Merge branch 'sched/urgent' into sched/core, to pick up fixes before merging new...
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
332ac17e
DF
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
332ac17e
DF
60void init_dl_bw(struct dl_bw *dl_b)
61{
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 64 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
65 dl_b->bw = -1;
66 else
1724813d 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70}
71
07c54f7a 72void init_dl_rq(struct dl_rq *dl_rq)
aab03e05
DF
73{
74 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
75
76#ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
83#else
84 init_dl_bw(&dl_rq->dl_bw);
1baca4ce
JL
85#endif
86}
87
88#ifdef CONFIG_SMP
89
90static inline int dl_overloaded(struct rq *rq)
91{
92 return atomic_read(&rq->rd->dlo_count);
93}
94
95static inline void dl_set_overload(struct rq *rq)
96{
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109}
110
111static inline void dl_clear_overload(struct rq *rq)
112{
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118}
119
120static void update_dl_migration(struct dl_rq *dl_rq)
121{
995b9ea4 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131}
132
133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134{
135 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 136
1baca4ce
JL
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141}
142
143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 146
1baca4ce
JL
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151}
152
153/*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158{
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
179 if (leftmost)
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181
182 rb_link_node(&p->pushable_dl_tasks, parent, link);
183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
184}
185
1baca4ce
JL
186static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
187{
188 struct dl_rq *dl_rq = &rq->dl;
189
190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 return;
192
193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 struct rb_node *next_node;
195
196 next_node = rb_next(&p->pushable_dl_tasks);
197 dl_rq->pushable_dl_tasks_leftmost = next_node;
198 }
199
200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 RB_CLEAR_NODE(&p->pushable_dl_tasks);
202}
203
204static inline int has_pushable_dl_tasks(struct rq *rq)
205{
206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
207}
208
209static int push_dl_task(struct rq *rq);
210
dc877341
PZ
211static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
212{
213 return dl_task(prev);
214}
215
9916e214
PZ
216static DEFINE_PER_CPU(struct callback_head, dl_push_head);
217static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
e3fca9e7
PZ
218
219static void push_dl_tasks(struct rq *);
9916e214 220static void pull_dl_task(struct rq *);
e3fca9e7
PZ
221
222static inline void queue_push_tasks(struct rq *rq)
dc877341 223{
e3fca9e7
PZ
224 if (!has_pushable_dl_tasks(rq))
225 return;
226
9916e214
PZ
227 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
228}
229
230static inline void queue_pull_task(struct rq *rq)
231{
232 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
dc877341
PZ
233}
234
fa9c9d10
WL
235static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
236
a649f237 237static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
fa9c9d10
WL
238{
239 struct rq *later_rq = NULL;
240 bool fallback = false;
241
242 later_rq = find_lock_later_rq(p, rq);
243
244 if (!later_rq) {
245 int cpu;
246
247 /*
248 * If we cannot preempt any rq, fall back to pick any
249 * online cpu.
250 */
251 fallback = true;
252 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
253 if (cpu >= nr_cpu_ids) {
254 /*
255 * Fail to find any suitable cpu.
256 * The task will never come back!
257 */
258 BUG_ON(dl_bandwidth_enabled());
259
260 /*
261 * If admission control is disabled we
262 * try a little harder to let the task
263 * run.
264 */
265 cpu = cpumask_any(cpu_active_mask);
266 }
267 later_rq = cpu_rq(cpu);
268 double_lock_balance(rq, later_rq);
269 }
270
a649f237
PZ
271 /*
272 * By now the task is replenished and enqueued; migrate it.
273 */
fa9c9d10
WL
274 deactivate_task(rq, p, 0);
275 set_task_cpu(p, later_rq->cpu);
a649f237 276 activate_task(later_rq, p, 0);
fa9c9d10
WL
277
278 if (!fallback)
279 resched_curr(later_rq);
280
a649f237
PZ
281 double_unlock_balance(later_rq, rq);
282
283 return later_rq;
fa9c9d10
WL
284}
285
1baca4ce
JL
286#else
287
288static inline
289void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
290{
291}
292
293static inline
294void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
295{
296}
297
298static inline
299void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
300{
301}
302
303static inline
304void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
305{
306}
307
dc877341
PZ
308static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
309{
310 return false;
311}
312
0ea60c20 313static inline void pull_dl_task(struct rq *rq)
dc877341 314{
dc877341
PZ
315}
316
e3fca9e7 317static inline void queue_push_tasks(struct rq *rq)
dc877341 318{
dc877341
PZ
319}
320
9916e214 321static inline void queue_pull_task(struct rq *rq)
dc877341
PZ
322{
323}
1baca4ce
JL
324#endif /* CONFIG_SMP */
325
aab03e05
DF
326static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
327static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
328static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
329 int flags);
330
331/*
332 * We are being explicitly informed that a new instance is starting,
333 * and this means that:
334 * - the absolute deadline of the entity has to be placed at
335 * current time + relative deadline;
336 * - the runtime of the entity has to be set to the maximum value.
337 *
338 * The capability of specifying such event is useful whenever a -deadline
339 * entity wants to (try to!) synchronize its behaviour with the scheduler's
340 * one, and to (try to!) reconcile itself with its own scheduling
341 * parameters.
342 */
2d3d891d
DF
343static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
344 struct sched_dl_entity *pi_se)
aab03e05
DF
345{
346 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
347 struct rq *rq = rq_of_dl_rq(dl_rq);
348
349 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
350
351 /*
352 * We use the regular wall clock time to set deadlines in the
353 * future; in fact, we must consider execution overheads (time
354 * spent on hardirq context, etc.).
355 */
2d3d891d
DF
356 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
357 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
358 dl_se->dl_new = 0;
359}
360
361/*
362 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
363 * possibility of a entity lasting more than what it declared, and thus
364 * exhausting its runtime.
365 *
366 * Here we are interested in making runtime overrun possible, but we do
367 * not want a entity which is misbehaving to affect the scheduling of all
368 * other entities.
369 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
370 * is used, in order to confine each entity within its own bandwidth.
371 *
372 * This function deals exactly with that, and ensures that when the runtime
373 * of a entity is replenished, its deadline is also postponed. That ensures
374 * the overrunning entity can't interfere with other entity in the system and
375 * can't make them miss their deadlines. Reasons why this kind of overruns
376 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 377 * runtime, or it just underestimated it during sched_setattr().
aab03e05 378 */
2d3d891d
DF
379static void replenish_dl_entity(struct sched_dl_entity *dl_se,
380 struct sched_dl_entity *pi_se)
aab03e05
DF
381{
382 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
383 struct rq *rq = rq_of_dl_rq(dl_rq);
384
2d3d891d
DF
385 BUG_ON(pi_se->dl_runtime <= 0);
386
387 /*
388 * This could be the case for a !-dl task that is boosted.
389 * Just go with full inherited parameters.
390 */
391 if (dl_se->dl_deadline == 0) {
392 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
393 dl_se->runtime = pi_se->dl_runtime;
394 }
395
aab03e05
DF
396 /*
397 * We keep moving the deadline away until we get some
398 * available runtime for the entity. This ensures correct
399 * handling of situations where the runtime overrun is
400 * arbitrary large.
401 */
402 while (dl_se->runtime <= 0) {
2d3d891d
DF
403 dl_se->deadline += pi_se->dl_period;
404 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
405 }
406
407 /*
408 * At this point, the deadline really should be "in
409 * the future" with respect to rq->clock. If it's
410 * not, we are, for some reason, lagging too much!
411 * Anyway, after having warn userspace abut that,
412 * we still try to keep the things running by
413 * resetting the deadline and the budget of the
414 * entity.
415 */
416 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c224815d 417 printk_deferred_once("sched: DL replenish lagged to much\n");
2d3d891d
DF
418 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
419 dl_se->runtime = pi_se->dl_runtime;
aab03e05 420 }
1019a359
PZ
421
422 if (dl_se->dl_yielded)
423 dl_se->dl_yielded = 0;
424 if (dl_se->dl_throttled)
425 dl_se->dl_throttled = 0;
aab03e05
DF
426}
427
428/*
429 * Here we check if --at time t-- an entity (which is probably being
430 * [re]activated or, in general, enqueued) can use its remaining runtime
431 * and its current deadline _without_ exceeding the bandwidth it is
432 * assigned (function returns true if it can't). We are in fact applying
433 * one of the CBS rules: when a task wakes up, if the residual runtime
434 * over residual deadline fits within the allocated bandwidth, then we
435 * can keep the current (absolute) deadline and residual budget without
436 * disrupting the schedulability of the system. Otherwise, we should
437 * refill the runtime and set the deadline a period in the future,
438 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
439 * result in breaking guarantees promised to other tasks (refer to
440 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
441 *
442 * This function returns true if:
443 *
755378a4 444 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
445 *
446 * IOW we can't recycle current parameters.
755378a4
HG
447 *
448 * Notice that the bandwidth check is done against the period. For
449 * task with deadline equal to period this is the same of using
450 * dl_deadline instead of dl_period in the equation above.
aab03e05 451 */
2d3d891d
DF
452static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
453 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
454{
455 u64 left, right;
456
457 /*
458 * left and right are the two sides of the equation above,
459 * after a bit of shuffling to use multiplications instead
460 * of divisions.
461 *
462 * Note that none of the time values involved in the two
463 * multiplications are absolute: dl_deadline and dl_runtime
464 * are the relative deadline and the maximum runtime of each
465 * instance, runtime is the runtime left for the last instance
466 * and (deadline - t), since t is rq->clock, is the time left
467 * to the (absolute) deadline. Even if overflowing the u64 type
468 * is very unlikely to occur in both cases, here we scale down
469 * as we want to avoid that risk at all. Scaling down by 10
470 * means that we reduce granularity to 1us. We are fine with it,
471 * since this is only a true/false check and, anyway, thinking
472 * of anything below microseconds resolution is actually fiction
473 * (but still we want to give the user that illusion >;).
474 */
332ac17e
DF
475 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
476 right = ((dl_se->deadline - t) >> DL_SCALE) *
477 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
478
479 return dl_time_before(right, left);
480}
481
482/*
483 * When a -deadline entity is queued back on the runqueue, its runtime and
484 * deadline might need updating.
485 *
486 * The policy here is that we update the deadline of the entity only if:
487 * - the current deadline is in the past,
488 * - using the remaining runtime with the current deadline would make
489 * the entity exceed its bandwidth.
490 */
2d3d891d
DF
491static void update_dl_entity(struct sched_dl_entity *dl_se,
492 struct sched_dl_entity *pi_se)
aab03e05
DF
493{
494 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
495 struct rq *rq = rq_of_dl_rq(dl_rq);
496
497 /*
498 * The arrival of a new instance needs special treatment, i.e.,
499 * the actual scheduling parameters have to be "renewed".
500 */
501 if (dl_se->dl_new) {
2d3d891d 502 setup_new_dl_entity(dl_se, pi_se);
aab03e05
DF
503 return;
504 }
505
506 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
507 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
508 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
509 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
510 }
511}
512
513/*
514 * If the entity depleted all its runtime, and if we want it to sleep
515 * while waiting for some new execution time to become available, we
516 * set the bandwidth enforcement timer to the replenishment instant
517 * and try to activate it.
518 *
519 * Notice that it is important for the caller to know if the timer
520 * actually started or not (i.e., the replenishment instant is in
521 * the future or in the past).
522 */
a649f237 523static int start_dl_timer(struct task_struct *p)
aab03e05 524{
a649f237
PZ
525 struct sched_dl_entity *dl_se = &p->dl;
526 struct hrtimer *timer = &dl_se->dl_timer;
527 struct rq *rq = task_rq(p);
aab03e05 528 ktime_t now, act;
aab03e05
DF
529 s64 delta;
530
a649f237
PZ
531 lockdep_assert_held(&rq->lock);
532
aab03e05
DF
533 /*
534 * We want the timer to fire at the deadline, but considering
535 * that it is actually coming from rq->clock and not from
536 * hrtimer's time base reading.
537 */
538 act = ns_to_ktime(dl_se->deadline);
a649f237 539 now = hrtimer_cb_get_time(timer);
aab03e05
DF
540 delta = ktime_to_ns(now) - rq_clock(rq);
541 act = ktime_add_ns(act, delta);
542
543 /*
544 * If the expiry time already passed, e.g., because the value
545 * chosen as the deadline is too small, don't even try to
546 * start the timer in the past!
547 */
548 if (ktime_us_delta(act, now) < 0)
549 return 0;
550
a649f237
PZ
551 /*
552 * !enqueued will guarantee another callback; even if one is already in
553 * progress. This ensures a balanced {get,put}_task_struct().
554 *
555 * The race against __run_timer() clearing the enqueued state is
556 * harmless because we're holding task_rq()->lock, therefore the timer
557 * expiring after we've done the check will wait on its task_rq_lock()
558 * and observe our state.
559 */
560 if (!hrtimer_is_queued(timer)) {
561 get_task_struct(p);
562 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
563 }
aab03e05 564
cc9684d3 565 return 1;
aab03e05
DF
566}
567
568/*
569 * This is the bandwidth enforcement timer callback. If here, we know
570 * a task is not on its dl_rq, since the fact that the timer was running
571 * means the task is throttled and needs a runtime replenishment.
572 *
573 * However, what we actually do depends on the fact the task is active,
574 * (it is on its rq) or has been removed from there by a call to
575 * dequeue_task_dl(). In the former case we must issue the runtime
576 * replenishment and add the task back to the dl_rq; in the latter, we just
577 * do nothing but clearing dl_throttled, so that runtime and deadline
578 * updating (and the queueing back to dl_rq) will be done by the
579 * next call to enqueue_task_dl().
580 */
581static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
582{
583 struct sched_dl_entity *dl_se = container_of(timer,
584 struct sched_dl_entity,
585 dl_timer);
586 struct task_struct *p = dl_task_of(dl_se);
3960c8c0 587 unsigned long flags;
0f397f2c 588 struct rq *rq;
3960c8c0 589
4cd57f97 590 rq = task_rq_lock(p, &flags);
0f397f2c 591
aab03e05 592 /*
a649f237
PZ
593 * The task might have changed its scheduling policy to something
594 * different than SCHED_DEADLINE (through switched_fromd_dl()).
595 */
596 if (!dl_task(p)) {
597 __dl_clear_params(p);
598 goto unlock;
599 }
600
601 /*
602 * This is possible if switched_from_dl() raced against a running
603 * callback that took the above !dl_task() path and we've since then
604 * switched back into SCHED_DEADLINE.
aee38ea9 605 *
a649f237 606 * There's nothing to do except drop our task reference.
aab03e05 607 */
a649f237 608 if (dl_se->dl_new)
aab03e05
DF
609 goto unlock;
610
a649f237
PZ
611 /*
612 * The task might have been boosted by someone else and might be in the
613 * boosting/deboosting path, its not throttled.
614 */
615 if (dl_se->dl_boosted)
616 goto unlock;
a79ec89f 617
fa9c9d10 618 /*
a649f237
PZ
619 * Spurious timer due to start_dl_timer() race; or we already received
620 * a replenishment from rt_mutex_setprio().
fa9c9d10 621 */
a649f237 622 if (!dl_se->dl_throttled)
fa9c9d10 623 goto unlock;
a649f237
PZ
624
625 sched_clock_tick();
626 update_rq_clock(rq);
fa9c9d10 627
a79ec89f
KT
628 /*
629 * If the throttle happened during sched-out; like:
630 *
631 * schedule()
632 * deactivate_task()
633 * dequeue_task_dl()
634 * update_curr_dl()
635 * start_dl_timer()
636 * __dequeue_task_dl()
637 * prev->on_rq = 0;
638 *
639 * We can be both throttled and !queued. Replenish the counter
640 * but do not enqueue -- wait for our wakeup to do that.
641 */
642 if (!task_on_rq_queued(p)) {
643 replenish_dl_entity(dl_se, dl_se);
644 goto unlock;
645 }
646
1019a359
PZ
647 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
648 if (dl_task(rq->curr))
649 check_preempt_curr_dl(rq, p, 0);
650 else
651 resched_curr(rq);
a649f237 652
1baca4ce 653#ifdef CONFIG_SMP
1019a359 654 /*
a649f237
PZ
655 * Perform balancing operations here; after the replenishments. We
656 * cannot drop rq->lock before this, otherwise the assertion in
657 * start_dl_timer() about not missing updates is not true.
658 *
659 * If we find that the rq the task was on is no longer available, we
660 * need to select a new rq.
661 *
662 * XXX figure out if select_task_rq_dl() deals with offline cpus.
663 */
664 if (unlikely(!rq->online))
665 rq = dl_task_offline_migration(rq, p);
666
667 /*
668 * Queueing this task back might have overloaded rq, check if we need
669 * to kick someone away.
1019a359 670 */
0aaafaab
PZ
671 if (has_pushable_dl_tasks(rq)) {
672 /*
673 * Nothing relies on rq->lock after this, so its safe to drop
674 * rq->lock.
675 */
676 lockdep_unpin_lock(&rq->lock);
1019a359 677 push_dl_task(rq);
0aaafaab
PZ
678 lockdep_pin_lock(&rq->lock);
679 }
1baca4ce 680#endif
a649f237 681
aab03e05 682unlock:
4cd57f97 683 task_rq_unlock(rq, p, &flags);
aab03e05 684
a649f237
PZ
685 /*
686 * This can free the task_struct, including this hrtimer, do not touch
687 * anything related to that after this.
688 */
689 put_task_struct(p);
690
aab03e05
DF
691 return HRTIMER_NORESTART;
692}
693
694void init_dl_task_timer(struct sched_dl_entity *dl_se)
695{
696 struct hrtimer *timer = &dl_se->dl_timer;
697
aab03e05
DF
698 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
699 timer->function = dl_task_timer;
700}
701
702static
6fab5410 703int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
aab03e05 704{
269ad801 705 return (dl_se->runtime <= 0);
aab03e05
DF
706}
707
faa59937
JL
708extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
709
aab03e05
DF
710/*
711 * Update the current task's runtime statistics (provided it is still
712 * a -deadline task and has not been removed from the dl_rq).
713 */
714static void update_curr_dl(struct rq *rq)
715{
716 struct task_struct *curr = rq->curr;
717 struct sched_dl_entity *dl_se = &curr->dl;
718 u64 delta_exec;
719
720 if (!dl_task(curr) || !on_dl_rq(dl_se))
721 return;
722
723 /*
724 * Consumed budget is computed considering the time as
725 * observed by schedulable tasks (excluding time spent
726 * in hardirq context, etc.). Deadlines are instead
727 * computed using hard walltime. This seems to be the more
728 * natural solution, but the full ramifications of this
729 * approach need further study.
730 */
731 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
734ff2a7
KT
732 if (unlikely((s64)delta_exec <= 0))
733 return;
aab03e05
DF
734
735 schedstat_set(curr->se.statistics.exec_max,
736 max(curr->se.statistics.exec_max, delta_exec));
737
738 curr->se.sum_exec_runtime += delta_exec;
739 account_group_exec_runtime(curr, delta_exec);
740
741 curr->se.exec_start = rq_clock_task(rq);
742 cpuacct_charge(curr, delta_exec);
743
239be4a9
DF
744 sched_rt_avg_update(rq, delta_exec);
745
80496880 746 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
6fab5410 747 if (dl_runtime_exceeded(dl_se)) {
1019a359 748 dl_se->dl_throttled = 1;
aab03e05 749 __dequeue_task_dl(rq, curr, 0);
a649f237 750 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
aab03e05
DF
751 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
752
753 if (!is_leftmost(curr, &rq->dl))
8875125e 754 resched_curr(rq);
aab03e05 755 }
1724813d
PZ
756
757 /*
758 * Because -- for now -- we share the rt bandwidth, we need to
759 * account our runtime there too, otherwise actual rt tasks
760 * would be able to exceed the shared quota.
761 *
762 * Account to the root rt group for now.
763 *
764 * The solution we're working towards is having the RT groups scheduled
765 * using deadline servers -- however there's a few nasties to figure
766 * out before that can happen.
767 */
768 if (rt_bandwidth_enabled()) {
769 struct rt_rq *rt_rq = &rq->rt;
770
771 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
772 /*
773 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
774 * have our own CBS to keep us inline; only account when RT
775 * bandwidth is relevant.
1724813d 776 */
faa59937
JL
777 if (sched_rt_bandwidth_account(rt_rq))
778 rt_rq->rt_time += delta_exec;
1724813d
PZ
779 raw_spin_unlock(&rt_rq->rt_runtime_lock);
780 }
aab03e05
DF
781}
782
1baca4ce
JL
783#ifdef CONFIG_SMP
784
785static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
786
787static inline u64 next_deadline(struct rq *rq)
788{
789 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
790
791 if (next && dl_prio(next->prio))
792 return next->dl.deadline;
793 else
794 return 0;
795}
796
797static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
798{
799 struct rq *rq = rq_of_dl_rq(dl_rq);
800
801 if (dl_rq->earliest_dl.curr == 0 ||
802 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
803 /*
804 * If the dl_rq had no -deadline tasks, or if the new task
805 * has shorter deadline than the current one on dl_rq, we
806 * know that the previous earliest becomes our next earliest,
807 * as the new task becomes the earliest itself.
808 */
809 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
810 dl_rq->earliest_dl.curr = deadline;
6bfd6d72 811 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
1baca4ce
JL
812 } else if (dl_rq->earliest_dl.next == 0 ||
813 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
814 /*
815 * On the other hand, if the new -deadline task has a
816 * a later deadline than the earliest one on dl_rq, but
817 * it is earlier than the next (if any), we must
818 * recompute the next-earliest.
819 */
820 dl_rq->earliest_dl.next = next_deadline(rq);
821 }
822}
823
824static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
825{
826 struct rq *rq = rq_of_dl_rq(dl_rq);
827
828 /*
829 * Since we may have removed our earliest (and/or next earliest)
830 * task we must recompute them.
831 */
832 if (!dl_rq->dl_nr_running) {
833 dl_rq->earliest_dl.curr = 0;
834 dl_rq->earliest_dl.next = 0;
6bfd6d72 835 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
836 } else {
837 struct rb_node *leftmost = dl_rq->rb_leftmost;
838 struct sched_dl_entity *entry;
839
840 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
841 dl_rq->earliest_dl.curr = entry->deadline;
842 dl_rq->earliest_dl.next = next_deadline(rq);
6bfd6d72 843 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
1baca4ce
JL
844 }
845}
846
847#else
848
849static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
850static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
851
852#endif /* CONFIG_SMP */
853
854static inline
855void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
856{
857 int prio = dl_task_of(dl_se)->prio;
858 u64 deadline = dl_se->deadline;
859
860 WARN_ON(!dl_prio(prio));
861 dl_rq->dl_nr_running++;
72465447 862 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
863
864 inc_dl_deadline(dl_rq, deadline);
865 inc_dl_migration(dl_se, dl_rq);
866}
867
868static inline
869void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
870{
871 int prio = dl_task_of(dl_se)->prio;
872
873 WARN_ON(!dl_prio(prio));
874 WARN_ON(!dl_rq->dl_nr_running);
875 dl_rq->dl_nr_running--;
72465447 876 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
877
878 dec_dl_deadline(dl_rq, dl_se->deadline);
879 dec_dl_migration(dl_se, dl_rq);
880}
881
aab03e05
DF
882static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
883{
884 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
885 struct rb_node **link = &dl_rq->rb_root.rb_node;
886 struct rb_node *parent = NULL;
887 struct sched_dl_entity *entry;
888 int leftmost = 1;
889
890 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
891
892 while (*link) {
893 parent = *link;
894 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
895 if (dl_time_before(dl_se->deadline, entry->deadline))
896 link = &parent->rb_left;
897 else {
898 link = &parent->rb_right;
899 leftmost = 0;
900 }
901 }
902
903 if (leftmost)
904 dl_rq->rb_leftmost = &dl_se->rb_node;
905
906 rb_link_node(&dl_se->rb_node, parent, link);
907 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
908
1baca4ce 909 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
910}
911
912static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
913{
914 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
915
916 if (RB_EMPTY_NODE(&dl_se->rb_node))
917 return;
918
919 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
920 struct rb_node *next_node;
921
922 next_node = rb_next(&dl_se->rb_node);
923 dl_rq->rb_leftmost = next_node;
924 }
925
926 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
927 RB_CLEAR_NODE(&dl_se->rb_node);
928
1baca4ce 929 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
930}
931
932static void
2d3d891d
DF
933enqueue_dl_entity(struct sched_dl_entity *dl_se,
934 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
935{
936 BUG_ON(on_dl_rq(dl_se));
937
938 /*
939 * If this is a wakeup or a new instance, the scheduling
940 * parameters of the task might need updating. Otherwise,
941 * we want a replenishment of its runtime.
942 */
6a503c3b 943 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
2d3d891d 944 update_dl_entity(dl_se, pi_se);
6a503c3b
LA
945 else if (flags & ENQUEUE_REPLENISH)
946 replenish_dl_entity(dl_se, pi_se);
aab03e05
DF
947
948 __enqueue_dl_entity(dl_se);
949}
950
951static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
952{
953 __dequeue_dl_entity(dl_se);
954}
955
956static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
957{
2d3d891d
DF
958 struct task_struct *pi_task = rt_mutex_get_top_task(p);
959 struct sched_dl_entity *pi_se = &p->dl;
960
961 /*
962 * Use the scheduling parameters of the top pi-waiter
ff277d42 963 * task if we have one and its (absolute) deadline is
2d3d891d
DF
964 * smaller than our one... OTW we keep our runtime and
965 * deadline.
966 */
64be6f1f 967 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
2d3d891d 968 pi_se = &pi_task->dl;
64be6f1f
JL
969 } else if (!dl_prio(p->normal_prio)) {
970 /*
971 * Special case in which we have a !SCHED_DEADLINE task
972 * that is going to be deboosted, but exceedes its
973 * runtime while doing so. No point in replenishing
974 * it, as it's going to return back to its original
975 * scheduling class after this.
976 */
977 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
978 return;
979 }
2d3d891d 980
aab03e05
DF
981 /*
982 * If p is throttled, we do nothing. In fact, if it exhausted
983 * its budget it needs a replenishment and, since it now is on
984 * its rq, the bandwidth timer callback (which clearly has not
985 * run yet) will take care of this.
986 */
1019a359 987 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
aab03e05
DF
988 return;
989
2d3d891d 990 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce
JL
991
992 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
993 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
994}
995
996static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
997{
998 dequeue_dl_entity(&p->dl);
1baca4ce 999 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
1000}
1001
1002static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1003{
1004 update_curr_dl(rq);
1005 __dequeue_task_dl(rq, p, flags);
aab03e05
DF
1006}
1007
1008/*
1009 * Yield task semantic for -deadline tasks is:
1010 *
1011 * get off from the CPU until our next instance, with
1012 * a new runtime. This is of little use now, since we
1013 * don't have a bandwidth reclaiming mechanism. Anyway,
1014 * bandwidth reclaiming is planned for the future, and
1015 * yield_task_dl will indicate that some spare budget
1016 * is available for other task instances to use it.
1017 */
1018static void yield_task_dl(struct rq *rq)
1019{
1020 struct task_struct *p = rq->curr;
1021
1022 /*
1023 * We make the task go to sleep until its current deadline by
1024 * forcing its runtime to zero. This way, update_curr_dl() stops
1025 * it and the bandwidth timer will wake it up and will give it
5bfd126e 1026 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05
DF
1027 */
1028 if (p->dl.runtime > 0) {
5bfd126e 1029 rq->curr->dl.dl_yielded = 1;
aab03e05
DF
1030 p->dl.runtime = 0;
1031 }
6f1607f1 1032 update_rq_clock(rq);
aab03e05 1033 update_curr_dl(rq);
44fb085b
WL
1034 /*
1035 * Tell update_rq_clock() that we've just updated,
1036 * so we don't do microscopic update in schedule()
1037 * and double the fastpath cost.
1038 */
1039 rq_clock_skip_update(rq, true);
aab03e05
DF
1040}
1041
1baca4ce
JL
1042#ifdef CONFIG_SMP
1043
1044static int find_later_rq(struct task_struct *task);
1baca4ce
JL
1045
1046static int
1047select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1048{
1049 struct task_struct *curr;
1050 struct rq *rq;
1051
1d7e974c 1052 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
1053 goto out;
1054
1055 rq = cpu_rq(cpu);
1056
1057 rcu_read_lock();
316c1608 1058 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
1059
1060 /*
1061 * If we are dealing with a -deadline task, we must
1062 * decide where to wake it up.
1063 * If it has a later deadline and the current task
1064 * on this rq can't move (provided the waking task
1065 * can!) we prefer to send it somewhere else. On the
1066 * other hand, if it has a shorter deadline, we
1067 * try to make it stay here, it might be important.
1068 */
1069 if (unlikely(dl_task(curr)) &&
1070 (curr->nr_cpus_allowed < 2 ||
1071 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1072 (p->nr_cpus_allowed > 1)) {
1073 int target = find_later_rq(p);
1074
9d514262 1075 if (target != -1 &&
5aa50507
LA
1076 (dl_time_before(p->dl.deadline,
1077 cpu_rq(target)->dl.earliest_dl.curr) ||
1078 (cpu_rq(target)->dl.dl_nr_running == 0)))
1baca4ce
JL
1079 cpu = target;
1080 }
1081 rcu_read_unlock();
1082
1083out:
1084 return cpu;
1085}
1086
1087static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1088{
1089 /*
1090 * Current can't be migrated, useless to reschedule,
1091 * let's hope p can move out.
1092 */
1093 if (rq->curr->nr_cpus_allowed == 1 ||
6bfd6d72 1094 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
1095 return;
1096
1097 /*
1098 * p is migratable, so let's not schedule it and
1099 * see if it is pushed or pulled somewhere else.
1100 */
1101 if (p->nr_cpus_allowed != 1 &&
6bfd6d72 1102 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
1103 return;
1104
8875125e 1105 resched_curr(rq);
1baca4ce
JL
1106}
1107
1108#endif /* CONFIG_SMP */
1109
aab03e05
DF
1110/*
1111 * Only called when both the current and waking task are -deadline
1112 * tasks.
1113 */
1114static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1115 int flags)
1116{
1baca4ce 1117 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1118 resched_curr(rq);
1baca4ce
JL
1119 return;
1120 }
1121
1122#ifdef CONFIG_SMP
1123 /*
1124 * In the unlikely case current and p have the same deadline
1125 * let us try to decide what's the best thing to do...
1126 */
332ac17e
DF
1127 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1128 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1129 check_preempt_equal_dl(rq, p);
1130#endif /* CONFIG_SMP */
aab03e05
DF
1131}
1132
1133#ifdef CONFIG_SCHED_HRTICK
1134static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1135{
177ef2a6 1136 hrtick_start(rq, p->dl.runtime);
aab03e05 1137}
36ce9881
WL
1138#else /* !CONFIG_SCHED_HRTICK */
1139static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1140{
1141}
aab03e05
DF
1142#endif
1143
1144static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1145 struct dl_rq *dl_rq)
1146{
1147 struct rb_node *left = dl_rq->rb_leftmost;
1148
1149 if (!left)
1150 return NULL;
1151
1152 return rb_entry(left, struct sched_dl_entity, rb_node);
1153}
1154
606dba2e 1155struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
aab03e05
DF
1156{
1157 struct sched_dl_entity *dl_se;
1158 struct task_struct *p;
1159 struct dl_rq *dl_rq;
1160
1161 dl_rq = &rq->dl;
1162
a1d9a323 1163 if (need_pull_dl_task(rq, prev)) {
cbce1a68
PZ
1164 /*
1165 * This is OK, because current is on_cpu, which avoids it being
1166 * picked for load-balance and preemption/IRQs are still
1167 * disabled avoiding further scheduler activity on it and we're
1168 * being very careful to re-start the picking loop.
1169 */
1170 lockdep_unpin_lock(&rq->lock);
38033c37 1171 pull_dl_task(rq);
cbce1a68 1172 lockdep_pin_lock(&rq->lock);
a1d9a323
KT
1173 /*
1174 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1175 * means a stop task can slip in, in which case we need to
1176 * re-start task selection.
1177 */
da0c1e65 1178 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1179 return RETRY_TASK;
1180 }
1181
734ff2a7
KT
1182 /*
1183 * When prev is DL, we may throttle it in put_prev_task().
1184 * So, we update time before we check for dl_nr_running.
1185 */
1186 if (prev->sched_class == &dl_sched_class)
1187 update_curr_dl(rq);
38033c37 1188
aab03e05
DF
1189 if (unlikely(!dl_rq->dl_nr_running))
1190 return NULL;
1191
3f1d2a31 1192 put_prev_task(rq, prev);
606dba2e 1193
aab03e05
DF
1194 dl_se = pick_next_dl_entity(rq, dl_rq);
1195 BUG_ON(!dl_se);
1196
1197 p = dl_task_of(dl_se);
1198 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1199
1200 /* Running task will never be pushed. */
71362650 1201 dequeue_pushable_dl_task(rq, p);
1baca4ce 1202
aab03e05
DF
1203 if (hrtick_enabled(rq))
1204 start_hrtick_dl(rq, p);
1baca4ce 1205
e3fca9e7 1206 queue_push_tasks(rq);
1baca4ce 1207
aab03e05
DF
1208 return p;
1209}
1210
1211static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1212{
1213 update_curr_dl(rq);
1baca4ce
JL
1214
1215 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1216 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1217}
1218
1219static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1220{
1221 update_curr_dl(rq);
1222
a7bebf48
WL
1223 /*
1224 * Even when we have runtime, update_curr_dl() might have resulted in us
1225 * not being the leftmost task anymore. In that case NEED_RESCHED will
1226 * be set and schedule() will start a new hrtick for the next task.
1227 */
1228 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1229 is_leftmost(p, &rq->dl))
aab03e05 1230 start_hrtick_dl(rq, p);
aab03e05
DF
1231}
1232
1233static void task_fork_dl(struct task_struct *p)
1234{
1235 /*
1236 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1237 * sched_fork()
1238 */
1239}
1240
1241static void task_dead_dl(struct task_struct *p)
1242{
332ac17e
DF
1243 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1244
1245 /*
1246 * Since we are TASK_DEAD we won't slip out of the domain!
1247 */
1248 raw_spin_lock_irq(&dl_b->lock);
40767b0d 1249 /* XXX we should retain the bw until 0-lag */
332ac17e
DF
1250 dl_b->total_bw -= p->dl.dl_bw;
1251 raw_spin_unlock_irq(&dl_b->lock);
aab03e05
DF
1252}
1253
1254static void set_curr_task_dl(struct rq *rq)
1255{
1256 struct task_struct *p = rq->curr;
1257
1258 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1259
1260 /* You can't push away the running task */
1261 dequeue_pushable_dl_task(rq, p);
1262}
1263
1264#ifdef CONFIG_SMP
1265
1266/* Only try algorithms three times */
1267#define DL_MAX_TRIES 3
1268
1269static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1270{
1271 if (!task_running(rq, p) &&
1ba93d42 1272 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1baca4ce 1273 return 1;
1baca4ce
JL
1274 return 0;
1275}
1276
1277/* Returns the second earliest -deadline task, NULL otherwise */
1278static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1279{
1280 struct rb_node *next_node = rq->dl.rb_leftmost;
1281 struct sched_dl_entity *dl_se;
1282 struct task_struct *p = NULL;
1283
1284next_node:
1285 next_node = rb_next(next_node);
1286 if (next_node) {
1287 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1288 p = dl_task_of(dl_se);
1289
1290 if (pick_dl_task(rq, p, cpu))
1291 return p;
1292
1293 goto next_node;
1294 }
1295
1296 return NULL;
1297}
1298
8b5e770e
WL
1299/*
1300 * Return the earliest pushable rq's task, which is suitable to be executed
1301 * on the CPU, NULL otherwise:
1302 */
1303static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1304{
1305 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1306 struct task_struct *p = NULL;
1307
1308 if (!has_pushable_dl_tasks(rq))
1309 return NULL;
1310
1311next_node:
1312 if (next_node) {
1313 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1314
1315 if (pick_dl_task(rq, p, cpu))
1316 return p;
1317
1318 next_node = rb_next(next_node);
1319 goto next_node;
1320 }
1321
1322 return NULL;
1323}
1324
1baca4ce
JL
1325static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1326
1327static int find_later_rq(struct task_struct *task)
1328{
1329 struct sched_domain *sd;
4ba29684 1330 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce
JL
1331 int this_cpu = smp_processor_id();
1332 int best_cpu, cpu = task_cpu(task);
1333
1334 /* Make sure the mask is initialized first */
1335 if (unlikely(!later_mask))
1336 return -1;
1337
1338 if (task->nr_cpus_allowed == 1)
1339 return -1;
1340
91ec6778
JL
1341 /*
1342 * We have to consider system topology and task affinity
1343 * first, then we can look for a suitable cpu.
1344 */
6bfd6d72
JL
1345 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1346 task, later_mask);
1baca4ce
JL
1347 if (best_cpu == -1)
1348 return -1;
1349
1350 /*
1351 * If we are here, some target has been found,
1352 * the most suitable of which is cached in best_cpu.
1353 * This is, among the runqueues where the current tasks
1354 * have later deadlines than the task's one, the rq
1355 * with the latest possible one.
1356 *
1357 * Now we check how well this matches with task's
1358 * affinity and system topology.
1359 *
1360 * The last cpu where the task run is our first
1361 * guess, since it is most likely cache-hot there.
1362 */
1363 if (cpumask_test_cpu(cpu, later_mask))
1364 return cpu;
1365 /*
1366 * Check if this_cpu is to be skipped (i.e., it is
1367 * not in the mask) or not.
1368 */
1369 if (!cpumask_test_cpu(this_cpu, later_mask))
1370 this_cpu = -1;
1371
1372 rcu_read_lock();
1373 for_each_domain(cpu, sd) {
1374 if (sd->flags & SD_WAKE_AFFINE) {
1375
1376 /*
1377 * If possible, preempting this_cpu is
1378 * cheaper than migrating.
1379 */
1380 if (this_cpu != -1 &&
1381 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1382 rcu_read_unlock();
1383 return this_cpu;
1384 }
1385
1386 /*
1387 * Last chance: if best_cpu is valid and is
1388 * in the mask, that becomes our choice.
1389 */
1390 if (best_cpu < nr_cpu_ids &&
1391 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1392 rcu_read_unlock();
1393 return best_cpu;
1394 }
1395 }
1396 }
1397 rcu_read_unlock();
1398
1399 /*
1400 * At this point, all our guesses failed, we just return
1401 * 'something', and let the caller sort the things out.
1402 */
1403 if (this_cpu != -1)
1404 return this_cpu;
1405
1406 cpu = cpumask_any(later_mask);
1407 if (cpu < nr_cpu_ids)
1408 return cpu;
1409
1410 return -1;
1411}
1412
1413/* Locks the rq it finds */
1414static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1415{
1416 struct rq *later_rq = NULL;
1417 int tries;
1418 int cpu;
1419
1420 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1421 cpu = find_later_rq(task);
1422
1423 if ((cpu == -1) || (cpu == rq->cpu))
1424 break;
1425
1426 later_rq = cpu_rq(cpu);
1427
5aa50507
LA
1428 if (later_rq->dl.dl_nr_running &&
1429 !dl_time_before(task->dl.deadline,
9d514262
WL
1430 later_rq->dl.earliest_dl.curr)) {
1431 /*
1432 * Target rq has tasks of equal or earlier deadline,
1433 * retrying does not release any lock and is unlikely
1434 * to yield a different result.
1435 */
1436 later_rq = NULL;
1437 break;
1438 }
1439
1baca4ce
JL
1440 /* Retry if something changed. */
1441 if (double_lock_balance(rq, later_rq)) {
1442 if (unlikely(task_rq(task) != rq ||
1443 !cpumask_test_cpu(later_rq->cpu,
1444 &task->cpus_allowed) ||
da0c1e65
KT
1445 task_running(rq, task) ||
1446 !task_on_rq_queued(task))) {
1baca4ce
JL
1447 double_unlock_balance(rq, later_rq);
1448 later_rq = NULL;
1449 break;
1450 }
1451 }
1452
1453 /*
1454 * If the rq we found has no -deadline task, or
1455 * its earliest one has a later deadline than our
1456 * task, the rq is a good one.
1457 */
1458 if (!later_rq->dl.dl_nr_running ||
1459 dl_time_before(task->dl.deadline,
1460 later_rq->dl.earliest_dl.curr))
1461 break;
1462
1463 /* Otherwise we try again. */
1464 double_unlock_balance(rq, later_rq);
1465 later_rq = NULL;
1466 }
1467
1468 return later_rq;
1469}
1470
1471static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1472{
1473 struct task_struct *p;
1474
1475 if (!has_pushable_dl_tasks(rq))
1476 return NULL;
1477
1478 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1479 struct task_struct, pushable_dl_tasks);
1480
1481 BUG_ON(rq->cpu != task_cpu(p));
1482 BUG_ON(task_current(rq, p));
1483 BUG_ON(p->nr_cpus_allowed <= 1);
1484
da0c1e65 1485 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
1486 BUG_ON(!dl_task(p));
1487
1488 return p;
1489}
1490
1491/*
1492 * See if the non running -deadline tasks on this rq
1493 * can be sent to some other CPU where they can preempt
1494 * and start executing.
1495 */
1496static int push_dl_task(struct rq *rq)
1497{
1498 struct task_struct *next_task;
1499 struct rq *later_rq;
c51b8ab5 1500 int ret = 0;
1baca4ce
JL
1501
1502 if (!rq->dl.overloaded)
1503 return 0;
1504
1505 next_task = pick_next_pushable_dl_task(rq);
1506 if (!next_task)
1507 return 0;
1508
1509retry:
1510 if (unlikely(next_task == rq->curr)) {
1511 WARN_ON(1);
1512 return 0;
1513 }
1514
1515 /*
1516 * If next_task preempts rq->curr, and rq->curr
1517 * can move away, it makes sense to just reschedule
1518 * without going further in pushing next_task.
1519 */
1520 if (dl_task(rq->curr) &&
1521 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1522 rq->curr->nr_cpus_allowed > 1) {
8875125e 1523 resched_curr(rq);
1baca4ce
JL
1524 return 0;
1525 }
1526
1527 /* We might release rq lock */
1528 get_task_struct(next_task);
1529
1530 /* Will lock the rq it'll find */
1531 later_rq = find_lock_later_rq(next_task, rq);
1532 if (!later_rq) {
1533 struct task_struct *task;
1534
1535 /*
1536 * We must check all this again, since
1537 * find_lock_later_rq releases rq->lock and it is
1538 * then possible that next_task has migrated.
1539 */
1540 task = pick_next_pushable_dl_task(rq);
1541 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1542 /*
1543 * The task is still there. We don't try
1544 * again, some other cpu will pull it when ready.
1545 */
1baca4ce
JL
1546 goto out;
1547 }
1548
1549 if (!task)
1550 /* No more tasks */
1551 goto out;
1552
1553 put_task_struct(next_task);
1554 next_task = task;
1555 goto retry;
1556 }
1557
1558 deactivate_task(rq, next_task, 0);
1559 set_task_cpu(next_task, later_rq->cpu);
1560 activate_task(later_rq, next_task, 0);
c51b8ab5 1561 ret = 1;
1baca4ce 1562
8875125e 1563 resched_curr(later_rq);
1baca4ce
JL
1564
1565 double_unlock_balance(rq, later_rq);
1566
1567out:
1568 put_task_struct(next_task);
1569
c51b8ab5 1570 return ret;
1baca4ce
JL
1571}
1572
1573static void push_dl_tasks(struct rq *rq)
1574{
4ffa08ed 1575 /* push_dl_task() will return true if it moved a -deadline task */
1baca4ce
JL
1576 while (push_dl_task(rq))
1577 ;
aab03e05
DF
1578}
1579
0ea60c20 1580static void pull_dl_task(struct rq *this_rq)
1baca4ce 1581{
0ea60c20 1582 int this_cpu = this_rq->cpu, cpu;
1baca4ce 1583 struct task_struct *p;
0ea60c20 1584 bool resched = false;
1baca4ce
JL
1585 struct rq *src_rq;
1586 u64 dmin = LONG_MAX;
1587
1588 if (likely(!dl_overloaded(this_rq)))
0ea60c20 1589 return;
1baca4ce
JL
1590
1591 /*
1592 * Match the barrier from dl_set_overloaded; this guarantees that if we
1593 * see overloaded we must also see the dlo_mask bit.
1594 */
1595 smp_rmb();
1596
1597 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1598 if (this_cpu == cpu)
1599 continue;
1600
1601 src_rq = cpu_rq(cpu);
1602
1603 /*
1604 * It looks racy, abd it is! However, as in sched_rt.c,
1605 * we are fine with this.
1606 */
1607 if (this_rq->dl.dl_nr_running &&
1608 dl_time_before(this_rq->dl.earliest_dl.curr,
1609 src_rq->dl.earliest_dl.next))
1610 continue;
1611
1612 /* Might drop this_rq->lock */
1613 double_lock_balance(this_rq, src_rq);
1614
1615 /*
1616 * If there are no more pullable tasks on the
1617 * rq, we're done with it.
1618 */
1619 if (src_rq->dl.dl_nr_running <= 1)
1620 goto skip;
1621
8b5e770e 1622 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1baca4ce
JL
1623
1624 /*
1625 * We found a task to be pulled if:
1626 * - it preempts our current (if there's one),
1627 * - it will preempt the last one we pulled (if any).
1628 */
1629 if (p && dl_time_before(p->dl.deadline, dmin) &&
1630 (!this_rq->dl.dl_nr_running ||
1631 dl_time_before(p->dl.deadline,
1632 this_rq->dl.earliest_dl.curr))) {
1633 WARN_ON(p == src_rq->curr);
da0c1e65 1634 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
1635
1636 /*
1637 * Then we pull iff p has actually an earlier
1638 * deadline than the current task of its runqueue.
1639 */
1640 if (dl_time_before(p->dl.deadline,
1641 src_rq->curr->dl.deadline))
1642 goto skip;
1643
0ea60c20 1644 resched = true;
1baca4ce
JL
1645
1646 deactivate_task(src_rq, p, 0);
1647 set_task_cpu(p, this_cpu);
1648 activate_task(this_rq, p, 0);
1649 dmin = p->dl.deadline;
1650
1651 /* Is there any other task even earlier? */
1652 }
1653skip:
1654 double_unlock_balance(this_rq, src_rq);
1655 }
1656
0ea60c20
PZ
1657 if (resched)
1658 resched_curr(this_rq);
1baca4ce
JL
1659}
1660
1661/*
1662 * Since the task is not running and a reschedule is not going to happen
1663 * anytime soon on its runqueue, we try pushing it away now.
1664 */
1665static void task_woken_dl(struct rq *rq, struct task_struct *p)
1666{
1667 if (!task_running(rq, p) &&
1668 !test_tsk_need_resched(rq->curr) &&
1baca4ce
JL
1669 p->nr_cpus_allowed > 1 &&
1670 dl_task(rq->curr) &&
1671 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 1672 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
1673 push_dl_tasks(rq);
1674 }
1675}
1676
1677static void set_cpus_allowed_dl(struct task_struct *p,
1678 const struct cpumask *new_mask)
1679{
7f51412a 1680 struct root_domain *src_rd;
6c37067e 1681 struct rq *rq;
1baca4ce
JL
1682
1683 BUG_ON(!dl_task(p));
1684
7f51412a
JL
1685 rq = task_rq(p);
1686 src_rd = rq->rd;
1687 /*
1688 * Migrating a SCHED_DEADLINE task between exclusive
1689 * cpusets (different root_domains) entails a bandwidth
1690 * update. We already made space for us in the destination
1691 * domain (see cpuset_can_attach()).
1692 */
1693 if (!cpumask_intersects(src_rd->span, new_mask)) {
1694 struct dl_bw *src_dl_b;
1695
1696 src_dl_b = dl_bw_of(cpu_of(rq));
1697 /*
1698 * We now free resources of the root_domain we are migrating
1699 * off. In the worst case, sched_setattr() may temporary fail
1700 * until we complete the update.
1701 */
1702 raw_spin_lock(&src_dl_b->lock);
1703 __dl_clear(src_dl_b, p->dl.dl_bw);
1704 raw_spin_unlock(&src_dl_b->lock);
1705 }
1706
6c37067e 1707 set_cpus_allowed_common(p, new_mask);
1baca4ce
JL
1708}
1709
1710/* Assumes rq->lock is held */
1711static void rq_online_dl(struct rq *rq)
1712{
1713 if (rq->dl.overloaded)
1714 dl_set_overload(rq);
6bfd6d72 1715
16b26943 1716 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72
JL
1717 if (rq->dl.dl_nr_running > 0)
1718 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1baca4ce
JL
1719}
1720
1721/* Assumes rq->lock is held */
1722static void rq_offline_dl(struct rq *rq)
1723{
1724 if (rq->dl.overloaded)
1725 dl_clear_overload(rq);
6bfd6d72
JL
1726
1727 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
16b26943 1728 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
1729}
1730
a6c0e746 1731void __init init_sched_dl_class(void)
1baca4ce
JL
1732{
1733 unsigned int i;
1734
1735 for_each_possible_cpu(i)
1736 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1737 GFP_KERNEL, cpu_to_node(i));
1738}
1739
1740#endif /* CONFIG_SMP */
1741
aab03e05
DF
1742static void switched_from_dl(struct rq *rq, struct task_struct *p)
1743{
a649f237
PZ
1744 /*
1745 * Start the deadline timer; if we switch back to dl before this we'll
1746 * continue consuming our current CBS slice. If we stay outside of
1747 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1748 * task.
1749 */
1750 if (!start_dl_timer(p))
1751 __dl_clear_params(p);
a5e7be3b 1752
1baca4ce
JL
1753 /*
1754 * Since this might be the only -deadline task on the rq,
1755 * this is the right place to try to pull some other one
1756 * from an overloaded cpu, if any.
1757 */
cd660911
WL
1758 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1759 return;
1760
9916e214 1761 queue_pull_task(rq);
aab03e05
DF
1762}
1763
1baca4ce
JL
1764/*
1765 * When switching to -deadline, we may overload the rq, then
1766 * we try to push someone off, if possible.
1767 */
aab03e05
DF
1768static void switched_to_dl(struct rq *rq, struct task_struct *p)
1769{
da0c1e65 1770 if (task_on_rq_queued(p) && rq->curr != p) {
1baca4ce 1771#ifdef CONFIG_SMP
9916e214
PZ
1772 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1773 queue_push_tasks(rq);
1774#else
1775 if (dl_task(rq->curr))
1776 check_preempt_curr_dl(rq, p, 0);
1777 else
1778 resched_curr(rq);
1779#endif
aab03e05
DF
1780 }
1781}
1782
1baca4ce
JL
1783/*
1784 * If the scheduling parameters of a -deadline task changed,
1785 * a push or pull operation might be needed.
1786 */
aab03e05
DF
1787static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1788 int oldprio)
1789{
da0c1e65 1790 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 1791#ifdef CONFIG_SMP
1baca4ce
JL
1792 /*
1793 * This might be too much, but unfortunately
1794 * we don't have the old deadline value, and
1795 * we can't argue if the task is increasing
1796 * or lowering its prio, so...
1797 */
1798 if (!rq->dl.overloaded)
9916e214 1799 queue_pull_task(rq);
1baca4ce
JL
1800
1801 /*
1802 * If we now have a earlier deadline task than p,
1803 * then reschedule, provided p is still on this
1804 * runqueue.
1805 */
9916e214 1806 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
8875125e 1807 resched_curr(rq);
1baca4ce
JL
1808#else
1809 /*
1810 * Again, we don't know if p has a earlier
1811 * or later deadline, so let's blindly set a
1812 * (maybe not needed) rescheduling point.
1813 */
8875125e 1814 resched_curr(rq);
1baca4ce
JL
1815#endif /* CONFIG_SMP */
1816 } else
1817 switched_to_dl(rq, p);
aab03e05 1818}
aab03e05
DF
1819
1820const struct sched_class dl_sched_class = {
1821 .next = &rt_sched_class,
1822 .enqueue_task = enqueue_task_dl,
1823 .dequeue_task = dequeue_task_dl,
1824 .yield_task = yield_task_dl,
1825
1826 .check_preempt_curr = check_preempt_curr_dl,
1827
1828 .pick_next_task = pick_next_task_dl,
1829 .put_prev_task = put_prev_task_dl,
1830
1831#ifdef CONFIG_SMP
1832 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1833 .set_cpus_allowed = set_cpus_allowed_dl,
1834 .rq_online = rq_online_dl,
1835 .rq_offline = rq_offline_dl,
1baca4ce 1836 .task_woken = task_woken_dl,
aab03e05
DF
1837#endif
1838
1839 .set_curr_task = set_curr_task_dl,
1840 .task_tick = task_tick_dl,
1841 .task_fork = task_fork_dl,
1842 .task_dead = task_dead_dl,
1843
1844 .prio_changed = prio_changed_dl,
1845 .switched_from = switched_from_dl,
1846 .switched_to = switched_to_dl,
6e998916
SG
1847
1848 .update_curr = update_curr_dl,
aab03e05 1849};
acb32132
WL
1850
1851#ifdef CONFIG_SCHED_DEBUG
1852extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1853
1854void print_dl_stats(struct seq_file *m, int cpu)
1855{
1856 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1857}
1858#endif /* CONFIG_SCHED_DEBUG */