sched: Add new scheduler syscalls to support an extended scheduling parameters ABI
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
1111 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1112
1113out:
ac66f547
PZ
1114 return ret;
1115}
1116
969c7921 1117struct migration_arg {
36c8b586 1118 struct task_struct *task;
1da177e4 1119 int dest_cpu;
70b97a7f 1120};
1da177e4 1121
969c7921
TH
1122static int migration_cpu_stop(void *data);
1123
1da177e4
LT
1124/*
1125 * wait_task_inactive - wait for a thread to unschedule.
1126 *
85ba2d86
RM
1127 * If @match_state is nonzero, it's the @p->state value just checked and
1128 * not expected to change. If it changes, i.e. @p might have woken up,
1129 * then return zero. When we succeed in waiting for @p to be off its CPU,
1130 * we return a positive number (its total switch count). If a second call
1131 * a short while later returns the same number, the caller can be sure that
1132 * @p has remained unscheduled the whole time.
1133 *
1da177e4
LT
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1139 */
85ba2d86 1140unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1141{
1142 unsigned long flags;
dd41f596 1143 int running, on_rq;
85ba2d86 1144 unsigned long ncsw;
70b97a7f 1145 struct rq *rq;
1da177e4 1146
3a5c359a
AK
1147 for (;;) {
1148 /*
1149 * We do the initial early heuristics without holding
1150 * any task-queue locks at all. We'll only try to get
1151 * the runqueue lock when things look like they will
1152 * work out!
1153 */
1154 rq = task_rq(p);
fa490cfd 1155
3a5c359a
AK
1156 /*
1157 * If the task is actively running on another CPU
1158 * still, just relax and busy-wait without holding
1159 * any locks.
1160 *
1161 * NOTE! Since we don't hold any locks, it's not
1162 * even sure that "rq" stays as the right runqueue!
1163 * But we don't care, since "task_running()" will
1164 * return false if the runqueue has changed and p
1165 * is actually now running somewhere else!
1166 */
85ba2d86
RM
1167 while (task_running(rq, p)) {
1168 if (match_state && unlikely(p->state != match_state))
1169 return 0;
3a5c359a 1170 cpu_relax();
85ba2d86 1171 }
fa490cfd 1172
3a5c359a
AK
1173 /*
1174 * Ok, time to look more closely! We need the rq
1175 * lock now, to be *sure*. If we're wrong, we'll
1176 * just go back and repeat.
1177 */
1178 rq = task_rq_lock(p, &flags);
27a9da65 1179 trace_sched_wait_task(p);
3a5c359a 1180 running = task_running(rq, p);
fd2f4419 1181 on_rq = p->on_rq;
85ba2d86 1182 ncsw = 0;
f31e11d8 1183 if (!match_state || p->state == match_state)
93dcf55f 1184 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1185 task_rq_unlock(rq, p, &flags);
fa490cfd 1186
85ba2d86
RM
1187 /*
1188 * If it changed from the expected state, bail out now.
1189 */
1190 if (unlikely(!ncsw))
1191 break;
1192
3a5c359a
AK
1193 /*
1194 * Was it really running after all now that we
1195 * checked with the proper locks actually held?
1196 *
1197 * Oops. Go back and try again..
1198 */
1199 if (unlikely(running)) {
1200 cpu_relax();
1201 continue;
1202 }
fa490cfd 1203
3a5c359a
AK
1204 /*
1205 * It's not enough that it's not actively running,
1206 * it must be off the runqueue _entirely_, and not
1207 * preempted!
1208 *
80dd99b3 1209 * So if it was still runnable (but just not actively
3a5c359a
AK
1210 * running right now), it's preempted, and we should
1211 * yield - it could be a while.
1212 */
1213 if (unlikely(on_rq)) {
8eb90c30
TG
1214 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1215
1216 set_current_state(TASK_UNINTERRUPTIBLE);
1217 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1218 continue;
1219 }
fa490cfd 1220
3a5c359a
AK
1221 /*
1222 * Ahh, all good. It wasn't running, and it wasn't
1223 * runnable, which means that it will never become
1224 * running in the future either. We're all done!
1225 */
1226 break;
1227 }
85ba2d86
RM
1228
1229 return ncsw;
1da177e4
LT
1230}
1231
1232/***
1233 * kick_process - kick a running thread to enter/exit the kernel
1234 * @p: the to-be-kicked thread
1235 *
1236 * Cause a process which is running on another CPU to enter
1237 * kernel-mode, without any delay. (to get signals handled.)
1238 *
25985edc 1239 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1240 * because all it wants to ensure is that the remote task enters
1241 * the kernel. If the IPI races and the task has been migrated
1242 * to another CPU then no harm is done and the purpose has been
1243 * achieved as well.
1244 */
36c8b586 1245void kick_process(struct task_struct *p)
1da177e4
LT
1246{
1247 int cpu;
1248
1249 preempt_disable();
1250 cpu = task_cpu(p);
1251 if ((cpu != smp_processor_id()) && task_curr(p))
1252 smp_send_reschedule(cpu);
1253 preempt_enable();
1254}
b43e3521 1255EXPORT_SYMBOL_GPL(kick_process);
476d139c 1256#endif /* CONFIG_SMP */
1da177e4 1257
970b13ba 1258#ifdef CONFIG_SMP
30da688e 1259/*
013fdb80 1260 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1261 */
5da9a0fb
PZ
1262static int select_fallback_rq(int cpu, struct task_struct *p)
1263{
aa00d89c
TC
1264 int nid = cpu_to_node(cpu);
1265 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1266 enum { cpuset, possible, fail } state = cpuset;
1267 int dest_cpu;
5da9a0fb 1268
aa00d89c
TC
1269 /*
1270 * If the node that the cpu is on has been offlined, cpu_to_node()
1271 * will return -1. There is no cpu on the node, and we should
1272 * select the cpu on the other node.
1273 */
1274 if (nid != -1) {
1275 nodemask = cpumask_of_node(nid);
1276
1277 /* Look for allowed, online CPU in same node. */
1278 for_each_cpu(dest_cpu, nodemask) {
1279 if (!cpu_online(dest_cpu))
1280 continue;
1281 if (!cpu_active(dest_cpu))
1282 continue;
1283 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1284 return dest_cpu;
1285 }
2baab4e9 1286 }
5da9a0fb 1287
2baab4e9
PZ
1288 for (;;) {
1289 /* Any allowed, online CPU? */
e3831edd 1290 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1291 if (!cpu_online(dest_cpu))
1292 continue;
1293 if (!cpu_active(dest_cpu))
1294 continue;
1295 goto out;
1296 }
5da9a0fb 1297
2baab4e9
PZ
1298 switch (state) {
1299 case cpuset:
1300 /* No more Mr. Nice Guy. */
1301 cpuset_cpus_allowed_fallback(p);
1302 state = possible;
1303 break;
1304
1305 case possible:
1306 do_set_cpus_allowed(p, cpu_possible_mask);
1307 state = fail;
1308 break;
1309
1310 case fail:
1311 BUG();
1312 break;
1313 }
1314 }
1315
1316out:
1317 if (state != cpuset) {
1318 /*
1319 * Don't tell them about moving exiting tasks or
1320 * kernel threads (both mm NULL), since they never
1321 * leave kernel.
1322 */
1323 if (p->mm && printk_ratelimit()) {
1324 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1325 task_pid_nr(p), p->comm, cpu);
1326 }
5da9a0fb
PZ
1327 }
1328
1329 return dest_cpu;
1330}
1331
e2912009 1332/*
013fdb80 1333 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1334 */
970b13ba 1335static inline
ac66f547 1336int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1337{
ac66f547 1338 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1339
1340 /*
1341 * In order not to call set_task_cpu() on a blocking task we need
1342 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343 * cpu.
1344 *
1345 * Since this is common to all placement strategies, this lives here.
1346 *
1347 * [ this allows ->select_task() to simply return task_cpu(p) and
1348 * not worry about this generic constraint ]
1349 */
fa17b507 1350 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1351 !cpu_online(cpu)))
5da9a0fb 1352 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1353
1354 return cpu;
970b13ba 1355}
09a40af5
MG
1356
1357static void update_avg(u64 *avg, u64 sample)
1358{
1359 s64 diff = sample - *avg;
1360 *avg += diff >> 3;
1361}
970b13ba
PZ
1362#endif
1363
d7c01d27 1364static void
b84cb5df 1365ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1366{
d7c01d27 1367#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1368 struct rq *rq = this_rq();
1369
d7c01d27
PZ
1370#ifdef CONFIG_SMP
1371 int this_cpu = smp_processor_id();
1372
1373 if (cpu == this_cpu) {
1374 schedstat_inc(rq, ttwu_local);
1375 schedstat_inc(p, se.statistics.nr_wakeups_local);
1376 } else {
1377 struct sched_domain *sd;
1378
1379 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1380 rcu_read_lock();
d7c01d27
PZ
1381 for_each_domain(this_cpu, sd) {
1382 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1383 schedstat_inc(sd, ttwu_wake_remote);
1384 break;
1385 }
1386 }
057f3fad 1387 rcu_read_unlock();
d7c01d27 1388 }
f339b9dc
PZ
1389
1390 if (wake_flags & WF_MIGRATED)
1391 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1392
d7c01d27
PZ
1393#endif /* CONFIG_SMP */
1394
1395 schedstat_inc(rq, ttwu_count);
9ed3811a 1396 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1397
1398 if (wake_flags & WF_SYNC)
9ed3811a 1399 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1400
d7c01d27
PZ
1401#endif /* CONFIG_SCHEDSTATS */
1402}
1403
1404static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1405{
9ed3811a 1406 activate_task(rq, p, en_flags);
fd2f4419 1407 p->on_rq = 1;
c2f7115e
PZ
1408
1409 /* if a worker is waking up, notify workqueue */
1410 if (p->flags & PF_WQ_WORKER)
1411 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1412}
1413
23f41eeb
PZ
1414/*
1415 * Mark the task runnable and perform wakeup-preemption.
1416 */
89363381 1417static void
23f41eeb 1418ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1419{
9ed3811a 1420 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1421 trace_sched_wakeup(p, true);
9ed3811a
TH
1422
1423 p->state = TASK_RUNNING;
1424#ifdef CONFIG_SMP
1425 if (p->sched_class->task_woken)
1426 p->sched_class->task_woken(rq, p);
1427
e69c6341 1428 if (rq->idle_stamp) {
78becc27 1429 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1430 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1431
abfafa54
JL
1432 update_avg(&rq->avg_idle, delta);
1433
1434 if (rq->avg_idle > max)
9ed3811a 1435 rq->avg_idle = max;
abfafa54 1436
9ed3811a
TH
1437 rq->idle_stamp = 0;
1438 }
1439#endif
1440}
1441
c05fbafb
PZ
1442static void
1443ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444{
1445#ifdef CONFIG_SMP
1446 if (p->sched_contributes_to_load)
1447 rq->nr_uninterruptible--;
1448#endif
1449
1450 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1451 ttwu_do_wakeup(rq, p, wake_flags);
1452}
1453
1454/*
1455 * Called in case the task @p isn't fully descheduled from its runqueue,
1456 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1457 * since all we need to do is flip p->state to TASK_RUNNING, since
1458 * the task is still ->on_rq.
1459 */
1460static int ttwu_remote(struct task_struct *p, int wake_flags)
1461{
1462 struct rq *rq;
1463 int ret = 0;
1464
1465 rq = __task_rq_lock(p);
1466 if (p->on_rq) {
1ad4ec0d
FW
1467 /* check_preempt_curr() may use rq clock */
1468 update_rq_clock(rq);
c05fbafb
PZ
1469 ttwu_do_wakeup(rq, p, wake_flags);
1470 ret = 1;
1471 }
1472 __task_rq_unlock(rq);
1473
1474 return ret;
1475}
1476
317f3941 1477#ifdef CONFIG_SMP
fa14ff4a 1478static void sched_ttwu_pending(void)
317f3941
PZ
1479{
1480 struct rq *rq = this_rq();
fa14ff4a
PZ
1481 struct llist_node *llist = llist_del_all(&rq->wake_list);
1482 struct task_struct *p;
317f3941
PZ
1483
1484 raw_spin_lock(&rq->lock);
1485
fa14ff4a
PZ
1486 while (llist) {
1487 p = llist_entry(llist, struct task_struct, wake_entry);
1488 llist = llist_next(llist);
317f3941
PZ
1489 ttwu_do_activate(rq, p, 0);
1490 }
1491
1492 raw_spin_unlock(&rq->lock);
1493}
1494
1495void scheduler_ipi(void)
1496{
f27dde8d
PZ
1497 /*
1498 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1499 * TIF_NEED_RESCHED remotely (for the first time) will also send
1500 * this IPI.
1501 */
1502 if (tif_need_resched())
1503 set_preempt_need_resched();
1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
fa717060 1720 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1721
e107be36
AK
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
cbee9f88
PZ
1725
1726#ifdef CONFIG_NUMA_BALANCING
1727 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1728 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1729 p->mm->numa_scan_seq = 0;
1730 }
1731
5e1576ed
RR
1732 if (clone_flags & CLONE_VM)
1733 p->numa_preferred_nid = current->numa_preferred_nid;
1734 else
1735 p->numa_preferred_nid = -1;
1736
cbee9f88
PZ
1737 p->node_stamp = 0ULL;
1738 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1739 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1740 p->numa_work.next = &p->numa_work;
f809ca9a 1741 p->numa_faults = NULL;
745d6147 1742 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1743
1744 INIT_LIST_HEAD(&p->numa_entry);
1745 p->numa_group = NULL;
cbee9f88 1746#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1747}
1748
1a687c2e 1749#ifdef CONFIG_NUMA_BALANCING
3105b86a 1750#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1751void set_numabalancing_state(bool enabled)
1752{
1753 if (enabled)
1754 sched_feat_set("NUMA");
1755 else
1756 sched_feat_set("NO_NUMA");
1757}
3105b86a
MG
1758#else
1759__read_mostly bool numabalancing_enabled;
1760
1761void set_numabalancing_state(bool enabled)
1762{
1763 numabalancing_enabled = enabled;
dd41f596 1764}
3105b86a 1765#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1766#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1767
1768/*
1769 * fork()/clone()-time setup:
1770 */
5e1576ed 1771void sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1772{
0122ec5b 1773 unsigned long flags;
dd41f596
IM
1774 int cpu = get_cpu();
1775
5e1576ed 1776 __sched_fork(clone_flags, p);
06b83b5f 1777 /*
0017d735 1778 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1779 * nobody will actually run it, and a signal or other external
1780 * event cannot wake it up and insert it on the runqueue either.
1781 */
0017d735 1782 p->state = TASK_RUNNING;
dd41f596 1783
c350a04e
MG
1784 /*
1785 * Make sure we do not leak PI boosting priority to the child.
1786 */
1787 p->prio = current->normal_prio;
1788
b9dc29e7
MG
1789 /*
1790 * Revert to default priority/policy on fork if requested.
1791 */
1792 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1793 if (task_has_rt_policy(p)) {
b9dc29e7 1794 p->policy = SCHED_NORMAL;
6c697bdf 1795 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1796 p->rt_priority = 0;
1797 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1798 p->static_prio = NICE_TO_PRIO(0);
1799
1800 p->prio = p->normal_prio = __normal_prio(p);
1801 set_load_weight(p);
6c697bdf 1802
b9dc29e7
MG
1803 /*
1804 * We don't need the reset flag anymore after the fork. It has
1805 * fulfilled its duty:
1806 */
1807 p->sched_reset_on_fork = 0;
1808 }
ca94c442 1809
2ddbf952
HS
1810 if (!rt_prio(p->prio))
1811 p->sched_class = &fair_sched_class;
b29739f9 1812
cd29fe6f
PZ
1813 if (p->sched_class->task_fork)
1814 p->sched_class->task_fork(p);
1815
86951599
PZ
1816 /*
1817 * The child is not yet in the pid-hash so no cgroup attach races,
1818 * and the cgroup is pinned to this child due to cgroup_fork()
1819 * is ran before sched_fork().
1820 *
1821 * Silence PROVE_RCU.
1822 */
0122ec5b 1823 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1824 set_task_cpu(p, cpu);
0122ec5b 1825 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1826
52f17b6c 1827#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1828 if (likely(sched_info_on()))
52f17b6c 1829 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1830#endif
3ca7a440
PZ
1831#if defined(CONFIG_SMP)
1832 p->on_cpu = 0;
4866cde0 1833#endif
01028747 1834 init_task_preempt_count(p);
806c09a7 1835#ifdef CONFIG_SMP
917b627d 1836 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1837#endif
917b627d 1838
476d139c 1839 put_cpu();
1da177e4
LT
1840}
1841
1842/*
1843 * wake_up_new_task - wake up a newly created task for the first time.
1844 *
1845 * This function will do some initial scheduler statistics housekeeping
1846 * that must be done for every newly created context, then puts the task
1847 * on the runqueue and wakes it.
1848 */
3e51e3ed 1849void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1850{
1851 unsigned long flags;
dd41f596 1852 struct rq *rq;
fabf318e 1853
ab2515c4 1854 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1855#ifdef CONFIG_SMP
1856 /*
1857 * Fork balancing, do it here and not earlier because:
1858 * - cpus_allowed can change in the fork path
1859 * - any previously selected cpu might disappear through hotplug
fabf318e 1860 */
ac66f547 1861 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1862#endif
1863
a75cdaa9
AS
1864 /* Initialize new task's runnable average */
1865 init_task_runnable_average(p);
ab2515c4 1866 rq = __task_rq_lock(p);
cd29fe6f 1867 activate_task(rq, p, 0);
fd2f4419 1868 p->on_rq = 1;
89363381 1869 trace_sched_wakeup_new(p, true);
a7558e01 1870 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1871#ifdef CONFIG_SMP
efbbd05a
PZ
1872 if (p->sched_class->task_woken)
1873 p->sched_class->task_woken(rq, p);
9a897c5a 1874#endif
0122ec5b 1875 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1876}
1877
e107be36
AK
1878#ifdef CONFIG_PREEMPT_NOTIFIERS
1879
1880/**
80dd99b3 1881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1882 * @notifier: notifier struct to register
e107be36
AK
1883 */
1884void preempt_notifier_register(struct preempt_notifier *notifier)
1885{
1886 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1887}
1888EXPORT_SYMBOL_GPL(preempt_notifier_register);
1889
1890/**
1891 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1892 * @notifier: notifier struct to unregister
e107be36
AK
1893 *
1894 * This is safe to call from within a preemption notifier.
1895 */
1896void preempt_notifier_unregister(struct preempt_notifier *notifier)
1897{
1898 hlist_del(&notifier->link);
1899}
1900EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1901
1902static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1903{
1904 struct preempt_notifier *notifier;
e107be36 1905
b67bfe0d 1906 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1907 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1908}
1909
1910static void
1911fire_sched_out_preempt_notifiers(struct task_struct *curr,
1912 struct task_struct *next)
1913{
1914 struct preempt_notifier *notifier;
e107be36 1915
b67bfe0d 1916 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1917 notifier->ops->sched_out(notifier, next);
1918}
1919
6d6bc0ad 1920#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1921
1922static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1923{
1924}
1925
1926static void
1927fire_sched_out_preempt_notifiers(struct task_struct *curr,
1928 struct task_struct *next)
1929{
1930}
1931
6d6bc0ad 1932#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1933
4866cde0
NP
1934/**
1935 * prepare_task_switch - prepare to switch tasks
1936 * @rq: the runqueue preparing to switch
421cee29 1937 * @prev: the current task that is being switched out
4866cde0
NP
1938 * @next: the task we are going to switch to.
1939 *
1940 * This is called with the rq lock held and interrupts off. It must
1941 * be paired with a subsequent finish_task_switch after the context
1942 * switch.
1943 *
1944 * prepare_task_switch sets up locking and calls architecture specific
1945 * hooks.
1946 */
e107be36
AK
1947static inline void
1948prepare_task_switch(struct rq *rq, struct task_struct *prev,
1949 struct task_struct *next)
4866cde0 1950{
895dd92c 1951 trace_sched_switch(prev, next);
43148951 1952 sched_info_switch(rq, prev, next);
fe4b04fa 1953 perf_event_task_sched_out(prev, next);
e107be36 1954 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1955 prepare_lock_switch(rq, next);
1956 prepare_arch_switch(next);
1957}
1958
1da177e4
LT
1959/**
1960 * finish_task_switch - clean up after a task-switch
344babaa 1961 * @rq: runqueue associated with task-switch
1da177e4
LT
1962 * @prev: the thread we just switched away from.
1963 *
4866cde0
NP
1964 * finish_task_switch must be called after the context switch, paired
1965 * with a prepare_task_switch call before the context switch.
1966 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1967 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1968 *
1969 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1970 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1971 * with the lock held can cause deadlocks; see schedule() for
1972 * details.)
1973 */
a9957449 1974static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1975 __releases(rq->lock)
1976{
1da177e4 1977 struct mm_struct *mm = rq->prev_mm;
55a101f8 1978 long prev_state;
1da177e4
LT
1979
1980 rq->prev_mm = NULL;
1981
1982 /*
1983 * A task struct has one reference for the use as "current".
c394cc9f 1984 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1985 * schedule one last time. The schedule call will never return, and
1986 * the scheduled task must drop that reference.
c394cc9f 1987 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1988 * still held, otherwise prev could be scheduled on another cpu, die
1989 * there before we look at prev->state, and then the reference would
1990 * be dropped twice.
1991 * Manfred Spraul <manfred@colorfullife.com>
1992 */
55a101f8 1993 prev_state = prev->state;
bf9fae9f 1994 vtime_task_switch(prev);
4866cde0 1995 finish_arch_switch(prev);
a8d757ef 1996 perf_event_task_sched_in(prev, current);
4866cde0 1997 finish_lock_switch(rq, prev);
01f23e16 1998 finish_arch_post_lock_switch();
e8fa1362 1999
e107be36 2000 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2001 if (mm)
2002 mmdrop(mm);
c394cc9f 2003 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2004 task_numa_free(prev);
2005
e6c390f2
DF
2006 if (prev->sched_class->task_dead)
2007 prev->sched_class->task_dead(prev);
2008
c6fd91f0 2009 /*
2010 * Remove function-return probe instances associated with this
2011 * task and put them back on the free list.
9761eea8 2012 */
c6fd91f0 2013 kprobe_flush_task(prev);
1da177e4 2014 put_task_struct(prev);
c6fd91f0 2015 }
99e5ada9
FW
2016
2017 tick_nohz_task_switch(current);
1da177e4
LT
2018}
2019
3f029d3c
GH
2020#ifdef CONFIG_SMP
2021
2022/* assumes rq->lock is held */
2023static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2024{
2025 if (prev->sched_class->pre_schedule)
2026 prev->sched_class->pre_schedule(rq, prev);
2027}
2028
2029/* rq->lock is NOT held, but preemption is disabled */
2030static inline void post_schedule(struct rq *rq)
2031{
2032 if (rq->post_schedule) {
2033 unsigned long flags;
2034
05fa785c 2035 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2036 if (rq->curr->sched_class->post_schedule)
2037 rq->curr->sched_class->post_schedule(rq);
05fa785c 2038 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2039
2040 rq->post_schedule = 0;
2041 }
2042}
2043
2044#else
da19ab51 2045
3f029d3c
GH
2046static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2047{
2048}
2049
2050static inline void post_schedule(struct rq *rq)
2051{
1da177e4
LT
2052}
2053
3f029d3c
GH
2054#endif
2055
1da177e4
LT
2056/**
2057 * schedule_tail - first thing a freshly forked thread must call.
2058 * @prev: the thread we just switched away from.
2059 */
36c8b586 2060asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2061 __releases(rq->lock)
2062{
70b97a7f
IM
2063 struct rq *rq = this_rq();
2064
4866cde0 2065 finish_task_switch(rq, prev);
da19ab51 2066
3f029d3c
GH
2067 /*
2068 * FIXME: do we need to worry about rq being invalidated by the
2069 * task_switch?
2070 */
2071 post_schedule(rq);
70b97a7f 2072
4866cde0
NP
2073#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2074 /* In this case, finish_task_switch does not reenable preemption */
2075 preempt_enable();
2076#endif
1da177e4 2077 if (current->set_child_tid)
b488893a 2078 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2079}
2080
2081/*
2082 * context_switch - switch to the new MM and the new
2083 * thread's register state.
2084 */
dd41f596 2085static inline void
70b97a7f 2086context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2087 struct task_struct *next)
1da177e4 2088{
dd41f596 2089 struct mm_struct *mm, *oldmm;
1da177e4 2090
e107be36 2091 prepare_task_switch(rq, prev, next);
fe4b04fa 2092
dd41f596
IM
2093 mm = next->mm;
2094 oldmm = prev->active_mm;
9226d125
ZA
2095 /*
2096 * For paravirt, this is coupled with an exit in switch_to to
2097 * combine the page table reload and the switch backend into
2098 * one hypercall.
2099 */
224101ed 2100 arch_start_context_switch(prev);
9226d125 2101
31915ab4 2102 if (!mm) {
1da177e4
LT
2103 next->active_mm = oldmm;
2104 atomic_inc(&oldmm->mm_count);
2105 enter_lazy_tlb(oldmm, next);
2106 } else
2107 switch_mm(oldmm, mm, next);
2108
31915ab4 2109 if (!prev->mm) {
1da177e4 2110 prev->active_mm = NULL;
1da177e4
LT
2111 rq->prev_mm = oldmm;
2112 }
3a5f5e48
IM
2113 /*
2114 * Since the runqueue lock will be released by the next
2115 * task (which is an invalid locking op but in the case
2116 * of the scheduler it's an obvious special-case), so we
2117 * do an early lockdep release here:
2118 */
2119#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2120 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2121#endif
1da177e4 2122
91d1aa43 2123 context_tracking_task_switch(prev, next);
1da177e4
LT
2124 /* Here we just switch the register state and the stack. */
2125 switch_to(prev, next, prev);
2126
dd41f596
IM
2127 barrier();
2128 /*
2129 * this_rq must be evaluated again because prev may have moved
2130 * CPUs since it called schedule(), thus the 'rq' on its stack
2131 * frame will be invalid.
2132 */
2133 finish_task_switch(this_rq(), prev);
1da177e4
LT
2134}
2135
2136/*
1c3e8264 2137 * nr_running and nr_context_switches:
1da177e4
LT
2138 *
2139 * externally visible scheduler statistics: current number of runnable
1c3e8264 2140 * threads, total number of context switches performed since bootup.
1da177e4
LT
2141 */
2142unsigned long nr_running(void)
2143{
2144 unsigned long i, sum = 0;
2145
2146 for_each_online_cpu(i)
2147 sum += cpu_rq(i)->nr_running;
2148
2149 return sum;
f711f609 2150}
1da177e4 2151
1da177e4 2152unsigned long long nr_context_switches(void)
46cb4b7c 2153{
cc94abfc
SR
2154 int i;
2155 unsigned long long sum = 0;
46cb4b7c 2156
0a945022 2157 for_each_possible_cpu(i)
1da177e4 2158 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2159
1da177e4
LT
2160 return sum;
2161}
483b4ee6 2162
1da177e4
LT
2163unsigned long nr_iowait(void)
2164{
2165 unsigned long i, sum = 0;
483b4ee6 2166
0a945022 2167 for_each_possible_cpu(i)
1da177e4 2168 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2169
1da177e4
LT
2170 return sum;
2171}
483b4ee6 2172
8c215bd3 2173unsigned long nr_iowait_cpu(int cpu)
69d25870 2174{
8c215bd3 2175 struct rq *this = cpu_rq(cpu);
69d25870
AV
2176 return atomic_read(&this->nr_iowait);
2177}
46cb4b7c 2178
dd41f596 2179#ifdef CONFIG_SMP
8a0be9ef 2180
46cb4b7c 2181/*
38022906
PZ
2182 * sched_exec - execve() is a valuable balancing opportunity, because at
2183 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2184 */
38022906 2185void sched_exec(void)
46cb4b7c 2186{
38022906 2187 struct task_struct *p = current;
1da177e4 2188 unsigned long flags;
0017d735 2189 int dest_cpu;
46cb4b7c 2190
8f42ced9 2191 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2192 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2193 if (dest_cpu == smp_processor_id())
2194 goto unlock;
38022906 2195
8f42ced9 2196 if (likely(cpu_active(dest_cpu))) {
969c7921 2197 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2198
8f42ced9
PZ
2199 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2200 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2201 return;
2202 }
0017d735 2203unlock:
8f42ced9 2204 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2205}
dd41f596 2206
1da177e4
LT
2207#endif
2208
1da177e4 2209DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2210DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2211
2212EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2213EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2214
2215/*
c5f8d995 2216 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2217 * @p in case that task is currently running.
c5f8d995
HS
2218 *
2219 * Called with task_rq_lock() held on @rq.
1da177e4 2220 */
c5f8d995
HS
2221static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2222{
2223 u64 ns = 0;
2224
2225 if (task_current(rq, p)) {
2226 update_rq_clock(rq);
78becc27 2227 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2228 if ((s64)ns < 0)
2229 ns = 0;
2230 }
2231
2232 return ns;
2233}
2234
bb34d92f 2235unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2236{
1da177e4 2237 unsigned long flags;
41b86e9c 2238 struct rq *rq;
bb34d92f 2239 u64 ns = 0;
48f24c4d 2240
41b86e9c 2241 rq = task_rq_lock(p, &flags);
c5f8d995 2242 ns = do_task_delta_exec(p, rq);
0122ec5b 2243 task_rq_unlock(rq, p, &flags);
1508487e 2244
c5f8d995
HS
2245 return ns;
2246}
f06febc9 2247
c5f8d995
HS
2248/*
2249 * Return accounted runtime for the task.
2250 * In case the task is currently running, return the runtime plus current's
2251 * pending runtime that have not been accounted yet.
2252 */
2253unsigned long long task_sched_runtime(struct task_struct *p)
2254{
2255 unsigned long flags;
2256 struct rq *rq;
2257 u64 ns = 0;
2258
911b2898
PZ
2259#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2260 /*
2261 * 64-bit doesn't need locks to atomically read a 64bit value.
2262 * So we have a optimization chance when the task's delta_exec is 0.
2263 * Reading ->on_cpu is racy, but this is ok.
2264 *
2265 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2266 * If we race with it entering cpu, unaccounted time is 0. This is
2267 * indistinguishable from the read occurring a few cycles earlier.
2268 */
2269 if (!p->on_cpu)
2270 return p->se.sum_exec_runtime;
2271#endif
2272
c5f8d995
HS
2273 rq = task_rq_lock(p, &flags);
2274 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2275 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2276
2277 return ns;
2278}
48f24c4d 2279
7835b98b
CL
2280/*
2281 * This function gets called by the timer code, with HZ frequency.
2282 * We call it with interrupts disabled.
7835b98b
CL
2283 */
2284void scheduler_tick(void)
2285{
7835b98b
CL
2286 int cpu = smp_processor_id();
2287 struct rq *rq = cpu_rq(cpu);
dd41f596 2288 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2289
2290 sched_clock_tick();
dd41f596 2291
05fa785c 2292 raw_spin_lock(&rq->lock);
3e51f33f 2293 update_rq_clock(rq);
fa85ae24 2294 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2295 update_cpu_load_active(rq);
05fa785c 2296 raw_spin_unlock(&rq->lock);
7835b98b 2297
e9d2b064 2298 perf_event_task_tick();
e220d2dc 2299
e418e1c2 2300#ifdef CONFIG_SMP
6eb57e0d 2301 rq->idle_balance = idle_cpu(cpu);
dd41f596 2302 trigger_load_balance(rq, cpu);
e418e1c2 2303#endif
265f22a9 2304 rq_last_tick_reset(rq);
1da177e4
LT
2305}
2306
265f22a9
FW
2307#ifdef CONFIG_NO_HZ_FULL
2308/**
2309 * scheduler_tick_max_deferment
2310 *
2311 * Keep at least one tick per second when a single
2312 * active task is running because the scheduler doesn't
2313 * yet completely support full dynticks environment.
2314 *
2315 * This makes sure that uptime, CFS vruntime, load
2316 * balancing, etc... continue to move forward, even
2317 * with a very low granularity.
e69f6186
YB
2318 *
2319 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2320 */
2321u64 scheduler_tick_max_deferment(void)
2322{
2323 struct rq *rq = this_rq();
2324 unsigned long next, now = ACCESS_ONCE(jiffies);
2325
2326 next = rq->last_sched_tick + HZ;
2327
2328 if (time_before_eq(next, now))
2329 return 0;
2330
2331 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2332}
265f22a9 2333#endif
1da177e4 2334
132380a0 2335notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2336{
2337 if (in_lock_functions(addr)) {
2338 addr = CALLER_ADDR2;
2339 if (in_lock_functions(addr))
2340 addr = CALLER_ADDR3;
2341 }
2342 return addr;
2343}
1da177e4 2344
7e49fcce
SR
2345#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2346 defined(CONFIG_PREEMPT_TRACER))
2347
bdb43806 2348void __kprobes preempt_count_add(int val)
1da177e4 2349{
6cd8a4bb 2350#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2351 /*
2352 * Underflow?
2353 */
9a11b49a
IM
2354 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2355 return;
6cd8a4bb 2356#endif
bdb43806 2357 __preempt_count_add(val);
6cd8a4bb 2358#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2359 /*
2360 * Spinlock count overflowing soon?
2361 */
33859f7f
MOS
2362 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2363 PREEMPT_MASK - 10);
6cd8a4bb
SR
2364#endif
2365 if (preempt_count() == val)
2366 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2367}
bdb43806 2368EXPORT_SYMBOL(preempt_count_add);
1da177e4 2369
bdb43806 2370void __kprobes preempt_count_sub(int val)
1da177e4 2371{
6cd8a4bb 2372#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2373 /*
2374 * Underflow?
2375 */
01e3eb82 2376 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2377 return;
1da177e4
LT
2378 /*
2379 * Is the spinlock portion underflowing?
2380 */
9a11b49a
IM
2381 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2382 !(preempt_count() & PREEMPT_MASK)))
2383 return;
6cd8a4bb 2384#endif
9a11b49a 2385
6cd8a4bb
SR
2386 if (preempt_count() == val)
2387 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2388 __preempt_count_sub(val);
1da177e4 2389}
bdb43806 2390EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2391
2392#endif
2393
2394/*
dd41f596 2395 * Print scheduling while atomic bug:
1da177e4 2396 */
dd41f596 2397static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2398{
664dfa65
DJ
2399 if (oops_in_progress)
2400 return;
2401
3df0fc5b
PZ
2402 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2403 prev->comm, prev->pid, preempt_count());
838225b4 2404
dd41f596 2405 debug_show_held_locks(prev);
e21f5b15 2406 print_modules();
dd41f596
IM
2407 if (irqs_disabled())
2408 print_irqtrace_events(prev);
6135fc1e 2409 dump_stack();
373d4d09 2410 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2411}
1da177e4 2412
dd41f596
IM
2413/*
2414 * Various schedule()-time debugging checks and statistics:
2415 */
2416static inline void schedule_debug(struct task_struct *prev)
2417{
1da177e4 2418 /*
41a2d6cf 2419 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2420 * schedule() atomically, we ignore that path. Otherwise whine
2421 * if we are scheduling when we should not.
1da177e4 2422 */
192301e7 2423 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2424 __schedule_bug(prev);
b3fbab05 2425 rcu_sleep_check();
dd41f596 2426
1da177e4
LT
2427 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2428
2d72376b 2429 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2430}
2431
6cecd084 2432static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2433{
61eadef6 2434 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2435 update_rq_clock(rq);
6cecd084 2436 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2437}
2438
dd41f596
IM
2439/*
2440 * Pick up the highest-prio task:
2441 */
2442static inline struct task_struct *
b67802ea 2443pick_next_task(struct rq *rq)
dd41f596 2444{
5522d5d5 2445 const struct sched_class *class;
dd41f596 2446 struct task_struct *p;
1da177e4
LT
2447
2448 /*
dd41f596
IM
2449 * Optimization: we know that if all tasks are in
2450 * the fair class we can call that function directly:
1da177e4 2451 */
953bfcd1 2452 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2453 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2454 if (likely(p))
2455 return p;
1da177e4
LT
2456 }
2457
34f971f6 2458 for_each_class(class) {
fb8d4724 2459 p = class->pick_next_task(rq);
dd41f596
IM
2460 if (p)
2461 return p;
dd41f596 2462 }
34f971f6
PZ
2463
2464 BUG(); /* the idle class will always have a runnable task */
dd41f596 2465}
1da177e4 2466
dd41f596 2467/*
c259e01a 2468 * __schedule() is the main scheduler function.
edde96ea
PE
2469 *
2470 * The main means of driving the scheduler and thus entering this function are:
2471 *
2472 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2473 *
2474 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2475 * paths. For example, see arch/x86/entry_64.S.
2476 *
2477 * To drive preemption between tasks, the scheduler sets the flag in timer
2478 * interrupt handler scheduler_tick().
2479 *
2480 * 3. Wakeups don't really cause entry into schedule(). They add a
2481 * task to the run-queue and that's it.
2482 *
2483 * Now, if the new task added to the run-queue preempts the current
2484 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2485 * called on the nearest possible occasion:
2486 *
2487 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2488 *
2489 * - in syscall or exception context, at the next outmost
2490 * preempt_enable(). (this might be as soon as the wake_up()'s
2491 * spin_unlock()!)
2492 *
2493 * - in IRQ context, return from interrupt-handler to
2494 * preemptible context
2495 *
2496 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2497 * then at the next:
2498 *
2499 * - cond_resched() call
2500 * - explicit schedule() call
2501 * - return from syscall or exception to user-space
2502 * - return from interrupt-handler to user-space
dd41f596 2503 */
c259e01a 2504static void __sched __schedule(void)
dd41f596
IM
2505{
2506 struct task_struct *prev, *next;
67ca7bde 2507 unsigned long *switch_count;
dd41f596 2508 struct rq *rq;
31656519 2509 int cpu;
dd41f596 2510
ff743345
PZ
2511need_resched:
2512 preempt_disable();
dd41f596
IM
2513 cpu = smp_processor_id();
2514 rq = cpu_rq(cpu);
25502a6c 2515 rcu_note_context_switch(cpu);
dd41f596 2516 prev = rq->curr;
dd41f596 2517
dd41f596 2518 schedule_debug(prev);
1da177e4 2519
31656519 2520 if (sched_feat(HRTICK))
f333fdc9 2521 hrtick_clear(rq);
8f4d37ec 2522
e0acd0a6
ON
2523 /*
2524 * Make sure that signal_pending_state()->signal_pending() below
2525 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2526 * done by the caller to avoid the race with signal_wake_up().
2527 */
2528 smp_mb__before_spinlock();
05fa785c 2529 raw_spin_lock_irq(&rq->lock);
1da177e4 2530
246d86b5 2531 switch_count = &prev->nivcsw;
1da177e4 2532 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2533 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2534 prev->state = TASK_RUNNING;
21aa9af0 2535 } else {
2acca55e
PZ
2536 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2537 prev->on_rq = 0;
2538
21aa9af0 2539 /*
2acca55e
PZ
2540 * If a worker went to sleep, notify and ask workqueue
2541 * whether it wants to wake up a task to maintain
2542 * concurrency.
21aa9af0
TH
2543 */
2544 if (prev->flags & PF_WQ_WORKER) {
2545 struct task_struct *to_wakeup;
2546
2547 to_wakeup = wq_worker_sleeping(prev, cpu);
2548 if (to_wakeup)
2549 try_to_wake_up_local(to_wakeup);
2550 }
21aa9af0 2551 }
dd41f596 2552 switch_count = &prev->nvcsw;
1da177e4
LT
2553 }
2554
3f029d3c 2555 pre_schedule(rq, prev);
f65eda4f 2556
dd41f596 2557 if (unlikely(!rq->nr_running))
1da177e4 2558 idle_balance(cpu, rq);
1da177e4 2559
df1c99d4 2560 put_prev_task(rq, prev);
b67802ea 2561 next = pick_next_task(rq);
f26f9aff 2562 clear_tsk_need_resched(prev);
f27dde8d 2563 clear_preempt_need_resched();
f26f9aff 2564 rq->skip_clock_update = 0;
1da177e4 2565
1da177e4 2566 if (likely(prev != next)) {
1da177e4
LT
2567 rq->nr_switches++;
2568 rq->curr = next;
2569 ++*switch_count;
2570
dd41f596 2571 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2572 /*
246d86b5
ON
2573 * The context switch have flipped the stack from under us
2574 * and restored the local variables which were saved when
2575 * this task called schedule() in the past. prev == current
2576 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2577 */
2578 cpu = smp_processor_id();
2579 rq = cpu_rq(cpu);
1da177e4 2580 } else
05fa785c 2581 raw_spin_unlock_irq(&rq->lock);
1da177e4 2582
3f029d3c 2583 post_schedule(rq);
1da177e4 2584
ba74c144 2585 sched_preempt_enable_no_resched();
ff743345 2586 if (need_resched())
1da177e4
LT
2587 goto need_resched;
2588}
c259e01a 2589
9c40cef2
TG
2590static inline void sched_submit_work(struct task_struct *tsk)
2591{
3c7d5184 2592 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2593 return;
2594 /*
2595 * If we are going to sleep and we have plugged IO queued,
2596 * make sure to submit it to avoid deadlocks.
2597 */
2598 if (blk_needs_flush_plug(tsk))
2599 blk_schedule_flush_plug(tsk);
2600}
2601
6ebbe7a0 2602asmlinkage void __sched schedule(void)
c259e01a 2603{
9c40cef2
TG
2604 struct task_struct *tsk = current;
2605
2606 sched_submit_work(tsk);
c259e01a
TG
2607 __schedule();
2608}
1da177e4
LT
2609EXPORT_SYMBOL(schedule);
2610
91d1aa43 2611#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2612asmlinkage void __sched schedule_user(void)
2613{
2614 /*
2615 * If we come here after a random call to set_need_resched(),
2616 * or we have been woken up remotely but the IPI has not yet arrived,
2617 * we haven't yet exited the RCU idle mode. Do it here manually until
2618 * we find a better solution.
2619 */
91d1aa43 2620 user_exit();
20ab65e3 2621 schedule();
91d1aa43 2622 user_enter();
20ab65e3
FW
2623}
2624#endif
2625
c5491ea7
TG
2626/**
2627 * schedule_preempt_disabled - called with preemption disabled
2628 *
2629 * Returns with preemption disabled. Note: preempt_count must be 1
2630 */
2631void __sched schedule_preempt_disabled(void)
2632{
ba74c144 2633 sched_preempt_enable_no_resched();
c5491ea7
TG
2634 schedule();
2635 preempt_disable();
2636}
2637
1da177e4
LT
2638#ifdef CONFIG_PREEMPT
2639/*
2ed6e34f 2640 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2641 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2642 * occur there and call schedule directly.
2643 */
d1f74e20 2644asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2645{
1da177e4
LT
2646 /*
2647 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2648 * we do not want to preempt the current task. Just return..
1da177e4 2649 */
fbb00b56 2650 if (likely(!preemptible()))
1da177e4
LT
2651 return;
2652
3a5c359a 2653 do {
bdb43806 2654 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2655 __schedule();
bdb43806 2656 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2657
3a5c359a
AK
2658 /*
2659 * Check again in case we missed a preemption opportunity
2660 * between schedule and now.
2661 */
2662 barrier();
5ed0cec0 2663 } while (need_resched());
1da177e4 2664}
1da177e4 2665EXPORT_SYMBOL(preempt_schedule);
32e475d7 2666#endif /* CONFIG_PREEMPT */
1da177e4
LT
2667
2668/*
2ed6e34f 2669 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2670 * off of irq context.
2671 * Note, that this is called and return with irqs disabled. This will
2672 * protect us against recursive calling from irq.
2673 */
2674asmlinkage void __sched preempt_schedule_irq(void)
2675{
b22366cd 2676 enum ctx_state prev_state;
6478d880 2677
2ed6e34f 2678 /* Catch callers which need to be fixed */
f27dde8d 2679 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2680
b22366cd
FW
2681 prev_state = exception_enter();
2682
3a5c359a 2683 do {
bdb43806 2684 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2685 local_irq_enable();
c259e01a 2686 __schedule();
3a5c359a 2687 local_irq_disable();
bdb43806 2688 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2689
3a5c359a
AK
2690 /*
2691 * Check again in case we missed a preemption opportunity
2692 * between schedule and now.
2693 */
2694 barrier();
5ed0cec0 2695 } while (need_resched());
b22366cd
FW
2696
2697 exception_exit(prev_state);
1da177e4
LT
2698}
2699
63859d4f 2700int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2701 void *key)
1da177e4 2702{
63859d4f 2703 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2704}
1da177e4
LT
2705EXPORT_SYMBOL(default_wake_function);
2706
8cbbe86d
AK
2707static long __sched
2708sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2709{
0fec171c
IM
2710 unsigned long flags;
2711 wait_queue_t wait;
2712
2713 init_waitqueue_entry(&wait, current);
1da177e4 2714
8cbbe86d 2715 __set_current_state(state);
1da177e4 2716
8cbbe86d
AK
2717 spin_lock_irqsave(&q->lock, flags);
2718 __add_wait_queue(q, &wait);
2719 spin_unlock(&q->lock);
2720 timeout = schedule_timeout(timeout);
2721 spin_lock_irq(&q->lock);
2722 __remove_wait_queue(q, &wait);
2723 spin_unlock_irqrestore(&q->lock, flags);
2724
2725 return timeout;
2726}
2727
2728void __sched interruptible_sleep_on(wait_queue_head_t *q)
2729{
2730 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2731}
1da177e4
LT
2732EXPORT_SYMBOL(interruptible_sleep_on);
2733
0fec171c 2734long __sched
95cdf3b7 2735interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2736{
8cbbe86d 2737 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2738}
1da177e4
LT
2739EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2740
0fec171c 2741void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2742{
8cbbe86d 2743 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2744}
1da177e4
LT
2745EXPORT_SYMBOL(sleep_on);
2746
0fec171c 2747long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2748{
8cbbe86d 2749 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2750}
1da177e4
LT
2751EXPORT_SYMBOL(sleep_on_timeout);
2752
b29739f9
IM
2753#ifdef CONFIG_RT_MUTEXES
2754
2755/*
2756 * rt_mutex_setprio - set the current priority of a task
2757 * @p: task
2758 * @prio: prio value (kernel-internal form)
2759 *
2760 * This function changes the 'effective' priority of a task. It does
2761 * not touch ->normal_prio like __setscheduler().
2762 *
2763 * Used by the rt_mutex code to implement priority inheritance logic.
2764 */
36c8b586 2765void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2766{
83b699ed 2767 int oldprio, on_rq, running;
70b97a7f 2768 struct rq *rq;
83ab0aa0 2769 const struct sched_class *prev_class;
b29739f9
IM
2770
2771 BUG_ON(prio < 0 || prio > MAX_PRIO);
2772
0122ec5b 2773 rq = __task_rq_lock(p);
b29739f9 2774
1c4dd99b
TG
2775 /*
2776 * Idle task boosting is a nono in general. There is one
2777 * exception, when PREEMPT_RT and NOHZ is active:
2778 *
2779 * The idle task calls get_next_timer_interrupt() and holds
2780 * the timer wheel base->lock on the CPU and another CPU wants
2781 * to access the timer (probably to cancel it). We can safely
2782 * ignore the boosting request, as the idle CPU runs this code
2783 * with interrupts disabled and will complete the lock
2784 * protected section without being interrupted. So there is no
2785 * real need to boost.
2786 */
2787 if (unlikely(p == rq->idle)) {
2788 WARN_ON(p != rq->curr);
2789 WARN_ON(p->pi_blocked_on);
2790 goto out_unlock;
2791 }
2792
a8027073 2793 trace_sched_pi_setprio(p, prio);
d5f9f942 2794 oldprio = p->prio;
83ab0aa0 2795 prev_class = p->sched_class;
fd2f4419 2796 on_rq = p->on_rq;
051a1d1a 2797 running = task_current(rq, p);
0e1f3483 2798 if (on_rq)
69be72c1 2799 dequeue_task(rq, p, 0);
0e1f3483
HS
2800 if (running)
2801 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
2802
2803 if (rt_prio(prio))
2804 p->sched_class = &rt_sched_class;
2805 else
2806 p->sched_class = &fair_sched_class;
2807
b29739f9
IM
2808 p->prio = prio;
2809
0e1f3483
HS
2810 if (running)
2811 p->sched_class->set_curr_task(rq);
da7a735e 2812 if (on_rq)
371fd7e7 2813 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 2814
da7a735e 2815 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2816out_unlock:
0122ec5b 2817 __task_rq_unlock(rq);
b29739f9 2818}
b29739f9 2819#endif
d50dde5a 2820
36c8b586 2821void set_user_nice(struct task_struct *p, long nice)
1da177e4 2822{
dd41f596 2823 int old_prio, delta, on_rq;
1da177e4 2824 unsigned long flags;
70b97a7f 2825 struct rq *rq;
1da177e4
LT
2826
2827 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2828 return;
2829 /*
2830 * We have to be careful, if called from sys_setpriority(),
2831 * the task might be in the middle of scheduling on another CPU.
2832 */
2833 rq = task_rq_lock(p, &flags);
2834 /*
2835 * The RT priorities are set via sched_setscheduler(), but we still
2836 * allow the 'normal' nice value to be set - but as expected
2837 * it wont have any effect on scheduling until the task is
dd41f596 2838 * SCHED_FIFO/SCHED_RR:
1da177e4 2839 */
e05606d3 2840 if (task_has_rt_policy(p)) {
1da177e4
LT
2841 p->static_prio = NICE_TO_PRIO(nice);
2842 goto out_unlock;
2843 }
fd2f4419 2844 on_rq = p->on_rq;
c09595f6 2845 if (on_rq)
69be72c1 2846 dequeue_task(rq, p, 0);
1da177e4 2847
1da177e4 2848 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 2849 set_load_weight(p);
b29739f9
IM
2850 old_prio = p->prio;
2851 p->prio = effective_prio(p);
2852 delta = p->prio - old_prio;
1da177e4 2853
dd41f596 2854 if (on_rq) {
371fd7e7 2855 enqueue_task(rq, p, 0);
1da177e4 2856 /*
d5f9f942
AM
2857 * If the task increased its priority or is running and
2858 * lowered its priority, then reschedule its CPU:
1da177e4 2859 */
d5f9f942 2860 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
2861 resched_task(rq->curr);
2862 }
2863out_unlock:
0122ec5b 2864 task_rq_unlock(rq, p, &flags);
1da177e4 2865}
1da177e4
LT
2866EXPORT_SYMBOL(set_user_nice);
2867
e43379f1
MM
2868/*
2869 * can_nice - check if a task can reduce its nice value
2870 * @p: task
2871 * @nice: nice value
2872 */
36c8b586 2873int can_nice(const struct task_struct *p, const int nice)
e43379f1 2874{
024f4747
MM
2875 /* convert nice value [19,-20] to rlimit style value [1,40] */
2876 int nice_rlim = 20 - nice;
48f24c4d 2877
78d7d407 2878 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
2879 capable(CAP_SYS_NICE));
2880}
2881
1da177e4
LT
2882#ifdef __ARCH_WANT_SYS_NICE
2883
2884/*
2885 * sys_nice - change the priority of the current process.
2886 * @increment: priority increment
2887 *
2888 * sys_setpriority is a more generic, but much slower function that
2889 * does similar things.
2890 */
5add95d4 2891SYSCALL_DEFINE1(nice, int, increment)
1da177e4 2892{
48f24c4d 2893 long nice, retval;
1da177e4
LT
2894
2895 /*
2896 * Setpriority might change our priority at the same moment.
2897 * We don't have to worry. Conceptually one call occurs first
2898 * and we have a single winner.
2899 */
e43379f1
MM
2900 if (increment < -40)
2901 increment = -40;
1da177e4
LT
2902 if (increment > 40)
2903 increment = 40;
2904
2b8f836f 2905 nice = TASK_NICE(current) + increment;
1da177e4
LT
2906 if (nice < -20)
2907 nice = -20;
2908 if (nice > 19)
2909 nice = 19;
2910
e43379f1
MM
2911 if (increment < 0 && !can_nice(current, nice))
2912 return -EPERM;
2913
1da177e4
LT
2914 retval = security_task_setnice(current, nice);
2915 if (retval)
2916 return retval;
2917
2918 set_user_nice(current, nice);
2919 return 0;
2920}
2921
2922#endif
2923
2924/**
2925 * task_prio - return the priority value of a given task.
2926 * @p: the task in question.
2927 *
e69f6186 2928 * Return: The priority value as seen by users in /proc.
1da177e4
LT
2929 * RT tasks are offset by -200. Normal tasks are centered
2930 * around 0, value goes from -16 to +15.
2931 */
36c8b586 2932int task_prio(const struct task_struct *p)
1da177e4
LT
2933{
2934 return p->prio - MAX_RT_PRIO;
2935}
2936
2937/**
2938 * task_nice - return the nice value of a given task.
2939 * @p: the task in question.
e69f6186
YB
2940 *
2941 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 2942 */
36c8b586 2943int task_nice(const struct task_struct *p)
1da177e4
LT
2944{
2945 return TASK_NICE(p);
2946}
150d8bed 2947EXPORT_SYMBOL(task_nice);
1da177e4
LT
2948
2949/**
2950 * idle_cpu - is a given cpu idle currently?
2951 * @cpu: the processor in question.
e69f6186
YB
2952 *
2953 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
2954 */
2955int idle_cpu(int cpu)
2956{
908a3283
TG
2957 struct rq *rq = cpu_rq(cpu);
2958
2959 if (rq->curr != rq->idle)
2960 return 0;
2961
2962 if (rq->nr_running)
2963 return 0;
2964
2965#ifdef CONFIG_SMP
2966 if (!llist_empty(&rq->wake_list))
2967 return 0;
2968#endif
2969
2970 return 1;
1da177e4
LT
2971}
2972
1da177e4
LT
2973/**
2974 * idle_task - return the idle task for a given cpu.
2975 * @cpu: the processor in question.
e69f6186
YB
2976 *
2977 * Return: The idle task for the cpu @cpu.
1da177e4 2978 */
36c8b586 2979struct task_struct *idle_task(int cpu)
1da177e4
LT
2980{
2981 return cpu_rq(cpu)->idle;
2982}
2983
2984/**
2985 * find_process_by_pid - find a process with a matching PID value.
2986 * @pid: the pid in question.
e69f6186
YB
2987 *
2988 * The task of @pid, if found. %NULL otherwise.
1da177e4 2989 */
a9957449 2990static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 2991{
228ebcbe 2992 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
2993}
2994
d50dde5a
DF
2995/* Actually do priority change: must hold pi & rq lock. */
2996static void __setscheduler(struct rq *rq, struct task_struct *p,
2997 const struct sched_attr *attr)
1da177e4 2998{
d50dde5a
DF
2999 int policy = attr->sched_policy;
3000
1da177e4 3001 p->policy = policy;
d50dde5a
DF
3002
3003 if (rt_policy(policy))
3004 p->rt_priority = attr->sched_priority;
3005 else
3006 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3007
b29739f9 3008 p->normal_prio = normal_prio(p);
b29739f9 3009 p->prio = rt_mutex_getprio(p);
d50dde5a 3010
ffd44db5
PZ
3011 if (rt_prio(p->prio))
3012 p->sched_class = &rt_sched_class;
3013 else
3014 p->sched_class = &fair_sched_class;
d50dde5a 3015
2dd73a4f 3016 set_load_weight(p);
1da177e4 3017}
c69e8d9c
DH
3018/*
3019 * check the target process has a UID that matches the current process's
3020 */
3021static bool check_same_owner(struct task_struct *p)
3022{
3023 const struct cred *cred = current_cred(), *pcred;
3024 bool match;
3025
3026 rcu_read_lock();
3027 pcred = __task_cred(p);
9c806aa0
EB
3028 match = (uid_eq(cred->euid, pcred->euid) ||
3029 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3030 rcu_read_unlock();
3031 return match;
3032}
3033
d50dde5a
DF
3034static int __sched_setscheduler(struct task_struct *p,
3035 const struct sched_attr *attr,
3036 bool user)
1da177e4 3037{
83b699ed 3038 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3039 int policy = attr->sched_policy;
1da177e4 3040 unsigned long flags;
83ab0aa0 3041 const struct sched_class *prev_class;
70b97a7f 3042 struct rq *rq;
ca94c442 3043 int reset_on_fork;
1da177e4 3044
66e5393a
SR
3045 /* may grab non-irq protected spin_locks */
3046 BUG_ON(in_interrupt());
1da177e4
LT
3047recheck:
3048 /* double check policy once rq lock held */
ca94c442
LP
3049 if (policy < 0) {
3050 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3051 policy = oldpolicy = p->policy;
ca94c442
LP
3052 } else {
3053 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3054 policy &= ~SCHED_RESET_ON_FORK;
3055
3056 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3057 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3058 policy != SCHED_IDLE)
3059 return -EINVAL;
3060 }
3061
1da177e4
LT
3062 /*
3063 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3064 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3065 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3066 */
d50dde5a
DF
3067 if (attr->sched_priority < 0 ||
3068 (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3069 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3070 return -EINVAL;
d50dde5a 3071 if (rt_policy(policy) != (attr->sched_priority != 0))
1da177e4
LT
3072 return -EINVAL;
3073
37e4ab3f
OC
3074 /*
3075 * Allow unprivileged RT tasks to decrease priority:
3076 */
961ccddd 3077 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a
DF
3078 if (fair_policy(policy)) {
3079 if (!can_nice(p, attr->sched_nice))
3080 return -EPERM;
3081 }
3082
e05606d3 3083 if (rt_policy(policy)) {
a44702e8
ON
3084 unsigned long rlim_rtprio =
3085 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3086
3087 /* can't set/change the rt policy */
3088 if (policy != p->policy && !rlim_rtprio)
3089 return -EPERM;
3090
3091 /* can't increase priority */
d50dde5a
DF
3092 if (attr->sched_priority > p->rt_priority &&
3093 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3094 return -EPERM;
3095 }
c02aa73b 3096
dd41f596 3097 /*
c02aa73b
DH
3098 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3099 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3100 */
c02aa73b
DH
3101 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3102 if (!can_nice(p, TASK_NICE(p)))
3103 return -EPERM;
3104 }
5fe1d75f 3105
37e4ab3f 3106 /* can't change other user's priorities */
c69e8d9c 3107 if (!check_same_owner(p))
37e4ab3f 3108 return -EPERM;
ca94c442
LP
3109
3110 /* Normal users shall not reset the sched_reset_on_fork flag */
3111 if (p->sched_reset_on_fork && !reset_on_fork)
3112 return -EPERM;
37e4ab3f 3113 }
1da177e4 3114
725aad24 3115 if (user) {
b0ae1981 3116 retval = security_task_setscheduler(p);
725aad24
JF
3117 if (retval)
3118 return retval;
3119 }
3120
b29739f9
IM
3121 /*
3122 * make sure no PI-waiters arrive (or leave) while we are
3123 * changing the priority of the task:
0122ec5b 3124 *
25985edc 3125 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3126 * runqueue lock must be held.
3127 */
0122ec5b 3128 rq = task_rq_lock(p, &flags);
dc61b1d6 3129
34f971f6
PZ
3130 /*
3131 * Changing the policy of the stop threads its a very bad idea
3132 */
3133 if (p == rq->stop) {
0122ec5b 3134 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3135 return -EINVAL;
3136 }
3137
a51e9198
DF
3138 /*
3139 * If not changing anything there's no need to proceed further:
3140 */
d50dde5a
DF
3141 if (unlikely(policy == p->policy)) {
3142 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3143 goto change;
3144 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3145 goto change;
3146
45afb173 3147 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3148 return 0;
3149 }
d50dde5a 3150change:
a51e9198 3151
dc61b1d6
PZ
3152#ifdef CONFIG_RT_GROUP_SCHED
3153 if (user) {
3154 /*
3155 * Do not allow realtime tasks into groups that have no runtime
3156 * assigned.
3157 */
3158 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3159 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3160 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3161 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3162 return -EPERM;
3163 }
3164 }
3165#endif
3166
1da177e4
LT
3167 /* recheck policy now with rq lock held */
3168 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3169 policy = oldpolicy = -1;
0122ec5b 3170 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3171 goto recheck;
3172 }
fd2f4419 3173 on_rq = p->on_rq;
051a1d1a 3174 running = task_current(rq, p);
0e1f3483 3175 if (on_rq)
4ca9b72b 3176 dequeue_task(rq, p, 0);
0e1f3483
HS
3177 if (running)
3178 p->sched_class->put_prev_task(rq, p);
f6b53205 3179
ca94c442
LP
3180 p->sched_reset_on_fork = reset_on_fork;
3181
1da177e4 3182 oldprio = p->prio;
83ab0aa0 3183 prev_class = p->sched_class;
d50dde5a 3184 __setscheduler(rq, p, attr);
f6b53205 3185
0e1f3483
HS
3186 if (running)
3187 p->sched_class->set_curr_task(rq);
da7a735e 3188 if (on_rq)
4ca9b72b 3189 enqueue_task(rq, p, 0);
cb469845 3190
da7a735e 3191 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3192 task_rq_unlock(rq, p, &flags);
b29739f9 3193
95e02ca9
TG
3194 rt_mutex_adjust_pi(p);
3195
1da177e4
LT
3196 return 0;
3197}
961ccddd
RR
3198
3199/**
3200 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3201 * @p: the task in question.
3202 * @policy: new policy.
3203 * @param: structure containing the new RT priority.
3204 *
e69f6186
YB
3205 * Return: 0 on success. An error code otherwise.
3206 *
961ccddd
RR
3207 * NOTE that the task may be already dead.
3208 */
3209int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3210 const struct sched_param *param)
961ccddd 3211{
d50dde5a
DF
3212 struct sched_attr attr = {
3213 .sched_policy = policy,
3214 .sched_priority = param->sched_priority
3215 };
3216 return __sched_setscheduler(p, &attr, true);
961ccddd 3217}
1da177e4
LT
3218EXPORT_SYMBOL_GPL(sched_setscheduler);
3219
d50dde5a
DF
3220int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3221{
3222 return __sched_setscheduler(p, attr, true);
3223}
3224EXPORT_SYMBOL_GPL(sched_setattr);
3225
961ccddd
RR
3226/**
3227 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3228 * @p: the task in question.
3229 * @policy: new policy.
3230 * @param: structure containing the new RT priority.
3231 *
3232 * Just like sched_setscheduler, only don't bother checking if the
3233 * current context has permission. For example, this is needed in
3234 * stop_machine(): we create temporary high priority worker threads,
3235 * but our caller might not have that capability.
e69f6186
YB
3236 *
3237 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3238 */
3239int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3240 const struct sched_param *param)
961ccddd 3241{
d50dde5a
DF
3242 struct sched_attr attr = {
3243 .sched_policy = policy,
3244 .sched_priority = param->sched_priority
3245 };
3246 return __sched_setscheduler(p, &attr, false);
961ccddd
RR
3247}
3248
95cdf3b7
IM
3249static int
3250do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3251{
1da177e4
LT
3252 struct sched_param lparam;
3253 struct task_struct *p;
36c8b586 3254 int retval;
1da177e4
LT
3255
3256 if (!param || pid < 0)
3257 return -EINVAL;
3258 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3259 return -EFAULT;
5fe1d75f
ON
3260
3261 rcu_read_lock();
3262 retval = -ESRCH;
1da177e4 3263 p = find_process_by_pid(pid);
5fe1d75f
ON
3264 if (p != NULL)
3265 retval = sched_setscheduler(p, policy, &lparam);
3266 rcu_read_unlock();
36c8b586 3267
1da177e4
LT
3268 return retval;
3269}
3270
d50dde5a
DF
3271/*
3272 * Mimics kernel/events/core.c perf_copy_attr().
3273 */
3274static int sched_copy_attr(struct sched_attr __user *uattr,
3275 struct sched_attr *attr)
3276{
3277 u32 size;
3278 int ret;
3279
3280 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3281 return -EFAULT;
3282
3283 /*
3284 * zero the full structure, so that a short copy will be nice.
3285 */
3286 memset(attr, 0, sizeof(*attr));
3287
3288 ret = get_user(size, &uattr->size);
3289 if (ret)
3290 return ret;
3291
3292 if (size > PAGE_SIZE) /* silly large */
3293 goto err_size;
3294
3295 if (!size) /* abi compat */
3296 size = SCHED_ATTR_SIZE_VER0;
3297
3298 if (size < SCHED_ATTR_SIZE_VER0)
3299 goto err_size;
3300
3301 /*
3302 * If we're handed a bigger struct than we know of,
3303 * ensure all the unknown bits are 0 - i.e. new
3304 * user-space does not rely on any kernel feature
3305 * extensions we dont know about yet.
3306 */
3307 if (size > sizeof(*attr)) {
3308 unsigned char __user *addr;
3309 unsigned char __user *end;
3310 unsigned char val;
3311
3312 addr = (void __user *)uattr + sizeof(*attr);
3313 end = (void __user *)uattr + size;
3314
3315 for (; addr < end; addr++) {
3316 ret = get_user(val, addr);
3317 if (ret)
3318 return ret;
3319 if (val)
3320 goto err_size;
3321 }
3322 size = sizeof(*attr);
3323 }
3324
3325 ret = copy_from_user(attr, uattr, size);
3326 if (ret)
3327 return -EFAULT;
3328
3329 /*
3330 * XXX: do we want to be lenient like existing syscalls; or do we want
3331 * to be strict and return an error on out-of-bounds values?
3332 */
3333 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3334
3335out:
3336 return ret;
3337
3338err_size:
3339 put_user(sizeof(*attr), &uattr->size);
3340 ret = -E2BIG;
3341 goto out;
3342}
3343
1da177e4
LT
3344/**
3345 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3346 * @pid: the pid in question.
3347 * @policy: new policy.
3348 * @param: structure containing the new RT priority.
e69f6186
YB
3349 *
3350 * Return: 0 on success. An error code otherwise.
1da177e4 3351 */
5add95d4
HC
3352SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3353 struct sched_param __user *, param)
1da177e4 3354{
c21761f1
JB
3355 /* negative values for policy are not valid */
3356 if (policy < 0)
3357 return -EINVAL;
3358
1da177e4
LT
3359 return do_sched_setscheduler(pid, policy, param);
3360}
3361
3362/**
3363 * sys_sched_setparam - set/change the RT priority of a thread
3364 * @pid: the pid in question.
3365 * @param: structure containing the new RT priority.
e69f6186
YB
3366 *
3367 * Return: 0 on success. An error code otherwise.
1da177e4 3368 */
5add95d4 3369SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3370{
3371 return do_sched_setscheduler(pid, -1, param);
3372}
3373
d50dde5a
DF
3374/**
3375 * sys_sched_setattr - same as above, but with extended sched_attr
3376 * @pid: the pid in question.
3377 * @attr: structure containing the extended parameters.
3378 */
3379SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3380{
3381 struct sched_attr attr;
3382 struct task_struct *p;
3383 int retval;
3384
3385 if (!uattr || pid < 0)
3386 return -EINVAL;
3387
3388 if (sched_copy_attr(uattr, &attr))
3389 return -EFAULT;
3390
3391 rcu_read_lock();
3392 retval = -ESRCH;
3393 p = find_process_by_pid(pid);
3394 if (p != NULL)
3395 retval = sched_setattr(p, &attr);
3396 rcu_read_unlock();
3397
3398 return retval;
3399}
3400
1da177e4
LT
3401/**
3402 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3403 * @pid: the pid in question.
e69f6186
YB
3404 *
3405 * Return: On success, the policy of the thread. Otherwise, a negative error
3406 * code.
1da177e4 3407 */
5add95d4 3408SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3409{
36c8b586 3410 struct task_struct *p;
3a5c359a 3411 int retval;
1da177e4
LT
3412
3413 if (pid < 0)
3a5c359a 3414 return -EINVAL;
1da177e4
LT
3415
3416 retval = -ESRCH;
5fe85be0 3417 rcu_read_lock();
1da177e4
LT
3418 p = find_process_by_pid(pid);
3419 if (p) {
3420 retval = security_task_getscheduler(p);
3421 if (!retval)
ca94c442
LP
3422 retval = p->policy
3423 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3424 }
5fe85be0 3425 rcu_read_unlock();
1da177e4
LT
3426 return retval;
3427}
3428
3429/**
ca94c442 3430 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3431 * @pid: the pid in question.
3432 * @param: structure containing the RT priority.
e69f6186
YB
3433 *
3434 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3435 * code.
1da177e4 3436 */
5add95d4 3437SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3438{
3439 struct sched_param lp;
36c8b586 3440 struct task_struct *p;
3a5c359a 3441 int retval;
1da177e4
LT
3442
3443 if (!param || pid < 0)
3a5c359a 3444 return -EINVAL;
1da177e4 3445
5fe85be0 3446 rcu_read_lock();
1da177e4
LT
3447 p = find_process_by_pid(pid);
3448 retval = -ESRCH;
3449 if (!p)
3450 goto out_unlock;
3451
3452 retval = security_task_getscheduler(p);
3453 if (retval)
3454 goto out_unlock;
3455
3456 lp.sched_priority = p->rt_priority;
5fe85be0 3457 rcu_read_unlock();
1da177e4
LT
3458
3459 /*
3460 * This one might sleep, we cannot do it with a spinlock held ...
3461 */
3462 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3463
1da177e4
LT
3464 return retval;
3465
3466out_unlock:
5fe85be0 3467 rcu_read_unlock();
1da177e4
LT
3468 return retval;
3469}
3470
d50dde5a
DF
3471static int sched_read_attr(struct sched_attr __user *uattr,
3472 struct sched_attr *attr,
3473 unsigned int usize)
3474{
3475 int ret;
3476
3477 if (!access_ok(VERIFY_WRITE, uattr, usize))
3478 return -EFAULT;
3479
3480 /*
3481 * If we're handed a smaller struct than we know of,
3482 * ensure all the unknown bits are 0 - i.e. old
3483 * user-space does not get uncomplete information.
3484 */
3485 if (usize < sizeof(*attr)) {
3486 unsigned char *addr;
3487 unsigned char *end;
3488
3489 addr = (void *)attr + usize;
3490 end = (void *)attr + sizeof(*attr);
3491
3492 for (; addr < end; addr++) {
3493 if (*addr)
3494 goto err_size;
3495 }
3496
3497 attr->size = usize;
3498 }
3499
3500 ret = copy_to_user(uattr, attr, usize);
3501 if (ret)
3502 return -EFAULT;
3503
3504out:
3505 return ret;
3506
3507err_size:
3508 ret = -E2BIG;
3509 goto out;
3510}
3511
3512/**
3513 * sys_sched_getattr - same as above, but with extended "sched_param"
3514 * @pid: the pid in question.
3515 * @attr: structure containing the extended parameters.
3516 * @size: sizeof(attr) for fwd/bwd comp.
3517 */
3518SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3519 unsigned int, size)
3520{
3521 struct sched_attr attr = {
3522 .size = sizeof(struct sched_attr),
3523 };
3524 struct task_struct *p;
3525 int retval;
3526
3527 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3528 size < SCHED_ATTR_SIZE_VER0)
3529 return -EINVAL;
3530
3531 rcu_read_lock();
3532 p = find_process_by_pid(pid);
3533 retval = -ESRCH;
3534 if (!p)
3535 goto out_unlock;
3536
3537 retval = security_task_getscheduler(p);
3538 if (retval)
3539 goto out_unlock;
3540
3541 attr.sched_policy = p->policy;
3542 if (task_has_rt_policy(p))
3543 attr.sched_priority = p->rt_priority;
3544 else
3545 attr.sched_nice = TASK_NICE(p);
3546
3547 rcu_read_unlock();
3548
3549 retval = sched_read_attr(uattr, &attr, size);
3550 return retval;
3551
3552out_unlock:
3553 rcu_read_unlock();
3554 return retval;
3555}
3556
96f874e2 3557long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3558{
5a16f3d3 3559 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3560 struct task_struct *p;
3561 int retval;
1da177e4 3562
23f5d142 3563 rcu_read_lock();
1da177e4
LT
3564
3565 p = find_process_by_pid(pid);
3566 if (!p) {
23f5d142 3567 rcu_read_unlock();
1da177e4
LT
3568 return -ESRCH;
3569 }
3570
23f5d142 3571 /* Prevent p going away */
1da177e4 3572 get_task_struct(p);
23f5d142 3573 rcu_read_unlock();
1da177e4 3574
14a40ffc
TH
3575 if (p->flags & PF_NO_SETAFFINITY) {
3576 retval = -EINVAL;
3577 goto out_put_task;
3578 }
5a16f3d3
RR
3579 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3580 retval = -ENOMEM;
3581 goto out_put_task;
3582 }
3583 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3584 retval = -ENOMEM;
3585 goto out_free_cpus_allowed;
3586 }
1da177e4 3587 retval = -EPERM;
4c44aaaf
EB
3588 if (!check_same_owner(p)) {
3589 rcu_read_lock();
3590 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3591 rcu_read_unlock();
3592 goto out_unlock;
3593 }
3594 rcu_read_unlock();
3595 }
1da177e4 3596
b0ae1981 3597 retval = security_task_setscheduler(p);
e7834f8f
DQ
3598 if (retval)
3599 goto out_unlock;
3600
5a16f3d3
RR
3601 cpuset_cpus_allowed(p, cpus_allowed);
3602 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3603again:
5a16f3d3 3604 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3605
8707d8b8 3606 if (!retval) {
5a16f3d3
RR
3607 cpuset_cpus_allowed(p, cpus_allowed);
3608 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3609 /*
3610 * We must have raced with a concurrent cpuset
3611 * update. Just reset the cpus_allowed to the
3612 * cpuset's cpus_allowed
3613 */
5a16f3d3 3614 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3615 goto again;
3616 }
3617 }
1da177e4 3618out_unlock:
5a16f3d3
RR
3619 free_cpumask_var(new_mask);
3620out_free_cpus_allowed:
3621 free_cpumask_var(cpus_allowed);
3622out_put_task:
1da177e4 3623 put_task_struct(p);
1da177e4
LT
3624 return retval;
3625}
3626
3627static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3628 struct cpumask *new_mask)
1da177e4 3629{
96f874e2
RR
3630 if (len < cpumask_size())
3631 cpumask_clear(new_mask);
3632 else if (len > cpumask_size())
3633 len = cpumask_size();
3634
1da177e4
LT
3635 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3636}
3637
3638/**
3639 * sys_sched_setaffinity - set the cpu affinity of a process
3640 * @pid: pid of the process
3641 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3642 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3643 *
3644 * Return: 0 on success. An error code otherwise.
1da177e4 3645 */
5add95d4
HC
3646SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3647 unsigned long __user *, user_mask_ptr)
1da177e4 3648{
5a16f3d3 3649 cpumask_var_t new_mask;
1da177e4
LT
3650 int retval;
3651
5a16f3d3
RR
3652 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3653 return -ENOMEM;
1da177e4 3654
5a16f3d3
RR
3655 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3656 if (retval == 0)
3657 retval = sched_setaffinity(pid, new_mask);
3658 free_cpumask_var(new_mask);
3659 return retval;
1da177e4
LT
3660}
3661
96f874e2 3662long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3663{
36c8b586 3664 struct task_struct *p;
31605683 3665 unsigned long flags;
1da177e4 3666 int retval;
1da177e4 3667
23f5d142 3668 rcu_read_lock();
1da177e4
LT
3669
3670 retval = -ESRCH;
3671 p = find_process_by_pid(pid);
3672 if (!p)
3673 goto out_unlock;
3674
e7834f8f
DQ
3675 retval = security_task_getscheduler(p);
3676 if (retval)
3677 goto out_unlock;
3678
013fdb80 3679 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3680 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3681 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3682
3683out_unlock:
23f5d142 3684 rcu_read_unlock();
1da177e4 3685
9531b62f 3686 return retval;
1da177e4
LT
3687}
3688
3689/**
3690 * sys_sched_getaffinity - get the cpu affinity of a process
3691 * @pid: pid of the process
3692 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3693 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3694 *
3695 * Return: 0 on success. An error code otherwise.
1da177e4 3696 */
5add95d4
HC
3697SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3698 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3699{
3700 int ret;
f17c8607 3701 cpumask_var_t mask;
1da177e4 3702
84fba5ec 3703 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3704 return -EINVAL;
3705 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3706 return -EINVAL;
3707
f17c8607
RR
3708 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3709 return -ENOMEM;
1da177e4 3710
f17c8607
RR
3711 ret = sched_getaffinity(pid, mask);
3712 if (ret == 0) {
8bc037fb 3713 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3714
3715 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3716 ret = -EFAULT;
3717 else
cd3d8031 3718 ret = retlen;
f17c8607
RR
3719 }
3720 free_cpumask_var(mask);
1da177e4 3721
f17c8607 3722 return ret;
1da177e4
LT
3723}
3724
3725/**
3726 * sys_sched_yield - yield the current processor to other threads.
3727 *
dd41f596
IM
3728 * This function yields the current CPU to other tasks. If there are no
3729 * other threads running on this CPU then this function will return.
e69f6186
YB
3730 *
3731 * Return: 0.
1da177e4 3732 */
5add95d4 3733SYSCALL_DEFINE0(sched_yield)
1da177e4 3734{
70b97a7f 3735 struct rq *rq = this_rq_lock();
1da177e4 3736
2d72376b 3737 schedstat_inc(rq, yld_count);
4530d7ab 3738 current->sched_class->yield_task(rq);
1da177e4
LT
3739
3740 /*
3741 * Since we are going to call schedule() anyway, there's
3742 * no need to preempt or enable interrupts:
3743 */
3744 __release(rq->lock);
8a25d5de 3745 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3746 do_raw_spin_unlock(&rq->lock);
ba74c144 3747 sched_preempt_enable_no_resched();
1da177e4
LT
3748
3749 schedule();
3750
3751 return 0;
3752}
3753
e7b38404 3754static void __cond_resched(void)
1da177e4 3755{
bdb43806 3756 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3757 __schedule();
bdb43806 3758 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3759}
3760
02b67cc3 3761int __sched _cond_resched(void)
1da177e4 3762{
d86ee480 3763 if (should_resched()) {
1da177e4
LT
3764 __cond_resched();
3765 return 1;
3766 }
3767 return 0;
3768}
02b67cc3 3769EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3770
3771/*
613afbf8 3772 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3773 * call schedule, and on return reacquire the lock.
3774 *
41a2d6cf 3775 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3776 * operations here to prevent schedule() from being called twice (once via
3777 * spin_unlock(), once by hand).
3778 */
613afbf8 3779int __cond_resched_lock(spinlock_t *lock)
1da177e4 3780{
d86ee480 3781 int resched = should_resched();
6df3cecb
JK
3782 int ret = 0;
3783
f607c668
PZ
3784 lockdep_assert_held(lock);
3785
95c354fe 3786 if (spin_needbreak(lock) || resched) {
1da177e4 3787 spin_unlock(lock);
d86ee480 3788 if (resched)
95c354fe
NP
3789 __cond_resched();
3790 else
3791 cpu_relax();
6df3cecb 3792 ret = 1;
1da177e4 3793 spin_lock(lock);
1da177e4 3794 }
6df3cecb 3795 return ret;
1da177e4 3796}
613afbf8 3797EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3798
613afbf8 3799int __sched __cond_resched_softirq(void)
1da177e4
LT
3800{
3801 BUG_ON(!in_softirq());
3802
d86ee480 3803 if (should_resched()) {
98d82567 3804 local_bh_enable();
1da177e4
LT
3805 __cond_resched();
3806 local_bh_disable();
3807 return 1;
3808 }
3809 return 0;
3810}
613afbf8 3811EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3812
1da177e4
LT
3813/**
3814 * yield - yield the current processor to other threads.
3815 *
8e3fabfd
PZ
3816 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3817 *
3818 * The scheduler is at all times free to pick the calling task as the most
3819 * eligible task to run, if removing the yield() call from your code breaks
3820 * it, its already broken.
3821 *
3822 * Typical broken usage is:
3823 *
3824 * while (!event)
3825 * yield();
3826 *
3827 * where one assumes that yield() will let 'the other' process run that will
3828 * make event true. If the current task is a SCHED_FIFO task that will never
3829 * happen. Never use yield() as a progress guarantee!!
3830 *
3831 * If you want to use yield() to wait for something, use wait_event().
3832 * If you want to use yield() to be 'nice' for others, use cond_resched().
3833 * If you still want to use yield(), do not!
1da177e4
LT
3834 */
3835void __sched yield(void)
3836{
3837 set_current_state(TASK_RUNNING);
3838 sys_sched_yield();
3839}
1da177e4
LT
3840EXPORT_SYMBOL(yield);
3841
d95f4122
MG
3842/**
3843 * yield_to - yield the current processor to another thread in
3844 * your thread group, or accelerate that thread toward the
3845 * processor it's on.
16addf95
RD
3846 * @p: target task
3847 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3848 *
3849 * It's the caller's job to ensure that the target task struct
3850 * can't go away on us before we can do any checks.
3851 *
e69f6186 3852 * Return:
7b270f60
PZ
3853 * true (>0) if we indeed boosted the target task.
3854 * false (0) if we failed to boost the target.
3855 * -ESRCH if there's no task to yield to.
d95f4122
MG
3856 */
3857bool __sched yield_to(struct task_struct *p, bool preempt)
3858{
3859 struct task_struct *curr = current;
3860 struct rq *rq, *p_rq;
3861 unsigned long flags;
c3c18640 3862 int yielded = 0;
d95f4122
MG
3863
3864 local_irq_save(flags);
3865 rq = this_rq();
3866
3867again:
3868 p_rq = task_rq(p);
7b270f60
PZ
3869 /*
3870 * If we're the only runnable task on the rq and target rq also
3871 * has only one task, there's absolutely no point in yielding.
3872 */
3873 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3874 yielded = -ESRCH;
3875 goto out_irq;
3876 }
3877
d95f4122 3878 double_rq_lock(rq, p_rq);
39e24d8f 3879 if (task_rq(p) != p_rq) {
d95f4122
MG
3880 double_rq_unlock(rq, p_rq);
3881 goto again;
3882 }
3883
3884 if (!curr->sched_class->yield_to_task)
7b270f60 3885 goto out_unlock;
d95f4122
MG
3886
3887 if (curr->sched_class != p->sched_class)
7b270f60 3888 goto out_unlock;
d95f4122
MG
3889
3890 if (task_running(p_rq, p) || p->state)
7b270f60 3891 goto out_unlock;
d95f4122
MG
3892
3893 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3894 if (yielded) {
d95f4122 3895 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3896 /*
3897 * Make p's CPU reschedule; pick_next_entity takes care of
3898 * fairness.
3899 */
3900 if (preempt && rq != p_rq)
3901 resched_task(p_rq->curr);
3902 }
d95f4122 3903
7b270f60 3904out_unlock:
d95f4122 3905 double_rq_unlock(rq, p_rq);
7b270f60 3906out_irq:
d95f4122
MG
3907 local_irq_restore(flags);
3908
7b270f60 3909 if (yielded > 0)
d95f4122
MG
3910 schedule();
3911
3912 return yielded;
3913}
3914EXPORT_SYMBOL_GPL(yield_to);
3915
1da177e4 3916/*
41a2d6cf 3917 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3918 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3919 */
3920void __sched io_schedule(void)
3921{
54d35f29 3922 struct rq *rq = raw_rq();
1da177e4 3923
0ff92245 3924 delayacct_blkio_start();
1da177e4 3925 atomic_inc(&rq->nr_iowait);
73c10101 3926 blk_flush_plug(current);
8f0dfc34 3927 current->in_iowait = 1;
1da177e4 3928 schedule();
8f0dfc34 3929 current->in_iowait = 0;
1da177e4 3930 atomic_dec(&rq->nr_iowait);
0ff92245 3931 delayacct_blkio_end();
1da177e4 3932}
1da177e4
LT
3933EXPORT_SYMBOL(io_schedule);
3934
3935long __sched io_schedule_timeout(long timeout)
3936{
54d35f29 3937 struct rq *rq = raw_rq();
1da177e4
LT
3938 long ret;
3939
0ff92245 3940 delayacct_blkio_start();
1da177e4 3941 atomic_inc(&rq->nr_iowait);
73c10101 3942 blk_flush_plug(current);
8f0dfc34 3943 current->in_iowait = 1;
1da177e4 3944 ret = schedule_timeout(timeout);
8f0dfc34 3945 current->in_iowait = 0;
1da177e4 3946 atomic_dec(&rq->nr_iowait);
0ff92245 3947 delayacct_blkio_end();
1da177e4
LT
3948 return ret;
3949}
3950
3951/**
3952 * sys_sched_get_priority_max - return maximum RT priority.
3953 * @policy: scheduling class.
3954 *
e69f6186
YB
3955 * Return: On success, this syscall returns the maximum
3956 * rt_priority that can be used by a given scheduling class.
3957 * On failure, a negative error code is returned.
1da177e4 3958 */
5add95d4 3959SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
3960{
3961 int ret = -EINVAL;
3962
3963 switch (policy) {
3964 case SCHED_FIFO:
3965 case SCHED_RR:
3966 ret = MAX_USER_RT_PRIO-1;
3967 break;
3968 case SCHED_NORMAL:
b0a9499c 3969 case SCHED_BATCH:
dd41f596 3970 case SCHED_IDLE:
1da177e4
LT
3971 ret = 0;
3972 break;
3973 }
3974 return ret;
3975}
3976
3977/**
3978 * sys_sched_get_priority_min - return minimum RT priority.
3979 * @policy: scheduling class.
3980 *
e69f6186
YB
3981 * Return: On success, this syscall returns the minimum
3982 * rt_priority that can be used by a given scheduling class.
3983 * On failure, a negative error code is returned.
1da177e4 3984 */
5add95d4 3985SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
3986{
3987 int ret = -EINVAL;
3988
3989 switch (policy) {
3990 case SCHED_FIFO:
3991 case SCHED_RR:
3992 ret = 1;
3993 break;
3994 case SCHED_NORMAL:
b0a9499c 3995 case SCHED_BATCH:
dd41f596 3996 case SCHED_IDLE:
1da177e4
LT
3997 ret = 0;
3998 }
3999 return ret;
4000}
4001
4002/**
4003 * sys_sched_rr_get_interval - return the default timeslice of a process.
4004 * @pid: pid of the process.
4005 * @interval: userspace pointer to the timeslice value.
4006 *
4007 * this syscall writes the default timeslice value of a given process
4008 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4009 *
4010 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4011 * an error code.
1da177e4 4012 */
17da2bd9 4013SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4014 struct timespec __user *, interval)
1da177e4 4015{
36c8b586 4016 struct task_struct *p;
a4ec24b4 4017 unsigned int time_slice;
dba091b9
TG
4018 unsigned long flags;
4019 struct rq *rq;
3a5c359a 4020 int retval;
1da177e4 4021 struct timespec t;
1da177e4
LT
4022
4023 if (pid < 0)
3a5c359a 4024 return -EINVAL;
1da177e4
LT
4025
4026 retval = -ESRCH;
1a551ae7 4027 rcu_read_lock();
1da177e4
LT
4028 p = find_process_by_pid(pid);
4029 if (!p)
4030 goto out_unlock;
4031
4032 retval = security_task_getscheduler(p);
4033 if (retval)
4034 goto out_unlock;
4035
dba091b9
TG
4036 rq = task_rq_lock(p, &flags);
4037 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4038 task_rq_unlock(rq, p, &flags);
a4ec24b4 4039
1a551ae7 4040 rcu_read_unlock();
a4ec24b4 4041 jiffies_to_timespec(time_slice, &t);
1da177e4 4042 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4043 return retval;
3a5c359a 4044
1da177e4 4045out_unlock:
1a551ae7 4046 rcu_read_unlock();
1da177e4
LT
4047 return retval;
4048}
4049
7c731e0a 4050static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4051
82a1fcb9 4052void sched_show_task(struct task_struct *p)
1da177e4 4053{
1da177e4 4054 unsigned long free = 0;
4e79752c 4055 int ppid;
36c8b586 4056 unsigned state;
1da177e4 4057
1da177e4 4058 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4059 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4060 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4061#if BITS_PER_LONG == 32
1da177e4 4062 if (state == TASK_RUNNING)
3df0fc5b 4063 printk(KERN_CONT " running ");
1da177e4 4064 else
3df0fc5b 4065 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4066#else
4067 if (state == TASK_RUNNING)
3df0fc5b 4068 printk(KERN_CONT " running task ");
1da177e4 4069 else
3df0fc5b 4070 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4071#endif
4072#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4073 free = stack_not_used(p);
1da177e4 4074#endif
4e79752c
PM
4075 rcu_read_lock();
4076 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4077 rcu_read_unlock();
3df0fc5b 4078 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4079 task_pid_nr(p), ppid,
aa47b7e0 4080 (unsigned long)task_thread_info(p)->flags);
1da177e4 4081
3d1cb205 4082 print_worker_info(KERN_INFO, p);
5fb5e6de 4083 show_stack(p, NULL);
1da177e4
LT
4084}
4085
e59e2ae2 4086void show_state_filter(unsigned long state_filter)
1da177e4 4087{
36c8b586 4088 struct task_struct *g, *p;
1da177e4 4089
4bd77321 4090#if BITS_PER_LONG == 32
3df0fc5b
PZ
4091 printk(KERN_INFO
4092 " task PC stack pid father\n");
1da177e4 4093#else
3df0fc5b
PZ
4094 printk(KERN_INFO
4095 " task PC stack pid father\n");
1da177e4 4096#endif
510f5acc 4097 rcu_read_lock();
1da177e4
LT
4098 do_each_thread(g, p) {
4099 /*
4100 * reset the NMI-timeout, listing all files on a slow
25985edc 4101 * console might take a lot of time:
1da177e4
LT
4102 */
4103 touch_nmi_watchdog();
39bc89fd 4104 if (!state_filter || (p->state & state_filter))
82a1fcb9 4105 sched_show_task(p);
1da177e4
LT
4106 } while_each_thread(g, p);
4107
04c9167f
JF
4108 touch_all_softlockup_watchdogs();
4109
dd41f596
IM
4110#ifdef CONFIG_SCHED_DEBUG
4111 sysrq_sched_debug_show();
4112#endif
510f5acc 4113 rcu_read_unlock();
e59e2ae2
IM
4114 /*
4115 * Only show locks if all tasks are dumped:
4116 */
93335a21 4117 if (!state_filter)
e59e2ae2 4118 debug_show_all_locks();
1da177e4
LT
4119}
4120
0db0628d 4121void init_idle_bootup_task(struct task_struct *idle)
1df21055 4122{
dd41f596 4123 idle->sched_class = &idle_sched_class;
1df21055
IM
4124}
4125
f340c0d1
IM
4126/**
4127 * init_idle - set up an idle thread for a given CPU
4128 * @idle: task in question
4129 * @cpu: cpu the idle task belongs to
4130 *
4131 * NOTE: this function does not set the idle thread's NEED_RESCHED
4132 * flag, to make booting more robust.
4133 */
0db0628d 4134void init_idle(struct task_struct *idle, int cpu)
1da177e4 4135{
70b97a7f 4136 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4137 unsigned long flags;
4138
05fa785c 4139 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4140
5e1576ed 4141 __sched_fork(0, idle);
06b83b5f 4142 idle->state = TASK_RUNNING;
dd41f596
IM
4143 idle->se.exec_start = sched_clock();
4144
1e1b6c51 4145 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4146 /*
4147 * We're having a chicken and egg problem, even though we are
4148 * holding rq->lock, the cpu isn't yet set to this cpu so the
4149 * lockdep check in task_group() will fail.
4150 *
4151 * Similar case to sched_fork(). / Alternatively we could
4152 * use task_rq_lock() here and obtain the other rq->lock.
4153 *
4154 * Silence PROVE_RCU
4155 */
4156 rcu_read_lock();
dd41f596 4157 __set_task_cpu(idle, cpu);
6506cf6c 4158 rcu_read_unlock();
1da177e4 4159
1da177e4 4160 rq->curr = rq->idle = idle;
3ca7a440
PZ
4161#if defined(CONFIG_SMP)
4162 idle->on_cpu = 1;
4866cde0 4163#endif
05fa785c 4164 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4165
4166 /* Set the preempt count _outside_ the spinlocks! */
01028747 4167 init_idle_preempt_count(idle, cpu);
55cd5340 4168
dd41f596
IM
4169 /*
4170 * The idle tasks have their own, simple scheduling class:
4171 */
4172 idle->sched_class = &idle_sched_class;
868baf07 4173 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4174 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4175#if defined(CONFIG_SMP)
4176 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4177#endif
19978ca6
IM
4178}
4179
1da177e4 4180#ifdef CONFIG_SMP
1e1b6c51
KM
4181void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4182{
4183 if (p->sched_class && p->sched_class->set_cpus_allowed)
4184 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4185
4186 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4187 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4188}
4189
1da177e4
LT
4190/*
4191 * This is how migration works:
4192 *
969c7921
TH
4193 * 1) we invoke migration_cpu_stop() on the target CPU using
4194 * stop_one_cpu().
4195 * 2) stopper starts to run (implicitly forcing the migrated thread
4196 * off the CPU)
4197 * 3) it checks whether the migrated task is still in the wrong runqueue.
4198 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4199 * it and puts it into the right queue.
969c7921
TH
4200 * 5) stopper completes and stop_one_cpu() returns and the migration
4201 * is done.
1da177e4
LT
4202 */
4203
4204/*
4205 * Change a given task's CPU affinity. Migrate the thread to a
4206 * proper CPU and schedule it away if the CPU it's executing on
4207 * is removed from the allowed bitmask.
4208 *
4209 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4210 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4211 * call is not atomic; no spinlocks may be held.
4212 */
96f874e2 4213int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4214{
4215 unsigned long flags;
70b97a7f 4216 struct rq *rq;
969c7921 4217 unsigned int dest_cpu;
48f24c4d 4218 int ret = 0;
1da177e4
LT
4219
4220 rq = task_rq_lock(p, &flags);
e2912009 4221
db44fc01
YZ
4222 if (cpumask_equal(&p->cpus_allowed, new_mask))
4223 goto out;
4224
6ad4c188 4225 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4226 ret = -EINVAL;
4227 goto out;
4228 }
4229
1e1b6c51 4230 do_set_cpus_allowed(p, new_mask);
73fe6aae 4231
1da177e4 4232 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4233 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4234 goto out;
4235
969c7921 4236 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4237 if (p->on_rq) {
969c7921 4238 struct migration_arg arg = { p, dest_cpu };
1da177e4 4239 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4240 task_rq_unlock(rq, p, &flags);
969c7921 4241 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4242 tlb_migrate_finish(p->mm);
4243 return 0;
4244 }
4245out:
0122ec5b 4246 task_rq_unlock(rq, p, &flags);
48f24c4d 4247
1da177e4
LT
4248 return ret;
4249}
cd8ba7cd 4250EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4251
4252/*
41a2d6cf 4253 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4254 * this because either it can't run here any more (set_cpus_allowed()
4255 * away from this CPU, or CPU going down), or because we're
4256 * attempting to rebalance this task on exec (sched_exec).
4257 *
4258 * So we race with normal scheduler movements, but that's OK, as long
4259 * as the task is no longer on this CPU.
efc30814
KK
4260 *
4261 * Returns non-zero if task was successfully migrated.
1da177e4 4262 */
efc30814 4263static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4264{
70b97a7f 4265 struct rq *rq_dest, *rq_src;
e2912009 4266 int ret = 0;
1da177e4 4267
e761b772 4268 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4269 return ret;
1da177e4
LT
4270
4271 rq_src = cpu_rq(src_cpu);
4272 rq_dest = cpu_rq(dest_cpu);
4273
0122ec5b 4274 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4275 double_rq_lock(rq_src, rq_dest);
4276 /* Already moved. */
4277 if (task_cpu(p) != src_cpu)
b1e38734 4278 goto done;
1da177e4 4279 /* Affinity changed (again). */
fa17b507 4280 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4281 goto fail;
1da177e4 4282
e2912009
PZ
4283 /*
4284 * If we're not on a rq, the next wake-up will ensure we're
4285 * placed properly.
4286 */
fd2f4419 4287 if (p->on_rq) {
4ca9b72b 4288 dequeue_task(rq_src, p, 0);
e2912009 4289 set_task_cpu(p, dest_cpu);
4ca9b72b 4290 enqueue_task(rq_dest, p, 0);
15afe09b 4291 check_preempt_curr(rq_dest, p, 0);
1da177e4 4292 }
b1e38734 4293done:
efc30814 4294 ret = 1;
b1e38734 4295fail:
1da177e4 4296 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4297 raw_spin_unlock(&p->pi_lock);
efc30814 4298 return ret;
1da177e4
LT
4299}
4300
e6628d5b
MG
4301#ifdef CONFIG_NUMA_BALANCING
4302/* Migrate current task p to target_cpu */
4303int migrate_task_to(struct task_struct *p, int target_cpu)
4304{
4305 struct migration_arg arg = { p, target_cpu };
4306 int curr_cpu = task_cpu(p);
4307
4308 if (curr_cpu == target_cpu)
4309 return 0;
4310
4311 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4312 return -EINVAL;
4313
4314 /* TODO: This is not properly updating schedstats */
4315
4316 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4317}
0ec8aa00
PZ
4318
4319/*
4320 * Requeue a task on a given node and accurately track the number of NUMA
4321 * tasks on the runqueues
4322 */
4323void sched_setnuma(struct task_struct *p, int nid)
4324{
4325 struct rq *rq;
4326 unsigned long flags;
4327 bool on_rq, running;
4328
4329 rq = task_rq_lock(p, &flags);
4330 on_rq = p->on_rq;
4331 running = task_current(rq, p);
4332
4333 if (on_rq)
4334 dequeue_task(rq, p, 0);
4335 if (running)
4336 p->sched_class->put_prev_task(rq, p);
4337
4338 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4339
4340 if (running)
4341 p->sched_class->set_curr_task(rq);
4342 if (on_rq)
4343 enqueue_task(rq, p, 0);
4344 task_rq_unlock(rq, p, &flags);
4345}
e6628d5b
MG
4346#endif
4347
1da177e4 4348/*
969c7921
TH
4349 * migration_cpu_stop - this will be executed by a highprio stopper thread
4350 * and performs thread migration by bumping thread off CPU then
4351 * 'pushing' onto another runqueue.
1da177e4 4352 */
969c7921 4353static int migration_cpu_stop(void *data)
1da177e4 4354{
969c7921 4355 struct migration_arg *arg = data;
f7b4cddc 4356
969c7921
TH
4357 /*
4358 * The original target cpu might have gone down and we might
4359 * be on another cpu but it doesn't matter.
4360 */
f7b4cddc 4361 local_irq_disable();
969c7921 4362 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4363 local_irq_enable();
1da177e4 4364 return 0;
f7b4cddc
ON
4365}
4366
1da177e4 4367#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4368
054b9108 4369/*
48c5ccae
PZ
4370 * Ensures that the idle task is using init_mm right before its cpu goes
4371 * offline.
054b9108 4372 */
48c5ccae 4373void idle_task_exit(void)
1da177e4 4374{
48c5ccae 4375 struct mm_struct *mm = current->active_mm;
e76bd8d9 4376
48c5ccae 4377 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4378
48c5ccae
PZ
4379 if (mm != &init_mm)
4380 switch_mm(mm, &init_mm, current);
4381 mmdrop(mm);
1da177e4
LT
4382}
4383
4384/*
5d180232
PZ
4385 * Since this CPU is going 'away' for a while, fold any nr_active delta
4386 * we might have. Assumes we're called after migrate_tasks() so that the
4387 * nr_active count is stable.
4388 *
4389 * Also see the comment "Global load-average calculations".
1da177e4 4390 */
5d180232 4391static void calc_load_migrate(struct rq *rq)
1da177e4 4392{
5d180232
PZ
4393 long delta = calc_load_fold_active(rq);
4394 if (delta)
4395 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4396}
4397
48f24c4d 4398/*
48c5ccae
PZ
4399 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4400 * try_to_wake_up()->select_task_rq().
4401 *
4402 * Called with rq->lock held even though we'er in stop_machine() and
4403 * there's no concurrency possible, we hold the required locks anyway
4404 * because of lock validation efforts.
1da177e4 4405 */
48c5ccae 4406static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4407{
70b97a7f 4408 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4409 struct task_struct *next, *stop = rq->stop;
4410 int dest_cpu;
1da177e4
LT
4411
4412 /*
48c5ccae
PZ
4413 * Fudge the rq selection such that the below task selection loop
4414 * doesn't get stuck on the currently eligible stop task.
4415 *
4416 * We're currently inside stop_machine() and the rq is either stuck
4417 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4418 * either way we should never end up calling schedule() until we're
4419 * done here.
1da177e4 4420 */
48c5ccae 4421 rq->stop = NULL;
48f24c4d 4422
77bd3970
FW
4423 /*
4424 * put_prev_task() and pick_next_task() sched
4425 * class method both need to have an up-to-date
4426 * value of rq->clock[_task]
4427 */
4428 update_rq_clock(rq);
4429
dd41f596 4430 for ( ; ; ) {
48c5ccae
PZ
4431 /*
4432 * There's this thread running, bail when that's the only
4433 * remaining thread.
4434 */
4435 if (rq->nr_running == 1)
dd41f596 4436 break;
48c5ccae 4437
b67802ea 4438 next = pick_next_task(rq);
48c5ccae 4439 BUG_ON(!next);
79c53799 4440 next->sched_class->put_prev_task(rq, next);
e692ab53 4441
48c5ccae
PZ
4442 /* Find suitable destination for @next, with force if needed. */
4443 dest_cpu = select_fallback_rq(dead_cpu, next);
4444 raw_spin_unlock(&rq->lock);
4445
4446 __migrate_task(next, dead_cpu, dest_cpu);
4447
4448 raw_spin_lock(&rq->lock);
1da177e4 4449 }
dce48a84 4450
48c5ccae 4451 rq->stop = stop;
dce48a84 4452}
48c5ccae 4453
1da177e4
LT
4454#endif /* CONFIG_HOTPLUG_CPU */
4455
e692ab53
NP
4456#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4457
4458static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4459 {
4460 .procname = "sched_domain",
c57baf1e 4461 .mode = 0555,
e0361851 4462 },
56992309 4463 {}
e692ab53
NP
4464};
4465
4466static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4467 {
4468 .procname = "kernel",
c57baf1e 4469 .mode = 0555,
e0361851
AD
4470 .child = sd_ctl_dir,
4471 },
56992309 4472 {}
e692ab53
NP
4473};
4474
4475static struct ctl_table *sd_alloc_ctl_entry(int n)
4476{
4477 struct ctl_table *entry =
5cf9f062 4478 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4479
e692ab53
NP
4480 return entry;
4481}
4482
6382bc90
MM
4483static void sd_free_ctl_entry(struct ctl_table **tablep)
4484{
cd790076 4485 struct ctl_table *entry;
6382bc90 4486
cd790076
MM
4487 /*
4488 * In the intermediate directories, both the child directory and
4489 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4490 * will always be set. In the lowest directory the names are
cd790076
MM
4491 * static strings and all have proc handlers.
4492 */
4493 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4494 if (entry->child)
4495 sd_free_ctl_entry(&entry->child);
cd790076
MM
4496 if (entry->proc_handler == NULL)
4497 kfree(entry->procname);
4498 }
6382bc90
MM
4499
4500 kfree(*tablep);
4501 *tablep = NULL;
4502}
4503
201c373e 4504static int min_load_idx = 0;
fd9b86d3 4505static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4506
e692ab53 4507static void
e0361851 4508set_table_entry(struct ctl_table *entry,
e692ab53 4509 const char *procname, void *data, int maxlen,
201c373e
NK
4510 umode_t mode, proc_handler *proc_handler,
4511 bool load_idx)
e692ab53 4512{
e692ab53
NP
4513 entry->procname = procname;
4514 entry->data = data;
4515 entry->maxlen = maxlen;
4516 entry->mode = mode;
4517 entry->proc_handler = proc_handler;
201c373e
NK
4518
4519 if (load_idx) {
4520 entry->extra1 = &min_load_idx;
4521 entry->extra2 = &max_load_idx;
4522 }
e692ab53
NP
4523}
4524
4525static struct ctl_table *
4526sd_alloc_ctl_domain_table(struct sched_domain *sd)
4527{
a5d8c348 4528 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4529
ad1cdc1d
MM
4530 if (table == NULL)
4531 return NULL;
4532
e0361851 4533 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4534 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4535 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4536 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4537 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4538 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4539 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4540 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4541 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4542 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4543 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4544 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4545 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4546 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4547 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4548 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4549 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4550 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4551 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4552 &sd->cache_nice_tries,
201c373e 4553 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4554 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4555 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4556 set_table_entry(&table[11], "name", sd->name,
201c373e 4557 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4558 /* &table[12] is terminator */
e692ab53
NP
4559
4560 return table;
4561}
4562
be7002e6 4563static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4564{
4565 struct ctl_table *entry, *table;
4566 struct sched_domain *sd;
4567 int domain_num = 0, i;
4568 char buf[32];
4569
4570 for_each_domain(cpu, sd)
4571 domain_num++;
4572 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4573 if (table == NULL)
4574 return NULL;
e692ab53
NP
4575
4576 i = 0;
4577 for_each_domain(cpu, sd) {
4578 snprintf(buf, 32, "domain%d", i);
e692ab53 4579 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4580 entry->mode = 0555;
e692ab53
NP
4581 entry->child = sd_alloc_ctl_domain_table(sd);
4582 entry++;
4583 i++;
4584 }
4585 return table;
4586}
4587
4588static struct ctl_table_header *sd_sysctl_header;
6382bc90 4589static void register_sched_domain_sysctl(void)
e692ab53 4590{
6ad4c188 4591 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4592 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4593 char buf[32];
4594
7378547f
MM
4595 WARN_ON(sd_ctl_dir[0].child);
4596 sd_ctl_dir[0].child = entry;
4597
ad1cdc1d
MM
4598 if (entry == NULL)
4599 return;
4600
6ad4c188 4601 for_each_possible_cpu(i) {
e692ab53 4602 snprintf(buf, 32, "cpu%d", i);
e692ab53 4603 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4604 entry->mode = 0555;
e692ab53 4605 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4606 entry++;
e692ab53 4607 }
7378547f
MM
4608
4609 WARN_ON(sd_sysctl_header);
e692ab53
NP
4610 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4611}
6382bc90 4612
7378547f 4613/* may be called multiple times per register */
6382bc90
MM
4614static void unregister_sched_domain_sysctl(void)
4615{
7378547f
MM
4616 if (sd_sysctl_header)
4617 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4618 sd_sysctl_header = NULL;
7378547f
MM
4619 if (sd_ctl_dir[0].child)
4620 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4621}
e692ab53 4622#else
6382bc90
MM
4623static void register_sched_domain_sysctl(void)
4624{
4625}
4626static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4627{
4628}
4629#endif
4630
1f11eb6a
GH
4631static void set_rq_online(struct rq *rq)
4632{
4633 if (!rq->online) {
4634 const struct sched_class *class;
4635
c6c4927b 4636 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4637 rq->online = 1;
4638
4639 for_each_class(class) {
4640 if (class->rq_online)
4641 class->rq_online(rq);
4642 }
4643 }
4644}
4645
4646static void set_rq_offline(struct rq *rq)
4647{
4648 if (rq->online) {
4649 const struct sched_class *class;
4650
4651 for_each_class(class) {
4652 if (class->rq_offline)
4653 class->rq_offline(rq);
4654 }
4655
c6c4927b 4656 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4657 rq->online = 0;
4658 }
4659}
4660
1da177e4
LT
4661/*
4662 * migration_call - callback that gets triggered when a CPU is added.
4663 * Here we can start up the necessary migration thread for the new CPU.
4664 */
0db0628d 4665static int
48f24c4d 4666migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4667{
48f24c4d 4668 int cpu = (long)hcpu;
1da177e4 4669 unsigned long flags;
969c7921 4670 struct rq *rq = cpu_rq(cpu);
1da177e4 4671
48c5ccae 4672 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4673
1da177e4 4674 case CPU_UP_PREPARE:
a468d389 4675 rq->calc_load_update = calc_load_update;
1da177e4 4676 break;
48f24c4d 4677
1da177e4 4678 case CPU_ONLINE:
1f94ef59 4679 /* Update our root-domain */
05fa785c 4680 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4681 if (rq->rd) {
c6c4927b 4682 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4683
4684 set_rq_online(rq);
1f94ef59 4685 }
05fa785c 4686 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4687 break;
48f24c4d 4688
1da177e4 4689#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4690 case CPU_DYING:
317f3941 4691 sched_ttwu_pending();
57d885fe 4692 /* Update our root-domain */
05fa785c 4693 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4694 if (rq->rd) {
c6c4927b 4695 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4696 set_rq_offline(rq);
57d885fe 4697 }
48c5ccae
PZ
4698 migrate_tasks(cpu);
4699 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4700 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4701 break;
48c5ccae 4702
5d180232 4703 case CPU_DEAD:
f319da0c 4704 calc_load_migrate(rq);
57d885fe 4705 break;
1da177e4
LT
4706#endif
4707 }
49c022e6
PZ
4708
4709 update_max_interval();
4710
1da177e4
LT
4711 return NOTIFY_OK;
4712}
4713
f38b0820
PM
4714/*
4715 * Register at high priority so that task migration (migrate_all_tasks)
4716 * happens before everything else. This has to be lower priority than
cdd6c482 4717 * the notifier in the perf_event subsystem, though.
1da177e4 4718 */
0db0628d 4719static struct notifier_block migration_notifier = {
1da177e4 4720 .notifier_call = migration_call,
50a323b7 4721 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4722};
4723
0db0628d 4724static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4725 unsigned long action, void *hcpu)
4726{
4727 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4728 case CPU_STARTING:
3a101d05
TH
4729 case CPU_DOWN_FAILED:
4730 set_cpu_active((long)hcpu, true);
4731 return NOTIFY_OK;
4732 default:
4733 return NOTIFY_DONE;
4734 }
4735}
4736
0db0628d 4737static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4738 unsigned long action, void *hcpu)
4739{
4740 switch (action & ~CPU_TASKS_FROZEN) {
4741 case CPU_DOWN_PREPARE:
4742 set_cpu_active((long)hcpu, false);
4743 return NOTIFY_OK;
4744 default:
4745 return NOTIFY_DONE;
4746 }
4747}
4748
7babe8db 4749static int __init migration_init(void)
1da177e4
LT
4750{
4751 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4752 int err;
48f24c4d 4753
3a101d05 4754 /* Initialize migration for the boot CPU */
07dccf33
AM
4755 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4756 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4757 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4758 register_cpu_notifier(&migration_notifier);
7babe8db 4759
3a101d05
TH
4760 /* Register cpu active notifiers */
4761 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4762 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4763
a004cd42 4764 return 0;
1da177e4 4765}
7babe8db 4766early_initcall(migration_init);
1da177e4
LT
4767#endif
4768
4769#ifdef CONFIG_SMP
476f3534 4770
4cb98839
PZ
4771static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4772
3e9830dc 4773#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4774
d039ac60 4775static __read_mostly int sched_debug_enabled;
f6630114 4776
d039ac60 4777static int __init sched_debug_setup(char *str)
f6630114 4778{
d039ac60 4779 sched_debug_enabled = 1;
f6630114
MT
4780
4781 return 0;
4782}
d039ac60
PZ
4783early_param("sched_debug", sched_debug_setup);
4784
4785static inline bool sched_debug(void)
4786{
4787 return sched_debug_enabled;
4788}
f6630114 4789
7c16ec58 4790static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4791 struct cpumask *groupmask)
1da177e4 4792{
4dcf6aff 4793 struct sched_group *group = sd->groups;
434d53b0 4794 char str[256];
1da177e4 4795
968ea6d8 4796 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4797 cpumask_clear(groupmask);
4dcf6aff
IM
4798
4799 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4800
4801 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4802 printk("does not load-balance\n");
4dcf6aff 4803 if (sd->parent)
3df0fc5b
PZ
4804 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4805 " has parent");
4dcf6aff 4806 return -1;
41c7ce9a
NP
4807 }
4808
3df0fc5b 4809 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4810
758b2cdc 4811 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4812 printk(KERN_ERR "ERROR: domain->span does not contain "
4813 "CPU%d\n", cpu);
4dcf6aff 4814 }
758b2cdc 4815 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4816 printk(KERN_ERR "ERROR: domain->groups does not contain"
4817 " CPU%d\n", cpu);
4dcf6aff 4818 }
1da177e4 4819
4dcf6aff 4820 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4821 do {
4dcf6aff 4822 if (!group) {
3df0fc5b
PZ
4823 printk("\n");
4824 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4825 break;
4826 }
4827
c3decf0d
PZ
4828 /*
4829 * Even though we initialize ->power to something semi-sane,
4830 * we leave power_orig unset. This allows us to detect if
4831 * domain iteration is still funny without causing /0 traps.
4832 */
4833 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4834 printk(KERN_CONT "\n");
4835 printk(KERN_ERR "ERROR: domain->cpu_power not "
4836 "set\n");
4dcf6aff
IM
4837 break;
4838 }
1da177e4 4839
758b2cdc 4840 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4841 printk(KERN_CONT "\n");
4842 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4843 break;
4844 }
1da177e4 4845
cb83b629
PZ
4846 if (!(sd->flags & SD_OVERLAP) &&
4847 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4848 printk(KERN_CONT "\n");
4849 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4850 break;
4851 }
1da177e4 4852
758b2cdc 4853 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4854
968ea6d8 4855 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4856
3df0fc5b 4857 printk(KERN_CONT " %s", str);
9c3f75cb 4858 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4859 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4860 group->sgp->power);
381512cf 4861 }
1da177e4 4862
4dcf6aff
IM
4863 group = group->next;
4864 } while (group != sd->groups);
3df0fc5b 4865 printk(KERN_CONT "\n");
1da177e4 4866
758b2cdc 4867 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4868 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4869
758b2cdc
RR
4870 if (sd->parent &&
4871 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4872 printk(KERN_ERR "ERROR: parent span is not a superset "
4873 "of domain->span\n");
4dcf6aff
IM
4874 return 0;
4875}
1da177e4 4876
4dcf6aff
IM
4877static void sched_domain_debug(struct sched_domain *sd, int cpu)
4878{
4879 int level = 0;
1da177e4 4880
d039ac60 4881 if (!sched_debug_enabled)
f6630114
MT
4882 return;
4883
4dcf6aff
IM
4884 if (!sd) {
4885 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4886 return;
4887 }
1da177e4 4888
4dcf6aff
IM
4889 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4890
4891 for (;;) {
4cb98839 4892 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4893 break;
1da177e4
LT
4894 level++;
4895 sd = sd->parent;
33859f7f 4896 if (!sd)
4dcf6aff
IM
4897 break;
4898 }
1da177e4 4899}
6d6bc0ad 4900#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4901# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4902static inline bool sched_debug(void)
4903{
4904 return false;
4905}
6d6bc0ad 4906#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4907
1a20ff27 4908static int sd_degenerate(struct sched_domain *sd)
245af2c7 4909{
758b2cdc 4910 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4911 return 1;
4912
4913 /* Following flags need at least 2 groups */
4914 if (sd->flags & (SD_LOAD_BALANCE |
4915 SD_BALANCE_NEWIDLE |
4916 SD_BALANCE_FORK |
89c4710e
SS
4917 SD_BALANCE_EXEC |
4918 SD_SHARE_CPUPOWER |
4919 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4920 if (sd->groups != sd->groups->next)
4921 return 0;
4922 }
4923
4924 /* Following flags don't use groups */
c88d5910 4925 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4926 return 0;
4927
4928 return 1;
4929}
4930
48f24c4d
IM
4931static int
4932sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4933{
4934 unsigned long cflags = sd->flags, pflags = parent->flags;
4935
4936 if (sd_degenerate(parent))
4937 return 1;
4938
758b2cdc 4939 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4940 return 0;
4941
245af2c7
SS
4942 /* Flags needing groups don't count if only 1 group in parent */
4943 if (parent->groups == parent->groups->next) {
4944 pflags &= ~(SD_LOAD_BALANCE |
4945 SD_BALANCE_NEWIDLE |
4946 SD_BALANCE_FORK |
89c4710e
SS
4947 SD_BALANCE_EXEC |
4948 SD_SHARE_CPUPOWER |
10866e62
PZ
4949 SD_SHARE_PKG_RESOURCES |
4950 SD_PREFER_SIBLING);
5436499e
KC
4951 if (nr_node_ids == 1)
4952 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4953 }
4954 if (~cflags & pflags)
4955 return 0;
4956
4957 return 1;
4958}
4959
dce840a0 4960static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4961{
dce840a0 4962 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4963
68e74568 4964 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4965 free_cpumask_var(rd->rto_mask);
4966 free_cpumask_var(rd->online);
4967 free_cpumask_var(rd->span);
4968 kfree(rd);
4969}
4970
57d885fe
GH
4971static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4972{
a0490fa3 4973 struct root_domain *old_rd = NULL;
57d885fe 4974 unsigned long flags;
57d885fe 4975
05fa785c 4976 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4977
4978 if (rq->rd) {
a0490fa3 4979 old_rd = rq->rd;
57d885fe 4980
c6c4927b 4981 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4982 set_rq_offline(rq);
57d885fe 4983
c6c4927b 4984 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4985
a0490fa3 4986 /*
0515973f 4987 * If we dont want to free the old_rd yet then
a0490fa3
IM
4988 * set old_rd to NULL to skip the freeing later
4989 * in this function:
4990 */
4991 if (!atomic_dec_and_test(&old_rd->refcount))
4992 old_rd = NULL;
57d885fe
GH
4993 }
4994
4995 atomic_inc(&rd->refcount);
4996 rq->rd = rd;
4997
c6c4927b 4998 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 4999 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5000 set_rq_online(rq);
57d885fe 5001
05fa785c 5002 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5003
5004 if (old_rd)
dce840a0 5005 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5006}
5007
68c38fc3 5008static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5009{
5010 memset(rd, 0, sizeof(*rd));
5011
68c38fc3 5012 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5013 goto out;
68c38fc3 5014 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5015 goto free_span;
68c38fc3 5016 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5017 goto free_online;
6e0534f2 5018
68c38fc3 5019 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5020 goto free_rto_mask;
c6c4927b 5021 return 0;
6e0534f2 5022
68e74568
RR
5023free_rto_mask:
5024 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5025free_online:
5026 free_cpumask_var(rd->online);
5027free_span:
5028 free_cpumask_var(rd->span);
0c910d28 5029out:
c6c4927b 5030 return -ENOMEM;
57d885fe
GH
5031}
5032
029632fb
PZ
5033/*
5034 * By default the system creates a single root-domain with all cpus as
5035 * members (mimicking the global state we have today).
5036 */
5037struct root_domain def_root_domain;
5038
57d885fe
GH
5039static void init_defrootdomain(void)
5040{
68c38fc3 5041 init_rootdomain(&def_root_domain);
c6c4927b 5042
57d885fe
GH
5043 atomic_set(&def_root_domain.refcount, 1);
5044}
5045
dc938520 5046static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5047{
5048 struct root_domain *rd;
5049
5050 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5051 if (!rd)
5052 return NULL;
5053
68c38fc3 5054 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5055 kfree(rd);
5056 return NULL;
5057 }
57d885fe
GH
5058
5059 return rd;
5060}
5061
e3589f6c
PZ
5062static void free_sched_groups(struct sched_group *sg, int free_sgp)
5063{
5064 struct sched_group *tmp, *first;
5065
5066 if (!sg)
5067 return;
5068
5069 first = sg;
5070 do {
5071 tmp = sg->next;
5072
5073 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5074 kfree(sg->sgp);
5075
5076 kfree(sg);
5077 sg = tmp;
5078 } while (sg != first);
5079}
5080
dce840a0
PZ
5081static void free_sched_domain(struct rcu_head *rcu)
5082{
5083 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5084
5085 /*
5086 * If its an overlapping domain it has private groups, iterate and
5087 * nuke them all.
5088 */
5089 if (sd->flags & SD_OVERLAP) {
5090 free_sched_groups(sd->groups, 1);
5091 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5092 kfree(sd->groups->sgp);
dce840a0 5093 kfree(sd->groups);
9c3f75cb 5094 }
dce840a0
PZ
5095 kfree(sd);
5096}
5097
5098static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5099{
5100 call_rcu(&sd->rcu, free_sched_domain);
5101}
5102
5103static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5104{
5105 for (; sd; sd = sd->parent)
5106 destroy_sched_domain(sd, cpu);
5107}
5108
518cd623
PZ
5109/*
5110 * Keep a special pointer to the highest sched_domain that has
5111 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5112 * allows us to avoid some pointer chasing select_idle_sibling().
5113 *
5114 * Also keep a unique ID per domain (we use the first cpu number in
5115 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5116 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5117 */
5118DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5119DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5120DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5121DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5122DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5123DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5124
5125static void update_top_cache_domain(int cpu)
5126{
5127 struct sched_domain *sd;
5d4cf996 5128 struct sched_domain *busy_sd = NULL;
518cd623 5129 int id = cpu;
7d9ffa89 5130 int size = 1;
518cd623
PZ
5131
5132 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5133 if (sd) {
518cd623 5134 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5135 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5136 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5137 }
5d4cf996 5138 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5139
5140 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5141 per_cpu(sd_llc_size, cpu) = size;
518cd623 5142 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5143
5144 sd = lowest_flag_domain(cpu, SD_NUMA);
5145 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5146
5147 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5148 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5149}
5150
1da177e4 5151/*
0eab9146 5152 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5153 * hold the hotplug lock.
5154 */
0eab9146
IM
5155static void
5156cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5157{
70b97a7f 5158 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5159 struct sched_domain *tmp;
5160
5161 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5162 for (tmp = sd; tmp; ) {
245af2c7
SS
5163 struct sched_domain *parent = tmp->parent;
5164 if (!parent)
5165 break;
f29c9b1c 5166
1a848870 5167 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5168 tmp->parent = parent->parent;
1a848870
SS
5169 if (parent->parent)
5170 parent->parent->child = tmp;
10866e62
PZ
5171 /*
5172 * Transfer SD_PREFER_SIBLING down in case of a
5173 * degenerate parent; the spans match for this
5174 * so the property transfers.
5175 */
5176 if (parent->flags & SD_PREFER_SIBLING)
5177 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5178 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5179 } else
5180 tmp = tmp->parent;
245af2c7
SS
5181 }
5182
1a848870 5183 if (sd && sd_degenerate(sd)) {
dce840a0 5184 tmp = sd;
245af2c7 5185 sd = sd->parent;
dce840a0 5186 destroy_sched_domain(tmp, cpu);
1a848870
SS
5187 if (sd)
5188 sd->child = NULL;
5189 }
1da177e4 5190
4cb98839 5191 sched_domain_debug(sd, cpu);
1da177e4 5192
57d885fe 5193 rq_attach_root(rq, rd);
dce840a0 5194 tmp = rq->sd;
674311d5 5195 rcu_assign_pointer(rq->sd, sd);
dce840a0 5196 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5197
5198 update_top_cache_domain(cpu);
1da177e4
LT
5199}
5200
5201/* cpus with isolated domains */
dcc30a35 5202static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5203
5204/* Setup the mask of cpus configured for isolated domains */
5205static int __init isolated_cpu_setup(char *str)
5206{
bdddd296 5207 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5208 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5209 return 1;
5210}
5211
8927f494 5212__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5213
d3081f52
PZ
5214static const struct cpumask *cpu_cpu_mask(int cpu)
5215{
5216 return cpumask_of_node(cpu_to_node(cpu));
5217}
5218
dce840a0
PZ
5219struct sd_data {
5220 struct sched_domain **__percpu sd;
5221 struct sched_group **__percpu sg;
9c3f75cb 5222 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5223};
5224
49a02c51 5225struct s_data {
21d42ccf 5226 struct sched_domain ** __percpu sd;
49a02c51
AH
5227 struct root_domain *rd;
5228};
5229
2109b99e 5230enum s_alloc {
2109b99e 5231 sa_rootdomain,
21d42ccf 5232 sa_sd,
dce840a0 5233 sa_sd_storage,
2109b99e
AH
5234 sa_none,
5235};
5236
54ab4ff4
PZ
5237struct sched_domain_topology_level;
5238
5239typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5240typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5241
e3589f6c
PZ
5242#define SDTL_OVERLAP 0x01
5243
eb7a74e6 5244struct sched_domain_topology_level {
2c402dc3
PZ
5245 sched_domain_init_f init;
5246 sched_domain_mask_f mask;
e3589f6c 5247 int flags;
cb83b629 5248 int numa_level;
54ab4ff4 5249 struct sd_data data;
eb7a74e6
PZ
5250};
5251
c1174876
PZ
5252/*
5253 * Build an iteration mask that can exclude certain CPUs from the upwards
5254 * domain traversal.
5255 *
5256 * Asymmetric node setups can result in situations where the domain tree is of
5257 * unequal depth, make sure to skip domains that already cover the entire
5258 * range.
5259 *
5260 * In that case build_sched_domains() will have terminated the iteration early
5261 * and our sibling sd spans will be empty. Domains should always include the
5262 * cpu they're built on, so check that.
5263 *
5264 */
5265static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5266{
5267 const struct cpumask *span = sched_domain_span(sd);
5268 struct sd_data *sdd = sd->private;
5269 struct sched_domain *sibling;
5270 int i;
5271
5272 for_each_cpu(i, span) {
5273 sibling = *per_cpu_ptr(sdd->sd, i);
5274 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5275 continue;
5276
5277 cpumask_set_cpu(i, sched_group_mask(sg));
5278 }
5279}
5280
5281/*
5282 * Return the canonical balance cpu for this group, this is the first cpu
5283 * of this group that's also in the iteration mask.
5284 */
5285int group_balance_cpu(struct sched_group *sg)
5286{
5287 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5288}
5289
e3589f6c
PZ
5290static int
5291build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5292{
5293 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5294 const struct cpumask *span = sched_domain_span(sd);
5295 struct cpumask *covered = sched_domains_tmpmask;
5296 struct sd_data *sdd = sd->private;
5297 struct sched_domain *child;
5298 int i;
5299
5300 cpumask_clear(covered);
5301
5302 for_each_cpu(i, span) {
5303 struct cpumask *sg_span;
5304
5305 if (cpumask_test_cpu(i, covered))
5306 continue;
5307
c1174876
PZ
5308 child = *per_cpu_ptr(sdd->sd, i);
5309
5310 /* See the comment near build_group_mask(). */
5311 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5312 continue;
5313
e3589f6c 5314 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5315 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5316
5317 if (!sg)
5318 goto fail;
5319
5320 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5321 if (child->child) {
5322 child = child->child;
5323 cpumask_copy(sg_span, sched_domain_span(child));
5324 } else
5325 cpumask_set_cpu(i, sg_span);
5326
5327 cpumask_or(covered, covered, sg_span);
5328
74a5ce20 5329 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5330 if (atomic_inc_return(&sg->sgp->ref) == 1)
5331 build_group_mask(sd, sg);
5332
c3decf0d
PZ
5333 /*
5334 * Initialize sgp->power such that even if we mess up the
5335 * domains and no possible iteration will get us here, we won't
5336 * die on a /0 trap.
5337 */
5338 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5339 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5340
c1174876
PZ
5341 /*
5342 * Make sure the first group of this domain contains the
5343 * canonical balance cpu. Otherwise the sched_domain iteration
5344 * breaks. See update_sg_lb_stats().
5345 */
74a5ce20 5346 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5347 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5348 groups = sg;
5349
5350 if (!first)
5351 first = sg;
5352 if (last)
5353 last->next = sg;
5354 last = sg;
5355 last->next = first;
5356 }
5357 sd->groups = groups;
5358
5359 return 0;
5360
5361fail:
5362 free_sched_groups(first, 0);
5363
5364 return -ENOMEM;
5365}
5366
dce840a0 5367static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5368{
dce840a0
PZ
5369 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5370 struct sched_domain *child = sd->child;
1da177e4 5371
dce840a0
PZ
5372 if (child)
5373 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5374
9c3f75cb 5375 if (sg) {
dce840a0 5376 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5377 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5378 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5379 }
dce840a0
PZ
5380
5381 return cpu;
1e9f28fa 5382}
1e9f28fa 5383
01a08546 5384/*
dce840a0
PZ
5385 * build_sched_groups will build a circular linked list of the groups
5386 * covered by the given span, and will set each group's ->cpumask correctly,
5387 * and ->cpu_power to 0.
e3589f6c
PZ
5388 *
5389 * Assumes the sched_domain tree is fully constructed
01a08546 5390 */
e3589f6c
PZ
5391static int
5392build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5393{
dce840a0
PZ
5394 struct sched_group *first = NULL, *last = NULL;
5395 struct sd_data *sdd = sd->private;
5396 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5397 struct cpumask *covered;
dce840a0 5398 int i;
9c1cfda2 5399
e3589f6c
PZ
5400 get_group(cpu, sdd, &sd->groups);
5401 atomic_inc(&sd->groups->ref);
5402
0936629f 5403 if (cpu != cpumask_first(span))
e3589f6c
PZ
5404 return 0;
5405
f96225fd
PZ
5406 lockdep_assert_held(&sched_domains_mutex);
5407 covered = sched_domains_tmpmask;
5408
dce840a0 5409 cpumask_clear(covered);
6711cab4 5410
dce840a0
PZ
5411 for_each_cpu(i, span) {
5412 struct sched_group *sg;
cd08e923 5413 int group, j;
6711cab4 5414
dce840a0
PZ
5415 if (cpumask_test_cpu(i, covered))
5416 continue;
6711cab4 5417
cd08e923 5418 group = get_group(i, sdd, &sg);
dce840a0 5419 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5420 sg->sgp->power = 0;
c1174876 5421 cpumask_setall(sched_group_mask(sg));
0601a88d 5422
dce840a0
PZ
5423 for_each_cpu(j, span) {
5424 if (get_group(j, sdd, NULL) != group)
5425 continue;
0601a88d 5426
dce840a0
PZ
5427 cpumask_set_cpu(j, covered);
5428 cpumask_set_cpu(j, sched_group_cpus(sg));
5429 }
0601a88d 5430
dce840a0
PZ
5431 if (!first)
5432 first = sg;
5433 if (last)
5434 last->next = sg;
5435 last = sg;
5436 }
5437 last->next = first;
e3589f6c
PZ
5438
5439 return 0;
0601a88d 5440}
51888ca2 5441
89c4710e
SS
5442/*
5443 * Initialize sched groups cpu_power.
5444 *
5445 * cpu_power indicates the capacity of sched group, which is used while
5446 * distributing the load between different sched groups in a sched domain.
5447 * Typically cpu_power for all the groups in a sched domain will be same unless
5448 * there are asymmetries in the topology. If there are asymmetries, group
5449 * having more cpu_power will pickup more load compared to the group having
5450 * less cpu_power.
89c4710e
SS
5451 */
5452static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5453{
e3589f6c 5454 struct sched_group *sg = sd->groups;
89c4710e 5455
94c95ba6 5456 WARN_ON(!sg);
e3589f6c
PZ
5457
5458 do {
5459 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5460 sg = sg->next;
5461 } while (sg != sd->groups);
89c4710e 5462
c1174876 5463 if (cpu != group_balance_cpu(sg))
e3589f6c 5464 return;
aae6d3dd 5465
d274cb30 5466 update_group_power(sd, cpu);
69e1e811 5467 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5468}
5469
029632fb
PZ
5470int __weak arch_sd_sibling_asym_packing(void)
5471{
5472 return 0*SD_ASYM_PACKING;
89c4710e
SS
5473}
5474
7c16ec58
MT
5475/*
5476 * Initializers for schedule domains
5477 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5478 */
5479
a5d8c348
IM
5480#ifdef CONFIG_SCHED_DEBUG
5481# define SD_INIT_NAME(sd, type) sd->name = #type
5482#else
5483# define SD_INIT_NAME(sd, type) do { } while (0)
5484#endif
5485
54ab4ff4
PZ
5486#define SD_INIT_FUNC(type) \
5487static noinline struct sched_domain * \
5488sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5489{ \
5490 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5491 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5492 SD_INIT_NAME(sd, type); \
5493 sd->private = &tl->data; \
5494 return sd; \
7c16ec58
MT
5495}
5496
5497SD_INIT_FUNC(CPU)
7c16ec58
MT
5498#ifdef CONFIG_SCHED_SMT
5499 SD_INIT_FUNC(SIBLING)
5500#endif
5501#ifdef CONFIG_SCHED_MC
5502 SD_INIT_FUNC(MC)
5503#endif
01a08546
HC
5504#ifdef CONFIG_SCHED_BOOK
5505 SD_INIT_FUNC(BOOK)
5506#endif
7c16ec58 5507
1d3504fc 5508static int default_relax_domain_level = -1;
60495e77 5509int sched_domain_level_max;
1d3504fc
HS
5510
5511static int __init setup_relax_domain_level(char *str)
5512{
a841f8ce
DS
5513 if (kstrtoint(str, 0, &default_relax_domain_level))
5514 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5515
1d3504fc
HS
5516 return 1;
5517}
5518__setup("relax_domain_level=", setup_relax_domain_level);
5519
5520static void set_domain_attribute(struct sched_domain *sd,
5521 struct sched_domain_attr *attr)
5522{
5523 int request;
5524
5525 if (!attr || attr->relax_domain_level < 0) {
5526 if (default_relax_domain_level < 0)
5527 return;
5528 else
5529 request = default_relax_domain_level;
5530 } else
5531 request = attr->relax_domain_level;
5532 if (request < sd->level) {
5533 /* turn off idle balance on this domain */
c88d5910 5534 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5535 } else {
5536 /* turn on idle balance on this domain */
c88d5910 5537 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5538 }
5539}
5540
54ab4ff4
PZ
5541static void __sdt_free(const struct cpumask *cpu_map);
5542static int __sdt_alloc(const struct cpumask *cpu_map);
5543
2109b99e
AH
5544static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5545 const struct cpumask *cpu_map)
5546{
5547 switch (what) {
2109b99e 5548 case sa_rootdomain:
822ff793
PZ
5549 if (!atomic_read(&d->rd->refcount))
5550 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5551 case sa_sd:
5552 free_percpu(d->sd); /* fall through */
dce840a0 5553 case sa_sd_storage:
54ab4ff4 5554 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5555 case sa_none:
5556 break;
5557 }
5558}
3404c8d9 5559
2109b99e
AH
5560static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5561 const struct cpumask *cpu_map)
5562{
dce840a0
PZ
5563 memset(d, 0, sizeof(*d));
5564
54ab4ff4
PZ
5565 if (__sdt_alloc(cpu_map))
5566 return sa_sd_storage;
dce840a0
PZ
5567 d->sd = alloc_percpu(struct sched_domain *);
5568 if (!d->sd)
5569 return sa_sd_storage;
2109b99e 5570 d->rd = alloc_rootdomain();
dce840a0 5571 if (!d->rd)
21d42ccf 5572 return sa_sd;
2109b99e
AH
5573 return sa_rootdomain;
5574}
57d885fe 5575
dce840a0
PZ
5576/*
5577 * NULL the sd_data elements we've used to build the sched_domain and
5578 * sched_group structure so that the subsequent __free_domain_allocs()
5579 * will not free the data we're using.
5580 */
5581static void claim_allocations(int cpu, struct sched_domain *sd)
5582{
5583 struct sd_data *sdd = sd->private;
dce840a0
PZ
5584
5585 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5586 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5587
e3589f6c 5588 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5589 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5590
5591 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5592 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5593}
5594
2c402dc3
PZ
5595#ifdef CONFIG_SCHED_SMT
5596static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5597{
2c402dc3 5598 return topology_thread_cpumask(cpu);
3bd65a80 5599}
2c402dc3 5600#endif
7f4588f3 5601
d069b916
PZ
5602/*
5603 * Topology list, bottom-up.
5604 */
2c402dc3 5605static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5606#ifdef CONFIG_SCHED_SMT
5607 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5608#endif
1e9f28fa 5609#ifdef CONFIG_SCHED_MC
2c402dc3 5610 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5611#endif
d069b916
PZ
5612#ifdef CONFIG_SCHED_BOOK
5613 { sd_init_BOOK, cpu_book_mask, },
5614#endif
5615 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5616 { NULL, },
5617};
5618
5619static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5620
27723a68
VK
5621#define for_each_sd_topology(tl) \
5622 for (tl = sched_domain_topology; tl->init; tl++)
5623
cb83b629
PZ
5624#ifdef CONFIG_NUMA
5625
5626static int sched_domains_numa_levels;
cb83b629
PZ
5627static int *sched_domains_numa_distance;
5628static struct cpumask ***sched_domains_numa_masks;
5629static int sched_domains_curr_level;
5630
cb83b629
PZ
5631static inline int sd_local_flags(int level)
5632{
10717dcd 5633 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5634 return 0;
5635
5636 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5637}
5638
5639static struct sched_domain *
5640sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5641{
5642 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5643 int level = tl->numa_level;
5644 int sd_weight = cpumask_weight(
5645 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5646
5647 *sd = (struct sched_domain){
5648 .min_interval = sd_weight,
5649 .max_interval = 2*sd_weight,
5650 .busy_factor = 32,
870a0bb5 5651 .imbalance_pct = 125,
cb83b629
PZ
5652 .cache_nice_tries = 2,
5653 .busy_idx = 3,
5654 .idle_idx = 2,
5655 .newidle_idx = 0,
5656 .wake_idx = 0,
5657 .forkexec_idx = 0,
5658
5659 .flags = 1*SD_LOAD_BALANCE
5660 | 1*SD_BALANCE_NEWIDLE
5661 | 0*SD_BALANCE_EXEC
5662 | 0*SD_BALANCE_FORK
5663 | 0*SD_BALANCE_WAKE
5664 | 0*SD_WAKE_AFFINE
cb83b629 5665 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5666 | 0*SD_SHARE_PKG_RESOURCES
5667 | 1*SD_SERIALIZE
5668 | 0*SD_PREFER_SIBLING
3a7053b3 5669 | 1*SD_NUMA
cb83b629
PZ
5670 | sd_local_flags(level)
5671 ,
5672 .last_balance = jiffies,
5673 .balance_interval = sd_weight,
5674 };
5675 SD_INIT_NAME(sd, NUMA);
5676 sd->private = &tl->data;
5677
5678 /*
5679 * Ugly hack to pass state to sd_numa_mask()...
5680 */
5681 sched_domains_curr_level = tl->numa_level;
5682
5683 return sd;
5684}
5685
5686static const struct cpumask *sd_numa_mask(int cpu)
5687{
5688 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5689}
5690
d039ac60
PZ
5691static void sched_numa_warn(const char *str)
5692{
5693 static int done = false;
5694 int i,j;
5695
5696 if (done)
5697 return;
5698
5699 done = true;
5700
5701 printk(KERN_WARNING "ERROR: %s\n\n", str);
5702
5703 for (i = 0; i < nr_node_ids; i++) {
5704 printk(KERN_WARNING " ");
5705 for (j = 0; j < nr_node_ids; j++)
5706 printk(KERN_CONT "%02d ", node_distance(i,j));
5707 printk(KERN_CONT "\n");
5708 }
5709 printk(KERN_WARNING "\n");
5710}
5711
5712static bool find_numa_distance(int distance)
5713{
5714 int i;
5715
5716 if (distance == node_distance(0, 0))
5717 return true;
5718
5719 for (i = 0; i < sched_domains_numa_levels; i++) {
5720 if (sched_domains_numa_distance[i] == distance)
5721 return true;
5722 }
5723
5724 return false;
5725}
5726
cb83b629
PZ
5727static void sched_init_numa(void)
5728{
5729 int next_distance, curr_distance = node_distance(0, 0);
5730 struct sched_domain_topology_level *tl;
5731 int level = 0;
5732 int i, j, k;
5733
cb83b629
PZ
5734 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5735 if (!sched_domains_numa_distance)
5736 return;
5737
5738 /*
5739 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5740 * unique distances in the node_distance() table.
5741 *
5742 * Assumes node_distance(0,j) includes all distances in
5743 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5744 */
5745 next_distance = curr_distance;
5746 for (i = 0; i < nr_node_ids; i++) {
5747 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5748 for (k = 0; k < nr_node_ids; k++) {
5749 int distance = node_distance(i, k);
5750
5751 if (distance > curr_distance &&
5752 (distance < next_distance ||
5753 next_distance == curr_distance))
5754 next_distance = distance;
5755
5756 /*
5757 * While not a strong assumption it would be nice to know
5758 * about cases where if node A is connected to B, B is not
5759 * equally connected to A.
5760 */
5761 if (sched_debug() && node_distance(k, i) != distance)
5762 sched_numa_warn("Node-distance not symmetric");
5763
5764 if (sched_debug() && i && !find_numa_distance(distance))
5765 sched_numa_warn("Node-0 not representative");
5766 }
5767 if (next_distance != curr_distance) {
5768 sched_domains_numa_distance[level++] = next_distance;
5769 sched_domains_numa_levels = level;
5770 curr_distance = next_distance;
5771 } else break;
cb83b629 5772 }
d039ac60
PZ
5773
5774 /*
5775 * In case of sched_debug() we verify the above assumption.
5776 */
5777 if (!sched_debug())
5778 break;
cb83b629
PZ
5779 }
5780 /*
5781 * 'level' contains the number of unique distances, excluding the
5782 * identity distance node_distance(i,i).
5783 *
28b4a521 5784 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5785 * numbers.
5786 */
5787
5f7865f3
TC
5788 /*
5789 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5790 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5791 * the array will contain less then 'level' members. This could be
5792 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5793 * in other functions.
5794 *
5795 * We reset it to 'level' at the end of this function.
5796 */
5797 sched_domains_numa_levels = 0;
5798
cb83b629
PZ
5799 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5800 if (!sched_domains_numa_masks)
5801 return;
5802
5803 /*
5804 * Now for each level, construct a mask per node which contains all
5805 * cpus of nodes that are that many hops away from us.
5806 */
5807 for (i = 0; i < level; i++) {
5808 sched_domains_numa_masks[i] =
5809 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5810 if (!sched_domains_numa_masks[i])
5811 return;
5812
5813 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5814 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5815 if (!mask)
5816 return;
5817
5818 sched_domains_numa_masks[i][j] = mask;
5819
5820 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5821 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5822 continue;
5823
5824 cpumask_or(mask, mask, cpumask_of_node(k));
5825 }
5826 }
5827 }
5828
5829 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5830 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5831 if (!tl)
5832 return;
5833
5834 /*
5835 * Copy the default topology bits..
5836 */
5837 for (i = 0; default_topology[i].init; i++)
5838 tl[i] = default_topology[i];
5839
5840 /*
5841 * .. and append 'j' levels of NUMA goodness.
5842 */
5843 for (j = 0; j < level; i++, j++) {
5844 tl[i] = (struct sched_domain_topology_level){
5845 .init = sd_numa_init,
5846 .mask = sd_numa_mask,
5847 .flags = SDTL_OVERLAP,
5848 .numa_level = j,
5849 };
5850 }
5851
5852 sched_domain_topology = tl;
5f7865f3
TC
5853
5854 sched_domains_numa_levels = level;
cb83b629 5855}
301a5cba
TC
5856
5857static void sched_domains_numa_masks_set(int cpu)
5858{
5859 int i, j;
5860 int node = cpu_to_node(cpu);
5861
5862 for (i = 0; i < sched_domains_numa_levels; i++) {
5863 for (j = 0; j < nr_node_ids; j++) {
5864 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5865 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5866 }
5867 }
5868}
5869
5870static void sched_domains_numa_masks_clear(int cpu)
5871{
5872 int i, j;
5873 for (i = 0; i < sched_domains_numa_levels; i++) {
5874 for (j = 0; j < nr_node_ids; j++)
5875 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5876 }
5877}
5878
5879/*
5880 * Update sched_domains_numa_masks[level][node] array when new cpus
5881 * are onlined.
5882 */
5883static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5884 unsigned long action,
5885 void *hcpu)
5886{
5887 int cpu = (long)hcpu;
5888
5889 switch (action & ~CPU_TASKS_FROZEN) {
5890 case CPU_ONLINE:
5891 sched_domains_numa_masks_set(cpu);
5892 break;
5893
5894 case CPU_DEAD:
5895 sched_domains_numa_masks_clear(cpu);
5896 break;
5897
5898 default:
5899 return NOTIFY_DONE;
5900 }
5901
5902 return NOTIFY_OK;
cb83b629
PZ
5903}
5904#else
5905static inline void sched_init_numa(void)
5906{
5907}
301a5cba
TC
5908
5909static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5910 unsigned long action,
5911 void *hcpu)
5912{
5913 return 0;
5914}
cb83b629
PZ
5915#endif /* CONFIG_NUMA */
5916
54ab4ff4
PZ
5917static int __sdt_alloc(const struct cpumask *cpu_map)
5918{
5919 struct sched_domain_topology_level *tl;
5920 int j;
5921
27723a68 5922 for_each_sd_topology(tl) {
54ab4ff4
PZ
5923 struct sd_data *sdd = &tl->data;
5924
5925 sdd->sd = alloc_percpu(struct sched_domain *);
5926 if (!sdd->sd)
5927 return -ENOMEM;
5928
5929 sdd->sg = alloc_percpu(struct sched_group *);
5930 if (!sdd->sg)
5931 return -ENOMEM;
5932
9c3f75cb
PZ
5933 sdd->sgp = alloc_percpu(struct sched_group_power *);
5934 if (!sdd->sgp)
5935 return -ENOMEM;
5936
54ab4ff4
PZ
5937 for_each_cpu(j, cpu_map) {
5938 struct sched_domain *sd;
5939 struct sched_group *sg;
9c3f75cb 5940 struct sched_group_power *sgp;
54ab4ff4
PZ
5941
5942 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5943 GFP_KERNEL, cpu_to_node(j));
5944 if (!sd)
5945 return -ENOMEM;
5946
5947 *per_cpu_ptr(sdd->sd, j) = sd;
5948
5949 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5950 GFP_KERNEL, cpu_to_node(j));
5951 if (!sg)
5952 return -ENOMEM;
5953
30b4e9eb
IM
5954 sg->next = sg;
5955
54ab4ff4 5956 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5957
c1174876 5958 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5959 GFP_KERNEL, cpu_to_node(j));
5960 if (!sgp)
5961 return -ENOMEM;
5962
5963 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5964 }
5965 }
5966
5967 return 0;
5968}
5969
5970static void __sdt_free(const struct cpumask *cpu_map)
5971{
5972 struct sched_domain_topology_level *tl;
5973 int j;
5974
27723a68 5975 for_each_sd_topology(tl) {
54ab4ff4
PZ
5976 struct sd_data *sdd = &tl->data;
5977
5978 for_each_cpu(j, cpu_map) {
fb2cf2c6 5979 struct sched_domain *sd;
5980
5981 if (sdd->sd) {
5982 sd = *per_cpu_ptr(sdd->sd, j);
5983 if (sd && (sd->flags & SD_OVERLAP))
5984 free_sched_groups(sd->groups, 0);
5985 kfree(*per_cpu_ptr(sdd->sd, j));
5986 }
5987
5988 if (sdd->sg)
5989 kfree(*per_cpu_ptr(sdd->sg, j));
5990 if (sdd->sgp)
5991 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5992 }
5993 free_percpu(sdd->sd);
fb2cf2c6 5994 sdd->sd = NULL;
54ab4ff4 5995 free_percpu(sdd->sg);
fb2cf2c6 5996 sdd->sg = NULL;
9c3f75cb 5997 free_percpu(sdd->sgp);
fb2cf2c6 5998 sdd->sgp = NULL;
54ab4ff4
PZ
5999 }
6000}
6001
2c402dc3 6002struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6003 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6004 struct sched_domain *child, int cpu)
2c402dc3 6005{
54ab4ff4 6006 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6007 if (!sd)
d069b916 6008 return child;
2c402dc3 6009
2c402dc3 6010 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6011 if (child) {
6012 sd->level = child->level + 1;
6013 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6014 child->parent = sd;
c75e0128 6015 sd->child = child;
60495e77 6016 }
a841f8ce 6017 set_domain_attribute(sd, attr);
2c402dc3
PZ
6018
6019 return sd;
6020}
6021
2109b99e
AH
6022/*
6023 * Build sched domains for a given set of cpus and attach the sched domains
6024 * to the individual cpus
6025 */
dce840a0
PZ
6026static int build_sched_domains(const struct cpumask *cpu_map,
6027 struct sched_domain_attr *attr)
2109b99e 6028{
1c632169 6029 enum s_alloc alloc_state;
dce840a0 6030 struct sched_domain *sd;
2109b99e 6031 struct s_data d;
822ff793 6032 int i, ret = -ENOMEM;
9c1cfda2 6033
2109b99e
AH
6034 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6035 if (alloc_state != sa_rootdomain)
6036 goto error;
9c1cfda2 6037
dce840a0 6038 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6039 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6040 struct sched_domain_topology_level *tl;
6041
3bd65a80 6042 sd = NULL;
27723a68 6043 for_each_sd_topology(tl) {
4a850cbe 6044 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6045 if (tl == sched_domain_topology)
6046 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6047 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6048 sd->flags |= SD_OVERLAP;
d110235d
PZ
6049 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6050 break;
e3589f6c 6051 }
dce840a0
PZ
6052 }
6053
6054 /* Build the groups for the domains */
6055 for_each_cpu(i, cpu_map) {
6056 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6057 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6058 if (sd->flags & SD_OVERLAP) {
6059 if (build_overlap_sched_groups(sd, i))
6060 goto error;
6061 } else {
6062 if (build_sched_groups(sd, i))
6063 goto error;
6064 }
1cf51902 6065 }
a06dadbe 6066 }
9c1cfda2 6067
1da177e4 6068 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6069 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6070 if (!cpumask_test_cpu(i, cpu_map))
6071 continue;
9c1cfda2 6072
dce840a0
PZ
6073 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6074 claim_allocations(i, sd);
cd4ea6ae 6075 init_sched_groups_power(i, sd);
dce840a0 6076 }
f712c0c7 6077 }
9c1cfda2 6078
1da177e4 6079 /* Attach the domains */
dce840a0 6080 rcu_read_lock();
abcd083a 6081 for_each_cpu(i, cpu_map) {
21d42ccf 6082 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6083 cpu_attach_domain(sd, d.rd, i);
1da177e4 6084 }
dce840a0 6085 rcu_read_unlock();
51888ca2 6086
822ff793 6087 ret = 0;
51888ca2 6088error:
2109b99e 6089 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6090 return ret;
1da177e4 6091}
029190c5 6092
acc3f5d7 6093static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6094static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6095static struct sched_domain_attr *dattr_cur;
6096 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6097
6098/*
6099 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6100 * cpumask) fails, then fallback to a single sched domain,
6101 * as determined by the single cpumask fallback_doms.
029190c5 6102 */
4212823f 6103static cpumask_var_t fallback_doms;
029190c5 6104
ee79d1bd
HC
6105/*
6106 * arch_update_cpu_topology lets virtualized architectures update the
6107 * cpu core maps. It is supposed to return 1 if the topology changed
6108 * or 0 if it stayed the same.
6109 */
6110int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6111{
ee79d1bd 6112 return 0;
22e52b07
HC
6113}
6114
acc3f5d7
RR
6115cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6116{
6117 int i;
6118 cpumask_var_t *doms;
6119
6120 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6121 if (!doms)
6122 return NULL;
6123 for (i = 0; i < ndoms; i++) {
6124 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6125 free_sched_domains(doms, i);
6126 return NULL;
6127 }
6128 }
6129 return doms;
6130}
6131
6132void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6133{
6134 unsigned int i;
6135 for (i = 0; i < ndoms; i++)
6136 free_cpumask_var(doms[i]);
6137 kfree(doms);
6138}
6139
1a20ff27 6140/*
41a2d6cf 6141 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6142 * For now this just excludes isolated cpus, but could be used to
6143 * exclude other special cases in the future.
1a20ff27 6144 */
c4a8849a 6145static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6146{
7378547f
MM
6147 int err;
6148
22e52b07 6149 arch_update_cpu_topology();
029190c5 6150 ndoms_cur = 1;
acc3f5d7 6151 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6152 if (!doms_cur)
acc3f5d7
RR
6153 doms_cur = &fallback_doms;
6154 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6155 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6156 register_sched_domain_sysctl();
7378547f
MM
6157
6158 return err;
1a20ff27
DG
6159}
6160
1a20ff27
DG
6161/*
6162 * Detach sched domains from a group of cpus specified in cpu_map
6163 * These cpus will now be attached to the NULL domain
6164 */
96f874e2 6165static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6166{
6167 int i;
6168
dce840a0 6169 rcu_read_lock();
abcd083a 6170 for_each_cpu(i, cpu_map)
57d885fe 6171 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6172 rcu_read_unlock();
1a20ff27
DG
6173}
6174
1d3504fc
HS
6175/* handle null as "default" */
6176static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6177 struct sched_domain_attr *new, int idx_new)
6178{
6179 struct sched_domain_attr tmp;
6180
6181 /* fast path */
6182 if (!new && !cur)
6183 return 1;
6184
6185 tmp = SD_ATTR_INIT;
6186 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6187 new ? (new + idx_new) : &tmp,
6188 sizeof(struct sched_domain_attr));
6189}
6190
029190c5
PJ
6191/*
6192 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6193 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6194 * doms_new[] to the current sched domain partitioning, doms_cur[].
6195 * It destroys each deleted domain and builds each new domain.
6196 *
acc3f5d7 6197 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6198 * The masks don't intersect (don't overlap.) We should setup one
6199 * sched domain for each mask. CPUs not in any of the cpumasks will
6200 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6201 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6202 * it as it is.
6203 *
acc3f5d7
RR
6204 * The passed in 'doms_new' should be allocated using
6205 * alloc_sched_domains. This routine takes ownership of it and will
6206 * free_sched_domains it when done with it. If the caller failed the
6207 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6208 * and partition_sched_domains() will fallback to the single partition
6209 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6210 *
96f874e2 6211 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6212 * ndoms_new == 0 is a special case for destroying existing domains,
6213 * and it will not create the default domain.
dfb512ec 6214 *
029190c5
PJ
6215 * Call with hotplug lock held
6216 */
acc3f5d7 6217void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6218 struct sched_domain_attr *dattr_new)
029190c5 6219{
dfb512ec 6220 int i, j, n;
d65bd5ec 6221 int new_topology;
029190c5 6222
712555ee 6223 mutex_lock(&sched_domains_mutex);
a1835615 6224
7378547f
MM
6225 /* always unregister in case we don't destroy any domains */
6226 unregister_sched_domain_sysctl();
6227
d65bd5ec
HC
6228 /* Let architecture update cpu core mappings. */
6229 new_topology = arch_update_cpu_topology();
6230
dfb512ec 6231 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6232
6233 /* Destroy deleted domains */
6234 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6235 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6236 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6237 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6238 goto match1;
6239 }
6240 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6241 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6242match1:
6243 ;
6244 }
6245
c8d2d47a 6246 n = ndoms_cur;
e761b772 6247 if (doms_new == NULL) {
c8d2d47a 6248 n = 0;
acc3f5d7 6249 doms_new = &fallback_doms;
6ad4c188 6250 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6251 WARN_ON_ONCE(dattr_new);
e761b772
MK
6252 }
6253
029190c5
PJ
6254 /* Build new domains */
6255 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6256 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6257 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6258 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6259 goto match2;
6260 }
6261 /* no match - add a new doms_new */
dce840a0 6262 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6263match2:
6264 ;
6265 }
6266
6267 /* Remember the new sched domains */
acc3f5d7
RR
6268 if (doms_cur != &fallback_doms)
6269 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6270 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6271 doms_cur = doms_new;
1d3504fc 6272 dattr_cur = dattr_new;
029190c5 6273 ndoms_cur = ndoms_new;
7378547f
MM
6274
6275 register_sched_domain_sysctl();
a1835615 6276
712555ee 6277 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6278}
6279
d35be8ba
SB
6280static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6281
1da177e4 6282/*
3a101d05
TH
6283 * Update cpusets according to cpu_active mask. If cpusets are
6284 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6285 * around partition_sched_domains().
d35be8ba
SB
6286 *
6287 * If we come here as part of a suspend/resume, don't touch cpusets because we
6288 * want to restore it back to its original state upon resume anyway.
1da177e4 6289 */
0b2e918a
TH
6290static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6291 void *hcpu)
e761b772 6292{
d35be8ba
SB
6293 switch (action) {
6294 case CPU_ONLINE_FROZEN:
6295 case CPU_DOWN_FAILED_FROZEN:
6296
6297 /*
6298 * num_cpus_frozen tracks how many CPUs are involved in suspend
6299 * resume sequence. As long as this is not the last online
6300 * operation in the resume sequence, just build a single sched
6301 * domain, ignoring cpusets.
6302 */
6303 num_cpus_frozen--;
6304 if (likely(num_cpus_frozen)) {
6305 partition_sched_domains(1, NULL, NULL);
6306 break;
6307 }
6308
6309 /*
6310 * This is the last CPU online operation. So fall through and
6311 * restore the original sched domains by considering the
6312 * cpuset configurations.
6313 */
6314
e761b772 6315 case CPU_ONLINE:
6ad4c188 6316 case CPU_DOWN_FAILED:
7ddf96b0 6317 cpuset_update_active_cpus(true);
d35be8ba 6318 break;
3a101d05
TH
6319 default:
6320 return NOTIFY_DONE;
6321 }
d35be8ba 6322 return NOTIFY_OK;
3a101d05 6323}
e761b772 6324
0b2e918a
TH
6325static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6326 void *hcpu)
3a101d05 6327{
d35be8ba 6328 switch (action) {
3a101d05 6329 case CPU_DOWN_PREPARE:
7ddf96b0 6330 cpuset_update_active_cpus(false);
d35be8ba
SB
6331 break;
6332 case CPU_DOWN_PREPARE_FROZEN:
6333 num_cpus_frozen++;
6334 partition_sched_domains(1, NULL, NULL);
6335 break;
e761b772
MK
6336 default:
6337 return NOTIFY_DONE;
6338 }
d35be8ba 6339 return NOTIFY_OK;
e761b772 6340}
e761b772 6341
1da177e4
LT
6342void __init sched_init_smp(void)
6343{
dcc30a35
RR
6344 cpumask_var_t non_isolated_cpus;
6345
6346 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6347 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6348
cb83b629
PZ
6349 sched_init_numa();
6350
6acce3ef
PZ
6351 /*
6352 * There's no userspace yet to cause hotplug operations; hence all the
6353 * cpu masks are stable and all blatant races in the below code cannot
6354 * happen.
6355 */
712555ee 6356 mutex_lock(&sched_domains_mutex);
c4a8849a 6357 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6358 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6359 if (cpumask_empty(non_isolated_cpus))
6360 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6361 mutex_unlock(&sched_domains_mutex);
e761b772 6362
301a5cba 6363 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6364 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6365 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6366
b328ca18 6367 init_hrtick();
5c1e1767
NP
6368
6369 /* Move init over to a non-isolated CPU */
dcc30a35 6370 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6371 BUG();
19978ca6 6372 sched_init_granularity();
dcc30a35 6373 free_cpumask_var(non_isolated_cpus);
4212823f 6374
0e3900e6 6375 init_sched_rt_class();
1da177e4
LT
6376}
6377#else
6378void __init sched_init_smp(void)
6379{
19978ca6 6380 sched_init_granularity();
1da177e4
LT
6381}
6382#endif /* CONFIG_SMP */
6383
cd1bb94b
AB
6384const_debug unsigned int sysctl_timer_migration = 1;
6385
1da177e4
LT
6386int in_sched_functions(unsigned long addr)
6387{
1da177e4
LT
6388 return in_lock_functions(addr) ||
6389 (addr >= (unsigned long)__sched_text_start
6390 && addr < (unsigned long)__sched_text_end);
6391}
6392
029632fb 6393#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6394/*
6395 * Default task group.
6396 * Every task in system belongs to this group at bootup.
6397 */
029632fb 6398struct task_group root_task_group;
35cf4e50 6399LIST_HEAD(task_groups);
052f1dc7 6400#endif
6f505b16 6401
e6252c3e 6402DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6403
1da177e4
LT
6404void __init sched_init(void)
6405{
dd41f596 6406 int i, j;
434d53b0
MT
6407 unsigned long alloc_size = 0, ptr;
6408
6409#ifdef CONFIG_FAIR_GROUP_SCHED
6410 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6411#endif
6412#ifdef CONFIG_RT_GROUP_SCHED
6413 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6414#endif
df7c8e84 6415#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6416 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6417#endif
434d53b0 6418 if (alloc_size) {
36b7b6d4 6419 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6420
6421#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6422 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6423 ptr += nr_cpu_ids * sizeof(void **);
6424
07e06b01 6425 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6426 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6427
6d6bc0ad 6428#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6429#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6430 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6431 ptr += nr_cpu_ids * sizeof(void **);
6432
07e06b01 6433 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6434 ptr += nr_cpu_ids * sizeof(void **);
6435
6d6bc0ad 6436#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6437#ifdef CONFIG_CPUMASK_OFFSTACK
6438 for_each_possible_cpu(i) {
e6252c3e 6439 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6440 ptr += cpumask_size();
6441 }
6442#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6443 }
dd41f596 6444
57d885fe
GH
6445#ifdef CONFIG_SMP
6446 init_defrootdomain();
6447#endif
6448
d0b27fa7
PZ
6449 init_rt_bandwidth(&def_rt_bandwidth,
6450 global_rt_period(), global_rt_runtime());
6451
6452#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6453 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6454 global_rt_period(), global_rt_runtime());
6d6bc0ad 6455#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6456
7c941438 6457#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6458 list_add(&root_task_group.list, &task_groups);
6459 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6460 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6461 autogroup_init(&init_task);
54c707e9 6462
7c941438 6463#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6464
0a945022 6465 for_each_possible_cpu(i) {
70b97a7f 6466 struct rq *rq;
1da177e4
LT
6467
6468 rq = cpu_rq(i);
05fa785c 6469 raw_spin_lock_init(&rq->lock);
7897986b 6470 rq->nr_running = 0;
dce48a84
TG
6471 rq->calc_load_active = 0;
6472 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6473 init_cfs_rq(&rq->cfs);
6f505b16 6474 init_rt_rq(&rq->rt, rq);
dd41f596 6475#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6476 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6477 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6478 /*
07e06b01 6479 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6480 *
6481 * In case of task-groups formed thr' the cgroup filesystem, it
6482 * gets 100% of the cpu resources in the system. This overall
6483 * system cpu resource is divided among the tasks of
07e06b01 6484 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6485 * based on each entity's (task or task-group's) weight
6486 * (se->load.weight).
6487 *
07e06b01 6488 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6489 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6490 * then A0's share of the cpu resource is:
6491 *
0d905bca 6492 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6493 *
07e06b01
YZ
6494 * We achieve this by letting root_task_group's tasks sit
6495 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6496 */
ab84d31e 6497 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6498 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6499#endif /* CONFIG_FAIR_GROUP_SCHED */
6500
6501 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6502#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6503 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6504 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6505#endif
1da177e4 6506
dd41f596
IM
6507 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6508 rq->cpu_load[j] = 0;
fdf3e95d
VP
6509
6510 rq->last_load_update_tick = jiffies;
6511
1da177e4 6512#ifdef CONFIG_SMP
41c7ce9a 6513 rq->sd = NULL;
57d885fe 6514 rq->rd = NULL;
1399fa78 6515 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6516 rq->post_schedule = 0;
1da177e4 6517 rq->active_balance = 0;
dd41f596 6518 rq->next_balance = jiffies;
1da177e4 6519 rq->push_cpu = 0;
0a2966b4 6520 rq->cpu = i;
1f11eb6a 6521 rq->online = 0;
eae0c9df
MG
6522 rq->idle_stamp = 0;
6523 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6524 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6525
6526 INIT_LIST_HEAD(&rq->cfs_tasks);
6527
dc938520 6528 rq_attach_root(rq, &def_root_domain);
3451d024 6529#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6530 rq->nohz_flags = 0;
83cd4fe2 6531#endif
265f22a9
FW
6532#ifdef CONFIG_NO_HZ_FULL
6533 rq->last_sched_tick = 0;
6534#endif
1da177e4 6535#endif
8f4d37ec 6536 init_rq_hrtick(rq);
1da177e4 6537 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6538 }
6539
2dd73a4f 6540 set_load_weight(&init_task);
b50f60ce 6541
e107be36
AK
6542#ifdef CONFIG_PREEMPT_NOTIFIERS
6543 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6544#endif
6545
b50f60ce 6546#ifdef CONFIG_RT_MUTEXES
732375c6 6547 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6548#endif
6549
1da177e4
LT
6550 /*
6551 * The boot idle thread does lazy MMU switching as well:
6552 */
6553 atomic_inc(&init_mm.mm_count);
6554 enter_lazy_tlb(&init_mm, current);
6555
6556 /*
6557 * Make us the idle thread. Technically, schedule() should not be
6558 * called from this thread, however somewhere below it might be,
6559 * but because we are the idle thread, we just pick up running again
6560 * when this runqueue becomes "idle".
6561 */
6562 init_idle(current, smp_processor_id());
dce48a84
TG
6563
6564 calc_load_update = jiffies + LOAD_FREQ;
6565
dd41f596
IM
6566 /*
6567 * During early bootup we pretend to be a normal task:
6568 */
6569 current->sched_class = &fair_sched_class;
6892b75e 6570
bf4d83f6 6571#ifdef CONFIG_SMP
4cb98839 6572 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6573 /* May be allocated at isolcpus cmdline parse time */
6574 if (cpu_isolated_map == NULL)
6575 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6576 idle_thread_set_boot_cpu();
029632fb
PZ
6577#endif
6578 init_sched_fair_class();
6a7b3dc3 6579
6892b75e 6580 scheduler_running = 1;
1da177e4
LT
6581}
6582
d902db1e 6583#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6584static inline int preempt_count_equals(int preempt_offset)
6585{
234da7bc 6586 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6587
4ba8216c 6588 return (nested == preempt_offset);
e4aafea2
FW
6589}
6590
d894837f 6591void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6592{
1da177e4
LT
6593 static unsigned long prev_jiffy; /* ratelimiting */
6594
b3fbab05 6595 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6596 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6597 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6598 return;
6599 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6600 return;
6601 prev_jiffy = jiffies;
6602
3df0fc5b
PZ
6603 printk(KERN_ERR
6604 "BUG: sleeping function called from invalid context at %s:%d\n",
6605 file, line);
6606 printk(KERN_ERR
6607 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6608 in_atomic(), irqs_disabled(),
6609 current->pid, current->comm);
aef745fc
IM
6610
6611 debug_show_held_locks(current);
6612 if (irqs_disabled())
6613 print_irqtrace_events(current);
6614 dump_stack();
1da177e4
LT
6615}
6616EXPORT_SYMBOL(__might_sleep);
6617#endif
6618
6619#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6620static void normalize_task(struct rq *rq, struct task_struct *p)
6621{
da7a735e 6622 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6623 struct sched_attr attr = {
6624 .sched_policy = SCHED_NORMAL,
6625 };
da7a735e 6626 int old_prio = p->prio;
3a5e4dc1 6627 int on_rq;
3e51f33f 6628
fd2f4419 6629 on_rq = p->on_rq;
3a5e4dc1 6630 if (on_rq)
4ca9b72b 6631 dequeue_task(rq, p, 0);
d50dde5a 6632 __setscheduler(rq, p, &attr);
3a5e4dc1 6633 if (on_rq) {
4ca9b72b 6634 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6635 resched_task(rq->curr);
6636 }
da7a735e
PZ
6637
6638 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6639}
6640
1da177e4
LT
6641void normalize_rt_tasks(void)
6642{
a0f98a1c 6643 struct task_struct *g, *p;
1da177e4 6644 unsigned long flags;
70b97a7f 6645 struct rq *rq;
1da177e4 6646
4cf5d77a 6647 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6648 do_each_thread(g, p) {
178be793
IM
6649 /*
6650 * Only normalize user tasks:
6651 */
6652 if (!p->mm)
6653 continue;
6654
6cfb0d5d 6655 p->se.exec_start = 0;
6cfb0d5d 6656#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6657 p->se.statistics.wait_start = 0;
6658 p->se.statistics.sleep_start = 0;
6659 p->se.statistics.block_start = 0;
6cfb0d5d 6660#endif
dd41f596
IM
6661
6662 if (!rt_task(p)) {
6663 /*
6664 * Renice negative nice level userspace
6665 * tasks back to 0:
6666 */
6667 if (TASK_NICE(p) < 0 && p->mm)
6668 set_user_nice(p, 0);
1da177e4 6669 continue;
dd41f596 6670 }
1da177e4 6671
1d615482 6672 raw_spin_lock(&p->pi_lock);
b29739f9 6673 rq = __task_rq_lock(p);
1da177e4 6674
178be793 6675 normalize_task(rq, p);
3a5e4dc1 6676
b29739f9 6677 __task_rq_unlock(rq);
1d615482 6678 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6679 } while_each_thread(g, p);
6680
4cf5d77a 6681 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6682}
6683
6684#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6685
67fc4e0c 6686#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6687/*
67fc4e0c 6688 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6689 *
6690 * They can only be called when the whole system has been
6691 * stopped - every CPU needs to be quiescent, and no scheduling
6692 * activity can take place. Using them for anything else would
6693 * be a serious bug, and as a result, they aren't even visible
6694 * under any other configuration.
6695 */
6696
6697/**
6698 * curr_task - return the current task for a given cpu.
6699 * @cpu: the processor in question.
6700 *
6701 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6702 *
6703 * Return: The current task for @cpu.
1df5c10a 6704 */
36c8b586 6705struct task_struct *curr_task(int cpu)
1df5c10a
LT
6706{
6707 return cpu_curr(cpu);
6708}
6709
67fc4e0c
JW
6710#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6711
6712#ifdef CONFIG_IA64
1df5c10a
LT
6713/**
6714 * set_curr_task - set the current task for a given cpu.
6715 * @cpu: the processor in question.
6716 * @p: the task pointer to set.
6717 *
6718 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6719 * are serviced on a separate stack. It allows the architecture to switch the
6720 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6721 * must be called with all CPU's synchronized, and interrupts disabled, the
6722 * and caller must save the original value of the current task (see
6723 * curr_task() above) and restore that value before reenabling interrupts and
6724 * re-starting the system.
6725 *
6726 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6727 */
36c8b586 6728void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6729{
6730 cpu_curr(cpu) = p;
6731}
6732
6733#endif
29f59db3 6734
7c941438 6735#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6736/* task_group_lock serializes the addition/removal of task groups */
6737static DEFINE_SPINLOCK(task_group_lock);
6738
bccbe08a
PZ
6739static void free_sched_group(struct task_group *tg)
6740{
6741 free_fair_sched_group(tg);
6742 free_rt_sched_group(tg);
e9aa1dd1 6743 autogroup_free(tg);
bccbe08a
PZ
6744 kfree(tg);
6745}
6746
6747/* allocate runqueue etc for a new task group */
ec7dc8ac 6748struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6749{
6750 struct task_group *tg;
bccbe08a
PZ
6751
6752 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6753 if (!tg)
6754 return ERR_PTR(-ENOMEM);
6755
ec7dc8ac 6756 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6757 goto err;
6758
ec7dc8ac 6759 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6760 goto err;
6761
ace783b9
LZ
6762 return tg;
6763
6764err:
6765 free_sched_group(tg);
6766 return ERR_PTR(-ENOMEM);
6767}
6768
6769void sched_online_group(struct task_group *tg, struct task_group *parent)
6770{
6771 unsigned long flags;
6772
8ed36996 6773 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6774 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6775
6776 WARN_ON(!parent); /* root should already exist */
6777
6778 tg->parent = parent;
f473aa5e 6779 INIT_LIST_HEAD(&tg->children);
09f2724a 6780 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6781 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6782}
6783
9b5b7751 6784/* rcu callback to free various structures associated with a task group */
6f505b16 6785static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6786{
29f59db3 6787 /* now it should be safe to free those cfs_rqs */
6f505b16 6788 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6789}
6790
9b5b7751 6791/* Destroy runqueue etc associated with a task group */
4cf86d77 6792void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6793{
6794 /* wait for possible concurrent references to cfs_rqs complete */
6795 call_rcu(&tg->rcu, free_sched_group_rcu);
6796}
6797
6798void sched_offline_group(struct task_group *tg)
29f59db3 6799{
8ed36996 6800 unsigned long flags;
9b5b7751 6801 int i;
29f59db3 6802
3d4b47b4
PZ
6803 /* end participation in shares distribution */
6804 for_each_possible_cpu(i)
bccbe08a 6805 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6806
6807 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6808 list_del_rcu(&tg->list);
f473aa5e 6809 list_del_rcu(&tg->siblings);
8ed36996 6810 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6811}
6812
9b5b7751 6813/* change task's runqueue when it moves between groups.
3a252015
IM
6814 * The caller of this function should have put the task in its new group
6815 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6816 * reflect its new group.
9b5b7751
SV
6817 */
6818void sched_move_task(struct task_struct *tsk)
29f59db3 6819{
8323f26c 6820 struct task_group *tg;
29f59db3
SV
6821 int on_rq, running;
6822 unsigned long flags;
6823 struct rq *rq;
6824
6825 rq = task_rq_lock(tsk, &flags);
6826
051a1d1a 6827 running = task_current(rq, tsk);
fd2f4419 6828 on_rq = tsk->on_rq;
29f59db3 6829
0e1f3483 6830 if (on_rq)
29f59db3 6831 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6832 if (unlikely(running))
6833 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6834
8af01f56 6835 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6836 lockdep_is_held(&tsk->sighand->siglock)),
6837 struct task_group, css);
6838 tg = autogroup_task_group(tsk, tg);
6839 tsk->sched_task_group = tg;
6840
810b3817 6841#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6842 if (tsk->sched_class->task_move_group)
6843 tsk->sched_class->task_move_group(tsk, on_rq);
6844 else
810b3817 6845#endif
b2b5ce02 6846 set_task_rq(tsk, task_cpu(tsk));
810b3817 6847
0e1f3483
HS
6848 if (unlikely(running))
6849 tsk->sched_class->set_curr_task(rq);
6850 if (on_rq)
371fd7e7 6851 enqueue_task(rq, tsk, 0);
29f59db3 6852
0122ec5b 6853 task_rq_unlock(rq, tsk, &flags);
29f59db3 6854}
7c941438 6855#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6856
a790de99 6857#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6858static unsigned long to_ratio(u64 period, u64 runtime)
6859{
6860 if (runtime == RUNTIME_INF)
9a7e0b18 6861 return 1ULL << 20;
9f0c1e56 6862
9a7e0b18 6863 return div64_u64(runtime << 20, period);
9f0c1e56 6864}
a790de99
PT
6865#endif
6866
6867#ifdef CONFIG_RT_GROUP_SCHED
6868/*
6869 * Ensure that the real time constraints are schedulable.
6870 */
6871static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6872
9a7e0b18
PZ
6873/* Must be called with tasklist_lock held */
6874static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6875{
9a7e0b18 6876 struct task_struct *g, *p;
b40b2e8e 6877
9a7e0b18 6878 do_each_thread(g, p) {
029632fb 6879 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6880 return 1;
6881 } while_each_thread(g, p);
b40b2e8e 6882
9a7e0b18
PZ
6883 return 0;
6884}
b40b2e8e 6885
9a7e0b18
PZ
6886struct rt_schedulable_data {
6887 struct task_group *tg;
6888 u64 rt_period;
6889 u64 rt_runtime;
6890};
b40b2e8e 6891
a790de99 6892static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6893{
6894 struct rt_schedulable_data *d = data;
6895 struct task_group *child;
6896 unsigned long total, sum = 0;
6897 u64 period, runtime;
b40b2e8e 6898
9a7e0b18
PZ
6899 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6900 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6901
9a7e0b18
PZ
6902 if (tg == d->tg) {
6903 period = d->rt_period;
6904 runtime = d->rt_runtime;
b40b2e8e 6905 }
b40b2e8e 6906
4653f803
PZ
6907 /*
6908 * Cannot have more runtime than the period.
6909 */
6910 if (runtime > period && runtime != RUNTIME_INF)
6911 return -EINVAL;
6f505b16 6912
4653f803
PZ
6913 /*
6914 * Ensure we don't starve existing RT tasks.
6915 */
9a7e0b18
PZ
6916 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6917 return -EBUSY;
6f505b16 6918
9a7e0b18 6919 total = to_ratio(period, runtime);
6f505b16 6920
4653f803
PZ
6921 /*
6922 * Nobody can have more than the global setting allows.
6923 */
6924 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6925 return -EINVAL;
6f505b16 6926
4653f803
PZ
6927 /*
6928 * The sum of our children's runtime should not exceed our own.
6929 */
9a7e0b18
PZ
6930 list_for_each_entry_rcu(child, &tg->children, siblings) {
6931 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6932 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6933
9a7e0b18
PZ
6934 if (child == d->tg) {
6935 period = d->rt_period;
6936 runtime = d->rt_runtime;
6937 }
6f505b16 6938
9a7e0b18 6939 sum += to_ratio(period, runtime);
9f0c1e56 6940 }
6f505b16 6941
9a7e0b18
PZ
6942 if (sum > total)
6943 return -EINVAL;
6944
6945 return 0;
6f505b16
PZ
6946}
6947
9a7e0b18 6948static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6949{
8277434e
PT
6950 int ret;
6951
9a7e0b18
PZ
6952 struct rt_schedulable_data data = {
6953 .tg = tg,
6954 .rt_period = period,
6955 .rt_runtime = runtime,
6956 };
6957
8277434e
PT
6958 rcu_read_lock();
6959 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6960 rcu_read_unlock();
6961
6962 return ret;
521f1a24
DG
6963}
6964
ab84d31e 6965static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6966 u64 rt_period, u64 rt_runtime)
6f505b16 6967{
ac086bc2 6968 int i, err = 0;
9f0c1e56 6969
9f0c1e56 6970 mutex_lock(&rt_constraints_mutex);
521f1a24 6971 read_lock(&tasklist_lock);
9a7e0b18
PZ
6972 err = __rt_schedulable(tg, rt_period, rt_runtime);
6973 if (err)
9f0c1e56 6974 goto unlock;
ac086bc2 6975
0986b11b 6976 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6977 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6978 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6979
6980 for_each_possible_cpu(i) {
6981 struct rt_rq *rt_rq = tg->rt_rq[i];
6982
0986b11b 6983 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6984 rt_rq->rt_runtime = rt_runtime;
0986b11b 6985 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6986 }
0986b11b 6987 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6988unlock:
521f1a24 6989 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6990 mutex_unlock(&rt_constraints_mutex);
6991
6992 return err;
6f505b16
PZ
6993}
6994
25cc7da7 6995static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6996{
6997 u64 rt_runtime, rt_period;
6998
6999 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7000 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7001 if (rt_runtime_us < 0)
7002 rt_runtime = RUNTIME_INF;
7003
ab84d31e 7004 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7005}
7006
25cc7da7 7007static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7008{
7009 u64 rt_runtime_us;
7010
d0b27fa7 7011 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7012 return -1;
7013
d0b27fa7 7014 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7015 do_div(rt_runtime_us, NSEC_PER_USEC);
7016 return rt_runtime_us;
7017}
d0b27fa7 7018
25cc7da7 7019static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7020{
7021 u64 rt_runtime, rt_period;
7022
7023 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7024 rt_runtime = tg->rt_bandwidth.rt_runtime;
7025
619b0488
R
7026 if (rt_period == 0)
7027 return -EINVAL;
7028
ab84d31e 7029 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7030}
7031
25cc7da7 7032static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7033{
7034 u64 rt_period_us;
7035
7036 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7037 do_div(rt_period_us, NSEC_PER_USEC);
7038 return rt_period_us;
7039}
7040
7041static int sched_rt_global_constraints(void)
7042{
4653f803 7043 u64 runtime, period;
d0b27fa7
PZ
7044 int ret = 0;
7045
ec5d4989
HS
7046 if (sysctl_sched_rt_period <= 0)
7047 return -EINVAL;
7048
4653f803
PZ
7049 runtime = global_rt_runtime();
7050 period = global_rt_period();
7051
7052 /*
7053 * Sanity check on the sysctl variables.
7054 */
7055 if (runtime > period && runtime != RUNTIME_INF)
7056 return -EINVAL;
10b612f4 7057
d0b27fa7 7058 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7059 read_lock(&tasklist_lock);
4653f803 7060 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7061 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7062 mutex_unlock(&rt_constraints_mutex);
7063
7064 return ret;
7065}
54e99124 7066
25cc7da7 7067static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7068{
7069 /* Don't accept realtime tasks when there is no way for them to run */
7070 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7071 return 0;
7072
7073 return 1;
7074}
7075
6d6bc0ad 7076#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7077static int sched_rt_global_constraints(void)
7078{
ac086bc2
PZ
7079 unsigned long flags;
7080 int i;
7081
ec5d4989
HS
7082 if (sysctl_sched_rt_period <= 0)
7083 return -EINVAL;
7084
60aa605d
PZ
7085 /*
7086 * There's always some RT tasks in the root group
7087 * -- migration, kstopmachine etc..
7088 */
7089 if (sysctl_sched_rt_runtime == 0)
7090 return -EBUSY;
7091
0986b11b 7092 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7093 for_each_possible_cpu(i) {
7094 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7095
0986b11b 7096 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7097 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7098 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7099 }
0986b11b 7100 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7101
d0b27fa7
PZ
7102 return 0;
7103}
6d6bc0ad 7104#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7105
ce0dbbbb
CW
7106int sched_rr_handler(struct ctl_table *table, int write,
7107 void __user *buffer, size_t *lenp,
7108 loff_t *ppos)
7109{
7110 int ret;
7111 static DEFINE_MUTEX(mutex);
7112
7113 mutex_lock(&mutex);
7114 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7115 /* make sure that internally we keep jiffies */
7116 /* also, writing zero resets timeslice to default */
7117 if (!ret && write) {
7118 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7119 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7120 }
7121 mutex_unlock(&mutex);
7122 return ret;
7123}
7124
d0b27fa7 7125int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7126 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7127 loff_t *ppos)
7128{
7129 int ret;
7130 int old_period, old_runtime;
7131 static DEFINE_MUTEX(mutex);
7132
7133 mutex_lock(&mutex);
7134 old_period = sysctl_sched_rt_period;
7135 old_runtime = sysctl_sched_rt_runtime;
7136
8d65af78 7137 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7138
7139 if (!ret && write) {
7140 ret = sched_rt_global_constraints();
7141 if (ret) {
7142 sysctl_sched_rt_period = old_period;
7143 sysctl_sched_rt_runtime = old_runtime;
7144 } else {
7145 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7146 def_rt_bandwidth.rt_period =
7147 ns_to_ktime(global_rt_period());
7148 }
7149 }
7150 mutex_unlock(&mutex);
7151
7152 return ret;
7153}
68318b8e 7154
052f1dc7 7155#ifdef CONFIG_CGROUP_SCHED
68318b8e 7156
a7c6d554 7157static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7158{
a7c6d554 7159 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7160}
7161
eb95419b
TH
7162static struct cgroup_subsys_state *
7163cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7164{
eb95419b
TH
7165 struct task_group *parent = css_tg(parent_css);
7166 struct task_group *tg;
68318b8e 7167
eb95419b 7168 if (!parent) {
68318b8e 7169 /* This is early initialization for the top cgroup */
07e06b01 7170 return &root_task_group.css;
68318b8e
SV
7171 }
7172
ec7dc8ac 7173 tg = sched_create_group(parent);
68318b8e
SV
7174 if (IS_ERR(tg))
7175 return ERR_PTR(-ENOMEM);
7176
68318b8e
SV
7177 return &tg->css;
7178}
7179
eb95419b 7180static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7181{
eb95419b
TH
7182 struct task_group *tg = css_tg(css);
7183 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7184
63876986
TH
7185 if (parent)
7186 sched_online_group(tg, parent);
ace783b9
LZ
7187 return 0;
7188}
7189
eb95419b 7190static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7191{
eb95419b 7192 struct task_group *tg = css_tg(css);
68318b8e
SV
7193
7194 sched_destroy_group(tg);
7195}
7196
eb95419b 7197static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7198{
eb95419b 7199 struct task_group *tg = css_tg(css);
ace783b9
LZ
7200
7201 sched_offline_group(tg);
7202}
7203
eb95419b 7204static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7205 struct cgroup_taskset *tset)
68318b8e 7206{
bb9d97b6
TH
7207 struct task_struct *task;
7208
d99c8727 7209 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7210#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7211 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7212 return -EINVAL;
b68aa230 7213#else
bb9d97b6
TH
7214 /* We don't support RT-tasks being in separate groups */
7215 if (task->sched_class != &fair_sched_class)
7216 return -EINVAL;
b68aa230 7217#endif
bb9d97b6 7218 }
be367d09
BB
7219 return 0;
7220}
68318b8e 7221
eb95419b 7222static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7223 struct cgroup_taskset *tset)
68318b8e 7224{
bb9d97b6
TH
7225 struct task_struct *task;
7226
d99c8727 7227 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7228 sched_move_task(task);
68318b8e
SV
7229}
7230
eb95419b
TH
7231static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7232 struct cgroup_subsys_state *old_css,
7233 struct task_struct *task)
068c5cc5
PZ
7234{
7235 /*
7236 * cgroup_exit() is called in the copy_process() failure path.
7237 * Ignore this case since the task hasn't ran yet, this avoids
7238 * trying to poke a half freed task state from generic code.
7239 */
7240 if (!(task->flags & PF_EXITING))
7241 return;
7242
7243 sched_move_task(task);
7244}
7245
052f1dc7 7246#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7247static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7248 struct cftype *cftype, u64 shareval)
68318b8e 7249{
182446d0 7250 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7251}
7252
182446d0
TH
7253static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7254 struct cftype *cft)
68318b8e 7255{
182446d0 7256 struct task_group *tg = css_tg(css);
68318b8e 7257
c8b28116 7258 return (u64) scale_load_down(tg->shares);
68318b8e 7259}
ab84d31e
PT
7260
7261#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7262static DEFINE_MUTEX(cfs_constraints_mutex);
7263
ab84d31e
PT
7264const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7265const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7266
a790de99
PT
7267static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7268
ab84d31e
PT
7269static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7270{
56f570e5 7271 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7272 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7273
7274 if (tg == &root_task_group)
7275 return -EINVAL;
7276
7277 /*
7278 * Ensure we have at some amount of bandwidth every period. This is
7279 * to prevent reaching a state of large arrears when throttled via
7280 * entity_tick() resulting in prolonged exit starvation.
7281 */
7282 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7283 return -EINVAL;
7284
7285 /*
7286 * Likewise, bound things on the otherside by preventing insane quota
7287 * periods. This also allows us to normalize in computing quota
7288 * feasibility.
7289 */
7290 if (period > max_cfs_quota_period)
7291 return -EINVAL;
7292
a790de99
PT
7293 mutex_lock(&cfs_constraints_mutex);
7294 ret = __cfs_schedulable(tg, period, quota);
7295 if (ret)
7296 goto out_unlock;
7297
58088ad0 7298 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7299 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7300 /*
7301 * If we need to toggle cfs_bandwidth_used, off->on must occur
7302 * before making related changes, and on->off must occur afterwards
7303 */
7304 if (runtime_enabled && !runtime_was_enabled)
7305 cfs_bandwidth_usage_inc();
ab84d31e
PT
7306 raw_spin_lock_irq(&cfs_b->lock);
7307 cfs_b->period = ns_to_ktime(period);
7308 cfs_b->quota = quota;
58088ad0 7309
a9cf55b2 7310 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7311 /* restart the period timer (if active) to handle new period expiry */
7312 if (runtime_enabled && cfs_b->timer_active) {
7313 /* force a reprogram */
7314 cfs_b->timer_active = 0;
7315 __start_cfs_bandwidth(cfs_b);
7316 }
ab84d31e
PT
7317 raw_spin_unlock_irq(&cfs_b->lock);
7318
7319 for_each_possible_cpu(i) {
7320 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7321 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7322
7323 raw_spin_lock_irq(&rq->lock);
58088ad0 7324 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7325 cfs_rq->runtime_remaining = 0;
671fd9da 7326
029632fb 7327 if (cfs_rq->throttled)
671fd9da 7328 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7329 raw_spin_unlock_irq(&rq->lock);
7330 }
1ee14e6c
BS
7331 if (runtime_was_enabled && !runtime_enabled)
7332 cfs_bandwidth_usage_dec();
a790de99
PT
7333out_unlock:
7334 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7335
a790de99 7336 return ret;
ab84d31e
PT
7337}
7338
7339int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7340{
7341 u64 quota, period;
7342
029632fb 7343 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7344 if (cfs_quota_us < 0)
7345 quota = RUNTIME_INF;
7346 else
7347 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7348
7349 return tg_set_cfs_bandwidth(tg, period, quota);
7350}
7351
7352long tg_get_cfs_quota(struct task_group *tg)
7353{
7354 u64 quota_us;
7355
029632fb 7356 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7357 return -1;
7358
029632fb 7359 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7360 do_div(quota_us, NSEC_PER_USEC);
7361
7362 return quota_us;
7363}
7364
7365int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7366{
7367 u64 quota, period;
7368
7369 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7370 quota = tg->cfs_bandwidth.quota;
ab84d31e 7371
ab84d31e
PT
7372 return tg_set_cfs_bandwidth(tg, period, quota);
7373}
7374
7375long tg_get_cfs_period(struct task_group *tg)
7376{
7377 u64 cfs_period_us;
7378
029632fb 7379 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7380 do_div(cfs_period_us, NSEC_PER_USEC);
7381
7382 return cfs_period_us;
7383}
7384
182446d0
TH
7385static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7386 struct cftype *cft)
ab84d31e 7387{
182446d0 7388 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7389}
7390
182446d0
TH
7391static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7392 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7393{
182446d0 7394 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7395}
7396
182446d0
TH
7397static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7398 struct cftype *cft)
ab84d31e 7399{
182446d0 7400 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7401}
7402
182446d0
TH
7403static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7404 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7405{
182446d0 7406 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7407}
7408
a790de99
PT
7409struct cfs_schedulable_data {
7410 struct task_group *tg;
7411 u64 period, quota;
7412};
7413
7414/*
7415 * normalize group quota/period to be quota/max_period
7416 * note: units are usecs
7417 */
7418static u64 normalize_cfs_quota(struct task_group *tg,
7419 struct cfs_schedulable_data *d)
7420{
7421 u64 quota, period;
7422
7423 if (tg == d->tg) {
7424 period = d->period;
7425 quota = d->quota;
7426 } else {
7427 period = tg_get_cfs_period(tg);
7428 quota = tg_get_cfs_quota(tg);
7429 }
7430
7431 /* note: these should typically be equivalent */
7432 if (quota == RUNTIME_INF || quota == -1)
7433 return RUNTIME_INF;
7434
7435 return to_ratio(period, quota);
7436}
7437
7438static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7439{
7440 struct cfs_schedulable_data *d = data;
029632fb 7441 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7442 s64 quota = 0, parent_quota = -1;
7443
7444 if (!tg->parent) {
7445 quota = RUNTIME_INF;
7446 } else {
029632fb 7447 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7448
7449 quota = normalize_cfs_quota(tg, d);
7450 parent_quota = parent_b->hierarchal_quota;
7451
7452 /*
7453 * ensure max(child_quota) <= parent_quota, inherit when no
7454 * limit is set
7455 */
7456 if (quota == RUNTIME_INF)
7457 quota = parent_quota;
7458 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7459 return -EINVAL;
7460 }
7461 cfs_b->hierarchal_quota = quota;
7462
7463 return 0;
7464}
7465
7466static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7467{
8277434e 7468 int ret;
a790de99
PT
7469 struct cfs_schedulable_data data = {
7470 .tg = tg,
7471 .period = period,
7472 .quota = quota,
7473 };
7474
7475 if (quota != RUNTIME_INF) {
7476 do_div(data.period, NSEC_PER_USEC);
7477 do_div(data.quota, NSEC_PER_USEC);
7478 }
7479
8277434e
PT
7480 rcu_read_lock();
7481 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7482 rcu_read_unlock();
7483
7484 return ret;
a790de99 7485}
e8da1b18 7486
182446d0 7487static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7488 struct cgroup_map_cb *cb)
7489{
182446d0 7490 struct task_group *tg = css_tg(css);
029632fb 7491 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7492
7493 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7494 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7495 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7496
7497 return 0;
7498}
ab84d31e 7499#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7500#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7501
052f1dc7 7502#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7503static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7504 struct cftype *cft, s64 val)
6f505b16 7505{
182446d0 7506 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7507}
7508
182446d0
TH
7509static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7510 struct cftype *cft)
6f505b16 7511{
182446d0 7512 return sched_group_rt_runtime(css_tg(css));
6f505b16 7513}
d0b27fa7 7514
182446d0
TH
7515static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7516 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7517{
182446d0 7518 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7519}
7520
182446d0
TH
7521static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7522 struct cftype *cft)
d0b27fa7 7523{
182446d0 7524 return sched_group_rt_period(css_tg(css));
d0b27fa7 7525}
6d6bc0ad 7526#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7527
fe5c7cc2 7528static struct cftype cpu_files[] = {
052f1dc7 7529#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7530 {
7531 .name = "shares",
f4c753b7
PM
7532 .read_u64 = cpu_shares_read_u64,
7533 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7534 },
052f1dc7 7535#endif
ab84d31e
PT
7536#ifdef CONFIG_CFS_BANDWIDTH
7537 {
7538 .name = "cfs_quota_us",
7539 .read_s64 = cpu_cfs_quota_read_s64,
7540 .write_s64 = cpu_cfs_quota_write_s64,
7541 },
7542 {
7543 .name = "cfs_period_us",
7544 .read_u64 = cpu_cfs_period_read_u64,
7545 .write_u64 = cpu_cfs_period_write_u64,
7546 },
e8da1b18
NR
7547 {
7548 .name = "stat",
7549 .read_map = cpu_stats_show,
7550 },
ab84d31e 7551#endif
052f1dc7 7552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7553 {
9f0c1e56 7554 .name = "rt_runtime_us",
06ecb27c
PM
7555 .read_s64 = cpu_rt_runtime_read,
7556 .write_s64 = cpu_rt_runtime_write,
6f505b16 7557 },
d0b27fa7
PZ
7558 {
7559 .name = "rt_period_us",
f4c753b7
PM
7560 .read_u64 = cpu_rt_period_read_uint,
7561 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7562 },
052f1dc7 7563#endif
4baf6e33 7564 { } /* terminate */
68318b8e
SV
7565};
7566
68318b8e 7567struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7568 .name = "cpu",
92fb9748
TH
7569 .css_alloc = cpu_cgroup_css_alloc,
7570 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7571 .css_online = cpu_cgroup_css_online,
7572 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7573 .can_attach = cpu_cgroup_can_attach,
7574 .attach = cpu_cgroup_attach,
068c5cc5 7575 .exit = cpu_cgroup_exit,
38605cae 7576 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7577 .base_cftypes = cpu_files,
68318b8e
SV
7578 .early_init = 1,
7579};
7580
052f1dc7 7581#endif /* CONFIG_CGROUP_SCHED */
d842de87 7582
b637a328
PM
7583void dump_cpu_task(int cpu)
7584{
7585 pr_info("Task dump for CPU %d:\n", cpu);
7586 sched_show_task(cpu_curr(cpu));
7587}