sched/nohz: Skip remote tick on idle task entirely
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
325ea10c 8#include "sched.h"
1da177e4 9
85f1abe0 10#include <linux/kthread.h>
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
29d5e047 19#include "../smpboot.h"
6e0534f2 20
a8d154b0 21#define CREATE_TRACE_POINTS
ad8d75ff 22#include <trace/events/sched.h>
a8d154b0 23
029632fb 24DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 25
765cc3a4 26#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
27/*
28 * Debugging: various feature bits
765cc3a4
PB
29 *
30 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
31 * sysctl_sched_features, defined in sched.h, to allow constants propagation
32 * at compile time and compiler optimization based on features default.
bf5c91ba 33 */
f00b45c1
PZ
34#define SCHED_FEAT(name, enabled) \
35 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 36const_debug unsigned int sysctl_sched_features =
391e43da 37#include "features.h"
f00b45c1 38 0;
f00b45c1 39#undef SCHED_FEAT
765cc3a4 40#endif
f00b45c1 41
b82d9fdd
PZ
42/*
43 * Number of tasks to iterate in a single balance run.
44 * Limited because this is done with IRQs disabled.
45 */
46const_debug unsigned int sysctl_sched_nr_migrate = 32;
47
e9e9250b
PZ
48/*
49 * period over which we average the RT time consumption, measured
50 * in ms.
51 *
52 * default: 1s
53 */
54const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
55
fa85ae24 56/*
d1ccc66d 57 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
58 * default: 1s
59 */
9f0c1e56 60unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 61
029632fb 62__read_mostly int scheduler_running;
6892b75e 63
9f0c1e56
PZ
64/*
65 * part of the period that we allow rt tasks to run in us.
66 * default: 0.95s
67 */
68int sysctl_sched_rt_runtime = 950000;
fa85ae24 69
3e71a462
PZ
70/*
71 * __task_rq_lock - lock the rq @p resides on.
72 */
eb580751 73struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
74 __acquires(rq->lock)
75{
76 struct rq *rq;
77
78 lockdep_assert_held(&p->pi_lock);
79
80 for (;;) {
81 rq = task_rq(p);
82 raw_spin_lock(&rq->lock);
83 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 84 rq_pin_lock(rq, rf);
3e71a462
PZ
85 return rq;
86 }
87 raw_spin_unlock(&rq->lock);
88
89 while (unlikely(task_on_rq_migrating(p)))
90 cpu_relax();
91 }
92}
93
94/*
95 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
96 */
eb580751 97struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
98 __acquires(p->pi_lock)
99 __acquires(rq->lock)
100{
101 struct rq *rq;
102
103 for (;;) {
eb580751 104 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
105 rq = task_rq(p);
106 raw_spin_lock(&rq->lock);
107 /*
108 * move_queued_task() task_rq_lock()
109 *
110 * ACQUIRE (rq->lock)
111 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
112 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
113 * [S] ->cpu = new_cpu [L] task_rq()
114 * [L] ->on_rq
115 * RELEASE (rq->lock)
116 *
97fb7a0a 117 * If we observe the old CPU in task_rq_lock, the acquire of
3e71a462
PZ
118 * the old rq->lock will fully serialize against the stores.
119 *
d1ccc66d 120 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
121 * pair with the WMB to ensure we must then also see migrating.
122 */
123 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 124 rq_pin_lock(rq, rf);
3e71a462
PZ
125 return rq;
126 }
127 raw_spin_unlock(&rq->lock);
eb580751 128 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
129
130 while (unlikely(task_on_rq_migrating(p)))
131 cpu_relax();
132 }
133}
134
535b9552
IM
135/*
136 * RQ-clock updating methods:
137 */
138
139static void update_rq_clock_task(struct rq *rq, s64 delta)
140{
141/*
142 * In theory, the compile should just see 0 here, and optimize out the call
143 * to sched_rt_avg_update. But I don't trust it...
144 */
145#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
146 s64 steal = 0, irq_delta = 0;
147#endif
148#ifdef CONFIG_IRQ_TIME_ACCOUNTING
149 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
150
151 /*
152 * Since irq_time is only updated on {soft,}irq_exit, we might run into
153 * this case when a previous update_rq_clock() happened inside a
154 * {soft,}irq region.
155 *
156 * When this happens, we stop ->clock_task and only update the
157 * prev_irq_time stamp to account for the part that fit, so that a next
158 * update will consume the rest. This ensures ->clock_task is
159 * monotonic.
160 *
161 * It does however cause some slight miss-attribution of {soft,}irq
162 * time, a more accurate solution would be to update the irq_time using
163 * the current rq->clock timestamp, except that would require using
164 * atomic ops.
165 */
166 if (irq_delta > delta)
167 irq_delta = delta;
168
169 rq->prev_irq_time += irq_delta;
170 delta -= irq_delta;
171#endif
172#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
173 if (static_key_false((&paravirt_steal_rq_enabled))) {
174 steal = paravirt_steal_clock(cpu_of(rq));
175 steal -= rq->prev_steal_time_rq;
176
177 if (unlikely(steal > delta))
178 steal = delta;
179
180 rq->prev_steal_time_rq += steal;
181 delta -= steal;
182 }
183#endif
184
185 rq->clock_task += delta;
186
187#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
188 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
189 sched_rt_avg_update(rq, irq_delta + steal);
190#endif
191}
192
193void update_rq_clock(struct rq *rq)
194{
195 s64 delta;
196
197 lockdep_assert_held(&rq->lock);
198
199 if (rq->clock_update_flags & RQCF_ACT_SKIP)
200 return;
201
202#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
203 if (sched_feat(WARN_DOUBLE_CLOCK))
204 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
205 rq->clock_update_flags |= RQCF_UPDATED;
206#endif
26ae58d2 207
535b9552
IM
208 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
209 if (delta < 0)
210 return;
211 rq->clock += delta;
212 update_rq_clock_task(rq, delta);
213}
214
215
8f4d37ec
PZ
216#ifdef CONFIG_SCHED_HRTICK
217/*
218 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 219 */
8f4d37ec 220
8f4d37ec
PZ
221static void hrtick_clear(struct rq *rq)
222{
223 if (hrtimer_active(&rq->hrtick_timer))
224 hrtimer_cancel(&rq->hrtick_timer);
225}
226
8f4d37ec
PZ
227/*
228 * High-resolution timer tick.
229 * Runs from hardirq context with interrupts disabled.
230 */
231static enum hrtimer_restart hrtick(struct hrtimer *timer)
232{
233 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 234 struct rq_flags rf;
8f4d37ec
PZ
235
236 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
237
8a8c69c3 238 rq_lock(rq, &rf);
3e51f33f 239 update_rq_clock(rq);
8f4d37ec 240 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 241 rq_unlock(rq, &rf);
8f4d37ec
PZ
242
243 return HRTIMER_NORESTART;
244}
245
95e904c7 246#ifdef CONFIG_SMP
971ee28c 247
4961b6e1 248static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
249{
250 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 251
4961b6e1 252 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
253}
254
31656519
PZ
255/*
256 * called from hardirq (IPI) context
257 */
258static void __hrtick_start(void *arg)
b328ca18 259{
31656519 260 struct rq *rq = arg;
8a8c69c3 261 struct rq_flags rf;
b328ca18 262
8a8c69c3 263 rq_lock(rq, &rf);
971ee28c 264 __hrtick_restart(rq);
31656519 265 rq->hrtick_csd_pending = 0;
8a8c69c3 266 rq_unlock(rq, &rf);
b328ca18
PZ
267}
268
31656519
PZ
269/*
270 * Called to set the hrtick timer state.
271 *
272 * called with rq->lock held and irqs disabled
273 */
029632fb 274void hrtick_start(struct rq *rq, u64 delay)
b328ca18 275{
31656519 276 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 277 ktime_t time;
278 s64 delta;
279
280 /*
281 * Don't schedule slices shorter than 10000ns, that just
282 * doesn't make sense and can cause timer DoS.
283 */
284 delta = max_t(s64, delay, 10000LL);
285 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 286
cc584b21 287 hrtimer_set_expires(timer, time);
31656519
PZ
288
289 if (rq == this_rq()) {
971ee28c 290 __hrtick_restart(rq);
31656519 291 } else if (!rq->hrtick_csd_pending) {
c46fff2a 292 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
293 rq->hrtick_csd_pending = 1;
294 }
b328ca18
PZ
295}
296
31656519
PZ
297#else
298/*
299 * Called to set the hrtick timer state.
300 *
301 * called with rq->lock held and irqs disabled
302 */
029632fb 303void hrtick_start(struct rq *rq, u64 delay)
31656519 304{
86893335
WL
305 /*
306 * Don't schedule slices shorter than 10000ns, that just
307 * doesn't make sense. Rely on vruntime for fairness.
308 */
309 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
310 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
311 HRTIMER_MODE_REL_PINNED);
31656519 312}
31656519 313#endif /* CONFIG_SMP */
8f4d37ec 314
77a021be 315static void hrtick_rq_init(struct rq *rq)
8f4d37ec 316{
31656519
PZ
317#ifdef CONFIG_SMP
318 rq->hrtick_csd_pending = 0;
8f4d37ec 319
31656519
PZ
320 rq->hrtick_csd.flags = 0;
321 rq->hrtick_csd.func = __hrtick_start;
322 rq->hrtick_csd.info = rq;
323#endif
8f4d37ec 324
31656519
PZ
325 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
326 rq->hrtick_timer.function = hrtick;
8f4d37ec 327}
006c75f1 328#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
329static inline void hrtick_clear(struct rq *rq)
330{
331}
332
77a021be 333static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
334{
335}
006c75f1 336#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 337
5529578a
FW
338/*
339 * cmpxchg based fetch_or, macro so it works for different integer types
340 */
341#define fetch_or(ptr, mask) \
342 ({ \
343 typeof(ptr) _ptr = (ptr); \
344 typeof(mask) _mask = (mask); \
345 typeof(*_ptr) _old, _val = *_ptr; \
346 \
347 for (;;) { \
348 _old = cmpxchg(_ptr, _val, _val | _mask); \
349 if (_old == _val) \
350 break; \
351 _val = _old; \
352 } \
353 _old; \
354})
355
e3baac47 356#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
357/*
358 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
359 * this avoids any races wrt polling state changes and thereby avoids
360 * spurious IPIs.
361 */
362static bool set_nr_and_not_polling(struct task_struct *p)
363{
364 struct thread_info *ti = task_thread_info(p);
365 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
366}
e3baac47
PZ
367
368/*
369 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
370 *
371 * If this returns true, then the idle task promises to call
372 * sched_ttwu_pending() and reschedule soon.
373 */
374static bool set_nr_if_polling(struct task_struct *p)
375{
376 struct thread_info *ti = task_thread_info(p);
316c1608 377 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
378
379 for (;;) {
380 if (!(val & _TIF_POLLING_NRFLAG))
381 return false;
382 if (val & _TIF_NEED_RESCHED)
383 return true;
384 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
385 if (old == val)
386 break;
387 val = old;
388 }
389 return true;
390}
391
fd99f91a
PZ
392#else
393static bool set_nr_and_not_polling(struct task_struct *p)
394{
395 set_tsk_need_resched(p);
396 return true;
397}
e3baac47
PZ
398
399#ifdef CONFIG_SMP
400static bool set_nr_if_polling(struct task_struct *p)
401{
402 return false;
403}
404#endif
fd99f91a
PZ
405#endif
406
76751049
PZ
407void wake_q_add(struct wake_q_head *head, struct task_struct *task)
408{
409 struct wake_q_node *node = &task->wake_q;
410
411 /*
412 * Atomically grab the task, if ->wake_q is !nil already it means
413 * its already queued (either by us or someone else) and will get the
414 * wakeup due to that.
415 *
416 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 417 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
418 */
419 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
420 return;
421
422 get_task_struct(task);
423
424 /*
425 * The head is context local, there can be no concurrency.
426 */
427 *head->lastp = node;
428 head->lastp = &node->next;
429}
430
431void wake_up_q(struct wake_q_head *head)
432{
433 struct wake_q_node *node = head->first;
434
435 while (node != WAKE_Q_TAIL) {
436 struct task_struct *task;
437
438 task = container_of(node, struct task_struct, wake_q);
439 BUG_ON(!task);
d1ccc66d 440 /* Task can safely be re-inserted now: */
76751049
PZ
441 node = node->next;
442 task->wake_q.next = NULL;
443
444 /*
445 * wake_up_process() implies a wmb() to pair with the queueing
446 * in wake_q_add() so as not to miss wakeups.
447 */
448 wake_up_process(task);
449 put_task_struct(task);
450 }
451}
452
c24d20db 453/*
8875125e 454 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
455 *
456 * On UP this means the setting of the need_resched flag, on SMP it
457 * might also involve a cross-CPU call to trigger the scheduler on
458 * the target CPU.
459 */
8875125e 460void resched_curr(struct rq *rq)
c24d20db 461{
8875125e 462 struct task_struct *curr = rq->curr;
c24d20db
IM
463 int cpu;
464
8875125e 465 lockdep_assert_held(&rq->lock);
c24d20db 466
8875125e 467 if (test_tsk_need_resched(curr))
c24d20db
IM
468 return;
469
8875125e 470 cpu = cpu_of(rq);
fd99f91a 471
f27dde8d 472 if (cpu == smp_processor_id()) {
8875125e 473 set_tsk_need_resched(curr);
f27dde8d 474 set_preempt_need_resched();
c24d20db 475 return;
f27dde8d 476 }
c24d20db 477
8875125e 478 if (set_nr_and_not_polling(curr))
c24d20db 479 smp_send_reschedule(cpu);
dfc68f29
AL
480 else
481 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
482}
483
029632fb 484void resched_cpu(int cpu)
c24d20db
IM
485{
486 struct rq *rq = cpu_rq(cpu);
487 unsigned long flags;
488
7c2102e5 489 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
490 if (cpu_online(cpu) || cpu == smp_processor_id())
491 resched_curr(rq);
05fa785c 492 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 493}
06d8308c 494
b021fe3e 495#ifdef CONFIG_SMP
3451d024 496#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 497/*
d1ccc66d
IM
498 * In the semi idle case, use the nearest busy CPU for migrating timers
499 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
500 *
501 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
502 * selecting an idle CPU will add more delays to the timers than intended
503 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 504 */
bc7a34b8 505int get_nohz_timer_target(void)
83cd4fe2 506{
bc7a34b8 507 int i, cpu = smp_processor_id();
83cd4fe2
VP
508 struct sched_domain *sd;
509
de201559 510 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
511 return cpu;
512
057f3fad 513 rcu_read_lock();
83cd4fe2 514 for_each_domain(cpu, sd) {
057f3fad 515 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
516 if (cpu == i)
517 continue;
518
de201559 519 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
520 cpu = i;
521 goto unlock;
522 }
523 }
83cd4fe2 524 }
9642d18e 525
de201559
FW
526 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
527 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
528unlock:
529 rcu_read_unlock();
83cd4fe2
VP
530 return cpu;
531}
d1ccc66d 532
06d8308c
TG
533/*
534 * When add_timer_on() enqueues a timer into the timer wheel of an
535 * idle CPU then this timer might expire before the next timer event
536 * which is scheduled to wake up that CPU. In case of a completely
537 * idle system the next event might even be infinite time into the
538 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
539 * leaves the inner idle loop so the newly added timer is taken into
540 * account when the CPU goes back to idle and evaluates the timer
541 * wheel for the next timer event.
542 */
1c20091e 543static void wake_up_idle_cpu(int cpu)
06d8308c
TG
544{
545 struct rq *rq = cpu_rq(cpu);
546
547 if (cpu == smp_processor_id())
548 return;
549
67b9ca70 550 if (set_nr_and_not_polling(rq->idle))
06d8308c 551 smp_send_reschedule(cpu);
dfc68f29
AL
552 else
553 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
554}
555
c5bfece2 556static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 557{
53c5fa16
FW
558 /*
559 * We just need the target to call irq_exit() and re-evaluate
560 * the next tick. The nohz full kick at least implies that.
561 * If needed we can still optimize that later with an
562 * empty IRQ.
563 */
379d9ecb
PM
564 if (cpu_is_offline(cpu))
565 return true; /* Don't try to wake offline CPUs. */
c5bfece2 566 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
567 if (cpu != smp_processor_id() ||
568 tick_nohz_tick_stopped())
53c5fa16 569 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
570 return true;
571 }
572
573 return false;
574}
575
379d9ecb
PM
576/*
577 * Wake up the specified CPU. If the CPU is going offline, it is the
578 * caller's responsibility to deal with the lost wakeup, for example,
579 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
580 */
1c20091e
FW
581void wake_up_nohz_cpu(int cpu)
582{
c5bfece2 583 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
584 wake_up_idle_cpu(cpu);
585}
586
ca38062e 587static inline bool got_nohz_idle_kick(void)
45bf76df 588{
1c792db7 589 int cpu = smp_processor_id();
873b4c65 590
b7031a02 591 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
592 return false;
593
594 if (idle_cpu(cpu) && !need_resched())
595 return true;
596
597 /*
598 * We can't run Idle Load Balance on this CPU for this time so we
599 * cancel it and clear NOHZ_BALANCE_KICK
600 */
b7031a02 601 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 602 return false;
45bf76df
IM
603}
604
3451d024 605#else /* CONFIG_NO_HZ_COMMON */
45bf76df 606
ca38062e 607static inline bool got_nohz_idle_kick(void)
2069dd75 608{
ca38062e 609 return false;
2069dd75
PZ
610}
611
3451d024 612#endif /* CONFIG_NO_HZ_COMMON */
d842de87 613
ce831b38 614#ifdef CONFIG_NO_HZ_FULL
76d92ac3 615bool sched_can_stop_tick(struct rq *rq)
ce831b38 616{
76d92ac3
FW
617 int fifo_nr_running;
618
619 /* Deadline tasks, even if single, need the tick */
620 if (rq->dl.dl_nr_running)
621 return false;
622
1e78cdbd 623 /*
2548d546
PZ
624 * If there are more than one RR tasks, we need the tick to effect the
625 * actual RR behaviour.
1e78cdbd 626 */
76d92ac3
FW
627 if (rq->rt.rr_nr_running) {
628 if (rq->rt.rr_nr_running == 1)
629 return true;
630 else
631 return false;
1e78cdbd
RR
632 }
633
2548d546
PZ
634 /*
635 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
636 * forced preemption between FIFO tasks.
637 */
638 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
639 if (fifo_nr_running)
640 return true;
641
642 /*
643 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
644 * if there's more than one we need the tick for involuntary
645 * preemption.
646 */
647 if (rq->nr_running > 1)
541b8264 648 return false;
ce831b38 649
541b8264 650 return true;
ce831b38
FW
651}
652#endif /* CONFIG_NO_HZ_FULL */
d842de87 653
029632fb 654void sched_avg_update(struct rq *rq)
18d95a28 655{
e9e9250b
PZ
656 s64 period = sched_avg_period();
657
78becc27 658 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
659 /*
660 * Inline assembly required to prevent the compiler
661 * optimising this loop into a divmod call.
662 * See __iter_div_u64_rem() for another example of this.
663 */
664 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
665 rq->age_stamp += period;
666 rq->rt_avg /= 2;
667 }
18d95a28
PZ
668}
669
6d6bc0ad 670#endif /* CONFIG_SMP */
18d95a28 671
a790de99
PT
672#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
673 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 674/*
8277434e
PT
675 * Iterate task_group tree rooted at *from, calling @down when first entering a
676 * node and @up when leaving it for the final time.
677 *
678 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 679 */
029632fb 680int walk_tg_tree_from(struct task_group *from,
8277434e 681 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
682{
683 struct task_group *parent, *child;
eb755805 684 int ret;
c09595f6 685
8277434e
PT
686 parent = from;
687
c09595f6 688down:
eb755805
PZ
689 ret = (*down)(parent, data);
690 if (ret)
8277434e 691 goto out;
c09595f6
PZ
692 list_for_each_entry_rcu(child, &parent->children, siblings) {
693 parent = child;
694 goto down;
695
696up:
697 continue;
698 }
eb755805 699 ret = (*up)(parent, data);
8277434e
PT
700 if (ret || parent == from)
701 goto out;
c09595f6
PZ
702
703 child = parent;
704 parent = parent->parent;
705 if (parent)
706 goto up;
8277434e 707out:
eb755805 708 return ret;
c09595f6
PZ
709}
710
029632fb 711int tg_nop(struct task_group *tg, void *data)
eb755805 712{
e2b245f8 713 return 0;
eb755805 714}
18d95a28
PZ
715#endif
716
9059393e 717static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 718{
f05998d4
NR
719 int prio = p->static_prio - MAX_RT_PRIO;
720 struct load_weight *load = &p->se.load;
721
dd41f596
IM
722 /*
723 * SCHED_IDLE tasks get minimal weight:
724 */
20f9cd2a 725 if (idle_policy(p->policy)) {
c8b28116 726 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 727 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
728 return;
729 }
71f8bd46 730
9059393e
VG
731 /*
732 * SCHED_OTHER tasks have to update their load when changing their
733 * weight
734 */
735 if (update_load && p->sched_class == &fair_sched_class) {
736 reweight_task(p, prio);
737 } else {
738 load->weight = scale_load(sched_prio_to_weight[prio]);
739 load->inv_weight = sched_prio_to_wmult[prio];
740 }
71f8bd46
IM
741}
742
1de64443 743static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 744{
0a67d1ee
PZ
745 if (!(flags & ENQUEUE_NOCLOCK))
746 update_rq_clock(rq);
747
1de64443
PZ
748 if (!(flags & ENQUEUE_RESTORE))
749 sched_info_queued(rq, p);
0a67d1ee 750
371fd7e7 751 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
752}
753
1de64443 754static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 755{
0a67d1ee
PZ
756 if (!(flags & DEQUEUE_NOCLOCK))
757 update_rq_clock(rq);
758
1de64443
PZ
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
0a67d1ee 761
371fd7e7 762 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
763}
764
029632fb 765void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
766{
767 if (task_contributes_to_load(p))
768 rq->nr_uninterruptible--;
769
371fd7e7 770 enqueue_task(rq, p, flags);
1e3c88bd
PZ
771}
772
029632fb 773void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
774{
775 if (task_contributes_to_load(p))
776 rq->nr_uninterruptible++;
777
371fd7e7 778 dequeue_task(rq, p, flags);
1e3c88bd
PZ
779}
780
14531189 781/*
dd41f596 782 * __normal_prio - return the priority that is based on the static prio
14531189 783 */
14531189
IM
784static inline int __normal_prio(struct task_struct *p)
785{
dd41f596 786 return p->static_prio;
14531189
IM
787}
788
b29739f9
IM
789/*
790 * Calculate the expected normal priority: i.e. priority
791 * without taking RT-inheritance into account. Might be
792 * boosted by interactivity modifiers. Changes upon fork,
793 * setprio syscalls, and whenever the interactivity
794 * estimator recalculates.
795 */
36c8b586 796static inline int normal_prio(struct task_struct *p)
b29739f9
IM
797{
798 int prio;
799
aab03e05
DF
800 if (task_has_dl_policy(p))
801 prio = MAX_DL_PRIO-1;
802 else if (task_has_rt_policy(p))
b29739f9
IM
803 prio = MAX_RT_PRIO-1 - p->rt_priority;
804 else
805 prio = __normal_prio(p);
806 return prio;
807}
808
809/*
810 * Calculate the current priority, i.e. the priority
811 * taken into account by the scheduler. This value might
812 * be boosted by RT tasks, or might be boosted by
813 * interactivity modifiers. Will be RT if the task got
814 * RT-boosted. If not then it returns p->normal_prio.
815 */
36c8b586 816static int effective_prio(struct task_struct *p)
b29739f9
IM
817{
818 p->normal_prio = normal_prio(p);
819 /*
820 * If we are RT tasks or we were boosted to RT priority,
821 * keep the priority unchanged. Otherwise, update priority
822 * to the normal priority:
823 */
824 if (!rt_prio(p->prio))
825 return p->normal_prio;
826 return p->prio;
827}
828
1da177e4
LT
829/**
830 * task_curr - is this task currently executing on a CPU?
831 * @p: the task in question.
e69f6186
YB
832 *
833 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 834 */
36c8b586 835inline int task_curr(const struct task_struct *p)
1da177e4
LT
836{
837 return cpu_curr(task_cpu(p)) == p;
838}
839
67dfa1b7 840/*
4c9a4bc8
PZ
841 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
842 * use the balance_callback list if you want balancing.
843 *
844 * this means any call to check_class_changed() must be followed by a call to
845 * balance_callback().
67dfa1b7 846 */
cb469845
SR
847static inline void check_class_changed(struct rq *rq, struct task_struct *p,
848 const struct sched_class *prev_class,
da7a735e 849 int oldprio)
cb469845
SR
850{
851 if (prev_class != p->sched_class) {
852 if (prev_class->switched_from)
da7a735e 853 prev_class->switched_from(rq, p);
4c9a4bc8 854
da7a735e 855 p->sched_class->switched_to(rq, p);
2d3d891d 856 } else if (oldprio != p->prio || dl_task(p))
da7a735e 857 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
858}
859
029632fb 860void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
861{
862 const struct sched_class *class;
863
864 if (p->sched_class == rq->curr->sched_class) {
865 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
866 } else {
867 for_each_class(class) {
868 if (class == rq->curr->sched_class)
869 break;
870 if (class == p->sched_class) {
8875125e 871 resched_curr(rq);
1e5a7405
PZ
872 break;
873 }
874 }
875 }
876
877 /*
878 * A queue event has occurred, and we're going to schedule. In
879 * this case, we can save a useless back to back clock update.
880 */
da0c1e65 881 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 882 rq_clock_skip_update(rq);
1e5a7405
PZ
883}
884
1da177e4 885#ifdef CONFIG_SMP
175f0e25
PZ
886
887static inline bool is_per_cpu_kthread(struct task_struct *p)
888{
889 if (!(p->flags & PF_KTHREAD))
890 return false;
891
892 if (p->nr_cpus_allowed != 1)
893 return false;
894
895 return true;
896}
897
898/*
899 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
900 * __set_cpus_allowed_ptr() and select_fallback_rq().
901 */
902static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
903{
904 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
905 return false;
906
907 if (is_per_cpu_kthread(p))
908 return cpu_online(cpu);
909
910 return cpu_active(cpu);
911}
912
5cc389bc
PZ
913/*
914 * This is how migration works:
915 *
916 * 1) we invoke migration_cpu_stop() on the target CPU using
917 * stop_one_cpu().
918 * 2) stopper starts to run (implicitly forcing the migrated thread
919 * off the CPU)
920 * 3) it checks whether the migrated task is still in the wrong runqueue.
921 * 4) if it's in the wrong runqueue then the migration thread removes
922 * it and puts it into the right queue.
923 * 5) stopper completes and stop_one_cpu() returns and the migration
924 * is done.
925 */
926
927/*
928 * move_queued_task - move a queued task to new rq.
929 *
930 * Returns (locked) new rq. Old rq's lock is released.
931 */
8a8c69c3
PZ
932static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
933 struct task_struct *p, int new_cpu)
5cc389bc 934{
5cc389bc
PZ
935 lockdep_assert_held(&rq->lock);
936
5cc389bc 937 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 938 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 939 set_task_cpu(p, new_cpu);
8a8c69c3 940 rq_unlock(rq, rf);
5cc389bc
PZ
941
942 rq = cpu_rq(new_cpu);
943
8a8c69c3 944 rq_lock(rq, rf);
5cc389bc 945 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 946 enqueue_task(rq, p, 0);
3ea94de1 947 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
948 check_preempt_curr(rq, p, 0);
949
950 return rq;
951}
952
953struct migration_arg {
954 struct task_struct *task;
955 int dest_cpu;
956};
957
958/*
d1ccc66d 959 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
960 * this because either it can't run here any more (set_cpus_allowed()
961 * away from this CPU, or CPU going down), or because we're
962 * attempting to rebalance this task on exec (sched_exec).
963 *
964 * So we race with normal scheduler movements, but that's OK, as long
965 * as the task is no longer on this CPU.
5cc389bc 966 */
8a8c69c3
PZ
967static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
968 struct task_struct *p, int dest_cpu)
5cc389bc 969{
5cc389bc 970 /* Affinity changed (again). */
175f0e25 971 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 972 return rq;
5cc389bc 973
15ff991e 974 update_rq_clock(rq);
8a8c69c3 975 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
976
977 return rq;
5cc389bc
PZ
978}
979
980/*
981 * migration_cpu_stop - this will be executed by a highprio stopper thread
982 * and performs thread migration by bumping thread off CPU then
983 * 'pushing' onto another runqueue.
984 */
985static int migration_cpu_stop(void *data)
986{
987 struct migration_arg *arg = data;
5e16bbc2
PZ
988 struct task_struct *p = arg->task;
989 struct rq *rq = this_rq();
8a8c69c3 990 struct rq_flags rf;
5cc389bc
PZ
991
992 /*
d1ccc66d
IM
993 * The original target CPU might have gone down and we might
994 * be on another CPU but it doesn't matter.
5cc389bc
PZ
995 */
996 local_irq_disable();
997 /*
998 * We need to explicitly wake pending tasks before running
999 * __migrate_task() such that we will not miss enforcing cpus_allowed
1000 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1001 */
1002 sched_ttwu_pending();
5e16bbc2
PZ
1003
1004 raw_spin_lock(&p->pi_lock);
8a8c69c3 1005 rq_lock(rq, &rf);
5e16bbc2
PZ
1006 /*
1007 * If task_rq(p) != rq, it cannot be migrated here, because we're
1008 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1009 * we're holding p->pi_lock.
1010 */
bf89a304
CC
1011 if (task_rq(p) == rq) {
1012 if (task_on_rq_queued(p))
8a8c69c3 1013 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1014 else
1015 p->wake_cpu = arg->dest_cpu;
1016 }
8a8c69c3 1017 rq_unlock(rq, &rf);
5e16bbc2
PZ
1018 raw_spin_unlock(&p->pi_lock);
1019
5cc389bc
PZ
1020 local_irq_enable();
1021 return 0;
1022}
1023
c5b28038
PZ
1024/*
1025 * sched_class::set_cpus_allowed must do the below, but is not required to
1026 * actually call this function.
1027 */
1028void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1029{
5cc389bc
PZ
1030 cpumask_copy(&p->cpus_allowed, new_mask);
1031 p->nr_cpus_allowed = cpumask_weight(new_mask);
1032}
1033
c5b28038
PZ
1034void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1035{
6c37067e
PZ
1036 struct rq *rq = task_rq(p);
1037 bool queued, running;
1038
c5b28038 1039 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1040
1041 queued = task_on_rq_queued(p);
1042 running = task_current(rq, p);
1043
1044 if (queued) {
1045 /*
1046 * Because __kthread_bind() calls this on blocked tasks without
1047 * holding rq->lock.
1048 */
1049 lockdep_assert_held(&rq->lock);
7a57f32a 1050 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1051 }
1052 if (running)
1053 put_prev_task(rq, p);
1054
c5b28038 1055 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1056
6c37067e 1057 if (queued)
7134b3e9 1058 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1059 if (running)
b2bf6c31 1060 set_curr_task(rq, p);
c5b28038
PZ
1061}
1062
5cc389bc
PZ
1063/*
1064 * Change a given task's CPU affinity. Migrate the thread to a
1065 * proper CPU and schedule it away if the CPU it's executing on
1066 * is removed from the allowed bitmask.
1067 *
1068 * NOTE: the caller must have a valid reference to the task, the
1069 * task must not exit() & deallocate itself prematurely. The
1070 * call is not atomic; no spinlocks may be held.
1071 */
25834c73
PZ
1072static int __set_cpus_allowed_ptr(struct task_struct *p,
1073 const struct cpumask *new_mask, bool check)
5cc389bc 1074{
e9d867a6 1075 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1076 unsigned int dest_cpu;
eb580751
PZ
1077 struct rq_flags rf;
1078 struct rq *rq;
5cc389bc
PZ
1079 int ret = 0;
1080
eb580751 1081 rq = task_rq_lock(p, &rf);
a499c3ea 1082 update_rq_clock(rq);
5cc389bc 1083
e9d867a6
PZI
1084 if (p->flags & PF_KTHREAD) {
1085 /*
1086 * Kernel threads are allowed on online && !active CPUs
1087 */
1088 cpu_valid_mask = cpu_online_mask;
1089 }
1090
25834c73
PZ
1091 /*
1092 * Must re-check here, to close a race against __kthread_bind(),
1093 * sched_setaffinity() is not guaranteed to observe the flag.
1094 */
1095 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1096 ret = -EINVAL;
1097 goto out;
1098 }
1099
5cc389bc
PZ
1100 if (cpumask_equal(&p->cpus_allowed, new_mask))
1101 goto out;
1102
e9d867a6 1103 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1104 ret = -EINVAL;
1105 goto out;
1106 }
1107
1108 do_set_cpus_allowed(p, new_mask);
1109
e9d867a6
PZI
1110 if (p->flags & PF_KTHREAD) {
1111 /*
1112 * For kernel threads that do indeed end up on online &&
d1ccc66d 1113 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1114 */
1115 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1116 !cpumask_intersects(new_mask, cpu_active_mask) &&
1117 p->nr_cpus_allowed != 1);
1118 }
1119
5cc389bc
PZ
1120 /* Can the task run on the task's current CPU? If so, we're done */
1121 if (cpumask_test_cpu(task_cpu(p), new_mask))
1122 goto out;
1123
e9d867a6 1124 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1125 if (task_running(rq, p) || p->state == TASK_WAKING) {
1126 struct migration_arg arg = { p, dest_cpu };
1127 /* Need help from migration thread: drop lock and wait. */
eb580751 1128 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1129 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1130 tlb_migrate_finish(p->mm);
1131 return 0;
cbce1a68
PZ
1132 } else if (task_on_rq_queued(p)) {
1133 /*
1134 * OK, since we're going to drop the lock immediately
1135 * afterwards anyway.
1136 */
8a8c69c3 1137 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1138 }
5cc389bc 1139out:
eb580751 1140 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1141
1142 return ret;
1143}
25834c73
PZ
1144
1145int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1146{
1147 return __set_cpus_allowed_ptr(p, new_mask, false);
1148}
5cc389bc
PZ
1149EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1150
dd41f596 1151void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1152{
e2912009
PZ
1153#ifdef CONFIG_SCHED_DEBUG
1154 /*
1155 * We should never call set_task_cpu() on a blocked task,
1156 * ttwu() will sort out the placement.
1157 */
077614ee 1158 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1159 !p->on_rq);
0122ec5b 1160
3ea94de1
JP
1161 /*
1162 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1163 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1164 * time relying on p->on_rq.
1165 */
1166 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1167 p->sched_class == &fair_sched_class &&
1168 (p->on_rq && !task_on_rq_migrating(p)));
1169
0122ec5b 1170#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1171 /*
1172 * The caller should hold either p->pi_lock or rq->lock, when changing
1173 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1174 *
1175 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1176 * see task_group().
6c6c54e1
PZ
1177 *
1178 * Furthermore, all task_rq users should acquire both locks, see
1179 * task_rq_lock().
1180 */
0122ec5b
PZ
1181 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1182 lockdep_is_held(&task_rq(p)->lock)));
1183#endif
4ff9083b
PZ
1184 /*
1185 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1186 */
1187 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1188#endif
1189
de1d7286 1190 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1191
0c69774e 1192 if (task_cpu(p) != new_cpu) {
0a74bef8 1193 if (p->sched_class->migrate_task_rq)
5a4fd036 1194 p->sched_class->migrate_task_rq(p);
0c69774e 1195 p->se.nr_migrations++;
d7822b1e 1196 rseq_migrate(p);
ff303e66 1197 perf_event_task_migrate(p);
0c69774e 1198 }
dd41f596
IM
1199
1200 __set_task_cpu(p, new_cpu);
c65cc870
IM
1201}
1202
ac66f547
PZ
1203static void __migrate_swap_task(struct task_struct *p, int cpu)
1204{
da0c1e65 1205 if (task_on_rq_queued(p)) {
ac66f547 1206 struct rq *src_rq, *dst_rq;
8a8c69c3 1207 struct rq_flags srf, drf;
ac66f547
PZ
1208
1209 src_rq = task_rq(p);
1210 dst_rq = cpu_rq(cpu);
1211
8a8c69c3
PZ
1212 rq_pin_lock(src_rq, &srf);
1213 rq_pin_lock(dst_rq, &drf);
1214
3ea94de1 1215 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1216 deactivate_task(src_rq, p, 0);
1217 set_task_cpu(p, cpu);
1218 activate_task(dst_rq, p, 0);
3ea94de1 1219 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1220 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1221
1222 rq_unpin_lock(dst_rq, &drf);
1223 rq_unpin_lock(src_rq, &srf);
1224
ac66f547
PZ
1225 } else {
1226 /*
1227 * Task isn't running anymore; make it appear like we migrated
1228 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1229 * previous CPU our target instead of where it really is.
ac66f547
PZ
1230 */
1231 p->wake_cpu = cpu;
1232 }
1233}
1234
1235struct migration_swap_arg {
1236 struct task_struct *src_task, *dst_task;
1237 int src_cpu, dst_cpu;
1238};
1239
1240static int migrate_swap_stop(void *data)
1241{
1242 struct migration_swap_arg *arg = data;
1243 struct rq *src_rq, *dst_rq;
1244 int ret = -EAGAIN;
1245
62694cd5
PZ
1246 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1247 return -EAGAIN;
1248
ac66f547
PZ
1249 src_rq = cpu_rq(arg->src_cpu);
1250 dst_rq = cpu_rq(arg->dst_cpu);
1251
74602315
PZ
1252 double_raw_lock(&arg->src_task->pi_lock,
1253 &arg->dst_task->pi_lock);
ac66f547 1254 double_rq_lock(src_rq, dst_rq);
62694cd5 1255
ac66f547
PZ
1256 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1257 goto unlock;
1258
1259 if (task_cpu(arg->src_task) != arg->src_cpu)
1260 goto unlock;
1261
0c98d344 1262 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1263 goto unlock;
1264
0c98d344 1265 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1266 goto unlock;
1267
1268 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1269 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1270
1271 ret = 0;
1272
1273unlock:
1274 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1275 raw_spin_unlock(&arg->dst_task->pi_lock);
1276 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1277
1278 return ret;
1279}
1280
1281/*
1282 * Cross migrate two tasks
1283 */
1284int migrate_swap(struct task_struct *cur, struct task_struct *p)
1285{
1286 struct migration_swap_arg arg;
1287 int ret = -EINVAL;
1288
ac66f547
PZ
1289 arg = (struct migration_swap_arg){
1290 .src_task = cur,
1291 .src_cpu = task_cpu(cur),
1292 .dst_task = p,
1293 .dst_cpu = task_cpu(p),
1294 };
1295
1296 if (arg.src_cpu == arg.dst_cpu)
1297 goto out;
1298
6acce3ef
PZ
1299 /*
1300 * These three tests are all lockless; this is OK since all of them
1301 * will be re-checked with proper locks held further down the line.
1302 */
ac66f547
PZ
1303 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1304 goto out;
1305
0c98d344 1306 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1307 goto out;
1308
0c98d344 1309 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1310 goto out;
1311
286549dc 1312 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1313 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1314
1315out:
ac66f547
PZ
1316 return ret;
1317}
1318
1da177e4
LT
1319/*
1320 * wait_task_inactive - wait for a thread to unschedule.
1321 *
85ba2d86
RM
1322 * If @match_state is nonzero, it's the @p->state value just checked and
1323 * not expected to change. If it changes, i.e. @p might have woken up,
1324 * then return zero. When we succeed in waiting for @p to be off its CPU,
1325 * we return a positive number (its total switch count). If a second call
1326 * a short while later returns the same number, the caller can be sure that
1327 * @p has remained unscheduled the whole time.
1328 *
1da177e4
LT
1329 * The caller must ensure that the task *will* unschedule sometime soon,
1330 * else this function might spin for a *long* time. This function can't
1331 * be called with interrupts off, or it may introduce deadlock with
1332 * smp_call_function() if an IPI is sent by the same process we are
1333 * waiting to become inactive.
1334 */
85ba2d86 1335unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1336{
da0c1e65 1337 int running, queued;
eb580751 1338 struct rq_flags rf;
85ba2d86 1339 unsigned long ncsw;
70b97a7f 1340 struct rq *rq;
1da177e4 1341
3a5c359a
AK
1342 for (;;) {
1343 /*
1344 * We do the initial early heuristics without holding
1345 * any task-queue locks at all. We'll only try to get
1346 * the runqueue lock when things look like they will
1347 * work out!
1348 */
1349 rq = task_rq(p);
fa490cfd 1350
3a5c359a
AK
1351 /*
1352 * If the task is actively running on another CPU
1353 * still, just relax and busy-wait without holding
1354 * any locks.
1355 *
1356 * NOTE! Since we don't hold any locks, it's not
1357 * even sure that "rq" stays as the right runqueue!
1358 * But we don't care, since "task_running()" will
1359 * return false if the runqueue has changed and p
1360 * is actually now running somewhere else!
1361 */
85ba2d86
RM
1362 while (task_running(rq, p)) {
1363 if (match_state && unlikely(p->state != match_state))
1364 return 0;
3a5c359a 1365 cpu_relax();
85ba2d86 1366 }
fa490cfd 1367
3a5c359a
AK
1368 /*
1369 * Ok, time to look more closely! We need the rq
1370 * lock now, to be *sure*. If we're wrong, we'll
1371 * just go back and repeat.
1372 */
eb580751 1373 rq = task_rq_lock(p, &rf);
27a9da65 1374 trace_sched_wait_task(p);
3a5c359a 1375 running = task_running(rq, p);
da0c1e65 1376 queued = task_on_rq_queued(p);
85ba2d86 1377 ncsw = 0;
f31e11d8 1378 if (!match_state || p->state == match_state)
93dcf55f 1379 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1380 task_rq_unlock(rq, p, &rf);
fa490cfd 1381
85ba2d86
RM
1382 /*
1383 * If it changed from the expected state, bail out now.
1384 */
1385 if (unlikely(!ncsw))
1386 break;
1387
3a5c359a
AK
1388 /*
1389 * Was it really running after all now that we
1390 * checked with the proper locks actually held?
1391 *
1392 * Oops. Go back and try again..
1393 */
1394 if (unlikely(running)) {
1395 cpu_relax();
1396 continue;
1397 }
fa490cfd 1398
3a5c359a
AK
1399 /*
1400 * It's not enough that it's not actively running,
1401 * it must be off the runqueue _entirely_, and not
1402 * preempted!
1403 *
80dd99b3 1404 * So if it was still runnable (but just not actively
3a5c359a
AK
1405 * running right now), it's preempted, and we should
1406 * yield - it could be a while.
1407 */
da0c1e65 1408 if (unlikely(queued)) {
8b0e1953 1409 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1410
1411 set_current_state(TASK_UNINTERRUPTIBLE);
1412 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1413 continue;
1414 }
fa490cfd 1415
3a5c359a
AK
1416 /*
1417 * Ahh, all good. It wasn't running, and it wasn't
1418 * runnable, which means that it will never become
1419 * running in the future either. We're all done!
1420 */
1421 break;
1422 }
85ba2d86
RM
1423
1424 return ncsw;
1da177e4
LT
1425}
1426
1427/***
1428 * kick_process - kick a running thread to enter/exit the kernel
1429 * @p: the to-be-kicked thread
1430 *
1431 * Cause a process which is running on another CPU to enter
1432 * kernel-mode, without any delay. (to get signals handled.)
1433 *
25985edc 1434 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1435 * because all it wants to ensure is that the remote task enters
1436 * the kernel. If the IPI races and the task has been migrated
1437 * to another CPU then no harm is done and the purpose has been
1438 * achieved as well.
1439 */
36c8b586 1440void kick_process(struct task_struct *p)
1da177e4
LT
1441{
1442 int cpu;
1443
1444 preempt_disable();
1445 cpu = task_cpu(p);
1446 if ((cpu != smp_processor_id()) && task_curr(p))
1447 smp_send_reschedule(cpu);
1448 preempt_enable();
1449}
b43e3521 1450EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1451
30da688e 1452/*
013fdb80 1453 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1454 *
1455 * A few notes on cpu_active vs cpu_online:
1456 *
1457 * - cpu_active must be a subset of cpu_online
1458 *
97fb7a0a 1459 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1460 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1461 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1462 * see it.
1463 *
d1ccc66d 1464 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1465 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1466 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1467 * off.
1468 *
1469 * This means that fallback selection must not select !active CPUs.
1470 * And can assume that any active CPU must be online. Conversely
1471 * select_task_rq() below may allow selection of !active CPUs in order
1472 * to satisfy the above rules.
30da688e 1473 */
5da9a0fb
PZ
1474static int select_fallback_rq(int cpu, struct task_struct *p)
1475{
aa00d89c
TC
1476 int nid = cpu_to_node(cpu);
1477 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1478 enum { cpuset, possible, fail } state = cpuset;
1479 int dest_cpu;
5da9a0fb 1480
aa00d89c 1481 /*
d1ccc66d
IM
1482 * If the node that the CPU is on has been offlined, cpu_to_node()
1483 * will return -1. There is no CPU on the node, and we should
1484 * select the CPU on the other node.
aa00d89c
TC
1485 */
1486 if (nid != -1) {
1487 nodemask = cpumask_of_node(nid);
1488
1489 /* Look for allowed, online CPU in same node. */
1490 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1491 if (!cpu_active(dest_cpu))
1492 continue;
0c98d344 1493 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1494 return dest_cpu;
1495 }
2baab4e9 1496 }
5da9a0fb 1497
2baab4e9
PZ
1498 for (;;) {
1499 /* Any allowed, online CPU? */
0c98d344 1500 for_each_cpu(dest_cpu, &p->cpus_allowed) {
175f0e25 1501 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1502 continue;
175f0e25 1503
2baab4e9
PZ
1504 goto out;
1505 }
5da9a0fb 1506
e73e85f0 1507 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1508 switch (state) {
1509 case cpuset:
e73e85f0
ON
1510 if (IS_ENABLED(CONFIG_CPUSETS)) {
1511 cpuset_cpus_allowed_fallback(p);
1512 state = possible;
1513 break;
1514 }
d1ccc66d 1515 /* Fall-through */
2baab4e9
PZ
1516 case possible:
1517 do_set_cpus_allowed(p, cpu_possible_mask);
1518 state = fail;
1519 break;
1520
1521 case fail:
1522 BUG();
1523 break;
1524 }
1525 }
1526
1527out:
1528 if (state != cpuset) {
1529 /*
1530 * Don't tell them about moving exiting tasks or
1531 * kernel threads (both mm NULL), since they never
1532 * leave kernel.
1533 */
1534 if (p->mm && printk_ratelimit()) {
aac74dc4 1535 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1536 task_pid_nr(p), p->comm, cpu);
1537 }
5da9a0fb
PZ
1538 }
1539
1540 return dest_cpu;
1541}
1542
e2912009 1543/*
013fdb80 1544 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1545 */
970b13ba 1546static inline
ac66f547 1547int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1548{
cbce1a68
PZ
1549 lockdep_assert_held(&p->pi_lock);
1550
4b53a341 1551 if (p->nr_cpus_allowed > 1)
6c1d9410 1552 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1553 else
0c98d344 1554 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1555
1556 /*
1557 * In order not to call set_task_cpu() on a blocking task we need
1558 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1559 * CPU.
e2912009
PZ
1560 *
1561 * Since this is common to all placement strategies, this lives here.
1562 *
1563 * [ this allows ->select_task() to simply return task_cpu(p) and
1564 * not worry about this generic constraint ]
1565 */
7af443ee 1566 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1567 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1568
1569 return cpu;
970b13ba 1570}
09a40af5
MG
1571
1572static void update_avg(u64 *avg, u64 sample)
1573{
1574 s64 diff = sample - *avg;
1575 *avg += diff >> 3;
1576}
25834c73 1577
f5832c19
NP
1578void sched_set_stop_task(int cpu, struct task_struct *stop)
1579{
1580 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1581 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1582
1583 if (stop) {
1584 /*
1585 * Make it appear like a SCHED_FIFO task, its something
1586 * userspace knows about and won't get confused about.
1587 *
1588 * Also, it will make PI more or less work without too
1589 * much confusion -- but then, stop work should not
1590 * rely on PI working anyway.
1591 */
1592 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1593
1594 stop->sched_class = &stop_sched_class;
1595 }
1596
1597 cpu_rq(cpu)->stop = stop;
1598
1599 if (old_stop) {
1600 /*
1601 * Reset it back to a normal scheduling class so that
1602 * it can die in pieces.
1603 */
1604 old_stop->sched_class = &rt_sched_class;
1605 }
1606}
1607
25834c73
PZ
1608#else
1609
1610static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1611 const struct cpumask *new_mask, bool check)
1612{
1613 return set_cpus_allowed_ptr(p, new_mask);
1614}
1615
5cc389bc 1616#endif /* CONFIG_SMP */
970b13ba 1617
d7c01d27 1618static void
b84cb5df 1619ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1620{
4fa8d299 1621 struct rq *rq;
b84cb5df 1622
4fa8d299
JP
1623 if (!schedstat_enabled())
1624 return;
1625
1626 rq = this_rq();
d7c01d27 1627
4fa8d299
JP
1628#ifdef CONFIG_SMP
1629 if (cpu == rq->cpu) {
b85c8b71
PZ
1630 __schedstat_inc(rq->ttwu_local);
1631 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1632 } else {
1633 struct sched_domain *sd;
1634
b85c8b71 1635 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1636 rcu_read_lock();
4fa8d299 1637 for_each_domain(rq->cpu, sd) {
d7c01d27 1638 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1639 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1640 break;
1641 }
1642 }
057f3fad 1643 rcu_read_unlock();
d7c01d27 1644 }
f339b9dc
PZ
1645
1646 if (wake_flags & WF_MIGRATED)
b85c8b71 1647 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1648#endif /* CONFIG_SMP */
1649
b85c8b71
PZ
1650 __schedstat_inc(rq->ttwu_count);
1651 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1652
1653 if (wake_flags & WF_SYNC)
b85c8b71 1654 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1655}
1656
1de64443 1657static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1658{
9ed3811a 1659 activate_task(rq, p, en_flags);
da0c1e65 1660 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1661
d1ccc66d 1662 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1663 if (p->flags & PF_WQ_WORKER)
1664 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1665}
1666
23f41eeb
PZ
1667/*
1668 * Mark the task runnable and perform wakeup-preemption.
1669 */
e7904a28 1670static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1671 struct rq_flags *rf)
9ed3811a 1672{
9ed3811a 1673 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1674 p->state = TASK_RUNNING;
fbd705a0
PZ
1675 trace_sched_wakeup(p);
1676
9ed3811a 1677#ifdef CONFIG_SMP
4c9a4bc8
PZ
1678 if (p->sched_class->task_woken) {
1679 /*
cbce1a68
PZ
1680 * Our task @p is fully woken up and running; so its safe to
1681 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1682 */
d8ac8971 1683 rq_unpin_lock(rq, rf);
9ed3811a 1684 p->sched_class->task_woken(rq, p);
d8ac8971 1685 rq_repin_lock(rq, rf);
4c9a4bc8 1686 }
9ed3811a 1687
e69c6341 1688 if (rq->idle_stamp) {
78becc27 1689 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1690 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1691
abfafa54
JL
1692 update_avg(&rq->avg_idle, delta);
1693
1694 if (rq->avg_idle > max)
9ed3811a 1695 rq->avg_idle = max;
abfafa54 1696
9ed3811a
TH
1697 rq->idle_stamp = 0;
1698 }
1699#endif
1700}
1701
c05fbafb 1702static void
e7904a28 1703ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1704 struct rq_flags *rf)
c05fbafb 1705{
77558e4d 1706 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1707
cbce1a68
PZ
1708 lockdep_assert_held(&rq->lock);
1709
c05fbafb
PZ
1710#ifdef CONFIG_SMP
1711 if (p->sched_contributes_to_load)
1712 rq->nr_uninterruptible--;
b5179ac7 1713
b5179ac7 1714 if (wake_flags & WF_MIGRATED)
59efa0ba 1715 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1716#endif
1717
b5179ac7 1718 ttwu_activate(rq, p, en_flags);
d8ac8971 1719 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1720}
1721
1722/*
1723 * Called in case the task @p isn't fully descheduled from its runqueue,
1724 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1725 * since all we need to do is flip p->state to TASK_RUNNING, since
1726 * the task is still ->on_rq.
1727 */
1728static int ttwu_remote(struct task_struct *p, int wake_flags)
1729{
eb580751 1730 struct rq_flags rf;
c05fbafb
PZ
1731 struct rq *rq;
1732 int ret = 0;
1733
eb580751 1734 rq = __task_rq_lock(p, &rf);
da0c1e65 1735 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1736 /* check_preempt_curr() may use rq clock */
1737 update_rq_clock(rq);
d8ac8971 1738 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1739 ret = 1;
1740 }
eb580751 1741 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1742
1743 return ret;
1744}
1745
317f3941 1746#ifdef CONFIG_SMP
e3baac47 1747void sched_ttwu_pending(void)
317f3941
PZ
1748{
1749 struct rq *rq = this_rq();
fa14ff4a 1750 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1751 struct task_struct *p, *t;
d8ac8971 1752 struct rq_flags rf;
317f3941 1753
e3baac47
PZ
1754 if (!llist)
1755 return;
1756
8a8c69c3 1757 rq_lock_irqsave(rq, &rf);
77558e4d 1758 update_rq_clock(rq);
317f3941 1759
73215849
BP
1760 llist_for_each_entry_safe(p, t, llist, wake_entry)
1761 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1762
8a8c69c3 1763 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1764}
1765
1766void scheduler_ipi(void)
1767{
f27dde8d
PZ
1768 /*
1769 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1770 * TIF_NEED_RESCHED remotely (for the first time) will also send
1771 * this IPI.
1772 */
8cb75e0c 1773 preempt_fold_need_resched();
f27dde8d 1774
fd2ac4f4 1775 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1776 return;
1777
1778 /*
1779 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1780 * traditionally all their work was done from the interrupt return
1781 * path. Now that we actually do some work, we need to make sure
1782 * we do call them.
1783 *
1784 * Some archs already do call them, luckily irq_enter/exit nest
1785 * properly.
1786 *
1787 * Arguably we should visit all archs and update all handlers,
1788 * however a fair share of IPIs are still resched only so this would
1789 * somewhat pessimize the simple resched case.
1790 */
1791 irq_enter();
fa14ff4a 1792 sched_ttwu_pending();
ca38062e
SS
1793
1794 /*
1795 * Check if someone kicked us for doing the nohz idle load balance.
1796 */
873b4c65 1797 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1798 this_rq()->idle_balance = 1;
ca38062e 1799 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1800 }
c5d753a5 1801 irq_exit();
317f3941
PZ
1802}
1803
b7e7ade3 1804static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1805{
e3baac47
PZ
1806 struct rq *rq = cpu_rq(cpu);
1807
b7e7ade3
PZ
1808 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1809
e3baac47
PZ
1810 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1811 if (!set_nr_if_polling(rq->idle))
1812 smp_send_reschedule(cpu);
1813 else
1814 trace_sched_wake_idle_without_ipi(cpu);
1815 }
317f3941 1816}
d6aa8f85 1817
f6be8af1
CL
1818void wake_up_if_idle(int cpu)
1819{
1820 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1821 struct rq_flags rf;
f6be8af1 1822
fd7de1e8
AL
1823 rcu_read_lock();
1824
1825 if (!is_idle_task(rcu_dereference(rq->curr)))
1826 goto out;
f6be8af1
CL
1827
1828 if (set_nr_if_polling(rq->idle)) {
1829 trace_sched_wake_idle_without_ipi(cpu);
1830 } else {
8a8c69c3 1831 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1832 if (is_idle_task(rq->curr))
1833 smp_send_reschedule(cpu);
d1ccc66d 1834 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1835 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1836 }
fd7de1e8
AL
1837
1838out:
1839 rcu_read_unlock();
f6be8af1
CL
1840}
1841
39be3501 1842bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1843{
1844 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1845}
d6aa8f85 1846#endif /* CONFIG_SMP */
317f3941 1847
b5179ac7 1848static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1849{
1850 struct rq *rq = cpu_rq(cpu);
d8ac8971 1851 struct rq_flags rf;
c05fbafb 1852
17d9f311 1853#if defined(CONFIG_SMP)
39be3501 1854 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1855 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1856 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1857 return;
1858 }
1859#endif
1860
8a8c69c3 1861 rq_lock(rq, &rf);
77558e4d 1862 update_rq_clock(rq);
d8ac8971 1863 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1864 rq_unlock(rq, &rf);
9ed3811a
TH
1865}
1866
8643cda5
PZ
1867/*
1868 * Notes on Program-Order guarantees on SMP systems.
1869 *
1870 * MIGRATION
1871 *
1872 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1873 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1874 * execution on its new CPU [c1].
8643cda5
PZ
1875 *
1876 * For migration (of runnable tasks) this is provided by the following means:
1877 *
1878 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1879 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1880 * rq(c1)->lock (if not at the same time, then in that order).
1881 * C) LOCK of the rq(c1)->lock scheduling in task
1882 *
1883 * Transitivity guarantees that B happens after A and C after B.
1884 * Note: we only require RCpc transitivity.
d1ccc66d 1885 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1886 *
1887 * Example:
1888 *
1889 * CPU0 CPU1 CPU2
1890 *
1891 * LOCK rq(0)->lock
1892 * sched-out X
1893 * sched-in Y
1894 * UNLOCK rq(0)->lock
1895 *
1896 * LOCK rq(0)->lock // orders against CPU0
1897 * dequeue X
1898 * UNLOCK rq(0)->lock
1899 *
1900 * LOCK rq(1)->lock
1901 * enqueue X
1902 * UNLOCK rq(1)->lock
1903 *
1904 * LOCK rq(1)->lock // orders against CPU2
1905 * sched-out Z
1906 * sched-in X
1907 * UNLOCK rq(1)->lock
1908 *
1909 *
1910 * BLOCKING -- aka. SLEEP + WAKEUP
1911 *
1912 * For blocking we (obviously) need to provide the same guarantee as for
1913 * migration. However the means are completely different as there is no lock
1914 * chain to provide order. Instead we do:
1915 *
1916 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1917 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1918 *
1919 * Example:
1920 *
1921 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1922 *
1923 * LOCK rq(0)->lock LOCK X->pi_lock
1924 * dequeue X
1925 * sched-out X
1926 * smp_store_release(X->on_cpu, 0);
1927 *
1f03e8d2 1928 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1929 * X->state = WAKING
1930 * set_task_cpu(X,2)
1931 *
1932 * LOCK rq(2)->lock
1933 * enqueue X
1934 * X->state = RUNNING
1935 * UNLOCK rq(2)->lock
1936 *
1937 * LOCK rq(2)->lock // orders against CPU1
1938 * sched-out Z
1939 * sched-in X
1940 * UNLOCK rq(2)->lock
1941 *
1942 * UNLOCK X->pi_lock
1943 * UNLOCK rq(0)->lock
1944 *
1945 *
1946 * However; for wakeups there is a second guarantee we must provide, namely we
1947 * must observe the state that lead to our wakeup. That is, not only must our
1948 * task observe its own prior state, it must also observe the stores prior to
1949 * its wakeup.
1950 *
1951 * This means that any means of doing remote wakeups must order the CPU doing
1952 * the wakeup against the CPU the task is going to end up running on. This,
1953 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1954 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1955 *
1956 */
1957
9ed3811a 1958/**
1da177e4 1959 * try_to_wake_up - wake up a thread
9ed3811a 1960 * @p: the thread to be awakened
1da177e4 1961 * @state: the mask of task states that can be woken
9ed3811a 1962 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1963 *
a2250238 1964 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1965 *
a2250238
PZ
1966 * If the task was not queued/runnable, also place it back on a runqueue.
1967 *
1968 * Atomic against schedule() which would dequeue a task, also see
1969 * set_current_state().
1970 *
1971 * Return: %true if @p->state changes (an actual wakeup was done),
1972 * %false otherwise.
1da177e4 1973 */
e4a52bcb
PZ
1974static int
1975try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1976{
1da177e4 1977 unsigned long flags;
c05fbafb 1978 int cpu, success = 0;
2398f2c6 1979
e0acd0a6
ON
1980 /*
1981 * If we are going to wake up a thread waiting for CONDITION we
1982 * need to ensure that CONDITION=1 done by the caller can not be
1983 * reordered with p->state check below. This pairs with mb() in
1984 * set_current_state() the waiting thread does.
1985 */
013fdb80 1986 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1987 smp_mb__after_spinlock();
e9c84311 1988 if (!(p->state & state))
1da177e4
LT
1989 goto out;
1990
fbd705a0
PZ
1991 trace_sched_waking(p);
1992
d1ccc66d
IM
1993 /* We're going to change ->state: */
1994 success = 1;
1da177e4 1995 cpu = task_cpu(p);
1da177e4 1996
135e8c92
BS
1997 /*
1998 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1999 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2000 * in smp_cond_load_acquire() below.
2001 *
2002 * sched_ttwu_pending() try_to_wake_up()
2003 * [S] p->on_rq = 1; [L] P->state
2004 * UNLOCK rq->lock -----.
2005 * \
2006 * +--- RMB
2007 * schedule() /
2008 * LOCK rq->lock -----'
2009 * UNLOCK rq->lock
2010 *
2011 * [task p]
2012 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2013 *
2014 * Pairs with the UNLOCK+LOCK on rq->lock from the
2015 * last wakeup of our task and the schedule that got our task
2016 * current.
2017 */
2018 smp_rmb();
c05fbafb
PZ
2019 if (p->on_rq && ttwu_remote(p, wake_flags))
2020 goto stat;
1da177e4 2021
1da177e4 2022#ifdef CONFIG_SMP
ecf7d01c
PZ
2023 /*
2024 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2025 * possible to, falsely, observe p->on_cpu == 0.
2026 *
2027 * One must be running (->on_cpu == 1) in order to remove oneself
2028 * from the runqueue.
2029 *
2030 * [S] ->on_cpu = 1; [L] ->on_rq
2031 * UNLOCK rq->lock
2032 * RMB
2033 * LOCK rq->lock
2034 * [S] ->on_rq = 0; [L] ->on_cpu
2035 *
2036 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2037 * from the consecutive calls to schedule(); the first switching to our
2038 * task, the second putting it to sleep.
2039 */
2040 smp_rmb();
2041
e9c84311 2042 /*
d1ccc66d 2043 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2044 * this task as prev, wait until its done referencing the task.
b75a2253 2045 *
31cb1bc0 2046 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2047 *
2048 * This ensures that tasks getting woken will be fully ordered against
2049 * their previous state and preserve Program Order.
0970d299 2050 */
1f03e8d2 2051 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2052
a8e4f2ea 2053 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2054 p->state = TASK_WAKING;
e7693a36 2055
e33a9bba 2056 if (p->in_iowait) {
c96f5471 2057 delayacct_blkio_end(p);
e33a9bba
TH
2058 atomic_dec(&task_rq(p)->nr_iowait);
2059 }
2060
ac66f547 2061 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2062 if (task_cpu(p) != cpu) {
2063 wake_flags |= WF_MIGRATED;
e4a52bcb 2064 set_task_cpu(p, cpu);
f339b9dc 2065 }
e33a9bba
TH
2066
2067#else /* CONFIG_SMP */
2068
2069 if (p->in_iowait) {
c96f5471 2070 delayacct_blkio_end(p);
e33a9bba
TH
2071 atomic_dec(&task_rq(p)->nr_iowait);
2072 }
2073
1da177e4 2074#endif /* CONFIG_SMP */
1da177e4 2075
b5179ac7 2076 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2077stat:
4fa8d299 2078 ttwu_stat(p, cpu, wake_flags);
1da177e4 2079out:
013fdb80 2080 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2081
2082 return success;
2083}
2084
21aa9af0
TH
2085/**
2086 * try_to_wake_up_local - try to wake up a local task with rq lock held
2087 * @p: the thread to be awakened
bf50f0e8 2088 * @rf: request-queue flags for pinning
21aa9af0 2089 *
2acca55e 2090 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2091 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2092 * the current task.
21aa9af0 2093 */
d8ac8971 2094static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2095{
2096 struct rq *rq = task_rq(p);
21aa9af0 2097
383efcd0
TH
2098 if (WARN_ON_ONCE(rq != this_rq()) ||
2099 WARN_ON_ONCE(p == current))
2100 return;
2101
21aa9af0
TH
2102 lockdep_assert_held(&rq->lock);
2103
2acca55e 2104 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2105 /*
2106 * This is OK, because current is on_cpu, which avoids it being
2107 * picked for load-balance and preemption/IRQs are still
2108 * disabled avoiding further scheduler activity on it and we've
2109 * not yet picked a replacement task.
2110 */
8a8c69c3 2111 rq_unlock(rq, rf);
2acca55e 2112 raw_spin_lock(&p->pi_lock);
8a8c69c3 2113 rq_relock(rq, rf);
2acca55e
PZ
2114 }
2115
21aa9af0 2116 if (!(p->state & TASK_NORMAL))
2acca55e 2117 goto out;
21aa9af0 2118
fbd705a0
PZ
2119 trace_sched_waking(p);
2120
e33a9bba
TH
2121 if (!task_on_rq_queued(p)) {
2122 if (p->in_iowait) {
c96f5471 2123 delayacct_blkio_end(p);
e33a9bba
TH
2124 atomic_dec(&rq->nr_iowait);
2125 }
bce4dc80 2126 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2127 }
d7c01d27 2128
d8ac8971 2129 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2130 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2131out:
2132 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2133}
2134
50fa610a
DH
2135/**
2136 * wake_up_process - Wake up a specific process
2137 * @p: The process to be woken up.
2138 *
2139 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2140 * processes.
2141 *
2142 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2143 *
2144 * It may be assumed that this function implies a write memory barrier before
2145 * changing the task state if and only if any tasks are woken up.
2146 */
7ad5b3a5 2147int wake_up_process(struct task_struct *p)
1da177e4 2148{
9067ac85 2149 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2150}
1da177e4
LT
2151EXPORT_SYMBOL(wake_up_process);
2152
7ad5b3a5 2153int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2154{
2155 return try_to_wake_up(p, state, 0);
2156}
2157
1da177e4
LT
2158/*
2159 * Perform scheduler related setup for a newly forked process p.
2160 * p is forked by current.
dd41f596
IM
2161 *
2162 * __sched_fork() is basic setup used by init_idle() too:
2163 */
5e1576ed 2164static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2165{
fd2f4419
PZ
2166 p->on_rq = 0;
2167
2168 p->se.on_rq = 0;
dd41f596
IM
2169 p->se.exec_start = 0;
2170 p->se.sum_exec_runtime = 0;
f6cf891c 2171 p->se.prev_sum_exec_runtime = 0;
6c594c21 2172 p->se.nr_migrations = 0;
da7a735e 2173 p->se.vruntime = 0;
fd2f4419 2174 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2175
ad936d86
BP
2176#ifdef CONFIG_FAIR_GROUP_SCHED
2177 p->se.cfs_rq = NULL;
2178#endif
2179
6cfb0d5d 2180#ifdef CONFIG_SCHEDSTATS
cb251765 2181 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2182 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2183#endif
476d139c 2184
aab03e05 2185 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2186 init_dl_task_timer(&p->dl);
209a0cbd 2187 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2188 __dl_clear_params(p);
aab03e05 2189
fa717060 2190 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2191 p->rt.timeout = 0;
2192 p->rt.time_slice = sched_rr_timeslice;
2193 p->rt.on_rq = 0;
2194 p->rt.on_list = 0;
476d139c 2195
e107be36
AK
2196#ifdef CONFIG_PREEMPT_NOTIFIERS
2197 INIT_HLIST_HEAD(&p->preempt_notifiers);
2198#endif
cbee9f88 2199
13784475 2200 init_numa_balancing(clone_flags, p);
dd41f596
IM
2201}
2202
2a595721
SD
2203DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2204
1a687c2e 2205#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2206
1a687c2e
MG
2207void set_numabalancing_state(bool enabled)
2208{
2209 if (enabled)
2a595721 2210 static_branch_enable(&sched_numa_balancing);
1a687c2e 2211 else
2a595721 2212 static_branch_disable(&sched_numa_balancing);
1a687c2e 2213}
54a43d54
AK
2214
2215#ifdef CONFIG_PROC_SYSCTL
2216int sysctl_numa_balancing(struct ctl_table *table, int write,
2217 void __user *buffer, size_t *lenp, loff_t *ppos)
2218{
2219 struct ctl_table t;
2220 int err;
2a595721 2221 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2222
2223 if (write && !capable(CAP_SYS_ADMIN))
2224 return -EPERM;
2225
2226 t = *table;
2227 t.data = &state;
2228 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2229 if (err < 0)
2230 return err;
2231 if (write)
2232 set_numabalancing_state(state);
2233 return err;
2234}
2235#endif
2236#endif
dd41f596 2237
4698f88c
JP
2238#ifdef CONFIG_SCHEDSTATS
2239
cb251765 2240DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2241static bool __initdata __sched_schedstats = false;
cb251765 2242
cb251765
MG
2243static void set_schedstats(bool enabled)
2244{
2245 if (enabled)
2246 static_branch_enable(&sched_schedstats);
2247 else
2248 static_branch_disable(&sched_schedstats);
2249}
2250
2251void force_schedstat_enabled(void)
2252{
2253 if (!schedstat_enabled()) {
2254 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2255 static_branch_enable(&sched_schedstats);
2256 }
2257}
2258
2259static int __init setup_schedstats(char *str)
2260{
2261 int ret = 0;
2262 if (!str)
2263 goto out;
2264
4698f88c
JP
2265 /*
2266 * This code is called before jump labels have been set up, so we can't
2267 * change the static branch directly just yet. Instead set a temporary
2268 * variable so init_schedstats() can do it later.
2269 */
cb251765 2270 if (!strcmp(str, "enable")) {
4698f88c 2271 __sched_schedstats = true;
cb251765
MG
2272 ret = 1;
2273 } else if (!strcmp(str, "disable")) {
4698f88c 2274 __sched_schedstats = false;
cb251765
MG
2275 ret = 1;
2276 }
2277out:
2278 if (!ret)
2279 pr_warn("Unable to parse schedstats=\n");
2280
2281 return ret;
2282}
2283__setup("schedstats=", setup_schedstats);
2284
4698f88c
JP
2285static void __init init_schedstats(void)
2286{
2287 set_schedstats(__sched_schedstats);
2288}
2289
cb251765
MG
2290#ifdef CONFIG_PROC_SYSCTL
2291int sysctl_schedstats(struct ctl_table *table, int write,
2292 void __user *buffer, size_t *lenp, loff_t *ppos)
2293{
2294 struct ctl_table t;
2295 int err;
2296 int state = static_branch_likely(&sched_schedstats);
2297
2298 if (write && !capable(CAP_SYS_ADMIN))
2299 return -EPERM;
2300
2301 t = *table;
2302 t.data = &state;
2303 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2304 if (err < 0)
2305 return err;
2306 if (write)
2307 set_schedstats(state);
2308 return err;
2309}
4698f88c
JP
2310#endif /* CONFIG_PROC_SYSCTL */
2311#else /* !CONFIG_SCHEDSTATS */
2312static inline void init_schedstats(void) {}
2313#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2314
2315/*
2316 * fork()/clone()-time setup:
2317 */
aab03e05 2318int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2319{
0122ec5b 2320 unsigned long flags;
dd41f596
IM
2321 int cpu = get_cpu();
2322
5e1576ed 2323 __sched_fork(clone_flags, p);
06b83b5f 2324 /*
7dc603c9 2325 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2326 * nobody will actually run it, and a signal or other external
2327 * event cannot wake it up and insert it on the runqueue either.
2328 */
7dc603c9 2329 p->state = TASK_NEW;
dd41f596 2330
c350a04e
MG
2331 /*
2332 * Make sure we do not leak PI boosting priority to the child.
2333 */
2334 p->prio = current->normal_prio;
2335
b9dc29e7
MG
2336 /*
2337 * Revert to default priority/policy on fork if requested.
2338 */
2339 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2340 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2341 p->policy = SCHED_NORMAL;
6c697bdf 2342 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2343 p->rt_priority = 0;
2344 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2345 p->static_prio = NICE_TO_PRIO(0);
2346
2347 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2348 set_load_weight(p, false);
6c697bdf 2349
b9dc29e7
MG
2350 /*
2351 * We don't need the reset flag anymore after the fork. It has
2352 * fulfilled its duty:
2353 */
2354 p->sched_reset_on_fork = 0;
2355 }
ca94c442 2356
aab03e05
DF
2357 if (dl_prio(p->prio)) {
2358 put_cpu();
2359 return -EAGAIN;
2360 } else if (rt_prio(p->prio)) {
2361 p->sched_class = &rt_sched_class;
2362 } else {
2ddbf952 2363 p->sched_class = &fair_sched_class;
aab03e05 2364 }
b29739f9 2365
7dc603c9 2366 init_entity_runnable_average(&p->se);
cd29fe6f 2367
86951599
PZ
2368 /*
2369 * The child is not yet in the pid-hash so no cgroup attach races,
2370 * and the cgroup is pinned to this child due to cgroup_fork()
2371 * is ran before sched_fork().
2372 *
2373 * Silence PROVE_RCU.
2374 */
0122ec5b 2375 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2376 /*
d1ccc66d 2377 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2378 * so use __set_task_cpu().
2379 */
2380 __set_task_cpu(p, cpu);
2381 if (p->sched_class->task_fork)
2382 p->sched_class->task_fork(p);
0122ec5b 2383 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2384
f6db8347 2385#ifdef CONFIG_SCHED_INFO
dd41f596 2386 if (likely(sched_info_on()))
52f17b6c 2387 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2388#endif
3ca7a440
PZ
2389#if defined(CONFIG_SMP)
2390 p->on_cpu = 0;
4866cde0 2391#endif
01028747 2392 init_task_preempt_count(p);
806c09a7 2393#ifdef CONFIG_SMP
917b627d 2394 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2395 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2396#endif
917b627d 2397
476d139c 2398 put_cpu();
aab03e05 2399 return 0;
1da177e4
LT
2400}
2401
332ac17e
DF
2402unsigned long to_ratio(u64 period, u64 runtime)
2403{
2404 if (runtime == RUNTIME_INF)
c52f14d3 2405 return BW_UNIT;
332ac17e
DF
2406
2407 /*
2408 * Doing this here saves a lot of checks in all
2409 * the calling paths, and returning zero seems
2410 * safe for them anyway.
2411 */
2412 if (period == 0)
2413 return 0;
2414
c52f14d3 2415 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2416}
2417
1da177e4
LT
2418/*
2419 * wake_up_new_task - wake up a newly created task for the first time.
2420 *
2421 * This function will do some initial scheduler statistics housekeeping
2422 * that must be done for every newly created context, then puts the task
2423 * on the runqueue and wakes it.
2424 */
3e51e3ed 2425void wake_up_new_task(struct task_struct *p)
1da177e4 2426{
eb580751 2427 struct rq_flags rf;
dd41f596 2428 struct rq *rq;
fabf318e 2429
eb580751 2430 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2431 p->state = TASK_RUNNING;
fabf318e
PZ
2432#ifdef CONFIG_SMP
2433 /*
2434 * Fork balancing, do it here and not earlier because:
2435 * - cpus_allowed can change in the fork path
d1ccc66d 2436 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2437 *
2438 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2439 * as we're not fully set-up yet.
fabf318e 2440 */
32e839dd 2441 p->recent_used_cpu = task_cpu(p);
e210bffd 2442 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2443#endif
b7fa30c9 2444 rq = __task_rq_lock(p, &rf);
4126bad6 2445 update_rq_clock(rq);
2b8c41da 2446 post_init_entity_util_avg(&p->se);
0017d735 2447
7a57f32a 2448 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2449 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2450 trace_sched_wakeup_new(p);
a7558e01 2451 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2452#ifdef CONFIG_SMP
0aaafaab
PZ
2453 if (p->sched_class->task_woken) {
2454 /*
2455 * Nothing relies on rq->lock after this, so its fine to
2456 * drop it.
2457 */
d8ac8971 2458 rq_unpin_lock(rq, &rf);
efbbd05a 2459 p->sched_class->task_woken(rq, p);
d8ac8971 2460 rq_repin_lock(rq, &rf);
0aaafaab 2461 }
9a897c5a 2462#endif
eb580751 2463 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2464}
2465
e107be36
AK
2466#ifdef CONFIG_PREEMPT_NOTIFIERS
2467
b7203428 2468static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2469
2ecd9d29
PZ
2470void preempt_notifier_inc(void)
2471{
b7203428 2472 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2473}
2474EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2475
2476void preempt_notifier_dec(void)
2477{
b7203428 2478 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2479}
2480EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2481
e107be36 2482/**
80dd99b3 2483 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2484 * @notifier: notifier struct to register
e107be36
AK
2485 */
2486void preempt_notifier_register(struct preempt_notifier *notifier)
2487{
b7203428 2488 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2489 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2490
e107be36
AK
2491 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2492}
2493EXPORT_SYMBOL_GPL(preempt_notifier_register);
2494
2495/**
2496 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2497 * @notifier: notifier struct to unregister
e107be36 2498 *
d84525a8 2499 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2500 */
2501void preempt_notifier_unregister(struct preempt_notifier *notifier)
2502{
2503 hlist_del(&notifier->link);
2504}
2505EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2506
1cde2930 2507static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2508{
2509 struct preempt_notifier *notifier;
e107be36 2510
b67bfe0d 2511 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2512 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2513}
2514
1cde2930
PZ
2515static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2516{
b7203428 2517 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2518 __fire_sched_in_preempt_notifiers(curr);
2519}
2520
e107be36 2521static void
1cde2930
PZ
2522__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2523 struct task_struct *next)
e107be36
AK
2524{
2525 struct preempt_notifier *notifier;
e107be36 2526
b67bfe0d 2527 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2528 notifier->ops->sched_out(notifier, next);
2529}
2530
1cde2930
PZ
2531static __always_inline void
2532fire_sched_out_preempt_notifiers(struct task_struct *curr,
2533 struct task_struct *next)
2534{
b7203428 2535 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2536 __fire_sched_out_preempt_notifiers(curr, next);
2537}
2538
6d6bc0ad 2539#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2540
1cde2930 2541static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2542{
2543}
2544
1cde2930 2545static inline void
e107be36
AK
2546fire_sched_out_preempt_notifiers(struct task_struct *curr,
2547 struct task_struct *next)
2548{
2549}
2550
6d6bc0ad 2551#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2552
31cb1bc0 2553static inline void prepare_task(struct task_struct *next)
2554{
2555#ifdef CONFIG_SMP
2556 /*
2557 * Claim the task as running, we do this before switching to it
2558 * such that any running task will have this set.
2559 */
2560 next->on_cpu = 1;
2561#endif
2562}
2563
2564static inline void finish_task(struct task_struct *prev)
2565{
2566#ifdef CONFIG_SMP
2567 /*
2568 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2569 * We must ensure this doesn't happen until the switch is completely
2570 * finished.
2571 *
2572 * In particular, the load of prev->state in finish_task_switch() must
2573 * happen before this.
2574 *
2575 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2576 */
2577 smp_store_release(&prev->on_cpu, 0);
2578#endif
2579}
2580
269d5992
PZ
2581static inline void
2582prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2583{
269d5992
PZ
2584 /*
2585 * Since the runqueue lock will be released by the next
2586 * task (which is an invalid locking op but in the case
2587 * of the scheduler it's an obvious special-case), so we
2588 * do an early lockdep release here:
2589 */
2590 rq_unpin_lock(rq, rf);
2591 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2592#ifdef CONFIG_DEBUG_SPINLOCK
2593 /* this is a valid case when another task releases the spinlock */
269d5992 2594 rq->lock.owner = next;
31cb1bc0 2595#endif
269d5992
PZ
2596}
2597
2598static inline void finish_lock_switch(struct rq *rq)
2599{
31cb1bc0 2600 /*
2601 * If we are tracking spinlock dependencies then we have to
2602 * fix up the runqueue lock - which gets 'carried over' from
2603 * prev into current:
2604 */
2605 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2606 raw_spin_unlock_irq(&rq->lock);
2607}
2608
325ea10c
IM
2609/*
2610 * NOP if the arch has not defined these:
2611 */
2612
2613#ifndef prepare_arch_switch
2614# define prepare_arch_switch(next) do { } while (0)
2615#endif
2616
2617#ifndef finish_arch_post_lock_switch
2618# define finish_arch_post_lock_switch() do { } while (0)
2619#endif
2620
4866cde0
NP
2621/**
2622 * prepare_task_switch - prepare to switch tasks
2623 * @rq: the runqueue preparing to switch
421cee29 2624 * @prev: the current task that is being switched out
4866cde0
NP
2625 * @next: the task we are going to switch to.
2626 *
2627 * This is called with the rq lock held and interrupts off. It must
2628 * be paired with a subsequent finish_task_switch after the context
2629 * switch.
2630 *
2631 * prepare_task_switch sets up locking and calls architecture specific
2632 * hooks.
2633 */
e107be36
AK
2634static inline void
2635prepare_task_switch(struct rq *rq, struct task_struct *prev,
2636 struct task_struct *next)
4866cde0 2637{
0ed557aa 2638 kcov_prepare_switch(prev);
43148951 2639 sched_info_switch(rq, prev, next);
fe4b04fa 2640 perf_event_task_sched_out(prev, next);
d7822b1e 2641 rseq_preempt(prev);
e107be36 2642 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2643 prepare_task(next);
4866cde0
NP
2644 prepare_arch_switch(next);
2645}
2646
1da177e4
LT
2647/**
2648 * finish_task_switch - clean up after a task-switch
2649 * @prev: the thread we just switched away from.
2650 *
4866cde0
NP
2651 * finish_task_switch must be called after the context switch, paired
2652 * with a prepare_task_switch call before the context switch.
2653 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2654 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2655 *
2656 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2657 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2658 * with the lock held can cause deadlocks; see schedule() for
2659 * details.)
dfa50b60
ON
2660 *
2661 * The context switch have flipped the stack from under us and restored the
2662 * local variables which were saved when this task called schedule() in the
2663 * past. prev == current is still correct but we need to recalculate this_rq
2664 * because prev may have moved to another CPU.
1da177e4 2665 */
dfa50b60 2666static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2667 __releases(rq->lock)
2668{
dfa50b60 2669 struct rq *rq = this_rq();
1da177e4 2670 struct mm_struct *mm = rq->prev_mm;
55a101f8 2671 long prev_state;
1da177e4 2672
609ca066
PZ
2673 /*
2674 * The previous task will have left us with a preempt_count of 2
2675 * because it left us after:
2676 *
2677 * schedule()
2678 * preempt_disable(); // 1
2679 * __schedule()
2680 * raw_spin_lock_irq(&rq->lock) // 2
2681 *
2682 * Also, see FORK_PREEMPT_COUNT.
2683 */
e2bf1c4b
PZ
2684 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2685 "corrupted preempt_count: %s/%d/0x%x\n",
2686 current->comm, current->pid, preempt_count()))
2687 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2688
1da177e4
LT
2689 rq->prev_mm = NULL;
2690
2691 /*
2692 * A task struct has one reference for the use as "current".
c394cc9f 2693 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2694 * schedule one last time. The schedule call will never return, and
2695 * the scheduled task must drop that reference.
95913d97
PZ
2696 *
2697 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2698 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2699 * running on another CPU and we could rave with its RUNNING -> DEAD
2700 * transition, resulting in a double drop.
1da177e4 2701 */
55a101f8 2702 prev_state = prev->state;
bf9fae9f 2703 vtime_task_switch(prev);
a8d757ef 2704 perf_event_task_sched_in(prev, current);
31cb1bc0 2705 finish_task(prev);
2706 finish_lock_switch(rq);
01f23e16 2707 finish_arch_post_lock_switch();
0ed557aa 2708 kcov_finish_switch(current);
e8fa1362 2709
e107be36 2710 fire_sched_in_preempt_notifiers(current);
306e0604 2711 /*
70216e18
MD
2712 * When switching through a kernel thread, the loop in
2713 * membarrier_{private,global}_expedited() may have observed that
2714 * kernel thread and not issued an IPI. It is therefore possible to
2715 * schedule between user->kernel->user threads without passing though
2716 * switch_mm(). Membarrier requires a barrier after storing to
2717 * rq->curr, before returning to userspace, so provide them here:
2718 *
2719 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2720 * provided by mmdrop(),
2721 * - a sync_core for SYNC_CORE.
306e0604 2722 */
70216e18
MD
2723 if (mm) {
2724 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2725 mmdrop(mm);
70216e18 2726 }
85f1abe0
PZ
2727 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2728 switch (prev_state) {
2729 case TASK_DEAD:
2730 if (prev->sched_class->task_dead)
2731 prev->sched_class->task_dead(prev);
2732
2733 /*
2734 * Remove function-return probe instances associated with this
2735 * task and put them back on the free list.
2736 */
2737 kprobe_flush_task(prev);
2738
2739 /* Task is done with its stack. */
2740 put_task_stack(prev);
2741
2742 put_task_struct(prev);
2743 break;
68f24b08 2744
85f1abe0
PZ
2745 case TASK_PARKED:
2746 kthread_park_complete(prev);
2747 break;
2748 }
c6fd91f0 2749 }
99e5ada9 2750
de734f89 2751 tick_nohz_task_switch();
dfa50b60 2752 return rq;
1da177e4
LT
2753}
2754
3f029d3c
GH
2755#ifdef CONFIG_SMP
2756
3f029d3c 2757/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2758static void __balance_callback(struct rq *rq)
3f029d3c 2759{
e3fca9e7
PZ
2760 struct callback_head *head, *next;
2761 void (*func)(struct rq *rq);
2762 unsigned long flags;
3f029d3c 2763
e3fca9e7
PZ
2764 raw_spin_lock_irqsave(&rq->lock, flags);
2765 head = rq->balance_callback;
2766 rq->balance_callback = NULL;
2767 while (head) {
2768 func = (void (*)(struct rq *))head->func;
2769 next = head->next;
2770 head->next = NULL;
2771 head = next;
3f029d3c 2772
e3fca9e7 2773 func(rq);
3f029d3c 2774 }
e3fca9e7
PZ
2775 raw_spin_unlock_irqrestore(&rq->lock, flags);
2776}
2777
2778static inline void balance_callback(struct rq *rq)
2779{
2780 if (unlikely(rq->balance_callback))
2781 __balance_callback(rq);
3f029d3c
GH
2782}
2783
2784#else
da19ab51 2785
e3fca9e7 2786static inline void balance_callback(struct rq *rq)
3f029d3c 2787{
1da177e4
LT
2788}
2789
3f029d3c
GH
2790#endif
2791
1da177e4
LT
2792/**
2793 * schedule_tail - first thing a freshly forked thread must call.
2794 * @prev: the thread we just switched away from.
2795 */
722a9f92 2796asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2797 __releases(rq->lock)
2798{
1a43a14a 2799 struct rq *rq;
da19ab51 2800
609ca066
PZ
2801 /*
2802 * New tasks start with FORK_PREEMPT_COUNT, see there and
2803 * finish_task_switch() for details.
2804 *
2805 * finish_task_switch() will drop rq->lock() and lower preempt_count
2806 * and the preempt_enable() will end up enabling preemption (on
2807 * PREEMPT_COUNT kernels).
2808 */
2809
dfa50b60 2810 rq = finish_task_switch(prev);
e3fca9e7 2811 balance_callback(rq);
1a43a14a 2812 preempt_enable();
70b97a7f 2813
1da177e4 2814 if (current->set_child_tid)
b488893a 2815 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2816}
2817
2818/*
dfa50b60 2819 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2820 */
04936948 2821static __always_inline struct rq *
70b97a7f 2822context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2823 struct task_struct *next, struct rq_flags *rf)
1da177e4 2824{
dd41f596 2825 struct mm_struct *mm, *oldmm;
1da177e4 2826
e107be36 2827 prepare_task_switch(rq, prev, next);
fe4b04fa 2828
dd41f596
IM
2829 mm = next->mm;
2830 oldmm = prev->active_mm;
9226d125
ZA
2831 /*
2832 * For paravirt, this is coupled with an exit in switch_to to
2833 * combine the page table reload and the switch backend into
2834 * one hypercall.
2835 */
224101ed 2836 arch_start_context_switch(prev);
9226d125 2837
306e0604
MD
2838 /*
2839 * If mm is non-NULL, we pass through switch_mm(). If mm is
2840 * NULL, we will pass through mmdrop() in finish_task_switch().
2841 * Both of these contain the full memory barrier required by
2842 * membarrier after storing to rq->curr, before returning to
2843 * user-space.
2844 */
31915ab4 2845 if (!mm) {
1da177e4 2846 next->active_mm = oldmm;
f1f10076 2847 mmgrab(oldmm);
1da177e4
LT
2848 enter_lazy_tlb(oldmm, next);
2849 } else
f98db601 2850 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2851
31915ab4 2852 if (!prev->mm) {
1da177e4 2853 prev->active_mm = NULL;
1da177e4
LT
2854 rq->prev_mm = oldmm;
2855 }
92509b73 2856
cb42c9a3 2857 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2858
269d5992 2859 prepare_lock_switch(rq, next, rf);
1da177e4
LT
2860
2861 /* Here we just switch the register state and the stack. */
2862 switch_to(prev, next, prev);
dd41f596 2863 barrier();
dfa50b60
ON
2864
2865 return finish_task_switch(prev);
1da177e4
LT
2866}
2867
2868/*
1c3e8264 2869 * nr_running and nr_context_switches:
1da177e4
LT
2870 *
2871 * externally visible scheduler statistics: current number of runnable
1c3e8264 2872 * threads, total number of context switches performed since bootup.
1da177e4
LT
2873 */
2874unsigned long nr_running(void)
2875{
2876 unsigned long i, sum = 0;
2877
2878 for_each_online_cpu(i)
2879 sum += cpu_rq(i)->nr_running;
2880
2881 return sum;
f711f609 2882}
1da177e4 2883
2ee507c4 2884/*
d1ccc66d 2885 * Check if only the current task is running on the CPU.
00cc1633
DD
2886 *
2887 * Caution: this function does not check that the caller has disabled
2888 * preemption, thus the result might have a time-of-check-to-time-of-use
2889 * race. The caller is responsible to use it correctly, for example:
2890 *
2891 * - from a non-preemptable section (of course)
2892 *
2893 * - from a thread that is bound to a single CPU
2894 *
2895 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2896 */
2897bool single_task_running(void)
2898{
00cc1633 2899 return raw_rq()->nr_running == 1;
2ee507c4
TC
2900}
2901EXPORT_SYMBOL(single_task_running);
2902
1da177e4 2903unsigned long long nr_context_switches(void)
46cb4b7c 2904{
cc94abfc
SR
2905 int i;
2906 unsigned long long sum = 0;
46cb4b7c 2907
0a945022 2908 for_each_possible_cpu(i)
1da177e4 2909 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2910
1da177e4
LT
2911 return sum;
2912}
483b4ee6 2913
e33a9bba
TH
2914/*
2915 * IO-wait accounting, and how its mostly bollocks (on SMP).
2916 *
2917 * The idea behind IO-wait account is to account the idle time that we could
2918 * have spend running if it were not for IO. That is, if we were to improve the
2919 * storage performance, we'd have a proportional reduction in IO-wait time.
2920 *
2921 * This all works nicely on UP, where, when a task blocks on IO, we account
2922 * idle time as IO-wait, because if the storage were faster, it could've been
2923 * running and we'd not be idle.
2924 *
2925 * This has been extended to SMP, by doing the same for each CPU. This however
2926 * is broken.
2927 *
2928 * Imagine for instance the case where two tasks block on one CPU, only the one
2929 * CPU will have IO-wait accounted, while the other has regular idle. Even
2930 * though, if the storage were faster, both could've ran at the same time,
2931 * utilising both CPUs.
2932 *
2933 * This means, that when looking globally, the current IO-wait accounting on
2934 * SMP is a lower bound, by reason of under accounting.
2935 *
2936 * Worse, since the numbers are provided per CPU, they are sometimes
2937 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2938 * associated with any one particular CPU, it can wake to another CPU than it
2939 * blocked on. This means the per CPU IO-wait number is meaningless.
2940 *
2941 * Task CPU affinities can make all that even more 'interesting'.
2942 */
2943
1da177e4
LT
2944unsigned long nr_iowait(void)
2945{
2946 unsigned long i, sum = 0;
483b4ee6 2947
0a945022 2948 for_each_possible_cpu(i)
1da177e4 2949 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2950
1da177e4
LT
2951 return sum;
2952}
483b4ee6 2953
e33a9bba
TH
2954/*
2955 * Consumers of these two interfaces, like for example the cpufreq menu
2956 * governor are using nonsensical data. Boosting frequency for a CPU that has
2957 * IO-wait which might not even end up running the task when it does become
2958 * runnable.
2959 */
2960
8c215bd3 2961unsigned long nr_iowait_cpu(int cpu)
69d25870 2962{
8c215bd3 2963 struct rq *this = cpu_rq(cpu);
69d25870
AV
2964 return atomic_read(&this->nr_iowait);
2965}
46cb4b7c 2966
372ba8cb
MG
2967void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2968{
3289bdb4
PZ
2969 struct rq *rq = this_rq();
2970 *nr_waiters = atomic_read(&rq->nr_iowait);
2971 *load = rq->load.weight;
372ba8cb
MG
2972}
2973
dd41f596 2974#ifdef CONFIG_SMP
8a0be9ef 2975
46cb4b7c 2976/*
38022906
PZ
2977 * sched_exec - execve() is a valuable balancing opportunity, because at
2978 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2979 */
38022906 2980void sched_exec(void)
46cb4b7c 2981{
38022906 2982 struct task_struct *p = current;
1da177e4 2983 unsigned long flags;
0017d735 2984 int dest_cpu;
46cb4b7c 2985
8f42ced9 2986 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2987 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2988 if (dest_cpu == smp_processor_id())
2989 goto unlock;
38022906 2990
8f42ced9 2991 if (likely(cpu_active(dest_cpu))) {
969c7921 2992 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2993
8f42ced9
PZ
2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2995 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2996 return;
2997 }
0017d735 2998unlock:
8f42ced9 2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3000}
dd41f596 3001
1da177e4
LT
3002#endif
3003
1da177e4 3004DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3005DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3006
3007EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3008EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3009
6075620b
GG
3010/*
3011 * The function fair_sched_class.update_curr accesses the struct curr
3012 * and its field curr->exec_start; when called from task_sched_runtime(),
3013 * we observe a high rate of cache misses in practice.
3014 * Prefetching this data results in improved performance.
3015 */
3016static inline void prefetch_curr_exec_start(struct task_struct *p)
3017{
3018#ifdef CONFIG_FAIR_GROUP_SCHED
3019 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3020#else
3021 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3022#endif
3023 prefetch(curr);
3024 prefetch(&curr->exec_start);
3025}
3026
c5f8d995
HS
3027/*
3028 * Return accounted runtime for the task.
3029 * In case the task is currently running, return the runtime plus current's
3030 * pending runtime that have not been accounted yet.
3031 */
3032unsigned long long task_sched_runtime(struct task_struct *p)
3033{
eb580751 3034 struct rq_flags rf;
c5f8d995 3035 struct rq *rq;
6e998916 3036 u64 ns;
c5f8d995 3037
911b2898
PZ
3038#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3039 /*
97fb7a0a 3040 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3041 * So we have a optimization chance when the task's delta_exec is 0.
3042 * Reading ->on_cpu is racy, but this is ok.
3043 *
d1ccc66d
IM
3044 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3045 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3046 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3047 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3048 * been accounted, so we're correct here as well.
911b2898 3049 */
da0c1e65 3050 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3051 return p->se.sum_exec_runtime;
3052#endif
3053
eb580751 3054 rq = task_rq_lock(p, &rf);
6e998916
SG
3055 /*
3056 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3057 * project cycles that may never be accounted to this
3058 * thread, breaking clock_gettime().
3059 */
3060 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3061 prefetch_curr_exec_start(p);
6e998916
SG
3062 update_rq_clock(rq);
3063 p->sched_class->update_curr(rq);
3064 }
3065 ns = p->se.sum_exec_runtime;
eb580751 3066 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3067
3068 return ns;
3069}
48f24c4d 3070
7835b98b
CL
3071/*
3072 * This function gets called by the timer code, with HZ frequency.
3073 * We call it with interrupts disabled.
7835b98b
CL
3074 */
3075void scheduler_tick(void)
3076{
7835b98b
CL
3077 int cpu = smp_processor_id();
3078 struct rq *rq = cpu_rq(cpu);
dd41f596 3079 struct task_struct *curr = rq->curr;
8a8c69c3 3080 struct rq_flags rf;
3e51f33f
PZ
3081
3082 sched_clock_tick();
dd41f596 3083
8a8c69c3
PZ
3084 rq_lock(rq, &rf);
3085
3e51f33f 3086 update_rq_clock(rq);
fa85ae24 3087 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3088 cpu_load_update_active(rq);
3289bdb4 3089 calc_global_load_tick(rq);
8a8c69c3
PZ
3090
3091 rq_unlock(rq, &rf);
7835b98b 3092
e9d2b064 3093 perf_event_task_tick();
e220d2dc 3094
e418e1c2 3095#ifdef CONFIG_SMP
6eb57e0d 3096 rq->idle_balance = idle_cpu(cpu);
7caff66f 3097 trigger_load_balance(rq);
e418e1c2 3098#endif
1da177e4
LT
3099}
3100
265f22a9 3101#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3102
3103struct tick_work {
3104 int cpu;
3105 struct delayed_work work;
3106};
3107
3108static struct tick_work __percpu *tick_work_cpu;
3109
3110static void sched_tick_remote(struct work_struct *work)
3111{
3112 struct delayed_work *dwork = to_delayed_work(work);
3113 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3114 int cpu = twork->cpu;
3115 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3116 struct task_struct *curr;
d84b3131 3117 struct rq_flags rf;
d9c0ffca 3118 u64 delta;
d84b3131
FW
3119
3120 /*
3121 * Handle the tick only if it appears the remote CPU is running in full
3122 * dynticks mode. The check is racy by nature, but missing a tick or
3123 * having one too much is no big deal because the scheduler tick updates
3124 * statistics and checks timeslices in a time-independent way, regardless
3125 * of when exactly it is running.
3126 */
d9c0ffca
FW
3127 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3128 goto out_requeue;
d84b3131 3129
d9c0ffca
FW
3130 rq_lock_irq(rq, &rf);
3131 curr = rq->curr;
3132 if (is_idle_task(curr))
3133 goto out_unlock;
d84b3131 3134
d9c0ffca
FW
3135 update_rq_clock(rq);
3136 delta = rq_clock_task(rq) - curr->se.exec_start;
3137
3138 /*
3139 * Make sure the next tick runs within a reasonable
3140 * amount of time.
3141 */
3142 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3143 curr->sched_class->task_tick(rq, curr, 0);
3144
3145out_unlock:
3146 rq_unlock_irq(rq, &rf);
d84b3131 3147
d9c0ffca 3148out_requeue:
d84b3131
FW
3149 /*
3150 * Run the remote tick once per second (1Hz). This arbitrary
3151 * frequency is large enough to avoid overload but short enough
3152 * to keep scheduler internal stats reasonably up to date.
3153 */
3154 queue_delayed_work(system_unbound_wq, dwork, HZ);
3155}
3156
3157static void sched_tick_start(int cpu)
3158{
3159 struct tick_work *twork;
3160
3161 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3162 return;
3163
3164 WARN_ON_ONCE(!tick_work_cpu);
3165
3166 twork = per_cpu_ptr(tick_work_cpu, cpu);
3167 twork->cpu = cpu;
3168 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3169 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3170}
3171
3172#ifdef CONFIG_HOTPLUG_CPU
3173static void sched_tick_stop(int cpu)
3174{
3175 struct tick_work *twork;
3176
3177 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3178 return;
3179
3180 WARN_ON_ONCE(!tick_work_cpu);
3181
3182 twork = per_cpu_ptr(tick_work_cpu, cpu);
3183 cancel_delayed_work_sync(&twork->work);
3184}
3185#endif /* CONFIG_HOTPLUG_CPU */
3186
3187int __init sched_tick_offload_init(void)
3188{
3189 tick_work_cpu = alloc_percpu(struct tick_work);
3190 BUG_ON(!tick_work_cpu);
3191
3192 return 0;
3193}
3194
3195#else /* !CONFIG_NO_HZ_FULL */
3196static inline void sched_tick_start(int cpu) { }
3197static inline void sched_tick_stop(int cpu) { }
265f22a9 3198#endif
1da177e4 3199
7e49fcce
SR
3200#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3201 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3202/*
3203 * If the value passed in is equal to the current preempt count
3204 * then we just disabled preemption. Start timing the latency.
3205 */
3206static inline void preempt_latency_start(int val)
3207{
3208 if (preempt_count() == val) {
3209 unsigned long ip = get_lock_parent_ip();
3210#ifdef CONFIG_DEBUG_PREEMPT
3211 current->preempt_disable_ip = ip;
3212#endif
3213 trace_preempt_off(CALLER_ADDR0, ip);
3214 }
3215}
7e49fcce 3216
edafe3a5 3217void preempt_count_add(int val)
1da177e4 3218{
6cd8a4bb 3219#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3220 /*
3221 * Underflow?
3222 */
9a11b49a
IM
3223 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3224 return;
6cd8a4bb 3225#endif
bdb43806 3226 __preempt_count_add(val);
6cd8a4bb 3227#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3228 /*
3229 * Spinlock count overflowing soon?
3230 */
33859f7f
MOS
3231 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3232 PREEMPT_MASK - 10);
6cd8a4bb 3233#endif
47252cfb 3234 preempt_latency_start(val);
1da177e4 3235}
bdb43806 3236EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3237NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3238
47252cfb
SR
3239/*
3240 * If the value passed in equals to the current preempt count
3241 * then we just enabled preemption. Stop timing the latency.
3242 */
3243static inline void preempt_latency_stop(int val)
3244{
3245 if (preempt_count() == val)
3246 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3247}
3248
edafe3a5 3249void preempt_count_sub(int val)
1da177e4 3250{
6cd8a4bb 3251#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3252 /*
3253 * Underflow?
3254 */
01e3eb82 3255 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3256 return;
1da177e4
LT
3257 /*
3258 * Is the spinlock portion underflowing?
3259 */
9a11b49a
IM
3260 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3261 !(preempt_count() & PREEMPT_MASK)))
3262 return;
6cd8a4bb 3263#endif
9a11b49a 3264
47252cfb 3265 preempt_latency_stop(val);
bdb43806 3266 __preempt_count_sub(val);
1da177e4 3267}
bdb43806 3268EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3269NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3270
47252cfb
SR
3271#else
3272static inline void preempt_latency_start(int val) { }
3273static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3274#endif
3275
59ddbcb2
IM
3276static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3277{
3278#ifdef CONFIG_DEBUG_PREEMPT
3279 return p->preempt_disable_ip;
3280#else
3281 return 0;
3282#endif
3283}
3284
1da177e4 3285/*
dd41f596 3286 * Print scheduling while atomic bug:
1da177e4 3287 */
dd41f596 3288static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3289{
d1c6d149
VN
3290 /* Save this before calling printk(), since that will clobber it */
3291 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3292
664dfa65
DJ
3293 if (oops_in_progress)
3294 return;
3295
3df0fc5b
PZ
3296 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3297 prev->comm, prev->pid, preempt_count());
838225b4 3298
dd41f596 3299 debug_show_held_locks(prev);
e21f5b15 3300 print_modules();
dd41f596
IM
3301 if (irqs_disabled())
3302 print_irqtrace_events(prev);
d1c6d149
VN
3303 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3304 && in_atomic_preempt_off()) {
8f47b187 3305 pr_err("Preemption disabled at:");
d1c6d149 3306 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3307 pr_cont("\n");
3308 }
748c7201
DBO
3309 if (panic_on_warn)
3310 panic("scheduling while atomic\n");
3311
6135fc1e 3312 dump_stack();
373d4d09 3313 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3314}
1da177e4 3315
dd41f596
IM
3316/*
3317 * Various schedule()-time debugging checks and statistics:
3318 */
3319static inline void schedule_debug(struct task_struct *prev)
3320{
0d9e2632 3321#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3322 if (task_stack_end_corrupted(prev))
3323 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3324#endif
b99def8b 3325
1dc0fffc 3326 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3327 __schedule_bug(prev);
1dc0fffc
PZ
3328 preempt_count_set(PREEMPT_DISABLED);
3329 }
b3fbab05 3330 rcu_sleep_check();
dd41f596 3331
1da177e4
LT
3332 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3333
ae92882e 3334 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3335}
3336
3337/*
3338 * Pick up the highest-prio task:
3339 */
3340static inline struct task_struct *
d8ac8971 3341pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3342{
49ee5768 3343 const struct sched_class *class;
dd41f596 3344 struct task_struct *p;
1da177e4
LT
3345
3346 /*
0ba87bb2
PZ
3347 * Optimization: we know that if all tasks are in the fair class we can
3348 * call that function directly, but only if the @prev task wasn't of a
3349 * higher scheduling class, because otherwise those loose the
3350 * opportunity to pull in more work from other CPUs.
1da177e4 3351 */
0ba87bb2
PZ
3352 if (likely((prev->sched_class == &idle_sched_class ||
3353 prev->sched_class == &fair_sched_class) &&
3354 rq->nr_running == rq->cfs.h_nr_running)) {
3355
d8ac8971 3356 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3357 if (unlikely(p == RETRY_TASK))
3358 goto again;
3359
d1ccc66d 3360 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3361 if (unlikely(!p))
d8ac8971 3362 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3363
3364 return p;
1da177e4
LT
3365 }
3366
37e117c0 3367again:
34f971f6 3368 for_each_class(class) {
d8ac8971 3369 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3370 if (p) {
3371 if (unlikely(p == RETRY_TASK))
3372 goto again;
dd41f596 3373 return p;
37e117c0 3374 }
dd41f596 3375 }
34f971f6 3376
d1ccc66d
IM
3377 /* The idle class should always have a runnable task: */
3378 BUG();
dd41f596 3379}
1da177e4 3380
dd41f596 3381/*
c259e01a 3382 * __schedule() is the main scheduler function.
edde96ea
PE
3383 *
3384 * The main means of driving the scheduler and thus entering this function are:
3385 *
3386 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3387 *
3388 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3389 * paths. For example, see arch/x86/entry_64.S.
3390 *
3391 * To drive preemption between tasks, the scheduler sets the flag in timer
3392 * interrupt handler scheduler_tick().
3393 *
3394 * 3. Wakeups don't really cause entry into schedule(). They add a
3395 * task to the run-queue and that's it.
3396 *
3397 * Now, if the new task added to the run-queue preempts the current
3398 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3399 * called on the nearest possible occasion:
3400 *
3401 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3402 *
3403 * - in syscall or exception context, at the next outmost
3404 * preempt_enable(). (this might be as soon as the wake_up()'s
3405 * spin_unlock()!)
3406 *
3407 * - in IRQ context, return from interrupt-handler to
3408 * preemptible context
3409 *
3410 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3411 * then at the next:
3412 *
3413 * - cond_resched() call
3414 * - explicit schedule() call
3415 * - return from syscall or exception to user-space
3416 * - return from interrupt-handler to user-space
bfd9b2b5 3417 *
b30f0e3f 3418 * WARNING: must be called with preemption disabled!
dd41f596 3419 */
499d7955 3420static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3421{
3422 struct task_struct *prev, *next;
67ca7bde 3423 unsigned long *switch_count;
d8ac8971 3424 struct rq_flags rf;
dd41f596 3425 struct rq *rq;
31656519 3426 int cpu;
dd41f596 3427
dd41f596
IM
3428 cpu = smp_processor_id();
3429 rq = cpu_rq(cpu);
dd41f596 3430 prev = rq->curr;
dd41f596 3431
dd41f596 3432 schedule_debug(prev);
1da177e4 3433
31656519 3434 if (sched_feat(HRTICK))
f333fdc9 3435 hrtick_clear(rq);
8f4d37ec 3436
46a5d164 3437 local_irq_disable();
bcbfdd01 3438 rcu_note_context_switch(preempt);
46a5d164 3439
e0acd0a6
ON
3440 /*
3441 * Make sure that signal_pending_state()->signal_pending() below
3442 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3443 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3444 *
3445 * The membarrier system call requires a full memory barrier
3446 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3447 */
8a8c69c3 3448 rq_lock(rq, &rf);
d89e588c 3449 smp_mb__after_spinlock();
1da177e4 3450
d1ccc66d
IM
3451 /* Promote REQ to ACT */
3452 rq->clock_update_flags <<= 1;
bce4dc80 3453 update_rq_clock(rq);
9edfbfed 3454
246d86b5 3455 switch_count = &prev->nivcsw;
fc13aeba 3456 if (!preempt && prev->state) {
21aa9af0 3457 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3458 prev->state = TASK_RUNNING;
21aa9af0 3459 } else {
bce4dc80 3460 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3461 prev->on_rq = 0;
3462
e33a9bba
TH
3463 if (prev->in_iowait) {
3464 atomic_inc(&rq->nr_iowait);
3465 delayacct_blkio_start();
3466 }
3467
21aa9af0 3468 /*
2acca55e
PZ
3469 * If a worker went to sleep, notify and ask workqueue
3470 * whether it wants to wake up a task to maintain
3471 * concurrency.
21aa9af0
TH
3472 */
3473 if (prev->flags & PF_WQ_WORKER) {
3474 struct task_struct *to_wakeup;
3475
9b7f6597 3476 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3477 if (to_wakeup)
d8ac8971 3478 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3479 }
21aa9af0 3480 }
dd41f596 3481 switch_count = &prev->nvcsw;
1da177e4
LT
3482 }
3483
d8ac8971 3484 next = pick_next_task(rq, prev, &rf);
f26f9aff 3485 clear_tsk_need_resched(prev);
f27dde8d 3486 clear_preempt_need_resched();
1da177e4 3487
1da177e4 3488 if (likely(prev != next)) {
1da177e4
LT
3489 rq->nr_switches++;
3490 rq->curr = next;
22e4ebb9
MD
3491 /*
3492 * The membarrier system call requires each architecture
3493 * to have a full memory barrier after updating
306e0604
MD
3494 * rq->curr, before returning to user-space.
3495 *
3496 * Here are the schemes providing that barrier on the
3497 * various architectures:
3498 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3499 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3500 * - finish_lock_switch() for weakly-ordered
3501 * architectures where spin_unlock is a full barrier,
3502 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3503 * is a RELEASE barrier),
22e4ebb9 3504 */
1da177e4
LT
3505 ++*switch_count;
3506
c73464b1 3507 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3508
3509 /* Also unlocks the rq: */
3510 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3511 } else {
cb42c9a3 3512 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3513 rq_unlock_irq(rq, &rf);
cbce1a68 3514 }
1da177e4 3515
e3fca9e7 3516 balance_callback(rq);
1da177e4 3517}
c259e01a 3518
9af6528e
PZ
3519void __noreturn do_task_dead(void)
3520{
d1ccc66d 3521 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3522 set_special_state(TASK_DEAD);
d1ccc66d
IM
3523
3524 /* Tell freezer to ignore us: */
3525 current->flags |= PF_NOFREEZE;
3526
9af6528e
PZ
3527 __schedule(false);
3528 BUG();
d1ccc66d
IM
3529
3530 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3531 for (;;)
d1ccc66d 3532 cpu_relax();
9af6528e
PZ
3533}
3534
9c40cef2
TG
3535static inline void sched_submit_work(struct task_struct *tsk)
3536{
3c7d5184 3537 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3538 return;
3539 /*
3540 * If we are going to sleep and we have plugged IO queued,
3541 * make sure to submit it to avoid deadlocks.
3542 */
3543 if (blk_needs_flush_plug(tsk))
3544 blk_schedule_flush_plug(tsk);
3545}
3546
722a9f92 3547asmlinkage __visible void __sched schedule(void)
c259e01a 3548{
9c40cef2
TG
3549 struct task_struct *tsk = current;
3550
3551 sched_submit_work(tsk);
bfd9b2b5 3552 do {
b30f0e3f 3553 preempt_disable();
fc13aeba 3554 __schedule(false);
b30f0e3f 3555 sched_preempt_enable_no_resched();
bfd9b2b5 3556 } while (need_resched());
c259e01a 3557}
1da177e4
LT
3558EXPORT_SYMBOL(schedule);
3559
8663effb
SRV
3560/*
3561 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3562 * state (have scheduled out non-voluntarily) by making sure that all
3563 * tasks have either left the run queue or have gone into user space.
3564 * As idle tasks do not do either, they must not ever be preempted
3565 * (schedule out non-voluntarily).
3566 *
3567 * schedule_idle() is similar to schedule_preempt_disable() except that it
3568 * never enables preemption because it does not call sched_submit_work().
3569 */
3570void __sched schedule_idle(void)
3571{
3572 /*
3573 * As this skips calling sched_submit_work(), which the idle task does
3574 * regardless because that function is a nop when the task is in a
3575 * TASK_RUNNING state, make sure this isn't used someplace that the
3576 * current task can be in any other state. Note, idle is always in the
3577 * TASK_RUNNING state.
3578 */
3579 WARN_ON_ONCE(current->state);
3580 do {
3581 __schedule(false);
3582 } while (need_resched());
3583}
3584
91d1aa43 3585#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3586asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3587{
3588 /*
3589 * If we come here after a random call to set_need_resched(),
3590 * or we have been woken up remotely but the IPI has not yet arrived,
3591 * we haven't yet exited the RCU idle mode. Do it here manually until
3592 * we find a better solution.
7cc78f8f
AL
3593 *
3594 * NB: There are buggy callers of this function. Ideally we
c467ea76 3595 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3596 * too frequently to make sense yet.
20ab65e3 3597 */
7cc78f8f 3598 enum ctx_state prev_state = exception_enter();
20ab65e3 3599 schedule();
7cc78f8f 3600 exception_exit(prev_state);
20ab65e3
FW
3601}
3602#endif
3603
c5491ea7
TG
3604/**
3605 * schedule_preempt_disabled - called with preemption disabled
3606 *
3607 * Returns with preemption disabled. Note: preempt_count must be 1
3608 */
3609void __sched schedule_preempt_disabled(void)
3610{
ba74c144 3611 sched_preempt_enable_no_resched();
c5491ea7
TG
3612 schedule();
3613 preempt_disable();
3614}
3615
06b1f808 3616static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3617{
3618 do {
47252cfb
SR
3619 /*
3620 * Because the function tracer can trace preempt_count_sub()
3621 * and it also uses preempt_enable/disable_notrace(), if
3622 * NEED_RESCHED is set, the preempt_enable_notrace() called
3623 * by the function tracer will call this function again and
3624 * cause infinite recursion.
3625 *
3626 * Preemption must be disabled here before the function
3627 * tracer can trace. Break up preempt_disable() into two
3628 * calls. One to disable preemption without fear of being
3629 * traced. The other to still record the preemption latency,
3630 * which can also be traced by the function tracer.
3631 */
499d7955 3632 preempt_disable_notrace();
47252cfb 3633 preempt_latency_start(1);
fc13aeba 3634 __schedule(true);
47252cfb 3635 preempt_latency_stop(1);
499d7955 3636 preempt_enable_no_resched_notrace();
a18b5d01
FW
3637
3638 /*
3639 * Check again in case we missed a preemption opportunity
3640 * between schedule and now.
3641 */
a18b5d01
FW
3642 } while (need_resched());
3643}
3644
1da177e4
LT
3645#ifdef CONFIG_PREEMPT
3646/*
2ed6e34f 3647 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3648 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3649 * occur there and call schedule directly.
3650 */
722a9f92 3651asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3652{
1da177e4
LT
3653 /*
3654 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3655 * we do not want to preempt the current task. Just return..
1da177e4 3656 */
fbb00b56 3657 if (likely(!preemptible()))
1da177e4
LT
3658 return;
3659
a18b5d01 3660 preempt_schedule_common();
1da177e4 3661}
376e2424 3662NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3663EXPORT_SYMBOL(preempt_schedule);
009f60e2 3664
009f60e2 3665/**
4eaca0a8 3666 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3667 *
3668 * The tracing infrastructure uses preempt_enable_notrace to prevent
3669 * recursion and tracing preempt enabling caused by the tracing
3670 * infrastructure itself. But as tracing can happen in areas coming
3671 * from userspace or just about to enter userspace, a preempt enable
3672 * can occur before user_exit() is called. This will cause the scheduler
3673 * to be called when the system is still in usermode.
3674 *
3675 * To prevent this, the preempt_enable_notrace will use this function
3676 * instead of preempt_schedule() to exit user context if needed before
3677 * calling the scheduler.
3678 */
4eaca0a8 3679asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3680{
3681 enum ctx_state prev_ctx;
3682
3683 if (likely(!preemptible()))
3684 return;
3685
3686 do {
47252cfb
SR
3687 /*
3688 * Because the function tracer can trace preempt_count_sub()
3689 * and it also uses preempt_enable/disable_notrace(), if
3690 * NEED_RESCHED is set, the preempt_enable_notrace() called
3691 * by the function tracer will call this function again and
3692 * cause infinite recursion.
3693 *
3694 * Preemption must be disabled here before the function
3695 * tracer can trace. Break up preempt_disable() into two
3696 * calls. One to disable preemption without fear of being
3697 * traced. The other to still record the preemption latency,
3698 * which can also be traced by the function tracer.
3699 */
3d8f74dd 3700 preempt_disable_notrace();
47252cfb 3701 preempt_latency_start(1);
009f60e2
ON
3702 /*
3703 * Needs preempt disabled in case user_exit() is traced
3704 * and the tracer calls preempt_enable_notrace() causing
3705 * an infinite recursion.
3706 */
3707 prev_ctx = exception_enter();
fc13aeba 3708 __schedule(true);
009f60e2
ON
3709 exception_exit(prev_ctx);
3710
47252cfb 3711 preempt_latency_stop(1);
3d8f74dd 3712 preempt_enable_no_resched_notrace();
009f60e2
ON
3713 } while (need_resched());
3714}
4eaca0a8 3715EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3716
32e475d7 3717#endif /* CONFIG_PREEMPT */
1da177e4
LT
3718
3719/*
2ed6e34f 3720 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3721 * off of irq context.
3722 * Note, that this is called and return with irqs disabled. This will
3723 * protect us against recursive calling from irq.
3724 */
722a9f92 3725asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3726{
b22366cd 3727 enum ctx_state prev_state;
6478d880 3728
2ed6e34f 3729 /* Catch callers which need to be fixed */
f27dde8d 3730 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3731
b22366cd
FW
3732 prev_state = exception_enter();
3733
3a5c359a 3734 do {
3d8f74dd 3735 preempt_disable();
3a5c359a 3736 local_irq_enable();
fc13aeba 3737 __schedule(true);
3a5c359a 3738 local_irq_disable();
3d8f74dd 3739 sched_preempt_enable_no_resched();
5ed0cec0 3740 } while (need_resched());
b22366cd
FW
3741
3742 exception_exit(prev_state);
1da177e4
LT
3743}
3744
ac6424b9 3745int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3746 void *key)
1da177e4 3747{
63859d4f 3748 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3749}
1da177e4
LT
3750EXPORT_SYMBOL(default_wake_function);
3751
b29739f9
IM
3752#ifdef CONFIG_RT_MUTEXES
3753
acd58620
PZ
3754static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3755{
3756 if (pi_task)
3757 prio = min(prio, pi_task->prio);
3758
3759 return prio;
3760}
3761
3762static inline int rt_effective_prio(struct task_struct *p, int prio)
3763{
3764 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3765
3766 return __rt_effective_prio(pi_task, prio);
3767}
3768
b29739f9
IM
3769/*
3770 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3771 * @p: task to boost
3772 * @pi_task: donor task
b29739f9
IM
3773 *
3774 * This function changes the 'effective' priority of a task. It does
3775 * not touch ->normal_prio like __setscheduler().
3776 *
c365c292
TG
3777 * Used by the rt_mutex code to implement priority inheritance
3778 * logic. Call site only calls if the priority of the task changed.
b29739f9 3779 */
acd58620 3780void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3781{
acd58620 3782 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3783 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3784 const struct sched_class *prev_class;
eb580751
PZ
3785 struct rq_flags rf;
3786 struct rq *rq;
b29739f9 3787
acd58620
PZ
3788 /* XXX used to be waiter->prio, not waiter->task->prio */
3789 prio = __rt_effective_prio(pi_task, p->normal_prio);
3790
3791 /*
3792 * If nothing changed; bail early.
3793 */
3794 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3795 return;
b29739f9 3796
eb580751 3797 rq = __task_rq_lock(p, &rf);
80f5c1b8 3798 update_rq_clock(rq);
acd58620
PZ
3799 /*
3800 * Set under pi_lock && rq->lock, such that the value can be used under
3801 * either lock.
3802 *
3803 * Note that there is loads of tricky to make this pointer cache work
3804 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3805 * ensure a task is de-boosted (pi_task is set to NULL) before the
3806 * task is allowed to run again (and can exit). This ensures the pointer
3807 * points to a blocked task -- which guaratees the task is present.
3808 */
3809 p->pi_top_task = pi_task;
3810
3811 /*
3812 * For FIFO/RR we only need to set prio, if that matches we're done.
3813 */
3814 if (prio == p->prio && !dl_prio(prio))
3815 goto out_unlock;
b29739f9 3816
1c4dd99b
TG
3817 /*
3818 * Idle task boosting is a nono in general. There is one
3819 * exception, when PREEMPT_RT and NOHZ is active:
3820 *
3821 * The idle task calls get_next_timer_interrupt() and holds
3822 * the timer wheel base->lock on the CPU and another CPU wants
3823 * to access the timer (probably to cancel it). We can safely
3824 * ignore the boosting request, as the idle CPU runs this code
3825 * with interrupts disabled and will complete the lock
3826 * protected section without being interrupted. So there is no
3827 * real need to boost.
3828 */
3829 if (unlikely(p == rq->idle)) {
3830 WARN_ON(p != rq->curr);
3831 WARN_ON(p->pi_blocked_on);
3832 goto out_unlock;
3833 }
3834
b91473ff 3835 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3836 oldprio = p->prio;
ff77e468
PZ
3837
3838 if (oldprio == prio)
3839 queue_flag &= ~DEQUEUE_MOVE;
3840
83ab0aa0 3841 prev_class = p->sched_class;
da0c1e65 3842 queued = task_on_rq_queued(p);
051a1d1a 3843 running = task_current(rq, p);
da0c1e65 3844 if (queued)
ff77e468 3845 dequeue_task(rq, p, queue_flag);
0e1f3483 3846 if (running)
f3cd1c4e 3847 put_prev_task(rq, p);
dd41f596 3848
2d3d891d
DF
3849 /*
3850 * Boosting condition are:
3851 * 1. -rt task is running and holds mutex A
3852 * --> -dl task blocks on mutex A
3853 *
3854 * 2. -dl task is running and holds mutex A
3855 * --> -dl task blocks on mutex A and could preempt the
3856 * running task
3857 */
3858 if (dl_prio(prio)) {
466af29b
ON
3859 if (!dl_prio(p->normal_prio) ||
3860 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3861 p->dl.dl_boosted = 1;
ff77e468 3862 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3863 } else
3864 p->dl.dl_boosted = 0;
aab03e05 3865 p->sched_class = &dl_sched_class;
2d3d891d
DF
3866 } else if (rt_prio(prio)) {
3867 if (dl_prio(oldprio))
3868 p->dl.dl_boosted = 0;
3869 if (oldprio < prio)
ff77e468 3870 queue_flag |= ENQUEUE_HEAD;
dd41f596 3871 p->sched_class = &rt_sched_class;
2d3d891d
DF
3872 } else {
3873 if (dl_prio(oldprio))
3874 p->dl.dl_boosted = 0;
746db944
BS
3875 if (rt_prio(oldprio))
3876 p->rt.timeout = 0;
dd41f596 3877 p->sched_class = &fair_sched_class;
2d3d891d 3878 }
dd41f596 3879
b29739f9
IM
3880 p->prio = prio;
3881
da0c1e65 3882 if (queued)
ff77e468 3883 enqueue_task(rq, p, queue_flag);
a399d233 3884 if (running)
b2bf6c31 3885 set_curr_task(rq, p);
cb469845 3886
da7a735e 3887 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3888out_unlock:
d1ccc66d
IM
3889 /* Avoid rq from going away on us: */
3890 preempt_disable();
eb580751 3891 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3892
3893 balance_callback(rq);
3894 preempt_enable();
b29739f9 3895}
acd58620
PZ
3896#else
3897static inline int rt_effective_prio(struct task_struct *p, int prio)
3898{
3899 return prio;
3900}
b29739f9 3901#endif
d50dde5a 3902
36c8b586 3903void set_user_nice(struct task_struct *p, long nice)
1da177e4 3904{
49bd21ef
PZ
3905 bool queued, running;
3906 int old_prio, delta;
eb580751 3907 struct rq_flags rf;
70b97a7f 3908 struct rq *rq;
1da177e4 3909
75e45d51 3910 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3911 return;
3912 /*
3913 * We have to be careful, if called from sys_setpriority(),
3914 * the task might be in the middle of scheduling on another CPU.
3915 */
eb580751 3916 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3917 update_rq_clock(rq);
3918
1da177e4
LT
3919 /*
3920 * The RT priorities are set via sched_setscheduler(), but we still
3921 * allow the 'normal' nice value to be set - but as expected
3922 * it wont have any effect on scheduling until the task is
aab03e05 3923 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3924 */
aab03e05 3925 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3926 p->static_prio = NICE_TO_PRIO(nice);
3927 goto out_unlock;
3928 }
da0c1e65 3929 queued = task_on_rq_queued(p);
49bd21ef 3930 running = task_current(rq, p);
da0c1e65 3931 if (queued)
7a57f32a 3932 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3933 if (running)
3934 put_prev_task(rq, p);
1da177e4 3935
1da177e4 3936 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3937 set_load_weight(p, true);
b29739f9
IM
3938 old_prio = p->prio;
3939 p->prio = effective_prio(p);
3940 delta = p->prio - old_prio;
1da177e4 3941
da0c1e65 3942 if (queued) {
7134b3e9 3943 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3944 /*
d5f9f942
AM
3945 * If the task increased its priority or is running and
3946 * lowered its priority, then reschedule its CPU:
1da177e4 3947 */
d5f9f942 3948 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3949 resched_curr(rq);
1da177e4 3950 }
49bd21ef
PZ
3951 if (running)
3952 set_curr_task(rq, p);
1da177e4 3953out_unlock:
eb580751 3954 task_rq_unlock(rq, p, &rf);
1da177e4 3955}
1da177e4
LT
3956EXPORT_SYMBOL(set_user_nice);
3957
e43379f1
MM
3958/*
3959 * can_nice - check if a task can reduce its nice value
3960 * @p: task
3961 * @nice: nice value
3962 */
36c8b586 3963int can_nice(const struct task_struct *p, const int nice)
e43379f1 3964{
d1ccc66d 3965 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3966 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3967
78d7d407 3968 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3969 capable(CAP_SYS_NICE));
3970}
3971
1da177e4
LT
3972#ifdef __ARCH_WANT_SYS_NICE
3973
3974/*
3975 * sys_nice - change the priority of the current process.
3976 * @increment: priority increment
3977 *
3978 * sys_setpriority is a more generic, but much slower function that
3979 * does similar things.
3980 */
5add95d4 3981SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3982{
48f24c4d 3983 long nice, retval;
1da177e4
LT
3984
3985 /*
3986 * Setpriority might change our priority at the same moment.
3987 * We don't have to worry. Conceptually one call occurs first
3988 * and we have a single winner.
3989 */
a9467fa3 3990 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3991 nice = task_nice(current) + increment;
1da177e4 3992
a9467fa3 3993 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3994 if (increment < 0 && !can_nice(current, nice))
3995 return -EPERM;
3996
1da177e4
LT
3997 retval = security_task_setnice(current, nice);
3998 if (retval)
3999 return retval;
4000
4001 set_user_nice(current, nice);
4002 return 0;
4003}
4004
4005#endif
4006
4007/**
4008 * task_prio - return the priority value of a given task.
4009 * @p: the task in question.
4010 *
e69f6186 4011 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4012 * RT tasks are offset by -200. Normal tasks are centered
4013 * around 0, value goes from -16 to +15.
4014 */
36c8b586 4015int task_prio(const struct task_struct *p)
1da177e4
LT
4016{
4017 return p->prio - MAX_RT_PRIO;
4018}
4019
1da177e4 4020/**
d1ccc66d 4021 * idle_cpu - is a given CPU idle currently?
1da177e4 4022 * @cpu: the processor in question.
e69f6186
YB
4023 *
4024 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4025 */
4026int idle_cpu(int cpu)
4027{
908a3283
TG
4028 struct rq *rq = cpu_rq(cpu);
4029
4030 if (rq->curr != rq->idle)
4031 return 0;
4032
4033 if (rq->nr_running)
4034 return 0;
4035
4036#ifdef CONFIG_SMP
4037 if (!llist_empty(&rq->wake_list))
4038 return 0;
4039#endif
4040
4041 return 1;
1da177e4
LT
4042}
4043
943d355d
RJ
4044/**
4045 * available_idle_cpu - is a given CPU idle for enqueuing work.
4046 * @cpu: the CPU in question.
4047 *
4048 * Return: 1 if the CPU is currently idle. 0 otherwise.
4049 */
4050int available_idle_cpu(int cpu)
4051{
4052 if (!idle_cpu(cpu))
4053 return 0;
4054
247f2f6f
RJ
4055 if (vcpu_is_preempted(cpu))
4056 return 0;
4057
908a3283 4058 return 1;
1da177e4
LT
4059}
4060
1da177e4 4061/**
d1ccc66d 4062 * idle_task - return the idle task for a given CPU.
1da177e4 4063 * @cpu: the processor in question.
e69f6186 4064 *
d1ccc66d 4065 * Return: The idle task for the CPU @cpu.
1da177e4 4066 */
36c8b586 4067struct task_struct *idle_task(int cpu)
1da177e4
LT
4068{
4069 return cpu_rq(cpu)->idle;
4070}
4071
4072/**
4073 * find_process_by_pid - find a process with a matching PID value.
4074 * @pid: the pid in question.
e69f6186
YB
4075 *
4076 * The task of @pid, if found. %NULL otherwise.
1da177e4 4077 */
a9957449 4078static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4079{
228ebcbe 4080 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4081}
4082
c13db6b1
SR
4083/*
4084 * sched_setparam() passes in -1 for its policy, to let the functions
4085 * it calls know not to change it.
4086 */
4087#define SETPARAM_POLICY -1
4088
c365c292
TG
4089static void __setscheduler_params(struct task_struct *p,
4090 const struct sched_attr *attr)
1da177e4 4091{
d50dde5a
DF
4092 int policy = attr->sched_policy;
4093
c13db6b1 4094 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4095 policy = p->policy;
4096
1da177e4 4097 p->policy = policy;
d50dde5a 4098
aab03e05
DF
4099 if (dl_policy(policy))
4100 __setparam_dl(p, attr);
39fd8fd2 4101 else if (fair_policy(policy))
d50dde5a
DF
4102 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4103
39fd8fd2
PZ
4104 /*
4105 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4106 * !rt_policy. Always setting this ensures that things like
4107 * getparam()/getattr() don't report silly values for !rt tasks.
4108 */
4109 p->rt_priority = attr->sched_priority;
383afd09 4110 p->normal_prio = normal_prio(p);
9059393e 4111 set_load_weight(p, true);
c365c292 4112}
39fd8fd2 4113
c365c292
TG
4114/* Actually do priority change: must hold pi & rq lock. */
4115static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4116 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4117{
4118 __setscheduler_params(p, attr);
d50dde5a 4119
383afd09 4120 /*
0782e63b
TG
4121 * Keep a potential priority boosting if called from
4122 * sched_setscheduler().
383afd09 4123 */
acd58620 4124 p->prio = normal_prio(p);
0782e63b 4125 if (keep_boost)
acd58620 4126 p->prio = rt_effective_prio(p, p->prio);
383afd09 4127
aab03e05
DF
4128 if (dl_prio(p->prio))
4129 p->sched_class = &dl_sched_class;
4130 else if (rt_prio(p->prio))
ffd44db5
PZ
4131 p->sched_class = &rt_sched_class;
4132 else
4133 p->sched_class = &fair_sched_class;
1da177e4 4134}
aab03e05 4135
c69e8d9c 4136/*
d1ccc66d 4137 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4138 */
4139static bool check_same_owner(struct task_struct *p)
4140{
4141 const struct cred *cred = current_cred(), *pcred;
4142 bool match;
4143
4144 rcu_read_lock();
4145 pcred = __task_cred(p);
9c806aa0
EB
4146 match = (uid_eq(cred->euid, pcred->euid) ||
4147 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4148 rcu_read_unlock();
4149 return match;
4150}
4151
d50dde5a
DF
4152static int __sched_setscheduler(struct task_struct *p,
4153 const struct sched_attr *attr,
dbc7f069 4154 bool user, bool pi)
1da177e4 4155{
383afd09
SR
4156 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4157 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4158 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4159 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4160 const struct sched_class *prev_class;
eb580751 4161 struct rq_flags rf;
ca94c442 4162 int reset_on_fork;
7a57f32a 4163 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4164 struct rq *rq;
1da177e4 4165
896bbb25
SRV
4166 /* The pi code expects interrupts enabled */
4167 BUG_ON(pi && in_interrupt());
1da177e4 4168recheck:
d1ccc66d 4169 /* Double check policy once rq lock held: */
ca94c442
LP
4170 if (policy < 0) {
4171 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4172 policy = oldpolicy = p->policy;
ca94c442 4173 } else {
7479f3c9 4174 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4175
20f9cd2a 4176 if (!valid_policy(policy))
ca94c442
LP
4177 return -EINVAL;
4178 }
4179
794a56eb 4180 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4181 return -EINVAL;
4182
1da177e4
LT
4183 /*
4184 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4185 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4186 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4187 */
0bb040a4 4188 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4189 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4190 return -EINVAL;
aab03e05
DF
4191 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4192 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4193 return -EINVAL;
4194
37e4ab3f
OC
4195 /*
4196 * Allow unprivileged RT tasks to decrease priority:
4197 */
961ccddd 4198 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4199 if (fair_policy(policy)) {
d0ea0268 4200 if (attr->sched_nice < task_nice(p) &&
eaad4513 4201 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4202 return -EPERM;
4203 }
4204
e05606d3 4205 if (rt_policy(policy)) {
a44702e8
ON
4206 unsigned long rlim_rtprio =
4207 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4208
d1ccc66d 4209 /* Can't set/change the rt policy: */
8dc3e909
ON
4210 if (policy != p->policy && !rlim_rtprio)
4211 return -EPERM;
4212
d1ccc66d 4213 /* Can't increase priority: */
d50dde5a
DF
4214 if (attr->sched_priority > p->rt_priority &&
4215 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4216 return -EPERM;
4217 }
c02aa73b 4218
d44753b8
JL
4219 /*
4220 * Can't set/change SCHED_DEADLINE policy at all for now
4221 * (safest behavior); in the future we would like to allow
4222 * unprivileged DL tasks to increase their relative deadline
4223 * or reduce their runtime (both ways reducing utilization)
4224 */
4225 if (dl_policy(policy))
4226 return -EPERM;
4227
dd41f596 4228 /*
c02aa73b
DH
4229 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4230 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4231 */
20f9cd2a 4232 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4233 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4234 return -EPERM;
4235 }
5fe1d75f 4236
d1ccc66d 4237 /* Can't change other user's priorities: */
c69e8d9c 4238 if (!check_same_owner(p))
37e4ab3f 4239 return -EPERM;
ca94c442 4240
d1ccc66d 4241 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4242 if (p->sched_reset_on_fork && !reset_on_fork)
4243 return -EPERM;
37e4ab3f 4244 }
1da177e4 4245
725aad24 4246 if (user) {
794a56eb
JL
4247 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4248 return -EINVAL;
4249
b0ae1981 4250 retval = security_task_setscheduler(p);
725aad24
JF
4251 if (retval)
4252 return retval;
4253 }
4254
b29739f9 4255 /*
d1ccc66d 4256 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4257 * changing the priority of the task:
0122ec5b 4258 *
25985edc 4259 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4260 * runqueue lock must be held.
4261 */
eb580751 4262 rq = task_rq_lock(p, &rf);
80f5c1b8 4263 update_rq_clock(rq);
dc61b1d6 4264
34f971f6 4265 /*
d1ccc66d 4266 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4267 */
4268 if (p == rq->stop) {
eb580751 4269 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4270 return -EINVAL;
4271 }
4272
a51e9198 4273 /*
d6b1e911
TG
4274 * If not changing anything there's no need to proceed further,
4275 * but store a possible modification of reset_on_fork.
a51e9198 4276 */
d50dde5a 4277 if (unlikely(policy == p->policy)) {
d0ea0268 4278 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4279 goto change;
4280 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4281 goto change;
75381608 4282 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4283 goto change;
d50dde5a 4284
d6b1e911 4285 p->sched_reset_on_fork = reset_on_fork;
eb580751 4286 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4287 return 0;
4288 }
d50dde5a 4289change:
a51e9198 4290
dc61b1d6 4291 if (user) {
332ac17e 4292#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4293 /*
4294 * Do not allow realtime tasks into groups that have no runtime
4295 * assigned.
4296 */
4297 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4298 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4299 !task_group_is_autogroup(task_group(p))) {
eb580751 4300 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4301 return -EPERM;
4302 }
dc61b1d6 4303#endif
332ac17e 4304#ifdef CONFIG_SMP
794a56eb
JL
4305 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4306 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4307 cpumask_t *span = rq->rd->span;
332ac17e
DF
4308
4309 /*
4310 * Don't allow tasks with an affinity mask smaller than
4311 * the entire root_domain to become SCHED_DEADLINE. We
4312 * will also fail if there's no bandwidth available.
4313 */
e4099a5e
PZ
4314 if (!cpumask_subset(span, &p->cpus_allowed) ||
4315 rq->rd->dl_bw.bw == 0) {
eb580751 4316 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4317 return -EPERM;
4318 }
4319 }
4320#endif
4321 }
dc61b1d6 4322
d1ccc66d 4323 /* Re-check policy now with rq lock held: */
1da177e4
LT
4324 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4325 policy = oldpolicy = -1;
eb580751 4326 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4327 goto recheck;
4328 }
332ac17e
DF
4329
4330 /*
4331 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4332 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4333 * is available.
4334 */
06a76fe0 4335 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4336 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4337 return -EBUSY;
4338 }
4339
c365c292
TG
4340 p->sched_reset_on_fork = reset_on_fork;
4341 oldprio = p->prio;
4342
dbc7f069
PZ
4343 if (pi) {
4344 /*
4345 * Take priority boosted tasks into account. If the new
4346 * effective priority is unchanged, we just store the new
4347 * normal parameters and do not touch the scheduler class and
4348 * the runqueue. This will be done when the task deboost
4349 * itself.
4350 */
acd58620 4351 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4352 if (new_effective_prio == oldprio)
4353 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4354 }
4355
da0c1e65 4356 queued = task_on_rq_queued(p);
051a1d1a 4357 running = task_current(rq, p);
da0c1e65 4358 if (queued)
ff77e468 4359 dequeue_task(rq, p, queue_flags);
0e1f3483 4360 if (running)
f3cd1c4e 4361 put_prev_task(rq, p);
f6b53205 4362
83ab0aa0 4363 prev_class = p->sched_class;
dbc7f069 4364 __setscheduler(rq, p, attr, pi);
f6b53205 4365
da0c1e65 4366 if (queued) {
81a44c54
TG
4367 /*
4368 * We enqueue to tail when the priority of a task is
4369 * increased (user space view).
4370 */
ff77e468
PZ
4371 if (oldprio < p->prio)
4372 queue_flags |= ENQUEUE_HEAD;
1de64443 4373
ff77e468 4374 enqueue_task(rq, p, queue_flags);
81a44c54 4375 }
a399d233 4376 if (running)
b2bf6c31 4377 set_curr_task(rq, p);
cb469845 4378
da7a735e 4379 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4380
4381 /* Avoid rq from going away on us: */
4382 preempt_disable();
eb580751 4383 task_rq_unlock(rq, p, &rf);
b29739f9 4384
dbc7f069
PZ
4385 if (pi)
4386 rt_mutex_adjust_pi(p);
95e02ca9 4387
d1ccc66d 4388 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4389 balance_callback(rq);
4390 preempt_enable();
95e02ca9 4391
1da177e4
LT
4392 return 0;
4393}
961ccddd 4394
7479f3c9
PZ
4395static int _sched_setscheduler(struct task_struct *p, int policy,
4396 const struct sched_param *param, bool check)
4397{
4398 struct sched_attr attr = {
4399 .sched_policy = policy,
4400 .sched_priority = param->sched_priority,
4401 .sched_nice = PRIO_TO_NICE(p->static_prio),
4402 };
4403
c13db6b1
SR
4404 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4405 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4406 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4407 policy &= ~SCHED_RESET_ON_FORK;
4408 attr.sched_policy = policy;
4409 }
4410
dbc7f069 4411 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4412}
961ccddd
RR
4413/**
4414 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4415 * @p: the task in question.
4416 * @policy: new policy.
4417 * @param: structure containing the new RT priority.
4418 *
e69f6186
YB
4419 * Return: 0 on success. An error code otherwise.
4420 *
961ccddd
RR
4421 * NOTE that the task may be already dead.
4422 */
4423int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4424 const struct sched_param *param)
961ccddd 4425{
7479f3c9 4426 return _sched_setscheduler(p, policy, param, true);
961ccddd 4427}
1da177e4
LT
4428EXPORT_SYMBOL_GPL(sched_setscheduler);
4429
d50dde5a
DF
4430int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4431{
dbc7f069 4432 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4433}
4434EXPORT_SYMBOL_GPL(sched_setattr);
4435
794a56eb
JL
4436int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4437{
4438 return __sched_setscheduler(p, attr, false, true);
4439}
4440
961ccddd
RR
4441/**
4442 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4443 * @p: the task in question.
4444 * @policy: new policy.
4445 * @param: structure containing the new RT priority.
4446 *
4447 * Just like sched_setscheduler, only don't bother checking if the
4448 * current context has permission. For example, this is needed in
4449 * stop_machine(): we create temporary high priority worker threads,
4450 * but our caller might not have that capability.
e69f6186
YB
4451 *
4452 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4453 */
4454int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4455 const struct sched_param *param)
961ccddd 4456{
7479f3c9 4457 return _sched_setscheduler(p, policy, param, false);
961ccddd 4458}
84778472 4459EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4460
95cdf3b7
IM
4461static int
4462do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4463{
1da177e4
LT
4464 struct sched_param lparam;
4465 struct task_struct *p;
36c8b586 4466 int retval;
1da177e4
LT
4467
4468 if (!param || pid < 0)
4469 return -EINVAL;
4470 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4471 return -EFAULT;
5fe1d75f
ON
4472
4473 rcu_read_lock();
4474 retval = -ESRCH;
1da177e4 4475 p = find_process_by_pid(pid);
5fe1d75f
ON
4476 if (p != NULL)
4477 retval = sched_setscheduler(p, policy, &lparam);
4478 rcu_read_unlock();
36c8b586 4479
1da177e4
LT
4480 return retval;
4481}
4482
d50dde5a
DF
4483/*
4484 * Mimics kernel/events/core.c perf_copy_attr().
4485 */
d1ccc66d 4486static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4487{
4488 u32 size;
4489 int ret;
4490
4491 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4492 return -EFAULT;
4493
d1ccc66d 4494 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4495 memset(attr, 0, sizeof(*attr));
4496
4497 ret = get_user(size, &uattr->size);
4498 if (ret)
4499 return ret;
4500
d1ccc66d
IM
4501 /* Bail out on silly large: */
4502 if (size > PAGE_SIZE)
d50dde5a
DF
4503 goto err_size;
4504
d1ccc66d
IM
4505 /* ABI compatibility quirk: */
4506 if (!size)
d50dde5a
DF
4507 size = SCHED_ATTR_SIZE_VER0;
4508
4509 if (size < SCHED_ATTR_SIZE_VER0)
4510 goto err_size;
4511
4512 /*
4513 * If we're handed a bigger struct than we know of,
4514 * ensure all the unknown bits are 0 - i.e. new
4515 * user-space does not rely on any kernel feature
4516 * extensions we dont know about yet.
4517 */
4518 if (size > sizeof(*attr)) {
4519 unsigned char __user *addr;
4520 unsigned char __user *end;
4521 unsigned char val;
4522
4523 addr = (void __user *)uattr + sizeof(*attr);
4524 end = (void __user *)uattr + size;
4525
4526 for (; addr < end; addr++) {
4527 ret = get_user(val, addr);
4528 if (ret)
4529 return ret;
4530 if (val)
4531 goto err_size;
4532 }
4533 size = sizeof(*attr);
4534 }
4535
4536 ret = copy_from_user(attr, uattr, size);
4537 if (ret)
4538 return -EFAULT;
4539
4540 /*
d1ccc66d 4541 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4542 * to be strict and return an error on out-of-bounds values?
4543 */
75e45d51 4544 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4545
e78c7bca 4546 return 0;
d50dde5a
DF
4547
4548err_size:
4549 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4550 return -E2BIG;
d50dde5a
DF
4551}
4552
1da177e4
LT
4553/**
4554 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4555 * @pid: the pid in question.
4556 * @policy: new policy.
4557 * @param: structure containing the new RT priority.
e69f6186
YB
4558 *
4559 * Return: 0 on success. An error code otherwise.
1da177e4 4560 */
d1ccc66d 4561SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4562{
c21761f1
JB
4563 if (policy < 0)
4564 return -EINVAL;
4565
1da177e4
LT
4566 return do_sched_setscheduler(pid, policy, param);
4567}
4568
4569/**
4570 * sys_sched_setparam - set/change the RT priority of a thread
4571 * @pid: the pid in question.
4572 * @param: structure containing the new RT priority.
e69f6186
YB
4573 *
4574 * Return: 0 on success. An error code otherwise.
1da177e4 4575 */
5add95d4 4576SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4577{
c13db6b1 4578 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4579}
4580
d50dde5a
DF
4581/**
4582 * sys_sched_setattr - same as above, but with extended sched_attr
4583 * @pid: the pid in question.
5778fccf 4584 * @uattr: structure containing the extended parameters.
db66d756 4585 * @flags: for future extension.
d50dde5a 4586 */
6d35ab48
PZ
4587SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4588 unsigned int, flags)
d50dde5a
DF
4589{
4590 struct sched_attr attr;
4591 struct task_struct *p;
4592 int retval;
4593
6d35ab48 4594 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4595 return -EINVAL;
4596
143cf23d
MK
4597 retval = sched_copy_attr(uattr, &attr);
4598 if (retval)
4599 return retval;
d50dde5a 4600
b14ed2c2 4601 if ((int)attr.sched_policy < 0)
dbdb2275 4602 return -EINVAL;
d50dde5a
DF
4603
4604 rcu_read_lock();
4605 retval = -ESRCH;
4606 p = find_process_by_pid(pid);
4607 if (p != NULL)
4608 retval = sched_setattr(p, &attr);
4609 rcu_read_unlock();
4610
4611 return retval;
4612}
4613
1da177e4
LT
4614/**
4615 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4616 * @pid: the pid in question.
e69f6186
YB
4617 *
4618 * Return: On success, the policy of the thread. Otherwise, a negative error
4619 * code.
1da177e4 4620 */
5add95d4 4621SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4622{
36c8b586 4623 struct task_struct *p;
3a5c359a 4624 int retval;
1da177e4
LT
4625
4626 if (pid < 0)
3a5c359a 4627 return -EINVAL;
1da177e4
LT
4628
4629 retval = -ESRCH;
5fe85be0 4630 rcu_read_lock();
1da177e4
LT
4631 p = find_process_by_pid(pid);
4632 if (p) {
4633 retval = security_task_getscheduler(p);
4634 if (!retval)
ca94c442
LP
4635 retval = p->policy
4636 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4637 }
5fe85be0 4638 rcu_read_unlock();
1da177e4
LT
4639 return retval;
4640}
4641
4642/**
ca94c442 4643 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4644 * @pid: the pid in question.
4645 * @param: structure containing the RT priority.
e69f6186
YB
4646 *
4647 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4648 * code.
1da177e4 4649 */
5add95d4 4650SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4651{
ce5f7f82 4652 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4653 struct task_struct *p;
3a5c359a 4654 int retval;
1da177e4
LT
4655
4656 if (!param || pid < 0)
3a5c359a 4657 return -EINVAL;
1da177e4 4658
5fe85be0 4659 rcu_read_lock();
1da177e4
LT
4660 p = find_process_by_pid(pid);
4661 retval = -ESRCH;
4662 if (!p)
4663 goto out_unlock;
4664
4665 retval = security_task_getscheduler(p);
4666 if (retval)
4667 goto out_unlock;
4668
ce5f7f82
PZ
4669 if (task_has_rt_policy(p))
4670 lp.sched_priority = p->rt_priority;
5fe85be0 4671 rcu_read_unlock();
1da177e4
LT
4672
4673 /*
4674 * This one might sleep, we cannot do it with a spinlock held ...
4675 */
4676 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4677
1da177e4
LT
4678 return retval;
4679
4680out_unlock:
5fe85be0 4681 rcu_read_unlock();
1da177e4
LT
4682 return retval;
4683}
4684
d50dde5a
DF
4685static int sched_read_attr(struct sched_attr __user *uattr,
4686 struct sched_attr *attr,
4687 unsigned int usize)
4688{
4689 int ret;
4690
4691 if (!access_ok(VERIFY_WRITE, uattr, usize))
4692 return -EFAULT;
4693
4694 /*
4695 * If we're handed a smaller struct than we know of,
4696 * ensure all the unknown bits are 0 - i.e. old
4697 * user-space does not get uncomplete information.
4698 */
4699 if (usize < sizeof(*attr)) {
4700 unsigned char *addr;
4701 unsigned char *end;
4702
4703 addr = (void *)attr + usize;
4704 end = (void *)attr + sizeof(*attr);
4705
4706 for (; addr < end; addr++) {
4707 if (*addr)
22400674 4708 return -EFBIG;
d50dde5a
DF
4709 }
4710
4711 attr->size = usize;
4712 }
4713
4efbc454 4714 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4715 if (ret)
4716 return -EFAULT;
4717
22400674 4718 return 0;
d50dde5a
DF
4719}
4720
4721/**
aab03e05 4722 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4723 * @pid: the pid in question.
5778fccf 4724 * @uattr: structure containing the extended parameters.
d50dde5a 4725 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4726 * @flags: for future extension.
d50dde5a 4727 */
6d35ab48
PZ
4728SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4729 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4730{
4731 struct sched_attr attr = {
4732 .size = sizeof(struct sched_attr),
4733 };
4734 struct task_struct *p;
4735 int retval;
4736
4737 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4738 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4739 return -EINVAL;
4740
4741 rcu_read_lock();
4742 p = find_process_by_pid(pid);
4743 retval = -ESRCH;
4744 if (!p)
4745 goto out_unlock;
4746
4747 retval = security_task_getscheduler(p);
4748 if (retval)
4749 goto out_unlock;
4750
4751 attr.sched_policy = p->policy;
7479f3c9
PZ
4752 if (p->sched_reset_on_fork)
4753 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4754 if (task_has_dl_policy(p))
4755 __getparam_dl(p, &attr);
4756 else if (task_has_rt_policy(p))
d50dde5a
DF
4757 attr.sched_priority = p->rt_priority;
4758 else
d0ea0268 4759 attr.sched_nice = task_nice(p);
d50dde5a
DF
4760
4761 rcu_read_unlock();
4762
4763 retval = sched_read_attr(uattr, &attr, size);
4764 return retval;
4765
4766out_unlock:
4767 rcu_read_unlock();
4768 return retval;
4769}
4770
96f874e2 4771long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4772{
5a16f3d3 4773 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4774 struct task_struct *p;
4775 int retval;
1da177e4 4776
23f5d142 4777 rcu_read_lock();
1da177e4
LT
4778
4779 p = find_process_by_pid(pid);
4780 if (!p) {
23f5d142 4781 rcu_read_unlock();
1da177e4
LT
4782 return -ESRCH;
4783 }
4784
23f5d142 4785 /* Prevent p going away */
1da177e4 4786 get_task_struct(p);
23f5d142 4787 rcu_read_unlock();
1da177e4 4788
14a40ffc
TH
4789 if (p->flags & PF_NO_SETAFFINITY) {
4790 retval = -EINVAL;
4791 goto out_put_task;
4792 }
5a16f3d3
RR
4793 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4794 retval = -ENOMEM;
4795 goto out_put_task;
4796 }
4797 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4798 retval = -ENOMEM;
4799 goto out_free_cpus_allowed;
4800 }
1da177e4 4801 retval = -EPERM;
4c44aaaf
EB
4802 if (!check_same_owner(p)) {
4803 rcu_read_lock();
4804 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4805 rcu_read_unlock();
16303ab2 4806 goto out_free_new_mask;
4c44aaaf
EB
4807 }
4808 rcu_read_unlock();
4809 }
1da177e4 4810
b0ae1981 4811 retval = security_task_setscheduler(p);
e7834f8f 4812 if (retval)
16303ab2 4813 goto out_free_new_mask;
e7834f8f 4814
e4099a5e
PZ
4815
4816 cpuset_cpus_allowed(p, cpus_allowed);
4817 cpumask_and(new_mask, in_mask, cpus_allowed);
4818
332ac17e
DF
4819 /*
4820 * Since bandwidth control happens on root_domain basis,
4821 * if admission test is enabled, we only admit -deadline
4822 * tasks allowed to run on all the CPUs in the task's
4823 * root_domain.
4824 */
4825#ifdef CONFIG_SMP
f1e3a093
KT
4826 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4827 rcu_read_lock();
4828 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4829 retval = -EBUSY;
f1e3a093 4830 rcu_read_unlock();
16303ab2 4831 goto out_free_new_mask;
332ac17e 4832 }
f1e3a093 4833 rcu_read_unlock();
332ac17e
DF
4834 }
4835#endif
49246274 4836again:
25834c73 4837 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4838
8707d8b8 4839 if (!retval) {
5a16f3d3
RR
4840 cpuset_cpus_allowed(p, cpus_allowed);
4841 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4842 /*
4843 * We must have raced with a concurrent cpuset
4844 * update. Just reset the cpus_allowed to the
4845 * cpuset's cpus_allowed
4846 */
5a16f3d3 4847 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4848 goto again;
4849 }
4850 }
16303ab2 4851out_free_new_mask:
5a16f3d3
RR
4852 free_cpumask_var(new_mask);
4853out_free_cpus_allowed:
4854 free_cpumask_var(cpus_allowed);
4855out_put_task:
1da177e4 4856 put_task_struct(p);
1da177e4
LT
4857 return retval;
4858}
4859
4860static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4861 struct cpumask *new_mask)
1da177e4 4862{
96f874e2
RR
4863 if (len < cpumask_size())
4864 cpumask_clear(new_mask);
4865 else if (len > cpumask_size())
4866 len = cpumask_size();
4867
1da177e4
LT
4868 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4869}
4870
4871/**
d1ccc66d 4872 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4873 * @pid: pid of the process
4874 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4875 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4876 *
4877 * Return: 0 on success. An error code otherwise.
1da177e4 4878 */
5add95d4
HC
4879SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4880 unsigned long __user *, user_mask_ptr)
1da177e4 4881{
5a16f3d3 4882 cpumask_var_t new_mask;
1da177e4
LT
4883 int retval;
4884
5a16f3d3
RR
4885 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4886 return -ENOMEM;
1da177e4 4887
5a16f3d3
RR
4888 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4889 if (retval == 0)
4890 retval = sched_setaffinity(pid, new_mask);
4891 free_cpumask_var(new_mask);
4892 return retval;
1da177e4
LT
4893}
4894
96f874e2 4895long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4896{
36c8b586 4897 struct task_struct *p;
31605683 4898 unsigned long flags;
1da177e4 4899 int retval;
1da177e4 4900
23f5d142 4901 rcu_read_lock();
1da177e4
LT
4902
4903 retval = -ESRCH;
4904 p = find_process_by_pid(pid);
4905 if (!p)
4906 goto out_unlock;
4907
e7834f8f
DQ
4908 retval = security_task_getscheduler(p);
4909 if (retval)
4910 goto out_unlock;
4911
013fdb80 4912 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4913 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4914 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4915
4916out_unlock:
23f5d142 4917 rcu_read_unlock();
1da177e4 4918
9531b62f 4919 return retval;
1da177e4
LT
4920}
4921
4922/**
d1ccc66d 4923 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4924 * @pid: pid of the process
4925 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4926 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4927 *
599b4840
ZW
4928 * Return: size of CPU mask copied to user_mask_ptr on success. An
4929 * error code otherwise.
1da177e4 4930 */
5add95d4
HC
4931SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4932 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4933{
4934 int ret;
f17c8607 4935 cpumask_var_t mask;
1da177e4 4936
84fba5ec 4937 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4938 return -EINVAL;
4939 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4940 return -EINVAL;
4941
f17c8607
RR
4942 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4943 return -ENOMEM;
1da177e4 4944
f17c8607
RR
4945 ret = sched_getaffinity(pid, mask);
4946 if (ret == 0) {
4de373a1 4947 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4948
4949 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4950 ret = -EFAULT;
4951 else
cd3d8031 4952 ret = retlen;
f17c8607
RR
4953 }
4954 free_cpumask_var(mask);
1da177e4 4955
f17c8607 4956 return ret;
1da177e4
LT
4957}
4958
4959/**
4960 * sys_sched_yield - yield the current processor to other threads.
4961 *
dd41f596
IM
4962 * This function yields the current CPU to other tasks. If there are no
4963 * other threads running on this CPU then this function will return.
e69f6186
YB
4964 *
4965 * Return: 0.
1da177e4 4966 */
7d4dd4f1 4967static void do_sched_yield(void)
1da177e4 4968{
8a8c69c3
PZ
4969 struct rq_flags rf;
4970 struct rq *rq;
4971
4972 local_irq_disable();
4973 rq = this_rq();
4974 rq_lock(rq, &rf);
1da177e4 4975
ae92882e 4976 schedstat_inc(rq->yld_count);
4530d7ab 4977 current->sched_class->yield_task(rq);
1da177e4
LT
4978
4979 /*
4980 * Since we are going to call schedule() anyway, there's
4981 * no need to preempt or enable interrupts:
4982 */
8a8c69c3
PZ
4983 preempt_disable();
4984 rq_unlock(rq, &rf);
ba74c144 4985 sched_preempt_enable_no_resched();
1da177e4
LT
4986
4987 schedule();
7d4dd4f1 4988}
1da177e4 4989
7d4dd4f1
DB
4990SYSCALL_DEFINE0(sched_yield)
4991{
4992 do_sched_yield();
1da177e4
LT
4993 return 0;
4994}
4995
35a773a0 4996#ifndef CONFIG_PREEMPT
02b67cc3 4997int __sched _cond_resched(void)
1da177e4 4998{
fe32d3cd 4999 if (should_resched(0)) {
a18b5d01 5000 preempt_schedule_common();
1da177e4
LT
5001 return 1;
5002 }
f79c3ad6 5003 rcu_all_qs();
1da177e4
LT
5004 return 0;
5005}
02b67cc3 5006EXPORT_SYMBOL(_cond_resched);
35a773a0 5007#endif
1da177e4
LT
5008
5009/*
613afbf8 5010 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5011 * call schedule, and on return reacquire the lock.
5012 *
41a2d6cf 5013 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5014 * operations here to prevent schedule() from being called twice (once via
5015 * spin_unlock(), once by hand).
5016 */
613afbf8 5017int __cond_resched_lock(spinlock_t *lock)
1da177e4 5018{
fe32d3cd 5019 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5020 int ret = 0;
5021
f607c668
PZ
5022 lockdep_assert_held(lock);
5023
4a81e832 5024 if (spin_needbreak(lock) || resched) {
1da177e4 5025 spin_unlock(lock);
d86ee480 5026 if (resched)
a18b5d01 5027 preempt_schedule_common();
95c354fe
NP
5028 else
5029 cpu_relax();
6df3cecb 5030 ret = 1;
1da177e4 5031 spin_lock(lock);
1da177e4 5032 }
6df3cecb 5033 return ret;
1da177e4 5034}
613afbf8 5035EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5036
1da177e4
LT
5037/**
5038 * yield - yield the current processor to other threads.
5039 *
8e3fabfd
PZ
5040 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5041 *
5042 * The scheduler is at all times free to pick the calling task as the most
5043 * eligible task to run, if removing the yield() call from your code breaks
5044 * it, its already broken.
5045 *
5046 * Typical broken usage is:
5047 *
5048 * while (!event)
d1ccc66d 5049 * yield();
8e3fabfd
PZ
5050 *
5051 * where one assumes that yield() will let 'the other' process run that will
5052 * make event true. If the current task is a SCHED_FIFO task that will never
5053 * happen. Never use yield() as a progress guarantee!!
5054 *
5055 * If you want to use yield() to wait for something, use wait_event().
5056 * If you want to use yield() to be 'nice' for others, use cond_resched().
5057 * If you still want to use yield(), do not!
1da177e4
LT
5058 */
5059void __sched yield(void)
5060{
5061 set_current_state(TASK_RUNNING);
7d4dd4f1 5062 do_sched_yield();
1da177e4 5063}
1da177e4
LT
5064EXPORT_SYMBOL(yield);
5065
d95f4122
MG
5066/**
5067 * yield_to - yield the current processor to another thread in
5068 * your thread group, or accelerate that thread toward the
5069 * processor it's on.
16addf95
RD
5070 * @p: target task
5071 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5072 *
5073 * It's the caller's job to ensure that the target task struct
5074 * can't go away on us before we can do any checks.
5075 *
e69f6186 5076 * Return:
7b270f60
PZ
5077 * true (>0) if we indeed boosted the target task.
5078 * false (0) if we failed to boost the target.
5079 * -ESRCH if there's no task to yield to.
d95f4122 5080 */
fa93384f 5081int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5082{
5083 struct task_struct *curr = current;
5084 struct rq *rq, *p_rq;
5085 unsigned long flags;
c3c18640 5086 int yielded = 0;
d95f4122
MG
5087
5088 local_irq_save(flags);
5089 rq = this_rq();
5090
5091again:
5092 p_rq = task_rq(p);
7b270f60
PZ
5093 /*
5094 * If we're the only runnable task on the rq and target rq also
5095 * has only one task, there's absolutely no point in yielding.
5096 */
5097 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5098 yielded = -ESRCH;
5099 goto out_irq;
5100 }
5101
d95f4122 5102 double_rq_lock(rq, p_rq);
39e24d8f 5103 if (task_rq(p) != p_rq) {
d95f4122
MG
5104 double_rq_unlock(rq, p_rq);
5105 goto again;
5106 }
5107
5108 if (!curr->sched_class->yield_to_task)
7b270f60 5109 goto out_unlock;
d95f4122
MG
5110
5111 if (curr->sched_class != p->sched_class)
7b270f60 5112 goto out_unlock;
d95f4122
MG
5113
5114 if (task_running(p_rq, p) || p->state)
7b270f60 5115 goto out_unlock;
d95f4122
MG
5116
5117 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5118 if (yielded) {
ae92882e 5119 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5120 /*
5121 * Make p's CPU reschedule; pick_next_entity takes care of
5122 * fairness.
5123 */
5124 if (preempt && rq != p_rq)
8875125e 5125 resched_curr(p_rq);
6d1cafd8 5126 }
d95f4122 5127
7b270f60 5128out_unlock:
d95f4122 5129 double_rq_unlock(rq, p_rq);
7b270f60 5130out_irq:
d95f4122
MG
5131 local_irq_restore(flags);
5132
7b270f60 5133 if (yielded > 0)
d95f4122
MG
5134 schedule();
5135
5136 return yielded;
5137}
5138EXPORT_SYMBOL_GPL(yield_to);
5139
10ab5643
TH
5140int io_schedule_prepare(void)
5141{
5142 int old_iowait = current->in_iowait;
5143
5144 current->in_iowait = 1;
5145 blk_schedule_flush_plug(current);
5146
5147 return old_iowait;
5148}
5149
5150void io_schedule_finish(int token)
5151{
5152 current->in_iowait = token;
5153}
5154
1da177e4 5155/*
41a2d6cf 5156 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5157 * that process accounting knows that this is a task in IO wait state.
1da177e4 5158 */
1da177e4
LT
5159long __sched io_schedule_timeout(long timeout)
5160{
10ab5643 5161 int token;
1da177e4
LT
5162 long ret;
5163
10ab5643 5164 token = io_schedule_prepare();
1da177e4 5165 ret = schedule_timeout(timeout);
10ab5643 5166 io_schedule_finish(token);
9cff8ade 5167
1da177e4
LT
5168 return ret;
5169}
9cff8ade 5170EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5171
10ab5643
TH
5172void io_schedule(void)
5173{
5174 int token;
5175
5176 token = io_schedule_prepare();
5177 schedule();
5178 io_schedule_finish(token);
5179}
5180EXPORT_SYMBOL(io_schedule);
5181
1da177e4
LT
5182/**
5183 * sys_sched_get_priority_max - return maximum RT priority.
5184 * @policy: scheduling class.
5185 *
e69f6186
YB
5186 * Return: On success, this syscall returns the maximum
5187 * rt_priority that can be used by a given scheduling class.
5188 * On failure, a negative error code is returned.
1da177e4 5189 */
5add95d4 5190SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5191{
5192 int ret = -EINVAL;
5193
5194 switch (policy) {
5195 case SCHED_FIFO:
5196 case SCHED_RR:
5197 ret = MAX_USER_RT_PRIO-1;
5198 break;
aab03e05 5199 case SCHED_DEADLINE:
1da177e4 5200 case SCHED_NORMAL:
b0a9499c 5201 case SCHED_BATCH:
dd41f596 5202 case SCHED_IDLE:
1da177e4
LT
5203 ret = 0;
5204 break;
5205 }
5206 return ret;
5207}
5208
5209/**
5210 * sys_sched_get_priority_min - return minimum RT priority.
5211 * @policy: scheduling class.
5212 *
e69f6186
YB
5213 * Return: On success, this syscall returns the minimum
5214 * rt_priority that can be used by a given scheduling class.
5215 * On failure, a negative error code is returned.
1da177e4 5216 */
5add95d4 5217SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5218{
5219 int ret = -EINVAL;
5220
5221 switch (policy) {
5222 case SCHED_FIFO:
5223 case SCHED_RR:
5224 ret = 1;
5225 break;
aab03e05 5226 case SCHED_DEADLINE:
1da177e4 5227 case SCHED_NORMAL:
b0a9499c 5228 case SCHED_BATCH:
dd41f596 5229 case SCHED_IDLE:
1da177e4
LT
5230 ret = 0;
5231 }
5232 return ret;
5233}
5234
abca5fc5 5235static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5236{
36c8b586 5237 struct task_struct *p;
a4ec24b4 5238 unsigned int time_slice;
eb580751 5239 struct rq_flags rf;
dba091b9 5240 struct rq *rq;
3a5c359a 5241 int retval;
1da177e4
LT
5242
5243 if (pid < 0)
3a5c359a 5244 return -EINVAL;
1da177e4
LT
5245
5246 retval = -ESRCH;
1a551ae7 5247 rcu_read_lock();
1da177e4
LT
5248 p = find_process_by_pid(pid);
5249 if (!p)
5250 goto out_unlock;
5251
5252 retval = security_task_getscheduler(p);
5253 if (retval)
5254 goto out_unlock;
5255
eb580751 5256 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5257 time_slice = 0;
5258 if (p->sched_class->get_rr_interval)
5259 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5260 task_rq_unlock(rq, p, &rf);
a4ec24b4 5261
1a551ae7 5262 rcu_read_unlock();
abca5fc5
AV
5263 jiffies_to_timespec64(time_slice, t);
5264 return 0;
3a5c359a 5265
1da177e4 5266out_unlock:
1a551ae7 5267 rcu_read_unlock();
1da177e4
LT
5268 return retval;
5269}
5270
2064a5ab
RD
5271/**
5272 * sys_sched_rr_get_interval - return the default timeslice of a process.
5273 * @pid: pid of the process.
5274 * @interval: userspace pointer to the timeslice value.
5275 *
5276 * this syscall writes the default timeslice value of a given process
5277 * into the user-space timespec buffer. A value of '0' means infinity.
5278 *
5279 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5280 * an error code.
5281 */
abca5fc5
AV
5282SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5283 struct timespec __user *, interval)
5284{
5285 struct timespec64 t;
5286 int retval = sched_rr_get_interval(pid, &t);
5287
5288 if (retval == 0)
5289 retval = put_timespec64(&t, interval);
5290
5291 return retval;
5292}
5293
5294#ifdef CONFIG_COMPAT
5295COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5296 compat_pid_t, pid,
5297 struct compat_timespec __user *, interval)
5298{
5299 struct timespec64 t;
5300 int retval = sched_rr_get_interval(pid, &t);
5301
5302 if (retval == 0)
5303 retval = compat_put_timespec64(&t, interval);
5304 return retval;
5305}
5306#endif
5307
82a1fcb9 5308void sched_show_task(struct task_struct *p)
1da177e4 5309{
1da177e4 5310 unsigned long free = 0;
4e79752c 5311 int ppid;
c930b2c0 5312
38200502
TH
5313 if (!try_get_task_stack(p))
5314 return;
20435d84
XX
5315
5316 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5317
5318 if (p->state == TASK_RUNNING)
3df0fc5b 5319 printk(KERN_CONT " running task ");
1da177e4 5320#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5321 free = stack_not_used(p);
1da177e4 5322#endif
a90e984c 5323 ppid = 0;
4e79752c 5324 rcu_read_lock();
a90e984c
ON
5325 if (pid_alive(p))
5326 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5327 rcu_read_unlock();
3df0fc5b 5328 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5329 task_pid_nr(p), ppid,
aa47b7e0 5330 (unsigned long)task_thread_info(p)->flags);
1da177e4 5331
3d1cb205 5332 print_worker_info(KERN_INFO, p);
5fb5e6de 5333 show_stack(p, NULL);
38200502 5334 put_task_stack(p);
1da177e4 5335}
0032f4e8 5336EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5337
5d68cc95
PZ
5338static inline bool
5339state_filter_match(unsigned long state_filter, struct task_struct *p)
5340{
5341 /* no filter, everything matches */
5342 if (!state_filter)
5343 return true;
5344
5345 /* filter, but doesn't match */
5346 if (!(p->state & state_filter))
5347 return false;
5348
5349 /*
5350 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5351 * TASK_KILLABLE).
5352 */
5353 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5354 return false;
5355
5356 return true;
5357}
5358
5359
e59e2ae2 5360void show_state_filter(unsigned long state_filter)
1da177e4 5361{
36c8b586 5362 struct task_struct *g, *p;
1da177e4 5363
4bd77321 5364#if BITS_PER_LONG == 32
3df0fc5b
PZ
5365 printk(KERN_INFO
5366 " task PC stack pid father\n");
1da177e4 5367#else
3df0fc5b
PZ
5368 printk(KERN_INFO
5369 " task PC stack pid father\n");
1da177e4 5370#endif
510f5acc 5371 rcu_read_lock();
5d07f420 5372 for_each_process_thread(g, p) {
1da177e4
LT
5373 /*
5374 * reset the NMI-timeout, listing all files on a slow
25985edc 5375 * console might take a lot of time:
57675cb9
AR
5376 * Also, reset softlockup watchdogs on all CPUs, because
5377 * another CPU might be blocked waiting for us to process
5378 * an IPI.
1da177e4
LT
5379 */
5380 touch_nmi_watchdog();
57675cb9 5381 touch_all_softlockup_watchdogs();
5d68cc95 5382 if (state_filter_match(state_filter, p))
82a1fcb9 5383 sched_show_task(p);
5d07f420 5384 }
1da177e4 5385
dd41f596 5386#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5387 if (!state_filter)
5388 sysrq_sched_debug_show();
dd41f596 5389#endif
510f5acc 5390 rcu_read_unlock();
e59e2ae2
IM
5391 /*
5392 * Only show locks if all tasks are dumped:
5393 */
93335a21 5394 if (!state_filter)
e59e2ae2 5395 debug_show_all_locks();
1da177e4
LT
5396}
5397
f340c0d1
IM
5398/**
5399 * init_idle - set up an idle thread for a given CPU
5400 * @idle: task in question
d1ccc66d 5401 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5402 *
5403 * NOTE: this function does not set the idle thread's NEED_RESCHED
5404 * flag, to make booting more robust.
5405 */
0db0628d 5406void init_idle(struct task_struct *idle, int cpu)
1da177e4 5407{
70b97a7f 5408 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5409 unsigned long flags;
5410
25834c73
PZ
5411 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5412 raw_spin_lock(&rq->lock);
5cbd54ef 5413
5e1576ed 5414 __sched_fork(0, idle);
06b83b5f 5415 idle->state = TASK_RUNNING;
dd41f596 5416 idle->se.exec_start = sched_clock();
c1de45ca 5417 idle->flags |= PF_IDLE;
dd41f596 5418
e1b77c92
MR
5419 kasan_unpoison_task_stack(idle);
5420
de9b8f5d
PZ
5421#ifdef CONFIG_SMP
5422 /*
5423 * Its possible that init_idle() gets called multiple times on a task,
5424 * in that case do_set_cpus_allowed() will not do the right thing.
5425 *
5426 * And since this is boot we can forgo the serialization.
5427 */
5428 set_cpus_allowed_common(idle, cpumask_of(cpu));
5429#endif
6506cf6c
PZ
5430 /*
5431 * We're having a chicken and egg problem, even though we are
d1ccc66d 5432 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5433 * lockdep check in task_group() will fail.
5434 *
5435 * Similar case to sched_fork(). / Alternatively we could
5436 * use task_rq_lock() here and obtain the other rq->lock.
5437 *
5438 * Silence PROVE_RCU
5439 */
5440 rcu_read_lock();
dd41f596 5441 __set_task_cpu(idle, cpu);
6506cf6c 5442 rcu_read_unlock();
1da177e4 5443
1da177e4 5444 rq->curr = rq->idle = idle;
da0c1e65 5445 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5446#ifdef CONFIG_SMP
3ca7a440 5447 idle->on_cpu = 1;
4866cde0 5448#endif
25834c73
PZ
5449 raw_spin_unlock(&rq->lock);
5450 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5451
5452 /* Set the preempt count _outside_ the spinlocks! */
01028747 5453 init_idle_preempt_count(idle, cpu);
55cd5340 5454
dd41f596
IM
5455 /*
5456 * The idle tasks have their own, simple scheduling class:
5457 */
5458 idle->sched_class = &idle_sched_class;
868baf07 5459 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5460 vtime_init_idle(idle, cpu);
de9b8f5d 5461#ifdef CONFIG_SMP
f1c6f1a7
CE
5462 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5463#endif
19978ca6
IM
5464}
5465
e1d4eeec
NP
5466#ifdef CONFIG_SMP
5467
f82f8042
JL
5468int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5469 const struct cpumask *trial)
5470{
06a76fe0 5471 int ret = 1;
f82f8042 5472
bb2bc55a
MG
5473 if (!cpumask_weight(cur))
5474 return ret;
5475
06a76fe0 5476 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5477
5478 return ret;
5479}
5480
7f51412a
JL
5481int task_can_attach(struct task_struct *p,
5482 const struct cpumask *cs_cpus_allowed)
5483{
5484 int ret = 0;
5485
5486 /*
5487 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5488 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5489 * affinity and isolating such threads by their set of
5490 * allowed nodes is unnecessary. Thus, cpusets are not
5491 * applicable for such threads. This prevents checking for
5492 * success of set_cpus_allowed_ptr() on all attached tasks
5493 * before cpus_allowed may be changed.
5494 */
5495 if (p->flags & PF_NO_SETAFFINITY) {
5496 ret = -EINVAL;
5497 goto out;
5498 }
5499
7f51412a 5500 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5501 cs_cpus_allowed))
5502 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5503
7f51412a
JL
5504out:
5505 return ret;
5506}
5507
f2cb1360 5508bool sched_smp_initialized __read_mostly;
e26fbffd 5509
e6628d5b
MG
5510#ifdef CONFIG_NUMA_BALANCING
5511/* Migrate current task p to target_cpu */
5512int migrate_task_to(struct task_struct *p, int target_cpu)
5513{
5514 struct migration_arg arg = { p, target_cpu };
5515 int curr_cpu = task_cpu(p);
5516
5517 if (curr_cpu == target_cpu)
5518 return 0;
5519
0c98d344 5520 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5521 return -EINVAL;
5522
5523 /* TODO: This is not properly updating schedstats */
5524
286549dc 5525 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5526 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5527}
0ec8aa00
PZ
5528
5529/*
5530 * Requeue a task on a given node and accurately track the number of NUMA
5531 * tasks on the runqueues
5532 */
5533void sched_setnuma(struct task_struct *p, int nid)
5534{
da0c1e65 5535 bool queued, running;
eb580751
PZ
5536 struct rq_flags rf;
5537 struct rq *rq;
0ec8aa00 5538
eb580751 5539 rq = task_rq_lock(p, &rf);
da0c1e65 5540 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5541 running = task_current(rq, p);
5542
da0c1e65 5543 if (queued)
1de64443 5544 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5545 if (running)
f3cd1c4e 5546 put_prev_task(rq, p);
0ec8aa00
PZ
5547
5548 p->numa_preferred_nid = nid;
0ec8aa00 5549
da0c1e65 5550 if (queued)
7134b3e9 5551 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5552 if (running)
b2bf6c31 5553 set_curr_task(rq, p);
eb580751 5554 task_rq_unlock(rq, p, &rf);
0ec8aa00 5555}
5cc389bc 5556#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5557
1da177e4 5558#ifdef CONFIG_HOTPLUG_CPU
054b9108 5559/*
d1ccc66d 5560 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5561 * offline.
054b9108 5562 */
48c5ccae 5563void idle_task_exit(void)
1da177e4 5564{
48c5ccae 5565 struct mm_struct *mm = current->active_mm;
e76bd8d9 5566
48c5ccae 5567 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5568
a53efe5f 5569 if (mm != &init_mm) {
252d2a41 5570 switch_mm(mm, &init_mm, current);
3eda69c9 5571 current->active_mm = &init_mm;
a53efe5f
MS
5572 finish_arch_post_lock_switch();
5573 }
48c5ccae 5574 mmdrop(mm);
1da177e4
LT
5575}
5576
5577/*
5d180232
PZ
5578 * Since this CPU is going 'away' for a while, fold any nr_active delta
5579 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5580 * nr_active count is stable. We need to take the teardown thread which
5581 * is calling this into account, so we hand in adjust = 1 to the load
5582 * calculation.
5d180232
PZ
5583 *
5584 * Also see the comment "Global load-average calculations".
1da177e4 5585 */
5d180232 5586static void calc_load_migrate(struct rq *rq)
1da177e4 5587{
d60585c5 5588 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5589 if (delta)
5590 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5591}
5592
3f1d2a31
PZ
5593static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5594{
5595}
5596
5597static const struct sched_class fake_sched_class = {
5598 .put_prev_task = put_prev_task_fake,
5599};
5600
5601static struct task_struct fake_task = {
5602 /*
5603 * Avoid pull_{rt,dl}_task()
5604 */
5605 .prio = MAX_PRIO + 1,
5606 .sched_class = &fake_sched_class,
5607};
5608
48f24c4d 5609/*
48c5ccae
PZ
5610 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5611 * try_to_wake_up()->select_task_rq().
5612 *
5613 * Called with rq->lock held even though we'er in stop_machine() and
5614 * there's no concurrency possible, we hold the required locks anyway
5615 * because of lock validation efforts.
1da177e4 5616 */
8a8c69c3 5617static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5618{
5e16bbc2 5619 struct rq *rq = dead_rq;
48c5ccae 5620 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5621 struct rq_flags orf = *rf;
48c5ccae 5622 int dest_cpu;
1da177e4
LT
5623
5624 /*
48c5ccae
PZ
5625 * Fudge the rq selection such that the below task selection loop
5626 * doesn't get stuck on the currently eligible stop task.
5627 *
5628 * We're currently inside stop_machine() and the rq is either stuck
5629 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5630 * either way we should never end up calling schedule() until we're
5631 * done here.
1da177e4 5632 */
48c5ccae 5633 rq->stop = NULL;
48f24c4d 5634
77bd3970
FW
5635 /*
5636 * put_prev_task() and pick_next_task() sched
5637 * class method both need to have an up-to-date
5638 * value of rq->clock[_task]
5639 */
5640 update_rq_clock(rq);
5641
5e16bbc2 5642 for (;;) {
48c5ccae
PZ
5643 /*
5644 * There's this thread running, bail when that's the only
d1ccc66d 5645 * remaining thread:
48c5ccae
PZ
5646 */
5647 if (rq->nr_running == 1)
dd41f596 5648 break;
48c5ccae 5649
cbce1a68 5650 /*
d1ccc66d 5651 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5652 */
8a8c69c3 5653 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5654 BUG_ON(!next);
5b713a3d 5655 put_prev_task(rq, next);
e692ab53 5656
5473e0cc
WL
5657 /*
5658 * Rules for changing task_struct::cpus_allowed are holding
5659 * both pi_lock and rq->lock, such that holding either
5660 * stabilizes the mask.
5661 *
5662 * Drop rq->lock is not quite as disastrous as it usually is
5663 * because !cpu_active at this point, which means load-balance
5664 * will not interfere. Also, stop-machine.
5665 */
8a8c69c3 5666 rq_unlock(rq, rf);
5473e0cc 5667 raw_spin_lock(&next->pi_lock);
8a8c69c3 5668 rq_relock(rq, rf);
5473e0cc
WL
5669
5670 /*
5671 * Since we're inside stop-machine, _nothing_ should have
5672 * changed the task, WARN if weird stuff happened, because in
5673 * that case the above rq->lock drop is a fail too.
5674 */
5675 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5676 raw_spin_unlock(&next->pi_lock);
5677 continue;
5678 }
5679
48c5ccae 5680 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5681 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5682 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5683 if (rq != dead_rq) {
8a8c69c3 5684 rq_unlock(rq, rf);
5e16bbc2 5685 rq = dead_rq;
8a8c69c3
PZ
5686 *rf = orf;
5687 rq_relock(rq, rf);
5e16bbc2 5688 }
5473e0cc 5689 raw_spin_unlock(&next->pi_lock);
1da177e4 5690 }
dce48a84 5691
48c5ccae 5692 rq->stop = stop;
dce48a84 5693}
1da177e4
LT
5694#endif /* CONFIG_HOTPLUG_CPU */
5695
f2cb1360 5696void set_rq_online(struct rq *rq)
1f11eb6a
GH
5697{
5698 if (!rq->online) {
5699 const struct sched_class *class;
5700
c6c4927b 5701 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5702 rq->online = 1;
5703
5704 for_each_class(class) {
5705 if (class->rq_online)
5706 class->rq_online(rq);
5707 }
5708 }
5709}
5710
f2cb1360 5711void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5712{
5713 if (rq->online) {
5714 const struct sched_class *class;
5715
5716 for_each_class(class) {
5717 if (class->rq_offline)
5718 class->rq_offline(rq);
5719 }
5720
c6c4927b 5721 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5722 rq->online = 0;
5723 }
5724}
5725
9cf7243d 5726static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5727{
969c7921 5728 struct rq *rq = cpu_rq(cpu);
1da177e4 5729
a803f026
CM
5730 rq->age_stamp = sched_clock_cpu(cpu);
5731}
5732
d1ccc66d
IM
5733/*
5734 * used to mark begin/end of suspend/resume:
5735 */
5736static int num_cpus_frozen;
d35be8ba 5737
1da177e4 5738/*
3a101d05
TH
5739 * Update cpusets according to cpu_active mask. If cpusets are
5740 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5741 * around partition_sched_domains().
d35be8ba
SB
5742 *
5743 * If we come here as part of a suspend/resume, don't touch cpusets because we
5744 * want to restore it back to its original state upon resume anyway.
1da177e4 5745 */
40190a78 5746static void cpuset_cpu_active(void)
e761b772 5747{
40190a78 5748 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5749 /*
5750 * num_cpus_frozen tracks how many CPUs are involved in suspend
5751 * resume sequence. As long as this is not the last online
5752 * operation in the resume sequence, just build a single sched
5753 * domain, ignoring cpusets.
5754 */
50e76632
PZ
5755 partition_sched_domains(1, NULL, NULL);
5756 if (--num_cpus_frozen)
135fb3e1 5757 return;
d35be8ba
SB
5758 /*
5759 * This is the last CPU online operation. So fall through and
5760 * restore the original sched domains by considering the
5761 * cpuset configurations.
5762 */
50e76632 5763 cpuset_force_rebuild();
3a101d05 5764 }
30e03acd 5765 cpuset_update_active_cpus();
3a101d05 5766}
e761b772 5767
40190a78 5768static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5769{
40190a78 5770 if (!cpuhp_tasks_frozen) {
06a76fe0 5771 if (dl_cpu_busy(cpu))
135fb3e1 5772 return -EBUSY;
30e03acd 5773 cpuset_update_active_cpus();
135fb3e1 5774 } else {
d35be8ba
SB
5775 num_cpus_frozen++;
5776 partition_sched_domains(1, NULL, NULL);
e761b772 5777 }
135fb3e1 5778 return 0;
e761b772 5779}
e761b772 5780
40190a78 5781int sched_cpu_activate(unsigned int cpu)
135fb3e1 5782{
7d976699 5783 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5784 struct rq_flags rf;
7d976699 5785
40190a78 5786 set_cpu_active(cpu, true);
135fb3e1 5787
40190a78 5788 if (sched_smp_initialized) {
135fb3e1 5789 sched_domains_numa_masks_set(cpu);
40190a78 5790 cpuset_cpu_active();
e761b772 5791 }
7d976699
TG
5792
5793 /*
5794 * Put the rq online, if not already. This happens:
5795 *
5796 * 1) In the early boot process, because we build the real domains
d1ccc66d 5797 * after all CPUs have been brought up.
7d976699
TG
5798 *
5799 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5800 * domains.
5801 */
8a8c69c3 5802 rq_lock_irqsave(rq, &rf);
7d976699
TG
5803 if (rq->rd) {
5804 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5805 set_rq_online(rq);
5806 }
8a8c69c3 5807 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5808
5809 update_max_interval();
5810
40190a78 5811 return 0;
135fb3e1
TG
5812}
5813
40190a78 5814int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5815{
135fb3e1
TG
5816 int ret;
5817
40190a78 5818 set_cpu_active(cpu, false);
b2454caa
PZ
5819 /*
5820 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5821 * users of this state to go away such that all new such users will
5822 * observe it.
5823 *
b2454caa
PZ
5824 * Do sync before park smpboot threads to take care the rcu boost case.
5825 */
d7d34d5e 5826 synchronize_rcu_mult(call_rcu, call_rcu_sched);
40190a78
TG
5827
5828 if (!sched_smp_initialized)
5829 return 0;
5830
5831 ret = cpuset_cpu_inactive(cpu);
5832 if (ret) {
5833 set_cpu_active(cpu, true);
5834 return ret;
135fb3e1 5835 }
40190a78
TG
5836 sched_domains_numa_masks_clear(cpu);
5837 return 0;
135fb3e1
TG
5838}
5839
94baf7a5
TG
5840static void sched_rq_cpu_starting(unsigned int cpu)
5841{
5842 struct rq *rq = cpu_rq(cpu);
5843
5844 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5845 update_max_interval();
5846}
5847
135fb3e1
TG
5848int sched_cpu_starting(unsigned int cpu)
5849{
5850 set_cpu_rq_start_time(cpu);
94baf7a5 5851 sched_rq_cpu_starting(cpu);
d84b3131 5852 sched_tick_start(cpu);
135fb3e1 5853 return 0;
e761b772 5854}
e761b772 5855
f2785ddb
TG
5856#ifdef CONFIG_HOTPLUG_CPU
5857int sched_cpu_dying(unsigned int cpu)
5858{
5859 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5860 struct rq_flags rf;
f2785ddb
TG
5861
5862 /* Handle pending wakeups and then migrate everything off */
5863 sched_ttwu_pending();
d84b3131 5864 sched_tick_stop(cpu);
8a8c69c3
PZ
5865
5866 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5867 if (rq->rd) {
5868 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5869 set_rq_offline(rq);
5870 }
8a8c69c3 5871 migrate_tasks(rq, &rf);
f2785ddb 5872 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5873 rq_unlock_irqrestore(rq, &rf);
5874
f2785ddb
TG
5875 calc_load_migrate(rq);
5876 update_max_interval();
00357f5e 5877 nohz_balance_exit_idle(rq);
e5ef27d0 5878 hrtick_clear(rq);
f2785ddb
TG
5879 return 0;
5880}
5881#endif
5882
1b568f0a
PZ
5883#ifdef CONFIG_SCHED_SMT
5884DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5885
5886static void sched_init_smt(void)
5887{
5888 /*
5889 * We've enumerated all CPUs and will assume that if any CPU
5890 * has SMT siblings, CPU0 will too.
5891 */
5892 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5893 static_branch_enable(&sched_smt_present);
5894}
5895#else
5896static inline void sched_init_smt(void) { }
5897#endif
5898
1da177e4
LT
5899void __init sched_init_smp(void)
5900{
cb83b629
PZ
5901 sched_init_numa();
5902
6acce3ef
PZ
5903 /*
5904 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5905 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5906 * happen.
5907 */
712555ee 5908 mutex_lock(&sched_domains_mutex);
8d5dc512 5909 sched_init_domains(cpu_active_mask);
712555ee 5910 mutex_unlock(&sched_domains_mutex);
e761b772 5911
5c1e1767 5912 /* Move init over to a non-isolated CPU */
edb93821 5913 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5914 BUG();
19978ca6 5915 sched_init_granularity();
4212823f 5916
0e3900e6 5917 init_sched_rt_class();
1baca4ce 5918 init_sched_dl_class();
1b568f0a
PZ
5919
5920 sched_init_smt();
5921
e26fbffd 5922 sched_smp_initialized = true;
1da177e4 5923}
e26fbffd
TG
5924
5925static int __init migration_init(void)
5926{
94baf7a5 5927 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5928 return 0;
1da177e4 5929}
e26fbffd
TG
5930early_initcall(migration_init);
5931
1da177e4
LT
5932#else
5933void __init sched_init_smp(void)
5934{
19978ca6 5935 sched_init_granularity();
1da177e4
LT
5936}
5937#endif /* CONFIG_SMP */
5938
5939int in_sched_functions(unsigned long addr)
5940{
1da177e4
LT
5941 return in_lock_functions(addr) ||
5942 (addr >= (unsigned long)__sched_text_start
5943 && addr < (unsigned long)__sched_text_end);
5944}
5945
029632fb 5946#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5947/*
5948 * Default task group.
5949 * Every task in system belongs to this group at bootup.
5950 */
029632fb 5951struct task_group root_task_group;
35cf4e50 5952LIST_HEAD(task_groups);
b0367629
WL
5953
5954/* Cacheline aligned slab cache for task_group */
5955static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5956#endif
6f505b16 5957
e6252c3e 5958DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5959DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5960
1da177e4
LT
5961void __init sched_init(void)
5962{
dd41f596 5963 int i, j;
434d53b0
MT
5964 unsigned long alloc_size = 0, ptr;
5965
9881b024 5966 sched_clock_init();
5822a454 5967 wait_bit_init();
9dcb8b68 5968
434d53b0
MT
5969#ifdef CONFIG_FAIR_GROUP_SCHED
5970 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5971#endif
5972#ifdef CONFIG_RT_GROUP_SCHED
5973 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5974#endif
434d53b0 5975 if (alloc_size) {
36b7b6d4 5976 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5977
5978#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5979 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5980 ptr += nr_cpu_ids * sizeof(void **);
5981
07e06b01 5982 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5983 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5984
6d6bc0ad 5985#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5986#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5987 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5988 ptr += nr_cpu_ids * sizeof(void **);
5989
07e06b01 5990 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5991 ptr += nr_cpu_ids * sizeof(void **);
5992
6d6bc0ad 5993#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5994 }
df7c8e84 5995#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5996 for_each_possible_cpu(i) {
5997 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5998 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5999 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6000 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6001 }
b74e6278 6002#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6003
d1ccc66d
IM
6004 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6005 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6006
57d885fe
GH
6007#ifdef CONFIG_SMP
6008 init_defrootdomain();
6009#endif
6010
d0b27fa7 6011#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6012 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6013 global_rt_period(), global_rt_runtime());
6d6bc0ad 6014#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6015
7c941438 6016#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6017 task_group_cache = KMEM_CACHE(task_group, 0);
6018
07e06b01
YZ
6019 list_add(&root_task_group.list, &task_groups);
6020 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6021 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6022 autogroup_init(&init_task);
7c941438 6023#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6024
0a945022 6025 for_each_possible_cpu(i) {
70b97a7f 6026 struct rq *rq;
1da177e4
LT
6027
6028 rq = cpu_rq(i);
05fa785c 6029 raw_spin_lock_init(&rq->lock);
7897986b 6030 rq->nr_running = 0;
dce48a84
TG
6031 rq->calc_load_active = 0;
6032 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6033 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6034 init_rt_rq(&rq->rt);
6035 init_dl_rq(&rq->dl);
dd41f596 6036#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6037 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6038 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6039 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6040 /*
d1ccc66d 6041 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6042 *
6043 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6044 * gets 100% of the CPU resources in the system. This overall
6045 * system CPU resource is divided among the tasks of
07e06b01 6046 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6047 * based on each entity's (task or task-group's) weight
6048 * (se->load.weight).
6049 *
07e06b01 6050 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6051 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6052 * then A0's share of the CPU resource is:
354d60c2 6053 *
0d905bca 6054 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6055 *
07e06b01
YZ
6056 * We achieve this by letting root_task_group's tasks sit
6057 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6058 */
ab84d31e 6059 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6060 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6061#endif /* CONFIG_FAIR_GROUP_SCHED */
6062
6063 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6064#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6065 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6066#endif
1da177e4 6067
dd41f596
IM
6068 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6069 rq->cpu_load[j] = 0;
fdf3e95d 6070
1da177e4 6071#ifdef CONFIG_SMP
41c7ce9a 6072 rq->sd = NULL;
57d885fe 6073 rq->rd = NULL;
ca6d75e6 6074 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6075 rq->balance_callback = NULL;
1da177e4 6076 rq->active_balance = 0;
dd41f596 6077 rq->next_balance = jiffies;
1da177e4 6078 rq->push_cpu = 0;
0a2966b4 6079 rq->cpu = i;
1f11eb6a 6080 rq->online = 0;
eae0c9df
MG
6081 rq->idle_stamp = 0;
6082 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6083 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6084
6085 INIT_LIST_HEAD(&rq->cfs_tasks);
6086
dc938520 6087 rq_attach_root(rq, &def_root_domain);
3451d024 6088#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6089 rq->last_load_update_tick = jiffies;
e022e0d3 6090 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6091 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6092#endif
9fd81dd5 6093#endif /* CONFIG_SMP */
77a021be 6094 hrtick_rq_init(rq);
1da177e4 6095 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6096 }
6097
9059393e 6098 set_load_weight(&init_task, false);
b50f60ce 6099
1da177e4
LT
6100 /*
6101 * The boot idle thread does lazy MMU switching as well:
6102 */
f1f10076 6103 mmgrab(&init_mm);
1da177e4
LT
6104 enter_lazy_tlb(&init_mm, current);
6105
6106 /*
6107 * Make us the idle thread. Technically, schedule() should not be
6108 * called from this thread, however somewhere below it might be,
6109 * but because we are the idle thread, we just pick up running again
6110 * when this runqueue becomes "idle".
6111 */
6112 init_idle(current, smp_processor_id());
dce48a84
TG
6113
6114 calc_load_update = jiffies + LOAD_FREQ;
6115
bf4d83f6 6116#ifdef CONFIG_SMP
29d5e047 6117 idle_thread_set_boot_cpu();
9cf7243d 6118 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6119#endif
6120 init_sched_fair_class();
6a7b3dc3 6121
4698f88c
JP
6122 init_schedstats();
6123
6892b75e 6124 scheduler_running = 1;
1da177e4
LT
6125}
6126
d902db1e 6127#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6128static inline int preempt_count_equals(int preempt_offset)
6129{
da7142e2 6130 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6131
4ba8216c 6132 return (nested == preempt_offset);
e4aafea2
FW
6133}
6134
d894837f 6135void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6136{
8eb23b9f
PZ
6137 /*
6138 * Blocking primitives will set (and therefore destroy) current->state,
6139 * since we will exit with TASK_RUNNING make sure we enter with it,
6140 * otherwise we will destroy state.
6141 */
00845eb9 6142 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6143 "do not call blocking ops when !TASK_RUNNING; "
6144 "state=%lx set at [<%p>] %pS\n",
6145 current->state,
6146 (void *)current->task_state_change,
00845eb9 6147 (void *)current->task_state_change);
8eb23b9f 6148
3427445a
PZ
6149 ___might_sleep(file, line, preempt_offset);
6150}
6151EXPORT_SYMBOL(__might_sleep);
6152
6153void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6154{
d1ccc66d
IM
6155 /* Ratelimiting timestamp: */
6156 static unsigned long prev_jiffy;
6157
d1c6d149 6158 unsigned long preempt_disable_ip;
1da177e4 6159
d1ccc66d
IM
6160 /* WARN_ON_ONCE() by default, no rate limit required: */
6161 rcu_sleep_check();
6162
db273be2
TG
6163 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6164 !is_idle_task(current)) ||
1c3c5eab
TG
6165 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6166 oops_in_progress)
aef745fc 6167 return;
1c3c5eab 6168
aef745fc
IM
6169 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6170 return;
6171 prev_jiffy = jiffies;
6172
d1ccc66d 6173 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6174 preempt_disable_ip = get_preempt_disable_ip(current);
6175
3df0fc5b
PZ
6176 printk(KERN_ERR
6177 "BUG: sleeping function called from invalid context at %s:%d\n",
6178 file, line);
6179 printk(KERN_ERR
6180 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6181 in_atomic(), irqs_disabled(),
6182 current->pid, current->comm);
aef745fc 6183
a8b686b3
ES
6184 if (task_stack_end_corrupted(current))
6185 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6186
aef745fc
IM
6187 debug_show_held_locks(current);
6188 if (irqs_disabled())
6189 print_irqtrace_events(current);
d1c6d149
VN
6190 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6191 && !preempt_count_equals(preempt_offset)) {
8f47b187 6192 pr_err("Preemption disabled at:");
d1c6d149 6193 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6194 pr_cont("\n");
6195 }
aef745fc 6196 dump_stack();
f0b22e39 6197 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6198}
3427445a 6199EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6200#endif
6201
6202#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6203void normalize_rt_tasks(void)
3a5e4dc1 6204{
dbc7f069 6205 struct task_struct *g, *p;
d50dde5a
DF
6206 struct sched_attr attr = {
6207 .sched_policy = SCHED_NORMAL,
6208 };
1da177e4 6209
3472eaa1 6210 read_lock(&tasklist_lock);
5d07f420 6211 for_each_process_thread(g, p) {
178be793
IM
6212 /*
6213 * Only normalize user tasks:
6214 */
3472eaa1 6215 if (p->flags & PF_KTHREAD)
178be793
IM
6216 continue;
6217
4fa8d299
JP
6218 p->se.exec_start = 0;
6219 schedstat_set(p->se.statistics.wait_start, 0);
6220 schedstat_set(p->se.statistics.sleep_start, 0);
6221 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6222
aab03e05 6223 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6224 /*
6225 * Renice negative nice level userspace
6226 * tasks back to 0:
6227 */
3472eaa1 6228 if (task_nice(p) < 0)
dd41f596 6229 set_user_nice(p, 0);
1da177e4 6230 continue;
dd41f596 6231 }
1da177e4 6232
dbc7f069 6233 __sched_setscheduler(p, &attr, false, false);
5d07f420 6234 }
3472eaa1 6235 read_unlock(&tasklist_lock);
1da177e4
LT
6236}
6237
6238#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6239
67fc4e0c 6240#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6241/*
67fc4e0c 6242 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6243 *
6244 * They can only be called when the whole system has been
6245 * stopped - every CPU needs to be quiescent, and no scheduling
6246 * activity can take place. Using them for anything else would
6247 * be a serious bug, and as a result, they aren't even visible
6248 * under any other configuration.
6249 */
6250
6251/**
d1ccc66d 6252 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6253 * @cpu: the processor in question.
6254 *
6255 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6256 *
6257 * Return: The current task for @cpu.
1df5c10a 6258 */
36c8b586 6259struct task_struct *curr_task(int cpu)
1df5c10a
LT
6260{
6261 return cpu_curr(cpu);
6262}
6263
67fc4e0c
JW
6264#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6265
6266#ifdef CONFIG_IA64
1df5c10a 6267/**
d1ccc66d 6268 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6269 * @cpu: the processor in question.
6270 * @p: the task pointer to set.
6271 *
6272 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6273 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6274 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6275 * must be called with all CPU's synchronized, and interrupts disabled, the
6276 * and caller must save the original value of the current task (see
6277 * curr_task() above) and restore that value before reenabling interrupts and
6278 * re-starting the system.
6279 *
6280 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6281 */
a458ae2e 6282void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6283{
6284 cpu_curr(cpu) = p;
6285}
6286
6287#endif
29f59db3 6288
7c941438 6289#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6290/* task_group_lock serializes the addition/removal of task groups */
6291static DEFINE_SPINLOCK(task_group_lock);
6292
2f5177f0 6293static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6294{
6295 free_fair_sched_group(tg);
6296 free_rt_sched_group(tg);
e9aa1dd1 6297 autogroup_free(tg);
b0367629 6298 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6299}
6300
6301/* allocate runqueue etc for a new task group */
ec7dc8ac 6302struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6303{
6304 struct task_group *tg;
bccbe08a 6305
b0367629 6306 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6307 if (!tg)
6308 return ERR_PTR(-ENOMEM);
6309
ec7dc8ac 6310 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6311 goto err;
6312
ec7dc8ac 6313 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6314 goto err;
6315
ace783b9
LZ
6316 return tg;
6317
6318err:
2f5177f0 6319 sched_free_group(tg);
ace783b9
LZ
6320 return ERR_PTR(-ENOMEM);
6321}
6322
6323void sched_online_group(struct task_group *tg, struct task_group *parent)
6324{
6325 unsigned long flags;
6326
8ed36996 6327 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6328 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6329
d1ccc66d
IM
6330 /* Root should already exist: */
6331 WARN_ON(!parent);
f473aa5e
PZ
6332
6333 tg->parent = parent;
f473aa5e 6334 INIT_LIST_HEAD(&tg->children);
09f2724a 6335 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6336 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6337
6338 online_fair_sched_group(tg);
29f59db3
SV
6339}
6340
9b5b7751 6341/* rcu callback to free various structures associated with a task group */
2f5177f0 6342static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6343{
d1ccc66d 6344 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6345 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6346}
6347
4cf86d77 6348void sched_destroy_group(struct task_group *tg)
ace783b9 6349{
d1ccc66d 6350 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6351 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6352}
6353
6354void sched_offline_group(struct task_group *tg)
29f59db3 6355{
8ed36996 6356 unsigned long flags;
29f59db3 6357
d1ccc66d 6358 /* End participation in shares distribution: */
6fe1f348 6359 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6360
6361 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6362 list_del_rcu(&tg->list);
f473aa5e 6363 list_del_rcu(&tg->siblings);
8ed36996 6364 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6365}
6366
ea86cb4b 6367static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6368{
8323f26c 6369 struct task_group *tg;
29f59db3 6370
f7b8a47d
KT
6371 /*
6372 * All callers are synchronized by task_rq_lock(); we do not use RCU
6373 * which is pointless here. Thus, we pass "true" to task_css_check()
6374 * to prevent lockdep warnings.
6375 */
6376 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6377 struct task_group, css);
6378 tg = autogroup_task_group(tsk, tg);
6379 tsk->sched_task_group = tg;
6380
810b3817 6381#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6382 if (tsk->sched_class->task_change_group)
6383 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6384 else
810b3817 6385#endif
b2b5ce02 6386 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6387}
6388
6389/*
6390 * Change task's runqueue when it moves between groups.
6391 *
6392 * The caller of this function should have put the task in its new group by
6393 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6394 * its new group.
6395 */
6396void sched_move_task(struct task_struct *tsk)
6397{
7a57f32a
PZ
6398 int queued, running, queue_flags =
6399 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6400 struct rq_flags rf;
6401 struct rq *rq;
6402
6403 rq = task_rq_lock(tsk, &rf);
1b1d6225 6404 update_rq_clock(rq);
ea86cb4b
VG
6405
6406 running = task_current(rq, tsk);
6407 queued = task_on_rq_queued(tsk);
6408
6409 if (queued)
7a57f32a 6410 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6411 if (running)
ea86cb4b
VG
6412 put_prev_task(rq, tsk);
6413
6414 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6415
da0c1e65 6416 if (queued)
7a57f32a 6417 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6418 if (running)
b2bf6c31 6419 set_curr_task(rq, tsk);
29f59db3 6420
eb580751 6421 task_rq_unlock(rq, tsk, &rf);
29f59db3 6422}
68318b8e 6423
a7c6d554 6424static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6425{
a7c6d554 6426 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6427}
6428
eb95419b
TH
6429static struct cgroup_subsys_state *
6430cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6431{
eb95419b
TH
6432 struct task_group *parent = css_tg(parent_css);
6433 struct task_group *tg;
68318b8e 6434
eb95419b 6435 if (!parent) {
68318b8e 6436 /* This is early initialization for the top cgroup */
07e06b01 6437 return &root_task_group.css;
68318b8e
SV
6438 }
6439
ec7dc8ac 6440 tg = sched_create_group(parent);
68318b8e
SV
6441 if (IS_ERR(tg))
6442 return ERR_PTR(-ENOMEM);
6443
68318b8e
SV
6444 return &tg->css;
6445}
6446
96b77745
KK
6447/* Expose task group only after completing cgroup initialization */
6448static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6449{
6450 struct task_group *tg = css_tg(css);
6451 struct task_group *parent = css_tg(css->parent);
6452
6453 if (parent)
6454 sched_online_group(tg, parent);
6455 return 0;
6456}
6457
2f5177f0 6458static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6459{
eb95419b 6460 struct task_group *tg = css_tg(css);
ace783b9 6461
2f5177f0 6462 sched_offline_group(tg);
ace783b9
LZ
6463}
6464
eb95419b 6465static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6466{
eb95419b 6467 struct task_group *tg = css_tg(css);
68318b8e 6468
2f5177f0
PZ
6469 /*
6470 * Relies on the RCU grace period between css_released() and this.
6471 */
6472 sched_free_group(tg);
ace783b9
LZ
6473}
6474
ea86cb4b
VG
6475/*
6476 * This is called before wake_up_new_task(), therefore we really only
6477 * have to set its group bits, all the other stuff does not apply.
6478 */
b53202e6 6479static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6480{
ea86cb4b
VG
6481 struct rq_flags rf;
6482 struct rq *rq;
6483
6484 rq = task_rq_lock(task, &rf);
6485
80f5c1b8 6486 update_rq_clock(rq);
ea86cb4b
VG
6487 sched_change_group(task, TASK_SET_GROUP);
6488
6489 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6490}
6491
1f7dd3e5 6492static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6493{
bb9d97b6 6494 struct task_struct *task;
1f7dd3e5 6495 struct cgroup_subsys_state *css;
7dc603c9 6496 int ret = 0;
bb9d97b6 6497
1f7dd3e5 6498 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6499#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6500 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6501 return -EINVAL;
b68aa230 6502#else
bb9d97b6
TH
6503 /* We don't support RT-tasks being in separate groups */
6504 if (task->sched_class != &fair_sched_class)
6505 return -EINVAL;
b68aa230 6506#endif
7dc603c9
PZ
6507 /*
6508 * Serialize against wake_up_new_task() such that if its
6509 * running, we're sure to observe its full state.
6510 */
6511 raw_spin_lock_irq(&task->pi_lock);
6512 /*
6513 * Avoid calling sched_move_task() before wake_up_new_task()
6514 * has happened. This would lead to problems with PELT, due to
6515 * move wanting to detach+attach while we're not attached yet.
6516 */
6517 if (task->state == TASK_NEW)
6518 ret = -EINVAL;
6519 raw_spin_unlock_irq(&task->pi_lock);
6520
6521 if (ret)
6522 break;
bb9d97b6 6523 }
7dc603c9 6524 return ret;
be367d09 6525}
68318b8e 6526
1f7dd3e5 6527static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6528{
bb9d97b6 6529 struct task_struct *task;
1f7dd3e5 6530 struct cgroup_subsys_state *css;
bb9d97b6 6531
1f7dd3e5 6532 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6533 sched_move_task(task);
68318b8e
SV
6534}
6535
052f1dc7 6536#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6537static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6538 struct cftype *cftype, u64 shareval)
68318b8e 6539{
182446d0 6540 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6541}
6542
182446d0
TH
6543static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6544 struct cftype *cft)
68318b8e 6545{
182446d0 6546 struct task_group *tg = css_tg(css);
68318b8e 6547
c8b28116 6548 return (u64) scale_load_down(tg->shares);
68318b8e 6549}
ab84d31e
PT
6550
6551#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6552static DEFINE_MUTEX(cfs_constraints_mutex);
6553
ab84d31e
PT
6554const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6555const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6556
a790de99
PT
6557static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6558
ab84d31e
PT
6559static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6560{
56f570e5 6561 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6562 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6563
6564 if (tg == &root_task_group)
6565 return -EINVAL;
6566
6567 /*
6568 * Ensure we have at some amount of bandwidth every period. This is
6569 * to prevent reaching a state of large arrears when throttled via
6570 * entity_tick() resulting in prolonged exit starvation.
6571 */
6572 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6573 return -EINVAL;
6574
6575 /*
6576 * Likewise, bound things on the otherside by preventing insane quota
6577 * periods. This also allows us to normalize in computing quota
6578 * feasibility.
6579 */
6580 if (period > max_cfs_quota_period)
6581 return -EINVAL;
6582
0e59bdae
KT
6583 /*
6584 * Prevent race between setting of cfs_rq->runtime_enabled and
6585 * unthrottle_offline_cfs_rqs().
6586 */
6587 get_online_cpus();
a790de99
PT
6588 mutex_lock(&cfs_constraints_mutex);
6589 ret = __cfs_schedulable(tg, period, quota);
6590 if (ret)
6591 goto out_unlock;
6592
58088ad0 6593 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6594 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6595 /*
6596 * If we need to toggle cfs_bandwidth_used, off->on must occur
6597 * before making related changes, and on->off must occur afterwards
6598 */
6599 if (runtime_enabled && !runtime_was_enabled)
6600 cfs_bandwidth_usage_inc();
ab84d31e
PT
6601 raw_spin_lock_irq(&cfs_b->lock);
6602 cfs_b->period = ns_to_ktime(period);
6603 cfs_b->quota = quota;
58088ad0 6604
a9cf55b2 6605 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6606
6607 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6608 if (runtime_enabled)
6609 start_cfs_bandwidth(cfs_b);
d1ccc66d 6610
ab84d31e
PT
6611 raw_spin_unlock_irq(&cfs_b->lock);
6612
0e59bdae 6613 for_each_online_cpu(i) {
ab84d31e 6614 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6615 struct rq *rq = cfs_rq->rq;
8a8c69c3 6616 struct rq_flags rf;
ab84d31e 6617
8a8c69c3 6618 rq_lock_irq(rq, &rf);
58088ad0 6619 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6620 cfs_rq->runtime_remaining = 0;
671fd9da 6621
029632fb 6622 if (cfs_rq->throttled)
671fd9da 6623 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6624 rq_unlock_irq(rq, &rf);
ab84d31e 6625 }
1ee14e6c
BS
6626 if (runtime_was_enabled && !runtime_enabled)
6627 cfs_bandwidth_usage_dec();
a790de99
PT
6628out_unlock:
6629 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6630 put_online_cpus();
ab84d31e 6631
a790de99 6632 return ret;
ab84d31e
PT
6633}
6634
6635int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6636{
6637 u64 quota, period;
6638
029632fb 6639 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6640 if (cfs_quota_us < 0)
6641 quota = RUNTIME_INF;
6642 else
6643 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6644
6645 return tg_set_cfs_bandwidth(tg, period, quota);
6646}
6647
6648long tg_get_cfs_quota(struct task_group *tg)
6649{
6650 u64 quota_us;
6651
029632fb 6652 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6653 return -1;
6654
029632fb 6655 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6656 do_div(quota_us, NSEC_PER_USEC);
6657
6658 return quota_us;
6659}
6660
6661int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6662{
6663 u64 quota, period;
6664
6665 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6666 quota = tg->cfs_bandwidth.quota;
ab84d31e 6667
ab84d31e
PT
6668 return tg_set_cfs_bandwidth(tg, period, quota);
6669}
6670
6671long tg_get_cfs_period(struct task_group *tg)
6672{
6673 u64 cfs_period_us;
6674
029632fb 6675 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6676 do_div(cfs_period_us, NSEC_PER_USEC);
6677
6678 return cfs_period_us;
6679}
6680
182446d0
TH
6681static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6682 struct cftype *cft)
ab84d31e 6683{
182446d0 6684 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6685}
6686
182446d0
TH
6687static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6688 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6689{
182446d0 6690 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6691}
6692
182446d0
TH
6693static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6694 struct cftype *cft)
ab84d31e 6695{
182446d0 6696 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6697}
6698
182446d0
TH
6699static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6700 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6701{
182446d0 6702 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6703}
6704
a790de99
PT
6705struct cfs_schedulable_data {
6706 struct task_group *tg;
6707 u64 period, quota;
6708};
6709
6710/*
6711 * normalize group quota/period to be quota/max_period
6712 * note: units are usecs
6713 */
6714static u64 normalize_cfs_quota(struct task_group *tg,
6715 struct cfs_schedulable_data *d)
6716{
6717 u64 quota, period;
6718
6719 if (tg == d->tg) {
6720 period = d->period;
6721 quota = d->quota;
6722 } else {
6723 period = tg_get_cfs_period(tg);
6724 quota = tg_get_cfs_quota(tg);
6725 }
6726
6727 /* note: these should typically be equivalent */
6728 if (quota == RUNTIME_INF || quota == -1)
6729 return RUNTIME_INF;
6730
6731 return to_ratio(period, quota);
6732}
6733
6734static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6735{
6736 struct cfs_schedulable_data *d = data;
029632fb 6737 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6738 s64 quota = 0, parent_quota = -1;
6739
6740 if (!tg->parent) {
6741 quota = RUNTIME_INF;
6742 } else {
029632fb 6743 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6744
6745 quota = normalize_cfs_quota(tg, d);
9c58c79a 6746 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6747
6748 /*
c53593e5
TH
6749 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6750 * always take the min. On cgroup1, only inherit when no
d1ccc66d 6751 * limit is set:
a790de99 6752 */
c53593e5
TH
6753 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6754 quota = min(quota, parent_quota);
6755 } else {
6756 if (quota == RUNTIME_INF)
6757 quota = parent_quota;
6758 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6759 return -EINVAL;
6760 }
a790de99 6761 }
9c58c79a 6762 cfs_b->hierarchical_quota = quota;
a790de99
PT
6763
6764 return 0;
6765}
6766
6767static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6768{
8277434e 6769 int ret;
a790de99
PT
6770 struct cfs_schedulable_data data = {
6771 .tg = tg,
6772 .period = period,
6773 .quota = quota,
6774 };
6775
6776 if (quota != RUNTIME_INF) {
6777 do_div(data.period, NSEC_PER_USEC);
6778 do_div(data.quota, NSEC_PER_USEC);
6779 }
6780
8277434e
PT
6781 rcu_read_lock();
6782 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6783 rcu_read_unlock();
6784
6785 return ret;
a790de99 6786}
e8da1b18 6787
a1f7164c 6788static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6789{
2da8ca82 6790 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6791 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6792
44ffc75b
TH
6793 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6794 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6795 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
6796
6797 return 0;
6798}
ab84d31e 6799#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6800#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6801
052f1dc7 6802#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6803static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6804 struct cftype *cft, s64 val)
6f505b16 6805{
182446d0 6806 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6807}
6808
182446d0
TH
6809static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6810 struct cftype *cft)
6f505b16 6811{
182446d0 6812 return sched_group_rt_runtime(css_tg(css));
6f505b16 6813}
d0b27fa7 6814
182446d0
TH
6815static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6816 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6817{
182446d0 6818 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6819}
6820
182446d0
TH
6821static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6822 struct cftype *cft)
d0b27fa7 6823{
182446d0 6824 return sched_group_rt_period(css_tg(css));
d0b27fa7 6825}
6d6bc0ad 6826#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6827
a1f7164c 6828static struct cftype cpu_legacy_files[] = {
052f1dc7 6829#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6830 {
6831 .name = "shares",
f4c753b7
PM
6832 .read_u64 = cpu_shares_read_u64,
6833 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6834 },
052f1dc7 6835#endif
ab84d31e
PT
6836#ifdef CONFIG_CFS_BANDWIDTH
6837 {
6838 .name = "cfs_quota_us",
6839 .read_s64 = cpu_cfs_quota_read_s64,
6840 .write_s64 = cpu_cfs_quota_write_s64,
6841 },
6842 {
6843 .name = "cfs_period_us",
6844 .read_u64 = cpu_cfs_period_read_u64,
6845 .write_u64 = cpu_cfs_period_write_u64,
6846 },
e8da1b18
NR
6847 {
6848 .name = "stat",
a1f7164c 6849 .seq_show = cpu_cfs_stat_show,
e8da1b18 6850 },
ab84d31e 6851#endif
052f1dc7 6852#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6853 {
9f0c1e56 6854 .name = "rt_runtime_us",
06ecb27c
PM
6855 .read_s64 = cpu_rt_runtime_read,
6856 .write_s64 = cpu_rt_runtime_write,
6f505b16 6857 },
d0b27fa7
PZ
6858 {
6859 .name = "rt_period_us",
f4c753b7
PM
6860 .read_u64 = cpu_rt_period_read_uint,
6861 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6862 },
052f1dc7 6863#endif
d1ccc66d 6864 { } /* Terminate */
68318b8e
SV
6865};
6866
d41bf8c9
TH
6867static int cpu_extra_stat_show(struct seq_file *sf,
6868 struct cgroup_subsys_state *css)
0d593634 6869{
0d593634
TH
6870#ifdef CONFIG_CFS_BANDWIDTH
6871 {
d41bf8c9 6872 struct task_group *tg = css_tg(css);
0d593634
TH
6873 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6874 u64 throttled_usec;
6875
6876 throttled_usec = cfs_b->throttled_time;
6877 do_div(throttled_usec, NSEC_PER_USEC);
6878
6879 seq_printf(sf, "nr_periods %d\n"
6880 "nr_throttled %d\n"
6881 "throttled_usec %llu\n",
6882 cfs_b->nr_periods, cfs_b->nr_throttled,
6883 throttled_usec);
6884 }
6885#endif
6886 return 0;
6887}
6888
6889#ifdef CONFIG_FAIR_GROUP_SCHED
6890static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6891 struct cftype *cft)
6892{
6893 struct task_group *tg = css_tg(css);
6894 u64 weight = scale_load_down(tg->shares);
6895
6896 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6897}
6898
6899static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6900 struct cftype *cft, u64 weight)
6901{
6902 /*
6903 * cgroup weight knobs should use the common MIN, DFL and MAX
6904 * values which are 1, 100 and 10000 respectively. While it loses
6905 * a bit of range on both ends, it maps pretty well onto the shares
6906 * value used by scheduler and the round-trip conversions preserve
6907 * the original value over the entire range.
6908 */
6909 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6910 return -ERANGE;
6911
6912 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6913
6914 return sched_group_set_shares(css_tg(css), scale_load(weight));
6915}
6916
6917static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6918 struct cftype *cft)
6919{
6920 unsigned long weight = scale_load_down(css_tg(css)->shares);
6921 int last_delta = INT_MAX;
6922 int prio, delta;
6923
6924 /* find the closest nice value to the current weight */
6925 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6926 delta = abs(sched_prio_to_weight[prio] - weight);
6927 if (delta >= last_delta)
6928 break;
6929 last_delta = delta;
6930 }
6931
6932 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6933}
6934
6935static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6936 struct cftype *cft, s64 nice)
6937{
6938 unsigned long weight;
7281c8de 6939 int idx;
0d593634
TH
6940
6941 if (nice < MIN_NICE || nice > MAX_NICE)
6942 return -ERANGE;
6943
7281c8de
PZ
6944 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6945 idx = array_index_nospec(idx, 40);
6946 weight = sched_prio_to_weight[idx];
6947
0d593634
TH
6948 return sched_group_set_shares(css_tg(css), scale_load(weight));
6949}
6950#endif
6951
6952static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6953 long period, long quota)
6954{
6955 if (quota < 0)
6956 seq_puts(sf, "max");
6957 else
6958 seq_printf(sf, "%ld", quota);
6959
6960 seq_printf(sf, " %ld\n", period);
6961}
6962
6963/* caller should put the current value in *@periodp before calling */
6964static int __maybe_unused cpu_period_quota_parse(char *buf,
6965 u64 *periodp, u64 *quotap)
6966{
6967 char tok[21]; /* U64_MAX */
6968
6969 if (!sscanf(buf, "%s %llu", tok, periodp))
6970 return -EINVAL;
6971
6972 *periodp *= NSEC_PER_USEC;
6973
6974 if (sscanf(tok, "%llu", quotap))
6975 *quotap *= NSEC_PER_USEC;
6976 else if (!strcmp(tok, "max"))
6977 *quotap = RUNTIME_INF;
6978 else
6979 return -EINVAL;
6980
6981 return 0;
6982}
6983
6984#ifdef CONFIG_CFS_BANDWIDTH
6985static int cpu_max_show(struct seq_file *sf, void *v)
6986{
6987 struct task_group *tg = css_tg(seq_css(sf));
6988
6989 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6990 return 0;
6991}
6992
6993static ssize_t cpu_max_write(struct kernfs_open_file *of,
6994 char *buf, size_t nbytes, loff_t off)
6995{
6996 struct task_group *tg = css_tg(of_css(of));
6997 u64 period = tg_get_cfs_period(tg);
6998 u64 quota;
6999 int ret;
7000
7001 ret = cpu_period_quota_parse(buf, &period, &quota);
7002 if (!ret)
7003 ret = tg_set_cfs_bandwidth(tg, period, quota);
7004 return ret ?: nbytes;
7005}
7006#endif
7007
7008static struct cftype cpu_files[] = {
0d593634
TH
7009#ifdef CONFIG_FAIR_GROUP_SCHED
7010 {
7011 .name = "weight",
7012 .flags = CFTYPE_NOT_ON_ROOT,
7013 .read_u64 = cpu_weight_read_u64,
7014 .write_u64 = cpu_weight_write_u64,
7015 },
7016 {
7017 .name = "weight.nice",
7018 .flags = CFTYPE_NOT_ON_ROOT,
7019 .read_s64 = cpu_weight_nice_read_s64,
7020 .write_s64 = cpu_weight_nice_write_s64,
7021 },
7022#endif
7023#ifdef CONFIG_CFS_BANDWIDTH
7024 {
7025 .name = "max",
7026 .flags = CFTYPE_NOT_ON_ROOT,
7027 .seq_show = cpu_max_show,
7028 .write = cpu_max_write,
7029 },
7030#endif
7031 { } /* terminate */
7032};
7033
073219e9 7034struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7035 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7036 .css_online = cpu_cgroup_css_online,
2f5177f0 7037 .css_released = cpu_cgroup_css_released,
92fb9748 7038 .css_free = cpu_cgroup_css_free,
d41bf8c9 7039 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7040 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7041 .can_attach = cpu_cgroup_can_attach,
7042 .attach = cpu_cgroup_attach,
a1f7164c 7043 .legacy_cftypes = cpu_legacy_files,
0d593634 7044 .dfl_cftypes = cpu_files,
b38e42e9 7045 .early_init = true,
0d593634 7046 .threaded = true,
68318b8e
SV
7047};
7048
052f1dc7 7049#endif /* CONFIG_CGROUP_SCHED */
d842de87 7050
b637a328
PM
7051void dump_cpu_task(int cpu)
7052{
7053 pr_info("Task dump for CPU %d:\n", cpu);
7054 sched_show_task(cpu_curr(cpu));
7055}
ed82b8a1
AK
7056
7057/*
7058 * Nice levels are multiplicative, with a gentle 10% change for every
7059 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7060 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7061 * that remained on nice 0.
7062 *
7063 * The "10% effect" is relative and cumulative: from _any_ nice level,
7064 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7065 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7066 * If a task goes up by ~10% and another task goes down by ~10% then
7067 * the relative distance between them is ~25%.)
7068 */
7069const int sched_prio_to_weight[40] = {
7070 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7071 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7072 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7073 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7074 /* 0 */ 1024, 820, 655, 526, 423,
7075 /* 5 */ 335, 272, 215, 172, 137,
7076 /* 10 */ 110, 87, 70, 56, 45,
7077 /* 15 */ 36, 29, 23, 18, 15,
7078};
7079
7080/*
7081 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7082 *
7083 * In cases where the weight does not change often, we can use the
7084 * precalculated inverse to speed up arithmetics by turning divisions
7085 * into multiplications:
7086 */
7087const u32 sched_prio_to_wmult[40] = {
7088 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7089 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7090 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7091 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7092 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7093 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7094 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7095 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7096};
14a7405b
IM
7097
7098#undef CREATE_TRACE_POINTS