sched: Teach scheduler to understand TASK_ON_RQ_MIGRATING state
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
142 if (delta < 0)
143 return;
fe44d621
PZ
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
3e51f33f
PZ
146}
147
bf5c91ba
IM
148/*
149 * Debugging: various feature bits
150 */
f00b45c1 151
f00b45c1
PZ
152#define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
bf5c91ba 155const_debug unsigned int sysctl_sched_features =
391e43da 156#include "features.h"
f00b45c1
PZ
157 0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled) \
163 #name ,
164
1292531f 165static const char * const sched_feat_names[] = {
391e43da 166#include "features.h"
f00b45c1
PZ
167};
168
169#undef SCHED_FEAT
170
34f3a814 171static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 172{
f00b45c1
PZ
173 int i;
174
f8b6d1cc 175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 179 }
34f3a814 180 seq_puts(m, "\n");
f00b45c1 181
34f3a814 182 return 0;
f00b45c1
PZ
183}
184
f8b6d1cc
PZ
185#ifdef HAVE_JUMP_LABEL
186
c5905afb
IM
187#define jump_label_key__true STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
189
190#define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
c5905afb 193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
c5905afb
IM
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
203}
204
205static void sched_feat_enable(int i)
206{
c5905afb
IM
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
1a687c2e 215static int sched_feat_set(char *cmp)
f00b45c1 216{
f00b45c1 217 int i;
1a687c2e 218 int neg = 0;
f00b45c1 219
524429c3 220 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
221 neg = 1;
222 cmp += 3;
223 }
224
f8b6d1cc 225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 227 if (neg) {
f00b45c1 228 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
229 sched_feat_disable(i);
230 } else {
f00b45c1 231 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
232 sched_feat_enable(i);
233 }
f00b45c1
PZ
234 break;
235 }
236 }
237
1a687c2e
MG
238 return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244{
245 char buf[64];
246 char *cmp;
247 int i;
5cd08fbf 248 struct inode *inode;
1a687c2e
MG
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
5cd08fbf
JB
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
1a687c2e 262 i = sched_feat_set(cmp);
5cd08fbf 263 mutex_unlock(&inode->i_mutex);
f8b6d1cc 264 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
265 return -EINVAL;
266
42994724 267 *ppos += cnt;
f00b45c1
PZ
268
269 return cnt;
270}
271
34f3a814
LZ
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274 return single_open(filp, sched_feat_show, NULL);
275}
276
828c0950 277static const struct file_operations sched_feat_fops = {
34f3a814
LZ
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
f00b45c1
PZ
283};
284
285static __init int sched_init_debug(void)
286{
f00b45c1
PZ
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291}
292late_initcall(sched_init_debug);
f8b6d1cc 293#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 294
b82d9fdd
PZ
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
e9e9250b
PZ
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
fa85ae24 309/*
9f0c1e56 310 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
311 * default: 1s
312 */
9f0c1e56 313unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 314
029632fb 315__read_mostly int scheduler_running;
6892b75e 316
9f0c1e56
PZ
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
fa85ae24 322
0970d299 323/*
0122ec5b 324 * __task_rq_lock - lock the rq @p resides on.
b29739f9 325 */
70b97a7f 326static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
327 __acquires(rq->lock)
328{
0970d299
PZ
329 struct rq *rq;
330
0122ec5b
PZ
331 lockdep_assert_held(&p->pi_lock);
332
3a5c359a 333 for (;;) {
0970d299 334 rq = task_rq(p);
05fa785c 335 raw_spin_lock(&rq->lock);
cca26e80 336 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 337 return rq;
05fa785c 338 raw_spin_unlock(&rq->lock);
cca26e80
KT
339
340 while (unlikely(task_on_rq_migrating(p)))
341 cpu_relax();
b29739f9 342 }
b29739f9
IM
343}
344
1da177e4 345/*
0122ec5b 346 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 347 */
70b97a7f 348static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 349 __acquires(p->pi_lock)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4 353
3a5c359a 354 for (;;) {
0122ec5b 355 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 356 rq = task_rq(p);
05fa785c 357 raw_spin_lock(&rq->lock);
cca26e80 358 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 359 return rq;
0122ec5b
PZ
360 raw_spin_unlock(&rq->lock);
361 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
362
363 while (unlikely(task_on_rq_migrating(p)))
364 cpu_relax();
1da177e4 365 }
1da177e4
LT
366}
367
a9957449 368static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
369 __releases(rq->lock)
370{
05fa785c 371 raw_spin_unlock(&rq->lock);
b29739f9
IM
372}
373
0122ec5b
PZ
374static inline void
375task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 376 __releases(rq->lock)
0122ec5b 377 __releases(p->pi_lock)
1da177e4 378{
0122ec5b
PZ
379 raw_spin_unlock(&rq->lock);
380 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
381}
382
1da177e4 383/*
cc2a73b5 384 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 385 */
a9957449 386static struct rq *this_rq_lock(void)
1da177e4
LT
387 __acquires(rq->lock)
388{
70b97a7f 389 struct rq *rq;
1da177e4
LT
390
391 local_irq_disable();
392 rq = this_rq();
05fa785c 393 raw_spin_lock(&rq->lock);
1da177e4
LT
394
395 return rq;
396}
397
8f4d37ec
PZ
398#ifdef CONFIG_SCHED_HRTICK
399/*
400 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 401 */
8f4d37ec 402
8f4d37ec
PZ
403static void hrtick_clear(struct rq *rq)
404{
405 if (hrtimer_active(&rq->hrtick_timer))
406 hrtimer_cancel(&rq->hrtick_timer);
407}
408
8f4d37ec
PZ
409/*
410 * High-resolution timer tick.
411 * Runs from hardirq context with interrupts disabled.
412 */
413static enum hrtimer_restart hrtick(struct hrtimer *timer)
414{
415 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
416
417 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
418
05fa785c 419 raw_spin_lock(&rq->lock);
3e51f33f 420 update_rq_clock(rq);
8f4d37ec 421 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 422 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
423
424 return HRTIMER_NORESTART;
425}
426
95e904c7 427#ifdef CONFIG_SMP
971ee28c
PZ
428
429static int __hrtick_restart(struct rq *rq)
430{
431 struct hrtimer *timer = &rq->hrtick_timer;
432 ktime_t time = hrtimer_get_softexpires(timer);
433
434 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
435}
436
31656519
PZ
437/*
438 * called from hardirq (IPI) context
439 */
440static void __hrtick_start(void *arg)
b328ca18 441{
31656519 442 struct rq *rq = arg;
b328ca18 443
05fa785c 444 raw_spin_lock(&rq->lock);
971ee28c 445 __hrtick_restart(rq);
31656519 446 rq->hrtick_csd_pending = 0;
05fa785c 447 raw_spin_unlock(&rq->lock);
b328ca18
PZ
448}
449
31656519
PZ
450/*
451 * Called to set the hrtick timer state.
452 *
453 * called with rq->lock held and irqs disabled
454 */
029632fb 455void hrtick_start(struct rq *rq, u64 delay)
b328ca18 456{
31656519
PZ
457 struct hrtimer *timer = &rq->hrtick_timer;
458 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 459
cc584b21 460 hrtimer_set_expires(timer, time);
31656519
PZ
461
462 if (rq == this_rq()) {
971ee28c 463 __hrtick_restart(rq);
31656519 464 } else if (!rq->hrtick_csd_pending) {
c46fff2a 465 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
466 rq->hrtick_csd_pending = 1;
467 }
b328ca18
PZ
468}
469
470static int
471hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
472{
473 int cpu = (int)(long)hcpu;
474
475 switch (action) {
476 case CPU_UP_CANCELED:
477 case CPU_UP_CANCELED_FROZEN:
478 case CPU_DOWN_PREPARE:
479 case CPU_DOWN_PREPARE_FROZEN:
480 case CPU_DEAD:
481 case CPU_DEAD_FROZEN:
31656519 482 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
483 return NOTIFY_OK;
484 }
485
486 return NOTIFY_DONE;
487}
488
fa748203 489static __init void init_hrtick(void)
b328ca18
PZ
490{
491 hotcpu_notifier(hotplug_hrtick, 0);
492}
31656519
PZ
493#else
494/*
495 * Called to set the hrtick timer state.
496 *
497 * called with rq->lock held and irqs disabled
498 */
029632fb 499void hrtick_start(struct rq *rq, u64 delay)
31656519 500{
7f1e2ca9 501 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 502 HRTIMER_MODE_REL_PINNED, 0);
31656519 503}
b328ca18 504
006c75f1 505static inline void init_hrtick(void)
8f4d37ec 506{
8f4d37ec 507}
31656519 508#endif /* CONFIG_SMP */
8f4d37ec 509
31656519 510static void init_rq_hrtick(struct rq *rq)
8f4d37ec 511{
31656519
PZ
512#ifdef CONFIG_SMP
513 rq->hrtick_csd_pending = 0;
8f4d37ec 514
31656519
PZ
515 rq->hrtick_csd.flags = 0;
516 rq->hrtick_csd.func = __hrtick_start;
517 rq->hrtick_csd.info = rq;
518#endif
8f4d37ec 519
31656519
PZ
520 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
521 rq->hrtick_timer.function = hrtick;
8f4d37ec 522}
006c75f1 523#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
524static inline void hrtick_clear(struct rq *rq)
525{
526}
527
8f4d37ec
PZ
528static inline void init_rq_hrtick(struct rq *rq)
529{
530}
531
b328ca18
PZ
532static inline void init_hrtick(void)
533{
534}
006c75f1 535#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 536
fd99f91a
PZ
537/*
538 * cmpxchg based fetch_or, macro so it works for different integer types
539 */
540#define fetch_or(ptr, val) \
541({ typeof(*(ptr)) __old, __val = *(ptr); \
542 for (;;) { \
543 __old = cmpxchg((ptr), __val, __val | (val)); \
544 if (__old == __val) \
545 break; \
546 __val = __old; \
547 } \
548 __old; \
549})
550
e3baac47 551#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
552/*
553 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
554 * this avoids any races wrt polling state changes and thereby avoids
555 * spurious IPIs.
556 */
557static bool set_nr_and_not_polling(struct task_struct *p)
558{
559 struct thread_info *ti = task_thread_info(p);
560 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
561}
e3baac47
PZ
562
563/*
564 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
565 *
566 * If this returns true, then the idle task promises to call
567 * sched_ttwu_pending() and reschedule soon.
568 */
569static bool set_nr_if_polling(struct task_struct *p)
570{
571 struct thread_info *ti = task_thread_info(p);
572 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
573
574 for (;;) {
575 if (!(val & _TIF_POLLING_NRFLAG))
576 return false;
577 if (val & _TIF_NEED_RESCHED)
578 return true;
579 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
580 if (old == val)
581 break;
582 val = old;
583 }
584 return true;
585}
586
fd99f91a
PZ
587#else
588static bool set_nr_and_not_polling(struct task_struct *p)
589{
590 set_tsk_need_resched(p);
591 return true;
592}
e3baac47
PZ
593
594#ifdef CONFIG_SMP
595static bool set_nr_if_polling(struct task_struct *p)
596{
597 return false;
598}
599#endif
fd99f91a
PZ
600#endif
601
c24d20db 602/*
8875125e 603 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
604 *
605 * On UP this means the setting of the need_resched flag, on SMP it
606 * might also involve a cross-CPU call to trigger the scheduler on
607 * the target CPU.
608 */
8875125e 609void resched_curr(struct rq *rq)
c24d20db 610{
8875125e 611 struct task_struct *curr = rq->curr;
c24d20db
IM
612 int cpu;
613
8875125e 614 lockdep_assert_held(&rq->lock);
c24d20db 615
8875125e 616 if (test_tsk_need_resched(curr))
c24d20db
IM
617 return;
618
8875125e 619 cpu = cpu_of(rq);
fd99f91a 620
f27dde8d 621 if (cpu == smp_processor_id()) {
8875125e 622 set_tsk_need_resched(curr);
f27dde8d 623 set_preempt_need_resched();
c24d20db 624 return;
f27dde8d 625 }
c24d20db 626
8875125e 627 if (set_nr_and_not_polling(curr))
c24d20db 628 smp_send_reschedule(cpu);
dfc68f29
AL
629 else
630 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
631}
632
029632fb 633void resched_cpu(int cpu)
c24d20db
IM
634{
635 struct rq *rq = cpu_rq(cpu);
636 unsigned long flags;
637
05fa785c 638 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 639 return;
8875125e 640 resched_curr(rq);
05fa785c 641 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 642}
06d8308c 643
b021fe3e 644#ifdef CONFIG_SMP
3451d024 645#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
646/*
647 * In the semi idle case, use the nearest busy cpu for migrating timers
648 * from an idle cpu. This is good for power-savings.
649 *
650 * We don't do similar optimization for completely idle system, as
651 * selecting an idle cpu will add more delays to the timers than intended
652 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
653 */
6201b4d6 654int get_nohz_timer_target(int pinned)
83cd4fe2
VP
655{
656 int cpu = smp_processor_id();
657 int i;
658 struct sched_domain *sd;
659
6201b4d6
VK
660 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
661 return cpu;
662
057f3fad 663 rcu_read_lock();
83cd4fe2 664 for_each_domain(cpu, sd) {
057f3fad
PZ
665 for_each_cpu(i, sched_domain_span(sd)) {
666 if (!idle_cpu(i)) {
667 cpu = i;
668 goto unlock;
669 }
670 }
83cd4fe2 671 }
057f3fad
PZ
672unlock:
673 rcu_read_unlock();
83cd4fe2
VP
674 return cpu;
675}
06d8308c
TG
676/*
677 * When add_timer_on() enqueues a timer into the timer wheel of an
678 * idle CPU then this timer might expire before the next timer event
679 * which is scheduled to wake up that CPU. In case of a completely
680 * idle system the next event might even be infinite time into the
681 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
682 * leaves the inner idle loop so the newly added timer is taken into
683 * account when the CPU goes back to idle and evaluates the timer
684 * wheel for the next timer event.
685 */
1c20091e 686static void wake_up_idle_cpu(int cpu)
06d8308c
TG
687{
688 struct rq *rq = cpu_rq(cpu);
689
690 if (cpu == smp_processor_id())
691 return;
692
67b9ca70 693 if (set_nr_and_not_polling(rq->idle))
06d8308c 694 smp_send_reschedule(cpu);
dfc68f29
AL
695 else
696 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
697}
698
c5bfece2 699static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 700{
53c5fa16
FW
701 /*
702 * We just need the target to call irq_exit() and re-evaluate
703 * the next tick. The nohz full kick at least implies that.
704 * If needed we can still optimize that later with an
705 * empty IRQ.
706 */
c5bfece2 707 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
708 if (cpu != smp_processor_id() ||
709 tick_nohz_tick_stopped())
53c5fa16 710 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
711 return true;
712 }
713
714 return false;
715}
716
717void wake_up_nohz_cpu(int cpu)
718{
c5bfece2 719 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
720 wake_up_idle_cpu(cpu);
721}
722
ca38062e 723static inline bool got_nohz_idle_kick(void)
45bf76df 724{
1c792db7 725 int cpu = smp_processor_id();
873b4c65
VG
726
727 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
728 return false;
729
730 if (idle_cpu(cpu) && !need_resched())
731 return true;
732
733 /*
734 * We can't run Idle Load Balance on this CPU for this time so we
735 * cancel it and clear NOHZ_BALANCE_KICK
736 */
737 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
738 return false;
45bf76df
IM
739}
740
3451d024 741#else /* CONFIG_NO_HZ_COMMON */
45bf76df 742
ca38062e 743static inline bool got_nohz_idle_kick(void)
2069dd75 744{
ca38062e 745 return false;
2069dd75
PZ
746}
747
3451d024 748#endif /* CONFIG_NO_HZ_COMMON */
d842de87 749
ce831b38
FW
750#ifdef CONFIG_NO_HZ_FULL
751bool sched_can_stop_tick(void)
752{
3882ec64
FW
753 /*
754 * More than one running task need preemption.
755 * nr_running update is assumed to be visible
756 * after IPI is sent from wakers.
757 */
541b8264
VK
758 if (this_rq()->nr_running > 1)
759 return false;
ce831b38 760
541b8264 761 return true;
ce831b38
FW
762}
763#endif /* CONFIG_NO_HZ_FULL */
d842de87 764
029632fb 765void sched_avg_update(struct rq *rq)
18d95a28 766{
e9e9250b
PZ
767 s64 period = sched_avg_period();
768
78becc27 769 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
770 /*
771 * Inline assembly required to prevent the compiler
772 * optimising this loop into a divmod call.
773 * See __iter_div_u64_rem() for another example of this.
774 */
775 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
776 rq->age_stamp += period;
777 rq->rt_avg /= 2;
778 }
18d95a28
PZ
779}
780
6d6bc0ad 781#endif /* CONFIG_SMP */
18d95a28 782
a790de99
PT
783#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
784 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 785/*
8277434e
PT
786 * Iterate task_group tree rooted at *from, calling @down when first entering a
787 * node and @up when leaving it for the final time.
788 *
789 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 790 */
029632fb 791int walk_tg_tree_from(struct task_group *from,
8277434e 792 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
793{
794 struct task_group *parent, *child;
eb755805 795 int ret;
c09595f6 796
8277434e
PT
797 parent = from;
798
c09595f6 799down:
eb755805
PZ
800 ret = (*down)(parent, data);
801 if (ret)
8277434e 802 goto out;
c09595f6
PZ
803 list_for_each_entry_rcu(child, &parent->children, siblings) {
804 parent = child;
805 goto down;
806
807up:
808 continue;
809 }
eb755805 810 ret = (*up)(parent, data);
8277434e
PT
811 if (ret || parent == from)
812 goto out;
c09595f6
PZ
813
814 child = parent;
815 parent = parent->parent;
816 if (parent)
817 goto up;
8277434e 818out:
eb755805 819 return ret;
c09595f6
PZ
820}
821
029632fb 822int tg_nop(struct task_group *tg, void *data)
eb755805 823{
e2b245f8 824 return 0;
eb755805 825}
18d95a28
PZ
826#endif
827
45bf76df
IM
828static void set_load_weight(struct task_struct *p)
829{
f05998d4
NR
830 int prio = p->static_prio - MAX_RT_PRIO;
831 struct load_weight *load = &p->se.load;
832
dd41f596
IM
833 /*
834 * SCHED_IDLE tasks get minimal weight:
835 */
836 if (p->policy == SCHED_IDLE) {
c8b28116 837 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 838 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
839 return;
840 }
71f8bd46 841
c8b28116 842 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 843 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
844}
845
371fd7e7 846static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 847{
a64692a3 848 update_rq_clock(rq);
43148951 849 sched_info_queued(rq, p);
371fd7e7 850 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
851}
852
371fd7e7 853static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 854{
a64692a3 855 update_rq_clock(rq);
43148951 856 sched_info_dequeued(rq, p);
371fd7e7 857 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
858}
859
029632fb 860void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible--;
864
371fd7e7 865 enqueue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
029632fb 868void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
869{
870 if (task_contributes_to_load(p))
871 rq->nr_uninterruptible++;
872
371fd7e7 873 dequeue_task(rq, p, flags);
1e3c88bd
PZ
874}
875
fe44d621 876static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 877{
095c0aa8
GC
878/*
879 * In theory, the compile should just see 0 here, and optimize out the call
880 * to sched_rt_avg_update. But I don't trust it...
881 */
882#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
883 s64 steal = 0, irq_delta = 0;
884#endif
885#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 886 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
887
888 /*
889 * Since irq_time is only updated on {soft,}irq_exit, we might run into
890 * this case when a previous update_rq_clock() happened inside a
891 * {soft,}irq region.
892 *
893 * When this happens, we stop ->clock_task and only update the
894 * prev_irq_time stamp to account for the part that fit, so that a next
895 * update will consume the rest. This ensures ->clock_task is
896 * monotonic.
897 *
898 * It does however cause some slight miss-attribution of {soft,}irq
899 * time, a more accurate solution would be to update the irq_time using
900 * the current rq->clock timestamp, except that would require using
901 * atomic ops.
902 */
903 if (irq_delta > delta)
904 irq_delta = delta;
905
906 rq->prev_irq_time += irq_delta;
907 delta -= irq_delta;
095c0aa8
GC
908#endif
909#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 910 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
911 steal = paravirt_steal_clock(cpu_of(rq));
912 steal -= rq->prev_steal_time_rq;
913
914 if (unlikely(steal > delta))
915 steal = delta;
916
095c0aa8 917 rq->prev_steal_time_rq += steal;
095c0aa8
GC
918 delta -= steal;
919 }
920#endif
921
fe44d621
PZ
922 rq->clock_task += delta;
923
095c0aa8 924#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 925 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
926 sched_rt_avg_update(rq, irq_delta + steal);
927#endif
aa483808
VP
928}
929
34f971f6
PZ
930void sched_set_stop_task(int cpu, struct task_struct *stop)
931{
932 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
933 struct task_struct *old_stop = cpu_rq(cpu)->stop;
934
935 if (stop) {
936 /*
937 * Make it appear like a SCHED_FIFO task, its something
938 * userspace knows about and won't get confused about.
939 *
940 * Also, it will make PI more or less work without too
941 * much confusion -- but then, stop work should not
942 * rely on PI working anyway.
943 */
944 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
945
946 stop->sched_class = &stop_sched_class;
947 }
948
949 cpu_rq(cpu)->stop = stop;
950
951 if (old_stop) {
952 /*
953 * Reset it back to a normal scheduling class so that
954 * it can die in pieces.
955 */
956 old_stop->sched_class = &rt_sched_class;
957 }
958}
959
14531189 960/*
dd41f596 961 * __normal_prio - return the priority that is based on the static prio
14531189 962 */
14531189
IM
963static inline int __normal_prio(struct task_struct *p)
964{
dd41f596 965 return p->static_prio;
14531189
IM
966}
967
b29739f9
IM
968/*
969 * Calculate the expected normal priority: i.e. priority
970 * without taking RT-inheritance into account. Might be
971 * boosted by interactivity modifiers. Changes upon fork,
972 * setprio syscalls, and whenever the interactivity
973 * estimator recalculates.
974 */
36c8b586 975static inline int normal_prio(struct task_struct *p)
b29739f9
IM
976{
977 int prio;
978
aab03e05
DF
979 if (task_has_dl_policy(p))
980 prio = MAX_DL_PRIO-1;
981 else if (task_has_rt_policy(p))
b29739f9
IM
982 prio = MAX_RT_PRIO-1 - p->rt_priority;
983 else
984 prio = __normal_prio(p);
985 return prio;
986}
987
988/*
989 * Calculate the current priority, i.e. the priority
990 * taken into account by the scheduler. This value might
991 * be boosted by RT tasks, or might be boosted by
992 * interactivity modifiers. Will be RT if the task got
993 * RT-boosted. If not then it returns p->normal_prio.
994 */
36c8b586 995static int effective_prio(struct task_struct *p)
b29739f9
IM
996{
997 p->normal_prio = normal_prio(p);
998 /*
999 * If we are RT tasks or we were boosted to RT priority,
1000 * keep the priority unchanged. Otherwise, update priority
1001 * to the normal priority:
1002 */
1003 if (!rt_prio(p->prio))
1004 return p->normal_prio;
1005 return p->prio;
1006}
1007
1da177e4
LT
1008/**
1009 * task_curr - is this task currently executing on a CPU?
1010 * @p: the task in question.
e69f6186
YB
1011 *
1012 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1013 */
36c8b586 1014inline int task_curr(const struct task_struct *p)
1da177e4
LT
1015{
1016 return cpu_curr(task_cpu(p)) == p;
1017}
1018
cb469845
SR
1019static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1020 const struct sched_class *prev_class,
da7a735e 1021 int oldprio)
cb469845
SR
1022{
1023 if (prev_class != p->sched_class) {
1024 if (prev_class->switched_from)
da7a735e
PZ
1025 prev_class->switched_from(rq, p);
1026 p->sched_class->switched_to(rq, p);
2d3d891d 1027 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1028 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1029}
1030
029632fb 1031void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1032{
1033 const struct sched_class *class;
1034
1035 if (p->sched_class == rq->curr->sched_class) {
1036 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1037 } else {
1038 for_each_class(class) {
1039 if (class == rq->curr->sched_class)
1040 break;
1041 if (class == p->sched_class) {
8875125e 1042 resched_curr(rq);
1e5a7405
PZ
1043 break;
1044 }
1045 }
1046 }
1047
1048 /*
1049 * A queue event has occurred, and we're going to schedule. In
1050 * this case, we can save a useless back to back clock update.
1051 */
da0c1e65 1052 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1053 rq->skip_clock_update = 1;
1054}
1055
1da177e4 1056#ifdef CONFIG_SMP
dd41f596 1057void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1058{
e2912009
PZ
1059#ifdef CONFIG_SCHED_DEBUG
1060 /*
1061 * We should never call set_task_cpu() on a blocked task,
1062 * ttwu() will sort out the placement.
1063 */
077614ee 1064 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1065 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1066
1067#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1068 /*
1069 * The caller should hold either p->pi_lock or rq->lock, when changing
1070 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1071 *
1072 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1073 * see task_group().
6c6c54e1
PZ
1074 *
1075 * Furthermore, all task_rq users should acquire both locks, see
1076 * task_rq_lock().
1077 */
0122ec5b
PZ
1078 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1079 lockdep_is_held(&task_rq(p)->lock)));
1080#endif
e2912009
PZ
1081#endif
1082
de1d7286 1083 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1084
0c69774e 1085 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1086 if (p->sched_class->migrate_task_rq)
1087 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1088 p->se.nr_migrations++;
a8b0ca17 1089 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1090 }
dd41f596
IM
1091
1092 __set_task_cpu(p, new_cpu);
c65cc870
IM
1093}
1094
ac66f547
PZ
1095static void __migrate_swap_task(struct task_struct *p, int cpu)
1096{
da0c1e65 1097 if (task_on_rq_queued(p)) {
ac66f547
PZ
1098 struct rq *src_rq, *dst_rq;
1099
1100 src_rq = task_rq(p);
1101 dst_rq = cpu_rq(cpu);
1102
1103 deactivate_task(src_rq, p, 0);
1104 set_task_cpu(p, cpu);
1105 activate_task(dst_rq, p, 0);
1106 check_preempt_curr(dst_rq, p, 0);
1107 } else {
1108 /*
1109 * Task isn't running anymore; make it appear like we migrated
1110 * it before it went to sleep. This means on wakeup we make the
1111 * previous cpu our targer instead of where it really is.
1112 */
1113 p->wake_cpu = cpu;
1114 }
1115}
1116
1117struct migration_swap_arg {
1118 struct task_struct *src_task, *dst_task;
1119 int src_cpu, dst_cpu;
1120};
1121
1122static int migrate_swap_stop(void *data)
1123{
1124 struct migration_swap_arg *arg = data;
1125 struct rq *src_rq, *dst_rq;
1126 int ret = -EAGAIN;
1127
1128 src_rq = cpu_rq(arg->src_cpu);
1129 dst_rq = cpu_rq(arg->dst_cpu);
1130
74602315
PZ
1131 double_raw_lock(&arg->src_task->pi_lock,
1132 &arg->dst_task->pi_lock);
ac66f547
PZ
1133 double_rq_lock(src_rq, dst_rq);
1134 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1135 goto unlock;
1136
1137 if (task_cpu(arg->src_task) != arg->src_cpu)
1138 goto unlock;
1139
1140 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1141 goto unlock;
1142
1143 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1144 goto unlock;
1145
1146 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1147 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1148
1149 ret = 0;
1150
1151unlock:
1152 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1153 raw_spin_unlock(&arg->dst_task->pi_lock);
1154 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1155
1156 return ret;
1157}
1158
1159/*
1160 * Cross migrate two tasks
1161 */
1162int migrate_swap(struct task_struct *cur, struct task_struct *p)
1163{
1164 struct migration_swap_arg arg;
1165 int ret = -EINVAL;
1166
ac66f547
PZ
1167 arg = (struct migration_swap_arg){
1168 .src_task = cur,
1169 .src_cpu = task_cpu(cur),
1170 .dst_task = p,
1171 .dst_cpu = task_cpu(p),
1172 };
1173
1174 if (arg.src_cpu == arg.dst_cpu)
1175 goto out;
1176
6acce3ef
PZ
1177 /*
1178 * These three tests are all lockless; this is OK since all of them
1179 * will be re-checked with proper locks held further down the line.
1180 */
ac66f547
PZ
1181 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1182 goto out;
1183
1184 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1185 goto out;
1186
1187 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1188 goto out;
1189
286549dc 1190 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1191 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1192
1193out:
ac66f547
PZ
1194 return ret;
1195}
1196
969c7921 1197struct migration_arg {
36c8b586 1198 struct task_struct *task;
1da177e4 1199 int dest_cpu;
70b97a7f 1200};
1da177e4 1201
969c7921
TH
1202static int migration_cpu_stop(void *data);
1203
1da177e4
LT
1204/*
1205 * wait_task_inactive - wait for a thread to unschedule.
1206 *
85ba2d86
RM
1207 * If @match_state is nonzero, it's the @p->state value just checked and
1208 * not expected to change. If it changes, i.e. @p might have woken up,
1209 * then return zero. When we succeed in waiting for @p to be off its CPU,
1210 * we return a positive number (its total switch count). If a second call
1211 * a short while later returns the same number, the caller can be sure that
1212 * @p has remained unscheduled the whole time.
1213 *
1da177e4
LT
1214 * The caller must ensure that the task *will* unschedule sometime soon,
1215 * else this function might spin for a *long* time. This function can't
1216 * be called with interrupts off, or it may introduce deadlock with
1217 * smp_call_function() if an IPI is sent by the same process we are
1218 * waiting to become inactive.
1219 */
85ba2d86 1220unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1221{
1222 unsigned long flags;
da0c1e65 1223 int running, queued;
85ba2d86 1224 unsigned long ncsw;
70b97a7f 1225 struct rq *rq;
1da177e4 1226
3a5c359a
AK
1227 for (;;) {
1228 /*
1229 * We do the initial early heuristics without holding
1230 * any task-queue locks at all. We'll only try to get
1231 * the runqueue lock when things look like they will
1232 * work out!
1233 */
1234 rq = task_rq(p);
fa490cfd 1235
3a5c359a
AK
1236 /*
1237 * If the task is actively running on another CPU
1238 * still, just relax and busy-wait without holding
1239 * any locks.
1240 *
1241 * NOTE! Since we don't hold any locks, it's not
1242 * even sure that "rq" stays as the right runqueue!
1243 * But we don't care, since "task_running()" will
1244 * return false if the runqueue has changed and p
1245 * is actually now running somewhere else!
1246 */
85ba2d86
RM
1247 while (task_running(rq, p)) {
1248 if (match_state && unlikely(p->state != match_state))
1249 return 0;
3a5c359a 1250 cpu_relax();
85ba2d86 1251 }
fa490cfd 1252
3a5c359a
AK
1253 /*
1254 * Ok, time to look more closely! We need the rq
1255 * lock now, to be *sure*. If we're wrong, we'll
1256 * just go back and repeat.
1257 */
1258 rq = task_rq_lock(p, &flags);
27a9da65 1259 trace_sched_wait_task(p);
3a5c359a 1260 running = task_running(rq, p);
da0c1e65 1261 queued = task_on_rq_queued(p);
85ba2d86 1262 ncsw = 0;
f31e11d8 1263 if (!match_state || p->state == match_state)
93dcf55f 1264 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1265 task_rq_unlock(rq, p, &flags);
fa490cfd 1266
85ba2d86
RM
1267 /*
1268 * If it changed from the expected state, bail out now.
1269 */
1270 if (unlikely(!ncsw))
1271 break;
1272
3a5c359a
AK
1273 /*
1274 * Was it really running after all now that we
1275 * checked with the proper locks actually held?
1276 *
1277 * Oops. Go back and try again..
1278 */
1279 if (unlikely(running)) {
1280 cpu_relax();
1281 continue;
1282 }
fa490cfd 1283
3a5c359a
AK
1284 /*
1285 * It's not enough that it's not actively running,
1286 * it must be off the runqueue _entirely_, and not
1287 * preempted!
1288 *
80dd99b3 1289 * So if it was still runnable (but just not actively
3a5c359a
AK
1290 * running right now), it's preempted, and we should
1291 * yield - it could be a while.
1292 */
da0c1e65 1293 if (unlikely(queued)) {
8eb90c30
TG
1294 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1295
1296 set_current_state(TASK_UNINTERRUPTIBLE);
1297 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1298 continue;
1299 }
fa490cfd 1300
3a5c359a
AK
1301 /*
1302 * Ahh, all good. It wasn't running, and it wasn't
1303 * runnable, which means that it will never become
1304 * running in the future either. We're all done!
1305 */
1306 break;
1307 }
85ba2d86
RM
1308
1309 return ncsw;
1da177e4
LT
1310}
1311
1312/***
1313 * kick_process - kick a running thread to enter/exit the kernel
1314 * @p: the to-be-kicked thread
1315 *
1316 * Cause a process which is running on another CPU to enter
1317 * kernel-mode, without any delay. (to get signals handled.)
1318 *
25985edc 1319 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1320 * because all it wants to ensure is that the remote task enters
1321 * the kernel. If the IPI races and the task has been migrated
1322 * to another CPU then no harm is done and the purpose has been
1323 * achieved as well.
1324 */
36c8b586 1325void kick_process(struct task_struct *p)
1da177e4
LT
1326{
1327 int cpu;
1328
1329 preempt_disable();
1330 cpu = task_cpu(p);
1331 if ((cpu != smp_processor_id()) && task_curr(p))
1332 smp_send_reschedule(cpu);
1333 preempt_enable();
1334}
b43e3521 1335EXPORT_SYMBOL_GPL(kick_process);
476d139c 1336#endif /* CONFIG_SMP */
1da177e4 1337
970b13ba 1338#ifdef CONFIG_SMP
30da688e 1339/*
013fdb80 1340 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1341 */
5da9a0fb
PZ
1342static int select_fallback_rq(int cpu, struct task_struct *p)
1343{
aa00d89c
TC
1344 int nid = cpu_to_node(cpu);
1345 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1346 enum { cpuset, possible, fail } state = cpuset;
1347 int dest_cpu;
5da9a0fb 1348
aa00d89c
TC
1349 /*
1350 * If the node that the cpu is on has been offlined, cpu_to_node()
1351 * will return -1. There is no cpu on the node, and we should
1352 * select the cpu on the other node.
1353 */
1354 if (nid != -1) {
1355 nodemask = cpumask_of_node(nid);
1356
1357 /* Look for allowed, online CPU in same node. */
1358 for_each_cpu(dest_cpu, nodemask) {
1359 if (!cpu_online(dest_cpu))
1360 continue;
1361 if (!cpu_active(dest_cpu))
1362 continue;
1363 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1364 return dest_cpu;
1365 }
2baab4e9 1366 }
5da9a0fb 1367
2baab4e9
PZ
1368 for (;;) {
1369 /* Any allowed, online CPU? */
e3831edd 1370 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1371 if (!cpu_online(dest_cpu))
1372 continue;
1373 if (!cpu_active(dest_cpu))
1374 continue;
1375 goto out;
1376 }
5da9a0fb 1377
2baab4e9
PZ
1378 switch (state) {
1379 case cpuset:
1380 /* No more Mr. Nice Guy. */
1381 cpuset_cpus_allowed_fallback(p);
1382 state = possible;
1383 break;
1384
1385 case possible:
1386 do_set_cpus_allowed(p, cpu_possible_mask);
1387 state = fail;
1388 break;
1389
1390 case fail:
1391 BUG();
1392 break;
1393 }
1394 }
1395
1396out:
1397 if (state != cpuset) {
1398 /*
1399 * Don't tell them about moving exiting tasks or
1400 * kernel threads (both mm NULL), since they never
1401 * leave kernel.
1402 */
1403 if (p->mm && printk_ratelimit()) {
aac74dc4 1404 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1405 task_pid_nr(p), p->comm, cpu);
1406 }
5da9a0fb
PZ
1407 }
1408
1409 return dest_cpu;
1410}
1411
e2912009 1412/*
013fdb80 1413 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1414 */
970b13ba 1415static inline
ac66f547 1416int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1417{
ac66f547 1418 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1419
1420 /*
1421 * In order not to call set_task_cpu() on a blocking task we need
1422 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1423 * cpu.
1424 *
1425 * Since this is common to all placement strategies, this lives here.
1426 *
1427 * [ this allows ->select_task() to simply return task_cpu(p) and
1428 * not worry about this generic constraint ]
1429 */
fa17b507 1430 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1431 !cpu_online(cpu)))
5da9a0fb 1432 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1433
1434 return cpu;
970b13ba 1435}
09a40af5
MG
1436
1437static void update_avg(u64 *avg, u64 sample)
1438{
1439 s64 diff = sample - *avg;
1440 *avg += diff >> 3;
1441}
970b13ba
PZ
1442#endif
1443
d7c01d27 1444static void
b84cb5df 1445ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1446{
d7c01d27 1447#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1448 struct rq *rq = this_rq();
1449
d7c01d27
PZ
1450#ifdef CONFIG_SMP
1451 int this_cpu = smp_processor_id();
1452
1453 if (cpu == this_cpu) {
1454 schedstat_inc(rq, ttwu_local);
1455 schedstat_inc(p, se.statistics.nr_wakeups_local);
1456 } else {
1457 struct sched_domain *sd;
1458
1459 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1460 rcu_read_lock();
d7c01d27
PZ
1461 for_each_domain(this_cpu, sd) {
1462 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1463 schedstat_inc(sd, ttwu_wake_remote);
1464 break;
1465 }
1466 }
057f3fad 1467 rcu_read_unlock();
d7c01d27 1468 }
f339b9dc
PZ
1469
1470 if (wake_flags & WF_MIGRATED)
1471 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1472
d7c01d27
PZ
1473#endif /* CONFIG_SMP */
1474
1475 schedstat_inc(rq, ttwu_count);
9ed3811a 1476 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1477
1478 if (wake_flags & WF_SYNC)
9ed3811a 1479 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1480
d7c01d27
PZ
1481#endif /* CONFIG_SCHEDSTATS */
1482}
1483
1484static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1485{
9ed3811a 1486 activate_task(rq, p, en_flags);
da0c1e65 1487 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1488
1489 /* if a worker is waking up, notify workqueue */
1490 if (p->flags & PF_WQ_WORKER)
1491 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1492}
1493
23f41eeb
PZ
1494/*
1495 * Mark the task runnable and perform wakeup-preemption.
1496 */
89363381 1497static void
23f41eeb 1498ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1499{
9ed3811a 1500 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1501 trace_sched_wakeup(p, true);
9ed3811a
TH
1502
1503 p->state = TASK_RUNNING;
1504#ifdef CONFIG_SMP
1505 if (p->sched_class->task_woken)
1506 p->sched_class->task_woken(rq, p);
1507
e69c6341 1508 if (rq->idle_stamp) {
78becc27 1509 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1510 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1511
abfafa54
JL
1512 update_avg(&rq->avg_idle, delta);
1513
1514 if (rq->avg_idle > max)
9ed3811a 1515 rq->avg_idle = max;
abfafa54 1516
9ed3811a
TH
1517 rq->idle_stamp = 0;
1518 }
1519#endif
1520}
1521
c05fbafb
PZ
1522static void
1523ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1524{
1525#ifdef CONFIG_SMP
1526 if (p->sched_contributes_to_load)
1527 rq->nr_uninterruptible--;
1528#endif
1529
1530 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1531 ttwu_do_wakeup(rq, p, wake_flags);
1532}
1533
1534/*
1535 * Called in case the task @p isn't fully descheduled from its runqueue,
1536 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1537 * since all we need to do is flip p->state to TASK_RUNNING, since
1538 * the task is still ->on_rq.
1539 */
1540static int ttwu_remote(struct task_struct *p, int wake_flags)
1541{
1542 struct rq *rq;
1543 int ret = 0;
1544
1545 rq = __task_rq_lock(p);
da0c1e65 1546 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1547 /* check_preempt_curr() may use rq clock */
1548 update_rq_clock(rq);
c05fbafb
PZ
1549 ttwu_do_wakeup(rq, p, wake_flags);
1550 ret = 1;
1551 }
1552 __task_rq_unlock(rq);
1553
1554 return ret;
1555}
1556
317f3941 1557#ifdef CONFIG_SMP
e3baac47 1558void sched_ttwu_pending(void)
317f3941
PZ
1559{
1560 struct rq *rq = this_rq();
fa14ff4a
PZ
1561 struct llist_node *llist = llist_del_all(&rq->wake_list);
1562 struct task_struct *p;
e3baac47 1563 unsigned long flags;
317f3941 1564
e3baac47
PZ
1565 if (!llist)
1566 return;
1567
1568 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1569
fa14ff4a
PZ
1570 while (llist) {
1571 p = llist_entry(llist, struct task_struct, wake_entry);
1572 llist = llist_next(llist);
317f3941
PZ
1573 ttwu_do_activate(rq, p, 0);
1574 }
1575
e3baac47 1576 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1577}
1578
1579void scheduler_ipi(void)
1580{
f27dde8d
PZ
1581 /*
1582 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1583 * TIF_NEED_RESCHED remotely (for the first time) will also send
1584 * this IPI.
1585 */
8cb75e0c 1586 preempt_fold_need_resched();
f27dde8d 1587
fd2ac4f4 1588 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1589 return;
1590
1591 /*
1592 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1593 * traditionally all their work was done from the interrupt return
1594 * path. Now that we actually do some work, we need to make sure
1595 * we do call them.
1596 *
1597 * Some archs already do call them, luckily irq_enter/exit nest
1598 * properly.
1599 *
1600 * Arguably we should visit all archs and update all handlers,
1601 * however a fair share of IPIs are still resched only so this would
1602 * somewhat pessimize the simple resched case.
1603 */
1604 irq_enter();
fa14ff4a 1605 sched_ttwu_pending();
ca38062e
SS
1606
1607 /*
1608 * Check if someone kicked us for doing the nohz idle load balance.
1609 */
873b4c65 1610 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1611 this_rq()->idle_balance = 1;
ca38062e 1612 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1613 }
c5d753a5 1614 irq_exit();
317f3941
PZ
1615}
1616
1617static void ttwu_queue_remote(struct task_struct *p, int cpu)
1618{
e3baac47
PZ
1619 struct rq *rq = cpu_rq(cpu);
1620
1621 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1622 if (!set_nr_if_polling(rq->idle))
1623 smp_send_reschedule(cpu);
1624 else
1625 trace_sched_wake_idle_without_ipi(cpu);
1626 }
317f3941 1627}
d6aa8f85 1628
39be3501 1629bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1630{
1631 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1632}
d6aa8f85 1633#endif /* CONFIG_SMP */
317f3941 1634
c05fbafb
PZ
1635static void ttwu_queue(struct task_struct *p, int cpu)
1636{
1637 struct rq *rq = cpu_rq(cpu);
1638
17d9f311 1639#if defined(CONFIG_SMP)
39be3501 1640 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1641 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1642 ttwu_queue_remote(p, cpu);
1643 return;
1644 }
1645#endif
1646
c05fbafb
PZ
1647 raw_spin_lock(&rq->lock);
1648 ttwu_do_activate(rq, p, 0);
1649 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1650}
1651
1652/**
1da177e4 1653 * try_to_wake_up - wake up a thread
9ed3811a 1654 * @p: the thread to be awakened
1da177e4 1655 * @state: the mask of task states that can be woken
9ed3811a 1656 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1657 *
1658 * Put it on the run-queue if it's not already there. The "current"
1659 * thread is always on the run-queue (except when the actual
1660 * re-schedule is in progress), and as such you're allowed to do
1661 * the simpler "current->state = TASK_RUNNING" to mark yourself
1662 * runnable without the overhead of this.
1663 *
e69f6186 1664 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1665 * or @state didn't match @p's state.
1da177e4 1666 */
e4a52bcb
PZ
1667static int
1668try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1669{
1da177e4 1670 unsigned long flags;
c05fbafb 1671 int cpu, success = 0;
2398f2c6 1672
e0acd0a6
ON
1673 /*
1674 * If we are going to wake up a thread waiting for CONDITION we
1675 * need to ensure that CONDITION=1 done by the caller can not be
1676 * reordered with p->state check below. This pairs with mb() in
1677 * set_current_state() the waiting thread does.
1678 */
1679 smp_mb__before_spinlock();
013fdb80 1680 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1681 if (!(p->state & state))
1da177e4
LT
1682 goto out;
1683
c05fbafb 1684 success = 1; /* we're going to change ->state */
1da177e4 1685 cpu = task_cpu(p);
1da177e4 1686
cca26e80 1687 if (p->on_rq && ttwu_remote(p, wake_flags))
c05fbafb 1688 goto stat;
1da177e4 1689
1da177e4 1690#ifdef CONFIG_SMP
e9c84311 1691 /*
c05fbafb
PZ
1692 * If the owning (remote) cpu is still in the middle of schedule() with
1693 * this task as prev, wait until its done referencing the task.
e9c84311 1694 */
f3e94786 1695 while (p->on_cpu)
e4a52bcb 1696 cpu_relax();
0970d299 1697 /*
e4a52bcb 1698 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1699 */
e4a52bcb 1700 smp_rmb();
1da177e4 1701
a8e4f2ea 1702 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1703 p->state = TASK_WAKING;
e7693a36 1704
e4a52bcb 1705 if (p->sched_class->task_waking)
74f8e4b2 1706 p->sched_class->task_waking(p);
efbbd05a 1707
ac66f547 1708 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1709 if (task_cpu(p) != cpu) {
1710 wake_flags |= WF_MIGRATED;
e4a52bcb 1711 set_task_cpu(p, cpu);
f339b9dc 1712 }
1da177e4 1713#endif /* CONFIG_SMP */
1da177e4 1714
c05fbafb
PZ
1715 ttwu_queue(p, cpu);
1716stat:
b84cb5df 1717 ttwu_stat(p, cpu, wake_flags);
1da177e4 1718out:
013fdb80 1719 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1720
1721 return success;
1722}
1723
21aa9af0
TH
1724/**
1725 * try_to_wake_up_local - try to wake up a local task with rq lock held
1726 * @p: the thread to be awakened
1727 *
2acca55e 1728 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1729 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1730 * the current task.
21aa9af0
TH
1731 */
1732static void try_to_wake_up_local(struct task_struct *p)
1733{
1734 struct rq *rq = task_rq(p);
21aa9af0 1735
383efcd0
TH
1736 if (WARN_ON_ONCE(rq != this_rq()) ||
1737 WARN_ON_ONCE(p == current))
1738 return;
1739
21aa9af0
TH
1740 lockdep_assert_held(&rq->lock);
1741
2acca55e
PZ
1742 if (!raw_spin_trylock(&p->pi_lock)) {
1743 raw_spin_unlock(&rq->lock);
1744 raw_spin_lock(&p->pi_lock);
1745 raw_spin_lock(&rq->lock);
1746 }
1747
21aa9af0 1748 if (!(p->state & TASK_NORMAL))
2acca55e 1749 goto out;
21aa9af0 1750
da0c1e65 1751 if (!task_on_rq_queued(p))
d7c01d27
PZ
1752 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1753
23f41eeb 1754 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1755 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1756out:
1757 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1758}
1759
50fa610a
DH
1760/**
1761 * wake_up_process - Wake up a specific process
1762 * @p: The process to be woken up.
1763 *
1764 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1765 * processes.
1766 *
1767 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1768 *
1769 * It may be assumed that this function implies a write memory barrier before
1770 * changing the task state if and only if any tasks are woken up.
1771 */
7ad5b3a5 1772int wake_up_process(struct task_struct *p)
1da177e4 1773{
9067ac85
ON
1774 WARN_ON(task_is_stopped_or_traced(p));
1775 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1776}
1da177e4
LT
1777EXPORT_SYMBOL(wake_up_process);
1778
7ad5b3a5 1779int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1780{
1781 return try_to_wake_up(p, state, 0);
1782}
1783
1da177e4
LT
1784/*
1785 * Perform scheduler related setup for a newly forked process p.
1786 * p is forked by current.
dd41f596
IM
1787 *
1788 * __sched_fork() is basic setup used by init_idle() too:
1789 */
5e1576ed 1790static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1791{
fd2f4419
PZ
1792 p->on_rq = 0;
1793
1794 p->se.on_rq = 0;
dd41f596
IM
1795 p->se.exec_start = 0;
1796 p->se.sum_exec_runtime = 0;
f6cf891c 1797 p->se.prev_sum_exec_runtime = 0;
6c594c21 1798 p->se.nr_migrations = 0;
da7a735e 1799 p->se.vruntime = 0;
fd2f4419 1800 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1801
1802#ifdef CONFIG_SCHEDSTATS
41acab88 1803 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1804#endif
476d139c 1805
aab03e05
DF
1806 RB_CLEAR_NODE(&p->dl.rb_node);
1807 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1808 p->dl.dl_runtime = p->dl.runtime = 0;
1809 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1810 p->dl.dl_period = 0;
aab03e05
DF
1811 p->dl.flags = 0;
1812
fa717060 1813 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1814
e107be36
AK
1815#ifdef CONFIG_PREEMPT_NOTIFIERS
1816 INIT_HLIST_HEAD(&p->preempt_notifiers);
1817#endif
cbee9f88
PZ
1818
1819#ifdef CONFIG_NUMA_BALANCING
1820 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1821 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1822 p->mm->numa_scan_seq = 0;
1823 }
1824
5e1576ed
RR
1825 if (clone_flags & CLONE_VM)
1826 p->numa_preferred_nid = current->numa_preferred_nid;
1827 else
1828 p->numa_preferred_nid = -1;
1829
cbee9f88
PZ
1830 p->node_stamp = 0ULL;
1831 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1832 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1833 p->numa_work.next = &p->numa_work;
ff1df896
RR
1834 p->numa_faults_memory = NULL;
1835 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1836 p->last_task_numa_placement = 0;
1837 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1838
1839 INIT_LIST_HEAD(&p->numa_entry);
1840 p->numa_group = NULL;
cbee9f88 1841#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1842}
1843
1a687c2e 1844#ifdef CONFIG_NUMA_BALANCING
3105b86a 1845#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1846void set_numabalancing_state(bool enabled)
1847{
1848 if (enabled)
1849 sched_feat_set("NUMA");
1850 else
1851 sched_feat_set("NO_NUMA");
1852}
3105b86a
MG
1853#else
1854__read_mostly bool numabalancing_enabled;
1855
1856void set_numabalancing_state(bool enabled)
1857{
1858 numabalancing_enabled = enabled;
dd41f596 1859}
3105b86a 1860#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1861
1862#ifdef CONFIG_PROC_SYSCTL
1863int sysctl_numa_balancing(struct ctl_table *table, int write,
1864 void __user *buffer, size_t *lenp, loff_t *ppos)
1865{
1866 struct ctl_table t;
1867 int err;
1868 int state = numabalancing_enabled;
1869
1870 if (write && !capable(CAP_SYS_ADMIN))
1871 return -EPERM;
1872
1873 t = *table;
1874 t.data = &state;
1875 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1876 if (err < 0)
1877 return err;
1878 if (write)
1879 set_numabalancing_state(state);
1880 return err;
1881}
1882#endif
1883#endif
dd41f596
IM
1884
1885/*
1886 * fork()/clone()-time setup:
1887 */
aab03e05 1888int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1889{
0122ec5b 1890 unsigned long flags;
dd41f596
IM
1891 int cpu = get_cpu();
1892
5e1576ed 1893 __sched_fork(clone_flags, p);
06b83b5f 1894 /*
0017d735 1895 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1896 * nobody will actually run it, and a signal or other external
1897 * event cannot wake it up and insert it on the runqueue either.
1898 */
0017d735 1899 p->state = TASK_RUNNING;
dd41f596 1900
c350a04e
MG
1901 /*
1902 * Make sure we do not leak PI boosting priority to the child.
1903 */
1904 p->prio = current->normal_prio;
1905
b9dc29e7
MG
1906 /*
1907 * Revert to default priority/policy on fork if requested.
1908 */
1909 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1910 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1911 p->policy = SCHED_NORMAL;
6c697bdf 1912 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1913 p->rt_priority = 0;
1914 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1915 p->static_prio = NICE_TO_PRIO(0);
1916
1917 p->prio = p->normal_prio = __normal_prio(p);
1918 set_load_weight(p);
6c697bdf 1919
b9dc29e7
MG
1920 /*
1921 * We don't need the reset flag anymore after the fork. It has
1922 * fulfilled its duty:
1923 */
1924 p->sched_reset_on_fork = 0;
1925 }
ca94c442 1926
aab03e05
DF
1927 if (dl_prio(p->prio)) {
1928 put_cpu();
1929 return -EAGAIN;
1930 } else if (rt_prio(p->prio)) {
1931 p->sched_class = &rt_sched_class;
1932 } else {
2ddbf952 1933 p->sched_class = &fair_sched_class;
aab03e05 1934 }
b29739f9 1935
cd29fe6f
PZ
1936 if (p->sched_class->task_fork)
1937 p->sched_class->task_fork(p);
1938
86951599
PZ
1939 /*
1940 * The child is not yet in the pid-hash so no cgroup attach races,
1941 * and the cgroup is pinned to this child due to cgroup_fork()
1942 * is ran before sched_fork().
1943 *
1944 * Silence PROVE_RCU.
1945 */
0122ec5b 1946 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1947 set_task_cpu(p, cpu);
0122ec5b 1948 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1949
52f17b6c 1950#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1951 if (likely(sched_info_on()))
52f17b6c 1952 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1953#endif
3ca7a440
PZ
1954#if defined(CONFIG_SMP)
1955 p->on_cpu = 0;
4866cde0 1956#endif
01028747 1957 init_task_preempt_count(p);
806c09a7 1958#ifdef CONFIG_SMP
917b627d 1959 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1960 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1961#endif
917b627d 1962
476d139c 1963 put_cpu();
aab03e05 1964 return 0;
1da177e4
LT
1965}
1966
332ac17e
DF
1967unsigned long to_ratio(u64 period, u64 runtime)
1968{
1969 if (runtime == RUNTIME_INF)
1970 return 1ULL << 20;
1971
1972 /*
1973 * Doing this here saves a lot of checks in all
1974 * the calling paths, and returning zero seems
1975 * safe for them anyway.
1976 */
1977 if (period == 0)
1978 return 0;
1979
1980 return div64_u64(runtime << 20, period);
1981}
1982
1983#ifdef CONFIG_SMP
1984inline struct dl_bw *dl_bw_of(int i)
1985{
1986 return &cpu_rq(i)->rd->dl_bw;
1987}
1988
de212f18 1989static inline int dl_bw_cpus(int i)
332ac17e 1990{
de212f18
PZ
1991 struct root_domain *rd = cpu_rq(i)->rd;
1992 int cpus = 0;
1993
1994 for_each_cpu_and(i, rd->span, cpu_active_mask)
1995 cpus++;
1996
1997 return cpus;
332ac17e
DF
1998}
1999#else
2000inline struct dl_bw *dl_bw_of(int i)
2001{
2002 return &cpu_rq(i)->dl.dl_bw;
2003}
2004
de212f18 2005static inline int dl_bw_cpus(int i)
332ac17e
DF
2006{
2007 return 1;
2008}
2009#endif
2010
2011static inline
2012void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2013{
2014 dl_b->total_bw -= tsk_bw;
2015}
2016
2017static inline
2018void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2019{
2020 dl_b->total_bw += tsk_bw;
2021}
2022
2023static inline
2024bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2025{
2026 return dl_b->bw != -1 &&
2027 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2028}
2029
2030/*
2031 * We must be sure that accepting a new task (or allowing changing the
2032 * parameters of an existing one) is consistent with the bandwidth
2033 * constraints. If yes, this function also accordingly updates the currently
2034 * allocated bandwidth to reflect the new situation.
2035 *
2036 * This function is called while holding p's rq->lock.
2037 */
2038static int dl_overflow(struct task_struct *p, int policy,
2039 const struct sched_attr *attr)
2040{
2041
2042 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2043 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2044 u64 runtime = attr->sched_runtime;
2045 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2046 int cpus, err = -1;
332ac17e
DF
2047
2048 if (new_bw == p->dl.dl_bw)
2049 return 0;
2050
2051 /*
2052 * Either if a task, enters, leave, or stays -deadline but changes
2053 * its parameters, we may need to update accordingly the total
2054 * allocated bandwidth of the container.
2055 */
2056 raw_spin_lock(&dl_b->lock);
de212f18 2057 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2058 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2059 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2060 __dl_add(dl_b, new_bw);
2061 err = 0;
2062 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2063 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2064 __dl_clear(dl_b, p->dl.dl_bw);
2065 __dl_add(dl_b, new_bw);
2066 err = 0;
2067 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2068 __dl_clear(dl_b, p->dl.dl_bw);
2069 err = 0;
2070 }
2071 raw_spin_unlock(&dl_b->lock);
2072
2073 return err;
2074}
2075
2076extern void init_dl_bw(struct dl_bw *dl_b);
2077
1da177e4
LT
2078/*
2079 * wake_up_new_task - wake up a newly created task for the first time.
2080 *
2081 * This function will do some initial scheduler statistics housekeeping
2082 * that must be done for every newly created context, then puts the task
2083 * on the runqueue and wakes it.
2084 */
3e51e3ed 2085void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2086{
2087 unsigned long flags;
dd41f596 2088 struct rq *rq;
fabf318e 2089
ab2515c4 2090 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2091#ifdef CONFIG_SMP
2092 /*
2093 * Fork balancing, do it here and not earlier because:
2094 * - cpus_allowed can change in the fork path
2095 * - any previously selected cpu might disappear through hotplug
fabf318e 2096 */
ac66f547 2097 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2098#endif
2099
a75cdaa9
AS
2100 /* Initialize new task's runnable average */
2101 init_task_runnable_average(p);
ab2515c4 2102 rq = __task_rq_lock(p);
cd29fe6f 2103 activate_task(rq, p, 0);
da0c1e65 2104 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2105 trace_sched_wakeup_new(p, true);
a7558e01 2106 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2107#ifdef CONFIG_SMP
efbbd05a
PZ
2108 if (p->sched_class->task_woken)
2109 p->sched_class->task_woken(rq, p);
9a897c5a 2110#endif
0122ec5b 2111 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2112}
2113
e107be36
AK
2114#ifdef CONFIG_PREEMPT_NOTIFIERS
2115
2116/**
80dd99b3 2117 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2118 * @notifier: notifier struct to register
e107be36
AK
2119 */
2120void preempt_notifier_register(struct preempt_notifier *notifier)
2121{
2122 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2123}
2124EXPORT_SYMBOL_GPL(preempt_notifier_register);
2125
2126/**
2127 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2128 * @notifier: notifier struct to unregister
e107be36
AK
2129 *
2130 * This is safe to call from within a preemption notifier.
2131 */
2132void preempt_notifier_unregister(struct preempt_notifier *notifier)
2133{
2134 hlist_del(&notifier->link);
2135}
2136EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2137
2138static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2139{
2140 struct preempt_notifier *notifier;
e107be36 2141
b67bfe0d 2142 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2143 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2144}
2145
2146static void
2147fire_sched_out_preempt_notifiers(struct task_struct *curr,
2148 struct task_struct *next)
2149{
2150 struct preempt_notifier *notifier;
e107be36 2151
b67bfe0d 2152 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2153 notifier->ops->sched_out(notifier, next);
2154}
2155
6d6bc0ad 2156#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2157
2158static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2159{
2160}
2161
2162static void
2163fire_sched_out_preempt_notifiers(struct task_struct *curr,
2164 struct task_struct *next)
2165{
2166}
2167
6d6bc0ad 2168#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2169
4866cde0
NP
2170/**
2171 * prepare_task_switch - prepare to switch tasks
2172 * @rq: the runqueue preparing to switch
421cee29 2173 * @prev: the current task that is being switched out
4866cde0
NP
2174 * @next: the task we are going to switch to.
2175 *
2176 * This is called with the rq lock held and interrupts off. It must
2177 * be paired with a subsequent finish_task_switch after the context
2178 * switch.
2179 *
2180 * prepare_task_switch sets up locking and calls architecture specific
2181 * hooks.
2182 */
e107be36
AK
2183static inline void
2184prepare_task_switch(struct rq *rq, struct task_struct *prev,
2185 struct task_struct *next)
4866cde0 2186{
895dd92c 2187 trace_sched_switch(prev, next);
43148951 2188 sched_info_switch(rq, prev, next);
fe4b04fa 2189 perf_event_task_sched_out(prev, next);
e107be36 2190 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2191 prepare_lock_switch(rq, next);
2192 prepare_arch_switch(next);
2193}
2194
1da177e4
LT
2195/**
2196 * finish_task_switch - clean up after a task-switch
344babaa 2197 * @rq: runqueue associated with task-switch
1da177e4
LT
2198 * @prev: the thread we just switched away from.
2199 *
4866cde0
NP
2200 * finish_task_switch must be called after the context switch, paired
2201 * with a prepare_task_switch call before the context switch.
2202 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2203 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2204 *
2205 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2206 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2207 * with the lock held can cause deadlocks; see schedule() for
2208 * details.)
2209 */
a9957449 2210static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2211 __releases(rq->lock)
2212{
1da177e4 2213 struct mm_struct *mm = rq->prev_mm;
55a101f8 2214 long prev_state;
1da177e4
LT
2215
2216 rq->prev_mm = NULL;
2217
2218 /*
2219 * A task struct has one reference for the use as "current".
c394cc9f 2220 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2221 * schedule one last time. The schedule call will never return, and
2222 * the scheduled task must drop that reference.
c394cc9f 2223 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2224 * still held, otherwise prev could be scheduled on another cpu, die
2225 * there before we look at prev->state, and then the reference would
2226 * be dropped twice.
2227 * Manfred Spraul <manfred@colorfullife.com>
2228 */
55a101f8 2229 prev_state = prev->state;
bf9fae9f 2230 vtime_task_switch(prev);
4866cde0 2231 finish_arch_switch(prev);
a8d757ef 2232 perf_event_task_sched_in(prev, current);
4866cde0 2233 finish_lock_switch(rq, prev);
01f23e16 2234 finish_arch_post_lock_switch();
e8fa1362 2235
e107be36 2236 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2237 if (mm)
2238 mmdrop(mm);
c394cc9f 2239 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2240 if (prev->sched_class->task_dead)
2241 prev->sched_class->task_dead(prev);
2242
c6fd91f0 2243 /*
2244 * Remove function-return probe instances associated with this
2245 * task and put them back on the free list.
9761eea8 2246 */
c6fd91f0 2247 kprobe_flush_task(prev);
1da177e4 2248 put_task_struct(prev);
c6fd91f0 2249 }
99e5ada9
FW
2250
2251 tick_nohz_task_switch(current);
1da177e4
LT
2252}
2253
3f029d3c
GH
2254#ifdef CONFIG_SMP
2255
3f029d3c
GH
2256/* rq->lock is NOT held, but preemption is disabled */
2257static inline void post_schedule(struct rq *rq)
2258{
2259 if (rq->post_schedule) {
2260 unsigned long flags;
2261
05fa785c 2262 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2263 if (rq->curr->sched_class->post_schedule)
2264 rq->curr->sched_class->post_schedule(rq);
05fa785c 2265 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2266
2267 rq->post_schedule = 0;
2268 }
2269}
2270
2271#else
da19ab51 2272
3f029d3c
GH
2273static inline void post_schedule(struct rq *rq)
2274{
1da177e4
LT
2275}
2276
3f029d3c
GH
2277#endif
2278
1da177e4
LT
2279/**
2280 * schedule_tail - first thing a freshly forked thread must call.
2281 * @prev: the thread we just switched away from.
2282 */
722a9f92 2283asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2284 __releases(rq->lock)
2285{
70b97a7f
IM
2286 struct rq *rq = this_rq();
2287
4866cde0 2288 finish_task_switch(rq, prev);
da19ab51 2289
3f029d3c
GH
2290 /*
2291 * FIXME: do we need to worry about rq being invalidated by the
2292 * task_switch?
2293 */
2294 post_schedule(rq);
70b97a7f 2295
4866cde0
NP
2296#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2297 /* In this case, finish_task_switch does not reenable preemption */
2298 preempt_enable();
2299#endif
1da177e4 2300 if (current->set_child_tid)
b488893a 2301 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2302}
2303
2304/*
2305 * context_switch - switch to the new MM and the new
2306 * thread's register state.
2307 */
dd41f596 2308static inline void
70b97a7f 2309context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2310 struct task_struct *next)
1da177e4 2311{
dd41f596 2312 struct mm_struct *mm, *oldmm;
1da177e4 2313
e107be36 2314 prepare_task_switch(rq, prev, next);
fe4b04fa 2315
dd41f596
IM
2316 mm = next->mm;
2317 oldmm = prev->active_mm;
9226d125
ZA
2318 /*
2319 * For paravirt, this is coupled with an exit in switch_to to
2320 * combine the page table reload and the switch backend into
2321 * one hypercall.
2322 */
224101ed 2323 arch_start_context_switch(prev);
9226d125 2324
31915ab4 2325 if (!mm) {
1da177e4
LT
2326 next->active_mm = oldmm;
2327 atomic_inc(&oldmm->mm_count);
2328 enter_lazy_tlb(oldmm, next);
2329 } else
2330 switch_mm(oldmm, mm, next);
2331
31915ab4 2332 if (!prev->mm) {
1da177e4 2333 prev->active_mm = NULL;
1da177e4
LT
2334 rq->prev_mm = oldmm;
2335 }
3a5f5e48
IM
2336 /*
2337 * Since the runqueue lock will be released by the next
2338 * task (which is an invalid locking op but in the case
2339 * of the scheduler it's an obvious special-case), so we
2340 * do an early lockdep release here:
2341 */
2342#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2343 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2344#endif
1da177e4 2345
91d1aa43 2346 context_tracking_task_switch(prev, next);
1da177e4
LT
2347 /* Here we just switch the register state and the stack. */
2348 switch_to(prev, next, prev);
2349
dd41f596
IM
2350 barrier();
2351 /*
2352 * this_rq must be evaluated again because prev may have moved
2353 * CPUs since it called schedule(), thus the 'rq' on its stack
2354 * frame will be invalid.
2355 */
2356 finish_task_switch(this_rq(), prev);
1da177e4
LT
2357}
2358
2359/*
1c3e8264 2360 * nr_running and nr_context_switches:
1da177e4
LT
2361 *
2362 * externally visible scheduler statistics: current number of runnable
1c3e8264 2363 * threads, total number of context switches performed since bootup.
1da177e4
LT
2364 */
2365unsigned long nr_running(void)
2366{
2367 unsigned long i, sum = 0;
2368
2369 for_each_online_cpu(i)
2370 sum += cpu_rq(i)->nr_running;
2371
2372 return sum;
f711f609 2373}
1da177e4 2374
1da177e4 2375unsigned long long nr_context_switches(void)
46cb4b7c 2376{
cc94abfc
SR
2377 int i;
2378 unsigned long long sum = 0;
46cb4b7c 2379
0a945022 2380 for_each_possible_cpu(i)
1da177e4 2381 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2382
1da177e4
LT
2383 return sum;
2384}
483b4ee6 2385
1da177e4
LT
2386unsigned long nr_iowait(void)
2387{
2388 unsigned long i, sum = 0;
483b4ee6 2389
0a945022 2390 for_each_possible_cpu(i)
1da177e4 2391 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2392
1da177e4
LT
2393 return sum;
2394}
483b4ee6 2395
8c215bd3 2396unsigned long nr_iowait_cpu(int cpu)
69d25870 2397{
8c215bd3 2398 struct rq *this = cpu_rq(cpu);
69d25870
AV
2399 return atomic_read(&this->nr_iowait);
2400}
46cb4b7c 2401
dd41f596 2402#ifdef CONFIG_SMP
8a0be9ef 2403
46cb4b7c 2404/*
38022906
PZ
2405 * sched_exec - execve() is a valuable balancing opportunity, because at
2406 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2407 */
38022906 2408void sched_exec(void)
46cb4b7c 2409{
38022906 2410 struct task_struct *p = current;
1da177e4 2411 unsigned long flags;
0017d735 2412 int dest_cpu;
46cb4b7c 2413
8f42ced9 2414 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2415 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2416 if (dest_cpu == smp_processor_id())
2417 goto unlock;
38022906 2418
8f42ced9 2419 if (likely(cpu_active(dest_cpu))) {
969c7921 2420 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2421
8f42ced9
PZ
2422 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2423 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2424 return;
2425 }
0017d735 2426unlock:
8f42ced9 2427 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2428}
dd41f596 2429
1da177e4
LT
2430#endif
2431
1da177e4 2432DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2433DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2434
2435EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2436EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2437
2438/*
c5f8d995 2439 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2440 * @p in case that task is currently running.
c5f8d995
HS
2441 *
2442 * Called with task_rq_lock() held on @rq.
1da177e4 2443 */
c5f8d995
HS
2444static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2445{
2446 u64 ns = 0;
2447
4036ac15
MG
2448 /*
2449 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2450 * project cycles that may never be accounted to this
2451 * thread, breaking clock_gettime().
2452 */
da0c1e65 2453 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2454 update_rq_clock(rq);
78becc27 2455 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2456 if ((s64)ns < 0)
2457 ns = 0;
2458 }
2459
2460 return ns;
2461}
2462
bb34d92f 2463unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2464{
1da177e4 2465 unsigned long flags;
41b86e9c 2466 struct rq *rq;
bb34d92f 2467 u64 ns = 0;
48f24c4d 2468
41b86e9c 2469 rq = task_rq_lock(p, &flags);
c5f8d995 2470 ns = do_task_delta_exec(p, rq);
0122ec5b 2471 task_rq_unlock(rq, p, &flags);
1508487e 2472
c5f8d995
HS
2473 return ns;
2474}
f06febc9 2475
c5f8d995
HS
2476/*
2477 * Return accounted runtime for the task.
2478 * In case the task is currently running, return the runtime plus current's
2479 * pending runtime that have not been accounted yet.
2480 */
2481unsigned long long task_sched_runtime(struct task_struct *p)
2482{
2483 unsigned long flags;
2484 struct rq *rq;
2485 u64 ns = 0;
2486
911b2898
PZ
2487#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2488 /*
2489 * 64-bit doesn't need locks to atomically read a 64bit value.
2490 * So we have a optimization chance when the task's delta_exec is 0.
2491 * Reading ->on_cpu is racy, but this is ok.
2492 *
2493 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2494 * If we race with it entering cpu, unaccounted time is 0. This is
2495 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2496 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2497 * been accounted, so we're correct here as well.
911b2898 2498 */
da0c1e65 2499 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2500 return p->se.sum_exec_runtime;
2501#endif
2502
c5f8d995
HS
2503 rq = task_rq_lock(p, &flags);
2504 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2505 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2506
2507 return ns;
2508}
48f24c4d 2509
7835b98b
CL
2510/*
2511 * This function gets called by the timer code, with HZ frequency.
2512 * We call it with interrupts disabled.
7835b98b
CL
2513 */
2514void scheduler_tick(void)
2515{
7835b98b
CL
2516 int cpu = smp_processor_id();
2517 struct rq *rq = cpu_rq(cpu);
dd41f596 2518 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2519
2520 sched_clock_tick();
dd41f596 2521
05fa785c 2522 raw_spin_lock(&rq->lock);
3e51f33f 2523 update_rq_clock(rq);
fa85ae24 2524 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2525 update_cpu_load_active(rq);
05fa785c 2526 raw_spin_unlock(&rq->lock);
7835b98b 2527
e9d2b064 2528 perf_event_task_tick();
e220d2dc 2529
e418e1c2 2530#ifdef CONFIG_SMP
6eb57e0d 2531 rq->idle_balance = idle_cpu(cpu);
7caff66f 2532 trigger_load_balance(rq);
e418e1c2 2533#endif
265f22a9 2534 rq_last_tick_reset(rq);
1da177e4
LT
2535}
2536
265f22a9
FW
2537#ifdef CONFIG_NO_HZ_FULL
2538/**
2539 * scheduler_tick_max_deferment
2540 *
2541 * Keep at least one tick per second when a single
2542 * active task is running because the scheduler doesn't
2543 * yet completely support full dynticks environment.
2544 *
2545 * This makes sure that uptime, CFS vruntime, load
2546 * balancing, etc... continue to move forward, even
2547 * with a very low granularity.
e69f6186
YB
2548 *
2549 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2550 */
2551u64 scheduler_tick_max_deferment(void)
2552{
2553 struct rq *rq = this_rq();
2554 unsigned long next, now = ACCESS_ONCE(jiffies);
2555
2556 next = rq->last_sched_tick + HZ;
2557
2558 if (time_before_eq(next, now))
2559 return 0;
2560
8fe8ff09 2561 return jiffies_to_nsecs(next - now);
1da177e4 2562}
265f22a9 2563#endif
1da177e4 2564
132380a0 2565notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2566{
2567 if (in_lock_functions(addr)) {
2568 addr = CALLER_ADDR2;
2569 if (in_lock_functions(addr))
2570 addr = CALLER_ADDR3;
2571 }
2572 return addr;
2573}
1da177e4 2574
7e49fcce
SR
2575#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2576 defined(CONFIG_PREEMPT_TRACER))
2577
edafe3a5 2578void preempt_count_add(int val)
1da177e4 2579{
6cd8a4bb 2580#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2581 /*
2582 * Underflow?
2583 */
9a11b49a
IM
2584 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2585 return;
6cd8a4bb 2586#endif
bdb43806 2587 __preempt_count_add(val);
6cd8a4bb 2588#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2589 /*
2590 * Spinlock count overflowing soon?
2591 */
33859f7f
MOS
2592 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2593 PREEMPT_MASK - 10);
6cd8a4bb 2594#endif
8f47b187
TG
2595 if (preempt_count() == val) {
2596 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2597#ifdef CONFIG_DEBUG_PREEMPT
2598 current->preempt_disable_ip = ip;
2599#endif
2600 trace_preempt_off(CALLER_ADDR0, ip);
2601 }
1da177e4 2602}
bdb43806 2603EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2604NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2605
edafe3a5 2606void preempt_count_sub(int val)
1da177e4 2607{
6cd8a4bb 2608#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2609 /*
2610 * Underflow?
2611 */
01e3eb82 2612 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2613 return;
1da177e4
LT
2614 /*
2615 * Is the spinlock portion underflowing?
2616 */
9a11b49a
IM
2617 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2618 !(preempt_count() & PREEMPT_MASK)))
2619 return;
6cd8a4bb 2620#endif
9a11b49a 2621
6cd8a4bb
SR
2622 if (preempt_count() == val)
2623 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2624 __preempt_count_sub(val);
1da177e4 2625}
bdb43806 2626EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2627NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2628
2629#endif
2630
2631/*
dd41f596 2632 * Print scheduling while atomic bug:
1da177e4 2633 */
dd41f596 2634static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2635{
664dfa65
DJ
2636 if (oops_in_progress)
2637 return;
2638
3df0fc5b
PZ
2639 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2640 prev->comm, prev->pid, preempt_count());
838225b4 2641
dd41f596 2642 debug_show_held_locks(prev);
e21f5b15 2643 print_modules();
dd41f596
IM
2644 if (irqs_disabled())
2645 print_irqtrace_events(prev);
8f47b187
TG
2646#ifdef CONFIG_DEBUG_PREEMPT
2647 if (in_atomic_preempt_off()) {
2648 pr_err("Preemption disabled at:");
2649 print_ip_sym(current->preempt_disable_ip);
2650 pr_cont("\n");
2651 }
2652#endif
6135fc1e 2653 dump_stack();
373d4d09 2654 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2655}
1da177e4 2656
dd41f596
IM
2657/*
2658 * Various schedule()-time debugging checks and statistics:
2659 */
2660static inline void schedule_debug(struct task_struct *prev)
2661{
1da177e4 2662 /*
41a2d6cf 2663 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2664 * schedule() atomically, we ignore that path. Otherwise whine
2665 * if we are scheduling when we should not.
1da177e4 2666 */
192301e7 2667 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2668 __schedule_bug(prev);
b3fbab05 2669 rcu_sleep_check();
dd41f596 2670
1da177e4
LT
2671 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2672
2d72376b 2673 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2674}
2675
2676/*
2677 * Pick up the highest-prio task:
2678 */
2679static inline struct task_struct *
606dba2e 2680pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2681{
37e117c0 2682 const struct sched_class *class = &fair_sched_class;
dd41f596 2683 struct task_struct *p;
1da177e4
LT
2684
2685 /*
dd41f596
IM
2686 * Optimization: we know that if all tasks are in
2687 * the fair class we can call that function directly:
1da177e4 2688 */
37e117c0 2689 if (likely(prev->sched_class == class &&
38033c37 2690 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2691 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2692 if (unlikely(p == RETRY_TASK))
2693 goto again;
2694
2695 /* assumes fair_sched_class->next == idle_sched_class */
2696 if (unlikely(!p))
2697 p = idle_sched_class.pick_next_task(rq, prev);
2698
2699 return p;
1da177e4
LT
2700 }
2701
37e117c0 2702again:
34f971f6 2703 for_each_class(class) {
606dba2e 2704 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2705 if (p) {
2706 if (unlikely(p == RETRY_TASK))
2707 goto again;
dd41f596 2708 return p;
37e117c0 2709 }
dd41f596 2710 }
34f971f6
PZ
2711
2712 BUG(); /* the idle class will always have a runnable task */
dd41f596 2713}
1da177e4 2714
dd41f596 2715/*
c259e01a 2716 * __schedule() is the main scheduler function.
edde96ea
PE
2717 *
2718 * The main means of driving the scheduler and thus entering this function are:
2719 *
2720 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2721 *
2722 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2723 * paths. For example, see arch/x86/entry_64.S.
2724 *
2725 * To drive preemption between tasks, the scheduler sets the flag in timer
2726 * interrupt handler scheduler_tick().
2727 *
2728 * 3. Wakeups don't really cause entry into schedule(). They add a
2729 * task to the run-queue and that's it.
2730 *
2731 * Now, if the new task added to the run-queue preempts the current
2732 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2733 * called on the nearest possible occasion:
2734 *
2735 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2736 *
2737 * - in syscall or exception context, at the next outmost
2738 * preempt_enable(). (this might be as soon as the wake_up()'s
2739 * spin_unlock()!)
2740 *
2741 * - in IRQ context, return from interrupt-handler to
2742 * preemptible context
2743 *
2744 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2745 * then at the next:
2746 *
2747 * - cond_resched() call
2748 * - explicit schedule() call
2749 * - return from syscall or exception to user-space
2750 * - return from interrupt-handler to user-space
dd41f596 2751 */
c259e01a 2752static void __sched __schedule(void)
dd41f596
IM
2753{
2754 struct task_struct *prev, *next;
67ca7bde 2755 unsigned long *switch_count;
dd41f596 2756 struct rq *rq;
31656519 2757 int cpu;
dd41f596 2758
ff743345
PZ
2759need_resched:
2760 preempt_disable();
dd41f596
IM
2761 cpu = smp_processor_id();
2762 rq = cpu_rq(cpu);
25502a6c 2763 rcu_note_context_switch(cpu);
dd41f596 2764 prev = rq->curr;
dd41f596 2765
dd41f596 2766 schedule_debug(prev);
1da177e4 2767
31656519 2768 if (sched_feat(HRTICK))
f333fdc9 2769 hrtick_clear(rq);
8f4d37ec 2770
e0acd0a6
ON
2771 /*
2772 * Make sure that signal_pending_state()->signal_pending() below
2773 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2774 * done by the caller to avoid the race with signal_wake_up().
2775 */
2776 smp_mb__before_spinlock();
05fa785c 2777 raw_spin_lock_irq(&rq->lock);
1da177e4 2778
246d86b5 2779 switch_count = &prev->nivcsw;
1da177e4 2780 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2781 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2782 prev->state = TASK_RUNNING;
21aa9af0 2783 } else {
2acca55e
PZ
2784 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2785 prev->on_rq = 0;
2786
21aa9af0 2787 /*
2acca55e
PZ
2788 * If a worker went to sleep, notify and ask workqueue
2789 * whether it wants to wake up a task to maintain
2790 * concurrency.
21aa9af0
TH
2791 */
2792 if (prev->flags & PF_WQ_WORKER) {
2793 struct task_struct *to_wakeup;
2794
2795 to_wakeup = wq_worker_sleeping(prev, cpu);
2796 if (to_wakeup)
2797 try_to_wake_up_local(to_wakeup);
2798 }
21aa9af0 2799 }
dd41f596 2800 switch_count = &prev->nvcsw;
1da177e4
LT
2801 }
2802
da0c1e65 2803 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2804 update_rq_clock(rq);
2805
2806 next = pick_next_task(rq, prev);
f26f9aff 2807 clear_tsk_need_resched(prev);
f27dde8d 2808 clear_preempt_need_resched();
f26f9aff 2809 rq->skip_clock_update = 0;
1da177e4 2810
1da177e4 2811 if (likely(prev != next)) {
1da177e4
LT
2812 rq->nr_switches++;
2813 rq->curr = next;
2814 ++*switch_count;
2815
dd41f596 2816 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2817 /*
246d86b5
ON
2818 * The context switch have flipped the stack from under us
2819 * and restored the local variables which were saved when
2820 * this task called schedule() in the past. prev == current
2821 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2822 */
2823 cpu = smp_processor_id();
2824 rq = cpu_rq(cpu);
1da177e4 2825 } else
05fa785c 2826 raw_spin_unlock_irq(&rq->lock);
1da177e4 2827
3f029d3c 2828 post_schedule(rq);
1da177e4 2829
ba74c144 2830 sched_preempt_enable_no_resched();
ff743345 2831 if (need_resched())
1da177e4
LT
2832 goto need_resched;
2833}
c259e01a 2834
9c40cef2
TG
2835static inline void sched_submit_work(struct task_struct *tsk)
2836{
3c7d5184 2837 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2838 return;
2839 /*
2840 * If we are going to sleep and we have plugged IO queued,
2841 * make sure to submit it to avoid deadlocks.
2842 */
2843 if (blk_needs_flush_plug(tsk))
2844 blk_schedule_flush_plug(tsk);
2845}
2846
722a9f92 2847asmlinkage __visible void __sched schedule(void)
c259e01a 2848{
9c40cef2
TG
2849 struct task_struct *tsk = current;
2850
2851 sched_submit_work(tsk);
c259e01a
TG
2852 __schedule();
2853}
1da177e4
LT
2854EXPORT_SYMBOL(schedule);
2855
91d1aa43 2856#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2857asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2858{
2859 /*
2860 * If we come here after a random call to set_need_resched(),
2861 * or we have been woken up remotely but the IPI has not yet arrived,
2862 * we haven't yet exited the RCU idle mode. Do it here manually until
2863 * we find a better solution.
2864 */
91d1aa43 2865 user_exit();
20ab65e3 2866 schedule();
91d1aa43 2867 user_enter();
20ab65e3
FW
2868}
2869#endif
2870
c5491ea7
TG
2871/**
2872 * schedule_preempt_disabled - called with preemption disabled
2873 *
2874 * Returns with preemption disabled. Note: preempt_count must be 1
2875 */
2876void __sched schedule_preempt_disabled(void)
2877{
ba74c144 2878 sched_preempt_enable_no_resched();
c5491ea7
TG
2879 schedule();
2880 preempt_disable();
2881}
2882
1da177e4
LT
2883#ifdef CONFIG_PREEMPT
2884/*
2ed6e34f 2885 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2886 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2887 * occur there and call schedule directly.
2888 */
722a9f92 2889asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2890{
1da177e4
LT
2891 /*
2892 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2893 * we do not want to preempt the current task. Just return..
1da177e4 2894 */
fbb00b56 2895 if (likely(!preemptible()))
1da177e4
LT
2896 return;
2897
3a5c359a 2898 do {
bdb43806 2899 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2900 __schedule();
bdb43806 2901 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2902
3a5c359a
AK
2903 /*
2904 * Check again in case we missed a preemption opportunity
2905 * between schedule and now.
2906 */
2907 barrier();
5ed0cec0 2908 } while (need_resched());
1da177e4 2909}
376e2424 2910NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2911EXPORT_SYMBOL(preempt_schedule);
32e475d7 2912#endif /* CONFIG_PREEMPT */
1da177e4
LT
2913
2914/*
2ed6e34f 2915 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2916 * off of irq context.
2917 * Note, that this is called and return with irqs disabled. This will
2918 * protect us against recursive calling from irq.
2919 */
722a9f92 2920asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2921{
b22366cd 2922 enum ctx_state prev_state;
6478d880 2923
2ed6e34f 2924 /* Catch callers which need to be fixed */
f27dde8d 2925 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2926
b22366cd
FW
2927 prev_state = exception_enter();
2928
3a5c359a 2929 do {
bdb43806 2930 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2931 local_irq_enable();
c259e01a 2932 __schedule();
3a5c359a 2933 local_irq_disable();
bdb43806 2934 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2935
3a5c359a
AK
2936 /*
2937 * Check again in case we missed a preemption opportunity
2938 * between schedule and now.
2939 */
2940 barrier();
5ed0cec0 2941 } while (need_resched());
b22366cd
FW
2942
2943 exception_exit(prev_state);
1da177e4
LT
2944}
2945
63859d4f 2946int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2947 void *key)
1da177e4 2948{
63859d4f 2949 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2950}
1da177e4
LT
2951EXPORT_SYMBOL(default_wake_function);
2952
b29739f9
IM
2953#ifdef CONFIG_RT_MUTEXES
2954
2955/*
2956 * rt_mutex_setprio - set the current priority of a task
2957 * @p: task
2958 * @prio: prio value (kernel-internal form)
2959 *
2960 * This function changes the 'effective' priority of a task. It does
2961 * not touch ->normal_prio like __setscheduler().
2962 *
c365c292
TG
2963 * Used by the rt_mutex code to implement priority inheritance
2964 * logic. Call site only calls if the priority of the task changed.
b29739f9 2965 */
36c8b586 2966void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2967{
da0c1e65 2968 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 2969 struct rq *rq;
83ab0aa0 2970 const struct sched_class *prev_class;
b29739f9 2971
aab03e05 2972 BUG_ON(prio > MAX_PRIO);
b29739f9 2973
0122ec5b 2974 rq = __task_rq_lock(p);
b29739f9 2975
1c4dd99b
TG
2976 /*
2977 * Idle task boosting is a nono in general. There is one
2978 * exception, when PREEMPT_RT and NOHZ is active:
2979 *
2980 * The idle task calls get_next_timer_interrupt() and holds
2981 * the timer wheel base->lock on the CPU and another CPU wants
2982 * to access the timer (probably to cancel it). We can safely
2983 * ignore the boosting request, as the idle CPU runs this code
2984 * with interrupts disabled and will complete the lock
2985 * protected section without being interrupted. So there is no
2986 * real need to boost.
2987 */
2988 if (unlikely(p == rq->idle)) {
2989 WARN_ON(p != rq->curr);
2990 WARN_ON(p->pi_blocked_on);
2991 goto out_unlock;
2992 }
2993
a8027073 2994 trace_sched_pi_setprio(p, prio);
d5f9f942 2995 oldprio = p->prio;
83ab0aa0 2996 prev_class = p->sched_class;
da0c1e65 2997 queued = task_on_rq_queued(p);
051a1d1a 2998 running = task_current(rq, p);
da0c1e65 2999 if (queued)
69be72c1 3000 dequeue_task(rq, p, 0);
0e1f3483
HS
3001 if (running)
3002 p->sched_class->put_prev_task(rq, p);
dd41f596 3003
2d3d891d
DF
3004 /*
3005 * Boosting condition are:
3006 * 1. -rt task is running and holds mutex A
3007 * --> -dl task blocks on mutex A
3008 *
3009 * 2. -dl task is running and holds mutex A
3010 * --> -dl task blocks on mutex A and could preempt the
3011 * running task
3012 */
3013 if (dl_prio(prio)) {
466af29b
ON
3014 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3015 if (!dl_prio(p->normal_prio) ||
3016 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3017 p->dl.dl_boosted = 1;
3018 p->dl.dl_throttled = 0;
3019 enqueue_flag = ENQUEUE_REPLENISH;
3020 } else
3021 p->dl.dl_boosted = 0;
aab03e05 3022 p->sched_class = &dl_sched_class;
2d3d891d
DF
3023 } else if (rt_prio(prio)) {
3024 if (dl_prio(oldprio))
3025 p->dl.dl_boosted = 0;
3026 if (oldprio < prio)
3027 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3028 p->sched_class = &rt_sched_class;
2d3d891d
DF
3029 } else {
3030 if (dl_prio(oldprio))
3031 p->dl.dl_boosted = 0;
dd41f596 3032 p->sched_class = &fair_sched_class;
2d3d891d 3033 }
dd41f596 3034
b29739f9
IM
3035 p->prio = prio;
3036
0e1f3483
HS
3037 if (running)
3038 p->sched_class->set_curr_task(rq);
da0c1e65 3039 if (queued)
2d3d891d 3040 enqueue_task(rq, p, enqueue_flag);
cb469845 3041
da7a735e 3042 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3043out_unlock:
0122ec5b 3044 __task_rq_unlock(rq);
b29739f9 3045}
b29739f9 3046#endif
d50dde5a 3047
36c8b586 3048void set_user_nice(struct task_struct *p, long nice)
1da177e4 3049{
da0c1e65 3050 int old_prio, delta, queued;
1da177e4 3051 unsigned long flags;
70b97a7f 3052 struct rq *rq;
1da177e4 3053
75e45d51 3054 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3055 return;
3056 /*
3057 * We have to be careful, if called from sys_setpriority(),
3058 * the task might be in the middle of scheduling on another CPU.
3059 */
3060 rq = task_rq_lock(p, &flags);
3061 /*
3062 * The RT priorities are set via sched_setscheduler(), but we still
3063 * allow the 'normal' nice value to be set - but as expected
3064 * it wont have any effect on scheduling until the task is
aab03e05 3065 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3066 */
aab03e05 3067 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3068 p->static_prio = NICE_TO_PRIO(nice);
3069 goto out_unlock;
3070 }
da0c1e65
KT
3071 queued = task_on_rq_queued(p);
3072 if (queued)
69be72c1 3073 dequeue_task(rq, p, 0);
1da177e4 3074
1da177e4 3075 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3076 set_load_weight(p);
b29739f9
IM
3077 old_prio = p->prio;
3078 p->prio = effective_prio(p);
3079 delta = p->prio - old_prio;
1da177e4 3080
da0c1e65 3081 if (queued) {
371fd7e7 3082 enqueue_task(rq, p, 0);
1da177e4 3083 /*
d5f9f942
AM
3084 * If the task increased its priority or is running and
3085 * lowered its priority, then reschedule its CPU:
1da177e4 3086 */
d5f9f942 3087 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3088 resched_curr(rq);
1da177e4
LT
3089 }
3090out_unlock:
0122ec5b 3091 task_rq_unlock(rq, p, &flags);
1da177e4 3092}
1da177e4
LT
3093EXPORT_SYMBOL(set_user_nice);
3094
e43379f1
MM
3095/*
3096 * can_nice - check if a task can reduce its nice value
3097 * @p: task
3098 * @nice: nice value
3099 */
36c8b586 3100int can_nice(const struct task_struct *p, const int nice)
e43379f1 3101{
024f4747 3102 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3103 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3104
78d7d407 3105 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3106 capable(CAP_SYS_NICE));
3107}
3108
1da177e4
LT
3109#ifdef __ARCH_WANT_SYS_NICE
3110
3111/*
3112 * sys_nice - change the priority of the current process.
3113 * @increment: priority increment
3114 *
3115 * sys_setpriority is a more generic, but much slower function that
3116 * does similar things.
3117 */
5add95d4 3118SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3119{
48f24c4d 3120 long nice, retval;
1da177e4
LT
3121
3122 /*
3123 * Setpriority might change our priority at the same moment.
3124 * We don't have to worry. Conceptually one call occurs first
3125 * and we have a single winner.
3126 */
a9467fa3 3127 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3128 nice = task_nice(current) + increment;
1da177e4 3129
a9467fa3 3130 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3131 if (increment < 0 && !can_nice(current, nice))
3132 return -EPERM;
3133
1da177e4
LT
3134 retval = security_task_setnice(current, nice);
3135 if (retval)
3136 return retval;
3137
3138 set_user_nice(current, nice);
3139 return 0;
3140}
3141
3142#endif
3143
3144/**
3145 * task_prio - return the priority value of a given task.
3146 * @p: the task in question.
3147 *
e69f6186 3148 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3149 * RT tasks are offset by -200. Normal tasks are centered
3150 * around 0, value goes from -16 to +15.
3151 */
36c8b586 3152int task_prio(const struct task_struct *p)
1da177e4
LT
3153{
3154 return p->prio - MAX_RT_PRIO;
3155}
3156
1da177e4
LT
3157/**
3158 * idle_cpu - is a given cpu idle currently?
3159 * @cpu: the processor in question.
e69f6186
YB
3160 *
3161 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3162 */
3163int idle_cpu(int cpu)
3164{
908a3283
TG
3165 struct rq *rq = cpu_rq(cpu);
3166
3167 if (rq->curr != rq->idle)
3168 return 0;
3169
3170 if (rq->nr_running)
3171 return 0;
3172
3173#ifdef CONFIG_SMP
3174 if (!llist_empty(&rq->wake_list))
3175 return 0;
3176#endif
3177
3178 return 1;
1da177e4
LT
3179}
3180
1da177e4
LT
3181/**
3182 * idle_task - return the idle task for a given cpu.
3183 * @cpu: the processor in question.
e69f6186
YB
3184 *
3185 * Return: The idle task for the cpu @cpu.
1da177e4 3186 */
36c8b586 3187struct task_struct *idle_task(int cpu)
1da177e4
LT
3188{
3189 return cpu_rq(cpu)->idle;
3190}
3191
3192/**
3193 * find_process_by_pid - find a process with a matching PID value.
3194 * @pid: the pid in question.
e69f6186
YB
3195 *
3196 * The task of @pid, if found. %NULL otherwise.
1da177e4 3197 */
a9957449 3198static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3199{
228ebcbe 3200 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3201}
3202
aab03e05
DF
3203/*
3204 * This function initializes the sched_dl_entity of a newly becoming
3205 * SCHED_DEADLINE task.
3206 *
3207 * Only the static values are considered here, the actual runtime and the
3208 * absolute deadline will be properly calculated when the task is enqueued
3209 * for the first time with its new policy.
3210 */
3211static void
3212__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3213{
3214 struct sched_dl_entity *dl_se = &p->dl;
3215
3216 init_dl_task_timer(dl_se);
3217 dl_se->dl_runtime = attr->sched_runtime;
3218 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3219 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3220 dl_se->flags = attr->sched_flags;
332ac17e 3221 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3222 dl_se->dl_throttled = 0;
3223 dl_se->dl_new = 1;
5bfd126e 3224 dl_se->dl_yielded = 0;
aab03e05
DF
3225}
3226
c13db6b1
SR
3227/*
3228 * sched_setparam() passes in -1 for its policy, to let the functions
3229 * it calls know not to change it.
3230 */
3231#define SETPARAM_POLICY -1
3232
c365c292
TG
3233static void __setscheduler_params(struct task_struct *p,
3234 const struct sched_attr *attr)
1da177e4 3235{
d50dde5a
DF
3236 int policy = attr->sched_policy;
3237
c13db6b1 3238 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3239 policy = p->policy;
3240
1da177e4 3241 p->policy = policy;
d50dde5a 3242
aab03e05
DF
3243 if (dl_policy(policy))
3244 __setparam_dl(p, attr);
39fd8fd2 3245 else if (fair_policy(policy))
d50dde5a
DF
3246 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3247
39fd8fd2
PZ
3248 /*
3249 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3250 * !rt_policy. Always setting this ensures that things like
3251 * getparam()/getattr() don't report silly values for !rt tasks.
3252 */
3253 p->rt_priority = attr->sched_priority;
383afd09 3254 p->normal_prio = normal_prio(p);
c365c292
TG
3255 set_load_weight(p);
3256}
39fd8fd2 3257
c365c292
TG
3258/* Actually do priority change: must hold pi & rq lock. */
3259static void __setscheduler(struct rq *rq, struct task_struct *p,
3260 const struct sched_attr *attr)
3261{
3262 __setscheduler_params(p, attr);
d50dde5a 3263
383afd09
SR
3264 /*
3265 * If we get here, there was no pi waiters boosting the
3266 * task. It is safe to use the normal prio.
3267 */
3268 p->prio = normal_prio(p);
3269
aab03e05
DF
3270 if (dl_prio(p->prio))
3271 p->sched_class = &dl_sched_class;
3272 else if (rt_prio(p->prio))
ffd44db5
PZ
3273 p->sched_class = &rt_sched_class;
3274 else
3275 p->sched_class = &fair_sched_class;
1da177e4 3276}
aab03e05
DF
3277
3278static void
3279__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3280{
3281 struct sched_dl_entity *dl_se = &p->dl;
3282
3283 attr->sched_priority = p->rt_priority;
3284 attr->sched_runtime = dl_se->dl_runtime;
3285 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3286 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3287 attr->sched_flags = dl_se->flags;
3288}
3289
3290/*
3291 * This function validates the new parameters of a -deadline task.
3292 * We ask for the deadline not being zero, and greater or equal
755378a4 3293 * than the runtime, as well as the period of being zero or
332ac17e 3294 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3295 * user parameters are above the internal resolution of 1us (we
3296 * check sched_runtime only since it is always the smaller one) and
3297 * below 2^63 ns (we have to check both sched_deadline and
3298 * sched_period, as the latter can be zero).
aab03e05
DF
3299 */
3300static bool
3301__checkparam_dl(const struct sched_attr *attr)
3302{
b0827819
JL
3303 /* deadline != 0 */
3304 if (attr->sched_deadline == 0)
3305 return false;
3306
3307 /*
3308 * Since we truncate DL_SCALE bits, make sure we're at least
3309 * that big.
3310 */
3311 if (attr->sched_runtime < (1ULL << DL_SCALE))
3312 return false;
3313
3314 /*
3315 * Since we use the MSB for wrap-around and sign issues, make
3316 * sure it's not set (mind that period can be equal to zero).
3317 */
3318 if (attr->sched_deadline & (1ULL << 63) ||
3319 attr->sched_period & (1ULL << 63))
3320 return false;
3321
3322 /* runtime <= deadline <= period (if period != 0) */
3323 if ((attr->sched_period != 0 &&
3324 attr->sched_period < attr->sched_deadline) ||
3325 attr->sched_deadline < attr->sched_runtime)
3326 return false;
3327
3328 return true;
aab03e05
DF
3329}
3330
c69e8d9c
DH
3331/*
3332 * check the target process has a UID that matches the current process's
3333 */
3334static bool check_same_owner(struct task_struct *p)
3335{
3336 const struct cred *cred = current_cred(), *pcred;
3337 bool match;
3338
3339 rcu_read_lock();
3340 pcred = __task_cred(p);
9c806aa0
EB
3341 match = (uid_eq(cred->euid, pcred->euid) ||
3342 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3343 rcu_read_unlock();
3344 return match;
3345}
3346
d50dde5a
DF
3347static int __sched_setscheduler(struct task_struct *p,
3348 const struct sched_attr *attr,
3349 bool user)
1da177e4 3350{
383afd09
SR
3351 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3352 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3353 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3354 int policy = attr->sched_policy;
1da177e4 3355 unsigned long flags;
83ab0aa0 3356 const struct sched_class *prev_class;
70b97a7f 3357 struct rq *rq;
ca94c442 3358 int reset_on_fork;
1da177e4 3359
66e5393a
SR
3360 /* may grab non-irq protected spin_locks */
3361 BUG_ON(in_interrupt());
1da177e4
LT
3362recheck:
3363 /* double check policy once rq lock held */
ca94c442
LP
3364 if (policy < 0) {
3365 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3366 policy = oldpolicy = p->policy;
ca94c442 3367 } else {
7479f3c9 3368 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3369
aab03e05
DF
3370 if (policy != SCHED_DEADLINE &&
3371 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3372 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3373 policy != SCHED_IDLE)
3374 return -EINVAL;
3375 }
3376
7479f3c9
PZ
3377 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3378 return -EINVAL;
3379
1da177e4
LT
3380 /*
3381 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3382 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3383 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3384 */
0bb040a4 3385 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3386 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3387 return -EINVAL;
aab03e05
DF
3388 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3389 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3390 return -EINVAL;
3391
37e4ab3f
OC
3392 /*
3393 * Allow unprivileged RT tasks to decrease priority:
3394 */
961ccddd 3395 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3396 if (fair_policy(policy)) {
d0ea0268 3397 if (attr->sched_nice < task_nice(p) &&
eaad4513 3398 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3399 return -EPERM;
3400 }
3401
e05606d3 3402 if (rt_policy(policy)) {
a44702e8
ON
3403 unsigned long rlim_rtprio =
3404 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3405
3406 /* can't set/change the rt policy */
3407 if (policy != p->policy && !rlim_rtprio)
3408 return -EPERM;
3409
3410 /* can't increase priority */
d50dde5a
DF
3411 if (attr->sched_priority > p->rt_priority &&
3412 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3413 return -EPERM;
3414 }
c02aa73b 3415
d44753b8
JL
3416 /*
3417 * Can't set/change SCHED_DEADLINE policy at all for now
3418 * (safest behavior); in the future we would like to allow
3419 * unprivileged DL tasks to increase their relative deadline
3420 * or reduce their runtime (both ways reducing utilization)
3421 */
3422 if (dl_policy(policy))
3423 return -EPERM;
3424
dd41f596 3425 /*
c02aa73b
DH
3426 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3427 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3428 */
c02aa73b 3429 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3430 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3431 return -EPERM;
3432 }
5fe1d75f 3433
37e4ab3f 3434 /* can't change other user's priorities */
c69e8d9c 3435 if (!check_same_owner(p))
37e4ab3f 3436 return -EPERM;
ca94c442
LP
3437
3438 /* Normal users shall not reset the sched_reset_on_fork flag */
3439 if (p->sched_reset_on_fork && !reset_on_fork)
3440 return -EPERM;
37e4ab3f 3441 }
1da177e4 3442
725aad24 3443 if (user) {
b0ae1981 3444 retval = security_task_setscheduler(p);
725aad24
JF
3445 if (retval)
3446 return retval;
3447 }
3448
b29739f9
IM
3449 /*
3450 * make sure no PI-waiters arrive (or leave) while we are
3451 * changing the priority of the task:
0122ec5b 3452 *
25985edc 3453 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3454 * runqueue lock must be held.
3455 */
0122ec5b 3456 rq = task_rq_lock(p, &flags);
dc61b1d6 3457
34f971f6
PZ
3458 /*
3459 * Changing the policy of the stop threads its a very bad idea
3460 */
3461 if (p == rq->stop) {
0122ec5b 3462 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3463 return -EINVAL;
3464 }
3465
a51e9198 3466 /*
d6b1e911
TG
3467 * If not changing anything there's no need to proceed further,
3468 * but store a possible modification of reset_on_fork.
a51e9198 3469 */
d50dde5a 3470 if (unlikely(policy == p->policy)) {
d0ea0268 3471 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3472 goto change;
3473 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3474 goto change;
aab03e05
DF
3475 if (dl_policy(policy))
3476 goto change;
d50dde5a 3477
d6b1e911 3478 p->sched_reset_on_fork = reset_on_fork;
45afb173 3479 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3480 return 0;
3481 }
d50dde5a 3482change:
a51e9198 3483
dc61b1d6 3484 if (user) {
332ac17e 3485#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3486 /*
3487 * Do not allow realtime tasks into groups that have no runtime
3488 * assigned.
3489 */
3490 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3491 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3492 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3493 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3494 return -EPERM;
3495 }
dc61b1d6 3496#endif
332ac17e
DF
3497#ifdef CONFIG_SMP
3498 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3499 cpumask_t *span = rq->rd->span;
332ac17e
DF
3500
3501 /*
3502 * Don't allow tasks with an affinity mask smaller than
3503 * the entire root_domain to become SCHED_DEADLINE. We
3504 * will also fail if there's no bandwidth available.
3505 */
e4099a5e
PZ
3506 if (!cpumask_subset(span, &p->cpus_allowed) ||
3507 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3508 task_rq_unlock(rq, p, &flags);
3509 return -EPERM;
3510 }
3511 }
3512#endif
3513 }
dc61b1d6 3514
1da177e4
LT
3515 /* recheck policy now with rq lock held */
3516 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3517 policy = oldpolicy = -1;
0122ec5b 3518 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3519 goto recheck;
3520 }
332ac17e
DF
3521
3522 /*
3523 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3524 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3525 * is available.
3526 */
e4099a5e 3527 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3528 task_rq_unlock(rq, p, &flags);
3529 return -EBUSY;
3530 }
3531
c365c292
TG
3532 p->sched_reset_on_fork = reset_on_fork;
3533 oldprio = p->prio;
3534
3535 /*
3536 * Special case for priority boosted tasks.
3537 *
3538 * If the new priority is lower or equal (user space view)
3539 * than the current (boosted) priority, we just store the new
3540 * normal parameters and do not touch the scheduler class and
3541 * the runqueue. This will be done when the task deboost
3542 * itself.
3543 */
3544 if (rt_mutex_check_prio(p, newprio)) {
3545 __setscheduler_params(p, attr);
3546 task_rq_unlock(rq, p, &flags);
3547 return 0;
3548 }
3549
da0c1e65 3550 queued = task_on_rq_queued(p);
051a1d1a 3551 running = task_current(rq, p);
da0c1e65 3552 if (queued)
4ca9b72b 3553 dequeue_task(rq, p, 0);
0e1f3483
HS
3554 if (running)
3555 p->sched_class->put_prev_task(rq, p);
f6b53205 3556
83ab0aa0 3557 prev_class = p->sched_class;
d50dde5a 3558 __setscheduler(rq, p, attr);
f6b53205 3559
0e1f3483
HS
3560 if (running)
3561 p->sched_class->set_curr_task(rq);
da0c1e65 3562 if (queued) {
81a44c54
TG
3563 /*
3564 * We enqueue to tail when the priority of a task is
3565 * increased (user space view).
3566 */
3567 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3568 }
cb469845 3569
da7a735e 3570 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3571 task_rq_unlock(rq, p, &flags);
b29739f9 3572
95e02ca9
TG
3573 rt_mutex_adjust_pi(p);
3574
1da177e4
LT
3575 return 0;
3576}
961ccddd 3577
7479f3c9
PZ
3578static int _sched_setscheduler(struct task_struct *p, int policy,
3579 const struct sched_param *param, bool check)
3580{
3581 struct sched_attr attr = {
3582 .sched_policy = policy,
3583 .sched_priority = param->sched_priority,
3584 .sched_nice = PRIO_TO_NICE(p->static_prio),
3585 };
3586
c13db6b1
SR
3587 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3588 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3589 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3590 policy &= ~SCHED_RESET_ON_FORK;
3591 attr.sched_policy = policy;
3592 }
3593
3594 return __sched_setscheduler(p, &attr, check);
3595}
961ccddd
RR
3596/**
3597 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3598 * @p: the task in question.
3599 * @policy: new policy.
3600 * @param: structure containing the new RT priority.
3601 *
e69f6186
YB
3602 * Return: 0 on success. An error code otherwise.
3603 *
961ccddd
RR
3604 * NOTE that the task may be already dead.
3605 */
3606int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3607 const struct sched_param *param)
961ccddd 3608{
7479f3c9 3609 return _sched_setscheduler(p, policy, param, true);
961ccddd 3610}
1da177e4
LT
3611EXPORT_SYMBOL_GPL(sched_setscheduler);
3612
d50dde5a
DF
3613int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3614{
3615 return __sched_setscheduler(p, attr, true);
3616}
3617EXPORT_SYMBOL_GPL(sched_setattr);
3618
961ccddd
RR
3619/**
3620 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3621 * @p: the task in question.
3622 * @policy: new policy.
3623 * @param: structure containing the new RT priority.
3624 *
3625 * Just like sched_setscheduler, only don't bother checking if the
3626 * current context has permission. For example, this is needed in
3627 * stop_machine(): we create temporary high priority worker threads,
3628 * but our caller might not have that capability.
e69f6186
YB
3629 *
3630 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3631 */
3632int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3633 const struct sched_param *param)
961ccddd 3634{
7479f3c9 3635 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3636}
3637
95cdf3b7
IM
3638static int
3639do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3640{
1da177e4
LT
3641 struct sched_param lparam;
3642 struct task_struct *p;
36c8b586 3643 int retval;
1da177e4
LT
3644
3645 if (!param || pid < 0)
3646 return -EINVAL;
3647 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3648 return -EFAULT;
5fe1d75f
ON
3649
3650 rcu_read_lock();
3651 retval = -ESRCH;
1da177e4 3652 p = find_process_by_pid(pid);
5fe1d75f
ON
3653 if (p != NULL)
3654 retval = sched_setscheduler(p, policy, &lparam);
3655 rcu_read_unlock();
36c8b586 3656
1da177e4
LT
3657 return retval;
3658}
3659
d50dde5a
DF
3660/*
3661 * Mimics kernel/events/core.c perf_copy_attr().
3662 */
3663static int sched_copy_attr(struct sched_attr __user *uattr,
3664 struct sched_attr *attr)
3665{
3666 u32 size;
3667 int ret;
3668
3669 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3670 return -EFAULT;
3671
3672 /*
3673 * zero the full structure, so that a short copy will be nice.
3674 */
3675 memset(attr, 0, sizeof(*attr));
3676
3677 ret = get_user(size, &uattr->size);
3678 if (ret)
3679 return ret;
3680
3681 if (size > PAGE_SIZE) /* silly large */
3682 goto err_size;
3683
3684 if (!size) /* abi compat */
3685 size = SCHED_ATTR_SIZE_VER0;
3686
3687 if (size < SCHED_ATTR_SIZE_VER0)
3688 goto err_size;
3689
3690 /*
3691 * If we're handed a bigger struct than we know of,
3692 * ensure all the unknown bits are 0 - i.e. new
3693 * user-space does not rely on any kernel feature
3694 * extensions we dont know about yet.
3695 */
3696 if (size > sizeof(*attr)) {
3697 unsigned char __user *addr;
3698 unsigned char __user *end;
3699 unsigned char val;
3700
3701 addr = (void __user *)uattr + sizeof(*attr);
3702 end = (void __user *)uattr + size;
3703
3704 for (; addr < end; addr++) {
3705 ret = get_user(val, addr);
3706 if (ret)
3707 return ret;
3708 if (val)
3709 goto err_size;
3710 }
3711 size = sizeof(*attr);
3712 }
3713
3714 ret = copy_from_user(attr, uattr, size);
3715 if (ret)
3716 return -EFAULT;
3717
3718 /*
3719 * XXX: do we want to be lenient like existing syscalls; or do we want
3720 * to be strict and return an error on out-of-bounds values?
3721 */
75e45d51 3722 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3723
e78c7bca 3724 return 0;
d50dde5a
DF
3725
3726err_size:
3727 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3728 return -E2BIG;
d50dde5a
DF
3729}
3730
1da177e4
LT
3731/**
3732 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3733 * @pid: the pid in question.
3734 * @policy: new policy.
3735 * @param: structure containing the new RT priority.
e69f6186
YB
3736 *
3737 * Return: 0 on success. An error code otherwise.
1da177e4 3738 */
5add95d4
HC
3739SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3740 struct sched_param __user *, param)
1da177e4 3741{
c21761f1
JB
3742 /* negative values for policy are not valid */
3743 if (policy < 0)
3744 return -EINVAL;
3745
1da177e4
LT
3746 return do_sched_setscheduler(pid, policy, param);
3747}
3748
3749/**
3750 * sys_sched_setparam - set/change the RT priority of a thread
3751 * @pid: the pid in question.
3752 * @param: structure containing the new RT priority.
e69f6186
YB
3753 *
3754 * Return: 0 on success. An error code otherwise.
1da177e4 3755 */
5add95d4 3756SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3757{
c13db6b1 3758 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3759}
3760
d50dde5a
DF
3761/**
3762 * sys_sched_setattr - same as above, but with extended sched_attr
3763 * @pid: the pid in question.
5778fccf 3764 * @uattr: structure containing the extended parameters.
db66d756 3765 * @flags: for future extension.
d50dde5a 3766 */
6d35ab48
PZ
3767SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3768 unsigned int, flags)
d50dde5a
DF
3769{
3770 struct sched_attr attr;
3771 struct task_struct *p;
3772 int retval;
3773
6d35ab48 3774 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3775 return -EINVAL;
3776
143cf23d
MK
3777 retval = sched_copy_attr(uattr, &attr);
3778 if (retval)
3779 return retval;
d50dde5a 3780
b14ed2c2 3781 if ((int)attr.sched_policy < 0)
dbdb2275 3782 return -EINVAL;
d50dde5a
DF
3783
3784 rcu_read_lock();
3785 retval = -ESRCH;
3786 p = find_process_by_pid(pid);
3787 if (p != NULL)
3788 retval = sched_setattr(p, &attr);
3789 rcu_read_unlock();
3790
3791 return retval;
3792}
3793
1da177e4
LT
3794/**
3795 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3796 * @pid: the pid in question.
e69f6186
YB
3797 *
3798 * Return: On success, the policy of the thread. Otherwise, a negative error
3799 * code.
1da177e4 3800 */
5add95d4 3801SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3802{
36c8b586 3803 struct task_struct *p;
3a5c359a 3804 int retval;
1da177e4
LT
3805
3806 if (pid < 0)
3a5c359a 3807 return -EINVAL;
1da177e4
LT
3808
3809 retval = -ESRCH;
5fe85be0 3810 rcu_read_lock();
1da177e4
LT
3811 p = find_process_by_pid(pid);
3812 if (p) {
3813 retval = security_task_getscheduler(p);
3814 if (!retval)
ca94c442
LP
3815 retval = p->policy
3816 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3817 }
5fe85be0 3818 rcu_read_unlock();
1da177e4
LT
3819 return retval;
3820}
3821
3822/**
ca94c442 3823 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3824 * @pid: the pid in question.
3825 * @param: structure containing the RT priority.
e69f6186
YB
3826 *
3827 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3828 * code.
1da177e4 3829 */
5add95d4 3830SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3831{
ce5f7f82 3832 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3833 struct task_struct *p;
3a5c359a 3834 int retval;
1da177e4
LT
3835
3836 if (!param || pid < 0)
3a5c359a 3837 return -EINVAL;
1da177e4 3838
5fe85be0 3839 rcu_read_lock();
1da177e4
LT
3840 p = find_process_by_pid(pid);
3841 retval = -ESRCH;
3842 if (!p)
3843 goto out_unlock;
3844
3845 retval = security_task_getscheduler(p);
3846 if (retval)
3847 goto out_unlock;
3848
ce5f7f82
PZ
3849 if (task_has_rt_policy(p))
3850 lp.sched_priority = p->rt_priority;
5fe85be0 3851 rcu_read_unlock();
1da177e4
LT
3852
3853 /*
3854 * This one might sleep, we cannot do it with a spinlock held ...
3855 */
3856 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3857
1da177e4
LT
3858 return retval;
3859
3860out_unlock:
5fe85be0 3861 rcu_read_unlock();
1da177e4
LT
3862 return retval;
3863}
3864
d50dde5a
DF
3865static int sched_read_attr(struct sched_attr __user *uattr,
3866 struct sched_attr *attr,
3867 unsigned int usize)
3868{
3869 int ret;
3870
3871 if (!access_ok(VERIFY_WRITE, uattr, usize))
3872 return -EFAULT;
3873
3874 /*
3875 * If we're handed a smaller struct than we know of,
3876 * ensure all the unknown bits are 0 - i.e. old
3877 * user-space does not get uncomplete information.
3878 */
3879 if (usize < sizeof(*attr)) {
3880 unsigned char *addr;
3881 unsigned char *end;
3882
3883 addr = (void *)attr + usize;
3884 end = (void *)attr + sizeof(*attr);
3885
3886 for (; addr < end; addr++) {
3887 if (*addr)
22400674 3888 return -EFBIG;
d50dde5a
DF
3889 }
3890
3891 attr->size = usize;
3892 }
3893
4efbc454 3894 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3895 if (ret)
3896 return -EFAULT;
3897
22400674 3898 return 0;
d50dde5a
DF
3899}
3900
3901/**
aab03e05 3902 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3903 * @pid: the pid in question.
5778fccf 3904 * @uattr: structure containing the extended parameters.
d50dde5a 3905 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3906 * @flags: for future extension.
d50dde5a 3907 */
6d35ab48
PZ
3908SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3909 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3910{
3911 struct sched_attr attr = {
3912 .size = sizeof(struct sched_attr),
3913 };
3914 struct task_struct *p;
3915 int retval;
3916
3917 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3918 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3919 return -EINVAL;
3920
3921 rcu_read_lock();
3922 p = find_process_by_pid(pid);
3923 retval = -ESRCH;
3924 if (!p)
3925 goto out_unlock;
3926
3927 retval = security_task_getscheduler(p);
3928 if (retval)
3929 goto out_unlock;
3930
3931 attr.sched_policy = p->policy;
7479f3c9
PZ
3932 if (p->sched_reset_on_fork)
3933 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3934 if (task_has_dl_policy(p))
3935 __getparam_dl(p, &attr);
3936 else if (task_has_rt_policy(p))
d50dde5a
DF
3937 attr.sched_priority = p->rt_priority;
3938 else
d0ea0268 3939 attr.sched_nice = task_nice(p);
d50dde5a
DF
3940
3941 rcu_read_unlock();
3942
3943 retval = sched_read_attr(uattr, &attr, size);
3944 return retval;
3945
3946out_unlock:
3947 rcu_read_unlock();
3948 return retval;
3949}
3950
96f874e2 3951long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3952{
5a16f3d3 3953 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3954 struct task_struct *p;
3955 int retval;
1da177e4 3956
23f5d142 3957 rcu_read_lock();
1da177e4
LT
3958
3959 p = find_process_by_pid(pid);
3960 if (!p) {
23f5d142 3961 rcu_read_unlock();
1da177e4
LT
3962 return -ESRCH;
3963 }
3964
23f5d142 3965 /* Prevent p going away */
1da177e4 3966 get_task_struct(p);
23f5d142 3967 rcu_read_unlock();
1da177e4 3968
14a40ffc
TH
3969 if (p->flags & PF_NO_SETAFFINITY) {
3970 retval = -EINVAL;
3971 goto out_put_task;
3972 }
5a16f3d3
RR
3973 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3974 retval = -ENOMEM;
3975 goto out_put_task;
3976 }
3977 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3978 retval = -ENOMEM;
3979 goto out_free_cpus_allowed;
3980 }
1da177e4 3981 retval = -EPERM;
4c44aaaf
EB
3982 if (!check_same_owner(p)) {
3983 rcu_read_lock();
3984 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3985 rcu_read_unlock();
3986 goto out_unlock;
3987 }
3988 rcu_read_unlock();
3989 }
1da177e4 3990
b0ae1981 3991 retval = security_task_setscheduler(p);
e7834f8f
DQ
3992 if (retval)
3993 goto out_unlock;
3994
e4099a5e
PZ
3995
3996 cpuset_cpus_allowed(p, cpus_allowed);
3997 cpumask_and(new_mask, in_mask, cpus_allowed);
3998
332ac17e
DF
3999 /*
4000 * Since bandwidth control happens on root_domain basis,
4001 * if admission test is enabled, we only admit -deadline
4002 * tasks allowed to run on all the CPUs in the task's
4003 * root_domain.
4004 */
4005#ifdef CONFIG_SMP
4006 if (task_has_dl_policy(p)) {
4007 const struct cpumask *span = task_rq(p)->rd->span;
4008
e4099a5e 4009 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
4010 retval = -EBUSY;
4011 goto out_unlock;
4012 }
4013 }
4014#endif
49246274 4015again:
5a16f3d3 4016 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4017
8707d8b8 4018 if (!retval) {
5a16f3d3
RR
4019 cpuset_cpus_allowed(p, cpus_allowed);
4020 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4021 /*
4022 * We must have raced with a concurrent cpuset
4023 * update. Just reset the cpus_allowed to the
4024 * cpuset's cpus_allowed
4025 */
5a16f3d3 4026 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4027 goto again;
4028 }
4029 }
1da177e4 4030out_unlock:
5a16f3d3
RR
4031 free_cpumask_var(new_mask);
4032out_free_cpus_allowed:
4033 free_cpumask_var(cpus_allowed);
4034out_put_task:
1da177e4 4035 put_task_struct(p);
1da177e4
LT
4036 return retval;
4037}
4038
4039static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4040 struct cpumask *new_mask)
1da177e4 4041{
96f874e2
RR
4042 if (len < cpumask_size())
4043 cpumask_clear(new_mask);
4044 else if (len > cpumask_size())
4045 len = cpumask_size();
4046
1da177e4
LT
4047 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4048}
4049
4050/**
4051 * sys_sched_setaffinity - set the cpu affinity of a process
4052 * @pid: pid of the process
4053 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4054 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4055 *
4056 * Return: 0 on success. An error code otherwise.
1da177e4 4057 */
5add95d4
HC
4058SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4059 unsigned long __user *, user_mask_ptr)
1da177e4 4060{
5a16f3d3 4061 cpumask_var_t new_mask;
1da177e4
LT
4062 int retval;
4063
5a16f3d3
RR
4064 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4065 return -ENOMEM;
1da177e4 4066
5a16f3d3
RR
4067 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4068 if (retval == 0)
4069 retval = sched_setaffinity(pid, new_mask);
4070 free_cpumask_var(new_mask);
4071 return retval;
1da177e4
LT
4072}
4073
96f874e2 4074long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4075{
36c8b586 4076 struct task_struct *p;
31605683 4077 unsigned long flags;
1da177e4 4078 int retval;
1da177e4 4079
23f5d142 4080 rcu_read_lock();
1da177e4
LT
4081
4082 retval = -ESRCH;
4083 p = find_process_by_pid(pid);
4084 if (!p)
4085 goto out_unlock;
4086
e7834f8f
DQ
4087 retval = security_task_getscheduler(p);
4088 if (retval)
4089 goto out_unlock;
4090
013fdb80 4091 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4092 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4093 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4094
4095out_unlock:
23f5d142 4096 rcu_read_unlock();
1da177e4 4097
9531b62f 4098 return retval;
1da177e4
LT
4099}
4100
4101/**
4102 * sys_sched_getaffinity - get the cpu affinity of a process
4103 * @pid: pid of the process
4104 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4105 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4106 *
4107 * Return: 0 on success. An error code otherwise.
1da177e4 4108 */
5add95d4
HC
4109SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4110 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4111{
4112 int ret;
f17c8607 4113 cpumask_var_t mask;
1da177e4 4114
84fba5ec 4115 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4116 return -EINVAL;
4117 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4118 return -EINVAL;
4119
f17c8607
RR
4120 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4121 return -ENOMEM;
1da177e4 4122
f17c8607
RR
4123 ret = sched_getaffinity(pid, mask);
4124 if (ret == 0) {
8bc037fb 4125 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4126
4127 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4128 ret = -EFAULT;
4129 else
cd3d8031 4130 ret = retlen;
f17c8607
RR
4131 }
4132 free_cpumask_var(mask);
1da177e4 4133
f17c8607 4134 return ret;
1da177e4
LT
4135}
4136
4137/**
4138 * sys_sched_yield - yield the current processor to other threads.
4139 *
dd41f596
IM
4140 * This function yields the current CPU to other tasks. If there are no
4141 * other threads running on this CPU then this function will return.
e69f6186
YB
4142 *
4143 * Return: 0.
1da177e4 4144 */
5add95d4 4145SYSCALL_DEFINE0(sched_yield)
1da177e4 4146{
70b97a7f 4147 struct rq *rq = this_rq_lock();
1da177e4 4148
2d72376b 4149 schedstat_inc(rq, yld_count);
4530d7ab 4150 current->sched_class->yield_task(rq);
1da177e4
LT
4151
4152 /*
4153 * Since we are going to call schedule() anyway, there's
4154 * no need to preempt or enable interrupts:
4155 */
4156 __release(rq->lock);
8a25d5de 4157 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4158 do_raw_spin_unlock(&rq->lock);
ba74c144 4159 sched_preempt_enable_no_resched();
1da177e4
LT
4160
4161 schedule();
4162
4163 return 0;
4164}
4165
e7b38404 4166static void __cond_resched(void)
1da177e4 4167{
bdb43806 4168 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4169 __schedule();
bdb43806 4170 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4171}
4172
02b67cc3 4173int __sched _cond_resched(void)
1da177e4 4174{
d86ee480 4175 if (should_resched()) {
1da177e4
LT
4176 __cond_resched();
4177 return 1;
4178 }
4179 return 0;
4180}
02b67cc3 4181EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4182
4183/*
613afbf8 4184 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4185 * call schedule, and on return reacquire the lock.
4186 *
41a2d6cf 4187 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4188 * operations here to prevent schedule() from being called twice (once via
4189 * spin_unlock(), once by hand).
4190 */
613afbf8 4191int __cond_resched_lock(spinlock_t *lock)
1da177e4 4192{
d86ee480 4193 int resched = should_resched();
6df3cecb
JK
4194 int ret = 0;
4195
f607c668
PZ
4196 lockdep_assert_held(lock);
4197
4a81e832 4198 if (spin_needbreak(lock) || resched) {
1da177e4 4199 spin_unlock(lock);
d86ee480 4200 if (resched)
95c354fe
NP
4201 __cond_resched();
4202 else
4203 cpu_relax();
6df3cecb 4204 ret = 1;
1da177e4 4205 spin_lock(lock);
1da177e4 4206 }
6df3cecb 4207 return ret;
1da177e4 4208}
613afbf8 4209EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4210
613afbf8 4211int __sched __cond_resched_softirq(void)
1da177e4
LT
4212{
4213 BUG_ON(!in_softirq());
4214
d86ee480 4215 if (should_resched()) {
98d82567 4216 local_bh_enable();
1da177e4
LT
4217 __cond_resched();
4218 local_bh_disable();
4219 return 1;
4220 }
4221 return 0;
4222}
613afbf8 4223EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4224
1da177e4
LT
4225/**
4226 * yield - yield the current processor to other threads.
4227 *
8e3fabfd
PZ
4228 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4229 *
4230 * The scheduler is at all times free to pick the calling task as the most
4231 * eligible task to run, if removing the yield() call from your code breaks
4232 * it, its already broken.
4233 *
4234 * Typical broken usage is:
4235 *
4236 * while (!event)
4237 * yield();
4238 *
4239 * where one assumes that yield() will let 'the other' process run that will
4240 * make event true. If the current task is a SCHED_FIFO task that will never
4241 * happen. Never use yield() as a progress guarantee!!
4242 *
4243 * If you want to use yield() to wait for something, use wait_event().
4244 * If you want to use yield() to be 'nice' for others, use cond_resched().
4245 * If you still want to use yield(), do not!
1da177e4
LT
4246 */
4247void __sched yield(void)
4248{
4249 set_current_state(TASK_RUNNING);
4250 sys_sched_yield();
4251}
1da177e4
LT
4252EXPORT_SYMBOL(yield);
4253
d95f4122
MG
4254/**
4255 * yield_to - yield the current processor to another thread in
4256 * your thread group, or accelerate that thread toward the
4257 * processor it's on.
16addf95
RD
4258 * @p: target task
4259 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4260 *
4261 * It's the caller's job to ensure that the target task struct
4262 * can't go away on us before we can do any checks.
4263 *
e69f6186 4264 * Return:
7b270f60
PZ
4265 * true (>0) if we indeed boosted the target task.
4266 * false (0) if we failed to boost the target.
4267 * -ESRCH if there's no task to yield to.
d95f4122 4268 */
fa93384f 4269int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4270{
4271 struct task_struct *curr = current;
4272 struct rq *rq, *p_rq;
4273 unsigned long flags;
c3c18640 4274 int yielded = 0;
d95f4122
MG
4275
4276 local_irq_save(flags);
4277 rq = this_rq();
4278
4279again:
4280 p_rq = task_rq(p);
7b270f60
PZ
4281 /*
4282 * If we're the only runnable task on the rq and target rq also
4283 * has only one task, there's absolutely no point in yielding.
4284 */
4285 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4286 yielded = -ESRCH;
4287 goto out_irq;
4288 }
4289
d95f4122 4290 double_rq_lock(rq, p_rq);
39e24d8f 4291 if (task_rq(p) != p_rq) {
d95f4122
MG
4292 double_rq_unlock(rq, p_rq);
4293 goto again;
4294 }
4295
4296 if (!curr->sched_class->yield_to_task)
7b270f60 4297 goto out_unlock;
d95f4122
MG
4298
4299 if (curr->sched_class != p->sched_class)
7b270f60 4300 goto out_unlock;
d95f4122
MG
4301
4302 if (task_running(p_rq, p) || p->state)
7b270f60 4303 goto out_unlock;
d95f4122
MG
4304
4305 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4306 if (yielded) {
d95f4122 4307 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4308 /*
4309 * Make p's CPU reschedule; pick_next_entity takes care of
4310 * fairness.
4311 */
4312 if (preempt && rq != p_rq)
8875125e 4313 resched_curr(p_rq);
6d1cafd8 4314 }
d95f4122 4315
7b270f60 4316out_unlock:
d95f4122 4317 double_rq_unlock(rq, p_rq);
7b270f60 4318out_irq:
d95f4122
MG
4319 local_irq_restore(flags);
4320
7b270f60 4321 if (yielded > 0)
d95f4122
MG
4322 schedule();
4323
4324 return yielded;
4325}
4326EXPORT_SYMBOL_GPL(yield_to);
4327
1da177e4 4328/*
41a2d6cf 4329 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4330 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4331 */
4332void __sched io_schedule(void)
4333{
54d35f29 4334 struct rq *rq = raw_rq();
1da177e4 4335
0ff92245 4336 delayacct_blkio_start();
1da177e4 4337 atomic_inc(&rq->nr_iowait);
73c10101 4338 blk_flush_plug(current);
8f0dfc34 4339 current->in_iowait = 1;
1da177e4 4340 schedule();
8f0dfc34 4341 current->in_iowait = 0;
1da177e4 4342 atomic_dec(&rq->nr_iowait);
0ff92245 4343 delayacct_blkio_end();
1da177e4 4344}
1da177e4
LT
4345EXPORT_SYMBOL(io_schedule);
4346
4347long __sched io_schedule_timeout(long timeout)
4348{
54d35f29 4349 struct rq *rq = raw_rq();
1da177e4
LT
4350 long ret;
4351
0ff92245 4352 delayacct_blkio_start();
1da177e4 4353 atomic_inc(&rq->nr_iowait);
73c10101 4354 blk_flush_plug(current);
8f0dfc34 4355 current->in_iowait = 1;
1da177e4 4356 ret = schedule_timeout(timeout);
8f0dfc34 4357 current->in_iowait = 0;
1da177e4 4358 atomic_dec(&rq->nr_iowait);
0ff92245 4359 delayacct_blkio_end();
1da177e4
LT
4360 return ret;
4361}
4362
4363/**
4364 * sys_sched_get_priority_max - return maximum RT priority.
4365 * @policy: scheduling class.
4366 *
e69f6186
YB
4367 * Return: On success, this syscall returns the maximum
4368 * rt_priority that can be used by a given scheduling class.
4369 * On failure, a negative error code is returned.
1da177e4 4370 */
5add95d4 4371SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4372{
4373 int ret = -EINVAL;
4374
4375 switch (policy) {
4376 case SCHED_FIFO:
4377 case SCHED_RR:
4378 ret = MAX_USER_RT_PRIO-1;
4379 break;
aab03e05 4380 case SCHED_DEADLINE:
1da177e4 4381 case SCHED_NORMAL:
b0a9499c 4382 case SCHED_BATCH:
dd41f596 4383 case SCHED_IDLE:
1da177e4
LT
4384 ret = 0;
4385 break;
4386 }
4387 return ret;
4388}
4389
4390/**
4391 * sys_sched_get_priority_min - return minimum RT priority.
4392 * @policy: scheduling class.
4393 *
e69f6186
YB
4394 * Return: On success, this syscall returns the minimum
4395 * rt_priority that can be used by a given scheduling class.
4396 * On failure, a negative error code is returned.
1da177e4 4397 */
5add95d4 4398SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4399{
4400 int ret = -EINVAL;
4401
4402 switch (policy) {
4403 case SCHED_FIFO:
4404 case SCHED_RR:
4405 ret = 1;
4406 break;
aab03e05 4407 case SCHED_DEADLINE:
1da177e4 4408 case SCHED_NORMAL:
b0a9499c 4409 case SCHED_BATCH:
dd41f596 4410 case SCHED_IDLE:
1da177e4
LT
4411 ret = 0;
4412 }
4413 return ret;
4414}
4415
4416/**
4417 * sys_sched_rr_get_interval - return the default timeslice of a process.
4418 * @pid: pid of the process.
4419 * @interval: userspace pointer to the timeslice value.
4420 *
4421 * this syscall writes the default timeslice value of a given process
4422 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4423 *
4424 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4425 * an error code.
1da177e4 4426 */
17da2bd9 4427SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4428 struct timespec __user *, interval)
1da177e4 4429{
36c8b586 4430 struct task_struct *p;
a4ec24b4 4431 unsigned int time_slice;
dba091b9
TG
4432 unsigned long flags;
4433 struct rq *rq;
3a5c359a 4434 int retval;
1da177e4 4435 struct timespec t;
1da177e4
LT
4436
4437 if (pid < 0)
3a5c359a 4438 return -EINVAL;
1da177e4
LT
4439
4440 retval = -ESRCH;
1a551ae7 4441 rcu_read_lock();
1da177e4
LT
4442 p = find_process_by_pid(pid);
4443 if (!p)
4444 goto out_unlock;
4445
4446 retval = security_task_getscheduler(p);
4447 if (retval)
4448 goto out_unlock;
4449
dba091b9 4450 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4451 time_slice = 0;
4452 if (p->sched_class->get_rr_interval)
4453 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4454 task_rq_unlock(rq, p, &flags);
a4ec24b4 4455
1a551ae7 4456 rcu_read_unlock();
a4ec24b4 4457 jiffies_to_timespec(time_slice, &t);
1da177e4 4458 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4459 return retval;
3a5c359a 4460
1da177e4 4461out_unlock:
1a551ae7 4462 rcu_read_unlock();
1da177e4
LT
4463 return retval;
4464}
4465
7c731e0a 4466static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4467
82a1fcb9 4468void sched_show_task(struct task_struct *p)
1da177e4 4469{
1da177e4 4470 unsigned long free = 0;
4e79752c 4471 int ppid;
36c8b586 4472 unsigned state;
1da177e4 4473
1da177e4 4474 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4475 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4476 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4477#if BITS_PER_LONG == 32
1da177e4 4478 if (state == TASK_RUNNING)
3df0fc5b 4479 printk(KERN_CONT " running ");
1da177e4 4480 else
3df0fc5b 4481 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4482#else
4483 if (state == TASK_RUNNING)
3df0fc5b 4484 printk(KERN_CONT " running task ");
1da177e4 4485 else
3df0fc5b 4486 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4487#endif
4488#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4489 free = stack_not_used(p);
1da177e4 4490#endif
4e79752c
PM
4491 rcu_read_lock();
4492 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4493 rcu_read_unlock();
3df0fc5b 4494 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4495 task_pid_nr(p), ppid,
aa47b7e0 4496 (unsigned long)task_thread_info(p)->flags);
1da177e4 4497
3d1cb205 4498 print_worker_info(KERN_INFO, p);
5fb5e6de 4499 show_stack(p, NULL);
1da177e4
LT
4500}
4501
e59e2ae2 4502void show_state_filter(unsigned long state_filter)
1da177e4 4503{
36c8b586 4504 struct task_struct *g, *p;
1da177e4 4505
4bd77321 4506#if BITS_PER_LONG == 32
3df0fc5b
PZ
4507 printk(KERN_INFO
4508 " task PC stack pid father\n");
1da177e4 4509#else
3df0fc5b
PZ
4510 printk(KERN_INFO
4511 " task PC stack pid father\n");
1da177e4 4512#endif
510f5acc 4513 rcu_read_lock();
5d07f420 4514 for_each_process_thread(g, p) {
1da177e4
LT
4515 /*
4516 * reset the NMI-timeout, listing all files on a slow
25985edc 4517 * console might take a lot of time:
1da177e4
LT
4518 */
4519 touch_nmi_watchdog();
39bc89fd 4520 if (!state_filter || (p->state & state_filter))
82a1fcb9 4521 sched_show_task(p);
5d07f420 4522 }
1da177e4 4523
04c9167f
JF
4524 touch_all_softlockup_watchdogs();
4525
dd41f596
IM
4526#ifdef CONFIG_SCHED_DEBUG
4527 sysrq_sched_debug_show();
4528#endif
510f5acc 4529 rcu_read_unlock();
e59e2ae2
IM
4530 /*
4531 * Only show locks if all tasks are dumped:
4532 */
93335a21 4533 if (!state_filter)
e59e2ae2 4534 debug_show_all_locks();
1da177e4
LT
4535}
4536
0db0628d 4537void init_idle_bootup_task(struct task_struct *idle)
1df21055 4538{
dd41f596 4539 idle->sched_class = &idle_sched_class;
1df21055
IM
4540}
4541
f340c0d1
IM
4542/**
4543 * init_idle - set up an idle thread for a given CPU
4544 * @idle: task in question
4545 * @cpu: cpu the idle task belongs to
4546 *
4547 * NOTE: this function does not set the idle thread's NEED_RESCHED
4548 * flag, to make booting more robust.
4549 */
0db0628d 4550void init_idle(struct task_struct *idle, int cpu)
1da177e4 4551{
70b97a7f 4552 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4553 unsigned long flags;
4554
05fa785c 4555 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4556
5e1576ed 4557 __sched_fork(0, idle);
06b83b5f 4558 idle->state = TASK_RUNNING;
dd41f596
IM
4559 idle->se.exec_start = sched_clock();
4560
1e1b6c51 4561 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4562 /*
4563 * We're having a chicken and egg problem, even though we are
4564 * holding rq->lock, the cpu isn't yet set to this cpu so the
4565 * lockdep check in task_group() will fail.
4566 *
4567 * Similar case to sched_fork(). / Alternatively we could
4568 * use task_rq_lock() here and obtain the other rq->lock.
4569 *
4570 * Silence PROVE_RCU
4571 */
4572 rcu_read_lock();
dd41f596 4573 __set_task_cpu(idle, cpu);
6506cf6c 4574 rcu_read_unlock();
1da177e4 4575
1da177e4 4576 rq->curr = rq->idle = idle;
da0c1e65 4577 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4578#if defined(CONFIG_SMP)
4579 idle->on_cpu = 1;
4866cde0 4580#endif
05fa785c 4581 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4582
4583 /* Set the preempt count _outside_ the spinlocks! */
01028747 4584 init_idle_preempt_count(idle, cpu);
55cd5340 4585
dd41f596
IM
4586 /*
4587 * The idle tasks have their own, simple scheduling class:
4588 */
4589 idle->sched_class = &idle_sched_class;
868baf07 4590 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4591 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4592#if defined(CONFIG_SMP)
4593 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4594#endif
19978ca6
IM
4595}
4596
1da177e4 4597#ifdef CONFIG_SMP
1e1b6c51
KM
4598void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4599{
4600 if (p->sched_class && p->sched_class->set_cpus_allowed)
4601 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4602
4603 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4604 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4605}
4606
1da177e4
LT
4607/*
4608 * This is how migration works:
4609 *
969c7921
TH
4610 * 1) we invoke migration_cpu_stop() on the target CPU using
4611 * stop_one_cpu().
4612 * 2) stopper starts to run (implicitly forcing the migrated thread
4613 * off the CPU)
4614 * 3) it checks whether the migrated task is still in the wrong runqueue.
4615 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4616 * it and puts it into the right queue.
969c7921
TH
4617 * 5) stopper completes and stop_one_cpu() returns and the migration
4618 * is done.
1da177e4
LT
4619 */
4620
4621/*
4622 * Change a given task's CPU affinity. Migrate the thread to a
4623 * proper CPU and schedule it away if the CPU it's executing on
4624 * is removed from the allowed bitmask.
4625 *
4626 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4627 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4628 * call is not atomic; no spinlocks may be held.
4629 */
96f874e2 4630int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4631{
4632 unsigned long flags;
70b97a7f 4633 struct rq *rq;
969c7921 4634 unsigned int dest_cpu;
48f24c4d 4635 int ret = 0;
1da177e4
LT
4636
4637 rq = task_rq_lock(p, &flags);
e2912009 4638
db44fc01
YZ
4639 if (cpumask_equal(&p->cpus_allowed, new_mask))
4640 goto out;
4641
6ad4c188 4642 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4643 ret = -EINVAL;
4644 goto out;
4645 }
4646
1e1b6c51 4647 do_set_cpus_allowed(p, new_mask);
73fe6aae 4648
1da177e4 4649 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4650 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4651 goto out;
4652
969c7921 4653 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
da0c1e65 4654 if (task_on_rq_queued(p)) {
969c7921 4655 struct migration_arg arg = { p, dest_cpu };
1da177e4 4656 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4657 task_rq_unlock(rq, p, &flags);
969c7921 4658 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4659 tlb_migrate_finish(p->mm);
4660 return 0;
4661 }
4662out:
0122ec5b 4663 task_rq_unlock(rq, p, &flags);
48f24c4d 4664
1da177e4
LT
4665 return ret;
4666}
cd8ba7cd 4667EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4668
4669/*
41a2d6cf 4670 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4671 * this because either it can't run here any more (set_cpus_allowed()
4672 * away from this CPU, or CPU going down), or because we're
4673 * attempting to rebalance this task on exec (sched_exec).
4674 *
4675 * So we race with normal scheduler movements, but that's OK, as long
4676 * as the task is no longer on this CPU.
efc30814
KK
4677 *
4678 * Returns non-zero if task was successfully migrated.
1da177e4 4679 */
efc30814 4680static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4681{
70b97a7f 4682 struct rq *rq_dest, *rq_src;
e2912009 4683 int ret = 0;
1da177e4 4684
e761b772 4685 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4686 return ret;
1da177e4
LT
4687
4688 rq_src = cpu_rq(src_cpu);
4689 rq_dest = cpu_rq(dest_cpu);
4690
0122ec5b 4691 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4692 double_rq_lock(rq_src, rq_dest);
4693 /* Already moved. */
4694 if (task_cpu(p) != src_cpu)
b1e38734 4695 goto done;
1da177e4 4696 /* Affinity changed (again). */
fa17b507 4697 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4698 goto fail;
1da177e4 4699
e2912009
PZ
4700 /*
4701 * If we're not on a rq, the next wake-up will ensure we're
4702 * placed properly.
4703 */
da0c1e65 4704 if (task_on_rq_queued(p)) {
4ca9b72b 4705 dequeue_task(rq_src, p, 0);
e2912009 4706 set_task_cpu(p, dest_cpu);
4ca9b72b 4707 enqueue_task(rq_dest, p, 0);
15afe09b 4708 check_preempt_curr(rq_dest, p, 0);
1da177e4 4709 }
b1e38734 4710done:
efc30814 4711 ret = 1;
b1e38734 4712fail:
1da177e4 4713 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4714 raw_spin_unlock(&p->pi_lock);
efc30814 4715 return ret;
1da177e4
LT
4716}
4717
e6628d5b
MG
4718#ifdef CONFIG_NUMA_BALANCING
4719/* Migrate current task p to target_cpu */
4720int migrate_task_to(struct task_struct *p, int target_cpu)
4721{
4722 struct migration_arg arg = { p, target_cpu };
4723 int curr_cpu = task_cpu(p);
4724
4725 if (curr_cpu == target_cpu)
4726 return 0;
4727
4728 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4729 return -EINVAL;
4730
4731 /* TODO: This is not properly updating schedstats */
4732
286549dc 4733 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4734 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4735}
0ec8aa00
PZ
4736
4737/*
4738 * Requeue a task on a given node and accurately track the number of NUMA
4739 * tasks on the runqueues
4740 */
4741void sched_setnuma(struct task_struct *p, int nid)
4742{
4743 struct rq *rq;
4744 unsigned long flags;
da0c1e65 4745 bool queued, running;
0ec8aa00
PZ
4746
4747 rq = task_rq_lock(p, &flags);
da0c1e65 4748 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4749 running = task_current(rq, p);
4750
da0c1e65 4751 if (queued)
0ec8aa00
PZ
4752 dequeue_task(rq, p, 0);
4753 if (running)
4754 p->sched_class->put_prev_task(rq, p);
4755
4756 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4757
4758 if (running)
4759 p->sched_class->set_curr_task(rq);
da0c1e65 4760 if (queued)
0ec8aa00
PZ
4761 enqueue_task(rq, p, 0);
4762 task_rq_unlock(rq, p, &flags);
4763}
e6628d5b
MG
4764#endif
4765
1da177e4 4766/*
969c7921
TH
4767 * migration_cpu_stop - this will be executed by a highprio stopper thread
4768 * and performs thread migration by bumping thread off CPU then
4769 * 'pushing' onto another runqueue.
1da177e4 4770 */
969c7921 4771static int migration_cpu_stop(void *data)
1da177e4 4772{
969c7921 4773 struct migration_arg *arg = data;
f7b4cddc 4774
969c7921
TH
4775 /*
4776 * The original target cpu might have gone down and we might
4777 * be on another cpu but it doesn't matter.
4778 */
f7b4cddc 4779 local_irq_disable();
969c7921 4780 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4781 local_irq_enable();
1da177e4 4782 return 0;
f7b4cddc
ON
4783}
4784
1da177e4 4785#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4786
054b9108 4787/*
48c5ccae
PZ
4788 * Ensures that the idle task is using init_mm right before its cpu goes
4789 * offline.
054b9108 4790 */
48c5ccae 4791void idle_task_exit(void)
1da177e4 4792{
48c5ccae 4793 struct mm_struct *mm = current->active_mm;
e76bd8d9 4794
48c5ccae 4795 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4796
a53efe5f 4797 if (mm != &init_mm) {
48c5ccae 4798 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4799 finish_arch_post_lock_switch();
4800 }
48c5ccae 4801 mmdrop(mm);
1da177e4
LT
4802}
4803
4804/*
5d180232
PZ
4805 * Since this CPU is going 'away' for a while, fold any nr_active delta
4806 * we might have. Assumes we're called after migrate_tasks() so that the
4807 * nr_active count is stable.
4808 *
4809 * Also see the comment "Global load-average calculations".
1da177e4 4810 */
5d180232 4811static void calc_load_migrate(struct rq *rq)
1da177e4 4812{
5d180232
PZ
4813 long delta = calc_load_fold_active(rq);
4814 if (delta)
4815 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4816}
4817
3f1d2a31
PZ
4818static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4819{
4820}
4821
4822static const struct sched_class fake_sched_class = {
4823 .put_prev_task = put_prev_task_fake,
4824};
4825
4826static struct task_struct fake_task = {
4827 /*
4828 * Avoid pull_{rt,dl}_task()
4829 */
4830 .prio = MAX_PRIO + 1,
4831 .sched_class = &fake_sched_class,
4832};
4833
48f24c4d 4834/*
48c5ccae
PZ
4835 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4836 * try_to_wake_up()->select_task_rq().
4837 *
4838 * Called with rq->lock held even though we'er in stop_machine() and
4839 * there's no concurrency possible, we hold the required locks anyway
4840 * because of lock validation efforts.
1da177e4 4841 */
48c5ccae 4842static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4843{
70b97a7f 4844 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4845 struct task_struct *next, *stop = rq->stop;
4846 int dest_cpu;
1da177e4
LT
4847
4848 /*
48c5ccae
PZ
4849 * Fudge the rq selection such that the below task selection loop
4850 * doesn't get stuck on the currently eligible stop task.
4851 *
4852 * We're currently inside stop_machine() and the rq is either stuck
4853 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4854 * either way we should never end up calling schedule() until we're
4855 * done here.
1da177e4 4856 */
48c5ccae 4857 rq->stop = NULL;
48f24c4d 4858
77bd3970
FW
4859 /*
4860 * put_prev_task() and pick_next_task() sched
4861 * class method both need to have an up-to-date
4862 * value of rq->clock[_task]
4863 */
4864 update_rq_clock(rq);
4865
dd41f596 4866 for ( ; ; ) {
48c5ccae
PZ
4867 /*
4868 * There's this thread running, bail when that's the only
4869 * remaining thread.
4870 */
4871 if (rq->nr_running == 1)
dd41f596 4872 break;
48c5ccae 4873
3f1d2a31 4874 next = pick_next_task(rq, &fake_task);
48c5ccae 4875 BUG_ON(!next);
79c53799 4876 next->sched_class->put_prev_task(rq, next);
e692ab53 4877
48c5ccae
PZ
4878 /* Find suitable destination for @next, with force if needed. */
4879 dest_cpu = select_fallback_rq(dead_cpu, next);
4880 raw_spin_unlock(&rq->lock);
4881
4882 __migrate_task(next, dead_cpu, dest_cpu);
4883
4884 raw_spin_lock(&rq->lock);
1da177e4 4885 }
dce48a84 4886
48c5ccae 4887 rq->stop = stop;
dce48a84 4888}
48c5ccae 4889
1da177e4
LT
4890#endif /* CONFIG_HOTPLUG_CPU */
4891
e692ab53
NP
4892#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4893
4894static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4895 {
4896 .procname = "sched_domain",
c57baf1e 4897 .mode = 0555,
e0361851 4898 },
56992309 4899 {}
e692ab53
NP
4900};
4901
4902static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4903 {
4904 .procname = "kernel",
c57baf1e 4905 .mode = 0555,
e0361851
AD
4906 .child = sd_ctl_dir,
4907 },
56992309 4908 {}
e692ab53
NP
4909};
4910
4911static struct ctl_table *sd_alloc_ctl_entry(int n)
4912{
4913 struct ctl_table *entry =
5cf9f062 4914 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4915
e692ab53
NP
4916 return entry;
4917}
4918
6382bc90
MM
4919static void sd_free_ctl_entry(struct ctl_table **tablep)
4920{
cd790076 4921 struct ctl_table *entry;
6382bc90 4922
cd790076
MM
4923 /*
4924 * In the intermediate directories, both the child directory and
4925 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4926 * will always be set. In the lowest directory the names are
cd790076
MM
4927 * static strings and all have proc handlers.
4928 */
4929 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4930 if (entry->child)
4931 sd_free_ctl_entry(&entry->child);
cd790076
MM
4932 if (entry->proc_handler == NULL)
4933 kfree(entry->procname);
4934 }
6382bc90
MM
4935
4936 kfree(*tablep);
4937 *tablep = NULL;
4938}
4939
201c373e 4940static int min_load_idx = 0;
fd9b86d3 4941static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4942
e692ab53 4943static void
e0361851 4944set_table_entry(struct ctl_table *entry,
e692ab53 4945 const char *procname, void *data, int maxlen,
201c373e
NK
4946 umode_t mode, proc_handler *proc_handler,
4947 bool load_idx)
e692ab53 4948{
e692ab53
NP
4949 entry->procname = procname;
4950 entry->data = data;
4951 entry->maxlen = maxlen;
4952 entry->mode = mode;
4953 entry->proc_handler = proc_handler;
201c373e
NK
4954
4955 if (load_idx) {
4956 entry->extra1 = &min_load_idx;
4957 entry->extra2 = &max_load_idx;
4958 }
e692ab53
NP
4959}
4960
4961static struct ctl_table *
4962sd_alloc_ctl_domain_table(struct sched_domain *sd)
4963{
37e6bae8 4964 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4965
ad1cdc1d
MM
4966 if (table == NULL)
4967 return NULL;
4968
e0361851 4969 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4970 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4971 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4972 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4973 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4974 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4975 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4976 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4977 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4978 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4979 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4980 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4981 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4982 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4983 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4984 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4985 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4986 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4987 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4988 &sd->cache_nice_tries,
201c373e 4989 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4990 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4991 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4992 set_table_entry(&table[11], "max_newidle_lb_cost",
4993 &sd->max_newidle_lb_cost,
4994 sizeof(long), 0644, proc_doulongvec_minmax, false);
4995 set_table_entry(&table[12], "name", sd->name,
201c373e 4996 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4997 /* &table[13] is terminator */
e692ab53
NP
4998
4999 return table;
5000}
5001
be7002e6 5002static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5003{
5004 struct ctl_table *entry, *table;
5005 struct sched_domain *sd;
5006 int domain_num = 0, i;
5007 char buf[32];
5008
5009 for_each_domain(cpu, sd)
5010 domain_num++;
5011 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5012 if (table == NULL)
5013 return NULL;
e692ab53
NP
5014
5015 i = 0;
5016 for_each_domain(cpu, sd) {
5017 snprintf(buf, 32, "domain%d", i);
e692ab53 5018 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5019 entry->mode = 0555;
e692ab53
NP
5020 entry->child = sd_alloc_ctl_domain_table(sd);
5021 entry++;
5022 i++;
5023 }
5024 return table;
5025}
5026
5027static struct ctl_table_header *sd_sysctl_header;
6382bc90 5028static void register_sched_domain_sysctl(void)
e692ab53 5029{
6ad4c188 5030 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5031 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5032 char buf[32];
5033
7378547f
MM
5034 WARN_ON(sd_ctl_dir[0].child);
5035 sd_ctl_dir[0].child = entry;
5036
ad1cdc1d
MM
5037 if (entry == NULL)
5038 return;
5039
6ad4c188 5040 for_each_possible_cpu(i) {
e692ab53 5041 snprintf(buf, 32, "cpu%d", i);
e692ab53 5042 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5043 entry->mode = 0555;
e692ab53 5044 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5045 entry++;
e692ab53 5046 }
7378547f
MM
5047
5048 WARN_ON(sd_sysctl_header);
e692ab53
NP
5049 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5050}
6382bc90 5051
7378547f 5052/* may be called multiple times per register */
6382bc90
MM
5053static void unregister_sched_domain_sysctl(void)
5054{
7378547f
MM
5055 if (sd_sysctl_header)
5056 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5057 sd_sysctl_header = NULL;
7378547f
MM
5058 if (sd_ctl_dir[0].child)
5059 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5060}
e692ab53 5061#else
6382bc90
MM
5062static void register_sched_domain_sysctl(void)
5063{
5064}
5065static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5066{
5067}
5068#endif
5069
1f11eb6a
GH
5070static void set_rq_online(struct rq *rq)
5071{
5072 if (!rq->online) {
5073 const struct sched_class *class;
5074
c6c4927b 5075 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5076 rq->online = 1;
5077
5078 for_each_class(class) {
5079 if (class->rq_online)
5080 class->rq_online(rq);
5081 }
5082 }
5083}
5084
5085static void set_rq_offline(struct rq *rq)
5086{
5087 if (rq->online) {
5088 const struct sched_class *class;
5089
5090 for_each_class(class) {
5091 if (class->rq_offline)
5092 class->rq_offline(rq);
5093 }
5094
c6c4927b 5095 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5096 rq->online = 0;
5097 }
5098}
5099
1da177e4
LT
5100/*
5101 * migration_call - callback that gets triggered when a CPU is added.
5102 * Here we can start up the necessary migration thread for the new CPU.
5103 */
0db0628d 5104static int
48f24c4d 5105migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5106{
48f24c4d 5107 int cpu = (long)hcpu;
1da177e4 5108 unsigned long flags;
969c7921 5109 struct rq *rq = cpu_rq(cpu);
1da177e4 5110
48c5ccae 5111 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5112
1da177e4 5113 case CPU_UP_PREPARE:
a468d389 5114 rq->calc_load_update = calc_load_update;
1da177e4 5115 break;
48f24c4d 5116
1da177e4 5117 case CPU_ONLINE:
1f94ef59 5118 /* Update our root-domain */
05fa785c 5119 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5120 if (rq->rd) {
c6c4927b 5121 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5122
5123 set_rq_online(rq);
1f94ef59 5124 }
05fa785c 5125 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5126 break;
48f24c4d 5127
1da177e4 5128#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5129 case CPU_DYING:
317f3941 5130 sched_ttwu_pending();
57d885fe 5131 /* Update our root-domain */
05fa785c 5132 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5133 if (rq->rd) {
c6c4927b 5134 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5135 set_rq_offline(rq);
57d885fe 5136 }
48c5ccae
PZ
5137 migrate_tasks(cpu);
5138 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5139 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5140 break;
48c5ccae 5141
5d180232 5142 case CPU_DEAD:
f319da0c 5143 calc_load_migrate(rq);
57d885fe 5144 break;
1da177e4
LT
5145#endif
5146 }
49c022e6
PZ
5147
5148 update_max_interval();
5149
1da177e4
LT
5150 return NOTIFY_OK;
5151}
5152
f38b0820
PM
5153/*
5154 * Register at high priority so that task migration (migrate_all_tasks)
5155 * happens before everything else. This has to be lower priority than
cdd6c482 5156 * the notifier in the perf_event subsystem, though.
1da177e4 5157 */
0db0628d 5158static struct notifier_block migration_notifier = {
1da177e4 5159 .notifier_call = migration_call,
50a323b7 5160 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5161};
5162
a803f026
CM
5163static void __cpuinit set_cpu_rq_start_time(void)
5164{
5165 int cpu = smp_processor_id();
5166 struct rq *rq = cpu_rq(cpu);
5167 rq->age_stamp = sched_clock_cpu(cpu);
5168}
5169
0db0628d 5170static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5171 unsigned long action, void *hcpu)
5172{
5173 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5174 case CPU_STARTING:
5175 set_cpu_rq_start_time();
5176 return NOTIFY_OK;
3a101d05
TH
5177 case CPU_DOWN_FAILED:
5178 set_cpu_active((long)hcpu, true);
5179 return NOTIFY_OK;
5180 default:
5181 return NOTIFY_DONE;
5182 }
5183}
5184
0db0628d 5185static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5186 unsigned long action, void *hcpu)
5187{
de212f18
PZ
5188 unsigned long flags;
5189 long cpu = (long)hcpu;
5190
3a101d05
TH
5191 switch (action & ~CPU_TASKS_FROZEN) {
5192 case CPU_DOWN_PREPARE:
de212f18
PZ
5193 set_cpu_active(cpu, false);
5194
5195 /* explicitly allow suspend */
5196 if (!(action & CPU_TASKS_FROZEN)) {
5197 struct dl_bw *dl_b = dl_bw_of(cpu);
5198 bool overflow;
5199 int cpus;
5200
5201 raw_spin_lock_irqsave(&dl_b->lock, flags);
5202 cpus = dl_bw_cpus(cpu);
5203 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5204 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5205
5206 if (overflow)
5207 return notifier_from_errno(-EBUSY);
5208 }
3a101d05 5209 return NOTIFY_OK;
3a101d05 5210 }
de212f18
PZ
5211
5212 return NOTIFY_DONE;
3a101d05
TH
5213}
5214
7babe8db 5215static int __init migration_init(void)
1da177e4
LT
5216{
5217 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5218 int err;
48f24c4d 5219
3a101d05 5220 /* Initialize migration for the boot CPU */
07dccf33
AM
5221 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5222 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5223 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5224 register_cpu_notifier(&migration_notifier);
7babe8db 5225
3a101d05
TH
5226 /* Register cpu active notifiers */
5227 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5228 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5229
a004cd42 5230 return 0;
1da177e4 5231}
7babe8db 5232early_initcall(migration_init);
1da177e4
LT
5233#endif
5234
5235#ifdef CONFIG_SMP
476f3534 5236
4cb98839
PZ
5237static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5238
3e9830dc 5239#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5240
d039ac60 5241static __read_mostly int sched_debug_enabled;
f6630114 5242
d039ac60 5243static int __init sched_debug_setup(char *str)
f6630114 5244{
d039ac60 5245 sched_debug_enabled = 1;
f6630114
MT
5246
5247 return 0;
5248}
d039ac60
PZ
5249early_param("sched_debug", sched_debug_setup);
5250
5251static inline bool sched_debug(void)
5252{
5253 return sched_debug_enabled;
5254}
f6630114 5255
7c16ec58 5256static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5257 struct cpumask *groupmask)
1da177e4 5258{
4dcf6aff 5259 struct sched_group *group = sd->groups;
434d53b0 5260 char str[256];
1da177e4 5261
968ea6d8 5262 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5263 cpumask_clear(groupmask);
4dcf6aff
IM
5264
5265 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5266
5267 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5268 printk("does not load-balance\n");
4dcf6aff 5269 if (sd->parent)
3df0fc5b
PZ
5270 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5271 " has parent");
4dcf6aff 5272 return -1;
41c7ce9a
NP
5273 }
5274
3df0fc5b 5275 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5276
758b2cdc 5277 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5278 printk(KERN_ERR "ERROR: domain->span does not contain "
5279 "CPU%d\n", cpu);
4dcf6aff 5280 }
758b2cdc 5281 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5282 printk(KERN_ERR "ERROR: domain->groups does not contain"
5283 " CPU%d\n", cpu);
4dcf6aff 5284 }
1da177e4 5285
4dcf6aff 5286 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5287 do {
4dcf6aff 5288 if (!group) {
3df0fc5b
PZ
5289 printk("\n");
5290 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5291 break;
5292 }
5293
c3decf0d 5294 /*
63b2ca30
NP
5295 * Even though we initialize ->capacity to something semi-sane,
5296 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5297 * domain iteration is still funny without causing /0 traps.
5298 */
63b2ca30 5299 if (!group->sgc->capacity_orig) {
3df0fc5b 5300 printk(KERN_CONT "\n");
63b2ca30 5301 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5302 break;
5303 }
1da177e4 5304
758b2cdc 5305 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5306 printk(KERN_CONT "\n");
5307 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5308 break;
5309 }
1da177e4 5310
cb83b629
PZ
5311 if (!(sd->flags & SD_OVERLAP) &&
5312 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5313 printk(KERN_CONT "\n");
5314 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5315 break;
5316 }
1da177e4 5317
758b2cdc 5318 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5319
968ea6d8 5320 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5321
3df0fc5b 5322 printk(KERN_CONT " %s", str);
ca8ce3d0 5323 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5324 printk(KERN_CONT " (cpu_capacity = %d)",
5325 group->sgc->capacity);
381512cf 5326 }
1da177e4 5327
4dcf6aff
IM
5328 group = group->next;
5329 } while (group != sd->groups);
3df0fc5b 5330 printk(KERN_CONT "\n");
1da177e4 5331
758b2cdc 5332 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5333 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5334
758b2cdc
RR
5335 if (sd->parent &&
5336 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5337 printk(KERN_ERR "ERROR: parent span is not a superset "
5338 "of domain->span\n");
4dcf6aff
IM
5339 return 0;
5340}
1da177e4 5341
4dcf6aff
IM
5342static void sched_domain_debug(struct sched_domain *sd, int cpu)
5343{
5344 int level = 0;
1da177e4 5345
d039ac60 5346 if (!sched_debug_enabled)
f6630114
MT
5347 return;
5348
4dcf6aff
IM
5349 if (!sd) {
5350 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5351 return;
5352 }
1da177e4 5353
4dcf6aff
IM
5354 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5355
5356 for (;;) {
4cb98839 5357 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5358 break;
1da177e4
LT
5359 level++;
5360 sd = sd->parent;
33859f7f 5361 if (!sd)
4dcf6aff
IM
5362 break;
5363 }
1da177e4 5364}
6d6bc0ad 5365#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5366# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5367static inline bool sched_debug(void)
5368{
5369 return false;
5370}
6d6bc0ad 5371#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5372
1a20ff27 5373static int sd_degenerate(struct sched_domain *sd)
245af2c7 5374{
758b2cdc 5375 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5376 return 1;
5377
5378 /* Following flags need at least 2 groups */
5379 if (sd->flags & (SD_LOAD_BALANCE |
5380 SD_BALANCE_NEWIDLE |
5381 SD_BALANCE_FORK |
89c4710e 5382 SD_BALANCE_EXEC |
5d4dfddd 5383 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5384 SD_SHARE_PKG_RESOURCES |
5385 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5386 if (sd->groups != sd->groups->next)
5387 return 0;
5388 }
5389
5390 /* Following flags don't use groups */
c88d5910 5391 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5392 return 0;
5393
5394 return 1;
5395}
5396
48f24c4d
IM
5397static int
5398sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5399{
5400 unsigned long cflags = sd->flags, pflags = parent->flags;
5401
5402 if (sd_degenerate(parent))
5403 return 1;
5404
758b2cdc 5405 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5406 return 0;
5407
245af2c7
SS
5408 /* Flags needing groups don't count if only 1 group in parent */
5409 if (parent->groups == parent->groups->next) {
5410 pflags &= ~(SD_LOAD_BALANCE |
5411 SD_BALANCE_NEWIDLE |
5412 SD_BALANCE_FORK |
89c4710e 5413 SD_BALANCE_EXEC |
5d4dfddd 5414 SD_SHARE_CPUCAPACITY |
10866e62 5415 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5416 SD_PREFER_SIBLING |
5417 SD_SHARE_POWERDOMAIN);
5436499e
KC
5418 if (nr_node_ids == 1)
5419 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5420 }
5421 if (~cflags & pflags)
5422 return 0;
5423
5424 return 1;
5425}
5426
dce840a0 5427static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5428{
dce840a0 5429 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5430
68e74568 5431 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5432 cpudl_cleanup(&rd->cpudl);
1baca4ce 5433 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5434 free_cpumask_var(rd->rto_mask);
5435 free_cpumask_var(rd->online);
5436 free_cpumask_var(rd->span);
5437 kfree(rd);
5438}
5439
57d885fe
GH
5440static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5441{
a0490fa3 5442 struct root_domain *old_rd = NULL;
57d885fe 5443 unsigned long flags;
57d885fe 5444
05fa785c 5445 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5446
5447 if (rq->rd) {
a0490fa3 5448 old_rd = rq->rd;
57d885fe 5449
c6c4927b 5450 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5451 set_rq_offline(rq);
57d885fe 5452
c6c4927b 5453 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5454
a0490fa3 5455 /*
0515973f 5456 * If we dont want to free the old_rd yet then
a0490fa3
IM
5457 * set old_rd to NULL to skip the freeing later
5458 * in this function:
5459 */
5460 if (!atomic_dec_and_test(&old_rd->refcount))
5461 old_rd = NULL;
57d885fe
GH
5462 }
5463
5464 atomic_inc(&rd->refcount);
5465 rq->rd = rd;
5466
c6c4927b 5467 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5468 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5469 set_rq_online(rq);
57d885fe 5470
05fa785c 5471 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5472
5473 if (old_rd)
dce840a0 5474 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5475}
5476
68c38fc3 5477static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5478{
5479 memset(rd, 0, sizeof(*rd));
5480
68c38fc3 5481 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5482 goto out;
68c38fc3 5483 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5484 goto free_span;
1baca4ce 5485 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5486 goto free_online;
1baca4ce
JL
5487 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5488 goto free_dlo_mask;
6e0534f2 5489
332ac17e 5490 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5491 if (cpudl_init(&rd->cpudl) != 0)
5492 goto free_dlo_mask;
332ac17e 5493
68c38fc3 5494 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5495 goto free_rto_mask;
c6c4927b 5496 return 0;
6e0534f2 5497
68e74568
RR
5498free_rto_mask:
5499 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5500free_dlo_mask:
5501 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5502free_online:
5503 free_cpumask_var(rd->online);
5504free_span:
5505 free_cpumask_var(rd->span);
0c910d28 5506out:
c6c4927b 5507 return -ENOMEM;
57d885fe
GH
5508}
5509
029632fb
PZ
5510/*
5511 * By default the system creates a single root-domain with all cpus as
5512 * members (mimicking the global state we have today).
5513 */
5514struct root_domain def_root_domain;
5515
57d885fe
GH
5516static void init_defrootdomain(void)
5517{
68c38fc3 5518 init_rootdomain(&def_root_domain);
c6c4927b 5519
57d885fe
GH
5520 atomic_set(&def_root_domain.refcount, 1);
5521}
5522
dc938520 5523static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5524{
5525 struct root_domain *rd;
5526
5527 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5528 if (!rd)
5529 return NULL;
5530
68c38fc3 5531 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5532 kfree(rd);
5533 return NULL;
5534 }
57d885fe
GH
5535
5536 return rd;
5537}
5538
63b2ca30 5539static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5540{
5541 struct sched_group *tmp, *first;
5542
5543 if (!sg)
5544 return;
5545
5546 first = sg;
5547 do {
5548 tmp = sg->next;
5549
63b2ca30
NP
5550 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5551 kfree(sg->sgc);
e3589f6c
PZ
5552
5553 kfree(sg);
5554 sg = tmp;
5555 } while (sg != first);
5556}
5557
dce840a0
PZ
5558static void free_sched_domain(struct rcu_head *rcu)
5559{
5560 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5561
5562 /*
5563 * If its an overlapping domain it has private groups, iterate and
5564 * nuke them all.
5565 */
5566 if (sd->flags & SD_OVERLAP) {
5567 free_sched_groups(sd->groups, 1);
5568 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5569 kfree(sd->groups->sgc);
dce840a0 5570 kfree(sd->groups);
9c3f75cb 5571 }
dce840a0
PZ
5572 kfree(sd);
5573}
5574
5575static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5576{
5577 call_rcu(&sd->rcu, free_sched_domain);
5578}
5579
5580static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5581{
5582 for (; sd; sd = sd->parent)
5583 destroy_sched_domain(sd, cpu);
5584}
5585
518cd623
PZ
5586/*
5587 * Keep a special pointer to the highest sched_domain that has
5588 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5589 * allows us to avoid some pointer chasing select_idle_sibling().
5590 *
5591 * Also keep a unique ID per domain (we use the first cpu number in
5592 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5593 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5594 */
5595DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5596DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5597DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5598DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5599DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5600DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5601
5602static void update_top_cache_domain(int cpu)
5603{
5604 struct sched_domain *sd;
5d4cf996 5605 struct sched_domain *busy_sd = NULL;
518cd623 5606 int id = cpu;
7d9ffa89 5607 int size = 1;
518cd623
PZ
5608
5609 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5610 if (sd) {
518cd623 5611 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5612 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5613 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5614 }
5d4cf996 5615 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5616
5617 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5618 per_cpu(sd_llc_size, cpu) = size;
518cd623 5619 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5620
5621 sd = lowest_flag_domain(cpu, SD_NUMA);
5622 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5623
5624 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5625 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5626}
5627
1da177e4 5628/*
0eab9146 5629 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5630 * hold the hotplug lock.
5631 */
0eab9146
IM
5632static void
5633cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5634{
70b97a7f 5635 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5636 struct sched_domain *tmp;
5637
5638 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5639 for (tmp = sd; tmp; ) {
245af2c7
SS
5640 struct sched_domain *parent = tmp->parent;
5641 if (!parent)
5642 break;
f29c9b1c 5643
1a848870 5644 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5645 tmp->parent = parent->parent;
1a848870
SS
5646 if (parent->parent)
5647 parent->parent->child = tmp;
10866e62
PZ
5648 /*
5649 * Transfer SD_PREFER_SIBLING down in case of a
5650 * degenerate parent; the spans match for this
5651 * so the property transfers.
5652 */
5653 if (parent->flags & SD_PREFER_SIBLING)
5654 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5655 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5656 } else
5657 tmp = tmp->parent;
245af2c7
SS
5658 }
5659
1a848870 5660 if (sd && sd_degenerate(sd)) {
dce840a0 5661 tmp = sd;
245af2c7 5662 sd = sd->parent;
dce840a0 5663 destroy_sched_domain(tmp, cpu);
1a848870
SS
5664 if (sd)
5665 sd->child = NULL;
5666 }
1da177e4 5667
4cb98839 5668 sched_domain_debug(sd, cpu);
1da177e4 5669
57d885fe 5670 rq_attach_root(rq, rd);
dce840a0 5671 tmp = rq->sd;
674311d5 5672 rcu_assign_pointer(rq->sd, sd);
dce840a0 5673 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5674
5675 update_top_cache_domain(cpu);
1da177e4
LT
5676}
5677
5678/* cpus with isolated domains */
dcc30a35 5679static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5680
5681/* Setup the mask of cpus configured for isolated domains */
5682static int __init isolated_cpu_setup(char *str)
5683{
bdddd296 5684 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5685 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5686 return 1;
5687}
5688
8927f494 5689__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5690
49a02c51 5691struct s_data {
21d42ccf 5692 struct sched_domain ** __percpu sd;
49a02c51
AH
5693 struct root_domain *rd;
5694};
5695
2109b99e 5696enum s_alloc {
2109b99e 5697 sa_rootdomain,
21d42ccf 5698 sa_sd,
dce840a0 5699 sa_sd_storage,
2109b99e
AH
5700 sa_none,
5701};
5702
c1174876
PZ
5703/*
5704 * Build an iteration mask that can exclude certain CPUs from the upwards
5705 * domain traversal.
5706 *
5707 * Asymmetric node setups can result in situations where the domain tree is of
5708 * unequal depth, make sure to skip domains that already cover the entire
5709 * range.
5710 *
5711 * In that case build_sched_domains() will have terminated the iteration early
5712 * and our sibling sd spans will be empty. Domains should always include the
5713 * cpu they're built on, so check that.
5714 *
5715 */
5716static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5717{
5718 const struct cpumask *span = sched_domain_span(sd);
5719 struct sd_data *sdd = sd->private;
5720 struct sched_domain *sibling;
5721 int i;
5722
5723 for_each_cpu(i, span) {
5724 sibling = *per_cpu_ptr(sdd->sd, i);
5725 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5726 continue;
5727
5728 cpumask_set_cpu(i, sched_group_mask(sg));
5729 }
5730}
5731
5732/*
5733 * Return the canonical balance cpu for this group, this is the first cpu
5734 * of this group that's also in the iteration mask.
5735 */
5736int group_balance_cpu(struct sched_group *sg)
5737{
5738 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5739}
5740
e3589f6c
PZ
5741static int
5742build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5743{
5744 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5745 const struct cpumask *span = sched_domain_span(sd);
5746 struct cpumask *covered = sched_domains_tmpmask;
5747 struct sd_data *sdd = sd->private;
aaecac4a 5748 struct sched_domain *sibling;
e3589f6c
PZ
5749 int i;
5750
5751 cpumask_clear(covered);
5752
5753 for_each_cpu(i, span) {
5754 struct cpumask *sg_span;
5755
5756 if (cpumask_test_cpu(i, covered))
5757 continue;
5758
aaecac4a 5759 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5760
5761 /* See the comment near build_group_mask(). */
aaecac4a 5762 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5763 continue;
5764
e3589f6c 5765 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5766 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5767
5768 if (!sg)
5769 goto fail;
5770
5771 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5772 if (sibling->child)
5773 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5774 else
e3589f6c
PZ
5775 cpumask_set_cpu(i, sg_span);
5776
5777 cpumask_or(covered, covered, sg_span);
5778
63b2ca30
NP
5779 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5780 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5781 build_group_mask(sd, sg);
5782
c3decf0d 5783 /*
63b2ca30 5784 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5785 * domains and no possible iteration will get us here, we won't
5786 * die on a /0 trap.
5787 */
ca8ce3d0 5788 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5789 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5790
c1174876
PZ
5791 /*
5792 * Make sure the first group of this domain contains the
5793 * canonical balance cpu. Otherwise the sched_domain iteration
5794 * breaks. See update_sg_lb_stats().
5795 */
74a5ce20 5796 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5797 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5798 groups = sg;
5799
5800 if (!first)
5801 first = sg;
5802 if (last)
5803 last->next = sg;
5804 last = sg;
5805 last->next = first;
5806 }
5807 sd->groups = groups;
5808
5809 return 0;
5810
5811fail:
5812 free_sched_groups(first, 0);
5813
5814 return -ENOMEM;
5815}
5816
dce840a0 5817static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5818{
dce840a0
PZ
5819 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5820 struct sched_domain *child = sd->child;
1da177e4 5821
dce840a0
PZ
5822 if (child)
5823 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5824
9c3f75cb 5825 if (sg) {
dce840a0 5826 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5827 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5828 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5829 }
dce840a0
PZ
5830
5831 return cpu;
1e9f28fa 5832}
1e9f28fa 5833
01a08546 5834/*
dce840a0
PZ
5835 * build_sched_groups will build a circular linked list of the groups
5836 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5837 * and ->cpu_capacity to 0.
e3589f6c
PZ
5838 *
5839 * Assumes the sched_domain tree is fully constructed
01a08546 5840 */
e3589f6c
PZ
5841static int
5842build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5843{
dce840a0
PZ
5844 struct sched_group *first = NULL, *last = NULL;
5845 struct sd_data *sdd = sd->private;
5846 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5847 struct cpumask *covered;
dce840a0 5848 int i;
9c1cfda2 5849
e3589f6c
PZ
5850 get_group(cpu, sdd, &sd->groups);
5851 atomic_inc(&sd->groups->ref);
5852
0936629f 5853 if (cpu != cpumask_first(span))
e3589f6c
PZ
5854 return 0;
5855
f96225fd
PZ
5856 lockdep_assert_held(&sched_domains_mutex);
5857 covered = sched_domains_tmpmask;
5858
dce840a0 5859 cpumask_clear(covered);
6711cab4 5860
dce840a0
PZ
5861 for_each_cpu(i, span) {
5862 struct sched_group *sg;
cd08e923 5863 int group, j;
6711cab4 5864
dce840a0
PZ
5865 if (cpumask_test_cpu(i, covered))
5866 continue;
6711cab4 5867
cd08e923 5868 group = get_group(i, sdd, &sg);
c1174876 5869 cpumask_setall(sched_group_mask(sg));
0601a88d 5870
dce840a0
PZ
5871 for_each_cpu(j, span) {
5872 if (get_group(j, sdd, NULL) != group)
5873 continue;
0601a88d 5874
dce840a0
PZ
5875 cpumask_set_cpu(j, covered);
5876 cpumask_set_cpu(j, sched_group_cpus(sg));
5877 }
0601a88d 5878
dce840a0
PZ
5879 if (!first)
5880 first = sg;
5881 if (last)
5882 last->next = sg;
5883 last = sg;
5884 }
5885 last->next = first;
e3589f6c
PZ
5886
5887 return 0;
0601a88d 5888}
51888ca2 5889
89c4710e 5890/*
63b2ca30 5891 * Initialize sched groups cpu_capacity.
89c4710e 5892 *
63b2ca30 5893 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5894 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5895 * Typically cpu_capacity for all the groups in a sched domain will be same
5896 * unless there are asymmetries in the topology. If there are asymmetries,
5897 * group having more cpu_capacity will pickup more load compared to the
5898 * group having less cpu_capacity.
89c4710e 5899 */
63b2ca30 5900static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5901{
e3589f6c 5902 struct sched_group *sg = sd->groups;
89c4710e 5903
94c95ba6 5904 WARN_ON(!sg);
e3589f6c
PZ
5905
5906 do {
5907 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5908 sg = sg->next;
5909 } while (sg != sd->groups);
89c4710e 5910
c1174876 5911 if (cpu != group_balance_cpu(sg))
e3589f6c 5912 return;
aae6d3dd 5913
63b2ca30
NP
5914 update_group_capacity(sd, cpu);
5915 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5916}
5917
7c16ec58
MT
5918/*
5919 * Initializers for schedule domains
5920 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5921 */
5922
1d3504fc 5923static int default_relax_domain_level = -1;
60495e77 5924int sched_domain_level_max;
1d3504fc
HS
5925
5926static int __init setup_relax_domain_level(char *str)
5927{
a841f8ce
DS
5928 if (kstrtoint(str, 0, &default_relax_domain_level))
5929 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5930
1d3504fc
HS
5931 return 1;
5932}
5933__setup("relax_domain_level=", setup_relax_domain_level);
5934
5935static void set_domain_attribute(struct sched_domain *sd,
5936 struct sched_domain_attr *attr)
5937{
5938 int request;
5939
5940 if (!attr || attr->relax_domain_level < 0) {
5941 if (default_relax_domain_level < 0)
5942 return;
5943 else
5944 request = default_relax_domain_level;
5945 } else
5946 request = attr->relax_domain_level;
5947 if (request < sd->level) {
5948 /* turn off idle balance on this domain */
c88d5910 5949 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5950 } else {
5951 /* turn on idle balance on this domain */
c88d5910 5952 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5953 }
5954}
5955
54ab4ff4
PZ
5956static void __sdt_free(const struct cpumask *cpu_map);
5957static int __sdt_alloc(const struct cpumask *cpu_map);
5958
2109b99e
AH
5959static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5960 const struct cpumask *cpu_map)
5961{
5962 switch (what) {
2109b99e 5963 case sa_rootdomain:
822ff793
PZ
5964 if (!atomic_read(&d->rd->refcount))
5965 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5966 case sa_sd:
5967 free_percpu(d->sd); /* fall through */
dce840a0 5968 case sa_sd_storage:
54ab4ff4 5969 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5970 case sa_none:
5971 break;
5972 }
5973}
3404c8d9 5974
2109b99e
AH
5975static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5976 const struct cpumask *cpu_map)
5977{
dce840a0
PZ
5978 memset(d, 0, sizeof(*d));
5979
54ab4ff4
PZ
5980 if (__sdt_alloc(cpu_map))
5981 return sa_sd_storage;
dce840a0
PZ
5982 d->sd = alloc_percpu(struct sched_domain *);
5983 if (!d->sd)
5984 return sa_sd_storage;
2109b99e 5985 d->rd = alloc_rootdomain();
dce840a0 5986 if (!d->rd)
21d42ccf 5987 return sa_sd;
2109b99e
AH
5988 return sa_rootdomain;
5989}
57d885fe 5990
dce840a0
PZ
5991/*
5992 * NULL the sd_data elements we've used to build the sched_domain and
5993 * sched_group structure so that the subsequent __free_domain_allocs()
5994 * will not free the data we're using.
5995 */
5996static void claim_allocations(int cpu, struct sched_domain *sd)
5997{
5998 struct sd_data *sdd = sd->private;
dce840a0
PZ
5999
6000 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6001 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6002
e3589f6c 6003 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6004 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6005
63b2ca30
NP
6006 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6007 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6008}
6009
cb83b629 6010#ifdef CONFIG_NUMA
cb83b629 6011static int sched_domains_numa_levels;
cb83b629
PZ
6012static int *sched_domains_numa_distance;
6013static struct cpumask ***sched_domains_numa_masks;
6014static int sched_domains_curr_level;
143e1e28 6015#endif
cb83b629 6016
143e1e28
VG
6017/*
6018 * SD_flags allowed in topology descriptions.
6019 *
5d4dfddd 6020 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6021 * SD_SHARE_PKG_RESOURCES - describes shared caches
6022 * SD_NUMA - describes NUMA topologies
d77b3ed5 6023 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6024 *
6025 * Odd one out:
6026 * SD_ASYM_PACKING - describes SMT quirks
6027 */
6028#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6029 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6030 SD_SHARE_PKG_RESOURCES | \
6031 SD_NUMA | \
d77b3ed5
VG
6032 SD_ASYM_PACKING | \
6033 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6034
6035static struct sched_domain *
143e1e28 6036sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6037{
6038 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6039 int sd_weight, sd_flags = 0;
6040
6041#ifdef CONFIG_NUMA
6042 /*
6043 * Ugly hack to pass state to sd_numa_mask()...
6044 */
6045 sched_domains_curr_level = tl->numa_level;
6046#endif
6047
6048 sd_weight = cpumask_weight(tl->mask(cpu));
6049
6050 if (tl->sd_flags)
6051 sd_flags = (*tl->sd_flags)();
6052 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6053 "wrong sd_flags in topology description\n"))
6054 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6055
6056 *sd = (struct sched_domain){
6057 .min_interval = sd_weight,
6058 .max_interval = 2*sd_weight,
6059 .busy_factor = 32,
870a0bb5 6060 .imbalance_pct = 125,
143e1e28
VG
6061
6062 .cache_nice_tries = 0,
6063 .busy_idx = 0,
6064 .idle_idx = 0,
cb83b629
PZ
6065 .newidle_idx = 0,
6066 .wake_idx = 0,
6067 .forkexec_idx = 0,
6068
6069 .flags = 1*SD_LOAD_BALANCE
6070 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6071 | 1*SD_BALANCE_EXEC
6072 | 1*SD_BALANCE_FORK
cb83b629 6073 | 0*SD_BALANCE_WAKE
143e1e28 6074 | 1*SD_WAKE_AFFINE
5d4dfddd 6075 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6076 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6077 | 0*SD_SERIALIZE
cb83b629 6078 | 0*SD_PREFER_SIBLING
143e1e28
VG
6079 | 0*SD_NUMA
6080 | sd_flags
cb83b629 6081 ,
143e1e28 6082
cb83b629
PZ
6083 .last_balance = jiffies,
6084 .balance_interval = sd_weight,
143e1e28 6085 .smt_gain = 0,
2b4cfe64
JL
6086 .max_newidle_lb_cost = 0,
6087 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6088#ifdef CONFIG_SCHED_DEBUG
6089 .name = tl->name,
6090#endif
cb83b629 6091 };
cb83b629
PZ
6092
6093 /*
143e1e28 6094 * Convert topological properties into behaviour.
cb83b629 6095 */
143e1e28 6096
5d4dfddd 6097 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6098 sd->imbalance_pct = 110;
6099 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6100
6101 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6102 sd->imbalance_pct = 117;
6103 sd->cache_nice_tries = 1;
6104 sd->busy_idx = 2;
6105
6106#ifdef CONFIG_NUMA
6107 } else if (sd->flags & SD_NUMA) {
6108 sd->cache_nice_tries = 2;
6109 sd->busy_idx = 3;
6110 sd->idle_idx = 2;
6111
6112 sd->flags |= SD_SERIALIZE;
6113 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6114 sd->flags &= ~(SD_BALANCE_EXEC |
6115 SD_BALANCE_FORK |
6116 SD_WAKE_AFFINE);
6117 }
6118
6119#endif
6120 } else {
6121 sd->flags |= SD_PREFER_SIBLING;
6122 sd->cache_nice_tries = 1;
6123 sd->busy_idx = 2;
6124 sd->idle_idx = 1;
6125 }
6126
6127 sd->private = &tl->data;
cb83b629
PZ
6128
6129 return sd;
6130}
6131
143e1e28
VG
6132/*
6133 * Topology list, bottom-up.
6134 */
6135static struct sched_domain_topology_level default_topology[] = {
6136#ifdef CONFIG_SCHED_SMT
6137 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6138#endif
6139#ifdef CONFIG_SCHED_MC
6140 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6141#endif
6142 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6143 { NULL, },
6144};
6145
6146struct sched_domain_topology_level *sched_domain_topology = default_topology;
6147
6148#define for_each_sd_topology(tl) \
6149 for (tl = sched_domain_topology; tl->mask; tl++)
6150
6151void set_sched_topology(struct sched_domain_topology_level *tl)
6152{
6153 sched_domain_topology = tl;
6154}
6155
6156#ifdef CONFIG_NUMA
6157
cb83b629
PZ
6158static const struct cpumask *sd_numa_mask(int cpu)
6159{
6160 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6161}
6162
d039ac60
PZ
6163static void sched_numa_warn(const char *str)
6164{
6165 static int done = false;
6166 int i,j;
6167
6168 if (done)
6169 return;
6170
6171 done = true;
6172
6173 printk(KERN_WARNING "ERROR: %s\n\n", str);
6174
6175 for (i = 0; i < nr_node_ids; i++) {
6176 printk(KERN_WARNING " ");
6177 for (j = 0; j < nr_node_ids; j++)
6178 printk(KERN_CONT "%02d ", node_distance(i,j));
6179 printk(KERN_CONT "\n");
6180 }
6181 printk(KERN_WARNING "\n");
6182}
6183
6184static bool find_numa_distance(int distance)
6185{
6186 int i;
6187
6188 if (distance == node_distance(0, 0))
6189 return true;
6190
6191 for (i = 0; i < sched_domains_numa_levels; i++) {
6192 if (sched_domains_numa_distance[i] == distance)
6193 return true;
6194 }
6195
6196 return false;
6197}
6198
cb83b629
PZ
6199static void sched_init_numa(void)
6200{
6201 int next_distance, curr_distance = node_distance(0, 0);
6202 struct sched_domain_topology_level *tl;
6203 int level = 0;
6204 int i, j, k;
6205
cb83b629
PZ
6206 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6207 if (!sched_domains_numa_distance)
6208 return;
6209
6210 /*
6211 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6212 * unique distances in the node_distance() table.
6213 *
6214 * Assumes node_distance(0,j) includes all distances in
6215 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6216 */
6217 next_distance = curr_distance;
6218 for (i = 0; i < nr_node_ids; i++) {
6219 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6220 for (k = 0; k < nr_node_ids; k++) {
6221 int distance = node_distance(i, k);
6222
6223 if (distance > curr_distance &&
6224 (distance < next_distance ||
6225 next_distance == curr_distance))
6226 next_distance = distance;
6227
6228 /*
6229 * While not a strong assumption it would be nice to know
6230 * about cases where if node A is connected to B, B is not
6231 * equally connected to A.
6232 */
6233 if (sched_debug() && node_distance(k, i) != distance)
6234 sched_numa_warn("Node-distance not symmetric");
6235
6236 if (sched_debug() && i && !find_numa_distance(distance))
6237 sched_numa_warn("Node-0 not representative");
6238 }
6239 if (next_distance != curr_distance) {
6240 sched_domains_numa_distance[level++] = next_distance;
6241 sched_domains_numa_levels = level;
6242 curr_distance = next_distance;
6243 } else break;
cb83b629 6244 }
d039ac60
PZ
6245
6246 /*
6247 * In case of sched_debug() we verify the above assumption.
6248 */
6249 if (!sched_debug())
6250 break;
cb83b629
PZ
6251 }
6252 /*
6253 * 'level' contains the number of unique distances, excluding the
6254 * identity distance node_distance(i,i).
6255 *
28b4a521 6256 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6257 * numbers.
6258 */
6259
5f7865f3
TC
6260 /*
6261 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6262 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6263 * the array will contain less then 'level' members. This could be
6264 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6265 * in other functions.
6266 *
6267 * We reset it to 'level' at the end of this function.
6268 */
6269 sched_domains_numa_levels = 0;
6270
cb83b629
PZ
6271 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6272 if (!sched_domains_numa_masks)
6273 return;
6274
6275 /*
6276 * Now for each level, construct a mask per node which contains all
6277 * cpus of nodes that are that many hops away from us.
6278 */
6279 for (i = 0; i < level; i++) {
6280 sched_domains_numa_masks[i] =
6281 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6282 if (!sched_domains_numa_masks[i])
6283 return;
6284
6285 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6286 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6287 if (!mask)
6288 return;
6289
6290 sched_domains_numa_masks[i][j] = mask;
6291
6292 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6293 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6294 continue;
6295
6296 cpumask_or(mask, mask, cpumask_of_node(k));
6297 }
6298 }
6299 }
6300
143e1e28
VG
6301 /* Compute default topology size */
6302 for (i = 0; sched_domain_topology[i].mask; i++);
6303
c515db8c 6304 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6305 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6306 if (!tl)
6307 return;
6308
6309 /*
6310 * Copy the default topology bits..
6311 */
143e1e28
VG
6312 for (i = 0; sched_domain_topology[i].mask; i++)
6313 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6314
6315 /*
6316 * .. and append 'j' levels of NUMA goodness.
6317 */
6318 for (j = 0; j < level; i++, j++) {
6319 tl[i] = (struct sched_domain_topology_level){
cb83b629 6320 .mask = sd_numa_mask,
143e1e28 6321 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6322 .flags = SDTL_OVERLAP,
6323 .numa_level = j,
143e1e28 6324 SD_INIT_NAME(NUMA)
cb83b629
PZ
6325 };
6326 }
6327
6328 sched_domain_topology = tl;
5f7865f3
TC
6329
6330 sched_domains_numa_levels = level;
cb83b629 6331}
301a5cba
TC
6332
6333static void sched_domains_numa_masks_set(int cpu)
6334{
6335 int i, j;
6336 int node = cpu_to_node(cpu);
6337
6338 for (i = 0; i < sched_domains_numa_levels; i++) {
6339 for (j = 0; j < nr_node_ids; j++) {
6340 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6341 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6342 }
6343 }
6344}
6345
6346static void sched_domains_numa_masks_clear(int cpu)
6347{
6348 int i, j;
6349 for (i = 0; i < sched_domains_numa_levels; i++) {
6350 for (j = 0; j < nr_node_ids; j++)
6351 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6352 }
6353}
6354
6355/*
6356 * Update sched_domains_numa_masks[level][node] array when new cpus
6357 * are onlined.
6358 */
6359static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6360 unsigned long action,
6361 void *hcpu)
6362{
6363 int cpu = (long)hcpu;
6364
6365 switch (action & ~CPU_TASKS_FROZEN) {
6366 case CPU_ONLINE:
6367 sched_domains_numa_masks_set(cpu);
6368 break;
6369
6370 case CPU_DEAD:
6371 sched_domains_numa_masks_clear(cpu);
6372 break;
6373
6374 default:
6375 return NOTIFY_DONE;
6376 }
6377
6378 return NOTIFY_OK;
cb83b629
PZ
6379}
6380#else
6381static inline void sched_init_numa(void)
6382{
6383}
301a5cba
TC
6384
6385static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6386 unsigned long action,
6387 void *hcpu)
6388{
6389 return 0;
6390}
cb83b629
PZ
6391#endif /* CONFIG_NUMA */
6392
54ab4ff4
PZ
6393static int __sdt_alloc(const struct cpumask *cpu_map)
6394{
6395 struct sched_domain_topology_level *tl;
6396 int j;
6397
27723a68 6398 for_each_sd_topology(tl) {
54ab4ff4
PZ
6399 struct sd_data *sdd = &tl->data;
6400
6401 sdd->sd = alloc_percpu(struct sched_domain *);
6402 if (!sdd->sd)
6403 return -ENOMEM;
6404
6405 sdd->sg = alloc_percpu(struct sched_group *);
6406 if (!sdd->sg)
6407 return -ENOMEM;
6408
63b2ca30
NP
6409 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6410 if (!sdd->sgc)
9c3f75cb
PZ
6411 return -ENOMEM;
6412
54ab4ff4
PZ
6413 for_each_cpu(j, cpu_map) {
6414 struct sched_domain *sd;
6415 struct sched_group *sg;
63b2ca30 6416 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6417
6418 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6419 GFP_KERNEL, cpu_to_node(j));
6420 if (!sd)
6421 return -ENOMEM;
6422
6423 *per_cpu_ptr(sdd->sd, j) = sd;
6424
6425 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6426 GFP_KERNEL, cpu_to_node(j));
6427 if (!sg)
6428 return -ENOMEM;
6429
30b4e9eb
IM
6430 sg->next = sg;
6431
54ab4ff4 6432 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6433
63b2ca30 6434 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6435 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6436 if (!sgc)
9c3f75cb
PZ
6437 return -ENOMEM;
6438
63b2ca30 6439 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6440 }
6441 }
6442
6443 return 0;
6444}
6445
6446static void __sdt_free(const struct cpumask *cpu_map)
6447{
6448 struct sched_domain_topology_level *tl;
6449 int j;
6450
27723a68 6451 for_each_sd_topology(tl) {
54ab4ff4
PZ
6452 struct sd_data *sdd = &tl->data;
6453
6454 for_each_cpu(j, cpu_map) {
fb2cf2c6 6455 struct sched_domain *sd;
6456
6457 if (sdd->sd) {
6458 sd = *per_cpu_ptr(sdd->sd, j);
6459 if (sd && (sd->flags & SD_OVERLAP))
6460 free_sched_groups(sd->groups, 0);
6461 kfree(*per_cpu_ptr(sdd->sd, j));
6462 }
6463
6464 if (sdd->sg)
6465 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6466 if (sdd->sgc)
6467 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6468 }
6469 free_percpu(sdd->sd);
fb2cf2c6 6470 sdd->sd = NULL;
54ab4ff4 6471 free_percpu(sdd->sg);
fb2cf2c6 6472 sdd->sg = NULL;
63b2ca30
NP
6473 free_percpu(sdd->sgc);
6474 sdd->sgc = NULL;
54ab4ff4
PZ
6475 }
6476}
6477
2c402dc3 6478struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6479 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6480 struct sched_domain *child, int cpu)
2c402dc3 6481{
143e1e28 6482 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6483 if (!sd)
d069b916 6484 return child;
2c402dc3 6485
2c402dc3 6486 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6487 if (child) {
6488 sd->level = child->level + 1;
6489 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6490 child->parent = sd;
c75e0128 6491 sd->child = child;
6ae72dff
PZ
6492
6493 if (!cpumask_subset(sched_domain_span(child),
6494 sched_domain_span(sd))) {
6495 pr_err("BUG: arch topology borken\n");
6496#ifdef CONFIG_SCHED_DEBUG
6497 pr_err(" the %s domain not a subset of the %s domain\n",
6498 child->name, sd->name);
6499#endif
6500 /* Fixup, ensure @sd has at least @child cpus. */
6501 cpumask_or(sched_domain_span(sd),
6502 sched_domain_span(sd),
6503 sched_domain_span(child));
6504 }
6505
60495e77 6506 }
a841f8ce 6507 set_domain_attribute(sd, attr);
2c402dc3
PZ
6508
6509 return sd;
6510}
6511
2109b99e
AH
6512/*
6513 * Build sched domains for a given set of cpus and attach the sched domains
6514 * to the individual cpus
6515 */
dce840a0
PZ
6516static int build_sched_domains(const struct cpumask *cpu_map,
6517 struct sched_domain_attr *attr)
2109b99e 6518{
1c632169 6519 enum s_alloc alloc_state;
dce840a0 6520 struct sched_domain *sd;
2109b99e 6521 struct s_data d;
822ff793 6522 int i, ret = -ENOMEM;
9c1cfda2 6523
2109b99e
AH
6524 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6525 if (alloc_state != sa_rootdomain)
6526 goto error;
9c1cfda2 6527
dce840a0 6528 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6529 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6530 struct sched_domain_topology_level *tl;
6531
3bd65a80 6532 sd = NULL;
27723a68 6533 for_each_sd_topology(tl) {
4a850cbe 6534 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6535 if (tl == sched_domain_topology)
6536 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6537 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6538 sd->flags |= SD_OVERLAP;
d110235d
PZ
6539 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6540 break;
e3589f6c 6541 }
dce840a0
PZ
6542 }
6543
6544 /* Build the groups for the domains */
6545 for_each_cpu(i, cpu_map) {
6546 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6547 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6548 if (sd->flags & SD_OVERLAP) {
6549 if (build_overlap_sched_groups(sd, i))
6550 goto error;
6551 } else {
6552 if (build_sched_groups(sd, i))
6553 goto error;
6554 }
1cf51902 6555 }
a06dadbe 6556 }
9c1cfda2 6557
ced549fa 6558 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6559 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6560 if (!cpumask_test_cpu(i, cpu_map))
6561 continue;
9c1cfda2 6562
dce840a0
PZ
6563 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6564 claim_allocations(i, sd);
63b2ca30 6565 init_sched_groups_capacity(i, sd);
dce840a0 6566 }
f712c0c7 6567 }
9c1cfda2 6568
1da177e4 6569 /* Attach the domains */
dce840a0 6570 rcu_read_lock();
abcd083a 6571 for_each_cpu(i, cpu_map) {
21d42ccf 6572 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6573 cpu_attach_domain(sd, d.rd, i);
1da177e4 6574 }
dce840a0 6575 rcu_read_unlock();
51888ca2 6576
822ff793 6577 ret = 0;
51888ca2 6578error:
2109b99e 6579 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6580 return ret;
1da177e4 6581}
029190c5 6582
acc3f5d7 6583static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6584static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6585static struct sched_domain_attr *dattr_cur;
6586 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6587
6588/*
6589 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6590 * cpumask) fails, then fallback to a single sched domain,
6591 * as determined by the single cpumask fallback_doms.
029190c5 6592 */
4212823f 6593static cpumask_var_t fallback_doms;
029190c5 6594
ee79d1bd
HC
6595/*
6596 * arch_update_cpu_topology lets virtualized architectures update the
6597 * cpu core maps. It is supposed to return 1 if the topology changed
6598 * or 0 if it stayed the same.
6599 */
52f5684c 6600int __weak arch_update_cpu_topology(void)
22e52b07 6601{
ee79d1bd 6602 return 0;
22e52b07
HC
6603}
6604
acc3f5d7
RR
6605cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6606{
6607 int i;
6608 cpumask_var_t *doms;
6609
6610 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6611 if (!doms)
6612 return NULL;
6613 for (i = 0; i < ndoms; i++) {
6614 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6615 free_sched_domains(doms, i);
6616 return NULL;
6617 }
6618 }
6619 return doms;
6620}
6621
6622void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6623{
6624 unsigned int i;
6625 for (i = 0; i < ndoms; i++)
6626 free_cpumask_var(doms[i]);
6627 kfree(doms);
6628}
6629
1a20ff27 6630/*
41a2d6cf 6631 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6632 * For now this just excludes isolated cpus, but could be used to
6633 * exclude other special cases in the future.
1a20ff27 6634 */
c4a8849a 6635static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6636{
7378547f
MM
6637 int err;
6638
22e52b07 6639 arch_update_cpu_topology();
029190c5 6640 ndoms_cur = 1;
acc3f5d7 6641 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6642 if (!doms_cur)
acc3f5d7
RR
6643 doms_cur = &fallback_doms;
6644 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6645 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6646 register_sched_domain_sysctl();
7378547f
MM
6647
6648 return err;
1a20ff27
DG
6649}
6650
1a20ff27
DG
6651/*
6652 * Detach sched domains from a group of cpus specified in cpu_map
6653 * These cpus will now be attached to the NULL domain
6654 */
96f874e2 6655static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6656{
6657 int i;
6658
dce840a0 6659 rcu_read_lock();
abcd083a 6660 for_each_cpu(i, cpu_map)
57d885fe 6661 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6662 rcu_read_unlock();
1a20ff27
DG
6663}
6664
1d3504fc
HS
6665/* handle null as "default" */
6666static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6667 struct sched_domain_attr *new, int idx_new)
6668{
6669 struct sched_domain_attr tmp;
6670
6671 /* fast path */
6672 if (!new && !cur)
6673 return 1;
6674
6675 tmp = SD_ATTR_INIT;
6676 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6677 new ? (new + idx_new) : &tmp,
6678 sizeof(struct sched_domain_attr));
6679}
6680
029190c5
PJ
6681/*
6682 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6683 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6684 * doms_new[] to the current sched domain partitioning, doms_cur[].
6685 * It destroys each deleted domain and builds each new domain.
6686 *
acc3f5d7 6687 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6688 * The masks don't intersect (don't overlap.) We should setup one
6689 * sched domain for each mask. CPUs not in any of the cpumasks will
6690 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6691 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6692 * it as it is.
6693 *
acc3f5d7
RR
6694 * The passed in 'doms_new' should be allocated using
6695 * alloc_sched_domains. This routine takes ownership of it and will
6696 * free_sched_domains it when done with it. If the caller failed the
6697 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6698 * and partition_sched_domains() will fallback to the single partition
6699 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6700 *
96f874e2 6701 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6702 * ndoms_new == 0 is a special case for destroying existing domains,
6703 * and it will not create the default domain.
dfb512ec 6704 *
029190c5
PJ
6705 * Call with hotplug lock held
6706 */
acc3f5d7 6707void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6708 struct sched_domain_attr *dattr_new)
029190c5 6709{
dfb512ec 6710 int i, j, n;
d65bd5ec 6711 int new_topology;
029190c5 6712
712555ee 6713 mutex_lock(&sched_domains_mutex);
a1835615 6714
7378547f
MM
6715 /* always unregister in case we don't destroy any domains */
6716 unregister_sched_domain_sysctl();
6717
d65bd5ec
HC
6718 /* Let architecture update cpu core mappings. */
6719 new_topology = arch_update_cpu_topology();
6720
dfb512ec 6721 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6722
6723 /* Destroy deleted domains */
6724 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6725 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6726 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6727 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6728 goto match1;
6729 }
6730 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6731 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6732match1:
6733 ;
6734 }
6735
c8d2d47a 6736 n = ndoms_cur;
e761b772 6737 if (doms_new == NULL) {
c8d2d47a 6738 n = 0;
acc3f5d7 6739 doms_new = &fallback_doms;
6ad4c188 6740 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6741 WARN_ON_ONCE(dattr_new);
e761b772
MK
6742 }
6743
029190c5
PJ
6744 /* Build new domains */
6745 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6746 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6747 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6748 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6749 goto match2;
6750 }
6751 /* no match - add a new doms_new */
dce840a0 6752 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6753match2:
6754 ;
6755 }
6756
6757 /* Remember the new sched domains */
acc3f5d7
RR
6758 if (doms_cur != &fallback_doms)
6759 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6760 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6761 doms_cur = doms_new;
1d3504fc 6762 dattr_cur = dattr_new;
029190c5 6763 ndoms_cur = ndoms_new;
7378547f
MM
6764
6765 register_sched_domain_sysctl();
a1835615 6766
712555ee 6767 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6768}
6769
d35be8ba
SB
6770static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6771
1da177e4 6772/*
3a101d05
TH
6773 * Update cpusets according to cpu_active mask. If cpusets are
6774 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6775 * around partition_sched_domains().
d35be8ba
SB
6776 *
6777 * If we come here as part of a suspend/resume, don't touch cpusets because we
6778 * want to restore it back to its original state upon resume anyway.
1da177e4 6779 */
0b2e918a
TH
6780static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6781 void *hcpu)
e761b772 6782{
d35be8ba
SB
6783 switch (action) {
6784 case CPU_ONLINE_FROZEN:
6785 case CPU_DOWN_FAILED_FROZEN:
6786
6787 /*
6788 * num_cpus_frozen tracks how many CPUs are involved in suspend
6789 * resume sequence. As long as this is not the last online
6790 * operation in the resume sequence, just build a single sched
6791 * domain, ignoring cpusets.
6792 */
6793 num_cpus_frozen--;
6794 if (likely(num_cpus_frozen)) {
6795 partition_sched_domains(1, NULL, NULL);
6796 break;
6797 }
6798
6799 /*
6800 * This is the last CPU online operation. So fall through and
6801 * restore the original sched domains by considering the
6802 * cpuset configurations.
6803 */
6804
e761b772 6805 case CPU_ONLINE:
6ad4c188 6806 case CPU_DOWN_FAILED:
7ddf96b0 6807 cpuset_update_active_cpus(true);
d35be8ba 6808 break;
3a101d05
TH
6809 default:
6810 return NOTIFY_DONE;
6811 }
d35be8ba 6812 return NOTIFY_OK;
3a101d05 6813}
e761b772 6814
0b2e918a
TH
6815static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6816 void *hcpu)
3a101d05 6817{
d35be8ba 6818 switch (action) {
3a101d05 6819 case CPU_DOWN_PREPARE:
7ddf96b0 6820 cpuset_update_active_cpus(false);
d35be8ba
SB
6821 break;
6822 case CPU_DOWN_PREPARE_FROZEN:
6823 num_cpus_frozen++;
6824 partition_sched_domains(1, NULL, NULL);
6825 break;
e761b772
MK
6826 default:
6827 return NOTIFY_DONE;
6828 }
d35be8ba 6829 return NOTIFY_OK;
e761b772 6830}
e761b772 6831
1da177e4
LT
6832void __init sched_init_smp(void)
6833{
dcc30a35
RR
6834 cpumask_var_t non_isolated_cpus;
6835
6836 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6837 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6838
cb83b629
PZ
6839 sched_init_numa();
6840
6acce3ef
PZ
6841 /*
6842 * There's no userspace yet to cause hotplug operations; hence all the
6843 * cpu masks are stable and all blatant races in the below code cannot
6844 * happen.
6845 */
712555ee 6846 mutex_lock(&sched_domains_mutex);
c4a8849a 6847 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6848 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6849 if (cpumask_empty(non_isolated_cpus))
6850 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6851 mutex_unlock(&sched_domains_mutex);
e761b772 6852
301a5cba 6853 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6854 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6855 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6856
b328ca18 6857 init_hrtick();
5c1e1767
NP
6858
6859 /* Move init over to a non-isolated CPU */
dcc30a35 6860 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6861 BUG();
19978ca6 6862 sched_init_granularity();
dcc30a35 6863 free_cpumask_var(non_isolated_cpus);
4212823f 6864
0e3900e6 6865 init_sched_rt_class();
1baca4ce 6866 init_sched_dl_class();
1da177e4
LT
6867}
6868#else
6869void __init sched_init_smp(void)
6870{
19978ca6 6871 sched_init_granularity();
1da177e4
LT
6872}
6873#endif /* CONFIG_SMP */
6874
cd1bb94b
AB
6875const_debug unsigned int sysctl_timer_migration = 1;
6876
1da177e4
LT
6877int in_sched_functions(unsigned long addr)
6878{
1da177e4
LT
6879 return in_lock_functions(addr) ||
6880 (addr >= (unsigned long)__sched_text_start
6881 && addr < (unsigned long)__sched_text_end);
6882}
6883
029632fb 6884#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6885/*
6886 * Default task group.
6887 * Every task in system belongs to this group at bootup.
6888 */
029632fb 6889struct task_group root_task_group;
35cf4e50 6890LIST_HEAD(task_groups);
052f1dc7 6891#endif
6f505b16 6892
e6252c3e 6893DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6894
1da177e4
LT
6895void __init sched_init(void)
6896{
dd41f596 6897 int i, j;
434d53b0
MT
6898 unsigned long alloc_size = 0, ptr;
6899
6900#ifdef CONFIG_FAIR_GROUP_SCHED
6901 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6902#endif
6903#ifdef CONFIG_RT_GROUP_SCHED
6904 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6905#endif
df7c8e84 6906#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6907 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6908#endif
434d53b0 6909 if (alloc_size) {
36b7b6d4 6910 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6911
6912#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6913 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6914 ptr += nr_cpu_ids * sizeof(void **);
6915
07e06b01 6916 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6917 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6918
6d6bc0ad 6919#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6920#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6921 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6922 ptr += nr_cpu_ids * sizeof(void **);
6923
07e06b01 6924 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6925 ptr += nr_cpu_ids * sizeof(void **);
6926
6d6bc0ad 6927#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6928#ifdef CONFIG_CPUMASK_OFFSTACK
6929 for_each_possible_cpu(i) {
e6252c3e 6930 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6931 ptr += cpumask_size();
6932 }
6933#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6934 }
dd41f596 6935
332ac17e
DF
6936 init_rt_bandwidth(&def_rt_bandwidth,
6937 global_rt_period(), global_rt_runtime());
6938 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6939 global_rt_period(), global_rt_runtime());
332ac17e 6940
57d885fe
GH
6941#ifdef CONFIG_SMP
6942 init_defrootdomain();
6943#endif
6944
d0b27fa7 6945#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6946 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6947 global_rt_period(), global_rt_runtime());
6d6bc0ad 6948#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6949
7c941438 6950#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6951 list_add(&root_task_group.list, &task_groups);
6952 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6953 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6954 autogroup_init(&init_task);
54c707e9 6955
7c941438 6956#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6957
0a945022 6958 for_each_possible_cpu(i) {
70b97a7f 6959 struct rq *rq;
1da177e4
LT
6960
6961 rq = cpu_rq(i);
05fa785c 6962 raw_spin_lock_init(&rq->lock);
7897986b 6963 rq->nr_running = 0;
dce48a84
TG
6964 rq->calc_load_active = 0;
6965 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6966 init_cfs_rq(&rq->cfs);
6f505b16 6967 init_rt_rq(&rq->rt, rq);
aab03e05 6968 init_dl_rq(&rq->dl, rq);
dd41f596 6969#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6970 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6971 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6972 /*
07e06b01 6973 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6974 *
6975 * In case of task-groups formed thr' the cgroup filesystem, it
6976 * gets 100% of the cpu resources in the system. This overall
6977 * system cpu resource is divided among the tasks of
07e06b01 6978 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6979 * based on each entity's (task or task-group's) weight
6980 * (se->load.weight).
6981 *
07e06b01 6982 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6983 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6984 * then A0's share of the cpu resource is:
6985 *
0d905bca 6986 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6987 *
07e06b01
YZ
6988 * We achieve this by letting root_task_group's tasks sit
6989 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6990 */
ab84d31e 6991 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6992 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6993#endif /* CONFIG_FAIR_GROUP_SCHED */
6994
6995 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6996#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6997 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6998#endif
1da177e4 6999
dd41f596
IM
7000 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7001 rq->cpu_load[j] = 0;
fdf3e95d
VP
7002
7003 rq->last_load_update_tick = jiffies;
7004
1da177e4 7005#ifdef CONFIG_SMP
41c7ce9a 7006 rq->sd = NULL;
57d885fe 7007 rq->rd = NULL;
ca8ce3d0 7008 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7009 rq->post_schedule = 0;
1da177e4 7010 rq->active_balance = 0;
dd41f596 7011 rq->next_balance = jiffies;
1da177e4 7012 rq->push_cpu = 0;
0a2966b4 7013 rq->cpu = i;
1f11eb6a 7014 rq->online = 0;
eae0c9df
MG
7015 rq->idle_stamp = 0;
7016 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7017 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7018
7019 INIT_LIST_HEAD(&rq->cfs_tasks);
7020
dc938520 7021 rq_attach_root(rq, &def_root_domain);
3451d024 7022#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7023 rq->nohz_flags = 0;
83cd4fe2 7024#endif
265f22a9
FW
7025#ifdef CONFIG_NO_HZ_FULL
7026 rq->last_sched_tick = 0;
7027#endif
1da177e4 7028#endif
8f4d37ec 7029 init_rq_hrtick(rq);
1da177e4 7030 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7031 }
7032
2dd73a4f 7033 set_load_weight(&init_task);
b50f60ce 7034
e107be36
AK
7035#ifdef CONFIG_PREEMPT_NOTIFIERS
7036 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7037#endif
7038
1da177e4
LT
7039 /*
7040 * The boot idle thread does lazy MMU switching as well:
7041 */
7042 atomic_inc(&init_mm.mm_count);
7043 enter_lazy_tlb(&init_mm, current);
7044
7045 /*
7046 * Make us the idle thread. Technically, schedule() should not be
7047 * called from this thread, however somewhere below it might be,
7048 * but because we are the idle thread, we just pick up running again
7049 * when this runqueue becomes "idle".
7050 */
7051 init_idle(current, smp_processor_id());
dce48a84
TG
7052
7053 calc_load_update = jiffies + LOAD_FREQ;
7054
dd41f596
IM
7055 /*
7056 * During early bootup we pretend to be a normal task:
7057 */
7058 current->sched_class = &fair_sched_class;
6892b75e 7059
bf4d83f6 7060#ifdef CONFIG_SMP
4cb98839 7061 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7062 /* May be allocated at isolcpus cmdline parse time */
7063 if (cpu_isolated_map == NULL)
7064 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7065 idle_thread_set_boot_cpu();
a803f026 7066 set_cpu_rq_start_time();
029632fb
PZ
7067#endif
7068 init_sched_fair_class();
6a7b3dc3 7069
6892b75e 7070 scheduler_running = 1;
1da177e4
LT
7071}
7072
d902db1e 7073#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7074static inline int preempt_count_equals(int preempt_offset)
7075{
234da7bc 7076 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7077
4ba8216c 7078 return (nested == preempt_offset);
e4aafea2
FW
7079}
7080
d894837f 7081void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7082{
1da177e4
LT
7083 static unsigned long prev_jiffy; /* ratelimiting */
7084
b3fbab05 7085 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7086 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7087 !is_idle_task(current)) ||
e4aafea2 7088 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7089 return;
7090 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7091 return;
7092 prev_jiffy = jiffies;
7093
3df0fc5b
PZ
7094 printk(KERN_ERR
7095 "BUG: sleeping function called from invalid context at %s:%d\n",
7096 file, line);
7097 printk(KERN_ERR
7098 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7099 in_atomic(), irqs_disabled(),
7100 current->pid, current->comm);
aef745fc
IM
7101
7102 debug_show_held_locks(current);
7103 if (irqs_disabled())
7104 print_irqtrace_events(current);
8f47b187
TG
7105#ifdef CONFIG_DEBUG_PREEMPT
7106 if (!preempt_count_equals(preempt_offset)) {
7107 pr_err("Preemption disabled at:");
7108 print_ip_sym(current->preempt_disable_ip);
7109 pr_cont("\n");
7110 }
7111#endif
aef745fc 7112 dump_stack();
1da177e4
LT
7113}
7114EXPORT_SYMBOL(__might_sleep);
7115#endif
7116
7117#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7118static void normalize_task(struct rq *rq, struct task_struct *p)
7119{
da7a735e 7120 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7121 struct sched_attr attr = {
7122 .sched_policy = SCHED_NORMAL,
7123 };
da7a735e 7124 int old_prio = p->prio;
da0c1e65 7125 int queued;
3e51f33f 7126
da0c1e65
KT
7127 queued = task_on_rq_queued(p);
7128 if (queued)
4ca9b72b 7129 dequeue_task(rq, p, 0);
d50dde5a 7130 __setscheduler(rq, p, &attr);
da0c1e65 7131 if (queued) {
4ca9b72b 7132 enqueue_task(rq, p, 0);
8875125e 7133 resched_curr(rq);
3a5e4dc1 7134 }
da7a735e
PZ
7135
7136 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7137}
7138
1da177e4
LT
7139void normalize_rt_tasks(void)
7140{
a0f98a1c 7141 struct task_struct *g, *p;
1da177e4 7142 unsigned long flags;
70b97a7f 7143 struct rq *rq;
1da177e4 7144
4cf5d77a 7145 read_lock_irqsave(&tasklist_lock, flags);
5d07f420 7146 for_each_process_thread(g, p) {
178be793
IM
7147 /*
7148 * Only normalize user tasks:
7149 */
7150 if (!p->mm)
7151 continue;
7152
6cfb0d5d 7153 p->se.exec_start = 0;
6cfb0d5d 7154#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7155 p->se.statistics.wait_start = 0;
7156 p->se.statistics.sleep_start = 0;
7157 p->se.statistics.block_start = 0;
6cfb0d5d 7158#endif
dd41f596 7159
aab03e05 7160 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7161 /*
7162 * Renice negative nice level userspace
7163 * tasks back to 0:
7164 */
d0ea0268 7165 if (task_nice(p) < 0 && p->mm)
dd41f596 7166 set_user_nice(p, 0);
1da177e4 7167 continue;
dd41f596 7168 }
1da177e4 7169
1d615482 7170 raw_spin_lock(&p->pi_lock);
b29739f9 7171 rq = __task_rq_lock(p);
1da177e4 7172
178be793 7173 normalize_task(rq, p);
3a5e4dc1 7174
b29739f9 7175 __task_rq_unlock(rq);
1d615482 7176 raw_spin_unlock(&p->pi_lock);
5d07f420 7177 }
4cf5d77a 7178 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7179}
7180
7181#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7182
67fc4e0c 7183#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7184/*
67fc4e0c 7185 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7186 *
7187 * They can only be called when the whole system has been
7188 * stopped - every CPU needs to be quiescent, and no scheduling
7189 * activity can take place. Using them for anything else would
7190 * be a serious bug, and as a result, they aren't even visible
7191 * under any other configuration.
7192 */
7193
7194/**
7195 * curr_task - return the current task for a given cpu.
7196 * @cpu: the processor in question.
7197 *
7198 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7199 *
7200 * Return: The current task for @cpu.
1df5c10a 7201 */
36c8b586 7202struct task_struct *curr_task(int cpu)
1df5c10a
LT
7203{
7204 return cpu_curr(cpu);
7205}
7206
67fc4e0c
JW
7207#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7208
7209#ifdef CONFIG_IA64
1df5c10a
LT
7210/**
7211 * set_curr_task - set the current task for a given cpu.
7212 * @cpu: the processor in question.
7213 * @p: the task pointer to set.
7214 *
7215 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7216 * are serviced on a separate stack. It allows the architecture to switch the
7217 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7218 * must be called with all CPU's synchronized, and interrupts disabled, the
7219 * and caller must save the original value of the current task (see
7220 * curr_task() above) and restore that value before reenabling interrupts and
7221 * re-starting the system.
7222 *
7223 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7224 */
36c8b586 7225void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7226{
7227 cpu_curr(cpu) = p;
7228}
7229
7230#endif
29f59db3 7231
7c941438 7232#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7233/* task_group_lock serializes the addition/removal of task groups */
7234static DEFINE_SPINLOCK(task_group_lock);
7235
bccbe08a
PZ
7236static void free_sched_group(struct task_group *tg)
7237{
7238 free_fair_sched_group(tg);
7239 free_rt_sched_group(tg);
e9aa1dd1 7240 autogroup_free(tg);
bccbe08a
PZ
7241 kfree(tg);
7242}
7243
7244/* allocate runqueue etc for a new task group */
ec7dc8ac 7245struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7246{
7247 struct task_group *tg;
bccbe08a
PZ
7248
7249 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7250 if (!tg)
7251 return ERR_PTR(-ENOMEM);
7252
ec7dc8ac 7253 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7254 goto err;
7255
ec7dc8ac 7256 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7257 goto err;
7258
ace783b9
LZ
7259 return tg;
7260
7261err:
7262 free_sched_group(tg);
7263 return ERR_PTR(-ENOMEM);
7264}
7265
7266void sched_online_group(struct task_group *tg, struct task_group *parent)
7267{
7268 unsigned long flags;
7269
8ed36996 7270 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7271 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7272
7273 WARN_ON(!parent); /* root should already exist */
7274
7275 tg->parent = parent;
f473aa5e 7276 INIT_LIST_HEAD(&tg->children);
09f2724a 7277 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7278 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7279}
7280
9b5b7751 7281/* rcu callback to free various structures associated with a task group */
6f505b16 7282static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7283{
29f59db3 7284 /* now it should be safe to free those cfs_rqs */
6f505b16 7285 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7286}
7287
9b5b7751 7288/* Destroy runqueue etc associated with a task group */
4cf86d77 7289void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7290{
7291 /* wait for possible concurrent references to cfs_rqs complete */
7292 call_rcu(&tg->rcu, free_sched_group_rcu);
7293}
7294
7295void sched_offline_group(struct task_group *tg)
29f59db3 7296{
8ed36996 7297 unsigned long flags;
9b5b7751 7298 int i;
29f59db3 7299
3d4b47b4
PZ
7300 /* end participation in shares distribution */
7301 for_each_possible_cpu(i)
bccbe08a 7302 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7303
7304 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7305 list_del_rcu(&tg->list);
f473aa5e 7306 list_del_rcu(&tg->siblings);
8ed36996 7307 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7308}
7309
9b5b7751 7310/* change task's runqueue when it moves between groups.
3a252015
IM
7311 * The caller of this function should have put the task in its new group
7312 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7313 * reflect its new group.
9b5b7751
SV
7314 */
7315void sched_move_task(struct task_struct *tsk)
29f59db3 7316{
8323f26c 7317 struct task_group *tg;
da0c1e65 7318 int queued, running;
29f59db3
SV
7319 unsigned long flags;
7320 struct rq *rq;
7321
7322 rq = task_rq_lock(tsk, &flags);
7323
051a1d1a 7324 running = task_current(rq, tsk);
da0c1e65 7325 queued = task_on_rq_queued(tsk);
29f59db3 7326
da0c1e65 7327 if (queued)
29f59db3 7328 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7329 if (unlikely(running))
7330 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7331
073219e9 7332 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7333 lockdep_is_held(&tsk->sighand->siglock)),
7334 struct task_group, css);
7335 tg = autogroup_task_group(tsk, tg);
7336 tsk->sched_task_group = tg;
7337
810b3817 7338#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7339 if (tsk->sched_class->task_move_group)
da0c1e65 7340 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7341 else
810b3817 7342#endif
b2b5ce02 7343 set_task_rq(tsk, task_cpu(tsk));
810b3817 7344
0e1f3483
HS
7345 if (unlikely(running))
7346 tsk->sched_class->set_curr_task(rq);
da0c1e65 7347 if (queued)
371fd7e7 7348 enqueue_task(rq, tsk, 0);
29f59db3 7349
0122ec5b 7350 task_rq_unlock(rq, tsk, &flags);
29f59db3 7351}
7c941438 7352#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7353
a790de99
PT
7354#ifdef CONFIG_RT_GROUP_SCHED
7355/*
7356 * Ensure that the real time constraints are schedulable.
7357 */
7358static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7359
9a7e0b18
PZ
7360/* Must be called with tasklist_lock held */
7361static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7362{
9a7e0b18 7363 struct task_struct *g, *p;
b40b2e8e 7364
5d07f420 7365 for_each_process_thread(g, p) {
029632fb 7366 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18 7367 return 1;
5d07f420 7368 }
b40b2e8e 7369
9a7e0b18
PZ
7370 return 0;
7371}
b40b2e8e 7372
9a7e0b18
PZ
7373struct rt_schedulable_data {
7374 struct task_group *tg;
7375 u64 rt_period;
7376 u64 rt_runtime;
7377};
b40b2e8e 7378
a790de99 7379static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7380{
7381 struct rt_schedulable_data *d = data;
7382 struct task_group *child;
7383 unsigned long total, sum = 0;
7384 u64 period, runtime;
b40b2e8e 7385
9a7e0b18
PZ
7386 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7387 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7388
9a7e0b18
PZ
7389 if (tg == d->tg) {
7390 period = d->rt_period;
7391 runtime = d->rt_runtime;
b40b2e8e 7392 }
b40b2e8e 7393
4653f803
PZ
7394 /*
7395 * Cannot have more runtime than the period.
7396 */
7397 if (runtime > period && runtime != RUNTIME_INF)
7398 return -EINVAL;
6f505b16 7399
4653f803
PZ
7400 /*
7401 * Ensure we don't starve existing RT tasks.
7402 */
9a7e0b18
PZ
7403 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7404 return -EBUSY;
6f505b16 7405
9a7e0b18 7406 total = to_ratio(period, runtime);
6f505b16 7407
4653f803
PZ
7408 /*
7409 * Nobody can have more than the global setting allows.
7410 */
7411 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7412 return -EINVAL;
6f505b16 7413
4653f803
PZ
7414 /*
7415 * The sum of our children's runtime should not exceed our own.
7416 */
9a7e0b18
PZ
7417 list_for_each_entry_rcu(child, &tg->children, siblings) {
7418 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7419 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7420
9a7e0b18
PZ
7421 if (child == d->tg) {
7422 period = d->rt_period;
7423 runtime = d->rt_runtime;
7424 }
6f505b16 7425
9a7e0b18 7426 sum += to_ratio(period, runtime);
9f0c1e56 7427 }
6f505b16 7428
9a7e0b18
PZ
7429 if (sum > total)
7430 return -EINVAL;
7431
7432 return 0;
6f505b16
PZ
7433}
7434
9a7e0b18 7435static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7436{
8277434e
PT
7437 int ret;
7438
9a7e0b18
PZ
7439 struct rt_schedulable_data data = {
7440 .tg = tg,
7441 .rt_period = period,
7442 .rt_runtime = runtime,
7443 };
7444
8277434e
PT
7445 rcu_read_lock();
7446 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7447 rcu_read_unlock();
7448
7449 return ret;
521f1a24
DG
7450}
7451
ab84d31e 7452static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7453 u64 rt_period, u64 rt_runtime)
6f505b16 7454{
ac086bc2 7455 int i, err = 0;
9f0c1e56 7456
9f0c1e56 7457 mutex_lock(&rt_constraints_mutex);
521f1a24 7458 read_lock(&tasklist_lock);
9a7e0b18
PZ
7459 err = __rt_schedulable(tg, rt_period, rt_runtime);
7460 if (err)
9f0c1e56 7461 goto unlock;
ac086bc2 7462
0986b11b 7463 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7464 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7465 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7466
7467 for_each_possible_cpu(i) {
7468 struct rt_rq *rt_rq = tg->rt_rq[i];
7469
0986b11b 7470 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7471 rt_rq->rt_runtime = rt_runtime;
0986b11b 7472 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7473 }
0986b11b 7474 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7475unlock:
521f1a24 7476 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7477 mutex_unlock(&rt_constraints_mutex);
7478
7479 return err;
6f505b16
PZ
7480}
7481
25cc7da7 7482static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7483{
7484 u64 rt_runtime, rt_period;
7485
7486 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7487 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7488 if (rt_runtime_us < 0)
7489 rt_runtime = RUNTIME_INF;
7490
ab84d31e 7491 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7492}
7493
25cc7da7 7494static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7495{
7496 u64 rt_runtime_us;
7497
d0b27fa7 7498 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7499 return -1;
7500
d0b27fa7 7501 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7502 do_div(rt_runtime_us, NSEC_PER_USEC);
7503 return rt_runtime_us;
7504}
d0b27fa7 7505
25cc7da7 7506static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7507{
7508 u64 rt_runtime, rt_period;
7509
7510 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7511 rt_runtime = tg->rt_bandwidth.rt_runtime;
7512
619b0488
R
7513 if (rt_period == 0)
7514 return -EINVAL;
7515
ab84d31e 7516 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7517}
7518
25cc7da7 7519static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7520{
7521 u64 rt_period_us;
7522
7523 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7524 do_div(rt_period_us, NSEC_PER_USEC);
7525 return rt_period_us;
7526}
332ac17e 7527#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7528
332ac17e 7529#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7530static int sched_rt_global_constraints(void)
7531{
7532 int ret = 0;
7533
7534 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7535 read_lock(&tasklist_lock);
4653f803 7536 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7537 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7538 mutex_unlock(&rt_constraints_mutex);
7539
7540 return ret;
7541}
54e99124 7542
25cc7da7 7543static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7544{
7545 /* Don't accept realtime tasks when there is no way for them to run */
7546 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7547 return 0;
7548
7549 return 1;
7550}
7551
6d6bc0ad 7552#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7553static int sched_rt_global_constraints(void)
7554{
ac086bc2 7555 unsigned long flags;
332ac17e 7556 int i, ret = 0;
ec5d4989 7557
0986b11b 7558 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7559 for_each_possible_cpu(i) {
7560 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7561
0986b11b 7562 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7563 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7564 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7565 }
0986b11b 7566 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7567
332ac17e 7568 return ret;
d0b27fa7 7569}
6d6bc0ad 7570#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7571
332ac17e
DF
7572static int sched_dl_global_constraints(void)
7573{
1724813d
PZ
7574 u64 runtime = global_rt_runtime();
7575 u64 period = global_rt_period();
332ac17e 7576 u64 new_bw = to_ratio(period, runtime);
1724813d 7577 int cpu, ret = 0;
49516342 7578 unsigned long flags;
332ac17e
DF
7579
7580 /*
7581 * Here we want to check the bandwidth not being set to some
7582 * value smaller than the currently allocated bandwidth in
7583 * any of the root_domains.
7584 *
7585 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7586 * cycling on root_domains... Discussion on different/better
7587 * solutions is welcome!
7588 */
1724813d
PZ
7589 for_each_possible_cpu(cpu) {
7590 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7591
49516342 7592 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7593 if (new_bw < dl_b->total_bw)
7594 ret = -EBUSY;
49516342 7595 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7596
7597 if (ret)
7598 break;
332ac17e
DF
7599 }
7600
1724813d 7601 return ret;
332ac17e
DF
7602}
7603
1724813d 7604static void sched_dl_do_global(void)
ce0dbbbb 7605{
1724813d
PZ
7606 u64 new_bw = -1;
7607 int cpu;
49516342 7608 unsigned long flags;
ce0dbbbb 7609
1724813d
PZ
7610 def_dl_bandwidth.dl_period = global_rt_period();
7611 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7612
7613 if (global_rt_runtime() != RUNTIME_INF)
7614 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7615
7616 /*
7617 * FIXME: As above...
7618 */
7619 for_each_possible_cpu(cpu) {
7620 struct dl_bw *dl_b = dl_bw_of(cpu);
7621
49516342 7622 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7623 dl_b->bw = new_bw;
49516342 7624 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7625 }
1724813d
PZ
7626}
7627
7628static int sched_rt_global_validate(void)
7629{
7630 if (sysctl_sched_rt_period <= 0)
7631 return -EINVAL;
7632
e9e7cb38
JL
7633 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7634 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7635 return -EINVAL;
7636
7637 return 0;
7638}
7639
7640static void sched_rt_do_global(void)
7641{
7642 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7643 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7644}
7645
d0b27fa7 7646int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7647 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7648 loff_t *ppos)
7649{
d0b27fa7
PZ
7650 int old_period, old_runtime;
7651 static DEFINE_MUTEX(mutex);
1724813d 7652 int ret;
d0b27fa7
PZ
7653
7654 mutex_lock(&mutex);
7655 old_period = sysctl_sched_rt_period;
7656 old_runtime = sysctl_sched_rt_runtime;
7657
8d65af78 7658 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7659
7660 if (!ret && write) {
1724813d
PZ
7661 ret = sched_rt_global_validate();
7662 if (ret)
7663 goto undo;
7664
d0b27fa7 7665 ret = sched_rt_global_constraints();
1724813d
PZ
7666 if (ret)
7667 goto undo;
7668
7669 ret = sched_dl_global_constraints();
7670 if (ret)
7671 goto undo;
7672
7673 sched_rt_do_global();
7674 sched_dl_do_global();
7675 }
7676 if (0) {
7677undo:
7678 sysctl_sched_rt_period = old_period;
7679 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7680 }
7681 mutex_unlock(&mutex);
7682
7683 return ret;
7684}
68318b8e 7685
1724813d 7686int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7687 void __user *buffer, size_t *lenp,
7688 loff_t *ppos)
7689{
7690 int ret;
332ac17e 7691 static DEFINE_MUTEX(mutex);
332ac17e
DF
7692
7693 mutex_lock(&mutex);
332ac17e 7694 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7695 /* make sure that internally we keep jiffies */
7696 /* also, writing zero resets timeslice to default */
332ac17e 7697 if (!ret && write) {
1724813d
PZ
7698 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7699 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7700 }
7701 mutex_unlock(&mutex);
332ac17e
DF
7702 return ret;
7703}
7704
052f1dc7 7705#ifdef CONFIG_CGROUP_SCHED
68318b8e 7706
a7c6d554 7707static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7708{
a7c6d554 7709 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7710}
7711
eb95419b
TH
7712static struct cgroup_subsys_state *
7713cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7714{
eb95419b
TH
7715 struct task_group *parent = css_tg(parent_css);
7716 struct task_group *tg;
68318b8e 7717
eb95419b 7718 if (!parent) {
68318b8e 7719 /* This is early initialization for the top cgroup */
07e06b01 7720 return &root_task_group.css;
68318b8e
SV
7721 }
7722
ec7dc8ac 7723 tg = sched_create_group(parent);
68318b8e
SV
7724 if (IS_ERR(tg))
7725 return ERR_PTR(-ENOMEM);
7726
68318b8e
SV
7727 return &tg->css;
7728}
7729
eb95419b 7730static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7731{
eb95419b 7732 struct task_group *tg = css_tg(css);
5c9d535b 7733 struct task_group *parent = css_tg(css->parent);
ace783b9 7734
63876986
TH
7735 if (parent)
7736 sched_online_group(tg, parent);
ace783b9
LZ
7737 return 0;
7738}
7739
eb95419b 7740static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7741{
eb95419b 7742 struct task_group *tg = css_tg(css);
68318b8e
SV
7743
7744 sched_destroy_group(tg);
7745}
7746
eb95419b 7747static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7748{
eb95419b 7749 struct task_group *tg = css_tg(css);
ace783b9
LZ
7750
7751 sched_offline_group(tg);
7752}
7753
eb95419b 7754static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7755 struct cgroup_taskset *tset)
68318b8e 7756{
bb9d97b6
TH
7757 struct task_struct *task;
7758
924f0d9a 7759 cgroup_taskset_for_each(task, tset) {
b68aa230 7760#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7761 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7762 return -EINVAL;
b68aa230 7763#else
bb9d97b6
TH
7764 /* We don't support RT-tasks being in separate groups */
7765 if (task->sched_class != &fair_sched_class)
7766 return -EINVAL;
b68aa230 7767#endif
bb9d97b6 7768 }
be367d09
BB
7769 return 0;
7770}
68318b8e 7771
eb95419b 7772static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7773 struct cgroup_taskset *tset)
68318b8e 7774{
bb9d97b6
TH
7775 struct task_struct *task;
7776
924f0d9a 7777 cgroup_taskset_for_each(task, tset)
bb9d97b6 7778 sched_move_task(task);
68318b8e
SV
7779}
7780
eb95419b
TH
7781static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7782 struct cgroup_subsys_state *old_css,
7783 struct task_struct *task)
068c5cc5
PZ
7784{
7785 /*
7786 * cgroup_exit() is called in the copy_process() failure path.
7787 * Ignore this case since the task hasn't ran yet, this avoids
7788 * trying to poke a half freed task state from generic code.
7789 */
7790 if (!(task->flags & PF_EXITING))
7791 return;
7792
7793 sched_move_task(task);
7794}
7795
052f1dc7 7796#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7797static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7798 struct cftype *cftype, u64 shareval)
68318b8e 7799{
182446d0 7800 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7801}
7802
182446d0
TH
7803static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7804 struct cftype *cft)
68318b8e 7805{
182446d0 7806 struct task_group *tg = css_tg(css);
68318b8e 7807
c8b28116 7808 return (u64) scale_load_down(tg->shares);
68318b8e 7809}
ab84d31e
PT
7810
7811#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7812static DEFINE_MUTEX(cfs_constraints_mutex);
7813
ab84d31e
PT
7814const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7815const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7816
a790de99
PT
7817static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7818
ab84d31e
PT
7819static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7820{
56f570e5 7821 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7822 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7823
7824 if (tg == &root_task_group)
7825 return -EINVAL;
7826
7827 /*
7828 * Ensure we have at some amount of bandwidth every period. This is
7829 * to prevent reaching a state of large arrears when throttled via
7830 * entity_tick() resulting in prolonged exit starvation.
7831 */
7832 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7833 return -EINVAL;
7834
7835 /*
7836 * Likewise, bound things on the otherside by preventing insane quota
7837 * periods. This also allows us to normalize in computing quota
7838 * feasibility.
7839 */
7840 if (period > max_cfs_quota_period)
7841 return -EINVAL;
7842
0e59bdae
KT
7843 /*
7844 * Prevent race between setting of cfs_rq->runtime_enabled and
7845 * unthrottle_offline_cfs_rqs().
7846 */
7847 get_online_cpus();
a790de99
PT
7848 mutex_lock(&cfs_constraints_mutex);
7849 ret = __cfs_schedulable(tg, period, quota);
7850 if (ret)
7851 goto out_unlock;
7852
58088ad0 7853 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7854 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7855 /*
7856 * If we need to toggle cfs_bandwidth_used, off->on must occur
7857 * before making related changes, and on->off must occur afterwards
7858 */
7859 if (runtime_enabled && !runtime_was_enabled)
7860 cfs_bandwidth_usage_inc();
ab84d31e
PT
7861 raw_spin_lock_irq(&cfs_b->lock);
7862 cfs_b->period = ns_to_ktime(period);
7863 cfs_b->quota = quota;
58088ad0 7864
a9cf55b2 7865 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7866 /* restart the period timer (if active) to handle new period expiry */
7867 if (runtime_enabled && cfs_b->timer_active) {
7868 /* force a reprogram */
09dc4ab0 7869 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7870 }
ab84d31e
PT
7871 raw_spin_unlock_irq(&cfs_b->lock);
7872
0e59bdae 7873 for_each_online_cpu(i) {
ab84d31e 7874 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7875 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7876
7877 raw_spin_lock_irq(&rq->lock);
58088ad0 7878 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7879 cfs_rq->runtime_remaining = 0;
671fd9da 7880
029632fb 7881 if (cfs_rq->throttled)
671fd9da 7882 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7883 raw_spin_unlock_irq(&rq->lock);
7884 }
1ee14e6c
BS
7885 if (runtime_was_enabled && !runtime_enabled)
7886 cfs_bandwidth_usage_dec();
a790de99
PT
7887out_unlock:
7888 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7889 put_online_cpus();
ab84d31e 7890
a790de99 7891 return ret;
ab84d31e
PT
7892}
7893
7894int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7895{
7896 u64 quota, period;
7897
029632fb 7898 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7899 if (cfs_quota_us < 0)
7900 quota = RUNTIME_INF;
7901 else
7902 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7903
7904 return tg_set_cfs_bandwidth(tg, period, quota);
7905}
7906
7907long tg_get_cfs_quota(struct task_group *tg)
7908{
7909 u64 quota_us;
7910
029632fb 7911 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7912 return -1;
7913
029632fb 7914 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7915 do_div(quota_us, NSEC_PER_USEC);
7916
7917 return quota_us;
7918}
7919
7920int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7921{
7922 u64 quota, period;
7923
7924 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7925 quota = tg->cfs_bandwidth.quota;
ab84d31e 7926
ab84d31e
PT
7927 return tg_set_cfs_bandwidth(tg, period, quota);
7928}
7929
7930long tg_get_cfs_period(struct task_group *tg)
7931{
7932 u64 cfs_period_us;
7933
029632fb 7934 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7935 do_div(cfs_period_us, NSEC_PER_USEC);
7936
7937 return cfs_period_us;
7938}
7939
182446d0
TH
7940static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7941 struct cftype *cft)
ab84d31e 7942{
182446d0 7943 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7944}
7945
182446d0
TH
7946static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7947 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7948{
182446d0 7949 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7950}
7951
182446d0
TH
7952static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7953 struct cftype *cft)
ab84d31e 7954{
182446d0 7955 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7956}
7957
182446d0
TH
7958static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7959 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7960{
182446d0 7961 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7962}
7963
a790de99
PT
7964struct cfs_schedulable_data {
7965 struct task_group *tg;
7966 u64 period, quota;
7967};
7968
7969/*
7970 * normalize group quota/period to be quota/max_period
7971 * note: units are usecs
7972 */
7973static u64 normalize_cfs_quota(struct task_group *tg,
7974 struct cfs_schedulable_data *d)
7975{
7976 u64 quota, period;
7977
7978 if (tg == d->tg) {
7979 period = d->period;
7980 quota = d->quota;
7981 } else {
7982 period = tg_get_cfs_period(tg);
7983 quota = tg_get_cfs_quota(tg);
7984 }
7985
7986 /* note: these should typically be equivalent */
7987 if (quota == RUNTIME_INF || quota == -1)
7988 return RUNTIME_INF;
7989
7990 return to_ratio(period, quota);
7991}
7992
7993static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7994{
7995 struct cfs_schedulable_data *d = data;
029632fb 7996 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7997 s64 quota = 0, parent_quota = -1;
7998
7999 if (!tg->parent) {
8000 quota = RUNTIME_INF;
8001 } else {
029632fb 8002 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8003
8004 quota = normalize_cfs_quota(tg, d);
8005 parent_quota = parent_b->hierarchal_quota;
8006
8007 /*
8008 * ensure max(child_quota) <= parent_quota, inherit when no
8009 * limit is set
8010 */
8011 if (quota == RUNTIME_INF)
8012 quota = parent_quota;
8013 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8014 return -EINVAL;
8015 }
8016 cfs_b->hierarchal_quota = quota;
8017
8018 return 0;
8019}
8020
8021static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8022{
8277434e 8023 int ret;
a790de99
PT
8024 struct cfs_schedulable_data data = {
8025 .tg = tg,
8026 .period = period,
8027 .quota = quota,
8028 };
8029
8030 if (quota != RUNTIME_INF) {
8031 do_div(data.period, NSEC_PER_USEC);
8032 do_div(data.quota, NSEC_PER_USEC);
8033 }
8034
8277434e
PT
8035 rcu_read_lock();
8036 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8037 rcu_read_unlock();
8038
8039 return ret;
a790de99 8040}
e8da1b18 8041
2da8ca82 8042static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8043{
2da8ca82 8044 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8045 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8046
44ffc75b
TH
8047 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8048 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8049 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8050
8051 return 0;
8052}
ab84d31e 8053#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8054#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8055
052f1dc7 8056#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8057static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8058 struct cftype *cft, s64 val)
6f505b16 8059{
182446d0 8060 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8061}
8062
182446d0
TH
8063static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8064 struct cftype *cft)
6f505b16 8065{
182446d0 8066 return sched_group_rt_runtime(css_tg(css));
6f505b16 8067}
d0b27fa7 8068
182446d0
TH
8069static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8070 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8071{
182446d0 8072 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8073}
8074
182446d0
TH
8075static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8076 struct cftype *cft)
d0b27fa7 8077{
182446d0 8078 return sched_group_rt_period(css_tg(css));
d0b27fa7 8079}
6d6bc0ad 8080#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8081
fe5c7cc2 8082static struct cftype cpu_files[] = {
052f1dc7 8083#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8084 {
8085 .name = "shares",
f4c753b7
PM
8086 .read_u64 = cpu_shares_read_u64,
8087 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8088 },
052f1dc7 8089#endif
ab84d31e
PT
8090#ifdef CONFIG_CFS_BANDWIDTH
8091 {
8092 .name = "cfs_quota_us",
8093 .read_s64 = cpu_cfs_quota_read_s64,
8094 .write_s64 = cpu_cfs_quota_write_s64,
8095 },
8096 {
8097 .name = "cfs_period_us",
8098 .read_u64 = cpu_cfs_period_read_u64,
8099 .write_u64 = cpu_cfs_period_write_u64,
8100 },
e8da1b18
NR
8101 {
8102 .name = "stat",
2da8ca82 8103 .seq_show = cpu_stats_show,
e8da1b18 8104 },
ab84d31e 8105#endif
052f1dc7 8106#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8107 {
9f0c1e56 8108 .name = "rt_runtime_us",
06ecb27c
PM
8109 .read_s64 = cpu_rt_runtime_read,
8110 .write_s64 = cpu_rt_runtime_write,
6f505b16 8111 },
d0b27fa7
PZ
8112 {
8113 .name = "rt_period_us",
f4c753b7
PM
8114 .read_u64 = cpu_rt_period_read_uint,
8115 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8116 },
052f1dc7 8117#endif
4baf6e33 8118 { } /* terminate */
68318b8e
SV
8119};
8120
073219e9 8121struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8122 .css_alloc = cpu_cgroup_css_alloc,
8123 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8124 .css_online = cpu_cgroup_css_online,
8125 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8126 .can_attach = cpu_cgroup_can_attach,
8127 .attach = cpu_cgroup_attach,
068c5cc5 8128 .exit = cpu_cgroup_exit,
5577964e 8129 .legacy_cftypes = cpu_files,
68318b8e
SV
8130 .early_init = 1,
8131};
8132
052f1dc7 8133#endif /* CONFIG_CGROUP_SCHED */
d842de87 8134
b637a328
PM
8135void dump_cpu_task(int cpu)
8136{
8137 pr_info("Task dump for CPU %d:\n", cpu);
8138 sched_show_task(cpu_curr(cpu));
8139}