sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1 69#include <linux/ctype.h>
6cd8a4bb 70#include <linux/ftrace.h>
5a0e3ad6 71#include <linux/slab.h>
f1c6f1a7 72#include <linux/init_task.h>
91d1aa43 73#include <linux/context_tracking.h>
52f5684c 74#include <linux/compiler.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
ea138446 85#include "../workqueue_internal.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb
PZ
91DEFINE_MUTEX(sched_domains_mutex);
92DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 93
fe44d621 94static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 95
029632fb 96void update_rq_clock(struct rq *rq)
3e51f33f 97{
fe44d621 98 s64 delta;
305e6835 99
9edfbfed
PZ
100 lockdep_assert_held(&rq->lock);
101
102 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 103 return;
aa483808 104
fe44d621 105 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
106 if (delta < 0)
107 return;
fe44d621
PZ
108 rq->clock += delta;
109 update_rq_clock_task(rq, delta);
3e51f33f
PZ
110}
111
bf5c91ba
IM
112/*
113 * Debugging: various feature bits
114 */
f00b45c1 115
f00b45c1
PZ
116#define SCHED_FEAT(name, enabled) \
117 (1UL << __SCHED_FEAT_##name) * enabled |
118
bf5c91ba 119const_debug unsigned int sysctl_sched_features =
391e43da 120#include "features.h"
f00b45c1
PZ
121 0;
122
123#undef SCHED_FEAT
124
b82d9fdd
PZ
125/*
126 * Number of tasks to iterate in a single balance run.
127 * Limited because this is done with IRQs disabled.
128 */
129const_debug unsigned int sysctl_sched_nr_migrate = 32;
130
e9e9250b
PZ
131/*
132 * period over which we average the RT time consumption, measured
133 * in ms.
134 *
135 * default: 1s
136 */
137const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
138
fa85ae24 139/*
9f0c1e56 140 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
141 * default: 1s
142 */
9f0c1e56 143unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 144
029632fb 145__read_mostly int scheduler_running;
6892b75e 146
9f0c1e56
PZ
147/*
148 * part of the period that we allow rt tasks to run in us.
149 * default: 0.95s
150 */
151int sysctl_sched_rt_runtime = 950000;
fa85ae24 152
3fa0818b
RR
153/* cpus with isolated domains */
154cpumask_var_t cpu_isolated_map;
155
1da177e4 156/*
cc2a73b5 157 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 158 */
a9957449 159static struct rq *this_rq_lock(void)
1da177e4
LT
160 __acquires(rq->lock)
161{
70b97a7f 162 struct rq *rq;
1da177e4
LT
163
164 local_irq_disable();
165 rq = this_rq();
05fa785c 166 raw_spin_lock(&rq->lock);
1da177e4
LT
167
168 return rq;
169}
170
8f4d37ec
PZ
171#ifdef CONFIG_SCHED_HRTICK
172/*
173 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 174 */
8f4d37ec 175
8f4d37ec
PZ
176static void hrtick_clear(struct rq *rq)
177{
178 if (hrtimer_active(&rq->hrtick_timer))
179 hrtimer_cancel(&rq->hrtick_timer);
180}
181
8f4d37ec
PZ
182/*
183 * High-resolution timer tick.
184 * Runs from hardirq context with interrupts disabled.
185 */
186static enum hrtimer_restart hrtick(struct hrtimer *timer)
187{
188 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
189
190 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
191
05fa785c 192 raw_spin_lock(&rq->lock);
3e51f33f 193 update_rq_clock(rq);
8f4d37ec 194 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 195 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
196
197 return HRTIMER_NORESTART;
198}
199
95e904c7 200#ifdef CONFIG_SMP
971ee28c 201
4961b6e1 202static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
203{
204 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 205
4961b6e1 206 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
207}
208
31656519
PZ
209/*
210 * called from hardirq (IPI) context
211 */
212static void __hrtick_start(void *arg)
b328ca18 213{
31656519 214 struct rq *rq = arg;
b328ca18 215
05fa785c 216 raw_spin_lock(&rq->lock);
971ee28c 217 __hrtick_restart(rq);
31656519 218 rq->hrtick_csd_pending = 0;
05fa785c 219 raw_spin_unlock(&rq->lock);
b328ca18
PZ
220}
221
31656519
PZ
222/*
223 * Called to set the hrtick timer state.
224 *
225 * called with rq->lock held and irqs disabled
226 */
029632fb 227void hrtick_start(struct rq *rq, u64 delay)
b328ca18 228{
31656519 229 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 230 ktime_t time;
231 s64 delta;
232
233 /*
234 * Don't schedule slices shorter than 10000ns, that just
235 * doesn't make sense and can cause timer DoS.
236 */
237 delta = max_t(s64, delay, 10000LL);
238 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 239
cc584b21 240 hrtimer_set_expires(timer, time);
31656519
PZ
241
242 if (rq == this_rq()) {
971ee28c 243 __hrtick_restart(rq);
31656519 244 } else if (!rq->hrtick_csd_pending) {
c46fff2a 245 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
246 rq->hrtick_csd_pending = 1;
247 }
b328ca18
PZ
248}
249
250static int
251hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
252{
253 int cpu = (int)(long)hcpu;
254
255 switch (action) {
256 case CPU_UP_CANCELED:
257 case CPU_UP_CANCELED_FROZEN:
258 case CPU_DOWN_PREPARE:
259 case CPU_DOWN_PREPARE_FROZEN:
260 case CPU_DEAD:
261 case CPU_DEAD_FROZEN:
31656519 262 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
263 return NOTIFY_OK;
264 }
265
266 return NOTIFY_DONE;
267}
268
fa748203 269static __init void init_hrtick(void)
b328ca18
PZ
270{
271 hotcpu_notifier(hotplug_hrtick, 0);
272}
31656519
PZ
273#else
274/*
275 * Called to set the hrtick timer state.
276 *
277 * called with rq->lock held and irqs disabled
278 */
029632fb 279void hrtick_start(struct rq *rq, u64 delay)
31656519 280{
86893335
WL
281 /*
282 * Don't schedule slices shorter than 10000ns, that just
283 * doesn't make sense. Rely on vruntime for fairness.
284 */
285 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
286 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
287 HRTIMER_MODE_REL_PINNED);
31656519 288}
b328ca18 289
006c75f1 290static inline void init_hrtick(void)
8f4d37ec 291{
8f4d37ec 292}
31656519 293#endif /* CONFIG_SMP */
8f4d37ec 294
31656519 295static void init_rq_hrtick(struct rq *rq)
8f4d37ec 296{
31656519
PZ
297#ifdef CONFIG_SMP
298 rq->hrtick_csd_pending = 0;
8f4d37ec 299
31656519
PZ
300 rq->hrtick_csd.flags = 0;
301 rq->hrtick_csd.func = __hrtick_start;
302 rq->hrtick_csd.info = rq;
303#endif
8f4d37ec 304
31656519
PZ
305 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
306 rq->hrtick_timer.function = hrtick;
8f4d37ec 307}
006c75f1 308#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
309static inline void hrtick_clear(struct rq *rq)
310{
311}
312
8f4d37ec
PZ
313static inline void init_rq_hrtick(struct rq *rq)
314{
315}
316
b328ca18
PZ
317static inline void init_hrtick(void)
318{
319}
006c75f1 320#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 321
fd99f91a
PZ
322/*
323 * cmpxchg based fetch_or, macro so it works for different integer types
324 */
325#define fetch_or(ptr, val) \
326({ typeof(*(ptr)) __old, __val = *(ptr); \
327 for (;;) { \
328 __old = cmpxchg((ptr), __val, __val | (val)); \
329 if (__old == __val) \
330 break; \
331 __val = __old; \
332 } \
333 __old; \
334})
335
e3baac47 336#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
337/*
338 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
339 * this avoids any races wrt polling state changes and thereby avoids
340 * spurious IPIs.
341 */
342static bool set_nr_and_not_polling(struct task_struct *p)
343{
344 struct thread_info *ti = task_thread_info(p);
345 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
346}
e3baac47
PZ
347
348/*
349 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
350 *
351 * If this returns true, then the idle task promises to call
352 * sched_ttwu_pending() and reschedule soon.
353 */
354static bool set_nr_if_polling(struct task_struct *p)
355{
356 struct thread_info *ti = task_thread_info(p);
316c1608 357 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
358
359 for (;;) {
360 if (!(val & _TIF_POLLING_NRFLAG))
361 return false;
362 if (val & _TIF_NEED_RESCHED)
363 return true;
364 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
365 if (old == val)
366 break;
367 val = old;
368 }
369 return true;
370}
371
fd99f91a
PZ
372#else
373static bool set_nr_and_not_polling(struct task_struct *p)
374{
375 set_tsk_need_resched(p);
376 return true;
377}
e3baac47
PZ
378
379#ifdef CONFIG_SMP
380static bool set_nr_if_polling(struct task_struct *p)
381{
382 return false;
383}
384#endif
fd99f91a
PZ
385#endif
386
76751049
PZ
387void wake_q_add(struct wake_q_head *head, struct task_struct *task)
388{
389 struct wake_q_node *node = &task->wake_q;
390
391 /*
392 * Atomically grab the task, if ->wake_q is !nil already it means
393 * its already queued (either by us or someone else) and will get the
394 * wakeup due to that.
395 *
396 * This cmpxchg() implies a full barrier, which pairs with the write
397 * barrier implied by the wakeup in wake_up_list().
398 */
399 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
400 return;
401
402 get_task_struct(task);
403
404 /*
405 * The head is context local, there can be no concurrency.
406 */
407 *head->lastp = node;
408 head->lastp = &node->next;
409}
410
411void wake_up_q(struct wake_q_head *head)
412{
413 struct wake_q_node *node = head->first;
414
415 while (node != WAKE_Q_TAIL) {
416 struct task_struct *task;
417
418 task = container_of(node, struct task_struct, wake_q);
419 BUG_ON(!task);
420 /* task can safely be re-inserted now */
421 node = node->next;
422 task->wake_q.next = NULL;
423
424 /*
425 * wake_up_process() implies a wmb() to pair with the queueing
426 * in wake_q_add() so as not to miss wakeups.
427 */
428 wake_up_process(task);
429 put_task_struct(task);
430 }
431}
432
c24d20db 433/*
8875125e 434 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
435 *
436 * On UP this means the setting of the need_resched flag, on SMP it
437 * might also involve a cross-CPU call to trigger the scheduler on
438 * the target CPU.
439 */
8875125e 440void resched_curr(struct rq *rq)
c24d20db 441{
8875125e 442 struct task_struct *curr = rq->curr;
c24d20db
IM
443 int cpu;
444
8875125e 445 lockdep_assert_held(&rq->lock);
c24d20db 446
8875125e 447 if (test_tsk_need_resched(curr))
c24d20db
IM
448 return;
449
8875125e 450 cpu = cpu_of(rq);
fd99f91a 451
f27dde8d 452 if (cpu == smp_processor_id()) {
8875125e 453 set_tsk_need_resched(curr);
f27dde8d 454 set_preempt_need_resched();
c24d20db 455 return;
f27dde8d 456 }
c24d20db 457
8875125e 458 if (set_nr_and_not_polling(curr))
c24d20db 459 smp_send_reschedule(cpu);
dfc68f29
AL
460 else
461 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
462}
463
029632fb 464void resched_cpu(int cpu)
c24d20db
IM
465{
466 struct rq *rq = cpu_rq(cpu);
467 unsigned long flags;
468
05fa785c 469 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 470 return;
8875125e 471 resched_curr(rq);
05fa785c 472 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 473}
06d8308c 474
b021fe3e 475#ifdef CONFIG_SMP
3451d024 476#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
477/*
478 * In the semi idle case, use the nearest busy cpu for migrating timers
479 * from an idle cpu. This is good for power-savings.
480 *
481 * We don't do similar optimization for completely idle system, as
482 * selecting an idle cpu will add more delays to the timers than intended
483 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
484 */
bc7a34b8 485int get_nohz_timer_target(void)
83cd4fe2 486{
bc7a34b8 487 int i, cpu = smp_processor_id();
83cd4fe2
VP
488 struct sched_domain *sd;
489
9642d18e 490 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
491 return cpu;
492
057f3fad 493 rcu_read_lock();
83cd4fe2 494 for_each_domain(cpu, sd) {
057f3fad 495 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 496 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
497 cpu = i;
498 goto unlock;
499 }
500 }
83cd4fe2 501 }
9642d18e
VH
502
503 if (!is_housekeeping_cpu(cpu))
504 cpu = housekeeping_any_cpu();
057f3fad
PZ
505unlock:
506 rcu_read_unlock();
83cd4fe2
VP
507 return cpu;
508}
06d8308c
TG
509/*
510 * When add_timer_on() enqueues a timer into the timer wheel of an
511 * idle CPU then this timer might expire before the next timer event
512 * which is scheduled to wake up that CPU. In case of a completely
513 * idle system the next event might even be infinite time into the
514 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
515 * leaves the inner idle loop so the newly added timer is taken into
516 * account when the CPU goes back to idle and evaluates the timer
517 * wheel for the next timer event.
518 */
1c20091e 519static void wake_up_idle_cpu(int cpu)
06d8308c
TG
520{
521 struct rq *rq = cpu_rq(cpu);
522
523 if (cpu == smp_processor_id())
524 return;
525
67b9ca70 526 if (set_nr_and_not_polling(rq->idle))
06d8308c 527 smp_send_reschedule(cpu);
dfc68f29
AL
528 else
529 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
530}
531
c5bfece2 532static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 533{
53c5fa16
FW
534 /*
535 * We just need the target to call irq_exit() and re-evaluate
536 * the next tick. The nohz full kick at least implies that.
537 * If needed we can still optimize that later with an
538 * empty IRQ.
539 */
c5bfece2 540 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
541 if (cpu != smp_processor_id() ||
542 tick_nohz_tick_stopped())
53c5fa16 543 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
544 return true;
545 }
546
547 return false;
548}
549
550void wake_up_nohz_cpu(int cpu)
551{
c5bfece2 552 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
553 wake_up_idle_cpu(cpu);
554}
555
ca38062e 556static inline bool got_nohz_idle_kick(void)
45bf76df 557{
1c792db7 558 int cpu = smp_processor_id();
873b4c65
VG
559
560 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
561 return false;
562
563 if (idle_cpu(cpu) && !need_resched())
564 return true;
565
566 /*
567 * We can't run Idle Load Balance on this CPU for this time so we
568 * cancel it and clear NOHZ_BALANCE_KICK
569 */
570 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
571 return false;
45bf76df
IM
572}
573
3451d024 574#else /* CONFIG_NO_HZ_COMMON */
45bf76df 575
ca38062e 576static inline bool got_nohz_idle_kick(void)
2069dd75 577{
ca38062e 578 return false;
2069dd75
PZ
579}
580
3451d024 581#endif /* CONFIG_NO_HZ_COMMON */
d842de87 582
ce831b38
FW
583#ifdef CONFIG_NO_HZ_FULL
584bool sched_can_stop_tick(void)
585{
1e78cdbd
RR
586 /*
587 * FIFO realtime policy runs the highest priority task. Other runnable
588 * tasks are of a lower priority. The scheduler tick does nothing.
589 */
590 if (current->policy == SCHED_FIFO)
591 return true;
592
593 /*
594 * Round-robin realtime tasks time slice with other tasks at the same
595 * realtime priority. Is this task the only one at this priority?
596 */
597 if (current->policy == SCHED_RR) {
598 struct sched_rt_entity *rt_se = &current->rt;
599
01783e0d 600 return list_is_singular(&rt_se->run_list);
1e78cdbd
RR
601 }
602
3882ec64
FW
603 /*
604 * More than one running task need preemption.
605 * nr_running update is assumed to be visible
606 * after IPI is sent from wakers.
607 */
541b8264
VK
608 if (this_rq()->nr_running > 1)
609 return false;
ce831b38 610
541b8264 611 return true;
ce831b38
FW
612}
613#endif /* CONFIG_NO_HZ_FULL */
d842de87 614
029632fb 615void sched_avg_update(struct rq *rq)
18d95a28 616{
e9e9250b
PZ
617 s64 period = sched_avg_period();
618
78becc27 619 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
620 /*
621 * Inline assembly required to prevent the compiler
622 * optimising this loop into a divmod call.
623 * See __iter_div_u64_rem() for another example of this.
624 */
625 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
626 rq->age_stamp += period;
627 rq->rt_avg /= 2;
628 }
18d95a28
PZ
629}
630
6d6bc0ad 631#endif /* CONFIG_SMP */
18d95a28 632
a790de99
PT
633#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
634 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 635/*
8277434e
PT
636 * Iterate task_group tree rooted at *from, calling @down when first entering a
637 * node and @up when leaving it for the final time.
638 *
639 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 640 */
029632fb 641int walk_tg_tree_from(struct task_group *from,
8277434e 642 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
643{
644 struct task_group *parent, *child;
eb755805 645 int ret;
c09595f6 646
8277434e
PT
647 parent = from;
648
c09595f6 649down:
eb755805
PZ
650 ret = (*down)(parent, data);
651 if (ret)
8277434e 652 goto out;
c09595f6
PZ
653 list_for_each_entry_rcu(child, &parent->children, siblings) {
654 parent = child;
655 goto down;
656
657up:
658 continue;
659 }
eb755805 660 ret = (*up)(parent, data);
8277434e
PT
661 if (ret || parent == from)
662 goto out;
c09595f6
PZ
663
664 child = parent;
665 parent = parent->parent;
666 if (parent)
667 goto up;
8277434e 668out:
eb755805 669 return ret;
c09595f6
PZ
670}
671
029632fb 672int tg_nop(struct task_group *tg, void *data)
eb755805 673{
e2b245f8 674 return 0;
eb755805 675}
18d95a28
PZ
676#endif
677
45bf76df
IM
678static void set_load_weight(struct task_struct *p)
679{
f05998d4
NR
680 int prio = p->static_prio - MAX_RT_PRIO;
681 struct load_weight *load = &p->se.load;
682
dd41f596
IM
683 /*
684 * SCHED_IDLE tasks get minimal weight:
685 */
20f9cd2a 686 if (idle_policy(p->policy)) {
c8b28116 687 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 688 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
689 return;
690 }
71f8bd46 691
ed82b8a1
AK
692 load->weight = scale_load(sched_prio_to_weight[prio]);
693 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
694}
695
1de64443 696static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 697{
a64692a3 698 update_rq_clock(rq);
1de64443
PZ
699 if (!(flags & ENQUEUE_RESTORE))
700 sched_info_queued(rq, p);
371fd7e7 701 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
702}
703
1de64443 704static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 705{
a64692a3 706 update_rq_clock(rq);
1de64443
PZ
707 if (!(flags & DEQUEUE_SAVE))
708 sched_info_dequeued(rq, p);
371fd7e7 709 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
710}
711
029632fb 712void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
713{
714 if (task_contributes_to_load(p))
715 rq->nr_uninterruptible--;
716
371fd7e7 717 enqueue_task(rq, p, flags);
1e3c88bd
PZ
718}
719
029632fb 720void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
721{
722 if (task_contributes_to_load(p))
723 rq->nr_uninterruptible++;
724
371fd7e7 725 dequeue_task(rq, p, flags);
1e3c88bd
PZ
726}
727
fe44d621 728static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 729{
095c0aa8
GC
730/*
731 * In theory, the compile should just see 0 here, and optimize out the call
732 * to sched_rt_avg_update. But I don't trust it...
733 */
734#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
735 s64 steal = 0, irq_delta = 0;
736#endif
737#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 738 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
739
740 /*
741 * Since irq_time is only updated on {soft,}irq_exit, we might run into
742 * this case when a previous update_rq_clock() happened inside a
743 * {soft,}irq region.
744 *
745 * When this happens, we stop ->clock_task and only update the
746 * prev_irq_time stamp to account for the part that fit, so that a next
747 * update will consume the rest. This ensures ->clock_task is
748 * monotonic.
749 *
750 * It does however cause some slight miss-attribution of {soft,}irq
751 * time, a more accurate solution would be to update the irq_time using
752 * the current rq->clock timestamp, except that would require using
753 * atomic ops.
754 */
755 if (irq_delta > delta)
756 irq_delta = delta;
757
758 rq->prev_irq_time += irq_delta;
759 delta -= irq_delta;
095c0aa8
GC
760#endif
761#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 762 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
763 steal = paravirt_steal_clock(cpu_of(rq));
764 steal -= rq->prev_steal_time_rq;
765
766 if (unlikely(steal > delta))
767 steal = delta;
768
095c0aa8 769 rq->prev_steal_time_rq += steal;
095c0aa8
GC
770 delta -= steal;
771 }
772#endif
773
fe44d621
PZ
774 rq->clock_task += delta;
775
095c0aa8 776#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 777 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
778 sched_rt_avg_update(rq, irq_delta + steal);
779#endif
aa483808
VP
780}
781
34f971f6
PZ
782void sched_set_stop_task(int cpu, struct task_struct *stop)
783{
784 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
785 struct task_struct *old_stop = cpu_rq(cpu)->stop;
786
787 if (stop) {
788 /*
789 * Make it appear like a SCHED_FIFO task, its something
790 * userspace knows about and won't get confused about.
791 *
792 * Also, it will make PI more or less work without too
793 * much confusion -- but then, stop work should not
794 * rely on PI working anyway.
795 */
796 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
797
798 stop->sched_class = &stop_sched_class;
799 }
800
801 cpu_rq(cpu)->stop = stop;
802
803 if (old_stop) {
804 /*
805 * Reset it back to a normal scheduling class so that
806 * it can die in pieces.
807 */
808 old_stop->sched_class = &rt_sched_class;
809 }
810}
811
14531189 812/*
dd41f596 813 * __normal_prio - return the priority that is based on the static prio
14531189 814 */
14531189
IM
815static inline int __normal_prio(struct task_struct *p)
816{
dd41f596 817 return p->static_prio;
14531189
IM
818}
819
b29739f9
IM
820/*
821 * Calculate the expected normal priority: i.e. priority
822 * without taking RT-inheritance into account. Might be
823 * boosted by interactivity modifiers. Changes upon fork,
824 * setprio syscalls, and whenever the interactivity
825 * estimator recalculates.
826 */
36c8b586 827static inline int normal_prio(struct task_struct *p)
b29739f9
IM
828{
829 int prio;
830
aab03e05
DF
831 if (task_has_dl_policy(p))
832 prio = MAX_DL_PRIO-1;
833 else if (task_has_rt_policy(p))
b29739f9
IM
834 prio = MAX_RT_PRIO-1 - p->rt_priority;
835 else
836 prio = __normal_prio(p);
837 return prio;
838}
839
840/*
841 * Calculate the current priority, i.e. the priority
842 * taken into account by the scheduler. This value might
843 * be boosted by RT tasks, or might be boosted by
844 * interactivity modifiers. Will be RT if the task got
845 * RT-boosted. If not then it returns p->normal_prio.
846 */
36c8b586 847static int effective_prio(struct task_struct *p)
b29739f9
IM
848{
849 p->normal_prio = normal_prio(p);
850 /*
851 * If we are RT tasks or we were boosted to RT priority,
852 * keep the priority unchanged. Otherwise, update priority
853 * to the normal priority:
854 */
855 if (!rt_prio(p->prio))
856 return p->normal_prio;
857 return p->prio;
858}
859
1da177e4
LT
860/**
861 * task_curr - is this task currently executing on a CPU?
862 * @p: the task in question.
e69f6186
YB
863 *
864 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 865 */
36c8b586 866inline int task_curr(const struct task_struct *p)
1da177e4
LT
867{
868 return cpu_curr(task_cpu(p)) == p;
869}
870
67dfa1b7 871/*
4c9a4bc8
PZ
872 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
873 * use the balance_callback list if you want balancing.
874 *
875 * this means any call to check_class_changed() must be followed by a call to
876 * balance_callback().
67dfa1b7 877 */
cb469845
SR
878static inline void check_class_changed(struct rq *rq, struct task_struct *p,
879 const struct sched_class *prev_class,
da7a735e 880 int oldprio)
cb469845
SR
881{
882 if (prev_class != p->sched_class) {
883 if (prev_class->switched_from)
da7a735e 884 prev_class->switched_from(rq, p);
4c9a4bc8 885
da7a735e 886 p->sched_class->switched_to(rq, p);
2d3d891d 887 } else if (oldprio != p->prio || dl_task(p))
da7a735e 888 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
889}
890
029632fb 891void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
892{
893 const struct sched_class *class;
894
895 if (p->sched_class == rq->curr->sched_class) {
896 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
897 } else {
898 for_each_class(class) {
899 if (class == rq->curr->sched_class)
900 break;
901 if (class == p->sched_class) {
8875125e 902 resched_curr(rq);
1e5a7405
PZ
903 break;
904 }
905 }
906 }
907
908 /*
909 * A queue event has occurred, and we're going to schedule. In
910 * this case, we can save a useless back to back clock update.
911 */
da0c1e65 912 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 913 rq_clock_skip_update(rq, true);
1e5a7405
PZ
914}
915
1da177e4 916#ifdef CONFIG_SMP
5cc389bc
PZ
917/*
918 * This is how migration works:
919 *
920 * 1) we invoke migration_cpu_stop() on the target CPU using
921 * stop_one_cpu().
922 * 2) stopper starts to run (implicitly forcing the migrated thread
923 * off the CPU)
924 * 3) it checks whether the migrated task is still in the wrong runqueue.
925 * 4) if it's in the wrong runqueue then the migration thread removes
926 * it and puts it into the right queue.
927 * 5) stopper completes and stop_one_cpu() returns and the migration
928 * is done.
929 */
930
931/*
932 * move_queued_task - move a queued task to new rq.
933 *
934 * Returns (locked) new rq. Old rq's lock is released.
935 */
5e16bbc2 936static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 937{
5cc389bc
PZ
938 lockdep_assert_held(&rq->lock);
939
5cc389bc 940 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 941 dequeue_task(rq, p, 0);
5cc389bc
PZ
942 set_task_cpu(p, new_cpu);
943 raw_spin_unlock(&rq->lock);
944
945 rq = cpu_rq(new_cpu);
946
947 raw_spin_lock(&rq->lock);
948 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 949 enqueue_task(rq, p, 0);
3ea94de1 950 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
951 check_preempt_curr(rq, p, 0);
952
953 return rq;
954}
955
956struct migration_arg {
957 struct task_struct *task;
958 int dest_cpu;
959};
960
961/*
962 * Move (not current) task off this cpu, onto dest cpu. We're doing
963 * this because either it can't run here any more (set_cpus_allowed()
964 * away from this CPU, or CPU going down), or because we're
965 * attempting to rebalance this task on exec (sched_exec).
966 *
967 * So we race with normal scheduler movements, but that's OK, as long
968 * as the task is no longer on this CPU.
5cc389bc 969 */
5e16bbc2 970static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 971{
5cc389bc 972 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 973 return rq;
5cc389bc
PZ
974
975 /* Affinity changed (again). */
976 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 977 return rq;
5cc389bc 978
5e16bbc2
PZ
979 rq = move_queued_task(rq, p, dest_cpu);
980
981 return rq;
5cc389bc
PZ
982}
983
984/*
985 * migration_cpu_stop - this will be executed by a highprio stopper thread
986 * and performs thread migration by bumping thread off CPU then
987 * 'pushing' onto another runqueue.
988 */
989static int migration_cpu_stop(void *data)
990{
991 struct migration_arg *arg = data;
5e16bbc2
PZ
992 struct task_struct *p = arg->task;
993 struct rq *rq = this_rq();
5cc389bc
PZ
994
995 /*
996 * The original target cpu might have gone down and we might
997 * be on another cpu but it doesn't matter.
998 */
999 local_irq_disable();
1000 /*
1001 * We need to explicitly wake pending tasks before running
1002 * __migrate_task() such that we will not miss enforcing cpus_allowed
1003 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1004 */
1005 sched_ttwu_pending();
5e16bbc2
PZ
1006
1007 raw_spin_lock(&p->pi_lock);
1008 raw_spin_lock(&rq->lock);
1009 /*
1010 * If task_rq(p) != rq, it cannot be migrated here, because we're
1011 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1012 * we're holding p->pi_lock.
1013 */
1014 if (task_rq(p) == rq && task_on_rq_queued(p))
1015 rq = __migrate_task(rq, p, arg->dest_cpu);
1016 raw_spin_unlock(&rq->lock);
1017 raw_spin_unlock(&p->pi_lock);
1018
5cc389bc
PZ
1019 local_irq_enable();
1020 return 0;
1021}
1022
c5b28038
PZ
1023/*
1024 * sched_class::set_cpus_allowed must do the below, but is not required to
1025 * actually call this function.
1026 */
1027void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1028{
5cc389bc
PZ
1029 cpumask_copy(&p->cpus_allowed, new_mask);
1030 p->nr_cpus_allowed = cpumask_weight(new_mask);
1031}
1032
c5b28038
PZ
1033void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1034{
6c37067e
PZ
1035 struct rq *rq = task_rq(p);
1036 bool queued, running;
1037
c5b28038 1038 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1039
1040 queued = task_on_rq_queued(p);
1041 running = task_current(rq, p);
1042
1043 if (queued) {
1044 /*
1045 * Because __kthread_bind() calls this on blocked tasks without
1046 * holding rq->lock.
1047 */
1048 lockdep_assert_held(&rq->lock);
1de64443 1049 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1050 }
1051 if (running)
1052 put_prev_task(rq, p);
1053
c5b28038 1054 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1055
1056 if (running)
1057 p->sched_class->set_curr_task(rq);
1058 if (queued)
1de64443 1059 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1060}
1061
5cc389bc
PZ
1062/*
1063 * Change a given task's CPU affinity. Migrate the thread to a
1064 * proper CPU and schedule it away if the CPU it's executing on
1065 * is removed from the allowed bitmask.
1066 *
1067 * NOTE: the caller must have a valid reference to the task, the
1068 * task must not exit() & deallocate itself prematurely. The
1069 * call is not atomic; no spinlocks may be held.
1070 */
25834c73
PZ
1071static int __set_cpus_allowed_ptr(struct task_struct *p,
1072 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1073{
1074 unsigned long flags;
1075 struct rq *rq;
1076 unsigned int dest_cpu;
1077 int ret = 0;
1078
1079 rq = task_rq_lock(p, &flags);
1080
25834c73
PZ
1081 /*
1082 * Must re-check here, to close a race against __kthread_bind(),
1083 * sched_setaffinity() is not guaranteed to observe the flag.
1084 */
1085 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1086 ret = -EINVAL;
1087 goto out;
1088 }
1089
5cc389bc
PZ
1090 if (cpumask_equal(&p->cpus_allowed, new_mask))
1091 goto out;
1092
1093 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1094 ret = -EINVAL;
1095 goto out;
1096 }
1097
1098 do_set_cpus_allowed(p, new_mask);
1099
1100 /* Can the task run on the task's current CPU? If so, we're done */
1101 if (cpumask_test_cpu(task_cpu(p), new_mask))
1102 goto out;
1103
1104 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1105 if (task_running(rq, p) || p->state == TASK_WAKING) {
1106 struct migration_arg arg = { p, dest_cpu };
1107 /* Need help from migration thread: drop lock and wait. */
1108 task_rq_unlock(rq, p, &flags);
1109 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1110 tlb_migrate_finish(p->mm);
1111 return 0;
cbce1a68
PZ
1112 } else if (task_on_rq_queued(p)) {
1113 /*
1114 * OK, since we're going to drop the lock immediately
1115 * afterwards anyway.
1116 */
1117 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1118 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1119 lockdep_pin_lock(&rq->lock);
1120 }
5cc389bc
PZ
1121out:
1122 task_rq_unlock(rq, p, &flags);
1123
1124 return ret;
1125}
25834c73
PZ
1126
1127int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1128{
1129 return __set_cpus_allowed_ptr(p, new_mask, false);
1130}
5cc389bc
PZ
1131EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1132
dd41f596 1133void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1134{
e2912009
PZ
1135#ifdef CONFIG_SCHED_DEBUG
1136 /*
1137 * We should never call set_task_cpu() on a blocked task,
1138 * ttwu() will sort out the placement.
1139 */
077614ee 1140 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1141 !p->on_rq);
0122ec5b 1142
3ea94de1
JP
1143 /*
1144 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1145 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1146 * time relying on p->on_rq.
1147 */
1148 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1149 p->sched_class == &fair_sched_class &&
1150 (p->on_rq && !task_on_rq_migrating(p)));
1151
0122ec5b 1152#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1153 /*
1154 * The caller should hold either p->pi_lock or rq->lock, when changing
1155 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1156 *
1157 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1158 * see task_group().
6c6c54e1
PZ
1159 *
1160 * Furthermore, all task_rq users should acquire both locks, see
1161 * task_rq_lock().
1162 */
0122ec5b
PZ
1163 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1164 lockdep_is_held(&task_rq(p)->lock)));
1165#endif
e2912009
PZ
1166#endif
1167
de1d7286 1168 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1169
0c69774e 1170 if (task_cpu(p) != new_cpu) {
0a74bef8 1171 if (p->sched_class->migrate_task_rq)
5a4fd036 1172 p->sched_class->migrate_task_rq(p);
0c69774e 1173 p->se.nr_migrations++;
ff303e66 1174 perf_event_task_migrate(p);
0c69774e 1175 }
dd41f596
IM
1176
1177 __set_task_cpu(p, new_cpu);
c65cc870
IM
1178}
1179
ac66f547
PZ
1180static void __migrate_swap_task(struct task_struct *p, int cpu)
1181{
da0c1e65 1182 if (task_on_rq_queued(p)) {
ac66f547
PZ
1183 struct rq *src_rq, *dst_rq;
1184
1185 src_rq = task_rq(p);
1186 dst_rq = cpu_rq(cpu);
1187
3ea94de1 1188 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1189 deactivate_task(src_rq, p, 0);
1190 set_task_cpu(p, cpu);
1191 activate_task(dst_rq, p, 0);
3ea94de1 1192 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1193 check_preempt_curr(dst_rq, p, 0);
1194 } else {
1195 /*
1196 * Task isn't running anymore; make it appear like we migrated
1197 * it before it went to sleep. This means on wakeup we make the
1198 * previous cpu our targer instead of where it really is.
1199 */
1200 p->wake_cpu = cpu;
1201 }
1202}
1203
1204struct migration_swap_arg {
1205 struct task_struct *src_task, *dst_task;
1206 int src_cpu, dst_cpu;
1207};
1208
1209static int migrate_swap_stop(void *data)
1210{
1211 struct migration_swap_arg *arg = data;
1212 struct rq *src_rq, *dst_rq;
1213 int ret = -EAGAIN;
1214
62694cd5
PZ
1215 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1216 return -EAGAIN;
1217
ac66f547
PZ
1218 src_rq = cpu_rq(arg->src_cpu);
1219 dst_rq = cpu_rq(arg->dst_cpu);
1220
74602315
PZ
1221 double_raw_lock(&arg->src_task->pi_lock,
1222 &arg->dst_task->pi_lock);
ac66f547 1223 double_rq_lock(src_rq, dst_rq);
62694cd5 1224
ac66f547
PZ
1225 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1226 goto unlock;
1227
1228 if (task_cpu(arg->src_task) != arg->src_cpu)
1229 goto unlock;
1230
1231 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1232 goto unlock;
1233
1234 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1235 goto unlock;
1236
1237 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1238 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1239
1240 ret = 0;
1241
1242unlock:
1243 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1244 raw_spin_unlock(&arg->dst_task->pi_lock);
1245 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1246
1247 return ret;
1248}
1249
1250/*
1251 * Cross migrate two tasks
1252 */
1253int migrate_swap(struct task_struct *cur, struct task_struct *p)
1254{
1255 struct migration_swap_arg arg;
1256 int ret = -EINVAL;
1257
ac66f547
PZ
1258 arg = (struct migration_swap_arg){
1259 .src_task = cur,
1260 .src_cpu = task_cpu(cur),
1261 .dst_task = p,
1262 .dst_cpu = task_cpu(p),
1263 };
1264
1265 if (arg.src_cpu == arg.dst_cpu)
1266 goto out;
1267
6acce3ef
PZ
1268 /*
1269 * These three tests are all lockless; this is OK since all of them
1270 * will be re-checked with proper locks held further down the line.
1271 */
ac66f547
PZ
1272 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1273 goto out;
1274
1275 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1276 goto out;
1277
1278 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1279 goto out;
1280
286549dc 1281 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1282 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1283
1284out:
ac66f547
PZ
1285 return ret;
1286}
1287
1da177e4
LT
1288/*
1289 * wait_task_inactive - wait for a thread to unschedule.
1290 *
85ba2d86
RM
1291 * If @match_state is nonzero, it's the @p->state value just checked and
1292 * not expected to change. If it changes, i.e. @p might have woken up,
1293 * then return zero. When we succeed in waiting for @p to be off its CPU,
1294 * we return a positive number (its total switch count). If a second call
1295 * a short while later returns the same number, the caller can be sure that
1296 * @p has remained unscheduled the whole time.
1297 *
1da177e4
LT
1298 * The caller must ensure that the task *will* unschedule sometime soon,
1299 * else this function might spin for a *long* time. This function can't
1300 * be called with interrupts off, or it may introduce deadlock with
1301 * smp_call_function() if an IPI is sent by the same process we are
1302 * waiting to become inactive.
1303 */
85ba2d86 1304unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1305{
1306 unsigned long flags;
da0c1e65 1307 int running, queued;
85ba2d86 1308 unsigned long ncsw;
70b97a7f 1309 struct rq *rq;
1da177e4 1310
3a5c359a
AK
1311 for (;;) {
1312 /*
1313 * We do the initial early heuristics without holding
1314 * any task-queue locks at all. We'll only try to get
1315 * the runqueue lock when things look like they will
1316 * work out!
1317 */
1318 rq = task_rq(p);
fa490cfd 1319
3a5c359a
AK
1320 /*
1321 * If the task is actively running on another CPU
1322 * still, just relax and busy-wait without holding
1323 * any locks.
1324 *
1325 * NOTE! Since we don't hold any locks, it's not
1326 * even sure that "rq" stays as the right runqueue!
1327 * But we don't care, since "task_running()" will
1328 * return false if the runqueue has changed and p
1329 * is actually now running somewhere else!
1330 */
85ba2d86
RM
1331 while (task_running(rq, p)) {
1332 if (match_state && unlikely(p->state != match_state))
1333 return 0;
3a5c359a 1334 cpu_relax();
85ba2d86 1335 }
fa490cfd 1336
3a5c359a
AK
1337 /*
1338 * Ok, time to look more closely! We need the rq
1339 * lock now, to be *sure*. If we're wrong, we'll
1340 * just go back and repeat.
1341 */
1342 rq = task_rq_lock(p, &flags);
27a9da65 1343 trace_sched_wait_task(p);
3a5c359a 1344 running = task_running(rq, p);
da0c1e65 1345 queued = task_on_rq_queued(p);
85ba2d86 1346 ncsw = 0;
f31e11d8 1347 if (!match_state || p->state == match_state)
93dcf55f 1348 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1349 task_rq_unlock(rq, p, &flags);
fa490cfd 1350
85ba2d86
RM
1351 /*
1352 * If it changed from the expected state, bail out now.
1353 */
1354 if (unlikely(!ncsw))
1355 break;
1356
3a5c359a
AK
1357 /*
1358 * Was it really running after all now that we
1359 * checked with the proper locks actually held?
1360 *
1361 * Oops. Go back and try again..
1362 */
1363 if (unlikely(running)) {
1364 cpu_relax();
1365 continue;
1366 }
fa490cfd 1367
3a5c359a
AK
1368 /*
1369 * It's not enough that it's not actively running,
1370 * it must be off the runqueue _entirely_, and not
1371 * preempted!
1372 *
80dd99b3 1373 * So if it was still runnable (but just not actively
3a5c359a
AK
1374 * running right now), it's preempted, and we should
1375 * yield - it could be a while.
1376 */
da0c1e65 1377 if (unlikely(queued)) {
8eb90c30
TG
1378 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1379
1380 set_current_state(TASK_UNINTERRUPTIBLE);
1381 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1382 continue;
1383 }
fa490cfd 1384
3a5c359a
AK
1385 /*
1386 * Ahh, all good. It wasn't running, and it wasn't
1387 * runnable, which means that it will never become
1388 * running in the future either. We're all done!
1389 */
1390 break;
1391 }
85ba2d86
RM
1392
1393 return ncsw;
1da177e4
LT
1394}
1395
1396/***
1397 * kick_process - kick a running thread to enter/exit the kernel
1398 * @p: the to-be-kicked thread
1399 *
1400 * Cause a process which is running on another CPU to enter
1401 * kernel-mode, without any delay. (to get signals handled.)
1402 *
25985edc 1403 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1404 * because all it wants to ensure is that the remote task enters
1405 * the kernel. If the IPI races and the task has been migrated
1406 * to another CPU then no harm is done and the purpose has been
1407 * achieved as well.
1408 */
36c8b586 1409void kick_process(struct task_struct *p)
1da177e4
LT
1410{
1411 int cpu;
1412
1413 preempt_disable();
1414 cpu = task_cpu(p);
1415 if ((cpu != smp_processor_id()) && task_curr(p))
1416 smp_send_reschedule(cpu);
1417 preempt_enable();
1418}
b43e3521 1419EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1420
30da688e 1421/*
013fdb80 1422 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1423 */
5da9a0fb
PZ
1424static int select_fallback_rq(int cpu, struct task_struct *p)
1425{
aa00d89c
TC
1426 int nid = cpu_to_node(cpu);
1427 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1428 enum { cpuset, possible, fail } state = cpuset;
1429 int dest_cpu;
5da9a0fb 1430
aa00d89c
TC
1431 /*
1432 * If the node that the cpu is on has been offlined, cpu_to_node()
1433 * will return -1. There is no cpu on the node, and we should
1434 * select the cpu on the other node.
1435 */
1436 if (nid != -1) {
1437 nodemask = cpumask_of_node(nid);
1438
1439 /* Look for allowed, online CPU in same node. */
1440 for_each_cpu(dest_cpu, nodemask) {
1441 if (!cpu_online(dest_cpu))
1442 continue;
1443 if (!cpu_active(dest_cpu))
1444 continue;
1445 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1446 return dest_cpu;
1447 }
2baab4e9 1448 }
5da9a0fb 1449
2baab4e9
PZ
1450 for (;;) {
1451 /* Any allowed, online CPU? */
e3831edd 1452 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1453 if (!cpu_online(dest_cpu))
1454 continue;
1455 if (!cpu_active(dest_cpu))
1456 continue;
1457 goto out;
1458 }
5da9a0fb 1459
e73e85f0 1460 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1461 switch (state) {
1462 case cpuset:
e73e85f0
ON
1463 if (IS_ENABLED(CONFIG_CPUSETS)) {
1464 cpuset_cpus_allowed_fallback(p);
1465 state = possible;
1466 break;
1467 }
1468 /* fall-through */
2baab4e9
PZ
1469 case possible:
1470 do_set_cpus_allowed(p, cpu_possible_mask);
1471 state = fail;
1472 break;
1473
1474 case fail:
1475 BUG();
1476 break;
1477 }
1478 }
1479
1480out:
1481 if (state != cpuset) {
1482 /*
1483 * Don't tell them about moving exiting tasks or
1484 * kernel threads (both mm NULL), since they never
1485 * leave kernel.
1486 */
1487 if (p->mm && printk_ratelimit()) {
aac74dc4 1488 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1489 task_pid_nr(p), p->comm, cpu);
1490 }
5da9a0fb
PZ
1491 }
1492
1493 return dest_cpu;
1494}
1495
e2912009 1496/*
013fdb80 1497 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1498 */
970b13ba 1499static inline
ac66f547 1500int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1501{
cbce1a68
PZ
1502 lockdep_assert_held(&p->pi_lock);
1503
6c1d9410
WL
1504 if (p->nr_cpus_allowed > 1)
1505 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1506
1507 /*
1508 * In order not to call set_task_cpu() on a blocking task we need
1509 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1510 * cpu.
1511 *
1512 * Since this is common to all placement strategies, this lives here.
1513 *
1514 * [ this allows ->select_task() to simply return task_cpu(p) and
1515 * not worry about this generic constraint ]
1516 */
fa17b507 1517 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1518 !cpu_online(cpu)))
5da9a0fb 1519 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1520
1521 return cpu;
970b13ba 1522}
09a40af5
MG
1523
1524static void update_avg(u64 *avg, u64 sample)
1525{
1526 s64 diff = sample - *avg;
1527 *avg += diff >> 3;
1528}
25834c73
PZ
1529
1530#else
1531
1532static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1533 const struct cpumask *new_mask, bool check)
1534{
1535 return set_cpus_allowed_ptr(p, new_mask);
1536}
1537
5cc389bc 1538#endif /* CONFIG_SMP */
970b13ba 1539
d7c01d27 1540static void
b84cb5df 1541ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1542{
d7c01d27 1543#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1544 struct rq *rq = this_rq();
1545
d7c01d27
PZ
1546#ifdef CONFIG_SMP
1547 int this_cpu = smp_processor_id();
1548
1549 if (cpu == this_cpu) {
1550 schedstat_inc(rq, ttwu_local);
1551 schedstat_inc(p, se.statistics.nr_wakeups_local);
1552 } else {
1553 struct sched_domain *sd;
1554
1555 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1556 rcu_read_lock();
d7c01d27
PZ
1557 for_each_domain(this_cpu, sd) {
1558 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1559 schedstat_inc(sd, ttwu_wake_remote);
1560 break;
1561 }
1562 }
057f3fad 1563 rcu_read_unlock();
d7c01d27 1564 }
f339b9dc
PZ
1565
1566 if (wake_flags & WF_MIGRATED)
1567 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1568
d7c01d27
PZ
1569#endif /* CONFIG_SMP */
1570
1571 schedstat_inc(rq, ttwu_count);
9ed3811a 1572 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1573
1574 if (wake_flags & WF_SYNC)
9ed3811a 1575 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1576
d7c01d27
PZ
1577#endif /* CONFIG_SCHEDSTATS */
1578}
1579
1de64443 1580static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1581{
9ed3811a 1582 activate_task(rq, p, en_flags);
da0c1e65 1583 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1584
1585 /* if a worker is waking up, notify workqueue */
1586 if (p->flags & PF_WQ_WORKER)
1587 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1588}
1589
23f41eeb
PZ
1590/*
1591 * Mark the task runnable and perform wakeup-preemption.
1592 */
89363381 1593static void
23f41eeb 1594ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1595{
9ed3811a 1596 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1597 p->state = TASK_RUNNING;
fbd705a0
PZ
1598 trace_sched_wakeup(p);
1599
9ed3811a 1600#ifdef CONFIG_SMP
4c9a4bc8
PZ
1601 if (p->sched_class->task_woken) {
1602 /*
cbce1a68
PZ
1603 * Our task @p is fully woken up and running; so its safe to
1604 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1605 */
cbce1a68 1606 lockdep_unpin_lock(&rq->lock);
9ed3811a 1607 p->sched_class->task_woken(rq, p);
cbce1a68 1608 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1609 }
9ed3811a 1610
e69c6341 1611 if (rq->idle_stamp) {
78becc27 1612 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1613 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1614
abfafa54
JL
1615 update_avg(&rq->avg_idle, delta);
1616
1617 if (rq->avg_idle > max)
9ed3811a 1618 rq->avg_idle = max;
abfafa54 1619
9ed3811a
TH
1620 rq->idle_stamp = 0;
1621 }
1622#endif
1623}
1624
c05fbafb
PZ
1625static void
1626ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1627{
cbce1a68
PZ
1628 lockdep_assert_held(&rq->lock);
1629
c05fbafb
PZ
1630#ifdef CONFIG_SMP
1631 if (p->sched_contributes_to_load)
1632 rq->nr_uninterruptible--;
1633#endif
1634
1635 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1636 ttwu_do_wakeup(rq, p, wake_flags);
1637}
1638
1639/*
1640 * Called in case the task @p isn't fully descheduled from its runqueue,
1641 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1642 * since all we need to do is flip p->state to TASK_RUNNING, since
1643 * the task is still ->on_rq.
1644 */
1645static int ttwu_remote(struct task_struct *p, int wake_flags)
1646{
1647 struct rq *rq;
1648 int ret = 0;
1649
1650 rq = __task_rq_lock(p);
da0c1e65 1651 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1652 /* check_preempt_curr() may use rq clock */
1653 update_rq_clock(rq);
c05fbafb
PZ
1654 ttwu_do_wakeup(rq, p, wake_flags);
1655 ret = 1;
1656 }
1657 __task_rq_unlock(rq);
1658
1659 return ret;
1660}
1661
317f3941 1662#ifdef CONFIG_SMP
e3baac47 1663void sched_ttwu_pending(void)
317f3941
PZ
1664{
1665 struct rq *rq = this_rq();
fa14ff4a
PZ
1666 struct llist_node *llist = llist_del_all(&rq->wake_list);
1667 struct task_struct *p;
e3baac47 1668 unsigned long flags;
317f3941 1669
e3baac47
PZ
1670 if (!llist)
1671 return;
1672
1673 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1674 lockdep_pin_lock(&rq->lock);
317f3941 1675
fa14ff4a
PZ
1676 while (llist) {
1677 p = llist_entry(llist, struct task_struct, wake_entry);
1678 llist = llist_next(llist);
317f3941
PZ
1679 ttwu_do_activate(rq, p, 0);
1680 }
1681
cbce1a68 1682 lockdep_unpin_lock(&rq->lock);
e3baac47 1683 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1684}
1685
1686void scheduler_ipi(void)
1687{
f27dde8d
PZ
1688 /*
1689 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1690 * TIF_NEED_RESCHED remotely (for the first time) will also send
1691 * this IPI.
1692 */
8cb75e0c 1693 preempt_fold_need_resched();
f27dde8d 1694
fd2ac4f4 1695 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1696 return;
1697
1698 /*
1699 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1700 * traditionally all their work was done from the interrupt return
1701 * path. Now that we actually do some work, we need to make sure
1702 * we do call them.
1703 *
1704 * Some archs already do call them, luckily irq_enter/exit nest
1705 * properly.
1706 *
1707 * Arguably we should visit all archs and update all handlers,
1708 * however a fair share of IPIs are still resched only so this would
1709 * somewhat pessimize the simple resched case.
1710 */
1711 irq_enter();
fa14ff4a 1712 sched_ttwu_pending();
ca38062e
SS
1713
1714 /*
1715 * Check if someone kicked us for doing the nohz idle load balance.
1716 */
873b4c65 1717 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1718 this_rq()->idle_balance = 1;
ca38062e 1719 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1720 }
c5d753a5 1721 irq_exit();
317f3941
PZ
1722}
1723
1724static void ttwu_queue_remote(struct task_struct *p, int cpu)
1725{
e3baac47
PZ
1726 struct rq *rq = cpu_rq(cpu);
1727
1728 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1729 if (!set_nr_if_polling(rq->idle))
1730 smp_send_reschedule(cpu);
1731 else
1732 trace_sched_wake_idle_without_ipi(cpu);
1733 }
317f3941 1734}
d6aa8f85 1735
f6be8af1
CL
1736void wake_up_if_idle(int cpu)
1737{
1738 struct rq *rq = cpu_rq(cpu);
1739 unsigned long flags;
1740
fd7de1e8
AL
1741 rcu_read_lock();
1742
1743 if (!is_idle_task(rcu_dereference(rq->curr)))
1744 goto out;
f6be8af1
CL
1745
1746 if (set_nr_if_polling(rq->idle)) {
1747 trace_sched_wake_idle_without_ipi(cpu);
1748 } else {
1749 raw_spin_lock_irqsave(&rq->lock, flags);
1750 if (is_idle_task(rq->curr))
1751 smp_send_reschedule(cpu);
1752 /* Else cpu is not in idle, do nothing here */
1753 raw_spin_unlock_irqrestore(&rq->lock, flags);
1754 }
fd7de1e8
AL
1755
1756out:
1757 rcu_read_unlock();
f6be8af1
CL
1758}
1759
39be3501 1760bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1761{
1762 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1763}
d6aa8f85 1764#endif /* CONFIG_SMP */
317f3941 1765
c05fbafb
PZ
1766static void ttwu_queue(struct task_struct *p, int cpu)
1767{
1768 struct rq *rq = cpu_rq(cpu);
1769
17d9f311 1770#if defined(CONFIG_SMP)
39be3501 1771 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1772 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1773 ttwu_queue_remote(p, cpu);
1774 return;
1775 }
1776#endif
1777
c05fbafb 1778 raw_spin_lock(&rq->lock);
cbce1a68 1779 lockdep_pin_lock(&rq->lock);
c05fbafb 1780 ttwu_do_activate(rq, p, 0);
cbce1a68 1781 lockdep_unpin_lock(&rq->lock);
c05fbafb 1782 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1783}
1784
8643cda5
PZ
1785/*
1786 * Notes on Program-Order guarantees on SMP systems.
1787 *
1788 * MIGRATION
1789 *
1790 * The basic program-order guarantee on SMP systems is that when a task [t]
1791 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1792 * execution on its new cpu [c1].
1793 *
1794 * For migration (of runnable tasks) this is provided by the following means:
1795 *
1796 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1797 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1798 * rq(c1)->lock (if not at the same time, then in that order).
1799 * C) LOCK of the rq(c1)->lock scheduling in task
1800 *
1801 * Transitivity guarantees that B happens after A and C after B.
1802 * Note: we only require RCpc transitivity.
1803 * Note: the cpu doing B need not be c0 or c1
1804 *
1805 * Example:
1806 *
1807 * CPU0 CPU1 CPU2
1808 *
1809 * LOCK rq(0)->lock
1810 * sched-out X
1811 * sched-in Y
1812 * UNLOCK rq(0)->lock
1813 *
1814 * LOCK rq(0)->lock // orders against CPU0
1815 * dequeue X
1816 * UNLOCK rq(0)->lock
1817 *
1818 * LOCK rq(1)->lock
1819 * enqueue X
1820 * UNLOCK rq(1)->lock
1821 *
1822 * LOCK rq(1)->lock // orders against CPU2
1823 * sched-out Z
1824 * sched-in X
1825 * UNLOCK rq(1)->lock
1826 *
1827 *
1828 * BLOCKING -- aka. SLEEP + WAKEUP
1829 *
1830 * For blocking we (obviously) need to provide the same guarantee as for
1831 * migration. However the means are completely different as there is no lock
1832 * chain to provide order. Instead we do:
1833 *
1834 * 1) smp_store_release(X->on_cpu, 0)
1835 * 2) smp_cond_acquire(!X->on_cpu)
1836 *
1837 * Example:
1838 *
1839 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1840 *
1841 * LOCK rq(0)->lock LOCK X->pi_lock
1842 * dequeue X
1843 * sched-out X
1844 * smp_store_release(X->on_cpu, 0);
1845 *
1846 * smp_cond_acquire(!X->on_cpu);
1847 * X->state = WAKING
1848 * set_task_cpu(X,2)
1849 *
1850 * LOCK rq(2)->lock
1851 * enqueue X
1852 * X->state = RUNNING
1853 * UNLOCK rq(2)->lock
1854 *
1855 * LOCK rq(2)->lock // orders against CPU1
1856 * sched-out Z
1857 * sched-in X
1858 * UNLOCK rq(2)->lock
1859 *
1860 * UNLOCK X->pi_lock
1861 * UNLOCK rq(0)->lock
1862 *
1863 *
1864 * However; for wakeups there is a second guarantee we must provide, namely we
1865 * must observe the state that lead to our wakeup. That is, not only must our
1866 * task observe its own prior state, it must also observe the stores prior to
1867 * its wakeup.
1868 *
1869 * This means that any means of doing remote wakeups must order the CPU doing
1870 * the wakeup against the CPU the task is going to end up running on. This,
1871 * however, is already required for the regular Program-Order guarantee above,
1872 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1873 *
1874 */
1875
9ed3811a 1876/**
1da177e4 1877 * try_to_wake_up - wake up a thread
9ed3811a 1878 * @p: the thread to be awakened
1da177e4 1879 * @state: the mask of task states that can be woken
9ed3811a 1880 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1881 *
1882 * Put it on the run-queue if it's not already there. The "current"
1883 * thread is always on the run-queue (except when the actual
1884 * re-schedule is in progress), and as such you're allowed to do
1885 * the simpler "current->state = TASK_RUNNING" to mark yourself
1886 * runnable without the overhead of this.
1887 *
e69f6186 1888 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1889 * or @state didn't match @p's state.
1da177e4 1890 */
e4a52bcb
PZ
1891static int
1892try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1893{
1da177e4 1894 unsigned long flags;
c05fbafb 1895 int cpu, success = 0;
2398f2c6 1896
e0acd0a6
ON
1897 /*
1898 * If we are going to wake up a thread waiting for CONDITION we
1899 * need to ensure that CONDITION=1 done by the caller can not be
1900 * reordered with p->state check below. This pairs with mb() in
1901 * set_current_state() the waiting thread does.
1902 */
1903 smp_mb__before_spinlock();
013fdb80 1904 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1905 if (!(p->state & state))
1da177e4
LT
1906 goto out;
1907
fbd705a0
PZ
1908 trace_sched_waking(p);
1909
c05fbafb 1910 success = 1; /* we're going to change ->state */
1da177e4 1911 cpu = task_cpu(p);
1da177e4 1912
c05fbafb
PZ
1913 if (p->on_rq && ttwu_remote(p, wake_flags))
1914 goto stat;
1da177e4 1915
1da177e4 1916#ifdef CONFIG_SMP
ecf7d01c
PZ
1917 /*
1918 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1919 * possible to, falsely, observe p->on_cpu == 0.
1920 *
1921 * One must be running (->on_cpu == 1) in order to remove oneself
1922 * from the runqueue.
1923 *
1924 * [S] ->on_cpu = 1; [L] ->on_rq
1925 * UNLOCK rq->lock
1926 * RMB
1927 * LOCK rq->lock
1928 * [S] ->on_rq = 0; [L] ->on_cpu
1929 *
1930 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1931 * from the consecutive calls to schedule(); the first switching to our
1932 * task, the second putting it to sleep.
1933 */
1934 smp_rmb();
1935
e9c84311 1936 /*
c05fbafb
PZ
1937 * If the owning (remote) cpu is still in the middle of schedule() with
1938 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
1939 *
1940 * Pairs with the smp_store_release() in finish_lock_switch().
1941 *
1942 * This ensures that tasks getting woken will be fully ordered against
1943 * their previous state and preserve Program Order.
0970d299 1944 */
b3e0b1b6 1945 smp_cond_acquire(!p->on_cpu);
1da177e4 1946
a8e4f2ea 1947 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1948 p->state = TASK_WAKING;
e7693a36 1949
e4a52bcb 1950 if (p->sched_class->task_waking)
74f8e4b2 1951 p->sched_class->task_waking(p);
efbbd05a 1952
ac66f547 1953 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1954 if (task_cpu(p) != cpu) {
1955 wake_flags |= WF_MIGRATED;
e4a52bcb 1956 set_task_cpu(p, cpu);
f339b9dc 1957 }
1da177e4 1958#endif /* CONFIG_SMP */
1da177e4 1959
c05fbafb
PZ
1960 ttwu_queue(p, cpu);
1961stat:
cb251765
MG
1962 if (schedstat_enabled())
1963 ttwu_stat(p, cpu, wake_flags);
1da177e4 1964out:
013fdb80 1965 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1966
1967 return success;
1968}
1969
21aa9af0
TH
1970/**
1971 * try_to_wake_up_local - try to wake up a local task with rq lock held
1972 * @p: the thread to be awakened
1973 *
2acca55e 1974 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1975 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1976 * the current task.
21aa9af0
TH
1977 */
1978static void try_to_wake_up_local(struct task_struct *p)
1979{
1980 struct rq *rq = task_rq(p);
21aa9af0 1981
383efcd0
TH
1982 if (WARN_ON_ONCE(rq != this_rq()) ||
1983 WARN_ON_ONCE(p == current))
1984 return;
1985
21aa9af0
TH
1986 lockdep_assert_held(&rq->lock);
1987
2acca55e 1988 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1989 /*
1990 * This is OK, because current is on_cpu, which avoids it being
1991 * picked for load-balance and preemption/IRQs are still
1992 * disabled avoiding further scheduler activity on it and we've
1993 * not yet picked a replacement task.
1994 */
1995 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
1996 raw_spin_unlock(&rq->lock);
1997 raw_spin_lock(&p->pi_lock);
1998 raw_spin_lock(&rq->lock);
cbce1a68 1999 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2000 }
2001
21aa9af0 2002 if (!(p->state & TASK_NORMAL))
2acca55e 2003 goto out;
21aa9af0 2004
fbd705a0
PZ
2005 trace_sched_waking(p);
2006
da0c1e65 2007 if (!task_on_rq_queued(p))
d7c01d27
PZ
2008 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2009
23f41eeb 2010 ttwu_do_wakeup(rq, p, 0);
cb251765
MG
2011 if (schedstat_enabled())
2012 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2013out:
2014 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2015}
2016
50fa610a
DH
2017/**
2018 * wake_up_process - Wake up a specific process
2019 * @p: The process to be woken up.
2020 *
2021 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2022 * processes.
2023 *
2024 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2025 *
2026 * It may be assumed that this function implies a write memory barrier before
2027 * changing the task state if and only if any tasks are woken up.
2028 */
7ad5b3a5 2029int wake_up_process(struct task_struct *p)
1da177e4 2030{
9067ac85 2031 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2032}
1da177e4
LT
2033EXPORT_SYMBOL(wake_up_process);
2034
7ad5b3a5 2035int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2036{
2037 return try_to_wake_up(p, state, 0);
2038}
2039
a5e7be3b
JL
2040/*
2041 * This function clears the sched_dl_entity static params.
2042 */
2043void __dl_clear_params(struct task_struct *p)
2044{
2045 struct sched_dl_entity *dl_se = &p->dl;
2046
2047 dl_se->dl_runtime = 0;
2048 dl_se->dl_deadline = 0;
2049 dl_se->dl_period = 0;
2050 dl_se->flags = 0;
2051 dl_se->dl_bw = 0;
40767b0d
PZ
2052
2053 dl_se->dl_throttled = 0;
2054 dl_se->dl_new = 1;
2055 dl_se->dl_yielded = 0;
a5e7be3b
JL
2056}
2057
1da177e4
LT
2058/*
2059 * Perform scheduler related setup for a newly forked process p.
2060 * p is forked by current.
dd41f596
IM
2061 *
2062 * __sched_fork() is basic setup used by init_idle() too:
2063 */
5e1576ed 2064static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2065{
fd2f4419
PZ
2066 p->on_rq = 0;
2067
2068 p->se.on_rq = 0;
dd41f596
IM
2069 p->se.exec_start = 0;
2070 p->se.sum_exec_runtime = 0;
f6cf891c 2071 p->se.prev_sum_exec_runtime = 0;
6c594c21 2072 p->se.nr_migrations = 0;
da7a735e 2073 p->se.vruntime = 0;
fd2f4419 2074 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2075
ad936d86
BP
2076#ifdef CONFIG_FAIR_GROUP_SCHED
2077 p->se.cfs_rq = NULL;
2078#endif
2079
6cfb0d5d 2080#ifdef CONFIG_SCHEDSTATS
cb251765 2081 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2082 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2083#endif
476d139c 2084
aab03e05 2085 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2086 init_dl_task_timer(&p->dl);
a5e7be3b 2087 __dl_clear_params(p);
aab03e05 2088
fa717060 2089 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2090 p->rt.timeout = 0;
2091 p->rt.time_slice = sched_rr_timeslice;
2092 p->rt.on_rq = 0;
2093 p->rt.on_list = 0;
476d139c 2094
e107be36
AK
2095#ifdef CONFIG_PREEMPT_NOTIFIERS
2096 INIT_HLIST_HEAD(&p->preempt_notifiers);
2097#endif
cbee9f88
PZ
2098
2099#ifdef CONFIG_NUMA_BALANCING
2100 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2101 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2102 p->mm->numa_scan_seq = 0;
2103 }
2104
5e1576ed
RR
2105 if (clone_flags & CLONE_VM)
2106 p->numa_preferred_nid = current->numa_preferred_nid;
2107 else
2108 p->numa_preferred_nid = -1;
2109
cbee9f88
PZ
2110 p->node_stamp = 0ULL;
2111 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2112 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2113 p->numa_work.next = &p->numa_work;
44dba3d5 2114 p->numa_faults = NULL;
7e2703e6
RR
2115 p->last_task_numa_placement = 0;
2116 p->last_sum_exec_runtime = 0;
8c8a743c 2117
8c8a743c 2118 p->numa_group = NULL;
cbee9f88 2119#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2120}
2121
2a595721
SD
2122DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2123
1a687c2e 2124#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2125
1a687c2e
MG
2126void set_numabalancing_state(bool enabled)
2127{
2128 if (enabled)
2a595721 2129 static_branch_enable(&sched_numa_balancing);
1a687c2e 2130 else
2a595721 2131 static_branch_disable(&sched_numa_balancing);
1a687c2e 2132}
54a43d54
AK
2133
2134#ifdef CONFIG_PROC_SYSCTL
2135int sysctl_numa_balancing(struct ctl_table *table, int write,
2136 void __user *buffer, size_t *lenp, loff_t *ppos)
2137{
2138 struct ctl_table t;
2139 int err;
2a595721 2140 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2141
2142 if (write && !capable(CAP_SYS_ADMIN))
2143 return -EPERM;
2144
2145 t = *table;
2146 t.data = &state;
2147 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2148 if (err < 0)
2149 return err;
2150 if (write)
2151 set_numabalancing_state(state);
2152 return err;
2153}
2154#endif
2155#endif
cb251765
MG
2156
2157DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2158
2159#ifdef CONFIG_SCHEDSTATS
2160static void set_schedstats(bool enabled)
2161{
2162 if (enabled)
2163 static_branch_enable(&sched_schedstats);
2164 else
2165 static_branch_disable(&sched_schedstats);
2166}
2167
2168void force_schedstat_enabled(void)
2169{
2170 if (!schedstat_enabled()) {
2171 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2172 static_branch_enable(&sched_schedstats);
2173 }
2174}
2175
2176static int __init setup_schedstats(char *str)
2177{
2178 int ret = 0;
2179 if (!str)
2180 goto out;
2181
2182 if (!strcmp(str, "enable")) {
2183 set_schedstats(true);
2184 ret = 1;
2185 } else if (!strcmp(str, "disable")) {
2186 set_schedstats(false);
2187 ret = 1;
2188 }
2189out:
2190 if (!ret)
2191 pr_warn("Unable to parse schedstats=\n");
2192
2193 return ret;
2194}
2195__setup("schedstats=", setup_schedstats);
2196
2197#ifdef CONFIG_PROC_SYSCTL
2198int sysctl_schedstats(struct ctl_table *table, int write,
2199 void __user *buffer, size_t *lenp, loff_t *ppos)
2200{
2201 struct ctl_table t;
2202 int err;
2203 int state = static_branch_likely(&sched_schedstats);
2204
2205 if (write && !capable(CAP_SYS_ADMIN))
2206 return -EPERM;
2207
2208 t = *table;
2209 t.data = &state;
2210 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2211 if (err < 0)
2212 return err;
2213 if (write)
2214 set_schedstats(state);
2215 return err;
2216}
2217#endif
2218#endif
dd41f596
IM
2219
2220/*
2221 * fork()/clone()-time setup:
2222 */
aab03e05 2223int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2224{
0122ec5b 2225 unsigned long flags;
dd41f596
IM
2226 int cpu = get_cpu();
2227
5e1576ed 2228 __sched_fork(clone_flags, p);
06b83b5f 2229 /*
0017d735 2230 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2231 * nobody will actually run it, and a signal or other external
2232 * event cannot wake it up and insert it on the runqueue either.
2233 */
0017d735 2234 p->state = TASK_RUNNING;
dd41f596 2235
c350a04e
MG
2236 /*
2237 * Make sure we do not leak PI boosting priority to the child.
2238 */
2239 p->prio = current->normal_prio;
2240
b9dc29e7
MG
2241 /*
2242 * Revert to default priority/policy on fork if requested.
2243 */
2244 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2245 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2246 p->policy = SCHED_NORMAL;
6c697bdf 2247 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2248 p->rt_priority = 0;
2249 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2250 p->static_prio = NICE_TO_PRIO(0);
2251
2252 p->prio = p->normal_prio = __normal_prio(p);
2253 set_load_weight(p);
6c697bdf 2254
b9dc29e7
MG
2255 /*
2256 * We don't need the reset flag anymore after the fork. It has
2257 * fulfilled its duty:
2258 */
2259 p->sched_reset_on_fork = 0;
2260 }
ca94c442 2261
aab03e05
DF
2262 if (dl_prio(p->prio)) {
2263 put_cpu();
2264 return -EAGAIN;
2265 } else if (rt_prio(p->prio)) {
2266 p->sched_class = &rt_sched_class;
2267 } else {
2ddbf952 2268 p->sched_class = &fair_sched_class;
aab03e05 2269 }
b29739f9 2270
cd29fe6f
PZ
2271 if (p->sched_class->task_fork)
2272 p->sched_class->task_fork(p);
2273
86951599
PZ
2274 /*
2275 * The child is not yet in the pid-hash so no cgroup attach races,
2276 * and the cgroup is pinned to this child due to cgroup_fork()
2277 * is ran before sched_fork().
2278 *
2279 * Silence PROVE_RCU.
2280 */
0122ec5b 2281 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2282 set_task_cpu(p, cpu);
0122ec5b 2283 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2284
f6db8347 2285#ifdef CONFIG_SCHED_INFO
dd41f596 2286 if (likely(sched_info_on()))
52f17b6c 2287 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2288#endif
3ca7a440
PZ
2289#if defined(CONFIG_SMP)
2290 p->on_cpu = 0;
4866cde0 2291#endif
01028747 2292 init_task_preempt_count(p);
806c09a7 2293#ifdef CONFIG_SMP
917b627d 2294 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2295 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2296#endif
917b627d 2297
476d139c 2298 put_cpu();
aab03e05 2299 return 0;
1da177e4
LT
2300}
2301
332ac17e
DF
2302unsigned long to_ratio(u64 period, u64 runtime)
2303{
2304 if (runtime == RUNTIME_INF)
2305 return 1ULL << 20;
2306
2307 /*
2308 * Doing this here saves a lot of checks in all
2309 * the calling paths, and returning zero seems
2310 * safe for them anyway.
2311 */
2312 if (period == 0)
2313 return 0;
2314
2315 return div64_u64(runtime << 20, period);
2316}
2317
2318#ifdef CONFIG_SMP
2319inline struct dl_bw *dl_bw_of(int i)
2320{
f78f5b90
PM
2321 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2322 "sched RCU must be held");
332ac17e
DF
2323 return &cpu_rq(i)->rd->dl_bw;
2324}
2325
de212f18 2326static inline int dl_bw_cpus(int i)
332ac17e 2327{
de212f18
PZ
2328 struct root_domain *rd = cpu_rq(i)->rd;
2329 int cpus = 0;
2330
f78f5b90
PM
2331 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2332 "sched RCU must be held");
de212f18
PZ
2333 for_each_cpu_and(i, rd->span, cpu_active_mask)
2334 cpus++;
2335
2336 return cpus;
332ac17e
DF
2337}
2338#else
2339inline struct dl_bw *dl_bw_of(int i)
2340{
2341 return &cpu_rq(i)->dl.dl_bw;
2342}
2343
de212f18 2344static inline int dl_bw_cpus(int i)
332ac17e
DF
2345{
2346 return 1;
2347}
2348#endif
2349
332ac17e
DF
2350/*
2351 * We must be sure that accepting a new task (or allowing changing the
2352 * parameters of an existing one) is consistent with the bandwidth
2353 * constraints. If yes, this function also accordingly updates the currently
2354 * allocated bandwidth to reflect the new situation.
2355 *
2356 * This function is called while holding p's rq->lock.
40767b0d
PZ
2357 *
2358 * XXX we should delay bw change until the task's 0-lag point, see
2359 * __setparam_dl().
332ac17e
DF
2360 */
2361static int dl_overflow(struct task_struct *p, int policy,
2362 const struct sched_attr *attr)
2363{
2364
2365 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2366 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2367 u64 runtime = attr->sched_runtime;
2368 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2369 int cpus, err = -1;
332ac17e
DF
2370
2371 if (new_bw == p->dl.dl_bw)
2372 return 0;
2373
2374 /*
2375 * Either if a task, enters, leave, or stays -deadline but changes
2376 * its parameters, we may need to update accordingly the total
2377 * allocated bandwidth of the container.
2378 */
2379 raw_spin_lock(&dl_b->lock);
de212f18 2380 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2381 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2382 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2383 __dl_add(dl_b, new_bw);
2384 err = 0;
2385 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2386 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2387 __dl_clear(dl_b, p->dl.dl_bw);
2388 __dl_add(dl_b, new_bw);
2389 err = 0;
2390 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2391 __dl_clear(dl_b, p->dl.dl_bw);
2392 err = 0;
2393 }
2394 raw_spin_unlock(&dl_b->lock);
2395
2396 return err;
2397}
2398
2399extern void init_dl_bw(struct dl_bw *dl_b);
2400
1da177e4
LT
2401/*
2402 * wake_up_new_task - wake up a newly created task for the first time.
2403 *
2404 * This function will do some initial scheduler statistics housekeeping
2405 * that must be done for every newly created context, then puts the task
2406 * on the runqueue and wakes it.
2407 */
3e51e3ed 2408void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2409{
2410 unsigned long flags;
dd41f596 2411 struct rq *rq;
fabf318e 2412
ab2515c4 2413 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2414 /* Initialize new task's runnable average */
2415 init_entity_runnable_average(&p->se);
fabf318e
PZ
2416#ifdef CONFIG_SMP
2417 /*
2418 * Fork balancing, do it here and not earlier because:
2419 * - cpus_allowed can change in the fork path
2420 * - any previously selected cpu might disappear through hotplug
fabf318e 2421 */
ac66f547 2422 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2423#endif
2424
ab2515c4 2425 rq = __task_rq_lock(p);
cd29fe6f 2426 activate_task(rq, p, 0);
da0c1e65 2427 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2428 trace_sched_wakeup_new(p);
a7558e01 2429 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2430#ifdef CONFIG_SMP
0aaafaab
PZ
2431 if (p->sched_class->task_woken) {
2432 /*
2433 * Nothing relies on rq->lock after this, so its fine to
2434 * drop it.
2435 */
2436 lockdep_unpin_lock(&rq->lock);
efbbd05a 2437 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2438 lockdep_pin_lock(&rq->lock);
2439 }
9a897c5a 2440#endif
0122ec5b 2441 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2442}
2443
e107be36
AK
2444#ifdef CONFIG_PREEMPT_NOTIFIERS
2445
1cde2930
PZ
2446static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2447
2ecd9d29
PZ
2448void preempt_notifier_inc(void)
2449{
2450 static_key_slow_inc(&preempt_notifier_key);
2451}
2452EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2453
2454void preempt_notifier_dec(void)
2455{
2456 static_key_slow_dec(&preempt_notifier_key);
2457}
2458EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2459
e107be36 2460/**
80dd99b3 2461 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2462 * @notifier: notifier struct to register
e107be36
AK
2463 */
2464void preempt_notifier_register(struct preempt_notifier *notifier)
2465{
2ecd9d29
PZ
2466 if (!static_key_false(&preempt_notifier_key))
2467 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2468
e107be36
AK
2469 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_register);
2472
2473/**
2474 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2475 * @notifier: notifier struct to unregister
e107be36 2476 *
d84525a8 2477 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2478 */
2479void preempt_notifier_unregister(struct preempt_notifier *notifier)
2480{
2481 hlist_del(&notifier->link);
2482}
2483EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2484
1cde2930 2485static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2486{
2487 struct preempt_notifier *notifier;
e107be36 2488
b67bfe0d 2489 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2490 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2491}
2492
1cde2930
PZ
2493static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2494{
2495 if (static_key_false(&preempt_notifier_key))
2496 __fire_sched_in_preempt_notifiers(curr);
2497}
2498
e107be36 2499static void
1cde2930
PZ
2500__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2501 struct task_struct *next)
e107be36
AK
2502{
2503 struct preempt_notifier *notifier;
e107be36 2504
b67bfe0d 2505 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2506 notifier->ops->sched_out(notifier, next);
2507}
2508
1cde2930
PZ
2509static __always_inline void
2510fire_sched_out_preempt_notifiers(struct task_struct *curr,
2511 struct task_struct *next)
2512{
2513 if (static_key_false(&preempt_notifier_key))
2514 __fire_sched_out_preempt_notifiers(curr, next);
2515}
2516
6d6bc0ad 2517#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2518
1cde2930 2519static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2520{
2521}
2522
1cde2930 2523static inline void
e107be36
AK
2524fire_sched_out_preempt_notifiers(struct task_struct *curr,
2525 struct task_struct *next)
2526{
2527}
2528
6d6bc0ad 2529#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2530
4866cde0
NP
2531/**
2532 * prepare_task_switch - prepare to switch tasks
2533 * @rq: the runqueue preparing to switch
421cee29 2534 * @prev: the current task that is being switched out
4866cde0
NP
2535 * @next: the task we are going to switch to.
2536 *
2537 * This is called with the rq lock held and interrupts off. It must
2538 * be paired with a subsequent finish_task_switch after the context
2539 * switch.
2540 *
2541 * prepare_task_switch sets up locking and calls architecture specific
2542 * hooks.
2543 */
e107be36
AK
2544static inline void
2545prepare_task_switch(struct rq *rq, struct task_struct *prev,
2546 struct task_struct *next)
4866cde0 2547{
43148951 2548 sched_info_switch(rq, prev, next);
fe4b04fa 2549 perf_event_task_sched_out(prev, next);
e107be36 2550 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2551 prepare_lock_switch(rq, next);
2552 prepare_arch_switch(next);
2553}
2554
1da177e4
LT
2555/**
2556 * finish_task_switch - clean up after a task-switch
2557 * @prev: the thread we just switched away from.
2558 *
4866cde0
NP
2559 * finish_task_switch must be called after the context switch, paired
2560 * with a prepare_task_switch call before the context switch.
2561 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2562 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2563 *
2564 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2565 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2566 * with the lock held can cause deadlocks; see schedule() for
2567 * details.)
dfa50b60
ON
2568 *
2569 * The context switch have flipped the stack from under us and restored the
2570 * local variables which were saved when this task called schedule() in the
2571 * past. prev == current is still correct but we need to recalculate this_rq
2572 * because prev may have moved to another CPU.
1da177e4 2573 */
dfa50b60 2574static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2575 __releases(rq->lock)
2576{
dfa50b60 2577 struct rq *rq = this_rq();
1da177e4 2578 struct mm_struct *mm = rq->prev_mm;
55a101f8 2579 long prev_state;
1da177e4 2580
609ca066
PZ
2581 /*
2582 * The previous task will have left us with a preempt_count of 2
2583 * because it left us after:
2584 *
2585 * schedule()
2586 * preempt_disable(); // 1
2587 * __schedule()
2588 * raw_spin_lock_irq(&rq->lock) // 2
2589 *
2590 * Also, see FORK_PREEMPT_COUNT.
2591 */
e2bf1c4b
PZ
2592 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2593 "corrupted preempt_count: %s/%d/0x%x\n",
2594 current->comm, current->pid, preempt_count()))
2595 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2596
1da177e4
LT
2597 rq->prev_mm = NULL;
2598
2599 /*
2600 * A task struct has one reference for the use as "current".
c394cc9f 2601 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2602 * schedule one last time. The schedule call will never return, and
2603 * the scheduled task must drop that reference.
95913d97
PZ
2604 *
2605 * We must observe prev->state before clearing prev->on_cpu (in
2606 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2607 * running on another CPU and we could rave with its RUNNING -> DEAD
2608 * transition, resulting in a double drop.
1da177e4 2609 */
55a101f8 2610 prev_state = prev->state;
bf9fae9f 2611 vtime_task_switch(prev);
a8d757ef 2612 perf_event_task_sched_in(prev, current);
4866cde0 2613 finish_lock_switch(rq, prev);
01f23e16 2614 finish_arch_post_lock_switch();
e8fa1362 2615
e107be36 2616 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2617 if (mm)
2618 mmdrop(mm);
c394cc9f 2619 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2620 if (prev->sched_class->task_dead)
2621 prev->sched_class->task_dead(prev);
2622
c6fd91f0 2623 /*
2624 * Remove function-return probe instances associated with this
2625 * task and put them back on the free list.
9761eea8 2626 */
c6fd91f0 2627 kprobe_flush_task(prev);
1da177e4 2628 put_task_struct(prev);
c6fd91f0 2629 }
99e5ada9 2630
de734f89 2631 tick_nohz_task_switch();
dfa50b60 2632 return rq;
1da177e4
LT
2633}
2634
3f029d3c
GH
2635#ifdef CONFIG_SMP
2636
3f029d3c 2637/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2638static void __balance_callback(struct rq *rq)
3f029d3c 2639{
e3fca9e7
PZ
2640 struct callback_head *head, *next;
2641 void (*func)(struct rq *rq);
2642 unsigned long flags;
3f029d3c 2643
e3fca9e7
PZ
2644 raw_spin_lock_irqsave(&rq->lock, flags);
2645 head = rq->balance_callback;
2646 rq->balance_callback = NULL;
2647 while (head) {
2648 func = (void (*)(struct rq *))head->func;
2649 next = head->next;
2650 head->next = NULL;
2651 head = next;
3f029d3c 2652
e3fca9e7 2653 func(rq);
3f029d3c 2654 }
e3fca9e7
PZ
2655 raw_spin_unlock_irqrestore(&rq->lock, flags);
2656}
2657
2658static inline void balance_callback(struct rq *rq)
2659{
2660 if (unlikely(rq->balance_callback))
2661 __balance_callback(rq);
3f029d3c
GH
2662}
2663
2664#else
da19ab51 2665
e3fca9e7 2666static inline void balance_callback(struct rq *rq)
3f029d3c 2667{
1da177e4
LT
2668}
2669
3f029d3c
GH
2670#endif
2671
1da177e4
LT
2672/**
2673 * schedule_tail - first thing a freshly forked thread must call.
2674 * @prev: the thread we just switched away from.
2675 */
722a9f92 2676asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2677 __releases(rq->lock)
2678{
1a43a14a 2679 struct rq *rq;
da19ab51 2680
609ca066
PZ
2681 /*
2682 * New tasks start with FORK_PREEMPT_COUNT, see there and
2683 * finish_task_switch() for details.
2684 *
2685 * finish_task_switch() will drop rq->lock() and lower preempt_count
2686 * and the preempt_enable() will end up enabling preemption (on
2687 * PREEMPT_COUNT kernels).
2688 */
2689
dfa50b60 2690 rq = finish_task_switch(prev);
e3fca9e7 2691 balance_callback(rq);
1a43a14a 2692 preempt_enable();
70b97a7f 2693
1da177e4 2694 if (current->set_child_tid)
b488893a 2695 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2696}
2697
2698/*
dfa50b60 2699 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2700 */
dfa50b60 2701static inline struct rq *
70b97a7f 2702context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2703 struct task_struct *next)
1da177e4 2704{
dd41f596 2705 struct mm_struct *mm, *oldmm;
1da177e4 2706
e107be36 2707 prepare_task_switch(rq, prev, next);
fe4b04fa 2708
dd41f596
IM
2709 mm = next->mm;
2710 oldmm = prev->active_mm;
9226d125
ZA
2711 /*
2712 * For paravirt, this is coupled with an exit in switch_to to
2713 * combine the page table reload and the switch backend into
2714 * one hypercall.
2715 */
224101ed 2716 arch_start_context_switch(prev);
9226d125 2717
31915ab4 2718 if (!mm) {
1da177e4
LT
2719 next->active_mm = oldmm;
2720 atomic_inc(&oldmm->mm_count);
2721 enter_lazy_tlb(oldmm, next);
2722 } else
2723 switch_mm(oldmm, mm, next);
2724
31915ab4 2725 if (!prev->mm) {
1da177e4 2726 prev->active_mm = NULL;
1da177e4
LT
2727 rq->prev_mm = oldmm;
2728 }
3a5f5e48
IM
2729 /*
2730 * Since the runqueue lock will be released by the next
2731 * task (which is an invalid locking op but in the case
2732 * of the scheduler it's an obvious special-case), so we
2733 * do an early lockdep release here:
2734 */
cbce1a68 2735 lockdep_unpin_lock(&rq->lock);
8a25d5de 2736 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2737
2738 /* Here we just switch the register state and the stack. */
2739 switch_to(prev, next, prev);
dd41f596 2740 barrier();
dfa50b60
ON
2741
2742 return finish_task_switch(prev);
1da177e4
LT
2743}
2744
2745/*
1c3e8264 2746 * nr_running and nr_context_switches:
1da177e4
LT
2747 *
2748 * externally visible scheduler statistics: current number of runnable
1c3e8264 2749 * threads, total number of context switches performed since bootup.
1da177e4
LT
2750 */
2751unsigned long nr_running(void)
2752{
2753 unsigned long i, sum = 0;
2754
2755 for_each_online_cpu(i)
2756 sum += cpu_rq(i)->nr_running;
2757
2758 return sum;
f711f609 2759}
1da177e4 2760
2ee507c4
TC
2761/*
2762 * Check if only the current task is running on the cpu.
00cc1633
DD
2763 *
2764 * Caution: this function does not check that the caller has disabled
2765 * preemption, thus the result might have a time-of-check-to-time-of-use
2766 * race. The caller is responsible to use it correctly, for example:
2767 *
2768 * - from a non-preemptable section (of course)
2769 *
2770 * - from a thread that is bound to a single CPU
2771 *
2772 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2773 */
2774bool single_task_running(void)
2775{
00cc1633 2776 return raw_rq()->nr_running == 1;
2ee507c4
TC
2777}
2778EXPORT_SYMBOL(single_task_running);
2779
1da177e4 2780unsigned long long nr_context_switches(void)
46cb4b7c 2781{
cc94abfc
SR
2782 int i;
2783 unsigned long long sum = 0;
46cb4b7c 2784
0a945022 2785 for_each_possible_cpu(i)
1da177e4 2786 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2787
1da177e4
LT
2788 return sum;
2789}
483b4ee6 2790
1da177e4
LT
2791unsigned long nr_iowait(void)
2792{
2793 unsigned long i, sum = 0;
483b4ee6 2794
0a945022 2795 for_each_possible_cpu(i)
1da177e4 2796 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2797
1da177e4
LT
2798 return sum;
2799}
483b4ee6 2800
8c215bd3 2801unsigned long nr_iowait_cpu(int cpu)
69d25870 2802{
8c215bd3 2803 struct rq *this = cpu_rq(cpu);
69d25870
AV
2804 return atomic_read(&this->nr_iowait);
2805}
46cb4b7c 2806
372ba8cb
MG
2807void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2808{
3289bdb4
PZ
2809 struct rq *rq = this_rq();
2810 *nr_waiters = atomic_read(&rq->nr_iowait);
2811 *load = rq->load.weight;
372ba8cb
MG
2812}
2813
dd41f596 2814#ifdef CONFIG_SMP
8a0be9ef 2815
46cb4b7c 2816/*
38022906
PZ
2817 * sched_exec - execve() is a valuable balancing opportunity, because at
2818 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2819 */
38022906 2820void sched_exec(void)
46cb4b7c 2821{
38022906 2822 struct task_struct *p = current;
1da177e4 2823 unsigned long flags;
0017d735 2824 int dest_cpu;
46cb4b7c 2825
8f42ced9 2826 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2827 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2828 if (dest_cpu == smp_processor_id())
2829 goto unlock;
38022906 2830
8f42ced9 2831 if (likely(cpu_active(dest_cpu))) {
969c7921 2832 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2833
8f42ced9
PZ
2834 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2835 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2836 return;
2837 }
0017d735 2838unlock:
8f42ced9 2839 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2840}
dd41f596 2841
1da177e4
LT
2842#endif
2843
1da177e4 2844DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2845DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2846
2847EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2848EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2849
c5f8d995
HS
2850/*
2851 * Return accounted runtime for the task.
2852 * In case the task is currently running, return the runtime plus current's
2853 * pending runtime that have not been accounted yet.
2854 */
2855unsigned long long task_sched_runtime(struct task_struct *p)
2856{
2857 unsigned long flags;
2858 struct rq *rq;
6e998916 2859 u64 ns;
c5f8d995 2860
911b2898
PZ
2861#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2862 /*
2863 * 64-bit doesn't need locks to atomically read a 64bit value.
2864 * So we have a optimization chance when the task's delta_exec is 0.
2865 * Reading ->on_cpu is racy, but this is ok.
2866 *
2867 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2868 * If we race with it entering cpu, unaccounted time is 0. This is
2869 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2870 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2871 * been accounted, so we're correct here as well.
911b2898 2872 */
da0c1e65 2873 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2874 return p->se.sum_exec_runtime;
2875#endif
2876
c5f8d995 2877 rq = task_rq_lock(p, &flags);
6e998916
SG
2878 /*
2879 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2880 * project cycles that may never be accounted to this
2881 * thread, breaking clock_gettime().
2882 */
2883 if (task_current(rq, p) && task_on_rq_queued(p)) {
2884 update_rq_clock(rq);
2885 p->sched_class->update_curr(rq);
2886 }
2887 ns = p->se.sum_exec_runtime;
0122ec5b 2888 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2889
2890 return ns;
2891}
48f24c4d 2892
7835b98b
CL
2893/*
2894 * This function gets called by the timer code, with HZ frequency.
2895 * We call it with interrupts disabled.
7835b98b
CL
2896 */
2897void scheduler_tick(void)
2898{
7835b98b
CL
2899 int cpu = smp_processor_id();
2900 struct rq *rq = cpu_rq(cpu);
dd41f596 2901 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2902
2903 sched_clock_tick();
dd41f596 2904
05fa785c 2905 raw_spin_lock(&rq->lock);
3e51f33f 2906 update_rq_clock(rq);
fa85ae24 2907 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2908 update_cpu_load_active(rq);
3289bdb4 2909 calc_global_load_tick(rq);
05fa785c 2910 raw_spin_unlock(&rq->lock);
7835b98b 2911
e9d2b064 2912 perf_event_task_tick();
e220d2dc 2913
e418e1c2 2914#ifdef CONFIG_SMP
6eb57e0d 2915 rq->idle_balance = idle_cpu(cpu);
7caff66f 2916 trigger_load_balance(rq);
e418e1c2 2917#endif
265f22a9 2918 rq_last_tick_reset(rq);
1da177e4
LT
2919}
2920
265f22a9
FW
2921#ifdef CONFIG_NO_HZ_FULL
2922/**
2923 * scheduler_tick_max_deferment
2924 *
2925 * Keep at least one tick per second when a single
2926 * active task is running because the scheduler doesn't
2927 * yet completely support full dynticks environment.
2928 *
2929 * This makes sure that uptime, CFS vruntime, load
2930 * balancing, etc... continue to move forward, even
2931 * with a very low granularity.
e69f6186
YB
2932 *
2933 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2934 */
2935u64 scheduler_tick_max_deferment(void)
2936{
2937 struct rq *rq = this_rq();
316c1608 2938 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2939
2940 next = rq->last_sched_tick + HZ;
2941
2942 if (time_before_eq(next, now))
2943 return 0;
2944
8fe8ff09 2945 return jiffies_to_nsecs(next - now);
1da177e4 2946}
265f22a9 2947#endif
1da177e4 2948
132380a0 2949notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2950{
2951 if (in_lock_functions(addr)) {
2952 addr = CALLER_ADDR2;
2953 if (in_lock_functions(addr))
2954 addr = CALLER_ADDR3;
2955 }
2956 return addr;
2957}
1da177e4 2958
7e49fcce
SR
2959#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2960 defined(CONFIG_PREEMPT_TRACER))
2961
edafe3a5 2962void preempt_count_add(int val)
1da177e4 2963{
6cd8a4bb 2964#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2965 /*
2966 * Underflow?
2967 */
9a11b49a
IM
2968 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2969 return;
6cd8a4bb 2970#endif
bdb43806 2971 __preempt_count_add(val);
6cd8a4bb 2972#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2973 /*
2974 * Spinlock count overflowing soon?
2975 */
33859f7f
MOS
2976 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2977 PREEMPT_MASK - 10);
6cd8a4bb 2978#endif
8f47b187
TG
2979 if (preempt_count() == val) {
2980 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2981#ifdef CONFIG_DEBUG_PREEMPT
2982 current->preempt_disable_ip = ip;
2983#endif
2984 trace_preempt_off(CALLER_ADDR0, ip);
2985 }
1da177e4 2986}
bdb43806 2987EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2988NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2989
edafe3a5 2990void preempt_count_sub(int val)
1da177e4 2991{
6cd8a4bb 2992#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2993 /*
2994 * Underflow?
2995 */
01e3eb82 2996 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2997 return;
1da177e4
LT
2998 /*
2999 * Is the spinlock portion underflowing?
3000 */
9a11b49a
IM
3001 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3002 !(preempt_count() & PREEMPT_MASK)))
3003 return;
6cd8a4bb 3004#endif
9a11b49a 3005
6cd8a4bb
SR
3006 if (preempt_count() == val)
3007 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 3008 __preempt_count_sub(val);
1da177e4 3009}
bdb43806 3010EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3011NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
3012
3013#endif
3014
3015/*
dd41f596 3016 * Print scheduling while atomic bug:
1da177e4 3017 */
dd41f596 3018static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3019{
664dfa65
DJ
3020 if (oops_in_progress)
3021 return;
3022
3df0fc5b
PZ
3023 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3024 prev->comm, prev->pid, preempt_count());
838225b4 3025
dd41f596 3026 debug_show_held_locks(prev);
e21f5b15 3027 print_modules();
dd41f596
IM
3028 if (irqs_disabled())
3029 print_irqtrace_events(prev);
8f47b187
TG
3030#ifdef CONFIG_DEBUG_PREEMPT
3031 if (in_atomic_preempt_off()) {
3032 pr_err("Preemption disabled at:");
3033 print_ip_sym(current->preempt_disable_ip);
3034 pr_cont("\n");
3035 }
3036#endif
6135fc1e 3037 dump_stack();
373d4d09 3038 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3039}
1da177e4 3040
dd41f596
IM
3041/*
3042 * Various schedule()-time debugging checks and statistics:
3043 */
3044static inline void schedule_debug(struct task_struct *prev)
3045{
0d9e2632 3046#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3047 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3048#endif
b99def8b 3049
1dc0fffc 3050 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3051 __schedule_bug(prev);
1dc0fffc
PZ
3052 preempt_count_set(PREEMPT_DISABLED);
3053 }
b3fbab05 3054 rcu_sleep_check();
dd41f596 3055
1da177e4
LT
3056 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3057
2d72376b 3058 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3059}
3060
3061/*
3062 * Pick up the highest-prio task:
3063 */
3064static inline struct task_struct *
606dba2e 3065pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3066{
37e117c0 3067 const struct sched_class *class = &fair_sched_class;
dd41f596 3068 struct task_struct *p;
1da177e4
LT
3069
3070 /*
dd41f596
IM
3071 * Optimization: we know that if all tasks are in
3072 * the fair class we can call that function directly:
1da177e4 3073 */
37e117c0 3074 if (likely(prev->sched_class == class &&
38033c37 3075 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3076 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3077 if (unlikely(p == RETRY_TASK))
3078 goto again;
3079
3080 /* assumes fair_sched_class->next == idle_sched_class */
3081 if (unlikely(!p))
3082 p = idle_sched_class.pick_next_task(rq, prev);
3083
3084 return p;
1da177e4
LT
3085 }
3086
37e117c0 3087again:
34f971f6 3088 for_each_class(class) {
606dba2e 3089 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3090 if (p) {
3091 if (unlikely(p == RETRY_TASK))
3092 goto again;
dd41f596 3093 return p;
37e117c0 3094 }
dd41f596 3095 }
34f971f6
PZ
3096
3097 BUG(); /* the idle class will always have a runnable task */
dd41f596 3098}
1da177e4 3099
dd41f596 3100/*
c259e01a 3101 * __schedule() is the main scheduler function.
edde96ea
PE
3102 *
3103 * The main means of driving the scheduler and thus entering this function are:
3104 *
3105 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3106 *
3107 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3108 * paths. For example, see arch/x86/entry_64.S.
3109 *
3110 * To drive preemption between tasks, the scheduler sets the flag in timer
3111 * interrupt handler scheduler_tick().
3112 *
3113 * 3. Wakeups don't really cause entry into schedule(). They add a
3114 * task to the run-queue and that's it.
3115 *
3116 * Now, if the new task added to the run-queue preempts the current
3117 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3118 * called on the nearest possible occasion:
3119 *
3120 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3121 *
3122 * - in syscall or exception context, at the next outmost
3123 * preempt_enable(). (this might be as soon as the wake_up()'s
3124 * spin_unlock()!)
3125 *
3126 * - in IRQ context, return from interrupt-handler to
3127 * preemptible context
3128 *
3129 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3130 * then at the next:
3131 *
3132 * - cond_resched() call
3133 * - explicit schedule() call
3134 * - return from syscall or exception to user-space
3135 * - return from interrupt-handler to user-space
bfd9b2b5 3136 *
b30f0e3f 3137 * WARNING: must be called with preemption disabled!
dd41f596 3138 */
499d7955 3139static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3140{
3141 struct task_struct *prev, *next;
67ca7bde 3142 unsigned long *switch_count;
dd41f596 3143 struct rq *rq;
31656519 3144 int cpu;
dd41f596 3145
dd41f596
IM
3146 cpu = smp_processor_id();
3147 rq = cpu_rq(cpu);
dd41f596 3148 prev = rq->curr;
dd41f596 3149
b99def8b
PZ
3150 /*
3151 * do_exit() calls schedule() with preemption disabled as an exception;
3152 * however we must fix that up, otherwise the next task will see an
3153 * inconsistent (higher) preempt count.
3154 *
3155 * It also avoids the below schedule_debug() test from complaining
3156 * about this.
3157 */
3158 if (unlikely(prev->state == TASK_DEAD))
3159 preempt_enable_no_resched_notrace();
3160
dd41f596 3161 schedule_debug(prev);
1da177e4 3162
31656519 3163 if (sched_feat(HRTICK))
f333fdc9 3164 hrtick_clear(rq);
8f4d37ec 3165
46a5d164
PM
3166 local_irq_disable();
3167 rcu_note_context_switch();
3168
e0acd0a6
ON
3169 /*
3170 * Make sure that signal_pending_state()->signal_pending() below
3171 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3172 * done by the caller to avoid the race with signal_wake_up().
3173 */
3174 smp_mb__before_spinlock();
46a5d164 3175 raw_spin_lock(&rq->lock);
cbce1a68 3176 lockdep_pin_lock(&rq->lock);
1da177e4 3177
9edfbfed
PZ
3178 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3179
246d86b5 3180 switch_count = &prev->nivcsw;
fc13aeba 3181 if (!preempt && prev->state) {
21aa9af0 3182 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3183 prev->state = TASK_RUNNING;
21aa9af0 3184 } else {
2acca55e
PZ
3185 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3186 prev->on_rq = 0;
3187
21aa9af0 3188 /*
2acca55e
PZ
3189 * If a worker went to sleep, notify and ask workqueue
3190 * whether it wants to wake up a task to maintain
3191 * concurrency.
21aa9af0
TH
3192 */
3193 if (prev->flags & PF_WQ_WORKER) {
3194 struct task_struct *to_wakeup;
3195
3196 to_wakeup = wq_worker_sleeping(prev, cpu);
3197 if (to_wakeup)
3198 try_to_wake_up_local(to_wakeup);
3199 }
21aa9af0 3200 }
dd41f596 3201 switch_count = &prev->nvcsw;
1da177e4
LT
3202 }
3203
9edfbfed 3204 if (task_on_rq_queued(prev))
606dba2e
PZ
3205 update_rq_clock(rq);
3206
3207 next = pick_next_task(rq, prev);
f26f9aff 3208 clear_tsk_need_resched(prev);
f27dde8d 3209 clear_preempt_need_resched();
9edfbfed 3210 rq->clock_skip_update = 0;
1da177e4 3211
1da177e4 3212 if (likely(prev != next)) {
1da177e4
LT
3213 rq->nr_switches++;
3214 rq->curr = next;
3215 ++*switch_count;
3216
c73464b1 3217 trace_sched_switch(preempt, prev, next);
dfa50b60 3218 rq = context_switch(rq, prev, next); /* unlocks the rq */
cbce1a68
PZ
3219 } else {
3220 lockdep_unpin_lock(&rq->lock);
05fa785c 3221 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3222 }
1da177e4 3223
e3fca9e7 3224 balance_callback(rq);
1da177e4 3225}
c259e01a 3226
9c40cef2
TG
3227static inline void sched_submit_work(struct task_struct *tsk)
3228{
3c7d5184 3229 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3230 return;
3231 /*
3232 * If we are going to sleep and we have plugged IO queued,
3233 * make sure to submit it to avoid deadlocks.
3234 */
3235 if (blk_needs_flush_plug(tsk))
3236 blk_schedule_flush_plug(tsk);
3237}
3238
722a9f92 3239asmlinkage __visible void __sched schedule(void)
c259e01a 3240{
9c40cef2
TG
3241 struct task_struct *tsk = current;
3242
3243 sched_submit_work(tsk);
bfd9b2b5 3244 do {
b30f0e3f 3245 preempt_disable();
fc13aeba 3246 __schedule(false);
b30f0e3f 3247 sched_preempt_enable_no_resched();
bfd9b2b5 3248 } while (need_resched());
c259e01a 3249}
1da177e4
LT
3250EXPORT_SYMBOL(schedule);
3251
91d1aa43 3252#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3253asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3254{
3255 /*
3256 * If we come here after a random call to set_need_resched(),
3257 * or we have been woken up remotely but the IPI has not yet arrived,
3258 * we haven't yet exited the RCU idle mode. Do it here manually until
3259 * we find a better solution.
7cc78f8f
AL
3260 *
3261 * NB: There are buggy callers of this function. Ideally we
c467ea76 3262 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3263 * too frequently to make sense yet.
20ab65e3 3264 */
7cc78f8f 3265 enum ctx_state prev_state = exception_enter();
20ab65e3 3266 schedule();
7cc78f8f 3267 exception_exit(prev_state);
20ab65e3
FW
3268}
3269#endif
3270
c5491ea7
TG
3271/**
3272 * schedule_preempt_disabled - called with preemption disabled
3273 *
3274 * Returns with preemption disabled. Note: preempt_count must be 1
3275 */
3276void __sched schedule_preempt_disabled(void)
3277{
ba74c144 3278 sched_preempt_enable_no_resched();
c5491ea7
TG
3279 schedule();
3280 preempt_disable();
3281}
3282
06b1f808 3283static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3284{
3285 do {
499d7955 3286 preempt_disable_notrace();
fc13aeba 3287 __schedule(true);
499d7955 3288 preempt_enable_no_resched_notrace();
a18b5d01
FW
3289
3290 /*
3291 * Check again in case we missed a preemption opportunity
3292 * between schedule and now.
3293 */
a18b5d01
FW
3294 } while (need_resched());
3295}
3296
1da177e4
LT
3297#ifdef CONFIG_PREEMPT
3298/*
2ed6e34f 3299 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3300 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3301 * occur there and call schedule directly.
3302 */
722a9f92 3303asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3304{
1da177e4
LT
3305 /*
3306 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3307 * we do not want to preempt the current task. Just return..
1da177e4 3308 */
fbb00b56 3309 if (likely(!preemptible()))
1da177e4
LT
3310 return;
3311
a18b5d01 3312 preempt_schedule_common();
1da177e4 3313}
376e2424 3314NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3315EXPORT_SYMBOL(preempt_schedule);
009f60e2 3316
009f60e2 3317/**
4eaca0a8 3318 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3319 *
3320 * The tracing infrastructure uses preempt_enable_notrace to prevent
3321 * recursion and tracing preempt enabling caused by the tracing
3322 * infrastructure itself. But as tracing can happen in areas coming
3323 * from userspace or just about to enter userspace, a preempt enable
3324 * can occur before user_exit() is called. This will cause the scheduler
3325 * to be called when the system is still in usermode.
3326 *
3327 * To prevent this, the preempt_enable_notrace will use this function
3328 * instead of preempt_schedule() to exit user context if needed before
3329 * calling the scheduler.
3330 */
4eaca0a8 3331asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3332{
3333 enum ctx_state prev_ctx;
3334
3335 if (likely(!preemptible()))
3336 return;
3337
3338 do {
3d8f74dd 3339 preempt_disable_notrace();
009f60e2
ON
3340 /*
3341 * Needs preempt disabled in case user_exit() is traced
3342 * and the tracer calls preempt_enable_notrace() causing
3343 * an infinite recursion.
3344 */
3345 prev_ctx = exception_enter();
fc13aeba 3346 __schedule(true);
009f60e2
ON
3347 exception_exit(prev_ctx);
3348
3d8f74dd 3349 preempt_enable_no_resched_notrace();
009f60e2
ON
3350 } while (need_resched());
3351}
4eaca0a8 3352EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3353
32e475d7 3354#endif /* CONFIG_PREEMPT */
1da177e4
LT
3355
3356/*
2ed6e34f 3357 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3358 * off of irq context.
3359 * Note, that this is called and return with irqs disabled. This will
3360 * protect us against recursive calling from irq.
3361 */
722a9f92 3362asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3363{
b22366cd 3364 enum ctx_state prev_state;
6478d880 3365
2ed6e34f 3366 /* Catch callers which need to be fixed */
f27dde8d 3367 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3368
b22366cd
FW
3369 prev_state = exception_enter();
3370
3a5c359a 3371 do {
3d8f74dd 3372 preempt_disable();
3a5c359a 3373 local_irq_enable();
fc13aeba 3374 __schedule(true);
3a5c359a 3375 local_irq_disable();
3d8f74dd 3376 sched_preempt_enable_no_resched();
5ed0cec0 3377 } while (need_resched());
b22366cd
FW
3378
3379 exception_exit(prev_state);
1da177e4
LT
3380}
3381
63859d4f 3382int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3383 void *key)
1da177e4 3384{
63859d4f 3385 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3386}
1da177e4
LT
3387EXPORT_SYMBOL(default_wake_function);
3388
b29739f9
IM
3389#ifdef CONFIG_RT_MUTEXES
3390
3391/*
3392 * rt_mutex_setprio - set the current priority of a task
3393 * @p: task
3394 * @prio: prio value (kernel-internal form)
3395 *
3396 * This function changes the 'effective' priority of a task. It does
3397 * not touch ->normal_prio like __setscheduler().
3398 *
c365c292
TG
3399 * Used by the rt_mutex code to implement priority inheritance
3400 * logic. Call site only calls if the priority of the task changed.
b29739f9 3401 */
36c8b586 3402void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3403{
ff77e468 3404 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
70b97a7f 3405 struct rq *rq;
83ab0aa0 3406 const struct sched_class *prev_class;
b29739f9 3407
aab03e05 3408 BUG_ON(prio > MAX_PRIO);
b29739f9 3409
0122ec5b 3410 rq = __task_rq_lock(p);
b29739f9 3411
1c4dd99b
TG
3412 /*
3413 * Idle task boosting is a nono in general. There is one
3414 * exception, when PREEMPT_RT and NOHZ is active:
3415 *
3416 * The idle task calls get_next_timer_interrupt() and holds
3417 * the timer wheel base->lock on the CPU and another CPU wants
3418 * to access the timer (probably to cancel it). We can safely
3419 * ignore the boosting request, as the idle CPU runs this code
3420 * with interrupts disabled and will complete the lock
3421 * protected section without being interrupted. So there is no
3422 * real need to boost.
3423 */
3424 if (unlikely(p == rq->idle)) {
3425 WARN_ON(p != rq->curr);
3426 WARN_ON(p->pi_blocked_on);
3427 goto out_unlock;
3428 }
3429
a8027073 3430 trace_sched_pi_setprio(p, prio);
d5f9f942 3431 oldprio = p->prio;
ff77e468
PZ
3432
3433 if (oldprio == prio)
3434 queue_flag &= ~DEQUEUE_MOVE;
3435
83ab0aa0 3436 prev_class = p->sched_class;
da0c1e65 3437 queued = task_on_rq_queued(p);
051a1d1a 3438 running = task_current(rq, p);
da0c1e65 3439 if (queued)
ff77e468 3440 dequeue_task(rq, p, queue_flag);
0e1f3483 3441 if (running)
f3cd1c4e 3442 put_prev_task(rq, p);
dd41f596 3443
2d3d891d
DF
3444 /*
3445 * Boosting condition are:
3446 * 1. -rt task is running and holds mutex A
3447 * --> -dl task blocks on mutex A
3448 *
3449 * 2. -dl task is running and holds mutex A
3450 * --> -dl task blocks on mutex A and could preempt the
3451 * running task
3452 */
3453 if (dl_prio(prio)) {
466af29b
ON
3454 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3455 if (!dl_prio(p->normal_prio) ||
3456 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3457 p->dl.dl_boosted = 1;
ff77e468 3458 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3459 } else
3460 p->dl.dl_boosted = 0;
aab03e05 3461 p->sched_class = &dl_sched_class;
2d3d891d
DF
3462 } else if (rt_prio(prio)) {
3463 if (dl_prio(oldprio))
3464 p->dl.dl_boosted = 0;
3465 if (oldprio < prio)
ff77e468 3466 queue_flag |= ENQUEUE_HEAD;
dd41f596 3467 p->sched_class = &rt_sched_class;
2d3d891d
DF
3468 } else {
3469 if (dl_prio(oldprio))
3470 p->dl.dl_boosted = 0;
746db944
BS
3471 if (rt_prio(oldprio))
3472 p->rt.timeout = 0;
dd41f596 3473 p->sched_class = &fair_sched_class;
2d3d891d 3474 }
dd41f596 3475
b29739f9
IM
3476 p->prio = prio;
3477
0e1f3483
HS
3478 if (running)
3479 p->sched_class->set_curr_task(rq);
da0c1e65 3480 if (queued)
ff77e468 3481 enqueue_task(rq, p, queue_flag);
cb469845 3482
da7a735e 3483 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3484out_unlock:
4c9a4bc8 3485 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3486 __task_rq_unlock(rq);
4c9a4bc8
PZ
3487
3488 balance_callback(rq);
3489 preempt_enable();
b29739f9 3490}
b29739f9 3491#endif
d50dde5a 3492
36c8b586 3493void set_user_nice(struct task_struct *p, long nice)
1da177e4 3494{
da0c1e65 3495 int old_prio, delta, queued;
1da177e4 3496 unsigned long flags;
70b97a7f 3497 struct rq *rq;
1da177e4 3498
75e45d51 3499 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3500 return;
3501 /*
3502 * We have to be careful, if called from sys_setpriority(),
3503 * the task might be in the middle of scheduling on another CPU.
3504 */
3505 rq = task_rq_lock(p, &flags);
3506 /*
3507 * The RT priorities are set via sched_setscheduler(), but we still
3508 * allow the 'normal' nice value to be set - but as expected
3509 * it wont have any effect on scheduling until the task is
aab03e05 3510 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3511 */
aab03e05 3512 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3513 p->static_prio = NICE_TO_PRIO(nice);
3514 goto out_unlock;
3515 }
da0c1e65
KT
3516 queued = task_on_rq_queued(p);
3517 if (queued)
1de64443 3518 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3519
1da177e4 3520 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3521 set_load_weight(p);
b29739f9
IM
3522 old_prio = p->prio;
3523 p->prio = effective_prio(p);
3524 delta = p->prio - old_prio;
1da177e4 3525
da0c1e65 3526 if (queued) {
1de64443 3527 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3528 /*
d5f9f942
AM
3529 * If the task increased its priority or is running and
3530 * lowered its priority, then reschedule its CPU:
1da177e4 3531 */
d5f9f942 3532 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3533 resched_curr(rq);
1da177e4
LT
3534 }
3535out_unlock:
0122ec5b 3536 task_rq_unlock(rq, p, &flags);
1da177e4 3537}
1da177e4
LT
3538EXPORT_SYMBOL(set_user_nice);
3539
e43379f1
MM
3540/*
3541 * can_nice - check if a task can reduce its nice value
3542 * @p: task
3543 * @nice: nice value
3544 */
36c8b586 3545int can_nice(const struct task_struct *p, const int nice)
e43379f1 3546{
024f4747 3547 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3548 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3549
78d7d407 3550 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3551 capable(CAP_SYS_NICE));
3552}
3553
1da177e4
LT
3554#ifdef __ARCH_WANT_SYS_NICE
3555
3556/*
3557 * sys_nice - change the priority of the current process.
3558 * @increment: priority increment
3559 *
3560 * sys_setpriority is a more generic, but much slower function that
3561 * does similar things.
3562 */
5add95d4 3563SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3564{
48f24c4d 3565 long nice, retval;
1da177e4
LT
3566
3567 /*
3568 * Setpriority might change our priority at the same moment.
3569 * We don't have to worry. Conceptually one call occurs first
3570 * and we have a single winner.
3571 */
a9467fa3 3572 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3573 nice = task_nice(current) + increment;
1da177e4 3574
a9467fa3 3575 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3576 if (increment < 0 && !can_nice(current, nice))
3577 return -EPERM;
3578
1da177e4
LT
3579 retval = security_task_setnice(current, nice);
3580 if (retval)
3581 return retval;
3582
3583 set_user_nice(current, nice);
3584 return 0;
3585}
3586
3587#endif
3588
3589/**
3590 * task_prio - return the priority value of a given task.
3591 * @p: the task in question.
3592 *
e69f6186 3593 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3594 * RT tasks are offset by -200. Normal tasks are centered
3595 * around 0, value goes from -16 to +15.
3596 */
36c8b586 3597int task_prio(const struct task_struct *p)
1da177e4
LT
3598{
3599 return p->prio - MAX_RT_PRIO;
3600}
3601
1da177e4
LT
3602/**
3603 * idle_cpu - is a given cpu idle currently?
3604 * @cpu: the processor in question.
e69f6186
YB
3605 *
3606 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3607 */
3608int idle_cpu(int cpu)
3609{
908a3283
TG
3610 struct rq *rq = cpu_rq(cpu);
3611
3612 if (rq->curr != rq->idle)
3613 return 0;
3614
3615 if (rq->nr_running)
3616 return 0;
3617
3618#ifdef CONFIG_SMP
3619 if (!llist_empty(&rq->wake_list))
3620 return 0;
3621#endif
3622
3623 return 1;
1da177e4
LT
3624}
3625
1da177e4
LT
3626/**
3627 * idle_task - return the idle task for a given cpu.
3628 * @cpu: the processor in question.
e69f6186
YB
3629 *
3630 * Return: The idle task for the cpu @cpu.
1da177e4 3631 */
36c8b586 3632struct task_struct *idle_task(int cpu)
1da177e4
LT
3633{
3634 return cpu_rq(cpu)->idle;
3635}
3636
3637/**
3638 * find_process_by_pid - find a process with a matching PID value.
3639 * @pid: the pid in question.
e69f6186
YB
3640 *
3641 * The task of @pid, if found. %NULL otherwise.
1da177e4 3642 */
a9957449 3643static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3644{
228ebcbe 3645 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3646}
3647
aab03e05
DF
3648/*
3649 * This function initializes the sched_dl_entity of a newly becoming
3650 * SCHED_DEADLINE task.
3651 *
3652 * Only the static values are considered here, the actual runtime and the
3653 * absolute deadline will be properly calculated when the task is enqueued
3654 * for the first time with its new policy.
3655 */
3656static void
3657__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3658{
3659 struct sched_dl_entity *dl_se = &p->dl;
3660
aab03e05
DF
3661 dl_se->dl_runtime = attr->sched_runtime;
3662 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3663 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3664 dl_se->flags = attr->sched_flags;
332ac17e 3665 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3666
3667 /*
3668 * Changing the parameters of a task is 'tricky' and we're not doing
3669 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3670 *
3671 * What we SHOULD do is delay the bandwidth release until the 0-lag
3672 * point. This would include retaining the task_struct until that time
3673 * and change dl_overflow() to not immediately decrement the current
3674 * amount.
3675 *
3676 * Instead we retain the current runtime/deadline and let the new
3677 * parameters take effect after the current reservation period lapses.
3678 * This is safe (albeit pessimistic) because the 0-lag point is always
3679 * before the current scheduling deadline.
3680 *
3681 * We can still have temporary overloads because we do not delay the
3682 * change in bandwidth until that time; so admission control is
3683 * not on the safe side. It does however guarantee tasks will never
3684 * consume more than promised.
3685 */
aab03e05
DF
3686}
3687
c13db6b1
SR
3688/*
3689 * sched_setparam() passes in -1 for its policy, to let the functions
3690 * it calls know not to change it.
3691 */
3692#define SETPARAM_POLICY -1
3693
c365c292
TG
3694static void __setscheduler_params(struct task_struct *p,
3695 const struct sched_attr *attr)
1da177e4 3696{
d50dde5a
DF
3697 int policy = attr->sched_policy;
3698
c13db6b1 3699 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3700 policy = p->policy;
3701
1da177e4 3702 p->policy = policy;
d50dde5a 3703
aab03e05
DF
3704 if (dl_policy(policy))
3705 __setparam_dl(p, attr);
39fd8fd2 3706 else if (fair_policy(policy))
d50dde5a
DF
3707 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3708
39fd8fd2
PZ
3709 /*
3710 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3711 * !rt_policy. Always setting this ensures that things like
3712 * getparam()/getattr() don't report silly values for !rt tasks.
3713 */
3714 p->rt_priority = attr->sched_priority;
383afd09 3715 p->normal_prio = normal_prio(p);
c365c292
TG
3716 set_load_weight(p);
3717}
39fd8fd2 3718
c365c292
TG
3719/* Actually do priority change: must hold pi & rq lock. */
3720static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3721 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3722{
3723 __setscheduler_params(p, attr);
d50dde5a 3724
383afd09 3725 /*
0782e63b
TG
3726 * Keep a potential priority boosting if called from
3727 * sched_setscheduler().
383afd09 3728 */
0782e63b
TG
3729 if (keep_boost)
3730 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3731 else
3732 p->prio = normal_prio(p);
383afd09 3733
aab03e05
DF
3734 if (dl_prio(p->prio))
3735 p->sched_class = &dl_sched_class;
3736 else if (rt_prio(p->prio))
ffd44db5
PZ
3737 p->sched_class = &rt_sched_class;
3738 else
3739 p->sched_class = &fair_sched_class;
1da177e4 3740}
aab03e05
DF
3741
3742static void
3743__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3744{
3745 struct sched_dl_entity *dl_se = &p->dl;
3746
3747 attr->sched_priority = p->rt_priority;
3748 attr->sched_runtime = dl_se->dl_runtime;
3749 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3750 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3751 attr->sched_flags = dl_se->flags;
3752}
3753
3754/*
3755 * This function validates the new parameters of a -deadline task.
3756 * We ask for the deadline not being zero, and greater or equal
755378a4 3757 * than the runtime, as well as the period of being zero or
332ac17e 3758 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3759 * user parameters are above the internal resolution of 1us (we
3760 * check sched_runtime only since it is always the smaller one) and
3761 * below 2^63 ns (we have to check both sched_deadline and
3762 * sched_period, as the latter can be zero).
aab03e05
DF
3763 */
3764static bool
3765__checkparam_dl(const struct sched_attr *attr)
3766{
b0827819
JL
3767 /* deadline != 0 */
3768 if (attr->sched_deadline == 0)
3769 return false;
3770
3771 /*
3772 * Since we truncate DL_SCALE bits, make sure we're at least
3773 * that big.
3774 */
3775 if (attr->sched_runtime < (1ULL << DL_SCALE))
3776 return false;
3777
3778 /*
3779 * Since we use the MSB for wrap-around and sign issues, make
3780 * sure it's not set (mind that period can be equal to zero).
3781 */
3782 if (attr->sched_deadline & (1ULL << 63) ||
3783 attr->sched_period & (1ULL << 63))
3784 return false;
3785
3786 /* runtime <= deadline <= period (if period != 0) */
3787 if ((attr->sched_period != 0 &&
3788 attr->sched_period < attr->sched_deadline) ||
3789 attr->sched_deadline < attr->sched_runtime)
3790 return false;
3791
3792 return true;
aab03e05
DF
3793}
3794
c69e8d9c
DH
3795/*
3796 * check the target process has a UID that matches the current process's
3797 */
3798static bool check_same_owner(struct task_struct *p)
3799{
3800 const struct cred *cred = current_cred(), *pcred;
3801 bool match;
3802
3803 rcu_read_lock();
3804 pcred = __task_cred(p);
9c806aa0
EB
3805 match = (uid_eq(cred->euid, pcred->euid) ||
3806 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3807 rcu_read_unlock();
3808 return match;
3809}
3810
75381608
WL
3811static bool dl_param_changed(struct task_struct *p,
3812 const struct sched_attr *attr)
3813{
3814 struct sched_dl_entity *dl_se = &p->dl;
3815
3816 if (dl_se->dl_runtime != attr->sched_runtime ||
3817 dl_se->dl_deadline != attr->sched_deadline ||
3818 dl_se->dl_period != attr->sched_period ||
3819 dl_se->flags != attr->sched_flags)
3820 return true;
3821
3822 return false;
3823}
3824
d50dde5a
DF
3825static int __sched_setscheduler(struct task_struct *p,
3826 const struct sched_attr *attr,
dbc7f069 3827 bool user, bool pi)
1da177e4 3828{
383afd09
SR
3829 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3830 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3831 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3832 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3833 unsigned long flags;
83ab0aa0 3834 const struct sched_class *prev_class;
70b97a7f 3835 struct rq *rq;
ca94c442 3836 int reset_on_fork;
ff77e468 3837 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
1da177e4 3838
66e5393a
SR
3839 /* may grab non-irq protected spin_locks */
3840 BUG_ON(in_interrupt());
1da177e4
LT
3841recheck:
3842 /* double check policy once rq lock held */
ca94c442
LP
3843 if (policy < 0) {
3844 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3845 policy = oldpolicy = p->policy;
ca94c442 3846 } else {
7479f3c9 3847 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3848
20f9cd2a 3849 if (!valid_policy(policy))
ca94c442
LP
3850 return -EINVAL;
3851 }
3852
7479f3c9
PZ
3853 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3854 return -EINVAL;
3855
1da177e4
LT
3856 /*
3857 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3858 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3859 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3860 */
0bb040a4 3861 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3862 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3863 return -EINVAL;
aab03e05
DF
3864 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3865 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3866 return -EINVAL;
3867
37e4ab3f
OC
3868 /*
3869 * Allow unprivileged RT tasks to decrease priority:
3870 */
961ccddd 3871 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3872 if (fair_policy(policy)) {
d0ea0268 3873 if (attr->sched_nice < task_nice(p) &&
eaad4513 3874 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3875 return -EPERM;
3876 }
3877
e05606d3 3878 if (rt_policy(policy)) {
a44702e8
ON
3879 unsigned long rlim_rtprio =
3880 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3881
3882 /* can't set/change the rt policy */
3883 if (policy != p->policy && !rlim_rtprio)
3884 return -EPERM;
3885
3886 /* can't increase priority */
d50dde5a
DF
3887 if (attr->sched_priority > p->rt_priority &&
3888 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3889 return -EPERM;
3890 }
c02aa73b 3891
d44753b8
JL
3892 /*
3893 * Can't set/change SCHED_DEADLINE policy at all for now
3894 * (safest behavior); in the future we would like to allow
3895 * unprivileged DL tasks to increase their relative deadline
3896 * or reduce their runtime (both ways reducing utilization)
3897 */
3898 if (dl_policy(policy))
3899 return -EPERM;
3900
dd41f596 3901 /*
c02aa73b
DH
3902 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3903 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3904 */
20f9cd2a 3905 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3906 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3907 return -EPERM;
3908 }
5fe1d75f 3909
37e4ab3f 3910 /* can't change other user's priorities */
c69e8d9c 3911 if (!check_same_owner(p))
37e4ab3f 3912 return -EPERM;
ca94c442
LP
3913
3914 /* Normal users shall not reset the sched_reset_on_fork flag */
3915 if (p->sched_reset_on_fork && !reset_on_fork)
3916 return -EPERM;
37e4ab3f 3917 }
1da177e4 3918
725aad24 3919 if (user) {
b0ae1981 3920 retval = security_task_setscheduler(p);
725aad24
JF
3921 if (retval)
3922 return retval;
3923 }
3924
b29739f9
IM
3925 /*
3926 * make sure no PI-waiters arrive (or leave) while we are
3927 * changing the priority of the task:
0122ec5b 3928 *
25985edc 3929 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3930 * runqueue lock must be held.
3931 */
0122ec5b 3932 rq = task_rq_lock(p, &flags);
dc61b1d6 3933
34f971f6
PZ
3934 /*
3935 * Changing the policy of the stop threads its a very bad idea
3936 */
3937 if (p == rq->stop) {
0122ec5b 3938 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3939 return -EINVAL;
3940 }
3941
a51e9198 3942 /*
d6b1e911
TG
3943 * If not changing anything there's no need to proceed further,
3944 * but store a possible modification of reset_on_fork.
a51e9198 3945 */
d50dde5a 3946 if (unlikely(policy == p->policy)) {
d0ea0268 3947 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3948 goto change;
3949 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3950 goto change;
75381608 3951 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3952 goto change;
d50dde5a 3953
d6b1e911 3954 p->sched_reset_on_fork = reset_on_fork;
45afb173 3955 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3956 return 0;
3957 }
d50dde5a 3958change:
a51e9198 3959
dc61b1d6 3960 if (user) {
332ac17e 3961#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3962 /*
3963 * Do not allow realtime tasks into groups that have no runtime
3964 * assigned.
3965 */
3966 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3967 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3968 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3969 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3970 return -EPERM;
3971 }
dc61b1d6 3972#endif
332ac17e
DF
3973#ifdef CONFIG_SMP
3974 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3975 cpumask_t *span = rq->rd->span;
332ac17e
DF
3976
3977 /*
3978 * Don't allow tasks with an affinity mask smaller than
3979 * the entire root_domain to become SCHED_DEADLINE. We
3980 * will also fail if there's no bandwidth available.
3981 */
e4099a5e
PZ
3982 if (!cpumask_subset(span, &p->cpus_allowed) ||
3983 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3984 task_rq_unlock(rq, p, &flags);
3985 return -EPERM;
3986 }
3987 }
3988#endif
3989 }
dc61b1d6 3990
1da177e4
LT
3991 /* recheck policy now with rq lock held */
3992 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3993 policy = oldpolicy = -1;
0122ec5b 3994 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3995 goto recheck;
3996 }
332ac17e
DF
3997
3998 /*
3999 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4000 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4001 * is available.
4002 */
e4099a5e 4003 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4004 task_rq_unlock(rq, p, &flags);
4005 return -EBUSY;
4006 }
4007
c365c292
TG
4008 p->sched_reset_on_fork = reset_on_fork;
4009 oldprio = p->prio;
4010
dbc7f069
PZ
4011 if (pi) {
4012 /*
4013 * Take priority boosted tasks into account. If the new
4014 * effective priority is unchanged, we just store the new
4015 * normal parameters and do not touch the scheduler class and
4016 * the runqueue. This will be done when the task deboost
4017 * itself.
4018 */
4019 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4020 if (new_effective_prio == oldprio)
4021 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4022 }
4023
da0c1e65 4024 queued = task_on_rq_queued(p);
051a1d1a 4025 running = task_current(rq, p);
da0c1e65 4026 if (queued)
ff77e468 4027 dequeue_task(rq, p, queue_flags);
0e1f3483 4028 if (running)
f3cd1c4e 4029 put_prev_task(rq, p);
f6b53205 4030
83ab0aa0 4031 prev_class = p->sched_class;
dbc7f069 4032 __setscheduler(rq, p, attr, pi);
f6b53205 4033
0e1f3483
HS
4034 if (running)
4035 p->sched_class->set_curr_task(rq);
da0c1e65 4036 if (queued) {
81a44c54
TG
4037 /*
4038 * We enqueue to tail when the priority of a task is
4039 * increased (user space view).
4040 */
ff77e468
PZ
4041 if (oldprio < p->prio)
4042 queue_flags |= ENQUEUE_HEAD;
1de64443 4043
ff77e468 4044 enqueue_task(rq, p, queue_flags);
81a44c54 4045 }
cb469845 4046
da7a735e 4047 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4048 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4049 task_rq_unlock(rq, p, &flags);
b29739f9 4050
dbc7f069
PZ
4051 if (pi)
4052 rt_mutex_adjust_pi(p);
95e02ca9 4053
4c9a4bc8
PZ
4054 /*
4055 * Run balance callbacks after we've adjusted the PI chain.
4056 */
4057 balance_callback(rq);
4058 preempt_enable();
95e02ca9 4059
1da177e4
LT
4060 return 0;
4061}
961ccddd 4062
7479f3c9
PZ
4063static int _sched_setscheduler(struct task_struct *p, int policy,
4064 const struct sched_param *param, bool check)
4065{
4066 struct sched_attr attr = {
4067 .sched_policy = policy,
4068 .sched_priority = param->sched_priority,
4069 .sched_nice = PRIO_TO_NICE(p->static_prio),
4070 };
4071
c13db6b1
SR
4072 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4073 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4074 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4075 policy &= ~SCHED_RESET_ON_FORK;
4076 attr.sched_policy = policy;
4077 }
4078
dbc7f069 4079 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4080}
961ccddd
RR
4081/**
4082 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4083 * @p: the task in question.
4084 * @policy: new policy.
4085 * @param: structure containing the new RT priority.
4086 *
e69f6186
YB
4087 * Return: 0 on success. An error code otherwise.
4088 *
961ccddd
RR
4089 * NOTE that the task may be already dead.
4090 */
4091int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4092 const struct sched_param *param)
961ccddd 4093{
7479f3c9 4094 return _sched_setscheduler(p, policy, param, true);
961ccddd 4095}
1da177e4
LT
4096EXPORT_SYMBOL_GPL(sched_setscheduler);
4097
d50dde5a
DF
4098int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4099{
dbc7f069 4100 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4101}
4102EXPORT_SYMBOL_GPL(sched_setattr);
4103
961ccddd
RR
4104/**
4105 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4106 * @p: the task in question.
4107 * @policy: new policy.
4108 * @param: structure containing the new RT priority.
4109 *
4110 * Just like sched_setscheduler, only don't bother checking if the
4111 * current context has permission. For example, this is needed in
4112 * stop_machine(): we create temporary high priority worker threads,
4113 * but our caller might not have that capability.
e69f6186
YB
4114 *
4115 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4116 */
4117int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4118 const struct sched_param *param)
961ccddd 4119{
7479f3c9 4120 return _sched_setscheduler(p, policy, param, false);
961ccddd 4121}
84778472 4122EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4123
95cdf3b7
IM
4124static int
4125do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4126{
1da177e4
LT
4127 struct sched_param lparam;
4128 struct task_struct *p;
36c8b586 4129 int retval;
1da177e4
LT
4130
4131 if (!param || pid < 0)
4132 return -EINVAL;
4133 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4134 return -EFAULT;
5fe1d75f
ON
4135
4136 rcu_read_lock();
4137 retval = -ESRCH;
1da177e4 4138 p = find_process_by_pid(pid);
5fe1d75f
ON
4139 if (p != NULL)
4140 retval = sched_setscheduler(p, policy, &lparam);
4141 rcu_read_unlock();
36c8b586 4142
1da177e4
LT
4143 return retval;
4144}
4145
d50dde5a
DF
4146/*
4147 * Mimics kernel/events/core.c perf_copy_attr().
4148 */
4149static int sched_copy_attr(struct sched_attr __user *uattr,
4150 struct sched_attr *attr)
4151{
4152 u32 size;
4153 int ret;
4154
4155 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4156 return -EFAULT;
4157
4158 /*
4159 * zero the full structure, so that a short copy will be nice.
4160 */
4161 memset(attr, 0, sizeof(*attr));
4162
4163 ret = get_user(size, &uattr->size);
4164 if (ret)
4165 return ret;
4166
4167 if (size > PAGE_SIZE) /* silly large */
4168 goto err_size;
4169
4170 if (!size) /* abi compat */
4171 size = SCHED_ATTR_SIZE_VER0;
4172
4173 if (size < SCHED_ATTR_SIZE_VER0)
4174 goto err_size;
4175
4176 /*
4177 * If we're handed a bigger struct than we know of,
4178 * ensure all the unknown bits are 0 - i.e. new
4179 * user-space does not rely on any kernel feature
4180 * extensions we dont know about yet.
4181 */
4182 if (size > sizeof(*attr)) {
4183 unsigned char __user *addr;
4184 unsigned char __user *end;
4185 unsigned char val;
4186
4187 addr = (void __user *)uattr + sizeof(*attr);
4188 end = (void __user *)uattr + size;
4189
4190 for (; addr < end; addr++) {
4191 ret = get_user(val, addr);
4192 if (ret)
4193 return ret;
4194 if (val)
4195 goto err_size;
4196 }
4197 size = sizeof(*attr);
4198 }
4199
4200 ret = copy_from_user(attr, uattr, size);
4201 if (ret)
4202 return -EFAULT;
4203
4204 /*
4205 * XXX: do we want to be lenient like existing syscalls; or do we want
4206 * to be strict and return an error on out-of-bounds values?
4207 */
75e45d51 4208 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4209
e78c7bca 4210 return 0;
d50dde5a
DF
4211
4212err_size:
4213 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4214 return -E2BIG;
d50dde5a
DF
4215}
4216
1da177e4
LT
4217/**
4218 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4219 * @pid: the pid in question.
4220 * @policy: new policy.
4221 * @param: structure containing the new RT priority.
e69f6186
YB
4222 *
4223 * Return: 0 on success. An error code otherwise.
1da177e4 4224 */
5add95d4
HC
4225SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4226 struct sched_param __user *, param)
1da177e4 4227{
c21761f1
JB
4228 /* negative values for policy are not valid */
4229 if (policy < 0)
4230 return -EINVAL;
4231
1da177e4
LT
4232 return do_sched_setscheduler(pid, policy, param);
4233}
4234
4235/**
4236 * sys_sched_setparam - set/change the RT priority of a thread
4237 * @pid: the pid in question.
4238 * @param: structure containing the new RT priority.
e69f6186
YB
4239 *
4240 * Return: 0 on success. An error code otherwise.
1da177e4 4241 */
5add95d4 4242SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4243{
c13db6b1 4244 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4245}
4246
d50dde5a
DF
4247/**
4248 * sys_sched_setattr - same as above, but with extended sched_attr
4249 * @pid: the pid in question.
5778fccf 4250 * @uattr: structure containing the extended parameters.
db66d756 4251 * @flags: for future extension.
d50dde5a 4252 */
6d35ab48
PZ
4253SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4254 unsigned int, flags)
d50dde5a
DF
4255{
4256 struct sched_attr attr;
4257 struct task_struct *p;
4258 int retval;
4259
6d35ab48 4260 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4261 return -EINVAL;
4262
143cf23d
MK
4263 retval = sched_copy_attr(uattr, &attr);
4264 if (retval)
4265 return retval;
d50dde5a 4266
b14ed2c2 4267 if ((int)attr.sched_policy < 0)
dbdb2275 4268 return -EINVAL;
d50dde5a
DF
4269
4270 rcu_read_lock();
4271 retval = -ESRCH;
4272 p = find_process_by_pid(pid);
4273 if (p != NULL)
4274 retval = sched_setattr(p, &attr);
4275 rcu_read_unlock();
4276
4277 return retval;
4278}
4279
1da177e4
LT
4280/**
4281 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4282 * @pid: the pid in question.
e69f6186
YB
4283 *
4284 * Return: On success, the policy of the thread. Otherwise, a negative error
4285 * code.
1da177e4 4286 */
5add95d4 4287SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4288{
36c8b586 4289 struct task_struct *p;
3a5c359a 4290 int retval;
1da177e4
LT
4291
4292 if (pid < 0)
3a5c359a 4293 return -EINVAL;
1da177e4
LT
4294
4295 retval = -ESRCH;
5fe85be0 4296 rcu_read_lock();
1da177e4
LT
4297 p = find_process_by_pid(pid);
4298 if (p) {
4299 retval = security_task_getscheduler(p);
4300 if (!retval)
ca94c442
LP
4301 retval = p->policy
4302 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4303 }
5fe85be0 4304 rcu_read_unlock();
1da177e4
LT
4305 return retval;
4306}
4307
4308/**
ca94c442 4309 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4310 * @pid: the pid in question.
4311 * @param: structure containing the RT priority.
e69f6186
YB
4312 *
4313 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4314 * code.
1da177e4 4315 */
5add95d4 4316SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4317{
ce5f7f82 4318 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4319 struct task_struct *p;
3a5c359a 4320 int retval;
1da177e4
LT
4321
4322 if (!param || pid < 0)
3a5c359a 4323 return -EINVAL;
1da177e4 4324
5fe85be0 4325 rcu_read_lock();
1da177e4
LT
4326 p = find_process_by_pid(pid);
4327 retval = -ESRCH;
4328 if (!p)
4329 goto out_unlock;
4330
4331 retval = security_task_getscheduler(p);
4332 if (retval)
4333 goto out_unlock;
4334
ce5f7f82
PZ
4335 if (task_has_rt_policy(p))
4336 lp.sched_priority = p->rt_priority;
5fe85be0 4337 rcu_read_unlock();
1da177e4
LT
4338
4339 /*
4340 * This one might sleep, we cannot do it with a spinlock held ...
4341 */
4342 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4343
1da177e4
LT
4344 return retval;
4345
4346out_unlock:
5fe85be0 4347 rcu_read_unlock();
1da177e4
LT
4348 return retval;
4349}
4350
d50dde5a
DF
4351static int sched_read_attr(struct sched_attr __user *uattr,
4352 struct sched_attr *attr,
4353 unsigned int usize)
4354{
4355 int ret;
4356
4357 if (!access_ok(VERIFY_WRITE, uattr, usize))
4358 return -EFAULT;
4359
4360 /*
4361 * If we're handed a smaller struct than we know of,
4362 * ensure all the unknown bits are 0 - i.e. old
4363 * user-space does not get uncomplete information.
4364 */
4365 if (usize < sizeof(*attr)) {
4366 unsigned char *addr;
4367 unsigned char *end;
4368
4369 addr = (void *)attr + usize;
4370 end = (void *)attr + sizeof(*attr);
4371
4372 for (; addr < end; addr++) {
4373 if (*addr)
22400674 4374 return -EFBIG;
d50dde5a
DF
4375 }
4376
4377 attr->size = usize;
4378 }
4379
4efbc454 4380 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4381 if (ret)
4382 return -EFAULT;
4383
22400674 4384 return 0;
d50dde5a
DF
4385}
4386
4387/**
aab03e05 4388 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4389 * @pid: the pid in question.
5778fccf 4390 * @uattr: structure containing the extended parameters.
d50dde5a 4391 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4392 * @flags: for future extension.
d50dde5a 4393 */
6d35ab48
PZ
4394SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4395 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4396{
4397 struct sched_attr attr = {
4398 .size = sizeof(struct sched_attr),
4399 };
4400 struct task_struct *p;
4401 int retval;
4402
4403 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4404 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4405 return -EINVAL;
4406
4407 rcu_read_lock();
4408 p = find_process_by_pid(pid);
4409 retval = -ESRCH;
4410 if (!p)
4411 goto out_unlock;
4412
4413 retval = security_task_getscheduler(p);
4414 if (retval)
4415 goto out_unlock;
4416
4417 attr.sched_policy = p->policy;
7479f3c9
PZ
4418 if (p->sched_reset_on_fork)
4419 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4420 if (task_has_dl_policy(p))
4421 __getparam_dl(p, &attr);
4422 else if (task_has_rt_policy(p))
d50dde5a
DF
4423 attr.sched_priority = p->rt_priority;
4424 else
d0ea0268 4425 attr.sched_nice = task_nice(p);
d50dde5a
DF
4426
4427 rcu_read_unlock();
4428
4429 retval = sched_read_attr(uattr, &attr, size);
4430 return retval;
4431
4432out_unlock:
4433 rcu_read_unlock();
4434 return retval;
4435}
4436
96f874e2 4437long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4438{
5a16f3d3 4439 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4440 struct task_struct *p;
4441 int retval;
1da177e4 4442
23f5d142 4443 rcu_read_lock();
1da177e4
LT
4444
4445 p = find_process_by_pid(pid);
4446 if (!p) {
23f5d142 4447 rcu_read_unlock();
1da177e4
LT
4448 return -ESRCH;
4449 }
4450
23f5d142 4451 /* Prevent p going away */
1da177e4 4452 get_task_struct(p);
23f5d142 4453 rcu_read_unlock();
1da177e4 4454
14a40ffc
TH
4455 if (p->flags & PF_NO_SETAFFINITY) {
4456 retval = -EINVAL;
4457 goto out_put_task;
4458 }
5a16f3d3
RR
4459 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4460 retval = -ENOMEM;
4461 goto out_put_task;
4462 }
4463 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4464 retval = -ENOMEM;
4465 goto out_free_cpus_allowed;
4466 }
1da177e4 4467 retval = -EPERM;
4c44aaaf
EB
4468 if (!check_same_owner(p)) {
4469 rcu_read_lock();
4470 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4471 rcu_read_unlock();
16303ab2 4472 goto out_free_new_mask;
4c44aaaf
EB
4473 }
4474 rcu_read_unlock();
4475 }
1da177e4 4476
b0ae1981 4477 retval = security_task_setscheduler(p);
e7834f8f 4478 if (retval)
16303ab2 4479 goto out_free_new_mask;
e7834f8f 4480
e4099a5e
PZ
4481
4482 cpuset_cpus_allowed(p, cpus_allowed);
4483 cpumask_and(new_mask, in_mask, cpus_allowed);
4484
332ac17e
DF
4485 /*
4486 * Since bandwidth control happens on root_domain basis,
4487 * if admission test is enabled, we only admit -deadline
4488 * tasks allowed to run on all the CPUs in the task's
4489 * root_domain.
4490 */
4491#ifdef CONFIG_SMP
f1e3a093
KT
4492 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4493 rcu_read_lock();
4494 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4495 retval = -EBUSY;
f1e3a093 4496 rcu_read_unlock();
16303ab2 4497 goto out_free_new_mask;
332ac17e 4498 }
f1e3a093 4499 rcu_read_unlock();
332ac17e
DF
4500 }
4501#endif
49246274 4502again:
25834c73 4503 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4504
8707d8b8 4505 if (!retval) {
5a16f3d3
RR
4506 cpuset_cpus_allowed(p, cpus_allowed);
4507 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4508 /*
4509 * We must have raced with a concurrent cpuset
4510 * update. Just reset the cpus_allowed to the
4511 * cpuset's cpus_allowed
4512 */
5a16f3d3 4513 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4514 goto again;
4515 }
4516 }
16303ab2 4517out_free_new_mask:
5a16f3d3
RR
4518 free_cpumask_var(new_mask);
4519out_free_cpus_allowed:
4520 free_cpumask_var(cpus_allowed);
4521out_put_task:
1da177e4 4522 put_task_struct(p);
1da177e4
LT
4523 return retval;
4524}
4525
4526static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4527 struct cpumask *new_mask)
1da177e4 4528{
96f874e2
RR
4529 if (len < cpumask_size())
4530 cpumask_clear(new_mask);
4531 else if (len > cpumask_size())
4532 len = cpumask_size();
4533
1da177e4
LT
4534 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4535}
4536
4537/**
4538 * sys_sched_setaffinity - set the cpu affinity of a process
4539 * @pid: pid of the process
4540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4541 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4542 *
4543 * Return: 0 on success. An error code otherwise.
1da177e4 4544 */
5add95d4
HC
4545SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4546 unsigned long __user *, user_mask_ptr)
1da177e4 4547{
5a16f3d3 4548 cpumask_var_t new_mask;
1da177e4
LT
4549 int retval;
4550
5a16f3d3
RR
4551 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4552 return -ENOMEM;
1da177e4 4553
5a16f3d3
RR
4554 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4555 if (retval == 0)
4556 retval = sched_setaffinity(pid, new_mask);
4557 free_cpumask_var(new_mask);
4558 return retval;
1da177e4
LT
4559}
4560
96f874e2 4561long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4562{
36c8b586 4563 struct task_struct *p;
31605683 4564 unsigned long flags;
1da177e4 4565 int retval;
1da177e4 4566
23f5d142 4567 rcu_read_lock();
1da177e4
LT
4568
4569 retval = -ESRCH;
4570 p = find_process_by_pid(pid);
4571 if (!p)
4572 goto out_unlock;
4573
e7834f8f
DQ
4574 retval = security_task_getscheduler(p);
4575 if (retval)
4576 goto out_unlock;
4577
013fdb80 4578 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4579 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4580 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4581
4582out_unlock:
23f5d142 4583 rcu_read_unlock();
1da177e4 4584
9531b62f 4585 return retval;
1da177e4
LT
4586}
4587
4588/**
4589 * sys_sched_getaffinity - get the cpu affinity of a process
4590 * @pid: pid of the process
4591 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4592 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4593 *
4594 * Return: 0 on success. An error code otherwise.
1da177e4 4595 */
5add95d4
HC
4596SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4597 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4598{
4599 int ret;
f17c8607 4600 cpumask_var_t mask;
1da177e4 4601
84fba5ec 4602 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4603 return -EINVAL;
4604 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4605 return -EINVAL;
4606
f17c8607
RR
4607 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4608 return -ENOMEM;
1da177e4 4609
f17c8607
RR
4610 ret = sched_getaffinity(pid, mask);
4611 if (ret == 0) {
8bc037fb 4612 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4613
4614 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4615 ret = -EFAULT;
4616 else
cd3d8031 4617 ret = retlen;
f17c8607
RR
4618 }
4619 free_cpumask_var(mask);
1da177e4 4620
f17c8607 4621 return ret;
1da177e4
LT
4622}
4623
4624/**
4625 * sys_sched_yield - yield the current processor to other threads.
4626 *
dd41f596
IM
4627 * This function yields the current CPU to other tasks. If there are no
4628 * other threads running on this CPU then this function will return.
e69f6186
YB
4629 *
4630 * Return: 0.
1da177e4 4631 */
5add95d4 4632SYSCALL_DEFINE0(sched_yield)
1da177e4 4633{
70b97a7f 4634 struct rq *rq = this_rq_lock();
1da177e4 4635
2d72376b 4636 schedstat_inc(rq, yld_count);
4530d7ab 4637 current->sched_class->yield_task(rq);
1da177e4
LT
4638
4639 /*
4640 * Since we are going to call schedule() anyway, there's
4641 * no need to preempt or enable interrupts:
4642 */
4643 __release(rq->lock);
8a25d5de 4644 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4645 do_raw_spin_unlock(&rq->lock);
ba74c144 4646 sched_preempt_enable_no_resched();
1da177e4
LT
4647
4648 schedule();
4649
4650 return 0;
4651}
4652
02b67cc3 4653int __sched _cond_resched(void)
1da177e4 4654{
fe32d3cd 4655 if (should_resched(0)) {
a18b5d01 4656 preempt_schedule_common();
1da177e4
LT
4657 return 1;
4658 }
4659 return 0;
4660}
02b67cc3 4661EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4662
4663/*
613afbf8 4664 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4665 * call schedule, and on return reacquire the lock.
4666 *
41a2d6cf 4667 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4668 * operations here to prevent schedule() from being called twice (once via
4669 * spin_unlock(), once by hand).
4670 */
613afbf8 4671int __cond_resched_lock(spinlock_t *lock)
1da177e4 4672{
fe32d3cd 4673 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4674 int ret = 0;
4675
f607c668
PZ
4676 lockdep_assert_held(lock);
4677
4a81e832 4678 if (spin_needbreak(lock) || resched) {
1da177e4 4679 spin_unlock(lock);
d86ee480 4680 if (resched)
a18b5d01 4681 preempt_schedule_common();
95c354fe
NP
4682 else
4683 cpu_relax();
6df3cecb 4684 ret = 1;
1da177e4 4685 spin_lock(lock);
1da177e4 4686 }
6df3cecb 4687 return ret;
1da177e4 4688}
613afbf8 4689EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4690
613afbf8 4691int __sched __cond_resched_softirq(void)
1da177e4
LT
4692{
4693 BUG_ON(!in_softirq());
4694
fe32d3cd 4695 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4696 local_bh_enable();
a18b5d01 4697 preempt_schedule_common();
1da177e4
LT
4698 local_bh_disable();
4699 return 1;
4700 }
4701 return 0;
4702}
613afbf8 4703EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4704
1da177e4
LT
4705/**
4706 * yield - yield the current processor to other threads.
4707 *
8e3fabfd
PZ
4708 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4709 *
4710 * The scheduler is at all times free to pick the calling task as the most
4711 * eligible task to run, if removing the yield() call from your code breaks
4712 * it, its already broken.
4713 *
4714 * Typical broken usage is:
4715 *
4716 * while (!event)
4717 * yield();
4718 *
4719 * where one assumes that yield() will let 'the other' process run that will
4720 * make event true. If the current task is a SCHED_FIFO task that will never
4721 * happen. Never use yield() as a progress guarantee!!
4722 *
4723 * If you want to use yield() to wait for something, use wait_event().
4724 * If you want to use yield() to be 'nice' for others, use cond_resched().
4725 * If you still want to use yield(), do not!
1da177e4
LT
4726 */
4727void __sched yield(void)
4728{
4729 set_current_state(TASK_RUNNING);
4730 sys_sched_yield();
4731}
1da177e4
LT
4732EXPORT_SYMBOL(yield);
4733
d95f4122
MG
4734/**
4735 * yield_to - yield the current processor to another thread in
4736 * your thread group, or accelerate that thread toward the
4737 * processor it's on.
16addf95
RD
4738 * @p: target task
4739 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4740 *
4741 * It's the caller's job to ensure that the target task struct
4742 * can't go away on us before we can do any checks.
4743 *
e69f6186 4744 * Return:
7b270f60
PZ
4745 * true (>0) if we indeed boosted the target task.
4746 * false (0) if we failed to boost the target.
4747 * -ESRCH if there's no task to yield to.
d95f4122 4748 */
fa93384f 4749int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4750{
4751 struct task_struct *curr = current;
4752 struct rq *rq, *p_rq;
4753 unsigned long flags;
c3c18640 4754 int yielded = 0;
d95f4122
MG
4755
4756 local_irq_save(flags);
4757 rq = this_rq();
4758
4759again:
4760 p_rq = task_rq(p);
7b270f60
PZ
4761 /*
4762 * If we're the only runnable task on the rq and target rq also
4763 * has only one task, there's absolutely no point in yielding.
4764 */
4765 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4766 yielded = -ESRCH;
4767 goto out_irq;
4768 }
4769
d95f4122 4770 double_rq_lock(rq, p_rq);
39e24d8f 4771 if (task_rq(p) != p_rq) {
d95f4122
MG
4772 double_rq_unlock(rq, p_rq);
4773 goto again;
4774 }
4775
4776 if (!curr->sched_class->yield_to_task)
7b270f60 4777 goto out_unlock;
d95f4122
MG
4778
4779 if (curr->sched_class != p->sched_class)
7b270f60 4780 goto out_unlock;
d95f4122
MG
4781
4782 if (task_running(p_rq, p) || p->state)
7b270f60 4783 goto out_unlock;
d95f4122
MG
4784
4785 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4786 if (yielded) {
d95f4122 4787 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4788 /*
4789 * Make p's CPU reschedule; pick_next_entity takes care of
4790 * fairness.
4791 */
4792 if (preempt && rq != p_rq)
8875125e 4793 resched_curr(p_rq);
6d1cafd8 4794 }
d95f4122 4795
7b270f60 4796out_unlock:
d95f4122 4797 double_rq_unlock(rq, p_rq);
7b270f60 4798out_irq:
d95f4122
MG
4799 local_irq_restore(flags);
4800
7b270f60 4801 if (yielded > 0)
d95f4122
MG
4802 schedule();
4803
4804 return yielded;
4805}
4806EXPORT_SYMBOL_GPL(yield_to);
4807
1da177e4 4808/*
41a2d6cf 4809 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4810 * that process accounting knows that this is a task in IO wait state.
1da177e4 4811 */
1da177e4
LT
4812long __sched io_schedule_timeout(long timeout)
4813{
9cff8ade
N
4814 int old_iowait = current->in_iowait;
4815 struct rq *rq;
1da177e4
LT
4816 long ret;
4817
9cff8ade 4818 current->in_iowait = 1;
10d784ea 4819 blk_schedule_flush_plug(current);
9cff8ade 4820
0ff92245 4821 delayacct_blkio_start();
9cff8ade 4822 rq = raw_rq();
1da177e4
LT
4823 atomic_inc(&rq->nr_iowait);
4824 ret = schedule_timeout(timeout);
9cff8ade 4825 current->in_iowait = old_iowait;
1da177e4 4826 atomic_dec(&rq->nr_iowait);
0ff92245 4827 delayacct_blkio_end();
9cff8ade 4828
1da177e4
LT
4829 return ret;
4830}
9cff8ade 4831EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4832
4833/**
4834 * sys_sched_get_priority_max - return maximum RT priority.
4835 * @policy: scheduling class.
4836 *
e69f6186
YB
4837 * Return: On success, this syscall returns the maximum
4838 * rt_priority that can be used by a given scheduling class.
4839 * On failure, a negative error code is returned.
1da177e4 4840 */
5add95d4 4841SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4842{
4843 int ret = -EINVAL;
4844
4845 switch (policy) {
4846 case SCHED_FIFO:
4847 case SCHED_RR:
4848 ret = MAX_USER_RT_PRIO-1;
4849 break;
aab03e05 4850 case SCHED_DEADLINE:
1da177e4 4851 case SCHED_NORMAL:
b0a9499c 4852 case SCHED_BATCH:
dd41f596 4853 case SCHED_IDLE:
1da177e4
LT
4854 ret = 0;
4855 break;
4856 }
4857 return ret;
4858}
4859
4860/**
4861 * sys_sched_get_priority_min - return minimum RT priority.
4862 * @policy: scheduling class.
4863 *
e69f6186
YB
4864 * Return: On success, this syscall returns the minimum
4865 * rt_priority that can be used by a given scheduling class.
4866 * On failure, a negative error code is returned.
1da177e4 4867 */
5add95d4 4868SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4869{
4870 int ret = -EINVAL;
4871
4872 switch (policy) {
4873 case SCHED_FIFO:
4874 case SCHED_RR:
4875 ret = 1;
4876 break;
aab03e05 4877 case SCHED_DEADLINE:
1da177e4 4878 case SCHED_NORMAL:
b0a9499c 4879 case SCHED_BATCH:
dd41f596 4880 case SCHED_IDLE:
1da177e4
LT
4881 ret = 0;
4882 }
4883 return ret;
4884}
4885
4886/**
4887 * sys_sched_rr_get_interval - return the default timeslice of a process.
4888 * @pid: pid of the process.
4889 * @interval: userspace pointer to the timeslice value.
4890 *
4891 * this syscall writes the default timeslice value of a given process
4892 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4893 *
4894 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4895 * an error code.
1da177e4 4896 */
17da2bd9 4897SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4898 struct timespec __user *, interval)
1da177e4 4899{
36c8b586 4900 struct task_struct *p;
a4ec24b4 4901 unsigned int time_slice;
dba091b9
TG
4902 unsigned long flags;
4903 struct rq *rq;
3a5c359a 4904 int retval;
1da177e4 4905 struct timespec t;
1da177e4
LT
4906
4907 if (pid < 0)
3a5c359a 4908 return -EINVAL;
1da177e4
LT
4909
4910 retval = -ESRCH;
1a551ae7 4911 rcu_read_lock();
1da177e4
LT
4912 p = find_process_by_pid(pid);
4913 if (!p)
4914 goto out_unlock;
4915
4916 retval = security_task_getscheduler(p);
4917 if (retval)
4918 goto out_unlock;
4919
dba091b9 4920 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4921 time_slice = 0;
4922 if (p->sched_class->get_rr_interval)
4923 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4924 task_rq_unlock(rq, p, &flags);
a4ec24b4 4925
1a551ae7 4926 rcu_read_unlock();
a4ec24b4 4927 jiffies_to_timespec(time_slice, &t);
1da177e4 4928 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4929 return retval;
3a5c359a 4930
1da177e4 4931out_unlock:
1a551ae7 4932 rcu_read_unlock();
1da177e4
LT
4933 return retval;
4934}
4935
7c731e0a 4936static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4937
82a1fcb9 4938void sched_show_task(struct task_struct *p)
1da177e4 4939{
1da177e4 4940 unsigned long free = 0;
4e79752c 4941 int ppid;
1f8a7633 4942 unsigned long state = p->state;
1da177e4 4943
1f8a7633
TH
4944 if (state)
4945 state = __ffs(state) + 1;
28d0686c 4946 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4947 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4948#if BITS_PER_LONG == 32
1da177e4 4949 if (state == TASK_RUNNING)
3df0fc5b 4950 printk(KERN_CONT " running ");
1da177e4 4951 else
3df0fc5b 4952 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4953#else
4954 if (state == TASK_RUNNING)
3df0fc5b 4955 printk(KERN_CONT " running task ");
1da177e4 4956 else
3df0fc5b 4957 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4958#endif
4959#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4960 free = stack_not_used(p);
1da177e4 4961#endif
a90e984c 4962 ppid = 0;
4e79752c 4963 rcu_read_lock();
a90e984c
ON
4964 if (pid_alive(p))
4965 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4966 rcu_read_unlock();
3df0fc5b 4967 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4968 task_pid_nr(p), ppid,
aa47b7e0 4969 (unsigned long)task_thread_info(p)->flags);
1da177e4 4970
3d1cb205 4971 print_worker_info(KERN_INFO, p);
5fb5e6de 4972 show_stack(p, NULL);
1da177e4
LT
4973}
4974
e59e2ae2 4975void show_state_filter(unsigned long state_filter)
1da177e4 4976{
36c8b586 4977 struct task_struct *g, *p;
1da177e4 4978
4bd77321 4979#if BITS_PER_LONG == 32
3df0fc5b
PZ
4980 printk(KERN_INFO
4981 " task PC stack pid father\n");
1da177e4 4982#else
3df0fc5b
PZ
4983 printk(KERN_INFO
4984 " task PC stack pid father\n");
1da177e4 4985#endif
510f5acc 4986 rcu_read_lock();
5d07f420 4987 for_each_process_thread(g, p) {
1da177e4
LT
4988 /*
4989 * reset the NMI-timeout, listing all files on a slow
25985edc 4990 * console might take a lot of time:
1da177e4
LT
4991 */
4992 touch_nmi_watchdog();
39bc89fd 4993 if (!state_filter || (p->state & state_filter))
82a1fcb9 4994 sched_show_task(p);
5d07f420 4995 }
1da177e4 4996
04c9167f
JF
4997 touch_all_softlockup_watchdogs();
4998
dd41f596
IM
4999#ifdef CONFIG_SCHED_DEBUG
5000 sysrq_sched_debug_show();
5001#endif
510f5acc 5002 rcu_read_unlock();
e59e2ae2
IM
5003 /*
5004 * Only show locks if all tasks are dumped:
5005 */
93335a21 5006 if (!state_filter)
e59e2ae2 5007 debug_show_all_locks();
1da177e4
LT
5008}
5009
0db0628d 5010void init_idle_bootup_task(struct task_struct *idle)
1df21055 5011{
dd41f596 5012 idle->sched_class = &idle_sched_class;
1df21055
IM
5013}
5014
f340c0d1
IM
5015/**
5016 * init_idle - set up an idle thread for a given CPU
5017 * @idle: task in question
5018 * @cpu: cpu the idle task belongs to
5019 *
5020 * NOTE: this function does not set the idle thread's NEED_RESCHED
5021 * flag, to make booting more robust.
5022 */
0db0628d 5023void init_idle(struct task_struct *idle, int cpu)
1da177e4 5024{
70b97a7f 5025 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5026 unsigned long flags;
5027
25834c73
PZ
5028 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5029 raw_spin_lock(&rq->lock);
5cbd54ef 5030
5e1576ed 5031 __sched_fork(0, idle);
06b83b5f 5032 idle->state = TASK_RUNNING;
dd41f596
IM
5033 idle->se.exec_start = sched_clock();
5034
de9b8f5d
PZ
5035#ifdef CONFIG_SMP
5036 /*
5037 * Its possible that init_idle() gets called multiple times on a task,
5038 * in that case do_set_cpus_allowed() will not do the right thing.
5039 *
5040 * And since this is boot we can forgo the serialization.
5041 */
5042 set_cpus_allowed_common(idle, cpumask_of(cpu));
5043#endif
6506cf6c
PZ
5044 /*
5045 * We're having a chicken and egg problem, even though we are
5046 * holding rq->lock, the cpu isn't yet set to this cpu so the
5047 * lockdep check in task_group() will fail.
5048 *
5049 * Similar case to sched_fork(). / Alternatively we could
5050 * use task_rq_lock() here and obtain the other rq->lock.
5051 *
5052 * Silence PROVE_RCU
5053 */
5054 rcu_read_lock();
dd41f596 5055 __set_task_cpu(idle, cpu);
6506cf6c 5056 rcu_read_unlock();
1da177e4 5057
1da177e4 5058 rq->curr = rq->idle = idle;
da0c1e65 5059 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5060#ifdef CONFIG_SMP
3ca7a440 5061 idle->on_cpu = 1;
4866cde0 5062#endif
25834c73
PZ
5063 raw_spin_unlock(&rq->lock);
5064 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5065
5066 /* Set the preempt count _outside_ the spinlocks! */
01028747 5067 init_idle_preempt_count(idle, cpu);
55cd5340 5068
dd41f596
IM
5069 /*
5070 * The idle tasks have their own, simple scheduling class:
5071 */
5072 idle->sched_class = &idle_sched_class;
868baf07 5073 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5074 vtime_init_idle(idle, cpu);
de9b8f5d 5075#ifdef CONFIG_SMP
f1c6f1a7
CE
5076 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5077#endif
19978ca6
IM
5078}
5079
f82f8042
JL
5080int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5081 const struct cpumask *trial)
5082{
5083 int ret = 1, trial_cpus;
5084 struct dl_bw *cur_dl_b;
5085 unsigned long flags;
5086
bb2bc55a
MG
5087 if (!cpumask_weight(cur))
5088 return ret;
5089
75e23e49 5090 rcu_read_lock_sched();
f82f8042
JL
5091 cur_dl_b = dl_bw_of(cpumask_any(cur));
5092 trial_cpus = cpumask_weight(trial);
5093
5094 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5095 if (cur_dl_b->bw != -1 &&
5096 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5097 ret = 0;
5098 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5099 rcu_read_unlock_sched();
f82f8042
JL
5100
5101 return ret;
5102}
5103
7f51412a
JL
5104int task_can_attach(struct task_struct *p,
5105 const struct cpumask *cs_cpus_allowed)
5106{
5107 int ret = 0;
5108
5109 /*
5110 * Kthreads which disallow setaffinity shouldn't be moved
5111 * to a new cpuset; we don't want to change their cpu
5112 * affinity and isolating such threads by their set of
5113 * allowed nodes is unnecessary. Thus, cpusets are not
5114 * applicable for such threads. This prevents checking for
5115 * success of set_cpus_allowed_ptr() on all attached tasks
5116 * before cpus_allowed may be changed.
5117 */
5118 if (p->flags & PF_NO_SETAFFINITY) {
5119 ret = -EINVAL;
5120 goto out;
5121 }
5122
5123#ifdef CONFIG_SMP
5124 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5125 cs_cpus_allowed)) {
5126 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5127 cs_cpus_allowed);
75e23e49 5128 struct dl_bw *dl_b;
7f51412a
JL
5129 bool overflow;
5130 int cpus;
5131 unsigned long flags;
5132
75e23e49
JL
5133 rcu_read_lock_sched();
5134 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5135 raw_spin_lock_irqsave(&dl_b->lock, flags);
5136 cpus = dl_bw_cpus(dest_cpu);
5137 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5138 if (overflow)
5139 ret = -EBUSY;
5140 else {
5141 /*
5142 * We reserve space for this task in the destination
5143 * root_domain, as we can't fail after this point.
5144 * We will free resources in the source root_domain
5145 * later on (see set_cpus_allowed_dl()).
5146 */
5147 __dl_add(dl_b, p->dl.dl_bw);
5148 }
5149 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5150 rcu_read_unlock_sched();
7f51412a
JL
5151
5152 }
5153#endif
5154out:
5155 return ret;
5156}
5157
1da177e4 5158#ifdef CONFIG_SMP
1da177e4 5159
e6628d5b
MG
5160#ifdef CONFIG_NUMA_BALANCING
5161/* Migrate current task p to target_cpu */
5162int migrate_task_to(struct task_struct *p, int target_cpu)
5163{
5164 struct migration_arg arg = { p, target_cpu };
5165 int curr_cpu = task_cpu(p);
5166
5167 if (curr_cpu == target_cpu)
5168 return 0;
5169
5170 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5171 return -EINVAL;
5172
5173 /* TODO: This is not properly updating schedstats */
5174
286549dc 5175 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5176 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5177}
0ec8aa00
PZ
5178
5179/*
5180 * Requeue a task on a given node and accurately track the number of NUMA
5181 * tasks on the runqueues
5182 */
5183void sched_setnuma(struct task_struct *p, int nid)
5184{
5185 struct rq *rq;
5186 unsigned long flags;
da0c1e65 5187 bool queued, running;
0ec8aa00
PZ
5188
5189 rq = task_rq_lock(p, &flags);
da0c1e65 5190 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5191 running = task_current(rq, p);
5192
da0c1e65 5193 if (queued)
1de64443 5194 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5195 if (running)
f3cd1c4e 5196 put_prev_task(rq, p);
0ec8aa00
PZ
5197
5198 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5199
5200 if (running)
5201 p->sched_class->set_curr_task(rq);
da0c1e65 5202 if (queued)
1de64443 5203 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5204 task_rq_unlock(rq, p, &flags);
5205}
5cc389bc 5206#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5207
1da177e4 5208#ifdef CONFIG_HOTPLUG_CPU
054b9108 5209/*
48c5ccae
PZ
5210 * Ensures that the idle task is using init_mm right before its cpu goes
5211 * offline.
054b9108 5212 */
48c5ccae 5213void idle_task_exit(void)
1da177e4 5214{
48c5ccae 5215 struct mm_struct *mm = current->active_mm;
e76bd8d9 5216
48c5ccae 5217 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5218
a53efe5f 5219 if (mm != &init_mm) {
48c5ccae 5220 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5221 finish_arch_post_lock_switch();
5222 }
48c5ccae 5223 mmdrop(mm);
1da177e4
LT
5224}
5225
5226/*
5d180232
PZ
5227 * Since this CPU is going 'away' for a while, fold any nr_active delta
5228 * we might have. Assumes we're called after migrate_tasks() so that the
5229 * nr_active count is stable.
5230 *
5231 * Also see the comment "Global load-average calculations".
1da177e4 5232 */
5d180232 5233static void calc_load_migrate(struct rq *rq)
1da177e4 5234{
5d180232
PZ
5235 long delta = calc_load_fold_active(rq);
5236 if (delta)
5237 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5238}
5239
3f1d2a31
PZ
5240static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5241{
5242}
5243
5244static const struct sched_class fake_sched_class = {
5245 .put_prev_task = put_prev_task_fake,
5246};
5247
5248static struct task_struct fake_task = {
5249 /*
5250 * Avoid pull_{rt,dl}_task()
5251 */
5252 .prio = MAX_PRIO + 1,
5253 .sched_class = &fake_sched_class,
5254};
5255
48f24c4d 5256/*
48c5ccae
PZ
5257 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5258 * try_to_wake_up()->select_task_rq().
5259 *
5260 * Called with rq->lock held even though we'er in stop_machine() and
5261 * there's no concurrency possible, we hold the required locks anyway
5262 * because of lock validation efforts.
1da177e4 5263 */
5e16bbc2 5264static void migrate_tasks(struct rq *dead_rq)
1da177e4 5265{
5e16bbc2 5266 struct rq *rq = dead_rq;
48c5ccae
PZ
5267 struct task_struct *next, *stop = rq->stop;
5268 int dest_cpu;
1da177e4
LT
5269
5270 /*
48c5ccae
PZ
5271 * Fudge the rq selection such that the below task selection loop
5272 * doesn't get stuck on the currently eligible stop task.
5273 *
5274 * We're currently inside stop_machine() and the rq is either stuck
5275 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5276 * either way we should never end up calling schedule() until we're
5277 * done here.
1da177e4 5278 */
48c5ccae 5279 rq->stop = NULL;
48f24c4d 5280
77bd3970
FW
5281 /*
5282 * put_prev_task() and pick_next_task() sched
5283 * class method both need to have an up-to-date
5284 * value of rq->clock[_task]
5285 */
5286 update_rq_clock(rq);
5287
5e16bbc2 5288 for (;;) {
48c5ccae
PZ
5289 /*
5290 * There's this thread running, bail when that's the only
5291 * remaining thread.
5292 */
5293 if (rq->nr_running == 1)
dd41f596 5294 break;
48c5ccae 5295
cbce1a68 5296 /*
5473e0cc 5297 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5298 */
5299 lockdep_pin_lock(&rq->lock);
3f1d2a31 5300 next = pick_next_task(rq, &fake_task);
48c5ccae 5301 BUG_ON(!next);
79c53799 5302 next->sched_class->put_prev_task(rq, next);
e692ab53 5303
5473e0cc
WL
5304 /*
5305 * Rules for changing task_struct::cpus_allowed are holding
5306 * both pi_lock and rq->lock, such that holding either
5307 * stabilizes the mask.
5308 *
5309 * Drop rq->lock is not quite as disastrous as it usually is
5310 * because !cpu_active at this point, which means load-balance
5311 * will not interfere. Also, stop-machine.
5312 */
5313 lockdep_unpin_lock(&rq->lock);
5314 raw_spin_unlock(&rq->lock);
5315 raw_spin_lock(&next->pi_lock);
5316 raw_spin_lock(&rq->lock);
5317
5318 /*
5319 * Since we're inside stop-machine, _nothing_ should have
5320 * changed the task, WARN if weird stuff happened, because in
5321 * that case the above rq->lock drop is a fail too.
5322 */
5323 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5324 raw_spin_unlock(&next->pi_lock);
5325 continue;
5326 }
5327
48c5ccae 5328 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5329 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5330
5e16bbc2
PZ
5331 rq = __migrate_task(rq, next, dest_cpu);
5332 if (rq != dead_rq) {
5333 raw_spin_unlock(&rq->lock);
5334 rq = dead_rq;
5335 raw_spin_lock(&rq->lock);
5336 }
5473e0cc 5337 raw_spin_unlock(&next->pi_lock);
1da177e4 5338 }
dce48a84 5339
48c5ccae 5340 rq->stop = stop;
dce48a84 5341}
1da177e4
LT
5342#endif /* CONFIG_HOTPLUG_CPU */
5343
1f11eb6a
GH
5344static void set_rq_online(struct rq *rq)
5345{
5346 if (!rq->online) {
5347 const struct sched_class *class;
5348
c6c4927b 5349 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5350 rq->online = 1;
5351
5352 for_each_class(class) {
5353 if (class->rq_online)
5354 class->rq_online(rq);
5355 }
5356 }
5357}
5358
5359static void set_rq_offline(struct rq *rq)
5360{
5361 if (rq->online) {
5362 const struct sched_class *class;
5363
5364 for_each_class(class) {
5365 if (class->rq_offline)
5366 class->rq_offline(rq);
5367 }
5368
c6c4927b 5369 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5370 rq->online = 0;
5371 }
5372}
5373
1da177e4
LT
5374/*
5375 * migration_call - callback that gets triggered when a CPU is added.
5376 * Here we can start up the necessary migration thread for the new CPU.
5377 */
0db0628d 5378static int
48f24c4d 5379migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5380{
48f24c4d 5381 int cpu = (long)hcpu;
1da177e4 5382 unsigned long flags;
969c7921 5383 struct rq *rq = cpu_rq(cpu);
1da177e4 5384
48c5ccae 5385 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5386
1da177e4 5387 case CPU_UP_PREPARE:
a468d389 5388 rq->calc_load_update = calc_load_update;
1da177e4 5389 break;
48f24c4d 5390
1da177e4 5391 case CPU_ONLINE:
1f94ef59 5392 /* Update our root-domain */
05fa785c 5393 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5394 if (rq->rd) {
c6c4927b 5395 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5396
5397 set_rq_online(rq);
1f94ef59 5398 }
05fa785c 5399 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5400 break;
48f24c4d 5401
1da177e4 5402#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5403 case CPU_DYING:
317f3941 5404 sched_ttwu_pending();
57d885fe 5405 /* Update our root-domain */
05fa785c 5406 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5407 if (rq->rd) {
c6c4927b 5408 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5409 set_rq_offline(rq);
57d885fe 5410 }
5e16bbc2 5411 migrate_tasks(rq);
48c5ccae 5412 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5413 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5414 break;
48c5ccae 5415
5d180232 5416 case CPU_DEAD:
f319da0c 5417 calc_load_migrate(rq);
57d885fe 5418 break;
1da177e4
LT
5419#endif
5420 }
49c022e6
PZ
5421
5422 update_max_interval();
5423
1da177e4
LT
5424 return NOTIFY_OK;
5425}
5426
f38b0820
PM
5427/*
5428 * Register at high priority so that task migration (migrate_all_tasks)
5429 * happens before everything else. This has to be lower priority than
cdd6c482 5430 * the notifier in the perf_event subsystem, though.
1da177e4 5431 */
0db0628d 5432static struct notifier_block migration_notifier = {
1da177e4 5433 .notifier_call = migration_call,
50a323b7 5434 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5435};
5436
6a82b60d 5437static void set_cpu_rq_start_time(void)
a803f026
CM
5438{
5439 int cpu = smp_processor_id();
5440 struct rq *rq = cpu_rq(cpu);
5441 rq->age_stamp = sched_clock_cpu(cpu);
5442}
5443
0db0628d 5444static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5445 unsigned long action, void *hcpu)
5446{
07f06cb3
PZ
5447 int cpu = (long)hcpu;
5448
3a101d05 5449 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5450 case CPU_STARTING:
5451 set_cpu_rq_start_time();
5452 return NOTIFY_OK;
07f06cb3 5453
dd9d3843
JS
5454 case CPU_ONLINE:
5455 /*
5456 * At this point a starting CPU has marked itself as online via
5457 * set_cpu_online(). But it might not yet have marked itself
5458 * as active, which is essential from here on.
dd9d3843 5459 */
07f06cb3
PZ
5460 set_cpu_active(cpu, true);
5461 stop_machine_unpark(cpu);
5462 return NOTIFY_OK;
5463
3a101d05 5464 case CPU_DOWN_FAILED:
07f06cb3 5465 set_cpu_active(cpu, true);
3a101d05 5466 return NOTIFY_OK;
07f06cb3 5467
3a101d05
TH
5468 default:
5469 return NOTIFY_DONE;
5470 }
5471}
5472
0db0628d 5473static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5474 unsigned long action, void *hcpu)
5475{
5476 switch (action & ~CPU_TASKS_FROZEN) {
5477 case CPU_DOWN_PREPARE:
3c18d447 5478 set_cpu_active((long)hcpu, false);
3a101d05 5479 return NOTIFY_OK;
3c18d447
JL
5480 default:
5481 return NOTIFY_DONE;
3a101d05
TH
5482 }
5483}
5484
7babe8db 5485static int __init migration_init(void)
1da177e4
LT
5486{
5487 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5488 int err;
48f24c4d 5489
3a101d05 5490 /* Initialize migration for the boot CPU */
07dccf33
AM
5491 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5492 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5493 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5494 register_cpu_notifier(&migration_notifier);
7babe8db 5495
3a101d05
TH
5496 /* Register cpu active notifiers */
5497 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5498 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5499
a004cd42 5500 return 0;
1da177e4 5501}
7babe8db 5502early_initcall(migration_init);
476f3534 5503
4cb98839
PZ
5504static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5505
3e9830dc 5506#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5507
d039ac60 5508static __read_mostly int sched_debug_enabled;
f6630114 5509
d039ac60 5510static int __init sched_debug_setup(char *str)
f6630114 5511{
d039ac60 5512 sched_debug_enabled = 1;
f6630114
MT
5513
5514 return 0;
5515}
d039ac60
PZ
5516early_param("sched_debug", sched_debug_setup);
5517
5518static inline bool sched_debug(void)
5519{
5520 return sched_debug_enabled;
5521}
f6630114 5522
7c16ec58 5523static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5524 struct cpumask *groupmask)
1da177e4 5525{
4dcf6aff 5526 struct sched_group *group = sd->groups;
1da177e4 5527
96f874e2 5528 cpumask_clear(groupmask);
4dcf6aff
IM
5529
5530 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5531
5532 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5533 printk("does not load-balance\n");
4dcf6aff 5534 if (sd->parent)
3df0fc5b
PZ
5535 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5536 " has parent");
4dcf6aff 5537 return -1;
41c7ce9a
NP
5538 }
5539
333470ee
TH
5540 printk(KERN_CONT "span %*pbl level %s\n",
5541 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5542
758b2cdc 5543 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5544 printk(KERN_ERR "ERROR: domain->span does not contain "
5545 "CPU%d\n", cpu);
4dcf6aff 5546 }
758b2cdc 5547 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5548 printk(KERN_ERR "ERROR: domain->groups does not contain"
5549 " CPU%d\n", cpu);
4dcf6aff 5550 }
1da177e4 5551
4dcf6aff 5552 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5553 do {
4dcf6aff 5554 if (!group) {
3df0fc5b
PZ
5555 printk("\n");
5556 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5557 break;
5558 }
5559
758b2cdc 5560 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5561 printk(KERN_CONT "\n");
5562 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5563 break;
5564 }
1da177e4 5565
cb83b629
PZ
5566 if (!(sd->flags & SD_OVERLAP) &&
5567 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5568 printk(KERN_CONT "\n");
5569 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5570 break;
5571 }
1da177e4 5572
758b2cdc 5573 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5574
333470ee
TH
5575 printk(KERN_CONT " %*pbl",
5576 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5577 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5578 printk(KERN_CONT " (cpu_capacity = %d)",
5579 group->sgc->capacity);
381512cf 5580 }
1da177e4 5581
4dcf6aff
IM
5582 group = group->next;
5583 } while (group != sd->groups);
3df0fc5b 5584 printk(KERN_CONT "\n");
1da177e4 5585
758b2cdc 5586 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5587 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5588
758b2cdc
RR
5589 if (sd->parent &&
5590 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5591 printk(KERN_ERR "ERROR: parent span is not a superset "
5592 "of domain->span\n");
4dcf6aff
IM
5593 return 0;
5594}
1da177e4 5595
4dcf6aff
IM
5596static void sched_domain_debug(struct sched_domain *sd, int cpu)
5597{
5598 int level = 0;
1da177e4 5599
d039ac60 5600 if (!sched_debug_enabled)
f6630114
MT
5601 return;
5602
4dcf6aff
IM
5603 if (!sd) {
5604 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5605 return;
5606 }
1da177e4 5607
4dcf6aff
IM
5608 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5609
5610 for (;;) {
4cb98839 5611 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5612 break;
1da177e4
LT
5613 level++;
5614 sd = sd->parent;
33859f7f 5615 if (!sd)
4dcf6aff
IM
5616 break;
5617 }
1da177e4 5618}
6d6bc0ad 5619#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5620# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5621static inline bool sched_debug(void)
5622{
5623 return false;
5624}
6d6bc0ad 5625#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5626
1a20ff27 5627static int sd_degenerate(struct sched_domain *sd)
245af2c7 5628{
758b2cdc 5629 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5630 return 1;
5631
5632 /* Following flags need at least 2 groups */
5633 if (sd->flags & (SD_LOAD_BALANCE |
5634 SD_BALANCE_NEWIDLE |
5635 SD_BALANCE_FORK |
89c4710e 5636 SD_BALANCE_EXEC |
5d4dfddd 5637 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5638 SD_SHARE_PKG_RESOURCES |
5639 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5640 if (sd->groups != sd->groups->next)
5641 return 0;
5642 }
5643
5644 /* Following flags don't use groups */
c88d5910 5645 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5646 return 0;
5647
5648 return 1;
5649}
5650
48f24c4d
IM
5651static int
5652sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5653{
5654 unsigned long cflags = sd->flags, pflags = parent->flags;
5655
5656 if (sd_degenerate(parent))
5657 return 1;
5658
758b2cdc 5659 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5660 return 0;
5661
245af2c7
SS
5662 /* Flags needing groups don't count if only 1 group in parent */
5663 if (parent->groups == parent->groups->next) {
5664 pflags &= ~(SD_LOAD_BALANCE |
5665 SD_BALANCE_NEWIDLE |
5666 SD_BALANCE_FORK |
89c4710e 5667 SD_BALANCE_EXEC |
5d4dfddd 5668 SD_SHARE_CPUCAPACITY |
10866e62 5669 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5670 SD_PREFER_SIBLING |
5671 SD_SHARE_POWERDOMAIN);
5436499e
KC
5672 if (nr_node_ids == 1)
5673 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5674 }
5675 if (~cflags & pflags)
5676 return 0;
5677
5678 return 1;
5679}
5680
dce840a0 5681static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5682{
dce840a0 5683 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5684
68e74568 5685 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5686 cpudl_cleanup(&rd->cpudl);
1baca4ce 5687 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5688 free_cpumask_var(rd->rto_mask);
5689 free_cpumask_var(rd->online);
5690 free_cpumask_var(rd->span);
5691 kfree(rd);
5692}
5693
57d885fe
GH
5694static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5695{
a0490fa3 5696 struct root_domain *old_rd = NULL;
57d885fe 5697 unsigned long flags;
57d885fe 5698
05fa785c 5699 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5700
5701 if (rq->rd) {
a0490fa3 5702 old_rd = rq->rd;
57d885fe 5703
c6c4927b 5704 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5705 set_rq_offline(rq);
57d885fe 5706
c6c4927b 5707 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5708
a0490fa3 5709 /*
0515973f 5710 * If we dont want to free the old_rd yet then
a0490fa3
IM
5711 * set old_rd to NULL to skip the freeing later
5712 * in this function:
5713 */
5714 if (!atomic_dec_and_test(&old_rd->refcount))
5715 old_rd = NULL;
57d885fe
GH
5716 }
5717
5718 atomic_inc(&rd->refcount);
5719 rq->rd = rd;
5720
c6c4927b 5721 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5722 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5723 set_rq_online(rq);
57d885fe 5724
05fa785c 5725 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5726
5727 if (old_rd)
dce840a0 5728 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5729}
5730
68c38fc3 5731static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5732{
5733 memset(rd, 0, sizeof(*rd));
5734
8295c699 5735 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5736 goto out;
8295c699 5737 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5738 goto free_span;
8295c699 5739 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5740 goto free_online;
8295c699 5741 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5742 goto free_dlo_mask;
6e0534f2 5743
332ac17e 5744 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5745 if (cpudl_init(&rd->cpudl) != 0)
5746 goto free_dlo_mask;
332ac17e 5747
68c38fc3 5748 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5749 goto free_rto_mask;
c6c4927b 5750 return 0;
6e0534f2 5751
68e74568
RR
5752free_rto_mask:
5753 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5754free_dlo_mask:
5755 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5756free_online:
5757 free_cpumask_var(rd->online);
5758free_span:
5759 free_cpumask_var(rd->span);
0c910d28 5760out:
c6c4927b 5761 return -ENOMEM;
57d885fe
GH
5762}
5763
029632fb
PZ
5764/*
5765 * By default the system creates a single root-domain with all cpus as
5766 * members (mimicking the global state we have today).
5767 */
5768struct root_domain def_root_domain;
5769
57d885fe
GH
5770static void init_defrootdomain(void)
5771{
68c38fc3 5772 init_rootdomain(&def_root_domain);
c6c4927b 5773
57d885fe
GH
5774 atomic_set(&def_root_domain.refcount, 1);
5775}
5776
dc938520 5777static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5778{
5779 struct root_domain *rd;
5780
5781 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5782 if (!rd)
5783 return NULL;
5784
68c38fc3 5785 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5786 kfree(rd);
5787 return NULL;
5788 }
57d885fe
GH
5789
5790 return rd;
5791}
5792
63b2ca30 5793static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5794{
5795 struct sched_group *tmp, *first;
5796
5797 if (!sg)
5798 return;
5799
5800 first = sg;
5801 do {
5802 tmp = sg->next;
5803
63b2ca30
NP
5804 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5805 kfree(sg->sgc);
e3589f6c
PZ
5806
5807 kfree(sg);
5808 sg = tmp;
5809 } while (sg != first);
5810}
5811
dce840a0
PZ
5812static void free_sched_domain(struct rcu_head *rcu)
5813{
5814 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5815
5816 /*
5817 * If its an overlapping domain it has private groups, iterate and
5818 * nuke them all.
5819 */
5820 if (sd->flags & SD_OVERLAP) {
5821 free_sched_groups(sd->groups, 1);
5822 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5823 kfree(sd->groups->sgc);
dce840a0 5824 kfree(sd->groups);
9c3f75cb 5825 }
dce840a0
PZ
5826 kfree(sd);
5827}
5828
5829static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5830{
5831 call_rcu(&sd->rcu, free_sched_domain);
5832}
5833
5834static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5835{
5836 for (; sd; sd = sd->parent)
5837 destroy_sched_domain(sd, cpu);
5838}
5839
518cd623
PZ
5840/*
5841 * Keep a special pointer to the highest sched_domain that has
5842 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5843 * allows us to avoid some pointer chasing select_idle_sibling().
5844 *
5845 * Also keep a unique ID per domain (we use the first cpu number in
5846 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5847 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5848 */
5849DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5850DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5851DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5852DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5853DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5854DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5855
5856static void update_top_cache_domain(int cpu)
5857{
5858 struct sched_domain *sd;
5d4cf996 5859 struct sched_domain *busy_sd = NULL;
518cd623 5860 int id = cpu;
7d9ffa89 5861 int size = 1;
518cd623
PZ
5862
5863 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5864 if (sd) {
518cd623 5865 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5866 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5867 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5868 }
5d4cf996 5869 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5870
5871 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5872 per_cpu(sd_llc_size, cpu) = size;
518cd623 5873 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5874
5875 sd = lowest_flag_domain(cpu, SD_NUMA);
5876 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5877
5878 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5879 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5880}
5881
1da177e4 5882/*
0eab9146 5883 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5884 * hold the hotplug lock.
5885 */
0eab9146
IM
5886static void
5887cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5888{
70b97a7f 5889 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5890 struct sched_domain *tmp;
5891
5892 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5893 for (tmp = sd; tmp; ) {
245af2c7
SS
5894 struct sched_domain *parent = tmp->parent;
5895 if (!parent)
5896 break;
f29c9b1c 5897
1a848870 5898 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5899 tmp->parent = parent->parent;
1a848870
SS
5900 if (parent->parent)
5901 parent->parent->child = tmp;
10866e62
PZ
5902 /*
5903 * Transfer SD_PREFER_SIBLING down in case of a
5904 * degenerate parent; the spans match for this
5905 * so the property transfers.
5906 */
5907 if (parent->flags & SD_PREFER_SIBLING)
5908 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5909 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5910 } else
5911 tmp = tmp->parent;
245af2c7
SS
5912 }
5913
1a848870 5914 if (sd && sd_degenerate(sd)) {
dce840a0 5915 tmp = sd;
245af2c7 5916 sd = sd->parent;
dce840a0 5917 destroy_sched_domain(tmp, cpu);
1a848870
SS
5918 if (sd)
5919 sd->child = NULL;
5920 }
1da177e4 5921
4cb98839 5922 sched_domain_debug(sd, cpu);
1da177e4 5923
57d885fe 5924 rq_attach_root(rq, rd);
dce840a0 5925 tmp = rq->sd;
674311d5 5926 rcu_assign_pointer(rq->sd, sd);
dce840a0 5927 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5928
5929 update_top_cache_domain(cpu);
1da177e4
LT
5930}
5931
1da177e4
LT
5932/* Setup the mask of cpus configured for isolated domains */
5933static int __init isolated_cpu_setup(char *str)
5934{
a6e4491c
PB
5935 int ret;
5936
bdddd296 5937 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5938 ret = cpulist_parse(str, cpu_isolated_map);
5939 if (ret) {
5940 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5941 return 0;
5942 }
1da177e4
LT
5943 return 1;
5944}
8927f494 5945__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5946
49a02c51 5947struct s_data {
21d42ccf 5948 struct sched_domain ** __percpu sd;
49a02c51
AH
5949 struct root_domain *rd;
5950};
5951
2109b99e 5952enum s_alloc {
2109b99e 5953 sa_rootdomain,
21d42ccf 5954 sa_sd,
dce840a0 5955 sa_sd_storage,
2109b99e
AH
5956 sa_none,
5957};
5958
c1174876
PZ
5959/*
5960 * Build an iteration mask that can exclude certain CPUs from the upwards
5961 * domain traversal.
5962 *
5963 * Asymmetric node setups can result in situations where the domain tree is of
5964 * unequal depth, make sure to skip domains that already cover the entire
5965 * range.
5966 *
5967 * In that case build_sched_domains() will have terminated the iteration early
5968 * and our sibling sd spans will be empty. Domains should always include the
5969 * cpu they're built on, so check that.
5970 *
5971 */
5972static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5973{
5974 const struct cpumask *span = sched_domain_span(sd);
5975 struct sd_data *sdd = sd->private;
5976 struct sched_domain *sibling;
5977 int i;
5978
5979 for_each_cpu(i, span) {
5980 sibling = *per_cpu_ptr(sdd->sd, i);
5981 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5982 continue;
5983
5984 cpumask_set_cpu(i, sched_group_mask(sg));
5985 }
5986}
5987
5988/*
5989 * Return the canonical balance cpu for this group, this is the first cpu
5990 * of this group that's also in the iteration mask.
5991 */
5992int group_balance_cpu(struct sched_group *sg)
5993{
5994 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5995}
5996
e3589f6c
PZ
5997static int
5998build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5999{
6000 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6001 const struct cpumask *span = sched_domain_span(sd);
6002 struct cpumask *covered = sched_domains_tmpmask;
6003 struct sd_data *sdd = sd->private;
aaecac4a 6004 struct sched_domain *sibling;
e3589f6c
PZ
6005 int i;
6006
6007 cpumask_clear(covered);
6008
6009 for_each_cpu(i, span) {
6010 struct cpumask *sg_span;
6011
6012 if (cpumask_test_cpu(i, covered))
6013 continue;
6014
aaecac4a 6015 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6016
6017 /* See the comment near build_group_mask(). */
aaecac4a 6018 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6019 continue;
6020
e3589f6c 6021 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6022 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6023
6024 if (!sg)
6025 goto fail;
6026
6027 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6028 if (sibling->child)
6029 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6030 else
e3589f6c
PZ
6031 cpumask_set_cpu(i, sg_span);
6032
6033 cpumask_or(covered, covered, sg_span);
6034
63b2ca30
NP
6035 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6036 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6037 build_group_mask(sd, sg);
6038
c3decf0d 6039 /*
63b2ca30 6040 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6041 * domains and no possible iteration will get us here, we won't
6042 * die on a /0 trap.
6043 */
ca8ce3d0 6044 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6045
c1174876
PZ
6046 /*
6047 * Make sure the first group of this domain contains the
6048 * canonical balance cpu. Otherwise the sched_domain iteration
6049 * breaks. See update_sg_lb_stats().
6050 */
74a5ce20 6051 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6052 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6053 groups = sg;
6054
6055 if (!first)
6056 first = sg;
6057 if (last)
6058 last->next = sg;
6059 last = sg;
6060 last->next = first;
6061 }
6062 sd->groups = groups;
6063
6064 return 0;
6065
6066fail:
6067 free_sched_groups(first, 0);
6068
6069 return -ENOMEM;
6070}
6071
dce840a0 6072static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6073{
dce840a0
PZ
6074 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6075 struct sched_domain *child = sd->child;
1da177e4 6076
dce840a0
PZ
6077 if (child)
6078 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6079
9c3f75cb 6080 if (sg) {
dce840a0 6081 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6082 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6083 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6084 }
dce840a0
PZ
6085
6086 return cpu;
1e9f28fa 6087}
1e9f28fa 6088
01a08546 6089/*
dce840a0
PZ
6090 * build_sched_groups will build a circular linked list of the groups
6091 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6092 * and ->cpu_capacity to 0.
e3589f6c
PZ
6093 *
6094 * Assumes the sched_domain tree is fully constructed
01a08546 6095 */
e3589f6c
PZ
6096static int
6097build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6098{
dce840a0
PZ
6099 struct sched_group *first = NULL, *last = NULL;
6100 struct sd_data *sdd = sd->private;
6101 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6102 struct cpumask *covered;
dce840a0 6103 int i;
9c1cfda2 6104
e3589f6c
PZ
6105 get_group(cpu, sdd, &sd->groups);
6106 atomic_inc(&sd->groups->ref);
6107
0936629f 6108 if (cpu != cpumask_first(span))
e3589f6c
PZ
6109 return 0;
6110
f96225fd
PZ
6111 lockdep_assert_held(&sched_domains_mutex);
6112 covered = sched_domains_tmpmask;
6113
dce840a0 6114 cpumask_clear(covered);
6711cab4 6115
dce840a0
PZ
6116 for_each_cpu(i, span) {
6117 struct sched_group *sg;
cd08e923 6118 int group, j;
6711cab4 6119
dce840a0
PZ
6120 if (cpumask_test_cpu(i, covered))
6121 continue;
6711cab4 6122
cd08e923 6123 group = get_group(i, sdd, &sg);
c1174876 6124 cpumask_setall(sched_group_mask(sg));
0601a88d 6125
dce840a0
PZ
6126 for_each_cpu(j, span) {
6127 if (get_group(j, sdd, NULL) != group)
6128 continue;
0601a88d 6129
dce840a0
PZ
6130 cpumask_set_cpu(j, covered);
6131 cpumask_set_cpu(j, sched_group_cpus(sg));
6132 }
0601a88d 6133
dce840a0
PZ
6134 if (!first)
6135 first = sg;
6136 if (last)
6137 last->next = sg;
6138 last = sg;
6139 }
6140 last->next = first;
e3589f6c
PZ
6141
6142 return 0;
0601a88d 6143}
51888ca2 6144
89c4710e 6145/*
63b2ca30 6146 * Initialize sched groups cpu_capacity.
89c4710e 6147 *
63b2ca30 6148 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6149 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6150 * Typically cpu_capacity for all the groups in a sched domain will be same
6151 * unless there are asymmetries in the topology. If there are asymmetries,
6152 * group having more cpu_capacity will pickup more load compared to the
6153 * group having less cpu_capacity.
89c4710e 6154 */
63b2ca30 6155static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6156{
e3589f6c 6157 struct sched_group *sg = sd->groups;
89c4710e 6158
94c95ba6 6159 WARN_ON(!sg);
e3589f6c
PZ
6160
6161 do {
6162 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6163 sg = sg->next;
6164 } while (sg != sd->groups);
89c4710e 6165
c1174876 6166 if (cpu != group_balance_cpu(sg))
e3589f6c 6167 return;
aae6d3dd 6168
63b2ca30
NP
6169 update_group_capacity(sd, cpu);
6170 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6171}
6172
7c16ec58
MT
6173/*
6174 * Initializers for schedule domains
6175 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6176 */
6177
1d3504fc 6178static int default_relax_domain_level = -1;
60495e77 6179int sched_domain_level_max;
1d3504fc
HS
6180
6181static int __init setup_relax_domain_level(char *str)
6182{
a841f8ce
DS
6183 if (kstrtoint(str, 0, &default_relax_domain_level))
6184 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6185
1d3504fc
HS
6186 return 1;
6187}
6188__setup("relax_domain_level=", setup_relax_domain_level);
6189
6190static void set_domain_attribute(struct sched_domain *sd,
6191 struct sched_domain_attr *attr)
6192{
6193 int request;
6194
6195 if (!attr || attr->relax_domain_level < 0) {
6196 if (default_relax_domain_level < 0)
6197 return;
6198 else
6199 request = default_relax_domain_level;
6200 } else
6201 request = attr->relax_domain_level;
6202 if (request < sd->level) {
6203 /* turn off idle balance on this domain */
c88d5910 6204 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6205 } else {
6206 /* turn on idle balance on this domain */
c88d5910 6207 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6208 }
6209}
6210
54ab4ff4
PZ
6211static void __sdt_free(const struct cpumask *cpu_map);
6212static int __sdt_alloc(const struct cpumask *cpu_map);
6213
2109b99e
AH
6214static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6215 const struct cpumask *cpu_map)
6216{
6217 switch (what) {
2109b99e 6218 case sa_rootdomain:
822ff793
PZ
6219 if (!atomic_read(&d->rd->refcount))
6220 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6221 case sa_sd:
6222 free_percpu(d->sd); /* fall through */
dce840a0 6223 case sa_sd_storage:
54ab4ff4 6224 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6225 case sa_none:
6226 break;
6227 }
6228}
3404c8d9 6229
2109b99e
AH
6230static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6231 const struct cpumask *cpu_map)
6232{
dce840a0
PZ
6233 memset(d, 0, sizeof(*d));
6234
54ab4ff4
PZ
6235 if (__sdt_alloc(cpu_map))
6236 return sa_sd_storage;
dce840a0
PZ
6237 d->sd = alloc_percpu(struct sched_domain *);
6238 if (!d->sd)
6239 return sa_sd_storage;
2109b99e 6240 d->rd = alloc_rootdomain();
dce840a0 6241 if (!d->rd)
21d42ccf 6242 return sa_sd;
2109b99e
AH
6243 return sa_rootdomain;
6244}
57d885fe 6245
dce840a0
PZ
6246/*
6247 * NULL the sd_data elements we've used to build the sched_domain and
6248 * sched_group structure so that the subsequent __free_domain_allocs()
6249 * will not free the data we're using.
6250 */
6251static void claim_allocations(int cpu, struct sched_domain *sd)
6252{
6253 struct sd_data *sdd = sd->private;
dce840a0
PZ
6254
6255 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6256 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6257
e3589f6c 6258 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6259 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6260
63b2ca30
NP
6261 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6262 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6263}
6264
cb83b629 6265#ifdef CONFIG_NUMA
cb83b629 6266static int sched_domains_numa_levels;
e3fe70b1 6267enum numa_topology_type sched_numa_topology_type;
cb83b629 6268static int *sched_domains_numa_distance;
9942f79b 6269int sched_max_numa_distance;
cb83b629
PZ
6270static struct cpumask ***sched_domains_numa_masks;
6271static int sched_domains_curr_level;
143e1e28 6272#endif
cb83b629 6273
143e1e28
VG
6274/*
6275 * SD_flags allowed in topology descriptions.
6276 *
5d4dfddd 6277 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6278 * SD_SHARE_PKG_RESOURCES - describes shared caches
6279 * SD_NUMA - describes NUMA topologies
d77b3ed5 6280 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6281 *
6282 * Odd one out:
6283 * SD_ASYM_PACKING - describes SMT quirks
6284 */
6285#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6286 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6287 SD_SHARE_PKG_RESOURCES | \
6288 SD_NUMA | \
d77b3ed5
VG
6289 SD_ASYM_PACKING | \
6290 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6291
6292static struct sched_domain *
143e1e28 6293sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6294{
6295 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6296 int sd_weight, sd_flags = 0;
6297
6298#ifdef CONFIG_NUMA
6299 /*
6300 * Ugly hack to pass state to sd_numa_mask()...
6301 */
6302 sched_domains_curr_level = tl->numa_level;
6303#endif
6304
6305 sd_weight = cpumask_weight(tl->mask(cpu));
6306
6307 if (tl->sd_flags)
6308 sd_flags = (*tl->sd_flags)();
6309 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6310 "wrong sd_flags in topology description\n"))
6311 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6312
6313 *sd = (struct sched_domain){
6314 .min_interval = sd_weight,
6315 .max_interval = 2*sd_weight,
6316 .busy_factor = 32,
870a0bb5 6317 .imbalance_pct = 125,
143e1e28
VG
6318
6319 .cache_nice_tries = 0,
6320 .busy_idx = 0,
6321 .idle_idx = 0,
cb83b629
PZ
6322 .newidle_idx = 0,
6323 .wake_idx = 0,
6324 .forkexec_idx = 0,
6325
6326 .flags = 1*SD_LOAD_BALANCE
6327 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6328 | 1*SD_BALANCE_EXEC
6329 | 1*SD_BALANCE_FORK
cb83b629 6330 | 0*SD_BALANCE_WAKE
143e1e28 6331 | 1*SD_WAKE_AFFINE
5d4dfddd 6332 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6333 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6334 | 0*SD_SERIALIZE
cb83b629 6335 | 0*SD_PREFER_SIBLING
143e1e28
VG
6336 | 0*SD_NUMA
6337 | sd_flags
cb83b629 6338 ,
143e1e28 6339
cb83b629
PZ
6340 .last_balance = jiffies,
6341 .balance_interval = sd_weight,
143e1e28 6342 .smt_gain = 0,
2b4cfe64
JL
6343 .max_newidle_lb_cost = 0,
6344 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6345#ifdef CONFIG_SCHED_DEBUG
6346 .name = tl->name,
6347#endif
cb83b629 6348 };
cb83b629
PZ
6349
6350 /*
143e1e28 6351 * Convert topological properties into behaviour.
cb83b629 6352 */
143e1e28 6353
5d4dfddd 6354 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6355 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6356 sd->imbalance_pct = 110;
6357 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6358
6359 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6360 sd->imbalance_pct = 117;
6361 sd->cache_nice_tries = 1;
6362 sd->busy_idx = 2;
6363
6364#ifdef CONFIG_NUMA
6365 } else if (sd->flags & SD_NUMA) {
6366 sd->cache_nice_tries = 2;
6367 sd->busy_idx = 3;
6368 sd->idle_idx = 2;
6369
6370 sd->flags |= SD_SERIALIZE;
6371 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6372 sd->flags &= ~(SD_BALANCE_EXEC |
6373 SD_BALANCE_FORK |
6374 SD_WAKE_AFFINE);
6375 }
6376
6377#endif
6378 } else {
6379 sd->flags |= SD_PREFER_SIBLING;
6380 sd->cache_nice_tries = 1;
6381 sd->busy_idx = 2;
6382 sd->idle_idx = 1;
6383 }
6384
6385 sd->private = &tl->data;
cb83b629
PZ
6386
6387 return sd;
6388}
6389
143e1e28
VG
6390/*
6391 * Topology list, bottom-up.
6392 */
6393static struct sched_domain_topology_level default_topology[] = {
6394#ifdef CONFIG_SCHED_SMT
6395 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6396#endif
6397#ifdef CONFIG_SCHED_MC
6398 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6399#endif
6400 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6401 { NULL, },
6402};
6403
c6e1e7b5
JG
6404static struct sched_domain_topology_level *sched_domain_topology =
6405 default_topology;
143e1e28
VG
6406
6407#define for_each_sd_topology(tl) \
6408 for (tl = sched_domain_topology; tl->mask; tl++)
6409
6410void set_sched_topology(struct sched_domain_topology_level *tl)
6411{
6412 sched_domain_topology = tl;
6413}
6414
6415#ifdef CONFIG_NUMA
6416
cb83b629
PZ
6417static const struct cpumask *sd_numa_mask(int cpu)
6418{
6419 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6420}
6421
d039ac60
PZ
6422static void sched_numa_warn(const char *str)
6423{
6424 static int done = false;
6425 int i,j;
6426
6427 if (done)
6428 return;
6429
6430 done = true;
6431
6432 printk(KERN_WARNING "ERROR: %s\n\n", str);
6433
6434 for (i = 0; i < nr_node_ids; i++) {
6435 printk(KERN_WARNING " ");
6436 for (j = 0; j < nr_node_ids; j++)
6437 printk(KERN_CONT "%02d ", node_distance(i,j));
6438 printk(KERN_CONT "\n");
6439 }
6440 printk(KERN_WARNING "\n");
6441}
6442
9942f79b 6443bool find_numa_distance(int distance)
d039ac60
PZ
6444{
6445 int i;
6446
6447 if (distance == node_distance(0, 0))
6448 return true;
6449
6450 for (i = 0; i < sched_domains_numa_levels; i++) {
6451 if (sched_domains_numa_distance[i] == distance)
6452 return true;
6453 }
6454
6455 return false;
6456}
6457
e3fe70b1
RR
6458/*
6459 * A system can have three types of NUMA topology:
6460 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6461 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6462 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6463 *
6464 * The difference between a glueless mesh topology and a backplane
6465 * topology lies in whether communication between not directly
6466 * connected nodes goes through intermediary nodes (where programs
6467 * could run), or through backplane controllers. This affects
6468 * placement of programs.
6469 *
6470 * The type of topology can be discerned with the following tests:
6471 * - If the maximum distance between any nodes is 1 hop, the system
6472 * is directly connected.
6473 * - If for two nodes A and B, located N > 1 hops away from each other,
6474 * there is an intermediary node C, which is < N hops away from both
6475 * nodes A and B, the system is a glueless mesh.
6476 */
6477static void init_numa_topology_type(void)
6478{
6479 int a, b, c, n;
6480
6481 n = sched_max_numa_distance;
6482
e237882b 6483 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6484 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6485 return;
6486 }
e3fe70b1
RR
6487
6488 for_each_online_node(a) {
6489 for_each_online_node(b) {
6490 /* Find two nodes furthest removed from each other. */
6491 if (node_distance(a, b) < n)
6492 continue;
6493
6494 /* Is there an intermediary node between a and b? */
6495 for_each_online_node(c) {
6496 if (node_distance(a, c) < n &&
6497 node_distance(b, c) < n) {
6498 sched_numa_topology_type =
6499 NUMA_GLUELESS_MESH;
6500 return;
6501 }
6502 }
6503
6504 sched_numa_topology_type = NUMA_BACKPLANE;
6505 return;
6506 }
6507 }
6508}
6509
cb83b629
PZ
6510static void sched_init_numa(void)
6511{
6512 int next_distance, curr_distance = node_distance(0, 0);
6513 struct sched_domain_topology_level *tl;
6514 int level = 0;
6515 int i, j, k;
6516
cb83b629
PZ
6517 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6518 if (!sched_domains_numa_distance)
6519 return;
6520
6521 /*
6522 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6523 * unique distances in the node_distance() table.
6524 *
6525 * Assumes node_distance(0,j) includes all distances in
6526 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6527 */
6528 next_distance = curr_distance;
6529 for (i = 0; i < nr_node_ids; i++) {
6530 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6531 for (k = 0; k < nr_node_ids; k++) {
6532 int distance = node_distance(i, k);
6533
6534 if (distance > curr_distance &&
6535 (distance < next_distance ||
6536 next_distance == curr_distance))
6537 next_distance = distance;
6538
6539 /*
6540 * While not a strong assumption it would be nice to know
6541 * about cases where if node A is connected to B, B is not
6542 * equally connected to A.
6543 */
6544 if (sched_debug() && node_distance(k, i) != distance)
6545 sched_numa_warn("Node-distance not symmetric");
6546
6547 if (sched_debug() && i && !find_numa_distance(distance))
6548 sched_numa_warn("Node-0 not representative");
6549 }
6550 if (next_distance != curr_distance) {
6551 sched_domains_numa_distance[level++] = next_distance;
6552 sched_domains_numa_levels = level;
6553 curr_distance = next_distance;
6554 } else break;
cb83b629 6555 }
d039ac60
PZ
6556
6557 /*
6558 * In case of sched_debug() we verify the above assumption.
6559 */
6560 if (!sched_debug())
6561 break;
cb83b629 6562 }
c123588b
AR
6563
6564 if (!level)
6565 return;
6566
cb83b629
PZ
6567 /*
6568 * 'level' contains the number of unique distances, excluding the
6569 * identity distance node_distance(i,i).
6570 *
28b4a521 6571 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6572 * numbers.
6573 */
6574
5f7865f3
TC
6575 /*
6576 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6577 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6578 * the array will contain less then 'level' members. This could be
6579 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6580 * in other functions.
6581 *
6582 * We reset it to 'level' at the end of this function.
6583 */
6584 sched_domains_numa_levels = 0;
6585
cb83b629
PZ
6586 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6587 if (!sched_domains_numa_masks)
6588 return;
6589
6590 /*
6591 * Now for each level, construct a mask per node which contains all
6592 * cpus of nodes that are that many hops away from us.
6593 */
6594 for (i = 0; i < level; i++) {
6595 sched_domains_numa_masks[i] =
6596 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6597 if (!sched_domains_numa_masks[i])
6598 return;
6599
6600 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6601 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6602 if (!mask)
6603 return;
6604
6605 sched_domains_numa_masks[i][j] = mask;
6606
9c03ee14 6607 for_each_node(k) {
dd7d8634 6608 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6609 continue;
6610
6611 cpumask_or(mask, mask, cpumask_of_node(k));
6612 }
6613 }
6614 }
6615
143e1e28
VG
6616 /* Compute default topology size */
6617 for (i = 0; sched_domain_topology[i].mask; i++);
6618
c515db8c 6619 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6620 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6621 if (!tl)
6622 return;
6623
6624 /*
6625 * Copy the default topology bits..
6626 */
143e1e28
VG
6627 for (i = 0; sched_domain_topology[i].mask; i++)
6628 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6629
6630 /*
6631 * .. and append 'j' levels of NUMA goodness.
6632 */
6633 for (j = 0; j < level; i++, j++) {
6634 tl[i] = (struct sched_domain_topology_level){
cb83b629 6635 .mask = sd_numa_mask,
143e1e28 6636 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6637 .flags = SDTL_OVERLAP,
6638 .numa_level = j,
143e1e28 6639 SD_INIT_NAME(NUMA)
cb83b629
PZ
6640 };
6641 }
6642
6643 sched_domain_topology = tl;
5f7865f3
TC
6644
6645 sched_domains_numa_levels = level;
9942f79b 6646 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6647
6648 init_numa_topology_type();
cb83b629 6649}
301a5cba
TC
6650
6651static void sched_domains_numa_masks_set(int cpu)
6652{
6653 int i, j;
6654 int node = cpu_to_node(cpu);
6655
6656 for (i = 0; i < sched_domains_numa_levels; i++) {
6657 for (j = 0; j < nr_node_ids; j++) {
6658 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6659 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6660 }
6661 }
6662}
6663
6664static void sched_domains_numa_masks_clear(int cpu)
6665{
6666 int i, j;
6667 for (i = 0; i < sched_domains_numa_levels; i++) {
6668 for (j = 0; j < nr_node_ids; j++)
6669 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6670 }
6671}
6672
6673/*
6674 * Update sched_domains_numa_masks[level][node] array when new cpus
6675 * are onlined.
6676 */
6677static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6678 unsigned long action,
6679 void *hcpu)
6680{
6681 int cpu = (long)hcpu;
6682
6683 switch (action & ~CPU_TASKS_FROZEN) {
6684 case CPU_ONLINE:
6685 sched_domains_numa_masks_set(cpu);
6686 break;
6687
6688 case CPU_DEAD:
6689 sched_domains_numa_masks_clear(cpu);
6690 break;
6691
6692 default:
6693 return NOTIFY_DONE;
6694 }
6695
6696 return NOTIFY_OK;
cb83b629
PZ
6697}
6698#else
6699static inline void sched_init_numa(void)
6700{
6701}
301a5cba
TC
6702
6703static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6704 unsigned long action,
6705 void *hcpu)
6706{
6707 return 0;
6708}
cb83b629
PZ
6709#endif /* CONFIG_NUMA */
6710
54ab4ff4
PZ
6711static int __sdt_alloc(const struct cpumask *cpu_map)
6712{
6713 struct sched_domain_topology_level *tl;
6714 int j;
6715
27723a68 6716 for_each_sd_topology(tl) {
54ab4ff4
PZ
6717 struct sd_data *sdd = &tl->data;
6718
6719 sdd->sd = alloc_percpu(struct sched_domain *);
6720 if (!sdd->sd)
6721 return -ENOMEM;
6722
6723 sdd->sg = alloc_percpu(struct sched_group *);
6724 if (!sdd->sg)
6725 return -ENOMEM;
6726
63b2ca30
NP
6727 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6728 if (!sdd->sgc)
9c3f75cb
PZ
6729 return -ENOMEM;
6730
54ab4ff4
PZ
6731 for_each_cpu(j, cpu_map) {
6732 struct sched_domain *sd;
6733 struct sched_group *sg;
63b2ca30 6734 struct sched_group_capacity *sgc;
54ab4ff4 6735
5cc389bc 6736 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6737 GFP_KERNEL, cpu_to_node(j));
6738 if (!sd)
6739 return -ENOMEM;
6740
6741 *per_cpu_ptr(sdd->sd, j) = sd;
6742
6743 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6744 GFP_KERNEL, cpu_to_node(j));
6745 if (!sg)
6746 return -ENOMEM;
6747
30b4e9eb
IM
6748 sg->next = sg;
6749
54ab4ff4 6750 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6751
63b2ca30 6752 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6753 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6754 if (!sgc)
9c3f75cb
PZ
6755 return -ENOMEM;
6756
63b2ca30 6757 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6758 }
6759 }
6760
6761 return 0;
6762}
6763
6764static void __sdt_free(const struct cpumask *cpu_map)
6765{
6766 struct sched_domain_topology_level *tl;
6767 int j;
6768
27723a68 6769 for_each_sd_topology(tl) {
54ab4ff4
PZ
6770 struct sd_data *sdd = &tl->data;
6771
6772 for_each_cpu(j, cpu_map) {
fb2cf2c6 6773 struct sched_domain *sd;
6774
6775 if (sdd->sd) {
6776 sd = *per_cpu_ptr(sdd->sd, j);
6777 if (sd && (sd->flags & SD_OVERLAP))
6778 free_sched_groups(sd->groups, 0);
6779 kfree(*per_cpu_ptr(sdd->sd, j));
6780 }
6781
6782 if (sdd->sg)
6783 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6784 if (sdd->sgc)
6785 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6786 }
6787 free_percpu(sdd->sd);
fb2cf2c6 6788 sdd->sd = NULL;
54ab4ff4 6789 free_percpu(sdd->sg);
fb2cf2c6 6790 sdd->sg = NULL;
63b2ca30
NP
6791 free_percpu(sdd->sgc);
6792 sdd->sgc = NULL;
54ab4ff4
PZ
6793 }
6794}
6795
2c402dc3 6796struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6797 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6798 struct sched_domain *child, int cpu)
2c402dc3 6799{
143e1e28 6800 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6801 if (!sd)
d069b916 6802 return child;
2c402dc3 6803
2c402dc3 6804 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6805 if (child) {
6806 sd->level = child->level + 1;
6807 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6808 child->parent = sd;
c75e0128 6809 sd->child = child;
6ae72dff
PZ
6810
6811 if (!cpumask_subset(sched_domain_span(child),
6812 sched_domain_span(sd))) {
6813 pr_err("BUG: arch topology borken\n");
6814#ifdef CONFIG_SCHED_DEBUG
6815 pr_err(" the %s domain not a subset of the %s domain\n",
6816 child->name, sd->name);
6817#endif
6818 /* Fixup, ensure @sd has at least @child cpus. */
6819 cpumask_or(sched_domain_span(sd),
6820 sched_domain_span(sd),
6821 sched_domain_span(child));
6822 }
6823
60495e77 6824 }
a841f8ce 6825 set_domain_attribute(sd, attr);
2c402dc3
PZ
6826
6827 return sd;
6828}
6829
2109b99e
AH
6830/*
6831 * Build sched domains for a given set of cpus and attach the sched domains
6832 * to the individual cpus
6833 */
dce840a0
PZ
6834static int build_sched_domains(const struct cpumask *cpu_map,
6835 struct sched_domain_attr *attr)
2109b99e 6836{
1c632169 6837 enum s_alloc alloc_state;
dce840a0 6838 struct sched_domain *sd;
2109b99e 6839 struct s_data d;
822ff793 6840 int i, ret = -ENOMEM;
9c1cfda2 6841
2109b99e
AH
6842 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6843 if (alloc_state != sa_rootdomain)
6844 goto error;
9c1cfda2 6845
dce840a0 6846 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6847 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6848 struct sched_domain_topology_level *tl;
6849
3bd65a80 6850 sd = NULL;
27723a68 6851 for_each_sd_topology(tl) {
4a850cbe 6852 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6853 if (tl == sched_domain_topology)
6854 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6855 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6856 sd->flags |= SD_OVERLAP;
d110235d
PZ
6857 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6858 break;
e3589f6c 6859 }
dce840a0
PZ
6860 }
6861
6862 /* Build the groups for the domains */
6863 for_each_cpu(i, cpu_map) {
6864 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6865 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6866 if (sd->flags & SD_OVERLAP) {
6867 if (build_overlap_sched_groups(sd, i))
6868 goto error;
6869 } else {
6870 if (build_sched_groups(sd, i))
6871 goto error;
6872 }
1cf51902 6873 }
a06dadbe 6874 }
9c1cfda2 6875
ced549fa 6876 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6877 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6878 if (!cpumask_test_cpu(i, cpu_map))
6879 continue;
9c1cfda2 6880
dce840a0
PZ
6881 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6882 claim_allocations(i, sd);
63b2ca30 6883 init_sched_groups_capacity(i, sd);
dce840a0 6884 }
f712c0c7 6885 }
9c1cfda2 6886
1da177e4 6887 /* Attach the domains */
dce840a0 6888 rcu_read_lock();
abcd083a 6889 for_each_cpu(i, cpu_map) {
21d42ccf 6890 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6891 cpu_attach_domain(sd, d.rd, i);
1da177e4 6892 }
dce840a0 6893 rcu_read_unlock();
51888ca2 6894
822ff793 6895 ret = 0;
51888ca2 6896error:
2109b99e 6897 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6898 return ret;
1da177e4 6899}
029190c5 6900
acc3f5d7 6901static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6902static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6903static struct sched_domain_attr *dattr_cur;
6904 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6905
6906/*
6907 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6908 * cpumask) fails, then fallback to a single sched domain,
6909 * as determined by the single cpumask fallback_doms.
029190c5 6910 */
4212823f 6911static cpumask_var_t fallback_doms;
029190c5 6912
ee79d1bd
HC
6913/*
6914 * arch_update_cpu_topology lets virtualized architectures update the
6915 * cpu core maps. It is supposed to return 1 if the topology changed
6916 * or 0 if it stayed the same.
6917 */
52f5684c 6918int __weak arch_update_cpu_topology(void)
22e52b07 6919{
ee79d1bd 6920 return 0;
22e52b07
HC
6921}
6922
acc3f5d7
RR
6923cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6924{
6925 int i;
6926 cpumask_var_t *doms;
6927
6928 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6929 if (!doms)
6930 return NULL;
6931 for (i = 0; i < ndoms; i++) {
6932 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6933 free_sched_domains(doms, i);
6934 return NULL;
6935 }
6936 }
6937 return doms;
6938}
6939
6940void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6941{
6942 unsigned int i;
6943 for (i = 0; i < ndoms; i++)
6944 free_cpumask_var(doms[i]);
6945 kfree(doms);
6946}
6947
1a20ff27 6948/*
41a2d6cf 6949 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6950 * For now this just excludes isolated cpus, but could be used to
6951 * exclude other special cases in the future.
1a20ff27 6952 */
c4a8849a 6953static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6954{
7378547f
MM
6955 int err;
6956
22e52b07 6957 arch_update_cpu_topology();
029190c5 6958 ndoms_cur = 1;
acc3f5d7 6959 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6960 if (!doms_cur)
acc3f5d7
RR
6961 doms_cur = &fallback_doms;
6962 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6963 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6964 register_sched_domain_sysctl();
7378547f
MM
6965
6966 return err;
1a20ff27
DG
6967}
6968
1a20ff27
DG
6969/*
6970 * Detach sched domains from a group of cpus specified in cpu_map
6971 * These cpus will now be attached to the NULL domain
6972 */
96f874e2 6973static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6974{
6975 int i;
6976
dce840a0 6977 rcu_read_lock();
abcd083a 6978 for_each_cpu(i, cpu_map)
57d885fe 6979 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6980 rcu_read_unlock();
1a20ff27
DG
6981}
6982
1d3504fc
HS
6983/* handle null as "default" */
6984static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6985 struct sched_domain_attr *new, int idx_new)
6986{
6987 struct sched_domain_attr tmp;
6988
6989 /* fast path */
6990 if (!new && !cur)
6991 return 1;
6992
6993 tmp = SD_ATTR_INIT;
6994 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6995 new ? (new + idx_new) : &tmp,
6996 sizeof(struct sched_domain_attr));
6997}
6998
029190c5
PJ
6999/*
7000 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7001 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7002 * doms_new[] to the current sched domain partitioning, doms_cur[].
7003 * It destroys each deleted domain and builds each new domain.
7004 *
acc3f5d7 7005 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7006 * The masks don't intersect (don't overlap.) We should setup one
7007 * sched domain for each mask. CPUs not in any of the cpumasks will
7008 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7009 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7010 * it as it is.
7011 *
acc3f5d7
RR
7012 * The passed in 'doms_new' should be allocated using
7013 * alloc_sched_domains. This routine takes ownership of it and will
7014 * free_sched_domains it when done with it. If the caller failed the
7015 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7016 * and partition_sched_domains() will fallback to the single partition
7017 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7018 *
96f874e2 7019 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7020 * ndoms_new == 0 is a special case for destroying existing domains,
7021 * and it will not create the default domain.
dfb512ec 7022 *
029190c5
PJ
7023 * Call with hotplug lock held
7024 */
acc3f5d7 7025void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7026 struct sched_domain_attr *dattr_new)
029190c5 7027{
dfb512ec 7028 int i, j, n;
d65bd5ec 7029 int new_topology;
029190c5 7030
712555ee 7031 mutex_lock(&sched_domains_mutex);
a1835615 7032
7378547f
MM
7033 /* always unregister in case we don't destroy any domains */
7034 unregister_sched_domain_sysctl();
7035
d65bd5ec
HC
7036 /* Let architecture update cpu core mappings. */
7037 new_topology = arch_update_cpu_topology();
7038
dfb512ec 7039 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7040
7041 /* Destroy deleted domains */
7042 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7043 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7044 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7045 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7046 goto match1;
7047 }
7048 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7049 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7050match1:
7051 ;
7052 }
7053
c8d2d47a 7054 n = ndoms_cur;
e761b772 7055 if (doms_new == NULL) {
c8d2d47a 7056 n = 0;
acc3f5d7 7057 doms_new = &fallback_doms;
6ad4c188 7058 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7059 WARN_ON_ONCE(dattr_new);
e761b772
MK
7060 }
7061
029190c5
PJ
7062 /* Build new domains */
7063 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7064 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7065 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7066 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7067 goto match2;
7068 }
7069 /* no match - add a new doms_new */
dce840a0 7070 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7071match2:
7072 ;
7073 }
7074
7075 /* Remember the new sched domains */
acc3f5d7
RR
7076 if (doms_cur != &fallback_doms)
7077 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7078 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7079 doms_cur = doms_new;
1d3504fc 7080 dattr_cur = dattr_new;
029190c5 7081 ndoms_cur = ndoms_new;
7378547f
MM
7082
7083 register_sched_domain_sysctl();
a1835615 7084
712555ee 7085 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7086}
7087
d35be8ba
SB
7088static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7089
1da177e4 7090/*
3a101d05
TH
7091 * Update cpusets according to cpu_active mask. If cpusets are
7092 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7093 * around partition_sched_domains().
d35be8ba
SB
7094 *
7095 * If we come here as part of a suspend/resume, don't touch cpusets because we
7096 * want to restore it back to its original state upon resume anyway.
1da177e4 7097 */
0b2e918a
TH
7098static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7099 void *hcpu)
e761b772 7100{
d35be8ba
SB
7101 switch (action) {
7102 case CPU_ONLINE_FROZEN:
7103 case CPU_DOWN_FAILED_FROZEN:
7104
7105 /*
7106 * num_cpus_frozen tracks how many CPUs are involved in suspend
7107 * resume sequence. As long as this is not the last online
7108 * operation in the resume sequence, just build a single sched
7109 * domain, ignoring cpusets.
7110 */
7111 num_cpus_frozen--;
7112 if (likely(num_cpus_frozen)) {
7113 partition_sched_domains(1, NULL, NULL);
7114 break;
7115 }
7116
7117 /*
7118 * This is the last CPU online operation. So fall through and
7119 * restore the original sched domains by considering the
7120 * cpuset configurations.
7121 */
7122
e761b772 7123 case CPU_ONLINE:
7ddf96b0 7124 cpuset_update_active_cpus(true);
d35be8ba 7125 break;
3a101d05
TH
7126 default:
7127 return NOTIFY_DONE;
7128 }
d35be8ba 7129 return NOTIFY_OK;
3a101d05 7130}
e761b772 7131
0b2e918a
TH
7132static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7133 void *hcpu)
3a101d05 7134{
3c18d447
JL
7135 unsigned long flags;
7136 long cpu = (long)hcpu;
7137 struct dl_bw *dl_b;
533445c6
OS
7138 bool overflow;
7139 int cpus;
3c18d447 7140
533445c6 7141 switch (action) {
3a101d05 7142 case CPU_DOWN_PREPARE:
533445c6
OS
7143 rcu_read_lock_sched();
7144 dl_b = dl_bw_of(cpu);
3c18d447 7145
533445c6
OS
7146 raw_spin_lock_irqsave(&dl_b->lock, flags);
7147 cpus = dl_bw_cpus(cpu);
7148 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7149 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7150
533445c6 7151 rcu_read_unlock_sched();
3c18d447 7152
533445c6
OS
7153 if (overflow)
7154 return notifier_from_errno(-EBUSY);
7ddf96b0 7155 cpuset_update_active_cpus(false);
d35be8ba
SB
7156 break;
7157 case CPU_DOWN_PREPARE_FROZEN:
7158 num_cpus_frozen++;
7159 partition_sched_domains(1, NULL, NULL);
7160 break;
e761b772
MK
7161 default:
7162 return NOTIFY_DONE;
7163 }
d35be8ba 7164 return NOTIFY_OK;
e761b772 7165}
e761b772 7166
1da177e4
LT
7167void __init sched_init_smp(void)
7168{
dcc30a35
RR
7169 cpumask_var_t non_isolated_cpus;
7170
7171 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7172 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7173
cb83b629
PZ
7174 sched_init_numa();
7175
6acce3ef
PZ
7176 /*
7177 * There's no userspace yet to cause hotplug operations; hence all the
7178 * cpu masks are stable and all blatant races in the below code cannot
7179 * happen.
7180 */
712555ee 7181 mutex_lock(&sched_domains_mutex);
c4a8849a 7182 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7183 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7184 if (cpumask_empty(non_isolated_cpus))
7185 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7186 mutex_unlock(&sched_domains_mutex);
e761b772 7187
301a5cba 7188 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7189 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7190 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7191
b328ca18 7192 init_hrtick();
5c1e1767
NP
7193
7194 /* Move init over to a non-isolated CPU */
dcc30a35 7195 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7196 BUG();
19978ca6 7197 sched_init_granularity();
dcc30a35 7198 free_cpumask_var(non_isolated_cpus);
4212823f 7199
0e3900e6 7200 init_sched_rt_class();
1baca4ce 7201 init_sched_dl_class();
1da177e4
LT
7202}
7203#else
7204void __init sched_init_smp(void)
7205{
19978ca6 7206 sched_init_granularity();
1da177e4
LT
7207}
7208#endif /* CONFIG_SMP */
7209
7210int in_sched_functions(unsigned long addr)
7211{
1da177e4
LT
7212 return in_lock_functions(addr) ||
7213 (addr >= (unsigned long)__sched_text_start
7214 && addr < (unsigned long)__sched_text_end);
7215}
7216
029632fb 7217#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7218/*
7219 * Default task group.
7220 * Every task in system belongs to this group at bootup.
7221 */
029632fb 7222struct task_group root_task_group;
35cf4e50 7223LIST_HEAD(task_groups);
b0367629
WL
7224
7225/* Cacheline aligned slab cache for task_group */
7226static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7227#endif
6f505b16 7228
e6252c3e 7229DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7230
1da177e4
LT
7231void __init sched_init(void)
7232{
dd41f596 7233 int i, j;
434d53b0
MT
7234 unsigned long alloc_size = 0, ptr;
7235
7236#ifdef CONFIG_FAIR_GROUP_SCHED
7237 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238#endif
7239#ifdef CONFIG_RT_GROUP_SCHED
7240 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7241#endif
434d53b0 7242 if (alloc_size) {
36b7b6d4 7243 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7244
7245#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7246 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7247 ptr += nr_cpu_ids * sizeof(void **);
7248
07e06b01 7249 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7250 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7251
6d6bc0ad 7252#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7253#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7254 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7255 ptr += nr_cpu_ids * sizeof(void **);
7256
07e06b01 7257 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7258 ptr += nr_cpu_ids * sizeof(void **);
7259
6d6bc0ad 7260#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7261 }
df7c8e84 7262#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7263 for_each_possible_cpu(i) {
7264 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7265 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7266 }
b74e6278 7267#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7268
332ac17e
DF
7269 init_rt_bandwidth(&def_rt_bandwidth,
7270 global_rt_period(), global_rt_runtime());
7271 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7272 global_rt_period(), global_rt_runtime());
332ac17e 7273
57d885fe
GH
7274#ifdef CONFIG_SMP
7275 init_defrootdomain();
7276#endif
7277
d0b27fa7 7278#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7279 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7280 global_rt_period(), global_rt_runtime());
6d6bc0ad 7281#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7282
7c941438 7283#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7284 task_group_cache = KMEM_CACHE(task_group, 0);
7285
07e06b01
YZ
7286 list_add(&root_task_group.list, &task_groups);
7287 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7288 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7289 autogroup_init(&init_task);
7c941438 7290#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7291
0a945022 7292 for_each_possible_cpu(i) {
70b97a7f 7293 struct rq *rq;
1da177e4
LT
7294
7295 rq = cpu_rq(i);
05fa785c 7296 raw_spin_lock_init(&rq->lock);
7897986b 7297 rq->nr_running = 0;
dce48a84
TG
7298 rq->calc_load_active = 0;
7299 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7300 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7301 init_rt_rq(&rq->rt);
7302 init_dl_rq(&rq->dl);
dd41f596 7303#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7304 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7305 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7306 /*
07e06b01 7307 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7308 *
7309 * In case of task-groups formed thr' the cgroup filesystem, it
7310 * gets 100% of the cpu resources in the system. This overall
7311 * system cpu resource is divided among the tasks of
07e06b01 7312 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7313 * based on each entity's (task or task-group's) weight
7314 * (se->load.weight).
7315 *
07e06b01 7316 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7317 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7318 * then A0's share of the cpu resource is:
7319 *
0d905bca 7320 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7321 *
07e06b01
YZ
7322 * We achieve this by letting root_task_group's tasks sit
7323 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7324 */
ab84d31e 7325 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7326 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7327#endif /* CONFIG_FAIR_GROUP_SCHED */
7328
7329 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7330#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7331 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7332#endif
1da177e4 7333
dd41f596
IM
7334 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7335 rq->cpu_load[j] = 0;
fdf3e95d
VP
7336
7337 rq->last_load_update_tick = jiffies;
7338
1da177e4 7339#ifdef CONFIG_SMP
41c7ce9a 7340 rq->sd = NULL;
57d885fe 7341 rq->rd = NULL;
ca6d75e6 7342 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7343 rq->balance_callback = NULL;
1da177e4 7344 rq->active_balance = 0;
dd41f596 7345 rq->next_balance = jiffies;
1da177e4 7346 rq->push_cpu = 0;
0a2966b4 7347 rq->cpu = i;
1f11eb6a 7348 rq->online = 0;
eae0c9df
MG
7349 rq->idle_stamp = 0;
7350 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7351 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7352
7353 INIT_LIST_HEAD(&rq->cfs_tasks);
7354
dc938520 7355 rq_attach_root(rq, &def_root_domain);
3451d024 7356#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7357 rq->nohz_flags = 0;
83cd4fe2 7358#endif
265f22a9
FW
7359#ifdef CONFIG_NO_HZ_FULL
7360 rq->last_sched_tick = 0;
7361#endif
1da177e4 7362#endif
8f4d37ec 7363 init_rq_hrtick(rq);
1da177e4 7364 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7365 }
7366
2dd73a4f 7367 set_load_weight(&init_task);
b50f60ce 7368
e107be36
AK
7369#ifdef CONFIG_PREEMPT_NOTIFIERS
7370 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7371#endif
7372
1da177e4
LT
7373 /*
7374 * The boot idle thread does lazy MMU switching as well:
7375 */
7376 atomic_inc(&init_mm.mm_count);
7377 enter_lazy_tlb(&init_mm, current);
7378
1b537c7d
YD
7379 /*
7380 * During early bootup we pretend to be a normal task:
7381 */
7382 current->sched_class = &fair_sched_class;
7383
1da177e4
LT
7384 /*
7385 * Make us the idle thread. Technically, schedule() should not be
7386 * called from this thread, however somewhere below it might be,
7387 * but because we are the idle thread, we just pick up running again
7388 * when this runqueue becomes "idle".
7389 */
7390 init_idle(current, smp_processor_id());
dce48a84
TG
7391
7392 calc_load_update = jiffies + LOAD_FREQ;
7393
bf4d83f6 7394#ifdef CONFIG_SMP
4cb98839 7395 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7396 /* May be allocated at isolcpus cmdline parse time */
7397 if (cpu_isolated_map == NULL)
7398 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7399 idle_thread_set_boot_cpu();
a803f026 7400 set_cpu_rq_start_time();
029632fb
PZ
7401#endif
7402 init_sched_fair_class();
6a7b3dc3 7403
6892b75e 7404 scheduler_running = 1;
1da177e4
LT
7405}
7406
d902db1e 7407#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7408static inline int preempt_count_equals(int preempt_offset)
7409{
da7142e2 7410 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7411
4ba8216c 7412 return (nested == preempt_offset);
e4aafea2
FW
7413}
7414
d894837f 7415void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7416{
8eb23b9f
PZ
7417 /*
7418 * Blocking primitives will set (and therefore destroy) current->state,
7419 * since we will exit with TASK_RUNNING make sure we enter with it,
7420 * otherwise we will destroy state.
7421 */
00845eb9 7422 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7423 "do not call blocking ops when !TASK_RUNNING; "
7424 "state=%lx set at [<%p>] %pS\n",
7425 current->state,
7426 (void *)current->task_state_change,
00845eb9 7427 (void *)current->task_state_change);
8eb23b9f 7428
3427445a
PZ
7429 ___might_sleep(file, line, preempt_offset);
7430}
7431EXPORT_SYMBOL(__might_sleep);
7432
7433void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7434{
1da177e4
LT
7435 static unsigned long prev_jiffy; /* ratelimiting */
7436
b3fbab05 7437 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7438 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7439 !is_idle_task(current)) ||
e4aafea2 7440 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7441 return;
7442 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7443 return;
7444 prev_jiffy = jiffies;
7445
3df0fc5b
PZ
7446 printk(KERN_ERR
7447 "BUG: sleeping function called from invalid context at %s:%d\n",
7448 file, line);
7449 printk(KERN_ERR
7450 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7451 in_atomic(), irqs_disabled(),
7452 current->pid, current->comm);
aef745fc 7453
a8b686b3
ES
7454 if (task_stack_end_corrupted(current))
7455 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7456
aef745fc
IM
7457 debug_show_held_locks(current);
7458 if (irqs_disabled())
7459 print_irqtrace_events(current);
8f47b187
TG
7460#ifdef CONFIG_DEBUG_PREEMPT
7461 if (!preempt_count_equals(preempt_offset)) {
7462 pr_err("Preemption disabled at:");
7463 print_ip_sym(current->preempt_disable_ip);
7464 pr_cont("\n");
7465 }
7466#endif
aef745fc 7467 dump_stack();
1da177e4 7468}
3427445a 7469EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7470#endif
7471
7472#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7473void normalize_rt_tasks(void)
3a5e4dc1 7474{
dbc7f069 7475 struct task_struct *g, *p;
d50dde5a
DF
7476 struct sched_attr attr = {
7477 .sched_policy = SCHED_NORMAL,
7478 };
1da177e4 7479
3472eaa1 7480 read_lock(&tasklist_lock);
5d07f420 7481 for_each_process_thread(g, p) {
178be793
IM
7482 /*
7483 * Only normalize user tasks:
7484 */
3472eaa1 7485 if (p->flags & PF_KTHREAD)
178be793
IM
7486 continue;
7487
6cfb0d5d 7488 p->se.exec_start = 0;
6cfb0d5d 7489#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7490 p->se.statistics.wait_start = 0;
7491 p->se.statistics.sleep_start = 0;
7492 p->se.statistics.block_start = 0;
6cfb0d5d 7493#endif
dd41f596 7494
aab03e05 7495 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7496 /*
7497 * Renice negative nice level userspace
7498 * tasks back to 0:
7499 */
3472eaa1 7500 if (task_nice(p) < 0)
dd41f596 7501 set_user_nice(p, 0);
1da177e4 7502 continue;
dd41f596 7503 }
1da177e4 7504
dbc7f069 7505 __sched_setscheduler(p, &attr, false, false);
5d07f420 7506 }
3472eaa1 7507 read_unlock(&tasklist_lock);
1da177e4
LT
7508}
7509
7510#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7511
67fc4e0c 7512#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7513/*
67fc4e0c 7514 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7515 *
7516 * They can only be called when the whole system has been
7517 * stopped - every CPU needs to be quiescent, and no scheduling
7518 * activity can take place. Using them for anything else would
7519 * be a serious bug, and as a result, they aren't even visible
7520 * under any other configuration.
7521 */
7522
7523/**
7524 * curr_task - return the current task for a given cpu.
7525 * @cpu: the processor in question.
7526 *
7527 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7528 *
7529 * Return: The current task for @cpu.
1df5c10a 7530 */
36c8b586 7531struct task_struct *curr_task(int cpu)
1df5c10a
LT
7532{
7533 return cpu_curr(cpu);
7534}
7535
67fc4e0c
JW
7536#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7537
7538#ifdef CONFIG_IA64
1df5c10a
LT
7539/**
7540 * set_curr_task - set the current task for a given cpu.
7541 * @cpu: the processor in question.
7542 * @p: the task pointer to set.
7543 *
7544 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7545 * are serviced on a separate stack. It allows the architecture to switch the
7546 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7547 * must be called with all CPU's synchronized, and interrupts disabled, the
7548 * and caller must save the original value of the current task (see
7549 * curr_task() above) and restore that value before reenabling interrupts and
7550 * re-starting the system.
7551 *
7552 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7553 */
36c8b586 7554void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7555{
7556 cpu_curr(cpu) = p;
7557}
7558
7559#endif
29f59db3 7560
7c941438 7561#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7562/* task_group_lock serializes the addition/removal of task groups */
7563static DEFINE_SPINLOCK(task_group_lock);
7564
bccbe08a
PZ
7565static void free_sched_group(struct task_group *tg)
7566{
7567 free_fair_sched_group(tg);
7568 free_rt_sched_group(tg);
e9aa1dd1 7569 autogroup_free(tg);
b0367629 7570 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7571}
7572
7573/* allocate runqueue etc for a new task group */
ec7dc8ac 7574struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7575{
7576 struct task_group *tg;
bccbe08a 7577
b0367629 7578 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7579 if (!tg)
7580 return ERR_PTR(-ENOMEM);
7581
ec7dc8ac 7582 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7583 goto err;
7584
ec7dc8ac 7585 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7586 goto err;
7587
ace783b9
LZ
7588 return tg;
7589
7590err:
7591 free_sched_group(tg);
7592 return ERR_PTR(-ENOMEM);
7593}
7594
7595void sched_online_group(struct task_group *tg, struct task_group *parent)
7596{
7597 unsigned long flags;
7598
8ed36996 7599 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7600 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7601
7602 WARN_ON(!parent); /* root should already exist */
7603
7604 tg->parent = parent;
f473aa5e 7605 INIT_LIST_HEAD(&tg->children);
09f2724a 7606 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7607 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7608}
7609
9b5b7751 7610/* rcu callback to free various structures associated with a task group */
6f505b16 7611static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7612{
29f59db3 7613 /* now it should be safe to free those cfs_rqs */
6f505b16 7614 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7615}
7616
9b5b7751 7617/* Destroy runqueue etc associated with a task group */
4cf86d77 7618void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7619{
7620 /* wait for possible concurrent references to cfs_rqs complete */
7621 call_rcu(&tg->rcu, free_sched_group_rcu);
7622}
7623
7624void sched_offline_group(struct task_group *tg)
29f59db3 7625{
8ed36996 7626 unsigned long flags;
29f59db3 7627
3d4b47b4 7628 /* end participation in shares distribution */
6fe1f348 7629 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7630
7631 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7632 list_del_rcu(&tg->list);
f473aa5e 7633 list_del_rcu(&tg->siblings);
8ed36996 7634 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7635}
7636
9b5b7751 7637/* change task's runqueue when it moves between groups.
3a252015
IM
7638 * The caller of this function should have put the task in its new group
7639 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7640 * reflect its new group.
9b5b7751
SV
7641 */
7642void sched_move_task(struct task_struct *tsk)
29f59db3 7643{
8323f26c 7644 struct task_group *tg;
da0c1e65 7645 int queued, running;
29f59db3
SV
7646 unsigned long flags;
7647 struct rq *rq;
7648
7649 rq = task_rq_lock(tsk, &flags);
7650
051a1d1a 7651 running = task_current(rq, tsk);
da0c1e65 7652 queued = task_on_rq_queued(tsk);
29f59db3 7653
da0c1e65 7654 if (queued)
ff77e468 7655 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7656 if (unlikely(running))
f3cd1c4e 7657 put_prev_task(rq, tsk);
29f59db3 7658
f7b8a47d
KT
7659 /*
7660 * All callers are synchronized by task_rq_lock(); we do not use RCU
7661 * which is pointless here. Thus, we pass "true" to task_css_check()
7662 * to prevent lockdep warnings.
7663 */
7664 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7665 struct task_group, css);
7666 tg = autogroup_task_group(tsk, tg);
7667 tsk->sched_task_group = tg;
7668
810b3817 7669#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7670 if (tsk->sched_class->task_move_group)
bc54da21 7671 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7672 else
810b3817 7673#endif
b2b5ce02 7674 set_task_rq(tsk, task_cpu(tsk));
810b3817 7675
0e1f3483
HS
7676 if (unlikely(running))
7677 tsk->sched_class->set_curr_task(rq);
da0c1e65 7678 if (queued)
ff77e468 7679 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7680
0122ec5b 7681 task_rq_unlock(rq, tsk, &flags);
29f59db3 7682}
7c941438 7683#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7684
a790de99
PT
7685#ifdef CONFIG_RT_GROUP_SCHED
7686/*
7687 * Ensure that the real time constraints are schedulable.
7688 */
7689static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7690
9a7e0b18
PZ
7691/* Must be called with tasklist_lock held */
7692static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7693{
9a7e0b18 7694 struct task_struct *g, *p;
b40b2e8e 7695
1fe89e1b
PZ
7696 /*
7697 * Autogroups do not have RT tasks; see autogroup_create().
7698 */
7699 if (task_group_is_autogroup(tg))
7700 return 0;
7701
5d07f420 7702 for_each_process_thread(g, p) {
8651c658 7703 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7704 return 1;
5d07f420 7705 }
b40b2e8e 7706
9a7e0b18
PZ
7707 return 0;
7708}
b40b2e8e 7709
9a7e0b18
PZ
7710struct rt_schedulable_data {
7711 struct task_group *tg;
7712 u64 rt_period;
7713 u64 rt_runtime;
7714};
b40b2e8e 7715
a790de99 7716static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7717{
7718 struct rt_schedulable_data *d = data;
7719 struct task_group *child;
7720 unsigned long total, sum = 0;
7721 u64 period, runtime;
b40b2e8e 7722
9a7e0b18
PZ
7723 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7724 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7725
9a7e0b18
PZ
7726 if (tg == d->tg) {
7727 period = d->rt_period;
7728 runtime = d->rt_runtime;
b40b2e8e 7729 }
b40b2e8e 7730
4653f803
PZ
7731 /*
7732 * Cannot have more runtime than the period.
7733 */
7734 if (runtime > period && runtime != RUNTIME_INF)
7735 return -EINVAL;
6f505b16 7736
4653f803
PZ
7737 /*
7738 * Ensure we don't starve existing RT tasks.
7739 */
9a7e0b18
PZ
7740 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7741 return -EBUSY;
6f505b16 7742
9a7e0b18 7743 total = to_ratio(period, runtime);
6f505b16 7744
4653f803
PZ
7745 /*
7746 * Nobody can have more than the global setting allows.
7747 */
7748 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7749 return -EINVAL;
6f505b16 7750
4653f803
PZ
7751 /*
7752 * The sum of our children's runtime should not exceed our own.
7753 */
9a7e0b18
PZ
7754 list_for_each_entry_rcu(child, &tg->children, siblings) {
7755 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7756 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7757
9a7e0b18
PZ
7758 if (child == d->tg) {
7759 period = d->rt_period;
7760 runtime = d->rt_runtime;
7761 }
6f505b16 7762
9a7e0b18 7763 sum += to_ratio(period, runtime);
9f0c1e56 7764 }
6f505b16 7765
9a7e0b18
PZ
7766 if (sum > total)
7767 return -EINVAL;
7768
7769 return 0;
6f505b16
PZ
7770}
7771
9a7e0b18 7772static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7773{
8277434e
PT
7774 int ret;
7775
9a7e0b18
PZ
7776 struct rt_schedulable_data data = {
7777 .tg = tg,
7778 .rt_period = period,
7779 .rt_runtime = runtime,
7780 };
7781
8277434e
PT
7782 rcu_read_lock();
7783 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7784 rcu_read_unlock();
7785
7786 return ret;
521f1a24
DG
7787}
7788
ab84d31e 7789static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7790 u64 rt_period, u64 rt_runtime)
6f505b16 7791{
ac086bc2 7792 int i, err = 0;
9f0c1e56 7793
2636ed5f
PZ
7794 /*
7795 * Disallowing the root group RT runtime is BAD, it would disallow the
7796 * kernel creating (and or operating) RT threads.
7797 */
7798 if (tg == &root_task_group && rt_runtime == 0)
7799 return -EINVAL;
7800
7801 /* No period doesn't make any sense. */
7802 if (rt_period == 0)
7803 return -EINVAL;
7804
9f0c1e56 7805 mutex_lock(&rt_constraints_mutex);
521f1a24 7806 read_lock(&tasklist_lock);
9a7e0b18
PZ
7807 err = __rt_schedulable(tg, rt_period, rt_runtime);
7808 if (err)
9f0c1e56 7809 goto unlock;
ac086bc2 7810
0986b11b 7811 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7812 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7813 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7814
7815 for_each_possible_cpu(i) {
7816 struct rt_rq *rt_rq = tg->rt_rq[i];
7817
0986b11b 7818 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7819 rt_rq->rt_runtime = rt_runtime;
0986b11b 7820 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7821 }
0986b11b 7822 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7823unlock:
521f1a24 7824 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7825 mutex_unlock(&rt_constraints_mutex);
7826
7827 return err;
6f505b16
PZ
7828}
7829
25cc7da7 7830static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7831{
7832 u64 rt_runtime, rt_period;
7833
7834 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7835 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7836 if (rt_runtime_us < 0)
7837 rt_runtime = RUNTIME_INF;
7838
ab84d31e 7839 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7840}
7841
25cc7da7 7842static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7843{
7844 u64 rt_runtime_us;
7845
d0b27fa7 7846 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7847 return -1;
7848
d0b27fa7 7849 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7850 do_div(rt_runtime_us, NSEC_PER_USEC);
7851 return rt_runtime_us;
7852}
d0b27fa7 7853
ce2f5fe4 7854static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7855{
7856 u64 rt_runtime, rt_period;
7857
ce2f5fe4 7858 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7859 rt_runtime = tg->rt_bandwidth.rt_runtime;
7860
ab84d31e 7861 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7862}
7863
25cc7da7 7864static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7865{
7866 u64 rt_period_us;
7867
7868 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7869 do_div(rt_period_us, NSEC_PER_USEC);
7870 return rt_period_us;
7871}
332ac17e 7872#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7873
332ac17e 7874#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7875static int sched_rt_global_constraints(void)
7876{
7877 int ret = 0;
7878
7879 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7880 read_lock(&tasklist_lock);
4653f803 7881 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7882 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7883 mutex_unlock(&rt_constraints_mutex);
7884
7885 return ret;
7886}
54e99124 7887
25cc7da7 7888static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7889{
7890 /* Don't accept realtime tasks when there is no way for them to run */
7891 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7892 return 0;
7893
7894 return 1;
7895}
7896
6d6bc0ad 7897#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7898static int sched_rt_global_constraints(void)
7899{
ac086bc2 7900 unsigned long flags;
332ac17e 7901 int i, ret = 0;
ec5d4989 7902
0986b11b 7903 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7904 for_each_possible_cpu(i) {
7905 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7906
0986b11b 7907 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7908 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7909 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7910 }
0986b11b 7911 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7912
332ac17e 7913 return ret;
d0b27fa7 7914}
6d6bc0ad 7915#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7916
a1963b81 7917static int sched_dl_global_validate(void)
332ac17e 7918{
1724813d
PZ
7919 u64 runtime = global_rt_runtime();
7920 u64 period = global_rt_period();
332ac17e 7921 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7922 struct dl_bw *dl_b;
1724813d 7923 int cpu, ret = 0;
49516342 7924 unsigned long flags;
332ac17e
DF
7925
7926 /*
7927 * Here we want to check the bandwidth not being set to some
7928 * value smaller than the currently allocated bandwidth in
7929 * any of the root_domains.
7930 *
7931 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7932 * cycling on root_domains... Discussion on different/better
7933 * solutions is welcome!
7934 */
1724813d 7935 for_each_possible_cpu(cpu) {
f10e00f4
KT
7936 rcu_read_lock_sched();
7937 dl_b = dl_bw_of(cpu);
332ac17e 7938
49516342 7939 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7940 if (new_bw < dl_b->total_bw)
7941 ret = -EBUSY;
49516342 7942 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7943
f10e00f4
KT
7944 rcu_read_unlock_sched();
7945
1724813d
PZ
7946 if (ret)
7947 break;
332ac17e
DF
7948 }
7949
1724813d 7950 return ret;
332ac17e
DF
7951}
7952
1724813d 7953static void sched_dl_do_global(void)
ce0dbbbb 7954{
1724813d 7955 u64 new_bw = -1;
f10e00f4 7956 struct dl_bw *dl_b;
1724813d 7957 int cpu;
49516342 7958 unsigned long flags;
ce0dbbbb 7959
1724813d
PZ
7960 def_dl_bandwidth.dl_period = global_rt_period();
7961 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7962
7963 if (global_rt_runtime() != RUNTIME_INF)
7964 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7965
7966 /*
7967 * FIXME: As above...
7968 */
7969 for_each_possible_cpu(cpu) {
f10e00f4
KT
7970 rcu_read_lock_sched();
7971 dl_b = dl_bw_of(cpu);
1724813d 7972
49516342 7973 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7974 dl_b->bw = new_bw;
49516342 7975 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7976
7977 rcu_read_unlock_sched();
ce0dbbbb 7978 }
1724813d
PZ
7979}
7980
7981static int sched_rt_global_validate(void)
7982{
7983 if (sysctl_sched_rt_period <= 0)
7984 return -EINVAL;
7985
e9e7cb38
JL
7986 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7987 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7988 return -EINVAL;
7989
7990 return 0;
7991}
7992
7993static void sched_rt_do_global(void)
7994{
7995 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7996 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7997}
7998
d0b27fa7 7999int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8000 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8001 loff_t *ppos)
8002{
d0b27fa7
PZ
8003 int old_period, old_runtime;
8004 static DEFINE_MUTEX(mutex);
1724813d 8005 int ret;
d0b27fa7
PZ
8006
8007 mutex_lock(&mutex);
8008 old_period = sysctl_sched_rt_period;
8009 old_runtime = sysctl_sched_rt_runtime;
8010
8d65af78 8011 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8012
8013 if (!ret && write) {
1724813d
PZ
8014 ret = sched_rt_global_validate();
8015 if (ret)
8016 goto undo;
8017
a1963b81 8018 ret = sched_dl_global_validate();
1724813d
PZ
8019 if (ret)
8020 goto undo;
8021
a1963b81 8022 ret = sched_rt_global_constraints();
1724813d
PZ
8023 if (ret)
8024 goto undo;
8025
8026 sched_rt_do_global();
8027 sched_dl_do_global();
8028 }
8029 if (0) {
8030undo:
8031 sysctl_sched_rt_period = old_period;
8032 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8033 }
8034 mutex_unlock(&mutex);
8035
8036 return ret;
8037}
68318b8e 8038
1724813d 8039int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8040 void __user *buffer, size_t *lenp,
8041 loff_t *ppos)
8042{
8043 int ret;
332ac17e 8044 static DEFINE_MUTEX(mutex);
332ac17e
DF
8045
8046 mutex_lock(&mutex);
332ac17e 8047 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8048 /* make sure that internally we keep jiffies */
8049 /* also, writing zero resets timeslice to default */
332ac17e 8050 if (!ret && write) {
1724813d
PZ
8051 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8052 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8053 }
8054 mutex_unlock(&mutex);
332ac17e
DF
8055 return ret;
8056}
8057
052f1dc7 8058#ifdef CONFIG_CGROUP_SCHED
68318b8e 8059
a7c6d554 8060static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8061{
a7c6d554 8062 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8063}
8064
eb95419b
TH
8065static struct cgroup_subsys_state *
8066cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8067{
eb95419b
TH
8068 struct task_group *parent = css_tg(parent_css);
8069 struct task_group *tg;
68318b8e 8070
eb95419b 8071 if (!parent) {
68318b8e 8072 /* This is early initialization for the top cgroup */
07e06b01 8073 return &root_task_group.css;
68318b8e
SV
8074 }
8075
ec7dc8ac 8076 tg = sched_create_group(parent);
68318b8e
SV
8077 if (IS_ERR(tg))
8078 return ERR_PTR(-ENOMEM);
8079
68318b8e
SV
8080 return &tg->css;
8081}
8082
eb95419b 8083static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8084{
eb95419b 8085 struct task_group *tg = css_tg(css);
5c9d535b 8086 struct task_group *parent = css_tg(css->parent);
ace783b9 8087
63876986
TH
8088 if (parent)
8089 sched_online_group(tg, parent);
ace783b9
LZ
8090 return 0;
8091}
8092
eb95419b 8093static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8094{
eb95419b 8095 struct task_group *tg = css_tg(css);
68318b8e
SV
8096
8097 sched_destroy_group(tg);
8098}
8099
eb95419b 8100static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8101{
eb95419b 8102 struct task_group *tg = css_tg(css);
ace783b9
LZ
8103
8104 sched_offline_group(tg);
8105}
8106
b53202e6 8107static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8108{
8109 sched_move_task(task);
8110}
8111
1f7dd3e5 8112static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8113{
bb9d97b6 8114 struct task_struct *task;
1f7dd3e5 8115 struct cgroup_subsys_state *css;
bb9d97b6 8116
1f7dd3e5 8117 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8118#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8119 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8120 return -EINVAL;
b68aa230 8121#else
bb9d97b6
TH
8122 /* We don't support RT-tasks being in separate groups */
8123 if (task->sched_class != &fair_sched_class)
8124 return -EINVAL;
b68aa230 8125#endif
bb9d97b6 8126 }
be367d09
BB
8127 return 0;
8128}
68318b8e 8129
1f7dd3e5 8130static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8131{
bb9d97b6 8132 struct task_struct *task;
1f7dd3e5 8133 struct cgroup_subsys_state *css;
bb9d97b6 8134
1f7dd3e5 8135 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8136 sched_move_task(task);
68318b8e
SV
8137}
8138
052f1dc7 8139#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8140static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8141 struct cftype *cftype, u64 shareval)
68318b8e 8142{
182446d0 8143 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8144}
8145
182446d0
TH
8146static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8147 struct cftype *cft)
68318b8e 8148{
182446d0 8149 struct task_group *tg = css_tg(css);
68318b8e 8150
c8b28116 8151 return (u64) scale_load_down(tg->shares);
68318b8e 8152}
ab84d31e
PT
8153
8154#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8155static DEFINE_MUTEX(cfs_constraints_mutex);
8156
ab84d31e
PT
8157const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8158const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8159
a790de99
PT
8160static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8161
ab84d31e
PT
8162static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8163{
56f570e5 8164 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8165 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8166
8167 if (tg == &root_task_group)
8168 return -EINVAL;
8169
8170 /*
8171 * Ensure we have at some amount of bandwidth every period. This is
8172 * to prevent reaching a state of large arrears when throttled via
8173 * entity_tick() resulting in prolonged exit starvation.
8174 */
8175 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8176 return -EINVAL;
8177
8178 /*
8179 * Likewise, bound things on the otherside by preventing insane quota
8180 * periods. This also allows us to normalize in computing quota
8181 * feasibility.
8182 */
8183 if (period > max_cfs_quota_period)
8184 return -EINVAL;
8185
0e59bdae
KT
8186 /*
8187 * Prevent race between setting of cfs_rq->runtime_enabled and
8188 * unthrottle_offline_cfs_rqs().
8189 */
8190 get_online_cpus();
a790de99
PT
8191 mutex_lock(&cfs_constraints_mutex);
8192 ret = __cfs_schedulable(tg, period, quota);
8193 if (ret)
8194 goto out_unlock;
8195
58088ad0 8196 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8197 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8198 /*
8199 * If we need to toggle cfs_bandwidth_used, off->on must occur
8200 * before making related changes, and on->off must occur afterwards
8201 */
8202 if (runtime_enabled && !runtime_was_enabled)
8203 cfs_bandwidth_usage_inc();
ab84d31e
PT
8204 raw_spin_lock_irq(&cfs_b->lock);
8205 cfs_b->period = ns_to_ktime(period);
8206 cfs_b->quota = quota;
58088ad0 8207
a9cf55b2 8208 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8209 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8210 if (runtime_enabled)
8211 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8212 raw_spin_unlock_irq(&cfs_b->lock);
8213
0e59bdae 8214 for_each_online_cpu(i) {
ab84d31e 8215 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8216 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8217
8218 raw_spin_lock_irq(&rq->lock);
58088ad0 8219 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8220 cfs_rq->runtime_remaining = 0;
671fd9da 8221
029632fb 8222 if (cfs_rq->throttled)
671fd9da 8223 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8224 raw_spin_unlock_irq(&rq->lock);
8225 }
1ee14e6c
BS
8226 if (runtime_was_enabled && !runtime_enabled)
8227 cfs_bandwidth_usage_dec();
a790de99
PT
8228out_unlock:
8229 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8230 put_online_cpus();
ab84d31e 8231
a790de99 8232 return ret;
ab84d31e
PT
8233}
8234
8235int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8236{
8237 u64 quota, period;
8238
029632fb 8239 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8240 if (cfs_quota_us < 0)
8241 quota = RUNTIME_INF;
8242 else
8243 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8244
8245 return tg_set_cfs_bandwidth(tg, period, quota);
8246}
8247
8248long tg_get_cfs_quota(struct task_group *tg)
8249{
8250 u64 quota_us;
8251
029632fb 8252 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8253 return -1;
8254
029632fb 8255 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8256 do_div(quota_us, NSEC_PER_USEC);
8257
8258 return quota_us;
8259}
8260
8261int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8262{
8263 u64 quota, period;
8264
8265 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8266 quota = tg->cfs_bandwidth.quota;
ab84d31e 8267
ab84d31e
PT
8268 return tg_set_cfs_bandwidth(tg, period, quota);
8269}
8270
8271long tg_get_cfs_period(struct task_group *tg)
8272{
8273 u64 cfs_period_us;
8274
029632fb 8275 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8276 do_div(cfs_period_us, NSEC_PER_USEC);
8277
8278 return cfs_period_us;
8279}
8280
182446d0
TH
8281static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8282 struct cftype *cft)
ab84d31e 8283{
182446d0 8284 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8285}
8286
182446d0
TH
8287static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8288 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8289{
182446d0 8290 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8291}
8292
182446d0
TH
8293static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8294 struct cftype *cft)
ab84d31e 8295{
182446d0 8296 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8297}
8298
182446d0
TH
8299static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8300 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8301{
182446d0 8302 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8303}
8304
a790de99
PT
8305struct cfs_schedulable_data {
8306 struct task_group *tg;
8307 u64 period, quota;
8308};
8309
8310/*
8311 * normalize group quota/period to be quota/max_period
8312 * note: units are usecs
8313 */
8314static u64 normalize_cfs_quota(struct task_group *tg,
8315 struct cfs_schedulable_data *d)
8316{
8317 u64 quota, period;
8318
8319 if (tg == d->tg) {
8320 period = d->period;
8321 quota = d->quota;
8322 } else {
8323 period = tg_get_cfs_period(tg);
8324 quota = tg_get_cfs_quota(tg);
8325 }
8326
8327 /* note: these should typically be equivalent */
8328 if (quota == RUNTIME_INF || quota == -1)
8329 return RUNTIME_INF;
8330
8331 return to_ratio(period, quota);
8332}
8333
8334static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8335{
8336 struct cfs_schedulable_data *d = data;
029632fb 8337 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8338 s64 quota = 0, parent_quota = -1;
8339
8340 if (!tg->parent) {
8341 quota = RUNTIME_INF;
8342 } else {
029632fb 8343 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8344
8345 quota = normalize_cfs_quota(tg, d);
9c58c79a 8346 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8347
8348 /*
8349 * ensure max(child_quota) <= parent_quota, inherit when no
8350 * limit is set
8351 */
8352 if (quota == RUNTIME_INF)
8353 quota = parent_quota;
8354 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8355 return -EINVAL;
8356 }
9c58c79a 8357 cfs_b->hierarchical_quota = quota;
a790de99
PT
8358
8359 return 0;
8360}
8361
8362static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8363{
8277434e 8364 int ret;
a790de99
PT
8365 struct cfs_schedulable_data data = {
8366 .tg = tg,
8367 .period = period,
8368 .quota = quota,
8369 };
8370
8371 if (quota != RUNTIME_INF) {
8372 do_div(data.period, NSEC_PER_USEC);
8373 do_div(data.quota, NSEC_PER_USEC);
8374 }
8375
8277434e
PT
8376 rcu_read_lock();
8377 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8378 rcu_read_unlock();
8379
8380 return ret;
a790de99 8381}
e8da1b18 8382
2da8ca82 8383static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8384{
2da8ca82 8385 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8386 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8387
44ffc75b
TH
8388 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8389 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8390 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8391
8392 return 0;
8393}
ab84d31e 8394#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8395#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8396
052f1dc7 8397#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8398static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8399 struct cftype *cft, s64 val)
6f505b16 8400{
182446d0 8401 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8402}
8403
182446d0
TH
8404static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8405 struct cftype *cft)
6f505b16 8406{
182446d0 8407 return sched_group_rt_runtime(css_tg(css));
6f505b16 8408}
d0b27fa7 8409
182446d0
TH
8410static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8411 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8412{
182446d0 8413 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8414}
8415
182446d0
TH
8416static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8417 struct cftype *cft)
d0b27fa7 8418{
182446d0 8419 return sched_group_rt_period(css_tg(css));
d0b27fa7 8420}
6d6bc0ad 8421#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8422
fe5c7cc2 8423static struct cftype cpu_files[] = {
052f1dc7 8424#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8425 {
8426 .name = "shares",
f4c753b7
PM
8427 .read_u64 = cpu_shares_read_u64,
8428 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8429 },
052f1dc7 8430#endif
ab84d31e
PT
8431#ifdef CONFIG_CFS_BANDWIDTH
8432 {
8433 .name = "cfs_quota_us",
8434 .read_s64 = cpu_cfs_quota_read_s64,
8435 .write_s64 = cpu_cfs_quota_write_s64,
8436 },
8437 {
8438 .name = "cfs_period_us",
8439 .read_u64 = cpu_cfs_period_read_u64,
8440 .write_u64 = cpu_cfs_period_write_u64,
8441 },
e8da1b18
NR
8442 {
8443 .name = "stat",
2da8ca82 8444 .seq_show = cpu_stats_show,
e8da1b18 8445 },
ab84d31e 8446#endif
052f1dc7 8447#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8448 {
9f0c1e56 8449 .name = "rt_runtime_us",
06ecb27c
PM
8450 .read_s64 = cpu_rt_runtime_read,
8451 .write_s64 = cpu_rt_runtime_write,
6f505b16 8452 },
d0b27fa7
PZ
8453 {
8454 .name = "rt_period_us",
f4c753b7
PM
8455 .read_u64 = cpu_rt_period_read_uint,
8456 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8457 },
052f1dc7 8458#endif
4baf6e33 8459 { } /* terminate */
68318b8e
SV
8460};
8461
073219e9 8462struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8463 .css_alloc = cpu_cgroup_css_alloc,
8464 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8465 .css_online = cpu_cgroup_css_online,
8466 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8467 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8468 .can_attach = cpu_cgroup_can_attach,
8469 .attach = cpu_cgroup_attach,
5577964e 8470 .legacy_cftypes = cpu_files,
68318b8e
SV
8471 .early_init = 1,
8472};
8473
052f1dc7 8474#endif /* CONFIG_CGROUP_SCHED */
d842de87 8475
b637a328
PM
8476void dump_cpu_task(int cpu)
8477{
8478 pr_info("Task dump for CPU %d:\n", cpu);
8479 sched_show_task(cpu_curr(cpu));
8480}
ed82b8a1
AK
8481
8482/*
8483 * Nice levels are multiplicative, with a gentle 10% change for every
8484 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8485 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8486 * that remained on nice 0.
8487 *
8488 * The "10% effect" is relative and cumulative: from _any_ nice level,
8489 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8490 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8491 * If a task goes up by ~10% and another task goes down by ~10% then
8492 * the relative distance between them is ~25%.)
8493 */
8494const int sched_prio_to_weight[40] = {
8495 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8496 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8497 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8498 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8499 /* 0 */ 1024, 820, 655, 526, 423,
8500 /* 5 */ 335, 272, 215, 172, 137,
8501 /* 10 */ 110, 87, 70, 56, 45,
8502 /* 15 */ 36, 29, 23, 18, 15,
8503};
8504
8505/*
8506 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8507 *
8508 * In cases where the weight does not change often, we can use the
8509 * precalculated inverse to speed up arithmetics by turning divisions
8510 * into multiplications:
8511 */
8512const u32 sched_prio_to_wmult[40] = {
8513 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8514 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8515 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8516 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8517 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8518 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8519 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8520 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8521};