Merge tag 'kvm-arm-for-4.3-rc2-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
bc7a34b8 624 if (!idle_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad
PZ
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (!idle_cpu(i)) {
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
057f3fad
PZ
636unlock:
637 rcu_read_unlock();
83cd4fe2
VP
638 return cpu;
639}
06d8308c
TG
640/*
641 * When add_timer_on() enqueues a timer into the timer wheel of an
642 * idle CPU then this timer might expire before the next timer event
643 * which is scheduled to wake up that CPU. In case of a completely
644 * idle system the next event might even be infinite time into the
645 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
646 * leaves the inner idle loop so the newly added timer is taken into
647 * account when the CPU goes back to idle and evaluates the timer
648 * wheel for the next timer event.
649 */
1c20091e 650static void wake_up_idle_cpu(int cpu)
06d8308c
TG
651{
652 struct rq *rq = cpu_rq(cpu);
653
654 if (cpu == smp_processor_id())
655 return;
656
67b9ca70 657 if (set_nr_and_not_polling(rq->idle))
06d8308c 658 smp_send_reschedule(cpu);
dfc68f29
AL
659 else
660 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
661}
662
c5bfece2 663static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 664{
53c5fa16
FW
665 /*
666 * We just need the target to call irq_exit() and re-evaluate
667 * the next tick. The nohz full kick at least implies that.
668 * If needed we can still optimize that later with an
669 * empty IRQ.
670 */
c5bfece2 671 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
672 if (cpu != smp_processor_id() ||
673 tick_nohz_tick_stopped())
53c5fa16 674 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
675 return true;
676 }
677
678 return false;
679}
680
681void wake_up_nohz_cpu(int cpu)
682{
c5bfece2 683 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
684 wake_up_idle_cpu(cpu);
685}
686
ca38062e 687static inline bool got_nohz_idle_kick(void)
45bf76df 688{
1c792db7 689 int cpu = smp_processor_id();
873b4c65
VG
690
691 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
692 return false;
693
694 if (idle_cpu(cpu) && !need_resched())
695 return true;
696
697 /*
698 * We can't run Idle Load Balance on this CPU for this time so we
699 * cancel it and clear NOHZ_BALANCE_KICK
700 */
701 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
702 return false;
45bf76df
IM
703}
704
3451d024 705#else /* CONFIG_NO_HZ_COMMON */
45bf76df 706
ca38062e 707static inline bool got_nohz_idle_kick(void)
2069dd75 708{
ca38062e 709 return false;
2069dd75
PZ
710}
711
3451d024 712#endif /* CONFIG_NO_HZ_COMMON */
d842de87 713
ce831b38
FW
714#ifdef CONFIG_NO_HZ_FULL
715bool sched_can_stop_tick(void)
716{
1e78cdbd
RR
717 /*
718 * FIFO realtime policy runs the highest priority task. Other runnable
719 * tasks are of a lower priority. The scheduler tick does nothing.
720 */
721 if (current->policy == SCHED_FIFO)
722 return true;
723
724 /*
725 * Round-robin realtime tasks time slice with other tasks at the same
726 * realtime priority. Is this task the only one at this priority?
727 */
728 if (current->policy == SCHED_RR) {
729 struct sched_rt_entity *rt_se = &current->rt;
730
731 return rt_se->run_list.prev == rt_se->run_list.next;
732 }
733
3882ec64
FW
734 /*
735 * More than one running task need preemption.
736 * nr_running update is assumed to be visible
737 * after IPI is sent from wakers.
738 */
541b8264
VK
739 if (this_rq()->nr_running > 1)
740 return false;
ce831b38 741
541b8264 742 return true;
ce831b38
FW
743}
744#endif /* CONFIG_NO_HZ_FULL */
d842de87 745
029632fb 746void sched_avg_update(struct rq *rq)
18d95a28 747{
e9e9250b
PZ
748 s64 period = sched_avg_period();
749
78becc27 750 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
751 /*
752 * Inline assembly required to prevent the compiler
753 * optimising this loop into a divmod call.
754 * See __iter_div_u64_rem() for another example of this.
755 */
756 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
757 rq->age_stamp += period;
758 rq->rt_avg /= 2;
759 }
18d95a28
PZ
760}
761
6d6bc0ad 762#endif /* CONFIG_SMP */
18d95a28 763
a790de99
PT
764#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
765 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 766/*
8277434e
PT
767 * Iterate task_group tree rooted at *from, calling @down when first entering a
768 * node and @up when leaving it for the final time.
769 *
770 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 771 */
029632fb 772int walk_tg_tree_from(struct task_group *from,
8277434e 773 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
774{
775 struct task_group *parent, *child;
eb755805 776 int ret;
c09595f6 777
8277434e
PT
778 parent = from;
779
c09595f6 780down:
eb755805
PZ
781 ret = (*down)(parent, data);
782 if (ret)
8277434e 783 goto out;
c09595f6
PZ
784 list_for_each_entry_rcu(child, &parent->children, siblings) {
785 parent = child;
786 goto down;
787
788up:
789 continue;
790 }
eb755805 791 ret = (*up)(parent, data);
8277434e
PT
792 if (ret || parent == from)
793 goto out;
c09595f6
PZ
794
795 child = parent;
796 parent = parent->parent;
797 if (parent)
798 goto up;
8277434e 799out:
eb755805 800 return ret;
c09595f6
PZ
801}
802
029632fb 803int tg_nop(struct task_group *tg, void *data)
eb755805 804{
e2b245f8 805 return 0;
eb755805 806}
18d95a28
PZ
807#endif
808
45bf76df
IM
809static void set_load_weight(struct task_struct *p)
810{
f05998d4
NR
811 int prio = p->static_prio - MAX_RT_PRIO;
812 struct load_weight *load = &p->se.load;
813
dd41f596
IM
814 /*
815 * SCHED_IDLE tasks get minimal weight:
816 */
817 if (p->policy == SCHED_IDLE) {
c8b28116 818 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 819 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
820 return;
821 }
71f8bd46 822
c8b28116 823 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 824 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
825}
826
371fd7e7 827static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 828{
a64692a3 829 update_rq_clock(rq);
43148951 830 sched_info_queued(rq, p);
371fd7e7 831 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
832}
833
371fd7e7 834static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 835{
a64692a3 836 update_rq_clock(rq);
43148951 837 sched_info_dequeued(rq, p);
371fd7e7 838 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
839}
840
029632fb 841void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
842{
843 if (task_contributes_to_load(p))
844 rq->nr_uninterruptible--;
845
371fd7e7 846 enqueue_task(rq, p, flags);
1e3c88bd
PZ
847}
848
029632fb 849void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
850{
851 if (task_contributes_to_load(p))
852 rq->nr_uninterruptible++;
853
371fd7e7 854 dequeue_task(rq, p, flags);
1e3c88bd
PZ
855}
856
fe44d621 857static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 858{
095c0aa8
GC
859/*
860 * In theory, the compile should just see 0 here, and optimize out the call
861 * to sched_rt_avg_update. But I don't trust it...
862 */
863#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
864 s64 steal = 0, irq_delta = 0;
865#endif
866#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 867 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
868
869 /*
870 * Since irq_time is only updated on {soft,}irq_exit, we might run into
871 * this case when a previous update_rq_clock() happened inside a
872 * {soft,}irq region.
873 *
874 * When this happens, we stop ->clock_task and only update the
875 * prev_irq_time stamp to account for the part that fit, so that a next
876 * update will consume the rest. This ensures ->clock_task is
877 * monotonic.
878 *
879 * It does however cause some slight miss-attribution of {soft,}irq
880 * time, a more accurate solution would be to update the irq_time using
881 * the current rq->clock timestamp, except that would require using
882 * atomic ops.
883 */
884 if (irq_delta > delta)
885 irq_delta = delta;
886
887 rq->prev_irq_time += irq_delta;
888 delta -= irq_delta;
095c0aa8
GC
889#endif
890#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 891 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
892 steal = paravirt_steal_clock(cpu_of(rq));
893 steal -= rq->prev_steal_time_rq;
894
895 if (unlikely(steal > delta))
896 steal = delta;
897
095c0aa8 898 rq->prev_steal_time_rq += steal;
095c0aa8
GC
899 delta -= steal;
900 }
901#endif
902
fe44d621
PZ
903 rq->clock_task += delta;
904
095c0aa8 905#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 906 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
907 sched_rt_avg_update(rq, irq_delta + steal);
908#endif
aa483808
VP
909}
910
34f971f6
PZ
911void sched_set_stop_task(int cpu, struct task_struct *stop)
912{
913 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
914 struct task_struct *old_stop = cpu_rq(cpu)->stop;
915
916 if (stop) {
917 /*
918 * Make it appear like a SCHED_FIFO task, its something
919 * userspace knows about and won't get confused about.
920 *
921 * Also, it will make PI more or less work without too
922 * much confusion -- but then, stop work should not
923 * rely on PI working anyway.
924 */
925 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
926
927 stop->sched_class = &stop_sched_class;
928 }
929
930 cpu_rq(cpu)->stop = stop;
931
932 if (old_stop) {
933 /*
934 * Reset it back to a normal scheduling class so that
935 * it can die in pieces.
936 */
937 old_stop->sched_class = &rt_sched_class;
938 }
939}
940
14531189 941/*
dd41f596 942 * __normal_prio - return the priority that is based on the static prio
14531189 943 */
14531189
IM
944static inline int __normal_prio(struct task_struct *p)
945{
dd41f596 946 return p->static_prio;
14531189
IM
947}
948
b29739f9
IM
949/*
950 * Calculate the expected normal priority: i.e. priority
951 * without taking RT-inheritance into account. Might be
952 * boosted by interactivity modifiers. Changes upon fork,
953 * setprio syscalls, and whenever the interactivity
954 * estimator recalculates.
955 */
36c8b586 956static inline int normal_prio(struct task_struct *p)
b29739f9
IM
957{
958 int prio;
959
aab03e05
DF
960 if (task_has_dl_policy(p))
961 prio = MAX_DL_PRIO-1;
962 else if (task_has_rt_policy(p))
b29739f9
IM
963 prio = MAX_RT_PRIO-1 - p->rt_priority;
964 else
965 prio = __normal_prio(p);
966 return prio;
967}
968
969/*
970 * Calculate the current priority, i.e. the priority
971 * taken into account by the scheduler. This value might
972 * be boosted by RT tasks, or might be boosted by
973 * interactivity modifiers. Will be RT if the task got
974 * RT-boosted. If not then it returns p->normal_prio.
975 */
36c8b586 976static int effective_prio(struct task_struct *p)
b29739f9
IM
977{
978 p->normal_prio = normal_prio(p);
979 /*
980 * If we are RT tasks or we were boosted to RT priority,
981 * keep the priority unchanged. Otherwise, update priority
982 * to the normal priority:
983 */
984 if (!rt_prio(p->prio))
985 return p->normal_prio;
986 return p->prio;
987}
988
1da177e4
LT
989/**
990 * task_curr - is this task currently executing on a CPU?
991 * @p: the task in question.
e69f6186
YB
992 *
993 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 994 */
36c8b586 995inline int task_curr(const struct task_struct *p)
1da177e4
LT
996{
997 return cpu_curr(task_cpu(p)) == p;
998}
999
67dfa1b7 1000/*
4c9a4bc8
PZ
1001 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1002 * use the balance_callback list if you want balancing.
1003 *
1004 * this means any call to check_class_changed() must be followed by a call to
1005 * balance_callback().
67dfa1b7 1006 */
cb469845
SR
1007static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1008 const struct sched_class *prev_class,
da7a735e 1009 int oldprio)
cb469845
SR
1010{
1011 if (prev_class != p->sched_class) {
1012 if (prev_class->switched_from)
da7a735e 1013 prev_class->switched_from(rq, p);
4c9a4bc8 1014
da7a735e 1015 p->sched_class->switched_to(rq, p);
2d3d891d 1016 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1017 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1018}
1019
029632fb 1020void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1021{
1022 const struct sched_class *class;
1023
1024 if (p->sched_class == rq->curr->sched_class) {
1025 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1026 } else {
1027 for_each_class(class) {
1028 if (class == rq->curr->sched_class)
1029 break;
1030 if (class == p->sched_class) {
8875125e 1031 resched_curr(rq);
1e5a7405
PZ
1032 break;
1033 }
1034 }
1035 }
1036
1037 /*
1038 * A queue event has occurred, and we're going to schedule. In
1039 * this case, we can save a useless back to back clock update.
1040 */
da0c1e65 1041 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1042 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1043}
1044
1da177e4 1045#ifdef CONFIG_SMP
5cc389bc
PZ
1046/*
1047 * This is how migration works:
1048 *
1049 * 1) we invoke migration_cpu_stop() on the target CPU using
1050 * stop_one_cpu().
1051 * 2) stopper starts to run (implicitly forcing the migrated thread
1052 * off the CPU)
1053 * 3) it checks whether the migrated task is still in the wrong runqueue.
1054 * 4) if it's in the wrong runqueue then the migration thread removes
1055 * it and puts it into the right queue.
1056 * 5) stopper completes and stop_one_cpu() returns and the migration
1057 * is done.
1058 */
1059
1060/*
1061 * move_queued_task - move a queued task to new rq.
1062 *
1063 * Returns (locked) new rq. Old rq's lock is released.
1064 */
5e16bbc2 1065static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1066{
5cc389bc
PZ
1067 lockdep_assert_held(&rq->lock);
1068
1069 dequeue_task(rq, p, 0);
1070 p->on_rq = TASK_ON_RQ_MIGRATING;
1071 set_task_cpu(p, new_cpu);
1072 raw_spin_unlock(&rq->lock);
1073
1074 rq = cpu_rq(new_cpu);
1075
1076 raw_spin_lock(&rq->lock);
1077 BUG_ON(task_cpu(p) != new_cpu);
1078 p->on_rq = TASK_ON_RQ_QUEUED;
1079 enqueue_task(rq, p, 0);
1080 check_preempt_curr(rq, p, 0);
1081
1082 return rq;
1083}
1084
1085struct migration_arg {
1086 struct task_struct *task;
1087 int dest_cpu;
1088};
1089
1090/*
1091 * Move (not current) task off this cpu, onto dest cpu. We're doing
1092 * this because either it can't run here any more (set_cpus_allowed()
1093 * away from this CPU, or CPU going down), or because we're
1094 * attempting to rebalance this task on exec (sched_exec).
1095 *
1096 * So we race with normal scheduler movements, but that's OK, as long
1097 * as the task is no longer on this CPU.
5cc389bc 1098 */
5e16bbc2 1099static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1100{
5cc389bc 1101 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1102 return rq;
5cc389bc
PZ
1103
1104 /* Affinity changed (again). */
1105 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1106 return rq;
5cc389bc 1107
5e16bbc2
PZ
1108 rq = move_queued_task(rq, p, dest_cpu);
1109
1110 return rq;
5cc389bc
PZ
1111}
1112
1113/*
1114 * migration_cpu_stop - this will be executed by a highprio stopper thread
1115 * and performs thread migration by bumping thread off CPU then
1116 * 'pushing' onto another runqueue.
1117 */
1118static int migration_cpu_stop(void *data)
1119{
1120 struct migration_arg *arg = data;
5e16bbc2
PZ
1121 struct task_struct *p = arg->task;
1122 struct rq *rq = this_rq();
5cc389bc
PZ
1123
1124 /*
1125 * The original target cpu might have gone down and we might
1126 * be on another cpu but it doesn't matter.
1127 */
1128 local_irq_disable();
1129 /*
1130 * We need to explicitly wake pending tasks before running
1131 * __migrate_task() such that we will not miss enforcing cpus_allowed
1132 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1133 */
1134 sched_ttwu_pending();
5e16bbc2
PZ
1135
1136 raw_spin_lock(&p->pi_lock);
1137 raw_spin_lock(&rq->lock);
1138 /*
1139 * If task_rq(p) != rq, it cannot be migrated here, because we're
1140 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1141 * we're holding p->pi_lock.
1142 */
1143 if (task_rq(p) == rq && task_on_rq_queued(p))
1144 rq = __migrate_task(rq, p, arg->dest_cpu);
1145 raw_spin_unlock(&rq->lock);
1146 raw_spin_unlock(&p->pi_lock);
1147
5cc389bc
PZ
1148 local_irq_enable();
1149 return 0;
1150}
1151
c5b28038
PZ
1152/*
1153 * sched_class::set_cpus_allowed must do the below, but is not required to
1154 * actually call this function.
1155 */
1156void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1157{
5cc389bc
PZ
1158 cpumask_copy(&p->cpus_allowed, new_mask);
1159 p->nr_cpus_allowed = cpumask_weight(new_mask);
1160}
1161
c5b28038
PZ
1162void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1163{
6c37067e
PZ
1164 struct rq *rq = task_rq(p);
1165 bool queued, running;
1166
c5b28038 1167 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1168
1169 queued = task_on_rq_queued(p);
1170 running = task_current(rq, p);
1171
1172 if (queued) {
1173 /*
1174 * Because __kthread_bind() calls this on blocked tasks without
1175 * holding rq->lock.
1176 */
1177 lockdep_assert_held(&rq->lock);
1178 dequeue_task(rq, p, 0);
1179 }
1180 if (running)
1181 put_prev_task(rq, p);
1182
c5b28038 1183 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1184
1185 if (running)
1186 p->sched_class->set_curr_task(rq);
1187 if (queued)
1188 enqueue_task(rq, p, 0);
c5b28038
PZ
1189}
1190
5cc389bc
PZ
1191/*
1192 * Change a given task's CPU affinity. Migrate the thread to a
1193 * proper CPU and schedule it away if the CPU it's executing on
1194 * is removed from the allowed bitmask.
1195 *
1196 * NOTE: the caller must have a valid reference to the task, the
1197 * task must not exit() & deallocate itself prematurely. The
1198 * call is not atomic; no spinlocks may be held.
1199 */
25834c73
PZ
1200static int __set_cpus_allowed_ptr(struct task_struct *p,
1201 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1202{
1203 unsigned long flags;
1204 struct rq *rq;
1205 unsigned int dest_cpu;
1206 int ret = 0;
1207
1208 rq = task_rq_lock(p, &flags);
1209
25834c73
PZ
1210 /*
1211 * Must re-check here, to close a race against __kthread_bind(),
1212 * sched_setaffinity() is not guaranteed to observe the flag.
1213 */
1214 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1215 ret = -EINVAL;
1216 goto out;
1217 }
1218
5cc389bc
PZ
1219 if (cpumask_equal(&p->cpus_allowed, new_mask))
1220 goto out;
1221
1222 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1223 ret = -EINVAL;
1224 goto out;
1225 }
1226
1227 do_set_cpus_allowed(p, new_mask);
1228
1229 /* Can the task run on the task's current CPU? If so, we're done */
1230 if (cpumask_test_cpu(task_cpu(p), new_mask))
1231 goto out;
1232
1233 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1234 if (task_running(rq, p) || p->state == TASK_WAKING) {
1235 struct migration_arg arg = { p, dest_cpu };
1236 /* Need help from migration thread: drop lock and wait. */
1237 task_rq_unlock(rq, p, &flags);
1238 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1239 tlb_migrate_finish(p->mm);
1240 return 0;
cbce1a68
PZ
1241 } else if (task_on_rq_queued(p)) {
1242 /*
1243 * OK, since we're going to drop the lock immediately
1244 * afterwards anyway.
1245 */
1246 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1247 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1248 lockdep_pin_lock(&rq->lock);
1249 }
5cc389bc
PZ
1250out:
1251 task_rq_unlock(rq, p, &flags);
1252
1253 return ret;
1254}
25834c73
PZ
1255
1256int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1257{
1258 return __set_cpus_allowed_ptr(p, new_mask, false);
1259}
5cc389bc
PZ
1260EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1261
dd41f596 1262void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1263{
e2912009
PZ
1264#ifdef CONFIG_SCHED_DEBUG
1265 /*
1266 * We should never call set_task_cpu() on a blocked task,
1267 * ttwu() will sort out the placement.
1268 */
077614ee 1269 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1270 !p->on_rq);
0122ec5b
PZ
1271
1272#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1273 /*
1274 * The caller should hold either p->pi_lock or rq->lock, when changing
1275 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1276 *
1277 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1278 * see task_group().
6c6c54e1
PZ
1279 *
1280 * Furthermore, all task_rq users should acquire both locks, see
1281 * task_rq_lock().
1282 */
0122ec5b
PZ
1283 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1284 lockdep_is_held(&task_rq(p)->lock)));
1285#endif
e2912009
PZ
1286#endif
1287
de1d7286 1288 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1289
0c69774e 1290 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1291 if (p->sched_class->migrate_task_rq)
1292 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1293 p->se.nr_migrations++;
ff303e66 1294 perf_event_task_migrate(p);
0c69774e 1295 }
dd41f596
IM
1296
1297 __set_task_cpu(p, new_cpu);
c65cc870
IM
1298}
1299
ac66f547
PZ
1300static void __migrate_swap_task(struct task_struct *p, int cpu)
1301{
da0c1e65 1302 if (task_on_rq_queued(p)) {
ac66f547
PZ
1303 struct rq *src_rq, *dst_rq;
1304
1305 src_rq = task_rq(p);
1306 dst_rq = cpu_rq(cpu);
1307
1308 deactivate_task(src_rq, p, 0);
1309 set_task_cpu(p, cpu);
1310 activate_task(dst_rq, p, 0);
1311 check_preempt_curr(dst_rq, p, 0);
1312 } else {
1313 /*
1314 * Task isn't running anymore; make it appear like we migrated
1315 * it before it went to sleep. This means on wakeup we make the
1316 * previous cpu our targer instead of where it really is.
1317 */
1318 p->wake_cpu = cpu;
1319 }
1320}
1321
1322struct migration_swap_arg {
1323 struct task_struct *src_task, *dst_task;
1324 int src_cpu, dst_cpu;
1325};
1326
1327static int migrate_swap_stop(void *data)
1328{
1329 struct migration_swap_arg *arg = data;
1330 struct rq *src_rq, *dst_rq;
1331 int ret = -EAGAIN;
1332
1333 src_rq = cpu_rq(arg->src_cpu);
1334 dst_rq = cpu_rq(arg->dst_cpu);
1335
74602315
PZ
1336 double_raw_lock(&arg->src_task->pi_lock,
1337 &arg->dst_task->pi_lock);
ac66f547
PZ
1338 double_rq_lock(src_rq, dst_rq);
1339 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1340 goto unlock;
1341
1342 if (task_cpu(arg->src_task) != arg->src_cpu)
1343 goto unlock;
1344
1345 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1346 goto unlock;
1347
1348 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1349 goto unlock;
1350
1351 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1352 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1353
1354 ret = 0;
1355
1356unlock:
1357 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1358 raw_spin_unlock(&arg->dst_task->pi_lock);
1359 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1360
1361 return ret;
1362}
1363
1364/*
1365 * Cross migrate two tasks
1366 */
1367int migrate_swap(struct task_struct *cur, struct task_struct *p)
1368{
1369 struct migration_swap_arg arg;
1370 int ret = -EINVAL;
1371
ac66f547
PZ
1372 arg = (struct migration_swap_arg){
1373 .src_task = cur,
1374 .src_cpu = task_cpu(cur),
1375 .dst_task = p,
1376 .dst_cpu = task_cpu(p),
1377 };
1378
1379 if (arg.src_cpu == arg.dst_cpu)
1380 goto out;
1381
6acce3ef
PZ
1382 /*
1383 * These three tests are all lockless; this is OK since all of them
1384 * will be re-checked with proper locks held further down the line.
1385 */
ac66f547
PZ
1386 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1387 goto out;
1388
1389 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1390 goto out;
1391
1392 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1393 goto out;
1394
286549dc 1395 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1396 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1397
1398out:
ac66f547
PZ
1399 return ret;
1400}
1401
1da177e4
LT
1402/*
1403 * wait_task_inactive - wait for a thread to unschedule.
1404 *
85ba2d86
RM
1405 * If @match_state is nonzero, it's the @p->state value just checked and
1406 * not expected to change. If it changes, i.e. @p might have woken up,
1407 * then return zero. When we succeed in waiting for @p to be off its CPU,
1408 * we return a positive number (its total switch count). If a second call
1409 * a short while later returns the same number, the caller can be sure that
1410 * @p has remained unscheduled the whole time.
1411 *
1da177e4
LT
1412 * The caller must ensure that the task *will* unschedule sometime soon,
1413 * else this function might spin for a *long* time. This function can't
1414 * be called with interrupts off, or it may introduce deadlock with
1415 * smp_call_function() if an IPI is sent by the same process we are
1416 * waiting to become inactive.
1417 */
85ba2d86 1418unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1419{
1420 unsigned long flags;
da0c1e65 1421 int running, queued;
85ba2d86 1422 unsigned long ncsw;
70b97a7f 1423 struct rq *rq;
1da177e4 1424
3a5c359a
AK
1425 for (;;) {
1426 /*
1427 * We do the initial early heuristics without holding
1428 * any task-queue locks at all. We'll only try to get
1429 * the runqueue lock when things look like they will
1430 * work out!
1431 */
1432 rq = task_rq(p);
fa490cfd 1433
3a5c359a
AK
1434 /*
1435 * If the task is actively running on another CPU
1436 * still, just relax and busy-wait without holding
1437 * any locks.
1438 *
1439 * NOTE! Since we don't hold any locks, it's not
1440 * even sure that "rq" stays as the right runqueue!
1441 * But we don't care, since "task_running()" will
1442 * return false if the runqueue has changed and p
1443 * is actually now running somewhere else!
1444 */
85ba2d86
RM
1445 while (task_running(rq, p)) {
1446 if (match_state && unlikely(p->state != match_state))
1447 return 0;
3a5c359a 1448 cpu_relax();
85ba2d86 1449 }
fa490cfd 1450
3a5c359a
AK
1451 /*
1452 * Ok, time to look more closely! We need the rq
1453 * lock now, to be *sure*. If we're wrong, we'll
1454 * just go back and repeat.
1455 */
1456 rq = task_rq_lock(p, &flags);
27a9da65 1457 trace_sched_wait_task(p);
3a5c359a 1458 running = task_running(rq, p);
da0c1e65 1459 queued = task_on_rq_queued(p);
85ba2d86 1460 ncsw = 0;
f31e11d8 1461 if (!match_state || p->state == match_state)
93dcf55f 1462 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1463 task_rq_unlock(rq, p, &flags);
fa490cfd 1464
85ba2d86
RM
1465 /*
1466 * If it changed from the expected state, bail out now.
1467 */
1468 if (unlikely(!ncsw))
1469 break;
1470
3a5c359a
AK
1471 /*
1472 * Was it really running after all now that we
1473 * checked with the proper locks actually held?
1474 *
1475 * Oops. Go back and try again..
1476 */
1477 if (unlikely(running)) {
1478 cpu_relax();
1479 continue;
1480 }
fa490cfd 1481
3a5c359a
AK
1482 /*
1483 * It's not enough that it's not actively running,
1484 * it must be off the runqueue _entirely_, and not
1485 * preempted!
1486 *
80dd99b3 1487 * So if it was still runnable (but just not actively
3a5c359a
AK
1488 * running right now), it's preempted, and we should
1489 * yield - it could be a while.
1490 */
da0c1e65 1491 if (unlikely(queued)) {
8eb90c30
TG
1492 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1493
1494 set_current_state(TASK_UNINTERRUPTIBLE);
1495 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1496 continue;
1497 }
fa490cfd 1498
3a5c359a
AK
1499 /*
1500 * Ahh, all good. It wasn't running, and it wasn't
1501 * runnable, which means that it will never become
1502 * running in the future either. We're all done!
1503 */
1504 break;
1505 }
85ba2d86
RM
1506
1507 return ncsw;
1da177e4
LT
1508}
1509
1510/***
1511 * kick_process - kick a running thread to enter/exit the kernel
1512 * @p: the to-be-kicked thread
1513 *
1514 * Cause a process which is running on another CPU to enter
1515 * kernel-mode, without any delay. (to get signals handled.)
1516 *
25985edc 1517 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1518 * because all it wants to ensure is that the remote task enters
1519 * the kernel. If the IPI races and the task has been migrated
1520 * to another CPU then no harm is done and the purpose has been
1521 * achieved as well.
1522 */
36c8b586 1523void kick_process(struct task_struct *p)
1da177e4
LT
1524{
1525 int cpu;
1526
1527 preempt_disable();
1528 cpu = task_cpu(p);
1529 if ((cpu != smp_processor_id()) && task_curr(p))
1530 smp_send_reschedule(cpu);
1531 preempt_enable();
1532}
b43e3521 1533EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1534
30da688e 1535/*
013fdb80 1536 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1537 */
5da9a0fb
PZ
1538static int select_fallback_rq(int cpu, struct task_struct *p)
1539{
aa00d89c
TC
1540 int nid = cpu_to_node(cpu);
1541 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1542 enum { cpuset, possible, fail } state = cpuset;
1543 int dest_cpu;
5da9a0fb 1544
aa00d89c
TC
1545 /*
1546 * If the node that the cpu is on has been offlined, cpu_to_node()
1547 * will return -1. There is no cpu on the node, and we should
1548 * select the cpu on the other node.
1549 */
1550 if (nid != -1) {
1551 nodemask = cpumask_of_node(nid);
1552
1553 /* Look for allowed, online CPU in same node. */
1554 for_each_cpu(dest_cpu, nodemask) {
1555 if (!cpu_online(dest_cpu))
1556 continue;
1557 if (!cpu_active(dest_cpu))
1558 continue;
1559 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1560 return dest_cpu;
1561 }
2baab4e9 1562 }
5da9a0fb 1563
2baab4e9
PZ
1564 for (;;) {
1565 /* Any allowed, online CPU? */
e3831edd 1566 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1567 if (!cpu_online(dest_cpu))
1568 continue;
1569 if (!cpu_active(dest_cpu))
1570 continue;
1571 goto out;
1572 }
5da9a0fb 1573
2baab4e9
PZ
1574 switch (state) {
1575 case cpuset:
1576 /* No more Mr. Nice Guy. */
1577 cpuset_cpus_allowed_fallback(p);
1578 state = possible;
1579 break;
1580
1581 case possible:
1582 do_set_cpus_allowed(p, cpu_possible_mask);
1583 state = fail;
1584 break;
1585
1586 case fail:
1587 BUG();
1588 break;
1589 }
1590 }
1591
1592out:
1593 if (state != cpuset) {
1594 /*
1595 * Don't tell them about moving exiting tasks or
1596 * kernel threads (both mm NULL), since they never
1597 * leave kernel.
1598 */
1599 if (p->mm && printk_ratelimit()) {
aac74dc4 1600 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1601 task_pid_nr(p), p->comm, cpu);
1602 }
5da9a0fb
PZ
1603 }
1604
1605 return dest_cpu;
1606}
1607
e2912009 1608/*
013fdb80 1609 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1610 */
970b13ba 1611static inline
ac66f547 1612int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1613{
cbce1a68
PZ
1614 lockdep_assert_held(&p->pi_lock);
1615
6c1d9410
WL
1616 if (p->nr_cpus_allowed > 1)
1617 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1618
1619 /*
1620 * In order not to call set_task_cpu() on a blocking task we need
1621 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1622 * cpu.
1623 *
1624 * Since this is common to all placement strategies, this lives here.
1625 *
1626 * [ this allows ->select_task() to simply return task_cpu(p) and
1627 * not worry about this generic constraint ]
1628 */
fa17b507 1629 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1630 !cpu_online(cpu)))
5da9a0fb 1631 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1632
1633 return cpu;
970b13ba 1634}
09a40af5
MG
1635
1636static void update_avg(u64 *avg, u64 sample)
1637{
1638 s64 diff = sample - *avg;
1639 *avg += diff >> 3;
1640}
25834c73
PZ
1641
1642#else
1643
1644static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1645 const struct cpumask *new_mask, bool check)
1646{
1647 return set_cpus_allowed_ptr(p, new_mask);
1648}
1649
5cc389bc 1650#endif /* CONFIG_SMP */
970b13ba 1651
d7c01d27 1652static void
b84cb5df 1653ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1654{
d7c01d27 1655#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1656 struct rq *rq = this_rq();
1657
d7c01d27
PZ
1658#ifdef CONFIG_SMP
1659 int this_cpu = smp_processor_id();
1660
1661 if (cpu == this_cpu) {
1662 schedstat_inc(rq, ttwu_local);
1663 schedstat_inc(p, se.statistics.nr_wakeups_local);
1664 } else {
1665 struct sched_domain *sd;
1666
1667 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1668 rcu_read_lock();
d7c01d27
PZ
1669 for_each_domain(this_cpu, sd) {
1670 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1671 schedstat_inc(sd, ttwu_wake_remote);
1672 break;
1673 }
1674 }
057f3fad 1675 rcu_read_unlock();
d7c01d27 1676 }
f339b9dc
PZ
1677
1678 if (wake_flags & WF_MIGRATED)
1679 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1680
d7c01d27
PZ
1681#endif /* CONFIG_SMP */
1682
1683 schedstat_inc(rq, ttwu_count);
9ed3811a 1684 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1685
1686 if (wake_flags & WF_SYNC)
9ed3811a 1687 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1688
d7c01d27
PZ
1689#endif /* CONFIG_SCHEDSTATS */
1690}
1691
1692static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1693{
9ed3811a 1694 activate_task(rq, p, en_flags);
da0c1e65 1695 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1696
1697 /* if a worker is waking up, notify workqueue */
1698 if (p->flags & PF_WQ_WORKER)
1699 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1700}
1701
23f41eeb
PZ
1702/*
1703 * Mark the task runnable and perform wakeup-preemption.
1704 */
89363381 1705static void
23f41eeb 1706ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1707{
9ed3811a 1708 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1709 p->state = TASK_RUNNING;
fbd705a0
PZ
1710 trace_sched_wakeup(p);
1711
9ed3811a 1712#ifdef CONFIG_SMP
4c9a4bc8
PZ
1713 if (p->sched_class->task_woken) {
1714 /*
cbce1a68
PZ
1715 * Our task @p is fully woken up and running; so its safe to
1716 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1717 */
cbce1a68 1718 lockdep_unpin_lock(&rq->lock);
9ed3811a 1719 p->sched_class->task_woken(rq, p);
cbce1a68 1720 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1721 }
9ed3811a 1722
e69c6341 1723 if (rq->idle_stamp) {
78becc27 1724 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1725 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1726
abfafa54
JL
1727 update_avg(&rq->avg_idle, delta);
1728
1729 if (rq->avg_idle > max)
9ed3811a 1730 rq->avg_idle = max;
abfafa54 1731
9ed3811a
TH
1732 rq->idle_stamp = 0;
1733 }
1734#endif
1735}
1736
c05fbafb
PZ
1737static void
1738ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1739{
cbce1a68
PZ
1740 lockdep_assert_held(&rq->lock);
1741
c05fbafb
PZ
1742#ifdef CONFIG_SMP
1743 if (p->sched_contributes_to_load)
1744 rq->nr_uninterruptible--;
1745#endif
1746
1747 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1748 ttwu_do_wakeup(rq, p, wake_flags);
1749}
1750
1751/*
1752 * Called in case the task @p isn't fully descheduled from its runqueue,
1753 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1754 * since all we need to do is flip p->state to TASK_RUNNING, since
1755 * the task is still ->on_rq.
1756 */
1757static int ttwu_remote(struct task_struct *p, int wake_flags)
1758{
1759 struct rq *rq;
1760 int ret = 0;
1761
1762 rq = __task_rq_lock(p);
da0c1e65 1763 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1764 /* check_preempt_curr() may use rq clock */
1765 update_rq_clock(rq);
c05fbafb
PZ
1766 ttwu_do_wakeup(rq, p, wake_flags);
1767 ret = 1;
1768 }
1769 __task_rq_unlock(rq);
1770
1771 return ret;
1772}
1773
317f3941 1774#ifdef CONFIG_SMP
e3baac47 1775void sched_ttwu_pending(void)
317f3941
PZ
1776{
1777 struct rq *rq = this_rq();
fa14ff4a
PZ
1778 struct llist_node *llist = llist_del_all(&rq->wake_list);
1779 struct task_struct *p;
e3baac47 1780 unsigned long flags;
317f3941 1781
e3baac47
PZ
1782 if (!llist)
1783 return;
1784
1785 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1786 lockdep_pin_lock(&rq->lock);
317f3941 1787
fa14ff4a
PZ
1788 while (llist) {
1789 p = llist_entry(llist, struct task_struct, wake_entry);
1790 llist = llist_next(llist);
317f3941
PZ
1791 ttwu_do_activate(rq, p, 0);
1792 }
1793
cbce1a68 1794 lockdep_unpin_lock(&rq->lock);
e3baac47 1795 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1796}
1797
1798void scheduler_ipi(void)
1799{
f27dde8d
PZ
1800 /*
1801 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1802 * TIF_NEED_RESCHED remotely (for the first time) will also send
1803 * this IPI.
1804 */
8cb75e0c 1805 preempt_fold_need_resched();
f27dde8d 1806
fd2ac4f4 1807 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1808 return;
1809
1810 /*
1811 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1812 * traditionally all their work was done from the interrupt return
1813 * path. Now that we actually do some work, we need to make sure
1814 * we do call them.
1815 *
1816 * Some archs already do call them, luckily irq_enter/exit nest
1817 * properly.
1818 *
1819 * Arguably we should visit all archs and update all handlers,
1820 * however a fair share of IPIs are still resched only so this would
1821 * somewhat pessimize the simple resched case.
1822 */
1823 irq_enter();
fa14ff4a 1824 sched_ttwu_pending();
ca38062e
SS
1825
1826 /*
1827 * Check if someone kicked us for doing the nohz idle load balance.
1828 */
873b4c65 1829 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1830 this_rq()->idle_balance = 1;
ca38062e 1831 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1832 }
c5d753a5 1833 irq_exit();
317f3941
PZ
1834}
1835
1836static void ttwu_queue_remote(struct task_struct *p, int cpu)
1837{
e3baac47
PZ
1838 struct rq *rq = cpu_rq(cpu);
1839
1840 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1841 if (!set_nr_if_polling(rq->idle))
1842 smp_send_reschedule(cpu);
1843 else
1844 trace_sched_wake_idle_without_ipi(cpu);
1845 }
317f3941 1846}
d6aa8f85 1847
f6be8af1
CL
1848void wake_up_if_idle(int cpu)
1849{
1850 struct rq *rq = cpu_rq(cpu);
1851 unsigned long flags;
1852
fd7de1e8
AL
1853 rcu_read_lock();
1854
1855 if (!is_idle_task(rcu_dereference(rq->curr)))
1856 goto out;
f6be8af1
CL
1857
1858 if (set_nr_if_polling(rq->idle)) {
1859 trace_sched_wake_idle_without_ipi(cpu);
1860 } else {
1861 raw_spin_lock_irqsave(&rq->lock, flags);
1862 if (is_idle_task(rq->curr))
1863 smp_send_reschedule(cpu);
1864 /* Else cpu is not in idle, do nothing here */
1865 raw_spin_unlock_irqrestore(&rq->lock, flags);
1866 }
fd7de1e8
AL
1867
1868out:
1869 rcu_read_unlock();
f6be8af1
CL
1870}
1871
39be3501 1872bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1873{
1874 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1875}
d6aa8f85 1876#endif /* CONFIG_SMP */
317f3941 1877
c05fbafb
PZ
1878static void ttwu_queue(struct task_struct *p, int cpu)
1879{
1880 struct rq *rq = cpu_rq(cpu);
1881
17d9f311 1882#if defined(CONFIG_SMP)
39be3501 1883 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1884 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1885 ttwu_queue_remote(p, cpu);
1886 return;
1887 }
1888#endif
1889
c05fbafb 1890 raw_spin_lock(&rq->lock);
cbce1a68 1891 lockdep_pin_lock(&rq->lock);
c05fbafb 1892 ttwu_do_activate(rq, p, 0);
cbce1a68 1893 lockdep_unpin_lock(&rq->lock);
c05fbafb 1894 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1895}
1896
1897/**
1da177e4 1898 * try_to_wake_up - wake up a thread
9ed3811a 1899 * @p: the thread to be awakened
1da177e4 1900 * @state: the mask of task states that can be woken
9ed3811a 1901 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1902 *
1903 * Put it on the run-queue if it's not already there. The "current"
1904 * thread is always on the run-queue (except when the actual
1905 * re-schedule is in progress), and as such you're allowed to do
1906 * the simpler "current->state = TASK_RUNNING" to mark yourself
1907 * runnable without the overhead of this.
1908 *
e69f6186 1909 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1910 * or @state didn't match @p's state.
1da177e4 1911 */
e4a52bcb
PZ
1912static int
1913try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1914{
1da177e4 1915 unsigned long flags;
c05fbafb 1916 int cpu, success = 0;
2398f2c6 1917
e0acd0a6
ON
1918 /*
1919 * If we are going to wake up a thread waiting for CONDITION we
1920 * need to ensure that CONDITION=1 done by the caller can not be
1921 * reordered with p->state check below. This pairs with mb() in
1922 * set_current_state() the waiting thread does.
1923 */
1924 smp_mb__before_spinlock();
013fdb80 1925 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1926 if (!(p->state & state))
1da177e4
LT
1927 goto out;
1928
fbd705a0
PZ
1929 trace_sched_waking(p);
1930
c05fbafb 1931 success = 1; /* we're going to change ->state */
1da177e4 1932 cpu = task_cpu(p);
1da177e4 1933
c05fbafb
PZ
1934 if (p->on_rq && ttwu_remote(p, wake_flags))
1935 goto stat;
1da177e4 1936
1da177e4 1937#ifdef CONFIG_SMP
e9c84311 1938 /*
c05fbafb
PZ
1939 * If the owning (remote) cpu is still in the middle of schedule() with
1940 * this task as prev, wait until its done referencing the task.
e9c84311 1941 */
f3e94786 1942 while (p->on_cpu)
e4a52bcb 1943 cpu_relax();
0970d299 1944 /*
e4a52bcb 1945 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1946 */
e4a52bcb 1947 smp_rmb();
1da177e4 1948
a8e4f2ea 1949 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1950 p->state = TASK_WAKING;
e7693a36 1951
e4a52bcb 1952 if (p->sched_class->task_waking)
74f8e4b2 1953 p->sched_class->task_waking(p);
efbbd05a 1954
ac66f547 1955 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1956 if (task_cpu(p) != cpu) {
1957 wake_flags |= WF_MIGRATED;
e4a52bcb 1958 set_task_cpu(p, cpu);
f339b9dc 1959 }
1da177e4 1960#endif /* CONFIG_SMP */
1da177e4 1961
c05fbafb
PZ
1962 ttwu_queue(p, cpu);
1963stat:
b84cb5df 1964 ttwu_stat(p, cpu, wake_flags);
1da177e4 1965out:
013fdb80 1966 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1967
1968 return success;
1969}
1970
21aa9af0
TH
1971/**
1972 * try_to_wake_up_local - try to wake up a local task with rq lock held
1973 * @p: the thread to be awakened
1974 *
2acca55e 1975 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1976 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1977 * the current task.
21aa9af0
TH
1978 */
1979static void try_to_wake_up_local(struct task_struct *p)
1980{
1981 struct rq *rq = task_rq(p);
21aa9af0 1982
383efcd0
TH
1983 if (WARN_ON_ONCE(rq != this_rq()) ||
1984 WARN_ON_ONCE(p == current))
1985 return;
1986
21aa9af0
TH
1987 lockdep_assert_held(&rq->lock);
1988
2acca55e 1989 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1990 /*
1991 * This is OK, because current is on_cpu, which avoids it being
1992 * picked for load-balance and preemption/IRQs are still
1993 * disabled avoiding further scheduler activity on it and we've
1994 * not yet picked a replacement task.
1995 */
1996 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
1997 raw_spin_unlock(&rq->lock);
1998 raw_spin_lock(&p->pi_lock);
1999 raw_spin_lock(&rq->lock);
cbce1a68 2000 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2001 }
2002
21aa9af0 2003 if (!(p->state & TASK_NORMAL))
2acca55e 2004 goto out;
21aa9af0 2005
fbd705a0
PZ
2006 trace_sched_waking(p);
2007
da0c1e65 2008 if (!task_on_rq_queued(p))
d7c01d27
PZ
2009 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2010
23f41eeb 2011 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2012 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2013out:
2014 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2015}
2016
50fa610a
DH
2017/**
2018 * wake_up_process - Wake up a specific process
2019 * @p: The process to be woken up.
2020 *
2021 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2022 * processes.
2023 *
2024 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2025 *
2026 * It may be assumed that this function implies a write memory barrier before
2027 * changing the task state if and only if any tasks are woken up.
2028 */
7ad5b3a5 2029int wake_up_process(struct task_struct *p)
1da177e4 2030{
9067ac85
ON
2031 WARN_ON(task_is_stopped_or_traced(p));
2032 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2033}
1da177e4
LT
2034EXPORT_SYMBOL(wake_up_process);
2035
7ad5b3a5 2036int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2037{
2038 return try_to_wake_up(p, state, 0);
2039}
2040
a5e7be3b
JL
2041/*
2042 * This function clears the sched_dl_entity static params.
2043 */
2044void __dl_clear_params(struct task_struct *p)
2045{
2046 struct sched_dl_entity *dl_se = &p->dl;
2047
2048 dl_se->dl_runtime = 0;
2049 dl_se->dl_deadline = 0;
2050 dl_se->dl_period = 0;
2051 dl_se->flags = 0;
2052 dl_se->dl_bw = 0;
40767b0d
PZ
2053
2054 dl_se->dl_throttled = 0;
2055 dl_se->dl_new = 1;
2056 dl_se->dl_yielded = 0;
a5e7be3b
JL
2057}
2058
1da177e4
LT
2059/*
2060 * Perform scheduler related setup for a newly forked process p.
2061 * p is forked by current.
dd41f596
IM
2062 *
2063 * __sched_fork() is basic setup used by init_idle() too:
2064 */
5e1576ed 2065static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2066{
fd2f4419
PZ
2067 p->on_rq = 0;
2068
2069 p->se.on_rq = 0;
dd41f596
IM
2070 p->se.exec_start = 0;
2071 p->se.sum_exec_runtime = 0;
f6cf891c 2072 p->se.prev_sum_exec_runtime = 0;
6c594c21 2073 p->se.nr_migrations = 0;
da7a735e 2074 p->se.vruntime = 0;
fd2f4419 2075 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2076
2077#ifdef CONFIG_SCHEDSTATS
41acab88 2078 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2079#endif
476d139c 2080
aab03e05 2081 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2082 init_dl_task_timer(&p->dl);
a5e7be3b 2083 __dl_clear_params(p);
aab03e05 2084
fa717060 2085 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2086
e107be36
AK
2087#ifdef CONFIG_PREEMPT_NOTIFIERS
2088 INIT_HLIST_HEAD(&p->preempt_notifiers);
2089#endif
cbee9f88
PZ
2090
2091#ifdef CONFIG_NUMA_BALANCING
2092 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2093 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2094 p->mm->numa_scan_seq = 0;
2095 }
2096
5e1576ed
RR
2097 if (clone_flags & CLONE_VM)
2098 p->numa_preferred_nid = current->numa_preferred_nid;
2099 else
2100 p->numa_preferred_nid = -1;
2101
cbee9f88
PZ
2102 p->node_stamp = 0ULL;
2103 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2104 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2105 p->numa_work.next = &p->numa_work;
44dba3d5 2106 p->numa_faults = NULL;
7e2703e6
RR
2107 p->last_task_numa_placement = 0;
2108 p->last_sum_exec_runtime = 0;
8c8a743c 2109
8c8a743c 2110 p->numa_group = NULL;
cbee9f88 2111#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2112}
2113
1a687c2e 2114#ifdef CONFIG_NUMA_BALANCING
3105b86a 2115#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
2116void set_numabalancing_state(bool enabled)
2117{
2118 if (enabled)
2119 sched_feat_set("NUMA");
2120 else
2121 sched_feat_set("NO_NUMA");
2122}
3105b86a
MG
2123#else
2124__read_mostly bool numabalancing_enabled;
2125
2126void set_numabalancing_state(bool enabled)
2127{
2128 numabalancing_enabled = enabled;
dd41f596 2129}
3105b86a 2130#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
2131
2132#ifdef CONFIG_PROC_SYSCTL
2133int sysctl_numa_balancing(struct ctl_table *table, int write,
2134 void __user *buffer, size_t *lenp, loff_t *ppos)
2135{
2136 struct ctl_table t;
2137 int err;
2138 int state = numabalancing_enabled;
2139
2140 if (write && !capable(CAP_SYS_ADMIN))
2141 return -EPERM;
2142
2143 t = *table;
2144 t.data = &state;
2145 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2146 if (err < 0)
2147 return err;
2148 if (write)
2149 set_numabalancing_state(state);
2150 return err;
2151}
2152#endif
2153#endif
dd41f596
IM
2154
2155/*
2156 * fork()/clone()-time setup:
2157 */
aab03e05 2158int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2159{
0122ec5b 2160 unsigned long flags;
dd41f596
IM
2161 int cpu = get_cpu();
2162
5e1576ed 2163 __sched_fork(clone_flags, p);
06b83b5f 2164 /*
0017d735 2165 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2166 * nobody will actually run it, and a signal or other external
2167 * event cannot wake it up and insert it on the runqueue either.
2168 */
0017d735 2169 p->state = TASK_RUNNING;
dd41f596 2170
c350a04e
MG
2171 /*
2172 * Make sure we do not leak PI boosting priority to the child.
2173 */
2174 p->prio = current->normal_prio;
2175
b9dc29e7
MG
2176 /*
2177 * Revert to default priority/policy on fork if requested.
2178 */
2179 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2180 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2181 p->policy = SCHED_NORMAL;
6c697bdf 2182 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2183 p->rt_priority = 0;
2184 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2185 p->static_prio = NICE_TO_PRIO(0);
2186
2187 p->prio = p->normal_prio = __normal_prio(p);
2188 set_load_weight(p);
6c697bdf 2189
b9dc29e7
MG
2190 /*
2191 * We don't need the reset flag anymore after the fork. It has
2192 * fulfilled its duty:
2193 */
2194 p->sched_reset_on_fork = 0;
2195 }
ca94c442 2196
aab03e05
DF
2197 if (dl_prio(p->prio)) {
2198 put_cpu();
2199 return -EAGAIN;
2200 } else if (rt_prio(p->prio)) {
2201 p->sched_class = &rt_sched_class;
2202 } else {
2ddbf952 2203 p->sched_class = &fair_sched_class;
aab03e05 2204 }
b29739f9 2205
cd29fe6f
PZ
2206 if (p->sched_class->task_fork)
2207 p->sched_class->task_fork(p);
2208
86951599
PZ
2209 /*
2210 * The child is not yet in the pid-hash so no cgroup attach races,
2211 * and the cgroup is pinned to this child due to cgroup_fork()
2212 * is ran before sched_fork().
2213 *
2214 * Silence PROVE_RCU.
2215 */
0122ec5b 2216 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2217 set_task_cpu(p, cpu);
0122ec5b 2218 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2219
f6db8347 2220#ifdef CONFIG_SCHED_INFO
dd41f596 2221 if (likely(sched_info_on()))
52f17b6c 2222 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2223#endif
3ca7a440
PZ
2224#if defined(CONFIG_SMP)
2225 p->on_cpu = 0;
4866cde0 2226#endif
01028747 2227 init_task_preempt_count(p);
806c09a7 2228#ifdef CONFIG_SMP
917b627d 2229 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2230 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2231#endif
917b627d 2232
476d139c 2233 put_cpu();
aab03e05 2234 return 0;
1da177e4
LT
2235}
2236
332ac17e
DF
2237unsigned long to_ratio(u64 period, u64 runtime)
2238{
2239 if (runtime == RUNTIME_INF)
2240 return 1ULL << 20;
2241
2242 /*
2243 * Doing this here saves a lot of checks in all
2244 * the calling paths, and returning zero seems
2245 * safe for them anyway.
2246 */
2247 if (period == 0)
2248 return 0;
2249
2250 return div64_u64(runtime << 20, period);
2251}
2252
2253#ifdef CONFIG_SMP
2254inline struct dl_bw *dl_bw_of(int i)
2255{
f78f5b90
PM
2256 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2257 "sched RCU must be held");
332ac17e
DF
2258 return &cpu_rq(i)->rd->dl_bw;
2259}
2260
de212f18 2261static inline int dl_bw_cpus(int i)
332ac17e 2262{
de212f18
PZ
2263 struct root_domain *rd = cpu_rq(i)->rd;
2264 int cpus = 0;
2265
f78f5b90
PM
2266 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2267 "sched RCU must be held");
de212f18
PZ
2268 for_each_cpu_and(i, rd->span, cpu_active_mask)
2269 cpus++;
2270
2271 return cpus;
332ac17e
DF
2272}
2273#else
2274inline struct dl_bw *dl_bw_of(int i)
2275{
2276 return &cpu_rq(i)->dl.dl_bw;
2277}
2278
de212f18 2279static inline int dl_bw_cpus(int i)
332ac17e
DF
2280{
2281 return 1;
2282}
2283#endif
2284
332ac17e
DF
2285/*
2286 * We must be sure that accepting a new task (or allowing changing the
2287 * parameters of an existing one) is consistent with the bandwidth
2288 * constraints. If yes, this function also accordingly updates the currently
2289 * allocated bandwidth to reflect the new situation.
2290 *
2291 * This function is called while holding p's rq->lock.
40767b0d
PZ
2292 *
2293 * XXX we should delay bw change until the task's 0-lag point, see
2294 * __setparam_dl().
332ac17e
DF
2295 */
2296static int dl_overflow(struct task_struct *p, int policy,
2297 const struct sched_attr *attr)
2298{
2299
2300 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2301 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2302 u64 runtime = attr->sched_runtime;
2303 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2304 int cpus, err = -1;
332ac17e
DF
2305
2306 if (new_bw == p->dl.dl_bw)
2307 return 0;
2308
2309 /*
2310 * Either if a task, enters, leave, or stays -deadline but changes
2311 * its parameters, we may need to update accordingly the total
2312 * allocated bandwidth of the container.
2313 */
2314 raw_spin_lock(&dl_b->lock);
de212f18 2315 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2316 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2317 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2318 __dl_add(dl_b, new_bw);
2319 err = 0;
2320 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2321 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2322 __dl_clear(dl_b, p->dl.dl_bw);
2323 __dl_add(dl_b, new_bw);
2324 err = 0;
2325 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2326 __dl_clear(dl_b, p->dl.dl_bw);
2327 err = 0;
2328 }
2329 raw_spin_unlock(&dl_b->lock);
2330
2331 return err;
2332}
2333
2334extern void init_dl_bw(struct dl_bw *dl_b);
2335
1da177e4
LT
2336/*
2337 * wake_up_new_task - wake up a newly created task for the first time.
2338 *
2339 * This function will do some initial scheduler statistics housekeeping
2340 * that must be done for every newly created context, then puts the task
2341 * on the runqueue and wakes it.
2342 */
3e51e3ed 2343void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2344{
2345 unsigned long flags;
dd41f596 2346 struct rq *rq;
fabf318e 2347
ab2515c4 2348 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2349#ifdef CONFIG_SMP
2350 /*
2351 * Fork balancing, do it here and not earlier because:
2352 * - cpus_allowed can change in the fork path
2353 * - any previously selected cpu might disappear through hotplug
fabf318e 2354 */
ac66f547 2355 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2356#endif
2357
a75cdaa9 2358 /* Initialize new task's runnable average */
540247fb 2359 init_entity_runnable_average(&p->se);
ab2515c4 2360 rq = __task_rq_lock(p);
cd29fe6f 2361 activate_task(rq, p, 0);
da0c1e65 2362 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2363 trace_sched_wakeup_new(p);
a7558e01 2364 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2365#ifdef CONFIG_SMP
efbbd05a
PZ
2366 if (p->sched_class->task_woken)
2367 p->sched_class->task_woken(rq, p);
9a897c5a 2368#endif
0122ec5b 2369 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2370}
2371
e107be36
AK
2372#ifdef CONFIG_PREEMPT_NOTIFIERS
2373
1cde2930
PZ
2374static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2375
2ecd9d29
PZ
2376void preempt_notifier_inc(void)
2377{
2378 static_key_slow_inc(&preempt_notifier_key);
2379}
2380EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2381
2382void preempt_notifier_dec(void)
2383{
2384 static_key_slow_dec(&preempt_notifier_key);
2385}
2386EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2387
e107be36 2388/**
80dd99b3 2389 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2390 * @notifier: notifier struct to register
e107be36
AK
2391 */
2392void preempt_notifier_register(struct preempt_notifier *notifier)
2393{
2ecd9d29
PZ
2394 if (!static_key_false(&preempt_notifier_key))
2395 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2396
e107be36
AK
2397 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2398}
2399EXPORT_SYMBOL_GPL(preempt_notifier_register);
2400
2401/**
2402 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2403 * @notifier: notifier struct to unregister
e107be36 2404 *
d84525a8 2405 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2406 */
2407void preempt_notifier_unregister(struct preempt_notifier *notifier)
2408{
2409 hlist_del(&notifier->link);
2410}
2411EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2412
1cde2930 2413static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2414{
2415 struct preempt_notifier *notifier;
e107be36 2416
b67bfe0d 2417 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2418 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2419}
2420
1cde2930
PZ
2421static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2422{
2423 if (static_key_false(&preempt_notifier_key))
2424 __fire_sched_in_preempt_notifiers(curr);
2425}
2426
e107be36 2427static void
1cde2930
PZ
2428__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2429 struct task_struct *next)
e107be36
AK
2430{
2431 struct preempt_notifier *notifier;
e107be36 2432
b67bfe0d 2433 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2434 notifier->ops->sched_out(notifier, next);
2435}
2436
1cde2930
PZ
2437static __always_inline void
2438fire_sched_out_preempt_notifiers(struct task_struct *curr,
2439 struct task_struct *next)
2440{
2441 if (static_key_false(&preempt_notifier_key))
2442 __fire_sched_out_preempt_notifiers(curr, next);
2443}
2444
6d6bc0ad 2445#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2446
1cde2930 2447static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2448{
2449}
2450
1cde2930 2451static inline void
e107be36
AK
2452fire_sched_out_preempt_notifiers(struct task_struct *curr,
2453 struct task_struct *next)
2454{
2455}
2456
6d6bc0ad 2457#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2458
4866cde0
NP
2459/**
2460 * prepare_task_switch - prepare to switch tasks
2461 * @rq: the runqueue preparing to switch
421cee29 2462 * @prev: the current task that is being switched out
4866cde0
NP
2463 * @next: the task we are going to switch to.
2464 *
2465 * This is called with the rq lock held and interrupts off. It must
2466 * be paired with a subsequent finish_task_switch after the context
2467 * switch.
2468 *
2469 * prepare_task_switch sets up locking and calls architecture specific
2470 * hooks.
2471 */
e107be36
AK
2472static inline void
2473prepare_task_switch(struct rq *rq, struct task_struct *prev,
2474 struct task_struct *next)
4866cde0 2475{
895dd92c 2476 trace_sched_switch(prev, next);
43148951 2477 sched_info_switch(rq, prev, next);
fe4b04fa 2478 perf_event_task_sched_out(prev, next);
e107be36 2479 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2480 prepare_lock_switch(rq, next);
2481 prepare_arch_switch(next);
2482}
2483
1da177e4
LT
2484/**
2485 * finish_task_switch - clean up after a task-switch
2486 * @prev: the thread we just switched away from.
2487 *
4866cde0
NP
2488 * finish_task_switch must be called after the context switch, paired
2489 * with a prepare_task_switch call before the context switch.
2490 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2491 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2492 *
2493 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2494 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2495 * with the lock held can cause deadlocks; see schedule() for
2496 * details.)
dfa50b60
ON
2497 *
2498 * The context switch have flipped the stack from under us and restored the
2499 * local variables which were saved when this task called schedule() in the
2500 * past. prev == current is still correct but we need to recalculate this_rq
2501 * because prev may have moved to another CPU.
1da177e4 2502 */
dfa50b60 2503static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2504 __releases(rq->lock)
2505{
dfa50b60 2506 struct rq *rq = this_rq();
1da177e4 2507 struct mm_struct *mm = rq->prev_mm;
55a101f8 2508 long prev_state;
1da177e4
LT
2509
2510 rq->prev_mm = NULL;
2511
2512 /*
2513 * A task struct has one reference for the use as "current".
c394cc9f 2514 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2515 * schedule one last time. The schedule call will never return, and
2516 * the scheduled task must drop that reference.
c394cc9f 2517 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2518 * still held, otherwise prev could be scheduled on another cpu, die
2519 * there before we look at prev->state, and then the reference would
2520 * be dropped twice.
2521 * Manfred Spraul <manfred@colorfullife.com>
2522 */
55a101f8 2523 prev_state = prev->state;
bf9fae9f 2524 vtime_task_switch(prev);
a8d757ef 2525 perf_event_task_sched_in(prev, current);
4866cde0 2526 finish_lock_switch(rq, prev);
01f23e16 2527 finish_arch_post_lock_switch();
e8fa1362 2528
e107be36 2529 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2530 if (mm)
2531 mmdrop(mm);
c394cc9f 2532 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2533 if (prev->sched_class->task_dead)
2534 prev->sched_class->task_dead(prev);
2535
c6fd91f0 2536 /*
2537 * Remove function-return probe instances associated with this
2538 * task and put them back on the free list.
9761eea8 2539 */
c6fd91f0 2540 kprobe_flush_task(prev);
1da177e4 2541 put_task_struct(prev);
c6fd91f0 2542 }
99e5ada9 2543
de734f89 2544 tick_nohz_task_switch();
dfa50b60 2545 return rq;
1da177e4
LT
2546}
2547
3f029d3c
GH
2548#ifdef CONFIG_SMP
2549
3f029d3c 2550/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2551static void __balance_callback(struct rq *rq)
3f029d3c 2552{
e3fca9e7
PZ
2553 struct callback_head *head, *next;
2554 void (*func)(struct rq *rq);
2555 unsigned long flags;
3f029d3c 2556
e3fca9e7
PZ
2557 raw_spin_lock_irqsave(&rq->lock, flags);
2558 head = rq->balance_callback;
2559 rq->balance_callback = NULL;
2560 while (head) {
2561 func = (void (*)(struct rq *))head->func;
2562 next = head->next;
2563 head->next = NULL;
2564 head = next;
3f029d3c 2565
e3fca9e7 2566 func(rq);
3f029d3c 2567 }
e3fca9e7
PZ
2568 raw_spin_unlock_irqrestore(&rq->lock, flags);
2569}
2570
2571static inline void balance_callback(struct rq *rq)
2572{
2573 if (unlikely(rq->balance_callback))
2574 __balance_callback(rq);
3f029d3c
GH
2575}
2576
2577#else
da19ab51 2578
e3fca9e7 2579static inline void balance_callback(struct rq *rq)
3f029d3c 2580{
1da177e4
LT
2581}
2582
3f029d3c
GH
2583#endif
2584
1da177e4
LT
2585/**
2586 * schedule_tail - first thing a freshly forked thread must call.
2587 * @prev: the thread we just switched away from.
2588 */
722a9f92 2589asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2590 __releases(rq->lock)
2591{
1a43a14a 2592 struct rq *rq;
da19ab51 2593
1a43a14a
ON
2594 /* finish_task_switch() drops rq->lock and enables preemtion */
2595 preempt_disable();
dfa50b60 2596 rq = finish_task_switch(prev);
e3fca9e7 2597 balance_callback(rq);
1a43a14a 2598 preempt_enable();
70b97a7f 2599
1da177e4 2600 if (current->set_child_tid)
b488893a 2601 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2602}
2603
2604/*
dfa50b60 2605 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2606 */
dfa50b60 2607static inline struct rq *
70b97a7f 2608context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2609 struct task_struct *next)
1da177e4 2610{
dd41f596 2611 struct mm_struct *mm, *oldmm;
1da177e4 2612
e107be36 2613 prepare_task_switch(rq, prev, next);
fe4b04fa 2614
dd41f596
IM
2615 mm = next->mm;
2616 oldmm = prev->active_mm;
9226d125
ZA
2617 /*
2618 * For paravirt, this is coupled with an exit in switch_to to
2619 * combine the page table reload and the switch backend into
2620 * one hypercall.
2621 */
224101ed 2622 arch_start_context_switch(prev);
9226d125 2623
31915ab4 2624 if (!mm) {
1da177e4
LT
2625 next->active_mm = oldmm;
2626 atomic_inc(&oldmm->mm_count);
2627 enter_lazy_tlb(oldmm, next);
2628 } else
2629 switch_mm(oldmm, mm, next);
2630
31915ab4 2631 if (!prev->mm) {
1da177e4 2632 prev->active_mm = NULL;
1da177e4
LT
2633 rq->prev_mm = oldmm;
2634 }
3a5f5e48
IM
2635 /*
2636 * Since the runqueue lock will be released by the next
2637 * task (which is an invalid locking op but in the case
2638 * of the scheduler it's an obvious special-case), so we
2639 * do an early lockdep release here:
2640 */
cbce1a68 2641 lockdep_unpin_lock(&rq->lock);
8a25d5de 2642 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2643
2644 /* Here we just switch the register state and the stack. */
2645 switch_to(prev, next, prev);
dd41f596 2646 barrier();
dfa50b60
ON
2647
2648 return finish_task_switch(prev);
1da177e4
LT
2649}
2650
2651/*
1c3e8264 2652 * nr_running and nr_context_switches:
1da177e4
LT
2653 *
2654 * externally visible scheduler statistics: current number of runnable
1c3e8264 2655 * threads, total number of context switches performed since bootup.
1da177e4
LT
2656 */
2657unsigned long nr_running(void)
2658{
2659 unsigned long i, sum = 0;
2660
2661 for_each_online_cpu(i)
2662 sum += cpu_rq(i)->nr_running;
2663
2664 return sum;
f711f609 2665}
1da177e4 2666
2ee507c4
TC
2667/*
2668 * Check if only the current task is running on the cpu.
2669 */
2670bool single_task_running(void)
2671{
2672 if (cpu_rq(smp_processor_id())->nr_running == 1)
2673 return true;
2674 else
2675 return false;
2676}
2677EXPORT_SYMBOL(single_task_running);
2678
1da177e4 2679unsigned long long nr_context_switches(void)
46cb4b7c 2680{
cc94abfc
SR
2681 int i;
2682 unsigned long long sum = 0;
46cb4b7c 2683
0a945022 2684 for_each_possible_cpu(i)
1da177e4 2685 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2686
1da177e4
LT
2687 return sum;
2688}
483b4ee6 2689
1da177e4
LT
2690unsigned long nr_iowait(void)
2691{
2692 unsigned long i, sum = 0;
483b4ee6 2693
0a945022 2694 for_each_possible_cpu(i)
1da177e4 2695 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2696
1da177e4
LT
2697 return sum;
2698}
483b4ee6 2699
8c215bd3 2700unsigned long nr_iowait_cpu(int cpu)
69d25870 2701{
8c215bd3 2702 struct rq *this = cpu_rq(cpu);
69d25870
AV
2703 return atomic_read(&this->nr_iowait);
2704}
46cb4b7c 2705
372ba8cb
MG
2706void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2707{
3289bdb4
PZ
2708 struct rq *rq = this_rq();
2709 *nr_waiters = atomic_read(&rq->nr_iowait);
2710 *load = rq->load.weight;
372ba8cb
MG
2711}
2712
dd41f596 2713#ifdef CONFIG_SMP
8a0be9ef 2714
46cb4b7c 2715/*
38022906
PZ
2716 * sched_exec - execve() is a valuable balancing opportunity, because at
2717 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2718 */
38022906 2719void sched_exec(void)
46cb4b7c 2720{
38022906 2721 struct task_struct *p = current;
1da177e4 2722 unsigned long flags;
0017d735 2723 int dest_cpu;
46cb4b7c 2724
8f42ced9 2725 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2726 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2727 if (dest_cpu == smp_processor_id())
2728 goto unlock;
38022906 2729
8f42ced9 2730 if (likely(cpu_active(dest_cpu))) {
969c7921 2731 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2732
8f42ced9
PZ
2733 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2734 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2735 return;
2736 }
0017d735 2737unlock:
8f42ced9 2738 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2739}
dd41f596 2740
1da177e4
LT
2741#endif
2742
1da177e4 2743DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2744DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2745
2746EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2747EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2748
c5f8d995
HS
2749/*
2750 * Return accounted runtime for the task.
2751 * In case the task is currently running, return the runtime plus current's
2752 * pending runtime that have not been accounted yet.
2753 */
2754unsigned long long task_sched_runtime(struct task_struct *p)
2755{
2756 unsigned long flags;
2757 struct rq *rq;
6e998916 2758 u64 ns;
c5f8d995 2759
911b2898
PZ
2760#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2761 /*
2762 * 64-bit doesn't need locks to atomically read a 64bit value.
2763 * So we have a optimization chance when the task's delta_exec is 0.
2764 * Reading ->on_cpu is racy, but this is ok.
2765 *
2766 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2767 * If we race with it entering cpu, unaccounted time is 0. This is
2768 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2769 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2770 * been accounted, so we're correct here as well.
911b2898 2771 */
da0c1e65 2772 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2773 return p->se.sum_exec_runtime;
2774#endif
2775
c5f8d995 2776 rq = task_rq_lock(p, &flags);
6e998916
SG
2777 /*
2778 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2779 * project cycles that may never be accounted to this
2780 * thread, breaking clock_gettime().
2781 */
2782 if (task_current(rq, p) && task_on_rq_queued(p)) {
2783 update_rq_clock(rq);
2784 p->sched_class->update_curr(rq);
2785 }
2786 ns = p->se.sum_exec_runtime;
0122ec5b 2787 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2788
2789 return ns;
2790}
48f24c4d 2791
7835b98b
CL
2792/*
2793 * This function gets called by the timer code, with HZ frequency.
2794 * We call it with interrupts disabled.
7835b98b
CL
2795 */
2796void scheduler_tick(void)
2797{
7835b98b
CL
2798 int cpu = smp_processor_id();
2799 struct rq *rq = cpu_rq(cpu);
dd41f596 2800 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2801
2802 sched_clock_tick();
dd41f596 2803
05fa785c 2804 raw_spin_lock(&rq->lock);
3e51f33f 2805 update_rq_clock(rq);
fa85ae24 2806 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2807 update_cpu_load_active(rq);
3289bdb4 2808 calc_global_load_tick(rq);
05fa785c 2809 raw_spin_unlock(&rq->lock);
7835b98b 2810
e9d2b064 2811 perf_event_task_tick();
e220d2dc 2812
e418e1c2 2813#ifdef CONFIG_SMP
6eb57e0d 2814 rq->idle_balance = idle_cpu(cpu);
7caff66f 2815 trigger_load_balance(rq);
e418e1c2 2816#endif
265f22a9 2817 rq_last_tick_reset(rq);
1da177e4
LT
2818}
2819
265f22a9
FW
2820#ifdef CONFIG_NO_HZ_FULL
2821/**
2822 * scheduler_tick_max_deferment
2823 *
2824 * Keep at least one tick per second when a single
2825 * active task is running because the scheduler doesn't
2826 * yet completely support full dynticks environment.
2827 *
2828 * This makes sure that uptime, CFS vruntime, load
2829 * balancing, etc... continue to move forward, even
2830 * with a very low granularity.
e69f6186
YB
2831 *
2832 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2833 */
2834u64 scheduler_tick_max_deferment(void)
2835{
2836 struct rq *rq = this_rq();
316c1608 2837 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2838
2839 next = rq->last_sched_tick + HZ;
2840
2841 if (time_before_eq(next, now))
2842 return 0;
2843
8fe8ff09 2844 return jiffies_to_nsecs(next - now);
1da177e4 2845}
265f22a9 2846#endif
1da177e4 2847
132380a0 2848notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2849{
2850 if (in_lock_functions(addr)) {
2851 addr = CALLER_ADDR2;
2852 if (in_lock_functions(addr))
2853 addr = CALLER_ADDR3;
2854 }
2855 return addr;
2856}
1da177e4 2857
7e49fcce
SR
2858#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2859 defined(CONFIG_PREEMPT_TRACER))
2860
edafe3a5 2861void preempt_count_add(int val)
1da177e4 2862{
6cd8a4bb 2863#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2864 /*
2865 * Underflow?
2866 */
9a11b49a
IM
2867 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2868 return;
6cd8a4bb 2869#endif
bdb43806 2870 __preempt_count_add(val);
6cd8a4bb 2871#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2872 /*
2873 * Spinlock count overflowing soon?
2874 */
33859f7f
MOS
2875 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2876 PREEMPT_MASK - 10);
6cd8a4bb 2877#endif
8f47b187
TG
2878 if (preempt_count() == val) {
2879 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2880#ifdef CONFIG_DEBUG_PREEMPT
2881 current->preempt_disable_ip = ip;
2882#endif
2883 trace_preempt_off(CALLER_ADDR0, ip);
2884 }
1da177e4 2885}
bdb43806 2886EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2887NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2888
edafe3a5 2889void preempt_count_sub(int val)
1da177e4 2890{
6cd8a4bb 2891#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2892 /*
2893 * Underflow?
2894 */
01e3eb82 2895 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2896 return;
1da177e4
LT
2897 /*
2898 * Is the spinlock portion underflowing?
2899 */
9a11b49a
IM
2900 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2901 !(preempt_count() & PREEMPT_MASK)))
2902 return;
6cd8a4bb 2903#endif
9a11b49a 2904
6cd8a4bb
SR
2905 if (preempt_count() == val)
2906 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2907 __preempt_count_sub(val);
1da177e4 2908}
bdb43806 2909EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2910NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2911
2912#endif
2913
2914/*
dd41f596 2915 * Print scheduling while atomic bug:
1da177e4 2916 */
dd41f596 2917static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2918{
664dfa65
DJ
2919 if (oops_in_progress)
2920 return;
2921
3df0fc5b
PZ
2922 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2923 prev->comm, prev->pid, preempt_count());
838225b4 2924
dd41f596 2925 debug_show_held_locks(prev);
e21f5b15 2926 print_modules();
dd41f596
IM
2927 if (irqs_disabled())
2928 print_irqtrace_events(prev);
8f47b187
TG
2929#ifdef CONFIG_DEBUG_PREEMPT
2930 if (in_atomic_preempt_off()) {
2931 pr_err("Preemption disabled at:");
2932 print_ip_sym(current->preempt_disable_ip);
2933 pr_cont("\n");
2934 }
2935#endif
6135fc1e 2936 dump_stack();
373d4d09 2937 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2938}
1da177e4 2939
dd41f596
IM
2940/*
2941 * Various schedule()-time debugging checks and statistics:
2942 */
2943static inline void schedule_debug(struct task_struct *prev)
2944{
0d9e2632
AT
2945#ifdef CONFIG_SCHED_STACK_END_CHECK
2946 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2947#endif
1da177e4 2948 /*
41a2d6cf 2949 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2950 * schedule() atomically, we ignore that path. Otherwise whine
2951 * if we are scheduling when we should not.
1da177e4 2952 */
192301e7 2953 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2954 __schedule_bug(prev);
b3fbab05 2955 rcu_sleep_check();
dd41f596 2956
1da177e4
LT
2957 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2958
2d72376b 2959 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2960}
2961
2962/*
2963 * Pick up the highest-prio task:
2964 */
2965static inline struct task_struct *
606dba2e 2966pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2967{
37e117c0 2968 const struct sched_class *class = &fair_sched_class;
dd41f596 2969 struct task_struct *p;
1da177e4
LT
2970
2971 /*
dd41f596
IM
2972 * Optimization: we know that if all tasks are in
2973 * the fair class we can call that function directly:
1da177e4 2974 */
37e117c0 2975 if (likely(prev->sched_class == class &&
38033c37 2976 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2977 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2978 if (unlikely(p == RETRY_TASK))
2979 goto again;
2980
2981 /* assumes fair_sched_class->next == idle_sched_class */
2982 if (unlikely(!p))
2983 p = idle_sched_class.pick_next_task(rq, prev);
2984
2985 return p;
1da177e4
LT
2986 }
2987
37e117c0 2988again:
34f971f6 2989 for_each_class(class) {
606dba2e 2990 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2991 if (p) {
2992 if (unlikely(p == RETRY_TASK))
2993 goto again;
dd41f596 2994 return p;
37e117c0 2995 }
dd41f596 2996 }
34f971f6
PZ
2997
2998 BUG(); /* the idle class will always have a runnable task */
dd41f596 2999}
1da177e4 3000
dd41f596 3001/*
c259e01a 3002 * __schedule() is the main scheduler function.
edde96ea
PE
3003 *
3004 * The main means of driving the scheduler and thus entering this function are:
3005 *
3006 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3007 *
3008 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3009 * paths. For example, see arch/x86/entry_64.S.
3010 *
3011 * To drive preemption between tasks, the scheduler sets the flag in timer
3012 * interrupt handler scheduler_tick().
3013 *
3014 * 3. Wakeups don't really cause entry into schedule(). They add a
3015 * task to the run-queue and that's it.
3016 *
3017 * Now, if the new task added to the run-queue preempts the current
3018 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3019 * called on the nearest possible occasion:
3020 *
3021 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3022 *
3023 * - in syscall or exception context, at the next outmost
3024 * preempt_enable(). (this might be as soon as the wake_up()'s
3025 * spin_unlock()!)
3026 *
3027 * - in IRQ context, return from interrupt-handler to
3028 * preemptible context
3029 *
3030 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3031 * then at the next:
3032 *
3033 * - cond_resched() call
3034 * - explicit schedule() call
3035 * - return from syscall or exception to user-space
3036 * - return from interrupt-handler to user-space
bfd9b2b5 3037 *
b30f0e3f 3038 * WARNING: must be called with preemption disabled!
dd41f596 3039 */
c259e01a 3040static void __sched __schedule(void)
dd41f596
IM
3041{
3042 struct task_struct *prev, *next;
67ca7bde 3043 unsigned long *switch_count;
dd41f596 3044 struct rq *rq;
31656519 3045 int cpu;
dd41f596 3046
dd41f596
IM
3047 cpu = smp_processor_id();
3048 rq = cpu_rq(cpu);
38200cf2 3049 rcu_note_context_switch();
dd41f596 3050 prev = rq->curr;
dd41f596 3051
dd41f596 3052 schedule_debug(prev);
1da177e4 3053
31656519 3054 if (sched_feat(HRTICK))
f333fdc9 3055 hrtick_clear(rq);
8f4d37ec 3056
e0acd0a6
ON
3057 /*
3058 * Make sure that signal_pending_state()->signal_pending() below
3059 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3060 * done by the caller to avoid the race with signal_wake_up().
3061 */
3062 smp_mb__before_spinlock();
05fa785c 3063 raw_spin_lock_irq(&rq->lock);
cbce1a68 3064 lockdep_pin_lock(&rq->lock);
1da177e4 3065
9edfbfed
PZ
3066 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3067
246d86b5 3068 switch_count = &prev->nivcsw;
1da177e4 3069 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3070 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3071 prev->state = TASK_RUNNING;
21aa9af0 3072 } else {
2acca55e
PZ
3073 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3074 prev->on_rq = 0;
3075
21aa9af0 3076 /*
2acca55e
PZ
3077 * If a worker went to sleep, notify and ask workqueue
3078 * whether it wants to wake up a task to maintain
3079 * concurrency.
21aa9af0
TH
3080 */
3081 if (prev->flags & PF_WQ_WORKER) {
3082 struct task_struct *to_wakeup;
3083
3084 to_wakeup = wq_worker_sleeping(prev, cpu);
3085 if (to_wakeup)
3086 try_to_wake_up_local(to_wakeup);
3087 }
21aa9af0 3088 }
dd41f596 3089 switch_count = &prev->nvcsw;
1da177e4
LT
3090 }
3091
9edfbfed 3092 if (task_on_rq_queued(prev))
606dba2e
PZ
3093 update_rq_clock(rq);
3094
3095 next = pick_next_task(rq, prev);
f26f9aff 3096 clear_tsk_need_resched(prev);
f27dde8d 3097 clear_preempt_need_resched();
9edfbfed 3098 rq->clock_skip_update = 0;
1da177e4 3099
1da177e4 3100 if (likely(prev != next)) {
1da177e4
LT
3101 rq->nr_switches++;
3102 rq->curr = next;
3103 ++*switch_count;
3104
dfa50b60
ON
3105 rq = context_switch(rq, prev, next); /* unlocks the rq */
3106 cpu = cpu_of(rq);
cbce1a68
PZ
3107 } else {
3108 lockdep_unpin_lock(&rq->lock);
05fa785c 3109 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3110 }
1da177e4 3111
e3fca9e7 3112 balance_callback(rq);
1da177e4 3113}
c259e01a 3114
9c40cef2
TG
3115static inline void sched_submit_work(struct task_struct *tsk)
3116{
3c7d5184 3117 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3118 return;
3119 /*
3120 * If we are going to sleep and we have plugged IO queued,
3121 * make sure to submit it to avoid deadlocks.
3122 */
3123 if (blk_needs_flush_plug(tsk))
3124 blk_schedule_flush_plug(tsk);
3125}
3126
722a9f92 3127asmlinkage __visible void __sched schedule(void)
c259e01a 3128{
9c40cef2
TG
3129 struct task_struct *tsk = current;
3130
3131 sched_submit_work(tsk);
bfd9b2b5 3132 do {
b30f0e3f 3133 preempt_disable();
bfd9b2b5 3134 __schedule();
b30f0e3f 3135 sched_preempt_enable_no_resched();
bfd9b2b5 3136 } while (need_resched());
c259e01a 3137}
1da177e4
LT
3138EXPORT_SYMBOL(schedule);
3139
91d1aa43 3140#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3141asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3142{
3143 /*
3144 * If we come here after a random call to set_need_resched(),
3145 * or we have been woken up remotely but the IPI has not yet arrived,
3146 * we haven't yet exited the RCU idle mode. Do it here manually until
3147 * we find a better solution.
7cc78f8f
AL
3148 *
3149 * NB: There are buggy callers of this function. Ideally we
c467ea76 3150 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3151 * too frequently to make sense yet.
20ab65e3 3152 */
7cc78f8f 3153 enum ctx_state prev_state = exception_enter();
20ab65e3 3154 schedule();
7cc78f8f 3155 exception_exit(prev_state);
20ab65e3
FW
3156}
3157#endif
3158
c5491ea7
TG
3159/**
3160 * schedule_preempt_disabled - called with preemption disabled
3161 *
3162 * Returns with preemption disabled. Note: preempt_count must be 1
3163 */
3164void __sched schedule_preempt_disabled(void)
3165{
ba74c144 3166 sched_preempt_enable_no_resched();
c5491ea7
TG
3167 schedule();
3168 preempt_disable();
3169}
3170
06b1f808 3171static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3172{
3173 do {
b30f0e3f 3174 preempt_active_enter();
a18b5d01 3175 __schedule();
b30f0e3f 3176 preempt_active_exit();
a18b5d01
FW
3177
3178 /*
3179 * Check again in case we missed a preemption opportunity
3180 * between schedule and now.
3181 */
a18b5d01
FW
3182 } while (need_resched());
3183}
3184
1da177e4
LT
3185#ifdef CONFIG_PREEMPT
3186/*
2ed6e34f 3187 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3188 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3189 * occur there and call schedule directly.
3190 */
722a9f92 3191asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3192{
1da177e4
LT
3193 /*
3194 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3195 * we do not want to preempt the current task. Just return..
1da177e4 3196 */
fbb00b56 3197 if (likely(!preemptible()))
1da177e4
LT
3198 return;
3199
a18b5d01 3200 preempt_schedule_common();
1da177e4 3201}
376e2424 3202NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3203EXPORT_SYMBOL(preempt_schedule);
009f60e2 3204
009f60e2 3205/**
4eaca0a8 3206 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3207 *
3208 * The tracing infrastructure uses preempt_enable_notrace to prevent
3209 * recursion and tracing preempt enabling caused by the tracing
3210 * infrastructure itself. But as tracing can happen in areas coming
3211 * from userspace or just about to enter userspace, a preempt enable
3212 * can occur before user_exit() is called. This will cause the scheduler
3213 * to be called when the system is still in usermode.
3214 *
3215 * To prevent this, the preempt_enable_notrace will use this function
3216 * instead of preempt_schedule() to exit user context if needed before
3217 * calling the scheduler.
3218 */
4eaca0a8 3219asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3220{
3221 enum ctx_state prev_ctx;
3222
3223 if (likely(!preemptible()))
3224 return;
3225
3226 do {
be690035
FW
3227 /*
3228 * Use raw __prempt_count() ops that don't call function.
3229 * We can't call functions before disabling preemption which
3230 * disarm preemption tracing recursions.
3231 */
3232 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3233 barrier();
009f60e2
ON
3234 /*
3235 * Needs preempt disabled in case user_exit() is traced
3236 * and the tracer calls preempt_enable_notrace() causing
3237 * an infinite recursion.
3238 */
3239 prev_ctx = exception_enter();
3240 __schedule();
3241 exception_exit(prev_ctx);
3242
009f60e2 3243 barrier();
be690035 3244 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
3245 } while (need_resched());
3246}
4eaca0a8 3247EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3248
32e475d7 3249#endif /* CONFIG_PREEMPT */
1da177e4
LT
3250
3251/*
2ed6e34f 3252 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3253 * off of irq context.
3254 * Note, that this is called and return with irqs disabled. This will
3255 * protect us against recursive calling from irq.
3256 */
722a9f92 3257asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3258{
b22366cd 3259 enum ctx_state prev_state;
6478d880 3260
2ed6e34f 3261 /* Catch callers which need to be fixed */
f27dde8d 3262 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3263
b22366cd
FW
3264 prev_state = exception_enter();
3265
3a5c359a 3266 do {
b30f0e3f 3267 preempt_active_enter();
3a5c359a 3268 local_irq_enable();
c259e01a 3269 __schedule();
3a5c359a 3270 local_irq_disable();
b30f0e3f 3271 preempt_active_exit();
5ed0cec0 3272 } while (need_resched());
b22366cd
FW
3273
3274 exception_exit(prev_state);
1da177e4
LT
3275}
3276
63859d4f 3277int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3278 void *key)
1da177e4 3279{
63859d4f 3280 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3281}
1da177e4
LT
3282EXPORT_SYMBOL(default_wake_function);
3283
b29739f9
IM
3284#ifdef CONFIG_RT_MUTEXES
3285
3286/*
3287 * rt_mutex_setprio - set the current priority of a task
3288 * @p: task
3289 * @prio: prio value (kernel-internal form)
3290 *
3291 * This function changes the 'effective' priority of a task. It does
3292 * not touch ->normal_prio like __setscheduler().
3293 *
c365c292
TG
3294 * Used by the rt_mutex code to implement priority inheritance
3295 * logic. Call site only calls if the priority of the task changed.
b29739f9 3296 */
36c8b586 3297void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3298{
da0c1e65 3299 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3300 struct rq *rq;
83ab0aa0 3301 const struct sched_class *prev_class;
b29739f9 3302
aab03e05 3303 BUG_ON(prio > MAX_PRIO);
b29739f9 3304
0122ec5b 3305 rq = __task_rq_lock(p);
b29739f9 3306
1c4dd99b
TG
3307 /*
3308 * Idle task boosting is a nono in general. There is one
3309 * exception, when PREEMPT_RT and NOHZ is active:
3310 *
3311 * The idle task calls get_next_timer_interrupt() and holds
3312 * the timer wheel base->lock on the CPU and another CPU wants
3313 * to access the timer (probably to cancel it). We can safely
3314 * ignore the boosting request, as the idle CPU runs this code
3315 * with interrupts disabled and will complete the lock
3316 * protected section without being interrupted. So there is no
3317 * real need to boost.
3318 */
3319 if (unlikely(p == rq->idle)) {
3320 WARN_ON(p != rq->curr);
3321 WARN_ON(p->pi_blocked_on);
3322 goto out_unlock;
3323 }
3324
a8027073 3325 trace_sched_pi_setprio(p, prio);
d5f9f942 3326 oldprio = p->prio;
83ab0aa0 3327 prev_class = p->sched_class;
da0c1e65 3328 queued = task_on_rq_queued(p);
051a1d1a 3329 running = task_current(rq, p);
da0c1e65 3330 if (queued)
69be72c1 3331 dequeue_task(rq, p, 0);
0e1f3483 3332 if (running)
f3cd1c4e 3333 put_prev_task(rq, p);
dd41f596 3334
2d3d891d
DF
3335 /*
3336 * Boosting condition are:
3337 * 1. -rt task is running and holds mutex A
3338 * --> -dl task blocks on mutex A
3339 *
3340 * 2. -dl task is running and holds mutex A
3341 * --> -dl task blocks on mutex A and could preempt the
3342 * running task
3343 */
3344 if (dl_prio(prio)) {
466af29b
ON
3345 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3346 if (!dl_prio(p->normal_prio) ||
3347 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3348 p->dl.dl_boosted = 1;
2d3d891d
DF
3349 enqueue_flag = ENQUEUE_REPLENISH;
3350 } else
3351 p->dl.dl_boosted = 0;
aab03e05 3352 p->sched_class = &dl_sched_class;
2d3d891d
DF
3353 } else if (rt_prio(prio)) {
3354 if (dl_prio(oldprio))
3355 p->dl.dl_boosted = 0;
3356 if (oldprio < prio)
3357 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3358 p->sched_class = &rt_sched_class;
2d3d891d
DF
3359 } else {
3360 if (dl_prio(oldprio))
3361 p->dl.dl_boosted = 0;
746db944
BS
3362 if (rt_prio(oldprio))
3363 p->rt.timeout = 0;
dd41f596 3364 p->sched_class = &fair_sched_class;
2d3d891d 3365 }
dd41f596 3366
b29739f9
IM
3367 p->prio = prio;
3368
0e1f3483
HS
3369 if (running)
3370 p->sched_class->set_curr_task(rq);
da0c1e65 3371 if (queued)
2d3d891d 3372 enqueue_task(rq, p, enqueue_flag);
cb469845 3373
da7a735e 3374 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3375out_unlock:
4c9a4bc8 3376 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3377 __task_rq_unlock(rq);
4c9a4bc8
PZ
3378
3379 balance_callback(rq);
3380 preempt_enable();
b29739f9 3381}
b29739f9 3382#endif
d50dde5a 3383
36c8b586 3384void set_user_nice(struct task_struct *p, long nice)
1da177e4 3385{
da0c1e65 3386 int old_prio, delta, queued;
1da177e4 3387 unsigned long flags;
70b97a7f 3388 struct rq *rq;
1da177e4 3389
75e45d51 3390 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3391 return;
3392 /*
3393 * We have to be careful, if called from sys_setpriority(),
3394 * the task might be in the middle of scheduling on another CPU.
3395 */
3396 rq = task_rq_lock(p, &flags);
3397 /*
3398 * The RT priorities are set via sched_setscheduler(), but we still
3399 * allow the 'normal' nice value to be set - but as expected
3400 * it wont have any effect on scheduling until the task is
aab03e05 3401 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3402 */
aab03e05 3403 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3404 p->static_prio = NICE_TO_PRIO(nice);
3405 goto out_unlock;
3406 }
da0c1e65
KT
3407 queued = task_on_rq_queued(p);
3408 if (queued)
69be72c1 3409 dequeue_task(rq, p, 0);
1da177e4 3410
1da177e4 3411 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3412 set_load_weight(p);
b29739f9
IM
3413 old_prio = p->prio;
3414 p->prio = effective_prio(p);
3415 delta = p->prio - old_prio;
1da177e4 3416
da0c1e65 3417 if (queued) {
371fd7e7 3418 enqueue_task(rq, p, 0);
1da177e4 3419 /*
d5f9f942
AM
3420 * If the task increased its priority or is running and
3421 * lowered its priority, then reschedule its CPU:
1da177e4 3422 */
d5f9f942 3423 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3424 resched_curr(rq);
1da177e4
LT
3425 }
3426out_unlock:
0122ec5b 3427 task_rq_unlock(rq, p, &flags);
1da177e4 3428}
1da177e4
LT
3429EXPORT_SYMBOL(set_user_nice);
3430
e43379f1
MM
3431/*
3432 * can_nice - check if a task can reduce its nice value
3433 * @p: task
3434 * @nice: nice value
3435 */
36c8b586 3436int can_nice(const struct task_struct *p, const int nice)
e43379f1 3437{
024f4747 3438 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3439 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3440
78d7d407 3441 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3442 capable(CAP_SYS_NICE));
3443}
3444
1da177e4
LT
3445#ifdef __ARCH_WANT_SYS_NICE
3446
3447/*
3448 * sys_nice - change the priority of the current process.
3449 * @increment: priority increment
3450 *
3451 * sys_setpriority is a more generic, but much slower function that
3452 * does similar things.
3453 */
5add95d4 3454SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3455{
48f24c4d 3456 long nice, retval;
1da177e4
LT
3457
3458 /*
3459 * Setpriority might change our priority at the same moment.
3460 * We don't have to worry. Conceptually one call occurs first
3461 * and we have a single winner.
3462 */
a9467fa3 3463 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3464 nice = task_nice(current) + increment;
1da177e4 3465
a9467fa3 3466 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3467 if (increment < 0 && !can_nice(current, nice))
3468 return -EPERM;
3469
1da177e4
LT
3470 retval = security_task_setnice(current, nice);
3471 if (retval)
3472 return retval;
3473
3474 set_user_nice(current, nice);
3475 return 0;
3476}
3477
3478#endif
3479
3480/**
3481 * task_prio - return the priority value of a given task.
3482 * @p: the task in question.
3483 *
e69f6186 3484 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3485 * RT tasks are offset by -200. Normal tasks are centered
3486 * around 0, value goes from -16 to +15.
3487 */
36c8b586 3488int task_prio(const struct task_struct *p)
1da177e4
LT
3489{
3490 return p->prio - MAX_RT_PRIO;
3491}
3492
1da177e4
LT
3493/**
3494 * idle_cpu - is a given cpu idle currently?
3495 * @cpu: the processor in question.
e69f6186
YB
3496 *
3497 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3498 */
3499int idle_cpu(int cpu)
3500{
908a3283
TG
3501 struct rq *rq = cpu_rq(cpu);
3502
3503 if (rq->curr != rq->idle)
3504 return 0;
3505
3506 if (rq->nr_running)
3507 return 0;
3508
3509#ifdef CONFIG_SMP
3510 if (!llist_empty(&rq->wake_list))
3511 return 0;
3512#endif
3513
3514 return 1;
1da177e4
LT
3515}
3516
1da177e4
LT
3517/**
3518 * idle_task - return the idle task for a given cpu.
3519 * @cpu: the processor in question.
e69f6186
YB
3520 *
3521 * Return: The idle task for the cpu @cpu.
1da177e4 3522 */
36c8b586 3523struct task_struct *idle_task(int cpu)
1da177e4
LT
3524{
3525 return cpu_rq(cpu)->idle;
3526}
3527
3528/**
3529 * find_process_by_pid - find a process with a matching PID value.
3530 * @pid: the pid in question.
e69f6186
YB
3531 *
3532 * The task of @pid, if found. %NULL otherwise.
1da177e4 3533 */
a9957449 3534static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3535{
228ebcbe 3536 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3537}
3538
aab03e05
DF
3539/*
3540 * This function initializes the sched_dl_entity of a newly becoming
3541 * SCHED_DEADLINE task.
3542 *
3543 * Only the static values are considered here, the actual runtime and the
3544 * absolute deadline will be properly calculated when the task is enqueued
3545 * for the first time with its new policy.
3546 */
3547static void
3548__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3549{
3550 struct sched_dl_entity *dl_se = &p->dl;
3551
aab03e05
DF
3552 dl_se->dl_runtime = attr->sched_runtime;
3553 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3554 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3555 dl_se->flags = attr->sched_flags;
332ac17e 3556 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3557
3558 /*
3559 * Changing the parameters of a task is 'tricky' and we're not doing
3560 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3561 *
3562 * What we SHOULD do is delay the bandwidth release until the 0-lag
3563 * point. This would include retaining the task_struct until that time
3564 * and change dl_overflow() to not immediately decrement the current
3565 * amount.
3566 *
3567 * Instead we retain the current runtime/deadline and let the new
3568 * parameters take effect after the current reservation period lapses.
3569 * This is safe (albeit pessimistic) because the 0-lag point is always
3570 * before the current scheduling deadline.
3571 *
3572 * We can still have temporary overloads because we do not delay the
3573 * change in bandwidth until that time; so admission control is
3574 * not on the safe side. It does however guarantee tasks will never
3575 * consume more than promised.
3576 */
aab03e05
DF
3577}
3578
c13db6b1
SR
3579/*
3580 * sched_setparam() passes in -1 for its policy, to let the functions
3581 * it calls know not to change it.
3582 */
3583#define SETPARAM_POLICY -1
3584
c365c292
TG
3585static void __setscheduler_params(struct task_struct *p,
3586 const struct sched_attr *attr)
1da177e4 3587{
d50dde5a
DF
3588 int policy = attr->sched_policy;
3589
c13db6b1 3590 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3591 policy = p->policy;
3592
1da177e4 3593 p->policy = policy;
d50dde5a 3594
aab03e05
DF
3595 if (dl_policy(policy))
3596 __setparam_dl(p, attr);
39fd8fd2 3597 else if (fair_policy(policy))
d50dde5a
DF
3598 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3599
39fd8fd2
PZ
3600 /*
3601 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3602 * !rt_policy. Always setting this ensures that things like
3603 * getparam()/getattr() don't report silly values for !rt tasks.
3604 */
3605 p->rt_priority = attr->sched_priority;
383afd09 3606 p->normal_prio = normal_prio(p);
c365c292
TG
3607 set_load_weight(p);
3608}
39fd8fd2 3609
c365c292
TG
3610/* Actually do priority change: must hold pi & rq lock. */
3611static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3612 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3613{
3614 __setscheduler_params(p, attr);
d50dde5a 3615
383afd09 3616 /*
0782e63b
TG
3617 * Keep a potential priority boosting if called from
3618 * sched_setscheduler().
383afd09 3619 */
0782e63b
TG
3620 if (keep_boost)
3621 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3622 else
3623 p->prio = normal_prio(p);
383afd09 3624
aab03e05
DF
3625 if (dl_prio(p->prio))
3626 p->sched_class = &dl_sched_class;
3627 else if (rt_prio(p->prio))
ffd44db5
PZ
3628 p->sched_class = &rt_sched_class;
3629 else
3630 p->sched_class = &fair_sched_class;
1da177e4 3631}
aab03e05
DF
3632
3633static void
3634__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3635{
3636 struct sched_dl_entity *dl_se = &p->dl;
3637
3638 attr->sched_priority = p->rt_priority;
3639 attr->sched_runtime = dl_se->dl_runtime;
3640 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3641 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3642 attr->sched_flags = dl_se->flags;
3643}
3644
3645/*
3646 * This function validates the new parameters of a -deadline task.
3647 * We ask for the deadline not being zero, and greater or equal
755378a4 3648 * than the runtime, as well as the period of being zero or
332ac17e 3649 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3650 * user parameters are above the internal resolution of 1us (we
3651 * check sched_runtime only since it is always the smaller one) and
3652 * below 2^63 ns (we have to check both sched_deadline and
3653 * sched_period, as the latter can be zero).
aab03e05
DF
3654 */
3655static bool
3656__checkparam_dl(const struct sched_attr *attr)
3657{
b0827819
JL
3658 /* deadline != 0 */
3659 if (attr->sched_deadline == 0)
3660 return false;
3661
3662 /*
3663 * Since we truncate DL_SCALE bits, make sure we're at least
3664 * that big.
3665 */
3666 if (attr->sched_runtime < (1ULL << DL_SCALE))
3667 return false;
3668
3669 /*
3670 * Since we use the MSB for wrap-around and sign issues, make
3671 * sure it's not set (mind that period can be equal to zero).
3672 */
3673 if (attr->sched_deadline & (1ULL << 63) ||
3674 attr->sched_period & (1ULL << 63))
3675 return false;
3676
3677 /* runtime <= deadline <= period (if period != 0) */
3678 if ((attr->sched_period != 0 &&
3679 attr->sched_period < attr->sched_deadline) ||
3680 attr->sched_deadline < attr->sched_runtime)
3681 return false;
3682
3683 return true;
aab03e05
DF
3684}
3685
c69e8d9c
DH
3686/*
3687 * check the target process has a UID that matches the current process's
3688 */
3689static bool check_same_owner(struct task_struct *p)
3690{
3691 const struct cred *cred = current_cred(), *pcred;
3692 bool match;
3693
3694 rcu_read_lock();
3695 pcred = __task_cred(p);
9c806aa0
EB
3696 match = (uid_eq(cred->euid, pcred->euid) ||
3697 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3698 rcu_read_unlock();
3699 return match;
3700}
3701
75381608
WL
3702static bool dl_param_changed(struct task_struct *p,
3703 const struct sched_attr *attr)
3704{
3705 struct sched_dl_entity *dl_se = &p->dl;
3706
3707 if (dl_se->dl_runtime != attr->sched_runtime ||
3708 dl_se->dl_deadline != attr->sched_deadline ||
3709 dl_se->dl_period != attr->sched_period ||
3710 dl_se->flags != attr->sched_flags)
3711 return true;
3712
3713 return false;
3714}
3715
d50dde5a
DF
3716static int __sched_setscheduler(struct task_struct *p,
3717 const struct sched_attr *attr,
dbc7f069 3718 bool user, bool pi)
1da177e4 3719{
383afd09
SR
3720 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3721 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3722 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3723 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3724 unsigned long flags;
83ab0aa0 3725 const struct sched_class *prev_class;
70b97a7f 3726 struct rq *rq;
ca94c442 3727 int reset_on_fork;
1da177e4 3728
66e5393a
SR
3729 /* may grab non-irq protected spin_locks */
3730 BUG_ON(in_interrupt());
1da177e4
LT
3731recheck:
3732 /* double check policy once rq lock held */
ca94c442
LP
3733 if (policy < 0) {
3734 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3735 policy = oldpolicy = p->policy;
ca94c442 3736 } else {
7479f3c9 3737 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3738
aab03e05
DF
3739 if (policy != SCHED_DEADLINE &&
3740 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3741 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3742 policy != SCHED_IDLE)
3743 return -EINVAL;
3744 }
3745
7479f3c9
PZ
3746 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3747 return -EINVAL;
3748
1da177e4
LT
3749 /*
3750 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3751 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3752 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3753 */
0bb040a4 3754 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3755 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3756 return -EINVAL;
aab03e05
DF
3757 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3758 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3759 return -EINVAL;
3760
37e4ab3f
OC
3761 /*
3762 * Allow unprivileged RT tasks to decrease priority:
3763 */
961ccddd 3764 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3765 if (fair_policy(policy)) {
d0ea0268 3766 if (attr->sched_nice < task_nice(p) &&
eaad4513 3767 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3768 return -EPERM;
3769 }
3770
e05606d3 3771 if (rt_policy(policy)) {
a44702e8
ON
3772 unsigned long rlim_rtprio =
3773 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3774
3775 /* can't set/change the rt policy */
3776 if (policy != p->policy && !rlim_rtprio)
3777 return -EPERM;
3778
3779 /* can't increase priority */
d50dde5a
DF
3780 if (attr->sched_priority > p->rt_priority &&
3781 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3782 return -EPERM;
3783 }
c02aa73b 3784
d44753b8
JL
3785 /*
3786 * Can't set/change SCHED_DEADLINE policy at all for now
3787 * (safest behavior); in the future we would like to allow
3788 * unprivileged DL tasks to increase their relative deadline
3789 * or reduce their runtime (both ways reducing utilization)
3790 */
3791 if (dl_policy(policy))
3792 return -EPERM;
3793
dd41f596 3794 /*
c02aa73b
DH
3795 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3796 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3797 */
c02aa73b 3798 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3799 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3800 return -EPERM;
3801 }
5fe1d75f 3802
37e4ab3f 3803 /* can't change other user's priorities */
c69e8d9c 3804 if (!check_same_owner(p))
37e4ab3f 3805 return -EPERM;
ca94c442
LP
3806
3807 /* Normal users shall not reset the sched_reset_on_fork flag */
3808 if (p->sched_reset_on_fork && !reset_on_fork)
3809 return -EPERM;
37e4ab3f 3810 }
1da177e4 3811
725aad24 3812 if (user) {
b0ae1981 3813 retval = security_task_setscheduler(p);
725aad24
JF
3814 if (retval)
3815 return retval;
3816 }
3817
b29739f9
IM
3818 /*
3819 * make sure no PI-waiters arrive (or leave) while we are
3820 * changing the priority of the task:
0122ec5b 3821 *
25985edc 3822 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3823 * runqueue lock must be held.
3824 */
0122ec5b 3825 rq = task_rq_lock(p, &flags);
dc61b1d6 3826
34f971f6
PZ
3827 /*
3828 * Changing the policy of the stop threads its a very bad idea
3829 */
3830 if (p == rq->stop) {
0122ec5b 3831 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3832 return -EINVAL;
3833 }
3834
a51e9198 3835 /*
d6b1e911
TG
3836 * If not changing anything there's no need to proceed further,
3837 * but store a possible modification of reset_on_fork.
a51e9198 3838 */
d50dde5a 3839 if (unlikely(policy == p->policy)) {
d0ea0268 3840 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3841 goto change;
3842 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3843 goto change;
75381608 3844 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3845 goto change;
d50dde5a 3846
d6b1e911 3847 p->sched_reset_on_fork = reset_on_fork;
45afb173 3848 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3849 return 0;
3850 }
d50dde5a 3851change:
a51e9198 3852
dc61b1d6 3853 if (user) {
332ac17e 3854#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3855 /*
3856 * Do not allow realtime tasks into groups that have no runtime
3857 * assigned.
3858 */
3859 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3860 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3861 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3862 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3863 return -EPERM;
3864 }
dc61b1d6 3865#endif
332ac17e
DF
3866#ifdef CONFIG_SMP
3867 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3868 cpumask_t *span = rq->rd->span;
332ac17e
DF
3869
3870 /*
3871 * Don't allow tasks with an affinity mask smaller than
3872 * the entire root_domain to become SCHED_DEADLINE. We
3873 * will also fail if there's no bandwidth available.
3874 */
e4099a5e
PZ
3875 if (!cpumask_subset(span, &p->cpus_allowed) ||
3876 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3877 task_rq_unlock(rq, p, &flags);
3878 return -EPERM;
3879 }
3880 }
3881#endif
3882 }
dc61b1d6 3883
1da177e4
LT
3884 /* recheck policy now with rq lock held */
3885 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3886 policy = oldpolicy = -1;
0122ec5b 3887 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3888 goto recheck;
3889 }
332ac17e
DF
3890
3891 /*
3892 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3893 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3894 * is available.
3895 */
e4099a5e 3896 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3897 task_rq_unlock(rq, p, &flags);
3898 return -EBUSY;
3899 }
3900
c365c292
TG
3901 p->sched_reset_on_fork = reset_on_fork;
3902 oldprio = p->prio;
3903
dbc7f069
PZ
3904 if (pi) {
3905 /*
3906 * Take priority boosted tasks into account. If the new
3907 * effective priority is unchanged, we just store the new
3908 * normal parameters and do not touch the scheduler class and
3909 * the runqueue. This will be done when the task deboost
3910 * itself.
3911 */
3912 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3913 if (new_effective_prio == oldprio) {
3914 __setscheduler_params(p, attr);
3915 task_rq_unlock(rq, p, &flags);
3916 return 0;
3917 }
c365c292
TG
3918 }
3919
da0c1e65 3920 queued = task_on_rq_queued(p);
051a1d1a 3921 running = task_current(rq, p);
da0c1e65 3922 if (queued)
4ca9b72b 3923 dequeue_task(rq, p, 0);
0e1f3483 3924 if (running)
f3cd1c4e 3925 put_prev_task(rq, p);
f6b53205 3926
83ab0aa0 3927 prev_class = p->sched_class;
dbc7f069 3928 __setscheduler(rq, p, attr, pi);
f6b53205 3929
0e1f3483
HS
3930 if (running)
3931 p->sched_class->set_curr_task(rq);
da0c1e65 3932 if (queued) {
81a44c54
TG
3933 /*
3934 * We enqueue to tail when the priority of a task is
3935 * increased (user space view).
3936 */
3937 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3938 }
cb469845 3939
da7a735e 3940 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3941 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3942 task_rq_unlock(rq, p, &flags);
b29739f9 3943
dbc7f069
PZ
3944 if (pi)
3945 rt_mutex_adjust_pi(p);
95e02ca9 3946
4c9a4bc8
PZ
3947 /*
3948 * Run balance callbacks after we've adjusted the PI chain.
3949 */
3950 balance_callback(rq);
3951 preempt_enable();
95e02ca9 3952
1da177e4
LT
3953 return 0;
3954}
961ccddd 3955
7479f3c9
PZ
3956static int _sched_setscheduler(struct task_struct *p, int policy,
3957 const struct sched_param *param, bool check)
3958{
3959 struct sched_attr attr = {
3960 .sched_policy = policy,
3961 .sched_priority = param->sched_priority,
3962 .sched_nice = PRIO_TO_NICE(p->static_prio),
3963 };
3964
c13db6b1
SR
3965 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3966 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3967 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3968 policy &= ~SCHED_RESET_ON_FORK;
3969 attr.sched_policy = policy;
3970 }
3971
dbc7f069 3972 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3973}
961ccddd
RR
3974/**
3975 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3976 * @p: the task in question.
3977 * @policy: new policy.
3978 * @param: structure containing the new RT priority.
3979 *
e69f6186
YB
3980 * Return: 0 on success. An error code otherwise.
3981 *
961ccddd
RR
3982 * NOTE that the task may be already dead.
3983 */
3984int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3985 const struct sched_param *param)
961ccddd 3986{
7479f3c9 3987 return _sched_setscheduler(p, policy, param, true);
961ccddd 3988}
1da177e4
LT
3989EXPORT_SYMBOL_GPL(sched_setscheduler);
3990
d50dde5a
DF
3991int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3992{
dbc7f069 3993 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
3994}
3995EXPORT_SYMBOL_GPL(sched_setattr);
3996
961ccddd
RR
3997/**
3998 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3999 * @p: the task in question.
4000 * @policy: new policy.
4001 * @param: structure containing the new RT priority.
4002 *
4003 * Just like sched_setscheduler, only don't bother checking if the
4004 * current context has permission. For example, this is needed in
4005 * stop_machine(): we create temporary high priority worker threads,
4006 * but our caller might not have that capability.
e69f6186
YB
4007 *
4008 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4009 */
4010int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4011 const struct sched_param *param)
961ccddd 4012{
7479f3c9 4013 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
4014}
4015
95cdf3b7
IM
4016static int
4017do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4018{
1da177e4
LT
4019 struct sched_param lparam;
4020 struct task_struct *p;
36c8b586 4021 int retval;
1da177e4
LT
4022
4023 if (!param || pid < 0)
4024 return -EINVAL;
4025 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4026 return -EFAULT;
5fe1d75f
ON
4027
4028 rcu_read_lock();
4029 retval = -ESRCH;
1da177e4 4030 p = find_process_by_pid(pid);
5fe1d75f
ON
4031 if (p != NULL)
4032 retval = sched_setscheduler(p, policy, &lparam);
4033 rcu_read_unlock();
36c8b586 4034
1da177e4
LT
4035 return retval;
4036}
4037
d50dde5a
DF
4038/*
4039 * Mimics kernel/events/core.c perf_copy_attr().
4040 */
4041static int sched_copy_attr(struct sched_attr __user *uattr,
4042 struct sched_attr *attr)
4043{
4044 u32 size;
4045 int ret;
4046
4047 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4048 return -EFAULT;
4049
4050 /*
4051 * zero the full structure, so that a short copy will be nice.
4052 */
4053 memset(attr, 0, sizeof(*attr));
4054
4055 ret = get_user(size, &uattr->size);
4056 if (ret)
4057 return ret;
4058
4059 if (size > PAGE_SIZE) /* silly large */
4060 goto err_size;
4061
4062 if (!size) /* abi compat */
4063 size = SCHED_ATTR_SIZE_VER0;
4064
4065 if (size < SCHED_ATTR_SIZE_VER0)
4066 goto err_size;
4067
4068 /*
4069 * If we're handed a bigger struct than we know of,
4070 * ensure all the unknown bits are 0 - i.e. new
4071 * user-space does not rely on any kernel feature
4072 * extensions we dont know about yet.
4073 */
4074 if (size > sizeof(*attr)) {
4075 unsigned char __user *addr;
4076 unsigned char __user *end;
4077 unsigned char val;
4078
4079 addr = (void __user *)uattr + sizeof(*attr);
4080 end = (void __user *)uattr + size;
4081
4082 for (; addr < end; addr++) {
4083 ret = get_user(val, addr);
4084 if (ret)
4085 return ret;
4086 if (val)
4087 goto err_size;
4088 }
4089 size = sizeof(*attr);
4090 }
4091
4092 ret = copy_from_user(attr, uattr, size);
4093 if (ret)
4094 return -EFAULT;
4095
4096 /*
4097 * XXX: do we want to be lenient like existing syscalls; or do we want
4098 * to be strict and return an error on out-of-bounds values?
4099 */
75e45d51 4100 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4101
e78c7bca 4102 return 0;
d50dde5a
DF
4103
4104err_size:
4105 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4106 return -E2BIG;
d50dde5a
DF
4107}
4108
1da177e4
LT
4109/**
4110 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4111 * @pid: the pid in question.
4112 * @policy: new policy.
4113 * @param: structure containing the new RT priority.
e69f6186
YB
4114 *
4115 * Return: 0 on success. An error code otherwise.
1da177e4 4116 */
5add95d4
HC
4117SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4118 struct sched_param __user *, param)
1da177e4 4119{
c21761f1
JB
4120 /* negative values for policy are not valid */
4121 if (policy < 0)
4122 return -EINVAL;
4123
1da177e4
LT
4124 return do_sched_setscheduler(pid, policy, param);
4125}
4126
4127/**
4128 * sys_sched_setparam - set/change the RT priority of a thread
4129 * @pid: the pid in question.
4130 * @param: structure containing the new RT priority.
e69f6186
YB
4131 *
4132 * Return: 0 on success. An error code otherwise.
1da177e4 4133 */
5add95d4 4134SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4135{
c13db6b1 4136 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4137}
4138
d50dde5a
DF
4139/**
4140 * sys_sched_setattr - same as above, but with extended sched_attr
4141 * @pid: the pid in question.
5778fccf 4142 * @uattr: structure containing the extended parameters.
db66d756 4143 * @flags: for future extension.
d50dde5a 4144 */
6d35ab48
PZ
4145SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4146 unsigned int, flags)
d50dde5a
DF
4147{
4148 struct sched_attr attr;
4149 struct task_struct *p;
4150 int retval;
4151
6d35ab48 4152 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4153 return -EINVAL;
4154
143cf23d
MK
4155 retval = sched_copy_attr(uattr, &attr);
4156 if (retval)
4157 return retval;
d50dde5a 4158
b14ed2c2 4159 if ((int)attr.sched_policy < 0)
dbdb2275 4160 return -EINVAL;
d50dde5a
DF
4161
4162 rcu_read_lock();
4163 retval = -ESRCH;
4164 p = find_process_by_pid(pid);
4165 if (p != NULL)
4166 retval = sched_setattr(p, &attr);
4167 rcu_read_unlock();
4168
4169 return retval;
4170}
4171
1da177e4
LT
4172/**
4173 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4174 * @pid: the pid in question.
e69f6186
YB
4175 *
4176 * Return: On success, the policy of the thread. Otherwise, a negative error
4177 * code.
1da177e4 4178 */
5add95d4 4179SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4180{
36c8b586 4181 struct task_struct *p;
3a5c359a 4182 int retval;
1da177e4
LT
4183
4184 if (pid < 0)
3a5c359a 4185 return -EINVAL;
1da177e4
LT
4186
4187 retval = -ESRCH;
5fe85be0 4188 rcu_read_lock();
1da177e4
LT
4189 p = find_process_by_pid(pid);
4190 if (p) {
4191 retval = security_task_getscheduler(p);
4192 if (!retval)
ca94c442
LP
4193 retval = p->policy
4194 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4195 }
5fe85be0 4196 rcu_read_unlock();
1da177e4
LT
4197 return retval;
4198}
4199
4200/**
ca94c442 4201 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4202 * @pid: the pid in question.
4203 * @param: structure containing the RT priority.
e69f6186
YB
4204 *
4205 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4206 * code.
1da177e4 4207 */
5add95d4 4208SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4209{
ce5f7f82 4210 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4211 struct task_struct *p;
3a5c359a 4212 int retval;
1da177e4
LT
4213
4214 if (!param || pid < 0)
3a5c359a 4215 return -EINVAL;
1da177e4 4216
5fe85be0 4217 rcu_read_lock();
1da177e4
LT
4218 p = find_process_by_pid(pid);
4219 retval = -ESRCH;
4220 if (!p)
4221 goto out_unlock;
4222
4223 retval = security_task_getscheduler(p);
4224 if (retval)
4225 goto out_unlock;
4226
ce5f7f82
PZ
4227 if (task_has_rt_policy(p))
4228 lp.sched_priority = p->rt_priority;
5fe85be0 4229 rcu_read_unlock();
1da177e4
LT
4230
4231 /*
4232 * This one might sleep, we cannot do it with a spinlock held ...
4233 */
4234 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4235
1da177e4
LT
4236 return retval;
4237
4238out_unlock:
5fe85be0 4239 rcu_read_unlock();
1da177e4
LT
4240 return retval;
4241}
4242
d50dde5a
DF
4243static int sched_read_attr(struct sched_attr __user *uattr,
4244 struct sched_attr *attr,
4245 unsigned int usize)
4246{
4247 int ret;
4248
4249 if (!access_ok(VERIFY_WRITE, uattr, usize))
4250 return -EFAULT;
4251
4252 /*
4253 * If we're handed a smaller struct than we know of,
4254 * ensure all the unknown bits are 0 - i.e. old
4255 * user-space does not get uncomplete information.
4256 */
4257 if (usize < sizeof(*attr)) {
4258 unsigned char *addr;
4259 unsigned char *end;
4260
4261 addr = (void *)attr + usize;
4262 end = (void *)attr + sizeof(*attr);
4263
4264 for (; addr < end; addr++) {
4265 if (*addr)
22400674 4266 return -EFBIG;
d50dde5a
DF
4267 }
4268
4269 attr->size = usize;
4270 }
4271
4efbc454 4272 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4273 if (ret)
4274 return -EFAULT;
4275
22400674 4276 return 0;
d50dde5a
DF
4277}
4278
4279/**
aab03e05 4280 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4281 * @pid: the pid in question.
5778fccf 4282 * @uattr: structure containing the extended parameters.
d50dde5a 4283 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4284 * @flags: for future extension.
d50dde5a 4285 */
6d35ab48
PZ
4286SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4287 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4288{
4289 struct sched_attr attr = {
4290 .size = sizeof(struct sched_attr),
4291 };
4292 struct task_struct *p;
4293 int retval;
4294
4295 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4296 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4297 return -EINVAL;
4298
4299 rcu_read_lock();
4300 p = find_process_by_pid(pid);
4301 retval = -ESRCH;
4302 if (!p)
4303 goto out_unlock;
4304
4305 retval = security_task_getscheduler(p);
4306 if (retval)
4307 goto out_unlock;
4308
4309 attr.sched_policy = p->policy;
7479f3c9
PZ
4310 if (p->sched_reset_on_fork)
4311 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4312 if (task_has_dl_policy(p))
4313 __getparam_dl(p, &attr);
4314 else if (task_has_rt_policy(p))
d50dde5a
DF
4315 attr.sched_priority = p->rt_priority;
4316 else
d0ea0268 4317 attr.sched_nice = task_nice(p);
d50dde5a
DF
4318
4319 rcu_read_unlock();
4320
4321 retval = sched_read_attr(uattr, &attr, size);
4322 return retval;
4323
4324out_unlock:
4325 rcu_read_unlock();
4326 return retval;
4327}
4328
96f874e2 4329long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4330{
5a16f3d3 4331 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4332 struct task_struct *p;
4333 int retval;
1da177e4 4334
23f5d142 4335 rcu_read_lock();
1da177e4
LT
4336
4337 p = find_process_by_pid(pid);
4338 if (!p) {
23f5d142 4339 rcu_read_unlock();
1da177e4
LT
4340 return -ESRCH;
4341 }
4342
23f5d142 4343 /* Prevent p going away */
1da177e4 4344 get_task_struct(p);
23f5d142 4345 rcu_read_unlock();
1da177e4 4346
14a40ffc
TH
4347 if (p->flags & PF_NO_SETAFFINITY) {
4348 retval = -EINVAL;
4349 goto out_put_task;
4350 }
5a16f3d3
RR
4351 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4352 retval = -ENOMEM;
4353 goto out_put_task;
4354 }
4355 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4356 retval = -ENOMEM;
4357 goto out_free_cpus_allowed;
4358 }
1da177e4 4359 retval = -EPERM;
4c44aaaf
EB
4360 if (!check_same_owner(p)) {
4361 rcu_read_lock();
4362 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4363 rcu_read_unlock();
16303ab2 4364 goto out_free_new_mask;
4c44aaaf
EB
4365 }
4366 rcu_read_unlock();
4367 }
1da177e4 4368
b0ae1981 4369 retval = security_task_setscheduler(p);
e7834f8f 4370 if (retval)
16303ab2 4371 goto out_free_new_mask;
e7834f8f 4372
e4099a5e
PZ
4373
4374 cpuset_cpus_allowed(p, cpus_allowed);
4375 cpumask_and(new_mask, in_mask, cpus_allowed);
4376
332ac17e
DF
4377 /*
4378 * Since bandwidth control happens on root_domain basis,
4379 * if admission test is enabled, we only admit -deadline
4380 * tasks allowed to run on all the CPUs in the task's
4381 * root_domain.
4382 */
4383#ifdef CONFIG_SMP
f1e3a093
KT
4384 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4385 rcu_read_lock();
4386 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4387 retval = -EBUSY;
f1e3a093 4388 rcu_read_unlock();
16303ab2 4389 goto out_free_new_mask;
332ac17e 4390 }
f1e3a093 4391 rcu_read_unlock();
332ac17e
DF
4392 }
4393#endif
49246274 4394again:
25834c73 4395 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4396
8707d8b8 4397 if (!retval) {
5a16f3d3
RR
4398 cpuset_cpus_allowed(p, cpus_allowed);
4399 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4400 /*
4401 * We must have raced with a concurrent cpuset
4402 * update. Just reset the cpus_allowed to the
4403 * cpuset's cpus_allowed
4404 */
5a16f3d3 4405 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4406 goto again;
4407 }
4408 }
16303ab2 4409out_free_new_mask:
5a16f3d3
RR
4410 free_cpumask_var(new_mask);
4411out_free_cpus_allowed:
4412 free_cpumask_var(cpus_allowed);
4413out_put_task:
1da177e4 4414 put_task_struct(p);
1da177e4
LT
4415 return retval;
4416}
4417
4418static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4419 struct cpumask *new_mask)
1da177e4 4420{
96f874e2
RR
4421 if (len < cpumask_size())
4422 cpumask_clear(new_mask);
4423 else if (len > cpumask_size())
4424 len = cpumask_size();
4425
1da177e4
LT
4426 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4427}
4428
4429/**
4430 * sys_sched_setaffinity - set the cpu affinity of a process
4431 * @pid: pid of the process
4432 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4433 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4434 *
4435 * Return: 0 on success. An error code otherwise.
1da177e4 4436 */
5add95d4
HC
4437SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4438 unsigned long __user *, user_mask_ptr)
1da177e4 4439{
5a16f3d3 4440 cpumask_var_t new_mask;
1da177e4
LT
4441 int retval;
4442
5a16f3d3
RR
4443 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4444 return -ENOMEM;
1da177e4 4445
5a16f3d3
RR
4446 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4447 if (retval == 0)
4448 retval = sched_setaffinity(pid, new_mask);
4449 free_cpumask_var(new_mask);
4450 return retval;
1da177e4
LT
4451}
4452
96f874e2 4453long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4454{
36c8b586 4455 struct task_struct *p;
31605683 4456 unsigned long flags;
1da177e4 4457 int retval;
1da177e4 4458
23f5d142 4459 rcu_read_lock();
1da177e4
LT
4460
4461 retval = -ESRCH;
4462 p = find_process_by_pid(pid);
4463 if (!p)
4464 goto out_unlock;
4465
e7834f8f
DQ
4466 retval = security_task_getscheduler(p);
4467 if (retval)
4468 goto out_unlock;
4469
013fdb80 4470 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4471 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4472 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4473
4474out_unlock:
23f5d142 4475 rcu_read_unlock();
1da177e4 4476
9531b62f 4477 return retval;
1da177e4
LT
4478}
4479
4480/**
4481 * sys_sched_getaffinity - get the cpu affinity of a process
4482 * @pid: pid of the process
4483 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4484 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4485 *
4486 * Return: 0 on success. An error code otherwise.
1da177e4 4487 */
5add95d4
HC
4488SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4489 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4490{
4491 int ret;
f17c8607 4492 cpumask_var_t mask;
1da177e4 4493
84fba5ec 4494 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4495 return -EINVAL;
4496 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4497 return -EINVAL;
4498
f17c8607
RR
4499 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4500 return -ENOMEM;
1da177e4 4501
f17c8607
RR
4502 ret = sched_getaffinity(pid, mask);
4503 if (ret == 0) {
8bc037fb 4504 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4505
4506 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4507 ret = -EFAULT;
4508 else
cd3d8031 4509 ret = retlen;
f17c8607
RR
4510 }
4511 free_cpumask_var(mask);
1da177e4 4512
f17c8607 4513 return ret;
1da177e4
LT
4514}
4515
4516/**
4517 * sys_sched_yield - yield the current processor to other threads.
4518 *
dd41f596
IM
4519 * This function yields the current CPU to other tasks. If there are no
4520 * other threads running on this CPU then this function will return.
e69f6186
YB
4521 *
4522 * Return: 0.
1da177e4 4523 */
5add95d4 4524SYSCALL_DEFINE0(sched_yield)
1da177e4 4525{
70b97a7f 4526 struct rq *rq = this_rq_lock();
1da177e4 4527
2d72376b 4528 schedstat_inc(rq, yld_count);
4530d7ab 4529 current->sched_class->yield_task(rq);
1da177e4
LT
4530
4531 /*
4532 * Since we are going to call schedule() anyway, there's
4533 * no need to preempt or enable interrupts:
4534 */
4535 __release(rq->lock);
8a25d5de 4536 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4537 do_raw_spin_unlock(&rq->lock);
ba74c144 4538 sched_preempt_enable_no_resched();
1da177e4
LT
4539
4540 schedule();
4541
4542 return 0;
4543}
4544
02b67cc3 4545int __sched _cond_resched(void)
1da177e4 4546{
fe32d3cd 4547 if (should_resched(0)) {
a18b5d01 4548 preempt_schedule_common();
1da177e4
LT
4549 return 1;
4550 }
4551 return 0;
4552}
02b67cc3 4553EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4554
4555/*
613afbf8 4556 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4557 * call schedule, and on return reacquire the lock.
4558 *
41a2d6cf 4559 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4560 * operations here to prevent schedule() from being called twice (once via
4561 * spin_unlock(), once by hand).
4562 */
613afbf8 4563int __cond_resched_lock(spinlock_t *lock)
1da177e4 4564{
fe32d3cd 4565 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4566 int ret = 0;
4567
f607c668
PZ
4568 lockdep_assert_held(lock);
4569
4a81e832 4570 if (spin_needbreak(lock) || resched) {
1da177e4 4571 spin_unlock(lock);
d86ee480 4572 if (resched)
a18b5d01 4573 preempt_schedule_common();
95c354fe
NP
4574 else
4575 cpu_relax();
6df3cecb 4576 ret = 1;
1da177e4 4577 spin_lock(lock);
1da177e4 4578 }
6df3cecb 4579 return ret;
1da177e4 4580}
613afbf8 4581EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4582
613afbf8 4583int __sched __cond_resched_softirq(void)
1da177e4
LT
4584{
4585 BUG_ON(!in_softirq());
4586
fe32d3cd 4587 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4588 local_bh_enable();
a18b5d01 4589 preempt_schedule_common();
1da177e4
LT
4590 local_bh_disable();
4591 return 1;
4592 }
4593 return 0;
4594}
613afbf8 4595EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4596
1da177e4
LT
4597/**
4598 * yield - yield the current processor to other threads.
4599 *
8e3fabfd
PZ
4600 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4601 *
4602 * The scheduler is at all times free to pick the calling task as the most
4603 * eligible task to run, if removing the yield() call from your code breaks
4604 * it, its already broken.
4605 *
4606 * Typical broken usage is:
4607 *
4608 * while (!event)
4609 * yield();
4610 *
4611 * where one assumes that yield() will let 'the other' process run that will
4612 * make event true. If the current task is a SCHED_FIFO task that will never
4613 * happen. Never use yield() as a progress guarantee!!
4614 *
4615 * If you want to use yield() to wait for something, use wait_event().
4616 * If you want to use yield() to be 'nice' for others, use cond_resched().
4617 * If you still want to use yield(), do not!
1da177e4
LT
4618 */
4619void __sched yield(void)
4620{
4621 set_current_state(TASK_RUNNING);
4622 sys_sched_yield();
4623}
1da177e4
LT
4624EXPORT_SYMBOL(yield);
4625
d95f4122
MG
4626/**
4627 * yield_to - yield the current processor to another thread in
4628 * your thread group, or accelerate that thread toward the
4629 * processor it's on.
16addf95
RD
4630 * @p: target task
4631 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4632 *
4633 * It's the caller's job to ensure that the target task struct
4634 * can't go away on us before we can do any checks.
4635 *
e69f6186 4636 * Return:
7b270f60
PZ
4637 * true (>0) if we indeed boosted the target task.
4638 * false (0) if we failed to boost the target.
4639 * -ESRCH if there's no task to yield to.
d95f4122 4640 */
fa93384f 4641int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4642{
4643 struct task_struct *curr = current;
4644 struct rq *rq, *p_rq;
4645 unsigned long flags;
c3c18640 4646 int yielded = 0;
d95f4122
MG
4647
4648 local_irq_save(flags);
4649 rq = this_rq();
4650
4651again:
4652 p_rq = task_rq(p);
7b270f60
PZ
4653 /*
4654 * If we're the only runnable task on the rq and target rq also
4655 * has only one task, there's absolutely no point in yielding.
4656 */
4657 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4658 yielded = -ESRCH;
4659 goto out_irq;
4660 }
4661
d95f4122 4662 double_rq_lock(rq, p_rq);
39e24d8f 4663 if (task_rq(p) != p_rq) {
d95f4122
MG
4664 double_rq_unlock(rq, p_rq);
4665 goto again;
4666 }
4667
4668 if (!curr->sched_class->yield_to_task)
7b270f60 4669 goto out_unlock;
d95f4122
MG
4670
4671 if (curr->sched_class != p->sched_class)
7b270f60 4672 goto out_unlock;
d95f4122
MG
4673
4674 if (task_running(p_rq, p) || p->state)
7b270f60 4675 goto out_unlock;
d95f4122
MG
4676
4677 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4678 if (yielded) {
d95f4122 4679 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4680 /*
4681 * Make p's CPU reschedule; pick_next_entity takes care of
4682 * fairness.
4683 */
4684 if (preempt && rq != p_rq)
8875125e 4685 resched_curr(p_rq);
6d1cafd8 4686 }
d95f4122 4687
7b270f60 4688out_unlock:
d95f4122 4689 double_rq_unlock(rq, p_rq);
7b270f60 4690out_irq:
d95f4122
MG
4691 local_irq_restore(flags);
4692
7b270f60 4693 if (yielded > 0)
d95f4122
MG
4694 schedule();
4695
4696 return yielded;
4697}
4698EXPORT_SYMBOL_GPL(yield_to);
4699
1da177e4 4700/*
41a2d6cf 4701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4702 * that process accounting knows that this is a task in IO wait state.
1da177e4 4703 */
1da177e4
LT
4704long __sched io_schedule_timeout(long timeout)
4705{
9cff8ade
N
4706 int old_iowait = current->in_iowait;
4707 struct rq *rq;
1da177e4
LT
4708 long ret;
4709
9cff8ade 4710 current->in_iowait = 1;
10d784ea 4711 blk_schedule_flush_plug(current);
9cff8ade 4712
0ff92245 4713 delayacct_blkio_start();
9cff8ade 4714 rq = raw_rq();
1da177e4
LT
4715 atomic_inc(&rq->nr_iowait);
4716 ret = schedule_timeout(timeout);
9cff8ade 4717 current->in_iowait = old_iowait;
1da177e4 4718 atomic_dec(&rq->nr_iowait);
0ff92245 4719 delayacct_blkio_end();
9cff8ade 4720
1da177e4
LT
4721 return ret;
4722}
9cff8ade 4723EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4724
4725/**
4726 * sys_sched_get_priority_max - return maximum RT priority.
4727 * @policy: scheduling class.
4728 *
e69f6186
YB
4729 * Return: On success, this syscall returns the maximum
4730 * rt_priority that can be used by a given scheduling class.
4731 * On failure, a negative error code is returned.
1da177e4 4732 */
5add95d4 4733SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4734{
4735 int ret = -EINVAL;
4736
4737 switch (policy) {
4738 case SCHED_FIFO:
4739 case SCHED_RR:
4740 ret = MAX_USER_RT_PRIO-1;
4741 break;
aab03e05 4742 case SCHED_DEADLINE:
1da177e4 4743 case SCHED_NORMAL:
b0a9499c 4744 case SCHED_BATCH:
dd41f596 4745 case SCHED_IDLE:
1da177e4
LT
4746 ret = 0;
4747 break;
4748 }
4749 return ret;
4750}
4751
4752/**
4753 * sys_sched_get_priority_min - return minimum RT priority.
4754 * @policy: scheduling class.
4755 *
e69f6186
YB
4756 * Return: On success, this syscall returns the minimum
4757 * rt_priority that can be used by a given scheduling class.
4758 * On failure, a negative error code is returned.
1da177e4 4759 */
5add95d4 4760SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4761{
4762 int ret = -EINVAL;
4763
4764 switch (policy) {
4765 case SCHED_FIFO:
4766 case SCHED_RR:
4767 ret = 1;
4768 break;
aab03e05 4769 case SCHED_DEADLINE:
1da177e4 4770 case SCHED_NORMAL:
b0a9499c 4771 case SCHED_BATCH:
dd41f596 4772 case SCHED_IDLE:
1da177e4
LT
4773 ret = 0;
4774 }
4775 return ret;
4776}
4777
4778/**
4779 * sys_sched_rr_get_interval - return the default timeslice of a process.
4780 * @pid: pid of the process.
4781 * @interval: userspace pointer to the timeslice value.
4782 *
4783 * this syscall writes the default timeslice value of a given process
4784 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4785 *
4786 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4787 * an error code.
1da177e4 4788 */
17da2bd9 4789SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4790 struct timespec __user *, interval)
1da177e4 4791{
36c8b586 4792 struct task_struct *p;
a4ec24b4 4793 unsigned int time_slice;
dba091b9
TG
4794 unsigned long flags;
4795 struct rq *rq;
3a5c359a 4796 int retval;
1da177e4 4797 struct timespec t;
1da177e4
LT
4798
4799 if (pid < 0)
3a5c359a 4800 return -EINVAL;
1da177e4
LT
4801
4802 retval = -ESRCH;
1a551ae7 4803 rcu_read_lock();
1da177e4
LT
4804 p = find_process_by_pid(pid);
4805 if (!p)
4806 goto out_unlock;
4807
4808 retval = security_task_getscheduler(p);
4809 if (retval)
4810 goto out_unlock;
4811
dba091b9 4812 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4813 time_slice = 0;
4814 if (p->sched_class->get_rr_interval)
4815 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4816 task_rq_unlock(rq, p, &flags);
a4ec24b4 4817
1a551ae7 4818 rcu_read_unlock();
a4ec24b4 4819 jiffies_to_timespec(time_slice, &t);
1da177e4 4820 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4821 return retval;
3a5c359a 4822
1da177e4 4823out_unlock:
1a551ae7 4824 rcu_read_unlock();
1da177e4
LT
4825 return retval;
4826}
4827
7c731e0a 4828static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4829
82a1fcb9 4830void sched_show_task(struct task_struct *p)
1da177e4 4831{
1da177e4 4832 unsigned long free = 0;
4e79752c 4833 int ppid;
1f8a7633 4834 unsigned long state = p->state;
1da177e4 4835
1f8a7633
TH
4836 if (state)
4837 state = __ffs(state) + 1;
28d0686c 4838 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4839 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4840#if BITS_PER_LONG == 32
1da177e4 4841 if (state == TASK_RUNNING)
3df0fc5b 4842 printk(KERN_CONT " running ");
1da177e4 4843 else
3df0fc5b 4844 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4845#else
4846 if (state == TASK_RUNNING)
3df0fc5b 4847 printk(KERN_CONT " running task ");
1da177e4 4848 else
3df0fc5b 4849 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4850#endif
4851#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4852 free = stack_not_used(p);
1da177e4 4853#endif
a90e984c 4854 ppid = 0;
4e79752c 4855 rcu_read_lock();
a90e984c
ON
4856 if (pid_alive(p))
4857 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4858 rcu_read_unlock();
3df0fc5b 4859 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4860 task_pid_nr(p), ppid,
aa47b7e0 4861 (unsigned long)task_thread_info(p)->flags);
1da177e4 4862
3d1cb205 4863 print_worker_info(KERN_INFO, p);
5fb5e6de 4864 show_stack(p, NULL);
1da177e4
LT
4865}
4866
e59e2ae2 4867void show_state_filter(unsigned long state_filter)
1da177e4 4868{
36c8b586 4869 struct task_struct *g, *p;
1da177e4 4870
4bd77321 4871#if BITS_PER_LONG == 32
3df0fc5b
PZ
4872 printk(KERN_INFO
4873 " task PC stack pid father\n");
1da177e4 4874#else
3df0fc5b
PZ
4875 printk(KERN_INFO
4876 " task PC stack pid father\n");
1da177e4 4877#endif
510f5acc 4878 rcu_read_lock();
5d07f420 4879 for_each_process_thread(g, p) {
1da177e4
LT
4880 /*
4881 * reset the NMI-timeout, listing all files on a slow
25985edc 4882 * console might take a lot of time:
1da177e4
LT
4883 */
4884 touch_nmi_watchdog();
39bc89fd 4885 if (!state_filter || (p->state & state_filter))
82a1fcb9 4886 sched_show_task(p);
5d07f420 4887 }
1da177e4 4888
04c9167f
JF
4889 touch_all_softlockup_watchdogs();
4890
dd41f596
IM
4891#ifdef CONFIG_SCHED_DEBUG
4892 sysrq_sched_debug_show();
4893#endif
510f5acc 4894 rcu_read_unlock();
e59e2ae2
IM
4895 /*
4896 * Only show locks if all tasks are dumped:
4897 */
93335a21 4898 if (!state_filter)
e59e2ae2 4899 debug_show_all_locks();
1da177e4
LT
4900}
4901
0db0628d 4902void init_idle_bootup_task(struct task_struct *idle)
1df21055 4903{
dd41f596 4904 idle->sched_class = &idle_sched_class;
1df21055
IM
4905}
4906
f340c0d1
IM
4907/**
4908 * init_idle - set up an idle thread for a given CPU
4909 * @idle: task in question
4910 * @cpu: cpu the idle task belongs to
4911 *
4912 * NOTE: this function does not set the idle thread's NEED_RESCHED
4913 * flag, to make booting more robust.
4914 */
0db0628d 4915void init_idle(struct task_struct *idle, int cpu)
1da177e4 4916{
70b97a7f 4917 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4918 unsigned long flags;
4919
25834c73
PZ
4920 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4921 raw_spin_lock(&rq->lock);
5cbd54ef 4922
5e1576ed 4923 __sched_fork(0, idle);
06b83b5f 4924 idle->state = TASK_RUNNING;
dd41f596
IM
4925 idle->se.exec_start = sched_clock();
4926
1e1b6c51 4927 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4928 /*
4929 * We're having a chicken and egg problem, even though we are
4930 * holding rq->lock, the cpu isn't yet set to this cpu so the
4931 * lockdep check in task_group() will fail.
4932 *
4933 * Similar case to sched_fork(). / Alternatively we could
4934 * use task_rq_lock() here and obtain the other rq->lock.
4935 *
4936 * Silence PROVE_RCU
4937 */
4938 rcu_read_lock();
dd41f596 4939 __set_task_cpu(idle, cpu);
6506cf6c 4940 rcu_read_unlock();
1da177e4 4941
1da177e4 4942 rq->curr = rq->idle = idle;
da0c1e65 4943 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4944#if defined(CONFIG_SMP)
4945 idle->on_cpu = 1;
4866cde0 4946#endif
25834c73
PZ
4947 raw_spin_unlock(&rq->lock);
4948 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4949
4950 /* Set the preempt count _outside_ the spinlocks! */
01028747 4951 init_idle_preempt_count(idle, cpu);
55cd5340 4952
dd41f596
IM
4953 /*
4954 * The idle tasks have their own, simple scheduling class:
4955 */
4956 idle->sched_class = &idle_sched_class;
868baf07 4957 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4958 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4959#if defined(CONFIG_SMP)
4960 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4961#endif
19978ca6
IM
4962}
4963
f82f8042
JL
4964int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4965 const struct cpumask *trial)
4966{
4967 int ret = 1, trial_cpus;
4968 struct dl_bw *cur_dl_b;
4969 unsigned long flags;
4970
bb2bc55a
MG
4971 if (!cpumask_weight(cur))
4972 return ret;
4973
75e23e49 4974 rcu_read_lock_sched();
f82f8042
JL
4975 cur_dl_b = dl_bw_of(cpumask_any(cur));
4976 trial_cpus = cpumask_weight(trial);
4977
4978 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4979 if (cur_dl_b->bw != -1 &&
4980 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4981 ret = 0;
4982 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4983 rcu_read_unlock_sched();
f82f8042
JL
4984
4985 return ret;
4986}
4987
7f51412a
JL
4988int task_can_attach(struct task_struct *p,
4989 const struct cpumask *cs_cpus_allowed)
4990{
4991 int ret = 0;
4992
4993 /*
4994 * Kthreads which disallow setaffinity shouldn't be moved
4995 * to a new cpuset; we don't want to change their cpu
4996 * affinity and isolating such threads by their set of
4997 * allowed nodes is unnecessary. Thus, cpusets are not
4998 * applicable for such threads. This prevents checking for
4999 * success of set_cpus_allowed_ptr() on all attached tasks
5000 * before cpus_allowed may be changed.
5001 */
5002 if (p->flags & PF_NO_SETAFFINITY) {
5003 ret = -EINVAL;
5004 goto out;
5005 }
5006
5007#ifdef CONFIG_SMP
5008 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5009 cs_cpus_allowed)) {
5010 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5011 cs_cpus_allowed);
75e23e49 5012 struct dl_bw *dl_b;
7f51412a
JL
5013 bool overflow;
5014 int cpus;
5015 unsigned long flags;
5016
75e23e49
JL
5017 rcu_read_lock_sched();
5018 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5019 raw_spin_lock_irqsave(&dl_b->lock, flags);
5020 cpus = dl_bw_cpus(dest_cpu);
5021 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5022 if (overflow)
5023 ret = -EBUSY;
5024 else {
5025 /*
5026 * We reserve space for this task in the destination
5027 * root_domain, as we can't fail after this point.
5028 * We will free resources in the source root_domain
5029 * later on (see set_cpus_allowed_dl()).
5030 */
5031 __dl_add(dl_b, p->dl.dl_bw);
5032 }
5033 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5034 rcu_read_unlock_sched();
7f51412a
JL
5035
5036 }
5037#endif
5038out:
5039 return ret;
5040}
5041
1da177e4 5042#ifdef CONFIG_SMP
1da177e4 5043
e6628d5b
MG
5044#ifdef CONFIG_NUMA_BALANCING
5045/* Migrate current task p to target_cpu */
5046int migrate_task_to(struct task_struct *p, int target_cpu)
5047{
5048 struct migration_arg arg = { p, target_cpu };
5049 int curr_cpu = task_cpu(p);
5050
5051 if (curr_cpu == target_cpu)
5052 return 0;
5053
5054 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5055 return -EINVAL;
5056
5057 /* TODO: This is not properly updating schedstats */
5058
286549dc 5059 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5060 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5061}
0ec8aa00
PZ
5062
5063/*
5064 * Requeue a task on a given node and accurately track the number of NUMA
5065 * tasks on the runqueues
5066 */
5067void sched_setnuma(struct task_struct *p, int nid)
5068{
5069 struct rq *rq;
5070 unsigned long flags;
da0c1e65 5071 bool queued, running;
0ec8aa00
PZ
5072
5073 rq = task_rq_lock(p, &flags);
da0c1e65 5074 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5075 running = task_current(rq, p);
5076
da0c1e65 5077 if (queued)
0ec8aa00
PZ
5078 dequeue_task(rq, p, 0);
5079 if (running)
f3cd1c4e 5080 put_prev_task(rq, p);
0ec8aa00
PZ
5081
5082 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5083
5084 if (running)
5085 p->sched_class->set_curr_task(rq);
da0c1e65 5086 if (queued)
0ec8aa00
PZ
5087 enqueue_task(rq, p, 0);
5088 task_rq_unlock(rq, p, &flags);
5089}
5cc389bc 5090#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5091
1da177e4 5092#ifdef CONFIG_HOTPLUG_CPU
054b9108 5093/*
48c5ccae
PZ
5094 * Ensures that the idle task is using init_mm right before its cpu goes
5095 * offline.
054b9108 5096 */
48c5ccae 5097void idle_task_exit(void)
1da177e4 5098{
48c5ccae 5099 struct mm_struct *mm = current->active_mm;
e76bd8d9 5100
48c5ccae 5101 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5102
a53efe5f 5103 if (mm != &init_mm) {
48c5ccae 5104 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5105 finish_arch_post_lock_switch();
5106 }
48c5ccae 5107 mmdrop(mm);
1da177e4
LT
5108}
5109
5110/*
5d180232
PZ
5111 * Since this CPU is going 'away' for a while, fold any nr_active delta
5112 * we might have. Assumes we're called after migrate_tasks() so that the
5113 * nr_active count is stable.
5114 *
5115 * Also see the comment "Global load-average calculations".
1da177e4 5116 */
5d180232 5117static void calc_load_migrate(struct rq *rq)
1da177e4 5118{
5d180232
PZ
5119 long delta = calc_load_fold_active(rq);
5120 if (delta)
5121 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5122}
5123
3f1d2a31
PZ
5124static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5125{
5126}
5127
5128static const struct sched_class fake_sched_class = {
5129 .put_prev_task = put_prev_task_fake,
5130};
5131
5132static struct task_struct fake_task = {
5133 /*
5134 * Avoid pull_{rt,dl}_task()
5135 */
5136 .prio = MAX_PRIO + 1,
5137 .sched_class = &fake_sched_class,
5138};
5139
48f24c4d 5140/*
48c5ccae
PZ
5141 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5142 * try_to_wake_up()->select_task_rq().
5143 *
5144 * Called with rq->lock held even though we'er in stop_machine() and
5145 * there's no concurrency possible, we hold the required locks anyway
5146 * because of lock validation efforts.
1da177e4 5147 */
5e16bbc2 5148static void migrate_tasks(struct rq *dead_rq)
1da177e4 5149{
5e16bbc2 5150 struct rq *rq = dead_rq;
48c5ccae
PZ
5151 struct task_struct *next, *stop = rq->stop;
5152 int dest_cpu;
1da177e4
LT
5153
5154 /*
48c5ccae
PZ
5155 * Fudge the rq selection such that the below task selection loop
5156 * doesn't get stuck on the currently eligible stop task.
5157 *
5158 * We're currently inside stop_machine() and the rq is either stuck
5159 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5160 * either way we should never end up calling schedule() until we're
5161 * done here.
1da177e4 5162 */
48c5ccae 5163 rq->stop = NULL;
48f24c4d 5164
77bd3970
FW
5165 /*
5166 * put_prev_task() and pick_next_task() sched
5167 * class method both need to have an up-to-date
5168 * value of rq->clock[_task]
5169 */
5170 update_rq_clock(rq);
5171
5e16bbc2 5172 for (;;) {
48c5ccae
PZ
5173 /*
5174 * There's this thread running, bail when that's the only
5175 * remaining thread.
5176 */
5177 if (rq->nr_running == 1)
dd41f596 5178 break;
48c5ccae 5179
cbce1a68
PZ
5180 /*
5181 * Ensure rq->lock covers the entire task selection
5182 * until the migration.
5183 */
5184 lockdep_pin_lock(&rq->lock);
3f1d2a31 5185 next = pick_next_task(rq, &fake_task);
48c5ccae 5186 BUG_ON(!next);
79c53799 5187 next->sched_class->put_prev_task(rq, next);
e692ab53 5188
48c5ccae 5189 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5190 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5191
cbce1a68 5192 lockdep_unpin_lock(&rq->lock);
5e16bbc2
PZ
5193 rq = __migrate_task(rq, next, dest_cpu);
5194 if (rq != dead_rq) {
5195 raw_spin_unlock(&rq->lock);
5196 rq = dead_rq;
5197 raw_spin_lock(&rq->lock);
5198 }
1da177e4 5199 }
dce48a84 5200
48c5ccae 5201 rq->stop = stop;
dce48a84 5202}
1da177e4
LT
5203#endif /* CONFIG_HOTPLUG_CPU */
5204
e692ab53
NP
5205#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5206
5207static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5208 {
5209 .procname = "sched_domain",
c57baf1e 5210 .mode = 0555,
e0361851 5211 },
56992309 5212 {}
e692ab53
NP
5213};
5214
5215static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5216 {
5217 .procname = "kernel",
c57baf1e 5218 .mode = 0555,
e0361851
AD
5219 .child = sd_ctl_dir,
5220 },
56992309 5221 {}
e692ab53
NP
5222};
5223
5224static struct ctl_table *sd_alloc_ctl_entry(int n)
5225{
5226 struct ctl_table *entry =
5cf9f062 5227 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5228
e692ab53
NP
5229 return entry;
5230}
5231
6382bc90
MM
5232static void sd_free_ctl_entry(struct ctl_table **tablep)
5233{
cd790076 5234 struct ctl_table *entry;
6382bc90 5235
cd790076
MM
5236 /*
5237 * In the intermediate directories, both the child directory and
5238 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5239 * will always be set. In the lowest directory the names are
cd790076
MM
5240 * static strings and all have proc handlers.
5241 */
5242 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5243 if (entry->child)
5244 sd_free_ctl_entry(&entry->child);
cd790076
MM
5245 if (entry->proc_handler == NULL)
5246 kfree(entry->procname);
5247 }
6382bc90
MM
5248
5249 kfree(*tablep);
5250 *tablep = NULL;
5251}
5252
201c373e 5253static int min_load_idx = 0;
fd9b86d3 5254static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5255
e692ab53 5256static void
e0361851 5257set_table_entry(struct ctl_table *entry,
e692ab53 5258 const char *procname, void *data, int maxlen,
201c373e
NK
5259 umode_t mode, proc_handler *proc_handler,
5260 bool load_idx)
e692ab53 5261{
e692ab53
NP
5262 entry->procname = procname;
5263 entry->data = data;
5264 entry->maxlen = maxlen;
5265 entry->mode = mode;
5266 entry->proc_handler = proc_handler;
201c373e
NK
5267
5268 if (load_idx) {
5269 entry->extra1 = &min_load_idx;
5270 entry->extra2 = &max_load_idx;
5271 }
e692ab53
NP
5272}
5273
5274static struct ctl_table *
5275sd_alloc_ctl_domain_table(struct sched_domain *sd)
5276{
37e6bae8 5277 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5278
ad1cdc1d
MM
5279 if (table == NULL)
5280 return NULL;
5281
e0361851 5282 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5283 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5284 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5285 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5286 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5287 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5288 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5289 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5290 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5291 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5292 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5293 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5294 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5295 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5296 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5297 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5298 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5299 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5300 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5301 &sd->cache_nice_tries,
201c373e 5302 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5303 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5304 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5305 set_table_entry(&table[11], "max_newidle_lb_cost",
5306 &sd->max_newidle_lb_cost,
5307 sizeof(long), 0644, proc_doulongvec_minmax, false);
5308 set_table_entry(&table[12], "name", sd->name,
201c373e 5309 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5310 /* &table[13] is terminator */
e692ab53
NP
5311
5312 return table;
5313}
5314
be7002e6 5315static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5316{
5317 struct ctl_table *entry, *table;
5318 struct sched_domain *sd;
5319 int domain_num = 0, i;
5320 char buf[32];
5321
5322 for_each_domain(cpu, sd)
5323 domain_num++;
5324 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5325 if (table == NULL)
5326 return NULL;
e692ab53
NP
5327
5328 i = 0;
5329 for_each_domain(cpu, sd) {
5330 snprintf(buf, 32, "domain%d", i);
e692ab53 5331 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5332 entry->mode = 0555;
e692ab53
NP
5333 entry->child = sd_alloc_ctl_domain_table(sd);
5334 entry++;
5335 i++;
5336 }
5337 return table;
5338}
5339
5340static struct ctl_table_header *sd_sysctl_header;
6382bc90 5341static void register_sched_domain_sysctl(void)
e692ab53 5342{
6ad4c188 5343 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5344 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5345 char buf[32];
5346
7378547f
MM
5347 WARN_ON(sd_ctl_dir[0].child);
5348 sd_ctl_dir[0].child = entry;
5349
ad1cdc1d
MM
5350 if (entry == NULL)
5351 return;
5352
6ad4c188 5353 for_each_possible_cpu(i) {
e692ab53 5354 snprintf(buf, 32, "cpu%d", i);
e692ab53 5355 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5356 entry->mode = 0555;
e692ab53 5357 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5358 entry++;
e692ab53 5359 }
7378547f
MM
5360
5361 WARN_ON(sd_sysctl_header);
e692ab53
NP
5362 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5363}
6382bc90 5364
7378547f 5365/* may be called multiple times per register */
6382bc90
MM
5366static void unregister_sched_domain_sysctl(void)
5367{
781b0203 5368 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5369 sd_sysctl_header = NULL;
7378547f
MM
5370 if (sd_ctl_dir[0].child)
5371 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5372}
e692ab53 5373#else
6382bc90
MM
5374static void register_sched_domain_sysctl(void)
5375{
5376}
5377static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5378{
5379}
5cc389bc 5380#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5381
1f11eb6a
GH
5382static void set_rq_online(struct rq *rq)
5383{
5384 if (!rq->online) {
5385 const struct sched_class *class;
5386
c6c4927b 5387 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5388 rq->online = 1;
5389
5390 for_each_class(class) {
5391 if (class->rq_online)
5392 class->rq_online(rq);
5393 }
5394 }
5395}
5396
5397static void set_rq_offline(struct rq *rq)
5398{
5399 if (rq->online) {
5400 const struct sched_class *class;
5401
5402 for_each_class(class) {
5403 if (class->rq_offline)
5404 class->rq_offline(rq);
5405 }
5406
c6c4927b 5407 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5408 rq->online = 0;
5409 }
5410}
5411
1da177e4
LT
5412/*
5413 * migration_call - callback that gets triggered when a CPU is added.
5414 * Here we can start up the necessary migration thread for the new CPU.
5415 */
0db0628d 5416static int
48f24c4d 5417migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5418{
48f24c4d 5419 int cpu = (long)hcpu;
1da177e4 5420 unsigned long flags;
969c7921 5421 struct rq *rq = cpu_rq(cpu);
1da177e4 5422
48c5ccae 5423 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5424
1da177e4 5425 case CPU_UP_PREPARE:
a468d389 5426 rq->calc_load_update = calc_load_update;
1da177e4 5427 break;
48f24c4d 5428
1da177e4 5429 case CPU_ONLINE:
1f94ef59 5430 /* Update our root-domain */
05fa785c 5431 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5432 if (rq->rd) {
c6c4927b 5433 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5434
5435 set_rq_online(rq);
1f94ef59 5436 }
05fa785c 5437 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5438 break;
48f24c4d 5439
1da177e4 5440#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5441 case CPU_DYING:
317f3941 5442 sched_ttwu_pending();
57d885fe 5443 /* Update our root-domain */
05fa785c 5444 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5445 if (rq->rd) {
c6c4927b 5446 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5447 set_rq_offline(rq);
57d885fe 5448 }
5e16bbc2 5449 migrate_tasks(rq);
48c5ccae 5450 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5451 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5452 break;
48c5ccae 5453
5d180232 5454 case CPU_DEAD:
f319da0c 5455 calc_load_migrate(rq);
57d885fe 5456 break;
1da177e4
LT
5457#endif
5458 }
49c022e6
PZ
5459
5460 update_max_interval();
5461
1da177e4
LT
5462 return NOTIFY_OK;
5463}
5464
f38b0820
PM
5465/*
5466 * Register at high priority so that task migration (migrate_all_tasks)
5467 * happens before everything else. This has to be lower priority than
cdd6c482 5468 * the notifier in the perf_event subsystem, though.
1da177e4 5469 */
0db0628d 5470static struct notifier_block migration_notifier = {
1da177e4 5471 .notifier_call = migration_call,
50a323b7 5472 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5473};
5474
6a82b60d 5475static void set_cpu_rq_start_time(void)
a803f026
CM
5476{
5477 int cpu = smp_processor_id();
5478 struct rq *rq = cpu_rq(cpu);
5479 rq->age_stamp = sched_clock_cpu(cpu);
5480}
5481
0db0628d 5482static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5483 unsigned long action, void *hcpu)
5484{
5485 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5486 case CPU_STARTING:
5487 set_cpu_rq_start_time();
5488 return NOTIFY_OK;
dd9d3843
JS
5489 case CPU_ONLINE:
5490 /*
5491 * At this point a starting CPU has marked itself as online via
5492 * set_cpu_online(). But it might not yet have marked itself
5493 * as active, which is essential from here on.
5494 *
5495 * Thus, fall-through and help the starting CPU along.
5496 */
3a101d05
TH
5497 case CPU_DOWN_FAILED:
5498 set_cpu_active((long)hcpu, true);
5499 return NOTIFY_OK;
5500 default:
5501 return NOTIFY_DONE;
5502 }
5503}
5504
0db0628d 5505static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5506 unsigned long action, void *hcpu)
5507{
5508 switch (action & ~CPU_TASKS_FROZEN) {
5509 case CPU_DOWN_PREPARE:
3c18d447 5510 set_cpu_active((long)hcpu, false);
3a101d05 5511 return NOTIFY_OK;
3c18d447
JL
5512 default:
5513 return NOTIFY_DONE;
3a101d05
TH
5514 }
5515}
5516
7babe8db 5517static int __init migration_init(void)
1da177e4
LT
5518{
5519 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5520 int err;
48f24c4d 5521
3a101d05 5522 /* Initialize migration for the boot CPU */
07dccf33
AM
5523 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5524 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5525 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5526 register_cpu_notifier(&migration_notifier);
7babe8db 5527
3a101d05
TH
5528 /* Register cpu active notifiers */
5529 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5530 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5531
a004cd42 5532 return 0;
1da177e4 5533}
7babe8db 5534early_initcall(migration_init);
476f3534 5535
4cb98839
PZ
5536static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5537
3e9830dc 5538#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5539
d039ac60 5540static __read_mostly int sched_debug_enabled;
f6630114 5541
d039ac60 5542static int __init sched_debug_setup(char *str)
f6630114 5543{
d039ac60 5544 sched_debug_enabled = 1;
f6630114
MT
5545
5546 return 0;
5547}
d039ac60
PZ
5548early_param("sched_debug", sched_debug_setup);
5549
5550static inline bool sched_debug(void)
5551{
5552 return sched_debug_enabled;
5553}
f6630114 5554
7c16ec58 5555static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5556 struct cpumask *groupmask)
1da177e4 5557{
4dcf6aff 5558 struct sched_group *group = sd->groups;
1da177e4 5559
96f874e2 5560 cpumask_clear(groupmask);
4dcf6aff
IM
5561
5562 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5563
5564 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5565 printk("does not load-balance\n");
4dcf6aff 5566 if (sd->parent)
3df0fc5b
PZ
5567 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5568 " has parent");
4dcf6aff 5569 return -1;
41c7ce9a
NP
5570 }
5571
333470ee
TH
5572 printk(KERN_CONT "span %*pbl level %s\n",
5573 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5574
758b2cdc 5575 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5576 printk(KERN_ERR "ERROR: domain->span does not contain "
5577 "CPU%d\n", cpu);
4dcf6aff 5578 }
758b2cdc 5579 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5580 printk(KERN_ERR "ERROR: domain->groups does not contain"
5581 " CPU%d\n", cpu);
4dcf6aff 5582 }
1da177e4 5583
4dcf6aff 5584 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5585 do {
4dcf6aff 5586 if (!group) {
3df0fc5b
PZ
5587 printk("\n");
5588 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5589 break;
5590 }
5591
758b2cdc 5592 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5593 printk(KERN_CONT "\n");
5594 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5595 break;
5596 }
1da177e4 5597
cb83b629
PZ
5598 if (!(sd->flags & SD_OVERLAP) &&
5599 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5600 printk(KERN_CONT "\n");
5601 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5602 break;
5603 }
1da177e4 5604
758b2cdc 5605 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5606
333470ee
TH
5607 printk(KERN_CONT " %*pbl",
5608 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5609 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5610 printk(KERN_CONT " (cpu_capacity = %d)",
5611 group->sgc->capacity);
381512cf 5612 }
1da177e4 5613
4dcf6aff
IM
5614 group = group->next;
5615 } while (group != sd->groups);
3df0fc5b 5616 printk(KERN_CONT "\n");
1da177e4 5617
758b2cdc 5618 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5619 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5620
758b2cdc
RR
5621 if (sd->parent &&
5622 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5623 printk(KERN_ERR "ERROR: parent span is not a superset "
5624 "of domain->span\n");
4dcf6aff
IM
5625 return 0;
5626}
1da177e4 5627
4dcf6aff
IM
5628static void sched_domain_debug(struct sched_domain *sd, int cpu)
5629{
5630 int level = 0;
1da177e4 5631
d039ac60 5632 if (!sched_debug_enabled)
f6630114
MT
5633 return;
5634
4dcf6aff
IM
5635 if (!sd) {
5636 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5637 return;
5638 }
1da177e4 5639
4dcf6aff
IM
5640 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5641
5642 for (;;) {
4cb98839 5643 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5644 break;
1da177e4
LT
5645 level++;
5646 sd = sd->parent;
33859f7f 5647 if (!sd)
4dcf6aff
IM
5648 break;
5649 }
1da177e4 5650}
6d6bc0ad 5651#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5652# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5653static inline bool sched_debug(void)
5654{
5655 return false;
5656}
6d6bc0ad 5657#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5658
1a20ff27 5659static int sd_degenerate(struct sched_domain *sd)
245af2c7 5660{
758b2cdc 5661 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5662 return 1;
5663
5664 /* Following flags need at least 2 groups */
5665 if (sd->flags & (SD_LOAD_BALANCE |
5666 SD_BALANCE_NEWIDLE |
5667 SD_BALANCE_FORK |
89c4710e 5668 SD_BALANCE_EXEC |
5d4dfddd 5669 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5670 SD_SHARE_PKG_RESOURCES |
5671 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5672 if (sd->groups != sd->groups->next)
5673 return 0;
5674 }
5675
5676 /* Following flags don't use groups */
c88d5910 5677 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5678 return 0;
5679
5680 return 1;
5681}
5682
48f24c4d
IM
5683static int
5684sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5685{
5686 unsigned long cflags = sd->flags, pflags = parent->flags;
5687
5688 if (sd_degenerate(parent))
5689 return 1;
5690
758b2cdc 5691 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5692 return 0;
5693
245af2c7
SS
5694 /* Flags needing groups don't count if only 1 group in parent */
5695 if (parent->groups == parent->groups->next) {
5696 pflags &= ~(SD_LOAD_BALANCE |
5697 SD_BALANCE_NEWIDLE |
5698 SD_BALANCE_FORK |
89c4710e 5699 SD_BALANCE_EXEC |
5d4dfddd 5700 SD_SHARE_CPUCAPACITY |
10866e62 5701 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5702 SD_PREFER_SIBLING |
5703 SD_SHARE_POWERDOMAIN);
5436499e
KC
5704 if (nr_node_ids == 1)
5705 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5706 }
5707 if (~cflags & pflags)
5708 return 0;
5709
5710 return 1;
5711}
5712
dce840a0 5713static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5714{
dce840a0 5715 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5716
68e74568 5717 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5718 cpudl_cleanup(&rd->cpudl);
1baca4ce 5719 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5720 free_cpumask_var(rd->rto_mask);
5721 free_cpumask_var(rd->online);
5722 free_cpumask_var(rd->span);
5723 kfree(rd);
5724}
5725
57d885fe
GH
5726static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5727{
a0490fa3 5728 struct root_domain *old_rd = NULL;
57d885fe 5729 unsigned long flags;
57d885fe 5730
05fa785c 5731 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5732
5733 if (rq->rd) {
a0490fa3 5734 old_rd = rq->rd;
57d885fe 5735
c6c4927b 5736 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5737 set_rq_offline(rq);
57d885fe 5738
c6c4927b 5739 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5740
a0490fa3 5741 /*
0515973f 5742 * If we dont want to free the old_rd yet then
a0490fa3
IM
5743 * set old_rd to NULL to skip the freeing later
5744 * in this function:
5745 */
5746 if (!atomic_dec_and_test(&old_rd->refcount))
5747 old_rd = NULL;
57d885fe
GH
5748 }
5749
5750 atomic_inc(&rd->refcount);
5751 rq->rd = rd;
5752
c6c4927b 5753 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5754 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5755 set_rq_online(rq);
57d885fe 5756
05fa785c 5757 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5758
5759 if (old_rd)
dce840a0 5760 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5761}
5762
68c38fc3 5763static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5764{
5765 memset(rd, 0, sizeof(*rd));
5766
68c38fc3 5767 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5768 goto out;
68c38fc3 5769 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5770 goto free_span;
1baca4ce 5771 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5772 goto free_online;
1baca4ce
JL
5773 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5774 goto free_dlo_mask;
6e0534f2 5775
332ac17e 5776 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5777 if (cpudl_init(&rd->cpudl) != 0)
5778 goto free_dlo_mask;
332ac17e 5779
68c38fc3 5780 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5781 goto free_rto_mask;
c6c4927b 5782 return 0;
6e0534f2 5783
68e74568
RR
5784free_rto_mask:
5785 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5786free_dlo_mask:
5787 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5788free_online:
5789 free_cpumask_var(rd->online);
5790free_span:
5791 free_cpumask_var(rd->span);
0c910d28 5792out:
c6c4927b 5793 return -ENOMEM;
57d885fe
GH
5794}
5795
029632fb
PZ
5796/*
5797 * By default the system creates a single root-domain with all cpus as
5798 * members (mimicking the global state we have today).
5799 */
5800struct root_domain def_root_domain;
5801
57d885fe
GH
5802static void init_defrootdomain(void)
5803{
68c38fc3 5804 init_rootdomain(&def_root_domain);
c6c4927b 5805
57d885fe
GH
5806 atomic_set(&def_root_domain.refcount, 1);
5807}
5808
dc938520 5809static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5810{
5811 struct root_domain *rd;
5812
5813 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5814 if (!rd)
5815 return NULL;
5816
68c38fc3 5817 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5818 kfree(rd);
5819 return NULL;
5820 }
57d885fe
GH
5821
5822 return rd;
5823}
5824
63b2ca30 5825static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5826{
5827 struct sched_group *tmp, *first;
5828
5829 if (!sg)
5830 return;
5831
5832 first = sg;
5833 do {
5834 tmp = sg->next;
5835
63b2ca30
NP
5836 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5837 kfree(sg->sgc);
e3589f6c
PZ
5838
5839 kfree(sg);
5840 sg = tmp;
5841 } while (sg != first);
5842}
5843
dce840a0
PZ
5844static void free_sched_domain(struct rcu_head *rcu)
5845{
5846 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5847
5848 /*
5849 * If its an overlapping domain it has private groups, iterate and
5850 * nuke them all.
5851 */
5852 if (sd->flags & SD_OVERLAP) {
5853 free_sched_groups(sd->groups, 1);
5854 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5855 kfree(sd->groups->sgc);
dce840a0 5856 kfree(sd->groups);
9c3f75cb 5857 }
dce840a0
PZ
5858 kfree(sd);
5859}
5860
5861static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5862{
5863 call_rcu(&sd->rcu, free_sched_domain);
5864}
5865
5866static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5867{
5868 for (; sd; sd = sd->parent)
5869 destroy_sched_domain(sd, cpu);
5870}
5871
518cd623
PZ
5872/*
5873 * Keep a special pointer to the highest sched_domain that has
5874 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5875 * allows us to avoid some pointer chasing select_idle_sibling().
5876 *
5877 * Also keep a unique ID per domain (we use the first cpu number in
5878 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5879 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5880 */
5881DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5882DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5883DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5884DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5885DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5886DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5887
5888static void update_top_cache_domain(int cpu)
5889{
5890 struct sched_domain *sd;
5d4cf996 5891 struct sched_domain *busy_sd = NULL;
518cd623 5892 int id = cpu;
7d9ffa89 5893 int size = 1;
518cd623
PZ
5894
5895 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5896 if (sd) {
518cd623 5897 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5898 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5899 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5900 }
5d4cf996 5901 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5902
5903 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5904 per_cpu(sd_llc_size, cpu) = size;
518cd623 5905 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5906
5907 sd = lowest_flag_domain(cpu, SD_NUMA);
5908 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5909
5910 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5911 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5912}
5913
1da177e4 5914/*
0eab9146 5915 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5916 * hold the hotplug lock.
5917 */
0eab9146
IM
5918static void
5919cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5920{
70b97a7f 5921 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5922 struct sched_domain *tmp;
5923
5924 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5925 for (tmp = sd; tmp; ) {
245af2c7
SS
5926 struct sched_domain *parent = tmp->parent;
5927 if (!parent)
5928 break;
f29c9b1c 5929
1a848870 5930 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5931 tmp->parent = parent->parent;
1a848870
SS
5932 if (parent->parent)
5933 parent->parent->child = tmp;
10866e62
PZ
5934 /*
5935 * Transfer SD_PREFER_SIBLING down in case of a
5936 * degenerate parent; the spans match for this
5937 * so the property transfers.
5938 */
5939 if (parent->flags & SD_PREFER_SIBLING)
5940 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5941 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5942 } else
5943 tmp = tmp->parent;
245af2c7
SS
5944 }
5945
1a848870 5946 if (sd && sd_degenerate(sd)) {
dce840a0 5947 tmp = sd;
245af2c7 5948 sd = sd->parent;
dce840a0 5949 destroy_sched_domain(tmp, cpu);
1a848870
SS
5950 if (sd)
5951 sd->child = NULL;
5952 }
1da177e4 5953
4cb98839 5954 sched_domain_debug(sd, cpu);
1da177e4 5955
57d885fe 5956 rq_attach_root(rq, rd);
dce840a0 5957 tmp = rq->sd;
674311d5 5958 rcu_assign_pointer(rq->sd, sd);
dce840a0 5959 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5960
5961 update_top_cache_domain(cpu);
1da177e4
LT
5962}
5963
1da177e4
LT
5964/* Setup the mask of cpus configured for isolated domains */
5965static int __init isolated_cpu_setup(char *str)
5966{
bdddd296 5967 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5968 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5969 return 1;
5970}
5971
8927f494 5972__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5973
49a02c51 5974struct s_data {
21d42ccf 5975 struct sched_domain ** __percpu sd;
49a02c51
AH
5976 struct root_domain *rd;
5977};
5978
2109b99e 5979enum s_alloc {
2109b99e 5980 sa_rootdomain,
21d42ccf 5981 sa_sd,
dce840a0 5982 sa_sd_storage,
2109b99e
AH
5983 sa_none,
5984};
5985
c1174876
PZ
5986/*
5987 * Build an iteration mask that can exclude certain CPUs from the upwards
5988 * domain traversal.
5989 *
5990 * Asymmetric node setups can result in situations where the domain tree is of
5991 * unequal depth, make sure to skip domains that already cover the entire
5992 * range.
5993 *
5994 * In that case build_sched_domains() will have terminated the iteration early
5995 * and our sibling sd spans will be empty. Domains should always include the
5996 * cpu they're built on, so check that.
5997 *
5998 */
5999static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6000{
6001 const struct cpumask *span = sched_domain_span(sd);
6002 struct sd_data *sdd = sd->private;
6003 struct sched_domain *sibling;
6004 int i;
6005
6006 for_each_cpu(i, span) {
6007 sibling = *per_cpu_ptr(sdd->sd, i);
6008 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6009 continue;
6010
6011 cpumask_set_cpu(i, sched_group_mask(sg));
6012 }
6013}
6014
6015/*
6016 * Return the canonical balance cpu for this group, this is the first cpu
6017 * of this group that's also in the iteration mask.
6018 */
6019int group_balance_cpu(struct sched_group *sg)
6020{
6021 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6022}
6023
e3589f6c
PZ
6024static int
6025build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6026{
6027 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6028 const struct cpumask *span = sched_domain_span(sd);
6029 struct cpumask *covered = sched_domains_tmpmask;
6030 struct sd_data *sdd = sd->private;
aaecac4a 6031 struct sched_domain *sibling;
e3589f6c
PZ
6032 int i;
6033
6034 cpumask_clear(covered);
6035
6036 for_each_cpu(i, span) {
6037 struct cpumask *sg_span;
6038
6039 if (cpumask_test_cpu(i, covered))
6040 continue;
6041
aaecac4a 6042 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6043
6044 /* See the comment near build_group_mask(). */
aaecac4a 6045 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6046 continue;
6047
e3589f6c 6048 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6049 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6050
6051 if (!sg)
6052 goto fail;
6053
6054 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6055 if (sibling->child)
6056 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6057 else
e3589f6c
PZ
6058 cpumask_set_cpu(i, sg_span);
6059
6060 cpumask_or(covered, covered, sg_span);
6061
63b2ca30
NP
6062 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6063 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6064 build_group_mask(sd, sg);
6065
c3decf0d 6066 /*
63b2ca30 6067 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6068 * domains and no possible iteration will get us here, we won't
6069 * die on a /0 trap.
6070 */
ca8ce3d0 6071 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6072
c1174876
PZ
6073 /*
6074 * Make sure the first group of this domain contains the
6075 * canonical balance cpu. Otherwise the sched_domain iteration
6076 * breaks. See update_sg_lb_stats().
6077 */
74a5ce20 6078 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6079 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6080 groups = sg;
6081
6082 if (!first)
6083 first = sg;
6084 if (last)
6085 last->next = sg;
6086 last = sg;
6087 last->next = first;
6088 }
6089 sd->groups = groups;
6090
6091 return 0;
6092
6093fail:
6094 free_sched_groups(first, 0);
6095
6096 return -ENOMEM;
6097}
6098
dce840a0 6099static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6100{
dce840a0
PZ
6101 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6102 struct sched_domain *child = sd->child;
1da177e4 6103
dce840a0
PZ
6104 if (child)
6105 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6106
9c3f75cb 6107 if (sg) {
dce840a0 6108 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6109 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6110 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6111 }
dce840a0
PZ
6112
6113 return cpu;
1e9f28fa 6114}
1e9f28fa 6115
01a08546 6116/*
dce840a0
PZ
6117 * build_sched_groups will build a circular linked list of the groups
6118 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6119 * and ->cpu_capacity to 0.
e3589f6c
PZ
6120 *
6121 * Assumes the sched_domain tree is fully constructed
01a08546 6122 */
e3589f6c
PZ
6123static int
6124build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6125{
dce840a0
PZ
6126 struct sched_group *first = NULL, *last = NULL;
6127 struct sd_data *sdd = sd->private;
6128 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6129 struct cpumask *covered;
dce840a0 6130 int i;
9c1cfda2 6131
e3589f6c
PZ
6132 get_group(cpu, sdd, &sd->groups);
6133 atomic_inc(&sd->groups->ref);
6134
0936629f 6135 if (cpu != cpumask_first(span))
e3589f6c
PZ
6136 return 0;
6137
f96225fd
PZ
6138 lockdep_assert_held(&sched_domains_mutex);
6139 covered = sched_domains_tmpmask;
6140
dce840a0 6141 cpumask_clear(covered);
6711cab4 6142
dce840a0
PZ
6143 for_each_cpu(i, span) {
6144 struct sched_group *sg;
cd08e923 6145 int group, j;
6711cab4 6146
dce840a0
PZ
6147 if (cpumask_test_cpu(i, covered))
6148 continue;
6711cab4 6149
cd08e923 6150 group = get_group(i, sdd, &sg);
c1174876 6151 cpumask_setall(sched_group_mask(sg));
0601a88d 6152
dce840a0
PZ
6153 for_each_cpu(j, span) {
6154 if (get_group(j, sdd, NULL) != group)
6155 continue;
0601a88d 6156
dce840a0
PZ
6157 cpumask_set_cpu(j, covered);
6158 cpumask_set_cpu(j, sched_group_cpus(sg));
6159 }
0601a88d 6160
dce840a0
PZ
6161 if (!first)
6162 first = sg;
6163 if (last)
6164 last->next = sg;
6165 last = sg;
6166 }
6167 last->next = first;
e3589f6c
PZ
6168
6169 return 0;
0601a88d 6170}
51888ca2 6171
89c4710e 6172/*
63b2ca30 6173 * Initialize sched groups cpu_capacity.
89c4710e 6174 *
63b2ca30 6175 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6176 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6177 * Typically cpu_capacity for all the groups in a sched domain will be same
6178 * unless there are asymmetries in the topology. If there are asymmetries,
6179 * group having more cpu_capacity will pickup more load compared to the
6180 * group having less cpu_capacity.
89c4710e 6181 */
63b2ca30 6182static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6183{
e3589f6c 6184 struct sched_group *sg = sd->groups;
89c4710e 6185
94c95ba6 6186 WARN_ON(!sg);
e3589f6c
PZ
6187
6188 do {
6189 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6190 sg = sg->next;
6191 } while (sg != sd->groups);
89c4710e 6192
c1174876 6193 if (cpu != group_balance_cpu(sg))
e3589f6c 6194 return;
aae6d3dd 6195
63b2ca30
NP
6196 update_group_capacity(sd, cpu);
6197 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6198}
6199
7c16ec58
MT
6200/*
6201 * Initializers for schedule domains
6202 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6203 */
6204
1d3504fc 6205static int default_relax_domain_level = -1;
60495e77 6206int sched_domain_level_max;
1d3504fc
HS
6207
6208static int __init setup_relax_domain_level(char *str)
6209{
a841f8ce
DS
6210 if (kstrtoint(str, 0, &default_relax_domain_level))
6211 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6212
1d3504fc
HS
6213 return 1;
6214}
6215__setup("relax_domain_level=", setup_relax_domain_level);
6216
6217static void set_domain_attribute(struct sched_domain *sd,
6218 struct sched_domain_attr *attr)
6219{
6220 int request;
6221
6222 if (!attr || attr->relax_domain_level < 0) {
6223 if (default_relax_domain_level < 0)
6224 return;
6225 else
6226 request = default_relax_domain_level;
6227 } else
6228 request = attr->relax_domain_level;
6229 if (request < sd->level) {
6230 /* turn off idle balance on this domain */
c88d5910 6231 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6232 } else {
6233 /* turn on idle balance on this domain */
c88d5910 6234 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6235 }
6236}
6237
54ab4ff4
PZ
6238static void __sdt_free(const struct cpumask *cpu_map);
6239static int __sdt_alloc(const struct cpumask *cpu_map);
6240
2109b99e
AH
6241static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6242 const struct cpumask *cpu_map)
6243{
6244 switch (what) {
2109b99e 6245 case sa_rootdomain:
822ff793
PZ
6246 if (!atomic_read(&d->rd->refcount))
6247 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6248 case sa_sd:
6249 free_percpu(d->sd); /* fall through */
dce840a0 6250 case sa_sd_storage:
54ab4ff4 6251 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6252 case sa_none:
6253 break;
6254 }
6255}
3404c8d9 6256
2109b99e
AH
6257static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6258 const struct cpumask *cpu_map)
6259{
dce840a0
PZ
6260 memset(d, 0, sizeof(*d));
6261
54ab4ff4
PZ
6262 if (__sdt_alloc(cpu_map))
6263 return sa_sd_storage;
dce840a0
PZ
6264 d->sd = alloc_percpu(struct sched_domain *);
6265 if (!d->sd)
6266 return sa_sd_storage;
2109b99e 6267 d->rd = alloc_rootdomain();
dce840a0 6268 if (!d->rd)
21d42ccf 6269 return sa_sd;
2109b99e
AH
6270 return sa_rootdomain;
6271}
57d885fe 6272
dce840a0
PZ
6273/*
6274 * NULL the sd_data elements we've used to build the sched_domain and
6275 * sched_group structure so that the subsequent __free_domain_allocs()
6276 * will not free the data we're using.
6277 */
6278static void claim_allocations(int cpu, struct sched_domain *sd)
6279{
6280 struct sd_data *sdd = sd->private;
dce840a0
PZ
6281
6282 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6283 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6284
e3589f6c 6285 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6286 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6287
63b2ca30
NP
6288 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6289 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6290}
6291
cb83b629 6292#ifdef CONFIG_NUMA
cb83b629 6293static int sched_domains_numa_levels;
e3fe70b1 6294enum numa_topology_type sched_numa_topology_type;
cb83b629 6295static int *sched_domains_numa_distance;
9942f79b 6296int sched_max_numa_distance;
cb83b629
PZ
6297static struct cpumask ***sched_domains_numa_masks;
6298static int sched_domains_curr_level;
143e1e28 6299#endif
cb83b629 6300
143e1e28
VG
6301/*
6302 * SD_flags allowed in topology descriptions.
6303 *
5d4dfddd 6304 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6305 * SD_SHARE_PKG_RESOURCES - describes shared caches
6306 * SD_NUMA - describes NUMA topologies
d77b3ed5 6307 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6308 *
6309 * Odd one out:
6310 * SD_ASYM_PACKING - describes SMT quirks
6311 */
6312#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6313 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6314 SD_SHARE_PKG_RESOURCES | \
6315 SD_NUMA | \
d77b3ed5
VG
6316 SD_ASYM_PACKING | \
6317 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6318
6319static struct sched_domain *
143e1e28 6320sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6321{
6322 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6323 int sd_weight, sd_flags = 0;
6324
6325#ifdef CONFIG_NUMA
6326 /*
6327 * Ugly hack to pass state to sd_numa_mask()...
6328 */
6329 sched_domains_curr_level = tl->numa_level;
6330#endif
6331
6332 sd_weight = cpumask_weight(tl->mask(cpu));
6333
6334 if (tl->sd_flags)
6335 sd_flags = (*tl->sd_flags)();
6336 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6337 "wrong sd_flags in topology description\n"))
6338 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6339
6340 *sd = (struct sched_domain){
6341 .min_interval = sd_weight,
6342 .max_interval = 2*sd_weight,
6343 .busy_factor = 32,
870a0bb5 6344 .imbalance_pct = 125,
143e1e28
VG
6345
6346 .cache_nice_tries = 0,
6347 .busy_idx = 0,
6348 .idle_idx = 0,
cb83b629
PZ
6349 .newidle_idx = 0,
6350 .wake_idx = 0,
6351 .forkexec_idx = 0,
6352
6353 .flags = 1*SD_LOAD_BALANCE
6354 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6355 | 1*SD_BALANCE_EXEC
6356 | 1*SD_BALANCE_FORK
cb83b629 6357 | 0*SD_BALANCE_WAKE
143e1e28 6358 | 1*SD_WAKE_AFFINE
5d4dfddd 6359 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6360 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6361 | 0*SD_SERIALIZE
cb83b629 6362 | 0*SD_PREFER_SIBLING
143e1e28
VG
6363 | 0*SD_NUMA
6364 | sd_flags
cb83b629 6365 ,
143e1e28 6366
cb83b629
PZ
6367 .last_balance = jiffies,
6368 .balance_interval = sd_weight,
143e1e28 6369 .smt_gain = 0,
2b4cfe64
JL
6370 .max_newidle_lb_cost = 0,
6371 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6372#ifdef CONFIG_SCHED_DEBUG
6373 .name = tl->name,
6374#endif
cb83b629 6375 };
cb83b629
PZ
6376
6377 /*
143e1e28 6378 * Convert topological properties into behaviour.
cb83b629 6379 */
143e1e28 6380
5d4dfddd 6381 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6382 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6383 sd->imbalance_pct = 110;
6384 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6385
6386 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6387 sd->imbalance_pct = 117;
6388 sd->cache_nice_tries = 1;
6389 sd->busy_idx = 2;
6390
6391#ifdef CONFIG_NUMA
6392 } else if (sd->flags & SD_NUMA) {
6393 sd->cache_nice_tries = 2;
6394 sd->busy_idx = 3;
6395 sd->idle_idx = 2;
6396
6397 sd->flags |= SD_SERIALIZE;
6398 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6399 sd->flags &= ~(SD_BALANCE_EXEC |
6400 SD_BALANCE_FORK |
6401 SD_WAKE_AFFINE);
6402 }
6403
6404#endif
6405 } else {
6406 sd->flags |= SD_PREFER_SIBLING;
6407 sd->cache_nice_tries = 1;
6408 sd->busy_idx = 2;
6409 sd->idle_idx = 1;
6410 }
6411
6412 sd->private = &tl->data;
cb83b629
PZ
6413
6414 return sd;
6415}
6416
143e1e28
VG
6417/*
6418 * Topology list, bottom-up.
6419 */
6420static struct sched_domain_topology_level default_topology[] = {
6421#ifdef CONFIG_SCHED_SMT
6422 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6423#endif
6424#ifdef CONFIG_SCHED_MC
6425 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6426#endif
6427 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6428 { NULL, },
6429};
6430
6431struct sched_domain_topology_level *sched_domain_topology = default_topology;
6432
6433#define for_each_sd_topology(tl) \
6434 for (tl = sched_domain_topology; tl->mask; tl++)
6435
6436void set_sched_topology(struct sched_domain_topology_level *tl)
6437{
6438 sched_domain_topology = tl;
6439}
6440
6441#ifdef CONFIG_NUMA
6442
cb83b629
PZ
6443static const struct cpumask *sd_numa_mask(int cpu)
6444{
6445 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6446}
6447
d039ac60
PZ
6448static void sched_numa_warn(const char *str)
6449{
6450 static int done = false;
6451 int i,j;
6452
6453 if (done)
6454 return;
6455
6456 done = true;
6457
6458 printk(KERN_WARNING "ERROR: %s\n\n", str);
6459
6460 for (i = 0; i < nr_node_ids; i++) {
6461 printk(KERN_WARNING " ");
6462 for (j = 0; j < nr_node_ids; j++)
6463 printk(KERN_CONT "%02d ", node_distance(i,j));
6464 printk(KERN_CONT "\n");
6465 }
6466 printk(KERN_WARNING "\n");
6467}
6468
9942f79b 6469bool find_numa_distance(int distance)
d039ac60
PZ
6470{
6471 int i;
6472
6473 if (distance == node_distance(0, 0))
6474 return true;
6475
6476 for (i = 0; i < sched_domains_numa_levels; i++) {
6477 if (sched_domains_numa_distance[i] == distance)
6478 return true;
6479 }
6480
6481 return false;
6482}
6483
e3fe70b1
RR
6484/*
6485 * A system can have three types of NUMA topology:
6486 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6487 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6488 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6489 *
6490 * The difference between a glueless mesh topology and a backplane
6491 * topology lies in whether communication between not directly
6492 * connected nodes goes through intermediary nodes (where programs
6493 * could run), or through backplane controllers. This affects
6494 * placement of programs.
6495 *
6496 * The type of topology can be discerned with the following tests:
6497 * - If the maximum distance between any nodes is 1 hop, the system
6498 * is directly connected.
6499 * - If for two nodes A and B, located N > 1 hops away from each other,
6500 * there is an intermediary node C, which is < N hops away from both
6501 * nodes A and B, the system is a glueless mesh.
6502 */
6503static void init_numa_topology_type(void)
6504{
6505 int a, b, c, n;
6506
6507 n = sched_max_numa_distance;
6508
e237882b 6509 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6510 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6511 return;
6512 }
e3fe70b1
RR
6513
6514 for_each_online_node(a) {
6515 for_each_online_node(b) {
6516 /* Find two nodes furthest removed from each other. */
6517 if (node_distance(a, b) < n)
6518 continue;
6519
6520 /* Is there an intermediary node between a and b? */
6521 for_each_online_node(c) {
6522 if (node_distance(a, c) < n &&
6523 node_distance(b, c) < n) {
6524 sched_numa_topology_type =
6525 NUMA_GLUELESS_MESH;
6526 return;
6527 }
6528 }
6529
6530 sched_numa_topology_type = NUMA_BACKPLANE;
6531 return;
6532 }
6533 }
6534}
6535
cb83b629
PZ
6536static void sched_init_numa(void)
6537{
6538 int next_distance, curr_distance = node_distance(0, 0);
6539 struct sched_domain_topology_level *tl;
6540 int level = 0;
6541 int i, j, k;
6542
cb83b629
PZ
6543 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6544 if (!sched_domains_numa_distance)
6545 return;
6546
6547 /*
6548 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6549 * unique distances in the node_distance() table.
6550 *
6551 * Assumes node_distance(0,j) includes all distances in
6552 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6553 */
6554 next_distance = curr_distance;
6555 for (i = 0; i < nr_node_ids; i++) {
6556 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6557 for (k = 0; k < nr_node_ids; k++) {
6558 int distance = node_distance(i, k);
6559
6560 if (distance > curr_distance &&
6561 (distance < next_distance ||
6562 next_distance == curr_distance))
6563 next_distance = distance;
6564
6565 /*
6566 * While not a strong assumption it would be nice to know
6567 * about cases where if node A is connected to B, B is not
6568 * equally connected to A.
6569 */
6570 if (sched_debug() && node_distance(k, i) != distance)
6571 sched_numa_warn("Node-distance not symmetric");
6572
6573 if (sched_debug() && i && !find_numa_distance(distance))
6574 sched_numa_warn("Node-0 not representative");
6575 }
6576 if (next_distance != curr_distance) {
6577 sched_domains_numa_distance[level++] = next_distance;
6578 sched_domains_numa_levels = level;
6579 curr_distance = next_distance;
6580 } else break;
cb83b629 6581 }
d039ac60
PZ
6582
6583 /*
6584 * In case of sched_debug() we verify the above assumption.
6585 */
6586 if (!sched_debug())
6587 break;
cb83b629 6588 }
c123588b
AR
6589
6590 if (!level)
6591 return;
6592
cb83b629
PZ
6593 /*
6594 * 'level' contains the number of unique distances, excluding the
6595 * identity distance node_distance(i,i).
6596 *
28b4a521 6597 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6598 * numbers.
6599 */
6600
5f7865f3
TC
6601 /*
6602 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6603 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6604 * the array will contain less then 'level' members. This could be
6605 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6606 * in other functions.
6607 *
6608 * We reset it to 'level' at the end of this function.
6609 */
6610 sched_domains_numa_levels = 0;
6611
cb83b629
PZ
6612 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6613 if (!sched_domains_numa_masks)
6614 return;
6615
6616 /*
6617 * Now for each level, construct a mask per node which contains all
6618 * cpus of nodes that are that many hops away from us.
6619 */
6620 for (i = 0; i < level; i++) {
6621 sched_domains_numa_masks[i] =
6622 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6623 if (!sched_domains_numa_masks[i])
6624 return;
6625
6626 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6627 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6628 if (!mask)
6629 return;
6630
6631 sched_domains_numa_masks[i][j] = mask;
6632
6633 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6634 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6635 continue;
6636
6637 cpumask_or(mask, mask, cpumask_of_node(k));
6638 }
6639 }
6640 }
6641
143e1e28
VG
6642 /* Compute default topology size */
6643 for (i = 0; sched_domain_topology[i].mask; i++);
6644
c515db8c 6645 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6646 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6647 if (!tl)
6648 return;
6649
6650 /*
6651 * Copy the default topology bits..
6652 */
143e1e28
VG
6653 for (i = 0; sched_domain_topology[i].mask; i++)
6654 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6655
6656 /*
6657 * .. and append 'j' levels of NUMA goodness.
6658 */
6659 for (j = 0; j < level; i++, j++) {
6660 tl[i] = (struct sched_domain_topology_level){
cb83b629 6661 .mask = sd_numa_mask,
143e1e28 6662 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6663 .flags = SDTL_OVERLAP,
6664 .numa_level = j,
143e1e28 6665 SD_INIT_NAME(NUMA)
cb83b629
PZ
6666 };
6667 }
6668
6669 sched_domain_topology = tl;
5f7865f3
TC
6670
6671 sched_domains_numa_levels = level;
9942f79b 6672 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6673
6674 init_numa_topology_type();
cb83b629 6675}
301a5cba
TC
6676
6677static void sched_domains_numa_masks_set(int cpu)
6678{
6679 int i, j;
6680 int node = cpu_to_node(cpu);
6681
6682 for (i = 0; i < sched_domains_numa_levels; i++) {
6683 for (j = 0; j < nr_node_ids; j++) {
6684 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6685 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6686 }
6687 }
6688}
6689
6690static void sched_domains_numa_masks_clear(int cpu)
6691{
6692 int i, j;
6693 for (i = 0; i < sched_domains_numa_levels; i++) {
6694 for (j = 0; j < nr_node_ids; j++)
6695 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6696 }
6697}
6698
6699/*
6700 * Update sched_domains_numa_masks[level][node] array when new cpus
6701 * are onlined.
6702 */
6703static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6704 unsigned long action,
6705 void *hcpu)
6706{
6707 int cpu = (long)hcpu;
6708
6709 switch (action & ~CPU_TASKS_FROZEN) {
6710 case CPU_ONLINE:
6711 sched_domains_numa_masks_set(cpu);
6712 break;
6713
6714 case CPU_DEAD:
6715 sched_domains_numa_masks_clear(cpu);
6716 break;
6717
6718 default:
6719 return NOTIFY_DONE;
6720 }
6721
6722 return NOTIFY_OK;
cb83b629
PZ
6723}
6724#else
6725static inline void sched_init_numa(void)
6726{
6727}
301a5cba
TC
6728
6729static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6730 unsigned long action,
6731 void *hcpu)
6732{
6733 return 0;
6734}
cb83b629
PZ
6735#endif /* CONFIG_NUMA */
6736
54ab4ff4
PZ
6737static int __sdt_alloc(const struct cpumask *cpu_map)
6738{
6739 struct sched_domain_topology_level *tl;
6740 int j;
6741
27723a68 6742 for_each_sd_topology(tl) {
54ab4ff4
PZ
6743 struct sd_data *sdd = &tl->data;
6744
6745 sdd->sd = alloc_percpu(struct sched_domain *);
6746 if (!sdd->sd)
6747 return -ENOMEM;
6748
6749 sdd->sg = alloc_percpu(struct sched_group *);
6750 if (!sdd->sg)
6751 return -ENOMEM;
6752
63b2ca30
NP
6753 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6754 if (!sdd->sgc)
9c3f75cb
PZ
6755 return -ENOMEM;
6756
54ab4ff4
PZ
6757 for_each_cpu(j, cpu_map) {
6758 struct sched_domain *sd;
6759 struct sched_group *sg;
63b2ca30 6760 struct sched_group_capacity *sgc;
54ab4ff4 6761
5cc389bc 6762 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6763 GFP_KERNEL, cpu_to_node(j));
6764 if (!sd)
6765 return -ENOMEM;
6766
6767 *per_cpu_ptr(sdd->sd, j) = sd;
6768
6769 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6770 GFP_KERNEL, cpu_to_node(j));
6771 if (!sg)
6772 return -ENOMEM;
6773
30b4e9eb
IM
6774 sg->next = sg;
6775
54ab4ff4 6776 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6777
63b2ca30 6778 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6779 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6780 if (!sgc)
9c3f75cb
PZ
6781 return -ENOMEM;
6782
63b2ca30 6783 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6784 }
6785 }
6786
6787 return 0;
6788}
6789
6790static void __sdt_free(const struct cpumask *cpu_map)
6791{
6792 struct sched_domain_topology_level *tl;
6793 int j;
6794
27723a68 6795 for_each_sd_topology(tl) {
54ab4ff4
PZ
6796 struct sd_data *sdd = &tl->data;
6797
6798 for_each_cpu(j, cpu_map) {
fb2cf2c6 6799 struct sched_domain *sd;
6800
6801 if (sdd->sd) {
6802 sd = *per_cpu_ptr(sdd->sd, j);
6803 if (sd && (sd->flags & SD_OVERLAP))
6804 free_sched_groups(sd->groups, 0);
6805 kfree(*per_cpu_ptr(sdd->sd, j));
6806 }
6807
6808 if (sdd->sg)
6809 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6810 if (sdd->sgc)
6811 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6812 }
6813 free_percpu(sdd->sd);
fb2cf2c6 6814 sdd->sd = NULL;
54ab4ff4 6815 free_percpu(sdd->sg);
fb2cf2c6 6816 sdd->sg = NULL;
63b2ca30
NP
6817 free_percpu(sdd->sgc);
6818 sdd->sgc = NULL;
54ab4ff4
PZ
6819 }
6820}
6821
2c402dc3 6822struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6823 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6824 struct sched_domain *child, int cpu)
2c402dc3 6825{
143e1e28 6826 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6827 if (!sd)
d069b916 6828 return child;
2c402dc3 6829
2c402dc3 6830 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6831 if (child) {
6832 sd->level = child->level + 1;
6833 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6834 child->parent = sd;
c75e0128 6835 sd->child = child;
6ae72dff
PZ
6836
6837 if (!cpumask_subset(sched_domain_span(child),
6838 sched_domain_span(sd))) {
6839 pr_err("BUG: arch topology borken\n");
6840#ifdef CONFIG_SCHED_DEBUG
6841 pr_err(" the %s domain not a subset of the %s domain\n",
6842 child->name, sd->name);
6843#endif
6844 /* Fixup, ensure @sd has at least @child cpus. */
6845 cpumask_or(sched_domain_span(sd),
6846 sched_domain_span(sd),
6847 sched_domain_span(child));
6848 }
6849
60495e77 6850 }
a841f8ce 6851 set_domain_attribute(sd, attr);
2c402dc3
PZ
6852
6853 return sd;
6854}
6855
2109b99e
AH
6856/*
6857 * Build sched domains for a given set of cpus and attach the sched domains
6858 * to the individual cpus
6859 */
dce840a0
PZ
6860static int build_sched_domains(const struct cpumask *cpu_map,
6861 struct sched_domain_attr *attr)
2109b99e 6862{
1c632169 6863 enum s_alloc alloc_state;
dce840a0 6864 struct sched_domain *sd;
2109b99e 6865 struct s_data d;
822ff793 6866 int i, ret = -ENOMEM;
9c1cfda2 6867
2109b99e
AH
6868 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6869 if (alloc_state != sa_rootdomain)
6870 goto error;
9c1cfda2 6871
dce840a0 6872 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6873 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6874 struct sched_domain_topology_level *tl;
6875
3bd65a80 6876 sd = NULL;
27723a68 6877 for_each_sd_topology(tl) {
4a850cbe 6878 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6879 if (tl == sched_domain_topology)
6880 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6881 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6882 sd->flags |= SD_OVERLAP;
d110235d
PZ
6883 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6884 break;
e3589f6c 6885 }
dce840a0
PZ
6886 }
6887
6888 /* Build the groups for the domains */
6889 for_each_cpu(i, cpu_map) {
6890 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6891 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6892 if (sd->flags & SD_OVERLAP) {
6893 if (build_overlap_sched_groups(sd, i))
6894 goto error;
6895 } else {
6896 if (build_sched_groups(sd, i))
6897 goto error;
6898 }
1cf51902 6899 }
a06dadbe 6900 }
9c1cfda2 6901
ced549fa 6902 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6903 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6904 if (!cpumask_test_cpu(i, cpu_map))
6905 continue;
9c1cfda2 6906
dce840a0
PZ
6907 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6908 claim_allocations(i, sd);
63b2ca30 6909 init_sched_groups_capacity(i, sd);
dce840a0 6910 }
f712c0c7 6911 }
9c1cfda2 6912
1da177e4 6913 /* Attach the domains */
dce840a0 6914 rcu_read_lock();
abcd083a 6915 for_each_cpu(i, cpu_map) {
21d42ccf 6916 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6917 cpu_attach_domain(sd, d.rd, i);
1da177e4 6918 }
dce840a0 6919 rcu_read_unlock();
51888ca2 6920
822ff793 6921 ret = 0;
51888ca2 6922error:
2109b99e 6923 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6924 return ret;
1da177e4 6925}
029190c5 6926
acc3f5d7 6927static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6928static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6929static struct sched_domain_attr *dattr_cur;
6930 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6931
6932/*
6933 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6934 * cpumask) fails, then fallback to a single sched domain,
6935 * as determined by the single cpumask fallback_doms.
029190c5 6936 */
4212823f 6937static cpumask_var_t fallback_doms;
029190c5 6938
ee79d1bd
HC
6939/*
6940 * arch_update_cpu_topology lets virtualized architectures update the
6941 * cpu core maps. It is supposed to return 1 if the topology changed
6942 * or 0 if it stayed the same.
6943 */
52f5684c 6944int __weak arch_update_cpu_topology(void)
22e52b07 6945{
ee79d1bd 6946 return 0;
22e52b07
HC
6947}
6948
acc3f5d7
RR
6949cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6950{
6951 int i;
6952 cpumask_var_t *doms;
6953
6954 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6955 if (!doms)
6956 return NULL;
6957 for (i = 0; i < ndoms; i++) {
6958 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6959 free_sched_domains(doms, i);
6960 return NULL;
6961 }
6962 }
6963 return doms;
6964}
6965
6966void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6967{
6968 unsigned int i;
6969 for (i = 0; i < ndoms; i++)
6970 free_cpumask_var(doms[i]);
6971 kfree(doms);
6972}
6973
1a20ff27 6974/*
41a2d6cf 6975 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6976 * For now this just excludes isolated cpus, but could be used to
6977 * exclude other special cases in the future.
1a20ff27 6978 */
c4a8849a 6979static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6980{
7378547f
MM
6981 int err;
6982
22e52b07 6983 arch_update_cpu_topology();
029190c5 6984 ndoms_cur = 1;
acc3f5d7 6985 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6986 if (!doms_cur)
acc3f5d7
RR
6987 doms_cur = &fallback_doms;
6988 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6989 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6990 register_sched_domain_sysctl();
7378547f
MM
6991
6992 return err;
1a20ff27
DG
6993}
6994
1a20ff27
DG
6995/*
6996 * Detach sched domains from a group of cpus specified in cpu_map
6997 * These cpus will now be attached to the NULL domain
6998 */
96f874e2 6999static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7000{
7001 int i;
7002
dce840a0 7003 rcu_read_lock();
abcd083a 7004 for_each_cpu(i, cpu_map)
57d885fe 7005 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7006 rcu_read_unlock();
1a20ff27
DG
7007}
7008
1d3504fc
HS
7009/* handle null as "default" */
7010static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7011 struct sched_domain_attr *new, int idx_new)
7012{
7013 struct sched_domain_attr tmp;
7014
7015 /* fast path */
7016 if (!new && !cur)
7017 return 1;
7018
7019 tmp = SD_ATTR_INIT;
7020 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7021 new ? (new + idx_new) : &tmp,
7022 sizeof(struct sched_domain_attr));
7023}
7024
029190c5
PJ
7025/*
7026 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7027 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7028 * doms_new[] to the current sched domain partitioning, doms_cur[].
7029 * It destroys each deleted domain and builds each new domain.
7030 *
acc3f5d7 7031 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7032 * The masks don't intersect (don't overlap.) We should setup one
7033 * sched domain for each mask. CPUs not in any of the cpumasks will
7034 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7035 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7036 * it as it is.
7037 *
acc3f5d7
RR
7038 * The passed in 'doms_new' should be allocated using
7039 * alloc_sched_domains. This routine takes ownership of it and will
7040 * free_sched_domains it when done with it. If the caller failed the
7041 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7042 * and partition_sched_domains() will fallback to the single partition
7043 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7044 *
96f874e2 7045 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7046 * ndoms_new == 0 is a special case for destroying existing domains,
7047 * and it will not create the default domain.
dfb512ec 7048 *
029190c5
PJ
7049 * Call with hotplug lock held
7050 */
acc3f5d7 7051void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7052 struct sched_domain_attr *dattr_new)
029190c5 7053{
dfb512ec 7054 int i, j, n;
d65bd5ec 7055 int new_topology;
029190c5 7056
712555ee 7057 mutex_lock(&sched_domains_mutex);
a1835615 7058
7378547f
MM
7059 /* always unregister in case we don't destroy any domains */
7060 unregister_sched_domain_sysctl();
7061
d65bd5ec
HC
7062 /* Let architecture update cpu core mappings. */
7063 new_topology = arch_update_cpu_topology();
7064
dfb512ec 7065 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7066
7067 /* Destroy deleted domains */
7068 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7069 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7070 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7071 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7072 goto match1;
7073 }
7074 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7075 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7076match1:
7077 ;
7078 }
7079
c8d2d47a 7080 n = ndoms_cur;
e761b772 7081 if (doms_new == NULL) {
c8d2d47a 7082 n = 0;
acc3f5d7 7083 doms_new = &fallback_doms;
6ad4c188 7084 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7085 WARN_ON_ONCE(dattr_new);
e761b772
MK
7086 }
7087
029190c5
PJ
7088 /* Build new domains */
7089 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7090 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7091 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7092 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7093 goto match2;
7094 }
7095 /* no match - add a new doms_new */
dce840a0 7096 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7097match2:
7098 ;
7099 }
7100
7101 /* Remember the new sched domains */
acc3f5d7
RR
7102 if (doms_cur != &fallback_doms)
7103 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7104 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7105 doms_cur = doms_new;
1d3504fc 7106 dattr_cur = dattr_new;
029190c5 7107 ndoms_cur = ndoms_new;
7378547f
MM
7108
7109 register_sched_domain_sysctl();
a1835615 7110
712555ee 7111 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7112}
7113
d35be8ba
SB
7114static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7115
1da177e4 7116/*
3a101d05
TH
7117 * Update cpusets according to cpu_active mask. If cpusets are
7118 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7119 * around partition_sched_domains().
d35be8ba
SB
7120 *
7121 * If we come here as part of a suspend/resume, don't touch cpusets because we
7122 * want to restore it back to its original state upon resume anyway.
1da177e4 7123 */
0b2e918a
TH
7124static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7125 void *hcpu)
e761b772 7126{
d35be8ba
SB
7127 switch (action) {
7128 case CPU_ONLINE_FROZEN:
7129 case CPU_DOWN_FAILED_FROZEN:
7130
7131 /*
7132 * num_cpus_frozen tracks how many CPUs are involved in suspend
7133 * resume sequence. As long as this is not the last online
7134 * operation in the resume sequence, just build a single sched
7135 * domain, ignoring cpusets.
7136 */
7137 num_cpus_frozen--;
7138 if (likely(num_cpus_frozen)) {
7139 partition_sched_domains(1, NULL, NULL);
7140 break;
7141 }
7142
7143 /*
7144 * This is the last CPU online operation. So fall through and
7145 * restore the original sched domains by considering the
7146 * cpuset configurations.
7147 */
7148
e761b772 7149 case CPU_ONLINE:
7ddf96b0 7150 cpuset_update_active_cpus(true);
d35be8ba 7151 break;
3a101d05
TH
7152 default:
7153 return NOTIFY_DONE;
7154 }
d35be8ba 7155 return NOTIFY_OK;
3a101d05 7156}
e761b772 7157
0b2e918a
TH
7158static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7159 void *hcpu)
3a101d05 7160{
3c18d447
JL
7161 unsigned long flags;
7162 long cpu = (long)hcpu;
7163 struct dl_bw *dl_b;
533445c6
OS
7164 bool overflow;
7165 int cpus;
3c18d447 7166
533445c6 7167 switch (action) {
3a101d05 7168 case CPU_DOWN_PREPARE:
533445c6
OS
7169 rcu_read_lock_sched();
7170 dl_b = dl_bw_of(cpu);
3c18d447 7171
533445c6
OS
7172 raw_spin_lock_irqsave(&dl_b->lock, flags);
7173 cpus = dl_bw_cpus(cpu);
7174 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7175 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7176
533445c6 7177 rcu_read_unlock_sched();
3c18d447 7178
533445c6
OS
7179 if (overflow)
7180 return notifier_from_errno(-EBUSY);
7ddf96b0 7181 cpuset_update_active_cpus(false);
d35be8ba
SB
7182 break;
7183 case CPU_DOWN_PREPARE_FROZEN:
7184 num_cpus_frozen++;
7185 partition_sched_domains(1, NULL, NULL);
7186 break;
e761b772
MK
7187 default:
7188 return NOTIFY_DONE;
7189 }
d35be8ba 7190 return NOTIFY_OK;
e761b772 7191}
e761b772 7192
1da177e4
LT
7193void __init sched_init_smp(void)
7194{
dcc30a35
RR
7195 cpumask_var_t non_isolated_cpus;
7196
7197 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7198 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7199
8cb9764f
CM
7200 /* nohz_full won't take effect without isolating the cpus. */
7201 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7202
cb83b629
PZ
7203 sched_init_numa();
7204
6acce3ef
PZ
7205 /*
7206 * There's no userspace yet to cause hotplug operations; hence all the
7207 * cpu masks are stable and all blatant races in the below code cannot
7208 * happen.
7209 */
712555ee 7210 mutex_lock(&sched_domains_mutex);
c4a8849a 7211 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7212 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7213 if (cpumask_empty(non_isolated_cpus))
7214 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7215 mutex_unlock(&sched_domains_mutex);
e761b772 7216
301a5cba 7217 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7218 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7219 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7220
b328ca18 7221 init_hrtick();
5c1e1767
NP
7222
7223 /* Move init over to a non-isolated CPU */
dcc30a35 7224 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7225 BUG();
19978ca6 7226 sched_init_granularity();
dcc30a35 7227 free_cpumask_var(non_isolated_cpus);
4212823f 7228
0e3900e6 7229 init_sched_rt_class();
1baca4ce 7230 init_sched_dl_class();
1da177e4
LT
7231}
7232#else
7233void __init sched_init_smp(void)
7234{
19978ca6 7235 sched_init_granularity();
1da177e4
LT
7236}
7237#endif /* CONFIG_SMP */
7238
7239int in_sched_functions(unsigned long addr)
7240{
1da177e4
LT
7241 return in_lock_functions(addr) ||
7242 (addr >= (unsigned long)__sched_text_start
7243 && addr < (unsigned long)__sched_text_end);
7244}
7245
029632fb 7246#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7247/*
7248 * Default task group.
7249 * Every task in system belongs to this group at bootup.
7250 */
029632fb 7251struct task_group root_task_group;
35cf4e50 7252LIST_HEAD(task_groups);
052f1dc7 7253#endif
6f505b16 7254
e6252c3e 7255DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7256
1da177e4
LT
7257void __init sched_init(void)
7258{
dd41f596 7259 int i, j;
434d53b0
MT
7260 unsigned long alloc_size = 0, ptr;
7261
7262#ifdef CONFIG_FAIR_GROUP_SCHED
7263 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7264#endif
7265#ifdef CONFIG_RT_GROUP_SCHED
7266 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7267#endif
434d53b0 7268 if (alloc_size) {
36b7b6d4 7269 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7270
7271#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7272 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7273 ptr += nr_cpu_ids * sizeof(void **);
7274
07e06b01 7275 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7276 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7277
6d6bc0ad 7278#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7279#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7280 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7281 ptr += nr_cpu_ids * sizeof(void **);
7282
07e06b01 7283 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7284 ptr += nr_cpu_ids * sizeof(void **);
7285
6d6bc0ad 7286#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7287 }
df7c8e84 7288#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7289 for_each_possible_cpu(i) {
7290 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7291 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7292 }
b74e6278 7293#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7294
332ac17e
DF
7295 init_rt_bandwidth(&def_rt_bandwidth,
7296 global_rt_period(), global_rt_runtime());
7297 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7298 global_rt_period(), global_rt_runtime());
332ac17e 7299
57d885fe
GH
7300#ifdef CONFIG_SMP
7301 init_defrootdomain();
7302#endif
7303
d0b27fa7 7304#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7305 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7306 global_rt_period(), global_rt_runtime());
6d6bc0ad 7307#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7308
7c941438 7309#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7310 list_add(&root_task_group.list, &task_groups);
7311 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7312 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7313 autogroup_init(&init_task);
54c707e9 7314
7c941438 7315#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7316
0a945022 7317 for_each_possible_cpu(i) {
70b97a7f 7318 struct rq *rq;
1da177e4
LT
7319
7320 rq = cpu_rq(i);
05fa785c 7321 raw_spin_lock_init(&rq->lock);
7897986b 7322 rq->nr_running = 0;
dce48a84
TG
7323 rq->calc_load_active = 0;
7324 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7325 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7326 init_rt_rq(&rq->rt);
7327 init_dl_rq(&rq->dl);
dd41f596 7328#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7329 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7330 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7331 /*
07e06b01 7332 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7333 *
7334 * In case of task-groups formed thr' the cgroup filesystem, it
7335 * gets 100% of the cpu resources in the system. This overall
7336 * system cpu resource is divided among the tasks of
07e06b01 7337 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7338 * based on each entity's (task or task-group's) weight
7339 * (se->load.weight).
7340 *
07e06b01 7341 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7342 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7343 * then A0's share of the cpu resource is:
7344 *
0d905bca 7345 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7346 *
07e06b01
YZ
7347 * We achieve this by letting root_task_group's tasks sit
7348 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7349 */
ab84d31e 7350 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7351 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7352#endif /* CONFIG_FAIR_GROUP_SCHED */
7353
7354 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7355#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7356 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7357#endif
1da177e4 7358
dd41f596
IM
7359 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7360 rq->cpu_load[j] = 0;
fdf3e95d
VP
7361
7362 rq->last_load_update_tick = jiffies;
7363
1da177e4 7364#ifdef CONFIG_SMP
41c7ce9a 7365 rq->sd = NULL;
57d885fe 7366 rq->rd = NULL;
ca6d75e6 7367 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7368 rq->balance_callback = NULL;
1da177e4 7369 rq->active_balance = 0;
dd41f596 7370 rq->next_balance = jiffies;
1da177e4 7371 rq->push_cpu = 0;
0a2966b4 7372 rq->cpu = i;
1f11eb6a 7373 rq->online = 0;
eae0c9df
MG
7374 rq->idle_stamp = 0;
7375 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7376 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7377
7378 INIT_LIST_HEAD(&rq->cfs_tasks);
7379
dc938520 7380 rq_attach_root(rq, &def_root_domain);
3451d024 7381#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7382 rq->nohz_flags = 0;
83cd4fe2 7383#endif
265f22a9
FW
7384#ifdef CONFIG_NO_HZ_FULL
7385 rq->last_sched_tick = 0;
7386#endif
1da177e4 7387#endif
8f4d37ec 7388 init_rq_hrtick(rq);
1da177e4 7389 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7390 }
7391
2dd73a4f 7392 set_load_weight(&init_task);
b50f60ce 7393
e107be36
AK
7394#ifdef CONFIG_PREEMPT_NOTIFIERS
7395 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7396#endif
7397
1da177e4
LT
7398 /*
7399 * The boot idle thread does lazy MMU switching as well:
7400 */
7401 atomic_inc(&init_mm.mm_count);
7402 enter_lazy_tlb(&init_mm, current);
7403
1b537c7d
YD
7404 /*
7405 * During early bootup we pretend to be a normal task:
7406 */
7407 current->sched_class = &fair_sched_class;
7408
1da177e4
LT
7409 /*
7410 * Make us the idle thread. Technically, schedule() should not be
7411 * called from this thread, however somewhere below it might be,
7412 * but because we are the idle thread, we just pick up running again
7413 * when this runqueue becomes "idle".
7414 */
7415 init_idle(current, smp_processor_id());
dce48a84
TG
7416
7417 calc_load_update = jiffies + LOAD_FREQ;
7418
bf4d83f6 7419#ifdef CONFIG_SMP
4cb98839 7420 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7421 /* May be allocated at isolcpus cmdline parse time */
7422 if (cpu_isolated_map == NULL)
7423 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7424 idle_thread_set_boot_cpu();
a803f026 7425 set_cpu_rq_start_time();
029632fb
PZ
7426#endif
7427 init_sched_fair_class();
6a7b3dc3 7428
6892b75e 7429 scheduler_running = 1;
1da177e4
LT
7430}
7431
d902db1e 7432#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7433static inline int preempt_count_equals(int preempt_offset)
7434{
234da7bc 7435 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7436
4ba8216c 7437 return (nested == preempt_offset);
e4aafea2
FW
7438}
7439
d894837f 7440void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7441{
8eb23b9f
PZ
7442 /*
7443 * Blocking primitives will set (and therefore destroy) current->state,
7444 * since we will exit with TASK_RUNNING make sure we enter with it,
7445 * otherwise we will destroy state.
7446 */
00845eb9 7447 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7448 "do not call blocking ops when !TASK_RUNNING; "
7449 "state=%lx set at [<%p>] %pS\n",
7450 current->state,
7451 (void *)current->task_state_change,
00845eb9 7452 (void *)current->task_state_change);
8eb23b9f 7453
3427445a
PZ
7454 ___might_sleep(file, line, preempt_offset);
7455}
7456EXPORT_SYMBOL(__might_sleep);
7457
7458void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7459{
1da177e4
LT
7460 static unsigned long prev_jiffy; /* ratelimiting */
7461
b3fbab05 7462 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7463 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7464 !is_idle_task(current)) ||
e4aafea2 7465 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7466 return;
7467 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7468 return;
7469 prev_jiffy = jiffies;
7470
3df0fc5b
PZ
7471 printk(KERN_ERR
7472 "BUG: sleeping function called from invalid context at %s:%d\n",
7473 file, line);
7474 printk(KERN_ERR
7475 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7476 in_atomic(), irqs_disabled(),
7477 current->pid, current->comm);
aef745fc 7478
a8b686b3
ES
7479 if (task_stack_end_corrupted(current))
7480 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7481
aef745fc
IM
7482 debug_show_held_locks(current);
7483 if (irqs_disabled())
7484 print_irqtrace_events(current);
8f47b187
TG
7485#ifdef CONFIG_DEBUG_PREEMPT
7486 if (!preempt_count_equals(preempt_offset)) {
7487 pr_err("Preemption disabled at:");
7488 print_ip_sym(current->preempt_disable_ip);
7489 pr_cont("\n");
7490 }
7491#endif
aef745fc 7492 dump_stack();
1da177e4 7493}
3427445a 7494EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7495#endif
7496
7497#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7498void normalize_rt_tasks(void)
3a5e4dc1 7499{
dbc7f069 7500 struct task_struct *g, *p;
d50dde5a
DF
7501 struct sched_attr attr = {
7502 .sched_policy = SCHED_NORMAL,
7503 };
1da177e4 7504
3472eaa1 7505 read_lock(&tasklist_lock);
5d07f420 7506 for_each_process_thread(g, p) {
178be793
IM
7507 /*
7508 * Only normalize user tasks:
7509 */
3472eaa1 7510 if (p->flags & PF_KTHREAD)
178be793
IM
7511 continue;
7512
6cfb0d5d 7513 p->se.exec_start = 0;
6cfb0d5d 7514#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7515 p->se.statistics.wait_start = 0;
7516 p->se.statistics.sleep_start = 0;
7517 p->se.statistics.block_start = 0;
6cfb0d5d 7518#endif
dd41f596 7519
aab03e05 7520 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7521 /*
7522 * Renice negative nice level userspace
7523 * tasks back to 0:
7524 */
3472eaa1 7525 if (task_nice(p) < 0)
dd41f596 7526 set_user_nice(p, 0);
1da177e4 7527 continue;
dd41f596 7528 }
1da177e4 7529
dbc7f069 7530 __sched_setscheduler(p, &attr, false, false);
5d07f420 7531 }
3472eaa1 7532 read_unlock(&tasklist_lock);
1da177e4
LT
7533}
7534
7535#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7536
67fc4e0c 7537#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7538/*
67fc4e0c 7539 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7540 *
7541 * They can only be called when the whole system has been
7542 * stopped - every CPU needs to be quiescent, and no scheduling
7543 * activity can take place. Using them for anything else would
7544 * be a serious bug, and as a result, they aren't even visible
7545 * under any other configuration.
7546 */
7547
7548/**
7549 * curr_task - return the current task for a given cpu.
7550 * @cpu: the processor in question.
7551 *
7552 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7553 *
7554 * Return: The current task for @cpu.
1df5c10a 7555 */
36c8b586 7556struct task_struct *curr_task(int cpu)
1df5c10a
LT
7557{
7558 return cpu_curr(cpu);
7559}
7560
67fc4e0c
JW
7561#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7562
7563#ifdef CONFIG_IA64
1df5c10a
LT
7564/**
7565 * set_curr_task - set the current task for a given cpu.
7566 * @cpu: the processor in question.
7567 * @p: the task pointer to set.
7568 *
7569 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7570 * are serviced on a separate stack. It allows the architecture to switch the
7571 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7572 * must be called with all CPU's synchronized, and interrupts disabled, the
7573 * and caller must save the original value of the current task (see
7574 * curr_task() above) and restore that value before reenabling interrupts and
7575 * re-starting the system.
7576 *
7577 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7578 */
36c8b586 7579void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7580{
7581 cpu_curr(cpu) = p;
7582}
7583
7584#endif
29f59db3 7585
7c941438 7586#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7587/* task_group_lock serializes the addition/removal of task groups */
7588static DEFINE_SPINLOCK(task_group_lock);
7589
bccbe08a
PZ
7590static void free_sched_group(struct task_group *tg)
7591{
7592 free_fair_sched_group(tg);
7593 free_rt_sched_group(tg);
e9aa1dd1 7594 autogroup_free(tg);
bccbe08a
PZ
7595 kfree(tg);
7596}
7597
7598/* allocate runqueue etc for a new task group */
ec7dc8ac 7599struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7600{
7601 struct task_group *tg;
bccbe08a
PZ
7602
7603 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7604 if (!tg)
7605 return ERR_PTR(-ENOMEM);
7606
ec7dc8ac 7607 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7608 goto err;
7609
ec7dc8ac 7610 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7611 goto err;
7612
ace783b9
LZ
7613 return tg;
7614
7615err:
7616 free_sched_group(tg);
7617 return ERR_PTR(-ENOMEM);
7618}
7619
7620void sched_online_group(struct task_group *tg, struct task_group *parent)
7621{
7622 unsigned long flags;
7623
8ed36996 7624 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7625 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7626
7627 WARN_ON(!parent); /* root should already exist */
7628
7629 tg->parent = parent;
f473aa5e 7630 INIT_LIST_HEAD(&tg->children);
09f2724a 7631 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7632 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7633}
7634
9b5b7751 7635/* rcu callback to free various structures associated with a task group */
6f505b16 7636static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7637{
29f59db3 7638 /* now it should be safe to free those cfs_rqs */
6f505b16 7639 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7640}
7641
9b5b7751 7642/* Destroy runqueue etc associated with a task group */
4cf86d77 7643void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7644{
7645 /* wait for possible concurrent references to cfs_rqs complete */
7646 call_rcu(&tg->rcu, free_sched_group_rcu);
7647}
7648
7649void sched_offline_group(struct task_group *tg)
29f59db3 7650{
8ed36996 7651 unsigned long flags;
9b5b7751 7652 int i;
29f59db3 7653
3d4b47b4
PZ
7654 /* end participation in shares distribution */
7655 for_each_possible_cpu(i)
bccbe08a 7656 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7657
7658 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7659 list_del_rcu(&tg->list);
f473aa5e 7660 list_del_rcu(&tg->siblings);
8ed36996 7661 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7662}
7663
9b5b7751 7664/* change task's runqueue when it moves between groups.
3a252015
IM
7665 * The caller of this function should have put the task in its new group
7666 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7667 * reflect its new group.
9b5b7751
SV
7668 */
7669void sched_move_task(struct task_struct *tsk)
29f59db3 7670{
8323f26c 7671 struct task_group *tg;
da0c1e65 7672 int queued, running;
29f59db3
SV
7673 unsigned long flags;
7674 struct rq *rq;
7675
7676 rq = task_rq_lock(tsk, &flags);
7677
051a1d1a 7678 running = task_current(rq, tsk);
da0c1e65 7679 queued = task_on_rq_queued(tsk);
29f59db3 7680
da0c1e65 7681 if (queued)
29f59db3 7682 dequeue_task(rq, tsk, 0);
0e1f3483 7683 if (unlikely(running))
f3cd1c4e 7684 put_prev_task(rq, tsk);
29f59db3 7685
f7b8a47d
KT
7686 /*
7687 * All callers are synchronized by task_rq_lock(); we do not use RCU
7688 * which is pointless here. Thus, we pass "true" to task_css_check()
7689 * to prevent lockdep warnings.
7690 */
7691 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7692 struct task_group, css);
7693 tg = autogroup_task_group(tsk, tg);
7694 tsk->sched_task_group = tg;
7695
810b3817 7696#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7697 if (tsk->sched_class->task_move_group)
da0c1e65 7698 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7699 else
810b3817 7700#endif
b2b5ce02 7701 set_task_rq(tsk, task_cpu(tsk));
810b3817 7702
0e1f3483
HS
7703 if (unlikely(running))
7704 tsk->sched_class->set_curr_task(rq);
da0c1e65 7705 if (queued)
371fd7e7 7706 enqueue_task(rq, tsk, 0);
29f59db3 7707
0122ec5b 7708 task_rq_unlock(rq, tsk, &flags);
29f59db3 7709}
7c941438 7710#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7711
a790de99
PT
7712#ifdef CONFIG_RT_GROUP_SCHED
7713/*
7714 * Ensure that the real time constraints are schedulable.
7715 */
7716static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7717
9a7e0b18
PZ
7718/* Must be called with tasklist_lock held */
7719static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7720{
9a7e0b18 7721 struct task_struct *g, *p;
b40b2e8e 7722
1fe89e1b
PZ
7723 /*
7724 * Autogroups do not have RT tasks; see autogroup_create().
7725 */
7726 if (task_group_is_autogroup(tg))
7727 return 0;
7728
5d07f420 7729 for_each_process_thread(g, p) {
8651c658 7730 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7731 return 1;
5d07f420 7732 }
b40b2e8e 7733
9a7e0b18
PZ
7734 return 0;
7735}
b40b2e8e 7736
9a7e0b18
PZ
7737struct rt_schedulable_data {
7738 struct task_group *tg;
7739 u64 rt_period;
7740 u64 rt_runtime;
7741};
b40b2e8e 7742
a790de99 7743static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7744{
7745 struct rt_schedulable_data *d = data;
7746 struct task_group *child;
7747 unsigned long total, sum = 0;
7748 u64 period, runtime;
b40b2e8e 7749
9a7e0b18
PZ
7750 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7751 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7752
9a7e0b18
PZ
7753 if (tg == d->tg) {
7754 period = d->rt_period;
7755 runtime = d->rt_runtime;
b40b2e8e 7756 }
b40b2e8e 7757
4653f803
PZ
7758 /*
7759 * Cannot have more runtime than the period.
7760 */
7761 if (runtime > period && runtime != RUNTIME_INF)
7762 return -EINVAL;
6f505b16 7763
4653f803
PZ
7764 /*
7765 * Ensure we don't starve existing RT tasks.
7766 */
9a7e0b18
PZ
7767 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7768 return -EBUSY;
6f505b16 7769
9a7e0b18 7770 total = to_ratio(period, runtime);
6f505b16 7771
4653f803
PZ
7772 /*
7773 * Nobody can have more than the global setting allows.
7774 */
7775 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7776 return -EINVAL;
6f505b16 7777
4653f803
PZ
7778 /*
7779 * The sum of our children's runtime should not exceed our own.
7780 */
9a7e0b18
PZ
7781 list_for_each_entry_rcu(child, &tg->children, siblings) {
7782 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7783 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7784
9a7e0b18
PZ
7785 if (child == d->tg) {
7786 period = d->rt_period;
7787 runtime = d->rt_runtime;
7788 }
6f505b16 7789
9a7e0b18 7790 sum += to_ratio(period, runtime);
9f0c1e56 7791 }
6f505b16 7792
9a7e0b18
PZ
7793 if (sum > total)
7794 return -EINVAL;
7795
7796 return 0;
6f505b16
PZ
7797}
7798
9a7e0b18 7799static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7800{
8277434e
PT
7801 int ret;
7802
9a7e0b18
PZ
7803 struct rt_schedulable_data data = {
7804 .tg = tg,
7805 .rt_period = period,
7806 .rt_runtime = runtime,
7807 };
7808
8277434e
PT
7809 rcu_read_lock();
7810 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7811 rcu_read_unlock();
7812
7813 return ret;
521f1a24
DG
7814}
7815
ab84d31e 7816static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7817 u64 rt_period, u64 rt_runtime)
6f505b16 7818{
ac086bc2 7819 int i, err = 0;
9f0c1e56 7820
2636ed5f
PZ
7821 /*
7822 * Disallowing the root group RT runtime is BAD, it would disallow the
7823 * kernel creating (and or operating) RT threads.
7824 */
7825 if (tg == &root_task_group && rt_runtime == 0)
7826 return -EINVAL;
7827
7828 /* No period doesn't make any sense. */
7829 if (rt_period == 0)
7830 return -EINVAL;
7831
9f0c1e56 7832 mutex_lock(&rt_constraints_mutex);
521f1a24 7833 read_lock(&tasklist_lock);
9a7e0b18
PZ
7834 err = __rt_schedulable(tg, rt_period, rt_runtime);
7835 if (err)
9f0c1e56 7836 goto unlock;
ac086bc2 7837
0986b11b 7838 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7839 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7840 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7841
7842 for_each_possible_cpu(i) {
7843 struct rt_rq *rt_rq = tg->rt_rq[i];
7844
0986b11b 7845 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7846 rt_rq->rt_runtime = rt_runtime;
0986b11b 7847 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7848 }
0986b11b 7849 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7850unlock:
521f1a24 7851 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7852 mutex_unlock(&rt_constraints_mutex);
7853
7854 return err;
6f505b16
PZ
7855}
7856
25cc7da7 7857static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7858{
7859 u64 rt_runtime, rt_period;
7860
7861 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7862 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7863 if (rt_runtime_us < 0)
7864 rt_runtime = RUNTIME_INF;
7865
ab84d31e 7866 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7867}
7868
25cc7da7 7869static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7870{
7871 u64 rt_runtime_us;
7872
d0b27fa7 7873 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7874 return -1;
7875
d0b27fa7 7876 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7877 do_div(rt_runtime_us, NSEC_PER_USEC);
7878 return rt_runtime_us;
7879}
d0b27fa7 7880
ce2f5fe4 7881static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7882{
7883 u64 rt_runtime, rt_period;
7884
ce2f5fe4 7885 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7886 rt_runtime = tg->rt_bandwidth.rt_runtime;
7887
ab84d31e 7888 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7889}
7890
25cc7da7 7891static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7892{
7893 u64 rt_period_us;
7894
7895 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7896 do_div(rt_period_us, NSEC_PER_USEC);
7897 return rt_period_us;
7898}
332ac17e 7899#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7900
332ac17e 7901#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7902static int sched_rt_global_constraints(void)
7903{
7904 int ret = 0;
7905
7906 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7907 read_lock(&tasklist_lock);
4653f803 7908 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7909 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7910 mutex_unlock(&rt_constraints_mutex);
7911
7912 return ret;
7913}
54e99124 7914
25cc7da7 7915static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7916{
7917 /* Don't accept realtime tasks when there is no way for them to run */
7918 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7919 return 0;
7920
7921 return 1;
7922}
7923
6d6bc0ad 7924#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7925static int sched_rt_global_constraints(void)
7926{
ac086bc2 7927 unsigned long flags;
332ac17e 7928 int i, ret = 0;
ec5d4989 7929
0986b11b 7930 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7931 for_each_possible_cpu(i) {
7932 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7933
0986b11b 7934 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7935 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7936 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7937 }
0986b11b 7938 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7939
332ac17e 7940 return ret;
d0b27fa7 7941}
6d6bc0ad 7942#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7943
a1963b81 7944static int sched_dl_global_validate(void)
332ac17e 7945{
1724813d
PZ
7946 u64 runtime = global_rt_runtime();
7947 u64 period = global_rt_period();
332ac17e 7948 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7949 struct dl_bw *dl_b;
1724813d 7950 int cpu, ret = 0;
49516342 7951 unsigned long flags;
332ac17e
DF
7952
7953 /*
7954 * Here we want to check the bandwidth not being set to some
7955 * value smaller than the currently allocated bandwidth in
7956 * any of the root_domains.
7957 *
7958 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7959 * cycling on root_domains... Discussion on different/better
7960 * solutions is welcome!
7961 */
1724813d 7962 for_each_possible_cpu(cpu) {
f10e00f4
KT
7963 rcu_read_lock_sched();
7964 dl_b = dl_bw_of(cpu);
332ac17e 7965
49516342 7966 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7967 if (new_bw < dl_b->total_bw)
7968 ret = -EBUSY;
49516342 7969 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7970
f10e00f4
KT
7971 rcu_read_unlock_sched();
7972
1724813d
PZ
7973 if (ret)
7974 break;
332ac17e
DF
7975 }
7976
1724813d 7977 return ret;
332ac17e
DF
7978}
7979
1724813d 7980static void sched_dl_do_global(void)
ce0dbbbb 7981{
1724813d 7982 u64 new_bw = -1;
f10e00f4 7983 struct dl_bw *dl_b;
1724813d 7984 int cpu;
49516342 7985 unsigned long flags;
ce0dbbbb 7986
1724813d
PZ
7987 def_dl_bandwidth.dl_period = global_rt_period();
7988 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7989
7990 if (global_rt_runtime() != RUNTIME_INF)
7991 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7992
7993 /*
7994 * FIXME: As above...
7995 */
7996 for_each_possible_cpu(cpu) {
f10e00f4
KT
7997 rcu_read_lock_sched();
7998 dl_b = dl_bw_of(cpu);
1724813d 7999
49516342 8000 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8001 dl_b->bw = new_bw;
49516342 8002 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8003
8004 rcu_read_unlock_sched();
ce0dbbbb 8005 }
1724813d
PZ
8006}
8007
8008static int sched_rt_global_validate(void)
8009{
8010 if (sysctl_sched_rt_period <= 0)
8011 return -EINVAL;
8012
e9e7cb38
JL
8013 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8014 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8015 return -EINVAL;
8016
8017 return 0;
8018}
8019
8020static void sched_rt_do_global(void)
8021{
8022 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8023 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8024}
8025
d0b27fa7 8026int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8027 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8028 loff_t *ppos)
8029{
d0b27fa7
PZ
8030 int old_period, old_runtime;
8031 static DEFINE_MUTEX(mutex);
1724813d 8032 int ret;
d0b27fa7
PZ
8033
8034 mutex_lock(&mutex);
8035 old_period = sysctl_sched_rt_period;
8036 old_runtime = sysctl_sched_rt_runtime;
8037
8d65af78 8038 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8039
8040 if (!ret && write) {
1724813d
PZ
8041 ret = sched_rt_global_validate();
8042 if (ret)
8043 goto undo;
8044
a1963b81 8045 ret = sched_dl_global_validate();
1724813d
PZ
8046 if (ret)
8047 goto undo;
8048
a1963b81 8049 ret = sched_rt_global_constraints();
1724813d
PZ
8050 if (ret)
8051 goto undo;
8052
8053 sched_rt_do_global();
8054 sched_dl_do_global();
8055 }
8056 if (0) {
8057undo:
8058 sysctl_sched_rt_period = old_period;
8059 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8060 }
8061 mutex_unlock(&mutex);
8062
8063 return ret;
8064}
68318b8e 8065
1724813d 8066int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8067 void __user *buffer, size_t *lenp,
8068 loff_t *ppos)
8069{
8070 int ret;
332ac17e 8071 static DEFINE_MUTEX(mutex);
332ac17e
DF
8072
8073 mutex_lock(&mutex);
332ac17e 8074 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8075 /* make sure that internally we keep jiffies */
8076 /* also, writing zero resets timeslice to default */
332ac17e 8077 if (!ret && write) {
1724813d
PZ
8078 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8079 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8080 }
8081 mutex_unlock(&mutex);
332ac17e
DF
8082 return ret;
8083}
8084
052f1dc7 8085#ifdef CONFIG_CGROUP_SCHED
68318b8e 8086
a7c6d554 8087static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8088{
a7c6d554 8089 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8090}
8091
eb95419b
TH
8092static struct cgroup_subsys_state *
8093cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8094{
eb95419b
TH
8095 struct task_group *parent = css_tg(parent_css);
8096 struct task_group *tg;
68318b8e 8097
eb95419b 8098 if (!parent) {
68318b8e 8099 /* This is early initialization for the top cgroup */
07e06b01 8100 return &root_task_group.css;
68318b8e
SV
8101 }
8102
ec7dc8ac 8103 tg = sched_create_group(parent);
68318b8e
SV
8104 if (IS_ERR(tg))
8105 return ERR_PTR(-ENOMEM);
8106
68318b8e
SV
8107 return &tg->css;
8108}
8109
eb95419b 8110static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8111{
eb95419b 8112 struct task_group *tg = css_tg(css);
5c9d535b 8113 struct task_group *parent = css_tg(css->parent);
ace783b9 8114
63876986
TH
8115 if (parent)
8116 sched_online_group(tg, parent);
ace783b9
LZ
8117 return 0;
8118}
8119
eb95419b 8120static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8121{
eb95419b 8122 struct task_group *tg = css_tg(css);
68318b8e
SV
8123
8124 sched_destroy_group(tg);
8125}
8126
eb95419b 8127static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8128{
eb95419b 8129 struct task_group *tg = css_tg(css);
ace783b9
LZ
8130
8131 sched_offline_group(tg);
8132}
8133
7e47682e 8134static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8135{
8136 sched_move_task(task);
8137}
8138
eb95419b 8139static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8140 struct cgroup_taskset *tset)
68318b8e 8141{
bb9d97b6
TH
8142 struct task_struct *task;
8143
924f0d9a 8144 cgroup_taskset_for_each(task, tset) {
b68aa230 8145#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8146 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8147 return -EINVAL;
b68aa230 8148#else
bb9d97b6
TH
8149 /* We don't support RT-tasks being in separate groups */
8150 if (task->sched_class != &fair_sched_class)
8151 return -EINVAL;
b68aa230 8152#endif
bb9d97b6 8153 }
be367d09
BB
8154 return 0;
8155}
68318b8e 8156
eb95419b 8157static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8158 struct cgroup_taskset *tset)
68318b8e 8159{
bb9d97b6
TH
8160 struct task_struct *task;
8161
924f0d9a 8162 cgroup_taskset_for_each(task, tset)
bb9d97b6 8163 sched_move_task(task);
68318b8e
SV
8164}
8165
eb95419b
TH
8166static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8167 struct cgroup_subsys_state *old_css,
8168 struct task_struct *task)
068c5cc5
PZ
8169{
8170 /*
8171 * cgroup_exit() is called in the copy_process() failure path.
8172 * Ignore this case since the task hasn't ran yet, this avoids
8173 * trying to poke a half freed task state from generic code.
8174 */
8175 if (!(task->flags & PF_EXITING))
8176 return;
8177
8178 sched_move_task(task);
8179}
8180
052f1dc7 8181#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8182static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8183 struct cftype *cftype, u64 shareval)
68318b8e 8184{
182446d0 8185 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8186}
8187
182446d0
TH
8188static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8189 struct cftype *cft)
68318b8e 8190{
182446d0 8191 struct task_group *tg = css_tg(css);
68318b8e 8192
c8b28116 8193 return (u64) scale_load_down(tg->shares);
68318b8e 8194}
ab84d31e
PT
8195
8196#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8197static DEFINE_MUTEX(cfs_constraints_mutex);
8198
ab84d31e
PT
8199const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8200const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8201
a790de99
PT
8202static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8203
ab84d31e
PT
8204static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8205{
56f570e5 8206 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8207 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8208
8209 if (tg == &root_task_group)
8210 return -EINVAL;
8211
8212 /*
8213 * Ensure we have at some amount of bandwidth every period. This is
8214 * to prevent reaching a state of large arrears when throttled via
8215 * entity_tick() resulting in prolonged exit starvation.
8216 */
8217 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8218 return -EINVAL;
8219
8220 /*
8221 * Likewise, bound things on the otherside by preventing insane quota
8222 * periods. This also allows us to normalize in computing quota
8223 * feasibility.
8224 */
8225 if (period > max_cfs_quota_period)
8226 return -EINVAL;
8227
0e59bdae
KT
8228 /*
8229 * Prevent race between setting of cfs_rq->runtime_enabled and
8230 * unthrottle_offline_cfs_rqs().
8231 */
8232 get_online_cpus();
a790de99
PT
8233 mutex_lock(&cfs_constraints_mutex);
8234 ret = __cfs_schedulable(tg, period, quota);
8235 if (ret)
8236 goto out_unlock;
8237
58088ad0 8238 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8239 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8240 /*
8241 * If we need to toggle cfs_bandwidth_used, off->on must occur
8242 * before making related changes, and on->off must occur afterwards
8243 */
8244 if (runtime_enabled && !runtime_was_enabled)
8245 cfs_bandwidth_usage_inc();
ab84d31e
PT
8246 raw_spin_lock_irq(&cfs_b->lock);
8247 cfs_b->period = ns_to_ktime(period);
8248 cfs_b->quota = quota;
58088ad0 8249
a9cf55b2 8250 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8251 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8252 if (runtime_enabled)
8253 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8254 raw_spin_unlock_irq(&cfs_b->lock);
8255
0e59bdae 8256 for_each_online_cpu(i) {
ab84d31e 8257 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8258 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8259
8260 raw_spin_lock_irq(&rq->lock);
58088ad0 8261 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8262 cfs_rq->runtime_remaining = 0;
671fd9da 8263
029632fb 8264 if (cfs_rq->throttled)
671fd9da 8265 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8266 raw_spin_unlock_irq(&rq->lock);
8267 }
1ee14e6c
BS
8268 if (runtime_was_enabled && !runtime_enabled)
8269 cfs_bandwidth_usage_dec();
a790de99
PT
8270out_unlock:
8271 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8272 put_online_cpus();
ab84d31e 8273
a790de99 8274 return ret;
ab84d31e
PT
8275}
8276
8277int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8278{
8279 u64 quota, period;
8280
029632fb 8281 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8282 if (cfs_quota_us < 0)
8283 quota = RUNTIME_INF;
8284 else
8285 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8286
8287 return tg_set_cfs_bandwidth(tg, period, quota);
8288}
8289
8290long tg_get_cfs_quota(struct task_group *tg)
8291{
8292 u64 quota_us;
8293
029632fb 8294 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8295 return -1;
8296
029632fb 8297 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8298 do_div(quota_us, NSEC_PER_USEC);
8299
8300 return quota_us;
8301}
8302
8303int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8304{
8305 u64 quota, period;
8306
8307 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8308 quota = tg->cfs_bandwidth.quota;
ab84d31e 8309
ab84d31e
PT
8310 return tg_set_cfs_bandwidth(tg, period, quota);
8311}
8312
8313long tg_get_cfs_period(struct task_group *tg)
8314{
8315 u64 cfs_period_us;
8316
029632fb 8317 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8318 do_div(cfs_period_us, NSEC_PER_USEC);
8319
8320 return cfs_period_us;
8321}
8322
182446d0
TH
8323static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8324 struct cftype *cft)
ab84d31e 8325{
182446d0 8326 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8327}
8328
182446d0
TH
8329static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8330 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8331{
182446d0 8332 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8333}
8334
182446d0
TH
8335static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8336 struct cftype *cft)
ab84d31e 8337{
182446d0 8338 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8339}
8340
182446d0
TH
8341static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8342 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8343{
182446d0 8344 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8345}
8346
a790de99
PT
8347struct cfs_schedulable_data {
8348 struct task_group *tg;
8349 u64 period, quota;
8350};
8351
8352/*
8353 * normalize group quota/period to be quota/max_period
8354 * note: units are usecs
8355 */
8356static u64 normalize_cfs_quota(struct task_group *tg,
8357 struct cfs_schedulable_data *d)
8358{
8359 u64 quota, period;
8360
8361 if (tg == d->tg) {
8362 period = d->period;
8363 quota = d->quota;
8364 } else {
8365 period = tg_get_cfs_period(tg);
8366 quota = tg_get_cfs_quota(tg);
8367 }
8368
8369 /* note: these should typically be equivalent */
8370 if (quota == RUNTIME_INF || quota == -1)
8371 return RUNTIME_INF;
8372
8373 return to_ratio(period, quota);
8374}
8375
8376static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8377{
8378 struct cfs_schedulable_data *d = data;
029632fb 8379 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8380 s64 quota = 0, parent_quota = -1;
8381
8382 if (!tg->parent) {
8383 quota = RUNTIME_INF;
8384 } else {
029632fb 8385 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8386
8387 quota = normalize_cfs_quota(tg, d);
9c58c79a 8388 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8389
8390 /*
8391 * ensure max(child_quota) <= parent_quota, inherit when no
8392 * limit is set
8393 */
8394 if (quota == RUNTIME_INF)
8395 quota = parent_quota;
8396 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8397 return -EINVAL;
8398 }
9c58c79a 8399 cfs_b->hierarchical_quota = quota;
a790de99
PT
8400
8401 return 0;
8402}
8403
8404static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8405{
8277434e 8406 int ret;
a790de99
PT
8407 struct cfs_schedulable_data data = {
8408 .tg = tg,
8409 .period = period,
8410 .quota = quota,
8411 };
8412
8413 if (quota != RUNTIME_INF) {
8414 do_div(data.period, NSEC_PER_USEC);
8415 do_div(data.quota, NSEC_PER_USEC);
8416 }
8417
8277434e
PT
8418 rcu_read_lock();
8419 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8420 rcu_read_unlock();
8421
8422 return ret;
a790de99 8423}
e8da1b18 8424
2da8ca82 8425static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8426{
2da8ca82 8427 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8428 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8429
44ffc75b
TH
8430 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8431 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8432 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8433
8434 return 0;
8435}
ab84d31e 8436#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8437#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8438
052f1dc7 8439#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8440static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8441 struct cftype *cft, s64 val)
6f505b16 8442{
182446d0 8443 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8444}
8445
182446d0
TH
8446static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8447 struct cftype *cft)
6f505b16 8448{
182446d0 8449 return sched_group_rt_runtime(css_tg(css));
6f505b16 8450}
d0b27fa7 8451
182446d0
TH
8452static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8453 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8454{
182446d0 8455 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8456}
8457
182446d0
TH
8458static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8459 struct cftype *cft)
d0b27fa7 8460{
182446d0 8461 return sched_group_rt_period(css_tg(css));
d0b27fa7 8462}
6d6bc0ad 8463#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8464
fe5c7cc2 8465static struct cftype cpu_files[] = {
052f1dc7 8466#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8467 {
8468 .name = "shares",
f4c753b7
PM
8469 .read_u64 = cpu_shares_read_u64,
8470 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8471 },
052f1dc7 8472#endif
ab84d31e
PT
8473#ifdef CONFIG_CFS_BANDWIDTH
8474 {
8475 .name = "cfs_quota_us",
8476 .read_s64 = cpu_cfs_quota_read_s64,
8477 .write_s64 = cpu_cfs_quota_write_s64,
8478 },
8479 {
8480 .name = "cfs_period_us",
8481 .read_u64 = cpu_cfs_period_read_u64,
8482 .write_u64 = cpu_cfs_period_write_u64,
8483 },
e8da1b18
NR
8484 {
8485 .name = "stat",
2da8ca82 8486 .seq_show = cpu_stats_show,
e8da1b18 8487 },
ab84d31e 8488#endif
052f1dc7 8489#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8490 {
9f0c1e56 8491 .name = "rt_runtime_us",
06ecb27c
PM
8492 .read_s64 = cpu_rt_runtime_read,
8493 .write_s64 = cpu_rt_runtime_write,
6f505b16 8494 },
d0b27fa7
PZ
8495 {
8496 .name = "rt_period_us",
f4c753b7
PM
8497 .read_u64 = cpu_rt_period_read_uint,
8498 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8499 },
052f1dc7 8500#endif
4baf6e33 8501 { } /* terminate */
68318b8e
SV
8502};
8503
073219e9 8504struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8505 .css_alloc = cpu_cgroup_css_alloc,
8506 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8507 .css_online = cpu_cgroup_css_online,
8508 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8509 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8510 .can_attach = cpu_cgroup_can_attach,
8511 .attach = cpu_cgroup_attach,
068c5cc5 8512 .exit = cpu_cgroup_exit,
5577964e 8513 .legacy_cftypes = cpu_files,
68318b8e
SV
8514 .early_init = 1,
8515};
8516
052f1dc7 8517#endif /* CONFIG_CGROUP_SCHED */
d842de87 8518
b637a328
PM
8519void dump_cpu_task(int cpu)
8520{
8521 pr_info("Task dump for CPU %d:\n", cpu);
8522 sched_show_task(cpu_curr(cpu));
8523}