sched/tracing: Allow tracing the preemption decision on wakeup
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
16a80163 517#define tsk_is_polling(t) 0
c24d20db
IM
518#endif
519
029632fb 520void resched_task(struct task_struct *p)
c24d20db
IM
521{
522 int cpu;
523
05fa785c 524 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 525
5ed0cec0 526 if (test_tsk_need_resched(p))
c24d20db
IM
527 return;
528
5ed0cec0 529 set_tsk_need_resched(p);
c24d20db
IM
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539}
540
029632fb 541void resched_cpu(int cpu)
c24d20db
IM
542{
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
05fa785c 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
547 return;
548 resched_task(cpu_curr(cpu));
05fa785c 549 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 550}
06d8308c
TG
551
552#ifdef CONFIG_NO_HZ
83cd4fe2
VP
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
057f3fad 567 rcu_read_lock();
83cd4fe2 568 for_each_domain(cpu, sd) {
057f3fad
PZ
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
83cd4fe2 575 }
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
45bf76df 606
45bf76df 607 /*
06d8308c
TG
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
45bf76df 611 */
5ed0cec0 612 set_tsk_need_resched(rq->idle);
45bf76df 613
06d8308c
TG
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
45bf76df
IM
618}
619
ca38062e 620static inline bool got_nohz_idle_kick(void)
45bf76df 621{
1c792db7
SS
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
624}
625
ca38062e 626#else /* CONFIG_NO_HZ */
45bf76df 627
ca38062e 628static inline bool got_nohz_idle_kick(void)
2069dd75 629{
ca38062e 630 return false;
2069dd75
PZ
631}
632
6d6bc0ad 633#endif /* CONFIG_NO_HZ */
d842de87 634
029632fb 635void sched_avg_update(struct rq *rq)
18d95a28 636{
e9e9250b
PZ
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
18d95a28
PZ
649}
650
6d6bc0ad 651#else /* !CONFIG_SMP */
029632fb 652void resched_task(struct task_struct *p)
18d95a28 653{
05fa785c 654 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 655 set_tsk_need_resched(p);
18d95a28 656}
6d6bc0ad 657#endif /* CONFIG_SMP */
18d95a28 658
a790de99
PT
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 661/*
8277434e
PT
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 666 */
029632fb 667int walk_tg_tree_from(struct task_group *from,
8277434e 668 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
669{
670 struct task_group *parent, *child;
eb755805 671 int ret;
c09595f6 672
8277434e
PT
673 parent = from;
674
c09595f6 675down:
eb755805
PZ
676 ret = (*down)(parent, data);
677 if (ret)
8277434e 678 goto out;
c09595f6
PZ
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683up:
684 continue;
685 }
eb755805 686 ret = (*up)(parent, data);
8277434e
PT
687 if (ret || parent == from)
688 goto out;
c09595f6
PZ
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
8277434e 694out:
eb755805 695 return ret;
c09595f6
PZ
696}
697
029632fb 698int tg_nop(struct task_group *tg, void *data)
eb755805 699{
e2b245f8 700 return 0;
eb755805 701}
18d95a28
PZ
702#endif
703
45bf76df
IM
704static void set_load_weight(struct task_struct *p)
705{
f05998d4
NR
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
dd41f596
IM
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
c8b28116 713 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 714 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
715 return;
716 }
71f8bd46 717
c8b28116 718 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 719 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
720}
721
371fd7e7 722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 723{
a64692a3 724 update_rq_clock(rq);
dd41f596 725 sched_info_queued(p);
371fd7e7 726 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
727}
728
371fd7e7 729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 730{
a64692a3 731 update_rq_clock(rq);
46ac22ba 732 sched_info_dequeued(p);
371fd7e7 733 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
734}
735
029632fb 736void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
737{
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
371fd7e7 741 enqueue_task(rq, p, flags);
1e3c88bd
PZ
742}
743
029632fb 744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
745{
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
371fd7e7 749 dequeue_task(rq, p, flags);
1e3c88bd
PZ
750}
751
fe44d621 752static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 753{
095c0aa8
GC
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
095c0aa8
GC
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 786 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802#endif
803
fe44d621
PZ
804 rq->clock_task += delta;
805
095c0aa8
GC
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809#endif
aa483808
VP
810}
811
34f971f6
PZ
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840}
841
14531189 842/*
dd41f596 843 * __normal_prio - return the priority that is based on the static prio
14531189 844 */
14531189
IM
845static inline int __normal_prio(struct task_struct *p)
846{
dd41f596 847 return p->static_prio;
14531189
IM
848}
849
b29739f9
IM
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
36c8b586 857static inline int normal_prio(struct task_struct *p)
b29739f9
IM
858{
859 int prio;
860
e05606d3 861 if (task_has_rt_policy(p))
b29739f9
IM
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
36c8b586 875static int effective_prio(struct task_struct *p)
b29739f9
IM
876{
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886}
887
1da177e4
LT
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
36c8b586 892inline int task_curr(const struct task_struct *p)
1da177e4
LT
893{
894 return cpu_curr(task_cpu(p)) == p;
895}
896
cb469845
SR
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
da7a735e 899 int oldprio)
cb469845
SR
900{
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
da7a735e
PZ
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
907}
908
029632fb 909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
910{
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
fd2f4419 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
931 rq->skip_clock_update = 1;
932}
933
582b336e
MT
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
1da177e4 941#ifdef CONFIG_SMP
dd41f596 942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 943{
e2912009
PZ
944#ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
077614ee
PZ
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
951
952#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 958 * see task_group().
6c6c54e1
PZ
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
0122ec5b
PZ
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965#endif
e2912009
PZ
966#endif
967
de1d7286 968 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 969
0c69774e 970 if (task_cpu(p) != new_cpu) {
582b336e
MT
971 struct task_migration_notifier tmn;
972
0a74bef8
PT
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 975 p->se.nr_migrations++;
a8b0ca17 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 983 }
dd41f596
IM
984
985 __set_task_cpu(p, new_cpu);
c65cc870
IM
986}
987
969c7921 988struct migration_arg {
36c8b586 989 struct task_struct *task;
1da177e4 990 int dest_cpu;
70b97a7f 991};
1da177e4 992
969c7921
TH
993static int migration_cpu_stop(void *data);
994
1da177e4
LT
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
85ba2d86
RM
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1da177e4
LT
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
85ba2d86 1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1012{
1013 unsigned long flags;
dd41f596 1014 int running, on_rq;
85ba2d86 1015 unsigned long ncsw;
70b97a7f 1016 struct rq *rq;
1da177e4 1017
3a5c359a
AK
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
fa490cfd 1026
3a5c359a
AK
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
85ba2d86
RM
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
3a5c359a 1041 cpu_relax();
85ba2d86 1042 }
fa490cfd 1043
3a5c359a
AK
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
27a9da65 1050 trace_sched_wait_task(p);
3a5c359a 1051 running = task_running(rq, p);
fd2f4419 1052 on_rq = p->on_rq;
85ba2d86 1053 ncsw = 0;
f31e11d8 1054 if (!match_state || p->state == match_state)
93dcf55f 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1056 task_rq_unlock(rq, p, &flags);
fa490cfd 1057
85ba2d86
RM
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
3a5c359a
AK
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
fa490cfd 1074
3a5c359a
AK
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
80dd99b3 1080 * So if it was still runnable (but just not actively
3a5c359a
AK
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
8eb90c30
TG
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1089 continue;
1090 }
fa490cfd 1091
3a5c359a
AK
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
85ba2d86
RM
1099
1100 return ncsw;
1da177e4
LT
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
25985edc 1110 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
36c8b586 1116void kick_process(struct task_struct *p)
1da177e4
LT
1117{
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125}
b43e3521 1126EXPORT_SYMBOL_GPL(kick_process);
476d139c 1127#endif /* CONFIG_SMP */
1da177e4 1128
970b13ba 1129#ifdef CONFIG_SMP
30da688e 1130/*
013fdb80 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1132 */
5da9a0fb
PZ
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
aa00d89c
TC
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1137 enum { cpuset, possible, fail } state = cpuset;
1138 int dest_cpu;
5da9a0fb 1139
aa00d89c
TC
1140 /*
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1144 */
1145 if (nid != -1) {
1146 nodemask = cpumask_of_node(nid);
1147
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1151 continue;
1152 if (!cpu_active(dest_cpu))
1153 continue;
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 return dest_cpu;
1156 }
2baab4e9 1157 }
5da9a0fb 1158
2baab4e9
PZ
1159 for (;;) {
1160 /* Any allowed, online CPU? */
e3831edd 1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1162 if (!cpu_online(dest_cpu))
1163 continue;
1164 if (!cpu_active(dest_cpu))
1165 continue;
1166 goto out;
1167 }
5da9a0fb 1168
2baab4e9
PZ
1169 switch (state) {
1170 case cpuset:
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1173 state = possible;
1174 break;
1175
1176 case possible:
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1178 state = fail;
1179 break;
1180
1181 case fail:
1182 BUG();
1183 break;
1184 }
1185 }
1186
1187out:
1188 if (state != cpuset) {
1189 /*
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1192 * leave kernel.
1193 */
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1197 }
5da9a0fb
PZ
1198 }
1199
1200 return dest_cpu;
1201}
1202
e2912009 1203/*
013fdb80 1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1205 */
970b13ba 1206static inline
7608dec2 1207int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1208{
7608dec2 1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1210
1211 /*
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 * cpu.
1215 *
1216 * Since this is common to all placement strategies, this lives here.
1217 *
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1220 */
fa17b507 1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1222 !cpu_online(cpu)))
5da9a0fb 1223 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1224
1225 return cpu;
970b13ba 1226}
09a40af5
MG
1227
1228static void update_avg(u64 *avg, u64 sample)
1229{
1230 s64 diff = sample - *avg;
1231 *avg += diff >> 3;
1232}
970b13ba
PZ
1233#endif
1234
d7c01d27 1235static void
b84cb5df 1236ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1237{
d7c01d27 1238#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1239 struct rq *rq = this_rq();
1240
d7c01d27
PZ
1241#ifdef CONFIG_SMP
1242 int this_cpu = smp_processor_id();
1243
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 } else {
1248 struct sched_domain *sd;
1249
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1251 rcu_read_lock();
d7c01d27
PZ
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1255 break;
1256 }
1257 }
057f3fad 1258 rcu_read_unlock();
d7c01d27 1259 }
f339b9dc
PZ
1260
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
d7c01d27
PZ
1264#endif /* CONFIG_SMP */
1265
1266 schedstat_inc(rq, ttwu_count);
9ed3811a 1267 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1268
1269 if (wake_flags & WF_SYNC)
9ed3811a 1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1271
d7c01d27
PZ
1272#endif /* CONFIG_SCHEDSTATS */
1273}
1274
1275static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276{
9ed3811a 1277 activate_task(rq, p, en_flags);
fd2f4419 1278 p->on_rq = 1;
c2f7115e
PZ
1279
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1283}
1284
23f41eeb
PZ
1285/*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
89363381 1288static void
23f41eeb 1289ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1290{
9ed3811a 1291 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1292 trace_sched_wakeup(p, true);
9ed3811a
TH
1293
1294 p->state = TASK_RUNNING;
1295#ifdef CONFIG_SMP
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1298
e69c6341 1299 if (rq->idle_stamp) {
9ed3811a
TH
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1302
1303 if (delta > max)
1304 rq->avg_idle = max;
1305 else
1306 update_avg(&rq->avg_idle, delta);
1307 rq->idle_stamp = 0;
1308 }
1309#endif
1310}
1311
c05fbafb
PZ
1312static void
1313ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314{
1315#ifdef CONFIG_SMP
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1318#endif
1319
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1322}
1323
1324/*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330static int ttwu_remote(struct task_struct *p, int wake_flags)
1331{
1332 struct rq *rq;
1333 int ret = 0;
1334
1335 rq = __task_rq_lock(p);
1336 if (p->on_rq) {
1337 ttwu_do_wakeup(rq, p, wake_flags);
1338 ret = 1;
1339 }
1340 __task_rq_unlock(rq);
1341
1342 return ret;
1343}
1344
317f3941 1345#ifdef CONFIG_SMP
fa14ff4a 1346static void sched_ttwu_pending(void)
317f3941
PZ
1347{
1348 struct rq *rq = this_rq();
fa14ff4a
PZ
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
317f3941
PZ
1351
1352 raw_spin_lock(&rq->lock);
1353
fa14ff4a
PZ
1354 while (llist) {
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
317f3941
PZ
1357 ttwu_do_activate(rq, p, 0);
1358 }
1359
1360 raw_spin_unlock(&rq->lock);
1361}
1362
1363void scheduler_ipi(void)
1364{
ca38062e 1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1366 return;
1367
1368 /*
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1372 * we do call them.
1373 *
1374 * Some archs already do call them, luckily irq_enter/exit nest
1375 * properly.
1376 *
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1380 */
1381 irq_enter();
fa14ff4a 1382 sched_ttwu_pending();
ca38062e
SS
1383
1384 /*
1385 * Check if someone kicked us for doing the nohz idle load balance.
1386 */
6eb57e0d
SS
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
ca38062e 1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1390 }
c5d753a5 1391 irq_exit();
317f3941
PZ
1392}
1393
1394static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395{
fa14ff4a 1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1397 smp_send_reschedule(cpu);
1398}
d6aa8f85 1399
39be3501 1400bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1401{
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403}
d6aa8f85 1404#endif /* CONFIG_SMP */
317f3941 1405
c05fbafb
PZ
1406static void ttwu_queue(struct task_struct *p, int cpu)
1407{
1408 struct rq *rq = cpu_rq(cpu);
1409
17d9f311 1410#if defined(CONFIG_SMP)
39be3501 1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1413 ttwu_queue_remote(p, cpu);
1414 return;
1415 }
1416#endif
1417
c05fbafb
PZ
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1421}
1422
1423/**
1da177e4 1424 * try_to_wake_up - wake up a thread
9ed3811a 1425 * @p: the thread to be awakened
1da177e4 1426 * @state: the mask of task states that can be woken
9ed3811a 1427 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
9ed3811a
TH
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1da177e4 1437 */
e4a52bcb
PZ
1438static int
1439try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1440{
1da177e4 1441 unsigned long flags;
c05fbafb 1442 int cpu, success = 0;
2398f2c6 1443
04e2f174 1444 smp_wmb();
013fdb80 1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1446 if (!(p->state & state))
1da177e4
LT
1447 goto out;
1448
c05fbafb 1449 success = 1; /* we're going to change ->state */
1da177e4 1450 cpu = task_cpu(p);
1da177e4 1451
c05fbafb
PZ
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1453 goto stat;
1da177e4 1454
1da177e4 1455#ifdef CONFIG_SMP
e9c84311 1456 /*
c05fbafb
PZ
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
e9c84311 1459 */
f3e94786 1460 while (p->on_cpu)
e4a52bcb 1461 cpu_relax();
0970d299 1462 /*
e4a52bcb 1463 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1464 */
e4a52bcb 1465 smp_rmb();
1da177e4 1466
a8e4f2ea 1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1468 p->state = TASK_WAKING;
e7693a36 1469
e4a52bcb 1470 if (p->sched_class->task_waking)
74f8e4b2 1471 p->sched_class->task_waking(p);
efbbd05a 1472
7608dec2 1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
e4a52bcb 1476 set_task_cpu(p, cpu);
f339b9dc 1477 }
1da177e4 1478#endif /* CONFIG_SMP */
1da177e4 1479
c05fbafb
PZ
1480 ttwu_queue(p, cpu);
1481stat:
b84cb5df 1482 ttwu_stat(p, cpu, wake_flags);
1da177e4 1483out:
013fdb80 1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1485
1486 return success;
1487}
1488
21aa9af0
TH
1489/**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
2acca55e 1493 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1495 * the current task.
21aa9af0
TH
1496 */
1497static void try_to_wake_up_local(struct task_struct *p)
1498{
1499 struct rq *rq = task_rq(p);
21aa9af0
TH
1500
1501 BUG_ON(rq != this_rq());
1502 BUG_ON(p == current);
1503 lockdep_assert_held(&rq->lock);
1504
2acca55e
PZ
1505 if (!raw_spin_trylock(&p->pi_lock)) {
1506 raw_spin_unlock(&rq->lock);
1507 raw_spin_lock(&p->pi_lock);
1508 raw_spin_lock(&rq->lock);
1509 }
1510
21aa9af0 1511 if (!(p->state & TASK_NORMAL))
2acca55e 1512 goto out;
21aa9af0 1513
fd2f4419 1514 if (!p->on_rq)
d7c01d27
PZ
1515 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1516
23f41eeb 1517 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1518 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1519out:
1520 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1521}
1522
50fa610a
DH
1523/**
1524 * wake_up_process - Wake up a specific process
1525 * @p: The process to be woken up.
1526 *
1527 * Attempt to wake up the nominated process and move it to the set of runnable
1528 * processes. Returns 1 if the process was woken up, 0 if it was already
1529 * running.
1530 *
1531 * It may be assumed that this function implies a write memory barrier before
1532 * changing the task state if and only if any tasks are woken up.
1533 */
7ad5b3a5 1534int wake_up_process(struct task_struct *p)
1da177e4 1535{
9067ac85
ON
1536 WARN_ON(task_is_stopped_or_traced(p));
1537 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1538}
1da177e4
LT
1539EXPORT_SYMBOL(wake_up_process);
1540
7ad5b3a5 1541int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1542{
1543 return try_to_wake_up(p, state, 0);
1544}
1545
1da177e4
LT
1546/*
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
dd41f596
IM
1549 *
1550 * __sched_fork() is basic setup used by init_idle() too:
1551 */
1552static void __sched_fork(struct task_struct *p)
1553{
fd2f4419
PZ
1554 p->on_rq = 0;
1555
1556 p->se.on_rq = 0;
dd41f596
IM
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
f6cf891c 1559 p->se.prev_sum_exec_runtime = 0;
6c594c21 1560 p->se.nr_migrations = 0;
da7a735e 1561 p->se.vruntime = 0;
fd2f4419 1562 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1563
f4e26b12
PT
1564/*
1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566 * removed when useful for applications beyond shares distribution (e.g.
1567 * load-balance).
1568 */
1569#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1570 p->se.avg.runnable_avg_period = 0;
1571 p->se.avg.runnable_avg_sum = 0;
1572#endif
6cfb0d5d 1573#ifdef CONFIG_SCHEDSTATS
41acab88 1574 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1575#endif
476d139c 1576
fa717060 1577 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1578
e107be36
AK
1579#ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1581#endif
cbee9f88
PZ
1582
1583#ifdef CONFIG_NUMA_BALANCING
1584 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585 p->mm->numa_next_scan = jiffies;
b8593bfd 1586 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1587 p->mm->numa_scan_seq = 0;
1588 }
1589
1590 p->node_stamp = 0ULL;
1591 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1593 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1594 p->numa_work.next = &p->numa_work;
1595#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1596}
1597
1a687c2e 1598#ifdef CONFIG_NUMA_BALANCING
3105b86a 1599#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1600void set_numabalancing_state(bool enabled)
1601{
1602 if (enabled)
1603 sched_feat_set("NUMA");
1604 else
1605 sched_feat_set("NO_NUMA");
1606}
3105b86a
MG
1607#else
1608__read_mostly bool numabalancing_enabled;
1609
1610void set_numabalancing_state(bool enabled)
1611{
1612 numabalancing_enabled = enabled;
dd41f596 1613}
3105b86a 1614#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1615#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1616
1617/*
1618 * fork()/clone()-time setup:
1619 */
3e51e3ed 1620void sched_fork(struct task_struct *p)
dd41f596 1621{
0122ec5b 1622 unsigned long flags;
dd41f596
IM
1623 int cpu = get_cpu();
1624
1625 __sched_fork(p);
06b83b5f 1626 /*
0017d735 1627 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1628 * nobody will actually run it, and a signal or other external
1629 * event cannot wake it up and insert it on the runqueue either.
1630 */
0017d735 1631 p->state = TASK_RUNNING;
dd41f596 1632
c350a04e
MG
1633 /*
1634 * Make sure we do not leak PI boosting priority to the child.
1635 */
1636 p->prio = current->normal_prio;
1637
b9dc29e7
MG
1638 /*
1639 * Revert to default priority/policy on fork if requested.
1640 */
1641 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1642 if (task_has_rt_policy(p)) {
b9dc29e7 1643 p->policy = SCHED_NORMAL;
6c697bdf 1644 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1645 p->rt_priority = 0;
1646 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1647 p->static_prio = NICE_TO_PRIO(0);
1648
1649 p->prio = p->normal_prio = __normal_prio(p);
1650 set_load_weight(p);
6c697bdf 1651
b9dc29e7
MG
1652 /*
1653 * We don't need the reset flag anymore after the fork. It has
1654 * fulfilled its duty:
1655 */
1656 p->sched_reset_on_fork = 0;
1657 }
ca94c442 1658
2ddbf952
HS
1659 if (!rt_prio(p->prio))
1660 p->sched_class = &fair_sched_class;
b29739f9 1661
cd29fe6f
PZ
1662 if (p->sched_class->task_fork)
1663 p->sched_class->task_fork(p);
1664
86951599
PZ
1665 /*
1666 * The child is not yet in the pid-hash so no cgroup attach races,
1667 * and the cgroup is pinned to this child due to cgroup_fork()
1668 * is ran before sched_fork().
1669 *
1670 * Silence PROVE_RCU.
1671 */
0122ec5b 1672 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1673 set_task_cpu(p, cpu);
0122ec5b 1674 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1675
52f17b6c 1676#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1677 if (likely(sched_info_on()))
52f17b6c 1678 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1679#endif
3ca7a440
PZ
1680#if defined(CONFIG_SMP)
1681 p->on_cpu = 0;
4866cde0 1682#endif
bdd4e85d 1683#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1684 /* Want to start with kernel preemption disabled. */
a1261f54 1685 task_thread_info(p)->preempt_count = 1;
1da177e4 1686#endif
806c09a7 1687#ifdef CONFIG_SMP
917b627d 1688 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1689#endif
917b627d 1690
476d139c 1691 put_cpu();
1da177e4
LT
1692}
1693
1694/*
1695 * wake_up_new_task - wake up a newly created task for the first time.
1696 *
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1700 */
3e51e3ed 1701void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1702{
1703 unsigned long flags;
dd41f596 1704 struct rq *rq;
fabf318e 1705
ab2515c4 1706 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1707#ifdef CONFIG_SMP
1708 /*
1709 * Fork balancing, do it here and not earlier because:
1710 * - cpus_allowed can change in the fork path
1711 * - any previously selected cpu might disappear through hotplug
fabf318e 1712 */
ab2515c4 1713 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1714#endif
1715
ab2515c4 1716 rq = __task_rq_lock(p);
cd29fe6f 1717 activate_task(rq, p, 0);
fd2f4419 1718 p->on_rq = 1;
89363381 1719 trace_sched_wakeup_new(p, true);
a7558e01 1720 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1721#ifdef CONFIG_SMP
efbbd05a
PZ
1722 if (p->sched_class->task_woken)
1723 p->sched_class->task_woken(rq, p);
9a897c5a 1724#endif
0122ec5b 1725 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1726}
1727
e107be36
AK
1728#ifdef CONFIG_PREEMPT_NOTIFIERS
1729
1730/**
80dd99b3 1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1732 * @notifier: notifier struct to register
e107be36
AK
1733 */
1734void preempt_notifier_register(struct preempt_notifier *notifier)
1735{
1736 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737}
1738EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739
1740/**
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1742 * @notifier: notifier struct to unregister
e107be36
AK
1743 *
1744 * This is safe to call from within a preemption notifier.
1745 */
1746void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747{
1748 hlist_del(&notifier->link);
1749}
1750EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751
1752static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753{
1754 struct preempt_notifier *notifier;
e107be36 1755
b67bfe0d 1756 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1757 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1758}
1759
1760static void
1761fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 struct task_struct *next)
1763{
1764 struct preempt_notifier *notifier;
e107be36 1765
b67bfe0d 1766 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1767 notifier->ops->sched_out(notifier, next);
1768}
1769
6d6bc0ad 1770#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1771
1772static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1773{
1774}
1775
1776static void
1777fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778 struct task_struct *next)
1779{
1780}
1781
6d6bc0ad 1782#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1783
4866cde0
NP
1784/**
1785 * prepare_task_switch - prepare to switch tasks
1786 * @rq: the runqueue preparing to switch
421cee29 1787 * @prev: the current task that is being switched out
4866cde0
NP
1788 * @next: the task we are going to switch to.
1789 *
1790 * This is called with the rq lock held and interrupts off. It must
1791 * be paired with a subsequent finish_task_switch after the context
1792 * switch.
1793 *
1794 * prepare_task_switch sets up locking and calls architecture specific
1795 * hooks.
1796 */
e107be36
AK
1797static inline void
1798prepare_task_switch(struct rq *rq, struct task_struct *prev,
1799 struct task_struct *next)
4866cde0 1800{
895dd92c 1801 trace_sched_switch(prev, next);
fe4b04fa
PZ
1802 sched_info_switch(prev, next);
1803 perf_event_task_sched_out(prev, next);
e107be36 1804 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1805 prepare_lock_switch(rq, next);
1806 prepare_arch_switch(next);
1807}
1808
1da177e4
LT
1809/**
1810 * finish_task_switch - clean up after a task-switch
344babaa 1811 * @rq: runqueue associated with task-switch
1da177e4
LT
1812 * @prev: the thread we just switched away from.
1813 *
4866cde0
NP
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1818 *
1819 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1820 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1821 * with the lock held can cause deadlocks; see schedule() for
1822 * details.)
1823 */
a9957449 1824static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1825 __releases(rq->lock)
1826{
1da177e4 1827 struct mm_struct *mm = rq->prev_mm;
55a101f8 1828 long prev_state;
1da177e4
LT
1829
1830 rq->prev_mm = NULL;
1831
1832 /*
1833 * A task struct has one reference for the use as "current".
c394cc9f 1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
c394cc9f 1837 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1840 * be dropped twice.
1841 * Manfred Spraul <manfred@colorfullife.com>
1842 */
55a101f8 1843 prev_state = prev->state;
bf9fae9f 1844 vtime_task_switch(prev);
4866cde0 1845 finish_arch_switch(prev);
a8d757ef 1846 perf_event_task_sched_in(prev, current);
4866cde0 1847 finish_lock_switch(rq, prev);
01f23e16 1848 finish_arch_post_lock_switch();
e8fa1362 1849
e107be36 1850 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1851 if (mm)
1852 mmdrop(mm);
c394cc9f 1853 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1854 /*
1855 * Remove function-return probe instances associated with this
1856 * task and put them back on the free list.
9761eea8 1857 */
c6fd91f0 1858 kprobe_flush_task(prev);
1da177e4 1859 put_task_struct(prev);
c6fd91f0 1860 }
1da177e4
LT
1861}
1862
3f029d3c
GH
1863#ifdef CONFIG_SMP
1864
1865/* assumes rq->lock is held */
1866static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1867{
1868 if (prev->sched_class->pre_schedule)
1869 prev->sched_class->pre_schedule(rq, prev);
1870}
1871
1872/* rq->lock is NOT held, but preemption is disabled */
1873static inline void post_schedule(struct rq *rq)
1874{
1875 if (rq->post_schedule) {
1876 unsigned long flags;
1877
05fa785c 1878 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1879 if (rq->curr->sched_class->post_schedule)
1880 rq->curr->sched_class->post_schedule(rq);
05fa785c 1881 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1882
1883 rq->post_schedule = 0;
1884 }
1885}
1886
1887#else
da19ab51 1888
3f029d3c
GH
1889static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1890{
1891}
1892
1893static inline void post_schedule(struct rq *rq)
1894{
1da177e4
LT
1895}
1896
3f029d3c
GH
1897#endif
1898
1da177e4
LT
1899/**
1900 * schedule_tail - first thing a freshly forked thread must call.
1901 * @prev: the thread we just switched away from.
1902 */
36c8b586 1903asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1904 __releases(rq->lock)
1905{
70b97a7f
IM
1906 struct rq *rq = this_rq();
1907
4866cde0 1908 finish_task_switch(rq, prev);
da19ab51 1909
3f029d3c
GH
1910 /*
1911 * FIXME: do we need to worry about rq being invalidated by the
1912 * task_switch?
1913 */
1914 post_schedule(rq);
70b97a7f 1915
4866cde0
NP
1916#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1917 /* In this case, finish_task_switch does not reenable preemption */
1918 preempt_enable();
1919#endif
1da177e4 1920 if (current->set_child_tid)
b488893a 1921 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1922}
1923
1924/*
1925 * context_switch - switch to the new MM and the new
1926 * thread's register state.
1927 */
dd41f596 1928static inline void
70b97a7f 1929context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1930 struct task_struct *next)
1da177e4 1931{
dd41f596 1932 struct mm_struct *mm, *oldmm;
1da177e4 1933
e107be36 1934 prepare_task_switch(rq, prev, next);
fe4b04fa 1935
dd41f596
IM
1936 mm = next->mm;
1937 oldmm = prev->active_mm;
9226d125
ZA
1938 /*
1939 * For paravirt, this is coupled with an exit in switch_to to
1940 * combine the page table reload and the switch backend into
1941 * one hypercall.
1942 */
224101ed 1943 arch_start_context_switch(prev);
9226d125 1944
31915ab4 1945 if (!mm) {
1da177e4
LT
1946 next->active_mm = oldmm;
1947 atomic_inc(&oldmm->mm_count);
1948 enter_lazy_tlb(oldmm, next);
1949 } else
1950 switch_mm(oldmm, mm, next);
1951
31915ab4 1952 if (!prev->mm) {
1da177e4 1953 prev->active_mm = NULL;
1da177e4
LT
1954 rq->prev_mm = oldmm;
1955 }
3a5f5e48
IM
1956 /*
1957 * Since the runqueue lock will be released by the next
1958 * task (which is an invalid locking op but in the case
1959 * of the scheduler it's an obvious special-case), so we
1960 * do an early lockdep release here:
1961 */
1962#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1963 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1964#endif
1da177e4 1965
91d1aa43 1966 context_tracking_task_switch(prev, next);
1da177e4
LT
1967 /* Here we just switch the register state and the stack. */
1968 switch_to(prev, next, prev);
1969
dd41f596
IM
1970 barrier();
1971 /*
1972 * this_rq must be evaluated again because prev may have moved
1973 * CPUs since it called schedule(), thus the 'rq' on its stack
1974 * frame will be invalid.
1975 */
1976 finish_task_switch(this_rq(), prev);
1da177e4
LT
1977}
1978
1979/*
1c3e8264 1980 * nr_running and nr_context_switches:
1da177e4
LT
1981 *
1982 * externally visible scheduler statistics: current number of runnable
1c3e8264 1983 * threads, total number of context switches performed since bootup.
1da177e4
LT
1984 */
1985unsigned long nr_running(void)
1986{
1987 unsigned long i, sum = 0;
1988
1989 for_each_online_cpu(i)
1990 sum += cpu_rq(i)->nr_running;
1991
1992 return sum;
f711f609 1993}
1da177e4 1994
1da177e4 1995unsigned long long nr_context_switches(void)
46cb4b7c 1996{
cc94abfc
SR
1997 int i;
1998 unsigned long long sum = 0;
46cb4b7c 1999
0a945022 2000 for_each_possible_cpu(i)
1da177e4 2001 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2002
1da177e4
LT
2003 return sum;
2004}
483b4ee6 2005
1da177e4
LT
2006unsigned long nr_iowait(void)
2007{
2008 unsigned long i, sum = 0;
483b4ee6 2009
0a945022 2010 for_each_possible_cpu(i)
1da177e4 2011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2012
1da177e4
LT
2013 return sum;
2014}
483b4ee6 2015
8c215bd3 2016unsigned long nr_iowait_cpu(int cpu)
69d25870 2017{
8c215bd3 2018 struct rq *this = cpu_rq(cpu);
69d25870
AV
2019 return atomic_read(&this->nr_iowait);
2020}
46cb4b7c 2021
69d25870
AV
2022unsigned long this_cpu_load(void)
2023{
2024 struct rq *this = this_rq();
2025 return this->cpu_load[0];
2026}
e790fb0b 2027
46cb4b7c 2028
5167e8d5
PZ
2029/*
2030 * Global load-average calculations
2031 *
2032 * We take a distributed and async approach to calculating the global load-avg
2033 * in order to minimize overhead.
2034 *
2035 * The global load average is an exponentially decaying average of nr_running +
2036 * nr_uninterruptible.
2037 *
2038 * Once every LOAD_FREQ:
2039 *
2040 * nr_active = 0;
2041 * for_each_possible_cpu(cpu)
2042 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2043 *
2044 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2045 *
2046 * Due to a number of reasons the above turns in the mess below:
2047 *
2048 * - for_each_possible_cpu() is prohibitively expensive on machines with
2049 * serious number of cpus, therefore we need to take a distributed approach
2050 * to calculating nr_active.
2051 *
2052 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2053 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2054 *
2055 * So assuming nr_active := 0 when we start out -- true per definition, we
2056 * can simply take per-cpu deltas and fold those into a global accumulate
2057 * to obtain the same result. See calc_load_fold_active().
2058 *
2059 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2060 * across the machine, we assume 10 ticks is sufficient time for every
2061 * cpu to have completed this task.
2062 *
2063 * This places an upper-bound on the IRQ-off latency of the machine. Then
2064 * again, being late doesn't loose the delta, just wrecks the sample.
2065 *
2066 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2067 * this would add another cross-cpu cacheline miss and atomic operation
2068 * to the wakeup path. Instead we increment on whatever cpu the task ran
2069 * when it went into uninterruptible state and decrement on whatever cpu
2070 * did the wakeup. This means that only the sum of nr_uninterruptible over
2071 * all cpus yields the correct result.
2072 *
2073 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2074 */
2075
dce48a84
TG
2076/* Variables and functions for calc_load */
2077static atomic_long_t calc_load_tasks;
2078static unsigned long calc_load_update;
2079unsigned long avenrun[3];
5167e8d5
PZ
2080EXPORT_SYMBOL(avenrun); /* should be removed */
2081
2082/**
2083 * get_avenrun - get the load average array
2084 * @loads: pointer to dest load array
2085 * @offset: offset to add
2086 * @shift: shift count to shift the result left
2087 *
2088 * These values are estimates at best, so no need for locking.
2089 */
2090void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2091{
2092 loads[0] = (avenrun[0] + offset) << shift;
2093 loads[1] = (avenrun[1] + offset) << shift;
2094 loads[2] = (avenrun[2] + offset) << shift;
2095}
46cb4b7c 2096
74f5187a
PZ
2097static long calc_load_fold_active(struct rq *this_rq)
2098{
2099 long nr_active, delta = 0;
2100
2101 nr_active = this_rq->nr_running;
2102 nr_active += (long) this_rq->nr_uninterruptible;
2103
2104 if (nr_active != this_rq->calc_load_active) {
2105 delta = nr_active - this_rq->calc_load_active;
2106 this_rq->calc_load_active = nr_active;
2107 }
2108
2109 return delta;
2110}
2111
5167e8d5
PZ
2112/*
2113 * a1 = a0 * e + a * (1 - e)
2114 */
0f004f5a
PZ
2115static unsigned long
2116calc_load(unsigned long load, unsigned long exp, unsigned long active)
2117{
2118 load *= exp;
2119 load += active * (FIXED_1 - exp);
2120 load += 1UL << (FSHIFT - 1);
2121 return load >> FSHIFT;
2122}
2123
74f5187a
PZ
2124#ifdef CONFIG_NO_HZ
2125/*
5167e8d5
PZ
2126 * Handle NO_HZ for the global load-average.
2127 *
2128 * Since the above described distributed algorithm to compute the global
2129 * load-average relies on per-cpu sampling from the tick, it is affected by
2130 * NO_HZ.
2131 *
2132 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2133 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2134 * when we read the global state.
2135 *
2136 * Obviously reality has to ruin such a delightfully simple scheme:
2137 *
2138 * - When we go NO_HZ idle during the window, we can negate our sample
2139 * contribution, causing under-accounting.
2140 *
2141 * We avoid this by keeping two idle-delta counters and flipping them
2142 * when the window starts, thus separating old and new NO_HZ load.
2143 *
2144 * The only trick is the slight shift in index flip for read vs write.
2145 *
2146 * 0s 5s 10s 15s
2147 * +10 +10 +10 +10
2148 * |-|-----------|-|-----------|-|-----------|-|
2149 * r:0 0 1 1 0 0 1 1 0
2150 * w:0 1 1 0 0 1 1 0 0
2151 *
2152 * This ensures we'll fold the old idle contribution in this window while
2153 * accumlating the new one.
2154 *
2155 * - When we wake up from NO_HZ idle during the window, we push up our
2156 * contribution, since we effectively move our sample point to a known
2157 * busy state.
2158 *
2159 * This is solved by pushing the window forward, and thus skipping the
2160 * sample, for this cpu (effectively using the idle-delta for this cpu which
2161 * was in effect at the time the window opened). This also solves the issue
2162 * of having to deal with a cpu having been in NOHZ idle for multiple
2163 * LOAD_FREQ intervals.
74f5187a
PZ
2164 *
2165 * When making the ILB scale, we should try to pull this in as well.
2166 */
5167e8d5
PZ
2167static atomic_long_t calc_load_idle[2];
2168static int calc_load_idx;
74f5187a 2169
5167e8d5 2170static inline int calc_load_write_idx(void)
74f5187a 2171{
5167e8d5
PZ
2172 int idx = calc_load_idx;
2173
2174 /*
2175 * See calc_global_nohz(), if we observe the new index, we also
2176 * need to observe the new update time.
2177 */
2178 smp_rmb();
2179
2180 /*
2181 * If the folding window started, make sure we start writing in the
2182 * next idle-delta.
2183 */
2184 if (!time_before(jiffies, calc_load_update))
2185 idx++;
2186
2187 return idx & 1;
2188}
2189
2190static inline int calc_load_read_idx(void)
2191{
2192 return calc_load_idx & 1;
2193}
2194
2195void calc_load_enter_idle(void)
2196{
2197 struct rq *this_rq = this_rq();
74f5187a
PZ
2198 long delta;
2199
5167e8d5
PZ
2200 /*
2201 * We're going into NOHZ mode, if there's any pending delta, fold it
2202 * into the pending idle delta.
2203 */
74f5187a 2204 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2205 if (delta) {
2206 int idx = calc_load_write_idx();
2207 atomic_long_add(delta, &calc_load_idle[idx]);
2208 }
74f5187a
PZ
2209}
2210
5167e8d5 2211void calc_load_exit_idle(void)
74f5187a 2212{
5167e8d5
PZ
2213 struct rq *this_rq = this_rq();
2214
2215 /*
2216 * If we're still before the sample window, we're done.
2217 */
2218 if (time_before(jiffies, this_rq->calc_load_update))
2219 return;
74f5187a
PZ
2220
2221 /*
5167e8d5
PZ
2222 * We woke inside or after the sample window, this means we're already
2223 * accounted through the nohz accounting, so skip the entire deal and
2224 * sync up for the next window.
74f5187a 2225 */
5167e8d5
PZ
2226 this_rq->calc_load_update = calc_load_update;
2227 if (time_before(jiffies, this_rq->calc_load_update + 10))
2228 this_rq->calc_load_update += LOAD_FREQ;
2229}
2230
2231static long calc_load_fold_idle(void)
2232{
2233 int idx = calc_load_read_idx();
2234 long delta = 0;
2235
2236 if (atomic_long_read(&calc_load_idle[idx]))
2237 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2238
2239 return delta;
2240}
0f004f5a
PZ
2241
2242/**
2243 * fixed_power_int - compute: x^n, in O(log n) time
2244 *
2245 * @x: base of the power
2246 * @frac_bits: fractional bits of @x
2247 * @n: power to raise @x to.
2248 *
2249 * By exploiting the relation between the definition of the natural power
2250 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2251 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2252 * (where: n_i \elem {0, 1}, the binary vector representing n),
2253 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2254 * of course trivially computable in O(log_2 n), the length of our binary
2255 * vector.
2256 */
2257static unsigned long
2258fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2259{
2260 unsigned long result = 1UL << frac_bits;
2261
2262 if (n) for (;;) {
2263 if (n & 1) {
2264 result *= x;
2265 result += 1UL << (frac_bits - 1);
2266 result >>= frac_bits;
2267 }
2268 n >>= 1;
2269 if (!n)
2270 break;
2271 x *= x;
2272 x += 1UL << (frac_bits - 1);
2273 x >>= frac_bits;
2274 }
2275
2276 return result;
2277}
2278
2279/*
2280 * a1 = a0 * e + a * (1 - e)
2281 *
2282 * a2 = a1 * e + a * (1 - e)
2283 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2284 * = a0 * e^2 + a * (1 - e) * (1 + e)
2285 *
2286 * a3 = a2 * e + a * (1 - e)
2287 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2288 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2289 *
2290 * ...
2291 *
2292 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2293 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2294 * = a0 * e^n + a * (1 - e^n)
2295 *
2296 * [1] application of the geometric series:
2297 *
2298 * n 1 - x^(n+1)
2299 * S_n := \Sum x^i = -------------
2300 * i=0 1 - x
2301 */
2302static unsigned long
2303calc_load_n(unsigned long load, unsigned long exp,
2304 unsigned long active, unsigned int n)
2305{
2306
2307 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2308}
2309
2310/*
2311 * NO_HZ can leave us missing all per-cpu ticks calling
2312 * calc_load_account_active(), but since an idle CPU folds its delta into
2313 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2314 * in the pending idle delta if our idle period crossed a load cycle boundary.
2315 *
2316 * Once we've updated the global active value, we need to apply the exponential
2317 * weights adjusted to the number of cycles missed.
2318 */
c308b56b 2319static void calc_global_nohz(void)
0f004f5a
PZ
2320{
2321 long delta, active, n;
2322
5167e8d5
PZ
2323 if (!time_before(jiffies, calc_load_update + 10)) {
2324 /*
2325 * Catch-up, fold however many we are behind still
2326 */
2327 delta = jiffies - calc_load_update - 10;
2328 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2329
5167e8d5
PZ
2330 active = atomic_long_read(&calc_load_tasks);
2331 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2332
5167e8d5
PZ
2333 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2334 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2335 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2336
5167e8d5
PZ
2337 calc_load_update += n * LOAD_FREQ;
2338 }
74f5187a 2339
5167e8d5
PZ
2340 /*
2341 * Flip the idle index...
2342 *
2343 * Make sure we first write the new time then flip the index, so that
2344 * calc_load_write_idx() will see the new time when it reads the new
2345 * index, this avoids a double flip messing things up.
2346 */
2347 smp_wmb();
2348 calc_load_idx++;
74f5187a 2349}
5167e8d5 2350#else /* !CONFIG_NO_HZ */
0f004f5a 2351
5167e8d5
PZ
2352static inline long calc_load_fold_idle(void) { return 0; }
2353static inline void calc_global_nohz(void) { }
74f5187a 2354
5167e8d5 2355#endif /* CONFIG_NO_HZ */
46cb4b7c 2356
46cb4b7c 2357/*
dce48a84
TG
2358 * calc_load - update the avenrun load estimates 10 ticks after the
2359 * CPUs have updated calc_load_tasks.
7835b98b 2360 */
0f004f5a 2361void calc_global_load(unsigned long ticks)
7835b98b 2362{
5167e8d5 2363 long active, delta;
1da177e4 2364
0f004f5a 2365 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2366 return;
1da177e4 2367
5167e8d5
PZ
2368 /*
2369 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2370 */
2371 delta = calc_load_fold_idle();
2372 if (delta)
2373 atomic_long_add(delta, &calc_load_tasks);
2374
dce48a84
TG
2375 active = atomic_long_read(&calc_load_tasks);
2376 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2377
dce48a84
TG
2378 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2379 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2380 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2381
dce48a84 2382 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2383
2384 /*
5167e8d5 2385 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2386 */
2387 calc_global_nohz();
dce48a84 2388}
1da177e4 2389
dce48a84 2390/*
74f5187a
PZ
2391 * Called from update_cpu_load() to periodically update this CPU's
2392 * active count.
dce48a84
TG
2393 */
2394static void calc_load_account_active(struct rq *this_rq)
2395{
74f5187a 2396 long delta;
08c183f3 2397
74f5187a
PZ
2398 if (time_before(jiffies, this_rq->calc_load_update))
2399 return;
783609c6 2400
74f5187a 2401 delta = calc_load_fold_active(this_rq);
74f5187a 2402 if (delta)
dce48a84 2403 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2404
2405 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2406}
2407
5167e8d5
PZ
2408/*
2409 * End of global load-average stuff
2410 */
2411
fdf3e95d
VP
2412/*
2413 * The exact cpuload at various idx values, calculated at every tick would be
2414 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2415 *
2416 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2417 * on nth tick when cpu may be busy, then we have:
2418 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2419 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2420 *
2421 * decay_load_missed() below does efficient calculation of
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2424 *
2425 * The calculation is approximated on a 128 point scale.
2426 * degrade_zero_ticks is the number of ticks after which load at any
2427 * particular idx is approximated to be zero.
2428 * degrade_factor is a precomputed table, a row for each load idx.
2429 * Each column corresponds to degradation factor for a power of two ticks,
2430 * based on 128 point scale.
2431 * Example:
2432 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2433 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2434 *
2435 * With this power of 2 load factors, we can degrade the load n times
2436 * by looking at 1 bits in n and doing as many mult/shift instead of
2437 * n mult/shifts needed by the exact degradation.
2438 */
2439#define DEGRADE_SHIFT 7
2440static const unsigned char
2441 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2442static const unsigned char
2443 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2444 {0, 0, 0, 0, 0, 0, 0, 0},
2445 {64, 32, 8, 0, 0, 0, 0, 0},
2446 {96, 72, 40, 12, 1, 0, 0},
2447 {112, 98, 75, 43, 15, 1, 0},
2448 {120, 112, 98, 76, 45, 16, 2} };
2449
2450/*
2451 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2452 * would be when CPU is idle and so we just decay the old load without
2453 * adding any new load.
2454 */
2455static unsigned long
2456decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2457{
2458 int j = 0;
2459
2460 if (!missed_updates)
2461 return load;
2462
2463 if (missed_updates >= degrade_zero_ticks[idx])
2464 return 0;
2465
2466 if (idx == 1)
2467 return load >> missed_updates;
2468
2469 while (missed_updates) {
2470 if (missed_updates % 2)
2471 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2472
2473 missed_updates >>= 1;
2474 j++;
2475 }
2476 return load;
2477}
2478
46cb4b7c 2479/*
dd41f596 2480 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2481 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2482 * every tick. We fix it up based on jiffies.
46cb4b7c 2483 */
556061b0
PZ
2484static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2485 unsigned long pending_updates)
46cb4b7c 2486{
dd41f596 2487 int i, scale;
46cb4b7c 2488
dd41f596 2489 this_rq->nr_load_updates++;
46cb4b7c 2490
dd41f596 2491 /* Update our load: */
fdf3e95d
VP
2492 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2493 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2494 unsigned long old_load, new_load;
7d1e6a9b 2495
dd41f596 2496 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2497
dd41f596 2498 old_load = this_rq->cpu_load[i];
fdf3e95d 2499 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2500 new_load = this_load;
a25707f3
IM
2501 /*
2502 * Round up the averaging division if load is increasing. This
2503 * prevents us from getting stuck on 9 if the load is 10, for
2504 * example.
2505 */
2506 if (new_load > old_load)
fdf3e95d
VP
2507 new_load += scale - 1;
2508
2509 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2510 }
da2b71ed
SS
2511
2512 sched_avg_update(this_rq);
fdf3e95d
VP
2513}
2514
5aaa0b7a
PZ
2515#ifdef CONFIG_NO_HZ
2516/*
2517 * There is no sane way to deal with nohz on smp when using jiffies because the
2518 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2519 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2520 *
2521 * Therefore we cannot use the delta approach from the regular tick since that
2522 * would seriously skew the load calculation. However we'll make do for those
2523 * updates happening while idle (nohz_idle_balance) or coming out of idle
2524 * (tick_nohz_idle_exit).
2525 *
2526 * This means we might still be one tick off for nohz periods.
2527 */
2528
556061b0
PZ
2529/*
2530 * Called from nohz_idle_balance() to update the load ratings before doing the
2531 * idle balance.
2532 */
2533void update_idle_cpu_load(struct rq *this_rq)
2534{
5aaa0b7a 2535 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2536 unsigned long load = this_rq->load.weight;
2537 unsigned long pending_updates;
2538
2539 /*
5aaa0b7a 2540 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2541 */
2542 if (load || curr_jiffies == this_rq->last_load_update_tick)
2543 return;
2544
2545 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2546 this_rq->last_load_update_tick = curr_jiffies;
2547
2548 __update_cpu_load(this_rq, load, pending_updates);
2549}
2550
5aaa0b7a
PZ
2551/*
2552 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2553 */
2554void update_cpu_load_nohz(void)
2555{
2556 struct rq *this_rq = this_rq();
2557 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2558 unsigned long pending_updates;
2559
2560 if (curr_jiffies == this_rq->last_load_update_tick)
2561 return;
2562
2563 raw_spin_lock(&this_rq->lock);
2564 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2565 if (pending_updates) {
2566 this_rq->last_load_update_tick = curr_jiffies;
2567 /*
2568 * We were idle, this means load 0, the current load might be
2569 * !0 due to remote wakeups and the sort.
2570 */
2571 __update_cpu_load(this_rq, 0, pending_updates);
2572 }
2573 raw_spin_unlock(&this_rq->lock);
2574}
2575#endif /* CONFIG_NO_HZ */
2576
556061b0
PZ
2577/*
2578 * Called from scheduler_tick()
2579 */
fdf3e95d
VP
2580static void update_cpu_load_active(struct rq *this_rq)
2581{
556061b0 2582 /*
5aaa0b7a 2583 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2584 */
2585 this_rq->last_load_update_tick = jiffies;
2586 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2587
74f5187a 2588 calc_load_account_active(this_rq);
46cb4b7c
SS
2589}
2590
dd41f596 2591#ifdef CONFIG_SMP
8a0be9ef 2592
46cb4b7c 2593/*
38022906
PZ
2594 * sched_exec - execve() is a valuable balancing opportunity, because at
2595 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2596 */
38022906 2597void sched_exec(void)
46cb4b7c 2598{
38022906 2599 struct task_struct *p = current;
1da177e4 2600 unsigned long flags;
0017d735 2601 int dest_cpu;
46cb4b7c 2602
8f42ced9 2603 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2604 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2605 if (dest_cpu == smp_processor_id())
2606 goto unlock;
38022906 2607
8f42ced9 2608 if (likely(cpu_active(dest_cpu))) {
969c7921 2609 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2610
8f42ced9
PZ
2611 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2612 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2613 return;
2614 }
0017d735 2615unlock:
8f42ced9 2616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2617}
dd41f596 2618
1da177e4
LT
2619#endif
2620
1da177e4 2621DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2622DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2623
2624EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2625EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2626
2627/*
c5f8d995 2628 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2629 * @p in case that task is currently running.
c5f8d995
HS
2630 *
2631 * Called with task_rq_lock() held on @rq.
1da177e4 2632 */
c5f8d995
HS
2633static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2634{
2635 u64 ns = 0;
2636
2637 if (task_current(rq, p)) {
2638 update_rq_clock(rq);
305e6835 2639 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2640 if ((s64)ns < 0)
2641 ns = 0;
2642 }
2643
2644 return ns;
2645}
2646
bb34d92f 2647unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2648{
1da177e4 2649 unsigned long flags;
41b86e9c 2650 struct rq *rq;
bb34d92f 2651 u64 ns = 0;
48f24c4d 2652
41b86e9c 2653 rq = task_rq_lock(p, &flags);
c5f8d995 2654 ns = do_task_delta_exec(p, rq);
0122ec5b 2655 task_rq_unlock(rq, p, &flags);
1508487e 2656
c5f8d995
HS
2657 return ns;
2658}
f06febc9 2659
c5f8d995
HS
2660/*
2661 * Return accounted runtime for the task.
2662 * In case the task is currently running, return the runtime plus current's
2663 * pending runtime that have not been accounted yet.
2664 */
2665unsigned long long task_sched_runtime(struct task_struct *p)
2666{
2667 unsigned long flags;
2668 struct rq *rq;
2669 u64 ns = 0;
2670
2671 rq = task_rq_lock(p, &flags);
2672 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2673 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2674
2675 return ns;
2676}
48f24c4d 2677
7835b98b
CL
2678/*
2679 * This function gets called by the timer code, with HZ frequency.
2680 * We call it with interrupts disabled.
7835b98b
CL
2681 */
2682void scheduler_tick(void)
2683{
7835b98b
CL
2684 int cpu = smp_processor_id();
2685 struct rq *rq = cpu_rq(cpu);
dd41f596 2686 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2687
2688 sched_clock_tick();
dd41f596 2689
05fa785c 2690 raw_spin_lock(&rq->lock);
3e51f33f 2691 update_rq_clock(rq);
fdf3e95d 2692 update_cpu_load_active(rq);
fa85ae24 2693 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2694 raw_spin_unlock(&rq->lock);
7835b98b 2695
e9d2b064 2696 perf_event_task_tick();
e220d2dc 2697
e418e1c2 2698#ifdef CONFIG_SMP
6eb57e0d 2699 rq->idle_balance = idle_cpu(cpu);
dd41f596 2700 trigger_load_balance(rq, cpu);
e418e1c2 2701#endif
1da177e4
LT
2702}
2703
132380a0 2704notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2705{
2706 if (in_lock_functions(addr)) {
2707 addr = CALLER_ADDR2;
2708 if (in_lock_functions(addr))
2709 addr = CALLER_ADDR3;
2710 }
2711 return addr;
2712}
1da177e4 2713
7e49fcce
SR
2714#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2715 defined(CONFIG_PREEMPT_TRACER))
2716
43627582 2717void __kprobes add_preempt_count(int val)
1da177e4 2718{
6cd8a4bb 2719#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2720 /*
2721 * Underflow?
2722 */
9a11b49a
IM
2723 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2724 return;
6cd8a4bb 2725#endif
1da177e4 2726 preempt_count() += val;
6cd8a4bb 2727#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2728 /*
2729 * Spinlock count overflowing soon?
2730 */
33859f7f
MOS
2731 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2732 PREEMPT_MASK - 10);
6cd8a4bb
SR
2733#endif
2734 if (preempt_count() == val)
2735 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2736}
2737EXPORT_SYMBOL(add_preempt_count);
2738
43627582 2739void __kprobes sub_preempt_count(int val)
1da177e4 2740{
6cd8a4bb 2741#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2742 /*
2743 * Underflow?
2744 */
01e3eb82 2745 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2746 return;
1da177e4
LT
2747 /*
2748 * Is the spinlock portion underflowing?
2749 */
9a11b49a
IM
2750 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2751 !(preempt_count() & PREEMPT_MASK)))
2752 return;
6cd8a4bb 2753#endif
9a11b49a 2754
6cd8a4bb
SR
2755 if (preempt_count() == val)
2756 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2757 preempt_count() -= val;
2758}
2759EXPORT_SYMBOL(sub_preempt_count);
2760
2761#endif
2762
2763/*
dd41f596 2764 * Print scheduling while atomic bug:
1da177e4 2765 */
dd41f596 2766static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2767{
664dfa65
DJ
2768 if (oops_in_progress)
2769 return;
2770
3df0fc5b
PZ
2771 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2772 prev->comm, prev->pid, preempt_count());
838225b4 2773
dd41f596 2774 debug_show_held_locks(prev);
e21f5b15 2775 print_modules();
dd41f596
IM
2776 if (irqs_disabled())
2777 print_irqtrace_events(prev);
6135fc1e 2778 dump_stack();
373d4d09 2779 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2780}
1da177e4 2781
dd41f596
IM
2782/*
2783 * Various schedule()-time debugging checks and statistics:
2784 */
2785static inline void schedule_debug(struct task_struct *prev)
2786{
1da177e4 2787 /*
41a2d6cf 2788 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2789 * schedule() atomically, we ignore that path for now.
2790 * Otherwise, whine if we are scheduling when we should not be.
2791 */
3f33a7ce 2792 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2793 __schedule_bug(prev);
b3fbab05 2794 rcu_sleep_check();
dd41f596 2795
1da177e4
LT
2796 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2797
2d72376b 2798 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2799}
2800
6cecd084 2801static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2802{
61eadef6 2803 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2804 update_rq_clock(rq);
6cecd084 2805 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2806}
2807
dd41f596
IM
2808/*
2809 * Pick up the highest-prio task:
2810 */
2811static inline struct task_struct *
b67802ea 2812pick_next_task(struct rq *rq)
dd41f596 2813{
5522d5d5 2814 const struct sched_class *class;
dd41f596 2815 struct task_struct *p;
1da177e4
LT
2816
2817 /*
dd41f596
IM
2818 * Optimization: we know that if all tasks are in
2819 * the fair class we can call that function directly:
1da177e4 2820 */
953bfcd1 2821 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2822 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2823 if (likely(p))
2824 return p;
1da177e4
LT
2825 }
2826
34f971f6 2827 for_each_class(class) {
fb8d4724 2828 p = class->pick_next_task(rq);
dd41f596
IM
2829 if (p)
2830 return p;
dd41f596 2831 }
34f971f6
PZ
2832
2833 BUG(); /* the idle class will always have a runnable task */
dd41f596 2834}
1da177e4 2835
dd41f596 2836/*
c259e01a 2837 * __schedule() is the main scheduler function.
edde96ea
PE
2838 *
2839 * The main means of driving the scheduler and thus entering this function are:
2840 *
2841 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2842 *
2843 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2844 * paths. For example, see arch/x86/entry_64.S.
2845 *
2846 * To drive preemption between tasks, the scheduler sets the flag in timer
2847 * interrupt handler scheduler_tick().
2848 *
2849 * 3. Wakeups don't really cause entry into schedule(). They add a
2850 * task to the run-queue and that's it.
2851 *
2852 * Now, if the new task added to the run-queue preempts the current
2853 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2854 * called on the nearest possible occasion:
2855 *
2856 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2857 *
2858 * - in syscall or exception context, at the next outmost
2859 * preempt_enable(). (this might be as soon as the wake_up()'s
2860 * spin_unlock()!)
2861 *
2862 * - in IRQ context, return from interrupt-handler to
2863 * preemptible context
2864 *
2865 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2866 * then at the next:
2867 *
2868 * - cond_resched() call
2869 * - explicit schedule() call
2870 * - return from syscall or exception to user-space
2871 * - return from interrupt-handler to user-space
dd41f596 2872 */
c259e01a 2873static void __sched __schedule(void)
dd41f596
IM
2874{
2875 struct task_struct *prev, *next;
67ca7bde 2876 unsigned long *switch_count;
dd41f596 2877 struct rq *rq;
31656519 2878 int cpu;
dd41f596 2879
ff743345
PZ
2880need_resched:
2881 preempt_disable();
dd41f596
IM
2882 cpu = smp_processor_id();
2883 rq = cpu_rq(cpu);
25502a6c 2884 rcu_note_context_switch(cpu);
dd41f596 2885 prev = rq->curr;
dd41f596 2886
dd41f596 2887 schedule_debug(prev);
1da177e4 2888
31656519 2889 if (sched_feat(HRTICK))
f333fdc9 2890 hrtick_clear(rq);
8f4d37ec 2891
05fa785c 2892 raw_spin_lock_irq(&rq->lock);
1da177e4 2893
246d86b5 2894 switch_count = &prev->nivcsw;
1da177e4 2895 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2896 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2897 prev->state = TASK_RUNNING;
21aa9af0 2898 } else {
2acca55e
PZ
2899 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2900 prev->on_rq = 0;
2901
21aa9af0 2902 /*
2acca55e
PZ
2903 * If a worker went to sleep, notify and ask workqueue
2904 * whether it wants to wake up a task to maintain
2905 * concurrency.
21aa9af0
TH
2906 */
2907 if (prev->flags & PF_WQ_WORKER) {
2908 struct task_struct *to_wakeup;
2909
2910 to_wakeup = wq_worker_sleeping(prev, cpu);
2911 if (to_wakeup)
2912 try_to_wake_up_local(to_wakeup);
2913 }
21aa9af0 2914 }
dd41f596 2915 switch_count = &prev->nvcsw;
1da177e4
LT
2916 }
2917
3f029d3c 2918 pre_schedule(rq, prev);
f65eda4f 2919
dd41f596 2920 if (unlikely(!rq->nr_running))
1da177e4 2921 idle_balance(cpu, rq);
1da177e4 2922
df1c99d4 2923 put_prev_task(rq, prev);
b67802ea 2924 next = pick_next_task(rq);
f26f9aff
MG
2925 clear_tsk_need_resched(prev);
2926 rq->skip_clock_update = 0;
1da177e4 2927
1da177e4 2928 if (likely(prev != next)) {
1da177e4
LT
2929 rq->nr_switches++;
2930 rq->curr = next;
2931 ++*switch_count;
2932
dd41f596 2933 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2934 /*
246d86b5
ON
2935 * The context switch have flipped the stack from under us
2936 * and restored the local variables which were saved when
2937 * this task called schedule() in the past. prev == current
2938 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2939 */
2940 cpu = smp_processor_id();
2941 rq = cpu_rq(cpu);
1da177e4 2942 } else
05fa785c 2943 raw_spin_unlock_irq(&rq->lock);
1da177e4 2944
3f029d3c 2945 post_schedule(rq);
1da177e4 2946
ba74c144 2947 sched_preempt_enable_no_resched();
ff743345 2948 if (need_resched())
1da177e4
LT
2949 goto need_resched;
2950}
c259e01a 2951
9c40cef2
TG
2952static inline void sched_submit_work(struct task_struct *tsk)
2953{
3c7d5184 2954 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2955 return;
2956 /*
2957 * If we are going to sleep and we have plugged IO queued,
2958 * make sure to submit it to avoid deadlocks.
2959 */
2960 if (blk_needs_flush_plug(tsk))
2961 blk_schedule_flush_plug(tsk);
2962}
2963
6ebbe7a0 2964asmlinkage void __sched schedule(void)
c259e01a 2965{
9c40cef2
TG
2966 struct task_struct *tsk = current;
2967
2968 sched_submit_work(tsk);
c259e01a
TG
2969 __schedule();
2970}
1da177e4
LT
2971EXPORT_SYMBOL(schedule);
2972
91d1aa43 2973#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2974asmlinkage void __sched schedule_user(void)
2975{
2976 /*
2977 * If we come here after a random call to set_need_resched(),
2978 * or we have been woken up remotely but the IPI has not yet arrived,
2979 * we haven't yet exited the RCU idle mode. Do it here manually until
2980 * we find a better solution.
2981 */
91d1aa43 2982 user_exit();
20ab65e3 2983 schedule();
91d1aa43 2984 user_enter();
20ab65e3
FW
2985}
2986#endif
2987
c5491ea7
TG
2988/**
2989 * schedule_preempt_disabled - called with preemption disabled
2990 *
2991 * Returns with preemption disabled. Note: preempt_count must be 1
2992 */
2993void __sched schedule_preempt_disabled(void)
2994{
ba74c144 2995 sched_preempt_enable_no_resched();
c5491ea7
TG
2996 schedule();
2997 preempt_disable();
2998}
2999
c08f7829 3000#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3001
c6eb3dda
PZ
3002static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3003{
c6eb3dda 3004 if (lock->owner != owner)
307bf980 3005 return false;
0d66bf6d
PZ
3006
3007 /*
c6eb3dda
PZ
3008 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3009 * lock->owner still matches owner, if that fails, owner might
3010 * point to free()d memory, if it still matches, the rcu_read_lock()
3011 * ensures the memory stays valid.
0d66bf6d 3012 */
c6eb3dda 3013 barrier();
0d66bf6d 3014
307bf980 3015 return owner->on_cpu;
c6eb3dda 3016}
0d66bf6d 3017
c6eb3dda
PZ
3018/*
3019 * Look out! "owner" is an entirely speculative pointer
3020 * access and not reliable.
3021 */
3022int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3023{
3024 if (!sched_feat(OWNER_SPIN))
3025 return 0;
0d66bf6d 3026
307bf980 3027 rcu_read_lock();
c6eb3dda
PZ
3028 while (owner_running(lock, owner)) {
3029 if (need_resched())
307bf980 3030 break;
0d66bf6d 3031
335d7afb 3032 arch_mutex_cpu_relax();
0d66bf6d 3033 }
307bf980 3034 rcu_read_unlock();
4b402210 3035
c6eb3dda 3036 /*
307bf980
TG
3037 * We break out the loop above on need_resched() and when the
3038 * owner changed, which is a sign for heavy contention. Return
3039 * success only when lock->owner is NULL.
c6eb3dda 3040 */
307bf980 3041 return lock->owner == NULL;
0d66bf6d
PZ
3042}
3043#endif
3044
1da177e4
LT
3045#ifdef CONFIG_PREEMPT
3046/*
2ed6e34f 3047 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3048 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3049 * occur there and call schedule directly.
3050 */
d1f74e20 3051asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3052{
3053 struct thread_info *ti = current_thread_info();
6478d880 3054
1da177e4
LT
3055 /*
3056 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3057 * we do not want to preempt the current task. Just return..
1da177e4 3058 */
beed33a8 3059 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3060 return;
3061
3a5c359a 3062 do {
d1f74e20 3063 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3064 __schedule();
d1f74e20 3065 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3066
3a5c359a
AK
3067 /*
3068 * Check again in case we missed a preemption opportunity
3069 * between schedule and now.
3070 */
3071 barrier();
5ed0cec0 3072 } while (need_resched());
1da177e4 3073}
1da177e4
LT
3074EXPORT_SYMBOL(preempt_schedule);
3075
3076/*
2ed6e34f 3077 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3078 * off of irq context.
3079 * Note, that this is called and return with irqs disabled. This will
3080 * protect us against recursive calling from irq.
3081 */
3082asmlinkage void __sched preempt_schedule_irq(void)
3083{
3084 struct thread_info *ti = current_thread_info();
b22366cd 3085 enum ctx_state prev_state;
6478d880 3086
2ed6e34f 3087 /* Catch callers which need to be fixed */
1da177e4
LT
3088 BUG_ON(ti->preempt_count || !irqs_disabled());
3089
b22366cd
FW
3090 prev_state = exception_enter();
3091
3a5c359a
AK
3092 do {
3093 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3094 local_irq_enable();
c259e01a 3095 __schedule();
3a5c359a 3096 local_irq_disable();
3a5c359a 3097 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3098
3a5c359a
AK
3099 /*
3100 * Check again in case we missed a preemption opportunity
3101 * between schedule and now.
3102 */
3103 barrier();
5ed0cec0 3104 } while (need_resched());
b22366cd
FW
3105
3106 exception_exit(prev_state);
1da177e4
LT
3107}
3108
3109#endif /* CONFIG_PREEMPT */
3110
63859d4f 3111int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3112 void *key)
1da177e4 3113{
63859d4f 3114 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3115}
1da177e4
LT
3116EXPORT_SYMBOL(default_wake_function);
3117
3118/*
41a2d6cf
IM
3119 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3120 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3121 * number) then we wake all the non-exclusive tasks and one exclusive task.
3122 *
3123 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3124 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3125 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3126 */
78ddb08f 3127static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3128 int nr_exclusive, int wake_flags, void *key)
1da177e4 3129{
2e45874c 3130 wait_queue_t *curr, *next;
1da177e4 3131
2e45874c 3132 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3133 unsigned flags = curr->flags;
3134
63859d4f 3135 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3136 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3137 break;
3138 }
3139}
3140
3141/**
3142 * __wake_up - wake up threads blocked on a waitqueue.
3143 * @q: the waitqueue
3144 * @mode: which threads
3145 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3146 * @key: is directly passed to the wakeup function
50fa610a
DH
3147 *
3148 * It may be assumed that this function implies a write memory barrier before
3149 * changing the task state if and only if any tasks are woken up.
1da177e4 3150 */
7ad5b3a5 3151void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3152 int nr_exclusive, void *key)
1da177e4
LT
3153{
3154 unsigned long flags;
3155
3156 spin_lock_irqsave(&q->lock, flags);
3157 __wake_up_common(q, mode, nr_exclusive, 0, key);
3158 spin_unlock_irqrestore(&q->lock, flags);
3159}
1da177e4
LT
3160EXPORT_SYMBOL(__wake_up);
3161
3162/*
3163 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3164 */
63b20011 3165void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3166{
63b20011 3167 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3168}
22c43c81 3169EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3170
4ede816a
DL
3171void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3172{
3173 __wake_up_common(q, mode, 1, 0, key);
3174}
bf294b41 3175EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3176
1da177e4 3177/**
4ede816a 3178 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3179 * @q: the waitqueue
3180 * @mode: which threads
3181 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3182 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3183 *
3184 * The sync wakeup differs that the waker knows that it will schedule
3185 * away soon, so while the target thread will be woken up, it will not
3186 * be migrated to another CPU - ie. the two threads are 'synchronized'
3187 * with each other. This can prevent needless bouncing between CPUs.
3188 *
3189 * On UP it can prevent extra preemption.
50fa610a
DH
3190 *
3191 * It may be assumed that this function implies a write memory barrier before
3192 * changing the task state if and only if any tasks are woken up.
1da177e4 3193 */
4ede816a
DL
3194void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3195 int nr_exclusive, void *key)
1da177e4
LT
3196{
3197 unsigned long flags;
7d478721 3198 int wake_flags = WF_SYNC;
1da177e4
LT
3199
3200 if (unlikely(!q))
3201 return;
3202
3203 if (unlikely(!nr_exclusive))
7d478721 3204 wake_flags = 0;
1da177e4
LT
3205
3206 spin_lock_irqsave(&q->lock, flags);
7d478721 3207 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3208 spin_unlock_irqrestore(&q->lock, flags);
3209}
4ede816a
DL
3210EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3211
3212/*
3213 * __wake_up_sync - see __wake_up_sync_key()
3214 */
3215void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3216{
3217 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3218}
1da177e4
LT
3219EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3220
65eb3dc6
KD
3221/**
3222 * complete: - signals a single thread waiting on this completion
3223 * @x: holds the state of this particular completion
3224 *
3225 * This will wake up a single thread waiting on this completion. Threads will be
3226 * awakened in the same order in which they were queued.
3227 *
3228 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3229 *
3230 * It may be assumed that this function implies a write memory barrier before
3231 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3232 */
b15136e9 3233void complete(struct completion *x)
1da177e4
LT
3234{
3235 unsigned long flags;
3236
3237 spin_lock_irqsave(&x->wait.lock, flags);
3238 x->done++;
d9514f6c 3239 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3240 spin_unlock_irqrestore(&x->wait.lock, flags);
3241}
3242EXPORT_SYMBOL(complete);
3243
65eb3dc6
KD
3244/**
3245 * complete_all: - signals all threads waiting on this completion
3246 * @x: holds the state of this particular completion
3247 *
3248 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3249 *
3250 * It may be assumed that this function implies a write memory barrier before
3251 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3252 */
b15136e9 3253void complete_all(struct completion *x)
1da177e4
LT
3254{
3255 unsigned long flags;
3256
3257 spin_lock_irqsave(&x->wait.lock, flags);
3258 x->done += UINT_MAX/2;
d9514f6c 3259 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3260 spin_unlock_irqrestore(&x->wait.lock, flags);
3261}
3262EXPORT_SYMBOL(complete_all);
3263
8cbbe86d 3264static inline long __sched
686855f5
VD
3265do_wait_for_common(struct completion *x,
3266 long (*action)(long), long timeout, int state)
1da177e4 3267{
1da177e4
LT
3268 if (!x->done) {
3269 DECLARE_WAITQUEUE(wait, current);
3270
a93d2f17 3271 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3272 do {
94d3d824 3273 if (signal_pending_state(state, current)) {
ea71a546
ON
3274 timeout = -ERESTARTSYS;
3275 break;
8cbbe86d
AK
3276 }
3277 __set_current_state(state);
1da177e4 3278 spin_unlock_irq(&x->wait.lock);
686855f5 3279 timeout = action(timeout);
1da177e4 3280 spin_lock_irq(&x->wait.lock);
ea71a546 3281 } while (!x->done && timeout);
1da177e4 3282 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3283 if (!x->done)
3284 return timeout;
1da177e4
LT
3285 }
3286 x->done--;
ea71a546 3287 return timeout ?: 1;
1da177e4 3288}
1da177e4 3289
686855f5
VD
3290static inline long __sched
3291__wait_for_common(struct completion *x,
3292 long (*action)(long), long timeout, int state)
1da177e4 3293{
1da177e4
LT
3294 might_sleep();
3295
3296 spin_lock_irq(&x->wait.lock);
686855f5 3297 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 3298 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3299 return timeout;
3300}
1da177e4 3301
686855f5
VD
3302static long __sched
3303wait_for_common(struct completion *x, long timeout, int state)
3304{
3305 return __wait_for_common(x, schedule_timeout, timeout, state);
3306}
3307
3308static long __sched
3309wait_for_common_io(struct completion *x, long timeout, int state)
3310{
3311 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3312}
3313
65eb3dc6
KD
3314/**
3315 * wait_for_completion: - waits for completion of a task
3316 * @x: holds the state of this particular completion
3317 *
3318 * This waits to be signaled for completion of a specific task. It is NOT
3319 * interruptible and there is no timeout.
3320 *
3321 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3322 * and interrupt capability. Also see complete().
3323 */
b15136e9 3324void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3325{
3326 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3327}
8cbbe86d 3328EXPORT_SYMBOL(wait_for_completion);
1da177e4 3329
65eb3dc6
KD
3330/**
3331 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3332 * @x: holds the state of this particular completion
3333 * @timeout: timeout value in jiffies
3334 *
3335 * This waits for either a completion of a specific task to be signaled or for a
3336 * specified timeout to expire. The timeout is in jiffies. It is not
3337 * interruptible.
c6dc7f05
BF
3338 *
3339 * The return value is 0 if timed out, and positive (at least 1, or number of
3340 * jiffies left till timeout) if completed.
65eb3dc6 3341 */
b15136e9 3342unsigned long __sched
8cbbe86d 3343wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3344{
8cbbe86d 3345 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3346}
8cbbe86d 3347EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3348
686855f5
VD
3349/**
3350 * wait_for_completion_io: - waits for completion of a task
3351 * @x: holds the state of this particular completion
3352 *
3353 * This waits to be signaled for completion of a specific task. It is NOT
3354 * interruptible and there is no timeout. The caller is accounted as waiting
3355 * for IO.
3356 */
3357void __sched wait_for_completion_io(struct completion *x)
3358{
3359 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3360}
3361EXPORT_SYMBOL(wait_for_completion_io);
3362
3363/**
3364 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3365 * @x: holds the state of this particular completion
3366 * @timeout: timeout value in jiffies
3367 *
3368 * This waits for either a completion of a specific task to be signaled or for a
3369 * specified timeout to expire. The timeout is in jiffies. It is not
3370 * interruptible. The caller is accounted as waiting for IO.
3371 *
3372 * The return value is 0 if timed out, and positive (at least 1, or number of
3373 * jiffies left till timeout) if completed.
3374 */
3375unsigned long __sched
3376wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3377{
3378 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3379}
3380EXPORT_SYMBOL(wait_for_completion_io_timeout);
3381
65eb3dc6
KD
3382/**
3383 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3384 * @x: holds the state of this particular completion
3385 *
3386 * This waits for completion of a specific task to be signaled. It is
3387 * interruptible.
c6dc7f05
BF
3388 *
3389 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3390 */
8cbbe86d 3391int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3392{
51e97990
AK
3393 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3394 if (t == -ERESTARTSYS)
3395 return t;
3396 return 0;
0fec171c 3397}
8cbbe86d 3398EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3399
65eb3dc6
KD
3400/**
3401 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3402 * @x: holds the state of this particular completion
3403 * @timeout: timeout value in jiffies
3404 *
3405 * This waits for either a completion of a specific task to be signaled or for a
3406 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3407 *
3408 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3409 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3410 */
6bf41237 3411long __sched
8cbbe86d
AK
3412wait_for_completion_interruptible_timeout(struct completion *x,
3413 unsigned long timeout)
0fec171c 3414{
8cbbe86d 3415 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3416}
8cbbe86d 3417EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3418
65eb3dc6
KD
3419/**
3420 * wait_for_completion_killable: - waits for completion of a task (killable)
3421 * @x: holds the state of this particular completion
3422 *
3423 * This waits to be signaled for completion of a specific task. It can be
3424 * interrupted by a kill signal.
c6dc7f05
BF
3425 *
3426 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3427 */
009e577e
MW
3428int __sched wait_for_completion_killable(struct completion *x)
3429{
3430 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3431 if (t == -ERESTARTSYS)
3432 return t;
3433 return 0;
3434}
3435EXPORT_SYMBOL(wait_for_completion_killable);
3436
0aa12fb4
SW
3437/**
3438 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3439 * @x: holds the state of this particular completion
3440 * @timeout: timeout value in jiffies
3441 *
3442 * This waits for either a completion of a specific task to be
3443 * signaled or for a specified timeout to expire. It can be
3444 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3445 *
3446 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3447 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3448 */
6bf41237 3449long __sched
0aa12fb4
SW
3450wait_for_completion_killable_timeout(struct completion *x,
3451 unsigned long timeout)
3452{
3453 return wait_for_common(x, timeout, TASK_KILLABLE);
3454}
3455EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3456
be4de352
DC
3457/**
3458 * try_wait_for_completion - try to decrement a completion without blocking
3459 * @x: completion structure
3460 *
3461 * Returns: 0 if a decrement cannot be done without blocking
3462 * 1 if a decrement succeeded.
3463 *
3464 * If a completion is being used as a counting completion,
3465 * attempt to decrement the counter without blocking. This
3466 * enables us to avoid waiting if the resource the completion
3467 * is protecting is not available.
3468 */
3469bool try_wait_for_completion(struct completion *x)
3470{
7539a3b3 3471 unsigned long flags;
be4de352
DC
3472 int ret = 1;
3473
7539a3b3 3474 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3475 if (!x->done)
3476 ret = 0;
3477 else
3478 x->done--;
7539a3b3 3479 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3480 return ret;
3481}
3482EXPORT_SYMBOL(try_wait_for_completion);
3483
3484/**
3485 * completion_done - Test to see if a completion has any waiters
3486 * @x: completion structure
3487 *
3488 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3489 * 1 if there are no waiters.
3490 *
3491 */
3492bool completion_done(struct completion *x)
3493{
7539a3b3 3494 unsigned long flags;
be4de352
DC
3495 int ret = 1;
3496
7539a3b3 3497 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3498 if (!x->done)
3499 ret = 0;
7539a3b3 3500 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3501 return ret;
3502}
3503EXPORT_SYMBOL(completion_done);
3504
8cbbe86d
AK
3505static long __sched
3506sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3507{
0fec171c
IM
3508 unsigned long flags;
3509 wait_queue_t wait;
3510
3511 init_waitqueue_entry(&wait, current);
1da177e4 3512
8cbbe86d 3513 __set_current_state(state);
1da177e4 3514
8cbbe86d
AK
3515 spin_lock_irqsave(&q->lock, flags);
3516 __add_wait_queue(q, &wait);
3517 spin_unlock(&q->lock);
3518 timeout = schedule_timeout(timeout);
3519 spin_lock_irq(&q->lock);
3520 __remove_wait_queue(q, &wait);
3521 spin_unlock_irqrestore(&q->lock, flags);
3522
3523 return timeout;
3524}
3525
3526void __sched interruptible_sleep_on(wait_queue_head_t *q)
3527{
3528 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3529}
1da177e4
LT
3530EXPORT_SYMBOL(interruptible_sleep_on);
3531
0fec171c 3532long __sched
95cdf3b7 3533interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3534{
8cbbe86d 3535 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3536}
1da177e4
LT
3537EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3538
0fec171c 3539void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3540{
8cbbe86d 3541 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3542}
1da177e4
LT
3543EXPORT_SYMBOL(sleep_on);
3544
0fec171c 3545long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3546{
8cbbe86d 3547 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3548}
1da177e4
LT
3549EXPORT_SYMBOL(sleep_on_timeout);
3550
b29739f9
IM
3551#ifdef CONFIG_RT_MUTEXES
3552
3553/*
3554 * rt_mutex_setprio - set the current priority of a task
3555 * @p: task
3556 * @prio: prio value (kernel-internal form)
3557 *
3558 * This function changes the 'effective' priority of a task. It does
3559 * not touch ->normal_prio like __setscheduler().
3560 *
3561 * Used by the rt_mutex code to implement priority inheritance logic.
3562 */
36c8b586 3563void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3564{
83b699ed 3565 int oldprio, on_rq, running;
70b97a7f 3566 struct rq *rq;
83ab0aa0 3567 const struct sched_class *prev_class;
b29739f9
IM
3568
3569 BUG_ON(prio < 0 || prio > MAX_PRIO);
3570
0122ec5b 3571 rq = __task_rq_lock(p);
b29739f9 3572
1c4dd99b
TG
3573 /*
3574 * Idle task boosting is a nono in general. There is one
3575 * exception, when PREEMPT_RT and NOHZ is active:
3576 *
3577 * The idle task calls get_next_timer_interrupt() and holds
3578 * the timer wheel base->lock on the CPU and another CPU wants
3579 * to access the timer (probably to cancel it). We can safely
3580 * ignore the boosting request, as the idle CPU runs this code
3581 * with interrupts disabled and will complete the lock
3582 * protected section without being interrupted. So there is no
3583 * real need to boost.
3584 */
3585 if (unlikely(p == rq->idle)) {
3586 WARN_ON(p != rq->curr);
3587 WARN_ON(p->pi_blocked_on);
3588 goto out_unlock;
3589 }
3590
a8027073 3591 trace_sched_pi_setprio(p, prio);
d5f9f942 3592 oldprio = p->prio;
83ab0aa0 3593 prev_class = p->sched_class;
fd2f4419 3594 on_rq = p->on_rq;
051a1d1a 3595 running = task_current(rq, p);
0e1f3483 3596 if (on_rq)
69be72c1 3597 dequeue_task(rq, p, 0);
0e1f3483
HS
3598 if (running)
3599 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3600
3601 if (rt_prio(prio))
3602 p->sched_class = &rt_sched_class;
3603 else
3604 p->sched_class = &fair_sched_class;
3605
b29739f9
IM
3606 p->prio = prio;
3607
0e1f3483
HS
3608 if (running)
3609 p->sched_class->set_curr_task(rq);
da7a735e 3610 if (on_rq)
371fd7e7 3611 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3612
da7a735e 3613 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3614out_unlock:
0122ec5b 3615 __task_rq_unlock(rq);
b29739f9 3616}
b29739f9 3617#endif
36c8b586 3618void set_user_nice(struct task_struct *p, long nice)
1da177e4 3619{
dd41f596 3620 int old_prio, delta, on_rq;
1da177e4 3621 unsigned long flags;
70b97a7f 3622 struct rq *rq;
1da177e4
LT
3623
3624 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3625 return;
3626 /*
3627 * We have to be careful, if called from sys_setpriority(),
3628 * the task might be in the middle of scheduling on another CPU.
3629 */
3630 rq = task_rq_lock(p, &flags);
3631 /*
3632 * The RT priorities are set via sched_setscheduler(), but we still
3633 * allow the 'normal' nice value to be set - but as expected
3634 * it wont have any effect on scheduling until the task is
dd41f596 3635 * SCHED_FIFO/SCHED_RR:
1da177e4 3636 */
e05606d3 3637 if (task_has_rt_policy(p)) {
1da177e4
LT
3638 p->static_prio = NICE_TO_PRIO(nice);
3639 goto out_unlock;
3640 }
fd2f4419 3641 on_rq = p->on_rq;
c09595f6 3642 if (on_rq)
69be72c1 3643 dequeue_task(rq, p, 0);
1da177e4 3644
1da177e4 3645 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3646 set_load_weight(p);
b29739f9
IM
3647 old_prio = p->prio;
3648 p->prio = effective_prio(p);
3649 delta = p->prio - old_prio;
1da177e4 3650
dd41f596 3651 if (on_rq) {
371fd7e7 3652 enqueue_task(rq, p, 0);
1da177e4 3653 /*
d5f9f942
AM
3654 * If the task increased its priority or is running and
3655 * lowered its priority, then reschedule its CPU:
1da177e4 3656 */
d5f9f942 3657 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3658 resched_task(rq->curr);
3659 }
3660out_unlock:
0122ec5b 3661 task_rq_unlock(rq, p, &flags);
1da177e4 3662}
1da177e4
LT
3663EXPORT_SYMBOL(set_user_nice);
3664
e43379f1
MM
3665/*
3666 * can_nice - check if a task can reduce its nice value
3667 * @p: task
3668 * @nice: nice value
3669 */
36c8b586 3670int can_nice(const struct task_struct *p, const int nice)
e43379f1 3671{
024f4747
MM
3672 /* convert nice value [19,-20] to rlimit style value [1,40] */
3673 int nice_rlim = 20 - nice;
48f24c4d 3674
78d7d407 3675 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3676 capable(CAP_SYS_NICE));
3677}
3678
1da177e4
LT
3679#ifdef __ARCH_WANT_SYS_NICE
3680
3681/*
3682 * sys_nice - change the priority of the current process.
3683 * @increment: priority increment
3684 *
3685 * sys_setpriority is a more generic, but much slower function that
3686 * does similar things.
3687 */
5add95d4 3688SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3689{
48f24c4d 3690 long nice, retval;
1da177e4
LT
3691
3692 /*
3693 * Setpriority might change our priority at the same moment.
3694 * We don't have to worry. Conceptually one call occurs first
3695 * and we have a single winner.
3696 */
e43379f1
MM
3697 if (increment < -40)
3698 increment = -40;
1da177e4
LT
3699 if (increment > 40)
3700 increment = 40;
3701
2b8f836f 3702 nice = TASK_NICE(current) + increment;
1da177e4
LT
3703 if (nice < -20)
3704 nice = -20;
3705 if (nice > 19)
3706 nice = 19;
3707
e43379f1
MM
3708 if (increment < 0 && !can_nice(current, nice))
3709 return -EPERM;
3710
1da177e4
LT
3711 retval = security_task_setnice(current, nice);
3712 if (retval)
3713 return retval;
3714
3715 set_user_nice(current, nice);
3716 return 0;
3717}
3718
3719#endif
3720
3721/**
3722 * task_prio - return the priority value of a given task.
3723 * @p: the task in question.
3724 *
3725 * This is the priority value as seen by users in /proc.
3726 * RT tasks are offset by -200. Normal tasks are centered
3727 * around 0, value goes from -16 to +15.
3728 */
36c8b586 3729int task_prio(const struct task_struct *p)
1da177e4
LT
3730{
3731 return p->prio - MAX_RT_PRIO;
3732}
3733
3734/**
3735 * task_nice - return the nice value of a given task.
3736 * @p: the task in question.
3737 */
36c8b586 3738int task_nice(const struct task_struct *p)
1da177e4
LT
3739{
3740 return TASK_NICE(p);
3741}
150d8bed 3742EXPORT_SYMBOL(task_nice);
1da177e4
LT
3743
3744/**
3745 * idle_cpu - is a given cpu idle currently?
3746 * @cpu: the processor in question.
3747 */
3748int idle_cpu(int cpu)
3749{
908a3283
TG
3750 struct rq *rq = cpu_rq(cpu);
3751
3752 if (rq->curr != rq->idle)
3753 return 0;
3754
3755 if (rq->nr_running)
3756 return 0;
3757
3758#ifdef CONFIG_SMP
3759 if (!llist_empty(&rq->wake_list))
3760 return 0;
3761#endif
3762
3763 return 1;
1da177e4
LT
3764}
3765
1da177e4
LT
3766/**
3767 * idle_task - return the idle task for a given cpu.
3768 * @cpu: the processor in question.
3769 */
36c8b586 3770struct task_struct *idle_task(int cpu)
1da177e4
LT
3771{
3772 return cpu_rq(cpu)->idle;
3773}
3774
3775/**
3776 * find_process_by_pid - find a process with a matching PID value.
3777 * @pid: the pid in question.
3778 */
a9957449 3779static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3780{
228ebcbe 3781 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3782}
3783
3784/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3785static void
3786__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3787{
1da177e4
LT
3788 p->policy = policy;
3789 p->rt_priority = prio;
b29739f9
IM
3790 p->normal_prio = normal_prio(p);
3791 /* we are holding p->pi_lock already */
3792 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3793 if (rt_prio(p->prio))
3794 p->sched_class = &rt_sched_class;
3795 else
3796 p->sched_class = &fair_sched_class;
2dd73a4f 3797 set_load_weight(p);
1da177e4
LT
3798}
3799
c69e8d9c
DH
3800/*
3801 * check the target process has a UID that matches the current process's
3802 */
3803static bool check_same_owner(struct task_struct *p)
3804{
3805 const struct cred *cred = current_cred(), *pcred;
3806 bool match;
3807
3808 rcu_read_lock();
3809 pcred = __task_cred(p);
9c806aa0
EB
3810 match = (uid_eq(cred->euid, pcred->euid) ||
3811 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3812 rcu_read_unlock();
3813 return match;
3814}
3815
961ccddd 3816static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3817 const struct sched_param *param, bool user)
1da177e4 3818{
83b699ed 3819 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3820 unsigned long flags;
83ab0aa0 3821 const struct sched_class *prev_class;
70b97a7f 3822 struct rq *rq;
ca94c442 3823 int reset_on_fork;
1da177e4 3824
66e5393a
SR
3825 /* may grab non-irq protected spin_locks */
3826 BUG_ON(in_interrupt());
1da177e4
LT
3827recheck:
3828 /* double check policy once rq lock held */
ca94c442
LP
3829 if (policy < 0) {
3830 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3831 policy = oldpolicy = p->policy;
ca94c442
LP
3832 } else {
3833 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3834 policy &= ~SCHED_RESET_ON_FORK;
3835
3836 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3837 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3838 policy != SCHED_IDLE)
3839 return -EINVAL;
3840 }
3841
1da177e4
LT
3842 /*
3843 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3844 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3845 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3846 */
3847 if (param->sched_priority < 0 ||
95cdf3b7 3848 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3849 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3850 return -EINVAL;
e05606d3 3851 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3852 return -EINVAL;
3853
37e4ab3f
OC
3854 /*
3855 * Allow unprivileged RT tasks to decrease priority:
3856 */
961ccddd 3857 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3858 if (rt_policy(policy)) {
a44702e8
ON
3859 unsigned long rlim_rtprio =
3860 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3861
3862 /* can't set/change the rt policy */
3863 if (policy != p->policy && !rlim_rtprio)
3864 return -EPERM;
3865
3866 /* can't increase priority */
3867 if (param->sched_priority > p->rt_priority &&
3868 param->sched_priority > rlim_rtprio)
3869 return -EPERM;
3870 }
c02aa73b 3871
dd41f596 3872 /*
c02aa73b
DH
3873 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3874 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3875 */
c02aa73b
DH
3876 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3877 if (!can_nice(p, TASK_NICE(p)))
3878 return -EPERM;
3879 }
5fe1d75f 3880
37e4ab3f 3881 /* can't change other user's priorities */
c69e8d9c 3882 if (!check_same_owner(p))
37e4ab3f 3883 return -EPERM;
ca94c442
LP
3884
3885 /* Normal users shall not reset the sched_reset_on_fork flag */
3886 if (p->sched_reset_on_fork && !reset_on_fork)
3887 return -EPERM;
37e4ab3f 3888 }
1da177e4 3889
725aad24 3890 if (user) {
b0ae1981 3891 retval = security_task_setscheduler(p);
725aad24
JF
3892 if (retval)
3893 return retval;
3894 }
3895
b29739f9
IM
3896 /*
3897 * make sure no PI-waiters arrive (or leave) while we are
3898 * changing the priority of the task:
0122ec5b 3899 *
25985edc 3900 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3901 * runqueue lock must be held.
3902 */
0122ec5b 3903 rq = task_rq_lock(p, &flags);
dc61b1d6 3904
34f971f6
PZ
3905 /*
3906 * Changing the policy of the stop threads its a very bad idea
3907 */
3908 if (p == rq->stop) {
0122ec5b 3909 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3910 return -EINVAL;
3911 }
3912
a51e9198
DF
3913 /*
3914 * If not changing anything there's no need to proceed further:
3915 */
3916 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3917 param->sched_priority == p->rt_priority))) {
45afb173 3918 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3919 return 0;
3920 }
3921
dc61b1d6
PZ
3922#ifdef CONFIG_RT_GROUP_SCHED
3923 if (user) {
3924 /*
3925 * Do not allow realtime tasks into groups that have no runtime
3926 * assigned.
3927 */
3928 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3929 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3930 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3931 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3932 return -EPERM;
3933 }
3934 }
3935#endif
3936
1da177e4
LT
3937 /* recheck policy now with rq lock held */
3938 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3939 policy = oldpolicy = -1;
0122ec5b 3940 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3941 goto recheck;
3942 }
fd2f4419 3943 on_rq = p->on_rq;
051a1d1a 3944 running = task_current(rq, p);
0e1f3483 3945 if (on_rq)
4ca9b72b 3946 dequeue_task(rq, p, 0);
0e1f3483
HS
3947 if (running)
3948 p->sched_class->put_prev_task(rq, p);
f6b53205 3949
ca94c442
LP
3950 p->sched_reset_on_fork = reset_on_fork;
3951
1da177e4 3952 oldprio = p->prio;
83ab0aa0 3953 prev_class = p->sched_class;
dd41f596 3954 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3955
0e1f3483
HS
3956 if (running)
3957 p->sched_class->set_curr_task(rq);
da7a735e 3958 if (on_rq)
4ca9b72b 3959 enqueue_task(rq, p, 0);
cb469845 3960
da7a735e 3961 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3962 task_rq_unlock(rq, p, &flags);
b29739f9 3963
95e02ca9
TG
3964 rt_mutex_adjust_pi(p);
3965
1da177e4
LT
3966 return 0;
3967}
961ccddd
RR
3968
3969/**
3970 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3971 * @p: the task in question.
3972 * @policy: new policy.
3973 * @param: structure containing the new RT priority.
3974 *
3975 * NOTE that the task may be already dead.
3976 */
3977int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3978 const struct sched_param *param)
961ccddd
RR
3979{
3980 return __sched_setscheduler(p, policy, param, true);
3981}
1da177e4
LT
3982EXPORT_SYMBOL_GPL(sched_setscheduler);
3983
961ccddd
RR
3984/**
3985 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3986 * @p: the task in question.
3987 * @policy: new policy.
3988 * @param: structure containing the new RT priority.
3989 *
3990 * Just like sched_setscheduler, only don't bother checking if the
3991 * current context has permission. For example, this is needed in
3992 * stop_machine(): we create temporary high priority worker threads,
3993 * but our caller might not have that capability.
3994 */
3995int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3996 const struct sched_param *param)
961ccddd
RR
3997{
3998 return __sched_setscheduler(p, policy, param, false);
3999}
4000
95cdf3b7
IM
4001static int
4002do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4003{
1da177e4
LT
4004 struct sched_param lparam;
4005 struct task_struct *p;
36c8b586 4006 int retval;
1da177e4
LT
4007
4008 if (!param || pid < 0)
4009 return -EINVAL;
4010 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4011 return -EFAULT;
5fe1d75f
ON
4012
4013 rcu_read_lock();
4014 retval = -ESRCH;
1da177e4 4015 p = find_process_by_pid(pid);
5fe1d75f
ON
4016 if (p != NULL)
4017 retval = sched_setscheduler(p, policy, &lparam);
4018 rcu_read_unlock();
36c8b586 4019
1da177e4
LT
4020 return retval;
4021}
4022
4023/**
4024 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4025 * @pid: the pid in question.
4026 * @policy: new policy.
4027 * @param: structure containing the new RT priority.
4028 */
5add95d4
HC
4029SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4030 struct sched_param __user *, param)
1da177e4 4031{
c21761f1
JB
4032 /* negative values for policy are not valid */
4033 if (policy < 0)
4034 return -EINVAL;
4035
1da177e4
LT
4036 return do_sched_setscheduler(pid, policy, param);
4037}
4038
4039/**
4040 * sys_sched_setparam - set/change the RT priority of a thread
4041 * @pid: the pid in question.
4042 * @param: structure containing the new RT priority.
4043 */
5add95d4 4044SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4045{
4046 return do_sched_setscheduler(pid, -1, param);
4047}
4048
4049/**
4050 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4051 * @pid: the pid in question.
4052 */
5add95d4 4053SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4054{
36c8b586 4055 struct task_struct *p;
3a5c359a 4056 int retval;
1da177e4
LT
4057
4058 if (pid < 0)
3a5c359a 4059 return -EINVAL;
1da177e4
LT
4060
4061 retval = -ESRCH;
5fe85be0 4062 rcu_read_lock();
1da177e4
LT
4063 p = find_process_by_pid(pid);
4064 if (p) {
4065 retval = security_task_getscheduler(p);
4066 if (!retval)
ca94c442
LP
4067 retval = p->policy
4068 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4069 }
5fe85be0 4070 rcu_read_unlock();
1da177e4
LT
4071 return retval;
4072}
4073
4074/**
ca94c442 4075 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4076 * @pid: the pid in question.
4077 * @param: structure containing the RT priority.
4078 */
5add95d4 4079SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4080{
4081 struct sched_param lp;
36c8b586 4082 struct task_struct *p;
3a5c359a 4083 int retval;
1da177e4
LT
4084
4085 if (!param || pid < 0)
3a5c359a 4086 return -EINVAL;
1da177e4 4087
5fe85be0 4088 rcu_read_lock();
1da177e4
LT
4089 p = find_process_by_pid(pid);
4090 retval = -ESRCH;
4091 if (!p)
4092 goto out_unlock;
4093
4094 retval = security_task_getscheduler(p);
4095 if (retval)
4096 goto out_unlock;
4097
4098 lp.sched_priority = p->rt_priority;
5fe85be0 4099 rcu_read_unlock();
1da177e4
LT
4100
4101 /*
4102 * This one might sleep, we cannot do it with a spinlock held ...
4103 */
4104 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4105
1da177e4
LT
4106 return retval;
4107
4108out_unlock:
5fe85be0 4109 rcu_read_unlock();
1da177e4
LT
4110 return retval;
4111}
4112
96f874e2 4113long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4114{
5a16f3d3 4115 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4116 struct task_struct *p;
4117 int retval;
1da177e4 4118
95402b38 4119 get_online_cpus();
23f5d142 4120 rcu_read_lock();
1da177e4
LT
4121
4122 p = find_process_by_pid(pid);
4123 if (!p) {
23f5d142 4124 rcu_read_unlock();
95402b38 4125 put_online_cpus();
1da177e4
LT
4126 return -ESRCH;
4127 }
4128
23f5d142 4129 /* Prevent p going away */
1da177e4 4130 get_task_struct(p);
23f5d142 4131 rcu_read_unlock();
1da177e4 4132
5a16f3d3
RR
4133 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4134 retval = -ENOMEM;
4135 goto out_put_task;
4136 }
4137 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4138 retval = -ENOMEM;
4139 goto out_free_cpus_allowed;
4140 }
1da177e4 4141 retval = -EPERM;
4c44aaaf
EB
4142 if (!check_same_owner(p)) {
4143 rcu_read_lock();
4144 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4145 rcu_read_unlock();
4146 goto out_unlock;
4147 }
4148 rcu_read_unlock();
4149 }
1da177e4 4150
b0ae1981 4151 retval = security_task_setscheduler(p);
e7834f8f
DQ
4152 if (retval)
4153 goto out_unlock;
4154
5a16f3d3
RR
4155 cpuset_cpus_allowed(p, cpus_allowed);
4156 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4157again:
5a16f3d3 4158 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4159
8707d8b8 4160 if (!retval) {
5a16f3d3
RR
4161 cpuset_cpus_allowed(p, cpus_allowed);
4162 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4163 /*
4164 * We must have raced with a concurrent cpuset
4165 * update. Just reset the cpus_allowed to the
4166 * cpuset's cpus_allowed
4167 */
5a16f3d3 4168 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4169 goto again;
4170 }
4171 }
1da177e4 4172out_unlock:
5a16f3d3
RR
4173 free_cpumask_var(new_mask);
4174out_free_cpus_allowed:
4175 free_cpumask_var(cpus_allowed);
4176out_put_task:
1da177e4 4177 put_task_struct(p);
95402b38 4178 put_online_cpus();
1da177e4
LT
4179 return retval;
4180}
4181
4182static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4183 struct cpumask *new_mask)
1da177e4 4184{
96f874e2
RR
4185 if (len < cpumask_size())
4186 cpumask_clear(new_mask);
4187 else if (len > cpumask_size())
4188 len = cpumask_size();
4189
1da177e4
LT
4190 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4191}
4192
4193/**
4194 * sys_sched_setaffinity - set the cpu affinity of a process
4195 * @pid: pid of the process
4196 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4197 * @user_mask_ptr: user-space pointer to the new cpu mask
4198 */
5add95d4
HC
4199SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4200 unsigned long __user *, user_mask_ptr)
1da177e4 4201{
5a16f3d3 4202 cpumask_var_t new_mask;
1da177e4
LT
4203 int retval;
4204
5a16f3d3
RR
4205 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4206 return -ENOMEM;
1da177e4 4207
5a16f3d3
RR
4208 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4209 if (retval == 0)
4210 retval = sched_setaffinity(pid, new_mask);
4211 free_cpumask_var(new_mask);
4212 return retval;
1da177e4
LT
4213}
4214
96f874e2 4215long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4216{
36c8b586 4217 struct task_struct *p;
31605683 4218 unsigned long flags;
1da177e4 4219 int retval;
1da177e4 4220
95402b38 4221 get_online_cpus();
23f5d142 4222 rcu_read_lock();
1da177e4
LT
4223
4224 retval = -ESRCH;
4225 p = find_process_by_pid(pid);
4226 if (!p)
4227 goto out_unlock;
4228
e7834f8f
DQ
4229 retval = security_task_getscheduler(p);
4230 if (retval)
4231 goto out_unlock;
4232
013fdb80 4233 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4234 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4235 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4236
4237out_unlock:
23f5d142 4238 rcu_read_unlock();
95402b38 4239 put_online_cpus();
1da177e4 4240
9531b62f 4241 return retval;
1da177e4
LT
4242}
4243
4244/**
4245 * sys_sched_getaffinity - get the cpu affinity of a process
4246 * @pid: pid of the process
4247 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4248 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4249 */
5add95d4
HC
4250SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4251 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4252{
4253 int ret;
f17c8607 4254 cpumask_var_t mask;
1da177e4 4255
84fba5ec 4256 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4257 return -EINVAL;
4258 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4259 return -EINVAL;
4260
f17c8607
RR
4261 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4262 return -ENOMEM;
1da177e4 4263
f17c8607
RR
4264 ret = sched_getaffinity(pid, mask);
4265 if (ret == 0) {
8bc037fb 4266 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4267
4268 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4269 ret = -EFAULT;
4270 else
cd3d8031 4271 ret = retlen;
f17c8607
RR
4272 }
4273 free_cpumask_var(mask);
1da177e4 4274
f17c8607 4275 return ret;
1da177e4
LT
4276}
4277
4278/**
4279 * sys_sched_yield - yield the current processor to other threads.
4280 *
dd41f596
IM
4281 * This function yields the current CPU to other tasks. If there are no
4282 * other threads running on this CPU then this function will return.
1da177e4 4283 */
5add95d4 4284SYSCALL_DEFINE0(sched_yield)
1da177e4 4285{
70b97a7f 4286 struct rq *rq = this_rq_lock();
1da177e4 4287
2d72376b 4288 schedstat_inc(rq, yld_count);
4530d7ab 4289 current->sched_class->yield_task(rq);
1da177e4
LT
4290
4291 /*
4292 * Since we are going to call schedule() anyway, there's
4293 * no need to preempt or enable interrupts:
4294 */
4295 __release(rq->lock);
8a25d5de 4296 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4297 do_raw_spin_unlock(&rq->lock);
ba74c144 4298 sched_preempt_enable_no_resched();
1da177e4
LT
4299
4300 schedule();
4301
4302 return 0;
4303}
4304
d86ee480
PZ
4305static inline int should_resched(void)
4306{
4307 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4308}
4309
e7b38404 4310static void __cond_resched(void)
1da177e4 4311{
e7aaaa69 4312 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4313 __schedule();
e7aaaa69 4314 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4315}
4316
02b67cc3 4317int __sched _cond_resched(void)
1da177e4 4318{
d86ee480 4319 if (should_resched()) {
1da177e4
LT
4320 __cond_resched();
4321 return 1;
4322 }
4323 return 0;
4324}
02b67cc3 4325EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4326
4327/*
613afbf8 4328 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4329 * call schedule, and on return reacquire the lock.
4330 *
41a2d6cf 4331 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4332 * operations here to prevent schedule() from being called twice (once via
4333 * spin_unlock(), once by hand).
4334 */
613afbf8 4335int __cond_resched_lock(spinlock_t *lock)
1da177e4 4336{
d86ee480 4337 int resched = should_resched();
6df3cecb
JK
4338 int ret = 0;
4339
f607c668
PZ
4340 lockdep_assert_held(lock);
4341
95c354fe 4342 if (spin_needbreak(lock) || resched) {
1da177e4 4343 spin_unlock(lock);
d86ee480 4344 if (resched)
95c354fe
NP
4345 __cond_resched();
4346 else
4347 cpu_relax();
6df3cecb 4348 ret = 1;
1da177e4 4349 spin_lock(lock);
1da177e4 4350 }
6df3cecb 4351 return ret;
1da177e4 4352}
613afbf8 4353EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4354
613afbf8 4355int __sched __cond_resched_softirq(void)
1da177e4
LT
4356{
4357 BUG_ON(!in_softirq());
4358
d86ee480 4359 if (should_resched()) {
98d82567 4360 local_bh_enable();
1da177e4
LT
4361 __cond_resched();
4362 local_bh_disable();
4363 return 1;
4364 }
4365 return 0;
4366}
613afbf8 4367EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4368
1da177e4
LT
4369/**
4370 * yield - yield the current processor to other threads.
4371 *
8e3fabfd
PZ
4372 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4373 *
4374 * The scheduler is at all times free to pick the calling task as the most
4375 * eligible task to run, if removing the yield() call from your code breaks
4376 * it, its already broken.
4377 *
4378 * Typical broken usage is:
4379 *
4380 * while (!event)
4381 * yield();
4382 *
4383 * where one assumes that yield() will let 'the other' process run that will
4384 * make event true. If the current task is a SCHED_FIFO task that will never
4385 * happen. Never use yield() as a progress guarantee!!
4386 *
4387 * If you want to use yield() to wait for something, use wait_event().
4388 * If you want to use yield() to be 'nice' for others, use cond_resched().
4389 * If you still want to use yield(), do not!
1da177e4
LT
4390 */
4391void __sched yield(void)
4392{
4393 set_current_state(TASK_RUNNING);
4394 sys_sched_yield();
4395}
1da177e4
LT
4396EXPORT_SYMBOL(yield);
4397
d95f4122
MG
4398/**
4399 * yield_to - yield the current processor to another thread in
4400 * your thread group, or accelerate that thread toward the
4401 * processor it's on.
16addf95
RD
4402 * @p: target task
4403 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4404 *
4405 * It's the caller's job to ensure that the target task struct
4406 * can't go away on us before we can do any checks.
4407 *
7b270f60
PZ
4408 * Returns:
4409 * true (>0) if we indeed boosted the target task.
4410 * false (0) if we failed to boost the target.
4411 * -ESRCH if there's no task to yield to.
d95f4122
MG
4412 */
4413bool __sched yield_to(struct task_struct *p, bool preempt)
4414{
4415 struct task_struct *curr = current;
4416 struct rq *rq, *p_rq;
4417 unsigned long flags;
c3c18640 4418 int yielded = 0;
d95f4122
MG
4419
4420 local_irq_save(flags);
4421 rq = this_rq();
4422
4423again:
4424 p_rq = task_rq(p);
7b270f60
PZ
4425 /*
4426 * If we're the only runnable task on the rq and target rq also
4427 * has only one task, there's absolutely no point in yielding.
4428 */
4429 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4430 yielded = -ESRCH;
4431 goto out_irq;
4432 }
4433
d95f4122
MG
4434 double_rq_lock(rq, p_rq);
4435 while (task_rq(p) != p_rq) {
4436 double_rq_unlock(rq, p_rq);
4437 goto again;
4438 }
4439
4440 if (!curr->sched_class->yield_to_task)
7b270f60 4441 goto out_unlock;
d95f4122
MG
4442
4443 if (curr->sched_class != p->sched_class)
7b270f60 4444 goto out_unlock;
d95f4122
MG
4445
4446 if (task_running(p_rq, p) || p->state)
7b270f60 4447 goto out_unlock;
d95f4122
MG
4448
4449 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4450 if (yielded) {
d95f4122 4451 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4452 /*
4453 * Make p's CPU reschedule; pick_next_entity takes care of
4454 * fairness.
4455 */
4456 if (preempt && rq != p_rq)
4457 resched_task(p_rq->curr);
4458 }
d95f4122 4459
7b270f60 4460out_unlock:
d95f4122 4461 double_rq_unlock(rq, p_rq);
7b270f60 4462out_irq:
d95f4122
MG
4463 local_irq_restore(flags);
4464
7b270f60 4465 if (yielded > 0)
d95f4122
MG
4466 schedule();
4467
4468 return yielded;
4469}
4470EXPORT_SYMBOL_GPL(yield_to);
4471
1da177e4 4472/*
41a2d6cf 4473 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4474 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4475 */
4476void __sched io_schedule(void)
4477{
54d35f29 4478 struct rq *rq = raw_rq();
1da177e4 4479
0ff92245 4480 delayacct_blkio_start();
1da177e4 4481 atomic_inc(&rq->nr_iowait);
73c10101 4482 blk_flush_plug(current);
8f0dfc34 4483 current->in_iowait = 1;
1da177e4 4484 schedule();
8f0dfc34 4485 current->in_iowait = 0;
1da177e4 4486 atomic_dec(&rq->nr_iowait);
0ff92245 4487 delayacct_blkio_end();
1da177e4 4488}
1da177e4
LT
4489EXPORT_SYMBOL(io_schedule);
4490
4491long __sched io_schedule_timeout(long timeout)
4492{
54d35f29 4493 struct rq *rq = raw_rq();
1da177e4
LT
4494 long ret;
4495
0ff92245 4496 delayacct_blkio_start();
1da177e4 4497 atomic_inc(&rq->nr_iowait);
73c10101 4498 blk_flush_plug(current);
8f0dfc34 4499 current->in_iowait = 1;
1da177e4 4500 ret = schedule_timeout(timeout);
8f0dfc34 4501 current->in_iowait = 0;
1da177e4 4502 atomic_dec(&rq->nr_iowait);
0ff92245 4503 delayacct_blkio_end();
1da177e4
LT
4504 return ret;
4505}
4506
4507/**
4508 * sys_sched_get_priority_max - return maximum RT priority.
4509 * @policy: scheduling class.
4510 *
4511 * this syscall returns the maximum rt_priority that can be used
4512 * by a given scheduling class.
4513 */
5add95d4 4514SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4515{
4516 int ret = -EINVAL;
4517
4518 switch (policy) {
4519 case SCHED_FIFO:
4520 case SCHED_RR:
4521 ret = MAX_USER_RT_PRIO-1;
4522 break;
4523 case SCHED_NORMAL:
b0a9499c 4524 case SCHED_BATCH:
dd41f596 4525 case SCHED_IDLE:
1da177e4
LT
4526 ret = 0;
4527 break;
4528 }
4529 return ret;
4530}
4531
4532/**
4533 * sys_sched_get_priority_min - return minimum RT priority.
4534 * @policy: scheduling class.
4535 *
4536 * this syscall returns the minimum rt_priority that can be used
4537 * by a given scheduling class.
4538 */
5add95d4 4539SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4540{
4541 int ret = -EINVAL;
4542
4543 switch (policy) {
4544 case SCHED_FIFO:
4545 case SCHED_RR:
4546 ret = 1;
4547 break;
4548 case SCHED_NORMAL:
b0a9499c 4549 case SCHED_BATCH:
dd41f596 4550 case SCHED_IDLE:
1da177e4
LT
4551 ret = 0;
4552 }
4553 return ret;
4554}
4555
4556/**
4557 * sys_sched_rr_get_interval - return the default timeslice of a process.
4558 * @pid: pid of the process.
4559 * @interval: userspace pointer to the timeslice value.
4560 *
4561 * this syscall writes the default timeslice value of a given process
4562 * into the user-space timespec buffer. A value of '0' means infinity.
4563 */
17da2bd9 4564SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4565 struct timespec __user *, interval)
1da177e4 4566{
36c8b586 4567 struct task_struct *p;
a4ec24b4 4568 unsigned int time_slice;
dba091b9
TG
4569 unsigned long flags;
4570 struct rq *rq;
3a5c359a 4571 int retval;
1da177e4 4572 struct timespec t;
1da177e4
LT
4573
4574 if (pid < 0)
3a5c359a 4575 return -EINVAL;
1da177e4
LT
4576
4577 retval = -ESRCH;
1a551ae7 4578 rcu_read_lock();
1da177e4
LT
4579 p = find_process_by_pid(pid);
4580 if (!p)
4581 goto out_unlock;
4582
4583 retval = security_task_getscheduler(p);
4584 if (retval)
4585 goto out_unlock;
4586
dba091b9
TG
4587 rq = task_rq_lock(p, &flags);
4588 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4589 task_rq_unlock(rq, p, &flags);
a4ec24b4 4590
1a551ae7 4591 rcu_read_unlock();
a4ec24b4 4592 jiffies_to_timespec(time_slice, &t);
1da177e4 4593 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4594 return retval;
3a5c359a 4595
1da177e4 4596out_unlock:
1a551ae7 4597 rcu_read_unlock();
1da177e4
LT
4598 return retval;
4599}
4600
7c731e0a 4601static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4602
82a1fcb9 4603void sched_show_task(struct task_struct *p)
1da177e4 4604{
1da177e4 4605 unsigned long free = 0;
4e79752c 4606 int ppid;
36c8b586 4607 unsigned state;
1da177e4 4608
1da177e4 4609 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4610 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4611 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4612#if BITS_PER_LONG == 32
1da177e4 4613 if (state == TASK_RUNNING)
3df0fc5b 4614 printk(KERN_CONT " running ");
1da177e4 4615 else
3df0fc5b 4616 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4617#else
4618 if (state == TASK_RUNNING)
3df0fc5b 4619 printk(KERN_CONT " running task ");
1da177e4 4620 else
3df0fc5b 4621 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4622#endif
4623#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4624 free = stack_not_used(p);
1da177e4 4625#endif
4e79752c
PM
4626 rcu_read_lock();
4627 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4628 rcu_read_unlock();
3df0fc5b 4629 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4630 task_pid_nr(p), ppid,
aa47b7e0 4631 (unsigned long)task_thread_info(p)->flags);
1da177e4 4632
5fb5e6de 4633 show_stack(p, NULL);
1da177e4
LT
4634}
4635
e59e2ae2 4636void show_state_filter(unsigned long state_filter)
1da177e4 4637{
36c8b586 4638 struct task_struct *g, *p;
1da177e4 4639
4bd77321 4640#if BITS_PER_LONG == 32
3df0fc5b
PZ
4641 printk(KERN_INFO
4642 " task PC stack pid father\n");
1da177e4 4643#else
3df0fc5b
PZ
4644 printk(KERN_INFO
4645 " task PC stack pid father\n");
1da177e4 4646#endif
510f5acc 4647 rcu_read_lock();
1da177e4
LT
4648 do_each_thread(g, p) {
4649 /*
4650 * reset the NMI-timeout, listing all files on a slow
25985edc 4651 * console might take a lot of time:
1da177e4
LT
4652 */
4653 touch_nmi_watchdog();
39bc89fd 4654 if (!state_filter || (p->state & state_filter))
82a1fcb9 4655 sched_show_task(p);
1da177e4
LT
4656 } while_each_thread(g, p);
4657
04c9167f
JF
4658 touch_all_softlockup_watchdogs();
4659
dd41f596
IM
4660#ifdef CONFIG_SCHED_DEBUG
4661 sysrq_sched_debug_show();
4662#endif
510f5acc 4663 rcu_read_unlock();
e59e2ae2
IM
4664 /*
4665 * Only show locks if all tasks are dumped:
4666 */
93335a21 4667 if (!state_filter)
e59e2ae2 4668 debug_show_all_locks();
1da177e4
LT
4669}
4670
1df21055
IM
4671void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4672{
dd41f596 4673 idle->sched_class = &idle_sched_class;
1df21055
IM
4674}
4675
f340c0d1
IM
4676/**
4677 * init_idle - set up an idle thread for a given CPU
4678 * @idle: task in question
4679 * @cpu: cpu the idle task belongs to
4680 *
4681 * NOTE: this function does not set the idle thread's NEED_RESCHED
4682 * flag, to make booting more robust.
4683 */
5c1e1767 4684void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4685{
70b97a7f 4686 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4687 unsigned long flags;
4688
05fa785c 4689 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4690
dd41f596 4691 __sched_fork(idle);
06b83b5f 4692 idle->state = TASK_RUNNING;
dd41f596
IM
4693 idle->se.exec_start = sched_clock();
4694
1e1b6c51 4695 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4696 /*
4697 * We're having a chicken and egg problem, even though we are
4698 * holding rq->lock, the cpu isn't yet set to this cpu so the
4699 * lockdep check in task_group() will fail.
4700 *
4701 * Similar case to sched_fork(). / Alternatively we could
4702 * use task_rq_lock() here and obtain the other rq->lock.
4703 *
4704 * Silence PROVE_RCU
4705 */
4706 rcu_read_lock();
dd41f596 4707 __set_task_cpu(idle, cpu);
6506cf6c 4708 rcu_read_unlock();
1da177e4 4709
1da177e4 4710 rq->curr = rq->idle = idle;
3ca7a440
PZ
4711#if defined(CONFIG_SMP)
4712 idle->on_cpu = 1;
4866cde0 4713#endif
05fa785c 4714 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4715
4716 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4717 task_thread_info(idle)->preempt_count = 0;
55cd5340 4718
dd41f596
IM
4719 /*
4720 * The idle tasks have their own, simple scheduling class:
4721 */
4722 idle->sched_class = &idle_sched_class;
868baf07 4723 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4724 vtime_init_idle(idle);
f1c6f1a7
CE
4725#if defined(CONFIG_SMP)
4726 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4727#endif
19978ca6
IM
4728}
4729
1da177e4 4730#ifdef CONFIG_SMP
1e1b6c51
KM
4731void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4732{
4733 if (p->sched_class && p->sched_class->set_cpus_allowed)
4734 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4735
4736 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4737 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4738}
4739
1da177e4
LT
4740/*
4741 * This is how migration works:
4742 *
969c7921
TH
4743 * 1) we invoke migration_cpu_stop() on the target CPU using
4744 * stop_one_cpu().
4745 * 2) stopper starts to run (implicitly forcing the migrated thread
4746 * off the CPU)
4747 * 3) it checks whether the migrated task is still in the wrong runqueue.
4748 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4749 * it and puts it into the right queue.
969c7921
TH
4750 * 5) stopper completes and stop_one_cpu() returns and the migration
4751 * is done.
1da177e4
LT
4752 */
4753
4754/*
4755 * Change a given task's CPU affinity. Migrate the thread to a
4756 * proper CPU and schedule it away if the CPU it's executing on
4757 * is removed from the allowed bitmask.
4758 *
4759 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4760 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4761 * call is not atomic; no spinlocks may be held.
4762 */
96f874e2 4763int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4764{
4765 unsigned long flags;
70b97a7f 4766 struct rq *rq;
969c7921 4767 unsigned int dest_cpu;
48f24c4d 4768 int ret = 0;
1da177e4
LT
4769
4770 rq = task_rq_lock(p, &flags);
e2912009 4771
db44fc01
YZ
4772 if (cpumask_equal(&p->cpus_allowed, new_mask))
4773 goto out;
4774
6ad4c188 4775 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4776 ret = -EINVAL;
4777 goto out;
4778 }
4779
db44fc01 4780 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4781 ret = -EINVAL;
4782 goto out;
4783 }
4784
1e1b6c51 4785 do_set_cpus_allowed(p, new_mask);
73fe6aae 4786
1da177e4 4787 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4788 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4789 goto out;
4790
969c7921 4791 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4792 if (p->on_rq) {
969c7921 4793 struct migration_arg arg = { p, dest_cpu };
1da177e4 4794 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4795 task_rq_unlock(rq, p, &flags);
969c7921 4796 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4797 tlb_migrate_finish(p->mm);
4798 return 0;
4799 }
4800out:
0122ec5b 4801 task_rq_unlock(rq, p, &flags);
48f24c4d 4802
1da177e4
LT
4803 return ret;
4804}
cd8ba7cd 4805EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4806
4807/*
41a2d6cf 4808 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4809 * this because either it can't run here any more (set_cpus_allowed()
4810 * away from this CPU, or CPU going down), or because we're
4811 * attempting to rebalance this task on exec (sched_exec).
4812 *
4813 * So we race with normal scheduler movements, but that's OK, as long
4814 * as the task is no longer on this CPU.
efc30814
KK
4815 *
4816 * Returns non-zero if task was successfully migrated.
1da177e4 4817 */
efc30814 4818static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4819{
70b97a7f 4820 struct rq *rq_dest, *rq_src;
e2912009 4821 int ret = 0;
1da177e4 4822
e761b772 4823 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4824 return ret;
1da177e4
LT
4825
4826 rq_src = cpu_rq(src_cpu);
4827 rq_dest = cpu_rq(dest_cpu);
4828
0122ec5b 4829 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4830 double_rq_lock(rq_src, rq_dest);
4831 /* Already moved. */
4832 if (task_cpu(p) != src_cpu)
b1e38734 4833 goto done;
1da177e4 4834 /* Affinity changed (again). */
fa17b507 4835 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4836 goto fail;
1da177e4 4837
e2912009
PZ
4838 /*
4839 * If we're not on a rq, the next wake-up will ensure we're
4840 * placed properly.
4841 */
fd2f4419 4842 if (p->on_rq) {
4ca9b72b 4843 dequeue_task(rq_src, p, 0);
e2912009 4844 set_task_cpu(p, dest_cpu);
4ca9b72b 4845 enqueue_task(rq_dest, p, 0);
15afe09b 4846 check_preempt_curr(rq_dest, p, 0);
1da177e4 4847 }
b1e38734 4848done:
efc30814 4849 ret = 1;
b1e38734 4850fail:
1da177e4 4851 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4852 raw_spin_unlock(&p->pi_lock);
efc30814 4853 return ret;
1da177e4
LT
4854}
4855
4856/*
969c7921
TH
4857 * migration_cpu_stop - this will be executed by a highprio stopper thread
4858 * and performs thread migration by bumping thread off CPU then
4859 * 'pushing' onto another runqueue.
1da177e4 4860 */
969c7921 4861static int migration_cpu_stop(void *data)
1da177e4 4862{
969c7921 4863 struct migration_arg *arg = data;
f7b4cddc 4864
969c7921
TH
4865 /*
4866 * The original target cpu might have gone down and we might
4867 * be on another cpu but it doesn't matter.
4868 */
f7b4cddc 4869 local_irq_disable();
969c7921 4870 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4871 local_irq_enable();
1da177e4 4872 return 0;
f7b4cddc
ON
4873}
4874
1da177e4 4875#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4876
054b9108 4877/*
48c5ccae
PZ
4878 * Ensures that the idle task is using init_mm right before its cpu goes
4879 * offline.
054b9108 4880 */
48c5ccae 4881void idle_task_exit(void)
1da177e4 4882{
48c5ccae 4883 struct mm_struct *mm = current->active_mm;
e76bd8d9 4884
48c5ccae 4885 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4886
48c5ccae
PZ
4887 if (mm != &init_mm)
4888 switch_mm(mm, &init_mm, current);
4889 mmdrop(mm);
1da177e4
LT
4890}
4891
4892/*
5d180232
PZ
4893 * Since this CPU is going 'away' for a while, fold any nr_active delta
4894 * we might have. Assumes we're called after migrate_tasks() so that the
4895 * nr_active count is stable.
4896 *
4897 * Also see the comment "Global load-average calculations".
1da177e4 4898 */
5d180232 4899static void calc_load_migrate(struct rq *rq)
1da177e4 4900{
5d180232
PZ
4901 long delta = calc_load_fold_active(rq);
4902 if (delta)
4903 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4904}
4905
48f24c4d 4906/*
48c5ccae
PZ
4907 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4908 * try_to_wake_up()->select_task_rq().
4909 *
4910 * Called with rq->lock held even though we'er in stop_machine() and
4911 * there's no concurrency possible, we hold the required locks anyway
4912 * because of lock validation efforts.
1da177e4 4913 */
48c5ccae 4914static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4915{
70b97a7f 4916 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4917 struct task_struct *next, *stop = rq->stop;
4918 int dest_cpu;
1da177e4
LT
4919
4920 /*
48c5ccae
PZ
4921 * Fudge the rq selection such that the below task selection loop
4922 * doesn't get stuck on the currently eligible stop task.
4923 *
4924 * We're currently inside stop_machine() and the rq is either stuck
4925 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4926 * either way we should never end up calling schedule() until we're
4927 * done here.
1da177e4 4928 */
48c5ccae 4929 rq->stop = NULL;
48f24c4d 4930
dd41f596 4931 for ( ; ; ) {
48c5ccae
PZ
4932 /*
4933 * There's this thread running, bail when that's the only
4934 * remaining thread.
4935 */
4936 if (rq->nr_running == 1)
dd41f596 4937 break;
48c5ccae 4938
b67802ea 4939 next = pick_next_task(rq);
48c5ccae 4940 BUG_ON(!next);
79c53799 4941 next->sched_class->put_prev_task(rq, next);
e692ab53 4942
48c5ccae
PZ
4943 /* Find suitable destination for @next, with force if needed. */
4944 dest_cpu = select_fallback_rq(dead_cpu, next);
4945 raw_spin_unlock(&rq->lock);
4946
4947 __migrate_task(next, dead_cpu, dest_cpu);
4948
4949 raw_spin_lock(&rq->lock);
1da177e4 4950 }
dce48a84 4951
48c5ccae 4952 rq->stop = stop;
dce48a84 4953}
48c5ccae 4954
1da177e4
LT
4955#endif /* CONFIG_HOTPLUG_CPU */
4956
e692ab53
NP
4957#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4958
4959static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4960 {
4961 .procname = "sched_domain",
c57baf1e 4962 .mode = 0555,
e0361851 4963 },
56992309 4964 {}
e692ab53
NP
4965};
4966
4967static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4968 {
4969 .procname = "kernel",
c57baf1e 4970 .mode = 0555,
e0361851
AD
4971 .child = sd_ctl_dir,
4972 },
56992309 4973 {}
e692ab53
NP
4974};
4975
4976static struct ctl_table *sd_alloc_ctl_entry(int n)
4977{
4978 struct ctl_table *entry =
5cf9f062 4979 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4980
e692ab53
NP
4981 return entry;
4982}
4983
6382bc90
MM
4984static void sd_free_ctl_entry(struct ctl_table **tablep)
4985{
cd790076 4986 struct ctl_table *entry;
6382bc90 4987
cd790076
MM
4988 /*
4989 * In the intermediate directories, both the child directory and
4990 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4991 * will always be set. In the lowest directory the names are
cd790076
MM
4992 * static strings and all have proc handlers.
4993 */
4994 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4995 if (entry->child)
4996 sd_free_ctl_entry(&entry->child);
cd790076
MM
4997 if (entry->proc_handler == NULL)
4998 kfree(entry->procname);
4999 }
6382bc90
MM
5000
5001 kfree(*tablep);
5002 *tablep = NULL;
5003}
5004
201c373e
NK
5005static int min_load_idx = 0;
5006static int max_load_idx = CPU_LOAD_IDX_MAX;
5007
e692ab53 5008static void
e0361851 5009set_table_entry(struct ctl_table *entry,
e692ab53 5010 const char *procname, void *data, int maxlen,
201c373e
NK
5011 umode_t mode, proc_handler *proc_handler,
5012 bool load_idx)
e692ab53 5013{
e692ab53
NP
5014 entry->procname = procname;
5015 entry->data = data;
5016 entry->maxlen = maxlen;
5017 entry->mode = mode;
5018 entry->proc_handler = proc_handler;
201c373e
NK
5019
5020 if (load_idx) {
5021 entry->extra1 = &min_load_idx;
5022 entry->extra2 = &max_load_idx;
5023 }
e692ab53
NP
5024}
5025
5026static struct ctl_table *
5027sd_alloc_ctl_domain_table(struct sched_domain *sd)
5028{
a5d8c348 5029 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5030
ad1cdc1d
MM
5031 if (table == NULL)
5032 return NULL;
5033
e0361851 5034 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5035 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5036 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5037 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5038 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5039 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5040 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5041 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5042 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5043 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5044 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5045 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5046 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5047 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5048 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5049 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5050 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5051 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5052 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5053 &sd->cache_nice_tries,
201c373e 5054 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5055 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5056 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 5057 set_table_entry(&table[11], "name", sd->name,
201c373e 5058 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 5059 /* &table[12] is terminator */
e692ab53
NP
5060
5061 return table;
5062}
5063
9a4e7159 5064static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5065{
5066 struct ctl_table *entry, *table;
5067 struct sched_domain *sd;
5068 int domain_num = 0, i;
5069 char buf[32];
5070
5071 for_each_domain(cpu, sd)
5072 domain_num++;
5073 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5074 if (table == NULL)
5075 return NULL;
e692ab53
NP
5076
5077 i = 0;
5078 for_each_domain(cpu, sd) {
5079 snprintf(buf, 32, "domain%d", i);
e692ab53 5080 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5081 entry->mode = 0555;
e692ab53
NP
5082 entry->child = sd_alloc_ctl_domain_table(sd);
5083 entry++;
5084 i++;
5085 }
5086 return table;
5087}
5088
5089static struct ctl_table_header *sd_sysctl_header;
6382bc90 5090static void register_sched_domain_sysctl(void)
e692ab53 5091{
6ad4c188 5092 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5093 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5094 char buf[32];
5095
7378547f
MM
5096 WARN_ON(sd_ctl_dir[0].child);
5097 sd_ctl_dir[0].child = entry;
5098
ad1cdc1d
MM
5099 if (entry == NULL)
5100 return;
5101
6ad4c188 5102 for_each_possible_cpu(i) {
e692ab53 5103 snprintf(buf, 32, "cpu%d", i);
e692ab53 5104 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5105 entry->mode = 0555;
e692ab53 5106 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5107 entry++;
e692ab53 5108 }
7378547f
MM
5109
5110 WARN_ON(sd_sysctl_header);
e692ab53
NP
5111 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5112}
6382bc90 5113
7378547f 5114/* may be called multiple times per register */
6382bc90
MM
5115static void unregister_sched_domain_sysctl(void)
5116{
7378547f
MM
5117 if (sd_sysctl_header)
5118 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5119 sd_sysctl_header = NULL;
7378547f
MM
5120 if (sd_ctl_dir[0].child)
5121 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5122}
e692ab53 5123#else
6382bc90
MM
5124static void register_sched_domain_sysctl(void)
5125{
5126}
5127static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5128{
5129}
5130#endif
5131
1f11eb6a
GH
5132static void set_rq_online(struct rq *rq)
5133{
5134 if (!rq->online) {
5135 const struct sched_class *class;
5136
c6c4927b 5137 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5138 rq->online = 1;
5139
5140 for_each_class(class) {
5141 if (class->rq_online)
5142 class->rq_online(rq);
5143 }
5144 }
5145}
5146
5147static void set_rq_offline(struct rq *rq)
5148{
5149 if (rq->online) {
5150 const struct sched_class *class;
5151
5152 for_each_class(class) {
5153 if (class->rq_offline)
5154 class->rq_offline(rq);
5155 }
5156
c6c4927b 5157 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5158 rq->online = 0;
5159 }
5160}
5161
1da177e4
LT
5162/*
5163 * migration_call - callback that gets triggered when a CPU is added.
5164 * Here we can start up the necessary migration thread for the new CPU.
5165 */
48f24c4d
IM
5166static int __cpuinit
5167migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5168{
48f24c4d 5169 int cpu = (long)hcpu;
1da177e4 5170 unsigned long flags;
969c7921 5171 struct rq *rq = cpu_rq(cpu);
1da177e4 5172
48c5ccae 5173 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5174
1da177e4 5175 case CPU_UP_PREPARE:
a468d389 5176 rq->calc_load_update = calc_load_update;
1da177e4 5177 break;
48f24c4d 5178
1da177e4 5179 case CPU_ONLINE:
1f94ef59 5180 /* Update our root-domain */
05fa785c 5181 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5182 if (rq->rd) {
c6c4927b 5183 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5184
5185 set_rq_online(rq);
1f94ef59 5186 }
05fa785c 5187 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5188 break;
48f24c4d 5189
1da177e4 5190#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5191 case CPU_DYING:
317f3941 5192 sched_ttwu_pending();
57d885fe 5193 /* Update our root-domain */
05fa785c 5194 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5195 if (rq->rd) {
c6c4927b 5196 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5197 set_rq_offline(rq);
57d885fe 5198 }
48c5ccae
PZ
5199 migrate_tasks(cpu);
5200 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5201 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5202 break;
48c5ccae 5203
5d180232 5204 case CPU_DEAD:
f319da0c 5205 calc_load_migrate(rq);
57d885fe 5206 break;
1da177e4
LT
5207#endif
5208 }
49c022e6
PZ
5209
5210 update_max_interval();
5211
1da177e4
LT
5212 return NOTIFY_OK;
5213}
5214
f38b0820
PM
5215/*
5216 * Register at high priority so that task migration (migrate_all_tasks)
5217 * happens before everything else. This has to be lower priority than
cdd6c482 5218 * the notifier in the perf_event subsystem, though.
1da177e4 5219 */
26c2143b 5220static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5221 .notifier_call = migration_call,
50a323b7 5222 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5223};
5224
3a101d05
TH
5225static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5226 unsigned long action, void *hcpu)
5227{
5228 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5229 case CPU_STARTING:
3a101d05
TH
5230 case CPU_DOWN_FAILED:
5231 set_cpu_active((long)hcpu, true);
5232 return NOTIFY_OK;
5233 default:
5234 return NOTIFY_DONE;
5235 }
5236}
5237
5238static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5239 unsigned long action, void *hcpu)
5240{
5241 switch (action & ~CPU_TASKS_FROZEN) {
5242 case CPU_DOWN_PREPARE:
5243 set_cpu_active((long)hcpu, false);
5244 return NOTIFY_OK;
5245 default:
5246 return NOTIFY_DONE;
5247 }
5248}
5249
7babe8db 5250static int __init migration_init(void)
1da177e4
LT
5251{
5252 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5253 int err;
48f24c4d 5254
3a101d05 5255 /* Initialize migration for the boot CPU */
07dccf33
AM
5256 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5257 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5258 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5259 register_cpu_notifier(&migration_notifier);
7babe8db 5260
3a101d05
TH
5261 /* Register cpu active notifiers */
5262 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5263 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5264
a004cd42 5265 return 0;
1da177e4 5266}
7babe8db 5267early_initcall(migration_init);
1da177e4
LT
5268#endif
5269
5270#ifdef CONFIG_SMP
476f3534 5271
4cb98839
PZ
5272static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5273
3e9830dc 5274#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5275
d039ac60 5276static __read_mostly int sched_debug_enabled;
f6630114 5277
d039ac60 5278static int __init sched_debug_setup(char *str)
f6630114 5279{
d039ac60 5280 sched_debug_enabled = 1;
f6630114
MT
5281
5282 return 0;
5283}
d039ac60
PZ
5284early_param("sched_debug", sched_debug_setup);
5285
5286static inline bool sched_debug(void)
5287{
5288 return sched_debug_enabled;
5289}
f6630114 5290
7c16ec58 5291static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5292 struct cpumask *groupmask)
1da177e4 5293{
4dcf6aff 5294 struct sched_group *group = sd->groups;
434d53b0 5295 char str[256];
1da177e4 5296
968ea6d8 5297 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5298 cpumask_clear(groupmask);
4dcf6aff
IM
5299
5300 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5301
5302 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5303 printk("does not load-balance\n");
4dcf6aff 5304 if (sd->parent)
3df0fc5b
PZ
5305 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5306 " has parent");
4dcf6aff 5307 return -1;
41c7ce9a
NP
5308 }
5309
3df0fc5b 5310 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5311
758b2cdc 5312 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5313 printk(KERN_ERR "ERROR: domain->span does not contain "
5314 "CPU%d\n", cpu);
4dcf6aff 5315 }
758b2cdc 5316 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5317 printk(KERN_ERR "ERROR: domain->groups does not contain"
5318 " CPU%d\n", cpu);
4dcf6aff 5319 }
1da177e4 5320
4dcf6aff 5321 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5322 do {
4dcf6aff 5323 if (!group) {
3df0fc5b
PZ
5324 printk("\n");
5325 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5326 break;
5327 }
5328
c3decf0d
PZ
5329 /*
5330 * Even though we initialize ->power to something semi-sane,
5331 * we leave power_orig unset. This allows us to detect if
5332 * domain iteration is still funny without causing /0 traps.
5333 */
5334 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5335 printk(KERN_CONT "\n");
5336 printk(KERN_ERR "ERROR: domain->cpu_power not "
5337 "set\n");
4dcf6aff
IM
5338 break;
5339 }
1da177e4 5340
758b2cdc 5341 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5342 printk(KERN_CONT "\n");
5343 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5344 break;
5345 }
1da177e4 5346
cb83b629
PZ
5347 if (!(sd->flags & SD_OVERLAP) &&
5348 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5349 printk(KERN_CONT "\n");
5350 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5351 break;
5352 }
1da177e4 5353
758b2cdc 5354 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5355
968ea6d8 5356 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5357
3df0fc5b 5358 printk(KERN_CONT " %s", str);
9c3f75cb 5359 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5360 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5361 group->sgp->power);
381512cf 5362 }
1da177e4 5363
4dcf6aff
IM
5364 group = group->next;
5365 } while (group != sd->groups);
3df0fc5b 5366 printk(KERN_CONT "\n");
1da177e4 5367
758b2cdc 5368 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5369 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5370
758b2cdc
RR
5371 if (sd->parent &&
5372 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5373 printk(KERN_ERR "ERROR: parent span is not a superset "
5374 "of domain->span\n");
4dcf6aff
IM
5375 return 0;
5376}
1da177e4 5377
4dcf6aff
IM
5378static void sched_domain_debug(struct sched_domain *sd, int cpu)
5379{
5380 int level = 0;
1da177e4 5381
d039ac60 5382 if (!sched_debug_enabled)
f6630114
MT
5383 return;
5384
4dcf6aff
IM
5385 if (!sd) {
5386 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5387 return;
5388 }
1da177e4 5389
4dcf6aff
IM
5390 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5391
5392 for (;;) {
4cb98839 5393 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5394 break;
1da177e4
LT
5395 level++;
5396 sd = sd->parent;
33859f7f 5397 if (!sd)
4dcf6aff
IM
5398 break;
5399 }
1da177e4 5400}
6d6bc0ad 5401#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5402# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5403static inline bool sched_debug(void)
5404{
5405 return false;
5406}
6d6bc0ad 5407#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5408
1a20ff27 5409static int sd_degenerate(struct sched_domain *sd)
245af2c7 5410{
758b2cdc 5411 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5412 return 1;
5413
5414 /* Following flags need at least 2 groups */
5415 if (sd->flags & (SD_LOAD_BALANCE |
5416 SD_BALANCE_NEWIDLE |
5417 SD_BALANCE_FORK |
89c4710e
SS
5418 SD_BALANCE_EXEC |
5419 SD_SHARE_CPUPOWER |
5420 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5421 if (sd->groups != sd->groups->next)
5422 return 0;
5423 }
5424
5425 /* Following flags don't use groups */
c88d5910 5426 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5427 return 0;
5428
5429 return 1;
5430}
5431
48f24c4d
IM
5432static int
5433sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5434{
5435 unsigned long cflags = sd->flags, pflags = parent->flags;
5436
5437 if (sd_degenerate(parent))
5438 return 1;
5439
758b2cdc 5440 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5441 return 0;
5442
245af2c7
SS
5443 /* Flags needing groups don't count if only 1 group in parent */
5444 if (parent->groups == parent->groups->next) {
5445 pflags &= ~(SD_LOAD_BALANCE |
5446 SD_BALANCE_NEWIDLE |
5447 SD_BALANCE_FORK |
89c4710e
SS
5448 SD_BALANCE_EXEC |
5449 SD_SHARE_CPUPOWER |
5450 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5451 if (nr_node_ids == 1)
5452 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5453 }
5454 if (~cflags & pflags)
5455 return 0;
5456
5457 return 1;
5458}
5459
dce840a0 5460static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5461{
dce840a0 5462 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5463
68e74568 5464 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5465 free_cpumask_var(rd->rto_mask);
5466 free_cpumask_var(rd->online);
5467 free_cpumask_var(rd->span);
5468 kfree(rd);
5469}
5470
57d885fe
GH
5471static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5472{
a0490fa3 5473 struct root_domain *old_rd = NULL;
57d885fe 5474 unsigned long flags;
57d885fe 5475
05fa785c 5476 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5477
5478 if (rq->rd) {
a0490fa3 5479 old_rd = rq->rd;
57d885fe 5480
c6c4927b 5481 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5482 set_rq_offline(rq);
57d885fe 5483
c6c4927b 5484 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5485
a0490fa3
IM
5486 /*
5487 * If we dont want to free the old_rt yet then
5488 * set old_rd to NULL to skip the freeing later
5489 * in this function:
5490 */
5491 if (!atomic_dec_and_test(&old_rd->refcount))
5492 old_rd = NULL;
57d885fe
GH
5493 }
5494
5495 atomic_inc(&rd->refcount);
5496 rq->rd = rd;
5497
c6c4927b 5498 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5499 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5500 set_rq_online(rq);
57d885fe 5501
05fa785c 5502 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5503
5504 if (old_rd)
dce840a0 5505 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5506}
5507
68c38fc3 5508static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5509{
5510 memset(rd, 0, sizeof(*rd));
5511
68c38fc3 5512 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5513 goto out;
68c38fc3 5514 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5515 goto free_span;
68c38fc3 5516 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5517 goto free_online;
6e0534f2 5518
68c38fc3 5519 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5520 goto free_rto_mask;
c6c4927b 5521 return 0;
6e0534f2 5522
68e74568
RR
5523free_rto_mask:
5524 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5525free_online:
5526 free_cpumask_var(rd->online);
5527free_span:
5528 free_cpumask_var(rd->span);
0c910d28 5529out:
c6c4927b 5530 return -ENOMEM;
57d885fe
GH
5531}
5532
029632fb
PZ
5533/*
5534 * By default the system creates a single root-domain with all cpus as
5535 * members (mimicking the global state we have today).
5536 */
5537struct root_domain def_root_domain;
5538
57d885fe
GH
5539static void init_defrootdomain(void)
5540{
68c38fc3 5541 init_rootdomain(&def_root_domain);
c6c4927b 5542
57d885fe
GH
5543 atomic_set(&def_root_domain.refcount, 1);
5544}
5545
dc938520 5546static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5547{
5548 struct root_domain *rd;
5549
5550 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5551 if (!rd)
5552 return NULL;
5553
68c38fc3 5554 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5555 kfree(rd);
5556 return NULL;
5557 }
57d885fe
GH
5558
5559 return rd;
5560}
5561
e3589f6c
PZ
5562static void free_sched_groups(struct sched_group *sg, int free_sgp)
5563{
5564 struct sched_group *tmp, *first;
5565
5566 if (!sg)
5567 return;
5568
5569 first = sg;
5570 do {
5571 tmp = sg->next;
5572
5573 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5574 kfree(sg->sgp);
5575
5576 kfree(sg);
5577 sg = tmp;
5578 } while (sg != first);
5579}
5580
dce840a0
PZ
5581static void free_sched_domain(struct rcu_head *rcu)
5582{
5583 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5584
5585 /*
5586 * If its an overlapping domain it has private groups, iterate and
5587 * nuke them all.
5588 */
5589 if (sd->flags & SD_OVERLAP) {
5590 free_sched_groups(sd->groups, 1);
5591 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5592 kfree(sd->groups->sgp);
dce840a0 5593 kfree(sd->groups);
9c3f75cb 5594 }
dce840a0
PZ
5595 kfree(sd);
5596}
5597
5598static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5599{
5600 call_rcu(&sd->rcu, free_sched_domain);
5601}
5602
5603static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5604{
5605 for (; sd; sd = sd->parent)
5606 destroy_sched_domain(sd, cpu);
5607}
5608
518cd623
PZ
5609/*
5610 * Keep a special pointer to the highest sched_domain that has
5611 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5612 * allows us to avoid some pointer chasing select_idle_sibling().
5613 *
5614 * Also keep a unique ID per domain (we use the first cpu number in
5615 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5616 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5617 */
5618DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5619DEFINE_PER_CPU(int, sd_llc_id);
5620
5621static void update_top_cache_domain(int cpu)
5622{
5623 struct sched_domain *sd;
5624 int id = cpu;
5625
5626 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5627 if (sd)
518cd623
PZ
5628 id = cpumask_first(sched_domain_span(sd));
5629
5630 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5631 per_cpu(sd_llc_id, cpu) = id;
5632}
5633
1da177e4 5634/*
0eab9146 5635 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5636 * hold the hotplug lock.
5637 */
0eab9146
IM
5638static void
5639cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5640{
70b97a7f 5641 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5642 struct sched_domain *tmp;
5643
5644 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5645 for (tmp = sd; tmp; ) {
245af2c7
SS
5646 struct sched_domain *parent = tmp->parent;
5647 if (!parent)
5648 break;
f29c9b1c 5649
1a848870 5650 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5651 tmp->parent = parent->parent;
1a848870
SS
5652 if (parent->parent)
5653 parent->parent->child = tmp;
dce840a0 5654 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5655 } else
5656 tmp = tmp->parent;
245af2c7
SS
5657 }
5658
1a848870 5659 if (sd && sd_degenerate(sd)) {
dce840a0 5660 tmp = sd;
245af2c7 5661 sd = sd->parent;
dce840a0 5662 destroy_sched_domain(tmp, cpu);
1a848870
SS
5663 if (sd)
5664 sd->child = NULL;
5665 }
1da177e4 5666
4cb98839 5667 sched_domain_debug(sd, cpu);
1da177e4 5668
57d885fe 5669 rq_attach_root(rq, rd);
dce840a0 5670 tmp = rq->sd;
674311d5 5671 rcu_assign_pointer(rq->sd, sd);
dce840a0 5672 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5673
5674 update_top_cache_domain(cpu);
1da177e4
LT
5675}
5676
5677/* cpus with isolated domains */
dcc30a35 5678static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5679
5680/* Setup the mask of cpus configured for isolated domains */
5681static int __init isolated_cpu_setup(char *str)
5682{
bdddd296 5683 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5684 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5685 return 1;
5686}
5687
8927f494 5688__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5689
d3081f52
PZ
5690static const struct cpumask *cpu_cpu_mask(int cpu)
5691{
5692 return cpumask_of_node(cpu_to_node(cpu));
5693}
5694
dce840a0
PZ
5695struct sd_data {
5696 struct sched_domain **__percpu sd;
5697 struct sched_group **__percpu sg;
9c3f75cb 5698 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5699};
5700
49a02c51 5701struct s_data {
21d42ccf 5702 struct sched_domain ** __percpu sd;
49a02c51
AH
5703 struct root_domain *rd;
5704};
5705
2109b99e 5706enum s_alloc {
2109b99e 5707 sa_rootdomain,
21d42ccf 5708 sa_sd,
dce840a0 5709 sa_sd_storage,
2109b99e
AH
5710 sa_none,
5711};
5712
54ab4ff4
PZ
5713struct sched_domain_topology_level;
5714
5715typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5716typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5717
e3589f6c
PZ
5718#define SDTL_OVERLAP 0x01
5719
eb7a74e6 5720struct sched_domain_topology_level {
2c402dc3
PZ
5721 sched_domain_init_f init;
5722 sched_domain_mask_f mask;
e3589f6c 5723 int flags;
cb83b629 5724 int numa_level;
54ab4ff4 5725 struct sd_data data;
eb7a74e6
PZ
5726};
5727
c1174876
PZ
5728/*
5729 * Build an iteration mask that can exclude certain CPUs from the upwards
5730 * domain traversal.
5731 *
5732 * Asymmetric node setups can result in situations where the domain tree is of
5733 * unequal depth, make sure to skip domains that already cover the entire
5734 * range.
5735 *
5736 * In that case build_sched_domains() will have terminated the iteration early
5737 * and our sibling sd spans will be empty. Domains should always include the
5738 * cpu they're built on, so check that.
5739 *
5740 */
5741static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5742{
5743 const struct cpumask *span = sched_domain_span(sd);
5744 struct sd_data *sdd = sd->private;
5745 struct sched_domain *sibling;
5746 int i;
5747
5748 for_each_cpu(i, span) {
5749 sibling = *per_cpu_ptr(sdd->sd, i);
5750 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5751 continue;
5752
5753 cpumask_set_cpu(i, sched_group_mask(sg));
5754 }
5755}
5756
5757/*
5758 * Return the canonical balance cpu for this group, this is the first cpu
5759 * of this group that's also in the iteration mask.
5760 */
5761int group_balance_cpu(struct sched_group *sg)
5762{
5763 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5764}
5765
e3589f6c
PZ
5766static int
5767build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5768{
5769 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5770 const struct cpumask *span = sched_domain_span(sd);
5771 struct cpumask *covered = sched_domains_tmpmask;
5772 struct sd_data *sdd = sd->private;
5773 struct sched_domain *child;
5774 int i;
5775
5776 cpumask_clear(covered);
5777
5778 for_each_cpu(i, span) {
5779 struct cpumask *sg_span;
5780
5781 if (cpumask_test_cpu(i, covered))
5782 continue;
5783
c1174876
PZ
5784 child = *per_cpu_ptr(sdd->sd, i);
5785
5786 /* See the comment near build_group_mask(). */
5787 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5788 continue;
5789
e3589f6c 5790 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5791 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5792
5793 if (!sg)
5794 goto fail;
5795
5796 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5797 if (child->child) {
5798 child = child->child;
5799 cpumask_copy(sg_span, sched_domain_span(child));
5800 } else
5801 cpumask_set_cpu(i, sg_span);
5802
5803 cpumask_or(covered, covered, sg_span);
5804
74a5ce20 5805 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5806 if (atomic_inc_return(&sg->sgp->ref) == 1)
5807 build_group_mask(sd, sg);
5808
c3decf0d
PZ
5809 /*
5810 * Initialize sgp->power such that even if we mess up the
5811 * domains and no possible iteration will get us here, we won't
5812 * die on a /0 trap.
5813 */
5814 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5815
c1174876
PZ
5816 /*
5817 * Make sure the first group of this domain contains the
5818 * canonical balance cpu. Otherwise the sched_domain iteration
5819 * breaks. See update_sg_lb_stats().
5820 */
74a5ce20 5821 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5822 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5823 groups = sg;
5824
5825 if (!first)
5826 first = sg;
5827 if (last)
5828 last->next = sg;
5829 last = sg;
5830 last->next = first;
5831 }
5832 sd->groups = groups;
5833
5834 return 0;
5835
5836fail:
5837 free_sched_groups(first, 0);
5838
5839 return -ENOMEM;
5840}
5841
dce840a0 5842static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5843{
dce840a0
PZ
5844 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5845 struct sched_domain *child = sd->child;
1da177e4 5846
dce840a0
PZ
5847 if (child)
5848 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5849
9c3f75cb 5850 if (sg) {
dce840a0 5851 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5852 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5853 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5854 }
dce840a0
PZ
5855
5856 return cpu;
1e9f28fa 5857}
1e9f28fa 5858
01a08546 5859/*
dce840a0
PZ
5860 * build_sched_groups will build a circular linked list of the groups
5861 * covered by the given span, and will set each group's ->cpumask correctly,
5862 * and ->cpu_power to 0.
e3589f6c
PZ
5863 *
5864 * Assumes the sched_domain tree is fully constructed
01a08546 5865 */
e3589f6c
PZ
5866static int
5867build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5868{
dce840a0
PZ
5869 struct sched_group *first = NULL, *last = NULL;
5870 struct sd_data *sdd = sd->private;
5871 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5872 struct cpumask *covered;
dce840a0 5873 int i;
9c1cfda2 5874
e3589f6c
PZ
5875 get_group(cpu, sdd, &sd->groups);
5876 atomic_inc(&sd->groups->ref);
5877
5878 if (cpu != cpumask_first(sched_domain_span(sd)))
5879 return 0;
5880
f96225fd
PZ
5881 lockdep_assert_held(&sched_domains_mutex);
5882 covered = sched_domains_tmpmask;
5883
dce840a0 5884 cpumask_clear(covered);
6711cab4 5885
dce840a0
PZ
5886 for_each_cpu(i, span) {
5887 struct sched_group *sg;
5888 int group = get_group(i, sdd, &sg);
5889 int j;
6711cab4 5890
dce840a0
PZ
5891 if (cpumask_test_cpu(i, covered))
5892 continue;
6711cab4 5893
dce840a0 5894 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5895 sg->sgp->power = 0;
c1174876 5896 cpumask_setall(sched_group_mask(sg));
0601a88d 5897
dce840a0
PZ
5898 for_each_cpu(j, span) {
5899 if (get_group(j, sdd, NULL) != group)
5900 continue;
0601a88d 5901
dce840a0
PZ
5902 cpumask_set_cpu(j, covered);
5903 cpumask_set_cpu(j, sched_group_cpus(sg));
5904 }
0601a88d 5905
dce840a0
PZ
5906 if (!first)
5907 first = sg;
5908 if (last)
5909 last->next = sg;
5910 last = sg;
5911 }
5912 last->next = first;
e3589f6c
PZ
5913
5914 return 0;
0601a88d 5915}
51888ca2 5916
89c4710e
SS
5917/*
5918 * Initialize sched groups cpu_power.
5919 *
5920 * cpu_power indicates the capacity of sched group, which is used while
5921 * distributing the load between different sched groups in a sched domain.
5922 * Typically cpu_power for all the groups in a sched domain will be same unless
5923 * there are asymmetries in the topology. If there are asymmetries, group
5924 * having more cpu_power will pickup more load compared to the group having
5925 * less cpu_power.
89c4710e
SS
5926 */
5927static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5928{
e3589f6c 5929 struct sched_group *sg = sd->groups;
89c4710e 5930
e3589f6c
PZ
5931 WARN_ON(!sd || !sg);
5932
5933 do {
5934 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5935 sg = sg->next;
5936 } while (sg != sd->groups);
89c4710e 5937
c1174876 5938 if (cpu != group_balance_cpu(sg))
e3589f6c 5939 return;
aae6d3dd 5940
d274cb30 5941 update_group_power(sd, cpu);
69e1e811 5942 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5943}
5944
029632fb
PZ
5945int __weak arch_sd_sibling_asym_packing(void)
5946{
5947 return 0*SD_ASYM_PACKING;
89c4710e
SS
5948}
5949
7c16ec58
MT
5950/*
5951 * Initializers for schedule domains
5952 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5953 */
5954
a5d8c348
IM
5955#ifdef CONFIG_SCHED_DEBUG
5956# define SD_INIT_NAME(sd, type) sd->name = #type
5957#else
5958# define SD_INIT_NAME(sd, type) do { } while (0)
5959#endif
5960
54ab4ff4
PZ
5961#define SD_INIT_FUNC(type) \
5962static noinline struct sched_domain * \
5963sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5964{ \
5965 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5966 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5967 SD_INIT_NAME(sd, type); \
5968 sd->private = &tl->data; \
5969 return sd; \
7c16ec58
MT
5970}
5971
5972SD_INIT_FUNC(CPU)
7c16ec58
MT
5973#ifdef CONFIG_SCHED_SMT
5974 SD_INIT_FUNC(SIBLING)
5975#endif
5976#ifdef CONFIG_SCHED_MC
5977 SD_INIT_FUNC(MC)
5978#endif
01a08546
HC
5979#ifdef CONFIG_SCHED_BOOK
5980 SD_INIT_FUNC(BOOK)
5981#endif
7c16ec58 5982
1d3504fc 5983static int default_relax_domain_level = -1;
60495e77 5984int sched_domain_level_max;
1d3504fc
HS
5985
5986static int __init setup_relax_domain_level(char *str)
5987{
a841f8ce
DS
5988 if (kstrtoint(str, 0, &default_relax_domain_level))
5989 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5990
1d3504fc
HS
5991 return 1;
5992}
5993__setup("relax_domain_level=", setup_relax_domain_level);
5994
5995static void set_domain_attribute(struct sched_domain *sd,
5996 struct sched_domain_attr *attr)
5997{
5998 int request;
5999
6000 if (!attr || attr->relax_domain_level < 0) {
6001 if (default_relax_domain_level < 0)
6002 return;
6003 else
6004 request = default_relax_domain_level;
6005 } else
6006 request = attr->relax_domain_level;
6007 if (request < sd->level) {
6008 /* turn off idle balance on this domain */
c88d5910 6009 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6010 } else {
6011 /* turn on idle balance on this domain */
c88d5910 6012 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6013 }
6014}
6015
54ab4ff4
PZ
6016static void __sdt_free(const struct cpumask *cpu_map);
6017static int __sdt_alloc(const struct cpumask *cpu_map);
6018
2109b99e
AH
6019static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6020 const struct cpumask *cpu_map)
6021{
6022 switch (what) {
2109b99e 6023 case sa_rootdomain:
822ff793
PZ
6024 if (!atomic_read(&d->rd->refcount))
6025 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6026 case sa_sd:
6027 free_percpu(d->sd); /* fall through */
dce840a0 6028 case sa_sd_storage:
54ab4ff4 6029 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6030 case sa_none:
6031 break;
6032 }
6033}
3404c8d9 6034
2109b99e
AH
6035static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6036 const struct cpumask *cpu_map)
6037{
dce840a0
PZ
6038 memset(d, 0, sizeof(*d));
6039
54ab4ff4
PZ
6040 if (__sdt_alloc(cpu_map))
6041 return sa_sd_storage;
dce840a0
PZ
6042 d->sd = alloc_percpu(struct sched_domain *);
6043 if (!d->sd)
6044 return sa_sd_storage;
2109b99e 6045 d->rd = alloc_rootdomain();
dce840a0 6046 if (!d->rd)
21d42ccf 6047 return sa_sd;
2109b99e
AH
6048 return sa_rootdomain;
6049}
57d885fe 6050
dce840a0
PZ
6051/*
6052 * NULL the sd_data elements we've used to build the sched_domain and
6053 * sched_group structure so that the subsequent __free_domain_allocs()
6054 * will not free the data we're using.
6055 */
6056static void claim_allocations(int cpu, struct sched_domain *sd)
6057{
6058 struct sd_data *sdd = sd->private;
dce840a0
PZ
6059
6060 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6061 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6062
e3589f6c 6063 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6064 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6065
6066 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6067 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6068}
6069
2c402dc3
PZ
6070#ifdef CONFIG_SCHED_SMT
6071static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6072{
2c402dc3 6073 return topology_thread_cpumask(cpu);
3bd65a80 6074}
2c402dc3 6075#endif
7f4588f3 6076
d069b916
PZ
6077/*
6078 * Topology list, bottom-up.
6079 */
2c402dc3 6080static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6081#ifdef CONFIG_SCHED_SMT
6082 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6083#endif
1e9f28fa 6084#ifdef CONFIG_SCHED_MC
2c402dc3 6085 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6086#endif
d069b916
PZ
6087#ifdef CONFIG_SCHED_BOOK
6088 { sd_init_BOOK, cpu_book_mask, },
6089#endif
6090 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6091 { NULL, },
6092};
6093
6094static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6095
cb83b629
PZ
6096#ifdef CONFIG_NUMA
6097
6098static int sched_domains_numa_levels;
cb83b629
PZ
6099static int *sched_domains_numa_distance;
6100static struct cpumask ***sched_domains_numa_masks;
6101static int sched_domains_curr_level;
6102
cb83b629
PZ
6103static inline int sd_local_flags(int level)
6104{
10717dcd 6105 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6106 return 0;
6107
6108 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6109}
6110
6111static struct sched_domain *
6112sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6113{
6114 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6115 int level = tl->numa_level;
6116 int sd_weight = cpumask_weight(
6117 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6118
6119 *sd = (struct sched_domain){
6120 .min_interval = sd_weight,
6121 .max_interval = 2*sd_weight,
6122 .busy_factor = 32,
870a0bb5 6123 .imbalance_pct = 125,
cb83b629
PZ
6124 .cache_nice_tries = 2,
6125 .busy_idx = 3,
6126 .idle_idx = 2,
6127 .newidle_idx = 0,
6128 .wake_idx = 0,
6129 .forkexec_idx = 0,
6130
6131 .flags = 1*SD_LOAD_BALANCE
6132 | 1*SD_BALANCE_NEWIDLE
6133 | 0*SD_BALANCE_EXEC
6134 | 0*SD_BALANCE_FORK
6135 | 0*SD_BALANCE_WAKE
6136 | 0*SD_WAKE_AFFINE
cb83b629 6137 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6138 | 0*SD_SHARE_PKG_RESOURCES
6139 | 1*SD_SERIALIZE
6140 | 0*SD_PREFER_SIBLING
6141 | sd_local_flags(level)
6142 ,
6143 .last_balance = jiffies,
6144 .balance_interval = sd_weight,
6145 };
6146 SD_INIT_NAME(sd, NUMA);
6147 sd->private = &tl->data;
6148
6149 /*
6150 * Ugly hack to pass state to sd_numa_mask()...
6151 */
6152 sched_domains_curr_level = tl->numa_level;
6153
6154 return sd;
6155}
6156
6157static const struct cpumask *sd_numa_mask(int cpu)
6158{
6159 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6160}
6161
d039ac60
PZ
6162static void sched_numa_warn(const char *str)
6163{
6164 static int done = false;
6165 int i,j;
6166
6167 if (done)
6168 return;
6169
6170 done = true;
6171
6172 printk(KERN_WARNING "ERROR: %s\n\n", str);
6173
6174 for (i = 0; i < nr_node_ids; i++) {
6175 printk(KERN_WARNING " ");
6176 for (j = 0; j < nr_node_ids; j++)
6177 printk(KERN_CONT "%02d ", node_distance(i,j));
6178 printk(KERN_CONT "\n");
6179 }
6180 printk(KERN_WARNING "\n");
6181}
6182
6183static bool find_numa_distance(int distance)
6184{
6185 int i;
6186
6187 if (distance == node_distance(0, 0))
6188 return true;
6189
6190 for (i = 0; i < sched_domains_numa_levels; i++) {
6191 if (sched_domains_numa_distance[i] == distance)
6192 return true;
6193 }
6194
6195 return false;
6196}
6197
cb83b629
PZ
6198static void sched_init_numa(void)
6199{
6200 int next_distance, curr_distance = node_distance(0, 0);
6201 struct sched_domain_topology_level *tl;
6202 int level = 0;
6203 int i, j, k;
6204
cb83b629
PZ
6205 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6206 if (!sched_domains_numa_distance)
6207 return;
6208
6209 /*
6210 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6211 * unique distances in the node_distance() table.
6212 *
6213 * Assumes node_distance(0,j) includes all distances in
6214 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6215 */
6216 next_distance = curr_distance;
6217 for (i = 0; i < nr_node_ids; i++) {
6218 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6219 for (k = 0; k < nr_node_ids; k++) {
6220 int distance = node_distance(i, k);
6221
6222 if (distance > curr_distance &&
6223 (distance < next_distance ||
6224 next_distance == curr_distance))
6225 next_distance = distance;
6226
6227 /*
6228 * While not a strong assumption it would be nice to know
6229 * about cases where if node A is connected to B, B is not
6230 * equally connected to A.
6231 */
6232 if (sched_debug() && node_distance(k, i) != distance)
6233 sched_numa_warn("Node-distance not symmetric");
6234
6235 if (sched_debug() && i && !find_numa_distance(distance))
6236 sched_numa_warn("Node-0 not representative");
6237 }
6238 if (next_distance != curr_distance) {
6239 sched_domains_numa_distance[level++] = next_distance;
6240 sched_domains_numa_levels = level;
6241 curr_distance = next_distance;
6242 } else break;
cb83b629 6243 }
d039ac60
PZ
6244
6245 /*
6246 * In case of sched_debug() we verify the above assumption.
6247 */
6248 if (!sched_debug())
6249 break;
cb83b629
PZ
6250 }
6251 /*
6252 * 'level' contains the number of unique distances, excluding the
6253 * identity distance node_distance(i,i).
6254 *
6255 * The sched_domains_nume_distance[] array includes the actual distance
6256 * numbers.
6257 */
6258
5f7865f3
TC
6259 /*
6260 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6261 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6262 * the array will contain less then 'level' members. This could be
6263 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6264 * in other functions.
6265 *
6266 * We reset it to 'level' at the end of this function.
6267 */
6268 sched_domains_numa_levels = 0;
6269
cb83b629
PZ
6270 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6271 if (!sched_domains_numa_masks)
6272 return;
6273
6274 /*
6275 * Now for each level, construct a mask per node which contains all
6276 * cpus of nodes that are that many hops away from us.
6277 */
6278 for (i = 0; i < level; i++) {
6279 sched_domains_numa_masks[i] =
6280 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6281 if (!sched_domains_numa_masks[i])
6282 return;
6283
6284 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6285 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6286 if (!mask)
6287 return;
6288
6289 sched_domains_numa_masks[i][j] = mask;
6290
6291 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6292 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6293 continue;
6294
6295 cpumask_or(mask, mask, cpumask_of_node(k));
6296 }
6297 }
6298 }
6299
6300 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6301 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6302 if (!tl)
6303 return;
6304
6305 /*
6306 * Copy the default topology bits..
6307 */
6308 for (i = 0; default_topology[i].init; i++)
6309 tl[i] = default_topology[i];
6310
6311 /*
6312 * .. and append 'j' levels of NUMA goodness.
6313 */
6314 for (j = 0; j < level; i++, j++) {
6315 tl[i] = (struct sched_domain_topology_level){
6316 .init = sd_numa_init,
6317 .mask = sd_numa_mask,
6318 .flags = SDTL_OVERLAP,
6319 .numa_level = j,
6320 };
6321 }
6322
6323 sched_domain_topology = tl;
5f7865f3
TC
6324
6325 sched_domains_numa_levels = level;
cb83b629 6326}
301a5cba
TC
6327
6328static void sched_domains_numa_masks_set(int cpu)
6329{
6330 int i, j;
6331 int node = cpu_to_node(cpu);
6332
6333 for (i = 0; i < sched_domains_numa_levels; i++) {
6334 for (j = 0; j < nr_node_ids; j++) {
6335 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6336 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6337 }
6338 }
6339}
6340
6341static void sched_domains_numa_masks_clear(int cpu)
6342{
6343 int i, j;
6344 for (i = 0; i < sched_domains_numa_levels; i++) {
6345 for (j = 0; j < nr_node_ids; j++)
6346 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6347 }
6348}
6349
6350/*
6351 * Update sched_domains_numa_masks[level][node] array when new cpus
6352 * are onlined.
6353 */
6354static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6355 unsigned long action,
6356 void *hcpu)
6357{
6358 int cpu = (long)hcpu;
6359
6360 switch (action & ~CPU_TASKS_FROZEN) {
6361 case CPU_ONLINE:
6362 sched_domains_numa_masks_set(cpu);
6363 break;
6364
6365 case CPU_DEAD:
6366 sched_domains_numa_masks_clear(cpu);
6367 break;
6368
6369 default:
6370 return NOTIFY_DONE;
6371 }
6372
6373 return NOTIFY_OK;
cb83b629
PZ
6374}
6375#else
6376static inline void sched_init_numa(void)
6377{
6378}
301a5cba
TC
6379
6380static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6381 unsigned long action,
6382 void *hcpu)
6383{
6384 return 0;
6385}
cb83b629
PZ
6386#endif /* CONFIG_NUMA */
6387
54ab4ff4
PZ
6388static int __sdt_alloc(const struct cpumask *cpu_map)
6389{
6390 struct sched_domain_topology_level *tl;
6391 int j;
6392
6393 for (tl = sched_domain_topology; tl->init; tl++) {
6394 struct sd_data *sdd = &tl->data;
6395
6396 sdd->sd = alloc_percpu(struct sched_domain *);
6397 if (!sdd->sd)
6398 return -ENOMEM;
6399
6400 sdd->sg = alloc_percpu(struct sched_group *);
6401 if (!sdd->sg)
6402 return -ENOMEM;
6403
9c3f75cb
PZ
6404 sdd->sgp = alloc_percpu(struct sched_group_power *);
6405 if (!sdd->sgp)
6406 return -ENOMEM;
6407
54ab4ff4
PZ
6408 for_each_cpu(j, cpu_map) {
6409 struct sched_domain *sd;
6410 struct sched_group *sg;
9c3f75cb 6411 struct sched_group_power *sgp;
54ab4ff4
PZ
6412
6413 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6414 GFP_KERNEL, cpu_to_node(j));
6415 if (!sd)
6416 return -ENOMEM;
6417
6418 *per_cpu_ptr(sdd->sd, j) = sd;
6419
6420 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6421 GFP_KERNEL, cpu_to_node(j));
6422 if (!sg)
6423 return -ENOMEM;
6424
30b4e9eb
IM
6425 sg->next = sg;
6426
54ab4ff4 6427 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6428
c1174876 6429 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6430 GFP_KERNEL, cpu_to_node(j));
6431 if (!sgp)
6432 return -ENOMEM;
6433
6434 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6435 }
6436 }
6437
6438 return 0;
6439}
6440
6441static void __sdt_free(const struct cpumask *cpu_map)
6442{
6443 struct sched_domain_topology_level *tl;
6444 int j;
6445
6446 for (tl = sched_domain_topology; tl->init; tl++) {
6447 struct sd_data *sdd = &tl->data;
6448
6449 for_each_cpu(j, cpu_map) {
fb2cf2c6 6450 struct sched_domain *sd;
6451
6452 if (sdd->sd) {
6453 sd = *per_cpu_ptr(sdd->sd, j);
6454 if (sd && (sd->flags & SD_OVERLAP))
6455 free_sched_groups(sd->groups, 0);
6456 kfree(*per_cpu_ptr(sdd->sd, j));
6457 }
6458
6459 if (sdd->sg)
6460 kfree(*per_cpu_ptr(sdd->sg, j));
6461 if (sdd->sgp)
6462 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6463 }
6464 free_percpu(sdd->sd);
fb2cf2c6 6465 sdd->sd = NULL;
54ab4ff4 6466 free_percpu(sdd->sg);
fb2cf2c6 6467 sdd->sg = NULL;
9c3f75cb 6468 free_percpu(sdd->sgp);
fb2cf2c6 6469 sdd->sgp = NULL;
54ab4ff4
PZ
6470 }
6471}
6472
2c402dc3
PZ
6473struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6474 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6475 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6476 int cpu)
6477{
54ab4ff4 6478 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6479 if (!sd)
d069b916 6480 return child;
2c402dc3 6481
2c402dc3 6482 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6483 if (child) {
6484 sd->level = child->level + 1;
6485 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6486 child->parent = sd;
60495e77 6487 }
d069b916 6488 sd->child = child;
a841f8ce 6489 set_domain_attribute(sd, attr);
2c402dc3
PZ
6490
6491 return sd;
6492}
6493
2109b99e
AH
6494/*
6495 * Build sched domains for a given set of cpus and attach the sched domains
6496 * to the individual cpus
6497 */
dce840a0
PZ
6498static int build_sched_domains(const struct cpumask *cpu_map,
6499 struct sched_domain_attr *attr)
2109b99e
AH
6500{
6501 enum s_alloc alloc_state = sa_none;
dce840a0 6502 struct sched_domain *sd;
2109b99e 6503 struct s_data d;
822ff793 6504 int i, ret = -ENOMEM;
9c1cfda2 6505
2109b99e
AH
6506 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6507 if (alloc_state != sa_rootdomain)
6508 goto error;
9c1cfda2 6509
dce840a0 6510 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6511 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6512 struct sched_domain_topology_level *tl;
6513
3bd65a80 6514 sd = NULL;
e3589f6c 6515 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6516 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6517 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6518 sd->flags |= SD_OVERLAP;
d110235d
PZ
6519 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6520 break;
e3589f6c 6521 }
d274cb30 6522
d069b916
PZ
6523 while (sd->child)
6524 sd = sd->child;
6525
21d42ccf 6526 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6527 }
6528
6529 /* Build the groups for the domains */
6530 for_each_cpu(i, cpu_map) {
6531 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6532 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6533 if (sd->flags & SD_OVERLAP) {
6534 if (build_overlap_sched_groups(sd, i))
6535 goto error;
6536 } else {
6537 if (build_sched_groups(sd, i))
6538 goto error;
6539 }
1cf51902 6540 }
a06dadbe 6541 }
9c1cfda2 6542
1da177e4 6543 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6544 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6545 if (!cpumask_test_cpu(i, cpu_map))
6546 continue;
9c1cfda2 6547
dce840a0
PZ
6548 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6549 claim_allocations(i, sd);
cd4ea6ae 6550 init_sched_groups_power(i, sd);
dce840a0 6551 }
f712c0c7 6552 }
9c1cfda2 6553
1da177e4 6554 /* Attach the domains */
dce840a0 6555 rcu_read_lock();
abcd083a 6556 for_each_cpu(i, cpu_map) {
21d42ccf 6557 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6558 cpu_attach_domain(sd, d.rd, i);
1da177e4 6559 }
dce840a0 6560 rcu_read_unlock();
51888ca2 6561
822ff793 6562 ret = 0;
51888ca2 6563error:
2109b99e 6564 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6565 return ret;
1da177e4 6566}
029190c5 6567
acc3f5d7 6568static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6569static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6570static struct sched_domain_attr *dattr_cur;
6571 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6572
6573/*
6574 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6575 * cpumask) fails, then fallback to a single sched domain,
6576 * as determined by the single cpumask fallback_doms.
029190c5 6577 */
4212823f 6578static cpumask_var_t fallback_doms;
029190c5 6579
ee79d1bd
HC
6580/*
6581 * arch_update_cpu_topology lets virtualized architectures update the
6582 * cpu core maps. It is supposed to return 1 if the topology changed
6583 * or 0 if it stayed the same.
6584 */
6585int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6586{
ee79d1bd 6587 return 0;
22e52b07
HC
6588}
6589
acc3f5d7
RR
6590cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6591{
6592 int i;
6593 cpumask_var_t *doms;
6594
6595 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6596 if (!doms)
6597 return NULL;
6598 for (i = 0; i < ndoms; i++) {
6599 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6600 free_sched_domains(doms, i);
6601 return NULL;
6602 }
6603 }
6604 return doms;
6605}
6606
6607void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6608{
6609 unsigned int i;
6610 for (i = 0; i < ndoms; i++)
6611 free_cpumask_var(doms[i]);
6612 kfree(doms);
6613}
6614
1a20ff27 6615/*
41a2d6cf 6616 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6617 * For now this just excludes isolated cpus, but could be used to
6618 * exclude other special cases in the future.
1a20ff27 6619 */
c4a8849a 6620static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6621{
7378547f
MM
6622 int err;
6623
22e52b07 6624 arch_update_cpu_topology();
029190c5 6625 ndoms_cur = 1;
acc3f5d7 6626 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6627 if (!doms_cur)
acc3f5d7
RR
6628 doms_cur = &fallback_doms;
6629 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6630 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6631 register_sched_domain_sysctl();
7378547f
MM
6632
6633 return err;
1a20ff27
DG
6634}
6635
1a20ff27
DG
6636/*
6637 * Detach sched domains from a group of cpus specified in cpu_map
6638 * These cpus will now be attached to the NULL domain
6639 */
96f874e2 6640static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6641{
6642 int i;
6643
dce840a0 6644 rcu_read_lock();
abcd083a 6645 for_each_cpu(i, cpu_map)
57d885fe 6646 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6647 rcu_read_unlock();
1a20ff27
DG
6648}
6649
1d3504fc
HS
6650/* handle null as "default" */
6651static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6652 struct sched_domain_attr *new, int idx_new)
6653{
6654 struct sched_domain_attr tmp;
6655
6656 /* fast path */
6657 if (!new && !cur)
6658 return 1;
6659
6660 tmp = SD_ATTR_INIT;
6661 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6662 new ? (new + idx_new) : &tmp,
6663 sizeof(struct sched_domain_attr));
6664}
6665
029190c5
PJ
6666/*
6667 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6668 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6669 * doms_new[] to the current sched domain partitioning, doms_cur[].
6670 * It destroys each deleted domain and builds each new domain.
6671 *
acc3f5d7 6672 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6673 * The masks don't intersect (don't overlap.) We should setup one
6674 * sched domain for each mask. CPUs not in any of the cpumasks will
6675 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6676 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6677 * it as it is.
6678 *
acc3f5d7
RR
6679 * The passed in 'doms_new' should be allocated using
6680 * alloc_sched_domains. This routine takes ownership of it and will
6681 * free_sched_domains it when done with it. If the caller failed the
6682 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6683 * and partition_sched_domains() will fallback to the single partition
6684 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6685 *
96f874e2 6686 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6687 * ndoms_new == 0 is a special case for destroying existing domains,
6688 * and it will not create the default domain.
dfb512ec 6689 *
029190c5
PJ
6690 * Call with hotplug lock held
6691 */
acc3f5d7 6692void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6693 struct sched_domain_attr *dattr_new)
029190c5 6694{
dfb512ec 6695 int i, j, n;
d65bd5ec 6696 int new_topology;
029190c5 6697
712555ee 6698 mutex_lock(&sched_domains_mutex);
a1835615 6699
7378547f
MM
6700 /* always unregister in case we don't destroy any domains */
6701 unregister_sched_domain_sysctl();
6702
d65bd5ec
HC
6703 /* Let architecture update cpu core mappings. */
6704 new_topology = arch_update_cpu_topology();
6705
dfb512ec 6706 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6707
6708 /* Destroy deleted domains */
6709 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6710 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6711 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6712 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6713 goto match1;
6714 }
6715 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6716 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6717match1:
6718 ;
6719 }
6720
e761b772
MK
6721 if (doms_new == NULL) {
6722 ndoms_cur = 0;
acc3f5d7 6723 doms_new = &fallback_doms;
6ad4c188 6724 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6725 WARN_ON_ONCE(dattr_new);
e761b772
MK
6726 }
6727
029190c5
PJ
6728 /* Build new domains */
6729 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6730 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6731 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6732 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6733 goto match2;
6734 }
6735 /* no match - add a new doms_new */
dce840a0 6736 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6737match2:
6738 ;
6739 }
6740
6741 /* Remember the new sched domains */
acc3f5d7
RR
6742 if (doms_cur != &fallback_doms)
6743 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6744 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6745 doms_cur = doms_new;
1d3504fc 6746 dattr_cur = dattr_new;
029190c5 6747 ndoms_cur = ndoms_new;
7378547f
MM
6748
6749 register_sched_domain_sysctl();
a1835615 6750
712555ee 6751 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6752}
6753
d35be8ba
SB
6754static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6755
1da177e4 6756/*
3a101d05
TH
6757 * Update cpusets according to cpu_active mask. If cpusets are
6758 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6759 * around partition_sched_domains().
d35be8ba
SB
6760 *
6761 * If we come here as part of a suspend/resume, don't touch cpusets because we
6762 * want to restore it back to its original state upon resume anyway.
1da177e4 6763 */
0b2e918a
TH
6764static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6765 void *hcpu)
e761b772 6766{
d35be8ba
SB
6767 switch (action) {
6768 case CPU_ONLINE_FROZEN:
6769 case CPU_DOWN_FAILED_FROZEN:
6770
6771 /*
6772 * num_cpus_frozen tracks how many CPUs are involved in suspend
6773 * resume sequence. As long as this is not the last online
6774 * operation in the resume sequence, just build a single sched
6775 * domain, ignoring cpusets.
6776 */
6777 num_cpus_frozen--;
6778 if (likely(num_cpus_frozen)) {
6779 partition_sched_domains(1, NULL, NULL);
6780 break;
6781 }
6782
6783 /*
6784 * This is the last CPU online operation. So fall through and
6785 * restore the original sched domains by considering the
6786 * cpuset configurations.
6787 */
6788
e761b772 6789 case CPU_ONLINE:
6ad4c188 6790 case CPU_DOWN_FAILED:
7ddf96b0 6791 cpuset_update_active_cpus(true);
d35be8ba 6792 break;
3a101d05
TH
6793 default:
6794 return NOTIFY_DONE;
6795 }
d35be8ba 6796 return NOTIFY_OK;
3a101d05 6797}
e761b772 6798
0b2e918a
TH
6799static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6800 void *hcpu)
3a101d05 6801{
d35be8ba 6802 switch (action) {
3a101d05 6803 case CPU_DOWN_PREPARE:
7ddf96b0 6804 cpuset_update_active_cpus(false);
d35be8ba
SB
6805 break;
6806 case CPU_DOWN_PREPARE_FROZEN:
6807 num_cpus_frozen++;
6808 partition_sched_domains(1, NULL, NULL);
6809 break;
e761b772
MK
6810 default:
6811 return NOTIFY_DONE;
6812 }
d35be8ba 6813 return NOTIFY_OK;
e761b772 6814}
e761b772 6815
1da177e4
LT
6816void __init sched_init_smp(void)
6817{
dcc30a35
RR
6818 cpumask_var_t non_isolated_cpus;
6819
6820 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6821 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6822
cb83b629
PZ
6823 sched_init_numa();
6824
95402b38 6825 get_online_cpus();
712555ee 6826 mutex_lock(&sched_domains_mutex);
c4a8849a 6827 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6828 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6829 if (cpumask_empty(non_isolated_cpus))
6830 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6831 mutex_unlock(&sched_domains_mutex);
95402b38 6832 put_online_cpus();
e761b772 6833
301a5cba 6834 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6835 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6836 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6837
6838 /* RT runtime code needs to handle some hotplug events */
6839 hotcpu_notifier(update_runtime, 0);
6840
b328ca18 6841 init_hrtick();
5c1e1767
NP
6842
6843 /* Move init over to a non-isolated CPU */
dcc30a35 6844 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6845 BUG();
19978ca6 6846 sched_init_granularity();
dcc30a35 6847 free_cpumask_var(non_isolated_cpus);
4212823f 6848
0e3900e6 6849 init_sched_rt_class();
1da177e4
LT
6850}
6851#else
6852void __init sched_init_smp(void)
6853{
19978ca6 6854 sched_init_granularity();
1da177e4
LT
6855}
6856#endif /* CONFIG_SMP */
6857
cd1bb94b
AB
6858const_debug unsigned int sysctl_timer_migration = 1;
6859
1da177e4
LT
6860int in_sched_functions(unsigned long addr)
6861{
1da177e4
LT
6862 return in_lock_functions(addr) ||
6863 (addr >= (unsigned long)__sched_text_start
6864 && addr < (unsigned long)__sched_text_end);
6865}
6866
029632fb 6867#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6868/*
6869 * Default task group.
6870 * Every task in system belongs to this group at bootup.
6871 */
029632fb 6872struct task_group root_task_group;
35cf4e50 6873LIST_HEAD(task_groups);
052f1dc7 6874#endif
6f505b16 6875
029632fb 6876DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6877
1da177e4
LT
6878void __init sched_init(void)
6879{
dd41f596 6880 int i, j;
434d53b0
MT
6881 unsigned long alloc_size = 0, ptr;
6882
6883#ifdef CONFIG_FAIR_GROUP_SCHED
6884 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6885#endif
6886#ifdef CONFIG_RT_GROUP_SCHED
6887 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6888#endif
df7c8e84 6889#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6890 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6891#endif
434d53b0 6892 if (alloc_size) {
36b7b6d4 6893 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6894
6895#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6896 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6897 ptr += nr_cpu_ids * sizeof(void **);
6898
07e06b01 6899 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6900 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6901
6d6bc0ad 6902#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6903#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6904 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6905 ptr += nr_cpu_ids * sizeof(void **);
6906
07e06b01 6907 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6908 ptr += nr_cpu_ids * sizeof(void **);
6909
6d6bc0ad 6910#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6911#ifdef CONFIG_CPUMASK_OFFSTACK
6912 for_each_possible_cpu(i) {
6913 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6914 ptr += cpumask_size();
6915 }
6916#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6917 }
dd41f596 6918
57d885fe
GH
6919#ifdef CONFIG_SMP
6920 init_defrootdomain();
6921#endif
6922
d0b27fa7
PZ
6923 init_rt_bandwidth(&def_rt_bandwidth,
6924 global_rt_period(), global_rt_runtime());
6925
6926#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6927 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6928 global_rt_period(), global_rt_runtime());
6d6bc0ad 6929#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6930
7c941438 6931#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6932 list_add(&root_task_group.list, &task_groups);
6933 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6934 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6935 autogroup_init(&init_task);
54c707e9 6936
7c941438 6937#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6938
54c707e9
GC
6939#ifdef CONFIG_CGROUP_CPUACCT
6940 root_cpuacct.cpustat = &kernel_cpustat;
6941 root_cpuacct.cpuusage = alloc_percpu(u64);
6942 /* Too early, not expected to fail */
6943 BUG_ON(!root_cpuacct.cpuusage);
6944#endif
0a945022 6945 for_each_possible_cpu(i) {
70b97a7f 6946 struct rq *rq;
1da177e4
LT
6947
6948 rq = cpu_rq(i);
05fa785c 6949 raw_spin_lock_init(&rq->lock);
7897986b 6950 rq->nr_running = 0;
dce48a84
TG
6951 rq->calc_load_active = 0;
6952 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6953 init_cfs_rq(&rq->cfs);
6f505b16 6954 init_rt_rq(&rq->rt, rq);
dd41f596 6955#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6956 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6957 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6958 /*
07e06b01 6959 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6960 *
6961 * In case of task-groups formed thr' the cgroup filesystem, it
6962 * gets 100% of the cpu resources in the system. This overall
6963 * system cpu resource is divided among the tasks of
07e06b01 6964 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6965 * based on each entity's (task or task-group's) weight
6966 * (se->load.weight).
6967 *
07e06b01 6968 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6969 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6970 * then A0's share of the cpu resource is:
6971 *
0d905bca 6972 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6973 *
07e06b01
YZ
6974 * We achieve this by letting root_task_group's tasks sit
6975 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6976 */
ab84d31e 6977 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6978 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6979#endif /* CONFIG_FAIR_GROUP_SCHED */
6980
6981 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6982#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6983 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6984 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6985#endif
1da177e4 6986
dd41f596
IM
6987 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6988 rq->cpu_load[j] = 0;
fdf3e95d
VP
6989
6990 rq->last_load_update_tick = jiffies;
6991
1da177e4 6992#ifdef CONFIG_SMP
41c7ce9a 6993 rq->sd = NULL;
57d885fe 6994 rq->rd = NULL;
1399fa78 6995 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6996 rq->post_schedule = 0;
1da177e4 6997 rq->active_balance = 0;
dd41f596 6998 rq->next_balance = jiffies;
1da177e4 6999 rq->push_cpu = 0;
0a2966b4 7000 rq->cpu = i;
1f11eb6a 7001 rq->online = 0;
eae0c9df
MG
7002 rq->idle_stamp = 0;
7003 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7004
7005 INIT_LIST_HEAD(&rq->cfs_tasks);
7006
dc938520 7007 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7008#ifdef CONFIG_NO_HZ
1c792db7 7009 rq->nohz_flags = 0;
83cd4fe2 7010#endif
1da177e4 7011#endif
8f4d37ec 7012 init_rq_hrtick(rq);
1da177e4 7013 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7014 }
7015
2dd73a4f 7016 set_load_weight(&init_task);
b50f60ce 7017
e107be36
AK
7018#ifdef CONFIG_PREEMPT_NOTIFIERS
7019 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7020#endif
7021
b50f60ce 7022#ifdef CONFIG_RT_MUTEXES
732375c6 7023 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7024#endif
7025
1da177e4
LT
7026 /*
7027 * The boot idle thread does lazy MMU switching as well:
7028 */
7029 atomic_inc(&init_mm.mm_count);
7030 enter_lazy_tlb(&init_mm, current);
7031
7032 /*
7033 * Make us the idle thread. Technically, schedule() should not be
7034 * called from this thread, however somewhere below it might be,
7035 * but because we are the idle thread, we just pick up running again
7036 * when this runqueue becomes "idle".
7037 */
7038 init_idle(current, smp_processor_id());
dce48a84
TG
7039
7040 calc_load_update = jiffies + LOAD_FREQ;
7041
dd41f596
IM
7042 /*
7043 * During early bootup we pretend to be a normal task:
7044 */
7045 current->sched_class = &fair_sched_class;
6892b75e 7046
bf4d83f6 7047#ifdef CONFIG_SMP
4cb98839 7048 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7049 /* May be allocated at isolcpus cmdline parse time */
7050 if (cpu_isolated_map == NULL)
7051 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7052 idle_thread_set_boot_cpu();
029632fb
PZ
7053#endif
7054 init_sched_fair_class();
6a7b3dc3 7055
6892b75e 7056 scheduler_running = 1;
1da177e4
LT
7057}
7058
d902db1e 7059#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7060static inline int preempt_count_equals(int preempt_offset)
7061{
234da7bc 7062 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7063
4ba8216c 7064 return (nested == preempt_offset);
e4aafea2
FW
7065}
7066
d894837f 7067void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7068{
1da177e4
LT
7069 static unsigned long prev_jiffy; /* ratelimiting */
7070
b3fbab05 7071 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7072 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7073 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7074 return;
7075 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7076 return;
7077 prev_jiffy = jiffies;
7078
3df0fc5b
PZ
7079 printk(KERN_ERR
7080 "BUG: sleeping function called from invalid context at %s:%d\n",
7081 file, line);
7082 printk(KERN_ERR
7083 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7084 in_atomic(), irqs_disabled(),
7085 current->pid, current->comm);
aef745fc
IM
7086
7087 debug_show_held_locks(current);
7088 if (irqs_disabled())
7089 print_irqtrace_events(current);
7090 dump_stack();
1da177e4
LT
7091}
7092EXPORT_SYMBOL(__might_sleep);
7093#endif
7094
7095#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7096static void normalize_task(struct rq *rq, struct task_struct *p)
7097{
da7a735e
PZ
7098 const struct sched_class *prev_class = p->sched_class;
7099 int old_prio = p->prio;
3a5e4dc1 7100 int on_rq;
3e51f33f 7101
fd2f4419 7102 on_rq = p->on_rq;
3a5e4dc1 7103 if (on_rq)
4ca9b72b 7104 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7105 __setscheduler(rq, p, SCHED_NORMAL, 0);
7106 if (on_rq) {
4ca9b72b 7107 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7108 resched_task(rq->curr);
7109 }
da7a735e
PZ
7110
7111 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7112}
7113
1da177e4
LT
7114void normalize_rt_tasks(void)
7115{
a0f98a1c 7116 struct task_struct *g, *p;
1da177e4 7117 unsigned long flags;
70b97a7f 7118 struct rq *rq;
1da177e4 7119
4cf5d77a 7120 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7121 do_each_thread(g, p) {
178be793
IM
7122 /*
7123 * Only normalize user tasks:
7124 */
7125 if (!p->mm)
7126 continue;
7127
6cfb0d5d 7128 p->se.exec_start = 0;
6cfb0d5d 7129#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7130 p->se.statistics.wait_start = 0;
7131 p->se.statistics.sleep_start = 0;
7132 p->se.statistics.block_start = 0;
6cfb0d5d 7133#endif
dd41f596
IM
7134
7135 if (!rt_task(p)) {
7136 /*
7137 * Renice negative nice level userspace
7138 * tasks back to 0:
7139 */
7140 if (TASK_NICE(p) < 0 && p->mm)
7141 set_user_nice(p, 0);
1da177e4 7142 continue;
dd41f596 7143 }
1da177e4 7144
1d615482 7145 raw_spin_lock(&p->pi_lock);
b29739f9 7146 rq = __task_rq_lock(p);
1da177e4 7147
178be793 7148 normalize_task(rq, p);
3a5e4dc1 7149
b29739f9 7150 __task_rq_unlock(rq);
1d615482 7151 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7152 } while_each_thread(g, p);
7153
4cf5d77a 7154 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7155}
7156
7157#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7158
67fc4e0c 7159#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7160/*
67fc4e0c 7161 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7162 *
7163 * They can only be called when the whole system has been
7164 * stopped - every CPU needs to be quiescent, and no scheduling
7165 * activity can take place. Using them for anything else would
7166 * be a serious bug, and as a result, they aren't even visible
7167 * under any other configuration.
7168 */
7169
7170/**
7171 * curr_task - return the current task for a given cpu.
7172 * @cpu: the processor in question.
7173 *
7174 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7175 */
36c8b586 7176struct task_struct *curr_task(int cpu)
1df5c10a
LT
7177{
7178 return cpu_curr(cpu);
7179}
7180
67fc4e0c
JW
7181#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7182
7183#ifdef CONFIG_IA64
1df5c10a
LT
7184/**
7185 * set_curr_task - set the current task for a given cpu.
7186 * @cpu: the processor in question.
7187 * @p: the task pointer to set.
7188 *
7189 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7190 * are serviced on a separate stack. It allows the architecture to switch the
7191 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7192 * must be called with all CPU's synchronized, and interrupts disabled, the
7193 * and caller must save the original value of the current task (see
7194 * curr_task() above) and restore that value before reenabling interrupts and
7195 * re-starting the system.
7196 *
7197 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7198 */
36c8b586 7199void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7200{
7201 cpu_curr(cpu) = p;
7202}
7203
7204#endif
29f59db3 7205
7c941438 7206#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7207/* task_group_lock serializes the addition/removal of task groups */
7208static DEFINE_SPINLOCK(task_group_lock);
7209
bccbe08a
PZ
7210static void free_sched_group(struct task_group *tg)
7211{
7212 free_fair_sched_group(tg);
7213 free_rt_sched_group(tg);
e9aa1dd1 7214 autogroup_free(tg);
bccbe08a
PZ
7215 kfree(tg);
7216}
7217
7218/* allocate runqueue etc for a new task group */
ec7dc8ac 7219struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7220{
7221 struct task_group *tg;
bccbe08a
PZ
7222
7223 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7224 if (!tg)
7225 return ERR_PTR(-ENOMEM);
7226
ec7dc8ac 7227 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7228 goto err;
7229
ec7dc8ac 7230 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7231 goto err;
7232
ace783b9
LZ
7233 return tg;
7234
7235err:
7236 free_sched_group(tg);
7237 return ERR_PTR(-ENOMEM);
7238}
7239
7240void sched_online_group(struct task_group *tg, struct task_group *parent)
7241{
7242 unsigned long flags;
7243
8ed36996 7244 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7245 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7246
7247 WARN_ON(!parent); /* root should already exist */
7248
7249 tg->parent = parent;
f473aa5e 7250 INIT_LIST_HEAD(&tg->children);
09f2724a 7251 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7252 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7253}
7254
9b5b7751 7255/* rcu callback to free various structures associated with a task group */
6f505b16 7256static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7257{
29f59db3 7258 /* now it should be safe to free those cfs_rqs */
6f505b16 7259 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7260}
7261
9b5b7751 7262/* Destroy runqueue etc associated with a task group */
4cf86d77 7263void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7264{
7265 /* wait for possible concurrent references to cfs_rqs complete */
7266 call_rcu(&tg->rcu, free_sched_group_rcu);
7267}
7268
7269void sched_offline_group(struct task_group *tg)
29f59db3 7270{
8ed36996 7271 unsigned long flags;
9b5b7751 7272 int i;
29f59db3 7273
3d4b47b4
PZ
7274 /* end participation in shares distribution */
7275 for_each_possible_cpu(i)
bccbe08a 7276 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7277
7278 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7279 list_del_rcu(&tg->list);
f473aa5e 7280 list_del_rcu(&tg->siblings);
8ed36996 7281 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7282}
7283
9b5b7751 7284/* change task's runqueue when it moves between groups.
3a252015
IM
7285 * The caller of this function should have put the task in its new group
7286 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7287 * reflect its new group.
9b5b7751
SV
7288 */
7289void sched_move_task(struct task_struct *tsk)
29f59db3 7290{
8323f26c 7291 struct task_group *tg;
29f59db3
SV
7292 int on_rq, running;
7293 unsigned long flags;
7294 struct rq *rq;
7295
7296 rq = task_rq_lock(tsk, &flags);
7297
051a1d1a 7298 running = task_current(rq, tsk);
fd2f4419 7299 on_rq = tsk->on_rq;
29f59db3 7300
0e1f3483 7301 if (on_rq)
29f59db3 7302 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7303 if (unlikely(running))
7304 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7305
8323f26c
PZ
7306 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7307 lockdep_is_held(&tsk->sighand->siglock)),
7308 struct task_group, css);
7309 tg = autogroup_task_group(tsk, tg);
7310 tsk->sched_task_group = tg;
7311
810b3817 7312#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7313 if (tsk->sched_class->task_move_group)
7314 tsk->sched_class->task_move_group(tsk, on_rq);
7315 else
810b3817 7316#endif
b2b5ce02 7317 set_task_rq(tsk, task_cpu(tsk));
810b3817 7318
0e1f3483
HS
7319 if (unlikely(running))
7320 tsk->sched_class->set_curr_task(rq);
7321 if (on_rq)
371fd7e7 7322 enqueue_task(rq, tsk, 0);
29f59db3 7323
0122ec5b 7324 task_rq_unlock(rq, tsk, &flags);
29f59db3 7325}
7c941438 7326#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7327
a790de99 7328#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7329static unsigned long to_ratio(u64 period, u64 runtime)
7330{
7331 if (runtime == RUNTIME_INF)
9a7e0b18 7332 return 1ULL << 20;
9f0c1e56 7333
9a7e0b18 7334 return div64_u64(runtime << 20, period);
9f0c1e56 7335}
a790de99
PT
7336#endif
7337
7338#ifdef CONFIG_RT_GROUP_SCHED
7339/*
7340 * Ensure that the real time constraints are schedulable.
7341 */
7342static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7343
9a7e0b18
PZ
7344/* Must be called with tasklist_lock held */
7345static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7346{
9a7e0b18 7347 struct task_struct *g, *p;
b40b2e8e 7348
9a7e0b18 7349 do_each_thread(g, p) {
029632fb 7350 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7351 return 1;
7352 } while_each_thread(g, p);
b40b2e8e 7353
9a7e0b18
PZ
7354 return 0;
7355}
b40b2e8e 7356
9a7e0b18
PZ
7357struct rt_schedulable_data {
7358 struct task_group *tg;
7359 u64 rt_period;
7360 u64 rt_runtime;
7361};
b40b2e8e 7362
a790de99 7363static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7364{
7365 struct rt_schedulable_data *d = data;
7366 struct task_group *child;
7367 unsigned long total, sum = 0;
7368 u64 period, runtime;
b40b2e8e 7369
9a7e0b18
PZ
7370 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7371 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7372
9a7e0b18
PZ
7373 if (tg == d->tg) {
7374 period = d->rt_period;
7375 runtime = d->rt_runtime;
b40b2e8e 7376 }
b40b2e8e 7377
4653f803
PZ
7378 /*
7379 * Cannot have more runtime than the period.
7380 */
7381 if (runtime > period && runtime != RUNTIME_INF)
7382 return -EINVAL;
6f505b16 7383
4653f803
PZ
7384 /*
7385 * Ensure we don't starve existing RT tasks.
7386 */
9a7e0b18
PZ
7387 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7388 return -EBUSY;
6f505b16 7389
9a7e0b18 7390 total = to_ratio(period, runtime);
6f505b16 7391
4653f803
PZ
7392 /*
7393 * Nobody can have more than the global setting allows.
7394 */
7395 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7396 return -EINVAL;
6f505b16 7397
4653f803
PZ
7398 /*
7399 * The sum of our children's runtime should not exceed our own.
7400 */
9a7e0b18
PZ
7401 list_for_each_entry_rcu(child, &tg->children, siblings) {
7402 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7403 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7404
9a7e0b18
PZ
7405 if (child == d->tg) {
7406 period = d->rt_period;
7407 runtime = d->rt_runtime;
7408 }
6f505b16 7409
9a7e0b18 7410 sum += to_ratio(period, runtime);
9f0c1e56 7411 }
6f505b16 7412
9a7e0b18
PZ
7413 if (sum > total)
7414 return -EINVAL;
7415
7416 return 0;
6f505b16
PZ
7417}
7418
9a7e0b18 7419static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7420{
8277434e
PT
7421 int ret;
7422
9a7e0b18
PZ
7423 struct rt_schedulable_data data = {
7424 .tg = tg,
7425 .rt_period = period,
7426 .rt_runtime = runtime,
7427 };
7428
8277434e
PT
7429 rcu_read_lock();
7430 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7431 rcu_read_unlock();
7432
7433 return ret;
521f1a24
DG
7434}
7435
ab84d31e 7436static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7437 u64 rt_period, u64 rt_runtime)
6f505b16 7438{
ac086bc2 7439 int i, err = 0;
9f0c1e56 7440
9f0c1e56 7441 mutex_lock(&rt_constraints_mutex);
521f1a24 7442 read_lock(&tasklist_lock);
9a7e0b18
PZ
7443 err = __rt_schedulable(tg, rt_period, rt_runtime);
7444 if (err)
9f0c1e56 7445 goto unlock;
ac086bc2 7446
0986b11b 7447 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7448 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7449 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7450
7451 for_each_possible_cpu(i) {
7452 struct rt_rq *rt_rq = tg->rt_rq[i];
7453
0986b11b 7454 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7455 rt_rq->rt_runtime = rt_runtime;
0986b11b 7456 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7457 }
0986b11b 7458 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7459unlock:
521f1a24 7460 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7461 mutex_unlock(&rt_constraints_mutex);
7462
7463 return err;
6f505b16
PZ
7464}
7465
25cc7da7 7466static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7467{
7468 u64 rt_runtime, rt_period;
7469
7470 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7471 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7472 if (rt_runtime_us < 0)
7473 rt_runtime = RUNTIME_INF;
7474
ab84d31e 7475 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7476}
7477
25cc7da7 7478static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7479{
7480 u64 rt_runtime_us;
7481
d0b27fa7 7482 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7483 return -1;
7484
d0b27fa7 7485 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7486 do_div(rt_runtime_us, NSEC_PER_USEC);
7487 return rt_runtime_us;
7488}
d0b27fa7 7489
25cc7da7 7490static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7491{
7492 u64 rt_runtime, rt_period;
7493
7494 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7495 rt_runtime = tg->rt_bandwidth.rt_runtime;
7496
619b0488
R
7497 if (rt_period == 0)
7498 return -EINVAL;
7499
ab84d31e 7500 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7501}
7502
25cc7da7 7503static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7504{
7505 u64 rt_period_us;
7506
7507 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7508 do_div(rt_period_us, NSEC_PER_USEC);
7509 return rt_period_us;
7510}
7511
7512static int sched_rt_global_constraints(void)
7513{
4653f803 7514 u64 runtime, period;
d0b27fa7
PZ
7515 int ret = 0;
7516
ec5d4989
HS
7517 if (sysctl_sched_rt_period <= 0)
7518 return -EINVAL;
7519
4653f803
PZ
7520 runtime = global_rt_runtime();
7521 period = global_rt_period();
7522
7523 /*
7524 * Sanity check on the sysctl variables.
7525 */
7526 if (runtime > period && runtime != RUNTIME_INF)
7527 return -EINVAL;
10b612f4 7528
d0b27fa7 7529 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7530 read_lock(&tasklist_lock);
4653f803 7531 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7532 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7533 mutex_unlock(&rt_constraints_mutex);
7534
7535 return ret;
7536}
54e99124 7537
25cc7da7 7538static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7539{
7540 /* Don't accept realtime tasks when there is no way for them to run */
7541 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7542 return 0;
7543
7544 return 1;
7545}
7546
6d6bc0ad 7547#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7548static int sched_rt_global_constraints(void)
7549{
ac086bc2
PZ
7550 unsigned long flags;
7551 int i;
7552
ec5d4989
HS
7553 if (sysctl_sched_rt_period <= 0)
7554 return -EINVAL;
7555
60aa605d
PZ
7556 /*
7557 * There's always some RT tasks in the root group
7558 * -- migration, kstopmachine etc..
7559 */
7560 if (sysctl_sched_rt_runtime == 0)
7561 return -EBUSY;
7562
0986b11b 7563 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7564 for_each_possible_cpu(i) {
7565 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7566
0986b11b 7567 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7568 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7569 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7570 }
0986b11b 7571 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7572
d0b27fa7
PZ
7573 return 0;
7574}
6d6bc0ad 7575#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7576
ce0dbbbb
CW
7577int sched_rr_handler(struct ctl_table *table, int write,
7578 void __user *buffer, size_t *lenp,
7579 loff_t *ppos)
7580{
7581 int ret;
7582 static DEFINE_MUTEX(mutex);
7583
7584 mutex_lock(&mutex);
7585 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7586 /* make sure that internally we keep jiffies */
7587 /* also, writing zero resets timeslice to default */
7588 if (!ret && write) {
7589 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7590 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7591 }
7592 mutex_unlock(&mutex);
7593 return ret;
7594}
7595
d0b27fa7 7596int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7597 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7598 loff_t *ppos)
7599{
7600 int ret;
7601 int old_period, old_runtime;
7602 static DEFINE_MUTEX(mutex);
7603
7604 mutex_lock(&mutex);
7605 old_period = sysctl_sched_rt_period;
7606 old_runtime = sysctl_sched_rt_runtime;
7607
8d65af78 7608 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7609
7610 if (!ret && write) {
7611 ret = sched_rt_global_constraints();
7612 if (ret) {
7613 sysctl_sched_rt_period = old_period;
7614 sysctl_sched_rt_runtime = old_runtime;
7615 } else {
7616 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7617 def_rt_bandwidth.rt_period =
7618 ns_to_ktime(global_rt_period());
7619 }
7620 }
7621 mutex_unlock(&mutex);
7622
7623 return ret;
7624}
68318b8e 7625
052f1dc7 7626#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7627
7628/* return corresponding task_group object of a cgroup */
2b01dfe3 7629static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7630{
2b01dfe3
PM
7631 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7632 struct task_group, css);
68318b8e
SV
7633}
7634
92fb9748 7635static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7636{
ec7dc8ac 7637 struct task_group *tg, *parent;
68318b8e 7638
2b01dfe3 7639 if (!cgrp->parent) {
68318b8e 7640 /* This is early initialization for the top cgroup */
07e06b01 7641 return &root_task_group.css;
68318b8e
SV
7642 }
7643
ec7dc8ac
DG
7644 parent = cgroup_tg(cgrp->parent);
7645 tg = sched_create_group(parent);
68318b8e
SV
7646 if (IS_ERR(tg))
7647 return ERR_PTR(-ENOMEM);
7648
68318b8e
SV
7649 return &tg->css;
7650}
7651
ace783b9
LZ
7652static int cpu_cgroup_css_online(struct cgroup *cgrp)
7653{
7654 struct task_group *tg = cgroup_tg(cgrp);
7655 struct task_group *parent;
7656
7657 if (!cgrp->parent)
7658 return 0;
7659
7660 parent = cgroup_tg(cgrp->parent);
7661 sched_online_group(tg, parent);
7662 return 0;
7663}
7664
92fb9748 7665static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7666{
2b01dfe3 7667 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7668
7669 sched_destroy_group(tg);
7670}
7671
ace783b9
LZ
7672static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7673{
7674 struct task_group *tg = cgroup_tg(cgrp);
7675
7676 sched_offline_group(tg);
7677}
7678
761b3ef5 7679static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7680 struct cgroup_taskset *tset)
68318b8e 7681{
bb9d97b6
TH
7682 struct task_struct *task;
7683
7684 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7685#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7686 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7687 return -EINVAL;
b68aa230 7688#else
bb9d97b6
TH
7689 /* We don't support RT-tasks being in separate groups */
7690 if (task->sched_class != &fair_sched_class)
7691 return -EINVAL;
b68aa230 7692#endif
bb9d97b6 7693 }
be367d09
BB
7694 return 0;
7695}
68318b8e 7696
761b3ef5 7697static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7698 struct cgroup_taskset *tset)
68318b8e 7699{
bb9d97b6
TH
7700 struct task_struct *task;
7701
7702 cgroup_taskset_for_each(task, cgrp, tset)
7703 sched_move_task(task);
68318b8e
SV
7704}
7705
068c5cc5 7706static void
761b3ef5
LZ
7707cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7708 struct task_struct *task)
068c5cc5
PZ
7709{
7710 /*
7711 * cgroup_exit() is called in the copy_process() failure path.
7712 * Ignore this case since the task hasn't ran yet, this avoids
7713 * trying to poke a half freed task state from generic code.
7714 */
7715 if (!(task->flags & PF_EXITING))
7716 return;
7717
7718 sched_move_task(task);
7719}
7720
052f1dc7 7721#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7722static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7723 u64 shareval)
68318b8e 7724{
c8b28116 7725 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7726}
7727
f4c753b7 7728static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7729{
2b01dfe3 7730 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7731
c8b28116 7732 return (u64) scale_load_down(tg->shares);
68318b8e 7733}
ab84d31e
PT
7734
7735#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7736static DEFINE_MUTEX(cfs_constraints_mutex);
7737
ab84d31e
PT
7738const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7739const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7740
a790de99
PT
7741static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7742
ab84d31e
PT
7743static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7744{
56f570e5 7745 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7746 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7747
7748 if (tg == &root_task_group)
7749 return -EINVAL;
7750
7751 /*
7752 * Ensure we have at some amount of bandwidth every period. This is
7753 * to prevent reaching a state of large arrears when throttled via
7754 * entity_tick() resulting in prolonged exit starvation.
7755 */
7756 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7757 return -EINVAL;
7758
7759 /*
7760 * Likewise, bound things on the otherside by preventing insane quota
7761 * periods. This also allows us to normalize in computing quota
7762 * feasibility.
7763 */
7764 if (period > max_cfs_quota_period)
7765 return -EINVAL;
7766
a790de99
PT
7767 mutex_lock(&cfs_constraints_mutex);
7768 ret = __cfs_schedulable(tg, period, quota);
7769 if (ret)
7770 goto out_unlock;
7771
58088ad0 7772 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7773 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7774 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7775 raw_spin_lock_irq(&cfs_b->lock);
7776 cfs_b->period = ns_to_ktime(period);
7777 cfs_b->quota = quota;
58088ad0 7778
a9cf55b2 7779 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7780 /* restart the period timer (if active) to handle new period expiry */
7781 if (runtime_enabled && cfs_b->timer_active) {
7782 /* force a reprogram */
7783 cfs_b->timer_active = 0;
7784 __start_cfs_bandwidth(cfs_b);
7785 }
ab84d31e
PT
7786 raw_spin_unlock_irq(&cfs_b->lock);
7787
7788 for_each_possible_cpu(i) {
7789 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7790 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7791
7792 raw_spin_lock_irq(&rq->lock);
58088ad0 7793 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7794 cfs_rq->runtime_remaining = 0;
671fd9da 7795
029632fb 7796 if (cfs_rq->throttled)
671fd9da 7797 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7798 raw_spin_unlock_irq(&rq->lock);
7799 }
a790de99
PT
7800out_unlock:
7801 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7802
a790de99 7803 return ret;
ab84d31e
PT
7804}
7805
7806int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7807{
7808 u64 quota, period;
7809
029632fb 7810 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7811 if (cfs_quota_us < 0)
7812 quota = RUNTIME_INF;
7813 else
7814 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7815
7816 return tg_set_cfs_bandwidth(tg, period, quota);
7817}
7818
7819long tg_get_cfs_quota(struct task_group *tg)
7820{
7821 u64 quota_us;
7822
029632fb 7823 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7824 return -1;
7825
029632fb 7826 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7827 do_div(quota_us, NSEC_PER_USEC);
7828
7829 return quota_us;
7830}
7831
7832int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7833{
7834 u64 quota, period;
7835
7836 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7837 quota = tg->cfs_bandwidth.quota;
ab84d31e 7838
ab84d31e
PT
7839 return tg_set_cfs_bandwidth(tg, period, quota);
7840}
7841
7842long tg_get_cfs_period(struct task_group *tg)
7843{
7844 u64 cfs_period_us;
7845
029632fb 7846 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7847 do_div(cfs_period_us, NSEC_PER_USEC);
7848
7849 return cfs_period_us;
7850}
7851
7852static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7853{
7854 return tg_get_cfs_quota(cgroup_tg(cgrp));
7855}
7856
7857static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7858 s64 cfs_quota_us)
7859{
7860 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7861}
7862
7863static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7864{
7865 return tg_get_cfs_period(cgroup_tg(cgrp));
7866}
7867
7868static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7869 u64 cfs_period_us)
7870{
7871 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7872}
7873
a790de99
PT
7874struct cfs_schedulable_data {
7875 struct task_group *tg;
7876 u64 period, quota;
7877};
7878
7879/*
7880 * normalize group quota/period to be quota/max_period
7881 * note: units are usecs
7882 */
7883static u64 normalize_cfs_quota(struct task_group *tg,
7884 struct cfs_schedulable_data *d)
7885{
7886 u64 quota, period;
7887
7888 if (tg == d->tg) {
7889 period = d->period;
7890 quota = d->quota;
7891 } else {
7892 period = tg_get_cfs_period(tg);
7893 quota = tg_get_cfs_quota(tg);
7894 }
7895
7896 /* note: these should typically be equivalent */
7897 if (quota == RUNTIME_INF || quota == -1)
7898 return RUNTIME_INF;
7899
7900 return to_ratio(period, quota);
7901}
7902
7903static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7904{
7905 struct cfs_schedulable_data *d = data;
029632fb 7906 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7907 s64 quota = 0, parent_quota = -1;
7908
7909 if (!tg->parent) {
7910 quota = RUNTIME_INF;
7911 } else {
029632fb 7912 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7913
7914 quota = normalize_cfs_quota(tg, d);
7915 parent_quota = parent_b->hierarchal_quota;
7916
7917 /*
7918 * ensure max(child_quota) <= parent_quota, inherit when no
7919 * limit is set
7920 */
7921 if (quota == RUNTIME_INF)
7922 quota = parent_quota;
7923 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7924 return -EINVAL;
7925 }
7926 cfs_b->hierarchal_quota = quota;
7927
7928 return 0;
7929}
7930
7931static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7932{
8277434e 7933 int ret;
a790de99
PT
7934 struct cfs_schedulable_data data = {
7935 .tg = tg,
7936 .period = period,
7937 .quota = quota,
7938 };
7939
7940 if (quota != RUNTIME_INF) {
7941 do_div(data.period, NSEC_PER_USEC);
7942 do_div(data.quota, NSEC_PER_USEC);
7943 }
7944
8277434e
PT
7945 rcu_read_lock();
7946 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7947 rcu_read_unlock();
7948
7949 return ret;
a790de99 7950}
e8da1b18
NR
7951
7952static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7953 struct cgroup_map_cb *cb)
7954{
7955 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7956 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7957
7958 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7959 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7960 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7961
7962 return 0;
7963}
ab84d31e 7964#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7965#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7966
052f1dc7 7967#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7968static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7969 s64 val)
6f505b16 7970{
06ecb27c 7971 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7972}
7973
06ecb27c 7974static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7975{
06ecb27c 7976 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7977}
d0b27fa7
PZ
7978
7979static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7980 u64 rt_period_us)
7981{
7982 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7983}
7984
7985static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7986{
7987 return sched_group_rt_period(cgroup_tg(cgrp));
7988}
6d6bc0ad 7989#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7990
fe5c7cc2 7991static struct cftype cpu_files[] = {
052f1dc7 7992#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7993 {
7994 .name = "shares",
f4c753b7
PM
7995 .read_u64 = cpu_shares_read_u64,
7996 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7997 },
052f1dc7 7998#endif
ab84d31e
PT
7999#ifdef CONFIG_CFS_BANDWIDTH
8000 {
8001 .name = "cfs_quota_us",
8002 .read_s64 = cpu_cfs_quota_read_s64,
8003 .write_s64 = cpu_cfs_quota_write_s64,
8004 },
8005 {
8006 .name = "cfs_period_us",
8007 .read_u64 = cpu_cfs_period_read_u64,
8008 .write_u64 = cpu_cfs_period_write_u64,
8009 },
e8da1b18
NR
8010 {
8011 .name = "stat",
8012 .read_map = cpu_stats_show,
8013 },
ab84d31e 8014#endif
052f1dc7 8015#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8016 {
9f0c1e56 8017 .name = "rt_runtime_us",
06ecb27c
PM
8018 .read_s64 = cpu_rt_runtime_read,
8019 .write_s64 = cpu_rt_runtime_write,
6f505b16 8020 },
d0b27fa7
PZ
8021 {
8022 .name = "rt_period_us",
f4c753b7
PM
8023 .read_u64 = cpu_rt_period_read_uint,
8024 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8025 },
052f1dc7 8026#endif
4baf6e33 8027 { } /* terminate */
68318b8e
SV
8028};
8029
68318b8e 8030struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 8031 .name = "cpu",
92fb9748
TH
8032 .css_alloc = cpu_cgroup_css_alloc,
8033 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8034 .css_online = cpu_cgroup_css_online,
8035 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8036 .can_attach = cpu_cgroup_can_attach,
8037 .attach = cpu_cgroup_attach,
068c5cc5 8038 .exit = cpu_cgroup_exit,
38605cae 8039 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8040 .base_cftypes = cpu_files,
68318b8e
SV
8041 .early_init = 1,
8042};
8043
052f1dc7 8044#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8045
8046#ifdef CONFIG_CGROUP_CPUACCT
8047
8048/*
8049 * CPU accounting code for task groups.
8050 *
8051 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8052 * (balbir@in.ibm.com).
8053 */
8054
73fbec60
FW
8055struct cpuacct root_cpuacct;
8056
d842de87 8057/* create a new cpu accounting group */
92fb9748 8058static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
d842de87 8059{
54c707e9 8060 struct cpuacct *ca;
d842de87 8061
54c707e9
GC
8062 if (!cgrp->parent)
8063 return &root_cpuacct.css;
8064
8065 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8066 if (!ca)
ef12fefa 8067 goto out;
d842de87
SV
8068
8069 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8070 if (!ca->cpuusage)
8071 goto out_free_ca;
8072
54c707e9
GC
8073 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8074 if (!ca->cpustat)
8075 goto out_free_cpuusage;
934352f2 8076
d842de87 8077 return &ca->css;
ef12fefa 8078
54c707e9 8079out_free_cpuusage:
ef12fefa
BR
8080 free_percpu(ca->cpuusage);
8081out_free_ca:
8082 kfree(ca);
8083out:
8084 return ERR_PTR(-ENOMEM);
d842de87
SV
8085}
8086
8087/* destroy an existing cpu accounting group */
92fb9748 8088static void cpuacct_css_free(struct cgroup *cgrp)
d842de87 8089{
32cd756a 8090 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8091
54c707e9 8092 free_percpu(ca->cpustat);
d842de87
SV
8093 free_percpu(ca->cpuusage);
8094 kfree(ca);
8095}
8096
720f5498
KC
8097static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8098{
b36128c8 8099 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8100 u64 data;
8101
8102#ifndef CONFIG_64BIT
8103 /*
8104 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8105 */
05fa785c 8106 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8107 data = *cpuusage;
05fa785c 8108 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8109#else
8110 data = *cpuusage;
8111#endif
8112
8113 return data;
8114}
8115
8116static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8117{
b36128c8 8118 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8119
8120#ifndef CONFIG_64BIT
8121 /*
8122 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8123 */
05fa785c 8124 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8125 *cpuusage = val;
05fa785c 8126 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8127#else
8128 *cpuusage = val;
8129#endif
8130}
8131
d842de87 8132/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8133static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8134{
32cd756a 8135 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8136 u64 totalcpuusage = 0;
8137 int i;
8138
720f5498
KC
8139 for_each_present_cpu(i)
8140 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8141
8142 return totalcpuusage;
8143}
8144
0297b803
DG
8145static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8146 u64 reset)
8147{
8148 struct cpuacct *ca = cgroup_ca(cgrp);
8149 int err = 0;
8150 int i;
8151
8152 if (reset) {
8153 err = -EINVAL;
8154 goto out;
8155 }
8156
720f5498
KC
8157 for_each_present_cpu(i)
8158 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8159
0297b803
DG
8160out:
8161 return err;
8162}
8163
e9515c3c
KC
8164static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8165 struct seq_file *m)
8166{
8167 struct cpuacct *ca = cgroup_ca(cgroup);
8168 u64 percpu;
8169 int i;
8170
8171 for_each_present_cpu(i) {
8172 percpu = cpuacct_cpuusage_read(ca, i);
8173 seq_printf(m, "%llu ", (unsigned long long) percpu);
8174 }
8175 seq_printf(m, "\n");
8176 return 0;
8177}
8178
ef12fefa
BR
8179static const char *cpuacct_stat_desc[] = {
8180 [CPUACCT_STAT_USER] = "user",
8181 [CPUACCT_STAT_SYSTEM] = "system",
8182};
8183
8184static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8185 struct cgroup_map_cb *cb)
ef12fefa
BR
8186{
8187 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8188 int cpu;
8189 s64 val = 0;
ef12fefa 8190
54c707e9
GC
8191 for_each_online_cpu(cpu) {
8192 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8193 val += kcpustat->cpustat[CPUTIME_USER];
8194 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8195 }
54c707e9
GC
8196 val = cputime64_to_clock_t(val);
8197 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8198
54c707e9
GC
8199 val = 0;
8200 for_each_online_cpu(cpu) {
8201 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8202 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8203 val += kcpustat->cpustat[CPUTIME_IRQ];
8204 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8205 }
54c707e9
GC
8206
8207 val = cputime64_to_clock_t(val);
8208 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8209
ef12fefa
BR
8210 return 0;
8211}
8212
d842de87
SV
8213static struct cftype files[] = {
8214 {
8215 .name = "usage",
f4c753b7
PM
8216 .read_u64 = cpuusage_read,
8217 .write_u64 = cpuusage_write,
d842de87 8218 },
e9515c3c
KC
8219 {
8220 .name = "usage_percpu",
8221 .read_seq_string = cpuacct_percpu_seq_read,
8222 },
ef12fefa
BR
8223 {
8224 .name = "stat",
8225 .read_map = cpuacct_stats_show,
8226 },
4baf6e33 8227 { } /* terminate */
d842de87
SV
8228};
8229
d842de87
SV
8230/*
8231 * charge this task's execution time to its accounting group.
8232 *
8233 * called with rq->lock held.
8234 */
029632fb 8235void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8236{
8237 struct cpuacct *ca;
934352f2 8238 int cpu;
d842de87 8239
c40c6f85 8240 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8241 return;
8242
934352f2 8243 cpu = task_cpu(tsk);
a18b83b7
BR
8244
8245 rcu_read_lock();
8246
d842de87 8247 ca = task_ca(tsk);
d842de87 8248
44252e42 8249 for (; ca; ca = parent_ca(ca)) {
b36128c8 8250 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8251 *cpuusage += cputime;
8252 }
a18b83b7
BR
8253
8254 rcu_read_unlock();
d842de87
SV
8255}
8256
8257struct cgroup_subsys cpuacct_subsys = {
8258 .name = "cpuacct",
92fb9748
TH
8259 .css_alloc = cpuacct_css_alloc,
8260 .css_free = cpuacct_css_free,
d842de87 8261 .subsys_id = cpuacct_subsys_id,
4baf6e33 8262 .base_cftypes = files,
d842de87
SV
8263};
8264#endif /* CONFIG_CGROUP_CPUACCT */
b637a328
PM
8265
8266void dump_cpu_task(int cpu)
8267{
8268 pr_info("Task dump for CPU %d:\n", cpu);
8269 sched_show_task(cpu_curr(cpu));
8270}