Merge branch 'timers/core' into sched/hrtimers
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
332ac17e
DF
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
332ac17e
DF
60void init_dl_bw(struct dl_bw *dl_b)
61{
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 64 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
65 dl_b->bw = -1;
66 else
1724813d 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70}
71
07c54f7a 72void init_dl_rq(struct dl_rq *dl_rq)
aab03e05
DF
73{
74 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
75
76#ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
83#else
84 init_dl_bw(&dl_rq->dl_bw);
1baca4ce
JL
85#endif
86}
87
88#ifdef CONFIG_SMP
89
90static inline int dl_overloaded(struct rq *rq)
91{
92 return atomic_read(&rq->rd->dlo_count);
93}
94
95static inline void dl_set_overload(struct rq *rq)
96{
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109}
110
111static inline void dl_clear_overload(struct rq *rq)
112{
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118}
119
120static void update_dl_migration(struct dl_rq *dl_rq)
121{
995b9ea4 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131}
132
133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134{
135 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 136
1baca4ce
JL
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141}
142
143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 146
1baca4ce
JL
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151}
152
153/*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158{
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
179 if (leftmost)
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181
182 rb_link_node(&p->pushable_dl_tasks, parent, link);
183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
184}
185
1baca4ce
JL
186static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
187{
188 struct dl_rq *dl_rq = &rq->dl;
189
190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 return;
192
193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 struct rb_node *next_node;
195
196 next_node = rb_next(&p->pushable_dl_tasks);
197 dl_rq->pushable_dl_tasks_leftmost = next_node;
198 }
199
200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 RB_CLEAR_NODE(&p->pushable_dl_tasks);
202}
203
204static inline int has_pushable_dl_tasks(struct rq *rq)
205{
206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
207}
208
209static int push_dl_task(struct rq *rq);
210
dc877341
PZ
211static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
212{
213 return dl_task(prev);
214}
215
216static inline void set_post_schedule(struct rq *rq)
217{
218 rq->post_schedule = has_pushable_dl_tasks(rq);
219}
220
fa9c9d10
WL
221static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
222
223static void dl_task_offline_migration(struct rq *rq, struct task_struct *p)
224{
225 struct rq *later_rq = NULL;
226 bool fallback = false;
227
228 later_rq = find_lock_later_rq(p, rq);
229
230 if (!later_rq) {
231 int cpu;
232
233 /*
234 * If we cannot preempt any rq, fall back to pick any
235 * online cpu.
236 */
237 fallback = true;
238 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
239 if (cpu >= nr_cpu_ids) {
240 /*
241 * Fail to find any suitable cpu.
242 * The task will never come back!
243 */
244 BUG_ON(dl_bandwidth_enabled());
245
246 /*
247 * If admission control is disabled we
248 * try a little harder to let the task
249 * run.
250 */
251 cpu = cpumask_any(cpu_active_mask);
252 }
253 later_rq = cpu_rq(cpu);
254 double_lock_balance(rq, later_rq);
255 }
256
257 deactivate_task(rq, p, 0);
258 set_task_cpu(p, later_rq->cpu);
259 activate_task(later_rq, p, ENQUEUE_REPLENISH);
260
261 if (!fallback)
262 resched_curr(later_rq);
263
264 double_unlock_balance(rq, later_rq);
265}
266
1baca4ce
JL
267#else
268
269static inline
270void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
271{
272}
273
274static inline
275void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
276{
277}
278
279static inline
280void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
281{
282}
283
284static inline
285void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
286{
287}
288
dc877341
PZ
289static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
290{
291 return false;
292}
293
294static inline int pull_dl_task(struct rq *rq)
295{
296 return 0;
297}
298
299static inline void set_post_schedule(struct rq *rq)
300{
301}
1baca4ce
JL
302#endif /* CONFIG_SMP */
303
aab03e05
DF
304static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
305static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
306static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
307 int flags);
308
309/*
310 * We are being explicitly informed that a new instance is starting,
311 * and this means that:
312 * - the absolute deadline of the entity has to be placed at
313 * current time + relative deadline;
314 * - the runtime of the entity has to be set to the maximum value.
315 *
316 * The capability of specifying such event is useful whenever a -deadline
317 * entity wants to (try to!) synchronize its behaviour with the scheduler's
318 * one, and to (try to!) reconcile itself with its own scheduling
319 * parameters.
320 */
2d3d891d
DF
321static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
322 struct sched_dl_entity *pi_se)
aab03e05
DF
323{
324 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
325 struct rq *rq = rq_of_dl_rq(dl_rq);
326
327 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
328
329 /*
330 * We use the regular wall clock time to set deadlines in the
331 * future; in fact, we must consider execution overheads (time
332 * spent on hardirq context, etc.).
333 */
2d3d891d
DF
334 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
335 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
336 dl_se->dl_new = 0;
337}
338
339/*
340 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
341 * possibility of a entity lasting more than what it declared, and thus
342 * exhausting its runtime.
343 *
344 * Here we are interested in making runtime overrun possible, but we do
345 * not want a entity which is misbehaving to affect the scheduling of all
346 * other entities.
347 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
348 * is used, in order to confine each entity within its own bandwidth.
349 *
350 * This function deals exactly with that, and ensures that when the runtime
351 * of a entity is replenished, its deadline is also postponed. That ensures
352 * the overrunning entity can't interfere with other entity in the system and
353 * can't make them miss their deadlines. Reasons why this kind of overruns
354 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 355 * runtime, or it just underestimated it during sched_setattr().
aab03e05 356 */
2d3d891d
DF
357static void replenish_dl_entity(struct sched_dl_entity *dl_se,
358 struct sched_dl_entity *pi_se)
aab03e05
DF
359{
360 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
361 struct rq *rq = rq_of_dl_rq(dl_rq);
362
2d3d891d
DF
363 BUG_ON(pi_se->dl_runtime <= 0);
364
365 /*
366 * This could be the case for a !-dl task that is boosted.
367 * Just go with full inherited parameters.
368 */
369 if (dl_se->dl_deadline == 0) {
370 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
371 dl_se->runtime = pi_se->dl_runtime;
372 }
373
aab03e05
DF
374 /*
375 * We keep moving the deadline away until we get some
376 * available runtime for the entity. This ensures correct
377 * handling of situations where the runtime overrun is
378 * arbitrary large.
379 */
380 while (dl_se->runtime <= 0) {
2d3d891d
DF
381 dl_se->deadline += pi_se->dl_period;
382 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
383 }
384
385 /*
386 * At this point, the deadline really should be "in
387 * the future" with respect to rq->clock. If it's
388 * not, we are, for some reason, lagging too much!
389 * Anyway, after having warn userspace abut that,
390 * we still try to keep the things running by
391 * resetting the deadline and the budget of the
392 * entity.
393 */
394 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c224815d 395 printk_deferred_once("sched: DL replenish lagged to much\n");
2d3d891d
DF
396 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
397 dl_se->runtime = pi_se->dl_runtime;
aab03e05 398 }
1019a359
PZ
399
400 if (dl_se->dl_yielded)
401 dl_se->dl_yielded = 0;
402 if (dl_se->dl_throttled)
403 dl_se->dl_throttled = 0;
aab03e05
DF
404}
405
406/*
407 * Here we check if --at time t-- an entity (which is probably being
408 * [re]activated or, in general, enqueued) can use its remaining runtime
409 * and its current deadline _without_ exceeding the bandwidth it is
410 * assigned (function returns true if it can't). We are in fact applying
411 * one of the CBS rules: when a task wakes up, if the residual runtime
412 * over residual deadline fits within the allocated bandwidth, then we
413 * can keep the current (absolute) deadline and residual budget without
414 * disrupting the schedulability of the system. Otherwise, we should
415 * refill the runtime and set the deadline a period in the future,
416 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
417 * result in breaking guarantees promised to other tasks (refer to
418 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
419 *
420 * This function returns true if:
421 *
755378a4 422 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
423 *
424 * IOW we can't recycle current parameters.
755378a4
HG
425 *
426 * Notice that the bandwidth check is done against the period. For
427 * task with deadline equal to period this is the same of using
428 * dl_deadline instead of dl_period in the equation above.
aab03e05 429 */
2d3d891d
DF
430static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
431 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
432{
433 u64 left, right;
434
435 /*
436 * left and right are the two sides of the equation above,
437 * after a bit of shuffling to use multiplications instead
438 * of divisions.
439 *
440 * Note that none of the time values involved in the two
441 * multiplications are absolute: dl_deadline and dl_runtime
442 * are the relative deadline and the maximum runtime of each
443 * instance, runtime is the runtime left for the last instance
444 * and (deadline - t), since t is rq->clock, is the time left
445 * to the (absolute) deadline. Even if overflowing the u64 type
446 * is very unlikely to occur in both cases, here we scale down
447 * as we want to avoid that risk at all. Scaling down by 10
448 * means that we reduce granularity to 1us. We are fine with it,
449 * since this is only a true/false check and, anyway, thinking
450 * of anything below microseconds resolution is actually fiction
451 * (but still we want to give the user that illusion >;).
452 */
332ac17e
DF
453 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
454 right = ((dl_se->deadline - t) >> DL_SCALE) *
455 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
456
457 return dl_time_before(right, left);
458}
459
460/*
461 * When a -deadline entity is queued back on the runqueue, its runtime and
462 * deadline might need updating.
463 *
464 * The policy here is that we update the deadline of the entity only if:
465 * - the current deadline is in the past,
466 * - using the remaining runtime with the current deadline would make
467 * the entity exceed its bandwidth.
468 */
2d3d891d
DF
469static void update_dl_entity(struct sched_dl_entity *dl_se,
470 struct sched_dl_entity *pi_se)
aab03e05
DF
471{
472 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
473 struct rq *rq = rq_of_dl_rq(dl_rq);
474
475 /*
476 * The arrival of a new instance needs special treatment, i.e.,
477 * the actual scheduling parameters have to be "renewed".
478 */
479 if (dl_se->dl_new) {
2d3d891d 480 setup_new_dl_entity(dl_se, pi_se);
aab03e05
DF
481 return;
482 }
483
484 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
485 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
486 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
487 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
488 }
489}
490
491/*
492 * If the entity depleted all its runtime, and if we want it to sleep
493 * while waiting for some new execution time to become available, we
494 * set the bandwidth enforcement timer to the replenishment instant
495 * and try to activate it.
496 *
497 * Notice that it is important for the caller to know if the timer
498 * actually started or not (i.e., the replenishment instant is in
499 * the future or in the past).
500 */
2d3d891d 501static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
aab03e05
DF
502{
503 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
504 struct rq *rq = rq_of_dl_rq(dl_rq);
505 ktime_t now, act;
aab03e05
DF
506 s64 delta;
507
2d3d891d
DF
508 if (boosted)
509 return 0;
aab03e05
DF
510 /*
511 * We want the timer to fire at the deadline, but considering
512 * that it is actually coming from rq->clock and not from
513 * hrtimer's time base reading.
514 */
515 act = ns_to_ktime(dl_se->deadline);
516 now = hrtimer_cb_get_time(&dl_se->dl_timer);
517 delta = ktime_to_ns(now) - rq_clock(rq);
518 act = ktime_add_ns(act, delta);
519
520 /*
521 * If the expiry time already passed, e.g., because the value
522 * chosen as the deadline is too small, don't even try to
523 * start the timer in the past!
524 */
525 if (ktime_us_delta(act, now) < 0)
526 return 0;
527
cc9684d3 528 hrtimer_start(&dl_se->dl_timer, act, HRTIMER_MODE_ABS);
aab03e05 529
cc9684d3 530 return 1;
aab03e05
DF
531}
532
533/*
534 * This is the bandwidth enforcement timer callback. If here, we know
535 * a task is not on its dl_rq, since the fact that the timer was running
536 * means the task is throttled and needs a runtime replenishment.
537 *
538 * However, what we actually do depends on the fact the task is active,
539 * (it is on its rq) or has been removed from there by a call to
540 * dequeue_task_dl(). In the former case we must issue the runtime
541 * replenishment and add the task back to the dl_rq; in the latter, we just
542 * do nothing but clearing dl_throttled, so that runtime and deadline
543 * updating (and the queueing back to dl_rq) will be done by the
544 * next call to enqueue_task_dl().
545 */
546static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
547{
548 struct sched_dl_entity *dl_se = container_of(timer,
549 struct sched_dl_entity,
550 dl_timer);
551 struct task_struct *p = dl_task_of(dl_se);
3960c8c0 552 unsigned long flags;
0f397f2c 553 struct rq *rq;
3960c8c0 554
4cd57f97 555 rq = task_rq_lock(p, &flags);
0f397f2c 556
aab03e05 557 /*
aee38ea9
JL
558 * We need to take care of several possible races here:
559 *
560 * - the task might have changed its scheduling policy
561 * to something different than SCHED_DEADLINE
562 * - the task might have changed its reservation parameters
563 * (through sched_setattr())
564 * - the task might have been boosted by someone else and
565 * might be in the boosting/deboosting path
566 *
567 * In all this cases we bail out, as the task is already
568 * in the runqueue or is going to be enqueued back anyway.
aab03e05 569 */
aee38ea9
JL
570 if (!dl_task(p) || dl_se->dl_new ||
571 dl_se->dl_boosted || !dl_se->dl_throttled)
aab03e05
DF
572 goto unlock;
573
574 sched_clock_tick();
575 update_rq_clock(rq);
a79ec89f 576
fa9c9d10
WL
577#ifdef CONFIG_SMP
578 /*
579 * If we find that the rq the task was on is no longer
580 * available, we need to select a new rq.
581 */
582 if (unlikely(!rq->online)) {
583 dl_task_offline_migration(rq, p);
584 goto unlock;
585 }
586#endif
587
a79ec89f
KT
588 /*
589 * If the throttle happened during sched-out; like:
590 *
591 * schedule()
592 * deactivate_task()
593 * dequeue_task_dl()
594 * update_curr_dl()
595 * start_dl_timer()
596 * __dequeue_task_dl()
597 * prev->on_rq = 0;
598 *
599 * We can be both throttled and !queued. Replenish the counter
600 * but do not enqueue -- wait for our wakeup to do that.
601 */
602 if (!task_on_rq_queued(p)) {
603 replenish_dl_entity(dl_se, dl_se);
604 goto unlock;
605 }
606
1019a359
PZ
607 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
608 if (dl_task(rq->curr))
609 check_preempt_curr_dl(rq, p, 0);
610 else
611 resched_curr(rq);
1baca4ce 612#ifdef CONFIG_SMP
1019a359
PZ
613 /*
614 * Queueing this task back might have overloaded rq,
615 * check if we need to kick someone away.
616 */
617 if (has_pushable_dl_tasks(rq))
618 push_dl_task(rq);
1baca4ce 619#endif
aab03e05 620unlock:
4cd57f97 621 task_rq_unlock(rq, p, &flags);
aab03e05
DF
622
623 return HRTIMER_NORESTART;
624}
625
626void init_dl_task_timer(struct sched_dl_entity *dl_se)
627{
628 struct hrtimer *timer = &dl_se->dl_timer;
629
aab03e05
DF
630 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
631 timer->function = dl_task_timer;
632}
633
634static
635int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
636{
269ad801 637 return (dl_se->runtime <= 0);
aab03e05
DF
638}
639
faa59937
JL
640extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
641
aab03e05
DF
642/*
643 * Update the current task's runtime statistics (provided it is still
644 * a -deadline task and has not been removed from the dl_rq).
645 */
646static void update_curr_dl(struct rq *rq)
647{
648 struct task_struct *curr = rq->curr;
649 struct sched_dl_entity *dl_se = &curr->dl;
650 u64 delta_exec;
651
652 if (!dl_task(curr) || !on_dl_rq(dl_se))
653 return;
654
655 /*
656 * Consumed budget is computed considering the time as
657 * observed by schedulable tasks (excluding time spent
658 * in hardirq context, etc.). Deadlines are instead
659 * computed using hard walltime. This seems to be the more
660 * natural solution, but the full ramifications of this
661 * approach need further study.
662 */
663 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
734ff2a7
KT
664 if (unlikely((s64)delta_exec <= 0))
665 return;
aab03e05
DF
666
667 schedstat_set(curr->se.statistics.exec_max,
668 max(curr->se.statistics.exec_max, delta_exec));
669
670 curr->se.sum_exec_runtime += delta_exec;
671 account_group_exec_runtime(curr, delta_exec);
672
673 curr->se.exec_start = rq_clock_task(rq);
674 cpuacct_charge(curr, delta_exec);
675
239be4a9
DF
676 sched_rt_avg_update(rq, delta_exec);
677
80496880 678 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
aab03e05 679 if (dl_runtime_exceeded(rq, dl_se)) {
1019a359 680 dl_se->dl_throttled = 1;
aab03e05 681 __dequeue_task_dl(rq, curr, 0);
1019a359 682 if (unlikely(!start_dl_timer(dl_se, curr->dl.dl_boosted)))
aab03e05
DF
683 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
684
685 if (!is_leftmost(curr, &rq->dl))
8875125e 686 resched_curr(rq);
aab03e05 687 }
1724813d
PZ
688
689 /*
690 * Because -- for now -- we share the rt bandwidth, we need to
691 * account our runtime there too, otherwise actual rt tasks
692 * would be able to exceed the shared quota.
693 *
694 * Account to the root rt group for now.
695 *
696 * The solution we're working towards is having the RT groups scheduled
697 * using deadline servers -- however there's a few nasties to figure
698 * out before that can happen.
699 */
700 if (rt_bandwidth_enabled()) {
701 struct rt_rq *rt_rq = &rq->rt;
702
703 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
704 /*
705 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
706 * have our own CBS to keep us inline; only account when RT
707 * bandwidth is relevant.
1724813d 708 */
faa59937
JL
709 if (sched_rt_bandwidth_account(rt_rq))
710 rt_rq->rt_time += delta_exec;
1724813d
PZ
711 raw_spin_unlock(&rt_rq->rt_runtime_lock);
712 }
aab03e05
DF
713}
714
1baca4ce
JL
715#ifdef CONFIG_SMP
716
717static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
718
719static inline u64 next_deadline(struct rq *rq)
720{
721 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
722
723 if (next && dl_prio(next->prio))
724 return next->dl.deadline;
725 else
726 return 0;
727}
728
729static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
730{
731 struct rq *rq = rq_of_dl_rq(dl_rq);
732
733 if (dl_rq->earliest_dl.curr == 0 ||
734 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
735 /*
736 * If the dl_rq had no -deadline tasks, or if the new task
737 * has shorter deadline than the current one on dl_rq, we
738 * know that the previous earliest becomes our next earliest,
739 * as the new task becomes the earliest itself.
740 */
741 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
742 dl_rq->earliest_dl.curr = deadline;
6bfd6d72 743 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
1baca4ce
JL
744 } else if (dl_rq->earliest_dl.next == 0 ||
745 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
746 /*
747 * On the other hand, if the new -deadline task has a
748 * a later deadline than the earliest one on dl_rq, but
749 * it is earlier than the next (if any), we must
750 * recompute the next-earliest.
751 */
752 dl_rq->earliest_dl.next = next_deadline(rq);
753 }
754}
755
756static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
757{
758 struct rq *rq = rq_of_dl_rq(dl_rq);
759
760 /*
761 * Since we may have removed our earliest (and/or next earliest)
762 * task we must recompute them.
763 */
764 if (!dl_rq->dl_nr_running) {
765 dl_rq->earliest_dl.curr = 0;
766 dl_rq->earliest_dl.next = 0;
6bfd6d72 767 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
768 } else {
769 struct rb_node *leftmost = dl_rq->rb_leftmost;
770 struct sched_dl_entity *entry;
771
772 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
773 dl_rq->earliest_dl.curr = entry->deadline;
774 dl_rq->earliest_dl.next = next_deadline(rq);
6bfd6d72 775 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
1baca4ce
JL
776 }
777}
778
779#else
780
781static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
782static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
783
784#endif /* CONFIG_SMP */
785
786static inline
787void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
788{
789 int prio = dl_task_of(dl_se)->prio;
790 u64 deadline = dl_se->deadline;
791
792 WARN_ON(!dl_prio(prio));
793 dl_rq->dl_nr_running++;
72465447 794 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
795
796 inc_dl_deadline(dl_rq, deadline);
797 inc_dl_migration(dl_se, dl_rq);
798}
799
800static inline
801void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
802{
803 int prio = dl_task_of(dl_se)->prio;
804
805 WARN_ON(!dl_prio(prio));
806 WARN_ON(!dl_rq->dl_nr_running);
807 dl_rq->dl_nr_running--;
72465447 808 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
809
810 dec_dl_deadline(dl_rq, dl_se->deadline);
811 dec_dl_migration(dl_se, dl_rq);
812}
813
aab03e05
DF
814static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
815{
816 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
817 struct rb_node **link = &dl_rq->rb_root.rb_node;
818 struct rb_node *parent = NULL;
819 struct sched_dl_entity *entry;
820 int leftmost = 1;
821
822 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
823
824 while (*link) {
825 parent = *link;
826 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
827 if (dl_time_before(dl_se->deadline, entry->deadline))
828 link = &parent->rb_left;
829 else {
830 link = &parent->rb_right;
831 leftmost = 0;
832 }
833 }
834
835 if (leftmost)
836 dl_rq->rb_leftmost = &dl_se->rb_node;
837
838 rb_link_node(&dl_se->rb_node, parent, link);
839 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
840
1baca4ce 841 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
842}
843
844static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
845{
846 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
847
848 if (RB_EMPTY_NODE(&dl_se->rb_node))
849 return;
850
851 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
852 struct rb_node *next_node;
853
854 next_node = rb_next(&dl_se->rb_node);
855 dl_rq->rb_leftmost = next_node;
856 }
857
858 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
859 RB_CLEAR_NODE(&dl_se->rb_node);
860
1baca4ce 861 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
862}
863
864static void
2d3d891d
DF
865enqueue_dl_entity(struct sched_dl_entity *dl_se,
866 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
867{
868 BUG_ON(on_dl_rq(dl_se));
869
870 /*
871 * If this is a wakeup or a new instance, the scheduling
872 * parameters of the task might need updating. Otherwise,
873 * we want a replenishment of its runtime.
874 */
6a503c3b 875 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
2d3d891d 876 update_dl_entity(dl_se, pi_se);
6a503c3b
LA
877 else if (flags & ENQUEUE_REPLENISH)
878 replenish_dl_entity(dl_se, pi_se);
aab03e05
DF
879
880 __enqueue_dl_entity(dl_se);
881}
882
883static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
884{
885 __dequeue_dl_entity(dl_se);
886}
887
888static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
889{
2d3d891d
DF
890 struct task_struct *pi_task = rt_mutex_get_top_task(p);
891 struct sched_dl_entity *pi_se = &p->dl;
892
893 /*
894 * Use the scheduling parameters of the top pi-waiter
895 * task if we have one and its (relative) deadline is
896 * smaller than our one... OTW we keep our runtime and
897 * deadline.
898 */
64be6f1f 899 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
2d3d891d 900 pi_se = &pi_task->dl;
64be6f1f
JL
901 } else if (!dl_prio(p->normal_prio)) {
902 /*
903 * Special case in which we have a !SCHED_DEADLINE task
904 * that is going to be deboosted, but exceedes its
905 * runtime while doing so. No point in replenishing
906 * it, as it's going to return back to its original
907 * scheduling class after this.
908 */
909 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
910 return;
911 }
2d3d891d 912
aab03e05
DF
913 /*
914 * If p is throttled, we do nothing. In fact, if it exhausted
915 * its budget it needs a replenishment and, since it now is on
916 * its rq, the bandwidth timer callback (which clearly has not
917 * run yet) will take care of this.
918 */
1019a359 919 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
aab03e05
DF
920 return;
921
2d3d891d 922 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce
JL
923
924 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
925 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
926}
927
928static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
929{
930 dequeue_dl_entity(&p->dl);
1baca4ce 931 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
932}
933
934static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
935{
936 update_curr_dl(rq);
937 __dequeue_task_dl(rq, p, flags);
aab03e05
DF
938}
939
940/*
941 * Yield task semantic for -deadline tasks is:
942 *
943 * get off from the CPU until our next instance, with
944 * a new runtime. This is of little use now, since we
945 * don't have a bandwidth reclaiming mechanism. Anyway,
946 * bandwidth reclaiming is planned for the future, and
947 * yield_task_dl will indicate that some spare budget
948 * is available for other task instances to use it.
949 */
950static void yield_task_dl(struct rq *rq)
951{
952 struct task_struct *p = rq->curr;
953
954 /*
955 * We make the task go to sleep until its current deadline by
956 * forcing its runtime to zero. This way, update_curr_dl() stops
957 * it and the bandwidth timer will wake it up and will give it
5bfd126e 958 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05
DF
959 */
960 if (p->dl.runtime > 0) {
5bfd126e 961 rq->curr->dl.dl_yielded = 1;
aab03e05
DF
962 p->dl.runtime = 0;
963 }
6f1607f1 964 update_rq_clock(rq);
aab03e05 965 update_curr_dl(rq);
44fb085b
WL
966 /*
967 * Tell update_rq_clock() that we've just updated,
968 * so we don't do microscopic update in schedule()
969 * and double the fastpath cost.
970 */
971 rq_clock_skip_update(rq, true);
aab03e05
DF
972}
973
1baca4ce
JL
974#ifdef CONFIG_SMP
975
976static int find_later_rq(struct task_struct *task);
1baca4ce
JL
977
978static int
979select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
980{
981 struct task_struct *curr;
982 struct rq *rq;
983
1d7e974c 984 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
985 goto out;
986
987 rq = cpu_rq(cpu);
988
989 rcu_read_lock();
316c1608 990 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
991
992 /*
993 * If we are dealing with a -deadline task, we must
994 * decide where to wake it up.
995 * If it has a later deadline and the current task
996 * on this rq can't move (provided the waking task
997 * can!) we prefer to send it somewhere else. On the
998 * other hand, if it has a shorter deadline, we
999 * try to make it stay here, it might be important.
1000 */
1001 if (unlikely(dl_task(curr)) &&
1002 (curr->nr_cpus_allowed < 2 ||
1003 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1004 (p->nr_cpus_allowed > 1)) {
1005 int target = find_later_rq(p);
1006
1007 if (target != -1)
1008 cpu = target;
1009 }
1010 rcu_read_unlock();
1011
1012out:
1013 return cpu;
1014}
1015
1016static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1017{
1018 /*
1019 * Current can't be migrated, useless to reschedule,
1020 * let's hope p can move out.
1021 */
1022 if (rq->curr->nr_cpus_allowed == 1 ||
6bfd6d72 1023 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
1024 return;
1025
1026 /*
1027 * p is migratable, so let's not schedule it and
1028 * see if it is pushed or pulled somewhere else.
1029 */
1030 if (p->nr_cpus_allowed != 1 &&
6bfd6d72 1031 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
1032 return;
1033
8875125e 1034 resched_curr(rq);
1baca4ce
JL
1035}
1036
38033c37
PZ
1037static int pull_dl_task(struct rq *this_rq);
1038
1baca4ce
JL
1039#endif /* CONFIG_SMP */
1040
aab03e05
DF
1041/*
1042 * Only called when both the current and waking task are -deadline
1043 * tasks.
1044 */
1045static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1046 int flags)
1047{
1baca4ce 1048 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1049 resched_curr(rq);
1baca4ce
JL
1050 return;
1051 }
1052
1053#ifdef CONFIG_SMP
1054 /*
1055 * In the unlikely case current and p have the same deadline
1056 * let us try to decide what's the best thing to do...
1057 */
332ac17e
DF
1058 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1059 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1060 check_preempt_equal_dl(rq, p);
1061#endif /* CONFIG_SMP */
aab03e05
DF
1062}
1063
1064#ifdef CONFIG_SCHED_HRTICK
1065static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1066{
177ef2a6 1067 hrtick_start(rq, p->dl.runtime);
aab03e05 1068}
36ce9881
WL
1069#else /* !CONFIG_SCHED_HRTICK */
1070static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1071{
1072}
aab03e05
DF
1073#endif
1074
1075static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1076 struct dl_rq *dl_rq)
1077{
1078 struct rb_node *left = dl_rq->rb_leftmost;
1079
1080 if (!left)
1081 return NULL;
1082
1083 return rb_entry(left, struct sched_dl_entity, rb_node);
1084}
1085
606dba2e 1086struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
aab03e05
DF
1087{
1088 struct sched_dl_entity *dl_se;
1089 struct task_struct *p;
1090 struct dl_rq *dl_rq;
1091
1092 dl_rq = &rq->dl;
1093
a1d9a323 1094 if (need_pull_dl_task(rq, prev)) {
38033c37 1095 pull_dl_task(rq);
a1d9a323
KT
1096 /*
1097 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1098 * means a stop task can slip in, in which case we need to
1099 * re-start task selection.
1100 */
da0c1e65 1101 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1102 return RETRY_TASK;
1103 }
1104
734ff2a7
KT
1105 /*
1106 * When prev is DL, we may throttle it in put_prev_task().
1107 * So, we update time before we check for dl_nr_running.
1108 */
1109 if (prev->sched_class == &dl_sched_class)
1110 update_curr_dl(rq);
38033c37 1111
aab03e05
DF
1112 if (unlikely(!dl_rq->dl_nr_running))
1113 return NULL;
1114
3f1d2a31 1115 put_prev_task(rq, prev);
606dba2e 1116
aab03e05
DF
1117 dl_se = pick_next_dl_entity(rq, dl_rq);
1118 BUG_ON(!dl_se);
1119
1120 p = dl_task_of(dl_se);
1121 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1122
1123 /* Running task will never be pushed. */
71362650 1124 dequeue_pushable_dl_task(rq, p);
1baca4ce 1125
aab03e05
DF
1126 if (hrtick_enabled(rq))
1127 start_hrtick_dl(rq, p);
1baca4ce 1128
dc877341 1129 set_post_schedule(rq);
1baca4ce 1130
aab03e05
DF
1131 return p;
1132}
1133
1134static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1135{
1136 update_curr_dl(rq);
1baca4ce
JL
1137
1138 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1139 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1140}
1141
1142static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1143{
1144 update_curr_dl(rq);
1145
a7bebf48
WL
1146 /*
1147 * Even when we have runtime, update_curr_dl() might have resulted in us
1148 * not being the leftmost task anymore. In that case NEED_RESCHED will
1149 * be set and schedule() will start a new hrtick for the next task.
1150 */
1151 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1152 is_leftmost(p, &rq->dl))
aab03e05 1153 start_hrtick_dl(rq, p);
aab03e05
DF
1154}
1155
1156static void task_fork_dl(struct task_struct *p)
1157{
1158 /*
1159 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1160 * sched_fork()
1161 */
1162}
1163
1164static void task_dead_dl(struct task_struct *p)
1165{
1166 struct hrtimer *timer = &p->dl.dl_timer;
332ac17e
DF
1167 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1168
1169 /*
1170 * Since we are TASK_DEAD we won't slip out of the domain!
1171 */
1172 raw_spin_lock_irq(&dl_b->lock);
40767b0d 1173 /* XXX we should retain the bw until 0-lag */
332ac17e
DF
1174 dl_b->total_bw -= p->dl.dl_bw;
1175 raw_spin_unlock_irq(&dl_b->lock);
aab03e05 1176
2d3d891d 1177 hrtimer_cancel(timer);
aab03e05
DF
1178}
1179
1180static void set_curr_task_dl(struct rq *rq)
1181{
1182 struct task_struct *p = rq->curr;
1183
1184 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1185
1186 /* You can't push away the running task */
1187 dequeue_pushable_dl_task(rq, p);
1188}
1189
1190#ifdef CONFIG_SMP
1191
1192/* Only try algorithms three times */
1193#define DL_MAX_TRIES 3
1194
1195static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1196{
1197 if (!task_running(rq, p) &&
1ba93d42 1198 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1baca4ce 1199 return 1;
1baca4ce
JL
1200 return 0;
1201}
1202
1203/* Returns the second earliest -deadline task, NULL otherwise */
1204static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1205{
1206 struct rb_node *next_node = rq->dl.rb_leftmost;
1207 struct sched_dl_entity *dl_se;
1208 struct task_struct *p = NULL;
1209
1210next_node:
1211 next_node = rb_next(next_node);
1212 if (next_node) {
1213 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1214 p = dl_task_of(dl_se);
1215
1216 if (pick_dl_task(rq, p, cpu))
1217 return p;
1218
1219 goto next_node;
1220 }
1221
1222 return NULL;
1223}
1224
1baca4ce
JL
1225static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1226
1227static int find_later_rq(struct task_struct *task)
1228{
1229 struct sched_domain *sd;
4ba29684 1230 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce
JL
1231 int this_cpu = smp_processor_id();
1232 int best_cpu, cpu = task_cpu(task);
1233
1234 /* Make sure the mask is initialized first */
1235 if (unlikely(!later_mask))
1236 return -1;
1237
1238 if (task->nr_cpus_allowed == 1)
1239 return -1;
1240
91ec6778
JL
1241 /*
1242 * We have to consider system topology and task affinity
1243 * first, then we can look for a suitable cpu.
1244 */
6bfd6d72
JL
1245 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1246 task, later_mask);
1baca4ce
JL
1247 if (best_cpu == -1)
1248 return -1;
1249
1250 /*
1251 * If we are here, some target has been found,
1252 * the most suitable of which is cached in best_cpu.
1253 * This is, among the runqueues where the current tasks
1254 * have later deadlines than the task's one, the rq
1255 * with the latest possible one.
1256 *
1257 * Now we check how well this matches with task's
1258 * affinity and system topology.
1259 *
1260 * The last cpu where the task run is our first
1261 * guess, since it is most likely cache-hot there.
1262 */
1263 if (cpumask_test_cpu(cpu, later_mask))
1264 return cpu;
1265 /*
1266 * Check if this_cpu is to be skipped (i.e., it is
1267 * not in the mask) or not.
1268 */
1269 if (!cpumask_test_cpu(this_cpu, later_mask))
1270 this_cpu = -1;
1271
1272 rcu_read_lock();
1273 for_each_domain(cpu, sd) {
1274 if (sd->flags & SD_WAKE_AFFINE) {
1275
1276 /*
1277 * If possible, preempting this_cpu is
1278 * cheaper than migrating.
1279 */
1280 if (this_cpu != -1 &&
1281 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1282 rcu_read_unlock();
1283 return this_cpu;
1284 }
1285
1286 /*
1287 * Last chance: if best_cpu is valid and is
1288 * in the mask, that becomes our choice.
1289 */
1290 if (best_cpu < nr_cpu_ids &&
1291 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1292 rcu_read_unlock();
1293 return best_cpu;
1294 }
1295 }
1296 }
1297 rcu_read_unlock();
1298
1299 /*
1300 * At this point, all our guesses failed, we just return
1301 * 'something', and let the caller sort the things out.
1302 */
1303 if (this_cpu != -1)
1304 return this_cpu;
1305
1306 cpu = cpumask_any(later_mask);
1307 if (cpu < nr_cpu_ids)
1308 return cpu;
1309
1310 return -1;
1311}
1312
1313/* Locks the rq it finds */
1314static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1315{
1316 struct rq *later_rq = NULL;
1317 int tries;
1318 int cpu;
1319
1320 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1321 cpu = find_later_rq(task);
1322
1323 if ((cpu == -1) || (cpu == rq->cpu))
1324 break;
1325
1326 later_rq = cpu_rq(cpu);
1327
1328 /* Retry if something changed. */
1329 if (double_lock_balance(rq, later_rq)) {
1330 if (unlikely(task_rq(task) != rq ||
1331 !cpumask_test_cpu(later_rq->cpu,
1332 &task->cpus_allowed) ||
da0c1e65
KT
1333 task_running(rq, task) ||
1334 !task_on_rq_queued(task))) {
1baca4ce
JL
1335 double_unlock_balance(rq, later_rq);
1336 later_rq = NULL;
1337 break;
1338 }
1339 }
1340
1341 /*
1342 * If the rq we found has no -deadline task, or
1343 * its earliest one has a later deadline than our
1344 * task, the rq is a good one.
1345 */
1346 if (!later_rq->dl.dl_nr_running ||
1347 dl_time_before(task->dl.deadline,
1348 later_rq->dl.earliest_dl.curr))
1349 break;
1350
1351 /* Otherwise we try again. */
1352 double_unlock_balance(rq, later_rq);
1353 later_rq = NULL;
1354 }
1355
1356 return later_rq;
1357}
1358
1359static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1360{
1361 struct task_struct *p;
1362
1363 if (!has_pushable_dl_tasks(rq))
1364 return NULL;
1365
1366 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1367 struct task_struct, pushable_dl_tasks);
1368
1369 BUG_ON(rq->cpu != task_cpu(p));
1370 BUG_ON(task_current(rq, p));
1371 BUG_ON(p->nr_cpus_allowed <= 1);
1372
da0c1e65 1373 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
1374 BUG_ON(!dl_task(p));
1375
1376 return p;
1377}
1378
1379/*
1380 * See if the non running -deadline tasks on this rq
1381 * can be sent to some other CPU where they can preempt
1382 * and start executing.
1383 */
1384static int push_dl_task(struct rq *rq)
1385{
1386 struct task_struct *next_task;
1387 struct rq *later_rq;
c51b8ab5 1388 int ret = 0;
1baca4ce
JL
1389
1390 if (!rq->dl.overloaded)
1391 return 0;
1392
1393 next_task = pick_next_pushable_dl_task(rq);
1394 if (!next_task)
1395 return 0;
1396
1397retry:
1398 if (unlikely(next_task == rq->curr)) {
1399 WARN_ON(1);
1400 return 0;
1401 }
1402
1403 /*
1404 * If next_task preempts rq->curr, and rq->curr
1405 * can move away, it makes sense to just reschedule
1406 * without going further in pushing next_task.
1407 */
1408 if (dl_task(rq->curr) &&
1409 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1410 rq->curr->nr_cpus_allowed > 1) {
8875125e 1411 resched_curr(rq);
1baca4ce
JL
1412 return 0;
1413 }
1414
1415 /* We might release rq lock */
1416 get_task_struct(next_task);
1417
1418 /* Will lock the rq it'll find */
1419 later_rq = find_lock_later_rq(next_task, rq);
1420 if (!later_rq) {
1421 struct task_struct *task;
1422
1423 /*
1424 * We must check all this again, since
1425 * find_lock_later_rq releases rq->lock and it is
1426 * then possible that next_task has migrated.
1427 */
1428 task = pick_next_pushable_dl_task(rq);
1429 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1430 /*
1431 * The task is still there. We don't try
1432 * again, some other cpu will pull it when ready.
1433 */
1baca4ce
JL
1434 goto out;
1435 }
1436
1437 if (!task)
1438 /* No more tasks */
1439 goto out;
1440
1441 put_task_struct(next_task);
1442 next_task = task;
1443 goto retry;
1444 }
1445
1446 deactivate_task(rq, next_task, 0);
1447 set_task_cpu(next_task, later_rq->cpu);
1448 activate_task(later_rq, next_task, 0);
c51b8ab5 1449 ret = 1;
1baca4ce 1450
8875125e 1451 resched_curr(later_rq);
1baca4ce
JL
1452
1453 double_unlock_balance(rq, later_rq);
1454
1455out:
1456 put_task_struct(next_task);
1457
c51b8ab5 1458 return ret;
1baca4ce
JL
1459}
1460
1461static void push_dl_tasks(struct rq *rq)
1462{
1463 /* Terminates as it moves a -deadline task */
1464 while (push_dl_task(rq))
1465 ;
aab03e05
DF
1466}
1467
1baca4ce
JL
1468static int pull_dl_task(struct rq *this_rq)
1469{
1470 int this_cpu = this_rq->cpu, ret = 0, cpu;
1471 struct task_struct *p;
1472 struct rq *src_rq;
1473 u64 dmin = LONG_MAX;
1474
1475 if (likely(!dl_overloaded(this_rq)))
1476 return 0;
1477
1478 /*
1479 * Match the barrier from dl_set_overloaded; this guarantees that if we
1480 * see overloaded we must also see the dlo_mask bit.
1481 */
1482 smp_rmb();
1483
1484 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1485 if (this_cpu == cpu)
1486 continue;
1487
1488 src_rq = cpu_rq(cpu);
1489
1490 /*
1491 * It looks racy, abd it is! However, as in sched_rt.c,
1492 * we are fine with this.
1493 */
1494 if (this_rq->dl.dl_nr_running &&
1495 dl_time_before(this_rq->dl.earliest_dl.curr,
1496 src_rq->dl.earliest_dl.next))
1497 continue;
1498
1499 /* Might drop this_rq->lock */
1500 double_lock_balance(this_rq, src_rq);
1501
1502 /*
1503 * If there are no more pullable tasks on the
1504 * rq, we're done with it.
1505 */
1506 if (src_rq->dl.dl_nr_running <= 1)
1507 goto skip;
1508
1509 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1510
1511 /*
1512 * We found a task to be pulled if:
1513 * - it preempts our current (if there's one),
1514 * - it will preempt the last one we pulled (if any).
1515 */
1516 if (p && dl_time_before(p->dl.deadline, dmin) &&
1517 (!this_rq->dl.dl_nr_running ||
1518 dl_time_before(p->dl.deadline,
1519 this_rq->dl.earliest_dl.curr))) {
1520 WARN_ON(p == src_rq->curr);
da0c1e65 1521 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
1522
1523 /*
1524 * Then we pull iff p has actually an earlier
1525 * deadline than the current task of its runqueue.
1526 */
1527 if (dl_time_before(p->dl.deadline,
1528 src_rq->curr->dl.deadline))
1529 goto skip;
1530
1531 ret = 1;
1532
1533 deactivate_task(src_rq, p, 0);
1534 set_task_cpu(p, this_cpu);
1535 activate_task(this_rq, p, 0);
1536 dmin = p->dl.deadline;
1537
1538 /* Is there any other task even earlier? */
1539 }
1540skip:
1541 double_unlock_balance(this_rq, src_rq);
1542 }
1543
1544 return ret;
1545}
1546
1baca4ce
JL
1547static void post_schedule_dl(struct rq *rq)
1548{
1549 push_dl_tasks(rq);
1550}
1551
1552/*
1553 * Since the task is not running and a reschedule is not going to happen
1554 * anytime soon on its runqueue, we try pushing it away now.
1555 */
1556static void task_woken_dl(struct rq *rq, struct task_struct *p)
1557{
1558 if (!task_running(rq, p) &&
1559 !test_tsk_need_resched(rq->curr) &&
1560 has_pushable_dl_tasks(rq) &&
1561 p->nr_cpus_allowed > 1 &&
1562 dl_task(rq->curr) &&
1563 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 1564 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
1565 push_dl_tasks(rq);
1566 }
1567}
1568
1569static void set_cpus_allowed_dl(struct task_struct *p,
1570 const struct cpumask *new_mask)
1571{
1572 struct rq *rq;
7f51412a 1573 struct root_domain *src_rd;
1baca4ce
JL
1574 int weight;
1575
1576 BUG_ON(!dl_task(p));
1577
7f51412a
JL
1578 rq = task_rq(p);
1579 src_rd = rq->rd;
1580 /*
1581 * Migrating a SCHED_DEADLINE task between exclusive
1582 * cpusets (different root_domains) entails a bandwidth
1583 * update. We already made space for us in the destination
1584 * domain (see cpuset_can_attach()).
1585 */
1586 if (!cpumask_intersects(src_rd->span, new_mask)) {
1587 struct dl_bw *src_dl_b;
1588
1589 src_dl_b = dl_bw_of(cpu_of(rq));
1590 /*
1591 * We now free resources of the root_domain we are migrating
1592 * off. In the worst case, sched_setattr() may temporary fail
1593 * until we complete the update.
1594 */
1595 raw_spin_lock(&src_dl_b->lock);
1596 __dl_clear(src_dl_b, p->dl.dl_bw);
1597 raw_spin_unlock(&src_dl_b->lock);
1598 }
1599
1baca4ce
JL
1600 /*
1601 * Update only if the task is actually running (i.e.,
1602 * it is on the rq AND it is not throttled).
1603 */
1604 if (!on_dl_rq(&p->dl))
1605 return;
1606
1607 weight = cpumask_weight(new_mask);
1608
1609 /*
1610 * Only update if the process changes its state from whether it
1611 * can migrate or not.
1612 */
1613 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1614 return;
1615
1baca4ce
JL
1616 /*
1617 * The process used to be able to migrate OR it can now migrate
1618 */
1619 if (weight <= 1) {
1620 if (!task_current(rq, p))
1621 dequeue_pushable_dl_task(rq, p);
1622 BUG_ON(!rq->dl.dl_nr_migratory);
1623 rq->dl.dl_nr_migratory--;
1624 } else {
1625 if (!task_current(rq, p))
1626 enqueue_pushable_dl_task(rq, p);
1627 rq->dl.dl_nr_migratory++;
1628 }
1629
1630 update_dl_migration(&rq->dl);
1631}
1632
1633/* Assumes rq->lock is held */
1634static void rq_online_dl(struct rq *rq)
1635{
1636 if (rq->dl.overloaded)
1637 dl_set_overload(rq);
6bfd6d72 1638
16b26943 1639 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72
JL
1640 if (rq->dl.dl_nr_running > 0)
1641 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1baca4ce
JL
1642}
1643
1644/* Assumes rq->lock is held */
1645static void rq_offline_dl(struct rq *rq)
1646{
1647 if (rq->dl.overloaded)
1648 dl_clear_overload(rq);
6bfd6d72
JL
1649
1650 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
16b26943 1651 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
1652}
1653
1654void init_sched_dl_class(void)
1655{
1656 unsigned int i;
1657
1658 for_each_possible_cpu(i)
1659 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1660 GFP_KERNEL, cpu_to_node(i));
1661}
1662
1663#endif /* CONFIG_SMP */
1664
67dfa1b7
KT
1665/*
1666 * Ensure p's dl_timer is cancelled. May drop rq->lock for a while.
1667 */
1668static void cancel_dl_timer(struct rq *rq, struct task_struct *p)
1669{
1670 struct hrtimer *dl_timer = &p->dl.dl_timer;
1671
1672 /* Nobody will change task's class if pi_lock is held */
1673 lockdep_assert_held(&p->pi_lock);
1674
1675 if (hrtimer_active(dl_timer)) {
1676 int ret = hrtimer_try_to_cancel(dl_timer);
1677
1678 if (unlikely(ret == -1)) {
1679 /*
1680 * Note, p may migrate OR new deadline tasks
1681 * may appear in rq when we are unlocking it.
1682 * A caller of us must be fine with that.
1683 */
1684 raw_spin_unlock(&rq->lock);
1685 hrtimer_cancel(dl_timer);
1686 raw_spin_lock(&rq->lock);
1687 }
1688 }
1689}
1690
aab03e05
DF
1691static void switched_from_dl(struct rq *rq, struct task_struct *p)
1692{
40767b0d 1693 /* XXX we should retain the bw until 0-lag */
67dfa1b7 1694 cancel_dl_timer(rq, p);
a5e7be3b
JL
1695 __dl_clear_params(p);
1696
1baca4ce
JL
1697 /*
1698 * Since this might be the only -deadline task on the rq,
1699 * this is the right place to try to pull some other one
1700 * from an overloaded cpu, if any.
1701 */
cd660911
WL
1702 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1703 return;
1704
1705 if (pull_dl_task(rq))
1706 resched_curr(rq);
aab03e05
DF
1707}
1708
1baca4ce
JL
1709/*
1710 * When switching to -deadline, we may overload the rq, then
1711 * we try to push someone off, if possible.
1712 */
aab03e05
DF
1713static void switched_to_dl(struct rq *rq, struct task_struct *p)
1714{
1baca4ce
JL
1715 int check_resched = 1;
1716
da0c1e65 1717 if (task_on_rq_queued(p) && rq->curr != p) {
1baca4ce 1718#ifdef CONFIG_SMP
d9aade7a
WL
1719 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded &&
1720 push_dl_task(rq) && rq != task_rq(p))
1baca4ce
JL
1721 /* Only reschedule if pushing failed */
1722 check_resched = 0;
1723#endif /* CONFIG_SMP */
f3a7e1a9
KT
1724 if (check_resched) {
1725 if (dl_task(rq->curr))
1726 check_preempt_curr_dl(rq, p, 0);
1727 else
1728 resched_curr(rq);
1729 }
aab03e05
DF
1730 }
1731}
1732
1baca4ce
JL
1733/*
1734 * If the scheduling parameters of a -deadline task changed,
1735 * a push or pull operation might be needed.
1736 */
aab03e05
DF
1737static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1738 int oldprio)
1739{
da0c1e65 1740 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 1741#ifdef CONFIG_SMP
1baca4ce
JL
1742 /*
1743 * This might be too much, but unfortunately
1744 * we don't have the old deadline value, and
1745 * we can't argue if the task is increasing
1746 * or lowering its prio, so...
1747 */
1748 if (!rq->dl.overloaded)
1749 pull_dl_task(rq);
1750
1751 /*
1752 * If we now have a earlier deadline task than p,
1753 * then reschedule, provided p is still on this
1754 * runqueue.
1755 */
1756 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1757 rq->curr == p)
8875125e 1758 resched_curr(rq);
1baca4ce
JL
1759#else
1760 /*
1761 * Again, we don't know if p has a earlier
1762 * or later deadline, so let's blindly set a
1763 * (maybe not needed) rescheduling point.
1764 */
8875125e 1765 resched_curr(rq);
1baca4ce
JL
1766#endif /* CONFIG_SMP */
1767 } else
1768 switched_to_dl(rq, p);
aab03e05 1769}
aab03e05
DF
1770
1771const struct sched_class dl_sched_class = {
1772 .next = &rt_sched_class,
1773 .enqueue_task = enqueue_task_dl,
1774 .dequeue_task = dequeue_task_dl,
1775 .yield_task = yield_task_dl,
1776
1777 .check_preempt_curr = check_preempt_curr_dl,
1778
1779 .pick_next_task = pick_next_task_dl,
1780 .put_prev_task = put_prev_task_dl,
1781
1782#ifdef CONFIG_SMP
1783 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1784 .set_cpus_allowed = set_cpus_allowed_dl,
1785 .rq_online = rq_online_dl,
1786 .rq_offline = rq_offline_dl,
1baca4ce
JL
1787 .post_schedule = post_schedule_dl,
1788 .task_woken = task_woken_dl,
aab03e05
DF
1789#endif
1790
1791 .set_curr_task = set_curr_task_dl,
1792 .task_tick = task_tick_dl,
1793 .task_fork = task_fork_dl,
1794 .task_dead = task_dead_dl,
1795
1796 .prio_changed = prio_changed_dl,
1797 .switched_from = switched_from_dl,
1798 .switched_to = switched_to_dl,
6e998916
SG
1799
1800 .update_curr = update_curr_dl,
aab03e05 1801};
acb32132
WL
1802
1803#ifdef CONFIG_SCHED_DEBUG
1804extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1805
1806void print_dl_stats(struct seq_file *m, int cpu)
1807{
1808 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1809}
1810#endif /* CONFIG_SCHED_DEBUG */