sched: Move a few runnable tg variables into CONFIG_SMP
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
029632fb 515void resched_task(struct task_struct *p)
c24d20db
IM
516{
517 int cpu;
518
05fa785c 519 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 520
5ed0cec0 521 if (test_tsk_need_resched(p))
c24d20db
IM
522 return;
523
5ed0cec0 524 set_tsk_need_resched(p);
c24d20db
IM
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id())
528 return;
529
530 /* NEED_RESCHED must be visible before we test polling */
531 smp_mb();
532 if (!tsk_is_polling(p))
533 smp_send_reschedule(cpu);
534}
535
029632fb 536void resched_cpu(int cpu)
c24d20db
IM
537{
538 struct rq *rq = cpu_rq(cpu);
539 unsigned long flags;
540
05fa785c 541 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
542 return;
543 resched_task(cpu_curr(cpu));
05fa785c 544 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 545}
06d8308c 546
3451d024 547#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu. This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558 int cpu = smp_processor_id();
559 int i;
560 struct sched_domain *sd;
561
057f3fad 562 rcu_read_lock();
83cd4fe2 563 for_each_domain(cpu, sd) {
057f3fad
PZ
564 for_each_cpu(i, sched_domain_span(sd)) {
565 if (!idle_cpu(i)) {
566 cpu = i;
567 goto unlock;
568 }
569 }
83cd4fe2 570 }
057f3fad
PZ
571unlock:
572 rcu_read_unlock();
83cd4fe2
VP
573 return cpu;
574}
06d8308c
TG
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
1c20091e 585static void wake_up_idle_cpu(int cpu)
06d8308c
TG
586{
587 struct rq *rq = cpu_rq(cpu);
588
589 if (cpu == smp_processor_id())
590 return;
591
592 /*
593 * This is safe, as this function is called with the timer
594 * wheel base lock of (cpu) held. When the CPU is on the way
595 * to idle and has not yet set rq->curr to idle then it will
596 * be serialized on the timer wheel base lock and take the new
597 * timer into account automatically.
598 */
599 if (rq->curr != rq->idle)
600 return;
45bf76df 601
45bf76df 602 /*
06d8308c
TG
603 * We can set TIF_RESCHED on the idle task of the other CPU
604 * lockless. The worst case is that the other CPU runs the
605 * idle task through an additional NOOP schedule()
45bf76df 606 */
5ed0cec0 607 set_tsk_need_resched(rq->idle);
45bf76df 608
06d8308c
TG
609 /* NEED_RESCHED must be visible before we test polling */
610 smp_mb();
611 if (!tsk_is_polling(rq->idle))
612 smp_send_reschedule(cpu);
45bf76df
IM
613}
614
c5bfece2 615static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 616{
c5bfece2 617 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
618 if (cpu != smp_processor_id() ||
619 tick_nohz_tick_stopped())
620 smp_send_reschedule(cpu);
621 return true;
622 }
623
624 return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
c5bfece2 629 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
630 wake_up_idle_cpu(cpu);
631}
632
ca38062e 633static inline bool got_nohz_idle_kick(void)
45bf76df 634{
1c792db7 635 int cpu = smp_processor_id();
873b4c65
VG
636
637 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638 return false;
639
640 if (idle_cpu(cpu) && !need_resched())
641 return true;
642
643 /*
644 * We can't run Idle Load Balance on this CPU for this time so we
645 * cancel it and clear NOHZ_BALANCE_KICK
646 */
647 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648 return false;
45bf76df
IM
649}
650
3451d024 651#else /* CONFIG_NO_HZ_COMMON */
45bf76df 652
ca38062e 653static inline bool got_nohz_idle_kick(void)
2069dd75 654{
ca38062e 655 return false;
2069dd75
PZ
656}
657
3451d024 658#endif /* CONFIG_NO_HZ_COMMON */
d842de87 659
ce831b38
FW
660#ifdef CONFIG_NO_HZ_FULL
661bool sched_can_stop_tick(void)
662{
663 struct rq *rq;
664
665 rq = this_rq();
666
667 /* Make sure rq->nr_running update is visible after the IPI */
668 smp_rmb();
669
670 /* More than one running task need preemption */
671 if (rq->nr_running > 1)
672 return false;
673
674 return true;
675}
676#endif /* CONFIG_NO_HZ_FULL */
d842de87 677
029632fb 678void sched_avg_update(struct rq *rq)
18d95a28 679{
e9e9250b
PZ
680 s64 period = sched_avg_period();
681
78becc27 682 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
683 /*
684 * Inline assembly required to prevent the compiler
685 * optimising this loop into a divmod call.
686 * See __iter_div_u64_rem() for another example of this.
687 */
688 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
689 rq->age_stamp += period;
690 rq->rt_avg /= 2;
691 }
18d95a28
PZ
692}
693
6d6bc0ad 694#else /* !CONFIG_SMP */
029632fb 695void resched_task(struct task_struct *p)
18d95a28 696{
05fa785c 697 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 698 set_tsk_need_resched(p);
18d95a28 699}
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
45bf76df
IM
747static void set_load_weight(struct task_struct *p)
748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
758 return;
759 }
71f8bd46 760
c8b28116 761 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 762 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
763}
764
371fd7e7 765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 766{
a64692a3 767 update_rq_clock(rq);
dd41f596 768 sched_info_queued(p);
371fd7e7 769 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
770}
771
371fd7e7 772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 773{
a64692a3 774 update_rq_clock(rq);
46ac22ba 775 sched_info_dequeued(p);
371fd7e7 776 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
777}
778
029632fb 779void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
371fd7e7 784 enqueue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
029632fb 787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
788{
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
371fd7e7 792 dequeue_task(rq, p, flags);
1e3c88bd
PZ
793}
794
fe44d621 795static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 796{
095c0aa8
GC
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
095c0aa8
GC
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 829 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
830 u64 st;
831
832 steal = paravirt_steal_clock(cpu_of(rq));
833 steal -= rq->prev_steal_time_rq;
834
835 if (unlikely(steal > delta))
836 steal = delta;
837
838 st = steal_ticks(steal);
839 steal = st * TICK_NSEC;
840
841 rq->prev_steal_time_rq += steal;
842
843 delta -= steal;
844 }
845#endif
846
fe44d621
PZ
847 rq->clock_task += delta;
848
095c0aa8
GC
849#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851 sched_rt_avg_update(rq, irq_delta + steal);
852#endif
aa483808
VP
853}
854
34f971f6
PZ
855void sched_set_stop_task(int cpu, struct task_struct *stop)
856{
857 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 struct task_struct *old_stop = cpu_rq(cpu)->stop;
859
860 if (stop) {
861 /*
862 * Make it appear like a SCHED_FIFO task, its something
863 * userspace knows about and won't get confused about.
864 *
865 * Also, it will make PI more or less work without too
866 * much confusion -- but then, stop work should not
867 * rely on PI working anyway.
868 */
869 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870
871 stop->sched_class = &stop_sched_class;
872 }
873
874 cpu_rq(cpu)->stop = stop;
875
876 if (old_stop) {
877 /*
878 * Reset it back to a normal scheduling class so that
879 * it can die in pieces.
880 */
881 old_stop->sched_class = &rt_sched_class;
882 }
883}
884
14531189 885/*
dd41f596 886 * __normal_prio - return the priority that is based on the static prio
14531189 887 */
14531189
IM
888static inline int __normal_prio(struct task_struct *p)
889{
dd41f596 890 return p->static_prio;
14531189
IM
891}
892
b29739f9
IM
893/*
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
899 */
36c8b586 900static inline int normal_prio(struct task_struct *p)
b29739f9
IM
901{
902 int prio;
903
e05606d3 904 if (task_has_rt_policy(p))
b29739f9
IM
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
906 else
907 prio = __normal_prio(p);
908 return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
36c8b586 918static int effective_prio(struct task_struct *p)
b29739f9
IM
919{
920 p->normal_prio = normal_prio(p);
921 /*
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
925 */
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
928 return p->prio;
929}
930
1da177e4
LT
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
582b336e
MT
977static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978
979void register_task_migration_notifier(struct notifier_block *n)
980{
981 atomic_notifier_chain_register(&task_migration_notifier, n);
982}
983
1da177e4 984#ifdef CONFIG_SMP
dd41f596 985void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 986{
e2912009
PZ
987#ifdef CONFIG_SCHED_DEBUG
988 /*
989 * We should never call set_task_cpu() on a blocked task,
990 * ttwu() will sort out the placement.
991 */
077614ee
PZ
992 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
994
995#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
996 /*
997 * The caller should hold either p->pi_lock or rq->lock, when changing
998 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999 *
1000 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1001 * see task_group().
6c6c54e1
PZ
1002 *
1003 * Furthermore, all task_rq users should acquire both locks, see
1004 * task_rq_lock().
1005 */
0122ec5b
PZ
1006 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007 lockdep_is_held(&task_rq(p)->lock)));
1008#endif
e2912009
PZ
1009#endif
1010
de1d7286 1011 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1012
0c69774e 1013 if (task_cpu(p) != new_cpu) {
582b336e
MT
1014 struct task_migration_notifier tmn;
1015
0a74bef8
PT
1016 if (p->sched_class->migrate_task_rq)
1017 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1018 p->se.nr_migrations++;
a8b0ca17 1019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
1020
1021 tmn.task = p;
1022 tmn.from_cpu = task_cpu(p);
1023 tmn.to_cpu = new_cpu;
1024
1025 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 1026 }
dd41f596
IM
1027
1028 __set_task_cpu(p, new_cpu);
c65cc870
IM
1029}
1030
969c7921 1031struct migration_arg {
36c8b586 1032 struct task_struct *task;
1da177e4 1033 int dest_cpu;
70b97a7f 1034};
1da177e4 1035
969c7921
TH
1036static int migration_cpu_stop(void *data);
1037
1da177e4
LT
1038/*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
85ba2d86
RM
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change. If it changes, i.e. @p might have woken up,
1043 * then return zero. When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count). If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1047 *
1da177e4
LT
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
85ba2d86 1054unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1055{
1056 unsigned long flags;
dd41f596 1057 int running, on_rq;
85ba2d86 1058 unsigned long ncsw;
70b97a7f 1059 struct rq *rq;
1da177e4 1060
3a5c359a
AK
1061 for (;;) {
1062 /*
1063 * We do the initial early heuristics without holding
1064 * any task-queue locks at all. We'll only try to get
1065 * the runqueue lock when things look like they will
1066 * work out!
1067 */
1068 rq = task_rq(p);
fa490cfd 1069
3a5c359a
AK
1070 /*
1071 * If the task is actively running on another CPU
1072 * still, just relax and busy-wait without holding
1073 * any locks.
1074 *
1075 * NOTE! Since we don't hold any locks, it's not
1076 * even sure that "rq" stays as the right runqueue!
1077 * But we don't care, since "task_running()" will
1078 * return false if the runqueue has changed and p
1079 * is actually now running somewhere else!
1080 */
85ba2d86
RM
1081 while (task_running(rq, p)) {
1082 if (match_state && unlikely(p->state != match_state))
1083 return 0;
3a5c359a 1084 cpu_relax();
85ba2d86 1085 }
fa490cfd 1086
3a5c359a
AK
1087 /*
1088 * Ok, time to look more closely! We need the rq
1089 * lock now, to be *sure*. If we're wrong, we'll
1090 * just go back and repeat.
1091 */
1092 rq = task_rq_lock(p, &flags);
27a9da65 1093 trace_sched_wait_task(p);
3a5c359a 1094 running = task_running(rq, p);
fd2f4419 1095 on_rq = p->on_rq;
85ba2d86 1096 ncsw = 0;
f31e11d8 1097 if (!match_state || p->state == match_state)
93dcf55f 1098 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1099 task_rq_unlock(rq, p, &flags);
fa490cfd 1100
85ba2d86
RM
1101 /*
1102 * If it changed from the expected state, bail out now.
1103 */
1104 if (unlikely(!ncsw))
1105 break;
1106
3a5c359a
AK
1107 /*
1108 * Was it really running after all now that we
1109 * checked with the proper locks actually held?
1110 *
1111 * Oops. Go back and try again..
1112 */
1113 if (unlikely(running)) {
1114 cpu_relax();
1115 continue;
1116 }
fa490cfd 1117
3a5c359a
AK
1118 /*
1119 * It's not enough that it's not actively running,
1120 * it must be off the runqueue _entirely_, and not
1121 * preempted!
1122 *
80dd99b3 1123 * So if it was still runnable (but just not actively
3a5c359a
AK
1124 * running right now), it's preempted, and we should
1125 * yield - it could be a while.
1126 */
1127 if (unlikely(on_rq)) {
8eb90c30
TG
1128 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129
1130 set_current_state(TASK_UNINTERRUPTIBLE);
1131 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1132 continue;
1133 }
fa490cfd 1134
3a5c359a
AK
1135 /*
1136 * Ahh, all good. It wasn't running, and it wasn't
1137 * runnable, which means that it will never become
1138 * running in the future either. We're all done!
1139 */
1140 break;
1141 }
85ba2d86
RM
1142
1143 return ncsw;
1da177e4
LT
1144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
25985edc 1153 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
36c8b586 1159void kick_process(struct task_struct *p)
1da177e4
LT
1160{
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168}
b43e3521 1169EXPORT_SYMBOL_GPL(kick_process);
476d139c 1170#endif /* CONFIG_SMP */
1da177e4 1171
970b13ba 1172#ifdef CONFIG_SMP
30da688e 1173/*
013fdb80 1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1175 */
5da9a0fb
PZ
1176static int select_fallback_rq(int cpu, struct task_struct *p)
1177{
aa00d89c
TC
1178 int nid = cpu_to_node(cpu);
1179 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1180 enum { cpuset, possible, fail } state = cpuset;
1181 int dest_cpu;
5da9a0fb 1182
aa00d89c
TC
1183 /*
1184 * If the node that the cpu is on has been offlined, cpu_to_node()
1185 * will return -1. There is no cpu on the node, and we should
1186 * select the cpu on the other node.
1187 */
1188 if (nid != -1) {
1189 nodemask = cpumask_of_node(nid);
1190
1191 /* Look for allowed, online CPU in same node. */
1192 for_each_cpu(dest_cpu, nodemask) {
1193 if (!cpu_online(dest_cpu))
1194 continue;
1195 if (!cpu_active(dest_cpu))
1196 continue;
1197 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198 return dest_cpu;
1199 }
2baab4e9 1200 }
5da9a0fb 1201
2baab4e9
PZ
1202 for (;;) {
1203 /* Any allowed, online CPU? */
e3831edd 1204 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1205 if (!cpu_online(dest_cpu))
1206 continue;
1207 if (!cpu_active(dest_cpu))
1208 continue;
1209 goto out;
1210 }
5da9a0fb 1211
2baab4e9
PZ
1212 switch (state) {
1213 case cpuset:
1214 /* No more Mr. Nice Guy. */
1215 cpuset_cpus_allowed_fallback(p);
1216 state = possible;
1217 break;
1218
1219 case possible:
1220 do_set_cpus_allowed(p, cpu_possible_mask);
1221 state = fail;
1222 break;
1223
1224 case fail:
1225 BUG();
1226 break;
1227 }
1228 }
1229
1230out:
1231 if (state != cpuset) {
1232 /*
1233 * Don't tell them about moving exiting tasks or
1234 * kernel threads (both mm NULL), since they never
1235 * leave kernel.
1236 */
1237 if (p->mm && printk_ratelimit()) {
1238 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239 task_pid_nr(p), p->comm, cpu);
1240 }
5da9a0fb
PZ
1241 }
1242
1243 return dest_cpu;
1244}
1245
e2912009 1246/*
013fdb80 1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1248 */
970b13ba 1249static inline
7608dec2 1250int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1251{
7608dec2 1252 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1253
1254 /*
1255 * In order not to call set_task_cpu() on a blocking task we need
1256 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257 * cpu.
1258 *
1259 * Since this is common to all placement strategies, this lives here.
1260 *
1261 * [ this allows ->select_task() to simply return task_cpu(p) and
1262 * not worry about this generic constraint ]
1263 */
fa17b507 1264 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1265 !cpu_online(cpu)))
5da9a0fb 1266 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1267
1268 return cpu;
970b13ba 1269}
09a40af5
MG
1270
1271static void update_avg(u64 *avg, u64 sample)
1272{
1273 s64 diff = sample - *avg;
1274 *avg += diff >> 3;
1275}
970b13ba
PZ
1276#endif
1277
d7c01d27 1278static void
b84cb5df 1279ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1280{
d7c01d27 1281#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1282 struct rq *rq = this_rq();
1283
d7c01d27
PZ
1284#ifdef CONFIG_SMP
1285 int this_cpu = smp_processor_id();
1286
1287 if (cpu == this_cpu) {
1288 schedstat_inc(rq, ttwu_local);
1289 schedstat_inc(p, se.statistics.nr_wakeups_local);
1290 } else {
1291 struct sched_domain *sd;
1292
1293 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1294 rcu_read_lock();
d7c01d27
PZ
1295 for_each_domain(this_cpu, sd) {
1296 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297 schedstat_inc(sd, ttwu_wake_remote);
1298 break;
1299 }
1300 }
057f3fad 1301 rcu_read_unlock();
d7c01d27 1302 }
f339b9dc
PZ
1303
1304 if (wake_flags & WF_MIGRATED)
1305 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306
d7c01d27
PZ
1307#endif /* CONFIG_SMP */
1308
1309 schedstat_inc(rq, ttwu_count);
9ed3811a 1310 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1311
1312 if (wake_flags & WF_SYNC)
9ed3811a 1313 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1314
d7c01d27
PZ
1315#endif /* CONFIG_SCHEDSTATS */
1316}
1317
1318static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319{
9ed3811a 1320 activate_task(rq, p, en_flags);
fd2f4419 1321 p->on_rq = 1;
c2f7115e
PZ
1322
1323 /* if a worker is waking up, notify workqueue */
1324 if (p->flags & PF_WQ_WORKER)
1325 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1326}
1327
23f41eeb
PZ
1328/*
1329 * Mark the task runnable and perform wakeup-preemption.
1330 */
89363381 1331static void
23f41eeb 1332ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1333{
9ed3811a 1334 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1335 trace_sched_wakeup(p, true);
9ed3811a
TH
1336
1337 p->state = TASK_RUNNING;
1338#ifdef CONFIG_SMP
1339 if (p->sched_class->task_woken)
1340 p->sched_class->task_woken(rq, p);
1341
e69c6341 1342 if (rq->idle_stamp) {
78becc27 1343 u64 delta = rq_clock(rq) - rq->idle_stamp;
9ed3811a
TH
1344 u64 max = 2*sysctl_sched_migration_cost;
1345
1346 if (delta > max)
1347 rq->avg_idle = max;
1348 else
1349 update_avg(&rq->avg_idle, delta);
1350 rq->idle_stamp = 0;
1351 }
1352#endif
1353}
1354
c05fbafb
PZ
1355static void
1356ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357{
1358#ifdef CONFIG_SMP
1359 if (p->sched_contributes_to_load)
1360 rq->nr_uninterruptible--;
1361#endif
1362
1363 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364 ttwu_do_wakeup(rq, p, wake_flags);
1365}
1366
1367/*
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1372 */
1373static int ttwu_remote(struct task_struct *p, int wake_flags)
1374{
1375 struct rq *rq;
1376 int ret = 0;
1377
1378 rq = __task_rq_lock(p);
1379 if (p->on_rq) {
1ad4ec0d
FW
1380 /* check_preempt_curr() may use rq clock */
1381 update_rq_clock(rq);
c05fbafb
PZ
1382 ttwu_do_wakeup(rq, p, wake_flags);
1383 ret = 1;
1384 }
1385 __task_rq_unlock(rq);
1386
1387 return ret;
1388}
1389
317f3941 1390#ifdef CONFIG_SMP
fa14ff4a 1391static void sched_ttwu_pending(void)
317f3941
PZ
1392{
1393 struct rq *rq = this_rq();
fa14ff4a
PZ
1394 struct llist_node *llist = llist_del_all(&rq->wake_list);
1395 struct task_struct *p;
317f3941
PZ
1396
1397 raw_spin_lock(&rq->lock);
1398
fa14ff4a
PZ
1399 while (llist) {
1400 p = llist_entry(llist, struct task_struct, wake_entry);
1401 llist = llist_next(llist);
317f3941
PZ
1402 ttwu_do_activate(rq, p, 0);
1403 }
1404
1405 raw_spin_unlock(&rq->lock);
1406}
1407
1408void scheduler_ipi(void)
1409{
873b4c65
VG
1410 if (llist_empty(&this_rq()->wake_list)
1411 && !tick_nohz_full_cpu(smp_processor_id())
1412 && !got_nohz_idle_kick())
c5d753a5
PZ
1413 return;
1414
1415 /*
1416 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1417 * traditionally all their work was done from the interrupt return
1418 * path. Now that we actually do some work, we need to make sure
1419 * we do call them.
1420 *
1421 * Some archs already do call them, luckily irq_enter/exit nest
1422 * properly.
1423 *
1424 * Arguably we should visit all archs and update all handlers,
1425 * however a fair share of IPIs are still resched only so this would
1426 * somewhat pessimize the simple resched case.
1427 */
1428 irq_enter();
ff442c51 1429 tick_nohz_full_check();
fa14ff4a 1430 sched_ttwu_pending();
ca38062e
SS
1431
1432 /*
1433 * Check if someone kicked us for doing the nohz idle load balance.
1434 */
873b4c65 1435 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1436 this_rq()->idle_balance = 1;
ca38062e 1437 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1438 }
c5d753a5 1439 irq_exit();
317f3941
PZ
1440}
1441
1442static void ttwu_queue_remote(struct task_struct *p, int cpu)
1443{
fa14ff4a 1444 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1445 smp_send_reschedule(cpu);
1446}
d6aa8f85 1447
39be3501 1448bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1449{
1450 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1451}
d6aa8f85 1452#endif /* CONFIG_SMP */
317f3941 1453
c05fbafb
PZ
1454static void ttwu_queue(struct task_struct *p, int cpu)
1455{
1456 struct rq *rq = cpu_rq(cpu);
1457
17d9f311 1458#if defined(CONFIG_SMP)
39be3501 1459 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1460 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1461 ttwu_queue_remote(p, cpu);
1462 return;
1463 }
1464#endif
1465
c05fbafb
PZ
1466 raw_spin_lock(&rq->lock);
1467 ttwu_do_activate(rq, p, 0);
1468 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1469}
1470
1471/**
1da177e4 1472 * try_to_wake_up - wake up a thread
9ed3811a 1473 * @p: the thread to be awakened
1da177e4 1474 * @state: the mask of task states that can be woken
9ed3811a 1475 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1476 *
1477 * Put it on the run-queue if it's not already there. The "current"
1478 * thread is always on the run-queue (except when the actual
1479 * re-schedule is in progress), and as such you're allowed to do
1480 * the simpler "current->state = TASK_RUNNING" to mark yourself
1481 * runnable without the overhead of this.
1482 *
9ed3811a
TH
1483 * Returns %true if @p was woken up, %false if it was already running
1484 * or @state didn't match @p's state.
1da177e4 1485 */
e4a52bcb
PZ
1486static int
1487try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1488{
1da177e4 1489 unsigned long flags;
c05fbafb 1490 int cpu, success = 0;
2398f2c6 1491
04e2f174 1492 smp_wmb();
013fdb80 1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1494 if (!(p->state & state))
1da177e4
LT
1495 goto out;
1496
c05fbafb 1497 success = 1; /* we're going to change ->state */
1da177e4 1498 cpu = task_cpu(p);
1da177e4 1499
c05fbafb
PZ
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1501 goto stat;
1da177e4 1502
1da177e4 1503#ifdef CONFIG_SMP
e9c84311 1504 /*
c05fbafb
PZ
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
e9c84311 1507 */
f3e94786 1508 while (p->on_cpu)
e4a52bcb 1509 cpu_relax();
0970d299 1510 /*
e4a52bcb 1511 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1512 */
e4a52bcb 1513 smp_rmb();
1da177e4 1514
a8e4f2ea 1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1516 p->state = TASK_WAKING;
e7693a36 1517
e4a52bcb 1518 if (p->sched_class->task_waking)
74f8e4b2 1519 p->sched_class->task_waking(p);
efbbd05a 1520
7608dec2 1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
e4a52bcb 1524 set_task_cpu(p, cpu);
f339b9dc 1525 }
1da177e4 1526#endif /* CONFIG_SMP */
1da177e4 1527
c05fbafb
PZ
1528 ttwu_queue(p, cpu);
1529stat:
b84cb5df 1530 ttwu_stat(p, cpu, wake_flags);
1da177e4 1531out:
013fdb80 1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1533
1534 return success;
1535}
1536
21aa9af0
TH
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
2acca55e 1541 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1543 * the current task.
21aa9af0
TH
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547 struct rq *rq = task_rq(p);
21aa9af0 1548
383efcd0
TH
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1551 return;
1552
21aa9af0
TH
1553 lockdep_assert_held(&rq->lock);
1554
2acca55e
PZ
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1559 }
1560
21aa9af0 1561 if (!(p->state & TASK_NORMAL))
2acca55e 1562 goto out;
21aa9af0 1563
fd2f4419 1564 if (!p->on_rq)
d7c01d27
PZ
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
23f41eeb 1567 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1568 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1569out:
1570 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1571}
1572
50fa610a
DH
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes. Returns 1 if the process was woken up, 0 if it was already
1579 * running.
1580 *
1581 * It may be assumed that this function implies a write memory barrier before
1582 * changing the task state if and only if any tasks are woken up.
1583 */
7ad5b3a5 1584int wake_up_process(struct task_struct *p)
1da177e4 1585{
9067ac85
ON
1586 WARN_ON(task_is_stopped_or_traced(p));
1587 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1588}
1da177e4
LT
1589EXPORT_SYMBOL(wake_up_process);
1590
7ad5b3a5 1591int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1592{
1593 return try_to_wake_up(p, state, 0);
1594}
1595
1da177e4
LT
1596/*
1597 * Perform scheduler related setup for a newly forked process p.
1598 * p is forked by current.
dd41f596
IM
1599 *
1600 * __sched_fork() is basic setup used by init_idle() too:
1601 */
1602static void __sched_fork(struct task_struct *p)
1603{
fd2f4419
PZ
1604 p->on_rq = 0;
1605
1606 p->se.on_rq = 0;
dd41f596
IM
1607 p->se.exec_start = 0;
1608 p->se.sum_exec_runtime = 0;
f6cf891c 1609 p->se.prev_sum_exec_runtime = 0;
6c594c21 1610 p->se.nr_migrations = 0;
da7a735e 1611 p->se.vruntime = 0;
fd2f4419 1612 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1613
141965c7 1614#ifdef CONFIG_SMP
9d85f21c
PT
1615 p->se.avg.runnable_avg_period = 0;
1616 p->se.avg.runnable_avg_sum = 0;
1617#endif
6cfb0d5d 1618#ifdef CONFIG_SCHEDSTATS
41acab88 1619 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1620#endif
476d139c 1621
fa717060 1622 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1623
e107be36
AK
1624#ifdef CONFIG_PREEMPT_NOTIFIERS
1625 INIT_HLIST_HEAD(&p->preempt_notifiers);
1626#endif
cbee9f88
PZ
1627
1628#ifdef CONFIG_NUMA_BALANCING
1629 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1630 p->mm->numa_next_scan = jiffies;
b8593bfd 1631 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1632 p->mm->numa_scan_seq = 0;
1633 }
1634
1635 p->node_stamp = 0ULL;
1636 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1637 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1638 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1639 p->numa_work.next = &p->numa_work;
1640#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1641}
1642
1a687c2e 1643#ifdef CONFIG_NUMA_BALANCING
3105b86a 1644#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1645void set_numabalancing_state(bool enabled)
1646{
1647 if (enabled)
1648 sched_feat_set("NUMA");
1649 else
1650 sched_feat_set("NO_NUMA");
1651}
3105b86a
MG
1652#else
1653__read_mostly bool numabalancing_enabled;
1654
1655void set_numabalancing_state(bool enabled)
1656{
1657 numabalancing_enabled = enabled;
dd41f596 1658}
3105b86a 1659#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1660#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1661
1662/*
1663 * fork()/clone()-time setup:
1664 */
3e51e3ed 1665void sched_fork(struct task_struct *p)
dd41f596 1666{
0122ec5b 1667 unsigned long flags;
dd41f596
IM
1668 int cpu = get_cpu();
1669
1670 __sched_fork(p);
06b83b5f 1671 /*
0017d735 1672 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1673 * nobody will actually run it, and a signal or other external
1674 * event cannot wake it up and insert it on the runqueue either.
1675 */
0017d735 1676 p->state = TASK_RUNNING;
dd41f596 1677
c350a04e
MG
1678 /*
1679 * Make sure we do not leak PI boosting priority to the child.
1680 */
1681 p->prio = current->normal_prio;
1682
b9dc29e7
MG
1683 /*
1684 * Revert to default priority/policy on fork if requested.
1685 */
1686 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1687 if (task_has_rt_policy(p)) {
b9dc29e7 1688 p->policy = SCHED_NORMAL;
6c697bdf 1689 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1690 p->rt_priority = 0;
1691 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1692 p->static_prio = NICE_TO_PRIO(0);
1693
1694 p->prio = p->normal_prio = __normal_prio(p);
1695 set_load_weight(p);
6c697bdf 1696
b9dc29e7
MG
1697 /*
1698 * We don't need the reset flag anymore after the fork. It has
1699 * fulfilled its duty:
1700 */
1701 p->sched_reset_on_fork = 0;
1702 }
ca94c442 1703
2ddbf952
HS
1704 if (!rt_prio(p->prio))
1705 p->sched_class = &fair_sched_class;
b29739f9 1706
cd29fe6f
PZ
1707 if (p->sched_class->task_fork)
1708 p->sched_class->task_fork(p);
1709
86951599
PZ
1710 /*
1711 * The child is not yet in the pid-hash so no cgroup attach races,
1712 * and the cgroup is pinned to this child due to cgroup_fork()
1713 * is ran before sched_fork().
1714 *
1715 * Silence PROVE_RCU.
1716 */
0122ec5b 1717 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1718 set_task_cpu(p, cpu);
0122ec5b 1719 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1720
52f17b6c 1721#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1722 if (likely(sched_info_on()))
52f17b6c 1723 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1724#endif
3ca7a440
PZ
1725#if defined(CONFIG_SMP)
1726 p->on_cpu = 0;
4866cde0 1727#endif
bdd4e85d 1728#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1729 /* Want to start with kernel preemption disabled. */
a1261f54 1730 task_thread_info(p)->preempt_count = 1;
1da177e4 1731#endif
806c09a7 1732#ifdef CONFIG_SMP
917b627d 1733 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1734#endif
917b627d 1735
476d139c 1736 put_cpu();
1da177e4
LT
1737}
1738
1739/*
1740 * wake_up_new_task - wake up a newly created task for the first time.
1741 *
1742 * This function will do some initial scheduler statistics housekeeping
1743 * that must be done for every newly created context, then puts the task
1744 * on the runqueue and wakes it.
1745 */
3e51e3ed 1746void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1747{
1748 unsigned long flags;
dd41f596 1749 struct rq *rq;
fabf318e 1750
ab2515c4 1751 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1752#ifdef CONFIG_SMP
1753 /*
1754 * Fork balancing, do it here and not earlier because:
1755 * - cpus_allowed can change in the fork path
1756 * - any previously selected cpu might disappear through hotplug
fabf318e 1757 */
ab2515c4 1758 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1759#endif
1760
ab2515c4 1761 rq = __task_rq_lock(p);
cd29fe6f 1762 activate_task(rq, p, 0);
fd2f4419 1763 p->on_rq = 1;
89363381 1764 trace_sched_wakeup_new(p, true);
a7558e01 1765 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1766#ifdef CONFIG_SMP
efbbd05a
PZ
1767 if (p->sched_class->task_woken)
1768 p->sched_class->task_woken(rq, p);
9a897c5a 1769#endif
0122ec5b 1770 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1771}
1772
e107be36
AK
1773#ifdef CONFIG_PREEMPT_NOTIFIERS
1774
1775/**
80dd99b3 1776 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1777 * @notifier: notifier struct to register
e107be36
AK
1778 */
1779void preempt_notifier_register(struct preempt_notifier *notifier)
1780{
1781 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1782}
1783EXPORT_SYMBOL_GPL(preempt_notifier_register);
1784
1785/**
1786 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1787 * @notifier: notifier struct to unregister
e107be36
AK
1788 *
1789 * This is safe to call from within a preemption notifier.
1790 */
1791void preempt_notifier_unregister(struct preempt_notifier *notifier)
1792{
1793 hlist_del(&notifier->link);
1794}
1795EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1796
1797static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1798{
1799 struct preempt_notifier *notifier;
e107be36 1800
b67bfe0d 1801 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1802 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1803}
1804
1805static void
1806fire_sched_out_preempt_notifiers(struct task_struct *curr,
1807 struct task_struct *next)
1808{
1809 struct preempt_notifier *notifier;
e107be36 1810
b67bfe0d 1811 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1812 notifier->ops->sched_out(notifier, next);
1813}
1814
6d6bc0ad 1815#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1816
1817static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1818{
1819}
1820
1821static void
1822fire_sched_out_preempt_notifiers(struct task_struct *curr,
1823 struct task_struct *next)
1824{
1825}
1826
6d6bc0ad 1827#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1828
4866cde0
NP
1829/**
1830 * prepare_task_switch - prepare to switch tasks
1831 * @rq: the runqueue preparing to switch
421cee29 1832 * @prev: the current task that is being switched out
4866cde0
NP
1833 * @next: the task we are going to switch to.
1834 *
1835 * This is called with the rq lock held and interrupts off. It must
1836 * be paired with a subsequent finish_task_switch after the context
1837 * switch.
1838 *
1839 * prepare_task_switch sets up locking and calls architecture specific
1840 * hooks.
1841 */
e107be36
AK
1842static inline void
1843prepare_task_switch(struct rq *rq, struct task_struct *prev,
1844 struct task_struct *next)
4866cde0 1845{
895dd92c 1846 trace_sched_switch(prev, next);
fe4b04fa
PZ
1847 sched_info_switch(prev, next);
1848 perf_event_task_sched_out(prev, next);
e107be36 1849 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1850 prepare_lock_switch(rq, next);
1851 prepare_arch_switch(next);
1852}
1853
1da177e4
LT
1854/**
1855 * finish_task_switch - clean up after a task-switch
344babaa 1856 * @rq: runqueue associated with task-switch
1da177e4
LT
1857 * @prev: the thread we just switched away from.
1858 *
4866cde0
NP
1859 * finish_task_switch must be called after the context switch, paired
1860 * with a prepare_task_switch call before the context switch.
1861 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1862 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1863 *
1864 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1865 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1866 * with the lock held can cause deadlocks; see schedule() for
1867 * details.)
1868 */
a9957449 1869static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1870 __releases(rq->lock)
1871{
1da177e4 1872 struct mm_struct *mm = rq->prev_mm;
55a101f8 1873 long prev_state;
1da177e4
LT
1874
1875 rq->prev_mm = NULL;
1876
1877 /*
1878 * A task struct has one reference for the use as "current".
c394cc9f 1879 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1880 * schedule one last time. The schedule call will never return, and
1881 * the scheduled task must drop that reference.
c394cc9f 1882 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1883 * still held, otherwise prev could be scheduled on another cpu, die
1884 * there before we look at prev->state, and then the reference would
1885 * be dropped twice.
1886 * Manfred Spraul <manfred@colorfullife.com>
1887 */
55a101f8 1888 prev_state = prev->state;
bf9fae9f 1889 vtime_task_switch(prev);
4866cde0 1890 finish_arch_switch(prev);
a8d757ef 1891 perf_event_task_sched_in(prev, current);
4866cde0 1892 finish_lock_switch(rq, prev);
01f23e16 1893 finish_arch_post_lock_switch();
e8fa1362 1894
e107be36 1895 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1896 if (mm)
1897 mmdrop(mm);
c394cc9f 1898 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1899 /*
1900 * Remove function-return probe instances associated with this
1901 * task and put them back on the free list.
9761eea8 1902 */
c6fd91f0 1903 kprobe_flush_task(prev);
1da177e4 1904 put_task_struct(prev);
c6fd91f0 1905 }
99e5ada9
FW
1906
1907 tick_nohz_task_switch(current);
1da177e4
LT
1908}
1909
3f029d3c
GH
1910#ifdef CONFIG_SMP
1911
1912/* assumes rq->lock is held */
1913static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1914{
1915 if (prev->sched_class->pre_schedule)
1916 prev->sched_class->pre_schedule(rq, prev);
1917}
1918
1919/* rq->lock is NOT held, but preemption is disabled */
1920static inline void post_schedule(struct rq *rq)
1921{
1922 if (rq->post_schedule) {
1923 unsigned long flags;
1924
05fa785c 1925 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1926 if (rq->curr->sched_class->post_schedule)
1927 rq->curr->sched_class->post_schedule(rq);
05fa785c 1928 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1929
1930 rq->post_schedule = 0;
1931 }
1932}
1933
1934#else
da19ab51 1935
3f029d3c
GH
1936static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1937{
1938}
1939
1940static inline void post_schedule(struct rq *rq)
1941{
1da177e4
LT
1942}
1943
3f029d3c
GH
1944#endif
1945
1da177e4
LT
1946/**
1947 * schedule_tail - first thing a freshly forked thread must call.
1948 * @prev: the thread we just switched away from.
1949 */
36c8b586 1950asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1951 __releases(rq->lock)
1952{
70b97a7f
IM
1953 struct rq *rq = this_rq();
1954
4866cde0 1955 finish_task_switch(rq, prev);
da19ab51 1956
3f029d3c
GH
1957 /*
1958 * FIXME: do we need to worry about rq being invalidated by the
1959 * task_switch?
1960 */
1961 post_schedule(rq);
70b97a7f 1962
4866cde0
NP
1963#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1964 /* In this case, finish_task_switch does not reenable preemption */
1965 preempt_enable();
1966#endif
1da177e4 1967 if (current->set_child_tid)
b488893a 1968 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1969}
1970
1971/*
1972 * context_switch - switch to the new MM and the new
1973 * thread's register state.
1974 */
dd41f596 1975static inline void
70b97a7f 1976context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1977 struct task_struct *next)
1da177e4 1978{
dd41f596 1979 struct mm_struct *mm, *oldmm;
1da177e4 1980
e107be36 1981 prepare_task_switch(rq, prev, next);
fe4b04fa 1982
dd41f596
IM
1983 mm = next->mm;
1984 oldmm = prev->active_mm;
9226d125
ZA
1985 /*
1986 * For paravirt, this is coupled with an exit in switch_to to
1987 * combine the page table reload and the switch backend into
1988 * one hypercall.
1989 */
224101ed 1990 arch_start_context_switch(prev);
9226d125 1991
31915ab4 1992 if (!mm) {
1da177e4
LT
1993 next->active_mm = oldmm;
1994 atomic_inc(&oldmm->mm_count);
1995 enter_lazy_tlb(oldmm, next);
1996 } else
1997 switch_mm(oldmm, mm, next);
1998
31915ab4 1999 if (!prev->mm) {
1da177e4 2000 prev->active_mm = NULL;
1da177e4
LT
2001 rq->prev_mm = oldmm;
2002 }
3a5f5e48
IM
2003 /*
2004 * Since the runqueue lock will be released by the next
2005 * task (which is an invalid locking op but in the case
2006 * of the scheduler it's an obvious special-case), so we
2007 * do an early lockdep release here:
2008 */
2009#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2010 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2011#endif
1da177e4 2012
91d1aa43 2013 context_tracking_task_switch(prev, next);
1da177e4
LT
2014 /* Here we just switch the register state and the stack. */
2015 switch_to(prev, next, prev);
2016
dd41f596
IM
2017 barrier();
2018 /*
2019 * this_rq must be evaluated again because prev may have moved
2020 * CPUs since it called schedule(), thus the 'rq' on its stack
2021 * frame will be invalid.
2022 */
2023 finish_task_switch(this_rq(), prev);
1da177e4
LT
2024}
2025
2026/*
1c3e8264 2027 * nr_running and nr_context_switches:
1da177e4
LT
2028 *
2029 * externally visible scheduler statistics: current number of runnable
1c3e8264 2030 * threads, total number of context switches performed since bootup.
1da177e4
LT
2031 */
2032unsigned long nr_running(void)
2033{
2034 unsigned long i, sum = 0;
2035
2036 for_each_online_cpu(i)
2037 sum += cpu_rq(i)->nr_running;
2038
2039 return sum;
f711f609 2040}
1da177e4 2041
1da177e4 2042unsigned long long nr_context_switches(void)
46cb4b7c 2043{
cc94abfc
SR
2044 int i;
2045 unsigned long long sum = 0;
46cb4b7c 2046
0a945022 2047 for_each_possible_cpu(i)
1da177e4 2048 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2049
1da177e4
LT
2050 return sum;
2051}
483b4ee6 2052
1da177e4
LT
2053unsigned long nr_iowait(void)
2054{
2055 unsigned long i, sum = 0;
483b4ee6 2056
0a945022 2057 for_each_possible_cpu(i)
1da177e4 2058 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2059
1da177e4
LT
2060 return sum;
2061}
483b4ee6 2062
8c215bd3 2063unsigned long nr_iowait_cpu(int cpu)
69d25870 2064{
8c215bd3 2065 struct rq *this = cpu_rq(cpu);
69d25870
AV
2066 return atomic_read(&this->nr_iowait);
2067}
46cb4b7c 2068
dd41f596 2069#ifdef CONFIG_SMP
8a0be9ef 2070
46cb4b7c 2071/*
38022906
PZ
2072 * sched_exec - execve() is a valuable balancing opportunity, because at
2073 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2074 */
38022906 2075void sched_exec(void)
46cb4b7c 2076{
38022906 2077 struct task_struct *p = current;
1da177e4 2078 unsigned long flags;
0017d735 2079 int dest_cpu;
46cb4b7c 2080
8f42ced9 2081 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2082 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2083 if (dest_cpu == smp_processor_id())
2084 goto unlock;
38022906 2085
8f42ced9 2086 if (likely(cpu_active(dest_cpu))) {
969c7921 2087 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2088
8f42ced9
PZ
2089 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2090 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2091 return;
2092 }
0017d735 2093unlock:
8f42ced9 2094 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2095}
dd41f596 2096
1da177e4
LT
2097#endif
2098
1da177e4 2099DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2100DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2101
2102EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2103EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2104
2105/*
c5f8d995 2106 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2107 * @p in case that task is currently running.
c5f8d995
HS
2108 *
2109 * Called with task_rq_lock() held on @rq.
1da177e4 2110 */
c5f8d995
HS
2111static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2112{
2113 u64 ns = 0;
2114
2115 if (task_current(rq, p)) {
2116 update_rq_clock(rq);
78becc27 2117 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2118 if ((s64)ns < 0)
2119 ns = 0;
2120 }
2121
2122 return ns;
2123}
2124
bb34d92f 2125unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2126{
1da177e4 2127 unsigned long flags;
41b86e9c 2128 struct rq *rq;
bb34d92f 2129 u64 ns = 0;
48f24c4d 2130
41b86e9c 2131 rq = task_rq_lock(p, &flags);
c5f8d995 2132 ns = do_task_delta_exec(p, rq);
0122ec5b 2133 task_rq_unlock(rq, p, &flags);
1508487e 2134
c5f8d995
HS
2135 return ns;
2136}
f06febc9 2137
c5f8d995
HS
2138/*
2139 * Return accounted runtime for the task.
2140 * In case the task is currently running, return the runtime plus current's
2141 * pending runtime that have not been accounted yet.
2142 */
2143unsigned long long task_sched_runtime(struct task_struct *p)
2144{
2145 unsigned long flags;
2146 struct rq *rq;
2147 u64 ns = 0;
2148
2149 rq = task_rq_lock(p, &flags);
2150 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2151 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2152
2153 return ns;
2154}
48f24c4d 2155
7835b98b
CL
2156/*
2157 * This function gets called by the timer code, with HZ frequency.
2158 * We call it with interrupts disabled.
7835b98b
CL
2159 */
2160void scheduler_tick(void)
2161{
7835b98b
CL
2162 int cpu = smp_processor_id();
2163 struct rq *rq = cpu_rq(cpu);
dd41f596 2164 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2165
2166 sched_clock_tick();
dd41f596 2167
05fa785c 2168 raw_spin_lock(&rq->lock);
3e51f33f 2169 update_rq_clock(rq);
fdf3e95d 2170 update_cpu_load_active(rq);
fa85ae24 2171 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2172 raw_spin_unlock(&rq->lock);
7835b98b 2173
e9d2b064 2174 perf_event_task_tick();
e220d2dc 2175
e418e1c2 2176#ifdef CONFIG_SMP
6eb57e0d 2177 rq->idle_balance = idle_cpu(cpu);
dd41f596 2178 trigger_load_balance(rq, cpu);
e418e1c2 2179#endif
265f22a9 2180 rq_last_tick_reset(rq);
1da177e4
LT
2181}
2182
265f22a9
FW
2183#ifdef CONFIG_NO_HZ_FULL
2184/**
2185 * scheduler_tick_max_deferment
2186 *
2187 * Keep at least one tick per second when a single
2188 * active task is running because the scheduler doesn't
2189 * yet completely support full dynticks environment.
2190 *
2191 * This makes sure that uptime, CFS vruntime, load
2192 * balancing, etc... continue to move forward, even
2193 * with a very low granularity.
2194 */
2195u64 scheduler_tick_max_deferment(void)
2196{
2197 struct rq *rq = this_rq();
2198 unsigned long next, now = ACCESS_ONCE(jiffies);
2199
2200 next = rq->last_sched_tick + HZ;
2201
2202 if (time_before_eq(next, now))
2203 return 0;
2204
2205 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2206}
265f22a9 2207#endif
1da177e4 2208
132380a0 2209notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2210{
2211 if (in_lock_functions(addr)) {
2212 addr = CALLER_ADDR2;
2213 if (in_lock_functions(addr))
2214 addr = CALLER_ADDR3;
2215 }
2216 return addr;
2217}
1da177e4 2218
7e49fcce
SR
2219#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2220 defined(CONFIG_PREEMPT_TRACER))
2221
43627582 2222void __kprobes add_preempt_count(int val)
1da177e4 2223{
6cd8a4bb 2224#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2225 /*
2226 * Underflow?
2227 */
9a11b49a
IM
2228 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2229 return;
6cd8a4bb 2230#endif
1da177e4 2231 preempt_count() += val;
6cd8a4bb 2232#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2233 /*
2234 * Spinlock count overflowing soon?
2235 */
33859f7f
MOS
2236 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2237 PREEMPT_MASK - 10);
6cd8a4bb
SR
2238#endif
2239 if (preempt_count() == val)
2240 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2241}
2242EXPORT_SYMBOL(add_preempt_count);
2243
43627582 2244void __kprobes sub_preempt_count(int val)
1da177e4 2245{
6cd8a4bb 2246#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2247 /*
2248 * Underflow?
2249 */
01e3eb82 2250 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2251 return;
1da177e4
LT
2252 /*
2253 * Is the spinlock portion underflowing?
2254 */
9a11b49a
IM
2255 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2256 !(preempt_count() & PREEMPT_MASK)))
2257 return;
6cd8a4bb 2258#endif
9a11b49a 2259
6cd8a4bb
SR
2260 if (preempt_count() == val)
2261 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2262 preempt_count() -= val;
2263}
2264EXPORT_SYMBOL(sub_preempt_count);
2265
2266#endif
2267
2268/*
dd41f596 2269 * Print scheduling while atomic bug:
1da177e4 2270 */
dd41f596 2271static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2272{
664dfa65
DJ
2273 if (oops_in_progress)
2274 return;
2275
3df0fc5b
PZ
2276 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2277 prev->comm, prev->pid, preempt_count());
838225b4 2278
dd41f596 2279 debug_show_held_locks(prev);
e21f5b15 2280 print_modules();
dd41f596
IM
2281 if (irqs_disabled())
2282 print_irqtrace_events(prev);
6135fc1e 2283 dump_stack();
373d4d09 2284 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2285}
1da177e4 2286
dd41f596
IM
2287/*
2288 * Various schedule()-time debugging checks and statistics:
2289 */
2290static inline void schedule_debug(struct task_struct *prev)
2291{
1da177e4 2292 /*
41a2d6cf 2293 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2294 * schedule() atomically, we ignore that path for now.
2295 * Otherwise, whine if we are scheduling when we should not be.
2296 */
3f33a7ce 2297 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2298 __schedule_bug(prev);
b3fbab05 2299 rcu_sleep_check();
dd41f596 2300
1da177e4
LT
2301 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2302
2d72376b 2303 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2304}
2305
6cecd084 2306static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2307{
61eadef6 2308 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2309 update_rq_clock(rq);
6cecd084 2310 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2311}
2312
dd41f596
IM
2313/*
2314 * Pick up the highest-prio task:
2315 */
2316static inline struct task_struct *
b67802ea 2317pick_next_task(struct rq *rq)
dd41f596 2318{
5522d5d5 2319 const struct sched_class *class;
dd41f596 2320 struct task_struct *p;
1da177e4
LT
2321
2322 /*
dd41f596
IM
2323 * Optimization: we know that if all tasks are in
2324 * the fair class we can call that function directly:
1da177e4 2325 */
953bfcd1 2326 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2327 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2328 if (likely(p))
2329 return p;
1da177e4
LT
2330 }
2331
34f971f6 2332 for_each_class(class) {
fb8d4724 2333 p = class->pick_next_task(rq);
dd41f596
IM
2334 if (p)
2335 return p;
dd41f596 2336 }
34f971f6
PZ
2337
2338 BUG(); /* the idle class will always have a runnable task */
dd41f596 2339}
1da177e4 2340
dd41f596 2341/*
c259e01a 2342 * __schedule() is the main scheduler function.
edde96ea
PE
2343 *
2344 * The main means of driving the scheduler and thus entering this function are:
2345 *
2346 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2347 *
2348 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2349 * paths. For example, see arch/x86/entry_64.S.
2350 *
2351 * To drive preemption between tasks, the scheduler sets the flag in timer
2352 * interrupt handler scheduler_tick().
2353 *
2354 * 3. Wakeups don't really cause entry into schedule(). They add a
2355 * task to the run-queue and that's it.
2356 *
2357 * Now, if the new task added to the run-queue preempts the current
2358 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2359 * called on the nearest possible occasion:
2360 *
2361 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2362 *
2363 * - in syscall or exception context, at the next outmost
2364 * preempt_enable(). (this might be as soon as the wake_up()'s
2365 * spin_unlock()!)
2366 *
2367 * - in IRQ context, return from interrupt-handler to
2368 * preemptible context
2369 *
2370 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2371 * then at the next:
2372 *
2373 * - cond_resched() call
2374 * - explicit schedule() call
2375 * - return from syscall or exception to user-space
2376 * - return from interrupt-handler to user-space
dd41f596 2377 */
c259e01a 2378static void __sched __schedule(void)
dd41f596
IM
2379{
2380 struct task_struct *prev, *next;
67ca7bde 2381 unsigned long *switch_count;
dd41f596 2382 struct rq *rq;
31656519 2383 int cpu;
dd41f596 2384
ff743345
PZ
2385need_resched:
2386 preempt_disable();
dd41f596
IM
2387 cpu = smp_processor_id();
2388 rq = cpu_rq(cpu);
25502a6c 2389 rcu_note_context_switch(cpu);
dd41f596 2390 prev = rq->curr;
dd41f596 2391
dd41f596 2392 schedule_debug(prev);
1da177e4 2393
31656519 2394 if (sched_feat(HRTICK))
f333fdc9 2395 hrtick_clear(rq);
8f4d37ec 2396
05fa785c 2397 raw_spin_lock_irq(&rq->lock);
1da177e4 2398
246d86b5 2399 switch_count = &prev->nivcsw;
1da177e4 2400 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2401 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2402 prev->state = TASK_RUNNING;
21aa9af0 2403 } else {
2acca55e
PZ
2404 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2405 prev->on_rq = 0;
2406
21aa9af0 2407 /*
2acca55e
PZ
2408 * If a worker went to sleep, notify and ask workqueue
2409 * whether it wants to wake up a task to maintain
2410 * concurrency.
21aa9af0
TH
2411 */
2412 if (prev->flags & PF_WQ_WORKER) {
2413 struct task_struct *to_wakeup;
2414
2415 to_wakeup = wq_worker_sleeping(prev, cpu);
2416 if (to_wakeup)
2417 try_to_wake_up_local(to_wakeup);
2418 }
21aa9af0 2419 }
dd41f596 2420 switch_count = &prev->nvcsw;
1da177e4
LT
2421 }
2422
3f029d3c 2423 pre_schedule(rq, prev);
f65eda4f 2424
dd41f596 2425 if (unlikely(!rq->nr_running))
1da177e4 2426 idle_balance(cpu, rq);
1da177e4 2427
df1c99d4 2428 put_prev_task(rq, prev);
b67802ea 2429 next = pick_next_task(rq);
f26f9aff
MG
2430 clear_tsk_need_resched(prev);
2431 rq->skip_clock_update = 0;
1da177e4 2432
1da177e4 2433 if (likely(prev != next)) {
1da177e4
LT
2434 rq->nr_switches++;
2435 rq->curr = next;
2436 ++*switch_count;
2437
dd41f596 2438 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2439 /*
246d86b5
ON
2440 * The context switch have flipped the stack from under us
2441 * and restored the local variables which were saved when
2442 * this task called schedule() in the past. prev == current
2443 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2444 */
2445 cpu = smp_processor_id();
2446 rq = cpu_rq(cpu);
1da177e4 2447 } else
05fa785c 2448 raw_spin_unlock_irq(&rq->lock);
1da177e4 2449
3f029d3c 2450 post_schedule(rq);
1da177e4 2451
ba74c144 2452 sched_preempt_enable_no_resched();
ff743345 2453 if (need_resched())
1da177e4
LT
2454 goto need_resched;
2455}
c259e01a 2456
9c40cef2
TG
2457static inline void sched_submit_work(struct task_struct *tsk)
2458{
3c7d5184 2459 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2460 return;
2461 /*
2462 * If we are going to sleep and we have plugged IO queued,
2463 * make sure to submit it to avoid deadlocks.
2464 */
2465 if (blk_needs_flush_plug(tsk))
2466 blk_schedule_flush_plug(tsk);
2467}
2468
6ebbe7a0 2469asmlinkage void __sched schedule(void)
c259e01a 2470{
9c40cef2
TG
2471 struct task_struct *tsk = current;
2472
2473 sched_submit_work(tsk);
c259e01a
TG
2474 __schedule();
2475}
1da177e4
LT
2476EXPORT_SYMBOL(schedule);
2477
91d1aa43 2478#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2479asmlinkage void __sched schedule_user(void)
2480{
2481 /*
2482 * If we come here after a random call to set_need_resched(),
2483 * or we have been woken up remotely but the IPI has not yet arrived,
2484 * we haven't yet exited the RCU idle mode. Do it here manually until
2485 * we find a better solution.
2486 */
91d1aa43 2487 user_exit();
20ab65e3 2488 schedule();
91d1aa43 2489 user_enter();
20ab65e3
FW
2490}
2491#endif
2492
c5491ea7
TG
2493/**
2494 * schedule_preempt_disabled - called with preemption disabled
2495 *
2496 * Returns with preemption disabled. Note: preempt_count must be 1
2497 */
2498void __sched schedule_preempt_disabled(void)
2499{
ba74c144 2500 sched_preempt_enable_no_resched();
c5491ea7
TG
2501 schedule();
2502 preempt_disable();
2503}
2504
1da177e4
LT
2505#ifdef CONFIG_PREEMPT
2506/*
2ed6e34f 2507 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2508 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2509 * occur there and call schedule directly.
2510 */
d1f74e20 2511asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
2512{
2513 struct thread_info *ti = current_thread_info();
6478d880 2514
1da177e4
LT
2515 /*
2516 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2517 * we do not want to preempt the current task. Just return..
1da177e4 2518 */
beed33a8 2519 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
2520 return;
2521
3a5c359a 2522 do {
d1f74e20 2523 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 2524 __schedule();
d1f74e20 2525 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 2526
3a5c359a
AK
2527 /*
2528 * Check again in case we missed a preemption opportunity
2529 * between schedule and now.
2530 */
2531 barrier();
5ed0cec0 2532 } while (need_resched());
1da177e4 2533}
1da177e4
LT
2534EXPORT_SYMBOL(preempt_schedule);
2535
2536/*
2ed6e34f 2537 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2538 * off of irq context.
2539 * Note, that this is called and return with irqs disabled. This will
2540 * protect us against recursive calling from irq.
2541 */
2542asmlinkage void __sched preempt_schedule_irq(void)
2543{
2544 struct thread_info *ti = current_thread_info();
b22366cd 2545 enum ctx_state prev_state;
6478d880 2546
2ed6e34f 2547 /* Catch callers which need to be fixed */
1da177e4
LT
2548 BUG_ON(ti->preempt_count || !irqs_disabled());
2549
b22366cd
FW
2550 prev_state = exception_enter();
2551
3a5c359a
AK
2552 do {
2553 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 2554 local_irq_enable();
c259e01a 2555 __schedule();
3a5c359a 2556 local_irq_disable();
3a5c359a 2557 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 2558
3a5c359a
AK
2559 /*
2560 * Check again in case we missed a preemption opportunity
2561 * between schedule and now.
2562 */
2563 barrier();
5ed0cec0 2564 } while (need_resched());
b22366cd
FW
2565
2566 exception_exit(prev_state);
1da177e4
LT
2567}
2568
2569#endif /* CONFIG_PREEMPT */
2570
63859d4f 2571int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2572 void *key)
1da177e4 2573{
63859d4f 2574 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2575}
1da177e4
LT
2576EXPORT_SYMBOL(default_wake_function);
2577
2578/*
41a2d6cf
IM
2579 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2580 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2581 * number) then we wake all the non-exclusive tasks and one exclusive task.
2582 *
2583 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2584 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2585 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2586 */
78ddb08f 2587static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2588 int nr_exclusive, int wake_flags, void *key)
1da177e4 2589{
2e45874c 2590 wait_queue_t *curr, *next;
1da177e4 2591
2e45874c 2592 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2593 unsigned flags = curr->flags;
2594
63859d4f 2595 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2596 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2597 break;
2598 }
2599}
2600
2601/**
2602 * __wake_up - wake up threads blocked on a waitqueue.
2603 * @q: the waitqueue
2604 * @mode: which threads
2605 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2606 * @key: is directly passed to the wakeup function
50fa610a
DH
2607 *
2608 * It may be assumed that this function implies a write memory barrier before
2609 * changing the task state if and only if any tasks are woken up.
1da177e4 2610 */
7ad5b3a5 2611void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2612 int nr_exclusive, void *key)
1da177e4
LT
2613{
2614 unsigned long flags;
2615
2616 spin_lock_irqsave(&q->lock, flags);
2617 __wake_up_common(q, mode, nr_exclusive, 0, key);
2618 spin_unlock_irqrestore(&q->lock, flags);
2619}
1da177e4
LT
2620EXPORT_SYMBOL(__wake_up);
2621
2622/*
2623 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2624 */
63b20011 2625void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2626{
63b20011 2627 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2628}
22c43c81 2629EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2630
4ede816a
DL
2631void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2632{
2633 __wake_up_common(q, mode, 1, 0, key);
2634}
bf294b41 2635EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2636
1da177e4 2637/**
4ede816a 2638 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2639 * @q: the waitqueue
2640 * @mode: which threads
2641 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2642 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2643 *
2644 * The sync wakeup differs that the waker knows that it will schedule
2645 * away soon, so while the target thread will be woken up, it will not
2646 * be migrated to another CPU - ie. the two threads are 'synchronized'
2647 * with each other. This can prevent needless bouncing between CPUs.
2648 *
2649 * On UP it can prevent extra preemption.
50fa610a
DH
2650 *
2651 * It may be assumed that this function implies a write memory barrier before
2652 * changing the task state if and only if any tasks are woken up.
1da177e4 2653 */
4ede816a
DL
2654void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2655 int nr_exclusive, void *key)
1da177e4
LT
2656{
2657 unsigned long flags;
7d478721 2658 int wake_flags = WF_SYNC;
1da177e4
LT
2659
2660 if (unlikely(!q))
2661 return;
2662
2663 if (unlikely(!nr_exclusive))
7d478721 2664 wake_flags = 0;
1da177e4
LT
2665
2666 spin_lock_irqsave(&q->lock, flags);
7d478721 2667 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2668 spin_unlock_irqrestore(&q->lock, flags);
2669}
4ede816a
DL
2670EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2671
2672/*
2673 * __wake_up_sync - see __wake_up_sync_key()
2674 */
2675void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2676{
2677 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2678}
1da177e4
LT
2679EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2680
65eb3dc6
KD
2681/**
2682 * complete: - signals a single thread waiting on this completion
2683 * @x: holds the state of this particular completion
2684 *
2685 * This will wake up a single thread waiting on this completion. Threads will be
2686 * awakened in the same order in which they were queued.
2687 *
2688 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2689 *
2690 * It may be assumed that this function implies a write memory barrier before
2691 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2692 */
b15136e9 2693void complete(struct completion *x)
1da177e4
LT
2694{
2695 unsigned long flags;
2696
2697 spin_lock_irqsave(&x->wait.lock, flags);
2698 x->done++;
d9514f6c 2699 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2700 spin_unlock_irqrestore(&x->wait.lock, flags);
2701}
2702EXPORT_SYMBOL(complete);
2703
65eb3dc6
KD
2704/**
2705 * complete_all: - signals all threads waiting on this completion
2706 * @x: holds the state of this particular completion
2707 *
2708 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2709 *
2710 * It may be assumed that this function implies a write memory barrier before
2711 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2712 */
b15136e9 2713void complete_all(struct completion *x)
1da177e4
LT
2714{
2715 unsigned long flags;
2716
2717 spin_lock_irqsave(&x->wait.lock, flags);
2718 x->done += UINT_MAX/2;
d9514f6c 2719 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2720 spin_unlock_irqrestore(&x->wait.lock, flags);
2721}
2722EXPORT_SYMBOL(complete_all);
2723
8cbbe86d 2724static inline long __sched
686855f5
VD
2725do_wait_for_common(struct completion *x,
2726 long (*action)(long), long timeout, int state)
1da177e4 2727{
1da177e4
LT
2728 if (!x->done) {
2729 DECLARE_WAITQUEUE(wait, current);
2730
a93d2f17 2731 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2732 do {
94d3d824 2733 if (signal_pending_state(state, current)) {
ea71a546
ON
2734 timeout = -ERESTARTSYS;
2735 break;
8cbbe86d
AK
2736 }
2737 __set_current_state(state);
1da177e4 2738 spin_unlock_irq(&x->wait.lock);
686855f5 2739 timeout = action(timeout);
1da177e4 2740 spin_lock_irq(&x->wait.lock);
ea71a546 2741 } while (!x->done && timeout);
1da177e4 2742 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2743 if (!x->done)
2744 return timeout;
1da177e4
LT
2745 }
2746 x->done--;
ea71a546 2747 return timeout ?: 1;
1da177e4 2748}
1da177e4 2749
686855f5
VD
2750static inline long __sched
2751__wait_for_common(struct completion *x,
2752 long (*action)(long), long timeout, int state)
1da177e4 2753{
1da177e4
LT
2754 might_sleep();
2755
2756 spin_lock_irq(&x->wait.lock);
686855f5 2757 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2758 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2759 return timeout;
2760}
1da177e4 2761
686855f5
VD
2762static long __sched
2763wait_for_common(struct completion *x, long timeout, int state)
2764{
2765 return __wait_for_common(x, schedule_timeout, timeout, state);
2766}
2767
2768static long __sched
2769wait_for_common_io(struct completion *x, long timeout, int state)
2770{
2771 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2772}
2773
65eb3dc6
KD
2774/**
2775 * wait_for_completion: - waits for completion of a task
2776 * @x: holds the state of this particular completion
2777 *
2778 * This waits to be signaled for completion of a specific task. It is NOT
2779 * interruptible and there is no timeout.
2780 *
2781 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2782 * and interrupt capability. Also see complete().
2783 */
b15136e9 2784void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2785{
2786 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2787}
8cbbe86d 2788EXPORT_SYMBOL(wait_for_completion);
1da177e4 2789
65eb3dc6
KD
2790/**
2791 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2792 * @x: holds the state of this particular completion
2793 * @timeout: timeout value in jiffies
2794 *
2795 * This waits for either a completion of a specific task to be signaled or for a
2796 * specified timeout to expire. The timeout is in jiffies. It is not
2797 * interruptible.
c6dc7f05
BF
2798 *
2799 * The return value is 0 if timed out, and positive (at least 1, or number of
2800 * jiffies left till timeout) if completed.
65eb3dc6 2801 */
b15136e9 2802unsigned long __sched
8cbbe86d 2803wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2804{
8cbbe86d 2805 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2806}
8cbbe86d 2807EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2808
686855f5
VD
2809/**
2810 * wait_for_completion_io: - waits for completion of a task
2811 * @x: holds the state of this particular completion
2812 *
2813 * This waits to be signaled for completion of a specific task. It is NOT
2814 * interruptible and there is no timeout. The caller is accounted as waiting
2815 * for IO.
2816 */
2817void __sched wait_for_completion_io(struct completion *x)
2818{
2819 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2820}
2821EXPORT_SYMBOL(wait_for_completion_io);
2822
2823/**
2824 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2825 * @x: holds the state of this particular completion
2826 * @timeout: timeout value in jiffies
2827 *
2828 * This waits for either a completion of a specific task to be signaled or for a
2829 * specified timeout to expire. The timeout is in jiffies. It is not
2830 * interruptible. The caller is accounted as waiting for IO.
2831 *
2832 * The return value is 0 if timed out, and positive (at least 1, or number of
2833 * jiffies left till timeout) if completed.
2834 */
2835unsigned long __sched
2836wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2837{
2838 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2839}
2840EXPORT_SYMBOL(wait_for_completion_io_timeout);
2841
65eb3dc6
KD
2842/**
2843 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2844 * @x: holds the state of this particular completion
2845 *
2846 * This waits for completion of a specific task to be signaled. It is
2847 * interruptible.
c6dc7f05
BF
2848 *
2849 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2850 */
8cbbe86d 2851int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2852{
51e97990
AK
2853 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2854 if (t == -ERESTARTSYS)
2855 return t;
2856 return 0;
0fec171c 2857}
8cbbe86d 2858EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2859
65eb3dc6
KD
2860/**
2861 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2862 * @x: holds the state of this particular completion
2863 * @timeout: timeout value in jiffies
2864 *
2865 * This waits for either a completion of a specific task to be signaled or for a
2866 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
2867 *
2868 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2869 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 2870 */
6bf41237 2871long __sched
8cbbe86d
AK
2872wait_for_completion_interruptible_timeout(struct completion *x,
2873 unsigned long timeout)
0fec171c 2874{
8cbbe86d 2875 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2876}
8cbbe86d 2877EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2878
65eb3dc6
KD
2879/**
2880 * wait_for_completion_killable: - waits for completion of a task (killable)
2881 * @x: holds the state of this particular completion
2882 *
2883 * This waits to be signaled for completion of a specific task. It can be
2884 * interrupted by a kill signal.
c6dc7f05
BF
2885 *
2886 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2887 */
009e577e
MW
2888int __sched wait_for_completion_killable(struct completion *x)
2889{
2890 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2891 if (t == -ERESTARTSYS)
2892 return t;
2893 return 0;
2894}
2895EXPORT_SYMBOL(wait_for_completion_killable);
2896
0aa12fb4
SW
2897/**
2898 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2899 * @x: holds the state of this particular completion
2900 * @timeout: timeout value in jiffies
2901 *
2902 * This waits for either a completion of a specific task to be
2903 * signaled or for a specified timeout to expire. It can be
2904 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
2905 *
2906 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2907 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 2908 */
6bf41237 2909long __sched
0aa12fb4
SW
2910wait_for_completion_killable_timeout(struct completion *x,
2911 unsigned long timeout)
2912{
2913 return wait_for_common(x, timeout, TASK_KILLABLE);
2914}
2915EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2916
be4de352
DC
2917/**
2918 * try_wait_for_completion - try to decrement a completion without blocking
2919 * @x: completion structure
2920 *
2921 * Returns: 0 if a decrement cannot be done without blocking
2922 * 1 if a decrement succeeded.
2923 *
2924 * If a completion is being used as a counting completion,
2925 * attempt to decrement the counter without blocking. This
2926 * enables us to avoid waiting if the resource the completion
2927 * is protecting is not available.
2928 */
2929bool try_wait_for_completion(struct completion *x)
2930{
7539a3b3 2931 unsigned long flags;
be4de352
DC
2932 int ret = 1;
2933
7539a3b3 2934 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2935 if (!x->done)
2936 ret = 0;
2937 else
2938 x->done--;
7539a3b3 2939 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2940 return ret;
2941}
2942EXPORT_SYMBOL(try_wait_for_completion);
2943
2944/**
2945 * completion_done - Test to see if a completion has any waiters
2946 * @x: completion structure
2947 *
2948 * Returns: 0 if there are waiters (wait_for_completion() in progress)
2949 * 1 if there are no waiters.
2950 *
2951 */
2952bool completion_done(struct completion *x)
2953{
7539a3b3 2954 unsigned long flags;
be4de352
DC
2955 int ret = 1;
2956
7539a3b3 2957 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2958 if (!x->done)
2959 ret = 0;
7539a3b3 2960 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2961 return ret;
2962}
2963EXPORT_SYMBOL(completion_done);
2964
8cbbe86d
AK
2965static long __sched
2966sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2967{
0fec171c
IM
2968 unsigned long flags;
2969 wait_queue_t wait;
2970
2971 init_waitqueue_entry(&wait, current);
1da177e4 2972
8cbbe86d 2973 __set_current_state(state);
1da177e4 2974
8cbbe86d
AK
2975 spin_lock_irqsave(&q->lock, flags);
2976 __add_wait_queue(q, &wait);
2977 spin_unlock(&q->lock);
2978 timeout = schedule_timeout(timeout);
2979 spin_lock_irq(&q->lock);
2980 __remove_wait_queue(q, &wait);
2981 spin_unlock_irqrestore(&q->lock, flags);
2982
2983 return timeout;
2984}
2985
2986void __sched interruptible_sleep_on(wait_queue_head_t *q)
2987{
2988 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2989}
1da177e4
LT
2990EXPORT_SYMBOL(interruptible_sleep_on);
2991
0fec171c 2992long __sched
95cdf3b7 2993interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2994{
8cbbe86d 2995 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2996}
1da177e4
LT
2997EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2998
0fec171c 2999void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3000{
8cbbe86d 3001 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3002}
1da177e4
LT
3003EXPORT_SYMBOL(sleep_on);
3004
0fec171c 3005long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3006{
8cbbe86d 3007 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3008}
1da177e4
LT
3009EXPORT_SYMBOL(sleep_on_timeout);
3010
b29739f9
IM
3011#ifdef CONFIG_RT_MUTEXES
3012
3013/*
3014 * rt_mutex_setprio - set the current priority of a task
3015 * @p: task
3016 * @prio: prio value (kernel-internal form)
3017 *
3018 * This function changes the 'effective' priority of a task. It does
3019 * not touch ->normal_prio like __setscheduler().
3020 *
3021 * Used by the rt_mutex code to implement priority inheritance logic.
3022 */
36c8b586 3023void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3024{
83b699ed 3025 int oldprio, on_rq, running;
70b97a7f 3026 struct rq *rq;
83ab0aa0 3027 const struct sched_class *prev_class;
b29739f9
IM
3028
3029 BUG_ON(prio < 0 || prio > MAX_PRIO);
3030
0122ec5b 3031 rq = __task_rq_lock(p);
b29739f9 3032
1c4dd99b
TG
3033 /*
3034 * Idle task boosting is a nono in general. There is one
3035 * exception, when PREEMPT_RT and NOHZ is active:
3036 *
3037 * The idle task calls get_next_timer_interrupt() and holds
3038 * the timer wheel base->lock on the CPU and another CPU wants
3039 * to access the timer (probably to cancel it). We can safely
3040 * ignore the boosting request, as the idle CPU runs this code
3041 * with interrupts disabled and will complete the lock
3042 * protected section without being interrupted. So there is no
3043 * real need to boost.
3044 */
3045 if (unlikely(p == rq->idle)) {
3046 WARN_ON(p != rq->curr);
3047 WARN_ON(p->pi_blocked_on);
3048 goto out_unlock;
3049 }
3050
a8027073 3051 trace_sched_pi_setprio(p, prio);
d5f9f942 3052 oldprio = p->prio;
83ab0aa0 3053 prev_class = p->sched_class;
fd2f4419 3054 on_rq = p->on_rq;
051a1d1a 3055 running = task_current(rq, p);
0e1f3483 3056 if (on_rq)
69be72c1 3057 dequeue_task(rq, p, 0);
0e1f3483
HS
3058 if (running)
3059 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3060
3061 if (rt_prio(prio))
3062 p->sched_class = &rt_sched_class;
3063 else
3064 p->sched_class = &fair_sched_class;
3065
b29739f9
IM
3066 p->prio = prio;
3067
0e1f3483
HS
3068 if (running)
3069 p->sched_class->set_curr_task(rq);
da7a735e 3070 if (on_rq)
371fd7e7 3071 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3072
da7a735e 3073 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3074out_unlock:
0122ec5b 3075 __task_rq_unlock(rq);
b29739f9 3076}
b29739f9 3077#endif
36c8b586 3078void set_user_nice(struct task_struct *p, long nice)
1da177e4 3079{
dd41f596 3080 int old_prio, delta, on_rq;
1da177e4 3081 unsigned long flags;
70b97a7f 3082 struct rq *rq;
1da177e4
LT
3083
3084 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3085 return;
3086 /*
3087 * We have to be careful, if called from sys_setpriority(),
3088 * the task might be in the middle of scheduling on another CPU.
3089 */
3090 rq = task_rq_lock(p, &flags);
3091 /*
3092 * The RT priorities are set via sched_setscheduler(), but we still
3093 * allow the 'normal' nice value to be set - but as expected
3094 * it wont have any effect on scheduling until the task is
dd41f596 3095 * SCHED_FIFO/SCHED_RR:
1da177e4 3096 */
e05606d3 3097 if (task_has_rt_policy(p)) {
1da177e4
LT
3098 p->static_prio = NICE_TO_PRIO(nice);
3099 goto out_unlock;
3100 }
fd2f4419 3101 on_rq = p->on_rq;
c09595f6 3102 if (on_rq)
69be72c1 3103 dequeue_task(rq, p, 0);
1da177e4 3104
1da177e4 3105 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3106 set_load_weight(p);
b29739f9
IM
3107 old_prio = p->prio;
3108 p->prio = effective_prio(p);
3109 delta = p->prio - old_prio;
1da177e4 3110
dd41f596 3111 if (on_rq) {
371fd7e7 3112 enqueue_task(rq, p, 0);
1da177e4 3113 /*
d5f9f942
AM
3114 * If the task increased its priority or is running and
3115 * lowered its priority, then reschedule its CPU:
1da177e4 3116 */
d5f9f942 3117 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3118 resched_task(rq->curr);
3119 }
3120out_unlock:
0122ec5b 3121 task_rq_unlock(rq, p, &flags);
1da177e4 3122}
1da177e4
LT
3123EXPORT_SYMBOL(set_user_nice);
3124
e43379f1
MM
3125/*
3126 * can_nice - check if a task can reduce its nice value
3127 * @p: task
3128 * @nice: nice value
3129 */
36c8b586 3130int can_nice(const struct task_struct *p, const int nice)
e43379f1 3131{
024f4747
MM
3132 /* convert nice value [19,-20] to rlimit style value [1,40] */
3133 int nice_rlim = 20 - nice;
48f24c4d 3134
78d7d407 3135 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3136 capable(CAP_SYS_NICE));
3137}
3138
1da177e4
LT
3139#ifdef __ARCH_WANT_SYS_NICE
3140
3141/*
3142 * sys_nice - change the priority of the current process.
3143 * @increment: priority increment
3144 *
3145 * sys_setpriority is a more generic, but much slower function that
3146 * does similar things.
3147 */
5add95d4 3148SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3149{
48f24c4d 3150 long nice, retval;
1da177e4
LT
3151
3152 /*
3153 * Setpriority might change our priority at the same moment.
3154 * We don't have to worry. Conceptually one call occurs first
3155 * and we have a single winner.
3156 */
e43379f1
MM
3157 if (increment < -40)
3158 increment = -40;
1da177e4
LT
3159 if (increment > 40)
3160 increment = 40;
3161
2b8f836f 3162 nice = TASK_NICE(current) + increment;
1da177e4
LT
3163 if (nice < -20)
3164 nice = -20;
3165 if (nice > 19)
3166 nice = 19;
3167
e43379f1
MM
3168 if (increment < 0 && !can_nice(current, nice))
3169 return -EPERM;
3170
1da177e4
LT
3171 retval = security_task_setnice(current, nice);
3172 if (retval)
3173 return retval;
3174
3175 set_user_nice(current, nice);
3176 return 0;
3177}
3178
3179#endif
3180
3181/**
3182 * task_prio - return the priority value of a given task.
3183 * @p: the task in question.
3184 *
3185 * This is the priority value as seen by users in /proc.
3186 * RT tasks are offset by -200. Normal tasks are centered
3187 * around 0, value goes from -16 to +15.
3188 */
36c8b586 3189int task_prio(const struct task_struct *p)
1da177e4
LT
3190{
3191 return p->prio - MAX_RT_PRIO;
3192}
3193
3194/**
3195 * task_nice - return the nice value of a given task.
3196 * @p: the task in question.
3197 */
36c8b586 3198int task_nice(const struct task_struct *p)
1da177e4
LT
3199{
3200 return TASK_NICE(p);
3201}
150d8bed 3202EXPORT_SYMBOL(task_nice);
1da177e4
LT
3203
3204/**
3205 * idle_cpu - is a given cpu idle currently?
3206 * @cpu: the processor in question.
3207 */
3208int idle_cpu(int cpu)
3209{
908a3283
TG
3210 struct rq *rq = cpu_rq(cpu);
3211
3212 if (rq->curr != rq->idle)
3213 return 0;
3214
3215 if (rq->nr_running)
3216 return 0;
3217
3218#ifdef CONFIG_SMP
3219 if (!llist_empty(&rq->wake_list))
3220 return 0;
3221#endif
3222
3223 return 1;
1da177e4
LT
3224}
3225
1da177e4
LT
3226/**
3227 * idle_task - return the idle task for a given cpu.
3228 * @cpu: the processor in question.
3229 */
36c8b586 3230struct task_struct *idle_task(int cpu)
1da177e4
LT
3231{
3232 return cpu_rq(cpu)->idle;
3233}
3234
3235/**
3236 * find_process_by_pid - find a process with a matching PID value.
3237 * @pid: the pid in question.
3238 */
a9957449 3239static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3240{
228ebcbe 3241 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3242}
3243
3244/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3245static void
3246__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3247{
1da177e4
LT
3248 p->policy = policy;
3249 p->rt_priority = prio;
b29739f9
IM
3250 p->normal_prio = normal_prio(p);
3251 /* we are holding p->pi_lock already */
3252 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3253 if (rt_prio(p->prio))
3254 p->sched_class = &rt_sched_class;
3255 else
3256 p->sched_class = &fair_sched_class;
2dd73a4f 3257 set_load_weight(p);
1da177e4
LT
3258}
3259
c69e8d9c
DH
3260/*
3261 * check the target process has a UID that matches the current process's
3262 */
3263static bool check_same_owner(struct task_struct *p)
3264{
3265 const struct cred *cred = current_cred(), *pcred;
3266 bool match;
3267
3268 rcu_read_lock();
3269 pcred = __task_cred(p);
9c806aa0
EB
3270 match = (uid_eq(cred->euid, pcred->euid) ||
3271 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3272 rcu_read_unlock();
3273 return match;
3274}
3275
961ccddd 3276static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3277 const struct sched_param *param, bool user)
1da177e4 3278{
83b699ed 3279 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3280 unsigned long flags;
83ab0aa0 3281 const struct sched_class *prev_class;
70b97a7f 3282 struct rq *rq;
ca94c442 3283 int reset_on_fork;
1da177e4 3284
66e5393a
SR
3285 /* may grab non-irq protected spin_locks */
3286 BUG_ON(in_interrupt());
1da177e4
LT
3287recheck:
3288 /* double check policy once rq lock held */
ca94c442
LP
3289 if (policy < 0) {
3290 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3291 policy = oldpolicy = p->policy;
ca94c442
LP
3292 } else {
3293 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3294 policy &= ~SCHED_RESET_ON_FORK;
3295
3296 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3297 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298 policy != SCHED_IDLE)
3299 return -EINVAL;
3300 }
3301
1da177e4
LT
3302 /*
3303 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3304 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3305 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3306 */
3307 if (param->sched_priority < 0 ||
95cdf3b7 3308 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3309 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3310 return -EINVAL;
e05606d3 3311 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3312 return -EINVAL;
3313
37e4ab3f
OC
3314 /*
3315 * Allow unprivileged RT tasks to decrease priority:
3316 */
961ccddd 3317 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3318 if (rt_policy(policy)) {
a44702e8
ON
3319 unsigned long rlim_rtprio =
3320 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3321
3322 /* can't set/change the rt policy */
3323 if (policy != p->policy && !rlim_rtprio)
3324 return -EPERM;
3325
3326 /* can't increase priority */
3327 if (param->sched_priority > p->rt_priority &&
3328 param->sched_priority > rlim_rtprio)
3329 return -EPERM;
3330 }
c02aa73b 3331
dd41f596 3332 /*
c02aa73b
DH
3333 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3334 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3335 */
c02aa73b
DH
3336 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3337 if (!can_nice(p, TASK_NICE(p)))
3338 return -EPERM;
3339 }
5fe1d75f 3340
37e4ab3f 3341 /* can't change other user's priorities */
c69e8d9c 3342 if (!check_same_owner(p))
37e4ab3f 3343 return -EPERM;
ca94c442
LP
3344
3345 /* Normal users shall not reset the sched_reset_on_fork flag */
3346 if (p->sched_reset_on_fork && !reset_on_fork)
3347 return -EPERM;
37e4ab3f 3348 }
1da177e4 3349
725aad24 3350 if (user) {
b0ae1981 3351 retval = security_task_setscheduler(p);
725aad24
JF
3352 if (retval)
3353 return retval;
3354 }
3355
b29739f9
IM
3356 /*
3357 * make sure no PI-waiters arrive (or leave) while we are
3358 * changing the priority of the task:
0122ec5b 3359 *
25985edc 3360 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3361 * runqueue lock must be held.
3362 */
0122ec5b 3363 rq = task_rq_lock(p, &flags);
dc61b1d6 3364
34f971f6
PZ
3365 /*
3366 * Changing the policy of the stop threads its a very bad idea
3367 */
3368 if (p == rq->stop) {
0122ec5b 3369 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3370 return -EINVAL;
3371 }
3372
a51e9198
DF
3373 /*
3374 * If not changing anything there's no need to proceed further:
3375 */
3376 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3377 param->sched_priority == p->rt_priority))) {
45afb173 3378 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3379 return 0;
3380 }
3381
dc61b1d6
PZ
3382#ifdef CONFIG_RT_GROUP_SCHED
3383 if (user) {
3384 /*
3385 * Do not allow realtime tasks into groups that have no runtime
3386 * assigned.
3387 */
3388 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3389 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3390 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3391 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3392 return -EPERM;
3393 }
3394 }
3395#endif
3396
1da177e4
LT
3397 /* recheck policy now with rq lock held */
3398 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3399 policy = oldpolicy = -1;
0122ec5b 3400 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3401 goto recheck;
3402 }
fd2f4419 3403 on_rq = p->on_rq;
051a1d1a 3404 running = task_current(rq, p);
0e1f3483 3405 if (on_rq)
4ca9b72b 3406 dequeue_task(rq, p, 0);
0e1f3483
HS
3407 if (running)
3408 p->sched_class->put_prev_task(rq, p);
f6b53205 3409
ca94c442
LP
3410 p->sched_reset_on_fork = reset_on_fork;
3411
1da177e4 3412 oldprio = p->prio;
83ab0aa0 3413 prev_class = p->sched_class;
dd41f596 3414 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3415
0e1f3483
HS
3416 if (running)
3417 p->sched_class->set_curr_task(rq);
da7a735e 3418 if (on_rq)
4ca9b72b 3419 enqueue_task(rq, p, 0);
cb469845 3420
da7a735e 3421 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3422 task_rq_unlock(rq, p, &flags);
b29739f9 3423
95e02ca9
TG
3424 rt_mutex_adjust_pi(p);
3425
1da177e4
LT
3426 return 0;
3427}
961ccddd
RR
3428
3429/**
3430 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3431 * @p: the task in question.
3432 * @policy: new policy.
3433 * @param: structure containing the new RT priority.
3434 *
3435 * NOTE that the task may be already dead.
3436 */
3437int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3438 const struct sched_param *param)
961ccddd
RR
3439{
3440 return __sched_setscheduler(p, policy, param, true);
3441}
1da177e4
LT
3442EXPORT_SYMBOL_GPL(sched_setscheduler);
3443
961ccddd
RR
3444/**
3445 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3446 * @p: the task in question.
3447 * @policy: new policy.
3448 * @param: structure containing the new RT priority.
3449 *
3450 * Just like sched_setscheduler, only don't bother checking if the
3451 * current context has permission. For example, this is needed in
3452 * stop_machine(): we create temporary high priority worker threads,
3453 * but our caller might not have that capability.
3454 */
3455int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3456 const struct sched_param *param)
961ccddd
RR
3457{
3458 return __sched_setscheduler(p, policy, param, false);
3459}
3460
95cdf3b7
IM
3461static int
3462do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3463{
1da177e4
LT
3464 struct sched_param lparam;
3465 struct task_struct *p;
36c8b586 3466 int retval;
1da177e4
LT
3467
3468 if (!param || pid < 0)
3469 return -EINVAL;
3470 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3471 return -EFAULT;
5fe1d75f
ON
3472
3473 rcu_read_lock();
3474 retval = -ESRCH;
1da177e4 3475 p = find_process_by_pid(pid);
5fe1d75f
ON
3476 if (p != NULL)
3477 retval = sched_setscheduler(p, policy, &lparam);
3478 rcu_read_unlock();
36c8b586 3479
1da177e4
LT
3480 return retval;
3481}
3482
3483/**
3484 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3485 * @pid: the pid in question.
3486 * @policy: new policy.
3487 * @param: structure containing the new RT priority.
3488 */
5add95d4
HC
3489SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3490 struct sched_param __user *, param)
1da177e4 3491{
c21761f1
JB
3492 /* negative values for policy are not valid */
3493 if (policy < 0)
3494 return -EINVAL;
3495
1da177e4
LT
3496 return do_sched_setscheduler(pid, policy, param);
3497}
3498
3499/**
3500 * sys_sched_setparam - set/change the RT priority of a thread
3501 * @pid: the pid in question.
3502 * @param: structure containing the new RT priority.
3503 */
5add95d4 3504SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3505{
3506 return do_sched_setscheduler(pid, -1, param);
3507}
3508
3509/**
3510 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3511 * @pid: the pid in question.
3512 */
5add95d4 3513SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3514{
36c8b586 3515 struct task_struct *p;
3a5c359a 3516 int retval;
1da177e4
LT
3517
3518 if (pid < 0)
3a5c359a 3519 return -EINVAL;
1da177e4
LT
3520
3521 retval = -ESRCH;
5fe85be0 3522 rcu_read_lock();
1da177e4
LT
3523 p = find_process_by_pid(pid);
3524 if (p) {
3525 retval = security_task_getscheduler(p);
3526 if (!retval)
ca94c442
LP
3527 retval = p->policy
3528 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3529 }
5fe85be0 3530 rcu_read_unlock();
1da177e4
LT
3531 return retval;
3532}
3533
3534/**
ca94c442 3535 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3536 * @pid: the pid in question.
3537 * @param: structure containing the RT priority.
3538 */
5add95d4 3539SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3540{
3541 struct sched_param lp;
36c8b586 3542 struct task_struct *p;
3a5c359a 3543 int retval;
1da177e4
LT
3544
3545 if (!param || pid < 0)
3a5c359a 3546 return -EINVAL;
1da177e4 3547
5fe85be0 3548 rcu_read_lock();
1da177e4
LT
3549 p = find_process_by_pid(pid);
3550 retval = -ESRCH;
3551 if (!p)
3552 goto out_unlock;
3553
3554 retval = security_task_getscheduler(p);
3555 if (retval)
3556 goto out_unlock;
3557
3558 lp.sched_priority = p->rt_priority;
5fe85be0 3559 rcu_read_unlock();
1da177e4
LT
3560
3561 /*
3562 * This one might sleep, we cannot do it with a spinlock held ...
3563 */
3564 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3565
1da177e4
LT
3566 return retval;
3567
3568out_unlock:
5fe85be0 3569 rcu_read_unlock();
1da177e4
LT
3570 return retval;
3571}
3572
96f874e2 3573long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3574{
5a16f3d3 3575 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3576 struct task_struct *p;
3577 int retval;
1da177e4 3578
95402b38 3579 get_online_cpus();
23f5d142 3580 rcu_read_lock();
1da177e4
LT
3581
3582 p = find_process_by_pid(pid);
3583 if (!p) {
23f5d142 3584 rcu_read_unlock();
95402b38 3585 put_online_cpus();
1da177e4
LT
3586 return -ESRCH;
3587 }
3588
23f5d142 3589 /* Prevent p going away */
1da177e4 3590 get_task_struct(p);
23f5d142 3591 rcu_read_unlock();
1da177e4 3592
14a40ffc
TH
3593 if (p->flags & PF_NO_SETAFFINITY) {
3594 retval = -EINVAL;
3595 goto out_put_task;
3596 }
5a16f3d3
RR
3597 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3598 retval = -ENOMEM;
3599 goto out_put_task;
3600 }
3601 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3602 retval = -ENOMEM;
3603 goto out_free_cpus_allowed;
3604 }
1da177e4 3605 retval = -EPERM;
4c44aaaf
EB
3606 if (!check_same_owner(p)) {
3607 rcu_read_lock();
3608 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3609 rcu_read_unlock();
3610 goto out_unlock;
3611 }
3612 rcu_read_unlock();
3613 }
1da177e4 3614
b0ae1981 3615 retval = security_task_setscheduler(p);
e7834f8f
DQ
3616 if (retval)
3617 goto out_unlock;
3618
5a16f3d3
RR
3619 cpuset_cpus_allowed(p, cpus_allowed);
3620 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3621again:
5a16f3d3 3622 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3623
8707d8b8 3624 if (!retval) {
5a16f3d3
RR
3625 cpuset_cpus_allowed(p, cpus_allowed);
3626 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3627 /*
3628 * We must have raced with a concurrent cpuset
3629 * update. Just reset the cpus_allowed to the
3630 * cpuset's cpus_allowed
3631 */
5a16f3d3 3632 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3633 goto again;
3634 }
3635 }
1da177e4 3636out_unlock:
5a16f3d3
RR
3637 free_cpumask_var(new_mask);
3638out_free_cpus_allowed:
3639 free_cpumask_var(cpus_allowed);
3640out_put_task:
1da177e4 3641 put_task_struct(p);
95402b38 3642 put_online_cpus();
1da177e4
LT
3643 return retval;
3644}
3645
3646static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3647 struct cpumask *new_mask)
1da177e4 3648{
96f874e2
RR
3649 if (len < cpumask_size())
3650 cpumask_clear(new_mask);
3651 else if (len > cpumask_size())
3652 len = cpumask_size();
3653
1da177e4
LT
3654 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3655}
3656
3657/**
3658 * sys_sched_setaffinity - set the cpu affinity of a process
3659 * @pid: pid of the process
3660 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3661 * @user_mask_ptr: user-space pointer to the new cpu mask
3662 */
5add95d4
HC
3663SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3664 unsigned long __user *, user_mask_ptr)
1da177e4 3665{
5a16f3d3 3666 cpumask_var_t new_mask;
1da177e4
LT
3667 int retval;
3668
5a16f3d3
RR
3669 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3670 return -ENOMEM;
1da177e4 3671
5a16f3d3
RR
3672 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3673 if (retval == 0)
3674 retval = sched_setaffinity(pid, new_mask);
3675 free_cpumask_var(new_mask);
3676 return retval;
1da177e4
LT
3677}
3678
96f874e2 3679long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3680{
36c8b586 3681 struct task_struct *p;
31605683 3682 unsigned long flags;
1da177e4 3683 int retval;
1da177e4 3684
95402b38 3685 get_online_cpus();
23f5d142 3686 rcu_read_lock();
1da177e4
LT
3687
3688 retval = -ESRCH;
3689 p = find_process_by_pid(pid);
3690 if (!p)
3691 goto out_unlock;
3692
e7834f8f
DQ
3693 retval = security_task_getscheduler(p);
3694 if (retval)
3695 goto out_unlock;
3696
013fdb80 3697 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3698 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3699 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3700
3701out_unlock:
23f5d142 3702 rcu_read_unlock();
95402b38 3703 put_online_cpus();
1da177e4 3704
9531b62f 3705 return retval;
1da177e4
LT
3706}
3707
3708/**
3709 * sys_sched_getaffinity - get the cpu affinity of a process
3710 * @pid: pid of the process
3711 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3712 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3713 */
5add95d4
HC
3714SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3715 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3716{
3717 int ret;
f17c8607 3718 cpumask_var_t mask;
1da177e4 3719
84fba5ec 3720 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3721 return -EINVAL;
3722 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3723 return -EINVAL;
3724
f17c8607
RR
3725 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3726 return -ENOMEM;
1da177e4 3727
f17c8607
RR
3728 ret = sched_getaffinity(pid, mask);
3729 if (ret == 0) {
8bc037fb 3730 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3731
3732 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3733 ret = -EFAULT;
3734 else
cd3d8031 3735 ret = retlen;
f17c8607
RR
3736 }
3737 free_cpumask_var(mask);
1da177e4 3738
f17c8607 3739 return ret;
1da177e4
LT
3740}
3741
3742/**
3743 * sys_sched_yield - yield the current processor to other threads.
3744 *
dd41f596
IM
3745 * This function yields the current CPU to other tasks. If there are no
3746 * other threads running on this CPU then this function will return.
1da177e4 3747 */
5add95d4 3748SYSCALL_DEFINE0(sched_yield)
1da177e4 3749{
70b97a7f 3750 struct rq *rq = this_rq_lock();
1da177e4 3751
2d72376b 3752 schedstat_inc(rq, yld_count);
4530d7ab 3753 current->sched_class->yield_task(rq);
1da177e4
LT
3754
3755 /*
3756 * Since we are going to call schedule() anyway, there's
3757 * no need to preempt or enable interrupts:
3758 */
3759 __release(rq->lock);
8a25d5de 3760 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3761 do_raw_spin_unlock(&rq->lock);
ba74c144 3762 sched_preempt_enable_no_resched();
1da177e4
LT
3763
3764 schedule();
3765
3766 return 0;
3767}
3768
d86ee480
PZ
3769static inline int should_resched(void)
3770{
3771 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3772}
3773
e7b38404 3774static void __cond_resched(void)
1da177e4 3775{
e7aaaa69 3776 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 3777 __schedule();
e7aaaa69 3778 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
3779}
3780
02b67cc3 3781int __sched _cond_resched(void)
1da177e4 3782{
d86ee480 3783 if (should_resched()) {
1da177e4
LT
3784 __cond_resched();
3785 return 1;
3786 }
3787 return 0;
3788}
02b67cc3 3789EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3790
3791/*
613afbf8 3792 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3793 * call schedule, and on return reacquire the lock.
3794 *
41a2d6cf 3795 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3796 * operations here to prevent schedule() from being called twice (once via
3797 * spin_unlock(), once by hand).
3798 */
613afbf8 3799int __cond_resched_lock(spinlock_t *lock)
1da177e4 3800{
d86ee480 3801 int resched = should_resched();
6df3cecb
JK
3802 int ret = 0;
3803
f607c668
PZ
3804 lockdep_assert_held(lock);
3805
95c354fe 3806 if (spin_needbreak(lock) || resched) {
1da177e4 3807 spin_unlock(lock);
d86ee480 3808 if (resched)
95c354fe
NP
3809 __cond_resched();
3810 else
3811 cpu_relax();
6df3cecb 3812 ret = 1;
1da177e4 3813 spin_lock(lock);
1da177e4 3814 }
6df3cecb 3815 return ret;
1da177e4 3816}
613afbf8 3817EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3818
613afbf8 3819int __sched __cond_resched_softirq(void)
1da177e4
LT
3820{
3821 BUG_ON(!in_softirq());
3822
d86ee480 3823 if (should_resched()) {
98d82567 3824 local_bh_enable();
1da177e4
LT
3825 __cond_resched();
3826 local_bh_disable();
3827 return 1;
3828 }
3829 return 0;
3830}
613afbf8 3831EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3832
1da177e4
LT
3833/**
3834 * yield - yield the current processor to other threads.
3835 *
8e3fabfd
PZ
3836 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3837 *
3838 * The scheduler is at all times free to pick the calling task as the most
3839 * eligible task to run, if removing the yield() call from your code breaks
3840 * it, its already broken.
3841 *
3842 * Typical broken usage is:
3843 *
3844 * while (!event)
3845 * yield();
3846 *
3847 * where one assumes that yield() will let 'the other' process run that will
3848 * make event true. If the current task is a SCHED_FIFO task that will never
3849 * happen. Never use yield() as a progress guarantee!!
3850 *
3851 * If you want to use yield() to wait for something, use wait_event().
3852 * If you want to use yield() to be 'nice' for others, use cond_resched().
3853 * If you still want to use yield(), do not!
1da177e4
LT
3854 */
3855void __sched yield(void)
3856{
3857 set_current_state(TASK_RUNNING);
3858 sys_sched_yield();
3859}
1da177e4
LT
3860EXPORT_SYMBOL(yield);
3861
d95f4122
MG
3862/**
3863 * yield_to - yield the current processor to another thread in
3864 * your thread group, or accelerate that thread toward the
3865 * processor it's on.
16addf95
RD
3866 * @p: target task
3867 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3868 *
3869 * It's the caller's job to ensure that the target task struct
3870 * can't go away on us before we can do any checks.
3871 *
7b270f60
PZ
3872 * Returns:
3873 * true (>0) if we indeed boosted the target task.
3874 * false (0) if we failed to boost the target.
3875 * -ESRCH if there's no task to yield to.
d95f4122
MG
3876 */
3877bool __sched yield_to(struct task_struct *p, bool preempt)
3878{
3879 struct task_struct *curr = current;
3880 struct rq *rq, *p_rq;
3881 unsigned long flags;
c3c18640 3882 int yielded = 0;
d95f4122
MG
3883
3884 local_irq_save(flags);
3885 rq = this_rq();
3886
3887again:
3888 p_rq = task_rq(p);
7b270f60
PZ
3889 /*
3890 * If we're the only runnable task on the rq and target rq also
3891 * has only one task, there's absolutely no point in yielding.
3892 */
3893 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3894 yielded = -ESRCH;
3895 goto out_irq;
3896 }
3897
d95f4122
MG
3898 double_rq_lock(rq, p_rq);
3899 while (task_rq(p) != p_rq) {
3900 double_rq_unlock(rq, p_rq);
3901 goto again;
3902 }
3903
3904 if (!curr->sched_class->yield_to_task)
7b270f60 3905 goto out_unlock;
d95f4122
MG
3906
3907 if (curr->sched_class != p->sched_class)
7b270f60 3908 goto out_unlock;
d95f4122
MG
3909
3910 if (task_running(p_rq, p) || p->state)
7b270f60 3911 goto out_unlock;
d95f4122
MG
3912
3913 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3914 if (yielded) {
d95f4122 3915 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3916 /*
3917 * Make p's CPU reschedule; pick_next_entity takes care of
3918 * fairness.
3919 */
3920 if (preempt && rq != p_rq)
3921 resched_task(p_rq->curr);
3922 }
d95f4122 3923
7b270f60 3924out_unlock:
d95f4122 3925 double_rq_unlock(rq, p_rq);
7b270f60 3926out_irq:
d95f4122
MG
3927 local_irq_restore(flags);
3928
7b270f60 3929 if (yielded > 0)
d95f4122
MG
3930 schedule();
3931
3932 return yielded;
3933}
3934EXPORT_SYMBOL_GPL(yield_to);
3935
1da177e4 3936/*
41a2d6cf 3937 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3938 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3939 */
3940void __sched io_schedule(void)
3941{
54d35f29 3942 struct rq *rq = raw_rq();
1da177e4 3943
0ff92245 3944 delayacct_blkio_start();
1da177e4 3945 atomic_inc(&rq->nr_iowait);
73c10101 3946 blk_flush_plug(current);
8f0dfc34 3947 current->in_iowait = 1;
1da177e4 3948 schedule();
8f0dfc34 3949 current->in_iowait = 0;
1da177e4 3950 atomic_dec(&rq->nr_iowait);
0ff92245 3951 delayacct_blkio_end();
1da177e4 3952}
1da177e4
LT
3953EXPORT_SYMBOL(io_schedule);
3954
3955long __sched io_schedule_timeout(long timeout)
3956{
54d35f29 3957 struct rq *rq = raw_rq();
1da177e4
LT
3958 long ret;
3959
0ff92245 3960 delayacct_blkio_start();
1da177e4 3961 atomic_inc(&rq->nr_iowait);
73c10101 3962 blk_flush_plug(current);
8f0dfc34 3963 current->in_iowait = 1;
1da177e4 3964 ret = schedule_timeout(timeout);
8f0dfc34 3965 current->in_iowait = 0;
1da177e4 3966 atomic_dec(&rq->nr_iowait);
0ff92245 3967 delayacct_blkio_end();
1da177e4
LT
3968 return ret;
3969}
3970
3971/**
3972 * sys_sched_get_priority_max - return maximum RT priority.
3973 * @policy: scheduling class.
3974 *
3975 * this syscall returns the maximum rt_priority that can be used
3976 * by a given scheduling class.
3977 */
5add95d4 3978SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
3979{
3980 int ret = -EINVAL;
3981
3982 switch (policy) {
3983 case SCHED_FIFO:
3984 case SCHED_RR:
3985 ret = MAX_USER_RT_PRIO-1;
3986 break;
3987 case SCHED_NORMAL:
b0a9499c 3988 case SCHED_BATCH:
dd41f596 3989 case SCHED_IDLE:
1da177e4
LT
3990 ret = 0;
3991 break;
3992 }
3993 return ret;
3994}
3995
3996/**
3997 * sys_sched_get_priority_min - return minimum RT priority.
3998 * @policy: scheduling class.
3999 *
4000 * this syscall returns the minimum rt_priority that can be used
4001 * by a given scheduling class.
4002 */
5add95d4 4003SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4004{
4005 int ret = -EINVAL;
4006
4007 switch (policy) {
4008 case SCHED_FIFO:
4009 case SCHED_RR:
4010 ret = 1;
4011 break;
4012 case SCHED_NORMAL:
b0a9499c 4013 case SCHED_BATCH:
dd41f596 4014 case SCHED_IDLE:
1da177e4
LT
4015 ret = 0;
4016 }
4017 return ret;
4018}
4019
4020/**
4021 * sys_sched_rr_get_interval - return the default timeslice of a process.
4022 * @pid: pid of the process.
4023 * @interval: userspace pointer to the timeslice value.
4024 *
4025 * this syscall writes the default timeslice value of a given process
4026 * into the user-space timespec buffer. A value of '0' means infinity.
4027 */
17da2bd9 4028SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4029 struct timespec __user *, interval)
1da177e4 4030{
36c8b586 4031 struct task_struct *p;
a4ec24b4 4032 unsigned int time_slice;
dba091b9
TG
4033 unsigned long flags;
4034 struct rq *rq;
3a5c359a 4035 int retval;
1da177e4 4036 struct timespec t;
1da177e4
LT
4037
4038 if (pid < 0)
3a5c359a 4039 return -EINVAL;
1da177e4
LT
4040
4041 retval = -ESRCH;
1a551ae7 4042 rcu_read_lock();
1da177e4
LT
4043 p = find_process_by_pid(pid);
4044 if (!p)
4045 goto out_unlock;
4046
4047 retval = security_task_getscheduler(p);
4048 if (retval)
4049 goto out_unlock;
4050
dba091b9
TG
4051 rq = task_rq_lock(p, &flags);
4052 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4053 task_rq_unlock(rq, p, &flags);
a4ec24b4 4054
1a551ae7 4055 rcu_read_unlock();
a4ec24b4 4056 jiffies_to_timespec(time_slice, &t);
1da177e4 4057 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4058 return retval;
3a5c359a 4059
1da177e4 4060out_unlock:
1a551ae7 4061 rcu_read_unlock();
1da177e4
LT
4062 return retval;
4063}
4064
7c731e0a 4065static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4066
82a1fcb9 4067void sched_show_task(struct task_struct *p)
1da177e4 4068{
1da177e4 4069 unsigned long free = 0;
4e79752c 4070 int ppid;
36c8b586 4071 unsigned state;
1da177e4 4072
1da177e4 4073 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4074 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4075 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4076#if BITS_PER_LONG == 32
1da177e4 4077 if (state == TASK_RUNNING)
3df0fc5b 4078 printk(KERN_CONT " running ");
1da177e4 4079 else
3df0fc5b 4080 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4081#else
4082 if (state == TASK_RUNNING)
3df0fc5b 4083 printk(KERN_CONT " running task ");
1da177e4 4084 else
3df0fc5b 4085 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4086#endif
4087#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4088 free = stack_not_used(p);
1da177e4 4089#endif
4e79752c
PM
4090 rcu_read_lock();
4091 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4092 rcu_read_unlock();
3df0fc5b 4093 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4094 task_pid_nr(p), ppid,
aa47b7e0 4095 (unsigned long)task_thread_info(p)->flags);
1da177e4 4096
3d1cb205 4097 print_worker_info(KERN_INFO, p);
5fb5e6de 4098 show_stack(p, NULL);
1da177e4
LT
4099}
4100
e59e2ae2 4101void show_state_filter(unsigned long state_filter)
1da177e4 4102{
36c8b586 4103 struct task_struct *g, *p;
1da177e4 4104
4bd77321 4105#if BITS_PER_LONG == 32
3df0fc5b
PZ
4106 printk(KERN_INFO
4107 " task PC stack pid father\n");
1da177e4 4108#else
3df0fc5b
PZ
4109 printk(KERN_INFO
4110 " task PC stack pid father\n");
1da177e4 4111#endif
510f5acc 4112 rcu_read_lock();
1da177e4
LT
4113 do_each_thread(g, p) {
4114 /*
4115 * reset the NMI-timeout, listing all files on a slow
25985edc 4116 * console might take a lot of time:
1da177e4
LT
4117 */
4118 touch_nmi_watchdog();
39bc89fd 4119 if (!state_filter || (p->state & state_filter))
82a1fcb9 4120 sched_show_task(p);
1da177e4
LT
4121 } while_each_thread(g, p);
4122
04c9167f
JF
4123 touch_all_softlockup_watchdogs();
4124
dd41f596
IM
4125#ifdef CONFIG_SCHED_DEBUG
4126 sysrq_sched_debug_show();
4127#endif
510f5acc 4128 rcu_read_unlock();
e59e2ae2
IM
4129 /*
4130 * Only show locks if all tasks are dumped:
4131 */
93335a21 4132 if (!state_filter)
e59e2ae2 4133 debug_show_all_locks();
1da177e4
LT
4134}
4135
1df21055
IM
4136void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4137{
dd41f596 4138 idle->sched_class = &idle_sched_class;
1df21055
IM
4139}
4140
f340c0d1
IM
4141/**
4142 * init_idle - set up an idle thread for a given CPU
4143 * @idle: task in question
4144 * @cpu: cpu the idle task belongs to
4145 *
4146 * NOTE: this function does not set the idle thread's NEED_RESCHED
4147 * flag, to make booting more robust.
4148 */
5c1e1767 4149void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4150{
70b97a7f 4151 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4152 unsigned long flags;
4153
05fa785c 4154 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4155
dd41f596 4156 __sched_fork(idle);
06b83b5f 4157 idle->state = TASK_RUNNING;
dd41f596
IM
4158 idle->se.exec_start = sched_clock();
4159
1e1b6c51 4160 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4161 /*
4162 * We're having a chicken and egg problem, even though we are
4163 * holding rq->lock, the cpu isn't yet set to this cpu so the
4164 * lockdep check in task_group() will fail.
4165 *
4166 * Similar case to sched_fork(). / Alternatively we could
4167 * use task_rq_lock() here and obtain the other rq->lock.
4168 *
4169 * Silence PROVE_RCU
4170 */
4171 rcu_read_lock();
dd41f596 4172 __set_task_cpu(idle, cpu);
6506cf6c 4173 rcu_read_unlock();
1da177e4 4174
1da177e4 4175 rq->curr = rq->idle = idle;
3ca7a440
PZ
4176#if defined(CONFIG_SMP)
4177 idle->on_cpu = 1;
4866cde0 4178#endif
05fa785c 4179 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4180
4181 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4182 task_thread_info(idle)->preempt_count = 0;
55cd5340 4183
dd41f596
IM
4184 /*
4185 * The idle tasks have their own, simple scheduling class:
4186 */
4187 idle->sched_class = &idle_sched_class;
868baf07 4188 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4189 vtime_init_idle(idle);
f1c6f1a7
CE
4190#if defined(CONFIG_SMP)
4191 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4192#endif
19978ca6
IM
4193}
4194
1da177e4 4195#ifdef CONFIG_SMP
1e1b6c51
KM
4196void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4197{
4198 if (p->sched_class && p->sched_class->set_cpus_allowed)
4199 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4200
4201 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4202 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4203}
4204
1da177e4
LT
4205/*
4206 * This is how migration works:
4207 *
969c7921
TH
4208 * 1) we invoke migration_cpu_stop() on the target CPU using
4209 * stop_one_cpu().
4210 * 2) stopper starts to run (implicitly forcing the migrated thread
4211 * off the CPU)
4212 * 3) it checks whether the migrated task is still in the wrong runqueue.
4213 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4214 * it and puts it into the right queue.
969c7921
TH
4215 * 5) stopper completes and stop_one_cpu() returns and the migration
4216 * is done.
1da177e4
LT
4217 */
4218
4219/*
4220 * Change a given task's CPU affinity. Migrate the thread to a
4221 * proper CPU and schedule it away if the CPU it's executing on
4222 * is removed from the allowed bitmask.
4223 *
4224 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4225 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4226 * call is not atomic; no spinlocks may be held.
4227 */
96f874e2 4228int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4229{
4230 unsigned long flags;
70b97a7f 4231 struct rq *rq;
969c7921 4232 unsigned int dest_cpu;
48f24c4d 4233 int ret = 0;
1da177e4
LT
4234
4235 rq = task_rq_lock(p, &flags);
e2912009 4236
db44fc01
YZ
4237 if (cpumask_equal(&p->cpus_allowed, new_mask))
4238 goto out;
4239
6ad4c188 4240 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4241 ret = -EINVAL;
4242 goto out;
4243 }
4244
1e1b6c51 4245 do_set_cpus_allowed(p, new_mask);
73fe6aae 4246
1da177e4 4247 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4248 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4249 goto out;
4250
969c7921 4251 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4252 if (p->on_rq) {
969c7921 4253 struct migration_arg arg = { p, dest_cpu };
1da177e4 4254 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4255 task_rq_unlock(rq, p, &flags);
969c7921 4256 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4257 tlb_migrate_finish(p->mm);
4258 return 0;
4259 }
4260out:
0122ec5b 4261 task_rq_unlock(rq, p, &flags);
48f24c4d 4262
1da177e4
LT
4263 return ret;
4264}
cd8ba7cd 4265EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4266
4267/*
41a2d6cf 4268 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4269 * this because either it can't run here any more (set_cpus_allowed()
4270 * away from this CPU, or CPU going down), or because we're
4271 * attempting to rebalance this task on exec (sched_exec).
4272 *
4273 * So we race with normal scheduler movements, but that's OK, as long
4274 * as the task is no longer on this CPU.
efc30814
KK
4275 *
4276 * Returns non-zero if task was successfully migrated.
1da177e4 4277 */
efc30814 4278static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4279{
70b97a7f 4280 struct rq *rq_dest, *rq_src;
e2912009 4281 int ret = 0;
1da177e4 4282
e761b772 4283 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4284 return ret;
1da177e4
LT
4285
4286 rq_src = cpu_rq(src_cpu);
4287 rq_dest = cpu_rq(dest_cpu);
4288
0122ec5b 4289 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4290 double_rq_lock(rq_src, rq_dest);
4291 /* Already moved. */
4292 if (task_cpu(p) != src_cpu)
b1e38734 4293 goto done;
1da177e4 4294 /* Affinity changed (again). */
fa17b507 4295 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4296 goto fail;
1da177e4 4297
e2912009
PZ
4298 /*
4299 * If we're not on a rq, the next wake-up will ensure we're
4300 * placed properly.
4301 */
fd2f4419 4302 if (p->on_rq) {
4ca9b72b 4303 dequeue_task(rq_src, p, 0);
e2912009 4304 set_task_cpu(p, dest_cpu);
4ca9b72b 4305 enqueue_task(rq_dest, p, 0);
15afe09b 4306 check_preempt_curr(rq_dest, p, 0);
1da177e4 4307 }
b1e38734 4308done:
efc30814 4309 ret = 1;
b1e38734 4310fail:
1da177e4 4311 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4312 raw_spin_unlock(&p->pi_lock);
efc30814 4313 return ret;
1da177e4
LT
4314}
4315
4316/*
969c7921
TH
4317 * migration_cpu_stop - this will be executed by a highprio stopper thread
4318 * and performs thread migration by bumping thread off CPU then
4319 * 'pushing' onto another runqueue.
1da177e4 4320 */
969c7921 4321static int migration_cpu_stop(void *data)
1da177e4 4322{
969c7921 4323 struct migration_arg *arg = data;
f7b4cddc 4324
969c7921
TH
4325 /*
4326 * The original target cpu might have gone down and we might
4327 * be on another cpu but it doesn't matter.
4328 */
f7b4cddc 4329 local_irq_disable();
969c7921 4330 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4331 local_irq_enable();
1da177e4 4332 return 0;
f7b4cddc
ON
4333}
4334
1da177e4 4335#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4336
054b9108 4337/*
48c5ccae
PZ
4338 * Ensures that the idle task is using init_mm right before its cpu goes
4339 * offline.
054b9108 4340 */
48c5ccae 4341void idle_task_exit(void)
1da177e4 4342{
48c5ccae 4343 struct mm_struct *mm = current->active_mm;
e76bd8d9 4344
48c5ccae 4345 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4346
48c5ccae
PZ
4347 if (mm != &init_mm)
4348 switch_mm(mm, &init_mm, current);
4349 mmdrop(mm);
1da177e4
LT
4350}
4351
4352/*
5d180232
PZ
4353 * Since this CPU is going 'away' for a while, fold any nr_active delta
4354 * we might have. Assumes we're called after migrate_tasks() so that the
4355 * nr_active count is stable.
4356 *
4357 * Also see the comment "Global load-average calculations".
1da177e4 4358 */
5d180232 4359static void calc_load_migrate(struct rq *rq)
1da177e4 4360{
5d180232
PZ
4361 long delta = calc_load_fold_active(rq);
4362 if (delta)
4363 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4364}
4365
48f24c4d 4366/*
48c5ccae
PZ
4367 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4368 * try_to_wake_up()->select_task_rq().
4369 *
4370 * Called with rq->lock held even though we'er in stop_machine() and
4371 * there's no concurrency possible, we hold the required locks anyway
4372 * because of lock validation efforts.
1da177e4 4373 */
48c5ccae 4374static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4375{
70b97a7f 4376 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4377 struct task_struct *next, *stop = rq->stop;
4378 int dest_cpu;
1da177e4
LT
4379
4380 /*
48c5ccae
PZ
4381 * Fudge the rq selection such that the below task selection loop
4382 * doesn't get stuck on the currently eligible stop task.
4383 *
4384 * We're currently inside stop_machine() and the rq is either stuck
4385 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4386 * either way we should never end up calling schedule() until we're
4387 * done here.
1da177e4 4388 */
48c5ccae 4389 rq->stop = NULL;
48f24c4d 4390
77bd3970
FW
4391 /*
4392 * put_prev_task() and pick_next_task() sched
4393 * class method both need to have an up-to-date
4394 * value of rq->clock[_task]
4395 */
4396 update_rq_clock(rq);
4397
dd41f596 4398 for ( ; ; ) {
48c5ccae
PZ
4399 /*
4400 * There's this thread running, bail when that's the only
4401 * remaining thread.
4402 */
4403 if (rq->nr_running == 1)
dd41f596 4404 break;
48c5ccae 4405
b67802ea 4406 next = pick_next_task(rq);
48c5ccae 4407 BUG_ON(!next);
79c53799 4408 next->sched_class->put_prev_task(rq, next);
e692ab53 4409
48c5ccae
PZ
4410 /* Find suitable destination for @next, with force if needed. */
4411 dest_cpu = select_fallback_rq(dead_cpu, next);
4412 raw_spin_unlock(&rq->lock);
4413
4414 __migrate_task(next, dead_cpu, dest_cpu);
4415
4416 raw_spin_lock(&rq->lock);
1da177e4 4417 }
dce48a84 4418
48c5ccae 4419 rq->stop = stop;
dce48a84 4420}
48c5ccae 4421
1da177e4
LT
4422#endif /* CONFIG_HOTPLUG_CPU */
4423
e692ab53
NP
4424#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4425
4426static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4427 {
4428 .procname = "sched_domain",
c57baf1e 4429 .mode = 0555,
e0361851 4430 },
56992309 4431 {}
e692ab53
NP
4432};
4433
4434static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4435 {
4436 .procname = "kernel",
c57baf1e 4437 .mode = 0555,
e0361851
AD
4438 .child = sd_ctl_dir,
4439 },
56992309 4440 {}
e692ab53
NP
4441};
4442
4443static struct ctl_table *sd_alloc_ctl_entry(int n)
4444{
4445 struct ctl_table *entry =
5cf9f062 4446 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4447
e692ab53
NP
4448 return entry;
4449}
4450
6382bc90
MM
4451static void sd_free_ctl_entry(struct ctl_table **tablep)
4452{
cd790076 4453 struct ctl_table *entry;
6382bc90 4454
cd790076
MM
4455 /*
4456 * In the intermediate directories, both the child directory and
4457 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4458 * will always be set. In the lowest directory the names are
cd790076
MM
4459 * static strings and all have proc handlers.
4460 */
4461 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4462 if (entry->child)
4463 sd_free_ctl_entry(&entry->child);
cd790076
MM
4464 if (entry->proc_handler == NULL)
4465 kfree(entry->procname);
4466 }
6382bc90
MM
4467
4468 kfree(*tablep);
4469 *tablep = NULL;
4470}
4471
201c373e 4472static int min_load_idx = 0;
fd9b86d3 4473static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4474
e692ab53 4475static void
e0361851 4476set_table_entry(struct ctl_table *entry,
e692ab53 4477 const char *procname, void *data, int maxlen,
201c373e
NK
4478 umode_t mode, proc_handler *proc_handler,
4479 bool load_idx)
e692ab53 4480{
e692ab53
NP
4481 entry->procname = procname;
4482 entry->data = data;
4483 entry->maxlen = maxlen;
4484 entry->mode = mode;
4485 entry->proc_handler = proc_handler;
201c373e
NK
4486
4487 if (load_idx) {
4488 entry->extra1 = &min_load_idx;
4489 entry->extra2 = &max_load_idx;
4490 }
e692ab53
NP
4491}
4492
4493static struct ctl_table *
4494sd_alloc_ctl_domain_table(struct sched_domain *sd)
4495{
a5d8c348 4496 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4497
ad1cdc1d
MM
4498 if (table == NULL)
4499 return NULL;
4500
e0361851 4501 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4502 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4503 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4504 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4505 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4506 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4507 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4508 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4509 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4510 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4511 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4512 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4513 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4514 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4515 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4516 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4517 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4518 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4519 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4520 &sd->cache_nice_tries,
201c373e 4521 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4522 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4523 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4524 set_table_entry(&table[11], "name", sd->name,
201c373e 4525 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4526 /* &table[12] is terminator */
e692ab53
NP
4527
4528 return table;
4529}
4530
be7002e6 4531static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4532{
4533 struct ctl_table *entry, *table;
4534 struct sched_domain *sd;
4535 int domain_num = 0, i;
4536 char buf[32];
4537
4538 for_each_domain(cpu, sd)
4539 domain_num++;
4540 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4541 if (table == NULL)
4542 return NULL;
e692ab53
NP
4543
4544 i = 0;
4545 for_each_domain(cpu, sd) {
4546 snprintf(buf, 32, "domain%d", i);
e692ab53 4547 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4548 entry->mode = 0555;
e692ab53
NP
4549 entry->child = sd_alloc_ctl_domain_table(sd);
4550 entry++;
4551 i++;
4552 }
4553 return table;
4554}
4555
4556static struct ctl_table_header *sd_sysctl_header;
6382bc90 4557static void register_sched_domain_sysctl(void)
e692ab53 4558{
6ad4c188 4559 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4560 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4561 char buf[32];
4562
7378547f
MM
4563 WARN_ON(sd_ctl_dir[0].child);
4564 sd_ctl_dir[0].child = entry;
4565
ad1cdc1d
MM
4566 if (entry == NULL)
4567 return;
4568
6ad4c188 4569 for_each_possible_cpu(i) {
e692ab53 4570 snprintf(buf, 32, "cpu%d", i);
e692ab53 4571 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4572 entry->mode = 0555;
e692ab53 4573 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4574 entry++;
e692ab53 4575 }
7378547f
MM
4576
4577 WARN_ON(sd_sysctl_header);
e692ab53
NP
4578 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4579}
6382bc90 4580
7378547f 4581/* may be called multiple times per register */
6382bc90
MM
4582static void unregister_sched_domain_sysctl(void)
4583{
7378547f
MM
4584 if (sd_sysctl_header)
4585 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4586 sd_sysctl_header = NULL;
7378547f
MM
4587 if (sd_ctl_dir[0].child)
4588 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4589}
e692ab53 4590#else
6382bc90
MM
4591static void register_sched_domain_sysctl(void)
4592{
4593}
4594static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4595{
4596}
4597#endif
4598
1f11eb6a
GH
4599static void set_rq_online(struct rq *rq)
4600{
4601 if (!rq->online) {
4602 const struct sched_class *class;
4603
c6c4927b 4604 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4605 rq->online = 1;
4606
4607 for_each_class(class) {
4608 if (class->rq_online)
4609 class->rq_online(rq);
4610 }
4611 }
4612}
4613
4614static void set_rq_offline(struct rq *rq)
4615{
4616 if (rq->online) {
4617 const struct sched_class *class;
4618
4619 for_each_class(class) {
4620 if (class->rq_offline)
4621 class->rq_offline(rq);
4622 }
4623
c6c4927b 4624 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4625 rq->online = 0;
4626 }
4627}
4628
1da177e4
LT
4629/*
4630 * migration_call - callback that gets triggered when a CPU is added.
4631 * Here we can start up the necessary migration thread for the new CPU.
4632 */
48f24c4d
IM
4633static int __cpuinit
4634migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4635{
48f24c4d 4636 int cpu = (long)hcpu;
1da177e4 4637 unsigned long flags;
969c7921 4638 struct rq *rq = cpu_rq(cpu);
1da177e4 4639
48c5ccae 4640 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4641
1da177e4 4642 case CPU_UP_PREPARE:
a468d389 4643 rq->calc_load_update = calc_load_update;
1da177e4 4644 break;
48f24c4d 4645
1da177e4 4646 case CPU_ONLINE:
1f94ef59 4647 /* Update our root-domain */
05fa785c 4648 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4649 if (rq->rd) {
c6c4927b 4650 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4651
4652 set_rq_online(rq);
1f94ef59 4653 }
05fa785c 4654 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4655 break;
48f24c4d 4656
1da177e4 4657#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4658 case CPU_DYING:
317f3941 4659 sched_ttwu_pending();
57d885fe 4660 /* Update our root-domain */
05fa785c 4661 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4662 if (rq->rd) {
c6c4927b 4663 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4664 set_rq_offline(rq);
57d885fe 4665 }
48c5ccae
PZ
4666 migrate_tasks(cpu);
4667 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4668 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4669 break;
48c5ccae 4670
5d180232 4671 case CPU_DEAD:
f319da0c 4672 calc_load_migrate(rq);
57d885fe 4673 break;
1da177e4
LT
4674#endif
4675 }
49c022e6
PZ
4676
4677 update_max_interval();
4678
1da177e4
LT
4679 return NOTIFY_OK;
4680}
4681
f38b0820
PM
4682/*
4683 * Register at high priority so that task migration (migrate_all_tasks)
4684 * happens before everything else. This has to be lower priority than
cdd6c482 4685 * the notifier in the perf_event subsystem, though.
1da177e4 4686 */
26c2143b 4687static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 4688 .notifier_call = migration_call,
50a323b7 4689 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4690};
4691
3a101d05
TH
4692static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4693 unsigned long action, void *hcpu)
4694{
4695 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4696 case CPU_STARTING:
3a101d05
TH
4697 case CPU_DOWN_FAILED:
4698 set_cpu_active((long)hcpu, true);
4699 return NOTIFY_OK;
4700 default:
4701 return NOTIFY_DONE;
4702 }
4703}
4704
4705static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4706 unsigned long action, void *hcpu)
4707{
4708 switch (action & ~CPU_TASKS_FROZEN) {
4709 case CPU_DOWN_PREPARE:
4710 set_cpu_active((long)hcpu, false);
4711 return NOTIFY_OK;
4712 default:
4713 return NOTIFY_DONE;
4714 }
4715}
4716
7babe8db 4717static int __init migration_init(void)
1da177e4
LT
4718{
4719 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4720 int err;
48f24c4d 4721
3a101d05 4722 /* Initialize migration for the boot CPU */
07dccf33
AM
4723 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4724 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4725 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4726 register_cpu_notifier(&migration_notifier);
7babe8db 4727
3a101d05
TH
4728 /* Register cpu active notifiers */
4729 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4730 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4731
a004cd42 4732 return 0;
1da177e4 4733}
7babe8db 4734early_initcall(migration_init);
1da177e4
LT
4735#endif
4736
4737#ifdef CONFIG_SMP
476f3534 4738
4cb98839
PZ
4739static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4740
3e9830dc 4741#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4742
d039ac60 4743static __read_mostly int sched_debug_enabled;
f6630114 4744
d039ac60 4745static int __init sched_debug_setup(char *str)
f6630114 4746{
d039ac60 4747 sched_debug_enabled = 1;
f6630114
MT
4748
4749 return 0;
4750}
d039ac60
PZ
4751early_param("sched_debug", sched_debug_setup);
4752
4753static inline bool sched_debug(void)
4754{
4755 return sched_debug_enabled;
4756}
f6630114 4757
7c16ec58 4758static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4759 struct cpumask *groupmask)
1da177e4 4760{
4dcf6aff 4761 struct sched_group *group = sd->groups;
434d53b0 4762 char str[256];
1da177e4 4763
968ea6d8 4764 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4765 cpumask_clear(groupmask);
4dcf6aff
IM
4766
4767 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4768
4769 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4770 printk("does not load-balance\n");
4dcf6aff 4771 if (sd->parent)
3df0fc5b
PZ
4772 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4773 " has parent");
4dcf6aff 4774 return -1;
41c7ce9a
NP
4775 }
4776
3df0fc5b 4777 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4778
758b2cdc 4779 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4780 printk(KERN_ERR "ERROR: domain->span does not contain "
4781 "CPU%d\n", cpu);
4dcf6aff 4782 }
758b2cdc 4783 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4784 printk(KERN_ERR "ERROR: domain->groups does not contain"
4785 " CPU%d\n", cpu);
4dcf6aff 4786 }
1da177e4 4787
4dcf6aff 4788 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4789 do {
4dcf6aff 4790 if (!group) {
3df0fc5b
PZ
4791 printk("\n");
4792 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4793 break;
4794 }
4795
c3decf0d
PZ
4796 /*
4797 * Even though we initialize ->power to something semi-sane,
4798 * we leave power_orig unset. This allows us to detect if
4799 * domain iteration is still funny without causing /0 traps.
4800 */
4801 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4802 printk(KERN_CONT "\n");
4803 printk(KERN_ERR "ERROR: domain->cpu_power not "
4804 "set\n");
4dcf6aff
IM
4805 break;
4806 }
1da177e4 4807
758b2cdc 4808 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4809 printk(KERN_CONT "\n");
4810 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4811 break;
4812 }
1da177e4 4813
cb83b629
PZ
4814 if (!(sd->flags & SD_OVERLAP) &&
4815 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4816 printk(KERN_CONT "\n");
4817 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4818 break;
4819 }
1da177e4 4820
758b2cdc 4821 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4822
968ea6d8 4823 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4824
3df0fc5b 4825 printk(KERN_CONT " %s", str);
9c3f75cb 4826 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4827 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4828 group->sgp->power);
381512cf 4829 }
1da177e4 4830
4dcf6aff
IM
4831 group = group->next;
4832 } while (group != sd->groups);
3df0fc5b 4833 printk(KERN_CONT "\n");
1da177e4 4834
758b2cdc 4835 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4836 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4837
758b2cdc
RR
4838 if (sd->parent &&
4839 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4840 printk(KERN_ERR "ERROR: parent span is not a superset "
4841 "of domain->span\n");
4dcf6aff
IM
4842 return 0;
4843}
1da177e4 4844
4dcf6aff
IM
4845static void sched_domain_debug(struct sched_domain *sd, int cpu)
4846{
4847 int level = 0;
1da177e4 4848
d039ac60 4849 if (!sched_debug_enabled)
f6630114
MT
4850 return;
4851
4dcf6aff
IM
4852 if (!sd) {
4853 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4854 return;
4855 }
1da177e4 4856
4dcf6aff
IM
4857 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4858
4859 for (;;) {
4cb98839 4860 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4861 break;
1da177e4
LT
4862 level++;
4863 sd = sd->parent;
33859f7f 4864 if (!sd)
4dcf6aff
IM
4865 break;
4866 }
1da177e4 4867}
6d6bc0ad 4868#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4869# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4870static inline bool sched_debug(void)
4871{
4872 return false;
4873}
6d6bc0ad 4874#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4875
1a20ff27 4876static int sd_degenerate(struct sched_domain *sd)
245af2c7 4877{
758b2cdc 4878 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4879 return 1;
4880
4881 /* Following flags need at least 2 groups */
4882 if (sd->flags & (SD_LOAD_BALANCE |
4883 SD_BALANCE_NEWIDLE |
4884 SD_BALANCE_FORK |
89c4710e
SS
4885 SD_BALANCE_EXEC |
4886 SD_SHARE_CPUPOWER |
4887 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4888 if (sd->groups != sd->groups->next)
4889 return 0;
4890 }
4891
4892 /* Following flags don't use groups */
c88d5910 4893 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4894 return 0;
4895
4896 return 1;
4897}
4898
48f24c4d
IM
4899static int
4900sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4901{
4902 unsigned long cflags = sd->flags, pflags = parent->flags;
4903
4904 if (sd_degenerate(parent))
4905 return 1;
4906
758b2cdc 4907 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4908 return 0;
4909
245af2c7
SS
4910 /* Flags needing groups don't count if only 1 group in parent */
4911 if (parent->groups == parent->groups->next) {
4912 pflags &= ~(SD_LOAD_BALANCE |
4913 SD_BALANCE_NEWIDLE |
4914 SD_BALANCE_FORK |
89c4710e
SS
4915 SD_BALANCE_EXEC |
4916 SD_SHARE_CPUPOWER |
4917 SD_SHARE_PKG_RESOURCES);
5436499e
KC
4918 if (nr_node_ids == 1)
4919 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4920 }
4921 if (~cflags & pflags)
4922 return 0;
4923
4924 return 1;
4925}
4926
dce840a0 4927static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4928{
dce840a0 4929 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4930
68e74568 4931 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4932 free_cpumask_var(rd->rto_mask);
4933 free_cpumask_var(rd->online);
4934 free_cpumask_var(rd->span);
4935 kfree(rd);
4936}
4937
57d885fe
GH
4938static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4939{
a0490fa3 4940 struct root_domain *old_rd = NULL;
57d885fe 4941 unsigned long flags;
57d885fe 4942
05fa785c 4943 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4944
4945 if (rq->rd) {
a0490fa3 4946 old_rd = rq->rd;
57d885fe 4947
c6c4927b 4948 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4949 set_rq_offline(rq);
57d885fe 4950
c6c4927b 4951 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4952
a0490fa3
IM
4953 /*
4954 * If we dont want to free the old_rt yet then
4955 * set old_rd to NULL to skip the freeing later
4956 * in this function:
4957 */
4958 if (!atomic_dec_and_test(&old_rd->refcount))
4959 old_rd = NULL;
57d885fe
GH
4960 }
4961
4962 atomic_inc(&rd->refcount);
4963 rq->rd = rd;
4964
c6c4927b 4965 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 4966 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 4967 set_rq_online(rq);
57d885fe 4968
05fa785c 4969 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
4970
4971 if (old_rd)
dce840a0 4972 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
4973}
4974
68c38fc3 4975static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
4976{
4977 memset(rd, 0, sizeof(*rd));
4978
68c38fc3 4979 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 4980 goto out;
68c38fc3 4981 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 4982 goto free_span;
68c38fc3 4983 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 4984 goto free_online;
6e0534f2 4985
68c38fc3 4986 if (cpupri_init(&rd->cpupri) != 0)
68e74568 4987 goto free_rto_mask;
c6c4927b 4988 return 0;
6e0534f2 4989
68e74568
RR
4990free_rto_mask:
4991 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
4992free_online:
4993 free_cpumask_var(rd->online);
4994free_span:
4995 free_cpumask_var(rd->span);
0c910d28 4996out:
c6c4927b 4997 return -ENOMEM;
57d885fe
GH
4998}
4999
029632fb
PZ
5000/*
5001 * By default the system creates a single root-domain with all cpus as
5002 * members (mimicking the global state we have today).
5003 */
5004struct root_domain def_root_domain;
5005
57d885fe
GH
5006static void init_defrootdomain(void)
5007{
68c38fc3 5008 init_rootdomain(&def_root_domain);
c6c4927b 5009
57d885fe
GH
5010 atomic_set(&def_root_domain.refcount, 1);
5011}
5012
dc938520 5013static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5014{
5015 struct root_domain *rd;
5016
5017 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5018 if (!rd)
5019 return NULL;
5020
68c38fc3 5021 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5022 kfree(rd);
5023 return NULL;
5024 }
57d885fe
GH
5025
5026 return rd;
5027}
5028
e3589f6c
PZ
5029static void free_sched_groups(struct sched_group *sg, int free_sgp)
5030{
5031 struct sched_group *tmp, *first;
5032
5033 if (!sg)
5034 return;
5035
5036 first = sg;
5037 do {
5038 tmp = sg->next;
5039
5040 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5041 kfree(sg->sgp);
5042
5043 kfree(sg);
5044 sg = tmp;
5045 } while (sg != first);
5046}
5047
dce840a0
PZ
5048static void free_sched_domain(struct rcu_head *rcu)
5049{
5050 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5051
5052 /*
5053 * If its an overlapping domain it has private groups, iterate and
5054 * nuke them all.
5055 */
5056 if (sd->flags & SD_OVERLAP) {
5057 free_sched_groups(sd->groups, 1);
5058 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5059 kfree(sd->groups->sgp);
dce840a0 5060 kfree(sd->groups);
9c3f75cb 5061 }
dce840a0
PZ
5062 kfree(sd);
5063}
5064
5065static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5066{
5067 call_rcu(&sd->rcu, free_sched_domain);
5068}
5069
5070static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5071{
5072 for (; sd; sd = sd->parent)
5073 destroy_sched_domain(sd, cpu);
5074}
5075
518cd623
PZ
5076/*
5077 * Keep a special pointer to the highest sched_domain that has
5078 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5079 * allows us to avoid some pointer chasing select_idle_sibling().
5080 *
5081 * Also keep a unique ID per domain (we use the first cpu number in
5082 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5083 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5084 */
5085DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5086DEFINE_PER_CPU(int, sd_llc_id);
5087
5088static void update_top_cache_domain(int cpu)
5089{
5090 struct sched_domain *sd;
5091 int id = cpu;
5092
5093 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5094 if (sd)
518cd623
PZ
5095 id = cpumask_first(sched_domain_span(sd));
5096
5097 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5098 per_cpu(sd_llc_id, cpu) = id;
5099}
5100
1da177e4 5101/*
0eab9146 5102 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5103 * hold the hotplug lock.
5104 */
0eab9146
IM
5105static void
5106cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5107{
70b97a7f 5108 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5109 struct sched_domain *tmp;
5110
5111 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5112 for (tmp = sd; tmp; ) {
245af2c7
SS
5113 struct sched_domain *parent = tmp->parent;
5114 if (!parent)
5115 break;
f29c9b1c 5116
1a848870 5117 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5118 tmp->parent = parent->parent;
1a848870
SS
5119 if (parent->parent)
5120 parent->parent->child = tmp;
dce840a0 5121 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5122 } else
5123 tmp = tmp->parent;
245af2c7
SS
5124 }
5125
1a848870 5126 if (sd && sd_degenerate(sd)) {
dce840a0 5127 tmp = sd;
245af2c7 5128 sd = sd->parent;
dce840a0 5129 destroy_sched_domain(tmp, cpu);
1a848870
SS
5130 if (sd)
5131 sd->child = NULL;
5132 }
1da177e4 5133
4cb98839 5134 sched_domain_debug(sd, cpu);
1da177e4 5135
57d885fe 5136 rq_attach_root(rq, rd);
dce840a0 5137 tmp = rq->sd;
674311d5 5138 rcu_assign_pointer(rq->sd, sd);
dce840a0 5139 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5140
5141 update_top_cache_domain(cpu);
1da177e4
LT
5142}
5143
5144/* cpus with isolated domains */
dcc30a35 5145static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5146
5147/* Setup the mask of cpus configured for isolated domains */
5148static int __init isolated_cpu_setup(char *str)
5149{
bdddd296 5150 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5151 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5152 return 1;
5153}
5154
8927f494 5155__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5156
d3081f52
PZ
5157static const struct cpumask *cpu_cpu_mask(int cpu)
5158{
5159 return cpumask_of_node(cpu_to_node(cpu));
5160}
5161
dce840a0
PZ
5162struct sd_data {
5163 struct sched_domain **__percpu sd;
5164 struct sched_group **__percpu sg;
9c3f75cb 5165 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5166};
5167
49a02c51 5168struct s_data {
21d42ccf 5169 struct sched_domain ** __percpu sd;
49a02c51
AH
5170 struct root_domain *rd;
5171};
5172
2109b99e 5173enum s_alloc {
2109b99e 5174 sa_rootdomain,
21d42ccf 5175 sa_sd,
dce840a0 5176 sa_sd_storage,
2109b99e
AH
5177 sa_none,
5178};
5179
54ab4ff4
PZ
5180struct sched_domain_topology_level;
5181
5182typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5183typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5184
e3589f6c
PZ
5185#define SDTL_OVERLAP 0x01
5186
eb7a74e6 5187struct sched_domain_topology_level {
2c402dc3
PZ
5188 sched_domain_init_f init;
5189 sched_domain_mask_f mask;
e3589f6c 5190 int flags;
cb83b629 5191 int numa_level;
54ab4ff4 5192 struct sd_data data;
eb7a74e6
PZ
5193};
5194
c1174876
PZ
5195/*
5196 * Build an iteration mask that can exclude certain CPUs from the upwards
5197 * domain traversal.
5198 *
5199 * Asymmetric node setups can result in situations where the domain tree is of
5200 * unequal depth, make sure to skip domains that already cover the entire
5201 * range.
5202 *
5203 * In that case build_sched_domains() will have terminated the iteration early
5204 * and our sibling sd spans will be empty. Domains should always include the
5205 * cpu they're built on, so check that.
5206 *
5207 */
5208static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5209{
5210 const struct cpumask *span = sched_domain_span(sd);
5211 struct sd_data *sdd = sd->private;
5212 struct sched_domain *sibling;
5213 int i;
5214
5215 for_each_cpu(i, span) {
5216 sibling = *per_cpu_ptr(sdd->sd, i);
5217 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5218 continue;
5219
5220 cpumask_set_cpu(i, sched_group_mask(sg));
5221 }
5222}
5223
5224/*
5225 * Return the canonical balance cpu for this group, this is the first cpu
5226 * of this group that's also in the iteration mask.
5227 */
5228int group_balance_cpu(struct sched_group *sg)
5229{
5230 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5231}
5232
e3589f6c
PZ
5233static int
5234build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5235{
5236 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5237 const struct cpumask *span = sched_domain_span(sd);
5238 struct cpumask *covered = sched_domains_tmpmask;
5239 struct sd_data *sdd = sd->private;
5240 struct sched_domain *child;
5241 int i;
5242
5243 cpumask_clear(covered);
5244
5245 for_each_cpu(i, span) {
5246 struct cpumask *sg_span;
5247
5248 if (cpumask_test_cpu(i, covered))
5249 continue;
5250
c1174876
PZ
5251 child = *per_cpu_ptr(sdd->sd, i);
5252
5253 /* See the comment near build_group_mask(). */
5254 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5255 continue;
5256
e3589f6c 5257 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5258 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5259
5260 if (!sg)
5261 goto fail;
5262
5263 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5264 if (child->child) {
5265 child = child->child;
5266 cpumask_copy(sg_span, sched_domain_span(child));
5267 } else
5268 cpumask_set_cpu(i, sg_span);
5269
5270 cpumask_or(covered, covered, sg_span);
5271
74a5ce20 5272 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5273 if (atomic_inc_return(&sg->sgp->ref) == 1)
5274 build_group_mask(sd, sg);
5275
c3decf0d
PZ
5276 /*
5277 * Initialize sgp->power such that even if we mess up the
5278 * domains and no possible iteration will get us here, we won't
5279 * die on a /0 trap.
5280 */
5281 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5282
c1174876
PZ
5283 /*
5284 * Make sure the first group of this domain contains the
5285 * canonical balance cpu. Otherwise the sched_domain iteration
5286 * breaks. See update_sg_lb_stats().
5287 */
74a5ce20 5288 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5289 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5290 groups = sg;
5291
5292 if (!first)
5293 first = sg;
5294 if (last)
5295 last->next = sg;
5296 last = sg;
5297 last->next = first;
5298 }
5299 sd->groups = groups;
5300
5301 return 0;
5302
5303fail:
5304 free_sched_groups(first, 0);
5305
5306 return -ENOMEM;
5307}
5308
dce840a0 5309static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5310{
dce840a0
PZ
5311 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5312 struct sched_domain *child = sd->child;
1da177e4 5313
dce840a0
PZ
5314 if (child)
5315 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5316
9c3f75cb 5317 if (sg) {
dce840a0 5318 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5319 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5320 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5321 }
dce840a0
PZ
5322
5323 return cpu;
1e9f28fa 5324}
1e9f28fa 5325
01a08546 5326/*
dce840a0
PZ
5327 * build_sched_groups will build a circular linked list of the groups
5328 * covered by the given span, and will set each group's ->cpumask correctly,
5329 * and ->cpu_power to 0.
e3589f6c
PZ
5330 *
5331 * Assumes the sched_domain tree is fully constructed
01a08546 5332 */
e3589f6c
PZ
5333static int
5334build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5335{
dce840a0
PZ
5336 struct sched_group *first = NULL, *last = NULL;
5337 struct sd_data *sdd = sd->private;
5338 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5339 struct cpumask *covered;
dce840a0 5340 int i;
9c1cfda2 5341
e3589f6c
PZ
5342 get_group(cpu, sdd, &sd->groups);
5343 atomic_inc(&sd->groups->ref);
5344
0936629f 5345 if (cpu != cpumask_first(span))
e3589f6c
PZ
5346 return 0;
5347
f96225fd
PZ
5348 lockdep_assert_held(&sched_domains_mutex);
5349 covered = sched_domains_tmpmask;
5350
dce840a0 5351 cpumask_clear(covered);
6711cab4 5352
dce840a0
PZ
5353 for_each_cpu(i, span) {
5354 struct sched_group *sg;
cd08e923 5355 int group, j;
6711cab4 5356
dce840a0
PZ
5357 if (cpumask_test_cpu(i, covered))
5358 continue;
6711cab4 5359
cd08e923 5360 group = get_group(i, sdd, &sg);
dce840a0 5361 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5362 sg->sgp->power = 0;
c1174876 5363 cpumask_setall(sched_group_mask(sg));
0601a88d 5364
dce840a0
PZ
5365 for_each_cpu(j, span) {
5366 if (get_group(j, sdd, NULL) != group)
5367 continue;
0601a88d 5368
dce840a0
PZ
5369 cpumask_set_cpu(j, covered);
5370 cpumask_set_cpu(j, sched_group_cpus(sg));
5371 }
0601a88d 5372
dce840a0
PZ
5373 if (!first)
5374 first = sg;
5375 if (last)
5376 last->next = sg;
5377 last = sg;
5378 }
5379 last->next = first;
e3589f6c
PZ
5380
5381 return 0;
0601a88d 5382}
51888ca2 5383
89c4710e
SS
5384/*
5385 * Initialize sched groups cpu_power.
5386 *
5387 * cpu_power indicates the capacity of sched group, which is used while
5388 * distributing the load between different sched groups in a sched domain.
5389 * Typically cpu_power for all the groups in a sched domain will be same unless
5390 * there are asymmetries in the topology. If there are asymmetries, group
5391 * having more cpu_power will pickup more load compared to the group having
5392 * less cpu_power.
89c4710e
SS
5393 */
5394static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5395{
e3589f6c 5396 struct sched_group *sg = sd->groups;
89c4710e 5397
94c95ba6 5398 WARN_ON(!sg);
e3589f6c
PZ
5399
5400 do {
5401 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5402 sg = sg->next;
5403 } while (sg != sd->groups);
89c4710e 5404
c1174876 5405 if (cpu != group_balance_cpu(sg))
e3589f6c 5406 return;
aae6d3dd 5407
d274cb30 5408 update_group_power(sd, cpu);
69e1e811 5409 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5410}
5411
029632fb
PZ
5412int __weak arch_sd_sibling_asym_packing(void)
5413{
5414 return 0*SD_ASYM_PACKING;
89c4710e
SS
5415}
5416
7c16ec58
MT
5417/*
5418 * Initializers for schedule domains
5419 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5420 */
5421
a5d8c348
IM
5422#ifdef CONFIG_SCHED_DEBUG
5423# define SD_INIT_NAME(sd, type) sd->name = #type
5424#else
5425# define SD_INIT_NAME(sd, type) do { } while (0)
5426#endif
5427
54ab4ff4
PZ
5428#define SD_INIT_FUNC(type) \
5429static noinline struct sched_domain * \
5430sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5431{ \
5432 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5433 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5434 SD_INIT_NAME(sd, type); \
5435 sd->private = &tl->data; \
5436 return sd; \
7c16ec58
MT
5437}
5438
5439SD_INIT_FUNC(CPU)
7c16ec58
MT
5440#ifdef CONFIG_SCHED_SMT
5441 SD_INIT_FUNC(SIBLING)
5442#endif
5443#ifdef CONFIG_SCHED_MC
5444 SD_INIT_FUNC(MC)
5445#endif
01a08546
HC
5446#ifdef CONFIG_SCHED_BOOK
5447 SD_INIT_FUNC(BOOK)
5448#endif
7c16ec58 5449
1d3504fc 5450static int default_relax_domain_level = -1;
60495e77 5451int sched_domain_level_max;
1d3504fc
HS
5452
5453static int __init setup_relax_domain_level(char *str)
5454{
a841f8ce
DS
5455 if (kstrtoint(str, 0, &default_relax_domain_level))
5456 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5457
1d3504fc
HS
5458 return 1;
5459}
5460__setup("relax_domain_level=", setup_relax_domain_level);
5461
5462static void set_domain_attribute(struct sched_domain *sd,
5463 struct sched_domain_attr *attr)
5464{
5465 int request;
5466
5467 if (!attr || attr->relax_domain_level < 0) {
5468 if (default_relax_domain_level < 0)
5469 return;
5470 else
5471 request = default_relax_domain_level;
5472 } else
5473 request = attr->relax_domain_level;
5474 if (request < sd->level) {
5475 /* turn off idle balance on this domain */
c88d5910 5476 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5477 } else {
5478 /* turn on idle balance on this domain */
c88d5910 5479 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5480 }
5481}
5482
54ab4ff4
PZ
5483static void __sdt_free(const struct cpumask *cpu_map);
5484static int __sdt_alloc(const struct cpumask *cpu_map);
5485
2109b99e
AH
5486static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5487 const struct cpumask *cpu_map)
5488{
5489 switch (what) {
2109b99e 5490 case sa_rootdomain:
822ff793
PZ
5491 if (!atomic_read(&d->rd->refcount))
5492 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5493 case sa_sd:
5494 free_percpu(d->sd); /* fall through */
dce840a0 5495 case sa_sd_storage:
54ab4ff4 5496 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5497 case sa_none:
5498 break;
5499 }
5500}
3404c8d9 5501
2109b99e
AH
5502static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5503 const struct cpumask *cpu_map)
5504{
dce840a0
PZ
5505 memset(d, 0, sizeof(*d));
5506
54ab4ff4
PZ
5507 if (__sdt_alloc(cpu_map))
5508 return sa_sd_storage;
dce840a0
PZ
5509 d->sd = alloc_percpu(struct sched_domain *);
5510 if (!d->sd)
5511 return sa_sd_storage;
2109b99e 5512 d->rd = alloc_rootdomain();
dce840a0 5513 if (!d->rd)
21d42ccf 5514 return sa_sd;
2109b99e
AH
5515 return sa_rootdomain;
5516}
57d885fe 5517
dce840a0
PZ
5518/*
5519 * NULL the sd_data elements we've used to build the sched_domain and
5520 * sched_group structure so that the subsequent __free_domain_allocs()
5521 * will not free the data we're using.
5522 */
5523static void claim_allocations(int cpu, struct sched_domain *sd)
5524{
5525 struct sd_data *sdd = sd->private;
dce840a0
PZ
5526
5527 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5528 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5529
e3589f6c 5530 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5531 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5532
5533 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5534 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5535}
5536
2c402dc3
PZ
5537#ifdef CONFIG_SCHED_SMT
5538static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5539{
2c402dc3 5540 return topology_thread_cpumask(cpu);
3bd65a80 5541}
2c402dc3 5542#endif
7f4588f3 5543
d069b916
PZ
5544/*
5545 * Topology list, bottom-up.
5546 */
2c402dc3 5547static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5548#ifdef CONFIG_SCHED_SMT
5549 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5550#endif
1e9f28fa 5551#ifdef CONFIG_SCHED_MC
2c402dc3 5552 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5553#endif
d069b916
PZ
5554#ifdef CONFIG_SCHED_BOOK
5555 { sd_init_BOOK, cpu_book_mask, },
5556#endif
5557 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5558 { NULL, },
5559};
5560
5561static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5562
27723a68
VK
5563#define for_each_sd_topology(tl) \
5564 for (tl = sched_domain_topology; tl->init; tl++)
5565
cb83b629
PZ
5566#ifdef CONFIG_NUMA
5567
5568static int sched_domains_numa_levels;
cb83b629
PZ
5569static int *sched_domains_numa_distance;
5570static struct cpumask ***sched_domains_numa_masks;
5571static int sched_domains_curr_level;
5572
cb83b629
PZ
5573static inline int sd_local_flags(int level)
5574{
10717dcd 5575 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5576 return 0;
5577
5578 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5579}
5580
5581static struct sched_domain *
5582sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5583{
5584 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5585 int level = tl->numa_level;
5586 int sd_weight = cpumask_weight(
5587 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5588
5589 *sd = (struct sched_domain){
5590 .min_interval = sd_weight,
5591 .max_interval = 2*sd_weight,
5592 .busy_factor = 32,
870a0bb5 5593 .imbalance_pct = 125,
cb83b629
PZ
5594 .cache_nice_tries = 2,
5595 .busy_idx = 3,
5596 .idle_idx = 2,
5597 .newidle_idx = 0,
5598 .wake_idx = 0,
5599 .forkexec_idx = 0,
5600
5601 .flags = 1*SD_LOAD_BALANCE
5602 | 1*SD_BALANCE_NEWIDLE
5603 | 0*SD_BALANCE_EXEC
5604 | 0*SD_BALANCE_FORK
5605 | 0*SD_BALANCE_WAKE
5606 | 0*SD_WAKE_AFFINE
cb83b629 5607 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5608 | 0*SD_SHARE_PKG_RESOURCES
5609 | 1*SD_SERIALIZE
5610 | 0*SD_PREFER_SIBLING
5611 | sd_local_flags(level)
5612 ,
5613 .last_balance = jiffies,
5614 .balance_interval = sd_weight,
5615 };
5616 SD_INIT_NAME(sd, NUMA);
5617 sd->private = &tl->data;
5618
5619 /*
5620 * Ugly hack to pass state to sd_numa_mask()...
5621 */
5622 sched_domains_curr_level = tl->numa_level;
5623
5624 return sd;
5625}
5626
5627static const struct cpumask *sd_numa_mask(int cpu)
5628{
5629 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5630}
5631
d039ac60
PZ
5632static void sched_numa_warn(const char *str)
5633{
5634 static int done = false;
5635 int i,j;
5636
5637 if (done)
5638 return;
5639
5640 done = true;
5641
5642 printk(KERN_WARNING "ERROR: %s\n\n", str);
5643
5644 for (i = 0; i < nr_node_ids; i++) {
5645 printk(KERN_WARNING " ");
5646 for (j = 0; j < nr_node_ids; j++)
5647 printk(KERN_CONT "%02d ", node_distance(i,j));
5648 printk(KERN_CONT "\n");
5649 }
5650 printk(KERN_WARNING "\n");
5651}
5652
5653static bool find_numa_distance(int distance)
5654{
5655 int i;
5656
5657 if (distance == node_distance(0, 0))
5658 return true;
5659
5660 for (i = 0; i < sched_domains_numa_levels; i++) {
5661 if (sched_domains_numa_distance[i] == distance)
5662 return true;
5663 }
5664
5665 return false;
5666}
5667
cb83b629
PZ
5668static void sched_init_numa(void)
5669{
5670 int next_distance, curr_distance = node_distance(0, 0);
5671 struct sched_domain_topology_level *tl;
5672 int level = 0;
5673 int i, j, k;
5674
cb83b629
PZ
5675 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5676 if (!sched_domains_numa_distance)
5677 return;
5678
5679 /*
5680 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5681 * unique distances in the node_distance() table.
5682 *
5683 * Assumes node_distance(0,j) includes all distances in
5684 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5685 */
5686 next_distance = curr_distance;
5687 for (i = 0; i < nr_node_ids; i++) {
5688 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5689 for (k = 0; k < nr_node_ids; k++) {
5690 int distance = node_distance(i, k);
5691
5692 if (distance > curr_distance &&
5693 (distance < next_distance ||
5694 next_distance == curr_distance))
5695 next_distance = distance;
5696
5697 /*
5698 * While not a strong assumption it would be nice to know
5699 * about cases where if node A is connected to B, B is not
5700 * equally connected to A.
5701 */
5702 if (sched_debug() && node_distance(k, i) != distance)
5703 sched_numa_warn("Node-distance not symmetric");
5704
5705 if (sched_debug() && i && !find_numa_distance(distance))
5706 sched_numa_warn("Node-0 not representative");
5707 }
5708 if (next_distance != curr_distance) {
5709 sched_domains_numa_distance[level++] = next_distance;
5710 sched_domains_numa_levels = level;
5711 curr_distance = next_distance;
5712 } else break;
cb83b629 5713 }
d039ac60
PZ
5714
5715 /*
5716 * In case of sched_debug() we verify the above assumption.
5717 */
5718 if (!sched_debug())
5719 break;
cb83b629
PZ
5720 }
5721 /*
5722 * 'level' contains the number of unique distances, excluding the
5723 * identity distance node_distance(i,i).
5724 *
28b4a521 5725 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5726 * numbers.
5727 */
5728
5f7865f3
TC
5729 /*
5730 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5731 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5732 * the array will contain less then 'level' members. This could be
5733 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5734 * in other functions.
5735 *
5736 * We reset it to 'level' at the end of this function.
5737 */
5738 sched_domains_numa_levels = 0;
5739
cb83b629
PZ
5740 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5741 if (!sched_domains_numa_masks)
5742 return;
5743
5744 /*
5745 * Now for each level, construct a mask per node which contains all
5746 * cpus of nodes that are that many hops away from us.
5747 */
5748 for (i = 0; i < level; i++) {
5749 sched_domains_numa_masks[i] =
5750 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5751 if (!sched_domains_numa_masks[i])
5752 return;
5753
5754 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5755 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5756 if (!mask)
5757 return;
5758
5759 sched_domains_numa_masks[i][j] = mask;
5760
5761 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5762 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5763 continue;
5764
5765 cpumask_or(mask, mask, cpumask_of_node(k));
5766 }
5767 }
5768 }
5769
5770 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5771 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5772 if (!tl)
5773 return;
5774
5775 /*
5776 * Copy the default topology bits..
5777 */
5778 for (i = 0; default_topology[i].init; i++)
5779 tl[i] = default_topology[i];
5780
5781 /*
5782 * .. and append 'j' levels of NUMA goodness.
5783 */
5784 for (j = 0; j < level; i++, j++) {
5785 tl[i] = (struct sched_domain_topology_level){
5786 .init = sd_numa_init,
5787 .mask = sd_numa_mask,
5788 .flags = SDTL_OVERLAP,
5789 .numa_level = j,
5790 };
5791 }
5792
5793 sched_domain_topology = tl;
5f7865f3
TC
5794
5795 sched_domains_numa_levels = level;
cb83b629 5796}
301a5cba
TC
5797
5798static void sched_domains_numa_masks_set(int cpu)
5799{
5800 int i, j;
5801 int node = cpu_to_node(cpu);
5802
5803 for (i = 0; i < sched_domains_numa_levels; i++) {
5804 for (j = 0; j < nr_node_ids; j++) {
5805 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5806 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5807 }
5808 }
5809}
5810
5811static void sched_domains_numa_masks_clear(int cpu)
5812{
5813 int i, j;
5814 for (i = 0; i < sched_domains_numa_levels; i++) {
5815 for (j = 0; j < nr_node_ids; j++)
5816 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5817 }
5818}
5819
5820/*
5821 * Update sched_domains_numa_masks[level][node] array when new cpus
5822 * are onlined.
5823 */
5824static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5825 unsigned long action,
5826 void *hcpu)
5827{
5828 int cpu = (long)hcpu;
5829
5830 switch (action & ~CPU_TASKS_FROZEN) {
5831 case CPU_ONLINE:
5832 sched_domains_numa_masks_set(cpu);
5833 break;
5834
5835 case CPU_DEAD:
5836 sched_domains_numa_masks_clear(cpu);
5837 break;
5838
5839 default:
5840 return NOTIFY_DONE;
5841 }
5842
5843 return NOTIFY_OK;
cb83b629
PZ
5844}
5845#else
5846static inline void sched_init_numa(void)
5847{
5848}
301a5cba
TC
5849
5850static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5851 unsigned long action,
5852 void *hcpu)
5853{
5854 return 0;
5855}
cb83b629
PZ
5856#endif /* CONFIG_NUMA */
5857
54ab4ff4
PZ
5858static int __sdt_alloc(const struct cpumask *cpu_map)
5859{
5860 struct sched_domain_topology_level *tl;
5861 int j;
5862
27723a68 5863 for_each_sd_topology(tl) {
54ab4ff4
PZ
5864 struct sd_data *sdd = &tl->data;
5865
5866 sdd->sd = alloc_percpu(struct sched_domain *);
5867 if (!sdd->sd)
5868 return -ENOMEM;
5869
5870 sdd->sg = alloc_percpu(struct sched_group *);
5871 if (!sdd->sg)
5872 return -ENOMEM;
5873
9c3f75cb
PZ
5874 sdd->sgp = alloc_percpu(struct sched_group_power *);
5875 if (!sdd->sgp)
5876 return -ENOMEM;
5877
54ab4ff4
PZ
5878 for_each_cpu(j, cpu_map) {
5879 struct sched_domain *sd;
5880 struct sched_group *sg;
9c3f75cb 5881 struct sched_group_power *sgp;
54ab4ff4
PZ
5882
5883 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5884 GFP_KERNEL, cpu_to_node(j));
5885 if (!sd)
5886 return -ENOMEM;
5887
5888 *per_cpu_ptr(sdd->sd, j) = sd;
5889
5890 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5891 GFP_KERNEL, cpu_to_node(j));
5892 if (!sg)
5893 return -ENOMEM;
5894
30b4e9eb
IM
5895 sg->next = sg;
5896
54ab4ff4 5897 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5898
c1174876 5899 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5900 GFP_KERNEL, cpu_to_node(j));
5901 if (!sgp)
5902 return -ENOMEM;
5903
5904 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5905 }
5906 }
5907
5908 return 0;
5909}
5910
5911static void __sdt_free(const struct cpumask *cpu_map)
5912{
5913 struct sched_domain_topology_level *tl;
5914 int j;
5915
27723a68 5916 for_each_sd_topology(tl) {
54ab4ff4
PZ
5917 struct sd_data *sdd = &tl->data;
5918
5919 for_each_cpu(j, cpu_map) {
fb2cf2c6 5920 struct sched_domain *sd;
5921
5922 if (sdd->sd) {
5923 sd = *per_cpu_ptr(sdd->sd, j);
5924 if (sd && (sd->flags & SD_OVERLAP))
5925 free_sched_groups(sd->groups, 0);
5926 kfree(*per_cpu_ptr(sdd->sd, j));
5927 }
5928
5929 if (sdd->sg)
5930 kfree(*per_cpu_ptr(sdd->sg, j));
5931 if (sdd->sgp)
5932 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5933 }
5934 free_percpu(sdd->sd);
fb2cf2c6 5935 sdd->sd = NULL;
54ab4ff4 5936 free_percpu(sdd->sg);
fb2cf2c6 5937 sdd->sg = NULL;
9c3f75cb 5938 free_percpu(sdd->sgp);
fb2cf2c6 5939 sdd->sgp = NULL;
54ab4ff4
PZ
5940 }
5941}
5942
2c402dc3 5943struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
5944 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5945 struct sched_domain *child, int cpu)
2c402dc3 5946{
54ab4ff4 5947 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5948 if (!sd)
d069b916 5949 return child;
2c402dc3 5950
2c402dc3 5951 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
5952 if (child) {
5953 sd->level = child->level + 1;
5954 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 5955 child->parent = sd;
c75e0128 5956 sd->child = child;
60495e77 5957 }
a841f8ce 5958 set_domain_attribute(sd, attr);
2c402dc3
PZ
5959
5960 return sd;
5961}
5962
2109b99e
AH
5963/*
5964 * Build sched domains for a given set of cpus and attach the sched domains
5965 * to the individual cpus
5966 */
dce840a0
PZ
5967static int build_sched_domains(const struct cpumask *cpu_map,
5968 struct sched_domain_attr *attr)
2109b99e 5969{
1c632169 5970 enum s_alloc alloc_state;
dce840a0 5971 struct sched_domain *sd;
2109b99e 5972 struct s_data d;
822ff793 5973 int i, ret = -ENOMEM;
9c1cfda2 5974
2109b99e
AH
5975 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5976 if (alloc_state != sa_rootdomain)
5977 goto error;
9c1cfda2 5978
dce840a0 5979 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 5980 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
5981 struct sched_domain_topology_level *tl;
5982
3bd65a80 5983 sd = NULL;
27723a68 5984 for_each_sd_topology(tl) {
4a850cbe 5985 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
5986 if (tl == sched_domain_topology)
5987 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
5988 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5989 sd->flags |= SD_OVERLAP;
d110235d
PZ
5990 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5991 break;
e3589f6c 5992 }
dce840a0
PZ
5993 }
5994
5995 /* Build the groups for the domains */
5996 for_each_cpu(i, cpu_map) {
5997 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5998 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
5999 if (sd->flags & SD_OVERLAP) {
6000 if (build_overlap_sched_groups(sd, i))
6001 goto error;
6002 } else {
6003 if (build_sched_groups(sd, i))
6004 goto error;
6005 }
1cf51902 6006 }
a06dadbe 6007 }
9c1cfda2 6008
1da177e4 6009 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6010 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6011 if (!cpumask_test_cpu(i, cpu_map))
6012 continue;
9c1cfda2 6013
dce840a0
PZ
6014 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6015 claim_allocations(i, sd);
cd4ea6ae 6016 init_sched_groups_power(i, sd);
dce840a0 6017 }
f712c0c7 6018 }
9c1cfda2 6019
1da177e4 6020 /* Attach the domains */
dce840a0 6021 rcu_read_lock();
abcd083a 6022 for_each_cpu(i, cpu_map) {
21d42ccf 6023 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6024 cpu_attach_domain(sd, d.rd, i);
1da177e4 6025 }
dce840a0 6026 rcu_read_unlock();
51888ca2 6027
822ff793 6028 ret = 0;
51888ca2 6029error:
2109b99e 6030 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6031 return ret;
1da177e4 6032}
029190c5 6033
acc3f5d7 6034static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6035static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6036static struct sched_domain_attr *dattr_cur;
6037 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6038
6039/*
6040 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6041 * cpumask) fails, then fallback to a single sched domain,
6042 * as determined by the single cpumask fallback_doms.
029190c5 6043 */
4212823f 6044static cpumask_var_t fallback_doms;
029190c5 6045
ee79d1bd
HC
6046/*
6047 * arch_update_cpu_topology lets virtualized architectures update the
6048 * cpu core maps. It is supposed to return 1 if the topology changed
6049 * or 0 if it stayed the same.
6050 */
6051int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6052{
ee79d1bd 6053 return 0;
22e52b07
HC
6054}
6055
acc3f5d7
RR
6056cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6057{
6058 int i;
6059 cpumask_var_t *doms;
6060
6061 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6062 if (!doms)
6063 return NULL;
6064 for (i = 0; i < ndoms; i++) {
6065 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6066 free_sched_domains(doms, i);
6067 return NULL;
6068 }
6069 }
6070 return doms;
6071}
6072
6073void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6074{
6075 unsigned int i;
6076 for (i = 0; i < ndoms; i++)
6077 free_cpumask_var(doms[i]);
6078 kfree(doms);
6079}
6080
1a20ff27 6081/*
41a2d6cf 6082 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6083 * For now this just excludes isolated cpus, but could be used to
6084 * exclude other special cases in the future.
1a20ff27 6085 */
c4a8849a 6086static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6087{
7378547f
MM
6088 int err;
6089
22e52b07 6090 arch_update_cpu_topology();
029190c5 6091 ndoms_cur = 1;
acc3f5d7 6092 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6093 if (!doms_cur)
acc3f5d7
RR
6094 doms_cur = &fallback_doms;
6095 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6096 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6097 register_sched_domain_sysctl();
7378547f
MM
6098
6099 return err;
1a20ff27
DG
6100}
6101
1a20ff27
DG
6102/*
6103 * Detach sched domains from a group of cpus specified in cpu_map
6104 * These cpus will now be attached to the NULL domain
6105 */
96f874e2 6106static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6107{
6108 int i;
6109
dce840a0 6110 rcu_read_lock();
abcd083a 6111 for_each_cpu(i, cpu_map)
57d885fe 6112 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6113 rcu_read_unlock();
1a20ff27
DG
6114}
6115
1d3504fc
HS
6116/* handle null as "default" */
6117static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6118 struct sched_domain_attr *new, int idx_new)
6119{
6120 struct sched_domain_attr tmp;
6121
6122 /* fast path */
6123 if (!new && !cur)
6124 return 1;
6125
6126 tmp = SD_ATTR_INIT;
6127 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6128 new ? (new + idx_new) : &tmp,
6129 sizeof(struct sched_domain_attr));
6130}
6131
029190c5
PJ
6132/*
6133 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6134 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6135 * doms_new[] to the current sched domain partitioning, doms_cur[].
6136 * It destroys each deleted domain and builds each new domain.
6137 *
acc3f5d7 6138 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6139 * The masks don't intersect (don't overlap.) We should setup one
6140 * sched domain for each mask. CPUs not in any of the cpumasks will
6141 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6142 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6143 * it as it is.
6144 *
acc3f5d7
RR
6145 * The passed in 'doms_new' should be allocated using
6146 * alloc_sched_domains. This routine takes ownership of it and will
6147 * free_sched_domains it when done with it. If the caller failed the
6148 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6149 * and partition_sched_domains() will fallback to the single partition
6150 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6151 *
96f874e2 6152 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6153 * ndoms_new == 0 is a special case for destroying existing domains,
6154 * and it will not create the default domain.
dfb512ec 6155 *
029190c5
PJ
6156 * Call with hotplug lock held
6157 */
acc3f5d7 6158void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6159 struct sched_domain_attr *dattr_new)
029190c5 6160{
dfb512ec 6161 int i, j, n;
d65bd5ec 6162 int new_topology;
029190c5 6163
712555ee 6164 mutex_lock(&sched_domains_mutex);
a1835615 6165
7378547f
MM
6166 /* always unregister in case we don't destroy any domains */
6167 unregister_sched_domain_sysctl();
6168
d65bd5ec
HC
6169 /* Let architecture update cpu core mappings. */
6170 new_topology = arch_update_cpu_topology();
6171
dfb512ec 6172 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6173
6174 /* Destroy deleted domains */
6175 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6176 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6177 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6178 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6179 goto match1;
6180 }
6181 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6182 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6183match1:
6184 ;
6185 }
6186
e761b772
MK
6187 if (doms_new == NULL) {
6188 ndoms_cur = 0;
acc3f5d7 6189 doms_new = &fallback_doms;
6ad4c188 6190 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6191 WARN_ON_ONCE(dattr_new);
e761b772
MK
6192 }
6193
029190c5
PJ
6194 /* Build new domains */
6195 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6196 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6197 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6198 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6199 goto match2;
6200 }
6201 /* no match - add a new doms_new */
dce840a0 6202 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6203match2:
6204 ;
6205 }
6206
6207 /* Remember the new sched domains */
acc3f5d7
RR
6208 if (doms_cur != &fallback_doms)
6209 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6210 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6211 doms_cur = doms_new;
1d3504fc 6212 dattr_cur = dattr_new;
029190c5 6213 ndoms_cur = ndoms_new;
7378547f
MM
6214
6215 register_sched_domain_sysctl();
a1835615 6216
712555ee 6217 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6218}
6219
d35be8ba
SB
6220static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6221
1da177e4 6222/*
3a101d05
TH
6223 * Update cpusets according to cpu_active mask. If cpusets are
6224 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6225 * around partition_sched_domains().
d35be8ba
SB
6226 *
6227 * If we come here as part of a suspend/resume, don't touch cpusets because we
6228 * want to restore it back to its original state upon resume anyway.
1da177e4 6229 */
0b2e918a
TH
6230static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6231 void *hcpu)
e761b772 6232{
d35be8ba
SB
6233 switch (action) {
6234 case CPU_ONLINE_FROZEN:
6235 case CPU_DOWN_FAILED_FROZEN:
6236
6237 /*
6238 * num_cpus_frozen tracks how many CPUs are involved in suspend
6239 * resume sequence. As long as this is not the last online
6240 * operation in the resume sequence, just build a single sched
6241 * domain, ignoring cpusets.
6242 */
6243 num_cpus_frozen--;
6244 if (likely(num_cpus_frozen)) {
6245 partition_sched_domains(1, NULL, NULL);
6246 break;
6247 }
6248
6249 /*
6250 * This is the last CPU online operation. So fall through and
6251 * restore the original sched domains by considering the
6252 * cpuset configurations.
6253 */
6254
e761b772 6255 case CPU_ONLINE:
6ad4c188 6256 case CPU_DOWN_FAILED:
7ddf96b0 6257 cpuset_update_active_cpus(true);
d35be8ba 6258 break;
3a101d05
TH
6259 default:
6260 return NOTIFY_DONE;
6261 }
d35be8ba 6262 return NOTIFY_OK;
3a101d05 6263}
e761b772 6264
0b2e918a
TH
6265static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6266 void *hcpu)
3a101d05 6267{
d35be8ba 6268 switch (action) {
3a101d05 6269 case CPU_DOWN_PREPARE:
7ddf96b0 6270 cpuset_update_active_cpus(false);
d35be8ba
SB
6271 break;
6272 case CPU_DOWN_PREPARE_FROZEN:
6273 num_cpus_frozen++;
6274 partition_sched_domains(1, NULL, NULL);
6275 break;
e761b772
MK
6276 default:
6277 return NOTIFY_DONE;
6278 }
d35be8ba 6279 return NOTIFY_OK;
e761b772 6280}
e761b772 6281
1da177e4
LT
6282void __init sched_init_smp(void)
6283{
dcc30a35
RR
6284 cpumask_var_t non_isolated_cpus;
6285
6286 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6287 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6288
cb83b629
PZ
6289 sched_init_numa();
6290
95402b38 6291 get_online_cpus();
712555ee 6292 mutex_lock(&sched_domains_mutex);
c4a8849a 6293 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6294 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6295 if (cpumask_empty(non_isolated_cpus))
6296 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6297 mutex_unlock(&sched_domains_mutex);
95402b38 6298 put_online_cpus();
e761b772 6299
301a5cba 6300 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6301 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6302 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6303
b328ca18 6304 init_hrtick();
5c1e1767
NP
6305
6306 /* Move init over to a non-isolated CPU */
dcc30a35 6307 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6308 BUG();
19978ca6 6309 sched_init_granularity();
dcc30a35 6310 free_cpumask_var(non_isolated_cpus);
4212823f 6311
0e3900e6 6312 init_sched_rt_class();
1da177e4
LT
6313}
6314#else
6315void __init sched_init_smp(void)
6316{
19978ca6 6317 sched_init_granularity();
1da177e4
LT
6318}
6319#endif /* CONFIG_SMP */
6320
cd1bb94b
AB
6321const_debug unsigned int sysctl_timer_migration = 1;
6322
1da177e4
LT
6323int in_sched_functions(unsigned long addr)
6324{
1da177e4
LT
6325 return in_lock_functions(addr) ||
6326 (addr >= (unsigned long)__sched_text_start
6327 && addr < (unsigned long)__sched_text_end);
6328}
6329
029632fb 6330#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6331/*
6332 * Default task group.
6333 * Every task in system belongs to this group at bootup.
6334 */
029632fb 6335struct task_group root_task_group;
35cf4e50 6336LIST_HEAD(task_groups);
052f1dc7 6337#endif
6f505b16 6338
e6252c3e 6339DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6340
1da177e4
LT
6341void __init sched_init(void)
6342{
dd41f596 6343 int i, j;
434d53b0
MT
6344 unsigned long alloc_size = 0, ptr;
6345
6346#ifdef CONFIG_FAIR_GROUP_SCHED
6347 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6348#endif
6349#ifdef CONFIG_RT_GROUP_SCHED
6350 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6351#endif
df7c8e84 6352#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6353 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6354#endif
434d53b0 6355 if (alloc_size) {
36b7b6d4 6356 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6357
6358#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6359 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6360 ptr += nr_cpu_ids * sizeof(void **);
6361
07e06b01 6362 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6363 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6364
6d6bc0ad 6365#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6366#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6367 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6368 ptr += nr_cpu_ids * sizeof(void **);
6369
07e06b01 6370 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6371 ptr += nr_cpu_ids * sizeof(void **);
6372
6d6bc0ad 6373#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6374#ifdef CONFIG_CPUMASK_OFFSTACK
6375 for_each_possible_cpu(i) {
e6252c3e 6376 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6377 ptr += cpumask_size();
6378 }
6379#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6380 }
dd41f596 6381
57d885fe
GH
6382#ifdef CONFIG_SMP
6383 init_defrootdomain();
6384#endif
6385
d0b27fa7
PZ
6386 init_rt_bandwidth(&def_rt_bandwidth,
6387 global_rt_period(), global_rt_runtime());
6388
6389#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6390 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6391 global_rt_period(), global_rt_runtime());
6d6bc0ad 6392#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6393
7c941438 6394#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6395 list_add(&root_task_group.list, &task_groups);
6396 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6397 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6398 autogroup_init(&init_task);
54c707e9 6399
7c941438 6400#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6401
0a945022 6402 for_each_possible_cpu(i) {
70b97a7f 6403 struct rq *rq;
1da177e4
LT
6404
6405 rq = cpu_rq(i);
05fa785c 6406 raw_spin_lock_init(&rq->lock);
7897986b 6407 rq->nr_running = 0;
dce48a84
TG
6408 rq->calc_load_active = 0;
6409 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6410 init_cfs_rq(&rq->cfs);
6f505b16 6411 init_rt_rq(&rq->rt, rq);
dd41f596 6412#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6413 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6414 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6415 /*
07e06b01 6416 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6417 *
6418 * In case of task-groups formed thr' the cgroup filesystem, it
6419 * gets 100% of the cpu resources in the system. This overall
6420 * system cpu resource is divided among the tasks of
07e06b01 6421 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6422 * based on each entity's (task or task-group's) weight
6423 * (se->load.weight).
6424 *
07e06b01 6425 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6426 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6427 * then A0's share of the cpu resource is:
6428 *
0d905bca 6429 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6430 *
07e06b01
YZ
6431 * We achieve this by letting root_task_group's tasks sit
6432 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6433 */
ab84d31e 6434 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6435 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6436#endif /* CONFIG_FAIR_GROUP_SCHED */
6437
6438 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6439#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6440 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6441 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6442#endif
1da177e4 6443
dd41f596
IM
6444 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6445 rq->cpu_load[j] = 0;
fdf3e95d
VP
6446
6447 rq->last_load_update_tick = jiffies;
6448
1da177e4 6449#ifdef CONFIG_SMP
41c7ce9a 6450 rq->sd = NULL;
57d885fe 6451 rq->rd = NULL;
1399fa78 6452 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6453 rq->post_schedule = 0;
1da177e4 6454 rq->active_balance = 0;
dd41f596 6455 rq->next_balance = jiffies;
1da177e4 6456 rq->push_cpu = 0;
0a2966b4 6457 rq->cpu = i;
1f11eb6a 6458 rq->online = 0;
eae0c9df
MG
6459 rq->idle_stamp = 0;
6460 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6461
6462 INIT_LIST_HEAD(&rq->cfs_tasks);
6463
dc938520 6464 rq_attach_root(rq, &def_root_domain);
3451d024 6465#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6466 rq->nohz_flags = 0;
83cd4fe2 6467#endif
265f22a9
FW
6468#ifdef CONFIG_NO_HZ_FULL
6469 rq->last_sched_tick = 0;
6470#endif
1da177e4 6471#endif
8f4d37ec 6472 init_rq_hrtick(rq);
1da177e4 6473 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6474 }
6475
2dd73a4f 6476 set_load_weight(&init_task);
b50f60ce 6477
e107be36
AK
6478#ifdef CONFIG_PREEMPT_NOTIFIERS
6479 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6480#endif
6481
b50f60ce 6482#ifdef CONFIG_RT_MUTEXES
732375c6 6483 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6484#endif
6485
1da177e4
LT
6486 /*
6487 * The boot idle thread does lazy MMU switching as well:
6488 */
6489 atomic_inc(&init_mm.mm_count);
6490 enter_lazy_tlb(&init_mm, current);
6491
6492 /*
6493 * Make us the idle thread. Technically, schedule() should not be
6494 * called from this thread, however somewhere below it might be,
6495 * but because we are the idle thread, we just pick up running again
6496 * when this runqueue becomes "idle".
6497 */
6498 init_idle(current, smp_processor_id());
dce48a84
TG
6499
6500 calc_load_update = jiffies + LOAD_FREQ;
6501
dd41f596
IM
6502 /*
6503 * During early bootup we pretend to be a normal task:
6504 */
6505 current->sched_class = &fair_sched_class;
6892b75e 6506
bf4d83f6 6507#ifdef CONFIG_SMP
4cb98839 6508 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6509 /* May be allocated at isolcpus cmdline parse time */
6510 if (cpu_isolated_map == NULL)
6511 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6512 idle_thread_set_boot_cpu();
029632fb
PZ
6513#endif
6514 init_sched_fair_class();
6a7b3dc3 6515
6892b75e 6516 scheduler_running = 1;
1da177e4
LT
6517}
6518
d902db1e 6519#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6520static inline int preempt_count_equals(int preempt_offset)
6521{
234da7bc 6522 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6523
4ba8216c 6524 return (nested == preempt_offset);
e4aafea2
FW
6525}
6526
d894837f 6527void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6528{
1da177e4
LT
6529 static unsigned long prev_jiffy; /* ratelimiting */
6530
b3fbab05 6531 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6532 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6533 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6534 return;
6535 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6536 return;
6537 prev_jiffy = jiffies;
6538
3df0fc5b
PZ
6539 printk(KERN_ERR
6540 "BUG: sleeping function called from invalid context at %s:%d\n",
6541 file, line);
6542 printk(KERN_ERR
6543 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6544 in_atomic(), irqs_disabled(),
6545 current->pid, current->comm);
aef745fc
IM
6546
6547 debug_show_held_locks(current);
6548 if (irqs_disabled())
6549 print_irqtrace_events(current);
6550 dump_stack();
1da177e4
LT
6551}
6552EXPORT_SYMBOL(__might_sleep);
6553#endif
6554
6555#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6556static void normalize_task(struct rq *rq, struct task_struct *p)
6557{
da7a735e
PZ
6558 const struct sched_class *prev_class = p->sched_class;
6559 int old_prio = p->prio;
3a5e4dc1 6560 int on_rq;
3e51f33f 6561
fd2f4419 6562 on_rq = p->on_rq;
3a5e4dc1 6563 if (on_rq)
4ca9b72b 6564 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6565 __setscheduler(rq, p, SCHED_NORMAL, 0);
6566 if (on_rq) {
4ca9b72b 6567 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6568 resched_task(rq->curr);
6569 }
da7a735e
PZ
6570
6571 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6572}
6573
1da177e4
LT
6574void normalize_rt_tasks(void)
6575{
a0f98a1c 6576 struct task_struct *g, *p;
1da177e4 6577 unsigned long flags;
70b97a7f 6578 struct rq *rq;
1da177e4 6579
4cf5d77a 6580 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6581 do_each_thread(g, p) {
178be793
IM
6582 /*
6583 * Only normalize user tasks:
6584 */
6585 if (!p->mm)
6586 continue;
6587
6cfb0d5d 6588 p->se.exec_start = 0;
6cfb0d5d 6589#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6590 p->se.statistics.wait_start = 0;
6591 p->se.statistics.sleep_start = 0;
6592 p->se.statistics.block_start = 0;
6cfb0d5d 6593#endif
dd41f596
IM
6594
6595 if (!rt_task(p)) {
6596 /*
6597 * Renice negative nice level userspace
6598 * tasks back to 0:
6599 */
6600 if (TASK_NICE(p) < 0 && p->mm)
6601 set_user_nice(p, 0);
1da177e4 6602 continue;
dd41f596 6603 }
1da177e4 6604
1d615482 6605 raw_spin_lock(&p->pi_lock);
b29739f9 6606 rq = __task_rq_lock(p);
1da177e4 6607
178be793 6608 normalize_task(rq, p);
3a5e4dc1 6609
b29739f9 6610 __task_rq_unlock(rq);
1d615482 6611 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6612 } while_each_thread(g, p);
6613
4cf5d77a 6614 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6615}
6616
6617#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6618
67fc4e0c 6619#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6620/*
67fc4e0c 6621 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6622 *
6623 * They can only be called when the whole system has been
6624 * stopped - every CPU needs to be quiescent, and no scheduling
6625 * activity can take place. Using them for anything else would
6626 * be a serious bug, and as a result, they aren't even visible
6627 * under any other configuration.
6628 */
6629
6630/**
6631 * curr_task - return the current task for a given cpu.
6632 * @cpu: the processor in question.
6633 *
6634 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6635 */
36c8b586 6636struct task_struct *curr_task(int cpu)
1df5c10a
LT
6637{
6638 return cpu_curr(cpu);
6639}
6640
67fc4e0c
JW
6641#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6642
6643#ifdef CONFIG_IA64
1df5c10a
LT
6644/**
6645 * set_curr_task - set the current task for a given cpu.
6646 * @cpu: the processor in question.
6647 * @p: the task pointer to set.
6648 *
6649 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6650 * are serviced on a separate stack. It allows the architecture to switch the
6651 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6652 * must be called with all CPU's synchronized, and interrupts disabled, the
6653 * and caller must save the original value of the current task (see
6654 * curr_task() above) and restore that value before reenabling interrupts and
6655 * re-starting the system.
6656 *
6657 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6658 */
36c8b586 6659void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6660{
6661 cpu_curr(cpu) = p;
6662}
6663
6664#endif
29f59db3 6665
7c941438 6666#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6667/* task_group_lock serializes the addition/removal of task groups */
6668static DEFINE_SPINLOCK(task_group_lock);
6669
bccbe08a
PZ
6670static void free_sched_group(struct task_group *tg)
6671{
6672 free_fair_sched_group(tg);
6673 free_rt_sched_group(tg);
e9aa1dd1 6674 autogroup_free(tg);
bccbe08a
PZ
6675 kfree(tg);
6676}
6677
6678/* allocate runqueue etc for a new task group */
ec7dc8ac 6679struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6680{
6681 struct task_group *tg;
bccbe08a
PZ
6682
6683 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6684 if (!tg)
6685 return ERR_PTR(-ENOMEM);
6686
ec7dc8ac 6687 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6688 goto err;
6689
ec7dc8ac 6690 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6691 goto err;
6692
ace783b9
LZ
6693 return tg;
6694
6695err:
6696 free_sched_group(tg);
6697 return ERR_PTR(-ENOMEM);
6698}
6699
6700void sched_online_group(struct task_group *tg, struct task_group *parent)
6701{
6702 unsigned long flags;
6703
8ed36996 6704 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6705 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6706
6707 WARN_ON(!parent); /* root should already exist */
6708
6709 tg->parent = parent;
f473aa5e 6710 INIT_LIST_HEAD(&tg->children);
09f2724a 6711 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6712 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6713}
6714
9b5b7751 6715/* rcu callback to free various structures associated with a task group */
6f505b16 6716static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6717{
29f59db3 6718 /* now it should be safe to free those cfs_rqs */
6f505b16 6719 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6720}
6721
9b5b7751 6722/* Destroy runqueue etc associated with a task group */
4cf86d77 6723void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6724{
6725 /* wait for possible concurrent references to cfs_rqs complete */
6726 call_rcu(&tg->rcu, free_sched_group_rcu);
6727}
6728
6729void sched_offline_group(struct task_group *tg)
29f59db3 6730{
8ed36996 6731 unsigned long flags;
9b5b7751 6732 int i;
29f59db3 6733
3d4b47b4
PZ
6734 /* end participation in shares distribution */
6735 for_each_possible_cpu(i)
bccbe08a 6736 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6737
6738 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6739 list_del_rcu(&tg->list);
f473aa5e 6740 list_del_rcu(&tg->siblings);
8ed36996 6741 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6742}
6743
9b5b7751 6744/* change task's runqueue when it moves between groups.
3a252015
IM
6745 * The caller of this function should have put the task in its new group
6746 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6747 * reflect its new group.
9b5b7751
SV
6748 */
6749void sched_move_task(struct task_struct *tsk)
29f59db3 6750{
8323f26c 6751 struct task_group *tg;
29f59db3
SV
6752 int on_rq, running;
6753 unsigned long flags;
6754 struct rq *rq;
6755
6756 rq = task_rq_lock(tsk, &flags);
6757
051a1d1a 6758 running = task_current(rq, tsk);
fd2f4419 6759 on_rq = tsk->on_rq;
29f59db3 6760
0e1f3483 6761 if (on_rq)
29f59db3 6762 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6763 if (unlikely(running))
6764 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6765
8323f26c
PZ
6766 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6767 lockdep_is_held(&tsk->sighand->siglock)),
6768 struct task_group, css);
6769 tg = autogroup_task_group(tsk, tg);
6770 tsk->sched_task_group = tg;
6771
810b3817 6772#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6773 if (tsk->sched_class->task_move_group)
6774 tsk->sched_class->task_move_group(tsk, on_rq);
6775 else
810b3817 6776#endif
b2b5ce02 6777 set_task_rq(tsk, task_cpu(tsk));
810b3817 6778
0e1f3483
HS
6779 if (unlikely(running))
6780 tsk->sched_class->set_curr_task(rq);
6781 if (on_rq)
371fd7e7 6782 enqueue_task(rq, tsk, 0);
29f59db3 6783
0122ec5b 6784 task_rq_unlock(rq, tsk, &flags);
29f59db3 6785}
7c941438 6786#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6787
a790de99 6788#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6789static unsigned long to_ratio(u64 period, u64 runtime)
6790{
6791 if (runtime == RUNTIME_INF)
9a7e0b18 6792 return 1ULL << 20;
9f0c1e56 6793
9a7e0b18 6794 return div64_u64(runtime << 20, period);
9f0c1e56 6795}
a790de99
PT
6796#endif
6797
6798#ifdef CONFIG_RT_GROUP_SCHED
6799/*
6800 * Ensure that the real time constraints are schedulable.
6801 */
6802static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6803
9a7e0b18
PZ
6804/* Must be called with tasklist_lock held */
6805static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6806{
9a7e0b18 6807 struct task_struct *g, *p;
b40b2e8e 6808
9a7e0b18 6809 do_each_thread(g, p) {
029632fb 6810 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6811 return 1;
6812 } while_each_thread(g, p);
b40b2e8e 6813
9a7e0b18
PZ
6814 return 0;
6815}
b40b2e8e 6816
9a7e0b18
PZ
6817struct rt_schedulable_data {
6818 struct task_group *tg;
6819 u64 rt_period;
6820 u64 rt_runtime;
6821};
b40b2e8e 6822
a790de99 6823static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6824{
6825 struct rt_schedulable_data *d = data;
6826 struct task_group *child;
6827 unsigned long total, sum = 0;
6828 u64 period, runtime;
b40b2e8e 6829
9a7e0b18
PZ
6830 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6831 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6832
9a7e0b18
PZ
6833 if (tg == d->tg) {
6834 period = d->rt_period;
6835 runtime = d->rt_runtime;
b40b2e8e 6836 }
b40b2e8e 6837
4653f803
PZ
6838 /*
6839 * Cannot have more runtime than the period.
6840 */
6841 if (runtime > period && runtime != RUNTIME_INF)
6842 return -EINVAL;
6f505b16 6843
4653f803
PZ
6844 /*
6845 * Ensure we don't starve existing RT tasks.
6846 */
9a7e0b18
PZ
6847 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6848 return -EBUSY;
6f505b16 6849
9a7e0b18 6850 total = to_ratio(period, runtime);
6f505b16 6851
4653f803
PZ
6852 /*
6853 * Nobody can have more than the global setting allows.
6854 */
6855 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6856 return -EINVAL;
6f505b16 6857
4653f803
PZ
6858 /*
6859 * The sum of our children's runtime should not exceed our own.
6860 */
9a7e0b18
PZ
6861 list_for_each_entry_rcu(child, &tg->children, siblings) {
6862 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6863 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6864
9a7e0b18
PZ
6865 if (child == d->tg) {
6866 period = d->rt_period;
6867 runtime = d->rt_runtime;
6868 }
6f505b16 6869
9a7e0b18 6870 sum += to_ratio(period, runtime);
9f0c1e56 6871 }
6f505b16 6872
9a7e0b18
PZ
6873 if (sum > total)
6874 return -EINVAL;
6875
6876 return 0;
6f505b16
PZ
6877}
6878
9a7e0b18 6879static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6880{
8277434e
PT
6881 int ret;
6882
9a7e0b18
PZ
6883 struct rt_schedulable_data data = {
6884 .tg = tg,
6885 .rt_period = period,
6886 .rt_runtime = runtime,
6887 };
6888
8277434e
PT
6889 rcu_read_lock();
6890 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6891 rcu_read_unlock();
6892
6893 return ret;
521f1a24
DG
6894}
6895
ab84d31e 6896static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6897 u64 rt_period, u64 rt_runtime)
6f505b16 6898{
ac086bc2 6899 int i, err = 0;
9f0c1e56 6900
9f0c1e56 6901 mutex_lock(&rt_constraints_mutex);
521f1a24 6902 read_lock(&tasklist_lock);
9a7e0b18
PZ
6903 err = __rt_schedulable(tg, rt_period, rt_runtime);
6904 if (err)
9f0c1e56 6905 goto unlock;
ac086bc2 6906
0986b11b 6907 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6908 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6909 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6910
6911 for_each_possible_cpu(i) {
6912 struct rt_rq *rt_rq = tg->rt_rq[i];
6913
0986b11b 6914 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6915 rt_rq->rt_runtime = rt_runtime;
0986b11b 6916 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6917 }
0986b11b 6918 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6919unlock:
521f1a24 6920 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6921 mutex_unlock(&rt_constraints_mutex);
6922
6923 return err;
6f505b16
PZ
6924}
6925
25cc7da7 6926static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6927{
6928 u64 rt_runtime, rt_period;
6929
6930 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6931 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6932 if (rt_runtime_us < 0)
6933 rt_runtime = RUNTIME_INF;
6934
ab84d31e 6935 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6936}
6937
25cc7da7 6938static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6939{
6940 u64 rt_runtime_us;
6941
d0b27fa7 6942 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6943 return -1;
6944
d0b27fa7 6945 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6946 do_div(rt_runtime_us, NSEC_PER_USEC);
6947 return rt_runtime_us;
6948}
d0b27fa7 6949
25cc7da7 6950static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
6951{
6952 u64 rt_runtime, rt_period;
6953
6954 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6955 rt_runtime = tg->rt_bandwidth.rt_runtime;
6956
619b0488
R
6957 if (rt_period == 0)
6958 return -EINVAL;
6959
ab84d31e 6960 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6961}
6962
25cc7da7 6963static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6964{
6965 u64 rt_period_us;
6966
6967 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6968 do_div(rt_period_us, NSEC_PER_USEC);
6969 return rt_period_us;
6970}
6971
6972static int sched_rt_global_constraints(void)
6973{
4653f803 6974 u64 runtime, period;
d0b27fa7
PZ
6975 int ret = 0;
6976
ec5d4989
HS
6977 if (sysctl_sched_rt_period <= 0)
6978 return -EINVAL;
6979
4653f803
PZ
6980 runtime = global_rt_runtime();
6981 period = global_rt_period();
6982
6983 /*
6984 * Sanity check on the sysctl variables.
6985 */
6986 if (runtime > period && runtime != RUNTIME_INF)
6987 return -EINVAL;
10b612f4 6988
d0b27fa7 6989 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6990 read_lock(&tasklist_lock);
4653f803 6991 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6992 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6993 mutex_unlock(&rt_constraints_mutex);
6994
6995 return ret;
6996}
54e99124 6997
25cc7da7 6998static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6999{
7000 /* Don't accept realtime tasks when there is no way for them to run */
7001 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7002 return 0;
7003
7004 return 1;
7005}
7006
6d6bc0ad 7007#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7008static int sched_rt_global_constraints(void)
7009{
ac086bc2
PZ
7010 unsigned long flags;
7011 int i;
7012
ec5d4989
HS
7013 if (sysctl_sched_rt_period <= 0)
7014 return -EINVAL;
7015
60aa605d
PZ
7016 /*
7017 * There's always some RT tasks in the root group
7018 * -- migration, kstopmachine etc..
7019 */
7020 if (sysctl_sched_rt_runtime == 0)
7021 return -EBUSY;
7022
0986b11b 7023 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7024 for_each_possible_cpu(i) {
7025 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7026
0986b11b 7027 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7028 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7029 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7030 }
0986b11b 7031 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7032
d0b27fa7
PZ
7033 return 0;
7034}
6d6bc0ad 7035#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7036
ce0dbbbb
CW
7037int sched_rr_handler(struct ctl_table *table, int write,
7038 void __user *buffer, size_t *lenp,
7039 loff_t *ppos)
7040{
7041 int ret;
7042 static DEFINE_MUTEX(mutex);
7043
7044 mutex_lock(&mutex);
7045 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7046 /* make sure that internally we keep jiffies */
7047 /* also, writing zero resets timeslice to default */
7048 if (!ret && write) {
7049 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7050 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7051 }
7052 mutex_unlock(&mutex);
7053 return ret;
7054}
7055
d0b27fa7 7056int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7057 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7058 loff_t *ppos)
7059{
7060 int ret;
7061 int old_period, old_runtime;
7062 static DEFINE_MUTEX(mutex);
7063
7064 mutex_lock(&mutex);
7065 old_period = sysctl_sched_rt_period;
7066 old_runtime = sysctl_sched_rt_runtime;
7067
8d65af78 7068 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7069
7070 if (!ret && write) {
7071 ret = sched_rt_global_constraints();
7072 if (ret) {
7073 sysctl_sched_rt_period = old_period;
7074 sysctl_sched_rt_runtime = old_runtime;
7075 } else {
7076 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7077 def_rt_bandwidth.rt_period =
7078 ns_to_ktime(global_rt_period());
7079 }
7080 }
7081 mutex_unlock(&mutex);
7082
7083 return ret;
7084}
68318b8e 7085
052f1dc7 7086#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7087
7088/* return corresponding task_group object of a cgroup */
2b01dfe3 7089static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7090{
2b01dfe3
PM
7091 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7092 struct task_group, css);
68318b8e
SV
7093}
7094
92fb9748 7095static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7096{
ec7dc8ac 7097 struct task_group *tg, *parent;
68318b8e 7098
2b01dfe3 7099 if (!cgrp->parent) {
68318b8e 7100 /* This is early initialization for the top cgroup */
07e06b01 7101 return &root_task_group.css;
68318b8e
SV
7102 }
7103
ec7dc8ac
DG
7104 parent = cgroup_tg(cgrp->parent);
7105 tg = sched_create_group(parent);
68318b8e
SV
7106 if (IS_ERR(tg))
7107 return ERR_PTR(-ENOMEM);
7108
68318b8e
SV
7109 return &tg->css;
7110}
7111
ace783b9
LZ
7112static int cpu_cgroup_css_online(struct cgroup *cgrp)
7113{
7114 struct task_group *tg = cgroup_tg(cgrp);
7115 struct task_group *parent;
7116
7117 if (!cgrp->parent)
7118 return 0;
7119
7120 parent = cgroup_tg(cgrp->parent);
7121 sched_online_group(tg, parent);
7122 return 0;
7123}
7124
92fb9748 7125static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7126{
2b01dfe3 7127 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7128
7129 sched_destroy_group(tg);
7130}
7131
ace783b9
LZ
7132static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7133{
7134 struct task_group *tg = cgroup_tg(cgrp);
7135
7136 sched_offline_group(tg);
7137}
7138
761b3ef5 7139static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7140 struct cgroup_taskset *tset)
68318b8e 7141{
bb9d97b6
TH
7142 struct task_struct *task;
7143
7144 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7145#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7146 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7147 return -EINVAL;
b68aa230 7148#else
bb9d97b6
TH
7149 /* We don't support RT-tasks being in separate groups */
7150 if (task->sched_class != &fair_sched_class)
7151 return -EINVAL;
b68aa230 7152#endif
bb9d97b6 7153 }
be367d09
BB
7154 return 0;
7155}
68318b8e 7156
761b3ef5 7157static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7158 struct cgroup_taskset *tset)
68318b8e 7159{
bb9d97b6
TH
7160 struct task_struct *task;
7161
7162 cgroup_taskset_for_each(task, cgrp, tset)
7163 sched_move_task(task);
68318b8e
SV
7164}
7165
068c5cc5 7166static void
761b3ef5
LZ
7167cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7168 struct task_struct *task)
068c5cc5
PZ
7169{
7170 /*
7171 * cgroup_exit() is called in the copy_process() failure path.
7172 * Ignore this case since the task hasn't ran yet, this avoids
7173 * trying to poke a half freed task state from generic code.
7174 */
7175 if (!(task->flags & PF_EXITING))
7176 return;
7177
7178 sched_move_task(task);
7179}
7180
052f1dc7 7181#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7182static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7183 u64 shareval)
68318b8e 7184{
c8b28116 7185 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7186}
7187
f4c753b7 7188static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7189{
2b01dfe3 7190 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7191
c8b28116 7192 return (u64) scale_load_down(tg->shares);
68318b8e 7193}
ab84d31e
PT
7194
7195#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7196static DEFINE_MUTEX(cfs_constraints_mutex);
7197
ab84d31e
PT
7198const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7199const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7200
a790de99
PT
7201static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7202
ab84d31e
PT
7203static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7204{
56f570e5 7205 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7206 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7207
7208 if (tg == &root_task_group)
7209 return -EINVAL;
7210
7211 /*
7212 * Ensure we have at some amount of bandwidth every period. This is
7213 * to prevent reaching a state of large arrears when throttled via
7214 * entity_tick() resulting in prolonged exit starvation.
7215 */
7216 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7217 return -EINVAL;
7218
7219 /*
7220 * Likewise, bound things on the otherside by preventing insane quota
7221 * periods. This also allows us to normalize in computing quota
7222 * feasibility.
7223 */
7224 if (period > max_cfs_quota_period)
7225 return -EINVAL;
7226
a790de99
PT
7227 mutex_lock(&cfs_constraints_mutex);
7228 ret = __cfs_schedulable(tg, period, quota);
7229 if (ret)
7230 goto out_unlock;
7231
58088ad0 7232 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7233 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7234 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7235 raw_spin_lock_irq(&cfs_b->lock);
7236 cfs_b->period = ns_to_ktime(period);
7237 cfs_b->quota = quota;
58088ad0 7238
a9cf55b2 7239 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7240 /* restart the period timer (if active) to handle new period expiry */
7241 if (runtime_enabled && cfs_b->timer_active) {
7242 /* force a reprogram */
7243 cfs_b->timer_active = 0;
7244 __start_cfs_bandwidth(cfs_b);
7245 }
ab84d31e
PT
7246 raw_spin_unlock_irq(&cfs_b->lock);
7247
7248 for_each_possible_cpu(i) {
7249 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7250 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7251
7252 raw_spin_lock_irq(&rq->lock);
58088ad0 7253 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7254 cfs_rq->runtime_remaining = 0;
671fd9da 7255
029632fb 7256 if (cfs_rq->throttled)
671fd9da 7257 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7258 raw_spin_unlock_irq(&rq->lock);
7259 }
a790de99
PT
7260out_unlock:
7261 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7262
a790de99 7263 return ret;
ab84d31e
PT
7264}
7265
7266int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7267{
7268 u64 quota, period;
7269
029632fb 7270 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7271 if (cfs_quota_us < 0)
7272 quota = RUNTIME_INF;
7273 else
7274 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7275
7276 return tg_set_cfs_bandwidth(tg, period, quota);
7277}
7278
7279long tg_get_cfs_quota(struct task_group *tg)
7280{
7281 u64 quota_us;
7282
029632fb 7283 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7284 return -1;
7285
029632fb 7286 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7287 do_div(quota_us, NSEC_PER_USEC);
7288
7289 return quota_us;
7290}
7291
7292int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7293{
7294 u64 quota, period;
7295
7296 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7297 quota = tg->cfs_bandwidth.quota;
ab84d31e 7298
ab84d31e
PT
7299 return tg_set_cfs_bandwidth(tg, period, quota);
7300}
7301
7302long tg_get_cfs_period(struct task_group *tg)
7303{
7304 u64 cfs_period_us;
7305
029632fb 7306 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7307 do_div(cfs_period_us, NSEC_PER_USEC);
7308
7309 return cfs_period_us;
7310}
7311
7312static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7313{
7314 return tg_get_cfs_quota(cgroup_tg(cgrp));
7315}
7316
7317static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7318 s64 cfs_quota_us)
7319{
7320 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7321}
7322
7323static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7324{
7325 return tg_get_cfs_period(cgroup_tg(cgrp));
7326}
7327
7328static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7329 u64 cfs_period_us)
7330{
7331 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7332}
7333
a790de99
PT
7334struct cfs_schedulable_data {
7335 struct task_group *tg;
7336 u64 period, quota;
7337};
7338
7339/*
7340 * normalize group quota/period to be quota/max_period
7341 * note: units are usecs
7342 */
7343static u64 normalize_cfs_quota(struct task_group *tg,
7344 struct cfs_schedulable_data *d)
7345{
7346 u64 quota, period;
7347
7348 if (tg == d->tg) {
7349 period = d->period;
7350 quota = d->quota;
7351 } else {
7352 period = tg_get_cfs_period(tg);
7353 quota = tg_get_cfs_quota(tg);
7354 }
7355
7356 /* note: these should typically be equivalent */
7357 if (quota == RUNTIME_INF || quota == -1)
7358 return RUNTIME_INF;
7359
7360 return to_ratio(period, quota);
7361}
7362
7363static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7364{
7365 struct cfs_schedulable_data *d = data;
029632fb 7366 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7367 s64 quota = 0, parent_quota = -1;
7368
7369 if (!tg->parent) {
7370 quota = RUNTIME_INF;
7371 } else {
029632fb 7372 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7373
7374 quota = normalize_cfs_quota(tg, d);
7375 parent_quota = parent_b->hierarchal_quota;
7376
7377 /*
7378 * ensure max(child_quota) <= parent_quota, inherit when no
7379 * limit is set
7380 */
7381 if (quota == RUNTIME_INF)
7382 quota = parent_quota;
7383 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7384 return -EINVAL;
7385 }
7386 cfs_b->hierarchal_quota = quota;
7387
7388 return 0;
7389}
7390
7391static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7392{
8277434e 7393 int ret;
a790de99
PT
7394 struct cfs_schedulable_data data = {
7395 .tg = tg,
7396 .period = period,
7397 .quota = quota,
7398 };
7399
7400 if (quota != RUNTIME_INF) {
7401 do_div(data.period, NSEC_PER_USEC);
7402 do_div(data.quota, NSEC_PER_USEC);
7403 }
7404
8277434e
PT
7405 rcu_read_lock();
7406 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7407 rcu_read_unlock();
7408
7409 return ret;
a790de99 7410}
e8da1b18
NR
7411
7412static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7413 struct cgroup_map_cb *cb)
7414{
7415 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7416 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7417
7418 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7419 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7420 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7421
7422 return 0;
7423}
ab84d31e 7424#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7425#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7426
052f1dc7 7427#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7428static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7429 s64 val)
6f505b16 7430{
06ecb27c 7431 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7432}
7433
06ecb27c 7434static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7435{
06ecb27c 7436 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7437}
d0b27fa7
PZ
7438
7439static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7440 u64 rt_period_us)
7441{
7442 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7443}
7444
7445static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7446{
7447 return sched_group_rt_period(cgroup_tg(cgrp));
7448}
6d6bc0ad 7449#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7450
fe5c7cc2 7451static struct cftype cpu_files[] = {
052f1dc7 7452#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7453 {
7454 .name = "shares",
f4c753b7
PM
7455 .read_u64 = cpu_shares_read_u64,
7456 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7457 },
052f1dc7 7458#endif
ab84d31e
PT
7459#ifdef CONFIG_CFS_BANDWIDTH
7460 {
7461 .name = "cfs_quota_us",
7462 .read_s64 = cpu_cfs_quota_read_s64,
7463 .write_s64 = cpu_cfs_quota_write_s64,
7464 },
7465 {
7466 .name = "cfs_period_us",
7467 .read_u64 = cpu_cfs_period_read_u64,
7468 .write_u64 = cpu_cfs_period_write_u64,
7469 },
e8da1b18
NR
7470 {
7471 .name = "stat",
7472 .read_map = cpu_stats_show,
7473 },
ab84d31e 7474#endif
052f1dc7 7475#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7476 {
9f0c1e56 7477 .name = "rt_runtime_us",
06ecb27c
PM
7478 .read_s64 = cpu_rt_runtime_read,
7479 .write_s64 = cpu_rt_runtime_write,
6f505b16 7480 },
d0b27fa7
PZ
7481 {
7482 .name = "rt_period_us",
f4c753b7
PM
7483 .read_u64 = cpu_rt_period_read_uint,
7484 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7485 },
052f1dc7 7486#endif
4baf6e33 7487 { } /* terminate */
68318b8e
SV
7488};
7489
68318b8e 7490struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7491 .name = "cpu",
92fb9748
TH
7492 .css_alloc = cpu_cgroup_css_alloc,
7493 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7494 .css_online = cpu_cgroup_css_online,
7495 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7496 .can_attach = cpu_cgroup_can_attach,
7497 .attach = cpu_cgroup_attach,
068c5cc5 7498 .exit = cpu_cgroup_exit,
38605cae 7499 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7500 .base_cftypes = cpu_files,
68318b8e
SV
7501 .early_init = 1,
7502};
7503
052f1dc7 7504#endif /* CONFIG_CGROUP_SCHED */
d842de87 7505
b637a328
PM
7506void dump_cpu_task(int cpu)
7507{
7508 pr_info("Task dump for CPU %d:\n", cpu);
7509 sched_show_task(cpu_curr(cpu));
7510}