sched: Remove superfluous resetting of the p->dl_throttled flag
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
332ac17e
DF
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
332ac17e
DF
60void init_dl_bw(struct dl_bw *dl_b)
61{
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 64 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
65 dl_b->bw = -1;
66 else
1724813d 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70}
71
07c54f7a 72void init_dl_rq(struct dl_rq *dl_rq)
aab03e05
DF
73{
74 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
75
76#ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
83#else
84 init_dl_bw(&dl_rq->dl_bw);
1baca4ce
JL
85#endif
86}
87
88#ifdef CONFIG_SMP
89
90static inline int dl_overloaded(struct rq *rq)
91{
92 return atomic_read(&rq->rd->dlo_count);
93}
94
95static inline void dl_set_overload(struct rq *rq)
96{
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109}
110
111static inline void dl_clear_overload(struct rq *rq)
112{
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118}
119
120static void update_dl_migration(struct dl_rq *dl_rq)
121{
995b9ea4 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131}
132
133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134{
135 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 136
1baca4ce
JL
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141}
142
143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 146
1baca4ce
JL
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151}
152
153/*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158{
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
179 if (leftmost)
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181
182 rb_link_node(&p->pushable_dl_tasks, parent, link);
183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
184}
185
1baca4ce
JL
186static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
187{
188 struct dl_rq *dl_rq = &rq->dl;
189
190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 return;
192
193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 struct rb_node *next_node;
195
196 next_node = rb_next(&p->pushable_dl_tasks);
197 dl_rq->pushable_dl_tasks_leftmost = next_node;
198 }
199
200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 RB_CLEAR_NODE(&p->pushable_dl_tasks);
202}
203
204static inline int has_pushable_dl_tasks(struct rq *rq)
205{
206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
207}
208
209static int push_dl_task(struct rq *rq);
210
dc877341
PZ
211static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
212{
213 return dl_task(prev);
214}
215
216static inline void set_post_schedule(struct rq *rq)
217{
218 rq->post_schedule = has_pushable_dl_tasks(rq);
219}
220
fa9c9d10
WL
221static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
222
223static void dl_task_offline_migration(struct rq *rq, struct task_struct *p)
224{
225 struct rq *later_rq = NULL;
226 bool fallback = false;
227
228 later_rq = find_lock_later_rq(p, rq);
229
230 if (!later_rq) {
231 int cpu;
232
233 /*
234 * If we cannot preempt any rq, fall back to pick any
235 * online cpu.
236 */
237 fallback = true;
238 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
239 if (cpu >= nr_cpu_ids) {
240 /*
241 * Fail to find any suitable cpu.
242 * The task will never come back!
243 */
244 BUG_ON(dl_bandwidth_enabled());
245
246 /*
247 * If admission control is disabled we
248 * try a little harder to let the task
249 * run.
250 */
251 cpu = cpumask_any(cpu_active_mask);
252 }
253 later_rq = cpu_rq(cpu);
254 double_lock_balance(rq, later_rq);
255 }
256
257 deactivate_task(rq, p, 0);
258 set_task_cpu(p, later_rq->cpu);
259 activate_task(later_rq, p, ENQUEUE_REPLENISH);
260
261 if (!fallback)
262 resched_curr(later_rq);
263
264 double_unlock_balance(rq, later_rq);
265}
266
1baca4ce
JL
267#else
268
269static inline
270void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
271{
272}
273
274static inline
275void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
276{
277}
278
279static inline
280void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
281{
282}
283
284static inline
285void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
286{
287}
288
dc877341
PZ
289static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
290{
291 return false;
292}
293
294static inline int pull_dl_task(struct rq *rq)
295{
296 return 0;
297}
298
299static inline void set_post_schedule(struct rq *rq)
300{
301}
1baca4ce
JL
302#endif /* CONFIG_SMP */
303
aab03e05
DF
304static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
305static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
306static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
307 int flags);
308
309/*
310 * We are being explicitly informed that a new instance is starting,
311 * and this means that:
312 * - the absolute deadline of the entity has to be placed at
313 * current time + relative deadline;
314 * - the runtime of the entity has to be set to the maximum value.
315 *
316 * The capability of specifying such event is useful whenever a -deadline
317 * entity wants to (try to!) synchronize its behaviour with the scheduler's
318 * one, and to (try to!) reconcile itself with its own scheduling
319 * parameters.
320 */
2d3d891d
DF
321static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
322 struct sched_dl_entity *pi_se)
aab03e05
DF
323{
324 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
325 struct rq *rq = rq_of_dl_rq(dl_rq);
326
327 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
328
329 /*
330 * We use the regular wall clock time to set deadlines in the
331 * future; in fact, we must consider execution overheads (time
332 * spent on hardirq context, etc.).
333 */
2d3d891d
DF
334 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
335 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
336 dl_se->dl_new = 0;
337}
338
339/*
340 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
341 * possibility of a entity lasting more than what it declared, and thus
342 * exhausting its runtime.
343 *
344 * Here we are interested in making runtime overrun possible, but we do
345 * not want a entity which is misbehaving to affect the scheduling of all
346 * other entities.
347 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
348 * is used, in order to confine each entity within its own bandwidth.
349 *
350 * This function deals exactly with that, and ensures that when the runtime
351 * of a entity is replenished, its deadline is also postponed. That ensures
352 * the overrunning entity can't interfere with other entity in the system and
353 * can't make them miss their deadlines. Reasons why this kind of overruns
354 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 355 * runtime, or it just underestimated it during sched_setattr().
aab03e05 356 */
2d3d891d
DF
357static void replenish_dl_entity(struct sched_dl_entity *dl_se,
358 struct sched_dl_entity *pi_se)
aab03e05
DF
359{
360 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
361 struct rq *rq = rq_of_dl_rq(dl_rq);
362
2d3d891d
DF
363 BUG_ON(pi_se->dl_runtime <= 0);
364
365 /*
366 * This could be the case for a !-dl task that is boosted.
367 * Just go with full inherited parameters.
368 */
369 if (dl_se->dl_deadline == 0) {
370 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
371 dl_se->runtime = pi_se->dl_runtime;
372 }
373
aab03e05
DF
374 /*
375 * We keep moving the deadline away until we get some
376 * available runtime for the entity. This ensures correct
377 * handling of situations where the runtime overrun is
378 * arbitrary large.
379 */
380 while (dl_se->runtime <= 0) {
2d3d891d
DF
381 dl_se->deadline += pi_se->dl_period;
382 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
383 }
384
385 /*
386 * At this point, the deadline really should be "in
387 * the future" with respect to rq->clock. If it's
388 * not, we are, for some reason, lagging too much!
389 * Anyway, after having warn userspace abut that,
390 * we still try to keep the things running by
391 * resetting the deadline and the budget of the
392 * entity.
393 */
394 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c224815d 395 printk_deferred_once("sched: DL replenish lagged to much\n");
2d3d891d
DF
396 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
397 dl_se->runtime = pi_se->dl_runtime;
aab03e05 398 }
1019a359
PZ
399
400 if (dl_se->dl_yielded)
401 dl_se->dl_yielded = 0;
402 if (dl_se->dl_throttled)
403 dl_se->dl_throttled = 0;
aab03e05
DF
404}
405
406/*
407 * Here we check if --at time t-- an entity (which is probably being
408 * [re]activated or, in general, enqueued) can use its remaining runtime
409 * and its current deadline _without_ exceeding the bandwidth it is
410 * assigned (function returns true if it can't). We are in fact applying
411 * one of the CBS rules: when a task wakes up, if the residual runtime
412 * over residual deadline fits within the allocated bandwidth, then we
413 * can keep the current (absolute) deadline and residual budget without
414 * disrupting the schedulability of the system. Otherwise, we should
415 * refill the runtime and set the deadline a period in the future,
416 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
417 * result in breaking guarantees promised to other tasks (refer to
418 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
419 *
420 * This function returns true if:
421 *
755378a4 422 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
423 *
424 * IOW we can't recycle current parameters.
755378a4
HG
425 *
426 * Notice that the bandwidth check is done against the period. For
427 * task with deadline equal to period this is the same of using
428 * dl_deadline instead of dl_period in the equation above.
aab03e05 429 */
2d3d891d
DF
430static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
431 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
432{
433 u64 left, right;
434
435 /*
436 * left and right are the two sides of the equation above,
437 * after a bit of shuffling to use multiplications instead
438 * of divisions.
439 *
440 * Note that none of the time values involved in the two
441 * multiplications are absolute: dl_deadline and dl_runtime
442 * are the relative deadline and the maximum runtime of each
443 * instance, runtime is the runtime left for the last instance
444 * and (deadline - t), since t is rq->clock, is the time left
445 * to the (absolute) deadline. Even if overflowing the u64 type
446 * is very unlikely to occur in both cases, here we scale down
447 * as we want to avoid that risk at all. Scaling down by 10
448 * means that we reduce granularity to 1us. We are fine with it,
449 * since this is only a true/false check and, anyway, thinking
450 * of anything below microseconds resolution is actually fiction
451 * (but still we want to give the user that illusion >;).
452 */
332ac17e
DF
453 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
454 right = ((dl_se->deadline - t) >> DL_SCALE) *
455 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
456
457 return dl_time_before(right, left);
458}
459
460/*
461 * When a -deadline entity is queued back on the runqueue, its runtime and
462 * deadline might need updating.
463 *
464 * The policy here is that we update the deadline of the entity only if:
465 * - the current deadline is in the past,
466 * - using the remaining runtime with the current deadline would make
467 * the entity exceed its bandwidth.
468 */
2d3d891d
DF
469static void update_dl_entity(struct sched_dl_entity *dl_se,
470 struct sched_dl_entity *pi_se)
aab03e05
DF
471{
472 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
473 struct rq *rq = rq_of_dl_rq(dl_rq);
474
475 /*
476 * The arrival of a new instance needs special treatment, i.e.,
477 * the actual scheduling parameters have to be "renewed".
478 */
479 if (dl_se->dl_new) {
2d3d891d 480 setup_new_dl_entity(dl_se, pi_se);
aab03e05
DF
481 return;
482 }
483
484 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
485 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
486 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
487 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
488 }
489}
490
491/*
492 * If the entity depleted all its runtime, and if we want it to sleep
493 * while waiting for some new execution time to become available, we
494 * set the bandwidth enforcement timer to the replenishment instant
495 * and try to activate it.
496 *
497 * Notice that it is important for the caller to know if the timer
498 * actually started or not (i.e., the replenishment instant is in
499 * the future or in the past).
500 */
2d3d891d 501static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
aab03e05
DF
502{
503 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
504 struct rq *rq = rq_of_dl_rq(dl_rq);
505 ktime_t now, act;
506 ktime_t soft, hard;
507 unsigned long range;
508 s64 delta;
509
2d3d891d
DF
510 if (boosted)
511 return 0;
aab03e05
DF
512 /*
513 * We want the timer to fire at the deadline, but considering
514 * that it is actually coming from rq->clock and not from
515 * hrtimer's time base reading.
516 */
517 act = ns_to_ktime(dl_se->deadline);
518 now = hrtimer_cb_get_time(&dl_se->dl_timer);
519 delta = ktime_to_ns(now) - rq_clock(rq);
520 act = ktime_add_ns(act, delta);
521
522 /*
523 * If the expiry time already passed, e.g., because the value
524 * chosen as the deadline is too small, don't even try to
525 * start the timer in the past!
526 */
527 if (ktime_us_delta(act, now) < 0)
528 return 0;
529
530 hrtimer_set_expires(&dl_se->dl_timer, act);
531
532 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
533 hard = hrtimer_get_expires(&dl_se->dl_timer);
534 range = ktime_to_ns(ktime_sub(hard, soft));
535 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
536 range, HRTIMER_MODE_ABS, 0);
537
538 return hrtimer_active(&dl_se->dl_timer);
539}
540
541/*
542 * This is the bandwidth enforcement timer callback. If here, we know
543 * a task is not on its dl_rq, since the fact that the timer was running
544 * means the task is throttled and needs a runtime replenishment.
545 *
546 * However, what we actually do depends on the fact the task is active,
547 * (it is on its rq) or has been removed from there by a call to
548 * dequeue_task_dl(). In the former case we must issue the runtime
549 * replenishment and add the task back to the dl_rq; in the latter, we just
550 * do nothing but clearing dl_throttled, so that runtime and deadline
551 * updating (and the queueing back to dl_rq) will be done by the
552 * next call to enqueue_task_dl().
553 */
554static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
555{
556 struct sched_dl_entity *dl_se = container_of(timer,
557 struct sched_dl_entity,
558 dl_timer);
559 struct task_struct *p = dl_task_of(dl_se);
3960c8c0 560 unsigned long flags;
0f397f2c 561 struct rq *rq;
3960c8c0 562
4cd57f97 563 rq = task_rq_lock(p, &flags);
0f397f2c 564
aab03e05 565 /*
aee38ea9
JL
566 * We need to take care of several possible races here:
567 *
568 * - the task might have changed its scheduling policy
569 * to something different than SCHED_DEADLINE
570 * - the task might have changed its reservation parameters
571 * (through sched_setattr())
572 * - the task might have been boosted by someone else and
573 * might be in the boosting/deboosting path
574 *
575 * In all this cases we bail out, as the task is already
576 * in the runqueue or is going to be enqueued back anyway.
aab03e05 577 */
aee38ea9
JL
578 if (!dl_task(p) || dl_se->dl_new ||
579 dl_se->dl_boosted || !dl_se->dl_throttled)
aab03e05
DF
580 goto unlock;
581
582 sched_clock_tick();
583 update_rq_clock(rq);
a79ec89f 584
fa9c9d10
WL
585#ifdef CONFIG_SMP
586 /*
587 * If we find that the rq the task was on is no longer
588 * available, we need to select a new rq.
589 */
590 if (unlikely(!rq->online)) {
591 dl_task_offline_migration(rq, p);
592 goto unlock;
593 }
594#endif
595
a79ec89f
KT
596 /*
597 * If the throttle happened during sched-out; like:
598 *
599 * schedule()
600 * deactivate_task()
601 * dequeue_task_dl()
602 * update_curr_dl()
603 * start_dl_timer()
604 * __dequeue_task_dl()
605 * prev->on_rq = 0;
606 *
607 * We can be both throttled and !queued. Replenish the counter
608 * but do not enqueue -- wait for our wakeup to do that.
609 */
610 if (!task_on_rq_queued(p)) {
611 replenish_dl_entity(dl_se, dl_se);
612 goto unlock;
613 }
614
1019a359
PZ
615 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
616 if (dl_task(rq->curr))
617 check_preempt_curr_dl(rq, p, 0);
618 else
619 resched_curr(rq);
1baca4ce 620#ifdef CONFIG_SMP
1019a359
PZ
621 /*
622 * Queueing this task back might have overloaded rq,
623 * check if we need to kick someone away.
624 */
625 if (has_pushable_dl_tasks(rq))
626 push_dl_task(rq);
1baca4ce 627#endif
aab03e05 628unlock:
4cd57f97 629 task_rq_unlock(rq, p, &flags);
aab03e05
DF
630
631 return HRTIMER_NORESTART;
632}
633
634void init_dl_task_timer(struct sched_dl_entity *dl_se)
635{
636 struct hrtimer *timer = &dl_se->dl_timer;
637
aab03e05
DF
638 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
639 timer->function = dl_task_timer;
640}
641
642static
643int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
644{
269ad801 645 return (dl_se->runtime <= 0);
aab03e05
DF
646}
647
faa59937
JL
648extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
649
aab03e05
DF
650/*
651 * Update the current task's runtime statistics (provided it is still
652 * a -deadline task and has not been removed from the dl_rq).
653 */
654static void update_curr_dl(struct rq *rq)
655{
656 struct task_struct *curr = rq->curr;
657 struct sched_dl_entity *dl_se = &curr->dl;
658 u64 delta_exec;
659
660 if (!dl_task(curr) || !on_dl_rq(dl_se))
661 return;
662
663 /*
664 * Consumed budget is computed considering the time as
665 * observed by schedulable tasks (excluding time spent
666 * in hardirq context, etc.). Deadlines are instead
667 * computed using hard walltime. This seems to be the more
668 * natural solution, but the full ramifications of this
669 * approach need further study.
670 */
671 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
734ff2a7
KT
672 if (unlikely((s64)delta_exec <= 0))
673 return;
aab03e05
DF
674
675 schedstat_set(curr->se.statistics.exec_max,
676 max(curr->se.statistics.exec_max, delta_exec));
677
678 curr->se.sum_exec_runtime += delta_exec;
679 account_group_exec_runtime(curr, delta_exec);
680
681 curr->se.exec_start = rq_clock_task(rq);
682 cpuacct_charge(curr, delta_exec);
683
239be4a9
DF
684 sched_rt_avg_update(rq, delta_exec);
685
80496880 686 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
aab03e05 687 if (dl_runtime_exceeded(rq, dl_se)) {
1019a359 688 dl_se->dl_throttled = 1;
aab03e05 689 __dequeue_task_dl(rq, curr, 0);
1019a359 690 if (unlikely(!start_dl_timer(dl_se, curr->dl.dl_boosted)))
aab03e05
DF
691 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
692
693 if (!is_leftmost(curr, &rq->dl))
8875125e 694 resched_curr(rq);
aab03e05 695 }
1724813d
PZ
696
697 /*
698 * Because -- for now -- we share the rt bandwidth, we need to
699 * account our runtime there too, otherwise actual rt tasks
700 * would be able to exceed the shared quota.
701 *
702 * Account to the root rt group for now.
703 *
704 * The solution we're working towards is having the RT groups scheduled
705 * using deadline servers -- however there's a few nasties to figure
706 * out before that can happen.
707 */
708 if (rt_bandwidth_enabled()) {
709 struct rt_rq *rt_rq = &rq->rt;
710
711 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
712 /*
713 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
714 * have our own CBS to keep us inline; only account when RT
715 * bandwidth is relevant.
1724813d 716 */
faa59937
JL
717 if (sched_rt_bandwidth_account(rt_rq))
718 rt_rq->rt_time += delta_exec;
1724813d
PZ
719 raw_spin_unlock(&rt_rq->rt_runtime_lock);
720 }
aab03e05
DF
721}
722
1baca4ce
JL
723#ifdef CONFIG_SMP
724
725static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
726
727static inline u64 next_deadline(struct rq *rq)
728{
729 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
730
731 if (next && dl_prio(next->prio))
732 return next->dl.deadline;
733 else
734 return 0;
735}
736
737static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
738{
739 struct rq *rq = rq_of_dl_rq(dl_rq);
740
741 if (dl_rq->earliest_dl.curr == 0 ||
742 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
743 /*
744 * If the dl_rq had no -deadline tasks, or if the new task
745 * has shorter deadline than the current one on dl_rq, we
746 * know that the previous earliest becomes our next earliest,
747 * as the new task becomes the earliest itself.
748 */
749 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
750 dl_rq->earliest_dl.curr = deadline;
6bfd6d72 751 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
1baca4ce
JL
752 } else if (dl_rq->earliest_dl.next == 0 ||
753 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
754 /*
755 * On the other hand, if the new -deadline task has a
756 * a later deadline than the earliest one on dl_rq, but
757 * it is earlier than the next (if any), we must
758 * recompute the next-earliest.
759 */
760 dl_rq->earliest_dl.next = next_deadline(rq);
761 }
762}
763
764static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
765{
766 struct rq *rq = rq_of_dl_rq(dl_rq);
767
768 /*
769 * Since we may have removed our earliest (and/or next earliest)
770 * task we must recompute them.
771 */
772 if (!dl_rq->dl_nr_running) {
773 dl_rq->earliest_dl.curr = 0;
774 dl_rq->earliest_dl.next = 0;
6bfd6d72 775 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
776 } else {
777 struct rb_node *leftmost = dl_rq->rb_leftmost;
778 struct sched_dl_entity *entry;
779
780 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
781 dl_rq->earliest_dl.curr = entry->deadline;
782 dl_rq->earliest_dl.next = next_deadline(rq);
6bfd6d72 783 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
1baca4ce
JL
784 }
785}
786
787#else
788
789static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
790static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
791
792#endif /* CONFIG_SMP */
793
794static inline
795void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
796{
797 int prio = dl_task_of(dl_se)->prio;
798 u64 deadline = dl_se->deadline;
799
800 WARN_ON(!dl_prio(prio));
801 dl_rq->dl_nr_running++;
72465447 802 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
803
804 inc_dl_deadline(dl_rq, deadline);
805 inc_dl_migration(dl_se, dl_rq);
806}
807
808static inline
809void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
810{
811 int prio = dl_task_of(dl_se)->prio;
812
813 WARN_ON(!dl_prio(prio));
814 WARN_ON(!dl_rq->dl_nr_running);
815 dl_rq->dl_nr_running--;
72465447 816 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
817
818 dec_dl_deadline(dl_rq, dl_se->deadline);
819 dec_dl_migration(dl_se, dl_rq);
820}
821
aab03e05
DF
822static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
823{
824 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
825 struct rb_node **link = &dl_rq->rb_root.rb_node;
826 struct rb_node *parent = NULL;
827 struct sched_dl_entity *entry;
828 int leftmost = 1;
829
830 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
831
832 while (*link) {
833 parent = *link;
834 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
835 if (dl_time_before(dl_se->deadline, entry->deadline))
836 link = &parent->rb_left;
837 else {
838 link = &parent->rb_right;
839 leftmost = 0;
840 }
841 }
842
843 if (leftmost)
844 dl_rq->rb_leftmost = &dl_se->rb_node;
845
846 rb_link_node(&dl_se->rb_node, parent, link);
847 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
848
1baca4ce 849 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
850}
851
852static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
853{
854 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
855
856 if (RB_EMPTY_NODE(&dl_se->rb_node))
857 return;
858
859 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
860 struct rb_node *next_node;
861
862 next_node = rb_next(&dl_se->rb_node);
863 dl_rq->rb_leftmost = next_node;
864 }
865
866 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
867 RB_CLEAR_NODE(&dl_se->rb_node);
868
1baca4ce 869 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
870}
871
872static void
2d3d891d
DF
873enqueue_dl_entity(struct sched_dl_entity *dl_se,
874 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
875{
876 BUG_ON(on_dl_rq(dl_se));
877
878 /*
879 * If this is a wakeup or a new instance, the scheduling
880 * parameters of the task might need updating. Otherwise,
881 * we want a replenishment of its runtime.
882 */
6a503c3b 883 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
2d3d891d 884 update_dl_entity(dl_se, pi_se);
6a503c3b
LA
885 else if (flags & ENQUEUE_REPLENISH)
886 replenish_dl_entity(dl_se, pi_se);
aab03e05
DF
887
888 __enqueue_dl_entity(dl_se);
889}
890
891static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
892{
893 __dequeue_dl_entity(dl_se);
894}
895
896static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
897{
2d3d891d
DF
898 struct task_struct *pi_task = rt_mutex_get_top_task(p);
899 struct sched_dl_entity *pi_se = &p->dl;
900
901 /*
902 * Use the scheduling parameters of the top pi-waiter
903 * task if we have one and its (relative) deadline is
904 * smaller than our one... OTW we keep our runtime and
905 * deadline.
906 */
64be6f1f 907 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
2d3d891d 908 pi_se = &pi_task->dl;
64be6f1f
JL
909 } else if (!dl_prio(p->normal_prio)) {
910 /*
911 * Special case in which we have a !SCHED_DEADLINE task
912 * that is going to be deboosted, but exceedes its
913 * runtime while doing so. No point in replenishing
914 * it, as it's going to return back to its original
915 * scheduling class after this.
916 */
917 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
918 return;
919 }
2d3d891d 920
aab03e05
DF
921 /*
922 * If p is throttled, we do nothing. In fact, if it exhausted
923 * its budget it needs a replenishment and, since it now is on
924 * its rq, the bandwidth timer callback (which clearly has not
925 * run yet) will take care of this.
926 */
1019a359 927 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
aab03e05
DF
928 return;
929
2d3d891d 930 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce
JL
931
932 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
933 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
934}
935
936static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
937{
938 dequeue_dl_entity(&p->dl);
1baca4ce 939 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
940}
941
942static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
943{
944 update_curr_dl(rq);
945 __dequeue_task_dl(rq, p, flags);
aab03e05
DF
946}
947
948/*
949 * Yield task semantic for -deadline tasks is:
950 *
951 * get off from the CPU until our next instance, with
952 * a new runtime. This is of little use now, since we
953 * don't have a bandwidth reclaiming mechanism. Anyway,
954 * bandwidth reclaiming is planned for the future, and
955 * yield_task_dl will indicate that some spare budget
956 * is available for other task instances to use it.
957 */
958static void yield_task_dl(struct rq *rq)
959{
960 struct task_struct *p = rq->curr;
961
962 /*
963 * We make the task go to sleep until its current deadline by
964 * forcing its runtime to zero. This way, update_curr_dl() stops
965 * it and the bandwidth timer will wake it up and will give it
5bfd126e 966 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05
DF
967 */
968 if (p->dl.runtime > 0) {
5bfd126e 969 rq->curr->dl.dl_yielded = 1;
aab03e05
DF
970 p->dl.runtime = 0;
971 }
6f1607f1 972 update_rq_clock(rq);
aab03e05 973 update_curr_dl(rq);
44fb085b
WL
974 /*
975 * Tell update_rq_clock() that we've just updated,
976 * so we don't do microscopic update in schedule()
977 * and double the fastpath cost.
978 */
979 rq_clock_skip_update(rq, true);
aab03e05
DF
980}
981
1baca4ce
JL
982#ifdef CONFIG_SMP
983
984static int find_later_rq(struct task_struct *task);
1baca4ce
JL
985
986static int
987select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
988{
989 struct task_struct *curr;
990 struct rq *rq;
991
1d7e974c 992 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
993 goto out;
994
995 rq = cpu_rq(cpu);
996
997 rcu_read_lock();
316c1608 998 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
999
1000 /*
1001 * If we are dealing with a -deadline task, we must
1002 * decide where to wake it up.
1003 * If it has a later deadline and the current task
1004 * on this rq can't move (provided the waking task
1005 * can!) we prefer to send it somewhere else. On the
1006 * other hand, if it has a shorter deadline, we
1007 * try to make it stay here, it might be important.
1008 */
1009 if (unlikely(dl_task(curr)) &&
1010 (curr->nr_cpus_allowed < 2 ||
1011 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1012 (p->nr_cpus_allowed > 1)) {
1013 int target = find_later_rq(p);
1014
9d514262
WL
1015 if (target != -1 &&
1016 dl_time_before(p->dl.deadline,
1017 cpu_rq(target)->dl.earliest_dl.curr))
1baca4ce
JL
1018 cpu = target;
1019 }
1020 rcu_read_unlock();
1021
1022out:
1023 return cpu;
1024}
1025
1026static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1027{
1028 /*
1029 * Current can't be migrated, useless to reschedule,
1030 * let's hope p can move out.
1031 */
1032 if (rq->curr->nr_cpus_allowed == 1 ||
6bfd6d72 1033 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
1034 return;
1035
1036 /*
1037 * p is migratable, so let's not schedule it and
1038 * see if it is pushed or pulled somewhere else.
1039 */
1040 if (p->nr_cpus_allowed != 1 &&
6bfd6d72 1041 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
1042 return;
1043
8875125e 1044 resched_curr(rq);
1baca4ce
JL
1045}
1046
38033c37
PZ
1047static int pull_dl_task(struct rq *this_rq);
1048
1baca4ce
JL
1049#endif /* CONFIG_SMP */
1050
aab03e05
DF
1051/*
1052 * Only called when both the current and waking task are -deadline
1053 * tasks.
1054 */
1055static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1056 int flags)
1057{
1baca4ce 1058 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1059 resched_curr(rq);
1baca4ce
JL
1060 return;
1061 }
1062
1063#ifdef CONFIG_SMP
1064 /*
1065 * In the unlikely case current and p have the same deadline
1066 * let us try to decide what's the best thing to do...
1067 */
332ac17e
DF
1068 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1069 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1070 check_preempt_equal_dl(rq, p);
1071#endif /* CONFIG_SMP */
aab03e05
DF
1072}
1073
1074#ifdef CONFIG_SCHED_HRTICK
1075static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1076{
177ef2a6 1077 hrtick_start(rq, p->dl.runtime);
aab03e05 1078}
36ce9881
WL
1079#else /* !CONFIG_SCHED_HRTICK */
1080static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1081{
1082}
aab03e05
DF
1083#endif
1084
1085static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1086 struct dl_rq *dl_rq)
1087{
1088 struct rb_node *left = dl_rq->rb_leftmost;
1089
1090 if (!left)
1091 return NULL;
1092
1093 return rb_entry(left, struct sched_dl_entity, rb_node);
1094}
1095
606dba2e 1096struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
aab03e05
DF
1097{
1098 struct sched_dl_entity *dl_se;
1099 struct task_struct *p;
1100 struct dl_rq *dl_rq;
1101
1102 dl_rq = &rq->dl;
1103
a1d9a323 1104 if (need_pull_dl_task(rq, prev)) {
38033c37 1105 pull_dl_task(rq);
a1d9a323
KT
1106 /*
1107 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1108 * means a stop task can slip in, in which case we need to
1109 * re-start task selection.
1110 */
da0c1e65 1111 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1112 return RETRY_TASK;
1113 }
1114
734ff2a7
KT
1115 /*
1116 * When prev is DL, we may throttle it in put_prev_task().
1117 * So, we update time before we check for dl_nr_running.
1118 */
1119 if (prev->sched_class == &dl_sched_class)
1120 update_curr_dl(rq);
38033c37 1121
aab03e05
DF
1122 if (unlikely(!dl_rq->dl_nr_running))
1123 return NULL;
1124
3f1d2a31 1125 put_prev_task(rq, prev);
606dba2e 1126
aab03e05
DF
1127 dl_se = pick_next_dl_entity(rq, dl_rq);
1128 BUG_ON(!dl_se);
1129
1130 p = dl_task_of(dl_se);
1131 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1132
1133 /* Running task will never be pushed. */
71362650 1134 dequeue_pushable_dl_task(rq, p);
1baca4ce 1135
aab03e05
DF
1136 if (hrtick_enabled(rq))
1137 start_hrtick_dl(rq, p);
1baca4ce 1138
dc877341 1139 set_post_schedule(rq);
1baca4ce 1140
aab03e05
DF
1141 return p;
1142}
1143
1144static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1145{
1146 update_curr_dl(rq);
1baca4ce
JL
1147
1148 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1149 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1150}
1151
1152static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1153{
1154 update_curr_dl(rq);
1155
a7bebf48
WL
1156 /*
1157 * Even when we have runtime, update_curr_dl() might have resulted in us
1158 * not being the leftmost task anymore. In that case NEED_RESCHED will
1159 * be set and schedule() will start a new hrtick for the next task.
1160 */
1161 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1162 is_leftmost(p, &rq->dl))
aab03e05 1163 start_hrtick_dl(rq, p);
aab03e05
DF
1164}
1165
1166static void task_fork_dl(struct task_struct *p)
1167{
1168 /*
1169 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1170 * sched_fork()
1171 */
1172}
1173
1174static void task_dead_dl(struct task_struct *p)
1175{
1176 struct hrtimer *timer = &p->dl.dl_timer;
332ac17e
DF
1177 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1178
1179 /*
1180 * Since we are TASK_DEAD we won't slip out of the domain!
1181 */
1182 raw_spin_lock_irq(&dl_b->lock);
40767b0d 1183 /* XXX we should retain the bw until 0-lag */
332ac17e
DF
1184 dl_b->total_bw -= p->dl.dl_bw;
1185 raw_spin_unlock_irq(&dl_b->lock);
aab03e05 1186
2d3d891d 1187 hrtimer_cancel(timer);
aab03e05
DF
1188}
1189
1190static void set_curr_task_dl(struct rq *rq)
1191{
1192 struct task_struct *p = rq->curr;
1193
1194 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1195
1196 /* You can't push away the running task */
1197 dequeue_pushable_dl_task(rq, p);
1198}
1199
1200#ifdef CONFIG_SMP
1201
1202/* Only try algorithms three times */
1203#define DL_MAX_TRIES 3
1204
1205static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1206{
1207 if (!task_running(rq, p) &&
1ba93d42 1208 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1baca4ce 1209 return 1;
1baca4ce
JL
1210 return 0;
1211}
1212
1213/* Returns the second earliest -deadline task, NULL otherwise */
1214static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1215{
1216 struct rb_node *next_node = rq->dl.rb_leftmost;
1217 struct sched_dl_entity *dl_se;
1218 struct task_struct *p = NULL;
1219
1220next_node:
1221 next_node = rb_next(next_node);
1222 if (next_node) {
1223 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1224 p = dl_task_of(dl_se);
1225
1226 if (pick_dl_task(rq, p, cpu))
1227 return p;
1228
1229 goto next_node;
1230 }
1231
1232 return NULL;
1233}
1234
8b5e770e
WL
1235/*
1236 * Return the earliest pushable rq's task, which is suitable to be executed
1237 * on the CPU, NULL otherwise:
1238 */
1239static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1240{
1241 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1242 struct task_struct *p = NULL;
1243
1244 if (!has_pushable_dl_tasks(rq))
1245 return NULL;
1246
1247next_node:
1248 if (next_node) {
1249 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1250
1251 if (pick_dl_task(rq, p, cpu))
1252 return p;
1253
1254 next_node = rb_next(next_node);
1255 goto next_node;
1256 }
1257
1258 return NULL;
1259}
1260
1baca4ce
JL
1261static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1262
1263static int find_later_rq(struct task_struct *task)
1264{
1265 struct sched_domain *sd;
4ba29684 1266 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce
JL
1267 int this_cpu = smp_processor_id();
1268 int best_cpu, cpu = task_cpu(task);
1269
1270 /* Make sure the mask is initialized first */
1271 if (unlikely(!later_mask))
1272 return -1;
1273
1274 if (task->nr_cpus_allowed == 1)
1275 return -1;
1276
91ec6778
JL
1277 /*
1278 * We have to consider system topology and task affinity
1279 * first, then we can look for a suitable cpu.
1280 */
6bfd6d72
JL
1281 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1282 task, later_mask);
1baca4ce
JL
1283 if (best_cpu == -1)
1284 return -1;
1285
1286 /*
1287 * If we are here, some target has been found,
1288 * the most suitable of which is cached in best_cpu.
1289 * This is, among the runqueues where the current tasks
1290 * have later deadlines than the task's one, the rq
1291 * with the latest possible one.
1292 *
1293 * Now we check how well this matches with task's
1294 * affinity and system topology.
1295 *
1296 * The last cpu where the task run is our first
1297 * guess, since it is most likely cache-hot there.
1298 */
1299 if (cpumask_test_cpu(cpu, later_mask))
1300 return cpu;
1301 /*
1302 * Check if this_cpu is to be skipped (i.e., it is
1303 * not in the mask) or not.
1304 */
1305 if (!cpumask_test_cpu(this_cpu, later_mask))
1306 this_cpu = -1;
1307
1308 rcu_read_lock();
1309 for_each_domain(cpu, sd) {
1310 if (sd->flags & SD_WAKE_AFFINE) {
1311
1312 /*
1313 * If possible, preempting this_cpu is
1314 * cheaper than migrating.
1315 */
1316 if (this_cpu != -1 &&
1317 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1318 rcu_read_unlock();
1319 return this_cpu;
1320 }
1321
1322 /*
1323 * Last chance: if best_cpu is valid and is
1324 * in the mask, that becomes our choice.
1325 */
1326 if (best_cpu < nr_cpu_ids &&
1327 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1328 rcu_read_unlock();
1329 return best_cpu;
1330 }
1331 }
1332 }
1333 rcu_read_unlock();
1334
1335 /*
1336 * At this point, all our guesses failed, we just return
1337 * 'something', and let the caller sort the things out.
1338 */
1339 if (this_cpu != -1)
1340 return this_cpu;
1341
1342 cpu = cpumask_any(later_mask);
1343 if (cpu < nr_cpu_ids)
1344 return cpu;
1345
1346 return -1;
1347}
1348
1349/* Locks the rq it finds */
1350static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1351{
1352 struct rq *later_rq = NULL;
1353 int tries;
1354 int cpu;
1355
1356 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1357 cpu = find_later_rq(task);
1358
1359 if ((cpu == -1) || (cpu == rq->cpu))
1360 break;
1361
1362 later_rq = cpu_rq(cpu);
1363
9d514262
WL
1364 if (!dl_time_before(task->dl.deadline,
1365 later_rq->dl.earliest_dl.curr)) {
1366 /*
1367 * Target rq has tasks of equal or earlier deadline,
1368 * retrying does not release any lock and is unlikely
1369 * to yield a different result.
1370 */
1371 later_rq = NULL;
1372 break;
1373 }
1374
1baca4ce
JL
1375 /* Retry if something changed. */
1376 if (double_lock_balance(rq, later_rq)) {
1377 if (unlikely(task_rq(task) != rq ||
1378 !cpumask_test_cpu(later_rq->cpu,
1379 &task->cpus_allowed) ||
da0c1e65
KT
1380 task_running(rq, task) ||
1381 !task_on_rq_queued(task))) {
1baca4ce
JL
1382 double_unlock_balance(rq, later_rq);
1383 later_rq = NULL;
1384 break;
1385 }
1386 }
1387
1388 /*
1389 * If the rq we found has no -deadline task, or
1390 * its earliest one has a later deadline than our
1391 * task, the rq is a good one.
1392 */
1393 if (!later_rq->dl.dl_nr_running ||
1394 dl_time_before(task->dl.deadline,
1395 later_rq->dl.earliest_dl.curr))
1396 break;
1397
1398 /* Otherwise we try again. */
1399 double_unlock_balance(rq, later_rq);
1400 later_rq = NULL;
1401 }
1402
1403 return later_rq;
1404}
1405
1406static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1407{
1408 struct task_struct *p;
1409
1410 if (!has_pushable_dl_tasks(rq))
1411 return NULL;
1412
1413 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1414 struct task_struct, pushable_dl_tasks);
1415
1416 BUG_ON(rq->cpu != task_cpu(p));
1417 BUG_ON(task_current(rq, p));
1418 BUG_ON(p->nr_cpus_allowed <= 1);
1419
da0c1e65 1420 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
1421 BUG_ON(!dl_task(p));
1422
1423 return p;
1424}
1425
1426/*
1427 * See if the non running -deadline tasks on this rq
1428 * can be sent to some other CPU where they can preempt
1429 * and start executing.
1430 */
1431static int push_dl_task(struct rq *rq)
1432{
1433 struct task_struct *next_task;
1434 struct rq *later_rq;
c51b8ab5 1435 int ret = 0;
1baca4ce
JL
1436
1437 if (!rq->dl.overloaded)
1438 return 0;
1439
1440 next_task = pick_next_pushable_dl_task(rq);
1441 if (!next_task)
1442 return 0;
1443
1444retry:
1445 if (unlikely(next_task == rq->curr)) {
1446 WARN_ON(1);
1447 return 0;
1448 }
1449
1450 /*
1451 * If next_task preempts rq->curr, and rq->curr
1452 * can move away, it makes sense to just reschedule
1453 * without going further in pushing next_task.
1454 */
1455 if (dl_task(rq->curr) &&
1456 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1457 rq->curr->nr_cpus_allowed > 1) {
8875125e 1458 resched_curr(rq);
1baca4ce
JL
1459 return 0;
1460 }
1461
1462 /* We might release rq lock */
1463 get_task_struct(next_task);
1464
1465 /* Will lock the rq it'll find */
1466 later_rq = find_lock_later_rq(next_task, rq);
1467 if (!later_rq) {
1468 struct task_struct *task;
1469
1470 /*
1471 * We must check all this again, since
1472 * find_lock_later_rq releases rq->lock and it is
1473 * then possible that next_task has migrated.
1474 */
1475 task = pick_next_pushable_dl_task(rq);
1476 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1477 /*
1478 * The task is still there. We don't try
1479 * again, some other cpu will pull it when ready.
1480 */
1baca4ce
JL
1481 goto out;
1482 }
1483
1484 if (!task)
1485 /* No more tasks */
1486 goto out;
1487
1488 put_task_struct(next_task);
1489 next_task = task;
1490 goto retry;
1491 }
1492
1493 deactivate_task(rq, next_task, 0);
1494 set_task_cpu(next_task, later_rq->cpu);
1495 activate_task(later_rq, next_task, 0);
c51b8ab5 1496 ret = 1;
1baca4ce 1497
8875125e 1498 resched_curr(later_rq);
1baca4ce
JL
1499
1500 double_unlock_balance(rq, later_rq);
1501
1502out:
1503 put_task_struct(next_task);
1504
c51b8ab5 1505 return ret;
1baca4ce
JL
1506}
1507
1508static void push_dl_tasks(struct rq *rq)
1509{
1510 /* Terminates as it moves a -deadline task */
1511 while (push_dl_task(rq))
1512 ;
aab03e05
DF
1513}
1514
1baca4ce
JL
1515static int pull_dl_task(struct rq *this_rq)
1516{
1517 int this_cpu = this_rq->cpu, ret = 0, cpu;
1518 struct task_struct *p;
1519 struct rq *src_rq;
1520 u64 dmin = LONG_MAX;
1521
1522 if (likely(!dl_overloaded(this_rq)))
1523 return 0;
1524
1525 /*
1526 * Match the barrier from dl_set_overloaded; this guarantees that if we
1527 * see overloaded we must also see the dlo_mask bit.
1528 */
1529 smp_rmb();
1530
1531 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1532 if (this_cpu == cpu)
1533 continue;
1534
1535 src_rq = cpu_rq(cpu);
1536
1537 /*
1538 * It looks racy, abd it is! However, as in sched_rt.c,
1539 * we are fine with this.
1540 */
1541 if (this_rq->dl.dl_nr_running &&
1542 dl_time_before(this_rq->dl.earliest_dl.curr,
1543 src_rq->dl.earliest_dl.next))
1544 continue;
1545
1546 /* Might drop this_rq->lock */
1547 double_lock_balance(this_rq, src_rq);
1548
1549 /*
1550 * If there are no more pullable tasks on the
1551 * rq, we're done with it.
1552 */
1553 if (src_rq->dl.dl_nr_running <= 1)
1554 goto skip;
1555
8b5e770e 1556 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1baca4ce
JL
1557
1558 /*
1559 * We found a task to be pulled if:
1560 * - it preempts our current (if there's one),
1561 * - it will preempt the last one we pulled (if any).
1562 */
1563 if (p && dl_time_before(p->dl.deadline, dmin) &&
1564 (!this_rq->dl.dl_nr_running ||
1565 dl_time_before(p->dl.deadline,
1566 this_rq->dl.earliest_dl.curr))) {
1567 WARN_ON(p == src_rq->curr);
da0c1e65 1568 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
1569
1570 /*
1571 * Then we pull iff p has actually an earlier
1572 * deadline than the current task of its runqueue.
1573 */
1574 if (dl_time_before(p->dl.deadline,
1575 src_rq->curr->dl.deadline))
1576 goto skip;
1577
1578 ret = 1;
1579
1580 deactivate_task(src_rq, p, 0);
1581 set_task_cpu(p, this_cpu);
1582 activate_task(this_rq, p, 0);
1583 dmin = p->dl.deadline;
1584
1585 /* Is there any other task even earlier? */
1586 }
1587skip:
1588 double_unlock_balance(this_rq, src_rq);
1589 }
1590
1591 return ret;
1592}
1593
1baca4ce
JL
1594static void post_schedule_dl(struct rq *rq)
1595{
1596 push_dl_tasks(rq);
1597}
1598
1599/*
1600 * Since the task is not running and a reschedule is not going to happen
1601 * anytime soon on its runqueue, we try pushing it away now.
1602 */
1603static void task_woken_dl(struct rq *rq, struct task_struct *p)
1604{
1605 if (!task_running(rq, p) &&
1606 !test_tsk_need_resched(rq->curr) &&
1607 has_pushable_dl_tasks(rq) &&
1608 p->nr_cpus_allowed > 1 &&
1609 dl_task(rq->curr) &&
1610 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 1611 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
1612 push_dl_tasks(rq);
1613 }
1614}
1615
1616static void set_cpus_allowed_dl(struct task_struct *p,
1617 const struct cpumask *new_mask)
1618{
1619 struct rq *rq;
7f51412a 1620 struct root_domain *src_rd;
1baca4ce
JL
1621 int weight;
1622
1623 BUG_ON(!dl_task(p));
1624
7f51412a
JL
1625 rq = task_rq(p);
1626 src_rd = rq->rd;
1627 /*
1628 * Migrating a SCHED_DEADLINE task between exclusive
1629 * cpusets (different root_domains) entails a bandwidth
1630 * update. We already made space for us in the destination
1631 * domain (see cpuset_can_attach()).
1632 */
1633 if (!cpumask_intersects(src_rd->span, new_mask)) {
1634 struct dl_bw *src_dl_b;
1635
1636 src_dl_b = dl_bw_of(cpu_of(rq));
1637 /*
1638 * We now free resources of the root_domain we are migrating
1639 * off. In the worst case, sched_setattr() may temporary fail
1640 * until we complete the update.
1641 */
1642 raw_spin_lock(&src_dl_b->lock);
1643 __dl_clear(src_dl_b, p->dl.dl_bw);
1644 raw_spin_unlock(&src_dl_b->lock);
1645 }
1646
1baca4ce
JL
1647 /*
1648 * Update only if the task is actually running (i.e.,
1649 * it is on the rq AND it is not throttled).
1650 */
1651 if (!on_dl_rq(&p->dl))
1652 return;
1653
1654 weight = cpumask_weight(new_mask);
1655
1656 /*
1657 * Only update if the process changes its state from whether it
1658 * can migrate or not.
1659 */
1660 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1661 return;
1662
1baca4ce
JL
1663 /*
1664 * The process used to be able to migrate OR it can now migrate
1665 */
1666 if (weight <= 1) {
1667 if (!task_current(rq, p))
1668 dequeue_pushable_dl_task(rq, p);
1669 BUG_ON(!rq->dl.dl_nr_migratory);
1670 rq->dl.dl_nr_migratory--;
1671 } else {
1672 if (!task_current(rq, p))
1673 enqueue_pushable_dl_task(rq, p);
1674 rq->dl.dl_nr_migratory++;
1675 }
1676
1677 update_dl_migration(&rq->dl);
1678}
1679
1680/* Assumes rq->lock is held */
1681static void rq_online_dl(struct rq *rq)
1682{
1683 if (rq->dl.overloaded)
1684 dl_set_overload(rq);
6bfd6d72 1685
16b26943 1686 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72
JL
1687 if (rq->dl.dl_nr_running > 0)
1688 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1baca4ce
JL
1689}
1690
1691/* Assumes rq->lock is held */
1692static void rq_offline_dl(struct rq *rq)
1693{
1694 if (rq->dl.overloaded)
1695 dl_clear_overload(rq);
6bfd6d72
JL
1696
1697 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
16b26943 1698 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
1699}
1700
a6c0e746 1701void __init init_sched_dl_class(void)
1baca4ce
JL
1702{
1703 unsigned int i;
1704
1705 for_each_possible_cpu(i)
1706 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1707 GFP_KERNEL, cpu_to_node(i));
1708}
1709
1710#endif /* CONFIG_SMP */
1711
67dfa1b7
KT
1712/*
1713 * Ensure p's dl_timer is cancelled. May drop rq->lock for a while.
1714 */
1715static void cancel_dl_timer(struct rq *rq, struct task_struct *p)
1716{
1717 struct hrtimer *dl_timer = &p->dl.dl_timer;
1718
1719 /* Nobody will change task's class if pi_lock is held */
1720 lockdep_assert_held(&p->pi_lock);
1721
1722 if (hrtimer_active(dl_timer)) {
1723 int ret = hrtimer_try_to_cancel(dl_timer);
1724
1725 if (unlikely(ret == -1)) {
1726 /*
1727 * Note, p may migrate OR new deadline tasks
1728 * may appear in rq when we are unlocking it.
1729 * A caller of us must be fine with that.
1730 */
1731 raw_spin_unlock(&rq->lock);
1732 hrtimer_cancel(dl_timer);
1733 raw_spin_lock(&rq->lock);
1734 }
1735 }
1736}
1737
aab03e05
DF
1738static void switched_from_dl(struct rq *rq, struct task_struct *p)
1739{
40767b0d 1740 /* XXX we should retain the bw until 0-lag */
67dfa1b7 1741 cancel_dl_timer(rq, p);
a5e7be3b
JL
1742 __dl_clear_params(p);
1743
1baca4ce
JL
1744 /*
1745 * Since this might be the only -deadline task on the rq,
1746 * this is the right place to try to pull some other one
1747 * from an overloaded cpu, if any.
1748 */
cd660911
WL
1749 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1750 return;
1751
1752 if (pull_dl_task(rq))
1753 resched_curr(rq);
aab03e05
DF
1754}
1755
1baca4ce
JL
1756/*
1757 * When switching to -deadline, we may overload the rq, then
1758 * we try to push someone off, if possible.
1759 */
aab03e05
DF
1760static void switched_to_dl(struct rq *rq, struct task_struct *p)
1761{
1baca4ce
JL
1762 int check_resched = 1;
1763
da0c1e65 1764 if (task_on_rq_queued(p) && rq->curr != p) {
1baca4ce 1765#ifdef CONFIG_SMP
d9aade7a
WL
1766 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded &&
1767 push_dl_task(rq) && rq != task_rq(p))
1baca4ce
JL
1768 /* Only reschedule if pushing failed */
1769 check_resched = 0;
1770#endif /* CONFIG_SMP */
f3a7e1a9
KT
1771 if (check_resched) {
1772 if (dl_task(rq->curr))
1773 check_preempt_curr_dl(rq, p, 0);
1774 else
1775 resched_curr(rq);
1776 }
aab03e05
DF
1777 }
1778}
1779
1baca4ce
JL
1780/*
1781 * If the scheduling parameters of a -deadline task changed,
1782 * a push or pull operation might be needed.
1783 */
aab03e05
DF
1784static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1785 int oldprio)
1786{
da0c1e65 1787 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 1788#ifdef CONFIG_SMP
1baca4ce
JL
1789 /*
1790 * This might be too much, but unfortunately
1791 * we don't have the old deadline value, and
1792 * we can't argue if the task is increasing
1793 * or lowering its prio, so...
1794 */
1795 if (!rq->dl.overloaded)
1796 pull_dl_task(rq);
1797
1798 /*
1799 * If we now have a earlier deadline task than p,
1800 * then reschedule, provided p is still on this
1801 * runqueue.
1802 */
1803 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1804 rq->curr == p)
8875125e 1805 resched_curr(rq);
1baca4ce
JL
1806#else
1807 /*
1808 * Again, we don't know if p has a earlier
1809 * or later deadline, so let's blindly set a
1810 * (maybe not needed) rescheduling point.
1811 */
8875125e 1812 resched_curr(rq);
1baca4ce
JL
1813#endif /* CONFIG_SMP */
1814 } else
1815 switched_to_dl(rq, p);
aab03e05 1816}
aab03e05
DF
1817
1818const struct sched_class dl_sched_class = {
1819 .next = &rt_sched_class,
1820 .enqueue_task = enqueue_task_dl,
1821 .dequeue_task = dequeue_task_dl,
1822 .yield_task = yield_task_dl,
1823
1824 .check_preempt_curr = check_preempt_curr_dl,
1825
1826 .pick_next_task = pick_next_task_dl,
1827 .put_prev_task = put_prev_task_dl,
1828
1829#ifdef CONFIG_SMP
1830 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1831 .set_cpus_allowed = set_cpus_allowed_dl,
1832 .rq_online = rq_online_dl,
1833 .rq_offline = rq_offline_dl,
1baca4ce
JL
1834 .post_schedule = post_schedule_dl,
1835 .task_woken = task_woken_dl,
aab03e05
DF
1836#endif
1837
1838 .set_curr_task = set_curr_task_dl,
1839 .task_tick = task_tick_dl,
1840 .task_fork = task_fork_dl,
1841 .task_dead = task_dead_dl,
1842
1843 .prio_changed = prio_changed_dl,
1844 .switched_from = switched_from_dl,
1845 .switched_to = switched_to_dl,
6e998916
SG
1846
1847 .update_curr = update_curr_dl,
aab03e05 1848};
acb32132
WL
1849
1850#ifdef CONFIG_SCHED_DEBUG
1851extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1852
1853void print_dl_stats(struct seq_file *m, int cpu)
1854{
1855 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1856}
1857#endif /* CONFIG_SCHED_DEBUG */