sched/core: Remove unused argument from init_[rt|dl]_rq()
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
332ac17e
DF
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
332ac17e
DF
60void init_dl_bw(struct dl_bw *dl_b)
61{
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 64 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
65 dl_b->bw = -1;
66 else
1724813d 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70}
71
07c54f7a 72void init_dl_rq(struct dl_rq *dl_rq)
aab03e05
DF
73{
74 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
75
76#ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
83#else
84 init_dl_bw(&dl_rq->dl_bw);
1baca4ce
JL
85#endif
86}
87
88#ifdef CONFIG_SMP
89
90static inline int dl_overloaded(struct rq *rq)
91{
92 return atomic_read(&rq->rd->dlo_count);
93}
94
95static inline void dl_set_overload(struct rq *rq)
96{
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109}
110
111static inline void dl_clear_overload(struct rq *rq)
112{
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118}
119
120static void update_dl_migration(struct dl_rq *dl_rq)
121{
995b9ea4 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131}
132
133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134{
135 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 136
1baca4ce
JL
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141}
142
143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 146
1baca4ce
JL
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151}
152
153/*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158{
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
179 if (leftmost)
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181
182 rb_link_node(&p->pushable_dl_tasks, parent, link);
183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
184}
185
1baca4ce
JL
186static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
187{
188 struct dl_rq *dl_rq = &rq->dl;
189
190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 return;
192
193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 struct rb_node *next_node;
195
196 next_node = rb_next(&p->pushable_dl_tasks);
197 dl_rq->pushable_dl_tasks_leftmost = next_node;
198 }
199
200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 RB_CLEAR_NODE(&p->pushable_dl_tasks);
202}
203
204static inline int has_pushable_dl_tasks(struct rq *rq)
205{
206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
207}
208
209static int push_dl_task(struct rq *rq);
210
dc877341
PZ
211static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
212{
213 return dl_task(prev);
214}
215
216static inline void set_post_schedule(struct rq *rq)
217{
218 rq->post_schedule = has_pushable_dl_tasks(rq);
219}
220
1baca4ce
JL
221#else
222
223static inline
224void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
225{
226}
227
228static inline
229void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
230{
231}
232
233static inline
234void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
235{
236}
237
238static inline
239void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
240{
241}
242
dc877341
PZ
243static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
244{
245 return false;
246}
247
248static inline int pull_dl_task(struct rq *rq)
249{
250 return 0;
251}
252
253static inline void set_post_schedule(struct rq *rq)
254{
255}
1baca4ce
JL
256#endif /* CONFIG_SMP */
257
aab03e05
DF
258static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
259static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
260static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
261 int flags);
262
263/*
264 * We are being explicitly informed that a new instance is starting,
265 * and this means that:
266 * - the absolute deadline of the entity has to be placed at
267 * current time + relative deadline;
268 * - the runtime of the entity has to be set to the maximum value.
269 *
270 * The capability of specifying such event is useful whenever a -deadline
271 * entity wants to (try to!) synchronize its behaviour with the scheduler's
272 * one, and to (try to!) reconcile itself with its own scheduling
273 * parameters.
274 */
2d3d891d
DF
275static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
276 struct sched_dl_entity *pi_se)
aab03e05
DF
277{
278 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
279 struct rq *rq = rq_of_dl_rq(dl_rq);
280
281 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
282
283 /*
284 * We use the regular wall clock time to set deadlines in the
285 * future; in fact, we must consider execution overheads (time
286 * spent on hardirq context, etc.).
287 */
2d3d891d
DF
288 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
289 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
290 dl_se->dl_new = 0;
291}
292
293/*
294 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
295 * possibility of a entity lasting more than what it declared, and thus
296 * exhausting its runtime.
297 *
298 * Here we are interested in making runtime overrun possible, but we do
299 * not want a entity which is misbehaving to affect the scheduling of all
300 * other entities.
301 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
302 * is used, in order to confine each entity within its own bandwidth.
303 *
304 * This function deals exactly with that, and ensures that when the runtime
305 * of a entity is replenished, its deadline is also postponed. That ensures
306 * the overrunning entity can't interfere with other entity in the system and
307 * can't make them miss their deadlines. Reasons why this kind of overruns
308 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 309 * runtime, or it just underestimated it during sched_setattr().
aab03e05 310 */
2d3d891d
DF
311static void replenish_dl_entity(struct sched_dl_entity *dl_se,
312 struct sched_dl_entity *pi_se)
aab03e05
DF
313{
314 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
315 struct rq *rq = rq_of_dl_rq(dl_rq);
316
2d3d891d
DF
317 BUG_ON(pi_se->dl_runtime <= 0);
318
319 /*
320 * This could be the case for a !-dl task that is boosted.
321 * Just go with full inherited parameters.
322 */
323 if (dl_se->dl_deadline == 0) {
324 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
325 dl_se->runtime = pi_se->dl_runtime;
326 }
327
aab03e05
DF
328 /*
329 * We keep moving the deadline away until we get some
330 * available runtime for the entity. This ensures correct
331 * handling of situations where the runtime overrun is
332 * arbitrary large.
333 */
334 while (dl_se->runtime <= 0) {
2d3d891d
DF
335 dl_se->deadline += pi_se->dl_period;
336 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
337 }
338
339 /*
340 * At this point, the deadline really should be "in
341 * the future" with respect to rq->clock. If it's
342 * not, we are, for some reason, lagging too much!
343 * Anyway, after having warn userspace abut that,
344 * we still try to keep the things running by
345 * resetting the deadline and the budget of the
346 * entity.
347 */
348 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c224815d 349 printk_deferred_once("sched: DL replenish lagged to much\n");
2d3d891d
DF
350 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
351 dl_se->runtime = pi_se->dl_runtime;
aab03e05 352 }
1019a359
PZ
353
354 if (dl_se->dl_yielded)
355 dl_se->dl_yielded = 0;
356 if (dl_se->dl_throttled)
357 dl_se->dl_throttled = 0;
aab03e05
DF
358}
359
360/*
361 * Here we check if --at time t-- an entity (which is probably being
362 * [re]activated or, in general, enqueued) can use its remaining runtime
363 * and its current deadline _without_ exceeding the bandwidth it is
364 * assigned (function returns true if it can't). We are in fact applying
365 * one of the CBS rules: when a task wakes up, if the residual runtime
366 * over residual deadline fits within the allocated bandwidth, then we
367 * can keep the current (absolute) deadline and residual budget without
368 * disrupting the schedulability of the system. Otherwise, we should
369 * refill the runtime and set the deadline a period in the future,
370 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
371 * result in breaking guarantees promised to other tasks (refer to
372 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
373 *
374 * This function returns true if:
375 *
755378a4 376 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
377 *
378 * IOW we can't recycle current parameters.
755378a4
HG
379 *
380 * Notice that the bandwidth check is done against the period. For
381 * task with deadline equal to period this is the same of using
382 * dl_deadline instead of dl_period in the equation above.
aab03e05 383 */
2d3d891d
DF
384static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
385 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
386{
387 u64 left, right;
388
389 /*
390 * left and right are the two sides of the equation above,
391 * after a bit of shuffling to use multiplications instead
392 * of divisions.
393 *
394 * Note that none of the time values involved in the two
395 * multiplications are absolute: dl_deadline and dl_runtime
396 * are the relative deadline and the maximum runtime of each
397 * instance, runtime is the runtime left for the last instance
398 * and (deadline - t), since t is rq->clock, is the time left
399 * to the (absolute) deadline. Even if overflowing the u64 type
400 * is very unlikely to occur in both cases, here we scale down
401 * as we want to avoid that risk at all. Scaling down by 10
402 * means that we reduce granularity to 1us. We are fine with it,
403 * since this is only a true/false check and, anyway, thinking
404 * of anything below microseconds resolution is actually fiction
405 * (but still we want to give the user that illusion >;).
406 */
332ac17e
DF
407 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
408 right = ((dl_se->deadline - t) >> DL_SCALE) *
409 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
410
411 return dl_time_before(right, left);
412}
413
414/*
415 * When a -deadline entity is queued back on the runqueue, its runtime and
416 * deadline might need updating.
417 *
418 * The policy here is that we update the deadline of the entity only if:
419 * - the current deadline is in the past,
420 * - using the remaining runtime with the current deadline would make
421 * the entity exceed its bandwidth.
422 */
2d3d891d
DF
423static void update_dl_entity(struct sched_dl_entity *dl_se,
424 struct sched_dl_entity *pi_se)
aab03e05
DF
425{
426 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
427 struct rq *rq = rq_of_dl_rq(dl_rq);
428
429 /*
430 * The arrival of a new instance needs special treatment, i.e.,
431 * the actual scheduling parameters have to be "renewed".
432 */
433 if (dl_se->dl_new) {
2d3d891d 434 setup_new_dl_entity(dl_se, pi_se);
aab03e05
DF
435 return;
436 }
437
438 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
439 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
440 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
441 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
442 }
443}
444
445/*
446 * If the entity depleted all its runtime, and if we want it to sleep
447 * while waiting for some new execution time to become available, we
448 * set the bandwidth enforcement timer to the replenishment instant
449 * and try to activate it.
450 *
451 * Notice that it is important for the caller to know if the timer
452 * actually started or not (i.e., the replenishment instant is in
453 * the future or in the past).
454 */
2d3d891d 455static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
aab03e05
DF
456{
457 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
458 struct rq *rq = rq_of_dl_rq(dl_rq);
459 ktime_t now, act;
460 ktime_t soft, hard;
461 unsigned long range;
462 s64 delta;
463
2d3d891d
DF
464 if (boosted)
465 return 0;
aab03e05
DF
466 /*
467 * We want the timer to fire at the deadline, but considering
468 * that it is actually coming from rq->clock and not from
469 * hrtimer's time base reading.
470 */
471 act = ns_to_ktime(dl_se->deadline);
472 now = hrtimer_cb_get_time(&dl_se->dl_timer);
473 delta = ktime_to_ns(now) - rq_clock(rq);
474 act = ktime_add_ns(act, delta);
475
476 /*
477 * If the expiry time already passed, e.g., because the value
478 * chosen as the deadline is too small, don't even try to
479 * start the timer in the past!
480 */
481 if (ktime_us_delta(act, now) < 0)
482 return 0;
483
484 hrtimer_set_expires(&dl_se->dl_timer, act);
485
486 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
487 hard = hrtimer_get_expires(&dl_se->dl_timer);
488 range = ktime_to_ns(ktime_sub(hard, soft));
489 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
490 range, HRTIMER_MODE_ABS, 0);
491
492 return hrtimer_active(&dl_se->dl_timer);
493}
494
495/*
496 * This is the bandwidth enforcement timer callback. If here, we know
497 * a task is not on its dl_rq, since the fact that the timer was running
498 * means the task is throttled and needs a runtime replenishment.
499 *
500 * However, what we actually do depends on the fact the task is active,
501 * (it is on its rq) or has been removed from there by a call to
502 * dequeue_task_dl(). In the former case we must issue the runtime
503 * replenishment and add the task back to the dl_rq; in the latter, we just
504 * do nothing but clearing dl_throttled, so that runtime and deadline
505 * updating (and the queueing back to dl_rq) will be done by the
506 * next call to enqueue_task_dl().
507 */
508static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
509{
510 struct sched_dl_entity *dl_se = container_of(timer,
511 struct sched_dl_entity,
512 dl_timer);
513 struct task_struct *p = dl_task_of(dl_se);
3960c8c0 514 unsigned long flags;
0f397f2c 515 struct rq *rq;
3960c8c0
PZ
516
517 rq = task_rq_lock(current, &flags);
0f397f2c 518
aab03e05 519 /*
aee38ea9
JL
520 * We need to take care of several possible races here:
521 *
522 * - the task might have changed its scheduling policy
523 * to something different than SCHED_DEADLINE
524 * - the task might have changed its reservation parameters
525 * (through sched_setattr())
526 * - the task might have been boosted by someone else and
527 * might be in the boosting/deboosting path
528 *
529 * In all this cases we bail out, as the task is already
530 * in the runqueue or is going to be enqueued back anyway.
aab03e05 531 */
aee38ea9
JL
532 if (!dl_task(p) || dl_se->dl_new ||
533 dl_se->dl_boosted || !dl_se->dl_throttled)
aab03e05
DF
534 goto unlock;
535
536 sched_clock_tick();
537 update_rq_clock(rq);
a79ec89f
KT
538
539 /*
540 * If the throttle happened during sched-out; like:
541 *
542 * schedule()
543 * deactivate_task()
544 * dequeue_task_dl()
545 * update_curr_dl()
546 * start_dl_timer()
547 * __dequeue_task_dl()
548 * prev->on_rq = 0;
549 *
550 * We can be both throttled and !queued. Replenish the counter
551 * but do not enqueue -- wait for our wakeup to do that.
552 */
553 if (!task_on_rq_queued(p)) {
554 replenish_dl_entity(dl_se, dl_se);
555 goto unlock;
556 }
557
1019a359
PZ
558 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
559 if (dl_task(rq->curr))
560 check_preempt_curr_dl(rq, p, 0);
561 else
562 resched_curr(rq);
1baca4ce 563#ifdef CONFIG_SMP
1019a359
PZ
564 /*
565 * Queueing this task back might have overloaded rq,
566 * check if we need to kick someone away.
567 */
568 if (has_pushable_dl_tasks(rq))
569 push_dl_task(rq);
1baca4ce 570#endif
aab03e05 571unlock:
3960c8c0 572 task_rq_unlock(rq, current, &flags);
aab03e05
DF
573
574 return HRTIMER_NORESTART;
575}
576
577void init_dl_task_timer(struct sched_dl_entity *dl_se)
578{
579 struct hrtimer *timer = &dl_se->dl_timer;
580
aab03e05
DF
581 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
582 timer->function = dl_task_timer;
583}
584
585static
586int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
587{
269ad801 588 return (dl_se->runtime <= 0);
aab03e05
DF
589}
590
faa59937
JL
591extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
592
aab03e05
DF
593/*
594 * Update the current task's runtime statistics (provided it is still
595 * a -deadline task and has not been removed from the dl_rq).
596 */
597static void update_curr_dl(struct rq *rq)
598{
599 struct task_struct *curr = rq->curr;
600 struct sched_dl_entity *dl_se = &curr->dl;
601 u64 delta_exec;
602
603 if (!dl_task(curr) || !on_dl_rq(dl_se))
604 return;
605
606 /*
607 * Consumed budget is computed considering the time as
608 * observed by schedulable tasks (excluding time spent
609 * in hardirq context, etc.). Deadlines are instead
610 * computed using hard walltime. This seems to be the more
611 * natural solution, but the full ramifications of this
612 * approach need further study.
613 */
614 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
734ff2a7
KT
615 if (unlikely((s64)delta_exec <= 0))
616 return;
aab03e05
DF
617
618 schedstat_set(curr->se.statistics.exec_max,
619 max(curr->se.statistics.exec_max, delta_exec));
620
621 curr->se.sum_exec_runtime += delta_exec;
622 account_group_exec_runtime(curr, delta_exec);
623
624 curr->se.exec_start = rq_clock_task(rq);
625 cpuacct_charge(curr, delta_exec);
626
239be4a9
DF
627 sched_rt_avg_update(rq, delta_exec);
628
80496880 629 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
aab03e05 630 if (dl_runtime_exceeded(rq, dl_se)) {
1019a359 631 dl_se->dl_throttled = 1;
aab03e05 632 __dequeue_task_dl(rq, curr, 0);
1019a359 633 if (unlikely(!start_dl_timer(dl_se, curr->dl.dl_boosted)))
aab03e05
DF
634 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
635
636 if (!is_leftmost(curr, &rq->dl))
8875125e 637 resched_curr(rq);
aab03e05 638 }
1724813d
PZ
639
640 /*
641 * Because -- for now -- we share the rt bandwidth, we need to
642 * account our runtime there too, otherwise actual rt tasks
643 * would be able to exceed the shared quota.
644 *
645 * Account to the root rt group for now.
646 *
647 * The solution we're working towards is having the RT groups scheduled
648 * using deadline servers -- however there's a few nasties to figure
649 * out before that can happen.
650 */
651 if (rt_bandwidth_enabled()) {
652 struct rt_rq *rt_rq = &rq->rt;
653
654 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
655 /*
656 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
657 * have our own CBS to keep us inline; only account when RT
658 * bandwidth is relevant.
1724813d 659 */
faa59937
JL
660 if (sched_rt_bandwidth_account(rt_rq))
661 rt_rq->rt_time += delta_exec;
1724813d
PZ
662 raw_spin_unlock(&rt_rq->rt_runtime_lock);
663 }
aab03e05
DF
664}
665
1baca4ce
JL
666#ifdef CONFIG_SMP
667
668static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
669
670static inline u64 next_deadline(struct rq *rq)
671{
672 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
673
674 if (next && dl_prio(next->prio))
675 return next->dl.deadline;
676 else
677 return 0;
678}
679
680static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
681{
682 struct rq *rq = rq_of_dl_rq(dl_rq);
683
684 if (dl_rq->earliest_dl.curr == 0 ||
685 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
686 /*
687 * If the dl_rq had no -deadline tasks, or if the new task
688 * has shorter deadline than the current one on dl_rq, we
689 * know that the previous earliest becomes our next earliest,
690 * as the new task becomes the earliest itself.
691 */
692 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
693 dl_rq->earliest_dl.curr = deadline;
6bfd6d72 694 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
1baca4ce
JL
695 } else if (dl_rq->earliest_dl.next == 0 ||
696 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
697 /*
698 * On the other hand, if the new -deadline task has a
699 * a later deadline than the earliest one on dl_rq, but
700 * it is earlier than the next (if any), we must
701 * recompute the next-earliest.
702 */
703 dl_rq->earliest_dl.next = next_deadline(rq);
704 }
705}
706
707static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
708{
709 struct rq *rq = rq_of_dl_rq(dl_rq);
710
711 /*
712 * Since we may have removed our earliest (and/or next earliest)
713 * task we must recompute them.
714 */
715 if (!dl_rq->dl_nr_running) {
716 dl_rq->earliest_dl.curr = 0;
717 dl_rq->earliest_dl.next = 0;
6bfd6d72 718 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
719 } else {
720 struct rb_node *leftmost = dl_rq->rb_leftmost;
721 struct sched_dl_entity *entry;
722
723 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
724 dl_rq->earliest_dl.curr = entry->deadline;
725 dl_rq->earliest_dl.next = next_deadline(rq);
6bfd6d72 726 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
1baca4ce
JL
727 }
728}
729
730#else
731
732static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
733static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
734
735#endif /* CONFIG_SMP */
736
737static inline
738void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
739{
740 int prio = dl_task_of(dl_se)->prio;
741 u64 deadline = dl_se->deadline;
742
743 WARN_ON(!dl_prio(prio));
744 dl_rq->dl_nr_running++;
72465447 745 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
746
747 inc_dl_deadline(dl_rq, deadline);
748 inc_dl_migration(dl_se, dl_rq);
749}
750
751static inline
752void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
753{
754 int prio = dl_task_of(dl_se)->prio;
755
756 WARN_ON(!dl_prio(prio));
757 WARN_ON(!dl_rq->dl_nr_running);
758 dl_rq->dl_nr_running--;
72465447 759 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
760
761 dec_dl_deadline(dl_rq, dl_se->deadline);
762 dec_dl_migration(dl_se, dl_rq);
763}
764
aab03e05
DF
765static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
766{
767 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
768 struct rb_node **link = &dl_rq->rb_root.rb_node;
769 struct rb_node *parent = NULL;
770 struct sched_dl_entity *entry;
771 int leftmost = 1;
772
773 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
774
775 while (*link) {
776 parent = *link;
777 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
778 if (dl_time_before(dl_se->deadline, entry->deadline))
779 link = &parent->rb_left;
780 else {
781 link = &parent->rb_right;
782 leftmost = 0;
783 }
784 }
785
786 if (leftmost)
787 dl_rq->rb_leftmost = &dl_se->rb_node;
788
789 rb_link_node(&dl_se->rb_node, parent, link);
790 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
791
1baca4ce 792 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
793}
794
795static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
796{
797 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
798
799 if (RB_EMPTY_NODE(&dl_se->rb_node))
800 return;
801
802 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
803 struct rb_node *next_node;
804
805 next_node = rb_next(&dl_se->rb_node);
806 dl_rq->rb_leftmost = next_node;
807 }
808
809 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
810 RB_CLEAR_NODE(&dl_se->rb_node);
811
1baca4ce 812 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
813}
814
815static void
2d3d891d
DF
816enqueue_dl_entity(struct sched_dl_entity *dl_se,
817 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
818{
819 BUG_ON(on_dl_rq(dl_se));
820
821 /*
822 * If this is a wakeup or a new instance, the scheduling
823 * parameters of the task might need updating. Otherwise,
824 * we want a replenishment of its runtime.
825 */
6a503c3b 826 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
2d3d891d 827 update_dl_entity(dl_se, pi_se);
6a503c3b
LA
828 else if (flags & ENQUEUE_REPLENISH)
829 replenish_dl_entity(dl_se, pi_se);
aab03e05
DF
830
831 __enqueue_dl_entity(dl_se);
832}
833
834static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
835{
836 __dequeue_dl_entity(dl_se);
837}
838
839static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
840{
2d3d891d
DF
841 struct task_struct *pi_task = rt_mutex_get_top_task(p);
842 struct sched_dl_entity *pi_se = &p->dl;
843
844 /*
845 * Use the scheduling parameters of the top pi-waiter
846 * task if we have one and its (relative) deadline is
847 * smaller than our one... OTW we keep our runtime and
848 * deadline.
849 */
64be6f1f 850 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
2d3d891d 851 pi_se = &pi_task->dl;
64be6f1f
JL
852 } else if (!dl_prio(p->normal_prio)) {
853 /*
854 * Special case in which we have a !SCHED_DEADLINE task
855 * that is going to be deboosted, but exceedes its
856 * runtime while doing so. No point in replenishing
857 * it, as it's going to return back to its original
858 * scheduling class after this.
859 */
860 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
861 return;
862 }
2d3d891d 863
aab03e05
DF
864 /*
865 * If p is throttled, we do nothing. In fact, if it exhausted
866 * its budget it needs a replenishment and, since it now is on
867 * its rq, the bandwidth timer callback (which clearly has not
868 * run yet) will take care of this.
869 */
1019a359 870 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
aab03e05
DF
871 return;
872
2d3d891d 873 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce
JL
874
875 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
876 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
877}
878
879static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
880{
881 dequeue_dl_entity(&p->dl);
1baca4ce 882 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
883}
884
885static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
886{
887 update_curr_dl(rq);
888 __dequeue_task_dl(rq, p, flags);
aab03e05
DF
889}
890
891/*
892 * Yield task semantic for -deadline tasks is:
893 *
894 * get off from the CPU until our next instance, with
895 * a new runtime. This is of little use now, since we
896 * don't have a bandwidth reclaiming mechanism. Anyway,
897 * bandwidth reclaiming is planned for the future, and
898 * yield_task_dl will indicate that some spare budget
899 * is available for other task instances to use it.
900 */
901static void yield_task_dl(struct rq *rq)
902{
903 struct task_struct *p = rq->curr;
904
905 /*
906 * We make the task go to sleep until its current deadline by
907 * forcing its runtime to zero. This way, update_curr_dl() stops
908 * it and the bandwidth timer will wake it up and will give it
5bfd126e 909 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05
DF
910 */
911 if (p->dl.runtime > 0) {
5bfd126e 912 rq->curr->dl.dl_yielded = 1;
aab03e05
DF
913 p->dl.runtime = 0;
914 }
6f1607f1 915 update_rq_clock(rq);
aab03e05 916 update_curr_dl(rq);
44fb085b
WL
917 /*
918 * Tell update_rq_clock() that we've just updated,
919 * so we don't do microscopic update in schedule()
920 * and double the fastpath cost.
921 */
922 rq_clock_skip_update(rq, true);
aab03e05
DF
923}
924
1baca4ce
JL
925#ifdef CONFIG_SMP
926
927static int find_later_rq(struct task_struct *task);
1baca4ce
JL
928
929static int
930select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
931{
932 struct task_struct *curr;
933 struct rq *rq;
934
1d7e974c 935 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
936 goto out;
937
938 rq = cpu_rq(cpu);
939
940 rcu_read_lock();
941 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
942
943 /*
944 * If we are dealing with a -deadline task, we must
945 * decide where to wake it up.
946 * If it has a later deadline and the current task
947 * on this rq can't move (provided the waking task
948 * can!) we prefer to send it somewhere else. On the
949 * other hand, if it has a shorter deadline, we
950 * try to make it stay here, it might be important.
951 */
952 if (unlikely(dl_task(curr)) &&
953 (curr->nr_cpus_allowed < 2 ||
954 !dl_entity_preempt(&p->dl, &curr->dl)) &&
955 (p->nr_cpus_allowed > 1)) {
956 int target = find_later_rq(p);
957
958 if (target != -1)
959 cpu = target;
960 }
961 rcu_read_unlock();
962
963out:
964 return cpu;
965}
966
967static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
968{
969 /*
970 * Current can't be migrated, useless to reschedule,
971 * let's hope p can move out.
972 */
973 if (rq->curr->nr_cpus_allowed == 1 ||
6bfd6d72 974 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
975 return;
976
977 /*
978 * p is migratable, so let's not schedule it and
979 * see if it is pushed or pulled somewhere else.
980 */
981 if (p->nr_cpus_allowed != 1 &&
6bfd6d72 982 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
983 return;
984
8875125e 985 resched_curr(rq);
1baca4ce
JL
986}
987
38033c37
PZ
988static int pull_dl_task(struct rq *this_rq);
989
1baca4ce
JL
990#endif /* CONFIG_SMP */
991
aab03e05
DF
992/*
993 * Only called when both the current and waking task are -deadline
994 * tasks.
995 */
996static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
997 int flags)
998{
1baca4ce 999 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1000 resched_curr(rq);
1baca4ce
JL
1001 return;
1002 }
1003
1004#ifdef CONFIG_SMP
1005 /*
1006 * In the unlikely case current and p have the same deadline
1007 * let us try to decide what's the best thing to do...
1008 */
332ac17e
DF
1009 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1010 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1011 check_preempt_equal_dl(rq, p);
1012#endif /* CONFIG_SMP */
aab03e05
DF
1013}
1014
1015#ifdef CONFIG_SCHED_HRTICK
1016static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1017{
177ef2a6 1018 hrtick_start(rq, p->dl.runtime);
aab03e05 1019}
36ce9881
WL
1020#else /* !CONFIG_SCHED_HRTICK */
1021static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1022{
1023}
aab03e05
DF
1024#endif
1025
1026static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1027 struct dl_rq *dl_rq)
1028{
1029 struct rb_node *left = dl_rq->rb_leftmost;
1030
1031 if (!left)
1032 return NULL;
1033
1034 return rb_entry(left, struct sched_dl_entity, rb_node);
1035}
1036
606dba2e 1037struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
aab03e05
DF
1038{
1039 struct sched_dl_entity *dl_se;
1040 struct task_struct *p;
1041 struct dl_rq *dl_rq;
1042
1043 dl_rq = &rq->dl;
1044
a1d9a323 1045 if (need_pull_dl_task(rq, prev)) {
38033c37 1046 pull_dl_task(rq);
a1d9a323
KT
1047 /*
1048 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1049 * means a stop task can slip in, in which case we need to
1050 * re-start task selection.
1051 */
da0c1e65 1052 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1053 return RETRY_TASK;
1054 }
1055
734ff2a7
KT
1056 /*
1057 * When prev is DL, we may throttle it in put_prev_task().
1058 * So, we update time before we check for dl_nr_running.
1059 */
1060 if (prev->sched_class == &dl_sched_class)
1061 update_curr_dl(rq);
38033c37 1062
aab03e05
DF
1063 if (unlikely(!dl_rq->dl_nr_running))
1064 return NULL;
1065
3f1d2a31 1066 put_prev_task(rq, prev);
606dba2e 1067
aab03e05
DF
1068 dl_se = pick_next_dl_entity(rq, dl_rq);
1069 BUG_ON(!dl_se);
1070
1071 p = dl_task_of(dl_se);
1072 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1073
1074 /* Running task will never be pushed. */
71362650 1075 dequeue_pushable_dl_task(rq, p);
1baca4ce 1076
aab03e05
DF
1077 if (hrtick_enabled(rq))
1078 start_hrtick_dl(rq, p);
1baca4ce 1079
dc877341 1080 set_post_schedule(rq);
1baca4ce 1081
aab03e05
DF
1082 return p;
1083}
1084
1085static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1086{
1087 update_curr_dl(rq);
1baca4ce
JL
1088
1089 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1090 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1091}
1092
1093static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1094{
1095 update_curr_dl(rq);
1096
a7bebf48
WL
1097 /*
1098 * Even when we have runtime, update_curr_dl() might have resulted in us
1099 * not being the leftmost task anymore. In that case NEED_RESCHED will
1100 * be set and schedule() will start a new hrtick for the next task.
1101 */
1102 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1103 is_leftmost(p, &rq->dl))
aab03e05 1104 start_hrtick_dl(rq, p);
aab03e05
DF
1105}
1106
1107static void task_fork_dl(struct task_struct *p)
1108{
1109 /*
1110 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1111 * sched_fork()
1112 */
1113}
1114
1115static void task_dead_dl(struct task_struct *p)
1116{
1117 struct hrtimer *timer = &p->dl.dl_timer;
332ac17e
DF
1118 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1119
1120 /*
1121 * Since we are TASK_DEAD we won't slip out of the domain!
1122 */
1123 raw_spin_lock_irq(&dl_b->lock);
40767b0d 1124 /* XXX we should retain the bw until 0-lag */
332ac17e
DF
1125 dl_b->total_bw -= p->dl.dl_bw;
1126 raw_spin_unlock_irq(&dl_b->lock);
aab03e05 1127
2d3d891d 1128 hrtimer_cancel(timer);
aab03e05
DF
1129}
1130
1131static void set_curr_task_dl(struct rq *rq)
1132{
1133 struct task_struct *p = rq->curr;
1134
1135 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1136
1137 /* You can't push away the running task */
1138 dequeue_pushable_dl_task(rq, p);
1139}
1140
1141#ifdef CONFIG_SMP
1142
1143/* Only try algorithms three times */
1144#define DL_MAX_TRIES 3
1145
1146static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1147{
1148 if (!task_running(rq, p) &&
1ba93d42 1149 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1baca4ce 1150 return 1;
1baca4ce
JL
1151 return 0;
1152}
1153
1154/* Returns the second earliest -deadline task, NULL otherwise */
1155static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1156{
1157 struct rb_node *next_node = rq->dl.rb_leftmost;
1158 struct sched_dl_entity *dl_se;
1159 struct task_struct *p = NULL;
1160
1161next_node:
1162 next_node = rb_next(next_node);
1163 if (next_node) {
1164 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1165 p = dl_task_of(dl_se);
1166
1167 if (pick_dl_task(rq, p, cpu))
1168 return p;
1169
1170 goto next_node;
1171 }
1172
1173 return NULL;
1174}
1175
1baca4ce
JL
1176static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1177
1178static int find_later_rq(struct task_struct *task)
1179{
1180 struct sched_domain *sd;
4ba29684 1181 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce
JL
1182 int this_cpu = smp_processor_id();
1183 int best_cpu, cpu = task_cpu(task);
1184
1185 /* Make sure the mask is initialized first */
1186 if (unlikely(!later_mask))
1187 return -1;
1188
1189 if (task->nr_cpus_allowed == 1)
1190 return -1;
1191
91ec6778
JL
1192 /*
1193 * We have to consider system topology and task affinity
1194 * first, then we can look for a suitable cpu.
1195 */
6bfd6d72
JL
1196 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1197 task, later_mask);
1baca4ce
JL
1198 if (best_cpu == -1)
1199 return -1;
1200
1201 /*
1202 * If we are here, some target has been found,
1203 * the most suitable of which is cached in best_cpu.
1204 * This is, among the runqueues where the current tasks
1205 * have later deadlines than the task's one, the rq
1206 * with the latest possible one.
1207 *
1208 * Now we check how well this matches with task's
1209 * affinity and system topology.
1210 *
1211 * The last cpu where the task run is our first
1212 * guess, since it is most likely cache-hot there.
1213 */
1214 if (cpumask_test_cpu(cpu, later_mask))
1215 return cpu;
1216 /*
1217 * Check if this_cpu is to be skipped (i.e., it is
1218 * not in the mask) or not.
1219 */
1220 if (!cpumask_test_cpu(this_cpu, later_mask))
1221 this_cpu = -1;
1222
1223 rcu_read_lock();
1224 for_each_domain(cpu, sd) {
1225 if (sd->flags & SD_WAKE_AFFINE) {
1226
1227 /*
1228 * If possible, preempting this_cpu is
1229 * cheaper than migrating.
1230 */
1231 if (this_cpu != -1 &&
1232 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1233 rcu_read_unlock();
1234 return this_cpu;
1235 }
1236
1237 /*
1238 * Last chance: if best_cpu is valid and is
1239 * in the mask, that becomes our choice.
1240 */
1241 if (best_cpu < nr_cpu_ids &&
1242 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1243 rcu_read_unlock();
1244 return best_cpu;
1245 }
1246 }
1247 }
1248 rcu_read_unlock();
1249
1250 /*
1251 * At this point, all our guesses failed, we just return
1252 * 'something', and let the caller sort the things out.
1253 */
1254 if (this_cpu != -1)
1255 return this_cpu;
1256
1257 cpu = cpumask_any(later_mask);
1258 if (cpu < nr_cpu_ids)
1259 return cpu;
1260
1261 return -1;
1262}
1263
1264/* Locks the rq it finds */
1265static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1266{
1267 struct rq *later_rq = NULL;
1268 int tries;
1269 int cpu;
1270
1271 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1272 cpu = find_later_rq(task);
1273
1274 if ((cpu == -1) || (cpu == rq->cpu))
1275 break;
1276
1277 later_rq = cpu_rq(cpu);
1278
1279 /* Retry if something changed. */
1280 if (double_lock_balance(rq, later_rq)) {
1281 if (unlikely(task_rq(task) != rq ||
1282 !cpumask_test_cpu(later_rq->cpu,
1283 &task->cpus_allowed) ||
da0c1e65
KT
1284 task_running(rq, task) ||
1285 !task_on_rq_queued(task))) {
1baca4ce
JL
1286 double_unlock_balance(rq, later_rq);
1287 later_rq = NULL;
1288 break;
1289 }
1290 }
1291
1292 /*
1293 * If the rq we found has no -deadline task, or
1294 * its earliest one has a later deadline than our
1295 * task, the rq is a good one.
1296 */
1297 if (!later_rq->dl.dl_nr_running ||
1298 dl_time_before(task->dl.deadline,
1299 later_rq->dl.earliest_dl.curr))
1300 break;
1301
1302 /* Otherwise we try again. */
1303 double_unlock_balance(rq, later_rq);
1304 later_rq = NULL;
1305 }
1306
1307 return later_rq;
1308}
1309
1310static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1311{
1312 struct task_struct *p;
1313
1314 if (!has_pushable_dl_tasks(rq))
1315 return NULL;
1316
1317 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1318 struct task_struct, pushable_dl_tasks);
1319
1320 BUG_ON(rq->cpu != task_cpu(p));
1321 BUG_ON(task_current(rq, p));
1322 BUG_ON(p->nr_cpus_allowed <= 1);
1323
da0c1e65 1324 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
1325 BUG_ON(!dl_task(p));
1326
1327 return p;
1328}
1329
1330/*
1331 * See if the non running -deadline tasks on this rq
1332 * can be sent to some other CPU where they can preempt
1333 * and start executing.
1334 */
1335static int push_dl_task(struct rq *rq)
1336{
1337 struct task_struct *next_task;
1338 struct rq *later_rq;
c51b8ab5 1339 int ret = 0;
1baca4ce
JL
1340
1341 if (!rq->dl.overloaded)
1342 return 0;
1343
1344 next_task = pick_next_pushable_dl_task(rq);
1345 if (!next_task)
1346 return 0;
1347
1348retry:
1349 if (unlikely(next_task == rq->curr)) {
1350 WARN_ON(1);
1351 return 0;
1352 }
1353
1354 /*
1355 * If next_task preempts rq->curr, and rq->curr
1356 * can move away, it makes sense to just reschedule
1357 * without going further in pushing next_task.
1358 */
1359 if (dl_task(rq->curr) &&
1360 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1361 rq->curr->nr_cpus_allowed > 1) {
8875125e 1362 resched_curr(rq);
1baca4ce
JL
1363 return 0;
1364 }
1365
1366 /* We might release rq lock */
1367 get_task_struct(next_task);
1368
1369 /* Will lock the rq it'll find */
1370 later_rq = find_lock_later_rq(next_task, rq);
1371 if (!later_rq) {
1372 struct task_struct *task;
1373
1374 /*
1375 * We must check all this again, since
1376 * find_lock_later_rq releases rq->lock and it is
1377 * then possible that next_task has migrated.
1378 */
1379 task = pick_next_pushable_dl_task(rq);
1380 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1381 /*
1382 * The task is still there. We don't try
1383 * again, some other cpu will pull it when ready.
1384 */
1baca4ce
JL
1385 goto out;
1386 }
1387
1388 if (!task)
1389 /* No more tasks */
1390 goto out;
1391
1392 put_task_struct(next_task);
1393 next_task = task;
1394 goto retry;
1395 }
1396
1397 deactivate_task(rq, next_task, 0);
1398 set_task_cpu(next_task, later_rq->cpu);
1399 activate_task(later_rq, next_task, 0);
c51b8ab5 1400 ret = 1;
1baca4ce 1401
8875125e 1402 resched_curr(later_rq);
1baca4ce
JL
1403
1404 double_unlock_balance(rq, later_rq);
1405
1406out:
1407 put_task_struct(next_task);
1408
c51b8ab5 1409 return ret;
1baca4ce
JL
1410}
1411
1412static void push_dl_tasks(struct rq *rq)
1413{
1414 /* Terminates as it moves a -deadline task */
1415 while (push_dl_task(rq))
1416 ;
aab03e05
DF
1417}
1418
1baca4ce
JL
1419static int pull_dl_task(struct rq *this_rq)
1420{
1421 int this_cpu = this_rq->cpu, ret = 0, cpu;
1422 struct task_struct *p;
1423 struct rq *src_rq;
1424 u64 dmin = LONG_MAX;
1425
1426 if (likely(!dl_overloaded(this_rq)))
1427 return 0;
1428
1429 /*
1430 * Match the barrier from dl_set_overloaded; this guarantees that if we
1431 * see overloaded we must also see the dlo_mask bit.
1432 */
1433 smp_rmb();
1434
1435 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1436 if (this_cpu == cpu)
1437 continue;
1438
1439 src_rq = cpu_rq(cpu);
1440
1441 /*
1442 * It looks racy, abd it is! However, as in sched_rt.c,
1443 * we are fine with this.
1444 */
1445 if (this_rq->dl.dl_nr_running &&
1446 dl_time_before(this_rq->dl.earliest_dl.curr,
1447 src_rq->dl.earliest_dl.next))
1448 continue;
1449
1450 /* Might drop this_rq->lock */
1451 double_lock_balance(this_rq, src_rq);
1452
1453 /*
1454 * If there are no more pullable tasks on the
1455 * rq, we're done with it.
1456 */
1457 if (src_rq->dl.dl_nr_running <= 1)
1458 goto skip;
1459
1460 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1461
1462 /*
1463 * We found a task to be pulled if:
1464 * - it preempts our current (if there's one),
1465 * - it will preempt the last one we pulled (if any).
1466 */
1467 if (p && dl_time_before(p->dl.deadline, dmin) &&
1468 (!this_rq->dl.dl_nr_running ||
1469 dl_time_before(p->dl.deadline,
1470 this_rq->dl.earliest_dl.curr))) {
1471 WARN_ON(p == src_rq->curr);
da0c1e65 1472 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
1473
1474 /*
1475 * Then we pull iff p has actually an earlier
1476 * deadline than the current task of its runqueue.
1477 */
1478 if (dl_time_before(p->dl.deadline,
1479 src_rq->curr->dl.deadline))
1480 goto skip;
1481
1482 ret = 1;
1483
1484 deactivate_task(src_rq, p, 0);
1485 set_task_cpu(p, this_cpu);
1486 activate_task(this_rq, p, 0);
1487 dmin = p->dl.deadline;
1488
1489 /* Is there any other task even earlier? */
1490 }
1491skip:
1492 double_unlock_balance(this_rq, src_rq);
1493 }
1494
1495 return ret;
1496}
1497
1baca4ce
JL
1498static void post_schedule_dl(struct rq *rq)
1499{
1500 push_dl_tasks(rq);
1501}
1502
1503/*
1504 * Since the task is not running and a reschedule is not going to happen
1505 * anytime soon on its runqueue, we try pushing it away now.
1506 */
1507static void task_woken_dl(struct rq *rq, struct task_struct *p)
1508{
1509 if (!task_running(rq, p) &&
1510 !test_tsk_need_resched(rq->curr) &&
1511 has_pushable_dl_tasks(rq) &&
1512 p->nr_cpus_allowed > 1 &&
1513 dl_task(rq->curr) &&
1514 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 1515 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
1516 push_dl_tasks(rq);
1517 }
1518}
1519
1520static void set_cpus_allowed_dl(struct task_struct *p,
1521 const struct cpumask *new_mask)
1522{
1523 struct rq *rq;
7f51412a 1524 struct root_domain *src_rd;
1baca4ce
JL
1525 int weight;
1526
1527 BUG_ON(!dl_task(p));
1528
7f51412a
JL
1529 rq = task_rq(p);
1530 src_rd = rq->rd;
1531 /*
1532 * Migrating a SCHED_DEADLINE task between exclusive
1533 * cpusets (different root_domains) entails a bandwidth
1534 * update. We already made space for us in the destination
1535 * domain (see cpuset_can_attach()).
1536 */
1537 if (!cpumask_intersects(src_rd->span, new_mask)) {
1538 struct dl_bw *src_dl_b;
1539
1540 src_dl_b = dl_bw_of(cpu_of(rq));
1541 /*
1542 * We now free resources of the root_domain we are migrating
1543 * off. In the worst case, sched_setattr() may temporary fail
1544 * until we complete the update.
1545 */
1546 raw_spin_lock(&src_dl_b->lock);
1547 __dl_clear(src_dl_b, p->dl.dl_bw);
1548 raw_spin_unlock(&src_dl_b->lock);
1549 }
1550
1baca4ce
JL
1551 /*
1552 * Update only if the task is actually running (i.e.,
1553 * it is on the rq AND it is not throttled).
1554 */
1555 if (!on_dl_rq(&p->dl))
1556 return;
1557
1558 weight = cpumask_weight(new_mask);
1559
1560 /*
1561 * Only update if the process changes its state from whether it
1562 * can migrate or not.
1563 */
1564 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1565 return;
1566
1baca4ce
JL
1567 /*
1568 * The process used to be able to migrate OR it can now migrate
1569 */
1570 if (weight <= 1) {
1571 if (!task_current(rq, p))
1572 dequeue_pushable_dl_task(rq, p);
1573 BUG_ON(!rq->dl.dl_nr_migratory);
1574 rq->dl.dl_nr_migratory--;
1575 } else {
1576 if (!task_current(rq, p))
1577 enqueue_pushable_dl_task(rq, p);
1578 rq->dl.dl_nr_migratory++;
1579 }
1580
1581 update_dl_migration(&rq->dl);
1582}
1583
1584/* Assumes rq->lock is held */
1585static void rq_online_dl(struct rq *rq)
1586{
1587 if (rq->dl.overloaded)
1588 dl_set_overload(rq);
6bfd6d72 1589
16b26943 1590 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72
JL
1591 if (rq->dl.dl_nr_running > 0)
1592 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1baca4ce
JL
1593}
1594
1595/* Assumes rq->lock is held */
1596static void rq_offline_dl(struct rq *rq)
1597{
1598 if (rq->dl.overloaded)
1599 dl_clear_overload(rq);
6bfd6d72
JL
1600
1601 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
16b26943 1602 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
1603}
1604
1605void init_sched_dl_class(void)
1606{
1607 unsigned int i;
1608
1609 for_each_possible_cpu(i)
1610 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1611 GFP_KERNEL, cpu_to_node(i));
1612}
1613
1614#endif /* CONFIG_SMP */
1615
67dfa1b7
KT
1616/*
1617 * Ensure p's dl_timer is cancelled. May drop rq->lock for a while.
1618 */
1619static void cancel_dl_timer(struct rq *rq, struct task_struct *p)
1620{
1621 struct hrtimer *dl_timer = &p->dl.dl_timer;
1622
1623 /* Nobody will change task's class if pi_lock is held */
1624 lockdep_assert_held(&p->pi_lock);
1625
1626 if (hrtimer_active(dl_timer)) {
1627 int ret = hrtimer_try_to_cancel(dl_timer);
1628
1629 if (unlikely(ret == -1)) {
1630 /*
1631 * Note, p may migrate OR new deadline tasks
1632 * may appear in rq when we are unlocking it.
1633 * A caller of us must be fine with that.
1634 */
1635 raw_spin_unlock(&rq->lock);
1636 hrtimer_cancel(dl_timer);
1637 raw_spin_lock(&rq->lock);
1638 }
1639 }
1640}
1641
aab03e05
DF
1642static void switched_from_dl(struct rq *rq, struct task_struct *p)
1643{
40767b0d 1644 /* XXX we should retain the bw until 0-lag */
67dfa1b7 1645 cancel_dl_timer(rq, p);
a5e7be3b
JL
1646 __dl_clear_params(p);
1647
1baca4ce
JL
1648 /*
1649 * Since this might be the only -deadline task on the rq,
1650 * this is the right place to try to pull some other one
1651 * from an overloaded cpu, if any.
1652 */
cd660911
WL
1653 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1654 return;
1655
1656 if (pull_dl_task(rq))
1657 resched_curr(rq);
aab03e05
DF
1658}
1659
1baca4ce
JL
1660/*
1661 * When switching to -deadline, we may overload the rq, then
1662 * we try to push someone off, if possible.
1663 */
aab03e05
DF
1664static void switched_to_dl(struct rq *rq, struct task_struct *p)
1665{
1baca4ce
JL
1666 int check_resched = 1;
1667
da0c1e65 1668 if (task_on_rq_queued(p) && rq->curr != p) {
1baca4ce 1669#ifdef CONFIG_SMP
d9aade7a
WL
1670 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded &&
1671 push_dl_task(rq) && rq != task_rq(p))
1baca4ce
JL
1672 /* Only reschedule if pushing failed */
1673 check_resched = 0;
1674#endif /* CONFIG_SMP */
f3a7e1a9
KT
1675 if (check_resched) {
1676 if (dl_task(rq->curr))
1677 check_preempt_curr_dl(rq, p, 0);
1678 else
1679 resched_curr(rq);
1680 }
aab03e05
DF
1681 }
1682}
1683
1baca4ce
JL
1684/*
1685 * If the scheduling parameters of a -deadline task changed,
1686 * a push or pull operation might be needed.
1687 */
aab03e05
DF
1688static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1689 int oldprio)
1690{
da0c1e65 1691 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 1692#ifdef CONFIG_SMP
1baca4ce
JL
1693 /*
1694 * This might be too much, but unfortunately
1695 * we don't have the old deadline value, and
1696 * we can't argue if the task is increasing
1697 * or lowering its prio, so...
1698 */
1699 if (!rq->dl.overloaded)
1700 pull_dl_task(rq);
1701
1702 /*
1703 * If we now have a earlier deadline task than p,
1704 * then reschedule, provided p is still on this
1705 * runqueue.
1706 */
1707 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1708 rq->curr == p)
8875125e 1709 resched_curr(rq);
1baca4ce
JL
1710#else
1711 /*
1712 * Again, we don't know if p has a earlier
1713 * or later deadline, so let's blindly set a
1714 * (maybe not needed) rescheduling point.
1715 */
8875125e 1716 resched_curr(rq);
1baca4ce
JL
1717#endif /* CONFIG_SMP */
1718 } else
1719 switched_to_dl(rq, p);
aab03e05 1720}
aab03e05
DF
1721
1722const struct sched_class dl_sched_class = {
1723 .next = &rt_sched_class,
1724 .enqueue_task = enqueue_task_dl,
1725 .dequeue_task = dequeue_task_dl,
1726 .yield_task = yield_task_dl,
1727
1728 .check_preempt_curr = check_preempt_curr_dl,
1729
1730 .pick_next_task = pick_next_task_dl,
1731 .put_prev_task = put_prev_task_dl,
1732
1733#ifdef CONFIG_SMP
1734 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1735 .set_cpus_allowed = set_cpus_allowed_dl,
1736 .rq_online = rq_online_dl,
1737 .rq_offline = rq_offline_dl,
1baca4ce
JL
1738 .post_schedule = post_schedule_dl,
1739 .task_woken = task_woken_dl,
aab03e05
DF
1740#endif
1741
1742 .set_curr_task = set_curr_task_dl,
1743 .task_tick = task_tick_dl,
1744 .task_fork = task_fork_dl,
1745 .task_dead = task_dead_dl,
1746
1747 .prio_changed = prio_changed_dl,
1748 .switched_from = switched_from_dl,
1749 .switched_to = switched_to_dl,
6e998916
SG
1750
1751 .update_curr = update_curr_dl,
aab03e05 1752};
acb32132
WL
1753
1754#ifdef CONFIG_SCHED_DEBUG
1755extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1756
1757void print_dl_stats(struct seq_file *m, int cpu)
1758{
1759 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1760}
1761#endif /* CONFIG_SCHED_DEBUG */