sched/cgroup: Fix cgroup entity load tracking tear-down
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
332ac17e
DF
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
332ac17e
DF
60void init_dl_bw(struct dl_bw *dl_b)
61{
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 64 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
65 dl_b->bw = -1;
66 else
1724813d 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70}
71
07c54f7a 72void init_dl_rq(struct dl_rq *dl_rq)
aab03e05
DF
73{
74 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
75
76#ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
83#else
84 init_dl_bw(&dl_rq->dl_bw);
1baca4ce
JL
85#endif
86}
87
88#ifdef CONFIG_SMP
89
90static inline int dl_overloaded(struct rq *rq)
91{
92 return atomic_read(&rq->rd->dlo_count);
93}
94
95static inline void dl_set_overload(struct rq *rq)
96{
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109}
110
111static inline void dl_clear_overload(struct rq *rq)
112{
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118}
119
120static void update_dl_migration(struct dl_rq *dl_rq)
121{
995b9ea4 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131}
132
133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134{
135 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 136
1baca4ce
JL
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141}
142
143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 146
1baca4ce
JL
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151}
152
153/*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158{
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
7d92de3a 179 if (leftmost) {
1baca4ce 180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
7d92de3a
WL
181 dl_rq->earliest_dl.next = p->dl.deadline;
182 }
1baca4ce
JL
183
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
186}
187
1baca4ce
JL
188static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189{
190 struct dl_rq *dl_rq = &rq->dl;
191
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
194
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
197
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
7d92de3a
WL
200 if (next_node) {
201 dl_rq->earliest_dl.next = rb_entry(next_node,
202 struct task_struct, pushable_dl_tasks)->dl.deadline;
203 }
1baca4ce
JL
204 }
205
206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 RB_CLEAR_NODE(&p->pushable_dl_tasks);
208}
209
210static inline int has_pushable_dl_tasks(struct rq *rq)
211{
212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213}
214
215static int push_dl_task(struct rq *rq);
216
dc877341
PZ
217static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218{
219 return dl_task(prev);
220}
221
9916e214
PZ
222static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
e3fca9e7
PZ
224
225static void push_dl_tasks(struct rq *);
9916e214 226static void pull_dl_task(struct rq *);
e3fca9e7
PZ
227
228static inline void queue_push_tasks(struct rq *rq)
dc877341 229{
e3fca9e7
PZ
230 if (!has_pushable_dl_tasks(rq))
231 return;
232
9916e214
PZ
233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234}
235
236static inline void queue_pull_task(struct rq *rq)
237{
238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
dc877341
PZ
239}
240
fa9c9d10
WL
241static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242
a649f237 243static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
fa9c9d10
WL
244{
245 struct rq *later_rq = NULL;
246 bool fallback = false;
247
248 later_rq = find_lock_later_rq(p, rq);
249
250 if (!later_rq) {
251 int cpu;
252
253 /*
254 * If we cannot preempt any rq, fall back to pick any
255 * online cpu.
256 */
257 fallback = true;
258 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
259 if (cpu >= nr_cpu_ids) {
260 /*
261 * Fail to find any suitable cpu.
262 * The task will never come back!
263 */
264 BUG_ON(dl_bandwidth_enabled());
265
266 /*
267 * If admission control is disabled we
268 * try a little harder to let the task
269 * run.
270 */
271 cpu = cpumask_any(cpu_active_mask);
272 }
273 later_rq = cpu_rq(cpu);
274 double_lock_balance(rq, later_rq);
275 }
276
a649f237
PZ
277 /*
278 * By now the task is replenished and enqueued; migrate it.
279 */
fa9c9d10
WL
280 deactivate_task(rq, p, 0);
281 set_task_cpu(p, later_rq->cpu);
a649f237 282 activate_task(later_rq, p, 0);
fa9c9d10
WL
283
284 if (!fallback)
285 resched_curr(later_rq);
286
a649f237
PZ
287 double_unlock_balance(later_rq, rq);
288
289 return later_rq;
fa9c9d10
WL
290}
291
1baca4ce
JL
292#else
293
294static inline
295void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
296{
297}
298
299static inline
300void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
301{
302}
303
304static inline
305void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306{
307}
308
309static inline
310void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311{
312}
313
dc877341
PZ
314static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
315{
316 return false;
317}
318
0ea60c20 319static inline void pull_dl_task(struct rq *rq)
dc877341 320{
dc877341
PZ
321}
322
e3fca9e7 323static inline void queue_push_tasks(struct rq *rq)
dc877341 324{
dc877341
PZ
325}
326
9916e214 327static inline void queue_pull_task(struct rq *rq)
dc877341
PZ
328{
329}
1baca4ce
JL
330#endif /* CONFIG_SMP */
331
aab03e05
DF
332static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
333static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
334static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
335 int flags);
336
337/*
338 * We are being explicitly informed that a new instance is starting,
339 * and this means that:
340 * - the absolute deadline of the entity has to be placed at
341 * current time + relative deadline;
342 * - the runtime of the entity has to be set to the maximum value.
343 *
344 * The capability of specifying such event is useful whenever a -deadline
345 * entity wants to (try to!) synchronize its behaviour with the scheduler's
346 * one, and to (try to!) reconcile itself with its own scheduling
347 * parameters.
348 */
2d3d891d
DF
349static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
350 struct sched_dl_entity *pi_se)
aab03e05
DF
351{
352 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
353 struct rq *rq = rq_of_dl_rq(dl_rq);
354
355 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
356
357 /*
358 * We use the regular wall clock time to set deadlines in the
359 * future; in fact, we must consider execution overheads (time
360 * spent on hardirq context, etc.).
361 */
2d3d891d
DF
362 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
363 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
364 dl_se->dl_new = 0;
365}
366
367/*
368 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
369 * possibility of a entity lasting more than what it declared, and thus
370 * exhausting its runtime.
371 *
372 * Here we are interested in making runtime overrun possible, but we do
373 * not want a entity which is misbehaving to affect the scheduling of all
374 * other entities.
375 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
376 * is used, in order to confine each entity within its own bandwidth.
377 *
378 * This function deals exactly with that, and ensures that when the runtime
379 * of a entity is replenished, its deadline is also postponed. That ensures
380 * the overrunning entity can't interfere with other entity in the system and
381 * can't make them miss their deadlines. Reasons why this kind of overruns
382 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 383 * runtime, or it just underestimated it during sched_setattr().
aab03e05 384 */
2d3d891d
DF
385static void replenish_dl_entity(struct sched_dl_entity *dl_se,
386 struct sched_dl_entity *pi_se)
aab03e05
DF
387{
388 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
389 struct rq *rq = rq_of_dl_rq(dl_rq);
390
2d3d891d
DF
391 BUG_ON(pi_se->dl_runtime <= 0);
392
393 /*
394 * This could be the case for a !-dl task that is boosted.
395 * Just go with full inherited parameters.
396 */
397 if (dl_se->dl_deadline == 0) {
398 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
399 dl_se->runtime = pi_se->dl_runtime;
400 }
401
aab03e05
DF
402 /*
403 * We keep moving the deadline away until we get some
404 * available runtime for the entity. This ensures correct
405 * handling of situations where the runtime overrun is
406 * arbitrary large.
407 */
408 while (dl_se->runtime <= 0) {
2d3d891d
DF
409 dl_se->deadline += pi_se->dl_period;
410 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
411 }
412
413 /*
414 * At this point, the deadline really should be "in
415 * the future" with respect to rq->clock. If it's
416 * not, we are, for some reason, lagging too much!
417 * Anyway, after having warn userspace abut that,
418 * we still try to keep the things running by
419 * resetting the deadline and the budget of the
420 * entity.
421 */
422 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c219b7dd 423 printk_deferred_once("sched: DL replenish lagged too much\n");
2d3d891d
DF
424 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
425 dl_se->runtime = pi_se->dl_runtime;
aab03e05 426 }
1019a359
PZ
427
428 if (dl_se->dl_yielded)
429 dl_se->dl_yielded = 0;
430 if (dl_se->dl_throttled)
431 dl_se->dl_throttled = 0;
aab03e05
DF
432}
433
434/*
435 * Here we check if --at time t-- an entity (which is probably being
436 * [re]activated or, in general, enqueued) can use its remaining runtime
437 * and its current deadline _without_ exceeding the bandwidth it is
438 * assigned (function returns true if it can't). We are in fact applying
439 * one of the CBS rules: when a task wakes up, if the residual runtime
440 * over residual deadline fits within the allocated bandwidth, then we
441 * can keep the current (absolute) deadline and residual budget without
442 * disrupting the schedulability of the system. Otherwise, we should
443 * refill the runtime and set the deadline a period in the future,
444 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
445 * result in breaking guarantees promised to other tasks (refer to
446 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
447 *
448 * This function returns true if:
449 *
755378a4 450 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
451 *
452 * IOW we can't recycle current parameters.
755378a4
HG
453 *
454 * Notice that the bandwidth check is done against the period. For
455 * task with deadline equal to period this is the same of using
456 * dl_deadline instead of dl_period in the equation above.
aab03e05 457 */
2d3d891d
DF
458static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
459 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
460{
461 u64 left, right;
462
463 /*
464 * left and right are the two sides of the equation above,
465 * after a bit of shuffling to use multiplications instead
466 * of divisions.
467 *
468 * Note that none of the time values involved in the two
469 * multiplications are absolute: dl_deadline and dl_runtime
470 * are the relative deadline and the maximum runtime of each
471 * instance, runtime is the runtime left for the last instance
472 * and (deadline - t), since t is rq->clock, is the time left
473 * to the (absolute) deadline. Even if overflowing the u64 type
474 * is very unlikely to occur in both cases, here we scale down
475 * as we want to avoid that risk at all. Scaling down by 10
476 * means that we reduce granularity to 1us. We are fine with it,
477 * since this is only a true/false check and, anyway, thinking
478 * of anything below microseconds resolution is actually fiction
479 * (but still we want to give the user that illusion >;).
480 */
332ac17e
DF
481 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
482 right = ((dl_se->deadline - t) >> DL_SCALE) *
483 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
484
485 return dl_time_before(right, left);
486}
487
488/*
489 * When a -deadline entity is queued back on the runqueue, its runtime and
490 * deadline might need updating.
491 *
492 * The policy here is that we update the deadline of the entity only if:
493 * - the current deadline is in the past,
494 * - using the remaining runtime with the current deadline would make
495 * the entity exceed its bandwidth.
496 */
2d3d891d
DF
497static void update_dl_entity(struct sched_dl_entity *dl_se,
498 struct sched_dl_entity *pi_se)
aab03e05
DF
499{
500 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
501 struct rq *rq = rq_of_dl_rq(dl_rq);
502
503 /*
504 * The arrival of a new instance needs special treatment, i.e.,
505 * the actual scheduling parameters have to be "renewed".
506 */
507 if (dl_se->dl_new) {
2d3d891d 508 setup_new_dl_entity(dl_se, pi_se);
aab03e05
DF
509 return;
510 }
511
512 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
513 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
514 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
515 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
516 }
517}
518
519/*
520 * If the entity depleted all its runtime, and if we want it to sleep
521 * while waiting for some new execution time to become available, we
522 * set the bandwidth enforcement timer to the replenishment instant
523 * and try to activate it.
524 *
525 * Notice that it is important for the caller to know if the timer
526 * actually started or not (i.e., the replenishment instant is in
527 * the future or in the past).
528 */
a649f237 529static int start_dl_timer(struct task_struct *p)
aab03e05 530{
a649f237
PZ
531 struct sched_dl_entity *dl_se = &p->dl;
532 struct hrtimer *timer = &dl_se->dl_timer;
533 struct rq *rq = task_rq(p);
aab03e05 534 ktime_t now, act;
aab03e05
DF
535 s64 delta;
536
a649f237
PZ
537 lockdep_assert_held(&rq->lock);
538
aab03e05
DF
539 /*
540 * We want the timer to fire at the deadline, but considering
541 * that it is actually coming from rq->clock and not from
542 * hrtimer's time base reading.
543 */
544 act = ns_to_ktime(dl_se->deadline);
a649f237 545 now = hrtimer_cb_get_time(timer);
aab03e05
DF
546 delta = ktime_to_ns(now) - rq_clock(rq);
547 act = ktime_add_ns(act, delta);
548
549 /*
550 * If the expiry time already passed, e.g., because the value
551 * chosen as the deadline is too small, don't even try to
552 * start the timer in the past!
553 */
554 if (ktime_us_delta(act, now) < 0)
555 return 0;
556
a649f237
PZ
557 /*
558 * !enqueued will guarantee another callback; even if one is already in
559 * progress. This ensures a balanced {get,put}_task_struct().
560 *
561 * The race against __run_timer() clearing the enqueued state is
562 * harmless because we're holding task_rq()->lock, therefore the timer
563 * expiring after we've done the check will wait on its task_rq_lock()
564 * and observe our state.
565 */
566 if (!hrtimer_is_queued(timer)) {
567 get_task_struct(p);
568 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
569 }
aab03e05 570
cc9684d3 571 return 1;
aab03e05
DF
572}
573
574/*
575 * This is the bandwidth enforcement timer callback. If here, we know
576 * a task is not on its dl_rq, since the fact that the timer was running
577 * means the task is throttled and needs a runtime replenishment.
578 *
579 * However, what we actually do depends on the fact the task is active,
580 * (it is on its rq) or has been removed from there by a call to
581 * dequeue_task_dl(). In the former case we must issue the runtime
582 * replenishment and add the task back to the dl_rq; in the latter, we just
583 * do nothing but clearing dl_throttled, so that runtime and deadline
584 * updating (and the queueing back to dl_rq) will be done by the
585 * next call to enqueue_task_dl().
586 */
587static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
588{
589 struct sched_dl_entity *dl_se = container_of(timer,
590 struct sched_dl_entity,
591 dl_timer);
592 struct task_struct *p = dl_task_of(dl_se);
3960c8c0 593 unsigned long flags;
0f397f2c 594 struct rq *rq;
3960c8c0 595
4cd57f97 596 rq = task_rq_lock(p, &flags);
0f397f2c 597
aab03e05 598 /*
a649f237
PZ
599 * The task might have changed its scheduling policy to something
600 * different than SCHED_DEADLINE (through switched_fromd_dl()).
601 */
602 if (!dl_task(p)) {
603 __dl_clear_params(p);
604 goto unlock;
605 }
606
607 /*
608 * This is possible if switched_from_dl() raced against a running
609 * callback that took the above !dl_task() path and we've since then
610 * switched back into SCHED_DEADLINE.
aee38ea9 611 *
a649f237 612 * There's nothing to do except drop our task reference.
aab03e05 613 */
a649f237 614 if (dl_se->dl_new)
aab03e05
DF
615 goto unlock;
616
a649f237
PZ
617 /*
618 * The task might have been boosted by someone else and might be in the
619 * boosting/deboosting path, its not throttled.
620 */
621 if (dl_se->dl_boosted)
622 goto unlock;
a79ec89f 623
fa9c9d10 624 /*
a649f237
PZ
625 * Spurious timer due to start_dl_timer() race; or we already received
626 * a replenishment from rt_mutex_setprio().
fa9c9d10 627 */
a649f237 628 if (!dl_se->dl_throttled)
fa9c9d10 629 goto unlock;
a649f237
PZ
630
631 sched_clock_tick();
632 update_rq_clock(rq);
fa9c9d10 633
a79ec89f
KT
634 /*
635 * If the throttle happened during sched-out; like:
636 *
637 * schedule()
638 * deactivate_task()
639 * dequeue_task_dl()
640 * update_curr_dl()
641 * start_dl_timer()
642 * __dequeue_task_dl()
643 * prev->on_rq = 0;
644 *
645 * We can be both throttled and !queued. Replenish the counter
646 * but do not enqueue -- wait for our wakeup to do that.
647 */
648 if (!task_on_rq_queued(p)) {
649 replenish_dl_entity(dl_se, dl_se);
650 goto unlock;
651 }
652
1019a359
PZ
653 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
654 if (dl_task(rq->curr))
655 check_preempt_curr_dl(rq, p, 0);
656 else
657 resched_curr(rq);
a649f237 658
1baca4ce 659#ifdef CONFIG_SMP
1019a359 660 /*
a649f237
PZ
661 * Perform balancing operations here; after the replenishments. We
662 * cannot drop rq->lock before this, otherwise the assertion in
663 * start_dl_timer() about not missing updates is not true.
664 *
665 * If we find that the rq the task was on is no longer available, we
666 * need to select a new rq.
667 *
668 * XXX figure out if select_task_rq_dl() deals with offline cpus.
669 */
670 if (unlikely(!rq->online))
671 rq = dl_task_offline_migration(rq, p);
672
673 /*
674 * Queueing this task back might have overloaded rq, check if we need
675 * to kick someone away.
1019a359 676 */
0aaafaab
PZ
677 if (has_pushable_dl_tasks(rq)) {
678 /*
679 * Nothing relies on rq->lock after this, so its safe to drop
680 * rq->lock.
681 */
682 lockdep_unpin_lock(&rq->lock);
1019a359 683 push_dl_task(rq);
0aaafaab
PZ
684 lockdep_pin_lock(&rq->lock);
685 }
1baca4ce 686#endif
a649f237 687
aab03e05 688unlock:
4cd57f97 689 task_rq_unlock(rq, p, &flags);
aab03e05 690
a649f237
PZ
691 /*
692 * This can free the task_struct, including this hrtimer, do not touch
693 * anything related to that after this.
694 */
695 put_task_struct(p);
696
aab03e05
DF
697 return HRTIMER_NORESTART;
698}
699
700void init_dl_task_timer(struct sched_dl_entity *dl_se)
701{
702 struct hrtimer *timer = &dl_se->dl_timer;
703
aab03e05
DF
704 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
705 timer->function = dl_task_timer;
706}
707
708static
6fab5410 709int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
aab03e05 710{
269ad801 711 return (dl_se->runtime <= 0);
aab03e05
DF
712}
713
faa59937
JL
714extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
715
aab03e05
DF
716/*
717 * Update the current task's runtime statistics (provided it is still
718 * a -deadline task and has not been removed from the dl_rq).
719 */
720static void update_curr_dl(struct rq *rq)
721{
722 struct task_struct *curr = rq->curr;
723 struct sched_dl_entity *dl_se = &curr->dl;
724 u64 delta_exec;
725
726 if (!dl_task(curr) || !on_dl_rq(dl_se))
727 return;
728
729 /*
730 * Consumed budget is computed considering the time as
731 * observed by schedulable tasks (excluding time spent
732 * in hardirq context, etc.). Deadlines are instead
733 * computed using hard walltime. This seems to be the more
734 * natural solution, but the full ramifications of this
735 * approach need further study.
736 */
737 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
734ff2a7
KT
738 if (unlikely((s64)delta_exec <= 0))
739 return;
aab03e05
DF
740
741 schedstat_set(curr->se.statistics.exec_max,
742 max(curr->se.statistics.exec_max, delta_exec));
743
744 curr->se.sum_exec_runtime += delta_exec;
745 account_group_exec_runtime(curr, delta_exec);
746
747 curr->se.exec_start = rq_clock_task(rq);
748 cpuacct_charge(curr, delta_exec);
749
239be4a9
DF
750 sched_rt_avg_update(rq, delta_exec);
751
80496880 752 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
6fab5410 753 if (dl_runtime_exceeded(dl_se)) {
1019a359 754 dl_se->dl_throttled = 1;
aab03e05 755 __dequeue_task_dl(rq, curr, 0);
a649f237 756 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
aab03e05
DF
757 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
758
759 if (!is_leftmost(curr, &rq->dl))
8875125e 760 resched_curr(rq);
aab03e05 761 }
1724813d
PZ
762
763 /*
764 * Because -- for now -- we share the rt bandwidth, we need to
765 * account our runtime there too, otherwise actual rt tasks
766 * would be able to exceed the shared quota.
767 *
768 * Account to the root rt group for now.
769 *
770 * The solution we're working towards is having the RT groups scheduled
771 * using deadline servers -- however there's a few nasties to figure
772 * out before that can happen.
773 */
774 if (rt_bandwidth_enabled()) {
775 struct rt_rq *rt_rq = &rq->rt;
776
777 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
778 /*
779 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
780 * have our own CBS to keep us inline; only account when RT
781 * bandwidth is relevant.
1724813d 782 */
faa59937
JL
783 if (sched_rt_bandwidth_account(rt_rq))
784 rt_rq->rt_time += delta_exec;
1724813d
PZ
785 raw_spin_unlock(&rt_rq->rt_runtime_lock);
786 }
aab03e05
DF
787}
788
1baca4ce
JL
789#ifdef CONFIG_SMP
790
1baca4ce
JL
791static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
792{
793 struct rq *rq = rq_of_dl_rq(dl_rq);
794
795 if (dl_rq->earliest_dl.curr == 0 ||
796 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1baca4ce 797 dl_rq->earliest_dl.curr = deadline;
6bfd6d72 798 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
1baca4ce
JL
799 }
800}
801
802static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
803{
804 struct rq *rq = rq_of_dl_rq(dl_rq);
805
806 /*
807 * Since we may have removed our earliest (and/or next earliest)
808 * task we must recompute them.
809 */
810 if (!dl_rq->dl_nr_running) {
811 dl_rq->earliest_dl.curr = 0;
812 dl_rq->earliest_dl.next = 0;
6bfd6d72 813 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
814 } else {
815 struct rb_node *leftmost = dl_rq->rb_leftmost;
816 struct sched_dl_entity *entry;
817
818 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
819 dl_rq->earliest_dl.curr = entry->deadline;
6bfd6d72 820 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
1baca4ce
JL
821 }
822}
823
824#else
825
826static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
827static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
828
829#endif /* CONFIG_SMP */
830
831static inline
832void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
833{
834 int prio = dl_task_of(dl_se)->prio;
835 u64 deadline = dl_se->deadline;
836
837 WARN_ON(!dl_prio(prio));
838 dl_rq->dl_nr_running++;
72465447 839 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
840
841 inc_dl_deadline(dl_rq, deadline);
842 inc_dl_migration(dl_se, dl_rq);
843}
844
845static inline
846void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
847{
848 int prio = dl_task_of(dl_se)->prio;
849
850 WARN_ON(!dl_prio(prio));
851 WARN_ON(!dl_rq->dl_nr_running);
852 dl_rq->dl_nr_running--;
72465447 853 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
854
855 dec_dl_deadline(dl_rq, dl_se->deadline);
856 dec_dl_migration(dl_se, dl_rq);
857}
858
aab03e05
DF
859static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
860{
861 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
862 struct rb_node **link = &dl_rq->rb_root.rb_node;
863 struct rb_node *parent = NULL;
864 struct sched_dl_entity *entry;
865 int leftmost = 1;
866
867 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
868
869 while (*link) {
870 parent = *link;
871 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
872 if (dl_time_before(dl_se->deadline, entry->deadline))
873 link = &parent->rb_left;
874 else {
875 link = &parent->rb_right;
876 leftmost = 0;
877 }
878 }
879
880 if (leftmost)
881 dl_rq->rb_leftmost = &dl_se->rb_node;
882
883 rb_link_node(&dl_se->rb_node, parent, link);
884 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
885
1baca4ce 886 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
887}
888
889static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
890{
891 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
892
893 if (RB_EMPTY_NODE(&dl_se->rb_node))
894 return;
895
896 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
897 struct rb_node *next_node;
898
899 next_node = rb_next(&dl_se->rb_node);
900 dl_rq->rb_leftmost = next_node;
901 }
902
903 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
904 RB_CLEAR_NODE(&dl_se->rb_node);
905
1baca4ce 906 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
907}
908
909static void
2d3d891d
DF
910enqueue_dl_entity(struct sched_dl_entity *dl_se,
911 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
912{
913 BUG_ON(on_dl_rq(dl_se));
914
915 /*
916 * If this is a wakeup or a new instance, the scheduling
917 * parameters of the task might need updating. Otherwise,
918 * we want a replenishment of its runtime.
919 */
6a503c3b 920 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
2d3d891d 921 update_dl_entity(dl_se, pi_se);
6a503c3b
LA
922 else if (flags & ENQUEUE_REPLENISH)
923 replenish_dl_entity(dl_se, pi_se);
aab03e05
DF
924
925 __enqueue_dl_entity(dl_se);
926}
927
928static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
929{
930 __dequeue_dl_entity(dl_se);
931}
932
933static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
934{
2d3d891d
DF
935 struct task_struct *pi_task = rt_mutex_get_top_task(p);
936 struct sched_dl_entity *pi_se = &p->dl;
937
938 /*
939 * Use the scheduling parameters of the top pi-waiter
ff277d42 940 * task if we have one and its (absolute) deadline is
2d3d891d
DF
941 * smaller than our one... OTW we keep our runtime and
942 * deadline.
943 */
64be6f1f 944 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
2d3d891d 945 pi_se = &pi_task->dl;
64be6f1f
JL
946 } else if (!dl_prio(p->normal_prio)) {
947 /*
948 * Special case in which we have a !SCHED_DEADLINE task
949 * that is going to be deboosted, but exceedes its
950 * runtime while doing so. No point in replenishing
951 * it, as it's going to return back to its original
952 * scheduling class after this.
953 */
954 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
955 return;
956 }
2d3d891d 957
aab03e05
DF
958 /*
959 * If p is throttled, we do nothing. In fact, if it exhausted
960 * its budget it needs a replenishment and, since it now is on
961 * its rq, the bandwidth timer callback (which clearly has not
962 * run yet) will take care of this.
963 */
1019a359 964 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
aab03e05
DF
965 return;
966
2d3d891d 967 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce
JL
968
969 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
970 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
971}
972
973static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
974{
975 dequeue_dl_entity(&p->dl);
1baca4ce 976 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
977}
978
979static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
980{
981 update_curr_dl(rq);
982 __dequeue_task_dl(rq, p, flags);
aab03e05
DF
983}
984
985/*
986 * Yield task semantic for -deadline tasks is:
987 *
988 * get off from the CPU until our next instance, with
989 * a new runtime. This is of little use now, since we
990 * don't have a bandwidth reclaiming mechanism. Anyway,
991 * bandwidth reclaiming is planned for the future, and
992 * yield_task_dl will indicate that some spare budget
993 * is available for other task instances to use it.
994 */
995static void yield_task_dl(struct rq *rq)
996{
997 struct task_struct *p = rq->curr;
998
999 /*
1000 * We make the task go to sleep until its current deadline by
1001 * forcing its runtime to zero. This way, update_curr_dl() stops
1002 * it and the bandwidth timer will wake it up and will give it
5bfd126e 1003 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05
DF
1004 */
1005 if (p->dl.runtime > 0) {
5bfd126e 1006 rq->curr->dl.dl_yielded = 1;
aab03e05
DF
1007 p->dl.runtime = 0;
1008 }
6f1607f1 1009 update_rq_clock(rq);
aab03e05 1010 update_curr_dl(rq);
44fb085b
WL
1011 /*
1012 * Tell update_rq_clock() that we've just updated,
1013 * so we don't do microscopic update in schedule()
1014 * and double the fastpath cost.
1015 */
1016 rq_clock_skip_update(rq, true);
aab03e05
DF
1017}
1018
1baca4ce
JL
1019#ifdef CONFIG_SMP
1020
1021static int find_later_rq(struct task_struct *task);
1baca4ce
JL
1022
1023static int
1024select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1025{
1026 struct task_struct *curr;
1027 struct rq *rq;
1028
1d7e974c 1029 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
1030 goto out;
1031
1032 rq = cpu_rq(cpu);
1033
1034 rcu_read_lock();
316c1608 1035 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
1036
1037 /*
1038 * If we are dealing with a -deadline task, we must
1039 * decide where to wake it up.
1040 * If it has a later deadline and the current task
1041 * on this rq can't move (provided the waking task
1042 * can!) we prefer to send it somewhere else. On the
1043 * other hand, if it has a shorter deadline, we
1044 * try to make it stay here, it might be important.
1045 */
1046 if (unlikely(dl_task(curr)) &&
1047 (curr->nr_cpus_allowed < 2 ||
1048 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1049 (p->nr_cpus_allowed > 1)) {
1050 int target = find_later_rq(p);
1051
9d514262 1052 if (target != -1 &&
5aa50507
LA
1053 (dl_time_before(p->dl.deadline,
1054 cpu_rq(target)->dl.earliest_dl.curr) ||
1055 (cpu_rq(target)->dl.dl_nr_running == 0)))
1baca4ce
JL
1056 cpu = target;
1057 }
1058 rcu_read_unlock();
1059
1060out:
1061 return cpu;
1062}
1063
1064static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1065{
1066 /*
1067 * Current can't be migrated, useless to reschedule,
1068 * let's hope p can move out.
1069 */
1070 if (rq->curr->nr_cpus_allowed == 1 ||
6bfd6d72 1071 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
1072 return;
1073
1074 /*
1075 * p is migratable, so let's not schedule it and
1076 * see if it is pushed or pulled somewhere else.
1077 */
1078 if (p->nr_cpus_allowed != 1 &&
6bfd6d72 1079 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
1080 return;
1081
8875125e 1082 resched_curr(rq);
1baca4ce
JL
1083}
1084
1085#endif /* CONFIG_SMP */
1086
aab03e05
DF
1087/*
1088 * Only called when both the current and waking task are -deadline
1089 * tasks.
1090 */
1091static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1092 int flags)
1093{
1baca4ce 1094 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1095 resched_curr(rq);
1baca4ce
JL
1096 return;
1097 }
1098
1099#ifdef CONFIG_SMP
1100 /*
1101 * In the unlikely case current and p have the same deadline
1102 * let us try to decide what's the best thing to do...
1103 */
332ac17e
DF
1104 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1105 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1106 check_preempt_equal_dl(rq, p);
1107#endif /* CONFIG_SMP */
aab03e05
DF
1108}
1109
1110#ifdef CONFIG_SCHED_HRTICK
1111static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1112{
177ef2a6 1113 hrtick_start(rq, p->dl.runtime);
aab03e05 1114}
36ce9881
WL
1115#else /* !CONFIG_SCHED_HRTICK */
1116static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1117{
1118}
aab03e05
DF
1119#endif
1120
1121static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1122 struct dl_rq *dl_rq)
1123{
1124 struct rb_node *left = dl_rq->rb_leftmost;
1125
1126 if (!left)
1127 return NULL;
1128
1129 return rb_entry(left, struct sched_dl_entity, rb_node);
1130}
1131
606dba2e 1132struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
aab03e05
DF
1133{
1134 struct sched_dl_entity *dl_se;
1135 struct task_struct *p;
1136 struct dl_rq *dl_rq;
1137
1138 dl_rq = &rq->dl;
1139
a1d9a323 1140 if (need_pull_dl_task(rq, prev)) {
cbce1a68
PZ
1141 /*
1142 * This is OK, because current is on_cpu, which avoids it being
1143 * picked for load-balance and preemption/IRQs are still
1144 * disabled avoiding further scheduler activity on it and we're
1145 * being very careful to re-start the picking loop.
1146 */
1147 lockdep_unpin_lock(&rq->lock);
38033c37 1148 pull_dl_task(rq);
cbce1a68 1149 lockdep_pin_lock(&rq->lock);
a1d9a323
KT
1150 /*
1151 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1152 * means a stop task can slip in, in which case we need to
1153 * re-start task selection.
1154 */
da0c1e65 1155 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1156 return RETRY_TASK;
1157 }
1158
734ff2a7
KT
1159 /*
1160 * When prev is DL, we may throttle it in put_prev_task().
1161 * So, we update time before we check for dl_nr_running.
1162 */
1163 if (prev->sched_class == &dl_sched_class)
1164 update_curr_dl(rq);
38033c37 1165
aab03e05
DF
1166 if (unlikely(!dl_rq->dl_nr_running))
1167 return NULL;
1168
3f1d2a31 1169 put_prev_task(rq, prev);
606dba2e 1170
aab03e05
DF
1171 dl_se = pick_next_dl_entity(rq, dl_rq);
1172 BUG_ON(!dl_se);
1173
1174 p = dl_task_of(dl_se);
1175 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1176
1177 /* Running task will never be pushed. */
71362650 1178 dequeue_pushable_dl_task(rq, p);
1baca4ce 1179
aab03e05
DF
1180 if (hrtick_enabled(rq))
1181 start_hrtick_dl(rq, p);
1baca4ce 1182
e3fca9e7 1183 queue_push_tasks(rq);
1baca4ce 1184
aab03e05
DF
1185 return p;
1186}
1187
1188static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1189{
1190 update_curr_dl(rq);
1baca4ce
JL
1191
1192 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1193 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1194}
1195
1196static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1197{
1198 update_curr_dl(rq);
1199
a7bebf48
WL
1200 /*
1201 * Even when we have runtime, update_curr_dl() might have resulted in us
1202 * not being the leftmost task anymore. In that case NEED_RESCHED will
1203 * be set and schedule() will start a new hrtick for the next task.
1204 */
1205 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1206 is_leftmost(p, &rq->dl))
aab03e05 1207 start_hrtick_dl(rq, p);
aab03e05
DF
1208}
1209
1210static void task_fork_dl(struct task_struct *p)
1211{
1212 /*
1213 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1214 * sched_fork()
1215 */
1216}
1217
1218static void task_dead_dl(struct task_struct *p)
1219{
332ac17e
DF
1220 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1221
1222 /*
1223 * Since we are TASK_DEAD we won't slip out of the domain!
1224 */
1225 raw_spin_lock_irq(&dl_b->lock);
40767b0d 1226 /* XXX we should retain the bw until 0-lag */
332ac17e
DF
1227 dl_b->total_bw -= p->dl.dl_bw;
1228 raw_spin_unlock_irq(&dl_b->lock);
aab03e05
DF
1229}
1230
1231static void set_curr_task_dl(struct rq *rq)
1232{
1233 struct task_struct *p = rq->curr;
1234
1235 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1236
1237 /* You can't push away the running task */
1238 dequeue_pushable_dl_task(rq, p);
1239}
1240
1241#ifdef CONFIG_SMP
1242
1243/* Only try algorithms three times */
1244#define DL_MAX_TRIES 3
1245
1246static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1247{
1248 if (!task_running(rq, p) &&
1ba93d42 1249 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1baca4ce 1250 return 1;
1baca4ce
JL
1251 return 0;
1252}
1253
8b5e770e
WL
1254/*
1255 * Return the earliest pushable rq's task, which is suitable to be executed
1256 * on the CPU, NULL otherwise:
1257 */
1258static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1259{
1260 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1261 struct task_struct *p = NULL;
1262
1263 if (!has_pushable_dl_tasks(rq))
1264 return NULL;
1265
1266next_node:
1267 if (next_node) {
1268 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1269
1270 if (pick_dl_task(rq, p, cpu))
1271 return p;
1272
1273 next_node = rb_next(next_node);
1274 goto next_node;
1275 }
1276
1277 return NULL;
1278}
1279
1baca4ce
JL
1280static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1281
1282static int find_later_rq(struct task_struct *task)
1283{
1284 struct sched_domain *sd;
4ba29684 1285 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce
JL
1286 int this_cpu = smp_processor_id();
1287 int best_cpu, cpu = task_cpu(task);
1288
1289 /* Make sure the mask is initialized first */
1290 if (unlikely(!later_mask))
1291 return -1;
1292
1293 if (task->nr_cpus_allowed == 1)
1294 return -1;
1295
91ec6778
JL
1296 /*
1297 * We have to consider system topology and task affinity
1298 * first, then we can look for a suitable cpu.
1299 */
6bfd6d72
JL
1300 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1301 task, later_mask);
1baca4ce
JL
1302 if (best_cpu == -1)
1303 return -1;
1304
1305 /*
1306 * If we are here, some target has been found,
1307 * the most suitable of which is cached in best_cpu.
1308 * This is, among the runqueues where the current tasks
1309 * have later deadlines than the task's one, the rq
1310 * with the latest possible one.
1311 *
1312 * Now we check how well this matches with task's
1313 * affinity and system topology.
1314 *
1315 * The last cpu where the task run is our first
1316 * guess, since it is most likely cache-hot there.
1317 */
1318 if (cpumask_test_cpu(cpu, later_mask))
1319 return cpu;
1320 /*
1321 * Check if this_cpu is to be skipped (i.e., it is
1322 * not in the mask) or not.
1323 */
1324 if (!cpumask_test_cpu(this_cpu, later_mask))
1325 this_cpu = -1;
1326
1327 rcu_read_lock();
1328 for_each_domain(cpu, sd) {
1329 if (sd->flags & SD_WAKE_AFFINE) {
1330
1331 /*
1332 * If possible, preempting this_cpu is
1333 * cheaper than migrating.
1334 */
1335 if (this_cpu != -1 &&
1336 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1337 rcu_read_unlock();
1338 return this_cpu;
1339 }
1340
1341 /*
1342 * Last chance: if best_cpu is valid and is
1343 * in the mask, that becomes our choice.
1344 */
1345 if (best_cpu < nr_cpu_ids &&
1346 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1347 rcu_read_unlock();
1348 return best_cpu;
1349 }
1350 }
1351 }
1352 rcu_read_unlock();
1353
1354 /*
1355 * At this point, all our guesses failed, we just return
1356 * 'something', and let the caller sort the things out.
1357 */
1358 if (this_cpu != -1)
1359 return this_cpu;
1360
1361 cpu = cpumask_any(later_mask);
1362 if (cpu < nr_cpu_ids)
1363 return cpu;
1364
1365 return -1;
1366}
1367
1368/* Locks the rq it finds */
1369static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1370{
1371 struct rq *later_rq = NULL;
1372 int tries;
1373 int cpu;
1374
1375 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1376 cpu = find_later_rq(task);
1377
1378 if ((cpu == -1) || (cpu == rq->cpu))
1379 break;
1380
1381 later_rq = cpu_rq(cpu);
1382
5aa50507
LA
1383 if (later_rq->dl.dl_nr_running &&
1384 !dl_time_before(task->dl.deadline,
9d514262
WL
1385 later_rq->dl.earliest_dl.curr)) {
1386 /*
1387 * Target rq has tasks of equal or earlier deadline,
1388 * retrying does not release any lock and is unlikely
1389 * to yield a different result.
1390 */
1391 later_rq = NULL;
1392 break;
1393 }
1394
1baca4ce
JL
1395 /* Retry if something changed. */
1396 if (double_lock_balance(rq, later_rq)) {
1397 if (unlikely(task_rq(task) != rq ||
1398 !cpumask_test_cpu(later_rq->cpu,
1399 &task->cpus_allowed) ||
da0c1e65
KT
1400 task_running(rq, task) ||
1401 !task_on_rq_queued(task))) {
1baca4ce
JL
1402 double_unlock_balance(rq, later_rq);
1403 later_rq = NULL;
1404 break;
1405 }
1406 }
1407
1408 /*
1409 * If the rq we found has no -deadline task, or
1410 * its earliest one has a later deadline than our
1411 * task, the rq is a good one.
1412 */
1413 if (!later_rq->dl.dl_nr_running ||
1414 dl_time_before(task->dl.deadline,
1415 later_rq->dl.earliest_dl.curr))
1416 break;
1417
1418 /* Otherwise we try again. */
1419 double_unlock_balance(rq, later_rq);
1420 later_rq = NULL;
1421 }
1422
1423 return later_rq;
1424}
1425
1426static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1427{
1428 struct task_struct *p;
1429
1430 if (!has_pushable_dl_tasks(rq))
1431 return NULL;
1432
1433 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1434 struct task_struct, pushable_dl_tasks);
1435
1436 BUG_ON(rq->cpu != task_cpu(p));
1437 BUG_ON(task_current(rq, p));
1438 BUG_ON(p->nr_cpus_allowed <= 1);
1439
da0c1e65 1440 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
1441 BUG_ON(!dl_task(p));
1442
1443 return p;
1444}
1445
1446/*
1447 * See if the non running -deadline tasks on this rq
1448 * can be sent to some other CPU where they can preempt
1449 * and start executing.
1450 */
1451static int push_dl_task(struct rq *rq)
1452{
1453 struct task_struct *next_task;
1454 struct rq *later_rq;
c51b8ab5 1455 int ret = 0;
1baca4ce
JL
1456
1457 if (!rq->dl.overloaded)
1458 return 0;
1459
1460 next_task = pick_next_pushable_dl_task(rq);
1461 if (!next_task)
1462 return 0;
1463
1464retry:
1465 if (unlikely(next_task == rq->curr)) {
1466 WARN_ON(1);
1467 return 0;
1468 }
1469
1470 /*
1471 * If next_task preempts rq->curr, and rq->curr
1472 * can move away, it makes sense to just reschedule
1473 * without going further in pushing next_task.
1474 */
1475 if (dl_task(rq->curr) &&
1476 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1477 rq->curr->nr_cpus_allowed > 1) {
8875125e 1478 resched_curr(rq);
1baca4ce
JL
1479 return 0;
1480 }
1481
1482 /* We might release rq lock */
1483 get_task_struct(next_task);
1484
1485 /* Will lock the rq it'll find */
1486 later_rq = find_lock_later_rq(next_task, rq);
1487 if (!later_rq) {
1488 struct task_struct *task;
1489
1490 /*
1491 * We must check all this again, since
1492 * find_lock_later_rq releases rq->lock and it is
1493 * then possible that next_task has migrated.
1494 */
1495 task = pick_next_pushable_dl_task(rq);
1496 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1497 /*
1498 * The task is still there. We don't try
1499 * again, some other cpu will pull it when ready.
1500 */
1baca4ce
JL
1501 goto out;
1502 }
1503
1504 if (!task)
1505 /* No more tasks */
1506 goto out;
1507
1508 put_task_struct(next_task);
1509 next_task = task;
1510 goto retry;
1511 }
1512
1513 deactivate_task(rq, next_task, 0);
1514 set_task_cpu(next_task, later_rq->cpu);
1515 activate_task(later_rq, next_task, 0);
c51b8ab5 1516 ret = 1;
1baca4ce 1517
8875125e 1518 resched_curr(later_rq);
1baca4ce
JL
1519
1520 double_unlock_balance(rq, later_rq);
1521
1522out:
1523 put_task_struct(next_task);
1524
c51b8ab5 1525 return ret;
1baca4ce
JL
1526}
1527
1528static void push_dl_tasks(struct rq *rq)
1529{
4ffa08ed 1530 /* push_dl_task() will return true if it moved a -deadline task */
1baca4ce
JL
1531 while (push_dl_task(rq))
1532 ;
aab03e05
DF
1533}
1534
0ea60c20 1535static void pull_dl_task(struct rq *this_rq)
1baca4ce 1536{
0ea60c20 1537 int this_cpu = this_rq->cpu, cpu;
1baca4ce 1538 struct task_struct *p;
0ea60c20 1539 bool resched = false;
1baca4ce
JL
1540 struct rq *src_rq;
1541 u64 dmin = LONG_MAX;
1542
1543 if (likely(!dl_overloaded(this_rq)))
0ea60c20 1544 return;
1baca4ce
JL
1545
1546 /*
1547 * Match the barrier from dl_set_overloaded; this guarantees that if we
1548 * see overloaded we must also see the dlo_mask bit.
1549 */
1550 smp_rmb();
1551
1552 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1553 if (this_cpu == cpu)
1554 continue;
1555
1556 src_rq = cpu_rq(cpu);
1557
1558 /*
1559 * It looks racy, abd it is! However, as in sched_rt.c,
1560 * we are fine with this.
1561 */
1562 if (this_rq->dl.dl_nr_running &&
1563 dl_time_before(this_rq->dl.earliest_dl.curr,
1564 src_rq->dl.earliest_dl.next))
1565 continue;
1566
1567 /* Might drop this_rq->lock */
1568 double_lock_balance(this_rq, src_rq);
1569
1570 /*
1571 * If there are no more pullable tasks on the
1572 * rq, we're done with it.
1573 */
1574 if (src_rq->dl.dl_nr_running <= 1)
1575 goto skip;
1576
8b5e770e 1577 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1baca4ce
JL
1578
1579 /*
1580 * We found a task to be pulled if:
1581 * - it preempts our current (if there's one),
1582 * - it will preempt the last one we pulled (if any).
1583 */
1584 if (p && dl_time_before(p->dl.deadline, dmin) &&
1585 (!this_rq->dl.dl_nr_running ||
1586 dl_time_before(p->dl.deadline,
1587 this_rq->dl.earliest_dl.curr))) {
1588 WARN_ON(p == src_rq->curr);
da0c1e65 1589 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
1590
1591 /*
1592 * Then we pull iff p has actually an earlier
1593 * deadline than the current task of its runqueue.
1594 */
1595 if (dl_time_before(p->dl.deadline,
1596 src_rq->curr->dl.deadline))
1597 goto skip;
1598
0ea60c20 1599 resched = true;
1baca4ce
JL
1600
1601 deactivate_task(src_rq, p, 0);
1602 set_task_cpu(p, this_cpu);
1603 activate_task(this_rq, p, 0);
1604 dmin = p->dl.deadline;
1605
1606 /* Is there any other task even earlier? */
1607 }
1608skip:
1609 double_unlock_balance(this_rq, src_rq);
1610 }
1611
0ea60c20
PZ
1612 if (resched)
1613 resched_curr(this_rq);
1baca4ce
JL
1614}
1615
1616/*
1617 * Since the task is not running and a reschedule is not going to happen
1618 * anytime soon on its runqueue, we try pushing it away now.
1619 */
1620static void task_woken_dl(struct rq *rq, struct task_struct *p)
1621{
1622 if (!task_running(rq, p) &&
1623 !test_tsk_need_resched(rq->curr) &&
1baca4ce
JL
1624 p->nr_cpus_allowed > 1 &&
1625 dl_task(rq->curr) &&
1626 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 1627 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
1628 push_dl_tasks(rq);
1629 }
1630}
1631
1632static void set_cpus_allowed_dl(struct task_struct *p,
1633 const struct cpumask *new_mask)
1634{
7f51412a 1635 struct root_domain *src_rd;
6c37067e 1636 struct rq *rq;
1baca4ce
JL
1637
1638 BUG_ON(!dl_task(p));
1639
7f51412a
JL
1640 rq = task_rq(p);
1641 src_rd = rq->rd;
1642 /*
1643 * Migrating a SCHED_DEADLINE task between exclusive
1644 * cpusets (different root_domains) entails a bandwidth
1645 * update. We already made space for us in the destination
1646 * domain (see cpuset_can_attach()).
1647 */
1648 if (!cpumask_intersects(src_rd->span, new_mask)) {
1649 struct dl_bw *src_dl_b;
1650
1651 src_dl_b = dl_bw_of(cpu_of(rq));
1652 /*
1653 * We now free resources of the root_domain we are migrating
1654 * off. In the worst case, sched_setattr() may temporary fail
1655 * until we complete the update.
1656 */
1657 raw_spin_lock(&src_dl_b->lock);
1658 __dl_clear(src_dl_b, p->dl.dl_bw);
1659 raw_spin_unlock(&src_dl_b->lock);
1660 }
1661
6c37067e 1662 set_cpus_allowed_common(p, new_mask);
1baca4ce
JL
1663}
1664
1665/* Assumes rq->lock is held */
1666static void rq_online_dl(struct rq *rq)
1667{
1668 if (rq->dl.overloaded)
1669 dl_set_overload(rq);
6bfd6d72 1670
16b26943 1671 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72
JL
1672 if (rq->dl.dl_nr_running > 0)
1673 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1baca4ce
JL
1674}
1675
1676/* Assumes rq->lock is held */
1677static void rq_offline_dl(struct rq *rq)
1678{
1679 if (rq->dl.overloaded)
1680 dl_clear_overload(rq);
6bfd6d72
JL
1681
1682 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
16b26943 1683 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
1684}
1685
a6c0e746 1686void __init init_sched_dl_class(void)
1baca4ce
JL
1687{
1688 unsigned int i;
1689
1690 for_each_possible_cpu(i)
1691 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1692 GFP_KERNEL, cpu_to_node(i));
1693}
1694
1695#endif /* CONFIG_SMP */
1696
aab03e05
DF
1697static void switched_from_dl(struct rq *rq, struct task_struct *p)
1698{
a649f237
PZ
1699 /*
1700 * Start the deadline timer; if we switch back to dl before this we'll
1701 * continue consuming our current CBS slice. If we stay outside of
1702 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1703 * task.
1704 */
1705 if (!start_dl_timer(p))
1706 __dl_clear_params(p);
a5e7be3b 1707
1baca4ce
JL
1708 /*
1709 * Since this might be the only -deadline task on the rq,
1710 * this is the right place to try to pull some other one
1711 * from an overloaded cpu, if any.
1712 */
cd660911
WL
1713 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1714 return;
1715
9916e214 1716 queue_pull_task(rq);
aab03e05
DF
1717}
1718
1baca4ce
JL
1719/*
1720 * When switching to -deadline, we may overload the rq, then
1721 * we try to push someone off, if possible.
1722 */
aab03e05
DF
1723static void switched_to_dl(struct rq *rq, struct task_struct *p)
1724{
da0c1e65 1725 if (task_on_rq_queued(p) && rq->curr != p) {
1baca4ce 1726#ifdef CONFIG_SMP
9916e214
PZ
1727 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1728 queue_push_tasks(rq);
1729#else
1730 if (dl_task(rq->curr))
1731 check_preempt_curr_dl(rq, p, 0);
1732 else
1733 resched_curr(rq);
1734#endif
aab03e05
DF
1735 }
1736}
1737
1baca4ce
JL
1738/*
1739 * If the scheduling parameters of a -deadline task changed,
1740 * a push or pull operation might be needed.
1741 */
aab03e05
DF
1742static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1743 int oldprio)
1744{
da0c1e65 1745 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 1746#ifdef CONFIG_SMP
1baca4ce
JL
1747 /*
1748 * This might be too much, but unfortunately
1749 * we don't have the old deadline value, and
1750 * we can't argue if the task is increasing
1751 * or lowering its prio, so...
1752 */
1753 if (!rq->dl.overloaded)
9916e214 1754 queue_pull_task(rq);
1baca4ce
JL
1755
1756 /*
1757 * If we now have a earlier deadline task than p,
1758 * then reschedule, provided p is still on this
1759 * runqueue.
1760 */
9916e214 1761 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
8875125e 1762 resched_curr(rq);
1baca4ce
JL
1763#else
1764 /*
1765 * Again, we don't know if p has a earlier
1766 * or later deadline, so let's blindly set a
1767 * (maybe not needed) rescheduling point.
1768 */
8875125e 1769 resched_curr(rq);
1baca4ce
JL
1770#endif /* CONFIG_SMP */
1771 } else
1772 switched_to_dl(rq, p);
aab03e05 1773}
aab03e05
DF
1774
1775const struct sched_class dl_sched_class = {
1776 .next = &rt_sched_class,
1777 .enqueue_task = enqueue_task_dl,
1778 .dequeue_task = dequeue_task_dl,
1779 .yield_task = yield_task_dl,
1780
1781 .check_preempt_curr = check_preempt_curr_dl,
1782
1783 .pick_next_task = pick_next_task_dl,
1784 .put_prev_task = put_prev_task_dl,
1785
1786#ifdef CONFIG_SMP
1787 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1788 .set_cpus_allowed = set_cpus_allowed_dl,
1789 .rq_online = rq_online_dl,
1790 .rq_offline = rq_offline_dl,
1baca4ce 1791 .task_woken = task_woken_dl,
aab03e05
DF
1792#endif
1793
1794 .set_curr_task = set_curr_task_dl,
1795 .task_tick = task_tick_dl,
1796 .task_fork = task_fork_dl,
1797 .task_dead = task_dead_dl,
1798
1799 .prio_changed = prio_changed_dl,
1800 .switched_from = switched_from_dl,
1801 .switched_to = switched_to_dl,
6e998916
SG
1802
1803 .update_curr = update_curr_dl,
aab03e05 1804};
acb32132
WL
1805
1806#ifdef CONFIG_SCHED_DEBUG
1807extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1808
1809void print_dl_stats(struct seq_file *m, int cpu)
1810{
1811 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1812}
1813#endif /* CONFIG_SCHED_DEBUG */