sched: Reduce overestimating rq->avg_idle
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516#ifdef CONFIG_SMP
029632fb 517void resched_task(struct task_struct *p)
c24d20db
IM
518{
519 int cpu;
520
05fa785c 521 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 522
5ed0cec0 523 if (test_tsk_need_resched(p))
c24d20db
IM
524 return;
525
5ed0cec0 526 set_tsk_need_resched(p);
c24d20db
IM
527
528 cpu = task_cpu(p);
529 if (cpu == smp_processor_id())
530 return;
531
532 /* NEED_RESCHED must be visible before we test polling */
533 smp_mb();
534 if (!tsk_is_polling(p))
535 smp_send_reschedule(cpu);
536}
537
029632fb 538void resched_cpu(int cpu)
c24d20db
IM
539{
540 struct rq *rq = cpu_rq(cpu);
541 unsigned long flags;
542
05fa785c 543 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
544 return;
545 resched_task(cpu_curr(cpu));
05fa785c 546 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 547}
06d8308c 548
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#else /* !CONFIG_SMP */
029632fb 697void resched_task(struct task_struct *p)
18d95a28 698{
05fa785c 699 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 700 set_tsk_need_resched(p);
18d95a28 701}
6d6bc0ad 702#endif /* CONFIG_SMP */
18d95a28 703
a790de99
PT
704#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 706/*
8277434e
PT
707 * Iterate task_group tree rooted at *from, calling @down when first entering a
708 * node and @up when leaving it for the final time.
709 *
710 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 711 */
029632fb 712int walk_tg_tree_from(struct task_group *from,
8277434e 713 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
714{
715 struct task_group *parent, *child;
eb755805 716 int ret;
c09595f6 717
8277434e
PT
718 parent = from;
719
c09595f6 720down:
eb755805
PZ
721 ret = (*down)(parent, data);
722 if (ret)
8277434e 723 goto out;
c09595f6
PZ
724 list_for_each_entry_rcu(child, &parent->children, siblings) {
725 parent = child;
726 goto down;
727
728up:
729 continue;
730 }
eb755805 731 ret = (*up)(parent, data);
8277434e
PT
732 if (ret || parent == from)
733 goto out;
c09595f6
PZ
734
735 child = parent;
736 parent = parent->parent;
737 if (parent)
738 goto up;
8277434e 739out:
eb755805 740 return ret;
c09595f6
PZ
741}
742
029632fb 743int tg_nop(struct task_group *tg, void *data)
eb755805 744{
e2b245f8 745 return 0;
eb755805 746}
18d95a28
PZ
747#endif
748
45bf76df
IM
749static void set_load_weight(struct task_struct *p)
750{
f05998d4
NR
751 int prio = p->static_prio - MAX_RT_PRIO;
752 struct load_weight *load = &p->se.load;
753
dd41f596
IM
754 /*
755 * SCHED_IDLE tasks get minimal weight:
756 */
757 if (p->policy == SCHED_IDLE) {
c8b28116 758 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 759 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
760 return;
761 }
71f8bd46 762
c8b28116 763 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 764 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
765}
766
371fd7e7 767static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 768{
a64692a3 769 update_rq_clock(rq);
dd41f596 770 sched_info_queued(p);
371fd7e7 771 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
772}
773
371fd7e7 774static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 775{
a64692a3 776 update_rq_clock(rq);
46ac22ba 777 sched_info_dequeued(p);
371fd7e7 778 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
779}
780
029632fb 781void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
782{
783 if (task_contributes_to_load(p))
784 rq->nr_uninterruptible--;
785
371fd7e7 786 enqueue_task(rq, p, flags);
1e3c88bd
PZ
787}
788
029632fb 789void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
790{
791 if (task_contributes_to_load(p))
792 rq->nr_uninterruptible++;
793
371fd7e7 794 dequeue_task(rq, p, flags);
1e3c88bd
PZ
795}
796
fe44d621 797static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 798{
095c0aa8
GC
799/*
800 * In theory, the compile should just see 0 here, and optimize out the call
801 * to sched_rt_avg_update. But I don't trust it...
802 */
803#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
804 s64 steal = 0, irq_delta = 0;
805#endif
806#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 807 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
808
809 /*
810 * Since irq_time is only updated on {soft,}irq_exit, we might run into
811 * this case when a previous update_rq_clock() happened inside a
812 * {soft,}irq region.
813 *
814 * When this happens, we stop ->clock_task and only update the
815 * prev_irq_time stamp to account for the part that fit, so that a next
816 * update will consume the rest. This ensures ->clock_task is
817 * monotonic.
818 *
819 * It does however cause some slight miss-attribution of {soft,}irq
820 * time, a more accurate solution would be to update the irq_time using
821 * the current rq->clock timestamp, except that would require using
822 * atomic ops.
823 */
824 if (irq_delta > delta)
825 irq_delta = delta;
826
827 rq->prev_irq_time += irq_delta;
828 delta -= irq_delta;
095c0aa8
GC
829#endif
830#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 831 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
832 u64 st;
833
834 steal = paravirt_steal_clock(cpu_of(rq));
835 steal -= rq->prev_steal_time_rq;
836
837 if (unlikely(steal > delta))
838 steal = delta;
839
840 st = steal_ticks(steal);
841 steal = st * TICK_NSEC;
842
843 rq->prev_steal_time_rq += steal;
844
845 delta -= steal;
846 }
847#endif
848
fe44d621
PZ
849 rq->clock_task += delta;
850
095c0aa8
GC
851#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
852 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
853 sched_rt_avg_update(rq, irq_delta + steal);
854#endif
aa483808
VP
855}
856
34f971f6
PZ
857void sched_set_stop_task(int cpu, struct task_struct *stop)
858{
859 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
860 struct task_struct *old_stop = cpu_rq(cpu)->stop;
861
862 if (stop) {
863 /*
864 * Make it appear like a SCHED_FIFO task, its something
865 * userspace knows about and won't get confused about.
866 *
867 * Also, it will make PI more or less work without too
868 * much confusion -- but then, stop work should not
869 * rely on PI working anyway.
870 */
871 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
872
873 stop->sched_class = &stop_sched_class;
874 }
875
876 cpu_rq(cpu)->stop = stop;
877
878 if (old_stop) {
879 /*
880 * Reset it back to a normal scheduling class so that
881 * it can die in pieces.
882 */
883 old_stop->sched_class = &rt_sched_class;
884 }
885}
886
14531189 887/*
dd41f596 888 * __normal_prio - return the priority that is based on the static prio
14531189 889 */
14531189
IM
890static inline int __normal_prio(struct task_struct *p)
891{
dd41f596 892 return p->static_prio;
14531189
IM
893}
894
b29739f9
IM
895/*
896 * Calculate the expected normal priority: i.e. priority
897 * without taking RT-inheritance into account. Might be
898 * boosted by interactivity modifiers. Changes upon fork,
899 * setprio syscalls, and whenever the interactivity
900 * estimator recalculates.
901 */
36c8b586 902static inline int normal_prio(struct task_struct *p)
b29739f9
IM
903{
904 int prio;
905
e05606d3 906 if (task_has_rt_policy(p))
b29739f9
IM
907 prio = MAX_RT_PRIO-1 - p->rt_priority;
908 else
909 prio = __normal_prio(p);
910 return prio;
911}
912
913/*
914 * Calculate the current priority, i.e. the priority
915 * taken into account by the scheduler. This value might
916 * be boosted by RT tasks, or might be boosted by
917 * interactivity modifiers. Will be RT if the task got
918 * RT-boosted. If not then it returns p->normal_prio.
919 */
36c8b586 920static int effective_prio(struct task_struct *p)
b29739f9
IM
921{
922 p->normal_prio = normal_prio(p);
923 /*
924 * If we are RT tasks or we were boosted to RT priority,
925 * keep the priority unchanged. Otherwise, update priority
926 * to the normal priority:
927 */
928 if (!rt_prio(p->prio))
929 return p->normal_prio;
930 return p->prio;
931}
932
1da177e4
LT
933/**
934 * task_curr - is this task currently executing on a CPU?
935 * @p: the task in question.
e69f6186
YB
936 *
937 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 938 */
36c8b586 939inline int task_curr(const struct task_struct *p)
1da177e4
LT
940{
941 return cpu_curr(task_cpu(p)) == p;
942}
943
cb469845
SR
944static inline void check_class_changed(struct rq *rq, struct task_struct *p,
945 const struct sched_class *prev_class,
da7a735e 946 int oldprio)
cb469845
SR
947{
948 if (prev_class != p->sched_class) {
949 if (prev_class->switched_from)
da7a735e
PZ
950 prev_class->switched_from(rq, p);
951 p->sched_class->switched_to(rq, p);
952 } else if (oldprio != p->prio)
953 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
954}
955
029632fb 956void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
957{
958 const struct sched_class *class;
959
960 if (p->sched_class == rq->curr->sched_class) {
961 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
962 } else {
963 for_each_class(class) {
964 if (class == rq->curr->sched_class)
965 break;
966 if (class == p->sched_class) {
967 resched_task(rq->curr);
968 break;
969 }
970 }
971 }
972
973 /*
974 * A queue event has occurred, and we're going to schedule. In
975 * this case, we can save a useless back to back clock update.
976 */
fd2f4419 977 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
978 rq->skip_clock_update = 1;
979}
980
1da177e4 981#ifdef CONFIG_SMP
dd41f596 982void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 983{
e2912009
PZ
984#ifdef CONFIG_SCHED_DEBUG
985 /*
986 * We should never call set_task_cpu() on a blocked task,
987 * ttwu() will sort out the placement.
988 */
077614ee
PZ
989 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
990 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
991
992#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
993 /*
994 * The caller should hold either p->pi_lock or rq->lock, when changing
995 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
996 *
997 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 998 * see task_group().
6c6c54e1
PZ
999 *
1000 * Furthermore, all task_rq users should acquire both locks, see
1001 * task_rq_lock().
1002 */
0122ec5b
PZ
1003 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1004 lockdep_is_held(&task_rq(p)->lock)));
1005#endif
e2912009
PZ
1006#endif
1007
de1d7286 1008 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1009
0c69774e 1010 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1011 if (p->sched_class->migrate_task_rq)
1012 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1013 p->se.nr_migrations++;
a8b0ca17 1014 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1015 }
dd41f596
IM
1016
1017 __set_task_cpu(p, new_cpu);
c65cc870
IM
1018}
1019
969c7921 1020struct migration_arg {
36c8b586 1021 struct task_struct *task;
1da177e4 1022 int dest_cpu;
70b97a7f 1023};
1da177e4 1024
969c7921
TH
1025static int migration_cpu_stop(void *data);
1026
1da177e4
LT
1027/*
1028 * wait_task_inactive - wait for a thread to unschedule.
1029 *
85ba2d86
RM
1030 * If @match_state is nonzero, it's the @p->state value just checked and
1031 * not expected to change. If it changes, i.e. @p might have woken up,
1032 * then return zero. When we succeed in waiting for @p to be off its CPU,
1033 * we return a positive number (its total switch count). If a second call
1034 * a short while later returns the same number, the caller can be sure that
1035 * @p has remained unscheduled the whole time.
1036 *
1da177e4
LT
1037 * The caller must ensure that the task *will* unschedule sometime soon,
1038 * else this function might spin for a *long* time. This function can't
1039 * be called with interrupts off, or it may introduce deadlock with
1040 * smp_call_function() if an IPI is sent by the same process we are
1041 * waiting to become inactive.
1042 */
85ba2d86 1043unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1044{
1045 unsigned long flags;
dd41f596 1046 int running, on_rq;
85ba2d86 1047 unsigned long ncsw;
70b97a7f 1048 struct rq *rq;
1da177e4 1049
3a5c359a
AK
1050 for (;;) {
1051 /*
1052 * We do the initial early heuristics without holding
1053 * any task-queue locks at all. We'll only try to get
1054 * the runqueue lock when things look like they will
1055 * work out!
1056 */
1057 rq = task_rq(p);
fa490cfd 1058
3a5c359a
AK
1059 /*
1060 * If the task is actively running on another CPU
1061 * still, just relax and busy-wait without holding
1062 * any locks.
1063 *
1064 * NOTE! Since we don't hold any locks, it's not
1065 * even sure that "rq" stays as the right runqueue!
1066 * But we don't care, since "task_running()" will
1067 * return false if the runqueue has changed and p
1068 * is actually now running somewhere else!
1069 */
85ba2d86
RM
1070 while (task_running(rq, p)) {
1071 if (match_state && unlikely(p->state != match_state))
1072 return 0;
3a5c359a 1073 cpu_relax();
85ba2d86 1074 }
fa490cfd 1075
3a5c359a
AK
1076 /*
1077 * Ok, time to look more closely! We need the rq
1078 * lock now, to be *sure*. If we're wrong, we'll
1079 * just go back and repeat.
1080 */
1081 rq = task_rq_lock(p, &flags);
27a9da65 1082 trace_sched_wait_task(p);
3a5c359a 1083 running = task_running(rq, p);
fd2f4419 1084 on_rq = p->on_rq;
85ba2d86 1085 ncsw = 0;
f31e11d8 1086 if (!match_state || p->state == match_state)
93dcf55f 1087 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1088 task_rq_unlock(rq, p, &flags);
fa490cfd 1089
85ba2d86
RM
1090 /*
1091 * If it changed from the expected state, bail out now.
1092 */
1093 if (unlikely(!ncsw))
1094 break;
1095
3a5c359a
AK
1096 /*
1097 * Was it really running after all now that we
1098 * checked with the proper locks actually held?
1099 *
1100 * Oops. Go back and try again..
1101 */
1102 if (unlikely(running)) {
1103 cpu_relax();
1104 continue;
1105 }
fa490cfd 1106
3a5c359a
AK
1107 /*
1108 * It's not enough that it's not actively running,
1109 * it must be off the runqueue _entirely_, and not
1110 * preempted!
1111 *
80dd99b3 1112 * So if it was still runnable (but just not actively
3a5c359a
AK
1113 * running right now), it's preempted, and we should
1114 * yield - it could be a while.
1115 */
1116 if (unlikely(on_rq)) {
8eb90c30
TG
1117 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1118
1119 set_current_state(TASK_UNINTERRUPTIBLE);
1120 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1121 continue;
1122 }
fa490cfd 1123
3a5c359a
AK
1124 /*
1125 * Ahh, all good. It wasn't running, and it wasn't
1126 * runnable, which means that it will never become
1127 * running in the future either. We're all done!
1128 */
1129 break;
1130 }
85ba2d86
RM
1131
1132 return ncsw;
1da177e4
LT
1133}
1134
1135/***
1136 * kick_process - kick a running thread to enter/exit the kernel
1137 * @p: the to-be-kicked thread
1138 *
1139 * Cause a process which is running on another CPU to enter
1140 * kernel-mode, without any delay. (to get signals handled.)
1141 *
25985edc 1142 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1143 * because all it wants to ensure is that the remote task enters
1144 * the kernel. If the IPI races and the task has been migrated
1145 * to another CPU then no harm is done and the purpose has been
1146 * achieved as well.
1147 */
36c8b586 1148void kick_process(struct task_struct *p)
1da177e4
LT
1149{
1150 int cpu;
1151
1152 preempt_disable();
1153 cpu = task_cpu(p);
1154 if ((cpu != smp_processor_id()) && task_curr(p))
1155 smp_send_reschedule(cpu);
1156 preempt_enable();
1157}
b43e3521 1158EXPORT_SYMBOL_GPL(kick_process);
476d139c 1159#endif /* CONFIG_SMP */
1da177e4 1160
970b13ba 1161#ifdef CONFIG_SMP
30da688e 1162/*
013fdb80 1163 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1164 */
5da9a0fb
PZ
1165static int select_fallback_rq(int cpu, struct task_struct *p)
1166{
aa00d89c
TC
1167 int nid = cpu_to_node(cpu);
1168 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1169 enum { cpuset, possible, fail } state = cpuset;
1170 int dest_cpu;
5da9a0fb 1171
aa00d89c
TC
1172 /*
1173 * If the node that the cpu is on has been offlined, cpu_to_node()
1174 * will return -1. There is no cpu on the node, and we should
1175 * select the cpu on the other node.
1176 */
1177 if (nid != -1) {
1178 nodemask = cpumask_of_node(nid);
1179
1180 /* Look for allowed, online CPU in same node. */
1181 for_each_cpu(dest_cpu, nodemask) {
1182 if (!cpu_online(dest_cpu))
1183 continue;
1184 if (!cpu_active(dest_cpu))
1185 continue;
1186 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1187 return dest_cpu;
1188 }
2baab4e9 1189 }
5da9a0fb 1190
2baab4e9
PZ
1191 for (;;) {
1192 /* Any allowed, online CPU? */
e3831edd 1193 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1194 if (!cpu_online(dest_cpu))
1195 continue;
1196 if (!cpu_active(dest_cpu))
1197 continue;
1198 goto out;
1199 }
5da9a0fb 1200
2baab4e9
PZ
1201 switch (state) {
1202 case cpuset:
1203 /* No more Mr. Nice Guy. */
1204 cpuset_cpus_allowed_fallback(p);
1205 state = possible;
1206 break;
1207
1208 case possible:
1209 do_set_cpus_allowed(p, cpu_possible_mask);
1210 state = fail;
1211 break;
1212
1213 case fail:
1214 BUG();
1215 break;
1216 }
1217 }
1218
1219out:
1220 if (state != cpuset) {
1221 /*
1222 * Don't tell them about moving exiting tasks or
1223 * kernel threads (both mm NULL), since they never
1224 * leave kernel.
1225 */
1226 if (p->mm && printk_ratelimit()) {
1227 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1228 task_pid_nr(p), p->comm, cpu);
1229 }
5da9a0fb
PZ
1230 }
1231
1232 return dest_cpu;
1233}
1234
e2912009 1235/*
013fdb80 1236 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1237 */
970b13ba 1238static inline
7608dec2 1239int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1240{
7608dec2 1241 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1242
1243 /*
1244 * In order not to call set_task_cpu() on a blocking task we need
1245 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1246 * cpu.
1247 *
1248 * Since this is common to all placement strategies, this lives here.
1249 *
1250 * [ this allows ->select_task() to simply return task_cpu(p) and
1251 * not worry about this generic constraint ]
1252 */
fa17b507 1253 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1254 !cpu_online(cpu)))
5da9a0fb 1255 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1256
1257 return cpu;
970b13ba 1258}
09a40af5
MG
1259
1260static void update_avg(u64 *avg, u64 sample)
1261{
1262 s64 diff = sample - *avg;
1263 *avg += diff >> 3;
1264}
970b13ba
PZ
1265#endif
1266
d7c01d27 1267static void
b84cb5df 1268ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1269{
d7c01d27 1270#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1271 struct rq *rq = this_rq();
1272
d7c01d27
PZ
1273#ifdef CONFIG_SMP
1274 int this_cpu = smp_processor_id();
1275
1276 if (cpu == this_cpu) {
1277 schedstat_inc(rq, ttwu_local);
1278 schedstat_inc(p, se.statistics.nr_wakeups_local);
1279 } else {
1280 struct sched_domain *sd;
1281
1282 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1283 rcu_read_lock();
d7c01d27
PZ
1284 for_each_domain(this_cpu, sd) {
1285 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1286 schedstat_inc(sd, ttwu_wake_remote);
1287 break;
1288 }
1289 }
057f3fad 1290 rcu_read_unlock();
d7c01d27 1291 }
f339b9dc
PZ
1292
1293 if (wake_flags & WF_MIGRATED)
1294 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1295
d7c01d27
PZ
1296#endif /* CONFIG_SMP */
1297
1298 schedstat_inc(rq, ttwu_count);
9ed3811a 1299 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1300
1301 if (wake_flags & WF_SYNC)
9ed3811a 1302 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1303
d7c01d27
PZ
1304#endif /* CONFIG_SCHEDSTATS */
1305}
1306
1307static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1308{
9ed3811a 1309 activate_task(rq, p, en_flags);
fd2f4419 1310 p->on_rq = 1;
c2f7115e
PZ
1311
1312 /* if a worker is waking up, notify workqueue */
1313 if (p->flags & PF_WQ_WORKER)
1314 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1315}
1316
23f41eeb
PZ
1317/*
1318 * Mark the task runnable and perform wakeup-preemption.
1319 */
89363381 1320static void
23f41eeb 1321ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1322{
9ed3811a 1323 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1324 trace_sched_wakeup(p, true);
9ed3811a
TH
1325
1326 p->state = TASK_RUNNING;
1327#ifdef CONFIG_SMP
1328 if (p->sched_class->task_woken)
1329 p->sched_class->task_woken(rq, p);
1330
e69c6341 1331 if (rq->idle_stamp) {
78becc27 1332 u64 delta = rq_clock(rq) - rq->idle_stamp;
9ed3811a
TH
1333 u64 max = 2*sysctl_sched_migration_cost;
1334
abfafa54
JL
1335 update_avg(&rq->avg_idle, delta);
1336
1337 if (rq->avg_idle > max)
9ed3811a 1338 rq->avg_idle = max;
abfafa54 1339
9ed3811a
TH
1340 rq->idle_stamp = 0;
1341 }
1342#endif
1343}
1344
c05fbafb
PZ
1345static void
1346ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1347{
1348#ifdef CONFIG_SMP
1349 if (p->sched_contributes_to_load)
1350 rq->nr_uninterruptible--;
1351#endif
1352
1353 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1354 ttwu_do_wakeup(rq, p, wake_flags);
1355}
1356
1357/*
1358 * Called in case the task @p isn't fully descheduled from its runqueue,
1359 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1360 * since all we need to do is flip p->state to TASK_RUNNING, since
1361 * the task is still ->on_rq.
1362 */
1363static int ttwu_remote(struct task_struct *p, int wake_flags)
1364{
1365 struct rq *rq;
1366 int ret = 0;
1367
1368 rq = __task_rq_lock(p);
1369 if (p->on_rq) {
1ad4ec0d
FW
1370 /* check_preempt_curr() may use rq clock */
1371 update_rq_clock(rq);
c05fbafb
PZ
1372 ttwu_do_wakeup(rq, p, wake_flags);
1373 ret = 1;
1374 }
1375 __task_rq_unlock(rq);
1376
1377 return ret;
1378}
1379
317f3941 1380#ifdef CONFIG_SMP
fa14ff4a 1381static void sched_ttwu_pending(void)
317f3941
PZ
1382{
1383 struct rq *rq = this_rq();
fa14ff4a
PZ
1384 struct llist_node *llist = llist_del_all(&rq->wake_list);
1385 struct task_struct *p;
317f3941
PZ
1386
1387 raw_spin_lock(&rq->lock);
1388
fa14ff4a
PZ
1389 while (llist) {
1390 p = llist_entry(llist, struct task_struct, wake_entry);
1391 llist = llist_next(llist);
317f3941
PZ
1392 ttwu_do_activate(rq, p, 0);
1393 }
1394
1395 raw_spin_unlock(&rq->lock);
1396}
1397
1398void scheduler_ipi(void)
1399{
873b4c65
VG
1400 if (llist_empty(&this_rq()->wake_list)
1401 && !tick_nohz_full_cpu(smp_processor_id())
1402 && !got_nohz_idle_kick())
c5d753a5
PZ
1403 return;
1404
1405 /*
1406 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1407 * traditionally all their work was done from the interrupt return
1408 * path. Now that we actually do some work, we need to make sure
1409 * we do call them.
1410 *
1411 * Some archs already do call them, luckily irq_enter/exit nest
1412 * properly.
1413 *
1414 * Arguably we should visit all archs and update all handlers,
1415 * however a fair share of IPIs are still resched only so this would
1416 * somewhat pessimize the simple resched case.
1417 */
1418 irq_enter();
ff442c51 1419 tick_nohz_full_check();
fa14ff4a 1420 sched_ttwu_pending();
ca38062e
SS
1421
1422 /*
1423 * Check if someone kicked us for doing the nohz idle load balance.
1424 */
873b4c65 1425 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1426 this_rq()->idle_balance = 1;
ca38062e 1427 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1428 }
c5d753a5 1429 irq_exit();
317f3941
PZ
1430}
1431
1432static void ttwu_queue_remote(struct task_struct *p, int cpu)
1433{
fa14ff4a 1434 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1435 smp_send_reschedule(cpu);
1436}
d6aa8f85 1437
39be3501 1438bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1439{
1440 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1441}
d6aa8f85 1442#endif /* CONFIG_SMP */
317f3941 1443
c05fbafb
PZ
1444static void ttwu_queue(struct task_struct *p, int cpu)
1445{
1446 struct rq *rq = cpu_rq(cpu);
1447
17d9f311 1448#if defined(CONFIG_SMP)
39be3501 1449 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1450 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1451 ttwu_queue_remote(p, cpu);
1452 return;
1453 }
1454#endif
1455
c05fbafb
PZ
1456 raw_spin_lock(&rq->lock);
1457 ttwu_do_activate(rq, p, 0);
1458 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1459}
1460
1461/**
1da177e4 1462 * try_to_wake_up - wake up a thread
9ed3811a 1463 * @p: the thread to be awakened
1da177e4 1464 * @state: the mask of task states that can be woken
9ed3811a 1465 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1466 *
1467 * Put it on the run-queue if it's not already there. The "current"
1468 * thread is always on the run-queue (except when the actual
1469 * re-schedule is in progress), and as such you're allowed to do
1470 * the simpler "current->state = TASK_RUNNING" to mark yourself
1471 * runnable without the overhead of this.
1472 *
e69f6186 1473 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1474 * or @state didn't match @p's state.
1da177e4 1475 */
e4a52bcb
PZ
1476static int
1477try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1478{
1da177e4 1479 unsigned long flags;
c05fbafb 1480 int cpu, success = 0;
2398f2c6 1481
e0acd0a6
ON
1482 /*
1483 * If we are going to wake up a thread waiting for CONDITION we
1484 * need to ensure that CONDITION=1 done by the caller can not be
1485 * reordered with p->state check below. This pairs with mb() in
1486 * set_current_state() the waiting thread does.
1487 */
1488 smp_mb__before_spinlock();
013fdb80 1489 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1490 if (!(p->state & state))
1da177e4
LT
1491 goto out;
1492
c05fbafb 1493 success = 1; /* we're going to change ->state */
1da177e4 1494 cpu = task_cpu(p);
1da177e4 1495
c05fbafb
PZ
1496 if (p->on_rq && ttwu_remote(p, wake_flags))
1497 goto stat;
1da177e4 1498
1da177e4 1499#ifdef CONFIG_SMP
e9c84311 1500 /*
c05fbafb
PZ
1501 * If the owning (remote) cpu is still in the middle of schedule() with
1502 * this task as prev, wait until its done referencing the task.
e9c84311 1503 */
f3e94786 1504 while (p->on_cpu)
e4a52bcb 1505 cpu_relax();
0970d299 1506 /*
e4a52bcb 1507 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1508 */
e4a52bcb 1509 smp_rmb();
1da177e4 1510
a8e4f2ea 1511 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1512 p->state = TASK_WAKING;
e7693a36 1513
e4a52bcb 1514 if (p->sched_class->task_waking)
74f8e4b2 1515 p->sched_class->task_waking(p);
efbbd05a 1516
7608dec2 1517 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1518 if (task_cpu(p) != cpu) {
1519 wake_flags |= WF_MIGRATED;
e4a52bcb 1520 set_task_cpu(p, cpu);
f339b9dc 1521 }
1da177e4 1522#endif /* CONFIG_SMP */
1da177e4 1523
c05fbafb
PZ
1524 ttwu_queue(p, cpu);
1525stat:
b84cb5df 1526 ttwu_stat(p, cpu, wake_flags);
1da177e4 1527out:
013fdb80 1528 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1529
1530 return success;
1531}
1532
21aa9af0
TH
1533/**
1534 * try_to_wake_up_local - try to wake up a local task with rq lock held
1535 * @p: the thread to be awakened
1536 *
2acca55e 1537 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1538 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1539 * the current task.
21aa9af0
TH
1540 */
1541static void try_to_wake_up_local(struct task_struct *p)
1542{
1543 struct rq *rq = task_rq(p);
21aa9af0 1544
383efcd0
TH
1545 if (WARN_ON_ONCE(rq != this_rq()) ||
1546 WARN_ON_ONCE(p == current))
1547 return;
1548
21aa9af0
TH
1549 lockdep_assert_held(&rq->lock);
1550
2acca55e
PZ
1551 if (!raw_spin_trylock(&p->pi_lock)) {
1552 raw_spin_unlock(&rq->lock);
1553 raw_spin_lock(&p->pi_lock);
1554 raw_spin_lock(&rq->lock);
1555 }
1556
21aa9af0 1557 if (!(p->state & TASK_NORMAL))
2acca55e 1558 goto out;
21aa9af0 1559
fd2f4419 1560 if (!p->on_rq)
d7c01d27
PZ
1561 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1562
23f41eeb 1563 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1564 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1565out:
1566 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1567}
1568
50fa610a
DH
1569/**
1570 * wake_up_process - Wake up a specific process
1571 * @p: The process to be woken up.
1572 *
1573 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1574 * processes.
1575 *
1576 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1577 *
1578 * It may be assumed that this function implies a write memory barrier before
1579 * changing the task state if and only if any tasks are woken up.
1580 */
7ad5b3a5 1581int wake_up_process(struct task_struct *p)
1da177e4 1582{
9067ac85
ON
1583 WARN_ON(task_is_stopped_or_traced(p));
1584 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1585}
1da177e4
LT
1586EXPORT_SYMBOL(wake_up_process);
1587
7ad5b3a5 1588int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1589{
1590 return try_to_wake_up(p, state, 0);
1591}
1592
1da177e4
LT
1593/*
1594 * Perform scheduler related setup for a newly forked process p.
1595 * p is forked by current.
dd41f596
IM
1596 *
1597 * __sched_fork() is basic setup used by init_idle() too:
1598 */
1599static void __sched_fork(struct task_struct *p)
1600{
fd2f4419
PZ
1601 p->on_rq = 0;
1602
1603 p->se.on_rq = 0;
dd41f596
IM
1604 p->se.exec_start = 0;
1605 p->se.sum_exec_runtime = 0;
f6cf891c 1606 p->se.prev_sum_exec_runtime = 0;
6c594c21 1607 p->se.nr_migrations = 0;
da7a735e 1608 p->se.vruntime = 0;
fd2f4419 1609 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1610
1611#ifdef CONFIG_SCHEDSTATS
41acab88 1612 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1613#endif
476d139c 1614
fa717060 1615 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1616
e107be36
AK
1617#ifdef CONFIG_PREEMPT_NOTIFIERS
1618 INIT_HLIST_HEAD(&p->preempt_notifiers);
1619#endif
cbee9f88
PZ
1620
1621#ifdef CONFIG_NUMA_BALANCING
1622 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1623 p->mm->numa_next_scan = jiffies;
b8593bfd 1624 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1625 p->mm->numa_scan_seq = 0;
1626 }
1627
1628 p->node_stamp = 0ULL;
1629 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1630 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1631 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1632 p->numa_work.next = &p->numa_work;
1633#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1634}
1635
1a687c2e 1636#ifdef CONFIG_NUMA_BALANCING
3105b86a 1637#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1638void set_numabalancing_state(bool enabled)
1639{
1640 if (enabled)
1641 sched_feat_set("NUMA");
1642 else
1643 sched_feat_set("NO_NUMA");
1644}
3105b86a
MG
1645#else
1646__read_mostly bool numabalancing_enabled;
1647
1648void set_numabalancing_state(bool enabled)
1649{
1650 numabalancing_enabled = enabled;
dd41f596 1651}
3105b86a 1652#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1653#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1654
1655/*
1656 * fork()/clone()-time setup:
1657 */
3e51e3ed 1658void sched_fork(struct task_struct *p)
dd41f596 1659{
0122ec5b 1660 unsigned long flags;
dd41f596
IM
1661 int cpu = get_cpu();
1662
1663 __sched_fork(p);
06b83b5f 1664 /*
0017d735 1665 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1666 * nobody will actually run it, and a signal or other external
1667 * event cannot wake it up and insert it on the runqueue either.
1668 */
0017d735 1669 p->state = TASK_RUNNING;
dd41f596 1670
c350a04e
MG
1671 /*
1672 * Make sure we do not leak PI boosting priority to the child.
1673 */
1674 p->prio = current->normal_prio;
1675
b9dc29e7
MG
1676 /*
1677 * Revert to default priority/policy on fork if requested.
1678 */
1679 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1680 if (task_has_rt_policy(p)) {
b9dc29e7 1681 p->policy = SCHED_NORMAL;
6c697bdf 1682 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1683 p->rt_priority = 0;
1684 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1685 p->static_prio = NICE_TO_PRIO(0);
1686
1687 p->prio = p->normal_prio = __normal_prio(p);
1688 set_load_weight(p);
6c697bdf 1689
b9dc29e7
MG
1690 /*
1691 * We don't need the reset flag anymore after the fork. It has
1692 * fulfilled its duty:
1693 */
1694 p->sched_reset_on_fork = 0;
1695 }
ca94c442 1696
2ddbf952
HS
1697 if (!rt_prio(p->prio))
1698 p->sched_class = &fair_sched_class;
b29739f9 1699
cd29fe6f
PZ
1700 if (p->sched_class->task_fork)
1701 p->sched_class->task_fork(p);
1702
86951599
PZ
1703 /*
1704 * The child is not yet in the pid-hash so no cgroup attach races,
1705 * and the cgroup is pinned to this child due to cgroup_fork()
1706 * is ran before sched_fork().
1707 *
1708 * Silence PROVE_RCU.
1709 */
0122ec5b 1710 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1711 set_task_cpu(p, cpu);
0122ec5b 1712 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1713
52f17b6c 1714#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1715 if (likely(sched_info_on()))
52f17b6c 1716 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1717#endif
3ca7a440
PZ
1718#if defined(CONFIG_SMP)
1719 p->on_cpu = 0;
4866cde0 1720#endif
bdd4e85d 1721#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1722 /* Want to start with kernel preemption disabled. */
a1261f54 1723 task_thread_info(p)->preempt_count = 1;
1da177e4 1724#endif
806c09a7 1725#ifdef CONFIG_SMP
917b627d 1726 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1727#endif
917b627d 1728
476d139c 1729 put_cpu();
1da177e4
LT
1730}
1731
1732/*
1733 * wake_up_new_task - wake up a newly created task for the first time.
1734 *
1735 * This function will do some initial scheduler statistics housekeeping
1736 * that must be done for every newly created context, then puts the task
1737 * on the runqueue and wakes it.
1738 */
3e51e3ed 1739void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1740{
1741 unsigned long flags;
dd41f596 1742 struct rq *rq;
fabf318e 1743
ab2515c4 1744 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1745#ifdef CONFIG_SMP
1746 /*
1747 * Fork balancing, do it here and not earlier because:
1748 * - cpus_allowed can change in the fork path
1749 * - any previously selected cpu might disappear through hotplug
fabf318e 1750 */
ab2515c4 1751 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1752#endif
1753
a75cdaa9
AS
1754 /* Initialize new task's runnable average */
1755 init_task_runnable_average(p);
ab2515c4 1756 rq = __task_rq_lock(p);
cd29fe6f 1757 activate_task(rq, p, 0);
fd2f4419 1758 p->on_rq = 1;
89363381 1759 trace_sched_wakeup_new(p, true);
a7558e01 1760 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1761#ifdef CONFIG_SMP
efbbd05a
PZ
1762 if (p->sched_class->task_woken)
1763 p->sched_class->task_woken(rq, p);
9a897c5a 1764#endif
0122ec5b 1765 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1766}
1767
e107be36
AK
1768#ifdef CONFIG_PREEMPT_NOTIFIERS
1769
1770/**
80dd99b3 1771 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1772 * @notifier: notifier struct to register
e107be36
AK
1773 */
1774void preempt_notifier_register(struct preempt_notifier *notifier)
1775{
1776 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1777}
1778EXPORT_SYMBOL_GPL(preempt_notifier_register);
1779
1780/**
1781 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1782 * @notifier: notifier struct to unregister
e107be36
AK
1783 *
1784 * This is safe to call from within a preemption notifier.
1785 */
1786void preempt_notifier_unregister(struct preempt_notifier *notifier)
1787{
1788 hlist_del(&notifier->link);
1789}
1790EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1791
1792static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1793{
1794 struct preempt_notifier *notifier;
e107be36 1795
b67bfe0d 1796 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1797 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1798}
1799
1800static void
1801fire_sched_out_preempt_notifiers(struct task_struct *curr,
1802 struct task_struct *next)
1803{
1804 struct preempt_notifier *notifier;
e107be36 1805
b67bfe0d 1806 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1807 notifier->ops->sched_out(notifier, next);
1808}
1809
6d6bc0ad 1810#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1811
1812static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1813{
1814}
1815
1816static void
1817fire_sched_out_preempt_notifiers(struct task_struct *curr,
1818 struct task_struct *next)
1819{
1820}
1821
6d6bc0ad 1822#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1823
4866cde0
NP
1824/**
1825 * prepare_task_switch - prepare to switch tasks
1826 * @rq: the runqueue preparing to switch
421cee29 1827 * @prev: the current task that is being switched out
4866cde0
NP
1828 * @next: the task we are going to switch to.
1829 *
1830 * This is called with the rq lock held and interrupts off. It must
1831 * be paired with a subsequent finish_task_switch after the context
1832 * switch.
1833 *
1834 * prepare_task_switch sets up locking and calls architecture specific
1835 * hooks.
1836 */
e107be36
AK
1837static inline void
1838prepare_task_switch(struct rq *rq, struct task_struct *prev,
1839 struct task_struct *next)
4866cde0 1840{
895dd92c 1841 trace_sched_switch(prev, next);
fe4b04fa
PZ
1842 sched_info_switch(prev, next);
1843 perf_event_task_sched_out(prev, next);
e107be36 1844 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1845 prepare_lock_switch(rq, next);
1846 prepare_arch_switch(next);
1847}
1848
1da177e4
LT
1849/**
1850 * finish_task_switch - clean up after a task-switch
344babaa 1851 * @rq: runqueue associated with task-switch
1da177e4
LT
1852 * @prev: the thread we just switched away from.
1853 *
4866cde0
NP
1854 * finish_task_switch must be called after the context switch, paired
1855 * with a prepare_task_switch call before the context switch.
1856 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1857 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1858 *
1859 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1860 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1861 * with the lock held can cause deadlocks; see schedule() for
1862 * details.)
1863 */
a9957449 1864static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1865 __releases(rq->lock)
1866{
1da177e4 1867 struct mm_struct *mm = rq->prev_mm;
55a101f8 1868 long prev_state;
1da177e4
LT
1869
1870 rq->prev_mm = NULL;
1871
1872 /*
1873 * A task struct has one reference for the use as "current".
c394cc9f 1874 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1875 * schedule one last time. The schedule call will never return, and
1876 * the scheduled task must drop that reference.
c394cc9f 1877 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1878 * still held, otherwise prev could be scheduled on another cpu, die
1879 * there before we look at prev->state, and then the reference would
1880 * be dropped twice.
1881 * Manfred Spraul <manfred@colorfullife.com>
1882 */
55a101f8 1883 prev_state = prev->state;
bf9fae9f 1884 vtime_task_switch(prev);
4866cde0 1885 finish_arch_switch(prev);
a8d757ef 1886 perf_event_task_sched_in(prev, current);
4866cde0 1887 finish_lock_switch(rq, prev);
01f23e16 1888 finish_arch_post_lock_switch();
e8fa1362 1889
e107be36 1890 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1891 if (mm)
1892 mmdrop(mm);
c394cc9f 1893 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1894 /*
1895 * Remove function-return probe instances associated with this
1896 * task and put them back on the free list.
9761eea8 1897 */
c6fd91f0 1898 kprobe_flush_task(prev);
1da177e4 1899 put_task_struct(prev);
c6fd91f0 1900 }
99e5ada9
FW
1901
1902 tick_nohz_task_switch(current);
1da177e4
LT
1903}
1904
3f029d3c
GH
1905#ifdef CONFIG_SMP
1906
1907/* assumes rq->lock is held */
1908static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1909{
1910 if (prev->sched_class->pre_schedule)
1911 prev->sched_class->pre_schedule(rq, prev);
1912}
1913
1914/* rq->lock is NOT held, but preemption is disabled */
1915static inline void post_schedule(struct rq *rq)
1916{
1917 if (rq->post_schedule) {
1918 unsigned long flags;
1919
05fa785c 1920 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1921 if (rq->curr->sched_class->post_schedule)
1922 rq->curr->sched_class->post_schedule(rq);
05fa785c 1923 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1924
1925 rq->post_schedule = 0;
1926 }
1927}
1928
1929#else
da19ab51 1930
3f029d3c
GH
1931static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1932{
1933}
1934
1935static inline void post_schedule(struct rq *rq)
1936{
1da177e4
LT
1937}
1938
3f029d3c
GH
1939#endif
1940
1da177e4
LT
1941/**
1942 * schedule_tail - first thing a freshly forked thread must call.
1943 * @prev: the thread we just switched away from.
1944 */
36c8b586 1945asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1946 __releases(rq->lock)
1947{
70b97a7f
IM
1948 struct rq *rq = this_rq();
1949
4866cde0 1950 finish_task_switch(rq, prev);
da19ab51 1951
3f029d3c
GH
1952 /*
1953 * FIXME: do we need to worry about rq being invalidated by the
1954 * task_switch?
1955 */
1956 post_schedule(rq);
70b97a7f 1957
4866cde0
NP
1958#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1959 /* In this case, finish_task_switch does not reenable preemption */
1960 preempt_enable();
1961#endif
1da177e4 1962 if (current->set_child_tid)
b488893a 1963 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1964}
1965
1966/*
1967 * context_switch - switch to the new MM and the new
1968 * thread's register state.
1969 */
dd41f596 1970static inline void
70b97a7f 1971context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1972 struct task_struct *next)
1da177e4 1973{
dd41f596 1974 struct mm_struct *mm, *oldmm;
1da177e4 1975
e107be36 1976 prepare_task_switch(rq, prev, next);
fe4b04fa 1977
dd41f596
IM
1978 mm = next->mm;
1979 oldmm = prev->active_mm;
9226d125
ZA
1980 /*
1981 * For paravirt, this is coupled with an exit in switch_to to
1982 * combine the page table reload and the switch backend into
1983 * one hypercall.
1984 */
224101ed 1985 arch_start_context_switch(prev);
9226d125 1986
31915ab4 1987 if (!mm) {
1da177e4
LT
1988 next->active_mm = oldmm;
1989 atomic_inc(&oldmm->mm_count);
1990 enter_lazy_tlb(oldmm, next);
1991 } else
1992 switch_mm(oldmm, mm, next);
1993
31915ab4 1994 if (!prev->mm) {
1da177e4 1995 prev->active_mm = NULL;
1da177e4
LT
1996 rq->prev_mm = oldmm;
1997 }
3a5f5e48
IM
1998 /*
1999 * Since the runqueue lock will be released by the next
2000 * task (which is an invalid locking op but in the case
2001 * of the scheduler it's an obvious special-case), so we
2002 * do an early lockdep release here:
2003 */
2004#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2005 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2006#endif
1da177e4 2007
91d1aa43 2008 context_tracking_task_switch(prev, next);
1da177e4
LT
2009 /* Here we just switch the register state and the stack. */
2010 switch_to(prev, next, prev);
2011
dd41f596
IM
2012 barrier();
2013 /*
2014 * this_rq must be evaluated again because prev may have moved
2015 * CPUs since it called schedule(), thus the 'rq' on its stack
2016 * frame will be invalid.
2017 */
2018 finish_task_switch(this_rq(), prev);
1da177e4
LT
2019}
2020
2021/*
1c3e8264 2022 * nr_running and nr_context_switches:
1da177e4
LT
2023 *
2024 * externally visible scheduler statistics: current number of runnable
1c3e8264 2025 * threads, total number of context switches performed since bootup.
1da177e4
LT
2026 */
2027unsigned long nr_running(void)
2028{
2029 unsigned long i, sum = 0;
2030
2031 for_each_online_cpu(i)
2032 sum += cpu_rq(i)->nr_running;
2033
2034 return sum;
f711f609 2035}
1da177e4 2036
1da177e4 2037unsigned long long nr_context_switches(void)
46cb4b7c 2038{
cc94abfc
SR
2039 int i;
2040 unsigned long long sum = 0;
46cb4b7c 2041
0a945022 2042 for_each_possible_cpu(i)
1da177e4 2043 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2044
1da177e4
LT
2045 return sum;
2046}
483b4ee6 2047
1da177e4
LT
2048unsigned long nr_iowait(void)
2049{
2050 unsigned long i, sum = 0;
483b4ee6 2051
0a945022 2052 for_each_possible_cpu(i)
1da177e4 2053 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2054
1da177e4
LT
2055 return sum;
2056}
483b4ee6 2057
8c215bd3 2058unsigned long nr_iowait_cpu(int cpu)
69d25870 2059{
8c215bd3 2060 struct rq *this = cpu_rq(cpu);
69d25870
AV
2061 return atomic_read(&this->nr_iowait);
2062}
46cb4b7c 2063
dd41f596 2064#ifdef CONFIG_SMP
8a0be9ef 2065
46cb4b7c 2066/*
38022906
PZ
2067 * sched_exec - execve() is a valuable balancing opportunity, because at
2068 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2069 */
38022906 2070void sched_exec(void)
46cb4b7c 2071{
38022906 2072 struct task_struct *p = current;
1da177e4 2073 unsigned long flags;
0017d735 2074 int dest_cpu;
46cb4b7c 2075
8f42ced9 2076 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2077 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2078 if (dest_cpu == smp_processor_id())
2079 goto unlock;
38022906 2080
8f42ced9 2081 if (likely(cpu_active(dest_cpu))) {
969c7921 2082 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2083
8f42ced9
PZ
2084 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2085 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2086 return;
2087 }
0017d735 2088unlock:
8f42ced9 2089 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2090}
dd41f596 2091
1da177e4
LT
2092#endif
2093
1da177e4 2094DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2095DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2096
2097EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2098EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2099
2100/*
c5f8d995 2101 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2102 * @p in case that task is currently running.
c5f8d995
HS
2103 *
2104 * Called with task_rq_lock() held on @rq.
1da177e4 2105 */
c5f8d995
HS
2106static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2107{
2108 u64 ns = 0;
2109
2110 if (task_current(rq, p)) {
2111 update_rq_clock(rq);
78becc27 2112 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2113 if ((s64)ns < 0)
2114 ns = 0;
2115 }
2116
2117 return ns;
2118}
2119
bb34d92f 2120unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2121{
1da177e4 2122 unsigned long flags;
41b86e9c 2123 struct rq *rq;
bb34d92f 2124 u64 ns = 0;
48f24c4d 2125
41b86e9c 2126 rq = task_rq_lock(p, &flags);
c5f8d995 2127 ns = do_task_delta_exec(p, rq);
0122ec5b 2128 task_rq_unlock(rq, p, &flags);
1508487e 2129
c5f8d995
HS
2130 return ns;
2131}
f06febc9 2132
c5f8d995
HS
2133/*
2134 * Return accounted runtime for the task.
2135 * In case the task is currently running, return the runtime plus current's
2136 * pending runtime that have not been accounted yet.
2137 */
2138unsigned long long task_sched_runtime(struct task_struct *p)
2139{
2140 unsigned long flags;
2141 struct rq *rq;
2142 u64 ns = 0;
2143
2144 rq = task_rq_lock(p, &flags);
2145 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2146 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2147
2148 return ns;
2149}
48f24c4d 2150
7835b98b
CL
2151/*
2152 * This function gets called by the timer code, with HZ frequency.
2153 * We call it with interrupts disabled.
7835b98b
CL
2154 */
2155void scheduler_tick(void)
2156{
7835b98b
CL
2157 int cpu = smp_processor_id();
2158 struct rq *rq = cpu_rq(cpu);
dd41f596 2159 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2160
2161 sched_clock_tick();
dd41f596 2162
05fa785c 2163 raw_spin_lock(&rq->lock);
3e51f33f 2164 update_rq_clock(rq);
fa85ae24 2165 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2166 update_cpu_load_active(rq);
05fa785c 2167 raw_spin_unlock(&rq->lock);
7835b98b 2168
e9d2b064 2169 perf_event_task_tick();
e220d2dc 2170
e418e1c2 2171#ifdef CONFIG_SMP
6eb57e0d 2172 rq->idle_balance = idle_cpu(cpu);
dd41f596 2173 trigger_load_balance(rq, cpu);
e418e1c2 2174#endif
265f22a9 2175 rq_last_tick_reset(rq);
1da177e4
LT
2176}
2177
265f22a9
FW
2178#ifdef CONFIG_NO_HZ_FULL
2179/**
2180 * scheduler_tick_max_deferment
2181 *
2182 * Keep at least one tick per second when a single
2183 * active task is running because the scheduler doesn't
2184 * yet completely support full dynticks environment.
2185 *
2186 * This makes sure that uptime, CFS vruntime, load
2187 * balancing, etc... continue to move forward, even
2188 * with a very low granularity.
e69f6186
YB
2189 *
2190 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2191 */
2192u64 scheduler_tick_max_deferment(void)
2193{
2194 struct rq *rq = this_rq();
2195 unsigned long next, now = ACCESS_ONCE(jiffies);
2196
2197 next = rq->last_sched_tick + HZ;
2198
2199 if (time_before_eq(next, now))
2200 return 0;
2201
2202 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2203}
265f22a9 2204#endif
1da177e4 2205
132380a0 2206notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2207{
2208 if (in_lock_functions(addr)) {
2209 addr = CALLER_ADDR2;
2210 if (in_lock_functions(addr))
2211 addr = CALLER_ADDR3;
2212 }
2213 return addr;
2214}
1da177e4 2215
7e49fcce
SR
2216#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2217 defined(CONFIG_PREEMPT_TRACER))
2218
43627582 2219void __kprobes add_preempt_count(int val)
1da177e4 2220{
6cd8a4bb 2221#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2222 /*
2223 * Underflow?
2224 */
9a11b49a
IM
2225 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2226 return;
6cd8a4bb 2227#endif
1da177e4 2228 preempt_count() += val;
6cd8a4bb 2229#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2230 /*
2231 * Spinlock count overflowing soon?
2232 */
33859f7f
MOS
2233 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2234 PREEMPT_MASK - 10);
6cd8a4bb
SR
2235#endif
2236 if (preempt_count() == val)
2237 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2238}
2239EXPORT_SYMBOL(add_preempt_count);
2240
43627582 2241void __kprobes sub_preempt_count(int val)
1da177e4 2242{
6cd8a4bb 2243#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2244 /*
2245 * Underflow?
2246 */
01e3eb82 2247 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2248 return;
1da177e4
LT
2249 /*
2250 * Is the spinlock portion underflowing?
2251 */
9a11b49a
IM
2252 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2253 !(preempt_count() & PREEMPT_MASK)))
2254 return;
6cd8a4bb 2255#endif
9a11b49a 2256
6cd8a4bb
SR
2257 if (preempt_count() == val)
2258 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2259 preempt_count() -= val;
2260}
2261EXPORT_SYMBOL(sub_preempt_count);
2262
2263#endif
2264
2265/*
dd41f596 2266 * Print scheduling while atomic bug:
1da177e4 2267 */
dd41f596 2268static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2269{
664dfa65
DJ
2270 if (oops_in_progress)
2271 return;
2272
3df0fc5b
PZ
2273 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2274 prev->comm, prev->pid, preempt_count());
838225b4 2275
dd41f596 2276 debug_show_held_locks(prev);
e21f5b15 2277 print_modules();
dd41f596
IM
2278 if (irqs_disabled())
2279 print_irqtrace_events(prev);
6135fc1e 2280 dump_stack();
373d4d09 2281 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2282}
1da177e4 2283
dd41f596
IM
2284/*
2285 * Various schedule()-time debugging checks and statistics:
2286 */
2287static inline void schedule_debug(struct task_struct *prev)
2288{
1da177e4 2289 /*
41a2d6cf 2290 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2291 * schedule() atomically, we ignore that path for now.
2292 * Otherwise, whine if we are scheduling when we should not be.
2293 */
3f33a7ce 2294 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2295 __schedule_bug(prev);
b3fbab05 2296 rcu_sleep_check();
dd41f596 2297
1da177e4
LT
2298 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2299
2d72376b 2300 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2301}
2302
6cecd084 2303static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2304{
61eadef6 2305 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2306 update_rq_clock(rq);
6cecd084 2307 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2308}
2309
dd41f596
IM
2310/*
2311 * Pick up the highest-prio task:
2312 */
2313static inline struct task_struct *
b67802ea 2314pick_next_task(struct rq *rq)
dd41f596 2315{
5522d5d5 2316 const struct sched_class *class;
dd41f596 2317 struct task_struct *p;
1da177e4
LT
2318
2319 /*
dd41f596
IM
2320 * Optimization: we know that if all tasks are in
2321 * the fair class we can call that function directly:
1da177e4 2322 */
953bfcd1 2323 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2324 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2325 if (likely(p))
2326 return p;
1da177e4
LT
2327 }
2328
34f971f6 2329 for_each_class(class) {
fb8d4724 2330 p = class->pick_next_task(rq);
dd41f596
IM
2331 if (p)
2332 return p;
dd41f596 2333 }
34f971f6
PZ
2334
2335 BUG(); /* the idle class will always have a runnable task */
dd41f596 2336}
1da177e4 2337
dd41f596 2338/*
c259e01a 2339 * __schedule() is the main scheduler function.
edde96ea
PE
2340 *
2341 * The main means of driving the scheduler and thus entering this function are:
2342 *
2343 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2344 *
2345 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2346 * paths. For example, see arch/x86/entry_64.S.
2347 *
2348 * To drive preemption between tasks, the scheduler sets the flag in timer
2349 * interrupt handler scheduler_tick().
2350 *
2351 * 3. Wakeups don't really cause entry into schedule(). They add a
2352 * task to the run-queue and that's it.
2353 *
2354 * Now, if the new task added to the run-queue preempts the current
2355 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2356 * called on the nearest possible occasion:
2357 *
2358 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2359 *
2360 * - in syscall or exception context, at the next outmost
2361 * preempt_enable(). (this might be as soon as the wake_up()'s
2362 * spin_unlock()!)
2363 *
2364 * - in IRQ context, return from interrupt-handler to
2365 * preemptible context
2366 *
2367 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2368 * then at the next:
2369 *
2370 * - cond_resched() call
2371 * - explicit schedule() call
2372 * - return from syscall or exception to user-space
2373 * - return from interrupt-handler to user-space
dd41f596 2374 */
c259e01a 2375static void __sched __schedule(void)
dd41f596
IM
2376{
2377 struct task_struct *prev, *next;
67ca7bde 2378 unsigned long *switch_count;
dd41f596 2379 struct rq *rq;
31656519 2380 int cpu;
dd41f596 2381
ff743345
PZ
2382need_resched:
2383 preempt_disable();
dd41f596
IM
2384 cpu = smp_processor_id();
2385 rq = cpu_rq(cpu);
25502a6c 2386 rcu_note_context_switch(cpu);
dd41f596 2387 prev = rq->curr;
dd41f596 2388
dd41f596 2389 schedule_debug(prev);
1da177e4 2390
31656519 2391 if (sched_feat(HRTICK))
f333fdc9 2392 hrtick_clear(rq);
8f4d37ec 2393
e0acd0a6
ON
2394 /*
2395 * Make sure that signal_pending_state()->signal_pending() below
2396 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2397 * done by the caller to avoid the race with signal_wake_up().
2398 */
2399 smp_mb__before_spinlock();
05fa785c 2400 raw_spin_lock_irq(&rq->lock);
1da177e4 2401
246d86b5 2402 switch_count = &prev->nivcsw;
1da177e4 2403 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2404 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2405 prev->state = TASK_RUNNING;
21aa9af0 2406 } else {
2acca55e
PZ
2407 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2408 prev->on_rq = 0;
2409
21aa9af0 2410 /*
2acca55e
PZ
2411 * If a worker went to sleep, notify and ask workqueue
2412 * whether it wants to wake up a task to maintain
2413 * concurrency.
21aa9af0
TH
2414 */
2415 if (prev->flags & PF_WQ_WORKER) {
2416 struct task_struct *to_wakeup;
2417
2418 to_wakeup = wq_worker_sleeping(prev, cpu);
2419 if (to_wakeup)
2420 try_to_wake_up_local(to_wakeup);
2421 }
21aa9af0 2422 }
dd41f596 2423 switch_count = &prev->nvcsw;
1da177e4
LT
2424 }
2425
3f029d3c 2426 pre_schedule(rq, prev);
f65eda4f 2427
dd41f596 2428 if (unlikely(!rq->nr_running))
1da177e4 2429 idle_balance(cpu, rq);
1da177e4 2430
df1c99d4 2431 put_prev_task(rq, prev);
b67802ea 2432 next = pick_next_task(rq);
f26f9aff
MG
2433 clear_tsk_need_resched(prev);
2434 rq->skip_clock_update = 0;
1da177e4 2435
1da177e4 2436 if (likely(prev != next)) {
1da177e4
LT
2437 rq->nr_switches++;
2438 rq->curr = next;
2439 ++*switch_count;
2440
dd41f596 2441 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2442 /*
246d86b5
ON
2443 * The context switch have flipped the stack from under us
2444 * and restored the local variables which were saved when
2445 * this task called schedule() in the past. prev == current
2446 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2447 */
2448 cpu = smp_processor_id();
2449 rq = cpu_rq(cpu);
1da177e4 2450 } else
05fa785c 2451 raw_spin_unlock_irq(&rq->lock);
1da177e4 2452
3f029d3c 2453 post_schedule(rq);
1da177e4 2454
ba74c144 2455 sched_preempt_enable_no_resched();
ff743345 2456 if (need_resched())
1da177e4
LT
2457 goto need_resched;
2458}
c259e01a 2459
9c40cef2
TG
2460static inline void sched_submit_work(struct task_struct *tsk)
2461{
3c7d5184 2462 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2463 return;
2464 /*
2465 * If we are going to sleep and we have plugged IO queued,
2466 * make sure to submit it to avoid deadlocks.
2467 */
2468 if (blk_needs_flush_plug(tsk))
2469 blk_schedule_flush_plug(tsk);
2470}
2471
6ebbe7a0 2472asmlinkage void __sched schedule(void)
c259e01a 2473{
9c40cef2
TG
2474 struct task_struct *tsk = current;
2475
2476 sched_submit_work(tsk);
c259e01a
TG
2477 __schedule();
2478}
1da177e4
LT
2479EXPORT_SYMBOL(schedule);
2480
91d1aa43 2481#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2482asmlinkage void __sched schedule_user(void)
2483{
2484 /*
2485 * If we come here after a random call to set_need_resched(),
2486 * or we have been woken up remotely but the IPI has not yet arrived,
2487 * we haven't yet exited the RCU idle mode. Do it here manually until
2488 * we find a better solution.
2489 */
91d1aa43 2490 user_exit();
20ab65e3 2491 schedule();
91d1aa43 2492 user_enter();
20ab65e3
FW
2493}
2494#endif
2495
c5491ea7
TG
2496/**
2497 * schedule_preempt_disabled - called with preemption disabled
2498 *
2499 * Returns with preemption disabled. Note: preempt_count must be 1
2500 */
2501void __sched schedule_preempt_disabled(void)
2502{
ba74c144 2503 sched_preempt_enable_no_resched();
c5491ea7
TG
2504 schedule();
2505 preempt_disable();
2506}
2507
1da177e4
LT
2508#ifdef CONFIG_PREEMPT
2509/*
2ed6e34f 2510 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2511 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2512 * occur there and call schedule directly.
2513 */
d1f74e20 2514asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2515{
1da177e4
LT
2516 /*
2517 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2518 * we do not want to preempt the current task. Just return..
1da177e4 2519 */
fbb00b56 2520 if (likely(!preemptible()))
1da177e4
LT
2521 return;
2522
3a5c359a 2523 do {
d1f74e20 2524 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 2525 __schedule();
d1f74e20 2526 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 2527
3a5c359a
AK
2528 /*
2529 * Check again in case we missed a preemption opportunity
2530 * between schedule and now.
2531 */
2532 barrier();
5ed0cec0 2533 } while (need_resched());
1da177e4 2534}
1da177e4
LT
2535EXPORT_SYMBOL(preempt_schedule);
2536
2537/*
2ed6e34f 2538 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2539 * off of irq context.
2540 * Note, that this is called and return with irqs disabled. This will
2541 * protect us against recursive calling from irq.
2542 */
2543asmlinkage void __sched preempt_schedule_irq(void)
2544{
2545 struct thread_info *ti = current_thread_info();
b22366cd 2546 enum ctx_state prev_state;
6478d880 2547
2ed6e34f 2548 /* Catch callers which need to be fixed */
1da177e4
LT
2549 BUG_ON(ti->preempt_count || !irqs_disabled());
2550
b22366cd
FW
2551 prev_state = exception_enter();
2552
3a5c359a
AK
2553 do {
2554 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 2555 local_irq_enable();
c259e01a 2556 __schedule();
3a5c359a 2557 local_irq_disable();
3a5c359a 2558 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 2559
3a5c359a
AK
2560 /*
2561 * Check again in case we missed a preemption opportunity
2562 * between schedule and now.
2563 */
2564 barrier();
5ed0cec0 2565 } while (need_resched());
b22366cd
FW
2566
2567 exception_exit(prev_state);
1da177e4
LT
2568}
2569
2570#endif /* CONFIG_PREEMPT */
2571
63859d4f 2572int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2573 void *key)
1da177e4 2574{
63859d4f 2575 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2576}
1da177e4
LT
2577EXPORT_SYMBOL(default_wake_function);
2578
2579/*
41a2d6cf
IM
2580 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2581 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2582 * number) then we wake all the non-exclusive tasks and one exclusive task.
2583 *
2584 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2585 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2586 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2587 */
78ddb08f 2588static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2589 int nr_exclusive, int wake_flags, void *key)
1da177e4 2590{
2e45874c 2591 wait_queue_t *curr, *next;
1da177e4 2592
2e45874c 2593 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2594 unsigned flags = curr->flags;
2595
63859d4f 2596 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2597 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2598 break;
2599 }
2600}
2601
2602/**
2603 * __wake_up - wake up threads blocked on a waitqueue.
2604 * @q: the waitqueue
2605 * @mode: which threads
2606 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2607 * @key: is directly passed to the wakeup function
50fa610a
DH
2608 *
2609 * It may be assumed that this function implies a write memory barrier before
2610 * changing the task state if and only if any tasks are woken up.
1da177e4 2611 */
7ad5b3a5 2612void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2613 int nr_exclusive, void *key)
1da177e4
LT
2614{
2615 unsigned long flags;
2616
2617 spin_lock_irqsave(&q->lock, flags);
2618 __wake_up_common(q, mode, nr_exclusive, 0, key);
2619 spin_unlock_irqrestore(&q->lock, flags);
2620}
1da177e4
LT
2621EXPORT_SYMBOL(__wake_up);
2622
2623/*
2624 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2625 */
63b20011 2626void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2627{
63b20011 2628 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2629}
22c43c81 2630EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2631
4ede816a
DL
2632void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2633{
2634 __wake_up_common(q, mode, 1, 0, key);
2635}
bf294b41 2636EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2637
1da177e4 2638/**
4ede816a 2639 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2640 * @q: the waitqueue
2641 * @mode: which threads
2642 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2643 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2644 *
2645 * The sync wakeup differs that the waker knows that it will schedule
2646 * away soon, so while the target thread will be woken up, it will not
2647 * be migrated to another CPU - ie. the two threads are 'synchronized'
2648 * with each other. This can prevent needless bouncing between CPUs.
2649 *
2650 * On UP it can prevent extra preemption.
50fa610a
DH
2651 *
2652 * It may be assumed that this function implies a write memory barrier before
2653 * changing the task state if and only if any tasks are woken up.
1da177e4 2654 */
4ede816a
DL
2655void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2656 int nr_exclusive, void *key)
1da177e4
LT
2657{
2658 unsigned long flags;
7d478721 2659 int wake_flags = WF_SYNC;
1da177e4
LT
2660
2661 if (unlikely(!q))
2662 return;
2663
cedce3e7 2664 if (unlikely(nr_exclusive != 1))
7d478721 2665 wake_flags = 0;
1da177e4
LT
2666
2667 spin_lock_irqsave(&q->lock, flags);
7d478721 2668 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2669 spin_unlock_irqrestore(&q->lock, flags);
2670}
4ede816a
DL
2671EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2672
2673/*
2674 * __wake_up_sync - see __wake_up_sync_key()
2675 */
2676void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2677{
2678 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2679}
1da177e4
LT
2680EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2681
65eb3dc6
KD
2682/**
2683 * complete: - signals a single thread waiting on this completion
2684 * @x: holds the state of this particular completion
2685 *
2686 * This will wake up a single thread waiting on this completion. Threads will be
2687 * awakened in the same order in which they were queued.
2688 *
2689 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2690 *
2691 * It may be assumed that this function implies a write memory barrier before
2692 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2693 */
b15136e9 2694void complete(struct completion *x)
1da177e4
LT
2695{
2696 unsigned long flags;
2697
2698 spin_lock_irqsave(&x->wait.lock, flags);
2699 x->done++;
d9514f6c 2700 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2701 spin_unlock_irqrestore(&x->wait.lock, flags);
2702}
2703EXPORT_SYMBOL(complete);
2704
65eb3dc6
KD
2705/**
2706 * complete_all: - signals all threads waiting on this completion
2707 * @x: holds the state of this particular completion
2708 *
2709 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2710 *
2711 * It may be assumed that this function implies a write memory barrier before
2712 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2713 */
b15136e9 2714void complete_all(struct completion *x)
1da177e4
LT
2715{
2716 unsigned long flags;
2717
2718 spin_lock_irqsave(&x->wait.lock, flags);
2719 x->done += UINT_MAX/2;
d9514f6c 2720 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2721 spin_unlock_irqrestore(&x->wait.lock, flags);
2722}
2723EXPORT_SYMBOL(complete_all);
2724
8cbbe86d 2725static inline long __sched
686855f5
VD
2726do_wait_for_common(struct completion *x,
2727 long (*action)(long), long timeout, int state)
1da177e4 2728{
1da177e4
LT
2729 if (!x->done) {
2730 DECLARE_WAITQUEUE(wait, current);
2731
a93d2f17 2732 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2733 do {
94d3d824 2734 if (signal_pending_state(state, current)) {
ea71a546
ON
2735 timeout = -ERESTARTSYS;
2736 break;
8cbbe86d
AK
2737 }
2738 __set_current_state(state);
1da177e4 2739 spin_unlock_irq(&x->wait.lock);
686855f5 2740 timeout = action(timeout);
1da177e4 2741 spin_lock_irq(&x->wait.lock);
ea71a546 2742 } while (!x->done && timeout);
1da177e4 2743 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2744 if (!x->done)
2745 return timeout;
1da177e4
LT
2746 }
2747 x->done--;
ea71a546 2748 return timeout ?: 1;
1da177e4 2749}
1da177e4 2750
686855f5
VD
2751static inline long __sched
2752__wait_for_common(struct completion *x,
2753 long (*action)(long), long timeout, int state)
1da177e4 2754{
1da177e4
LT
2755 might_sleep();
2756
2757 spin_lock_irq(&x->wait.lock);
686855f5 2758 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2759 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2760 return timeout;
2761}
1da177e4 2762
686855f5
VD
2763static long __sched
2764wait_for_common(struct completion *x, long timeout, int state)
2765{
2766 return __wait_for_common(x, schedule_timeout, timeout, state);
2767}
2768
2769static long __sched
2770wait_for_common_io(struct completion *x, long timeout, int state)
2771{
2772 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2773}
2774
65eb3dc6
KD
2775/**
2776 * wait_for_completion: - waits for completion of a task
2777 * @x: holds the state of this particular completion
2778 *
2779 * This waits to be signaled for completion of a specific task. It is NOT
2780 * interruptible and there is no timeout.
2781 *
2782 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2783 * and interrupt capability. Also see complete().
2784 */
b15136e9 2785void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2786{
2787 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2788}
8cbbe86d 2789EXPORT_SYMBOL(wait_for_completion);
1da177e4 2790
65eb3dc6
KD
2791/**
2792 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2793 * @x: holds the state of this particular completion
2794 * @timeout: timeout value in jiffies
2795 *
2796 * This waits for either a completion of a specific task to be signaled or for a
2797 * specified timeout to expire. The timeout is in jiffies. It is not
2798 * interruptible.
c6dc7f05 2799 *
e69f6186
YB
2800 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2801 * till timeout) if completed.
65eb3dc6 2802 */
b15136e9 2803unsigned long __sched
8cbbe86d 2804wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2805{
8cbbe86d 2806 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2807}
8cbbe86d 2808EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2809
686855f5
VD
2810/**
2811 * wait_for_completion_io: - waits for completion of a task
2812 * @x: holds the state of this particular completion
2813 *
2814 * This waits to be signaled for completion of a specific task. It is NOT
2815 * interruptible and there is no timeout. The caller is accounted as waiting
2816 * for IO.
2817 */
2818void __sched wait_for_completion_io(struct completion *x)
2819{
2820 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2821}
2822EXPORT_SYMBOL(wait_for_completion_io);
2823
2824/**
2825 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2826 * @x: holds the state of this particular completion
2827 * @timeout: timeout value in jiffies
2828 *
2829 * This waits for either a completion of a specific task to be signaled or for a
2830 * specified timeout to expire. The timeout is in jiffies. It is not
2831 * interruptible. The caller is accounted as waiting for IO.
2832 *
e69f6186
YB
2833 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2834 * till timeout) if completed.
686855f5
VD
2835 */
2836unsigned long __sched
2837wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2838{
2839 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2840}
2841EXPORT_SYMBOL(wait_for_completion_io_timeout);
2842
65eb3dc6
KD
2843/**
2844 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2845 * @x: holds the state of this particular completion
2846 *
2847 * This waits for completion of a specific task to be signaled. It is
2848 * interruptible.
c6dc7f05 2849 *
e69f6186 2850 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2851 */
8cbbe86d 2852int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2853{
51e97990
AK
2854 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2855 if (t == -ERESTARTSYS)
2856 return t;
2857 return 0;
0fec171c 2858}
8cbbe86d 2859EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2860
65eb3dc6
KD
2861/**
2862 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2863 * @x: holds the state of this particular completion
2864 * @timeout: timeout value in jiffies
2865 *
2866 * This waits for either a completion of a specific task to be signaled or for a
2867 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05 2868 *
e69f6186
YB
2869 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2870 * or number of jiffies left till timeout) if completed.
65eb3dc6 2871 */
6bf41237 2872long __sched
8cbbe86d
AK
2873wait_for_completion_interruptible_timeout(struct completion *x,
2874 unsigned long timeout)
0fec171c 2875{
8cbbe86d 2876 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2877}
8cbbe86d 2878EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2879
65eb3dc6
KD
2880/**
2881 * wait_for_completion_killable: - waits for completion of a task (killable)
2882 * @x: holds the state of this particular completion
2883 *
2884 * This waits to be signaled for completion of a specific task. It can be
2885 * interrupted by a kill signal.
c6dc7f05 2886 *
e69f6186 2887 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2888 */
009e577e
MW
2889int __sched wait_for_completion_killable(struct completion *x)
2890{
2891 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2892 if (t == -ERESTARTSYS)
2893 return t;
2894 return 0;
2895}
2896EXPORT_SYMBOL(wait_for_completion_killable);
2897
0aa12fb4
SW
2898/**
2899 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2900 * @x: holds the state of this particular completion
2901 * @timeout: timeout value in jiffies
2902 *
2903 * This waits for either a completion of a specific task to be
2904 * signaled or for a specified timeout to expire. It can be
2905 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05 2906 *
e69f6186
YB
2907 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2908 * or number of jiffies left till timeout) if completed.
0aa12fb4 2909 */
6bf41237 2910long __sched
0aa12fb4
SW
2911wait_for_completion_killable_timeout(struct completion *x,
2912 unsigned long timeout)
2913{
2914 return wait_for_common(x, timeout, TASK_KILLABLE);
2915}
2916EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2917
be4de352
DC
2918/**
2919 * try_wait_for_completion - try to decrement a completion without blocking
2920 * @x: completion structure
2921 *
e69f6186 2922 * Return: 0 if a decrement cannot be done without blocking
be4de352
DC
2923 * 1 if a decrement succeeded.
2924 *
2925 * If a completion is being used as a counting completion,
2926 * attempt to decrement the counter without blocking. This
2927 * enables us to avoid waiting if the resource the completion
2928 * is protecting is not available.
2929 */
2930bool try_wait_for_completion(struct completion *x)
2931{
7539a3b3 2932 unsigned long flags;
be4de352
DC
2933 int ret = 1;
2934
7539a3b3 2935 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2936 if (!x->done)
2937 ret = 0;
2938 else
2939 x->done--;
7539a3b3 2940 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2941 return ret;
2942}
2943EXPORT_SYMBOL(try_wait_for_completion);
2944
2945/**
2946 * completion_done - Test to see if a completion has any waiters
2947 * @x: completion structure
2948 *
e69f6186 2949 * Return: 0 if there are waiters (wait_for_completion() in progress)
be4de352
DC
2950 * 1 if there are no waiters.
2951 *
2952 */
2953bool completion_done(struct completion *x)
2954{
7539a3b3 2955 unsigned long flags;
be4de352
DC
2956 int ret = 1;
2957
7539a3b3 2958 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2959 if (!x->done)
2960 ret = 0;
7539a3b3 2961 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2962 return ret;
2963}
2964EXPORT_SYMBOL(completion_done);
2965
8cbbe86d
AK
2966static long __sched
2967sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2968{
0fec171c
IM
2969 unsigned long flags;
2970 wait_queue_t wait;
2971
2972 init_waitqueue_entry(&wait, current);
1da177e4 2973
8cbbe86d 2974 __set_current_state(state);
1da177e4 2975
8cbbe86d
AK
2976 spin_lock_irqsave(&q->lock, flags);
2977 __add_wait_queue(q, &wait);
2978 spin_unlock(&q->lock);
2979 timeout = schedule_timeout(timeout);
2980 spin_lock_irq(&q->lock);
2981 __remove_wait_queue(q, &wait);
2982 spin_unlock_irqrestore(&q->lock, flags);
2983
2984 return timeout;
2985}
2986
2987void __sched interruptible_sleep_on(wait_queue_head_t *q)
2988{
2989 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2990}
1da177e4
LT
2991EXPORT_SYMBOL(interruptible_sleep_on);
2992
0fec171c 2993long __sched
95cdf3b7 2994interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2995{
8cbbe86d 2996 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2997}
1da177e4
LT
2998EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2999
0fec171c 3000void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3001{
8cbbe86d 3002 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3003}
1da177e4
LT
3004EXPORT_SYMBOL(sleep_on);
3005
0fec171c 3006long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3007{
8cbbe86d 3008 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3009}
1da177e4
LT
3010EXPORT_SYMBOL(sleep_on_timeout);
3011
b29739f9
IM
3012#ifdef CONFIG_RT_MUTEXES
3013
3014/*
3015 * rt_mutex_setprio - set the current priority of a task
3016 * @p: task
3017 * @prio: prio value (kernel-internal form)
3018 *
3019 * This function changes the 'effective' priority of a task. It does
3020 * not touch ->normal_prio like __setscheduler().
3021 *
3022 * Used by the rt_mutex code to implement priority inheritance logic.
3023 */
36c8b586 3024void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3025{
83b699ed 3026 int oldprio, on_rq, running;
70b97a7f 3027 struct rq *rq;
83ab0aa0 3028 const struct sched_class *prev_class;
b29739f9
IM
3029
3030 BUG_ON(prio < 0 || prio > MAX_PRIO);
3031
0122ec5b 3032 rq = __task_rq_lock(p);
b29739f9 3033
1c4dd99b
TG
3034 /*
3035 * Idle task boosting is a nono in general. There is one
3036 * exception, when PREEMPT_RT and NOHZ is active:
3037 *
3038 * The idle task calls get_next_timer_interrupt() and holds
3039 * the timer wheel base->lock on the CPU and another CPU wants
3040 * to access the timer (probably to cancel it). We can safely
3041 * ignore the boosting request, as the idle CPU runs this code
3042 * with interrupts disabled and will complete the lock
3043 * protected section without being interrupted. So there is no
3044 * real need to boost.
3045 */
3046 if (unlikely(p == rq->idle)) {
3047 WARN_ON(p != rq->curr);
3048 WARN_ON(p->pi_blocked_on);
3049 goto out_unlock;
3050 }
3051
a8027073 3052 trace_sched_pi_setprio(p, prio);
d5f9f942 3053 oldprio = p->prio;
83ab0aa0 3054 prev_class = p->sched_class;
fd2f4419 3055 on_rq = p->on_rq;
051a1d1a 3056 running = task_current(rq, p);
0e1f3483 3057 if (on_rq)
69be72c1 3058 dequeue_task(rq, p, 0);
0e1f3483
HS
3059 if (running)
3060 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3061
3062 if (rt_prio(prio))
3063 p->sched_class = &rt_sched_class;
3064 else
3065 p->sched_class = &fair_sched_class;
3066
b29739f9
IM
3067 p->prio = prio;
3068
0e1f3483
HS
3069 if (running)
3070 p->sched_class->set_curr_task(rq);
da7a735e 3071 if (on_rq)
371fd7e7 3072 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3073
da7a735e 3074 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3075out_unlock:
0122ec5b 3076 __task_rq_unlock(rq);
b29739f9 3077}
b29739f9 3078#endif
36c8b586 3079void set_user_nice(struct task_struct *p, long nice)
1da177e4 3080{
dd41f596 3081 int old_prio, delta, on_rq;
1da177e4 3082 unsigned long flags;
70b97a7f 3083 struct rq *rq;
1da177e4
LT
3084
3085 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3086 return;
3087 /*
3088 * We have to be careful, if called from sys_setpriority(),
3089 * the task might be in the middle of scheduling on another CPU.
3090 */
3091 rq = task_rq_lock(p, &flags);
3092 /*
3093 * The RT priorities are set via sched_setscheduler(), but we still
3094 * allow the 'normal' nice value to be set - but as expected
3095 * it wont have any effect on scheduling until the task is
dd41f596 3096 * SCHED_FIFO/SCHED_RR:
1da177e4 3097 */
e05606d3 3098 if (task_has_rt_policy(p)) {
1da177e4
LT
3099 p->static_prio = NICE_TO_PRIO(nice);
3100 goto out_unlock;
3101 }
fd2f4419 3102 on_rq = p->on_rq;
c09595f6 3103 if (on_rq)
69be72c1 3104 dequeue_task(rq, p, 0);
1da177e4 3105
1da177e4 3106 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3107 set_load_weight(p);
b29739f9
IM
3108 old_prio = p->prio;
3109 p->prio = effective_prio(p);
3110 delta = p->prio - old_prio;
1da177e4 3111
dd41f596 3112 if (on_rq) {
371fd7e7 3113 enqueue_task(rq, p, 0);
1da177e4 3114 /*
d5f9f942
AM
3115 * If the task increased its priority or is running and
3116 * lowered its priority, then reschedule its CPU:
1da177e4 3117 */
d5f9f942 3118 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3119 resched_task(rq->curr);
3120 }
3121out_unlock:
0122ec5b 3122 task_rq_unlock(rq, p, &flags);
1da177e4 3123}
1da177e4
LT
3124EXPORT_SYMBOL(set_user_nice);
3125
e43379f1
MM
3126/*
3127 * can_nice - check if a task can reduce its nice value
3128 * @p: task
3129 * @nice: nice value
3130 */
36c8b586 3131int can_nice(const struct task_struct *p, const int nice)
e43379f1 3132{
024f4747
MM
3133 /* convert nice value [19,-20] to rlimit style value [1,40] */
3134 int nice_rlim = 20 - nice;
48f24c4d 3135
78d7d407 3136 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3137 capable(CAP_SYS_NICE));
3138}
3139
1da177e4
LT
3140#ifdef __ARCH_WANT_SYS_NICE
3141
3142/*
3143 * sys_nice - change the priority of the current process.
3144 * @increment: priority increment
3145 *
3146 * sys_setpriority is a more generic, but much slower function that
3147 * does similar things.
3148 */
5add95d4 3149SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3150{
48f24c4d 3151 long nice, retval;
1da177e4
LT
3152
3153 /*
3154 * Setpriority might change our priority at the same moment.
3155 * We don't have to worry. Conceptually one call occurs first
3156 * and we have a single winner.
3157 */
e43379f1
MM
3158 if (increment < -40)
3159 increment = -40;
1da177e4
LT
3160 if (increment > 40)
3161 increment = 40;
3162
2b8f836f 3163 nice = TASK_NICE(current) + increment;
1da177e4
LT
3164 if (nice < -20)
3165 nice = -20;
3166 if (nice > 19)
3167 nice = 19;
3168
e43379f1
MM
3169 if (increment < 0 && !can_nice(current, nice))
3170 return -EPERM;
3171
1da177e4
LT
3172 retval = security_task_setnice(current, nice);
3173 if (retval)
3174 return retval;
3175
3176 set_user_nice(current, nice);
3177 return 0;
3178}
3179
3180#endif
3181
3182/**
3183 * task_prio - return the priority value of a given task.
3184 * @p: the task in question.
3185 *
e69f6186 3186 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3187 * RT tasks are offset by -200. Normal tasks are centered
3188 * around 0, value goes from -16 to +15.
3189 */
36c8b586 3190int task_prio(const struct task_struct *p)
1da177e4
LT
3191{
3192 return p->prio - MAX_RT_PRIO;
3193}
3194
3195/**
3196 * task_nice - return the nice value of a given task.
3197 * @p: the task in question.
e69f6186
YB
3198 *
3199 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3200 */
36c8b586 3201int task_nice(const struct task_struct *p)
1da177e4
LT
3202{
3203 return TASK_NICE(p);
3204}
150d8bed 3205EXPORT_SYMBOL(task_nice);
1da177e4
LT
3206
3207/**
3208 * idle_cpu - is a given cpu idle currently?
3209 * @cpu: the processor in question.
e69f6186
YB
3210 *
3211 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3212 */
3213int idle_cpu(int cpu)
3214{
908a3283
TG
3215 struct rq *rq = cpu_rq(cpu);
3216
3217 if (rq->curr != rq->idle)
3218 return 0;
3219
3220 if (rq->nr_running)
3221 return 0;
3222
3223#ifdef CONFIG_SMP
3224 if (!llist_empty(&rq->wake_list))
3225 return 0;
3226#endif
3227
3228 return 1;
1da177e4
LT
3229}
3230
1da177e4
LT
3231/**
3232 * idle_task - return the idle task for a given cpu.
3233 * @cpu: the processor in question.
e69f6186
YB
3234 *
3235 * Return: The idle task for the cpu @cpu.
1da177e4 3236 */
36c8b586 3237struct task_struct *idle_task(int cpu)
1da177e4
LT
3238{
3239 return cpu_rq(cpu)->idle;
3240}
3241
3242/**
3243 * find_process_by_pid - find a process with a matching PID value.
3244 * @pid: the pid in question.
e69f6186
YB
3245 *
3246 * The task of @pid, if found. %NULL otherwise.
1da177e4 3247 */
a9957449 3248static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3249{
228ebcbe 3250 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3251}
3252
3253/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3254static void
3255__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3256{
1da177e4
LT
3257 p->policy = policy;
3258 p->rt_priority = prio;
b29739f9
IM
3259 p->normal_prio = normal_prio(p);
3260 /* we are holding p->pi_lock already */
3261 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3262 if (rt_prio(p->prio))
3263 p->sched_class = &rt_sched_class;
3264 else
3265 p->sched_class = &fair_sched_class;
2dd73a4f 3266 set_load_weight(p);
1da177e4
LT
3267}
3268
c69e8d9c
DH
3269/*
3270 * check the target process has a UID that matches the current process's
3271 */
3272static bool check_same_owner(struct task_struct *p)
3273{
3274 const struct cred *cred = current_cred(), *pcred;
3275 bool match;
3276
3277 rcu_read_lock();
3278 pcred = __task_cred(p);
9c806aa0
EB
3279 match = (uid_eq(cred->euid, pcred->euid) ||
3280 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3281 rcu_read_unlock();
3282 return match;
3283}
3284
961ccddd 3285static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3286 const struct sched_param *param, bool user)
1da177e4 3287{
83b699ed 3288 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3289 unsigned long flags;
83ab0aa0 3290 const struct sched_class *prev_class;
70b97a7f 3291 struct rq *rq;
ca94c442 3292 int reset_on_fork;
1da177e4 3293
66e5393a
SR
3294 /* may grab non-irq protected spin_locks */
3295 BUG_ON(in_interrupt());
1da177e4
LT
3296recheck:
3297 /* double check policy once rq lock held */
ca94c442
LP
3298 if (policy < 0) {
3299 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3300 policy = oldpolicy = p->policy;
ca94c442
LP
3301 } else {
3302 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3303 policy &= ~SCHED_RESET_ON_FORK;
3304
3305 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3306 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3307 policy != SCHED_IDLE)
3308 return -EINVAL;
3309 }
3310
1da177e4
LT
3311 /*
3312 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3313 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3314 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3315 */
3316 if (param->sched_priority < 0 ||
95cdf3b7 3317 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3318 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3319 return -EINVAL;
e05606d3 3320 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3321 return -EINVAL;
3322
37e4ab3f
OC
3323 /*
3324 * Allow unprivileged RT tasks to decrease priority:
3325 */
961ccddd 3326 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3327 if (rt_policy(policy)) {
a44702e8
ON
3328 unsigned long rlim_rtprio =
3329 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3330
3331 /* can't set/change the rt policy */
3332 if (policy != p->policy && !rlim_rtprio)
3333 return -EPERM;
3334
3335 /* can't increase priority */
3336 if (param->sched_priority > p->rt_priority &&
3337 param->sched_priority > rlim_rtprio)
3338 return -EPERM;
3339 }
c02aa73b 3340
dd41f596 3341 /*
c02aa73b
DH
3342 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3343 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3344 */
c02aa73b
DH
3345 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3346 if (!can_nice(p, TASK_NICE(p)))
3347 return -EPERM;
3348 }
5fe1d75f 3349
37e4ab3f 3350 /* can't change other user's priorities */
c69e8d9c 3351 if (!check_same_owner(p))
37e4ab3f 3352 return -EPERM;
ca94c442
LP
3353
3354 /* Normal users shall not reset the sched_reset_on_fork flag */
3355 if (p->sched_reset_on_fork && !reset_on_fork)
3356 return -EPERM;
37e4ab3f 3357 }
1da177e4 3358
725aad24 3359 if (user) {
b0ae1981 3360 retval = security_task_setscheduler(p);
725aad24
JF
3361 if (retval)
3362 return retval;
3363 }
3364
b29739f9
IM
3365 /*
3366 * make sure no PI-waiters arrive (or leave) while we are
3367 * changing the priority of the task:
0122ec5b 3368 *
25985edc 3369 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3370 * runqueue lock must be held.
3371 */
0122ec5b 3372 rq = task_rq_lock(p, &flags);
dc61b1d6 3373
34f971f6
PZ
3374 /*
3375 * Changing the policy of the stop threads its a very bad idea
3376 */
3377 if (p == rq->stop) {
0122ec5b 3378 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3379 return -EINVAL;
3380 }
3381
a51e9198
DF
3382 /*
3383 * If not changing anything there's no need to proceed further:
3384 */
3385 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3386 param->sched_priority == p->rt_priority))) {
45afb173 3387 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3388 return 0;
3389 }
3390
dc61b1d6
PZ
3391#ifdef CONFIG_RT_GROUP_SCHED
3392 if (user) {
3393 /*
3394 * Do not allow realtime tasks into groups that have no runtime
3395 * assigned.
3396 */
3397 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3398 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3399 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3400 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3401 return -EPERM;
3402 }
3403 }
3404#endif
3405
1da177e4
LT
3406 /* recheck policy now with rq lock held */
3407 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3408 policy = oldpolicy = -1;
0122ec5b 3409 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3410 goto recheck;
3411 }
fd2f4419 3412 on_rq = p->on_rq;
051a1d1a 3413 running = task_current(rq, p);
0e1f3483 3414 if (on_rq)
4ca9b72b 3415 dequeue_task(rq, p, 0);
0e1f3483
HS
3416 if (running)
3417 p->sched_class->put_prev_task(rq, p);
f6b53205 3418
ca94c442
LP
3419 p->sched_reset_on_fork = reset_on_fork;
3420
1da177e4 3421 oldprio = p->prio;
83ab0aa0 3422 prev_class = p->sched_class;
dd41f596 3423 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3424
0e1f3483
HS
3425 if (running)
3426 p->sched_class->set_curr_task(rq);
da7a735e 3427 if (on_rq)
4ca9b72b 3428 enqueue_task(rq, p, 0);
cb469845 3429
da7a735e 3430 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3431 task_rq_unlock(rq, p, &flags);
b29739f9 3432
95e02ca9
TG
3433 rt_mutex_adjust_pi(p);
3434
1da177e4
LT
3435 return 0;
3436}
961ccddd
RR
3437
3438/**
3439 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3440 * @p: the task in question.
3441 * @policy: new policy.
3442 * @param: structure containing the new RT priority.
3443 *
e69f6186
YB
3444 * Return: 0 on success. An error code otherwise.
3445 *
961ccddd
RR
3446 * NOTE that the task may be already dead.
3447 */
3448int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3449 const struct sched_param *param)
961ccddd
RR
3450{
3451 return __sched_setscheduler(p, policy, param, true);
3452}
1da177e4
LT
3453EXPORT_SYMBOL_GPL(sched_setscheduler);
3454
961ccddd
RR
3455/**
3456 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3457 * @p: the task in question.
3458 * @policy: new policy.
3459 * @param: structure containing the new RT priority.
3460 *
3461 * Just like sched_setscheduler, only don't bother checking if the
3462 * current context has permission. For example, this is needed in
3463 * stop_machine(): we create temporary high priority worker threads,
3464 * but our caller might not have that capability.
e69f6186
YB
3465 *
3466 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3467 */
3468int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3469 const struct sched_param *param)
961ccddd
RR
3470{
3471 return __sched_setscheduler(p, policy, param, false);
3472}
3473
95cdf3b7
IM
3474static int
3475do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3476{
1da177e4
LT
3477 struct sched_param lparam;
3478 struct task_struct *p;
36c8b586 3479 int retval;
1da177e4
LT
3480
3481 if (!param || pid < 0)
3482 return -EINVAL;
3483 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3484 return -EFAULT;
5fe1d75f
ON
3485
3486 rcu_read_lock();
3487 retval = -ESRCH;
1da177e4 3488 p = find_process_by_pid(pid);
5fe1d75f
ON
3489 if (p != NULL)
3490 retval = sched_setscheduler(p, policy, &lparam);
3491 rcu_read_unlock();
36c8b586 3492
1da177e4
LT
3493 return retval;
3494}
3495
3496/**
3497 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3498 * @pid: the pid in question.
3499 * @policy: new policy.
3500 * @param: structure containing the new RT priority.
e69f6186
YB
3501 *
3502 * Return: 0 on success. An error code otherwise.
1da177e4 3503 */
5add95d4
HC
3504SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3505 struct sched_param __user *, param)
1da177e4 3506{
c21761f1
JB
3507 /* negative values for policy are not valid */
3508 if (policy < 0)
3509 return -EINVAL;
3510
1da177e4
LT
3511 return do_sched_setscheduler(pid, policy, param);
3512}
3513
3514/**
3515 * sys_sched_setparam - set/change the RT priority of a thread
3516 * @pid: the pid in question.
3517 * @param: structure containing the new RT priority.
e69f6186
YB
3518 *
3519 * Return: 0 on success. An error code otherwise.
1da177e4 3520 */
5add95d4 3521SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3522{
3523 return do_sched_setscheduler(pid, -1, param);
3524}
3525
3526/**
3527 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3528 * @pid: the pid in question.
e69f6186
YB
3529 *
3530 * Return: On success, the policy of the thread. Otherwise, a negative error
3531 * code.
1da177e4 3532 */
5add95d4 3533SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3534{
36c8b586 3535 struct task_struct *p;
3a5c359a 3536 int retval;
1da177e4
LT
3537
3538 if (pid < 0)
3a5c359a 3539 return -EINVAL;
1da177e4
LT
3540
3541 retval = -ESRCH;
5fe85be0 3542 rcu_read_lock();
1da177e4
LT
3543 p = find_process_by_pid(pid);
3544 if (p) {
3545 retval = security_task_getscheduler(p);
3546 if (!retval)
ca94c442
LP
3547 retval = p->policy
3548 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3549 }
5fe85be0 3550 rcu_read_unlock();
1da177e4
LT
3551 return retval;
3552}
3553
3554/**
ca94c442 3555 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3556 * @pid: the pid in question.
3557 * @param: structure containing the RT priority.
e69f6186
YB
3558 *
3559 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3560 * code.
1da177e4 3561 */
5add95d4 3562SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3563{
3564 struct sched_param lp;
36c8b586 3565 struct task_struct *p;
3a5c359a 3566 int retval;
1da177e4
LT
3567
3568 if (!param || pid < 0)
3a5c359a 3569 return -EINVAL;
1da177e4 3570
5fe85be0 3571 rcu_read_lock();
1da177e4
LT
3572 p = find_process_by_pid(pid);
3573 retval = -ESRCH;
3574 if (!p)
3575 goto out_unlock;
3576
3577 retval = security_task_getscheduler(p);
3578 if (retval)
3579 goto out_unlock;
3580
3581 lp.sched_priority = p->rt_priority;
5fe85be0 3582 rcu_read_unlock();
1da177e4
LT
3583
3584 /*
3585 * This one might sleep, we cannot do it with a spinlock held ...
3586 */
3587 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3588
1da177e4
LT
3589 return retval;
3590
3591out_unlock:
5fe85be0 3592 rcu_read_unlock();
1da177e4
LT
3593 return retval;
3594}
3595
96f874e2 3596long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3597{
5a16f3d3 3598 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3599 struct task_struct *p;
3600 int retval;
1da177e4 3601
95402b38 3602 get_online_cpus();
23f5d142 3603 rcu_read_lock();
1da177e4
LT
3604
3605 p = find_process_by_pid(pid);
3606 if (!p) {
23f5d142 3607 rcu_read_unlock();
95402b38 3608 put_online_cpus();
1da177e4
LT
3609 return -ESRCH;
3610 }
3611
23f5d142 3612 /* Prevent p going away */
1da177e4 3613 get_task_struct(p);
23f5d142 3614 rcu_read_unlock();
1da177e4 3615
14a40ffc
TH
3616 if (p->flags & PF_NO_SETAFFINITY) {
3617 retval = -EINVAL;
3618 goto out_put_task;
3619 }
5a16f3d3
RR
3620 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3621 retval = -ENOMEM;
3622 goto out_put_task;
3623 }
3624 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3625 retval = -ENOMEM;
3626 goto out_free_cpus_allowed;
3627 }
1da177e4 3628 retval = -EPERM;
4c44aaaf
EB
3629 if (!check_same_owner(p)) {
3630 rcu_read_lock();
3631 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3632 rcu_read_unlock();
3633 goto out_unlock;
3634 }
3635 rcu_read_unlock();
3636 }
1da177e4 3637
b0ae1981 3638 retval = security_task_setscheduler(p);
e7834f8f
DQ
3639 if (retval)
3640 goto out_unlock;
3641
5a16f3d3
RR
3642 cpuset_cpus_allowed(p, cpus_allowed);
3643 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3644again:
5a16f3d3 3645 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3646
8707d8b8 3647 if (!retval) {
5a16f3d3
RR
3648 cpuset_cpus_allowed(p, cpus_allowed);
3649 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3650 /*
3651 * We must have raced with a concurrent cpuset
3652 * update. Just reset the cpus_allowed to the
3653 * cpuset's cpus_allowed
3654 */
5a16f3d3 3655 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3656 goto again;
3657 }
3658 }
1da177e4 3659out_unlock:
5a16f3d3
RR
3660 free_cpumask_var(new_mask);
3661out_free_cpus_allowed:
3662 free_cpumask_var(cpus_allowed);
3663out_put_task:
1da177e4 3664 put_task_struct(p);
95402b38 3665 put_online_cpus();
1da177e4
LT
3666 return retval;
3667}
3668
3669static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3670 struct cpumask *new_mask)
1da177e4 3671{
96f874e2
RR
3672 if (len < cpumask_size())
3673 cpumask_clear(new_mask);
3674 else if (len > cpumask_size())
3675 len = cpumask_size();
3676
1da177e4
LT
3677 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3678}
3679
3680/**
3681 * sys_sched_setaffinity - set the cpu affinity of a process
3682 * @pid: pid of the process
3683 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3684 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3685 *
3686 * Return: 0 on success. An error code otherwise.
1da177e4 3687 */
5add95d4
HC
3688SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3689 unsigned long __user *, user_mask_ptr)
1da177e4 3690{
5a16f3d3 3691 cpumask_var_t new_mask;
1da177e4
LT
3692 int retval;
3693
5a16f3d3
RR
3694 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3695 return -ENOMEM;
1da177e4 3696
5a16f3d3
RR
3697 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3698 if (retval == 0)
3699 retval = sched_setaffinity(pid, new_mask);
3700 free_cpumask_var(new_mask);
3701 return retval;
1da177e4
LT
3702}
3703
96f874e2 3704long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3705{
36c8b586 3706 struct task_struct *p;
31605683 3707 unsigned long flags;
1da177e4 3708 int retval;
1da177e4 3709
95402b38 3710 get_online_cpus();
23f5d142 3711 rcu_read_lock();
1da177e4
LT
3712
3713 retval = -ESRCH;
3714 p = find_process_by_pid(pid);
3715 if (!p)
3716 goto out_unlock;
3717
e7834f8f
DQ
3718 retval = security_task_getscheduler(p);
3719 if (retval)
3720 goto out_unlock;
3721
013fdb80 3722 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3723 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3724 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3725
3726out_unlock:
23f5d142 3727 rcu_read_unlock();
95402b38 3728 put_online_cpus();
1da177e4 3729
9531b62f 3730 return retval;
1da177e4
LT
3731}
3732
3733/**
3734 * sys_sched_getaffinity - get the cpu affinity of a process
3735 * @pid: pid of the process
3736 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3737 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3738 *
3739 * Return: 0 on success. An error code otherwise.
1da177e4 3740 */
5add95d4
HC
3741SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3742 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3743{
3744 int ret;
f17c8607 3745 cpumask_var_t mask;
1da177e4 3746
84fba5ec 3747 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3748 return -EINVAL;
3749 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3750 return -EINVAL;
3751
f17c8607
RR
3752 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3753 return -ENOMEM;
1da177e4 3754
f17c8607
RR
3755 ret = sched_getaffinity(pid, mask);
3756 if (ret == 0) {
8bc037fb 3757 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3758
3759 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3760 ret = -EFAULT;
3761 else
cd3d8031 3762 ret = retlen;
f17c8607
RR
3763 }
3764 free_cpumask_var(mask);
1da177e4 3765
f17c8607 3766 return ret;
1da177e4
LT
3767}
3768
3769/**
3770 * sys_sched_yield - yield the current processor to other threads.
3771 *
dd41f596
IM
3772 * This function yields the current CPU to other tasks. If there are no
3773 * other threads running on this CPU then this function will return.
e69f6186
YB
3774 *
3775 * Return: 0.
1da177e4 3776 */
5add95d4 3777SYSCALL_DEFINE0(sched_yield)
1da177e4 3778{
70b97a7f 3779 struct rq *rq = this_rq_lock();
1da177e4 3780
2d72376b 3781 schedstat_inc(rq, yld_count);
4530d7ab 3782 current->sched_class->yield_task(rq);
1da177e4
LT
3783
3784 /*
3785 * Since we are going to call schedule() anyway, there's
3786 * no need to preempt or enable interrupts:
3787 */
3788 __release(rq->lock);
8a25d5de 3789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3790 do_raw_spin_unlock(&rq->lock);
ba74c144 3791 sched_preempt_enable_no_resched();
1da177e4
LT
3792
3793 schedule();
3794
3795 return 0;
3796}
3797
d86ee480
PZ
3798static inline int should_resched(void)
3799{
3800 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3801}
3802
e7b38404 3803static void __cond_resched(void)
1da177e4 3804{
e7aaaa69 3805 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 3806 __schedule();
e7aaaa69 3807 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
3808}
3809
02b67cc3 3810int __sched _cond_resched(void)
1da177e4 3811{
d86ee480 3812 if (should_resched()) {
1da177e4
LT
3813 __cond_resched();
3814 return 1;
3815 }
3816 return 0;
3817}
02b67cc3 3818EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3819
3820/*
613afbf8 3821 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3822 * call schedule, and on return reacquire the lock.
3823 *
41a2d6cf 3824 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3825 * operations here to prevent schedule() from being called twice (once via
3826 * spin_unlock(), once by hand).
3827 */
613afbf8 3828int __cond_resched_lock(spinlock_t *lock)
1da177e4 3829{
d86ee480 3830 int resched = should_resched();
6df3cecb
JK
3831 int ret = 0;
3832
f607c668
PZ
3833 lockdep_assert_held(lock);
3834
95c354fe 3835 if (spin_needbreak(lock) || resched) {
1da177e4 3836 spin_unlock(lock);
d86ee480 3837 if (resched)
95c354fe
NP
3838 __cond_resched();
3839 else
3840 cpu_relax();
6df3cecb 3841 ret = 1;
1da177e4 3842 spin_lock(lock);
1da177e4 3843 }
6df3cecb 3844 return ret;
1da177e4 3845}
613afbf8 3846EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3847
613afbf8 3848int __sched __cond_resched_softirq(void)
1da177e4
LT
3849{
3850 BUG_ON(!in_softirq());
3851
d86ee480 3852 if (should_resched()) {
98d82567 3853 local_bh_enable();
1da177e4
LT
3854 __cond_resched();
3855 local_bh_disable();
3856 return 1;
3857 }
3858 return 0;
3859}
613afbf8 3860EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3861
1da177e4
LT
3862/**
3863 * yield - yield the current processor to other threads.
3864 *
8e3fabfd
PZ
3865 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3866 *
3867 * The scheduler is at all times free to pick the calling task as the most
3868 * eligible task to run, if removing the yield() call from your code breaks
3869 * it, its already broken.
3870 *
3871 * Typical broken usage is:
3872 *
3873 * while (!event)
3874 * yield();
3875 *
3876 * where one assumes that yield() will let 'the other' process run that will
3877 * make event true. If the current task is a SCHED_FIFO task that will never
3878 * happen. Never use yield() as a progress guarantee!!
3879 *
3880 * If you want to use yield() to wait for something, use wait_event().
3881 * If you want to use yield() to be 'nice' for others, use cond_resched().
3882 * If you still want to use yield(), do not!
1da177e4
LT
3883 */
3884void __sched yield(void)
3885{
3886 set_current_state(TASK_RUNNING);
3887 sys_sched_yield();
3888}
1da177e4
LT
3889EXPORT_SYMBOL(yield);
3890
d95f4122
MG
3891/**
3892 * yield_to - yield the current processor to another thread in
3893 * your thread group, or accelerate that thread toward the
3894 * processor it's on.
16addf95
RD
3895 * @p: target task
3896 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3897 *
3898 * It's the caller's job to ensure that the target task struct
3899 * can't go away on us before we can do any checks.
3900 *
e69f6186 3901 * Return:
7b270f60
PZ
3902 * true (>0) if we indeed boosted the target task.
3903 * false (0) if we failed to boost the target.
3904 * -ESRCH if there's no task to yield to.
d95f4122
MG
3905 */
3906bool __sched yield_to(struct task_struct *p, bool preempt)
3907{
3908 struct task_struct *curr = current;
3909 struct rq *rq, *p_rq;
3910 unsigned long flags;
c3c18640 3911 int yielded = 0;
d95f4122
MG
3912
3913 local_irq_save(flags);
3914 rq = this_rq();
3915
3916again:
3917 p_rq = task_rq(p);
7b270f60
PZ
3918 /*
3919 * If we're the only runnable task on the rq and target rq also
3920 * has only one task, there's absolutely no point in yielding.
3921 */
3922 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3923 yielded = -ESRCH;
3924 goto out_irq;
3925 }
3926
d95f4122
MG
3927 double_rq_lock(rq, p_rq);
3928 while (task_rq(p) != p_rq) {
3929 double_rq_unlock(rq, p_rq);
3930 goto again;
3931 }
3932
3933 if (!curr->sched_class->yield_to_task)
7b270f60 3934 goto out_unlock;
d95f4122
MG
3935
3936 if (curr->sched_class != p->sched_class)
7b270f60 3937 goto out_unlock;
d95f4122
MG
3938
3939 if (task_running(p_rq, p) || p->state)
7b270f60 3940 goto out_unlock;
d95f4122
MG
3941
3942 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3943 if (yielded) {
d95f4122 3944 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3945 /*
3946 * Make p's CPU reschedule; pick_next_entity takes care of
3947 * fairness.
3948 */
3949 if (preempt && rq != p_rq)
3950 resched_task(p_rq->curr);
3951 }
d95f4122 3952
7b270f60 3953out_unlock:
d95f4122 3954 double_rq_unlock(rq, p_rq);
7b270f60 3955out_irq:
d95f4122
MG
3956 local_irq_restore(flags);
3957
7b270f60 3958 if (yielded > 0)
d95f4122
MG
3959 schedule();
3960
3961 return yielded;
3962}
3963EXPORT_SYMBOL_GPL(yield_to);
3964
1da177e4 3965/*
41a2d6cf 3966 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3967 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3968 */
3969void __sched io_schedule(void)
3970{
54d35f29 3971 struct rq *rq = raw_rq();
1da177e4 3972
0ff92245 3973 delayacct_blkio_start();
1da177e4 3974 atomic_inc(&rq->nr_iowait);
73c10101 3975 blk_flush_plug(current);
8f0dfc34 3976 current->in_iowait = 1;
1da177e4 3977 schedule();
8f0dfc34 3978 current->in_iowait = 0;
1da177e4 3979 atomic_dec(&rq->nr_iowait);
0ff92245 3980 delayacct_blkio_end();
1da177e4 3981}
1da177e4
LT
3982EXPORT_SYMBOL(io_schedule);
3983
3984long __sched io_schedule_timeout(long timeout)
3985{
54d35f29 3986 struct rq *rq = raw_rq();
1da177e4
LT
3987 long ret;
3988
0ff92245 3989 delayacct_blkio_start();
1da177e4 3990 atomic_inc(&rq->nr_iowait);
73c10101 3991 blk_flush_plug(current);
8f0dfc34 3992 current->in_iowait = 1;
1da177e4 3993 ret = schedule_timeout(timeout);
8f0dfc34 3994 current->in_iowait = 0;
1da177e4 3995 atomic_dec(&rq->nr_iowait);
0ff92245 3996 delayacct_blkio_end();
1da177e4
LT
3997 return ret;
3998}
3999
4000/**
4001 * sys_sched_get_priority_max - return maximum RT priority.
4002 * @policy: scheduling class.
4003 *
e69f6186
YB
4004 * Return: On success, this syscall returns the maximum
4005 * rt_priority that can be used by a given scheduling class.
4006 * On failure, a negative error code is returned.
1da177e4 4007 */
5add95d4 4008SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4009{
4010 int ret = -EINVAL;
4011
4012 switch (policy) {
4013 case SCHED_FIFO:
4014 case SCHED_RR:
4015 ret = MAX_USER_RT_PRIO-1;
4016 break;
4017 case SCHED_NORMAL:
b0a9499c 4018 case SCHED_BATCH:
dd41f596 4019 case SCHED_IDLE:
1da177e4
LT
4020 ret = 0;
4021 break;
4022 }
4023 return ret;
4024}
4025
4026/**
4027 * sys_sched_get_priority_min - return minimum RT priority.
4028 * @policy: scheduling class.
4029 *
e69f6186
YB
4030 * Return: On success, this syscall returns the minimum
4031 * rt_priority that can be used by a given scheduling class.
4032 * On failure, a negative error code is returned.
1da177e4 4033 */
5add95d4 4034SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4035{
4036 int ret = -EINVAL;
4037
4038 switch (policy) {
4039 case SCHED_FIFO:
4040 case SCHED_RR:
4041 ret = 1;
4042 break;
4043 case SCHED_NORMAL:
b0a9499c 4044 case SCHED_BATCH:
dd41f596 4045 case SCHED_IDLE:
1da177e4
LT
4046 ret = 0;
4047 }
4048 return ret;
4049}
4050
4051/**
4052 * sys_sched_rr_get_interval - return the default timeslice of a process.
4053 * @pid: pid of the process.
4054 * @interval: userspace pointer to the timeslice value.
4055 *
4056 * this syscall writes the default timeslice value of a given process
4057 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4058 *
4059 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4060 * an error code.
1da177e4 4061 */
17da2bd9 4062SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4063 struct timespec __user *, interval)
1da177e4 4064{
36c8b586 4065 struct task_struct *p;
a4ec24b4 4066 unsigned int time_slice;
dba091b9
TG
4067 unsigned long flags;
4068 struct rq *rq;
3a5c359a 4069 int retval;
1da177e4 4070 struct timespec t;
1da177e4
LT
4071
4072 if (pid < 0)
3a5c359a 4073 return -EINVAL;
1da177e4
LT
4074
4075 retval = -ESRCH;
1a551ae7 4076 rcu_read_lock();
1da177e4
LT
4077 p = find_process_by_pid(pid);
4078 if (!p)
4079 goto out_unlock;
4080
4081 retval = security_task_getscheduler(p);
4082 if (retval)
4083 goto out_unlock;
4084
dba091b9
TG
4085 rq = task_rq_lock(p, &flags);
4086 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4087 task_rq_unlock(rq, p, &flags);
a4ec24b4 4088
1a551ae7 4089 rcu_read_unlock();
a4ec24b4 4090 jiffies_to_timespec(time_slice, &t);
1da177e4 4091 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4092 return retval;
3a5c359a 4093
1da177e4 4094out_unlock:
1a551ae7 4095 rcu_read_unlock();
1da177e4
LT
4096 return retval;
4097}
4098
7c731e0a 4099static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4100
82a1fcb9 4101void sched_show_task(struct task_struct *p)
1da177e4 4102{
1da177e4 4103 unsigned long free = 0;
4e79752c 4104 int ppid;
36c8b586 4105 unsigned state;
1da177e4 4106
1da177e4 4107 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4108 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4109 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4110#if BITS_PER_LONG == 32
1da177e4 4111 if (state == TASK_RUNNING)
3df0fc5b 4112 printk(KERN_CONT " running ");
1da177e4 4113 else
3df0fc5b 4114 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4115#else
4116 if (state == TASK_RUNNING)
3df0fc5b 4117 printk(KERN_CONT " running task ");
1da177e4 4118 else
3df0fc5b 4119 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4120#endif
4121#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4122 free = stack_not_used(p);
1da177e4 4123#endif
4e79752c
PM
4124 rcu_read_lock();
4125 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4126 rcu_read_unlock();
3df0fc5b 4127 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4128 task_pid_nr(p), ppid,
aa47b7e0 4129 (unsigned long)task_thread_info(p)->flags);
1da177e4 4130
3d1cb205 4131 print_worker_info(KERN_INFO, p);
5fb5e6de 4132 show_stack(p, NULL);
1da177e4
LT
4133}
4134
e59e2ae2 4135void show_state_filter(unsigned long state_filter)
1da177e4 4136{
36c8b586 4137 struct task_struct *g, *p;
1da177e4 4138
4bd77321 4139#if BITS_PER_LONG == 32
3df0fc5b
PZ
4140 printk(KERN_INFO
4141 " task PC stack pid father\n");
1da177e4 4142#else
3df0fc5b
PZ
4143 printk(KERN_INFO
4144 " task PC stack pid father\n");
1da177e4 4145#endif
510f5acc 4146 rcu_read_lock();
1da177e4
LT
4147 do_each_thread(g, p) {
4148 /*
4149 * reset the NMI-timeout, listing all files on a slow
25985edc 4150 * console might take a lot of time:
1da177e4
LT
4151 */
4152 touch_nmi_watchdog();
39bc89fd 4153 if (!state_filter || (p->state & state_filter))
82a1fcb9 4154 sched_show_task(p);
1da177e4
LT
4155 } while_each_thread(g, p);
4156
04c9167f
JF
4157 touch_all_softlockup_watchdogs();
4158
dd41f596
IM
4159#ifdef CONFIG_SCHED_DEBUG
4160 sysrq_sched_debug_show();
4161#endif
510f5acc 4162 rcu_read_unlock();
e59e2ae2
IM
4163 /*
4164 * Only show locks if all tasks are dumped:
4165 */
93335a21 4166 if (!state_filter)
e59e2ae2 4167 debug_show_all_locks();
1da177e4
LT
4168}
4169
0db0628d 4170void init_idle_bootup_task(struct task_struct *idle)
1df21055 4171{
dd41f596 4172 idle->sched_class = &idle_sched_class;
1df21055
IM
4173}
4174
f340c0d1
IM
4175/**
4176 * init_idle - set up an idle thread for a given CPU
4177 * @idle: task in question
4178 * @cpu: cpu the idle task belongs to
4179 *
4180 * NOTE: this function does not set the idle thread's NEED_RESCHED
4181 * flag, to make booting more robust.
4182 */
0db0628d 4183void init_idle(struct task_struct *idle, int cpu)
1da177e4 4184{
70b97a7f 4185 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4186 unsigned long flags;
4187
05fa785c 4188 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4189
dd41f596 4190 __sched_fork(idle);
06b83b5f 4191 idle->state = TASK_RUNNING;
dd41f596
IM
4192 idle->se.exec_start = sched_clock();
4193
1e1b6c51 4194 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4195 /*
4196 * We're having a chicken and egg problem, even though we are
4197 * holding rq->lock, the cpu isn't yet set to this cpu so the
4198 * lockdep check in task_group() will fail.
4199 *
4200 * Similar case to sched_fork(). / Alternatively we could
4201 * use task_rq_lock() here and obtain the other rq->lock.
4202 *
4203 * Silence PROVE_RCU
4204 */
4205 rcu_read_lock();
dd41f596 4206 __set_task_cpu(idle, cpu);
6506cf6c 4207 rcu_read_unlock();
1da177e4 4208
1da177e4 4209 rq->curr = rq->idle = idle;
3ca7a440
PZ
4210#if defined(CONFIG_SMP)
4211 idle->on_cpu = 1;
4866cde0 4212#endif
05fa785c 4213 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4214
4215 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4216 task_thread_info(idle)->preempt_count = 0;
55cd5340 4217
dd41f596
IM
4218 /*
4219 * The idle tasks have their own, simple scheduling class:
4220 */
4221 idle->sched_class = &idle_sched_class;
868baf07 4222 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4223 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4224#if defined(CONFIG_SMP)
4225 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4226#endif
19978ca6
IM
4227}
4228
1da177e4 4229#ifdef CONFIG_SMP
1e1b6c51
KM
4230void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4231{
4232 if (p->sched_class && p->sched_class->set_cpus_allowed)
4233 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4234
4235 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4236 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4237}
4238
1da177e4
LT
4239/*
4240 * This is how migration works:
4241 *
969c7921
TH
4242 * 1) we invoke migration_cpu_stop() on the target CPU using
4243 * stop_one_cpu().
4244 * 2) stopper starts to run (implicitly forcing the migrated thread
4245 * off the CPU)
4246 * 3) it checks whether the migrated task is still in the wrong runqueue.
4247 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4248 * it and puts it into the right queue.
969c7921
TH
4249 * 5) stopper completes and stop_one_cpu() returns and the migration
4250 * is done.
1da177e4
LT
4251 */
4252
4253/*
4254 * Change a given task's CPU affinity. Migrate the thread to a
4255 * proper CPU and schedule it away if the CPU it's executing on
4256 * is removed from the allowed bitmask.
4257 *
4258 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4259 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4260 * call is not atomic; no spinlocks may be held.
4261 */
96f874e2 4262int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4263{
4264 unsigned long flags;
70b97a7f 4265 struct rq *rq;
969c7921 4266 unsigned int dest_cpu;
48f24c4d 4267 int ret = 0;
1da177e4
LT
4268
4269 rq = task_rq_lock(p, &flags);
e2912009 4270
db44fc01
YZ
4271 if (cpumask_equal(&p->cpus_allowed, new_mask))
4272 goto out;
4273
6ad4c188 4274 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4275 ret = -EINVAL;
4276 goto out;
4277 }
4278
1e1b6c51 4279 do_set_cpus_allowed(p, new_mask);
73fe6aae 4280
1da177e4 4281 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4282 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4283 goto out;
4284
969c7921 4285 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4286 if (p->on_rq) {
969c7921 4287 struct migration_arg arg = { p, dest_cpu };
1da177e4 4288 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4289 task_rq_unlock(rq, p, &flags);
969c7921 4290 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4291 tlb_migrate_finish(p->mm);
4292 return 0;
4293 }
4294out:
0122ec5b 4295 task_rq_unlock(rq, p, &flags);
48f24c4d 4296
1da177e4
LT
4297 return ret;
4298}
cd8ba7cd 4299EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4300
4301/*
41a2d6cf 4302 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4303 * this because either it can't run here any more (set_cpus_allowed()
4304 * away from this CPU, or CPU going down), or because we're
4305 * attempting to rebalance this task on exec (sched_exec).
4306 *
4307 * So we race with normal scheduler movements, but that's OK, as long
4308 * as the task is no longer on this CPU.
efc30814
KK
4309 *
4310 * Returns non-zero if task was successfully migrated.
1da177e4 4311 */
efc30814 4312static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4313{
70b97a7f 4314 struct rq *rq_dest, *rq_src;
e2912009 4315 int ret = 0;
1da177e4 4316
e761b772 4317 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4318 return ret;
1da177e4
LT
4319
4320 rq_src = cpu_rq(src_cpu);
4321 rq_dest = cpu_rq(dest_cpu);
4322
0122ec5b 4323 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4324 double_rq_lock(rq_src, rq_dest);
4325 /* Already moved. */
4326 if (task_cpu(p) != src_cpu)
b1e38734 4327 goto done;
1da177e4 4328 /* Affinity changed (again). */
fa17b507 4329 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4330 goto fail;
1da177e4 4331
e2912009
PZ
4332 /*
4333 * If we're not on a rq, the next wake-up will ensure we're
4334 * placed properly.
4335 */
fd2f4419 4336 if (p->on_rq) {
4ca9b72b 4337 dequeue_task(rq_src, p, 0);
e2912009 4338 set_task_cpu(p, dest_cpu);
4ca9b72b 4339 enqueue_task(rq_dest, p, 0);
15afe09b 4340 check_preempt_curr(rq_dest, p, 0);
1da177e4 4341 }
b1e38734 4342done:
efc30814 4343 ret = 1;
b1e38734 4344fail:
1da177e4 4345 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4346 raw_spin_unlock(&p->pi_lock);
efc30814 4347 return ret;
1da177e4
LT
4348}
4349
4350/*
969c7921
TH
4351 * migration_cpu_stop - this will be executed by a highprio stopper thread
4352 * and performs thread migration by bumping thread off CPU then
4353 * 'pushing' onto another runqueue.
1da177e4 4354 */
969c7921 4355static int migration_cpu_stop(void *data)
1da177e4 4356{
969c7921 4357 struct migration_arg *arg = data;
f7b4cddc 4358
969c7921
TH
4359 /*
4360 * The original target cpu might have gone down and we might
4361 * be on another cpu but it doesn't matter.
4362 */
f7b4cddc 4363 local_irq_disable();
969c7921 4364 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4365 local_irq_enable();
1da177e4 4366 return 0;
f7b4cddc
ON
4367}
4368
1da177e4 4369#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4370
054b9108 4371/*
48c5ccae
PZ
4372 * Ensures that the idle task is using init_mm right before its cpu goes
4373 * offline.
054b9108 4374 */
48c5ccae 4375void idle_task_exit(void)
1da177e4 4376{
48c5ccae 4377 struct mm_struct *mm = current->active_mm;
e76bd8d9 4378
48c5ccae 4379 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4380
48c5ccae
PZ
4381 if (mm != &init_mm)
4382 switch_mm(mm, &init_mm, current);
4383 mmdrop(mm);
1da177e4
LT
4384}
4385
4386/*
5d180232
PZ
4387 * Since this CPU is going 'away' for a while, fold any nr_active delta
4388 * we might have. Assumes we're called after migrate_tasks() so that the
4389 * nr_active count is stable.
4390 *
4391 * Also see the comment "Global load-average calculations".
1da177e4 4392 */
5d180232 4393static void calc_load_migrate(struct rq *rq)
1da177e4 4394{
5d180232
PZ
4395 long delta = calc_load_fold_active(rq);
4396 if (delta)
4397 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4398}
4399
48f24c4d 4400/*
48c5ccae
PZ
4401 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4402 * try_to_wake_up()->select_task_rq().
4403 *
4404 * Called with rq->lock held even though we'er in stop_machine() and
4405 * there's no concurrency possible, we hold the required locks anyway
4406 * because of lock validation efforts.
1da177e4 4407 */
48c5ccae 4408static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4409{
70b97a7f 4410 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4411 struct task_struct *next, *stop = rq->stop;
4412 int dest_cpu;
1da177e4
LT
4413
4414 /*
48c5ccae
PZ
4415 * Fudge the rq selection such that the below task selection loop
4416 * doesn't get stuck on the currently eligible stop task.
4417 *
4418 * We're currently inside stop_machine() and the rq is either stuck
4419 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4420 * either way we should never end up calling schedule() until we're
4421 * done here.
1da177e4 4422 */
48c5ccae 4423 rq->stop = NULL;
48f24c4d 4424
77bd3970
FW
4425 /*
4426 * put_prev_task() and pick_next_task() sched
4427 * class method both need to have an up-to-date
4428 * value of rq->clock[_task]
4429 */
4430 update_rq_clock(rq);
4431
dd41f596 4432 for ( ; ; ) {
48c5ccae
PZ
4433 /*
4434 * There's this thread running, bail when that's the only
4435 * remaining thread.
4436 */
4437 if (rq->nr_running == 1)
dd41f596 4438 break;
48c5ccae 4439
b67802ea 4440 next = pick_next_task(rq);
48c5ccae 4441 BUG_ON(!next);
79c53799 4442 next->sched_class->put_prev_task(rq, next);
e692ab53 4443
48c5ccae
PZ
4444 /* Find suitable destination for @next, with force if needed. */
4445 dest_cpu = select_fallback_rq(dead_cpu, next);
4446 raw_spin_unlock(&rq->lock);
4447
4448 __migrate_task(next, dead_cpu, dest_cpu);
4449
4450 raw_spin_lock(&rq->lock);
1da177e4 4451 }
dce48a84 4452
48c5ccae 4453 rq->stop = stop;
dce48a84 4454}
48c5ccae 4455
1da177e4
LT
4456#endif /* CONFIG_HOTPLUG_CPU */
4457
e692ab53
NP
4458#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4459
4460static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4461 {
4462 .procname = "sched_domain",
c57baf1e 4463 .mode = 0555,
e0361851 4464 },
56992309 4465 {}
e692ab53
NP
4466};
4467
4468static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4469 {
4470 .procname = "kernel",
c57baf1e 4471 .mode = 0555,
e0361851
AD
4472 .child = sd_ctl_dir,
4473 },
56992309 4474 {}
e692ab53
NP
4475};
4476
4477static struct ctl_table *sd_alloc_ctl_entry(int n)
4478{
4479 struct ctl_table *entry =
5cf9f062 4480 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4481
e692ab53
NP
4482 return entry;
4483}
4484
6382bc90
MM
4485static void sd_free_ctl_entry(struct ctl_table **tablep)
4486{
cd790076 4487 struct ctl_table *entry;
6382bc90 4488
cd790076
MM
4489 /*
4490 * In the intermediate directories, both the child directory and
4491 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4492 * will always be set. In the lowest directory the names are
cd790076
MM
4493 * static strings and all have proc handlers.
4494 */
4495 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4496 if (entry->child)
4497 sd_free_ctl_entry(&entry->child);
cd790076
MM
4498 if (entry->proc_handler == NULL)
4499 kfree(entry->procname);
4500 }
6382bc90
MM
4501
4502 kfree(*tablep);
4503 *tablep = NULL;
4504}
4505
201c373e 4506static int min_load_idx = 0;
fd9b86d3 4507static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4508
e692ab53 4509static void
e0361851 4510set_table_entry(struct ctl_table *entry,
e692ab53 4511 const char *procname, void *data, int maxlen,
201c373e
NK
4512 umode_t mode, proc_handler *proc_handler,
4513 bool load_idx)
e692ab53 4514{
e692ab53
NP
4515 entry->procname = procname;
4516 entry->data = data;
4517 entry->maxlen = maxlen;
4518 entry->mode = mode;
4519 entry->proc_handler = proc_handler;
201c373e
NK
4520
4521 if (load_idx) {
4522 entry->extra1 = &min_load_idx;
4523 entry->extra2 = &max_load_idx;
4524 }
e692ab53
NP
4525}
4526
4527static struct ctl_table *
4528sd_alloc_ctl_domain_table(struct sched_domain *sd)
4529{
a5d8c348 4530 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4531
ad1cdc1d
MM
4532 if (table == NULL)
4533 return NULL;
4534
e0361851 4535 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4536 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4537 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4538 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4539 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4540 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4541 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4542 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4543 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4544 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4545 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4546 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4547 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4548 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4549 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4550 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4551 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4552 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4553 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4554 &sd->cache_nice_tries,
201c373e 4555 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4556 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4557 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4558 set_table_entry(&table[11], "name", sd->name,
201c373e 4559 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4560 /* &table[12] is terminator */
e692ab53
NP
4561
4562 return table;
4563}
4564
be7002e6 4565static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4566{
4567 struct ctl_table *entry, *table;
4568 struct sched_domain *sd;
4569 int domain_num = 0, i;
4570 char buf[32];
4571
4572 for_each_domain(cpu, sd)
4573 domain_num++;
4574 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4575 if (table == NULL)
4576 return NULL;
e692ab53
NP
4577
4578 i = 0;
4579 for_each_domain(cpu, sd) {
4580 snprintf(buf, 32, "domain%d", i);
e692ab53 4581 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4582 entry->mode = 0555;
e692ab53
NP
4583 entry->child = sd_alloc_ctl_domain_table(sd);
4584 entry++;
4585 i++;
4586 }
4587 return table;
4588}
4589
4590static struct ctl_table_header *sd_sysctl_header;
6382bc90 4591static void register_sched_domain_sysctl(void)
e692ab53 4592{
6ad4c188 4593 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4594 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4595 char buf[32];
4596
7378547f
MM
4597 WARN_ON(sd_ctl_dir[0].child);
4598 sd_ctl_dir[0].child = entry;
4599
ad1cdc1d
MM
4600 if (entry == NULL)
4601 return;
4602
6ad4c188 4603 for_each_possible_cpu(i) {
e692ab53 4604 snprintf(buf, 32, "cpu%d", i);
e692ab53 4605 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4606 entry->mode = 0555;
e692ab53 4607 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4608 entry++;
e692ab53 4609 }
7378547f
MM
4610
4611 WARN_ON(sd_sysctl_header);
e692ab53
NP
4612 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4613}
6382bc90 4614
7378547f 4615/* may be called multiple times per register */
6382bc90
MM
4616static void unregister_sched_domain_sysctl(void)
4617{
7378547f
MM
4618 if (sd_sysctl_header)
4619 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4620 sd_sysctl_header = NULL;
7378547f
MM
4621 if (sd_ctl_dir[0].child)
4622 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4623}
e692ab53 4624#else
6382bc90
MM
4625static void register_sched_domain_sysctl(void)
4626{
4627}
4628static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4629{
4630}
4631#endif
4632
1f11eb6a
GH
4633static void set_rq_online(struct rq *rq)
4634{
4635 if (!rq->online) {
4636 const struct sched_class *class;
4637
c6c4927b 4638 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4639 rq->online = 1;
4640
4641 for_each_class(class) {
4642 if (class->rq_online)
4643 class->rq_online(rq);
4644 }
4645 }
4646}
4647
4648static void set_rq_offline(struct rq *rq)
4649{
4650 if (rq->online) {
4651 const struct sched_class *class;
4652
4653 for_each_class(class) {
4654 if (class->rq_offline)
4655 class->rq_offline(rq);
4656 }
4657
c6c4927b 4658 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4659 rq->online = 0;
4660 }
4661}
4662
1da177e4
LT
4663/*
4664 * migration_call - callback that gets triggered when a CPU is added.
4665 * Here we can start up the necessary migration thread for the new CPU.
4666 */
0db0628d 4667static int
48f24c4d 4668migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4669{
48f24c4d 4670 int cpu = (long)hcpu;
1da177e4 4671 unsigned long flags;
969c7921 4672 struct rq *rq = cpu_rq(cpu);
1da177e4 4673
48c5ccae 4674 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4675
1da177e4 4676 case CPU_UP_PREPARE:
a468d389 4677 rq->calc_load_update = calc_load_update;
1da177e4 4678 break;
48f24c4d 4679
1da177e4 4680 case CPU_ONLINE:
1f94ef59 4681 /* Update our root-domain */
05fa785c 4682 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4683 if (rq->rd) {
c6c4927b 4684 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4685
4686 set_rq_online(rq);
1f94ef59 4687 }
05fa785c 4688 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4689 break;
48f24c4d 4690
1da177e4 4691#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4692 case CPU_DYING:
317f3941 4693 sched_ttwu_pending();
57d885fe 4694 /* Update our root-domain */
05fa785c 4695 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4696 if (rq->rd) {
c6c4927b 4697 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4698 set_rq_offline(rq);
57d885fe 4699 }
48c5ccae
PZ
4700 migrate_tasks(cpu);
4701 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4702 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4703 break;
48c5ccae 4704
5d180232 4705 case CPU_DEAD:
f319da0c 4706 calc_load_migrate(rq);
57d885fe 4707 break;
1da177e4
LT
4708#endif
4709 }
49c022e6
PZ
4710
4711 update_max_interval();
4712
1da177e4
LT
4713 return NOTIFY_OK;
4714}
4715
f38b0820
PM
4716/*
4717 * Register at high priority so that task migration (migrate_all_tasks)
4718 * happens before everything else. This has to be lower priority than
cdd6c482 4719 * the notifier in the perf_event subsystem, though.
1da177e4 4720 */
0db0628d 4721static struct notifier_block migration_notifier = {
1da177e4 4722 .notifier_call = migration_call,
50a323b7 4723 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4724};
4725
0db0628d 4726static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4727 unsigned long action, void *hcpu)
4728{
4729 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4730 case CPU_STARTING:
3a101d05
TH
4731 case CPU_DOWN_FAILED:
4732 set_cpu_active((long)hcpu, true);
4733 return NOTIFY_OK;
4734 default:
4735 return NOTIFY_DONE;
4736 }
4737}
4738
0db0628d 4739static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4740 unsigned long action, void *hcpu)
4741{
4742 switch (action & ~CPU_TASKS_FROZEN) {
4743 case CPU_DOWN_PREPARE:
4744 set_cpu_active((long)hcpu, false);
4745 return NOTIFY_OK;
4746 default:
4747 return NOTIFY_DONE;
4748 }
4749}
4750
7babe8db 4751static int __init migration_init(void)
1da177e4
LT
4752{
4753 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4754 int err;
48f24c4d 4755
3a101d05 4756 /* Initialize migration for the boot CPU */
07dccf33
AM
4757 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4758 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4759 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4760 register_cpu_notifier(&migration_notifier);
7babe8db 4761
3a101d05
TH
4762 /* Register cpu active notifiers */
4763 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4764 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4765
a004cd42 4766 return 0;
1da177e4 4767}
7babe8db 4768early_initcall(migration_init);
1da177e4
LT
4769#endif
4770
4771#ifdef CONFIG_SMP
476f3534 4772
4cb98839
PZ
4773static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4774
3e9830dc 4775#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4776
d039ac60 4777static __read_mostly int sched_debug_enabled;
f6630114 4778
d039ac60 4779static int __init sched_debug_setup(char *str)
f6630114 4780{
d039ac60 4781 sched_debug_enabled = 1;
f6630114
MT
4782
4783 return 0;
4784}
d039ac60
PZ
4785early_param("sched_debug", sched_debug_setup);
4786
4787static inline bool sched_debug(void)
4788{
4789 return sched_debug_enabled;
4790}
f6630114 4791
7c16ec58 4792static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4793 struct cpumask *groupmask)
1da177e4 4794{
4dcf6aff 4795 struct sched_group *group = sd->groups;
434d53b0 4796 char str[256];
1da177e4 4797
968ea6d8 4798 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4799 cpumask_clear(groupmask);
4dcf6aff
IM
4800
4801 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4802
4803 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4804 printk("does not load-balance\n");
4dcf6aff 4805 if (sd->parent)
3df0fc5b
PZ
4806 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4807 " has parent");
4dcf6aff 4808 return -1;
41c7ce9a
NP
4809 }
4810
3df0fc5b 4811 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4812
758b2cdc 4813 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4814 printk(KERN_ERR "ERROR: domain->span does not contain "
4815 "CPU%d\n", cpu);
4dcf6aff 4816 }
758b2cdc 4817 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4818 printk(KERN_ERR "ERROR: domain->groups does not contain"
4819 " CPU%d\n", cpu);
4dcf6aff 4820 }
1da177e4 4821
4dcf6aff 4822 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4823 do {
4dcf6aff 4824 if (!group) {
3df0fc5b
PZ
4825 printk("\n");
4826 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4827 break;
4828 }
4829
c3decf0d
PZ
4830 /*
4831 * Even though we initialize ->power to something semi-sane,
4832 * we leave power_orig unset. This allows us to detect if
4833 * domain iteration is still funny without causing /0 traps.
4834 */
4835 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4836 printk(KERN_CONT "\n");
4837 printk(KERN_ERR "ERROR: domain->cpu_power not "
4838 "set\n");
4dcf6aff
IM
4839 break;
4840 }
1da177e4 4841
758b2cdc 4842 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4843 printk(KERN_CONT "\n");
4844 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4845 break;
4846 }
1da177e4 4847
cb83b629
PZ
4848 if (!(sd->flags & SD_OVERLAP) &&
4849 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4850 printk(KERN_CONT "\n");
4851 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4852 break;
4853 }
1da177e4 4854
758b2cdc 4855 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4856
968ea6d8 4857 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4858
3df0fc5b 4859 printk(KERN_CONT " %s", str);
9c3f75cb 4860 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4861 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4862 group->sgp->power);
381512cf 4863 }
1da177e4 4864
4dcf6aff
IM
4865 group = group->next;
4866 } while (group != sd->groups);
3df0fc5b 4867 printk(KERN_CONT "\n");
1da177e4 4868
758b2cdc 4869 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4870 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4871
758b2cdc
RR
4872 if (sd->parent &&
4873 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4874 printk(KERN_ERR "ERROR: parent span is not a superset "
4875 "of domain->span\n");
4dcf6aff
IM
4876 return 0;
4877}
1da177e4 4878
4dcf6aff
IM
4879static void sched_domain_debug(struct sched_domain *sd, int cpu)
4880{
4881 int level = 0;
1da177e4 4882
d039ac60 4883 if (!sched_debug_enabled)
f6630114
MT
4884 return;
4885
4dcf6aff
IM
4886 if (!sd) {
4887 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4888 return;
4889 }
1da177e4 4890
4dcf6aff
IM
4891 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4892
4893 for (;;) {
4cb98839 4894 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4895 break;
1da177e4
LT
4896 level++;
4897 sd = sd->parent;
33859f7f 4898 if (!sd)
4dcf6aff
IM
4899 break;
4900 }
1da177e4 4901}
6d6bc0ad 4902#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4903# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4904static inline bool sched_debug(void)
4905{
4906 return false;
4907}
6d6bc0ad 4908#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4909
1a20ff27 4910static int sd_degenerate(struct sched_domain *sd)
245af2c7 4911{
758b2cdc 4912 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4913 return 1;
4914
4915 /* Following flags need at least 2 groups */
4916 if (sd->flags & (SD_LOAD_BALANCE |
4917 SD_BALANCE_NEWIDLE |
4918 SD_BALANCE_FORK |
89c4710e
SS
4919 SD_BALANCE_EXEC |
4920 SD_SHARE_CPUPOWER |
4921 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4922 if (sd->groups != sd->groups->next)
4923 return 0;
4924 }
4925
4926 /* Following flags don't use groups */
c88d5910 4927 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4928 return 0;
4929
4930 return 1;
4931}
4932
48f24c4d
IM
4933static int
4934sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4935{
4936 unsigned long cflags = sd->flags, pflags = parent->flags;
4937
4938 if (sd_degenerate(parent))
4939 return 1;
4940
758b2cdc 4941 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4942 return 0;
4943
245af2c7
SS
4944 /* Flags needing groups don't count if only 1 group in parent */
4945 if (parent->groups == parent->groups->next) {
4946 pflags &= ~(SD_LOAD_BALANCE |
4947 SD_BALANCE_NEWIDLE |
4948 SD_BALANCE_FORK |
89c4710e
SS
4949 SD_BALANCE_EXEC |
4950 SD_SHARE_CPUPOWER |
10866e62
PZ
4951 SD_SHARE_PKG_RESOURCES |
4952 SD_PREFER_SIBLING);
5436499e
KC
4953 if (nr_node_ids == 1)
4954 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4955 }
4956 if (~cflags & pflags)
4957 return 0;
4958
4959 return 1;
4960}
4961
dce840a0 4962static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4963{
dce840a0 4964 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4965
68e74568 4966 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4967 free_cpumask_var(rd->rto_mask);
4968 free_cpumask_var(rd->online);
4969 free_cpumask_var(rd->span);
4970 kfree(rd);
4971}
4972
57d885fe
GH
4973static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4974{
a0490fa3 4975 struct root_domain *old_rd = NULL;
57d885fe 4976 unsigned long flags;
57d885fe 4977
05fa785c 4978 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4979
4980 if (rq->rd) {
a0490fa3 4981 old_rd = rq->rd;
57d885fe 4982
c6c4927b 4983 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4984 set_rq_offline(rq);
57d885fe 4985
c6c4927b 4986 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4987
a0490fa3
IM
4988 /*
4989 * If we dont want to free the old_rt yet then
4990 * set old_rd to NULL to skip the freeing later
4991 * in this function:
4992 */
4993 if (!atomic_dec_and_test(&old_rd->refcount))
4994 old_rd = NULL;
57d885fe
GH
4995 }
4996
4997 atomic_inc(&rd->refcount);
4998 rq->rd = rd;
4999
c6c4927b 5000 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5001 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5002 set_rq_online(rq);
57d885fe 5003
05fa785c 5004 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5005
5006 if (old_rd)
dce840a0 5007 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5008}
5009
68c38fc3 5010static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5011{
5012 memset(rd, 0, sizeof(*rd));
5013
68c38fc3 5014 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5015 goto out;
68c38fc3 5016 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5017 goto free_span;
68c38fc3 5018 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5019 goto free_online;
6e0534f2 5020
68c38fc3 5021 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5022 goto free_rto_mask;
c6c4927b 5023 return 0;
6e0534f2 5024
68e74568
RR
5025free_rto_mask:
5026 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5027free_online:
5028 free_cpumask_var(rd->online);
5029free_span:
5030 free_cpumask_var(rd->span);
0c910d28 5031out:
c6c4927b 5032 return -ENOMEM;
57d885fe
GH
5033}
5034
029632fb
PZ
5035/*
5036 * By default the system creates a single root-domain with all cpus as
5037 * members (mimicking the global state we have today).
5038 */
5039struct root_domain def_root_domain;
5040
57d885fe
GH
5041static void init_defrootdomain(void)
5042{
68c38fc3 5043 init_rootdomain(&def_root_domain);
c6c4927b 5044
57d885fe
GH
5045 atomic_set(&def_root_domain.refcount, 1);
5046}
5047
dc938520 5048static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5049{
5050 struct root_domain *rd;
5051
5052 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5053 if (!rd)
5054 return NULL;
5055
68c38fc3 5056 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5057 kfree(rd);
5058 return NULL;
5059 }
57d885fe
GH
5060
5061 return rd;
5062}
5063
e3589f6c
PZ
5064static void free_sched_groups(struct sched_group *sg, int free_sgp)
5065{
5066 struct sched_group *tmp, *first;
5067
5068 if (!sg)
5069 return;
5070
5071 first = sg;
5072 do {
5073 tmp = sg->next;
5074
5075 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5076 kfree(sg->sgp);
5077
5078 kfree(sg);
5079 sg = tmp;
5080 } while (sg != first);
5081}
5082
dce840a0
PZ
5083static void free_sched_domain(struct rcu_head *rcu)
5084{
5085 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5086
5087 /*
5088 * If its an overlapping domain it has private groups, iterate and
5089 * nuke them all.
5090 */
5091 if (sd->flags & SD_OVERLAP) {
5092 free_sched_groups(sd->groups, 1);
5093 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5094 kfree(sd->groups->sgp);
dce840a0 5095 kfree(sd->groups);
9c3f75cb 5096 }
dce840a0
PZ
5097 kfree(sd);
5098}
5099
5100static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5101{
5102 call_rcu(&sd->rcu, free_sched_domain);
5103}
5104
5105static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5106{
5107 for (; sd; sd = sd->parent)
5108 destroy_sched_domain(sd, cpu);
5109}
5110
518cd623
PZ
5111/*
5112 * Keep a special pointer to the highest sched_domain that has
5113 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5114 * allows us to avoid some pointer chasing select_idle_sibling().
5115 *
5116 * Also keep a unique ID per domain (we use the first cpu number in
5117 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5118 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5119 */
5120DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5121DEFINE_PER_CPU(int, sd_llc_size);
518cd623
PZ
5122DEFINE_PER_CPU(int, sd_llc_id);
5123
5124static void update_top_cache_domain(int cpu)
5125{
5126 struct sched_domain *sd;
5127 int id = cpu;
7d9ffa89 5128 int size = 1;
518cd623
PZ
5129
5130 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5131 if (sd) {
518cd623 5132 id = cpumask_first(sched_domain_span(sd));
7d9ffa89
PZ
5133 size = cpumask_weight(sched_domain_span(sd));
5134 }
518cd623
PZ
5135
5136 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5137 per_cpu(sd_llc_size, cpu) = size;
518cd623
PZ
5138 per_cpu(sd_llc_id, cpu) = id;
5139}
5140
1da177e4 5141/*
0eab9146 5142 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5143 * hold the hotplug lock.
5144 */
0eab9146
IM
5145static void
5146cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5147{
70b97a7f 5148 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5149 struct sched_domain *tmp;
5150
5151 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5152 for (tmp = sd; tmp; ) {
245af2c7
SS
5153 struct sched_domain *parent = tmp->parent;
5154 if (!parent)
5155 break;
f29c9b1c 5156
1a848870 5157 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5158 tmp->parent = parent->parent;
1a848870
SS
5159 if (parent->parent)
5160 parent->parent->child = tmp;
10866e62
PZ
5161 /*
5162 * Transfer SD_PREFER_SIBLING down in case of a
5163 * degenerate parent; the spans match for this
5164 * so the property transfers.
5165 */
5166 if (parent->flags & SD_PREFER_SIBLING)
5167 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5168 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5169 } else
5170 tmp = tmp->parent;
245af2c7
SS
5171 }
5172
1a848870 5173 if (sd && sd_degenerate(sd)) {
dce840a0 5174 tmp = sd;
245af2c7 5175 sd = sd->parent;
dce840a0 5176 destroy_sched_domain(tmp, cpu);
1a848870
SS
5177 if (sd)
5178 sd->child = NULL;
5179 }
1da177e4 5180
4cb98839 5181 sched_domain_debug(sd, cpu);
1da177e4 5182
57d885fe 5183 rq_attach_root(rq, rd);
dce840a0 5184 tmp = rq->sd;
674311d5 5185 rcu_assign_pointer(rq->sd, sd);
dce840a0 5186 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5187
5188 update_top_cache_domain(cpu);
1da177e4
LT
5189}
5190
5191/* cpus with isolated domains */
dcc30a35 5192static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5193
5194/* Setup the mask of cpus configured for isolated domains */
5195static int __init isolated_cpu_setup(char *str)
5196{
bdddd296 5197 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5198 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5199 return 1;
5200}
5201
8927f494 5202__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5203
d3081f52
PZ
5204static const struct cpumask *cpu_cpu_mask(int cpu)
5205{
5206 return cpumask_of_node(cpu_to_node(cpu));
5207}
5208
dce840a0
PZ
5209struct sd_data {
5210 struct sched_domain **__percpu sd;
5211 struct sched_group **__percpu sg;
9c3f75cb 5212 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5213};
5214
49a02c51 5215struct s_data {
21d42ccf 5216 struct sched_domain ** __percpu sd;
49a02c51
AH
5217 struct root_domain *rd;
5218};
5219
2109b99e 5220enum s_alloc {
2109b99e 5221 sa_rootdomain,
21d42ccf 5222 sa_sd,
dce840a0 5223 sa_sd_storage,
2109b99e
AH
5224 sa_none,
5225};
5226
54ab4ff4
PZ
5227struct sched_domain_topology_level;
5228
5229typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5230typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5231
e3589f6c
PZ
5232#define SDTL_OVERLAP 0x01
5233
eb7a74e6 5234struct sched_domain_topology_level {
2c402dc3
PZ
5235 sched_domain_init_f init;
5236 sched_domain_mask_f mask;
e3589f6c 5237 int flags;
cb83b629 5238 int numa_level;
54ab4ff4 5239 struct sd_data data;
eb7a74e6
PZ
5240};
5241
c1174876
PZ
5242/*
5243 * Build an iteration mask that can exclude certain CPUs from the upwards
5244 * domain traversal.
5245 *
5246 * Asymmetric node setups can result in situations where the domain tree is of
5247 * unequal depth, make sure to skip domains that already cover the entire
5248 * range.
5249 *
5250 * In that case build_sched_domains() will have terminated the iteration early
5251 * and our sibling sd spans will be empty. Domains should always include the
5252 * cpu they're built on, so check that.
5253 *
5254 */
5255static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5256{
5257 const struct cpumask *span = sched_domain_span(sd);
5258 struct sd_data *sdd = sd->private;
5259 struct sched_domain *sibling;
5260 int i;
5261
5262 for_each_cpu(i, span) {
5263 sibling = *per_cpu_ptr(sdd->sd, i);
5264 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5265 continue;
5266
5267 cpumask_set_cpu(i, sched_group_mask(sg));
5268 }
5269}
5270
5271/*
5272 * Return the canonical balance cpu for this group, this is the first cpu
5273 * of this group that's also in the iteration mask.
5274 */
5275int group_balance_cpu(struct sched_group *sg)
5276{
5277 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5278}
5279
e3589f6c
PZ
5280static int
5281build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5282{
5283 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5284 const struct cpumask *span = sched_domain_span(sd);
5285 struct cpumask *covered = sched_domains_tmpmask;
5286 struct sd_data *sdd = sd->private;
5287 struct sched_domain *child;
5288 int i;
5289
5290 cpumask_clear(covered);
5291
5292 for_each_cpu(i, span) {
5293 struct cpumask *sg_span;
5294
5295 if (cpumask_test_cpu(i, covered))
5296 continue;
5297
c1174876
PZ
5298 child = *per_cpu_ptr(sdd->sd, i);
5299
5300 /* See the comment near build_group_mask(). */
5301 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5302 continue;
5303
e3589f6c 5304 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5305 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5306
5307 if (!sg)
5308 goto fail;
5309
5310 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5311 if (child->child) {
5312 child = child->child;
5313 cpumask_copy(sg_span, sched_domain_span(child));
5314 } else
5315 cpumask_set_cpu(i, sg_span);
5316
5317 cpumask_or(covered, covered, sg_span);
5318
74a5ce20 5319 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5320 if (atomic_inc_return(&sg->sgp->ref) == 1)
5321 build_group_mask(sd, sg);
5322
c3decf0d
PZ
5323 /*
5324 * Initialize sgp->power such that even if we mess up the
5325 * domains and no possible iteration will get us here, we won't
5326 * die on a /0 trap.
5327 */
5328 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5329
c1174876
PZ
5330 /*
5331 * Make sure the first group of this domain contains the
5332 * canonical balance cpu. Otherwise the sched_domain iteration
5333 * breaks. See update_sg_lb_stats().
5334 */
74a5ce20 5335 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5336 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5337 groups = sg;
5338
5339 if (!first)
5340 first = sg;
5341 if (last)
5342 last->next = sg;
5343 last = sg;
5344 last->next = first;
5345 }
5346 sd->groups = groups;
5347
5348 return 0;
5349
5350fail:
5351 free_sched_groups(first, 0);
5352
5353 return -ENOMEM;
5354}
5355
dce840a0 5356static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5357{
dce840a0
PZ
5358 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5359 struct sched_domain *child = sd->child;
1da177e4 5360
dce840a0
PZ
5361 if (child)
5362 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5363
9c3f75cb 5364 if (sg) {
dce840a0 5365 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5366 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5367 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5368 }
dce840a0
PZ
5369
5370 return cpu;
1e9f28fa 5371}
1e9f28fa 5372
01a08546 5373/*
dce840a0
PZ
5374 * build_sched_groups will build a circular linked list of the groups
5375 * covered by the given span, and will set each group's ->cpumask correctly,
5376 * and ->cpu_power to 0.
e3589f6c
PZ
5377 *
5378 * Assumes the sched_domain tree is fully constructed
01a08546 5379 */
e3589f6c
PZ
5380static int
5381build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5382{
dce840a0
PZ
5383 struct sched_group *first = NULL, *last = NULL;
5384 struct sd_data *sdd = sd->private;
5385 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5386 struct cpumask *covered;
dce840a0 5387 int i;
9c1cfda2 5388
e3589f6c
PZ
5389 get_group(cpu, sdd, &sd->groups);
5390 atomic_inc(&sd->groups->ref);
5391
0936629f 5392 if (cpu != cpumask_first(span))
e3589f6c
PZ
5393 return 0;
5394
f96225fd
PZ
5395 lockdep_assert_held(&sched_domains_mutex);
5396 covered = sched_domains_tmpmask;
5397
dce840a0 5398 cpumask_clear(covered);
6711cab4 5399
dce840a0
PZ
5400 for_each_cpu(i, span) {
5401 struct sched_group *sg;
cd08e923 5402 int group, j;
6711cab4 5403
dce840a0
PZ
5404 if (cpumask_test_cpu(i, covered))
5405 continue;
6711cab4 5406
cd08e923 5407 group = get_group(i, sdd, &sg);
dce840a0 5408 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5409 sg->sgp->power = 0;
c1174876 5410 cpumask_setall(sched_group_mask(sg));
0601a88d 5411
dce840a0
PZ
5412 for_each_cpu(j, span) {
5413 if (get_group(j, sdd, NULL) != group)
5414 continue;
0601a88d 5415
dce840a0
PZ
5416 cpumask_set_cpu(j, covered);
5417 cpumask_set_cpu(j, sched_group_cpus(sg));
5418 }
0601a88d 5419
dce840a0
PZ
5420 if (!first)
5421 first = sg;
5422 if (last)
5423 last->next = sg;
5424 last = sg;
5425 }
5426 last->next = first;
e3589f6c
PZ
5427
5428 return 0;
0601a88d 5429}
51888ca2 5430
89c4710e
SS
5431/*
5432 * Initialize sched groups cpu_power.
5433 *
5434 * cpu_power indicates the capacity of sched group, which is used while
5435 * distributing the load between different sched groups in a sched domain.
5436 * Typically cpu_power for all the groups in a sched domain will be same unless
5437 * there are asymmetries in the topology. If there are asymmetries, group
5438 * having more cpu_power will pickup more load compared to the group having
5439 * less cpu_power.
89c4710e
SS
5440 */
5441static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5442{
e3589f6c 5443 struct sched_group *sg = sd->groups;
89c4710e 5444
94c95ba6 5445 WARN_ON(!sg);
e3589f6c
PZ
5446
5447 do {
5448 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5449 sg = sg->next;
5450 } while (sg != sd->groups);
89c4710e 5451
c1174876 5452 if (cpu != group_balance_cpu(sg))
e3589f6c 5453 return;
aae6d3dd 5454
d274cb30 5455 update_group_power(sd, cpu);
69e1e811 5456 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5457}
5458
029632fb
PZ
5459int __weak arch_sd_sibling_asym_packing(void)
5460{
5461 return 0*SD_ASYM_PACKING;
89c4710e
SS
5462}
5463
7c16ec58
MT
5464/*
5465 * Initializers for schedule domains
5466 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5467 */
5468
a5d8c348
IM
5469#ifdef CONFIG_SCHED_DEBUG
5470# define SD_INIT_NAME(sd, type) sd->name = #type
5471#else
5472# define SD_INIT_NAME(sd, type) do { } while (0)
5473#endif
5474
54ab4ff4
PZ
5475#define SD_INIT_FUNC(type) \
5476static noinline struct sched_domain * \
5477sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5478{ \
5479 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5480 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5481 SD_INIT_NAME(sd, type); \
5482 sd->private = &tl->data; \
5483 return sd; \
7c16ec58
MT
5484}
5485
5486SD_INIT_FUNC(CPU)
7c16ec58
MT
5487#ifdef CONFIG_SCHED_SMT
5488 SD_INIT_FUNC(SIBLING)
5489#endif
5490#ifdef CONFIG_SCHED_MC
5491 SD_INIT_FUNC(MC)
5492#endif
01a08546
HC
5493#ifdef CONFIG_SCHED_BOOK
5494 SD_INIT_FUNC(BOOK)
5495#endif
7c16ec58 5496
1d3504fc 5497static int default_relax_domain_level = -1;
60495e77 5498int sched_domain_level_max;
1d3504fc
HS
5499
5500static int __init setup_relax_domain_level(char *str)
5501{
a841f8ce
DS
5502 if (kstrtoint(str, 0, &default_relax_domain_level))
5503 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5504
1d3504fc
HS
5505 return 1;
5506}
5507__setup("relax_domain_level=", setup_relax_domain_level);
5508
5509static void set_domain_attribute(struct sched_domain *sd,
5510 struct sched_domain_attr *attr)
5511{
5512 int request;
5513
5514 if (!attr || attr->relax_domain_level < 0) {
5515 if (default_relax_domain_level < 0)
5516 return;
5517 else
5518 request = default_relax_domain_level;
5519 } else
5520 request = attr->relax_domain_level;
5521 if (request < sd->level) {
5522 /* turn off idle balance on this domain */
c88d5910 5523 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5524 } else {
5525 /* turn on idle balance on this domain */
c88d5910 5526 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5527 }
5528}
5529
54ab4ff4
PZ
5530static void __sdt_free(const struct cpumask *cpu_map);
5531static int __sdt_alloc(const struct cpumask *cpu_map);
5532
2109b99e
AH
5533static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5534 const struct cpumask *cpu_map)
5535{
5536 switch (what) {
2109b99e 5537 case sa_rootdomain:
822ff793
PZ
5538 if (!atomic_read(&d->rd->refcount))
5539 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5540 case sa_sd:
5541 free_percpu(d->sd); /* fall through */
dce840a0 5542 case sa_sd_storage:
54ab4ff4 5543 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5544 case sa_none:
5545 break;
5546 }
5547}
3404c8d9 5548
2109b99e
AH
5549static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5550 const struct cpumask *cpu_map)
5551{
dce840a0
PZ
5552 memset(d, 0, sizeof(*d));
5553
54ab4ff4
PZ
5554 if (__sdt_alloc(cpu_map))
5555 return sa_sd_storage;
dce840a0
PZ
5556 d->sd = alloc_percpu(struct sched_domain *);
5557 if (!d->sd)
5558 return sa_sd_storage;
2109b99e 5559 d->rd = alloc_rootdomain();
dce840a0 5560 if (!d->rd)
21d42ccf 5561 return sa_sd;
2109b99e
AH
5562 return sa_rootdomain;
5563}
57d885fe 5564
dce840a0
PZ
5565/*
5566 * NULL the sd_data elements we've used to build the sched_domain and
5567 * sched_group structure so that the subsequent __free_domain_allocs()
5568 * will not free the data we're using.
5569 */
5570static void claim_allocations(int cpu, struct sched_domain *sd)
5571{
5572 struct sd_data *sdd = sd->private;
dce840a0
PZ
5573
5574 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5575 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5576
e3589f6c 5577 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5578 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5579
5580 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5581 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5582}
5583
2c402dc3
PZ
5584#ifdef CONFIG_SCHED_SMT
5585static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5586{
2c402dc3 5587 return topology_thread_cpumask(cpu);
3bd65a80 5588}
2c402dc3 5589#endif
7f4588f3 5590
d069b916
PZ
5591/*
5592 * Topology list, bottom-up.
5593 */
2c402dc3 5594static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5595#ifdef CONFIG_SCHED_SMT
5596 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5597#endif
1e9f28fa 5598#ifdef CONFIG_SCHED_MC
2c402dc3 5599 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5600#endif
d069b916
PZ
5601#ifdef CONFIG_SCHED_BOOK
5602 { sd_init_BOOK, cpu_book_mask, },
5603#endif
5604 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5605 { NULL, },
5606};
5607
5608static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5609
27723a68
VK
5610#define for_each_sd_topology(tl) \
5611 for (tl = sched_domain_topology; tl->init; tl++)
5612
cb83b629
PZ
5613#ifdef CONFIG_NUMA
5614
5615static int sched_domains_numa_levels;
cb83b629
PZ
5616static int *sched_domains_numa_distance;
5617static struct cpumask ***sched_domains_numa_masks;
5618static int sched_domains_curr_level;
5619
cb83b629
PZ
5620static inline int sd_local_flags(int level)
5621{
10717dcd 5622 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5623 return 0;
5624
5625 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5626}
5627
5628static struct sched_domain *
5629sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5630{
5631 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5632 int level = tl->numa_level;
5633 int sd_weight = cpumask_weight(
5634 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5635
5636 *sd = (struct sched_domain){
5637 .min_interval = sd_weight,
5638 .max_interval = 2*sd_weight,
5639 .busy_factor = 32,
870a0bb5 5640 .imbalance_pct = 125,
cb83b629
PZ
5641 .cache_nice_tries = 2,
5642 .busy_idx = 3,
5643 .idle_idx = 2,
5644 .newidle_idx = 0,
5645 .wake_idx = 0,
5646 .forkexec_idx = 0,
5647
5648 .flags = 1*SD_LOAD_BALANCE
5649 | 1*SD_BALANCE_NEWIDLE
5650 | 0*SD_BALANCE_EXEC
5651 | 0*SD_BALANCE_FORK
5652 | 0*SD_BALANCE_WAKE
5653 | 0*SD_WAKE_AFFINE
cb83b629 5654 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5655 | 0*SD_SHARE_PKG_RESOURCES
5656 | 1*SD_SERIALIZE
5657 | 0*SD_PREFER_SIBLING
5658 | sd_local_flags(level)
5659 ,
5660 .last_balance = jiffies,
5661 .balance_interval = sd_weight,
5662 };
5663 SD_INIT_NAME(sd, NUMA);
5664 sd->private = &tl->data;
5665
5666 /*
5667 * Ugly hack to pass state to sd_numa_mask()...
5668 */
5669 sched_domains_curr_level = tl->numa_level;
5670
5671 return sd;
5672}
5673
5674static const struct cpumask *sd_numa_mask(int cpu)
5675{
5676 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5677}
5678
d039ac60
PZ
5679static void sched_numa_warn(const char *str)
5680{
5681 static int done = false;
5682 int i,j;
5683
5684 if (done)
5685 return;
5686
5687 done = true;
5688
5689 printk(KERN_WARNING "ERROR: %s\n\n", str);
5690
5691 for (i = 0; i < nr_node_ids; i++) {
5692 printk(KERN_WARNING " ");
5693 for (j = 0; j < nr_node_ids; j++)
5694 printk(KERN_CONT "%02d ", node_distance(i,j));
5695 printk(KERN_CONT "\n");
5696 }
5697 printk(KERN_WARNING "\n");
5698}
5699
5700static bool find_numa_distance(int distance)
5701{
5702 int i;
5703
5704 if (distance == node_distance(0, 0))
5705 return true;
5706
5707 for (i = 0; i < sched_domains_numa_levels; i++) {
5708 if (sched_domains_numa_distance[i] == distance)
5709 return true;
5710 }
5711
5712 return false;
5713}
5714
cb83b629
PZ
5715static void sched_init_numa(void)
5716{
5717 int next_distance, curr_distance = node_distance(0, 0);
5718 struct sched_domain_topology_level *tl;
5719 int level = 0;
5720 int i, j, k;
5721
cb83b629
PZ
5722 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5723 if (!sched_domains_numa_distance)
5724 return;
5725
5726 /*
5727 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5728 * unique distances in the node_distance() table.
5729 *
5730 * Assumes node_distance(0,j) includes all distances in
5731 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5732 */
5733 next_distance = curr_distance;
5734 for (i = 0; i < nr_node_ids; i++) {
5735 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5736 for (k = 0; k < nr_node_ids; k++) {
5737 int distance = node_distance(i, k);
5738
5739 if (distance > curr_distance &&
5740 (distance < next_distance ||
5741 next_distance == curr_distance))
5742 next_distance = distance;
5743
5744 /*
5745 * While not a strong assumption it would be nice to know
5746 * about cases where if node A is connected to B, B is not
5747 * equally connected to A.
5748 */
5749 if (sched_debug() && node_distance(k, i) != distance)
5750 sched_numa_warn("Node-distance not symmetric");
5751
5752 if (sched_debug() && i && !find_numa_distance(distance))
5753 sched_numa_warn("Node-0 not representative");
5754 }
5755 if (next_distance != curr_distance) {
5756 sched_domains_numa_distance[level++] = next_distance;
5757 sched_domains_numa_levels = level;
5758 curr_distance = next_distance;
5759 } else break;
cb83b629 5760 }
d039ac60
PZ
5761
5762 /*
5763 * In case of sched_debug() we verify the above assumption.
5764 */
5765 if (!sched_debug())
5766 break;
cb83b629
PZ
5767 }
5768 /*
5769 * 'level' contains the number of unique distances, excluding the
5770 * identity distance node_distance(i,i).
5771 *
28b4a521 5772 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5773 * numbers.
5774 */
5775
5f7865f3
TC
5776 /*
5777 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5778 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5779 * the array will contain less then 'level' members. This could be
5780 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5781 * in other functions.
5782 *
5783 * We reset it to 'level' at the end of this function.
5784 */
5785 sched_domains_numa_levels = 0;
5786
cb83b629
PZ
5787 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5788 if (!sched_domains_numa_masks)
5789 return;
5790
5791 /*
5792 * Now for each level, construct a mask per node which contains all
5793 * cpus of nodes that are that many hops away from us.
5794 */
5795 for (i = 0; i < level; i++) {
5796 sched_domains_numa_masks[i] =
5797 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5798 if (!sched_domains_numa_masks[i])
5799 return;
5800
5801 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5802 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5803 if (!mask)
5804 return;
5805
5806 sched_domains_numa_masks[i][j] = mask;
5807
5808 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5809 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5810 continue;
5811
5812 cpumask_or(mask, mask, cpumask_of_node(k));
5813 }
5814 }
5815 }
5816
5817 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5818 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5819 if (!tl)
5820 return;
5821
5822 /*
5823 * Copy the default topology bits..
5824 */
5825 for (i = 0; default_topology[i].init; i++)
5826 tl[i] = default_topology[i];
5827
5828 /*
5829 * .. and append 'j' levels of NUMA goodness.
5830 */
5831 for (j = 0; j < level; i++, j++) {
5832 tl[i] = (struct sched_domain_topology_level){
5833 .init = sd_numa_init,
5834 .mask = sd_numa_mask,
5835 .flags = SDTL_OVERLAP,
5836 .numa_level = j,
5837 };
5838 }
5839
5840 sched_domain_topology = tl;
5f7865f3
TC
5841
5842 sched_domains_numa_levels = level;
cb83b629 5843}
301a5cba
TC
5844
5845static void sched_domains_numa_masks_set(int cpu)
5846{
5847 int i, j;
5848 int node = cpu_to_node(cpu);
5849
5850 for (i = 0; i < sched_domains_numa_levels; i++) {
5851 for (j = 0; j < nr_node_ids; j++) {
5852 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5853 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5854 }
5855 }
5856}
5857
5858static void sched_domains_numa_masks_clear(int cpu)
5859{
5860 int i, j;
5861 for (i = 0; i < sched_domains_numa_levels; i++) {
5862 for (j = 0; j < nr_node_ids; j++)
5863 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5864 }
5865}
5866
5867/*
5868 * Update sched_domains_numa_masks[level][node] array when new cpus
5869 * are onlined.
5870 */
5871static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5872 unsigned long action,
5873 void *hcpu)
5874{
5875 int cpu = (long)hcpu;
5876
5877 switch (action & ~CPU_TASKS_FROZEN) {
5878 case CPU_ONLINE:
5879 sched_domains_numa_masks_set(cpu);
5880 break;
5881
5882 case CPU_DEAD:
5883 sched_domains_numa_masks_clear(cpu);
5884 break;
5885
5886 default:
5887 return NOTIFY_DONE;
5888 }
5889
5890 return NOTIFY_OK;
cb83b629
PZ
5891}
5892#else
5893static inline void sched_init_numa(void)
5894{
5895}
301a5cba
TC
5896
5897static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5898 unsigned long action,
5899 void *hcpu)
5900{
5901 return 0;
5902}
cb83b629
PZ
5903#endif /* CONFIG_NUMA */
5904
54ab4ff4
PZ
5905static int __sdt_alloc(const struct cpumask *cpu_map)
5906{
5907 struct sched_domain_topology_level *tl;
5908 int j;
5909
27723a68 5910 for_each_sd_topology(tl) {
54ab4ff4
PZ
5911 struct sd_data *sdd = &tl->data;
5912
5913 sdd->sd = alloc_percpu(struct sched_domain *);
5914 if (!sdd->sd)
5915 return -ENOMEM;
5916
5917 sdd->sg = alloc_percpu(struct sched_group *);
5918 if (!sdd->sg)
5919 return -ENOMEM;
5920
9c3f75cb
PZ
5921 sdd->sgp = alloc_percpu(struct sched_group_power *);
5922 if (!sdd->sgp)
5923 return -ENOMEM;
5924
54ab4ff4
PZ
5925 for_each_cpu(j, cpu_map) {
5926 struct sched_domain *sd;
5927 struct sched_group *sg;
9c3f75cb 5928 struct sched_group_power *sgp;
54ab4ff4
PZ
5929
5930 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5931 GFP_KERNEL, cpu_to_node(j));
5932 if (!sd)
5933 return -ENOMEM;
5934
5935 *per_cpu_ptr(sdd->sd, j) = sd;
5936
5937 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5938 GFP_KERNEL, cpu_to_node(j));
5939 if (!sg)
5940 return -ENOMEM;
5941
30b4e9eb
IM
5942 sg->next = sg;
5943
54ab4ff4 5944 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5945
c1174876 5946 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5947 GFP_KERNEL, cpu_to_node(j));
5948 if (!sgp)
5949 return -ENOMEM;
5950
5951 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5952 }
5953 }
5954
5955 return 0;
5956}
5957
5958static void __sdt_free(const struct cpumask *cpu_map)
5959{
5960 struct sched_domain_topology_level *tl;
5961 int j;
5962
27723a68 5963 for_each_sd_topology(tl) {
54ab4ff4
PZ
5964 struct sd_data *sdd = &tl->data;
5965
5966 for_each_cpu(j, cpu_map) {
fb2cf2c6 5967 struct sched_domain *sd;
5968
5969 if (sdd->sd) {
5970 sd = *per_cpu_ptr(sdd->sd, j);
5971 if (sd && (sd->flags & SD_OVERLAP))
5972 free_sched_groups(sd->groups, 0);
5973 kfree(*per_cpu_ptr(sdd->sd, j));
5974 }
5975
5976 if (sdd->sg)
5977 kfree(*per_cpu_ptr(sdd->sg, j));
5978 if (sdd->sgp)
5979 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5980 }
5981 free_percpu(sdd->sd);
fb2cf2c6 5982 sdd->sd = NULL;
54ab4ff4 5983 free_percpu(sdd->sg);
fb2cf2c6 5984 sdd->sg = NULL;
9c3f75cb 5985 free_percpu(sdd->sgp);
fb2cf2c6 5986 sdd->sgp = NULL;
54ab4ff4
PZ
5987 }
5988}
5989
2c402dc3 5990struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
5991 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5992 struct sched_domain *child, int cpu)
2c402dc3 5993{
54ab4ff4 5994 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5995 if (!sd)
d069b916 5996 return child;
2c402dc3 5997
2c402dc3 5998 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
5999 if (child) {
6000 sd->level = child->level + 1;
6001 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6002 child->parent = sd;
c75e0128 6003 sd->child = child;
60495e77 6004 }
a841f8ce 6005 set_domain_attribute(sd, attr);
2c402dc3
PZ
6006
6007 return sd;
6008}
6009
2109b99e
AH
6010/*
6011 * Build sched domains for a given set of cpus and attach the sched domains
6012 * to the individual cpus
6013 */
dce840a0
PZ
6014static int build_sched_domains(const struct cpumask *cpu_map,
6015 struct sched_domain_attr *attr)
2109b99e 6016{
1c632169 6017 enum s_alloc alloc_state;
dce840a0 6018 struct sched_domain *sd;
2109b99e 6019 struct s_data d;
822ff793 6020 int i, ret = -ENOMEM;
9c1cfda2 6021
2109b99e
AH
6022 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6023 if (alloc_state != sa_rootdomain)
6024 goto error;
9c1cfda2 6025
dce840a0 6026 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6027 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6028 struct sched_domain_topology_level *tl;
6029
3bd65a80 6030 sd = NULL;
27723a68 6031 for_each_sd_topology(tl) {
4a850cbe 6032 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6033 if (tl == sched_domain_topology)
6034 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6035 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6036 sd->flags |= SD_OVERLAP;
d110235d
PZ
6037 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6038 break;
e3589f6c 6039 }
dce840a0
PZ
6040 }
6041
6042 /* Build the groups for the domains */
6043 for_each_cpu(i, cpu_map) {
6044 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6045 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6046 if (sd->flags & SD_OVERLAP) {
6047 if (build_overlap_sched_groups(sd, i))
6048 goto error;
6049 } else {
6050 if (build_sched_groups(sd, i))
6051 goto error;
6052 }
1cf51902 6053 }
a06dadbe 6054 }
9c1cfda2 6055
1da177e4 6056 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6057 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6058 if (!cpumask_test_cpu(i, cpu_map))
6059 continue;
9c1cfda2 6060
dce840a0
PZ
6061 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6062 claim_allocations(i, sd);
cd4ea6ae 6063 init_sched_groups_power(i, sd);
dce840a0 6064 }
f712c0c7 6065 }
9c1cfda2 6066
1da177e4 6067 /* Attach the domains */
dce840a0 6068 rcu_read_lock();
abcd083a 6069 for_each_cpu(i, cpu_map) {
21d42ccf 6070 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6071 cpu_attach_domain(sd, d.rd, i);
1da177e4 6072 }
dce840a0 6073 rcu_read_unlock();
51888ca2 6074
822ff793 6075 ret = 0;
51888ca2 6076error:
2109b99e 6077 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6078 return ret;
1da177e4 6079}
029190c5 6080
acc3f5d7 6081static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6082static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6083static struct sched_domain_attr *dattr_cur;
6084 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6085
6086/*
6087 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6088 * cpumask) fails, then fallback to a single sched domain,
6089 * as determined by the single cpumask fallback_doms.
029190c5 6090 */
4212823f 6091static cpumask_var_t fallback_doms;
029190c5 6092
ee79d1bd
HC
6093/*
6094 * arch_update_cpu_topology lets virtualized architectures update the
6095 * cpu core maps. It is supposed to return 1 if the topology changed
6096 * or 0 if it stayed the same.
6097 */
6098int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6099{
ee79d1bd 6100 return 0;
22e52b07
HC
6101}
6102
acc3f5d7
RR
6103cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6104{
6105 int i;
6106 cpumask_var_t *doms;
6107
6108 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6109 if (!doms)
6110 return NULL;
6111 for (i = 0; i < ndoms; i++) {
6112 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6113 free_sched_domains(doms, i);
6114 return NULL;
6115 }
6116 }
6117 return doms;
6118}
6119
6120void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6121{
6122 unsigned int i;
6123 for (i = 0; i < ndoms; i++)
6124 free_cpumask_var(doms[i]);
6125 kfree(doms);
6126}
6127
1a20ff27 6128/*
41a2d6cf 6129 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6130 * For now this just excludes isolated cpus, but could be used to
6131 * exclude other special cases in the future.
1a20ff27 6132 */
c4a8849a 6133static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6134{
7378547f
MM
6135 int err;
6136
22e52b07 6137 arch_update_cpu_topology();
029190c5 6138 ndoms_cur = 1;
acc3f5d7 6139 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6140 if (!doms_cur)
acc3f5d7
RR
6141 doms_cur = &fallback_doms;
6142 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6143 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6144 register_sched_domain_sysctl();
7378547f
MM
6145
6146 return err;
1a20ff27
DG
6147}
6148
1a20ff27
DG
6149/*
6150 * Detach sched domains from a group of cpus specified in cpu_map
6151 * These cpus will now be attached to the NULL domain
6152 */
96f874e2 6153static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6154{
6155 int i;
6156
dce840a0 6157 rcu_read_lock();
abcd083a 6158 for_each_cpu(i, cpu_map)
57d885fe 6159 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6160 rcu_read_unlock();
1a20ff27
DG
6161}
6162
1d3504fc
HS
6163/* handle null as "default" */
6164static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6165 struct sched_domain_attr *new, int idx_new)
6166{
6167 struct sched_domain_attr tmp;
6168
6169 /* fast path */
6170 if (!new && !cur)
6171 return 1;
6172
6173 tmp = SD_ATTR_INIT;
6174 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6175 new ? (new + idx_new) : &tmp,
6176 sizeof(struct sched_domain_attr));
6177}
6178
029190c5
PJ
6179/*
6180 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6181 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6182 * doms_new[] to the current sched domain partitioning, doms_cur[].
6183 * It destroys each deleted domain and builds each new domain.
6184 *
acc3f5d7 6185 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6186 * The masks don't intersect (don't overlap.) We should setup one
6187 * sched domain for each mask. CPUs not in any of the cpumasks will
6188 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6189 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6190 * it as it is.
6191 *
acc3f5d7
RR
6192 * The passed in 'doms_new' should be allocated using
6193 * alloc_sched_domains. This routine takes ownership of it and will
6194 * free_sched_domains it when done with it. If the caller failed the
6195 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6196 * and partition_sched_domains() will fallback to the single partition
6197 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6198 *
96f874e2 6199 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6200 * ndoms_new == 0 is a special case for destroying existing domains,
6201 * and it will not create the default domain.
dfb512ec 6202 *
029190c5
PJ
6203 * Call with hotplug lock held
6204 */
acc3f5d7 6205void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6206 struct sched_domain_attr *dattr_new)
029190c5 6207{
dfb512ec 6208 int i, j, n;
d65bd5ec 6209 int new_topology;
029190c5 6210
712555ee 6211 mutex_lock(&sched_domains_mutex);
a1835615 6212
7378547f
MM
6213 /* always unregister in case we don't destroy any domains */
6214 unregister_sched_domain_sysctl();
6215
d65bd5ec
HC
6216 /* Let architecture update cpu core mappings. */
6217 new_topology = arch_update_cpu_topology();
6218
dfb512ec 6219 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6220
6221 /* Destroy deleted domains */
6222 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6223 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6224 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6225 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6226 goto match1;
6227 }
6228 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6229 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6230match1:
6231 ;
6232 }
6233
c8d2d47a 6234 n = ndoms_cur;
e761b772 6235 if (doms_new == NULL) {
c8d2d47a 6236 n = 0;
acc3f5d7 6237 doms_new = &fallback_doms;
6ad4c188 6238 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6239 WARN_ON_ONCE(dattr_new);
e761b772
MK
6240 }
6241
029190c5
PJ
6242 /* Build new domains */
6243 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6244 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6245 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6246 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6247 goto match2;
6248 }
6249 /* no match - add a new doms_new */
dce840a0 6250 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6251match2:
6252 ;
6253 }
6254
6255 /* Remember the new sched domains */
acc3f5d7
RR
6256 if (doms_cur != &fallback_doms)
6257 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6258 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6259 doms_cur = doms_new;
1d3504fc 6260 dattr_cur = dattr_new;
029190c5 6261 ndoms_cur = ndoms_new;
7378547f
MM
6262
6263 register_sched_domain_sysctl();
a1835615 6264
712555ee 6265 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6266}
6267
d35be8ba
SB
6268static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6269
1da177e4 6270/*
3a101d05
TH
6271 * Update cpusets according to cpu_active mask. If cpusets are
6272 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6273 * around partition_sched_domains().
d35be8ba
SB
6274 *
6275 * If we come here as part of a suspend/resume, don't touch cpusets because we
6276 * want to restore it back to its original state upon resume anyway.
1da177e4 6277 */
0b2e918a
TH
6278static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6279 void *hcpu)
e761b772 6280{
d35be8ba
SB
6281 switch (action) {
6282 case CPU_ONLINE_FROZEN:
6283 case CPU_DOWN_FAILED_FROZEN:
6284
6285 /*
6286 * num_cpus_frozen tracks how many CPUs are involved in suspend
6287 * resume sequence. As long as this is not the last online
6288 * operation in the resume sequence, just build a single sched
6289 * domain, ignoring cpusets.
6290 */
6291 num_cpus_frozen--;
6292 if (likely(num_cpus_frozen)) {
6293 partition_sched_domains(1, NULL, NULL);
6294 break;
6295 }
6296
6297 /*
6298 * This is the last CPU online operation. So fall through and
6299 * restore the original sched domains by considering the
6300 * cpuset configurations.
6301 */
6302
e761b772 6303 case CPU_ONLINE:
6ad4c188 6304 case CPU_DOWN_FAILED:
7ddf96b0 6305 cpuset_update_active_cpus(true);
d35be8ba 6306 break;
3a101d05
TH
6307 default:
6308 return NOTIFY_DONE;
6309 }
d35be8ba 6310 return NOTIFY_OK;
3a101d05 6311}
e761b772 6312
0b2e918a
TH
6313static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6314 void *hcpu)
3a101d05 6315{
d35be8ba 6316 switch (action) {
3a101d05 6317 case CPU_DOWN_PREPARE:
7ddf96b0 6318 cpuset_update_active_cpus(false);
d35be8ba
SB
6319 break;
6320 case CPU_DOWN_PREPARE_FROZEN:
6321 num_cpus_frozen++;
6322 partition_sched_domains(1, NULL, NULL);
6323 break;
e761b772
MK
6324 default:
6325 return NOTIFY_DONE;
6326 }
d35be8ba 6327 return NOTIFY_OK;
e761b772 6328}
e761b772 6329
1da177e4
LT
6330void __init sched_init_smp(void)
6331{
dcc30a35
RR
6332 cpumask_var_t non_isolated_cpus;
6333
6334 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6335 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6336
cb83b629
PZ
6337 sched_init_numa();
6338
95402b38 6339 get_online_cpus();
712555ee 6340 mutex_lock(&sched_domains_mutex);
c4a8849a 6341 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6342 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6343 if (cpumask_empty(non_isolated_cpus))
6344 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6345 mutex_unlock(&sched_domains_mutex);
95402b38 6346 put_online_cpus();
e761b772 6347
301a5cba 6348 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6349 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6350 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6351
b328ca18 6352 init_hrtick();
5c1e1767
NP
6353
6354 /* Move init over to a non-isolated CPU */
dcc30a35 6355 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6356 BUG();
19978ca6 6357 sched_init_granularity();
dcc30a35 6358 free_cpumask_var(non_isolated_cpus);
4212823f 6359
0e3900e6 6360 init_sched_rt_class();
1da177e4
LT
6361}
6362#else
6363void __init sched_init_smp(void)
6364{
19978ca6 6365 sched_init_granularity();
1da177e4
LT
6366}
6367#endif /* CONFIG_SMP */
6368
cd1bb94b
AB
6369const_debug unsigned int sysctl_timer_migration = 1;
6370
1da177e4
LT
6371int in_sched_functions(unsigned long addr)
6372{
1da177e4
LT
6373 return in_lock_functions(addr) ||
6374 (addr >= (unsigned long)__sched_text_start
6375 && addr < (unsigned long)__sched_text_end);
6376}
6377
029632fb 6378#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6379/*
6380 * Default task group.
6381 * Every task in system belongs to this group at bootup.
6382 */
029632fb 6383struct task_group root_task_group;
35cf4e50 6384LIST_HEAD(task_groups);
052f1dc7 6385#endif
6f505b16 6386
e6252c3e 6387DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6388
1da177e4
LT
6389void __init sched_init(void)
6390{
dd41f596 6391 int i, j;
434d53b0
MT
6392 unsigned long alloc_size = 0, ptr;
6393
6394#ifdef CONFIG_FAIR_GROUP_SCHED
6395 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6396#endif
6397#ifdef CONFIG_RT_GROUP_SCHED
6398 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6399#endif
df7c8e84 6400#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6401 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6402#endif
434d53b0 6403 if (alloc_size) {
36b7b6d4 6404 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6405
6406#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6407 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6408 ptr += nr_cpu_ids * sizeof(void **);
6409
07e06b01 6410 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6411 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6412
6d6bc0ad 6413#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6414#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6415 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6416 ptr += nr_cpu_ids * sizeof(void **);
6417
07e06b01 6418 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6419 ptr += nr_cpu_ids * sizeof(void **);
6420
6d6bc0ad 6421#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6422#ifdef CONFIG_CPUMASK_OFFSTACK
6423 for_each_possible_cpu(i) {
e6252c3e 6424 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6425 ptr += cpumask_size();
6426 }
6427#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6428 }
dd41f596 6429
57d885fe
GH
6430#ifdef CONFIG_SMP
6431 init_defrootdomain();
6432#endif
6433
d0b27fa7
PZ
6434 init_rt_bandwidth(&def_rt_bandwidth,
6435 global_rt_period(), global_rt_runtime());
6436
6437#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6438 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6439 global_rt_period(), global_rt_runtime());
6d6bc0ad 6440#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6441
7c941438 6442#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6443 list_add(&root_task_group.list, &task_groups);
6444 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6445 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6446 autogroup_init(&init_task);
54c707e9 6447
7c941438 6448#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6449
0a945022 6450 for_each_possible_cpu(i) {
70b97a7f 6451 struct rq *rq;
1da177e4
LT
6452
6453 rq = cpu_rq(i);
05fa785c 6454 raw_spin_lock_init(&rq->lock);
7897986b 6455 rq->nr_running = 0;
dce48a84
TG
6456 rq->calc_load_active = 0;
6457 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6458 init_cfs_rq(&rq->cfs);
6f505b16 6459 init_rt_rq(&rq->rt, rq);
dd41f596 6460#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6461 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6462 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6463 /*
07e06b01 6464 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6465 *
6466 * In case of task-groups formed thr' the cgroup filesystem, it
6467 * gets 100% of the cpu resources in the system. This overall
6468 * system cpu resource is divided among the tasks of
07e06b01 6469 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6470 * based on each entity's (task or task-group's) weight
6471 * (se->load.weight).
6472 *
07e06b01 6473 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6474 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6475 * then A0's share of the cpu resource is:
6476 *
0d905bca 6477 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6478 *
07e06b01
YZ
6479 * We achieve this by letting root_task_group's tasks sit
6480 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6481 */
ab84d31e 6482 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6483 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6484#endif /* CONFIG_FAIR_GROUP_SCHED */
6485
6486 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6487#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6488 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6489 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6490#endif
1da177e4 6491
dd41f596
IM
6492 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6493 rq->cpu_load[j] = 0;
fdf3e95d
VP
6494
6495 rq->last_load_update_tick = jiffies;
6496
1da177e4 6497#ifdef CONFIG_SMP
41c7ce9a 6498 rq->sd = NULL;
57d885fe 6499 rq->rd = NULL;
1399fa78 6500 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6501 rq->post_schedule = 0;
1da177e4 6502 rq->active_balance = 0;
dd41f596 6503 rq->next_balance = jiffies;
1da177e4 6504 rq->push_cpu = 0;
0a2966b4 6505 rq->cpu = i;
1f11eb6a 6506 rq->online = 0;
eae0c9df
MG
6507 rq->idle_stamp = 0;
6508 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6509
6510 INIT_LIST_HEAD(&rq->cfs_tasks);
6511
dc938520 6512 rq_attach_root(rq, &def_root_domain);
3451d024 6513#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6514 rq->nohz_flags = 0;
83cd4fe2 6515#endif
265f22a9
FW
6516#ifdef CONFIG_NO_HZ_FULL
6517 rq->last_sched_tick = 0;
6518#endif
1da177e4 6519#endif
8f4d37ec 6520 init_rq_hrtick(rq);
1da177e4 6521 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6522 }
6523
2dd73a4f 6524 set_load_weight(&init_task);
b50f60ce 6525
e107be36
AK
6526#ifdef CONFIG_PREEMPT_NOTIFIERS
6527 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6528#endif
6529
b50f60ce 6530#ifdef CONFIG_RT_MUTEXES
732375c6 6531 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6532#endif
6533
1da177e4
LT
6534 /*
6535 * The boot idle thread does lazy MMU switching as well:
6536 */
6537 atomic_inc(&init_mm.mm_count);
6538 enter_lazy_tlb(&init_mm, current);
6539
6540 /*
6541 * Make us the idle thread. Technically, schedule() should not be
6542 * called from this thread, however somewhere below it might be,
6543 * but because we are the idle thread, we just pick up running again
6544 * when this runqueue becomes "idle".
6545 */
6546 init_idle(current, smp_processor_id());
dce48a84
TG
6547
6548 calc_load_update = jiffies + LOAD_FREQ;
6549
dd41f596
IM
6550 /*
6551 * During early bootup we pretend to be a normal task:
6552 */
6553 current->sched_class = &fair_sched_class;
6892b75e 6554
bf4d83f6 6555#ifdef CONFIG_SMP
4cb98839 6556 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6557 /* May be allocated at isolcpus cmdline parse time */
6558 if (cpu_isolated_map == NULL)
6559 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6560 idle_thread_set_boot_cpu();
029632fb
PZ
6561#endif
6562 init_sched_fair_class();
6a7b3dc3 6563
6892b75e 6564 scheduler_running = 1;
1da177e4
LT
6565}
6566
d902db1e 6567#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6568static inline int preempt_count_equals(int preempt_offset)
6569{
234da7bc 6570 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6571
4ba8216c 6572 return (nested == preempt_offset);
e4aafea2
FW
6573}
6574
d894837f 6575void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6576{
1da177e4
LT
6577 static unsigned long prev_jiffy; /* ratelimiting */
6578
b3fbab05 6579 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6580 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6581 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6582 return;
6583 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6584 return;
6585 prev_jiffy = jiffies;
6586
3df0fc5b
PZ
6587 printk(KERN_ERR
6588 "BUG: sleeping function called from invalid context at %s:%d\n",
6589 file, line);
6590 printk(KERN_ERR
6591 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6592 in_atomic(), irqs_disabled(),
6593 current->pid, current->comm);
aef745fc
IM
6594
6595 debug_show_held_locks(current);
6596 if (irqs_disabled())
6597 print_irqtrace_events(current);
6598 dump_stack();
1da177e4
LT
6599}
6600EXPORT_SYMBOL(__might_sleep);
6601#endif
6602
6603#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6604static void normalize_task(struct rq *rq, struct task_struct *p)
6605{
da7a735e
PZ
6606 const struct sched_class *prev_class = p->sched_class;
6607 int old_prio = p->prio;
3a5e4dc1 6608 int on_rq;
3e51f33f 6609
fd2f4419 6610 on_rq = p->on_rq;
3a5e4dc1 6611 if (on_rq)
4ca9b72b 6612 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6613 __setscheduler(rq, p, SCHED_NORMAL, 0);
6614 if (on_rq) {
4ca9b72b 6615 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6616 resched_task(rq->curr);
6617 }
da7a735e
PZ
6618
6619 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6620}
6621
1da177e4
LT
6622void normalize_rt_tasks(void)
6623{
a0f98a1c 6624 struct task_struct *g, *p;
1da177e4 6625 unsigned long flags;
70b97a7f 6626 struct rq *rq;
1da177e4 6627
4cf5d77a 6628 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6629 do_each_thread(g, p) {
178be793
IM
6630 /*
6631 * Only normalize user tasks:
6632 */
6633 if (!p->mm)
6634 continue;
6635
6cfb0d5d 6636 p->se.exec_start = 0;
6cfb0d5d 6637#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6638 p->se.statistics.wait_start = 0;
6639 p->se.statistics.sleep_start = 0;
6640 p->se.statistics.block_start = 0;
6cfb0d5d 6641#endif
dd41f596
IM
6642
6643 if (!rt_task(p)) {
6644 /*
6645 * Renice negative nice level userspace
6646 * tasks back to 0:
6647 */
6648 if (TASK_NICE(p) < 0 && p->mm)
6649 set_user_nice(p, 0);
1da177e4 6650 continue;
dd41f596 6651 }
1da177e4 6652
1d615482 6653 raw_spin_lock(&p->pi_lock);
b29739f9 6654 rq = __task_rq_lock(p);
1da177e4 6655
178be793 6656 normalize_task(rq, p);
3a5e4dc1 6657
b29739f9 6658 __task_rq_unlock(rq);
1d615482 6659 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6660 } while_each_thread(g, p);
6661
4cf5d77a 6662 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6663}
6664
6665#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6666
67fc4e0c 6667#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6668/*
67fc4e0c 6669 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6670 *
6671 * They can only be called when the whole system has been
6672 * stopped - every CPU needs to be quiescent, and no scheduling
6673 * activity can take place. Using them for anything else would
6674 * be a serious bug, and as a result, they aren't even visible
6675 * under any other configuration.
6676 */
6677
6678/**
6679 * curr_task - return the current task for a given cpu.
6680 * @cpu: the processor in question.
6681 *
6682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6683 *
6684 * Return: The current task for @cpu.
1df5c10a 6685 */
36c8b586 6686struct task_struct *curr_task(int cpu)
1df5c10a
LT
6687{
6688 return cpu_curr(cpu);
6689}
6690
67fc4e0c
JW
6691#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6692
6693#ifdef CONFIG_IA64
1df5c10a
LT
6694/**
6695 * set_curr_task - set the current task for a given cpu.
6696 * @cpu: the processor in question.
6697 * @p: the task pointer to set.
6698 *
6699 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6700 * are serviced on a separate stack. It allows the architecture to switch the
6701 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6702 * must be called with all CPU's synchronized, and interrupts disabled, the
6703 * and caller must save the original value of the current task (see
6704 * curr_task() above) and restore that value before reenabling interrupts and
6705 * re-starting the system.
6706 *
6707 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6708 */
36c8b586 6709void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6710{
6711 cpu_curr(cpu) = p;
6712}
6713
6714#endif
29f59db3 6715
7c941438 6716#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6717/* task_group_lock serializes the addition/removal of task groups */
6718static DEFINE_SPINLOCK(task_group_lock);
6719
bccbe08a
PZ
6720static void free_sched_group(struct task_group *tg)
6721{
6722 free_fair_sched_group(tg);
6723 free_rt_sched_group(tg);
e9aa1dd1 6724 autogroup_free(tg);
bccbe08a
PZ
6725 kfree(tg);
6726}
6727
6728/* allocate runqueue etc for a new task group */
ec7dc8ac 6729struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6730{
6731 struct task_group *tg;
bccbe08a
PZ
6732
6733 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6734 if (!tg)
6735 return ERR_PTR(-ENOMEM);
6736
ec7dc8ac 6737 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6738 goto err;
6739
ec7dc8ac 6740 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6741 goto err;
6742
ace783b9
LZ
6743 return tg;
6744
6745err:
6746 free_sched_group(tg);
6747 return ERR_PTR(-ENOMEM);
6748}
6749
6750void sched_online_group(struct task_group *tg, struct task_group *parent)
6751{
6752 unsigned long flags;
6753
8ed36996 6754 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6755 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6756
6757 WARN_ON(!parent); /* root should already exist */
6758
6759 tg->parent = parent;
f473aa5e 6760 INIT_LIST_HEAD(&tg->children);
09f2724a 6761 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6762 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6763}
6764
9b5b7751 6765/* rcu callback to free various structures associated with a task group */
6f505b16 6766static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6767{
29f59db3 6768 /* now it should be safe to free those cfs_rqs */
6f505b16 6769 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6770}
6771
9b5b7751 6772/* Destroy runqueue etc associated with a task group */
4cf86d77 6773void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6774{
6775 /* wait for possible concurrent references to cfs_rqs complete */
6776 call_rcu(&tg->rcu, free_sched_group_rcu);
6777}
6778
6779void sched_offline_group(struct task_group *tg)
29f59db3 6780{
8ed36996 6781 unsigned long flags;
9b5b7751 6782 int i;
29f59db3 6783
3d4b47b4
PZ
6784 /* end participation in shares distribution */
6785 for_each_possible_cpu(i)
bccbe08a 6786 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6787
6788 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6789 list_del_rcu(&tg->list);
f473aa5e 6790 list_del_rcu(&tg->siblings);
8ed36996 6791 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6792}
6793
9b5b7751 6794/* change task's runqueue when it moves between groups.
3a252015
IM
6795 * The caller of this function should have put the task in its new group
6796 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6797 * reflect its new group.
9b5b7751
SV
6798 */
6799void sched_move_task(struct task_struct *tsk)
29f59db3 6800{
8323f26c 6801 struct task_group *tg;
29f59db3
SV
6802 int on_rq, running;
6803 unsigned long flags;
6804 struct rq *rq;
6805
6806 rq = task_rq_lock(tsk, &flags);
6807
051a1d1a 6808 running = task_current(rq, tsk);
fd2f4419 6809 on_rq = tsk->on_rq;
29f59db3 6810
0e1f3483 6811 if (on_rq)
29f59db3 6812 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6813 if (unlikely(running))
6814 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6815
8af01f56 6816 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6817 lockdep_is_held(&tsk->sighand->siglock)),
6818 struct task_group, css);
6819 tg = autogroup_task_group(tsk, tg);
6820 tsk->sched_task_group = tg;
6821
810b3817 6822#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6823 if (tsk->sched_class->task_move_group)
6824 tsk->sched_class->task_move_group(tsk, on_rq);
6825 else
810b3817 6826#endif
b2b5ce02 6827 set_task_rq(tsk, task_cpu(tsk));
810b3817 6828
0e1f3483
HS
6829 if (unlikely(running))
6830 tsk->sched_class->set_curr_task(rq);
6831 if (on_rq)
371fd7e7 6832 enqueue_task(rq, tsk, 0);
29f59db3 6833
0122ec5b 6834 task_rq_unlock(rq, tsk, &flags);
29f59db3 6835}
7c941438 6836#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6837
a790de99 6838#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6839static unsigned long to_ratio(u64 period, u64 runtime)
6840{
6841 if (runtime == RUNTIME_INF)
9a7e0b18 6842 return 1ULL << 20;
9f0c1e56 6843
9a7e0b18 6844 return div64_u64(runtime << 20, period);
9f0c1e56 6845}
a790de99
PT
6846#endif
6847
6848#ifdef CONFIG_RT_GROUP_SCHED
6849/*
6850 * Ensure that the real time constraints are schedulable.
6851 */
6852static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6853
9a7e0b18
PZ
6854/* Must be called with tasklist_lock held */
6855static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6856{
9a7e0b18 6857 struct task_struct *g, *p;
b40b2e8e 6858
9a7e0b18 6859 do_each_thread(g, p) {
029632fb 6860 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6861 return 1;
6862 } while_each_thread(g, p);
b40b2e8e 6863
9a7e0b18
PZ
6864 return 0;
6865}
b40b2e8e 6866
9a7e0b18
PZ
6867struct rt_schedulable_data {
6868 struct task_group *tg;
6869 u64 rt_period;
6870 u64 rt_runtime;
6871};
b40b2e8e 6872
a790de99 6873static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6874{
6875 struct rt_schedulable_data *d = data;
6876 struct task_group *child;
6877 unsigned long total, sum = 0;
6878 u64 period, runtime;
b40b2e8e 6879
9a7e0b18
PZ
6880 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6881 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6882
9a7e0b18
PZ
6883 if (tg == d->tg) {
6884 period = d->rt_period;
6885 runtime = d->rt_runtime;
b40b2e8e 6886 }
b40b2e8e 6887
4653f803
PZ
6888 /*
6889 * Cannot have more runtime than the period.
6890 */
6891 if (runtime > period && runtime != RUNTIME_INF)
6892 return -EINVAL;
6f505b16 6893
4653f803
PZ
6894 /*
6895 * Ensure we don't starve existing RT tasks.
6896 */
9a7e0b18
PZ
6897 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6898 return -EBUSY;
6f505b16 6899
9a7e0b18 6900 total = to_ratio(period, runtime);
6f505b16 6901
4653f803
PZ
6902 /*
6903 * Nobody can have more than the global setting allows.
6904 */
6905 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6906 return -EINVAL;
6f505b16 6907
4653f803
PZ
6908 /*
6909 * The sum of our children's runtime should not exceed our own.
6910 */
9a7e0b18
PZ
6911 list_for_each_entry_rcu(child, &tg->children, siblings) {
6912 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6913 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6914
9a7e0b18
PZ
6915 if (child == d->tg) {
6916 period = d->rt_period;
6917 runtime = d->rt_runtime;
6918 }
6f505b16 6919
9a7e0b18 6920 sum += to_ratio(period, runtime);
9f0c1e56 6921 }
6f505b16 6922
9a7e0b18
PZ
6923 if (sum > total)
6924 return -EINVAL;
6925
6926 return 0;
6f505b16
PZ
6927}
6928
9a7e0b18 6929static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6930{
8277434e
PT
6931 int ret;
6932
9a7e0b18
PZ
6933 struct rt_schedulable_data data = {
6934 .tg = tg,
6935 .rt_period = period,
6936 .rt_runtime = runtime,
6937 };
6938
8277434e
PT
6939 rcu_read_lock();
6940 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6941 rcu_read_unlock();
6942
6943 return ret;
521f1a24
DG
6944}
6945
ab84d31e 6946static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6947 u64 rt_period, u64 rt_runtime)
6f505b16 6948{
ac086bc2 6949 int i, err = 0;
9f0c1e56 6950
9f0c1e56 6951 mutex_lock(&rt_constraints_mutex);
521f1a24 6952 read_lock(&tasklist_lock);
9a7e0b18
PZ
6953 err = __rt_schedulable(tg, rt_period, rt_runtime);
6954 if (err)
9f0c1e56 6955 goto unlock;
ac086bc2 6956
0986b11b 6957 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6958 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6959 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6960
6961 for_each_possible_cpu(i) {
6962 struct rt_rq *rt_rq = tg->rt_rq[i];
6963
0986b11b 6964 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6965 rt_rq->rt_runtime = rt_runtime;
0986b11b 6966 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6967 }
0986b11b 6968 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6969unlock:
521f1a24 6970 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6971 mutex_unlock(&rt_constraints_mutex);
6972
6973 return err;
6f505b16
PZ
6974}
6975
25cc7da7 6976static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6977{
6978 u64 rt_runtime, rt_period;
6979
6980 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6981 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6982 if (rt_runtime_us < 0)
6983 rt_runtime = RUNTIME_INF;
6984
ab84d31e 6985 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6986}
6987
25cc7da7 6988static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6989{
6990 u64 rt_runtime_us;
6991
d0b27fa7 6992 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6993 return -1;
6994
d0b27fa7 6995 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6996 do_div(rt_runtime_us, NSEC_PER_USEC);
6997 return rt_runtime_us;
6998}
d0b27fa7 6999
25cc7da7 7000static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7001{
7002 u64 rt_runtime, rt_period;
7003
7004 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7005 rt_runtime = tg->rt_bandwidth.rt_runtime;
7006
619b0488
R
7007 if (rt_period == 0)
7008 return -EINVAL;
7009
ab84d31e 7010 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7011}
7012
25cc7da7 7013static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7014{
7015 u64 rt_period_us;
7016
7017 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7018 do_div(rt_period_us, NSEC_PER_USEC);
7019 return rt_period_us;
7020}
7021
7022static int sched_rt_global_constraints(void)
7023{
4653f803 7024 u64 runtime, period;
d0b27fa7
PZ
7025 int ret = 0;
7026
ec5d4989
HS
7027 if (sysctl_sched_rt_period <= 0)
7028 return -EINVAL;
7029
4653f803
PZ
7030 runtime = global_rt_runtime();
7031 period = global_rt_period();
7032
7033 /*
7034 * Sanity check on the sysctl variables.
7035 */
7036 if (runtime > period && runtime != RUNTIME_INF)
7037 return -EINVAL;
10b612f4 7038
d0b27fa7 7039 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7040 read_lock(&tasklist_lock);
4653f803 7041 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7042 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7043 mutex_unlock(&rt_constraints_mutex);
7044
7045 return ret;
7046}
54e99124 7047
25cc7da7 7048static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7049{
7050 /* Don't accept realtime tasks when there is no way for them to run */
7051 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7052 return 0;
7053
7054 return 1;
7055}
7056
6d6bc0ad 7057#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7058static int sched_rt_global_constraints(void)
7059{
ac086bc2
PZ
7060 unsigned long flags;
7061 int i;
7062
ec5d4989
HS
7063 if (sysctl_sched_rt_period <= 0)
7064 return -EINVAL;
7065
60aa605d
PZ
7066 /*
7067 * There's always some RT tasks in the root group
7068 * -- migration, kstopmachine etc..
7069 */
7070 if (sysctl_sched_rt_runtime == 0)
7071 return -EBUSY;
7072
0986b11b 7073 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7074 for_each_possible_cpu(i) {
7075 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7076
0986b11b 7077 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7078 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7079 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7080 }
0986b11b 7081 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7082
d0b27fa7
PZ
7083 return 0;
7084}
6d6bc0ad 7085#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7086
ce0dbbbb
CW
7087int sched_rr_handler(struct ctl_table *table, int write,
7088 void __user *buffer, size_t *lenp,
7089 loff_t *ppos)
7090{
7091 int ret;
7092 static DEFINE_MUTEX(mutex);
7093
7094 mutex_lock(&mutex);
7095 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7096 /* make sure that internally we keep jiffies */
7097 /* also, writing zero resets timeslice to default */
7098 if (!ret && write) {
7099 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7100 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7101 }
7102 mutex_unlock(&mutex);
7103 return ret;
7104}
7105
d0b27fa7 7106int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7107 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7108 loff_t *ppos)
7109{
7110 int ret;
7111 int old_period, old_runtime;
7112 static DEFINE_MUTEX(mutex);
7113
7114 mutex_lock(&mutex);
7115 old_period = sysctl_sched_rt_period;
7116 old_runtime = sysctl_sched_rt_runtime;
7117
8d65af78 7118 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7119
7120 if (!ret && write) {
7121 ret = sched_rt_global_constraints();
7122 if (ret) {
7123 sysctl_sched_rt_period = old_period;
7124 sysctl_sched_rt_runtime = old_runtime;
7125 } else {
7126 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7127 def_rt_bandwidth.rt_period =
7128 ns_to_ktime(global_rt_period());
7129 }
7130 }
7131 mutex_unlock(&mutex);
7132
7133 return ret;
7134}
68318b8e 7135
052f1dc7 7136#ifdef CONFIG_CGROUP_SCHED
68318b8e 7137
a7c6d554 7138static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7139{
a7c6d554 7140 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7141}
7142
eb95419b
TH
7143static struct cgroup_subsys_state *
7144cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7145{
eb95419b
TH
7146 struct task_group *parent = css_tg(parent_css);
7147 struct task_group *tg;
68318b8e 7148
eb95419b 7149 if (!parent) {
68318b8e 7150 /* This is early initialization for the top cgroup */
07e06b01 7151 return &root_task_group.css;
68318b8e
SV
7152 }
7153
ec7dc8ac 7154 tg = sched_create_group(parent);
68318b8e
SV
7155 if (IS_ERR(tg))
7156 return ERR_PTR(-ENOMEM);
7157
68318b8e
SV
7158 return &tg->css;
7159}
7160
eb95419b 7161static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7162{
eb95419b
TH
7163 struct task_group *tg = css_tg(css);
7164 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7165
63876986
TH
7166 if (parent)
7167 sched_online_group(tg, parent);
ace783b9
LZ
7168 return 0;
7169}
7170
eb95419b 7171static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7172{
eb95419b 7173 struct task_group *tg = css_tg(css);
68318b8e
SV
7174
7175 sched_destroy_group(tg);
7176}
7177
eb95419b 7178static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7179{
eb95419b 7180 struct task_group *tg = css_tg(css);
ace783b9
LZ
7181
7182 sched_offline_group(tg);
7183}
7184
eb95419b 7185static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7186 struct cgroup_taskset *tset)
68318b8e 7187{
bb9d97b6
TH
7188 struct task_struct *task;
7189
d99c8727 7190 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7191#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7192 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7193 return -EINVAL;
b68aa230 7194#else
bb9d97b6
TH
7195 /* We don't support RT-tasks being in separate groups */
7196 if (task->sched_class != &fair_sched_class)
7197 return -EINVAL;
b68aa230 7198#endif
bb9d97b6 7199 }
be367d09
BB
7200 return 0;
7201}
68318b8e 7202
eb95419b 7203static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7204 struct cgroup_taskset *tset)
68318b8e 7205{
bb9d97b6
TH
7206 struct task_struct *task;
7207
d99c8727 7208 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7209 sched_move_task(task);
68318b8e
SV
7210}
7211
eb95419b
TH
7212static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7213 struct cgroup_subsys_state *old_css,
7214 struct task_struct *task)
068c5cc5
PZ
7215{
7216 /*
7217 * cgroup_exit() is called in the copy_process() failure path.
7218 * Ignore this case since the task hasn't ran yet, this avoids
7219 * trying to poke a half freed task state from generic code.
7220 */
7221 if (!(task->flags & PF_EXITING))
7222 return;
7223
7224 sched_move_task(task);
7225}
7226
052f1dc7 7227#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7228static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7229 struct cftype *cftype, u64 shareval)
68318b8e 7230{
182446d0 7231 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7232}
7233
182446d0
TH
7234static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7235 struct cftype *cft)
68318b8e 7236{
182446d0 7237 struct task_group *tg = css_tg(css);
68318b8e 7238
c8b28116 7239 return (u64) scale_load_down(tg->shares);
68318b8e 7240}
ab84d31e
PT
7241
7242#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7243static DEFINE_MUTEX(cfs_constraints_mutex);
7244
ab84d31e
PT
7245const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7246const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7247
a790de99
PT
7248static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7249
ab84d31e
PT
7250static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7251{
56f570e5 7252 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7253 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7254
7255 if (tg == &root_task_group)
7256 return -EINVAL;
7257
7258 /*
7259 * Ensure we have at some amount of bandwidth every period. This is
7260 * to prevent reaching a state of large arrears when throttled via
7261 * entity_tick() resulting in prolonged exit starvation.
7262 */
7263 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7264 return -EINVAL;
7265
7266 /*
7267 * Likewise, bound things on the otherside by preventing insane quota
7268 * periods. This also allows us to normalize in computing quota
7269 * feasibility.
7270 */
7271 if (period > max_cfs_quota_period)
7272 return -EINVAL;
7273
a790de99
PT
7274 mutex_lock(&cfs_constraints_mutex);
7275 ret = __cfs_schedulable(tg, period, quota);
7276 if (ret)
7277 goto out_unlock;
7278
58088ad0 7279 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7280 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7281 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7282 raw_spin_lock_irq(&cfs_b->lock);
7283 cfs_b->period = ns_to_ktime(period);
7284 cfs_b->quota = quota;
58088ad0 7285
a9cf55b2 7286 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7287 /* restart the period timer (if active) to handle new period expiry */
7288 if (runtime_enabled && cfs_b->timer_active) {
7289 /* force a reprogram */
7290 cfs_b->timer_active = 0;
7291 __start_cfs_bandwidth(cfs_b);
7292 }
ab84d31e
PT
7293 raw_spin_unlock_irq(&cfs_b->lock);
7294
7295 for_each_possible_cpu(i) {
7296 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7297 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7298
7299 raw_spin_lock_irq(&rq->lock);
58088ad0 7300 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7301 cfs_rq->runtime_remaining = 0;
671fd9da 7302
029632fb 7303 if (cfs_rq->throttled)
671fd9da 7304 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7305 raw_spin_unlock_irq(&rq->lock);
7306 }
a790de99
PT
7307out_unlock:
7308 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7309
a790de99 7310 return ret;
ab84d31e
PT
7311}
7312
7313int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7314{
7315 u64 quota, period;
7316
029632fb 7317 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7318 if (cfs_quota_us < 0)
7319 quota = RUNTIME_INF;
7320 else
7321 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7322
7323 return tg_set_cfs_bandwidth(tg, period, quota);
7324}
7325
7326long tg_get_cfs_quota(struct task_group *tg)
7327{
7328 u64 quota_us;
7329
029632fb 7330 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7331 return -1;
7332
029632fb 7333 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7334 do_div(quota_us, NSEC_PER_USEC);
7335
7336 return quota_us;
7337}
7338
7339int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7340{
7341 u64 quota, period;
7342
7343 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7344 quota = tg->cfs_bandwidth.quota;
ab84d31e 7345
ab84d31e
PT
7346 return tg_set_cfs_bandwidth(tg, period, quota);
7347}
7348
7349long tg_get_cfs_period(struct task_group *tg)
7350{
7351 u64 cfs_period_us;
7352
029632fb 7353 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7354 do_div(cfs_period_us, NSEC_PER_USEC);
7355
7356 return cfs_period_us;
7357}
7358
182446d0
TH
7359static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7360 struct cftype *cft)
ab84d31e 7361{
182446d0 7362 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7363}
7364
182446d0
TH
7365static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7366 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7367{
182446d0 7368 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7369}
7370
182446d0
TH
7371static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7372 struct cftype *cft)
ab84d31e 7373{
182446d0 7374 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7375}
7376
182446d0
TH
7377static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7378 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7379{
182446d0 7380 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7381}
7382
a790de99
PT
7383struct cfs_schedulable_data {
7384 struct task_group *tg;
7385 u64 period, quota;
7386};
7387
7388/*
7389 * normalize group quota/period to be quota/max_period
7390 * note: units are usecs
7391 */
7392static u64 normalize_cfs_quota(struct task_group *tg,
7393 struct cfs_schedulable_data *d)
7394{
7395 u64 quota, period;
7396
7397 if (tg == d->tg) {
7398 period = d->period;
7399 quota = d->quota;
7400 } else {
7401 period = tg_get_cfs_period(tg);
7402 quota = tg_get_cfs_quota(tg);
7403 }
7404
7405 /* note: these should typically be equivalent */
7406 if (quota == RUNTIME_INF || quota == -1)
7407 return RUNTIME_INF;
7408
7409 return to_ratio(period, quota);
7410}
7411
7412static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7413{
7414 struct cfs_schedulable_data *d = data;
029632fb 7415 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7416 s64 quota = 0, parent_quota = -1;
7417
7418 if (!tg->parent) {
7419 quota = RUNTIME_INF;
7420 } else {
029632fb 7421 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7422
7423 quota = normalize_cfs_quota(tg, d);
7424 parent_quota = parent_b->hierarchal_quota;
7425
7426 /*
7427 * ensure max(child_quota) <= parent_quota, inherit when no
7428 * limit is set
7429 */
7430 if (quota == RUNTIME_INF)
7431 quota = parent_quota;
7432 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7433 return -EINVAL;
7434 }
7435 cfs_b->hierarchal_quota = quota;
7436
7437 return 0;
7438}
7439
7440static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7441{
8277434e 7442 int ret;
a790de99
PT
7443 struct cfs_schedulable_data data = {
7444 .tg = tg,
7445 .period = period,
7446 .quota = quota,
7447 };
7448
7449 if (quota != RUNTIME_INF) {
7450 do_div(data.period, NSEC_PER_USEC);
7451 do_div(data.quota, NSEC_PER_USEC);
7452 }
7453
8277434e
PT
7454 rcu_read_lock();
7455 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7456 rcu_read_unlock();
7457
7458 return ret;
a790de99 7459}
e8da1b18 7460
182446d0 7461static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7462 struct cgroup_map_cb *cb)
7463{
182446d0 7464 struct task_group *tg = css_tg(css);
029632fb 7465 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7466
7467 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7468 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7469 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7470
7471 return 0;
7472}
ab84d31e 7473#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7474#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7475
052f1dc7 7476#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7477static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7478 struct cftype *cft, s64 val)
6f505b16 7479{
182446d0 7480 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7481}
7482
182446d0
TH
7483static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7484 struct cftype *cft)
6f505b16 7485{
182446d0 7486 return sched_group_rt_runtime(css_tg(css));
6f505b16 7487}
d0b27fa7 7488
182446d0
TH
7489static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7490 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7491{
182446d0 7492 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7493}
7494
182446d0
TH
7495static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7496 struct cftype *cft)
d0b27fa7 7497{
182446d0 7498 return sched_group_rt_period(css_tg(css));
d0b27fa7 7499}
6d6bc0ad 7500#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7501
fe5c7cc2 7502static struct cftype cpu_files[] = {
052f1dc7 7503#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7504 {
7505 .name = "shares",
f4c753b7
PM
7506 .read_u64 = cpu_shares_read_u64,
7507 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7508 },
052f1dc7 7509#endif
ab84d31e
PT
7510#ifdef CONFIG_CFS_BANDWIDTH
7511 {
7512 .name = "cfs_quota_us",
7513 .read_s64 = cpu_cfs_quota_read_s64,
7514 .write_s64 = cpu_cfs_quota_write_s64,
7515 },
7516 {
7517 .name = "cfs_period_us",
7518 .read_u64 = cpu_cfs_period_read_u64,
7519 .write_u64 = cpu_cfs_period_write_u64,
7520 },
e8da1b18
NR
7521 {
7522 .name = "stat",
7523 .read_map = cpu_stats_show,
7524 },
ab84d31e 7525#endif
052f1dc7 7526#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7527 {
9f0c1e56 7528 .name = "rt_runtime_us",
06ecb27c
PM
7529 .read_s64 = cpu_rt_runtime_read,
7530 .write_s64 = cpu_rt_runtime_write,
6f505b16 7531 },
d0b27fa7
PZ
7532 {
7533 .name = "rt_period_us",
f4c753b7
PM
7534 .read_u64 = cpu_rt_period_read_uint,
7535 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7536 },
052f1dc7 7537#endif
4baf6e33 7538 { } /* terminate */
68318b8e
SV
7539};
7540
68318b8e 7541struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7542 .name = "cpu",
92fb9748
TH
7543 .css_alloc = cpu_cgroup_css_alloc,
7544 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7545 .css_online = cpu_cgroup_css_online,
7546 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7547 .can_attach = cpu_cgroup_can_attach,
7548 .attach = cpu_cgroup_attach,
068c5cc5 7549 .exit = cpu_cgroup_exit,
38605cae 7550 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7551 .base_cftypes = cpu_files,
68318b8e
SV
7552 .early_init = 1,
7553};
7554
052f1dc7 7555#endif /* CONFIG_CGROUP_SCHED */
d842de87 7556
b637a328
PM
7557void dump_cpu_task(int cpu)
7558{
7559 pr_info("Task dump for CPU %d:\n", cpu);
7560 sched_show_task(cpu_curr(cpu));
7561}