
1129static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1130{
1131}
aab03e05
DF
1132#endif
1133
1134static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1135 struct dl_rq *dl_rq)
1136{
1137 struct rb_node *left = dl_rq->rb_leftmost;
1138
1139 if (!left)
1140 return NULL;
1141
1142 return rb_entry(left, struct sched_dl_entity, rb_node);
1143}
1144
606dba2e 1145struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
aab03e05
DF
1146{
1147 struct sched_dl_entity *dl_se;
1148 struct task_struct *p;
1149 struct dl_rq *dl_rq;
1150
1151 dl_rq = &rq->dl;
1152
a1d9a323 1153 if (need_pull_dl_task(rq, prev)) {
38033c37 1154 pull_dl_task(rq);
a1d9a323
KT
1155 /*
1156 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1157 * means a stop task can slip in, in which case we need to
1158 * re-start task selection.
1159 */
da0c1e65 1160 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1161 return RETRY_TASK;
1162 }
1163
734ff2a7
KT
1164 /*
1165 * When prev is DL, we may throttle it in put_prev_task().
1166 * So, we update time before we check for dl_nr_running.
1167 */
1168 if (prev->sched_class == &dl_sched_class)
1169 update_curr_dl(rq);
38033c37 1170
aab03e05
DF
1171 if (unlikely(!dl_rq->dl_nr_running))
1172 return NULL;
1173
3f1d2a31 1174 put_prev_task(rq, prev);
606dba2e 1175
aab03e05
DF
1176 dl_se = pick_next_dl_entity(rq, dl_rq);
1177 BUG_ON(!dl_se);
1178
1179 p = dl_task_of(dl_se);
1180 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1181
1182 /* Running task will never be pushed. */
71362650 1183 dequeue_pushable_dl_task(rq, p);
1baca4ce 1184
aab03e05
DF
1185 if (hrtick_enabled(rq))
1186 start_hrtick_dl(rq, p);
1baca4ce 1187
e3fca9e7 1188 queue_push_tasks(rq);
1baca4ce 1189
aab03e05
DF
1190 return p;
1191}
1192
1193static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1194{
1195 update_curr_dl(rq);
1baca4ce
JL
1196
1197 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1198 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1199}
1200
1201static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1202{
1203 update_curr_dl(rq);
1204
a7bebf48
WL
1205 /*
1206 * Even when we have runtime, update_curr_dl() might have resulted in us
1207 * not being the leftmost task anymore. In that case NEED_RESCHED will
1208 * be set and schedule() will start a new hrtick for the next task.
1209 */
1210 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1211 is_leftmost(p, &rq->dl))
aab03e05 1212 start_hrtick_dl(rq, p);
aab03e05
DF
1213}
1214
1215static void task_fork_dl(struct task_struct *p)
1216{
1217 /*
1218 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1219 * sched_fork()
1220 */
1221}
1222
1223static void task_dead_dl(struct task_struct *p)
1224{
332ac17e
DF
1225 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1226
1227 /*
1228 * Since we are TASK_DEAD we won't slip out of the domain!
1229 */
1230 raw_spin_lock_irq(&dl_b->lock);
40767b0d 1231 /* XXX we should retain the bw until 0-lag */
332ac17e
DF
1232 dl_b->total_bw -= p->dl.dl_bw;
1233 raw_spin_unlock_irq(&dl_b->lock);
aab03e05
DF
1234}
1235
1236static void set_curr_task_dl(struct rq *rq)
1237{
1238 struct task_struct *p = rq->curr;
1239
1240 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1241
1242 /* You can't push away the running task */
1243 dequeue_pushable_dl_task(rq, p);
1244}
1245
1246#ifdef CONFIG_SMP
1247
1248/* Only try algorithms three times */
1249#define DL_MAX_TRIES 3
1250
1251static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1252{
1253 if (!task_running(rq, p) &&
1ba93d42 1254 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1baca4ce 1255 return 1;
1baca4ce
JL
1256 return 0;
1257}
1258
1259/* Returns the second earliest -deadline task, NULL otherwise */
1260static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1261{
1262 struct rb_node *next_node = rq->dl.rb_leftmost;
1263 struct sched_dl_entity *dl_se;
1264 struct task_struct *p = NULL;
1265
1266next_node:
1267 next_node = rb_next(next_node);
1268 if (next_node) {
1269 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1270 p = dl_task_of(dl_se);
1271
1272 if (pick_dl_task(rq, p, cpu))
1273 return p;
1274
1275 goto next_node;
1276 }
1277
1278 return NULL;
1279}
1280
1baca4ce
JL
1281static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1282
1283static int find_later_rq(struct task_struct *task)
1284{
1285 struct sched_domain *sd;
4ba29684 1286 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce
JL
1287 int this_cpu = smp_processor_id();
1288 int best_cpu, cpu = task_cpu(task);
1289
1290 /* Make sure the mask is initialized first */
1291 if (unlikely(!later_mask))
1292 return -1;
1293
1294 if (task->nr_cpus_allowed == 1)
1295 return -1;
1296
91ec6778
JL
1297 /*
1298 * We have to consider system topology and task affinity
1299 * first, then we can look for a suitable cpu.
1300 */
6bfd6d72
JL
1301 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1302 task, later_mask);
1baca4ce
JL
1303 if (best_cpu == -1)
1304 return -1;
1305
1306 /*
1307 * If we are here, some target has been found,
1308 * the most suitable of which is cached in best_cpu.
1309 * This is, among the runqueues where the current tasks
1310 * have later deadlines than the task's one, the rq
1311 * with the latest possible one.
1312 *
1313 * Now we check how well this matches with task's
1314 * affinity and system topology.
1315 *
1316 * The last cpu where the task run is our first
1317 * guess, since it is most likely cache-hot there.
1318 */
1319 if (cpumask_test_cpu(cpu, later_mask))
1320 return cpu;
1321 /*
1322 * Check if this_cpu is to be skipped (i.e., it is
1323 * not in the mask) or not.
1324 */
1325 if (!cpumask_test_cpu(this_cpu, later_mask))
1326 this_cpu = -1;
1327
1328 rcu_read_lock();
1329 for_each_domain(cpu, sd) {
1330 if (sd->flags & SD_WAKE_AFFINE) {
1331
1332 /*
1333 * If possible, preempting this_cpu is
1334 * cheaper than migrating.
1335 */
1336 if (this_cpu != -1 &&
1337 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1338 rcu_read_unlock();
1339 return this_cpu;
1340 }
1341
1342 /*
1343 * Last chance: if best_cpu is valid and is
1344 * in the mask, that becomes our choice.
1345 */
1346 if (best_cpu < nr_cpu_ids &&
1347 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1348 rcu_read_unlock();
1349 return best_cpu;
1350 }
1351 }
1352 }
1353 rcu_read_unlock();
1354
1355 /*
1356 * At this point, all our guesses failed, we just return
1357 * 'something', and let the caller sort the things out.
1358 */
1359 if (this_cpu != -1)
1360 return this_cpu;
1361
1362 cpu = cpumask_any(later_mask);
1363 if (cpu < nr_cpu_ids)
1364 return cpu;
1365
1366 return -1;
1367}
1368
1369/* Locks the rq it finds */
1370static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1371{
1372 struct rq *later_rq = NULL;
1373 int tries;
1374 int cpu;
1375
1376 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1377 cpu = find_later_rq(task);
1378
1379 if ((cpu == -1) || (cpu == rq->cpu))
1380 break;
1381
1382 later_rq = cpu_rq(cpu);
1383
1384 /* Retry if something changed. */
1385 if (double_lock_balance(rq, later_rq)) {
1386 if (unlikely(task_rq(task) != rq ||
1387 !cpumask_test_cpu(later_rq->cpu,
1388 &task->cpus_allowed) ||
da0c1e65
KT
1389 task_running(rq, task) ||
1390 !task_on_rq_queued(task))) {
1baca4ce
JL
1391 double_unlock_balance(rq, later_rq);
1392 later_rq = NULL;
1393 break;
1394 }
1395 }
1396
1397 /*
1398 * If the rq we found has no -deadline task, or
1399 * its earliest one has a later deadline than our
1400 * task, the rq is a good one.
1401 */
1402 if (!later_rq->dl.dl_nr_running ||
1403 dl_time_before(task->dl.deadline,
1404 later_rq->dl.earliest_dl.curr))
1405 break;
1406
1407 /* Otherwise we try again. */
1408 double_unlock_balance(rq, later_rq);
1409 later_rq = NULL;
1410 }
1411
1412 return later_rq;
1413}
1414
1415static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1416{
1417 struct task_struct *p;
1418
1419 if (!has_pushable_dl_tasks(rq))
1420 return NULL;
1421
1422 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1423 struct task_struct, pushable_dl_tasks);
1424
1425 BUG_ON(rq->cpu != task_cpu(p));
1426 BUG_ON(task_current(rq, p));
1427 BUG_ON(p->nr_cpus_allowed <= 1);
1428
da0c1e65 1429 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
1430 BUG_ON(!dl_task(p));
1431
1432 return p;
1433}
1434
1435/*
1436 * See if the non running -deadline tasks on this rq
1437 * can be sent to some other CPU where they can preempt
1438 * and start executing.
1439 */
1440static int push_dl_task(struct rq *rq)
1441{
1442 struct task_struct *next_task;
1443 struct rq *later_rq;
c51b8ab5 1444 int ret = 0;
1baca4ce
JL
1445
1446 if (!rq->dl.overloaded)
1447 return 0;
1448
1449 next_task = pick_next_pushable_dl_task(rq);
1450 if (!next_task)
1451 return 0;
1452
1453retry:
1454 if (unlikely(next_task == rq->curr)) {
1455 WARN_ON(1);
1456 return 0;
1457 }
1458
1459 /*
1460 * If next_task preempts rq->curr, and rq->curr
1461 * can move away, it makes sense to just reschedule
1462 * without going further in pushing next_task.
1463 */
1464 if (dl_task(rq->curr) &&
1465 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1466 rq->curr->nr_cpus_allowed > 1) {
8875125e 1467 resched_curr(rq);
1baca4ce
JL
1468 return 0;
1469 }
1470
1471 /* We might release rq lock */
1472 get_task_struct(next_task);
1473
1474 /* Will lock the rq it'll find */
1475 later_rq = find_lock_later_rq(next_task, rq);
1476 if (!later_rq) {
1477 struct task_struct *task;
1478
1479 /*
1480 * We must check all this again, since
1481 * find_lock_later_rq releases rq->lock and it is
1482 * then possible that next_task has migrated.
1483 */
1484 task = pick_next_pushable_dl_task(rq);
1485 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1486 /*
1487 * The task is still there. We don't try
1488 * again, some other cpu will pull it when ready.
1489 */
1baca4ce
JL
1490 goto out;
1491 }
1492
1493 if (!task)
1494 /* No more tasks */
1495 goto out;
1496
1497 put_task_struct(next_task);
1498 next_task = task;
1499 goto retry;
1500 }
1501
1502 deactivate_task(rq, next_task, 0);
1503 set_task_cpu(next_task, later_rq->cpu);
1504 activate_task(later_rq, next_task, 0);
c51b8ab5 1505 ret = 1;
1baca4ce 1506
8875125e 1507 resched_curr(later_rq);
1baca4ce
JL
1508
1509 double_unlock_balance(rq, later_rq);
1510
1511out:
1512 put_task_struct(next_task);
1513
c51b8ab5 1514 return ret;
1baca4ce
JL
1515}
1516
1517static void push_dl_tasks(struct rq *rq)
1518{
1519 /* Terminates as it moves a -deadline task */
1520 while (push_dl_task(rq))
1521 ;
aab03e05
DF
1522}
1523
0ea60c20 1524static void pull_dl_task(struct rq *this_rq)
1baca4ce 1525{
0ea60c20 1526 int this_cpu = this_rq->cpu, cpu;
1baca4ce 1527 struct task_struct *p;
0ea60c20 1528 bool resched = false;
1baca4ce
JL
1529 struct rq *src_rq;
1530 u64 dmin = LONG_MAX;
1531
1532 if (likely(!dl_overloaded(this_rq)))
0ea60c20 1533 return;
1baca4ce
JL
1534
1535 /*
1536 * Match the barrier from dl_set_overloaded; this guarantees that if we
1537 * see overloaded we must also see the dlo_mask bit.
1538 */
1539 smp_rmb();
1540
1541 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1542 if (this_cpu == cpu)
1543 continue;
1544
1545 src_rq = cpu_rq(cpu);
1546
1547 /*
1548 * It looks racy, abd it is! However, as in sched_rt.c,
1549 * we are fine with this.
1550 */
1551 if (this_rq->dl.dl_nr_running &&
1552 dl_time_before(this_rq->dl.earliest_dl.curr,
1553 src_rq->dl.earliest_dl.next))
1554 continue;
1555
1556 /* Might drop this_rq->lock */
1557 double_lock_balance(this_rq, src_rq);
1558
1559 /*
1560 * If there are no more pullable tasks on the
1561 * rq, we're done with it.
1562 */
1563 if (src_rq->dl.dl_nr_running <= 1)
1564 goto skip;
1565
1566 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1567
1568 /*
1569 * We found a task to be pulled if:
1570 * - it preempts our current (if there's one),
1571 * - it will preempt the last one we pulled (if any).
1572 */
1573 if (p && dl_time_before(p->dl.deadline, dmin) &&
1574 (!this_rq->dl.dl_nr_running ||
1575 dl_time_before(p->dl.deadline,
1576 this_rq->dl.earliest_dl.curr))) {
1577 WARN_ON(p == src_rq->curr);
da0c1e65 1578 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
1579
1580 /*
1581 * Then we pull iff p has actually an earlier
1582 * deadline than the current task of its runqueue.
1583 */
1584 if (dl_time_before(p->dl.deadline,
1585 src_rq->curr->dl.deadline))
1586 goto skip;
1587
0ea60c20 1588 resched = true;
1baca4ce
JL
1589
1590 deactivate_task(src_rq, p, 0);
1591 set_task_cpu(p, this_cpu);
1592 activate_task(this_rq, p, 0);
1593 dmin = p->dl.deadline;
1594
1595 /* Is there any other task even earlier? */
1596 }
1597skip:
1598 double_unlock_balance(this_rq, src_rq);
1599 }
1600
0ea60c20
PZ
1601 if (resched)
1602 resched_curr(this_rq);
1baca4ce
JL
1603}
1604
1baca4ce
JL
1605/*
1606 * Since the task is not running and a reschedule is not going to happen
1607 * anytime soon on its runqueue, we try pushing it away now.
1608 */
1609static void task_woken_dl(struct rq *rq, struct task_struct *p)
1610{
1611 if (!task_running(rq, p) &&
1612 !test_tsk_need_resched(rq->curr) &&
1613 has_pushable_dl_tasks(rq) &&
1614 p->nr_cpus_allowed > 1 &&
1615 dl_task(rq->curr) &&
1616 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 1617 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
1618 push_dl_tasks(rq);
1619 }
1620}
1621
1622static void set_cpus_allowed_dl(struct task_struct *p,
1623 const struct cpumask *new_mask)
1624{
1625 struct rq *rq;
7f51412a 1626 struct root_domain *src_rd;
1baca4ce
JL
1627 int weight;
1628
1629 BUG_ON(!dl_task(p));
1630
7f51412a
JL
1631 rq = task_rq(p);
1632 src_rd = rq->rd;
1633 /*
1634 * Migrating a SCHED_DEADLINE task between exclusive
1635 * cpusets (different root_domains) entails a bandwidth
1636 * update. We already made space for us in the destination
1637 * domain (see cpuset_can_attach()).
1638 */
1639 if (!cpumask_intersects(src_rd->span, new_mask)) {
1640 struct dl_bw *src_dl_b;
1641
1642 src_dl_b = dl_bw_of(cpu_of(rq));
1643 /*
1644 * We now free resources of the root_domain we are migrating
1645 * off. In the worst case, sched_setattr() may temporary fail
1646 * until we complete the update.
1647 */
1648 raw_spin_lock(&src_dl_b->lock);
1649 __dl_clear(src_dl_b, p->dl.dl_bw);
1650 raw_spin_unlock(&src_dl_b->lock);
1651 }
1652
1baca4ce
JL
1653 /*
1654 * Update only if the task is actually running (i.e.,
1655 * it is on the rq AND it is not throttled).
1656 */
1657 if (!on_dl_rq(&p->dl))
1658 return;
1659
1660 weight = cpumask_weight(new_mask);
1661
1662 /*
1663 * Only update if the process changes its state from whether it
1664 * can migrate or not.
1665 */
1666 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1667 return;
1668
1baca4ce
JL
1669 /*
1670 * The process used to be able to migrate OR it can now migrate
1671 */
1672 if (weight <= 1) {
1673 if (!task_current(rq, p))
1674 dequeue_pushable_dl_task(rq, p);
1675 BUG_ON(!rq->dl.dl_nr_migratory);
1676 rq->dl.dl_nr_migratory--;
1677 } else {
1678 if (!task_current(rq, p))
1679 enqueue_pushable_dl_task(rq, p);
1680 rq->dl.dl_nr_migratory++;
1681 }
1682
1683 update_dl_migration(&rq->dl);
1684}
1685
1686/* Assumes rq->lock is held */
1687static void rq_online_dl(struct rq *rq)
1688{
1689 if (rq->dl.overloaded)
1690 dl_set_overload(rq);
6bfd6d72 1691
16b26943 1692 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72
JL
1693 if (rq->dl.dl_nr_running > 0)
1694 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1baca4ce
JL
1695}
1696
1697/* Assumes rq->lock is held */
1698static void rq_offline_dl(struct rq *rq)
1699{
1700 if (rq->dl.overloaded)
1701 dl_clear_overload(rq);
6bfd6d72
JL
1702
1703 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
16b26943 1704 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
1705}
1706
1707void init_sched_dl_class(void)
1708{
1709 unsigned int i;
1710
1711 for_each_possible_cpu(i)
1712 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1713 GFP_KERNEL, cpu_to_node(i));
1714}
1715
1716#endif /* CONFIG_SMP */
1717
aab03e05
DF
1718static void switched_from_dl(struct rq *rq, struct task_struct *p)
1719{
a649f237
PZ
1720 /*
1721 * Start the deadline timer; if we switch back to dl before this we'll
1722 * continue consuming our current CBS slice. If we stay outside of
1723 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1724 * task.
1725 */
1726 if (!start_dl_timer(p))
1727 __dl_clear_params(p);
a5e7be3b 1728
1baca4ce
JL
1729 /*
1730 * Since this might be the only -deadline task on the rq,
1731 * this is the right place to try to pull some other one
1732 * from an overloaded cpu, if any.
1733 */
cd660911
WL
1734 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1735 return;
1736
9916e214 1737 queue_pull_task(rq);
aab03e05
DF
1738}
1739
1baca4ce
JL
1740/*
1741 * When switching to -deadline, we may overload the rq, then
1742 * we try to push someone off, if possible.
1743 */
aab03e05
DF
1744static void switched_to_dl(struct rq *rq, struct task_struct *p)
1745{
da0c1e65 1746 if (task_on_rq_queued(p) && rq->curr != p) {
1baca4ce 1747#ifdef CONFIG_SMP
9916e214
PZ
1748 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1749 queue_push_tasks(rq);
1750#else
1751 if (dl_task(rq->curr))
1752 check_preempt_curr_dl(rq, p, 0);
1753 else
1754 resched_curr(rq);
1755#endif
aab03e05
DF
1756 }
1757}
1758
1baca4ce
JL
1759/*
1760 * If the scheduling parameters of a -deadline task changed,
1761 * a push or pull operation might be needed.
1762 */
aab03e05
DF
1763static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1764 int oldprio)
1765{
da0c1e65 1766 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 1767#ifdef CONFIG_SMP
1baca4ce
JL
1768 /*
1769 * This might be too much, but unfortunately
1770 * we don't have the old deadline value, and
1771 * we can't argue if the task is increasing
1772 * or lowering its prio, so...
1773 */
1774 if (!rq->dl.overloaded)
9916e214 1775 queue_pull_task(rq);
1baca4ce
JL
1776
1777 /*
1778 * If we now have a earlier deadline task than p,
1779 * then reschedule, provided p is still on this
1780 * runqueue.
1781 */
9916e214 1782 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
8875125e 1783 resched_curr(rq);
1baca4ce
JL
1784#else
1785 /*
1786 * Again, we don't know if p has a earlier
1787 * or later deadline, so let's blindly set a
1788 * (maybe not needed) rescheduling point.
1789 */
8875125e 1790 resched_curr(rq);
1baca4ce
JL
1791#endif /* CONFIG_SMP */
1792 } else
1793 switched_to_dl(rq, p);
aab03e05 1794}
aab03e05
DF
1795
1796const struct sched_class dl_sched_class = {
1797 .next = &rt_sched_class,
1798 .enqueue_task = enqueue_task_dl,
1799 .dequeue_task = dequeue_task_dl,
1800 .yield_task = yield_task_dl,
1801
1802 .check_preempt_curr = check_preempt_curr_dl,
1803
1804 .pick_next_task = pick_next_task_dl,
1805 .put_prev_task = put_prev_task_dl,
1806
1807#ifdef CONFIG_SMP
1808 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1809 .set_cpus_allowed = set_cpus_allowed_dl,
1810 .rq_online = rq_online_dl,
1811 .rq_offline = rq_offline_dl,
1baca4ce 1812 .task_woken = task_woken_dl,
aab03e05
DF
1813#endif
1814
1815 .set_curr_task = set_curr_task_dl,
1816 .task_tick = task_tick_dl,
1817 .task_fork = task_fork_dl,
1818 .task_dead = task_dead_dl,
1819
1820 .prio_changed = prio_changed_dl,
1821 .switched_from = switched_from_dl,
1822 .switched_to = switched_to_dl,
6e998916
SG
1823
1824 .update_curr = update_curr_dl,
aab03e05 1825};
acb32132
WL
1826
1827#ifdef CONFIG_SCHED_DEBUG
1828extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1829
1830void print_dl_stats(struct seq_file *m, int cpu)
1831{
1832 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1833}
1834#endif /* CONFIG_SCHED_DEBUG */