Remove 'type' argument from access_ok() function
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
325ea10c 8#include "sched.h"
1da177e4 9
7281c8de 10#include <linux/nospec.h>
85f1abe0 11
0ed557aa
MR
12#include <linux/kcov.h>
13
96f951ed 14#include <asm/switch_to.h>
5517d86b 15#include <asm/tlb.h>
1da177e4 16
ea138446 17#include "../workqueue_internal.h"
29d5e047 18#include "../smpboot.h"
6e0534f2 19
91c27493
VG
20#include "pelt.h"
21
a8d154b0 22#define CREATE_TRACE_POINTS
ad8d75ff 23#include <trace/events/sched.h>
a8d154b0 24
029632fb 25DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 26
765cc3a4 27#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
28/*
29 * Debugging: various feature bits
765cc3a4
PB
30 *
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
bf5c91ba 34 */
f00b45c1
PZ
35#define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 37const_debug unsigned int sysctl_sched_features =
391e43da 38#include "features.h"
f00b45c1 39 0;
f00b45c1 40#undef SCHED_FEAT
765cc3a4 41#endif
f00b45c1 42
b82d9fdd
PZ
43/*
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
46 */
47const_debug unsigned int sysctl_sched_nr_migrate = 32;
48
fa85ae24 49/*
d1ccc66d 50 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
51 * default: 1s
52 */
9f0c1e56 53unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 54
029632fb 55__read_mostly int scheduler_running;
6892b75e 56
9f0c1e56
PZ
57/*
58 * part of the period that we allow rt tasks to run in us.
59 * default: 0.95s
60 */
61int sysctl_sched_rt_runtime = 950000;
fa85ae24 62
3e71a462
PZ
63/*
64 * __task_rq_lock - lock the rq @p resides on.
65 */
eb580751 66struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
67 __acquires(rq->lock)
68{
69 struct rq *rq;
70
71 lockdep_assert_held(&p->pi_lock);
72
73 for (;;) {
74 rq = task_rq(p);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 77 rq_pin_lock(rq, rf);
3e71a462
PZ
78 return rq;
79 }
80 raw_spin_unlock(&rq->lock);
81
82 while (unlikely(task_on_rq_migrating(p)))
83 cpu_relax();
84 }
85}
86
87/*
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89 */
eb580751 90struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
91 __acquires(p->pi_lock)
92 __acquires(rq->lock)
93{
94 struct rq *rq;
95
96 for (;;) {
eb580751 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
98 rq = task_rq(p);
99 raw_spin_lock(&rq->lock);
100 /*
101 * move_queued_task() task_rq_lock()
102 *
103 * ACQUIRE (rq->lock)
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
107 * [L] ->on_rq
108 * RELEASE (rq->lock)
109 *
97fb7a0a 110 * If we observe the old CPU in task_rq_lock, the acquire of
3e71a462
PZ
111 * the old rq->lock will fully serialize against the stores.
112 *
d1ccc66d 113 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
114 * pair with the WMB to ensure we must then also see migrating.
115 */
116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 117 rq_pin_lock(rq, rf);
3e71a462
PZ
118 return rq;
119 }
120 raw_spin_unlock(&rq->lock);
eb580751 121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
122
123 while (unlikely(task_on_rq_migrating(p)))
124 cpu_relax();
125 }
126}
127
535b9552
IM
128/*
129 * RQ-clock updating methods:
130 */
131
132static void update_rq_clock_task(struct rq *rq, s64 delta)
133{
134/*
135 * In theory, the compile should just see 0 here, and optimize out the call
136 * to sched_rt_avg_update. But I don't trust it...
137 */
11d4afd4
VG
138 s64 __maybe_unused steal = 0, irq_delta = 0;
139
535b9552
IM
140#ifdef CONFIG_IRQ_TIME_ACCOUNTING
141 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
142
143 /*
144 * Since irq_time is only updated on {soft,}irq_exit, we might run into
145 * this case when a previous update_rq_clock() happened inside a
146 * {soft,}irq region.
147 *
148 * When this happens, we stop ->clock_task and only update the
149 * prev_irq_time stamp to account for the part that fit, so that a next
150 * update will consume the rest. This ensures ->clock_task is
151 * monotonic.
152 *
153 * It does however cause some slight miss-attribution of {soft,}irq
154 * time, a more accurate solution would be to update the irq_time using
155 * the current rq->clock timestamp, except that would require using
156 * atomic ops.
157 */
158 if (irq_delta > delta)
159 irq_delta = delta;
160
161 rq->prev_irq_time += irq_delta;
162 delta -= irq_delta;
163#endif
164#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
165 if (static_key_false((&paravirt_steal_rq_enabled))) {
166 steal = paravirt_steal_clock(cpu_of(rq));
167 steal -= rq->prev_steal_time_rq;
168
169 if (unlikely(steal > delta))
170 steal = delta;
171
172 rq->prev_steal_time_rq += steal;
173 delta -= steal;
174 }
175#endif
176
177 rq->clock_task += delta;
178
11d4afd4 179#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 180 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 181 update_irq_load_avg(rq, irq_delta + steal);
535b9552
IM
182#endif
183}
184
185void update_rq_clock(struct rq *rq)
186{
187 s64 delta;
188
189 lockdep_assert_held(&rq->lock);
190
191 if (rq->clock_update_flags & RQCF_ACT_SKIP)
192 return;
193
194#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
195 if (sched_feat(WARN_DOUBLE_CLOCK))
196 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
197 rq->clock_update_flags |= RQCF_UPDATED;
198#endif
26ae58d2 199
535b9552
IM
200 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
201 if (delta < 0)
202 return;
203 rq->clock += delta;
204 update_rq_clock_task(rq, delta);
205}
206
207
8f4d37ec
PZ
208#ifdef CONFIG_SCHED_HRTICK
209/*
210 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 211 */
8f4d37ec 212
8f4d37ec
PZ
213static void hrtick_clear(struct rq *rq)
214{
215 if (hrtimer_active(&rq->hrtick_timer))
216 hrtimer_cancel(&rq->hrtick_timer);
217}
218
8f4d37ec
PZ
219/*
220 * High-resolution timer tick.
221 * Runs from hardirq context with interrupts disabled.
222 */
223static enum hrtimer_restart hrtick(struct hrtimer *timer)
224{
225 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 226 struct rq_flags rf;
8f4d37ec
PZ
227
228 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
229
8a8c69c3 230 rq_lock(rq, &rf);
3e51f33f 231 update_rq_clock(rq);
8f4d37ec 232 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 233 rq_unlock(rq, &rf);
8f4d37ec
PZ
234
235 return HRTIMER_NORESTART;
236}
237
95e904c7 238#ifdef CONFIG_SMP
971ee28c 239
4961b6e1 240static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
241{
242 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 243
4961b6e1 244 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
245}
246
31656519
PZ
247/*
248 * called from hardirq (IPI) context
249 */
250static void __hrtick_start(void *arg)
b328ca18 251{
31656519 252 struct rq *rq = arg;
8a8c69c3 253 struct rq_flags rf;
b328ca18 254
8a8c69c3 255 rq_lock(rq, &rf);
971ee28c 256 __hrtick_restart(rq);
31656519 257 rq->hrtick_csd_pending = 0;
8a8c69c3 258 rq_unlock(rq, &rf);
b328ca18
PZ
259}
260
31656519
PZ
261/*
262 * Called to set the hrtick timer state.
263 *
264 * called with rq->lock held and irqs disabled
265 */
029632fb 266void hrtick_start(struct rq *rq, u64 delay)
b328ca18 267{
31656519 268 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 269 ktime_t time;
270 s64 delta;
271
272 /*
273 * Don't schedule slices shorter than 10000ns, that just
274 * doesn't make sense and can cause timer DoS.
275 */
276 delta = max_t(s64, delay, 10000LL);
277 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 278
cc584b21 279 hrtimer_set_expires(timer, time);
31656519
PZ
280
281 if (rq == this_rq()) {
971ee28c 282 __hrtick_restart(rq);
31656519 283 } else if (!rq->hrtick_csd_pending) {
c46fff2a 284 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
285 rq->hrtick_csd_pending = 1;
286 }
b328ca18
PZ
287}
288
31656519
PZ
289#else
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
31656519 296{
86893335
WL
297 /*
298 * Don't schedule slices shorter than 10000ns, that just
299 * doesn't make sense. Rely on vruntime for fairness.
300 */
301 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
302 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
303 HRTIMER_MODE_REL_PINNED);
31656519 304}
31656519 305#endif /* CONFIG_SMP */
8f4d37ec 306
77a021be 307static void hrtick_rq_init(struct rq *rq)
8f4d37ec 308{
31656519
PZ
309#ifdef CONFIG_SMP
310 rq->hrtick_csd_pending = 0;
8f4d37ec 311
31656519
PZ
312 rq->hrtick_csd.flags = 0;
313 rq->hrtick_csd.func = __hrtick_start;
314 rq->hrtick_csd.info = rq;
315#endif
8f4d37ec 316
31656519
PZ
317 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
318 rq->hrtick_timer.function = hrtick;
8f4d37ec 319}
006c75f1 320#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
321static inline void hrtick_clear(struct rq *rq)
322{
323}
324
77a021be 325static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
326{
327}
006c75f1 328#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 329
5529578a
FW
330/*
331 * cmpxchg based fetch_or, macro so it works for different integer types
332 */
333#define fetch_or(ptr, mask) \
334 ({ \
335 typeof(ptr) _ptr = (ptr); \
336 typeof(mask) _mask = (mask); \
337 typeof(*_ptr) _old, _val = *_ptr; \
338 \
339 for (;;) { \
340 _old = cmpxchg(_ptr, _val, _val | _mask); \
341 if (_old == _val) \
342 break; \
343 _val = _old; \
344 } \
345 _old; \
346})
347
e3baac47 348#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
349/*
350 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
351 * this avoids any races wrt polling state changes and thereby avoids
352 * spurious IPIs.
353 */
354static bool set_nr_and_not_polling(struct task_struct *p)
355{
356 struct thread_info *ti = task_thread_info(p);
357 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
358}
e3baac47
PZ
359
360/*
361 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
362 *
363 * If this returns true, then the idle task promises to call
364 * sched_ttwu_pending() and reschedule soon.
365 */
366static bool set_nr_if_polling(struct task_struct *p)
367{
368 struct thread_info *ti = task_thread_info(p);
316c1608 369 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
370
371 for (;;) {
372 if (!(val & _TIF_POLLING_NRFLAG))
373 return false;
374 if (val & _TIF_NEED_RESCHED)
375 return true;
376 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
377 if (old == val)
378 break;
379 val = old;
380 }
381 return true;
382}
383
fd99f91a
PZ
384#else
385static bool set_nr_and_not_polling(struct task_struct *p)
386{
387 set_tsk_need_resched(p);
388 return true;
389}
e3baac47
PZ
390
391#ifdef CONFIG_SMP
392static bool set_nr_if_polling(struct task_struct *p)
393{
394 return false;
395}
396#endif
fd99f91a
PZ
397#endif
398
76751049
PZ
399void wake_q_add(struct wake_q_head *head, struct task_struct *task)
400{
401 struct wake_q_node *node = &task->wake_q;
402
403 /*
404 * Atomically grab the task, if ->wake_q is !nil already it means
405 * its already queued (either by us or someone else) and will get the
406 * wakeup due to that.
407 *
7696f991
AP
408 * This cmpxchg() executes a full barrier, which pairs with the full
409 * barrier executed by the wakeup in wake_up_q().
76751049
PZ
410 */
411 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
412 return;
413
414 get_task_struct(task);
415
416 /*
417 * The head is context local, there can be no concurrency.
418 */
419 *head->lastp = node;
420 head->lastp = &node->next;
421}
422
423void wake_up_q(struct wake_q_head *head)
424{
425 struct wake_q_node *node = head->first;
426
427 while (node != WAKE_Q_TAIL) {
428 struct task_struct *task;
429
430 task = container_of(node, struct task_struct, wake_q);
431 BUG_ON(!task);
d1ccc66d 432 /* Task can safely be re-inserted now: */
76751049
PZ
433 node = node->next;
434 task->wake_q.next = NULL;
435
436 /*
7696f991
AP
437 * wake_up_process() executes a full barrier, which pairs with
438 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
439 */
440 wake_up_process(task);
441 put_task_struct(task);
442 }
443}
444
c24d20db 445/*
8875125e 446 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
447 *
448 * On UP this means the setting of the need_resched flag, on SMP it
449 * might also involve a cross-CPU call to trigger the scheduler on
450 * the target CPU.
451 */
8875125e 452void resched_curr(struct rq *rq)
c24d20db 453{
8875125e 454 struct task_struct *curr = rq->curr;
c24d20db
IM
455 int cpu;
456
8875125e 457 lockdep_assert_held(&rq->lock);
c24d20db 458
8875125e 459 if (test_tsk_need_resched(curr))
c24d20db
IM
460 return;
461
8875125e 462 cpu = cpu_of(rq);
fd99f91a 463
f27dde8d 464 if (cpu == smp_processor_id()) {
8875125e 465 set_tsk_need_resched(curr);
f27dde8d 466 set_preempt_need_resched();
c24d20db 467 return;
f27dde8d 468 }
c24d20db 469
8875125e 470 if (set_nr_and_not_polling(curr))
c24d20db 471 smp_send_reschedule(cpu);
dfc68f29
AL
472 else
473 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
474}
475
029632fb 476void resched_cpu(int cpu)
c24d20db
IM
477{
478 struct rq *rq = cpu_rq(cpu);
479 unsigned long flags;
480
7c2102e5 481 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
482 if (cpu_online(cpu) || cpu == smp_processor_id())
483 resched_curr(rq);
05fa785c 484 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 485}
06d8308c 486
b021fe3e 487#ifdef CONFIG_SMP
3451d024 488#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 489/*
d1ccc66d
IM
490 * In the semi idle case, use the nearest busy CPU for migrating timers
491 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
492 *
493 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
494 * selecting an idle CPU will add more delays to the timers than intended
495 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 496 */
bc7a34b8 497int get_nohz_timer_target(void)
83cd4fe2 498{
bc7a34b8 499 int i, cpu = smp_processor_id();
83cd4fe2
VP
500 struct sched_domain *sd;
501
de201559 502 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
503 return cpu;
504
057f3fad 505 rcu_read_lock();
83cd4fe2 506 for_each_domain(cpu, sd) {
057f3fad 507 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
508 if (cpu == i)
509 continue;
510
de201559 511 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
512 cpu = i;
513 goto unlock;
514 }
515 }
83cd4fe2 516 }
9642d18e 517
de201559
FW
518 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
519 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
520unlock:
521 rcu_read_unlock();
83cd4fe2
VP
522 return cpu;
523}
d1ccc66d 524
06d8308c
TG
525/*
526 * When add_timer_on() enqueues a timer into the timer wheel of an
527 * idle CPU then this timer might expire before the next timer event
528 * which is scheduled to wake up that CPU. In case of a completely
529 * idle system the next event might even be infinite time into the
530 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
531 * leaves the inner idle loop so the newly added timer is taken into
532 * account when the CPU goes back to idle and evaluates the timer
533 * wheel for the next timer event.
534 */
1c20091e 535static void wake_up_idle_cpu(int cpu)
06d8308c
TG
536{
537 struct rq *rq = cpu_rq(cpu);
538
539 if (cpu == smp_processor_id())
540 return;
541
67b9ca70 542 if (set_nr_and_not_polling(rq->idle))
06d8308c 543 smp_send_reschedule(cpu);
dfc68f29
AL
544 else
545 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
546}
547
c5bfece2 548static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 549{
53c5fa16
FW
550 /*
551 * We just need the target to call irq_exit() and re-evaluate
552 * the next tick. The nohz full kick at least implies that.
553 * If needed we can still optimize that later with an
554 * empty IRQ.
555 */
379d9ecb
PM
556 if (cpu_is_offline(cpu))
557 return true; /* Don't try to wake offline CPUs. */
c5bfece2 558 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
559 if (cpu != smp_processor_id() ||
560 tick_nohz_tick_stopped())
53c5fa16 561 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
562 return true;
563 }
564
565 return false;
566}
567
379d9ecb
PM
568/*
569 * Wake up the specified CPU. If the CPU is going offline, it is the
570 * caller's responsibility to deal with the lost wakeup, for example,
571 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
572 */
1c20091e
FW
573void wake_up_nohz_cpu(int cpu)
574{
c5bfece2 575 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
576 wake_up_idle_cpu(cpu);
577}
578
ca38062e 579static inline bool got_nohz_idle_kick(void)
45bf76df 580{
1c792db7 581 int cpu = smp_processor_id();
873b4c65 582
b7031a02 583 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
584 return false;
585
586 if (idle_cpu(cpu) && !need_resched())
587 return true;
588
589 /*
590 * We can't run Idle Load Balance on this CPU for this time so we
591 * cancel it and clear NOHZ_BALANCE_KICK
592 */
b7031a02 593 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 594 return false;
45bf76df
IM
595}
596
3451d024 597#else /* CONFIG_NO_HZ_COMMON */
45bf76df 598
ca38062e 599static inline bool got_nohz_idle_kick(void)
2069dd75 600{
ca38062e 601 return false;
2069dd75
PZ
602}
603
3451d024 604#endif /* CONFIG_NO_HZ_COMMON */
d842de87 605
ce831b38 606#ifdef CONFIG_NO_HZ_FULL
76d92ac3 607bool sched_can_stop_tick(struct rq *rq)
ce831b38 608{
76d92ac3
FW
609 int fifo_nr_running;
610
611 /* Deadline tasks, even if single, need the tick */
612 if (rq->dl.dl_nr_running)
613 return false;
614
1e78cdbd 615 /*
2548d546
PZ
616 * If there are more than one RR tasks, we need the tick to effect the
617 * actual RR behaviour.
1e78cdbd 618 */
76d92ac3
FW
619 if (rq->rt.rr_nr_running) {
620 if (rq->rt.rr_nr_running == 1)
621 return true;
622 else
623 return false;
1e78cdbd
RR
624 }
625
2548d546
PZ
626 /*
627 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
628 * forced preemption between FIFO tasks.
629 */
630 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
631 if (fifo_nr_running)
632 return true;
633
634 /*
635 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
636 * if there's more than one we need the tick for involuntary
637 * preemption.
638 */
639 if (rq->nr_running > 1)
541b8264 640 return false;
ce831b38 641
541b8264 642 return true;
ce831b38
FW
643}
644#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 645#endif /* CONFIG_SMP */
18d95a28 646
a790de99
PT
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 649/*
8277434e
PT
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 654 */
029632fb 655int walk_tg_tree_from(struct task_group *from,
8277434e 656 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
657{
658 struct task_group *parent, *child;
eb755805 659 int ret;
c09595f6 660
8277434e
PT
661 parent = from;
662
c09595f6 663down:
eb755805
PZ
664 ret = (*down)(parent, data);
665 if (ret)
8277434e 666 goto out;
c09595f6
PZ
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
eb755805 674 ret = (*up)(parent, data);
8277434e
PT
675 if (ret || parent == from)
676 goto out;
c09595f6
PZ
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
8277434e 682out:
eb755805 683 return ret;
c09595f6
PZ
684}
685
029632fb 686int tg_nop(struct task_group *tg, void *data)
eb755805 687{
e2b245f8 688 return 0;
eb755805 689}
18d95a28
PZ
690#endif
691
9059393e 692static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 693{
f05998d4
NR
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
dd41f596
IM
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
1da1843f 700 if (task_has_idle_policy(p)) {
c8b28116 701 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 702 load->inv_weight = WMULT_IDLEPRIO;
4a465e3e 703 p->se.runnable_weight = load->weight;
dd41f596
IM
704 return;
705 }
71f8bd46 706
9059393e
VG
707 /*
708 * SCHED_OTHER tasks have to update their load when changing their
709 * weight
710 */
711 if (update_load && p->sched_class == &fair_sched_class) {
712 reweight_task(p, prio);
713 } else {
714 load->weight = scale_load(sched_prio_to_weight[prio]);
715 load->inv_weight = sched_prio_to_wmult[prio];
4a465e3e 716 p->se.runnable_weight = load->weight;
9059393e 717 }
71f8bd46
IM
718}
719
1de64443 720static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 721{
0a67d1ee
PZ
722 if (!(flags & ENQUEUE_NOCLOCK))
723 update_rq_clock(rq);
724
eb414681 725 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 726 sched_info_queued(rq, p);
eb414681
JW
727 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
728 }
0a67d1ee 729
371fd7e7 730 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
731}
732
1de64443 733static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 734{
0a67d1ee
PZ
735 if (!(flags & DEQUEUE_NOCLOCK))
736 update_rq_clock(rq);
737
eb414681 738 if (!(flags & DEQUEUE_SAVE)) {
1de64443 739 sched_info_dequeued(rq, p);
eb414681
JW
740 psi_dequeue(p, flags & DEQUEUE_SLEEP);
741 }
0a67d1ee 742
371fd7e7 743 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
744}
745
029632fb 746void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
747{
748 if (task_contributes_to_load(p))
749 rq->nr_uninterruptible--;
750
371fd7e7 751 enqueue_task(rq, p, flags);
1e3c88bd
PZ
752}
753
029632fb 754void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
755{
756 if (task_contributes_to_load(p))
757 rq->nr_uninterruptible++;
758
371fd7e7 759 dequeue_task(rq, p, flags);
1e3c88bd
PZ
760}
761
14531189 762/*
dd41f596 763 * __normal_prio - return the priority that is based on the static prio
14531189 764 */
14531189
IM
765static inline int __normal_prio(struct task_struct *p)
766{
dd41f596 767 return p->static_prio;
14531189
IM
768}
769
b29739f9
IM
770/*
771 * Calculate the expected normal priority: i.e. priority
772 * without taking RT-inheritance into account. Might be
773 * boosted by interactivity modifiers. Changes upon fork,
774 * setprio syscalls, and whenever the interactivity
775 * estimator recalculates.
776 */
36c8b586 777static inline int normal_prio(struct task_struct *p)
b29739f9
IM
778{
779 int prio;
780
aab03e05
DF
781 if (task_has_dl_policy(p))
782 prio = MAX_DL_PRIO-1;
783 else if (task_has_rt_policy(p))
b29739f9
IM
784 prio = MAX_RT_PRIO-1 - p->rt_priority;
785 else
786 prio = __normal_prio(p);
787 return prio;
788}
789
790/*
791 * Calculate the current priority, i.e. the priority
792 * taken into account by the scheduler. This value might
793 * be boosted by RT tasks, or might be boosted by
794 * interactivity modifiers. Will be RT if the task got
795 * RT-boosted. If not then it returns p->normal_prio.
796 */
36c8b586 797static int effective_prio(struct task_struct *p)
b29739f9
IM
798{
799 p->normal_prio = normal_prio(p);
800 /*
801 * If we are RT tasks or we were boosted to RT priority,
802 * keep the priority unchanged. Otherwise, update priority
803 * to the normal priority:
804 */
805 if (!rt_prio(p->prio))
806 return p->normal_prio;
807 return p->prio;
808}
809
1da177e4
LT
810/**
811 * task_curr - is this task currently executing on a CPU?
812 * @p: the task in question.
e69f6186
YB
813 *
814 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 815 */
36c8b586 816inline int task_curr(const struct task_struct *p)
1da177e4
LT
817{
818 return cpu_curr(task_cpu(p)) == p;
819}
820
67dfa1b7 821/*
4c9a4bc8
PZ
822 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
823 * use the balance_callback list if you want balancing.
824 *
825 * this means any call to check_class_changed() must be followed by a call to
826 * balance_callback().
67dfa1b7 827 */
cb469845
SR
828static inline void check_class_changed(struct rq *rq, struct task_struct *p,
829 const struct sched_class *prev_class,
da7a735e 830 int oldprio)
cb469845
SR
831{
832 if (prev_class != p->sched_class) {
833 if (prev_class->switched_from)
da7a735e 834 prev_class->switched_from(rq, p);
4c9a4bc8 835
da7a735e 836 p->sched_class->switched_to(rq, p);
2d3d891d 837 } else if (oldprio != p->prio || dl_task(p))
da7a735e 838 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
839}
840
029632fb 841void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
842{
843 const struct sched_class *class;
844
845 if (p->sched_class == rq->curr->sched_class) {
846 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
847 } else {
848 for_each_class(class) {
849 if (class == rq->curr->sched_class)
850 break;
851 if (class == p->sched_class) {
8875125e 852 resched_curr(rq);
1e5a7405
PZ
853 break;
854 }
855 }
856 }
857
858 /*
859 * A queue event has occurred, and we're going to schedule. In
860 * this case, we can save a useless back to back clock update.
861 */
da0c1e65 862 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 863 rq_clock_skip_update(rq);
1e5a7405
PZ
864}
865
1da177e4 866#ifdef CONFIG_SMP
175f0e25
PZ
867
868static inline bool is_per_cpu_kthread(struct task_struct *p)
869{
870 if (!(p->flags & PF_KTHREAD))
871 return false;
872
873 if (p->nr_cpus_allowed != 1)
874 return false;
875
876 return true;
877}
878
879/*
880 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
881 * __set_cpus_allowed_ptr() and select_fallback_rq().
882 */
883static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
884{
885 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
886 return false;
887
888 if (is_per_cpu_kthread(p))
889 return cpu_online(cpu);
890
891 return cpu_active(cpu);
892}
893
5cc389bc
PZ
894/*
895 * This is how migration works:
896 *
897 * 1) we invoke migration_cpu_stop() on the target CPU using
898 * stop_one_cpu().
899 * 2) stopper starts to run (implicitly forcing the migrated thread
900 * off the CPU)
901 * 3) it checks whether the migrated task is still in the wrong runqueue.
902 * 4) if it's in the wrong runqueue then the migration thread removes
903 * it and puts it into the right queue.
904 * 5) stopper completes and stop_one_cpu() returns and the migration
905 * is done.
906 */
907
908/*
909 * move_queued_task - move a queued task to new rq.
910 *
911 * Returns (locked) new rq. Old rq's lock is released.
912 */
8a8c69c3
PZ
913static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
914 struct task_struct *p, int new_cpu)
5cc389bc 915{
5cc389bc
PZ
916 lockdep_assert_held(&rq->lock);
917
5cc389bc 918 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 919 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 920 set_task_cpu(p, new_cpu);
8a8c69c3 921 rq_unlock(rq, rf);
5cc389bc
PZ
922
923 rq = cpu_rq(new_cpu);
924
8a8c69c3 925 rq_lock(rq, rf);
5cc389bc 926 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 927 enqueue_task(rq, p, 0);
3ea94de1 928 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
929 check_preempt_curr(rq, p, 0);
930
931 return rq;
932}
933
934struct migration_arg {
935 struct task_struct *task;
936 int dest_cpu;
937};
938
939/*
d1ccc66d 940 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
941 * this because either it can't run here any more (set_cpus_allowed()
942 * away from this CPU, or CPU going down), or because we're
943 * attempting to rebalance this task on exec (sched_exec).
944 *
945 * So we race with normal scheduler movements, but that's OK, as long
946 * as the task is no longer on this CPU.
5cc389bc 947 */
8a8c69c3
PZ
948static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
949 struct task_struct *p, int dest_cpu)
5cc389bc 950{
5cc389bc 951 /* Affinity changed (again). */
175f0e25 952 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 953 return rq;
5cc389bc 954
15ff991e 955 update_rq_clock(rq);
8a8c69c3 956 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
957
958 return rq;
5cc389bc
PZ
959}
960
961/*
962 * migration_cpu_stop - this will be executed by a highprio stopper thread
963 * and performs thread migration by bumping thread off CPU then
964 * 'pushing' onto another runqueue.
965 */
966static int migration_cpu_stop(void *data)
967{
968 struct migration_arg *arg = data;
5e16bbc2
PZ
969 struct task_struct *p = arg->task;
970 struct rq *rq = this_rq();
8a8c69c3 971 struct rq_flags rf;
5cc389bc
PZ
972
973 /*
d1ccc66d
IM
974 * The original target CPU might have gone down and we might
975 * be on another CPU but it doesn't matter.
5cc389bc
PZ
976 */
977 local_irq_disable();
978 /*
979 * We need to explicitly wake pending tasks before running
980 * __migrate_task() such that we will not miss enforcing cpus_allowed
981 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
982 */
983 sched_ttwu_pending();
5e16bbc2
PZ
984
985 raw_spin_lock(&p->pi_lock);
8a8c69c3 986 rq_lock(rq, &rf);
5e16bbc2
PZ
987 /*
988 * If task_rq(p) != rq, it cannot be migrated here, because we're
989 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
990 * we're holding p->pi_lock.
991 */
bf89a304
CC
992 if (task_rq(p) == rq) {
993 if (task_on_rq_queued(p))
8a8c69c3 994 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
995 else
996 p->wake_cpu = arg->dest_cpu;
997 }
8a8c69c3 998 rq_unlock(rq, &rf);
5e16bbc2
PZ
999 raw_spin_unlock(&p->pi_lock);
1000
5cc389bc
PZ
1001 local_irq_enable();
1002 return 0;
1003}
1004
c5b28038
PZ
1005/*
1006 * sched_class::set_cpus_allowed must do the below, but is not required to
1007 * actually call this function.
1008 */
1009void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1010{
5cc389bc
PZ
1011 cpumask_copy(&p->cpus_allowed, new_mask);
1012 p->nr_cpus_allowed = cpumask_weight(new_mask);
1013}
1014
c5b28038
PZ
1015void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1016{
6c37067e
PZ
1017 struct rq *rq = task_rq(p);
1018 bool queued, running;
1019
c5b28038 1020 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1021
1022 queued = task_on_rq_queued(p);
1023 running = task_current(rq, p);
1024
1025 if (queued) {
1026 /*
1027 * Because __kthread_bind() calls this on blocked tasks without
1028 * holding rq->lock.
1029 */
1030 lockdep_assert_held(&rq->lock);
7a57f32a 1031 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1032 }
1033 if (running)
1034 put_prev_task(rq, p);
1035
c5b28038 1036 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1037
6c37067e 1038 if (queued)
7134b3e9 1039 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1040 if (running)
b2bf6c31 1041 set_curr_task(rq, p);
c5b28038
PZ
1042}
1043
5cc389bc
PZ
1044/*
1045 * Change a given task's CPU affinity. Migrate the thread to a
1046 * proper CPU and schedule it away if the CPU it's executing on
1047 * is removed from the allowed bitmask.
1048 *
1049 * NOTE: the caller must have a valid reference to the task, the
1050 * task must not exit() & deallocate itself prematurely. The
1051 * call is not atomic; no spinlocks may be held.
1052 */
25834c73
PZ
1053static int __set_cpus_allowed_ptr(struct task_struct *p,
1054 const struct cpumask *new_mask, bool check)
5cc389bc 1055{
e9d867a6 1056 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1057 unsigned int dest_cpu;
eb580751
PZ
1058 struct rq_flags rf;
1059 struct rq *rq;
5cc389bc
PZ
1060 int ret = 0;
1061
eb580751 1062 rq = task_rq_lock(p, &rf);
a499c3ea 1063 update_rq_clock(rq);
5cc389bc 1064
e9d867a6
PZI
1065 if (p->flags & PF_KTHREAD) {
1066 /*
1067 * Kernel threads are allowed on online && !active CPUs
1068 */
1069 cpu_valid_mask = cpu_online_mask;
1070 }
1071
25834c73
PZ
1072 /*
1073 * Must re-check here, to close a race against __kthread_bind(),
1074 * sched_setaffinity() is not guaranteed to observe the flag.
1075 */
1076 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1077 ret = -EINVAL;
1078 goto out;
1079 }
1080
5cc389bc
PZ
1081 if (cpumask_equal(&p->cpus_allowed, new_mask))
1082 goto out;
1083
e9d867a6 1084 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1085 ret = -EINVAL;
1086 goto out;
1087 }
1088
1089 do_set_cpus_allowed(p, new_mask);
1090
e9d867a6
PZI
1091 if (p->flags & PF_KTHREAD) {
1092 /*
1093 * For kernel threads that do indeed end up on online &&
d1ccc66d 1094 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1095 */
1096 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1097 !cpumask_intersects(new_mask, cpu_active_mask) &&
1098 p->nr_cpus_allowed != 1);
1099 }
1100
5cc389bc
PZ
1101 /* Can the task run on the task's current CPU? If so, we're done */
1102 if (cpumask_test_cpu(task_cpu(p), new_mask))
1103 goto out;
1104
e9d867a6 1105 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1106 if (task_running(rq, p) || p->state == TASK_WAKING) {
1107 struct migration_arg arg = { p, dest_cpu };
1108 /* Need help from migration thread: drop lock and wait. */
eb580751 1109 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1110 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1111 tlb_migrate_finish(p->mm);
1112 return 0;
cbce1a68
PZ
1113 } else if (task_on_rq_queued(p)) {
1114 /*
1115 * OK, since we're going to drop the lock immediately
1116 * afterwards anyway.
1117 */
8a8c69c3 1118 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1119 }
5cc389bc 1120out:
eb580751 1121 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1122
1123 return ret;
1124}
25834c73
PZ
1125
1126int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1127{
1128 return __set_cpus_allowed_ptr(p, new_mask, false);
1129}
5cc389bc
PZ
1130EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1131
dd41f596 1132void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1133{
e2912009
PZ
1134#ifdef CONFIG_SCHED_DEBUG
1135 /*
1136 * We should never call set_task_cpu() on a blocked task,
1137 * ttwu() will sort out the placement.
1138 */
077614ee 1139 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1140 !p->on_rq);
0122ec5b 1141
3ea94de1
JP
1142 /*
1143 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1144 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1145 * time relying on p->on_rq.
1146 */
1147 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1148 p->sched_class == &fair_sched_class &&
1149 (p->on_rq && !task_on_rq_migrating(p)));
1150
0122ec5b 1151#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1152 /*
1153 * The caller should hold either p->pi_lock or rq->lock, when changing
1154 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1155 *
1156 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1157 * see task_group().
6c6c54e1
PZ
1158 *
1159 * Furthermore, all task_rq users should acquire both locks, see
1160 * task_rq_lock().
1161 */
0122ec5b
PZ
1162 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1163 lockdep_is_held(&task_rq(p)->lock)));
1164#endif
4ff9083b
PZ
1165 /*
1166 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1167 */
1168 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1169#endif
1170
de1d7286 1171 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1172
0c69774e 1173 if (task_cpu(p) != new_cpu) {
0a74bef8 1174 if (p->sched_class->migrate_task_rq)
1327237a 1175 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1176 p->se.nr_migrations++;
d7822b1e 1177 rseq_migrate(p);
ff303e66 1178 perf_event_task_migrate(p);
0c69774e 1179 }
dd41f596
IM
1180
1181 __set_task_cpu(p, new_cpu);
c65cc870
IM
1182}
1183
0ad4e3df 1184#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1185static void __migrate_swap_task(struct task_struct *p, int cpu)
1186{
da0c1e65 1187 if (task_on_rq_queued(p)) {
ac66f547 1188 struct rq *src_rq, *dst_rq;
8a8c69c3 1189 struct rq_flags srf, drf;
ac66f547
PZ
1190
1191 src_rq = task_rq(p);
1192 dst_rq = cpu_rq(cpu);
1193
8a8c69c3
PZ
1194 rq_pin_lock(src_rq, &srf);
1195 rq_pin_lock(dst_rq, &drf);
1196
3ea94de1 1197 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1198 deactivate_task(src_rq, p, 0);
1199 set_task_cpu(p, cpu);
1200 activate_task(dst_rq, p, 0);
3ea94de1 1201 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1202 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1203
1204 rq_unpin_lock(dst_rq, &drf);
1205 rq_unpin_lock(src_rq, &srf);
1206
ac66f547
PZ
1207 } else {
1208 /*
1209 * Task isn't running anymore; make it appear like we migrated
1210 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1211 * previous CPU our target instead of where it really is.
ac66f547
PZ
1212 */
1213 p->wake_cpu = cpu;
1214 }
1215}
1216
1217struct migration_swap_arg {
1218 struct task_struct *src_task, *dst_task;
1219 int src_cpu, dst_cpu;
1220};
1221
1222static int migrate_swap_stop(void *data)
1223{
1224 struct migration_swap_arg *arg = data;
1225 struct rq *src_rq, *dst_rq;
1226 int ret = -EAGAIN;
1227
62694cd5
PZ
1228 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1229 return -EAGAIN;
1230
ac66f547
PZ
1231 src_rq = cpu_rq(arg->src_cpu);
1232 dst_rq = cpu_rq(arg->dst_cpu);
1233
74602315
PZ
1234 double_raw_lock(&arg->src_task->pi_lock,
1235 &arg->dst_task->pi_lock);
ac66f547 1236 double_rq_lock(src_rq, dst_rq);
62694cd5 1237
ac66f547
PZ
1238 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1239 goto unlock;
1240
1241 if (task_cpu(arg->src_task) != arg->src_cpu)
1242 goto unlock;
1243
0c98d344 1244 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1245 goto unlock;
1246
0c98d344 1247 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1248 goto unlock;
1249
1250 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1251 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1252
1253 ret = 0;
1254
1255unlock:
1256 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1257 raw_spin_unlock(&arg->dst_task->pi_lock);
1258 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1259
1260 return ret;
1261}
1262
1263/*
1264 * Cross migrate two tasks
1265 */
0ad4e3df
SD
1266int migrate_swap(struct task_struct *cur, struct task_struct *p,
1267 int target_cpu, int curr_cpu)
ac66f547
PZ
1268{
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
ac66f547
PZ
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
0ad4e3df 1274 .src_cpu = curr_cpu,
ac66f547 1275 .dst_task = p,
0ad4e3df 1276 .dst_cpu = target_cpu,
ac66f547
PZ
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
6acce3ef
PZ
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
ac66f547
PZ
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
0c98d344 1289 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1290 goto out;
1291
0c98d344 1292 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1293 goto out;
1294
286549dc 1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
ac66f547
PZ
1299 return ret;
1300}
0ad4e3df 1301#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1302
1da177e4
LT
1303/*
1304 * wait_task_inactive - wait for a thread to unschedule.
1305 *
85ba2d86
RM
1306 * If @match_state is nonzero, it's the @p->state value just checked and
1307 * not expected to change. If it changes, i.e. @p might have woken up,
1308 * then return zero. When we succeed in waiting for @p to be off its CPU,
1309 * we return a positive number (its total switch count). If a second call
1310 * a short while later returns the same number, the caller can be sure that
1311 * @p has remained unscheduled the whole time.
1312 *
1da177e4
LT
1313 * The caller must ensure that the task *will* unschedule sometime soon,
1314 * else this function might spin for a *long* time. This function can't
1315 * be called with interrupts off, or it may introduce deadlock with
1316 * smp_call_function() if an IPI is sent by the same process we are
1317 * waiting to become inactive.
1318 */
85ba2d86 1319unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1320{
da0c1e65 1321 int running, queued;
eb580751 1322 struct rq_flags rf;
85ba2d86 1323 unsigned long ncsw;
70b97a7f 1324 struct rq *rq;
1da177e4 1325
3a5c359a
AK
1326 for (;;) {
1327 /*
1328 * We do the initial early heuristics without holding
1329 * any task-queue locks at all. We'll only try to get
1330 * the runqueue lock when things look like they will
1331 * work out!
1332 */
1333 rq = task_rq(p);
fa490cfd 1334
3a5c359a
AK
1335 /*
1336 * If the task is actively running on another CPU
1337 * still, just relax and busy-wait without holding
1338 * any locks.
1339 *
1340 * NOTE! Since we don't hold any locks, it's not
1341 * even sure that "rq" stays as the right runqueue!
1342 * But we don't care, since "task_running()" will
1343 * return false if the runqueue has changed and p
1344 * is actually now running somewhere else!
1345 */
85ba2d86
RM
1346 while (task_running(rq, p)) {
1347 if (match_state && unlikely(p->state != match_state))
1348 return 0;
3a5c359a 1349 cpu_relax();
85ba2d86 1350 }
fa490cfd 1351
3a5c359a
AK
1352 /*
1353 * Ok, time to look more closely! We need the rq
1354 * lock now, to be *sure*. If we're wrong, we'll
1355 * just go back and repeat.
1356 */
eb580751 1357 rq = task_rq_lock(p, &rf);
27a9da65 1358 trace_sched_wait_task(p);
3a5c359a 1359 running = task_running(rq, p);
da0c1e65 1360 queued = task_on_rq_queued(p);
85ba2d86 1361 ncsw = 0;
f31e11d8 1362 if (!match_state || p->state == match_state)
93dcf55f 1363 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1364 task_rq_unlock(rq, p, &rf);
fa490cfd 1365
85ba2d86
RM
1366 /*
1367 * If it changed from the expected state, bail out now.
1368 */
1369 if (unlikely(!ncsw))
1370 break;
1371
3a5c359a
AK
1372 /*
1373 * Was it really running after all now that we
1374 * checked with the proper locks actually held?
1375 *
1376 * Oops. Go back and try again..
1377 */
1378 if (unlikely(running)) {
1379 cpu_relax();
1380 continue;
1381 }
fa490cfd 1382
3a5c359a
AK
1383 /*
1384 * It's not enough that it's not actively running,
1385 * it must be off the runqueue _entirely_, and not
1386 * preempted!
1387 *
80dd99b3 1388 * So if it was still runnable (but just not actively
3a5c359a
AK
1389 * running right now), it's preempted, and we should
1390 * yield - it could be a while.
1391 */
da0c1e65 1392 if (unlikely(queued)) {
8b0e1953 1393 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1394
1395 set_current_state(TASK_UNINTERRUPTIBLE);
1396 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1397 continue;
1398 }
fa490cfd 1399
3a5c359a
AK
1400 /*
1401 * Ahh, all good. It wasn't running, and it wasn't
1402 * runnable, which means that it will never become
1403 * running in the future either. We're all done!
1404 */
1405 break;
1406 }
85ba2d86
RM
1407
1408 return ncsw;
1da177e4
LT
1409}
1410
1411/***
1412 * kick_process - kick a running thread to enter/exit the kernel
1413 * @p: the to-be-kicked thread
1414 *
1415 * Cause a process which is running on another CPU to enter
1416 * kernel-mode, without any delay. (to get signals handled.)
1417 *
25985edc 1418 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1419 * because all it wants to ensure is that the remote task enters
1420 * the kernel. If the IPI races and the task has been migrated
1421 * to another CPU then no harm is done and the purpose has been
1422 * achieved as well.
1423 */
36c8b586 1424void kick_process(struct task_struct *p)
1da177e4
LT
1425{
1426 int cpu;
1427
1428 preempt_disable();
1429 cpu = task_cpu(p);
1430 if ((cpu != smp_processor_id()) && task_curr(p))
1431 smp_send_reschedule(cpu);
1432 preempt_enable();
1433}
b43e3521 1434EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1435
30da688e 1436/*
013fdb80 1437 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1438 *
1439 * A few notes on cpu_active vs cpu_online:
1440 *
1441 * - cpu_active must be a subset of cpu_online
1442 *
97fb7a0a 1443 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1444 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1445 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1446 * see it.
1447 *
d1ccc66d 1448 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1449 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1450 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1451 * off.
1452 *
1453 * This means that fallback selection must not select !active CPUs.
1454 * And can assume that any active CPU must be online. Conversely
1455 * select_task_rq() below may allow selection of !active CPUs in order
1456 * to satisfy the above rules.
30da688e 1457 */
5da9a0fb
PZ
1458static int select_fallback_rq(int cpu, struct task_struct *p)
1459{
aa00d89c
TC
1460 int nid = cpu_to_node(cpu);
1461 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1462 enum { cpuset, possible, fail } state = cpuset;
1463 int dest_cpu;
5da9a0fb 1464
aa00d89c 1465 /*
d1ccc66d
IM
1466 * If the node that the CPU is on has been offlined, cpu_to_node()
1467 * will return -1. There is no CPU on the node, and we should
1468 * select the CPU on the other node.
aa00d89c
TC
1469 */
1470 if (nid != -1) {
1471 nodemask = cpumask_of_node(nid);
1472
1473 /* Look for allowed, online CPU in same node. */
1474 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1475 if (!cpu_active(dest_cpu))
1476 continue;
0c98d344 1477 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1478 return dest_cpu;
1479 }
2baab4e9 1480 }
5da9a0fb 1481
2baab4e9
PZ
1482 for (;;) {
1483 /* Any allowed, online CPU? */
0c98d344 1484 for_each_cpu(dest_cpu, &p->cpus_allowed) {
175f0e25 1485 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1486 continue;
175f0e25 1487
2baab4e9
PZ
1488 goto out;
1489 }
5da9a0fb 1490
e73e85f0 1491 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1492 switch (state) {
1493 case cpuset:
e73e85f0
ON
1494 if (IS_ENABLED(CONFIG_CPUSETS)) {
1495 cpuset_cpus_allowed_fallback(p);
1496 state = possible;
1497 break;
1498 }
d1ccc66d 1499 /* Fall-through */
2baab4e9
PZ
1500 case possible:
1501 do_set_cpus_allowed(p, cpu_possible_mask);
1502 state = fail;
1503 break;
1504
1505 case fail:
1506 BUG();
1507 break;
1508 }
1509 }
1510
1511out:
1512 if (state != cpuset) {
1513 /*
1514 * Don't tell them about moving exiting tasks or
1515 * kernel threads (both mm NULL), since they never
1516 * leave kernel.
1517 */
1518 if (p->mm && printk_ratelimit()) {
aac74dc4 1519 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1520 task_pid_nr(p), p->comm, cpu);
1521 }
5da9a0fb
PZ
1522 }
1523
1524 return dest_cpu;
1525}
1526
e2912009 1527/*
013fdb80 1528 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1529 */
970b13ba 1530static inline
ac66f547 1531int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1532{
cbce1a68
PZ
1533 lockdep_assert_held(&p->pi_lock);
1534
4b53a341 1535 if (p->nr_cpus_allowed > 1)
6c1d9410 1536 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1537 else
0c98d344 1538 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1539
1540 /*
1541 * In order not to call set_task_cpu() on a blocking task we need
1542 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1543 * CPU.
e2912009
PZ
1544 *
1545 * Since this is common to all placement strategies, this lives here.
1546 *
1547 * [ this allows ->select_task() to simply return task_cpu(p) and
1548 * not worry about this generic constraint ]
1549 */
7af443ee 1550 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1551 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1552
1553 return cpu;
970b13ba 1554}
09a40af5
MG
1555
1556static void update_avg(u64 *avg, u64 sample)
1557{
1558 s64 diff = sample - *avg;
1559 *avg += diff >> 3;
1560}
25834c73 1561
f5832c19
NP
1562void sched_set_stop_task(int cpu, struct task_struct *stop)
1563{
1564 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1565 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1566
1567 if (stop) {
1568 /*
1569 * Make it appear like a SCHED_FIFO task, its something
1570 * userspace knows about and won't get confused about.
1571 *
1572 * Also, it will make PI more or less work without too
1573 * much confusion -- but then, stop work should not
1574 * rely on PI working anyway.
1575 */
1576 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1577
1578 stop->sched_class = &stop_sched_class;
1579 }
1580
1581 cpu_rq(cpu)->stop = stop;
1582
1583 if (old_stop) {
1584 /*
1585 * Reset it back to a normal scheduling class so that
1586 * it can die in pieces.
1587 */
1588 old_stop->sched_class = &rt_sched_class;
1589 }
1590}
1591
25834c73
PZ
1592#else
1593
1594static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1595 const struct cpumask *new_mask, bool check)
1596{
1597 return set_cpus_allowed_ptr(p, new_mask);
1598}
1599
5cc389bc 1600#endif /* CONFIG_SMP */
970b13ba 1601
d7c01d27 1602static void
b84cb5df 1603ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1604{
4fa8d299 1605 struct rq *rq;
b84cb5df 1606
4fa8d299
JP
1607 if (!schedstat_enabled())
1608 return;
1609
1610 rq = this_rq();
d7c01d27 1611
4fa8d299
JP
1612#ifdef CONFIG_SMP
1613 if (cpu == rq->cpu) {
b85c8b71
PZ
1614 __schedstat_inc(rq->ttwu_local);
1615 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1616 } else {
1617 struct sched_domain *sd;
1618
b85c8b71 1619 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1620 rcu_read_lock();
4fa8d299 1621 for_each_domain(rq->cpu, sd) {
d7c01d27 1622 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1623 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1624 break;
1625 }
1626 }
057f3fad 1627 rcu_read_unlock();
d7c01d27 1628 }
f339b9dc
PZ
1629
1630 if (wake_flags & WF_MIGRATED)
b85c8b71 1631 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1632#endif /* CONFIG_SMP */
1633
b85c8b71
PZ
1634 __schedstat_inc(rq->ttwu_count);
1635 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1636
1637 if (wake_flags & WF_SYNC)
b85c8b71 1638 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1639}
1640
1de64443 1641static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1642{
9ed3811a 1643 activate_task(rq, p, en_flags);
da0c1e65 1644 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1645
d1ccc66d 1646 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1647 if (p->flags & PF_WQ_WORKER)
1648 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1649}
1650
23f41eeb
PZ
1651/*
1652 * Mark the task runnable and perform wakeup-preemption.
1653 */
e7904a28 1654static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1655 struct rq_flags *rf)
9ed3811a 1656{
9ed3811a 1657 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1658 p->state = TASK_RUNNING;
fbd705a0
PZ
1659 trace_sched_wakeup(p);
1660
9ed3811a 1661#ifdef CONFIG_SMP
4c9a4bc8
PZ
1662 if (p->sched_class->task_woken) {
1663 /*
cbce1a68
PZ
1664 * Our task @p is fully woken up and running; so its safe to
1665 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1666 */
d8ac8971 1667 rq_unpin_lock(rq, rf);
9ed3811a 1668 p->sched_class->task_woken(rq, p);
d8ac8971 1669 rq_repin_lock(rq, rf);
4c9a4bc8 1670 }
9ed3811a 1671
e69c6341 1672 if (rq->idle_stamp) {
78becc27 1673 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1674 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1675
abfafa54
JL
1676 update_avg(&rq->avg_idle, delta);
1677
1678 if (rq->avg_idle > max)
9ed3811a 1679 rq->avg_idle = max;
abfafa54 1680
9ed3811a
TH
1681 rq->idle_stamp = 0;
1682 }
1683#endif
1684}
1685
c05fbafb 1686static void
e7904a28 1687ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1688 struct rq_flags *rf)
c05fbafb 1689{
77558e4d 1690 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1691
cbce1a68
PZ
1692 lockdep_assert_held(&rq->lock);
1693
c05fbafb
PZ
1694#ifdef CONFIG_SMP
1695 if (p->sched_contributes_to_load)
1696 rq->nr_uninterruptible--;
b5179ac7 1697
b5179ac7 1698 if (wake_flags & WF_MIGRATED)
59efa0ba 1699 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1700#endif
1701
b5179ac7 1702 ttwu_activate(rq, p, en_flags);
d8ac8971 1703 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1704}
1705
1706/*
1707 * Called in case the task @p isn't fully descheduled from its runqueue,
1708 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1709 * since all we need to do is flip p->state to TASK_RUNNING, since
1710 * the task is still ->on_rq.
1711 */
1712static int ttwu_remote(struct task_struct *p, int wake_flags)
1713{
eb580751 1714 struct rq_flags rf;
c05fbafb
PZ
1715 struct rq *rq;
1716 int ret = 0;
1717
eb580751 1718 rq = __task_rq_lock(p, &rf);
da0c1e65 1719 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1720 /* check_preempt_curr() may use rq clock */
1721 update_rq_clock(rq);
d8ac8971 1722 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1723 ret = 1;
1724 }
eb580751 1725 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1726
1727 return ret;
1728}
1729
317f3941 1730#ifdef CONFIG_SMP
e3baac47 1731void sched_ttwu_pending(void)
317f3941
PZ
1732{
1733 struct rq *rq = this_rq();
fa14ff4a 1734 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1735 struct task_struct *p, *t;
d8ac8971 1736 struct rq_flags rf;
317f3941 1737
e3baac47
PZ
1738 if (!llist)
1739 return;
1740
8a8c69c3 1741 rq_lock_irqsave(rq, &rf);
77558e4d 1742 update_rq_clock(rq);
317f3941 1743
73215849
BP
1744 llist_for_each_entry_safe(p, t, llist, wake_entry)
1745 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1746
8a8c69c3 1747 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1748}
1749
1750void scheduler_ipi(void)
1751{
f27dde8d
PZ
1752 /*
1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 * TIF_NEED_RESCHED remotely (for the first time) will also send
1755 * this IPI.
1756 */
8cb75e0c 1757 preempt_fold_need_resched();
f27dde8d 1758
fd2ac4f4 1759 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1760 return;
1761
1762 /*
1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 * traditionally all their work was done from the interrupt return
1765 * path. Now that we actually do some work, we need to make sure
1766 * we do call them.
1767 *
1768 * Some archs already do call them, luckily irq_enter/exit nest
1769 * properly.
1770 *
1771 * Arguably we should visit all archs and update all handlers,
1772 * however a fair share of IPIs are still resched only so this would
1773 * somewhat pessimize the simple resched case.
1774 */
1775 irq_enter();
fa14ff4a 1776 sched_ttwu_pending();
ca38062e
SS
1777
1778 /*
1779 * Check if someone kicked us for doing the nohz idle load balance.
1780 */
873b4c65 1781 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1782 this_rq()->idle_balance = 1;
ca38062e 1783 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1784 }
c5d753a5 1785 irq_exit();
317f3941
PZ
1786}
1787
b7e7ade3 1788static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1789{
e3baac47
PZ
1790 struct rq *rq = cpu_rq(cpu);
1791
b7e7ade3
PZ
1792 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1793
e3baac47
PZ
1794 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1795 if (!set_nr_if_polling(rq->idle))
1796 smp_send_reschedule(cpu);
1797 else
1798 trace_sched_wake_idle_without_ipi(cpu);
1799 }
317f3941 1800}
d6aa8f85 1801
f6be8af1
CL
1802void wake_up_if_idle(int cpu)
1803{
1804 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1805 struct rq_flags rf;
f6be8af1 1806
fd7de1e8
AL
1807 rcu_read_lock();
1808
1809 if (!is_idle_task(rcu_dereference(rq->curr)))
1810 goto out;
f6be8af1
CL
1811
1812 if (set_nr_if_polling(rq->idle)) {
1813 trace_sched_wake_idle_without_ipi(cpu);
1814 } else {
8a8c69c3 1815 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1816 if (is_idle_task(rq->curr))
1817 smp_send_reschedule(cpu);
d1ccc66d 1818 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1819 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1820 }
fd7de1e8
AL
1821
1822out:
1823 rcu_read_unlock();
f6be8af1
CL
1824}
1825
39be3501 1826bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1827{
1828 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1829}
d6aa8f85 1830#endif /* CONFIG_SMP */
317f3941 1831
b5179ac7 1832static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1833{
1834 struct rq *rq = cpu_rq(cpu);
d8ac8971 1835 struct rq_flags rf;
c05fbafb 1836
17d9f311 1837#if defined(CONFIG_SMP)
39be3501 1838 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1839 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1840 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1841 return;
1842 }
1843#endif
1844
8a8c69c3 1845 rq_lock(rq, &rf);
77558e4d 1846 update_rq_clock(rq);
d8ac8971 1847 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1848 rq_unlock(rq, &rf);
9ed3811a
TH
1849}
1850
8643cda5
PZ
1851/*
1852 * Notes on Program-Order guarantees on SMP systems.
1853 *
1854 * MIGRATION
1855 *
1856 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1857 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1858 * execution on its new CPU [c1].
8643cda5
PZ
1859 *
1860 * For migration (of runnable tasks) this is provided by the following means:
1861 *
1862 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1863 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1864 * rq(c1)->lock (if not at the same time, then in that order).
1865 * C) LOCK of the rq(c1)->lock scheduling in task
1866 *
7696f991 1867 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 1868 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1869 *
1870 * Example:
1871 *
1872 * CPU0 CPU1 CPU2
1873 *
1874 * LOCK rq(0)->lock
1875 * sched-out X
1876 * sched-in Y
1877 * UNLOCK rq(0)->lock
1878 *
1879 * LOCK rq(0)->lock // orders against CPU0
1880 * dequeue X
1881 * UNLOCK rq(0)->lock
1882 *
1883 * LOCK rq(1)->lock
1884 * enqueue X
1885 * UNLOCK rq(1)->lock
1886 *
1887 * LOCK rq(1)->lock // orders against CPU2
1888 * sched-out Z
1889 * sched-in X
1890 * UNLOCK rq(1)->lock
1891 *
1892 *
1893 * BLOCKING -- aka. SLEEP + WAKEUP
1894 *
1895 * For blocking we (obviously) need to provide the same guarantee as for
1896 * migration. However the means are completely different as there is no lock
1897 * chain to provide order. Instead we do:
1898 *
1899 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1900 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1901 *
1902 * Example:
1903 *
1904 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1905 *
1906 * LOCK rq(0)->lock LOCK X->pi_lock
1907 * dequeue X
1908 * sched-out X
1909 * smp_store_release(X->on_cpu, 0);
1910 *
1f03e8d2 1911 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1912 * X->state = WAKING
1913 * set_task_cpu(X,2)
1914 *
1915 * LOCK rq(2)->lock
1916 * enqueue X
1917 * X->state = RUNNING
1918 * UNLOCK rq(2)->lock
1919 *
1920 * LOCK rq(2)->lock // orders against CPU1
1921 * sched-out Z
1922 * sched-in X
1923 * UNLOCK rq(2)->lock
1924 *
1925 * UNLOCK X->pi_lock
1926 * UNLOCK rq(0)->lock
1927 *
1928 *
7696f991
AP
1929 * However, for wakeups there is a second guarantee we must provide, namely we
1930 * must ensure that CONDITION=1 done by the caller can not be reordered with
1931 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
1932 */
1933
9ed3811a 1934/**
1da177e4 1935 * try_to_wake_up - wake up a thread
9ed3811a 1936 * @p: the thread to be awakened
1da177e4 1937 * @state: the mask of task states that can be woken
9ed3811a 1938 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1939 *
a2250238 1940 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1941 *
a2250238
PZ
1942 * If the task was not queued/runnable, also place it back on a runqueue.
1943 *
1944 * Atomic against schedule() which would dequeue a task, also see
1945 * set_current_state().
1946 *
7696f991
AP
1947 * This function executes a full memory barrier before accessing the task
1948 * state; see set_current_state().
1949 *
a2250238
PZ
1950 * Return: %true if @p->state changes (an actual wakeup was done),
1951 * %false otherwise.
1da177e4 1952 */
e4a52bcb
PZ
1953static int
1954try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1955{
1da177e4 1956 unsigned long flags;
c05fbafb 1957 int cpu, success = 0;
2398f2c6 1958
e0acd0a6
ON
1959 /*
1960 * If we are going to wake up a thread waiting for CONDITION we
1961 * need to ensure that CONDITION=1 done by the caller can not be
1962 * reordered with p->state check below. This pairs with mb() in
1963 * set_current_state() the waiting thread does.
1964 */
013fdb80 1965 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1966 smp_mb__after_spinlock();
e9c84311 1967 if (!(p->state & state))
1da177e4
LT
1968 goto out;
1969
fbd705a0
PZ
1970 trace_sched_waking(p);
1971
d1ccc66d
IM
1972 /* We're going to change ->state: */
1973 success = 1;
1da177e4 1974 cpu = task_cpu(p);
1da177e4 1975
135e8c92
BS
1976 /*
1977 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1978 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1979 * in smp_cond_load_acquire() below.
1980 *
3d85b270
AP
1981 * sched_ttwu_pending() try_to_wake_up()
1982 * STORE p->on_rq = 1 LOAD p->state
1983 * UNLOCK rq->lock
1984 *
1985 * __schedule() (switch to task 'p')
1986 * LOCK rq->lock smp_rmb();
1987 * smp_mb__after_spinlock();
1988 * UNLOCK rq->lock
135e8c92
BS
1989 *
1990 * [task p]
3d85b270 1991 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 1992 *
3d85b270
AP
1993 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1994 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
1995 */
1996 smp_rmb();
c05fbafb
PZ
1997 if (p->on_rq && ttwu_remote(p, wake_flags))
1998 goto stat;
1da177e4 1999
1da177e4 2000#ifdef CONFIG_SMP
ecf7d01c
PZ
2001 /*
2002 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2003 * possible to, falsely, observe p->on_cpu == 0.
2004 *
2005 * One must be running (->on_cpu == 1) in order to remove oneself
2006 * from the runqueue.
2007 *
3d85b270
AP
2008 * __schedule() (switch to task 'p') try_to_wake_up()
2009 * STORE p->on_cpu = 1 LOAD p->on_rq
2010 * UNLOCK rq->lock
2011 *
2012 * __schedule() (put 'p' to sleep)
2013 * LOCK rq->lock smp_rmb();
2014 * smp_mb__after_spinlock();
2015 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2016 *
3d85b270
AP
2017 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2018 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2019 */
2020 smp_rmb();
2021
e9c84311 2022 /*
d1ccc66d 2023 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2024 * this task as prev, wait until its done referencing the task.
b75a2253 2025 *
31cb1bc0 2026 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2027 *
2028 * This ensures that tasks getting woken will be fully ordered against
2029 * their previous state and preserve Program Order.
0970d299 2030 */
1f03e8d2 2031 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2032
a8e4f2ea 2033 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2034 p->state = TASK_WAKING;
e7693a36 2035
e33a9bba 2036 if (p->in_iowait) {
c96f5471 2037 delayacct_blkio_end(p);
e33a9bba
TH
2038 atomic_dec(&task_rq(p)->nr_iowait);
2039 }
2040
ac66f547 2041 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2042 if (task_cpu(p) != cpu) {
2043 wake_flags |= WF_MIGRATED;
eb414681 2044 psi_ttwu_dequeue(p);
e4a52bcb 2045 set_task_cpu(p, cpu);
f339b9dc 2046 }
e33a9bba
TH
2047
2048#else /* CONFIG_SMP */
2049
2050 if (p->in_iowait) {
c96f5471 2051 delayacct_blkio_end(p);
e33a9bba
TH
2052 atomic_dec(&task_rq(p)->nr_iowait);
2053 }
2054
1da177e4 2055#endif /* CONFIG_SMP */
1da177e4 2056
b5179ac7 2057 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2058stat:
4fa8d299 2059 ttwu_stat(p, cpu, wake_flags);
1da177e4 2060out:
013fdb80 2061 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2062
2063 return success;
2064}
2065
21aa9af0
TH
2066/**
2067 * try_to_wake_up_local - try to wake up a local task with rq lock held
2068 * @p: the thread to be awakened
bf50f0e8 2069 * @rf: request-queue flags for pinning
21aa9af0 2070 *
2acca55e 2071 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2072 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2073 * the current task.
21aa9af0 2074 */
d8ac8971 2075static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2076{
2077 struct rq *rq = task_rq(p);
21aa9af0 2078
383efcd0
TH
2079 if (WARN_ON_ONCE(rq != this_rq()) ||
2080 WARN_ON_ONCE(p == current))
2081 return;
2082
21aa9af0
TH
2083 lockdep_assert_held(&rq->lock);
2084
2acca55e 2085 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2086 /*
2087 * This is OK, because current is on_cpu, which avoids it being
2088 * picked for load-balance and preemption/IRQs are still
2089 * disabled avoiding further scheduler activity on it and we've
2090 * not yet picked a replacement task.
2091 */
8a8c69c3 2092 rq_unlock(rq, rf);
2acca55e 2093 raw_spin_lock(&p->pi_lock);
8a8c69c3 2094 rq_relock(rq, rf);
2acca55e
PZ
2095 }
2096
21aa9af0 2097 if (!(p->state & TASK_NORMAL))
2acca55e 2098 goto out;
21aa9af0 2099
fbd705a0
PZ
2100 trace_sched_waking(p);
2101
e33a9bba
TH
2102 if (!task_on_rq_queued(p)) {
2103 if (p->in_iowait) {
c96f5471 2104 delayacct_blkio_end(p);
e33a9bba
TH
2105 atomic_dec(&rq->nr_iowait);
2106 }
bce4dc80 2107 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2108 }
d7c01d27 2109
d8ac8971 2110 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2111 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2112out:
2113 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2114}
2115
50fa610a
DH
2116/**
2117 * wake_up_process - Wake up a specific process
2118 * @p: The process to be woken up.
2119 *
2120 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2121 * processes.
2122 *
2123 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2124 *
7696f991 2125 * This function executes a full memory barrier before accessing the task state.
50fa610a 2126 */
7ad5b3a5 2127int wake_up_process(struct task_struct *p)
1da177e4 2128{
9067ac85 2129 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2130}
1da177e4
LT
2131EXPORT_SYMBOL(wake_up_process);
2132
7ad5b3a5 2133int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2134{
2135 return try_to_wake_up(p, state, 0);
2136}
2137
1da177e4
LT
2138/*
2139 * Perform scheduler related setup for a newly forked process p.
2140 * p is forked by current.
dd41f596
IM
2141 *
2142 * __sched_fork() is basic setup used by init_idle() too:
2143 */
5e1576ed 2144static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2145{
fd2f4419
PZ
2146 p->on_rq = 0;
2147
2148 p->se.on_rq = 0;
dd41f596
IM
2149 p->se.exec_start = 0;
2150 p->se.sum_exec_runtime = 0;
f6cf891c 2151 p->se.prev_sum_exec_runtime = 0;
6c594c21 2152 p->se.nr_migrations = 0;
da7a735e 2153 p->se.vruntime = 0;
fd2f4419 2154 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2155
ad936d86
BP
2156#ifdef CONFIG_FAIR_GROUP_SCHED
2157 p->se.cfs_rq = NULL;
2158#endif
2159
6cfb0d5d 2160#ifdef CONFIG_SCHEDSTATS
cb251765 2161 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2162 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2163#endif
476d139c 2164
aab03e05 2165 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2166 init_dl_task_timer(&p->dl);
209a0cbd 2167 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2168 __dl_clear_params(p);
aab03e05 2169
fa717060 2170 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2171 p->rt.timeout = 0;
2172 p->rt.time_slice = sched_rr_timeslice;
2173 p->rt.on_rq = 0;
2174 p->rt.on_list = 0;
476d139c 2175
e107be36
AK
2176#ifdef CONFIG_PREEMPT_NOTIFIERS
2177 INIT_HLIST_HEAD(&p->preempt_notifiers);
2178#endif
cbee9f88 2179
13784475 2180 init_numa_balancing(clone_flags, p);
dd41f596
IM
2181}
2182
2a595721
SD
2183DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2184
1a687c2e 2185#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2186
1a687c2e
MG
2187void set_numabalancing_state(bool enabled)
2188{
2189 if (enabled)
2a595721 2190 static_branch_enable(&sched_numa_balancing);
1a687c2e 2191 else
2a595721 2192 static_branch_disable(&sched_numa_balancing);
1a687c2e 2193}
54a43d54
AK
2194
2195#ifdef CONFIG_PROC_SYSCTL
2196int sysctl_numa_balancing(struct ctl_table *table, int write,
2197 void __user *buffer, size_t *lenp, loff_t *ppos)
2198{
2199 struct ctl_table t;
2200 int err;
2a595721 2201 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2202
2203 if (write && !capable(CAP_SYS_ADMIN))
2204 return -EPERM;
2205
2206 t = *table;
2207 t.data = &state;
2208 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2209 if (err < 0)
2210 return err;
2211 if (write)
2212 set_numabalancing_state(state);
2213 return err;
2214}
2215#endif
2216#endif
dd41f596 2217
4698f88c
JP
2218#ifdef CONFIG_SCHEDSTATS
2219
cb251765 2220DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2221static bool __initdata __sched_schedstats = false;
cb251765 2222
cb251765
MG
2223static void set_schedstats(bool enabled)
2224{
2225 if (enabled)
2226 static_branch_enable(&sched_schedstats);
2227 else
2228 static_branch_disable(&sched_schedstats);
2229}
2230
2231void force_schedstat_enabled(void)
2232{
2233 if (!schedstat_enabled()) {
2234 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2235 static_branch_enable(&sched_schedstats);
2236 }
2237}
2238
2239static int __init setup_schedstats(char *str)
2240{
2241 int ret = 0;
2242 if (!str)
2243 goto out;
2244
4698f88c
JP
2245 /*
2246 * This code is called before jump labels have been set up, so we can't
2247 * change the static branch directly just yet. Instead set a temporary
2248 * variable so init_schedstats() can do it later.
2249 */
cb251765 2250 if (!strcmp(str, "enable")) {
4698f88c 2251 __sched_schedstats = true;
cb251765
MG
2252 ret = 1;
2253 } else if (!strcmp(str, "disable")) {
4698f88c 2254 __sched_schedstats = false;
cb251765
MG
2255 ret = 1;
2256 }
2257out:
2258 if (!ret)
2259 pr_warn("Unable to parse schedstats=\n");
2260
2261 return ret;
2262}
2263__setup("schedstats=", setup_schedstats);
2264
4698f88c
JP
2265static void __init init_schedstats(void)
2266{
2267 set_schedstats(__sched_schedstats);
2268}
2269
cb251765
MG
2270#ifdef CONFIG_PROC_SYSCTL
2271int sysctl_schedstats(struct ctl_table *table, int write,
2272 void __user *buffer, size_t *lenp, loff_t *ppos)
2273{
2274 struct ctl_table t;
2275 int err;
2276 int state = static_branch_likely(&sched_schedstats);
2277
2278 if (write && !capable(CAP_SYS_ADMIN))
2279 return -EPERM;
2280
2281 t = *table;
2282 t.data = &state;
2283 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2284 if (err < 0)
2285 return err;
2286 if (write)
2287 set_schedstats(state);
2288 return err;
2289}
4698f88c
JP
2290#endif /* CONFIG_PROC_SYSCTL */
2291#else /* !CONFIG_SCHEDSTATS */
2292static inline void init_schedstats(void) {}
2293#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2294
2295/*
2296 * fork()/clone()-time setup:
2297 */
aab03e05 2298int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2299{
0122ec5b 2300 unsigned long flags;
dd41f596 2301
5e1576ed 2302 __sched_fork(clone_flags, p);
06b83b5f 2303 /*
7dc603c9 2304 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2305 * nobody will actually run it, and a signal or other external
2306 * event cannot wake it up and insert it on the runqueue either.
2307 */
7dc603c9 2308 p->state = TASK_NEW;
dd41f596 2309
c350a04e
MG
2310 /*
2311 * Make sure we do not leak PI boosting priority to the child.
2312 */
2313 p->prio = current->normal_prio;
2314
b9dc29e7
MG
2315 /*
2316 * Revert to default priority/policy on fork if requested.
2317 */
2318 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2319 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2320 p->policy = SCHED_NORMAL;
6c697bdf 2321 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2322 p->rt_priority = 0;
2323 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2324 p->static_prio = NICE_TO_PRIO(0);
2325
2326 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2327 set_load_weight(p, false);
6c697bdf 2328
b9dc29e7
MG
2329 /*
2330 * We don't need the reset flag anymore after the fork. It has
2331 * fulfilled its duty:
2332 */
2333 p->sched_reset_on_fork = 0;
2334 }
ca94c442 2335
af0fffd9 2336 if (dl_prio(p->prio))
aab03e05 2337 return -EAGAIN;
af0fffd9 2338 else if (rt_prio(p->prio))
aab03e05 2339 p->sched_class = &rt_sched_class;
af0fffd9 2340 else
2ddbf952 2341 p->sched_class = &fair_sched_class;
b29739f9 2342
7dc603c9 2343 init_entity_runnable_average(&p->se);
cd29fe6f 2344
86951599
PZ
2345 /*
2346 * The child is not yet in the pid-hash so no cgroup attach races,
2347 * and the cgroup is pinned to this child due to cgroup_fork()
2348 * is ran before sched_fork().
2349 *
2350 * Silence PROVE_RCU.
2351 */
0122ec5b 2352 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2353 /*
d1ccc66d 2354 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2355 * so use __set_task_cpu().
2356 */
af0fffd9 2357 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2358 if (p->sched_class->task_fork)
2359 p->sched_class->task_fork(p);
0122ec5b 2360 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2361
f6db8347 2362#ifdef CONFIG_SCHED_INFO
dd41f596 2363 if (likely(sched_info_on()))
52f17b6c 2364 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2365#endif
3ca7a440
PZ
2366#if defined(CONFIG_SMP)
2367 p->on_cpu = 0;
4866cde0 2368#endif
01028747 2369 init_task_preempt_count(p);
806c09a7 2370#ifdef CONFIG_SMP
917b627d 2371 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2372 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2373#endif
aab03e05 2374 return 0;
1da177e4
LT
2375}
2376
332ac17e
DF
2377unsigned long to_ratio(u64 period, u64 runtime)
2378{
2379 if (runtime == RUNTIME_INF)
c52f14d3 2380 return BW_UNIT;
332ac17e
DF
2381
2382 /*
2383 * Doing this here saves a lot of checks in all
2384 * the calling paths, and returning zero seems
2385 * safe for them anyway.
2386 */
2387 if (period == 0)
2388 return 0;
2389
c52f14d3 2390 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2391}
2392
1da177e4
LT
2393/*
2394 * wake_up_new_task - wake up a newly created task for the first time.
2395 *
2396 * This function will do some initial scheduler statistics housekeeping
2397 * that must be done for every newly created context, then puts the task
2398 * on the runqueue and wakes it.
2399 */
3e51e3ed 2400void wake_up_new_task(struct task_struct *p)
1da177e4 2401{
eb580751 2402 struct rq_flags rf;
dd41f596 2403 struct rq *rq;
fabf318e 2404
eb580751 2405 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2406 p->state = TASK_RUNNING;
fabf318e
PZ
2407#ifdef CONFIG_SMP
2408 /*
2409 * Fork balancing, do it here and not earlier because:
2410 * - cpus_allowed can change in the fork path
d1ccc66d 2411 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2412 *
2413 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2414 * as we're not fully set-up yet.
fabf318e 2415 */
32e839dd 2416 p->recent_used_cpu = task_cpu(p);
e210bffd 2417 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2418#endif
b7fa30c9 2419 rq = __task_rq_lock(p, &rf);
4126bad6 2420 update_rq_clock(rq);
2b8c41da 2421 post_init_entity_util_avg(&p->se);
0017d735 2422
7a57f32a 2423 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2424 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2425 trace_sched_wakeup_new(p);
a7558e01 2426 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2427#ifdef CONFIG_SMP
0aaafaab
PZ
2428 if (p->sched_class->task_woken) {
2429 /*
2430 * Nothing relies on rq->lock after this, so its fine to
2431 * drop it.
2432 */
d8ac8971 2433 rq_unpin_lock(rq, &rf);
efbbd05a 2434 p->sched_class->task_woken(rq, p);
d8ac8971 2435 rq_repin_lock(rq, &rf);
0aaafaab 2436 }
9a897c5a 2437#endif
eb580751 2438 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2439}
2440
e107be36
AK
2441#ifdef CONFIG_PREEMPT_NOTIFIERS
2442
b7203428 2443static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2444
2ecd9d29
PZ
2445void preempt_notifier_inc(void)
2446{
b7203428 2447 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2448}
2449EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2450
2451void preempt_notifier_dec(void)
2452{
b7203428 2453 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2454}
2455EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2456
e107be36 2457/**
80dd99b3 2458 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2459 * @notifier: notifier struct to register
e107be36
AK
2460 */
2461void preempt_notifier_register(struct preempt_notifier *notifier)
2462{
b7203428 2463 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2464 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2465
e107be36
AK
2466 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2467}
2468EXPORT_SYMBOL_GPL(preempt_notifier_register);
2469
2470/**
2471 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2472 * @notifier: notifier struct to unregister
e107be36 2473 *
d84525a8 2474 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2475 */
2476void preempt_notifier_unregister(struct preempt_notifier *notifier)
2477{
2478 hlist_del(&notifier->link);
2479}
2480EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2481
1cde2930 2482static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2483{
2484 struct preempt_notifier *notifier;
e107be36 2485
b67bfe0d 2486 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2487 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2488}
2489
1cde2930
PZ
2490static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2491{
b7203428 2492 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2493 __fire_sched_in_preempt_notifiers(curr);
2494}
2495
e107be36 2496static void
1cde2930
PZ
2497__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2498 struct task_struct *next)
e107be36
AK
2499{
2500 struct preempt_notifier *notifier;
e107be36 2501
b67bfe0d 2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2503 notifier->ops->sched_out(notifier, next);
2504}
2505
1cde2930
PZ
2506static __always_inline void
2507fire_sched_out_preempt_notifiers(struct task_struct *curr,
2508 struct task_struct *next)
2509{
b7203428 2510 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2511 __fire_sched_out_preempt_notifiers(curr, next);
2512}
2513
6d6bc0ad 2514#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2515
1cde2930 2516static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2517{
2518}
2519
1cde2930 2520static inline void
e107be36
AK
2521fire_sched_out_preempt_notifiers(struct task_struct *curr,
2522 struct task_struct *next)
2523{
2524}
2525
6d6bc0ad 2526#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2527
31cb1bc0 2528static inline void prepare_task(struct task_struct *next)
2529{
2530#ifdef CONFIG_SMP
2531 /*
2532 * Claim the task as running, we do this before switching to it
2533 * such that any running task will have this set.
2534 */
2535 next->on_cpu = 1;
2536#endif
2537}
2538
2539static inline void finish_task(struct task_struct *prev)
2540{
2541#ifdef CONFIG_SMP
2542 /*
2543 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2544 * We must ensure this doesn't happen until the switch is completely
2545 * finished.
2546 *
2547 * In particular, the load of prev->state in finish_task_switch() must
2548 * happen before this.
2549 *
2550 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2551 */
2552 smp_store_release(&prev->on_cpu, 0);
2553#endif
2554}
2555
269d5992
PZ
2556static inline void
2557prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2558{
269d5992
PZ
2559 /*
2560 * Since the runqueue lock will be released by the next
2561 * task (which is an invalid locking op but in the case
2562 * of the scheduler it's an obvious special-case), so we
2563 * do an early lockdep release here:
2564 */
2565 rq_unpin_lock(rq, rf);
2566 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2567#ifdef CONFIG_DEBUG_SPINLOCK
2568 /* this is a valid case when another task releases the spinlock */
269d5992 2569 rq->lock.owner = next;
31cb1bc0 2570#endif
269d5992
PZ
2571}
2572
2573static inline void finish_lock_switch(struct rq *rq)
2574{
31cb1bc0 2575 /*
2576 * If we are tracking spinlock dependencies then we have to
2577 * fix up the runqueue lock - which gets 'carried over' from
2578 * prev into current:
2579 */
2580 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2581 raw_spin_unlock_irq(&rq->lock);
2582}
2583
325ea10c
IM
2584/*
2585 * NOP if the arch has not defined these:
2586 */
2587
2588#ifndef prepare_arch_switch
2589# define prepare_arch_switch(next) do { } while (0)
2590#endif
2591
2592#ifndef finish_arch_post_lock_switch
2593# define finish_arch_post_lock_switch() do { } while (0)
2594#endif
2595
4866cde0
NP
2596/**
2597 * prepare_task_switch - prepare to switch tasks
2598 * @rq: the runqueue preparing to switch
421cee29 2599 * @prev: the current task that is being switched out
4866cde0
NP
2600 * @next: the task we are going to switch to.
2601 *
2602 * This is called with the rq lock held and interrupts off. It must
2603 * be paired with a subsequent finish_task_switch after the context
2604 * switch.
2605 *
2606 * prepare_task_switch sets up locking and calls architecture specific
2607 * hooks.
2608 */
e107be36
AK
2609static inline void
2610prepare_task_switch(struct rq *rq, struct task_struct *prev,
2611 struct task_struct *next)
4866cde0 2612{
0ed557aa 2613 kcov_prepare_switch(prev);
43148951 2614 sched_info_switch(rq, prev, next);
fe4b04fa 2615 perf_event_task_sched_out(prev, next);
d7822b1e 2616 rseq_preempt(prev);
e107be36 2617 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2618 prepare_task(next);
4866cde0
NP
2619 prepare_arch_switch(next);
2620}
2621
1da177e4
LT
2622/**
2623 * finish_task_switch - clean up after a task-switch
2624 * @prev: the thread we just switched away from.
2625 *
4866cde0
NP
2626 * finish_task_switch must be called after the context switch, paired
2627 * with a prepare_task_switch call before the context switch.
2628 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2629 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2630 *
2631 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2632 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2633 * with the lock held can cause deadlocks; see schedule() for
2634 * details.)
dfa50b60
ON
2635 *
2636 * The context switch have flipped the stack from under us and restored the
2637 * local variables which were saved when this task called schedule() in the
2638 * past. prev == current is still correct but we need to recalculate this_rq
2639 * because prev may have moved to another CPU.
1da177e4 2640 */
dfa50b60 2641static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2642 __releases(rq->lock)
2643{
dfa50b60 2644 struct rq *rq = this_rq();
1da177e4 2645 struct mm_struct *mm = rq->prev_mm;
55a101f8 2646 long prev_state;
1da177e4 2647
609ca066
PZ
2648 /*
2649 * The previous task will have left us with a preempt_count of 2
2650 * because it left us after:
2651 *
2652 * schedule()
2653 * preempt_disable(); // 1
2654 * __schedule()
2655 * raw_spin_lock_irq(&rq->lock) // 2
2656 *
2657 * Also, see FORK_PREEMPT_COUNT.
2658 */
e2bf1c4b
PZ
2659 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2660 "corrupted preempt_count: %s/%d/0x%x\n",
2661 current->comm, current->pid, preempt_count()))
2662 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2663
1da177e4
LT
2664 rq->prev_mm = NULL;
2665
2666 /*
2667 * A task struct has one reference for the use as "current".
c394cc9f 2668 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2669 * schedule one last time. The schedule call will never return, and
2670 * the scheduled task must drop that reference.
95913d97
PZ
2671 *
2672 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2673 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2674 * running on another CPU and we could rave with its RUNNING -> DEAD
2675 * transition, resulting in a double drop.
1da177e4 2676 */
55a101f8 2677 prev_state = prev->state;
bf9fae9f 2678 vtime_task_switch(prev);
a8d757ef 2679 perf_event_task_sched_in(prev, current);
31cb1bc0 2680 finish_task(prev);
2681 finish_lock_switch(rq);
01f23e16 2682 finish_arch_post_lock_switch();
0ed557aa 2683 kcov_finish_switch(current);
e8fa1362 2684
e107be36 2685 fire_sched_in_preempt_notifiers(current);
306e0604 2686 /*
70216e18
MD
2687 * When switching through a kernel thread, the loop in
2688 * membarrier_{private,global}_expedited() may have observed that
2689 * kernel thread and not issued an IPI. It is therefore possible to
2690 * schedule between user->kernel->user threads without passing though
2691 * switch_mm(). Membarrier requires a barrier after storing to
2692 * rq->curr, before returning to userspace, so provide them here:
2693 *
2694 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2695 * provided by mmdrop(),
2696 * - a sync_core for SYNC_CORE.
306e0604 2697 */
70216e18
MD
2698 if (mm) {
2699 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2700 mmdrop(mm);
70216e18 2701 }
1cef1150
PZ
2702 if (unlikely(prev_state == TASK_DEAD)) {
2703 if (prev->sched_class->task_dead)
2704 prev->sched_class->task_dead(prev);
68f24b08 2705
1cef1150
PZ
2706 /*
2707 * Remove function-return probe instances associated with this
2708 * task and put them back on the free list.
2709 */
2710 kprobe_flush_task(prev);
2711
2712 /* Task is done with its stack. */
2713 put_task_stack(prev);
2714
2715 put_task_struct(prev);
c6fd91f0 2716 }
99e5ada9 2717
de734f89 2718 tick_nohz_task_switch();
dfa50b60 2719 return rq;
1da177e4
LT
2720}
2721
3f029d3c
GH
2722#ifdef CONFIG_SMP
2723
3f029d3c 2724/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2725static void __balance_callback(struct rq *rq)
3f029d3c 2726{
e3fca9e7
PZ
2727 struct callback_head *head, *next;
2728 void (*func)(struct rq *rq);
2729 unsigned long flags;
3f029d3c 2730
e3fca9e7
PZ
2731 raw_spin_lock_irqsave(&rq->lock, flags);
2732 head = rq->balance_callback;
2733 rq->balance_callback = NULL;
2734 while (head) {
2735 func = (void (*)(struct rq *))head->func;
2736 next = head->next;
2737 head->next = NULL;
2738 head = next;
3f029d3c 2739
e3fca9e7 2740 func(rq);
3f029d3c 2741 }
e3fca9e7
PZ
2742 raw_spin_unlock_irqrestore(&rq->lock, flags);
2743}
2744
2745static inline void balance_callback(struct rq *rq)
2746{
2747 if (unlikely(rq->balance_callback))
2748 __balance_callback(rq);
3f029d3c
GH
2749}
2750
2751#else
da19ab51 2752
e3fca9e7 2753static inline void balance_callback(struct rq *rq)
3f029d3c 2754{
1da177e4
LT
2755}
2756
3f029d3c
GH
2757#endif
2758
1da177e4
LT
2759/**
2760 * schedule_tail - first thing a freshly forked thread must call.
2761 * @prev: the thread we just switched away from.
2762 */
722a9f92 2763asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2764 __releases(rq->lock)
2765{
1a43a14a 2766 struct rq *rq;
da19ab51 2767
609ca066
PZ
2768 /*
2769 * New tasks start with FORK_PREEMPT_COUNT, see there and
2770 * finish_task_switch() for details.
2771 *
2772 * finish_task_switch() will drop rq->lock() and lower preempt_count
2773 * and the preempt_enable() will end up enabling preemption (on
2774 * PREEMPT_COUNT kernels).
2775 */
2776
dfa50b60 2777 rq = finish_task_switch(prev);
e3fca9e7 2778 balance_callback(rq);
1a43a14a 2779 preempt_enable();
70b97a7f 2780
1da177e4 2781 if (current->set_child_tid)
b488893a 2782 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
2783
2784 calculate_sigpending();
1da177e4
LT
2785}
2786
2787/*
dfa50b60 2788 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2789 */
04936948 2790static __always_inline struct rq *
70b97a7f 2791context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2792 struct task_struct *next, struct rq_flags *rf)
1da177e4 2793{
dd41f596 2794 struct mm_struct *mm, *oldmm;
1da177e4 2795
e107be36 2796 prepare_task_switch(rq, prev, next);
fe4b04fa 2797
dd41f596
IM
2798 mm = next->mm;
2799 oldmm = prev->active_mm;
9226d125
ZA
2800 /*
2801 * For paravirt, this is coupled with an exit in switch_to to
2802 * combine the page table reload and the switch backend into
2803 * one hypercall.
2804 */
224101ed 2805 arch_start_context_switch(prev);
9226d125 2806
306e0604
MD
2807 /*
2808 * If mm is non-NULL, we pass through switch_mm(). If mm is
2809 * NULL, we will pass through mmdrop() in finish_task_switch().
2810 * Both of these contain the full memory barrier required by
2811 * membarrier after storing to rq->curr, before returning to
2812 * user-space.
2813 */
31915ab4 2814 if (!mm) {
1da177e4 2815 next->active_mm = oldmm;
f1f10076 2816 mmgrab(oldmm);
1da177e4
LT
2817 enter_lazy_tlb(oldmm, next);
2818 } else
f98db601 2819 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2820
31915ab4 2821 if (!prev->mm) {
1da177e4 2822 prev->active_mm = NULL;
1da177e4
LT
2823 rq->prev_mm = oldmm;
2824 }
92509b73 2825
cb42c9a3 2826 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2827
269d5992 2828 prepare_lock_switch(rq, next, rf);
1da177e4
LT
2829
2830 /* Here we just switch the register state and the stack. */
2831 switch_to(prev, next, prev);
dd41f596 2832 barrier();
dfa50b60
ON
2833
2834 return finish_task_switch(prev);
1da177e4
LT
2835}
2836
2837/*
1c3e8264 2838 * nr_running and nr_context_switches:
1da177e4
LT
2839 *
2840 * externally visible scheduler statistics: current number of runnable
1c3e8264 2841 * threads, total number of context switches performed since bootup.
1da177e4
LT
2842 */
2843unsigned long nr_running(void)
2844{
2845 unsigned long i, sum = 0;
2846
2847 for_each_online_cpu(i)
2848 sum += cpu_rq(i)->nr_running;
2849
2850 return sum;
f711f609 2851}
1da177e4 2852
2ee507c4 2853/*
d1ccc66d 2854 * Check if only the current task is running on the CPU.
00cc1633
DD
2855 *
2856 * Caution: this function does not check that the caller has disabled
2857 * preemption, thus the result might have a time-of-check-to-time-of-use
2858 * race. The caller is responsible to use it correctly, for example:
2859 *
dfcb245e 2860 * - from a non-preemptible section (of course)
00cc1633
DD
2861 *
2862 * - from a thread that is bound to a single CPU
2863 *
2864 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2865 */
2866bool single_task_running(void)
2867{
00cc1633 2868 return raw_rq()->nr_running == 1;
2ee507c4
TC
2869}
2870EXPORT_SYMBOL(single_task_running);
2871
1da177e4 2872unsigned long long nr_context_switches(void)
46cb4b7c 2873{
cc94abfc
SR
2874 int i;
2875 unsigned long long sum = 0;
46cb4b7c 2876
0a945022 2877 for_each_possible_cpu(i)
1da177e4 2878 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2879
1da177e4
LT
2880 return sum;
2881}
483b4ee6 2882
145d952a
DL
2883/*
2884 * Consumers of these two interfaces, like for example the cpuidle menu
2885 * governor, are using nonsensical data. Preferring shallow idle state selection
2886 * for a CPU that has IO-wait which might not even end up running the task when
2887 * it does become runnable.
2888 */
2889
2890unsigned long nr_iowait_cpu(int cpu)
2891{
2892 return atomic_read(&cpu_rq(cpu)->nr_iowait);
2893}
2894
e33a9bba
TH
2895/*
2896 * IO-wait accounting, and how its mostly bollocks (on SMP).
2897 *
2898 * The idea behind IO-wait account is to account the idle time that we could
2899 * have spend running if it were not for IO. That is, if we were to improve the
2900 * storage performance, we'd have a proportional reduction in IO-wait time.
2901 *
2902 * This all works nicely on UP, where, when a task blocks on IO, we account
2903 * idle time as IO-wait, because if the storage were faster, it could've been
2904 * running and we'd not be idle.
2905 *
2906 * This has been extended to SMP, by doing the same for each CPU. This however
2907 * is broken.
2908 *
2909 * Imagine for instance the case where two tasks block on one CPU, only the one
2910 * CPU will have IO-wait accounted, while the other has regular idle. Even
2911 * though, if the storage were faster, both could've ran at the same time,
2912 * utilising both CPUs.
2913 *
2914 * This means, that when looking globally, the current IO-wait accounting on
2915 * SMP is a lower bound, by reason of under accounting.
2916 *
2917 * Worse, since the numbers are provided per CPU, they are sometimes
2918 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2919 * associated with any one particular CPU, it can wake to another CPU than it
2920 * blocked on. This means the per CPU IO-wait number is meaningless.
2921 *
2922 * Task CPU affinities can make all that even more 'interesting'.
2923 */
2924
1da177e4
LT
2925unsigned long nr_iowait(void)
2926{
2927 unsigned long i, sum = 0;
483b4ee6 2928
0a945022 2929 for_each_possible_cpu(i)
145d952a 2930 sum += nr_iowait_cpu(i);
46cb4b7c 2931
1da177e4
LT
2932 return sum;
2933}
483b4ee6 2934
dd41f596 2935#ifdef CONFIG_SMP
8a0be9ef 2936
46cb4b7c 2937/*
38022906
PZ
2938 * sched_exec - execve() is a valuable balancing opportunity, because at
2939 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2940 */
38022906 2941void sched_exec(void)
46cb4b7c 2942{
38022906 2943 struct task_struct *p = current;
1da177e4 2944 unsigned long flags;
0017d735 2945 int dest_cpu;
46cb4b7c 2946
8f42ced9 2947 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2948 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2949 if (dest_cpu == smp_processor_id())
2950 goto unlock;
38022906 2951
8f42ced9 2952 if (likely(cpu_active(dest_cpu))) {
969c7921 2953 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2954
8f42ced9
PZ
2955 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2956 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2957 return;
2958 }
0017d735 2959unlock:
8f42ced9 2960 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2961}
dd41f596 2962
1da177e4
LT
2963#endif
2964
1da177e4 2965DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2966DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2967
2968EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2969EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2970
6075620b
GG
2971/*
2972 * The function fair_sched_class.update_curr accesses the struct curr
2973 * and its field curr->exec_start; when called from task_sched_runtime(),
2974 * we observe a high rate of cache misses in practice.
2975 * Prefetching this data results in improved performance.
2976 */
2977static inline void prefetch_curr_exec_start(struct task_struct *p)
2978{
2979#ifdef CONFIG_FAIR_GROUP_SCHED
2980 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2981#else
2982 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2983#endif
2984 prefetch(curr);
2985 prefetch(&curr->exec_start);
2986}
2987
c5f8d995
HS
2988/*
2989 * Return accounted runtime for the task.
2990 * In case the task is currently running, return the runtime plus current's
2991 * pending runtime that have not been accounted yet.
2992 */
2993unsigned long long task_sched_runtime(struct task_struct *p)
2994{
eb580751 2995 struct rq_flags rf;
c5f8d995 2996 struct rq *rq;
6e998916 2997 u64 ns;
c5f8d995 2998
911b2898
PZ
2999#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3000 /*
97fb7a0a 3001 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3002 * So we have a optimization chance when the task's delta_exec is 0.
3003 * Reading ->on_cpu is racy, but this is ok.
3004 *
d1ccc66d
IM
3005 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3006 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3007 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3008 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3009 * been accounted, so we're correct here as well.
911b2898 3010 */
da0c1e65 3011 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3012 return p->se.sum_exec_runtime;
3013#endif
3014
eb580751 3015 rq = task_rq_lock(p, &rf);
6e998916
SG
3016 /*
3017 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3018 * project cycles that may never be accounted to this
3019 * thread, breaking clock_gettime().
3020 */
3021 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3022 prefetch_curr_exec_start(p);
6e998916
SG
3023 update_rq_clock(rq);
3024 p->sched_class->update_curr(rq);
3025 }
3026 ns = p->se.sum_exec_runtime;
eb580751 3027 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3028
3029 return ns;
3030}
48f24c4d 3031
7835b98b
CL
3032/*
3033 * This function gets called by the timer code, with HZ frequency.
3034 * We call it with interrupts disabled.
7835b98b
CL
3035 */
3036void scheduler_tick(void)
3037{
7835b98b
CL
3038 int cpu = smp_processor_id();
3039 struct rq *rq = cpu_rq(cpu);
dd41f596 3040 struct task_struct *curr = rq->curr;
8a8c69c3 3041 struct rq_flags rf;
3e51f33f
PZ
3042
3043 sched_clock_tick();
dd41f596 3044
8a8c69c3
PZ
3045 rq_lock(rq, &rf);
3046
3e51f33f 3047 update_rq_clock(rq);
fa85ae24 3048 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3049 cpu_load_update_active(rq);
3289bdb4 3050 calc_global_load_tick(rq);
eb414681 3051 psi_task_tick(rq);
8a8c69c3
PZ
3052
3053 rq_unlock(rq, &rf);
7835b98b 3054
e9d2b064 3055 perf_event_task_tick();
e220d2dc 3056
e418e1c2 3057#ifdef CONFIG_SMP
6eb57e0d 3058 rq->idle_balance = idle_cpu(cpu);
7caff66f 3059 trigger_load_balance(rq);
e418e1c2 3060#endif
1da177e4
LT
3061}
3062
265f22a9 3063#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3064
3065struct tick_work {
3066 int cpu;
3067 struct delayed_work work;
3068};
3069
3070static struct tick_work __percpu *tick_work_cpu;
3071
3072static void sched_tick_remote(struct work_struct *work)
3073{
3074 struct delayed_work *dwork = to_delayed_work(work);
3075 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3076 int cpu = twork->cpu;
3077 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3078 struct task_struct *curr;
d84b3131 3079 struct rq_flags rf;
d9c0ffca 3080 u64 delta;
d84b3131
FW
3081
3082 /*
3083 * Handle the tick only if it appears the remote CPU is running in full
3084 * dynticks mode. The check is racy by nature, but missing a tick or
3085 * having one too much is no big deal because the scheduler tick updates
3086 * statistics and checks timeslices in a time-independent way, regardless
3087 * of when exactly it is running.
3088 */
d9c0ffca
FW
3089 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3090 goto out_requeue;
d84b3131 3091
d9c0ffca
FW
3092 rq_lock_irq(rq, &rf);
3093 curr = rq->curr;
3094 if (is_idle_task(curr))
3095 goto out_unlock;
d84b3131 3096
d9c0ffca
FW
3097 update_rq_clock(rq);
3098 delta = rq_clock_task(rq) - curr->se.exec_start;
3099
3100 /*
3101 * Make sure the next tick runs within a reasonable
3102 * amount of time.
3103 */
3104 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3105 curr->sched_class->task_tick(rq, curr, 0);
3106
3107out_unlock:
3108 rq_unlock_irq(rq, &rf);
d84b3131 3109
d9c0ffca 3110out_requeue:
d84b3131
FW
3111 /*
3112 * Run the remote tick once per second (1Hz). This arbitrary
3113 * frequency is large enough to avoid overload but short enough
3114 * to keep scheduler internal stats reasonably up to date.
3115 */
3116 queue_delayed_work(system_unbound_wq, dwork, HZ);
3117}
3118
3119static void sched_tick_start(int cpu)
3120{
3121 struct tick_work *twork;
3122
3123 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3124 return;
3125
3126 WARN_ON_ONCE(!tick_work_cpu);
3127
3128 twork = per_cpu_ptr(tick_work_cpu, cpu);
3129 twork->cpu = cpu;
3130 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3131 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3132}
3133
3134#ifdef CONFIG_HOTPLUG_CPU
3135static void sched_tick_stop(int cpu)
3136{
3137 struct tick_work *twork;
3138
3139 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3140 return;
3141
3142 WARN_ON_ONCE(!tick_work_cpu);
3143
3144 twork = per_cpu_ptr(tick_work_cpu, cpu);
3145 cancel_delayed_work_sync(&twork->work);
3146}
3147#endif /* CONFIG_HOTPLUG_CPU */
3148
3149int __init sched_tick_offload_init(void)
3150{
3151 tick_work_cpu = alloc_percpu(struct tick_work);
3152 BUG_ON(!tick_work_cpu);
3153
3154 return 0;
3155}
3156
3157#else /* !CONFIG_NO_HZ_FULL */
3158static inline void sched_tick_start(int cpu) { }
3159static inline void sched_tick_stop(int cpu) { }
265f22a9 3160#endif
1da177e4 3161
7e49fcce 3162#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3163 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3164/*
3165 * If the value passed in is equal to the current preempt count
3166 * then we just disabled preemption. Start timing the latency.
3167 */
3168static inline void preempt_latency_start(int val)
3169{
3170 if (preempt_count() == val) {
3171 unsigned long ip = get_lock_parent_ip();
3172#ifdef CONFIG_DEBUG_PREEMPT
3173 current->preempt_disable_ip = ip;
3174#endif
3175 trace_preempt_off(CALLER_ADDR0, ip);
3176 }
3177}
7e49fcce 3178
edafe3a5 3179void preempt_count_add(int val)
1da177e4 3180{
6cd8a4bb 3181#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3182 /*
3183 * Underflow?
3184 */
9a11b49a
IM
3185 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3186 return;
6cd8a4bb 3187#endif
bdb43806 3188 __preempt_count_add(val);
6cd8a4bb 3189#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3190 /*
3191 * Spinlock count overflowing soon?
3192 */
33859f7f
MOS
3193 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3194 PREEMPT_MASK - 10);
6cd8a4bb 3195#endif
47252cfb 3196 preempt_latency_start(val);
1da177e4 3197}
bdb43806 3198EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3199NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3200
47252cfb
SR
3201/*
3202 * If the value passed in equals to the current preempt count
3203 * then we just enabled preemption. Stop timing the latency.
3204 */
3205static inline void preempt_latency_stop(int val)
3206{
3207 if (preempt_count() == val)
3208 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3209}
3210
edafe3a5 3211void preempt_count_sub(int val)
1da177e4 3212{
6cd8a4bb 3213#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3214 /*
3215 * Underflow?
3216 */
01e3eb82 3217 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3218 return;
1da177e4
LT
3219 /*
3220 * Is the spinlock portion underflowing?
3221 */
9a11b49a
IM
3222 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3223 !(preempt_count() & PREEMPT_MASK)))
3224 return;
6cd8a4bb 3225#endif
9a11b49a 3226
47252cfb 3227 preempt_latency_stop(val);
bdb43806 3228 __preempt_count_sub(val);
1da177e4 3229}
bdb43806 3230EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3231NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3232
47252cfb
SR
3233#else
3234static inline void preempt_latency_start(int val) { }
3235static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3236#endif
3237
59ddbcb2
IM
3238static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3239{
3240#ifdef CONFIG_DEBUG_PREEMPT
3241 return p->preempt_disable_ip;
3242#else
3243 return 0;
3244#endif
3245}
3246
1da177e4 3247/*
dd41f596 3248 * Print scheduling while atomic bug:
1da177e4 3249 */
dd41f596 3250static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3251{
d1c6d149
VN
3252 /* Save this before calling printk(), since that will clobber it */
3253 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3254
664dfa65
DJ
3255 if (oops_in_progress)
3256 return;
3257
3df0fc5b
PZ
3258 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3259 prev->comm, prev->pid, preempt_count());
838225b4 3260
dd41f596 3261 debug_show_held_locks(prev);
e21f5b15 3262 print_modules();
dd41f596
IM
3263 if (irqs_disabled())
3264 print_irqtrace_events(prev);
d1c6d149
VN
3265 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3266 && in_atomic_preempt_off()) {
8f47b187 3267 pr_err("Preemption disabled at:");
d1c6d149 3268 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3269 pr_cont("\n");
3270 }
748c7201
DBO
3271 if (panic_on_warn)
3272 panic("scheduling while atomic\n");
3273
6135fc1e 3274 dump_stack();
373d4d09 3275 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3276}
1da177e4 3277
dd41f596
IM
3278/*
3279 * Various schedule()-time debugging checks and statistics:
3280 */
3281static inline void schedule_debug(struct task_struct *prev)
3282{
0d9e2632 3283#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3284 if (task_stack_end_corrupted(prev))
3285 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3286#endif
b99def8b 3287
1dc0fffc 3288 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3289 __schedule_bug(prev);
1dc0fffc
PZ
3290 preempt_count_set(PREEMPT_DISABLED);
3291 }
b3fbab05 3292 rcu_sleep_check();
dd41f596 3293
1da177e4
LT
3294 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3295
ae92882e 3296 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3297}
3298
3299/*
3300 * Pick up the highest-prio task:
3301 */
3302static inline struct task_struct *
d8ac8971 3303pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3304{
49ee5768 3305 const struct sched_class *class;
dd41f596 3306 struct task_struct *p;
1da177e4
LT
3307
3308 /*
0ba87bb2
PZ
3309 * Optimization: we know that if all tasks are in the fair class we can
3310 * call that function directly, but only if the @prev task wasn't of a
3311 * higher scheduling class, because otherwise those loose the
3312 * opportunity to pull in more work from other CPUs.
1da177e4 3313 */
0ba87bb2
PZ
3314 if (likely((prev->sched_class == &idle_sched_class ||
3315 prev->sched_class == &fair_sched_class) &&
3316 rq->nr_running == rq->cfs.h_nr_running)) {
3317
d8ac8971 3318 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3319 if (unlikely(p == RETRY_TASK))
3320 goto again;
3321
d1ccc66d 3322 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3323 if (unlikely(!p))
d8ac8971 3324 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3325
3326 return p;
1da177e4
LT
3327 }
3328
37e117c0 3329again:
34f971f6 3330 for_each_class(class) {
d8ac8971 3331 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3332 if (p) {
3333 if (unlikely(p == RETRY_TASK))
3334 goto again;
dd41f596 3335 return p;
37e117c0 3336 }
dd41f596 3337 }
34f971f6 3338
d1ccc66d
IM
3339 /* The idle class should always have a runnable task: */
3340 BUG();
dd41f596 3341}
1da177e4 3342
dd41f596 3343/*
c259e01a 3344 * __schedule() is the main scheduler function.
edde96ea
PE
3345 *
3346 * The main means of driving the scheduler and thus entering this function are:
3347 *
3348 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3349 *
3350 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3351 * paths. For example, see arch/x86/entry_64.S.
3352 *
3353 * To drive preemption between tasks, the scheduler sets the flag in timer
3354 * interrupt handler scheduler_tick().
3355 *
3356 * 3. Wakeups don't really cause entry into schedule(). They add a
3357 * task to the run-queue and that's it.
3358 *
3359 * Now, if the new task added to the run-queue preempts the current
3360 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3361 * called on the nearest possible occasion:
3362 *
3363 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3364 *
3365 * - in syscall or exception context, at the next outmost
3366 * preempt_enable(). (this might be as soon as the wake_up()'s
3367 * spin_unlock()!)
3368 *
3369 * - in IRQ context, return from interrupt-handler to
3370 * preemptible context
3371 *
3372 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3373 * then at the next:
3374 *
3375 * - cond_resched() call
3376 * - explicit schedule() call
3377 * - return from syscall or exception to user-space
3378 * - return from interrupt-handler to user-space
bfd9b2b5 3379 *
b30f0e3f 3380 * WARNING: must be called with preemption disabled!
dd41f596 3381 */
499d7955 3382static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3383{
3384 struct task_struct *prev, *next;
67ca7bde 3385 unsigned long *switch_count;
d8ac8971 3386 struct rq_flags rf;
dd41f596 3387 struct rq *rq;
31656519 3388 int cpu;
dd41f596 3389
dd41f596
IM
3390 cpu = smp_processor_id();
3391 rq = cpu_rq(cpu);
dd41f596 3392 prev = rq->curr;
dd41f596 3393
dd41f596 3394 schedule_debug(prev);
1da177e4 3395
31656519 3396 if (sched_feat(HRTICK))
f333fdc9 3397 hrtick_clear(rq);
8f4d37ec 3398
46a5d164 3399 local_irq_disable();
bcbfdd01 3400 rcu_note_context_switch(preempt);
46a5d164 3401
e0acd0a6
ON
3402 /*
3403 * Make sure that signal_pending_state()->signal_pending() below
3404 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3405 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3406 *
3407 * The membarrier system call requires a full memory barrier
3408 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3409 */
8a8c69c3 3410 rq_lock(rq, &rf);
d89e588c 3411 smp_mb__after_spinlock();
1da177e4 3412
d1ccc66d
IM
3413 /* Promote REQ to ACT */
3414 rq->clock_update_flags <<= 1;
bce4dc80 3415 update_rq_clock(rq);
9edfbfed 3416
246d86b5 3417 switch_count = &prev->nivcsw;
fc13aeba 3418 if (!preempt && prev->state) {
21aa9af0 3419 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3420 prev->state = TASK_RUNNING;
21aa9af0 3421 } else {
bce4dc80 3422 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3423 prev->on_rq = 0;
3424
e33a9bba
TH
3425 if (prev->in_iowait) {
3426 atomic_inc(&rq->nr_iowait);
3427 delayacct_blkio_start();
3428 }
3429
21aa9af0 3430 /*
2acca55e
PZ
3431 * If a worker went to sleep, notify and ask workqueue
3432 * whether it wants to wake up a task to maintain
3433 * concurrency.
21aa9af0
TH
3434 */
3435 if (prev->flags & PF_WQ_WORKER) {
3436 struct task_struct *to_wakeup;
3437
9b7f6597 3438 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3439 if (to_wakeup)
d8ac8971 3440 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3441 }
21aa9af0 3442 }
dd41f596 3443 switch_count = &prev->nvcsw;
1da177e4
LT
3444 }
3445
d8ac8971 3446 next = pick_next_task(rq, prev, &rf);
f26f9aff 3447 clear_tsk_need_resched(prev);
f27dde8d 3448 clear_preempt_need_resched();
1da177e4 3449
1da177e4 3450 if (likely(prev != next)) {
1da177e4
LT
3451 rq->nr_switches++;
3452 rq->curr = next;
22e4ebb9
MD
3453 /*
3454 * The membarrier system call requires each architecture
3455 * to have a full memory barrier after updating
306e0604
MD
3456 * rq->curr, before returning to user-space.
3457 *
3458 * Here are the schemes providing that barrier on the
3459 * various architectures:
3460 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3461 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3462 * - finish_lock_switch() for weakly-ordered
3463 * architectures where spin_unlock is a full barrier,
3464 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3465 * is a RELEASE barrier),
22e4ebb9 3466 */
1da177e4
LT
3467 ++*switch_count;
3468
c73464b1 3469 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3470
3471 /* Also unlocks the rq: */
3472 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3473 } else {
cb42c9a3 3474 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3475 rq_unlock_irq(rq, &rf);
cbce1a68 3476 }
1da177e4 3477
e3fca9e7 3478 balance_callback(rq);
1da177e4 3479}
c259e01a 3480
9af6528e
PZ
3481void __noreturn do_task_dead(void)
3482{
d1ccc66d 3483 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3484 set_special_state(TASK_DEAD);
d1ccc66d
IM
3485
3486 /* Tell freezer to ignore us: */
3487 current->flags |= PF_NOFREEZE;
3488
9af6528e
PZ
3489 __schedule(false);
3490 BUG();
d1ccc66d
IM
3491
3492 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3493 for (;;)
d1ccc66d 3494 cpu_relax();
9af6528e
PZ
3495}
3496
9c40cef2
TG
3497static inline void sched_submit_work(struct task_struct *tsk)
3498{
3c7d5184 3499 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3500 return;
3501 /*
3502 * If we are going to sleep and we have plugged IO queued,
3503 * make sure to submit it to avoid deadlocks.
3504 */
3505 if (blk_needs_flush_plug(tsk))
3506 blk_schedule_flush_plug(tsk);
3507}
3508
722a9f92 3509asmlinkage __visible void __sched schedule(void)
c259e01a 3510{
9c40cef2
TG
3511 struct task_struct *tsk = current;
3512
3513 sched_submit_work(tsk);
bfd9b2b5 3514 do {
b30f0e3f 3515 preempt_disable();
fc13aeba 3516 __schedule(false);
b30f0e3f 3517 sched_preempt_enable_no_resched();
bfd9b2b5 3518 } while (need_resched());
c259e01a 3519}
1da177e4
LT
3520EXPORT_SYMBOL(schedule);
3521
8663effb
SRV
3522/*
3523 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3524 * state (have scheduled out non-voluntarily) by making sure that all
3525 * tasks have either left the run queue or have gone into user space.
3526 * As idle tasks do not do either, they must not ever be preempted
3527 * (schedule out non-voluntarily).
3528 *
3529 * schedule_idle() is similar to schedule_preempt_disable() except that it
3530 * never enables preemption because it does not call sched_submit_work().
3531 */
3532void __sched schedule_idle(void)
3533{
3534 /*
3535 * As this skips calling sched_submit_work(), which the idle task does
3536 * regardless because that function is a nop when the task is in a
3537 * TASK_RUNNING state, make sure this isn't used someplace that the
3538 * current task can be in any other state. Note, idle is always in the
3539 * TASK_RUNNING state.
3540 */
3541 WARN_ON_ONCE(current->state);
3542 do {
3543 __schedule(false);
3544 } while (need_resched());
3545}
3546
91d1aa43 3547#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3548asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3549{
3550 /*
3551 * If we come here after a random call to set_need_resched(),
3552 * or we have been woken up remotely but the IPI has not yet arrived,
3553 * we haven't yet exited the RCU idle mode. Do it here manually until
3554 * we find a better solution.
7cc78f8f
AL
3555 *
3556 * NB: There are buggy callers of this function. Ideally we
c467ea76 3557 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3558 * too frequently to make sense yet.
20ab65e3 3559 */
7cc78f8f 3560 enum ctx_state prev_state = exception_enter();
20ab65e3 3561 schedule();
7cc78f8f 3562 exception_exit(prev_state);
20ab65e3
FW
3563}
3564#endif
3565
c5491ea7
TG
3566/**
3567 * schedule_preempt_disabled - called with preemption disabled
3568 *
3569 * Returns with preemption disabled. Note: preempt_count must be 1
3570 */
3571void __sched schedule_preempt_disabled(void)
3572{
ba74c144 3573 sched_preempt_enable_no_resched();
c5491ea7
TG
3574 schedule();
3575 preempt_disable();
3576}
3577
06b1f808 3578static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3579{
3580 do {
47252cfb
SR
3581 /*
3582 * Because the function tracer can trace preempt_count_sub()
3583 * and it also uses preempt_enable/disable_notrace(), if
3584 * NEED_RESCHED is set, the preempt_enable_notrace() called
3585 * by the function tracer will call this function again and
3586 * cause infinite recursion.
3587 *
3588 * Preemption must be disabled here before the function
3589 * tracer can trace. Break up preempt_disable() into two
3590 * calls. One to disable preemption without fear of being
3591 * traced. The other to still record the preemption latency,
3592 * which can also be traced by the function tracer.
3593 */
499d7955 3594 preempt_disable_notrace();
47252cfb 3595 preempt_latency_start(1);
fc13aeba 3596 __schedule(true);
47252cfb 3597 preempt_latency_stop(1);
499d7955 3598 preempt_enable_no_resched_notrace();
a18b5d01
FW
3599
3600 /*
3601 * Check again in case we missed a preemption opportunity
3602 * between schedule and now.
3603 */
a18b5d01
FW
3604 } while (need_resched());
3605}
3606
1da177e4
LT
3607#ifdef CONFIG_PREEMPT
3608/*
2ed6e34f 3609 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3610 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3611 * occur there and call schedule directly.
3612 */
722a9f92 3613asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3614{
1da177e4
LT
3615 /*
3616 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3617 * we do not want to preempt the current task. Just return..
1da177e4 3618 */
fbb00b56 3619 if (likely(!preemptible()))
1da177e4
LT
3620 return;
3621
a18b5d01 3622 preempt_schedule_common();
1da177e4 3623}
376e2424 3624NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3625EXPORT_SYMBOL(preempt_schedule);
009f60e2 3626
009f60e2 3627/**
4eaca0a8 3628 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3629 *
3630 * The tracing infrastructure uses preempt_enable_notrace to prevent
3631 * recursion and tracing preempt enabling caused by the tracing
3632 * infrastructure itself. But as tracing can happen in areas coming
3633 * from userspace or just about to enter userspace, a preempt enable
3634 * can occur before user_exit() is called. This will cause the scheduler
3635 * to be called when the system is still in usermode.
3636 *
3637 * To prevent this, the preempt_enable_notrace will use this function
3638 * instead of preempt_schedule() to exit user context if needed before
3639 * calling the scheduler.
3640 */
4eaca0a8 3641asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3642{
3643 enum ctx_state prev_ctx;
3644
3645 if (likely(!preemptible()))
3646 return;
3647
3648 do {
47252cfb
SR
3649 /*
3650 * Because the function tracer can trace preempt_count_sub()
3651 * and it also uses preempt_enable/disable_notrace(), if
3652 * NEED_RESCHED is set, the preempt_enable_notrace() called
3653 * by the function tracer will call this function again and
3654 * cause infinite recursion.
3655 *
3656 * Preemption must be disabled here before the function
3657 * tracer can trace. Break up preempt_disable() into two
3658 * calls. One to disable preemption without fear of being
3659 * traced. The other to still record the preemption latency,
3660 * which can also be traced by the function tracer.
3661 */
3d8f74dd 3662 preempt_disable_notrace();
47252cfb 3663 preempt_latency_start(1);
009f60e2
ON
3664 /*
3665 * Needs preempt disabled in case user_exit() is traced
3666 * and the tracer calls preempt_enable_notrace() causing
3667 * an infinite recursion.
3668 */
3669 prev_ctx = exception_enter();
fc13aeba 3670 __schedule(true);
009f60e2
ON
3671 exception_exit(prev_ctx);
3672
47252cfb 3673 preempt_latency_stop(1);
3d8f74dd 3674 preempt_enable_no_resched_notrace();
009f60e2
ON
3675 } while (need_resched());
3676}
4eaca0a8 3677EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3678
32e475d7 3679#endif /* CONFIG_PREEMPT */
1da177e4
LT
3680
3681/*
2ed6e34f 3682 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3683 * off of irq context.
3684 * Note, that this is called and return with irqs disabled. This will
3685 * protect us against recursive calling from irq.
3686 */
722a9f92 3687asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3688{
b22366cd 3689 enum ctx_state prev_state;
6478d880 3690
2ed6e34f 3691 /* Catch callers which need to be fixed */
f27dde8d 3692 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3693
b22366cd
FW
3694 prev_state = exception_enter();
3695
3a5c359a 3696 do {
3d8f74dd 3697 preempt_disable();
3a5c359a 3698 local_irq_enable();
fc13aeba 3699 __schedule(true);
3a5c359a 3700 local_irq_disable();
3d8f74dd 3701 sched_preempt_enable_no_resched();
5ed0cec0 3702 } while (need_resched());
b22366cd
FW
3703
3704 exception_exit(prev_state);
1da177e4
LT
3705}
3706
ac6424b9 3707int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3708 void *key)
1da177e4 3709{
63859d4f 3710 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3711}
1da177e4
LT
3712EXPORT_SYMBOL(default_wake_function);
3713
b29739f9
IM
3714#ifdef CONFIG_RT_MUTEXES
3715
acd58620
PZ
3716static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3717{
3718 if (pi_task)
3719 prio = min(prio, pi_task->prio);
3720
3721 return prio;
3722}
3723
3724static inline int rt_effective_prio(struct task_struct *p, int prio)
3725{
3726 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3727
3728 return __rt_effective_prio(pi_task, prio);
3729}
3730
b29739f9
IM
3731/*
3732 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3733 * @p: task to boost
3734 * @pi_task: donor task
b29739f9
IM
3735 *
3736 * This function changes the 'effective' priority of a task. It does
3737 * not touch ->normal_prio like __setscheduler().
3738 *
c365c292
TG
3739 * Used by the rt_mutex code to implement priority inheritance
3740 * logic. Call site only calls if the priority of the task changed.
b29739f9 3741 */
acd58620 3742void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3743{
acd58620 3744 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3745 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3746 const struct sched_class *prev_class;
eb580751
PZ
3747 struct rq_flags rf;
3748 struct rq *rq;
b29739f9 3749
acd58620
PZ
3750 /* XXX used to be waiter->prio, not waiter->task->prio */
3751 prio = __rt_effective_prio(pi_task, p->normal_prio);
3752
3753 /*
3754 * If nothing changed; bail early.
3755 */
3756 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3757 return;
b29739f9 3758
eb580751 3759 rq = __task_rq_lock(p, &rf);
80f5c1b8 3760 update_rq_clock(rq);
acd58620
PZ
3761 /*
3762 * Set under pi_lock && rq->lock, such that the value can be used under
3763 * either lock.
3764 *
3765 * Note that there is loads of tricky to make this pointer cache work
3766 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3767 * ensure a task is de-boosted (pi_task is set to NULL) before the
3768 * task is allowed to run again (and can exit). This ensures the pointer
3769 * points to a blocked task -- which guaratees the task is present.
3770 */
3771 p->pi_top_task = pi_task;
3772
3773 /*
3774 * For FIFO/RR we only need to set prio, if that matches we're done.
3775 */
3776 if (prio == p->prio && !dl_prio(prio))
3777 goto out_unlock;
b29739f9 3778
1c4dd99b
TG
3779 /*
3780 * Idle task boosting is a nono in general. There is one
3781 * exception, when PREEMPT_RT and NOHZ is active:
3782 *
3783 * The idle task calls get_next_timer_interrupt() and holds
3784 * the timer wheel base->lock on the CPU and another CPU wants
3785 * to access the timer (probably to cancel it). We can safely
3786 * ignore the boosting request, as the idle CPU runs this code
3787 * with interrupts disabled and will complete the lock
3788 * protected section without being interrupted. So there is no
3789 * real need to boost.
3790 */
3791 if (unlikely(p == rq->idle)) {
3792 WARN_ON(p != rq->curr);
3793 WARN_ON(p->pi_blocked_on);
3794 goto out_unlock;
3795 }
3796
b91473ff 3797 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3798 oldprio = p->prio;
ff77e468
PZ
3799
3800 if (oldprio == prio)
3801 queue_flag &= ~DEQUEUE_MOVE;
3802
83ab0aa0 3803 prev_class = p->sched_class;
da0c1e65 3804 queued = task_on_rq_queued(p);
051a1d1a 3805 running = task_current(rq, p);
da0c1e65 3806 if (queued)
ff77e468 3807 dequeue_task(rq, p, queue_flag);
0e1f3483 3808 if (running)
f3cd1c4e 3809 put_prev_task(rq, p);
dd41f596 3810
2d3d891d
DF
3811 /*
3812 * Boosting condition are:
3813 * 1. -rt task is running and holds mutex A
3814 * --> -dl task blocks on mutex A
3815 *
3816 * 2. -dl task is running and holds mutex A
3817 * --> -dl task blocks on mutex A and could preempt the
3818 * running task
3819 */
3820 if (dl_prio(prio)) {
466af29b
ON
3821 if (!dl_prio(p->normal_prio) ||
3822 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3823 p->dl.dl_boosted = 1;
ff77e468 3824 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3825 } else
3826 p->dl.dl_boosted = 0;
aab03e05 3827 p->sched_class = &dl_sched_class;
2d3d891d
DF
3828 } else if (rt_prio(prio)) {
3829 if (dl_prio(oldprio))
3830 p->dl.dl_boosted = 0;
3831 if (oldprio < prio)
ff77e468 3832 queue_flag |= ENQUEUE_HEAD;
dd41f596 3833 p->sched_class = &rt_sched_class;
2d3d891d
DF
3834 } else {
3835 if (dl_prio(oldprio))
3836 p->dl.dl_boosted = 0;
746db944
BS
3837 if (rt_prio(oldprio))
3838 p->rt.timeout = 0;
dd41f596 3839 p->sched_class = &fair_sched_class;
2d3d891d 3840 }
dd41f596 3841
b29739f9
IM
3842 p->prio = prio;
3843
da0c1e65 3844 if (queued)
ff77e468 3845 enqueue_task(rq, p, queue_flag);
a399d233 3846 if (running)
b2bf6c31 3847 set_curr_task(rq, p);
cb469845 3848
da7a735e 3849 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3850out_unlock:
d1ccc66d
IM
3851 /* Avoid rq from going away on us: */
3852 preempt_disable();
eb580751 3853 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3854
3855 balance_callback(rq);
3856 preempt_enable();
b29739f9 3857}
acd58620
PZ
3858#else
3859static inline int rt_effective_prio(struct task_struct *p, int prio)
3860{
3861 return prio;
3862}
b29739f9 3863#endif
d50dde5a 3864
36c8b586 3865void set_user_nice(struct task_struct *p, long nice)
1da177e4 3866{
49bd21ef
PZ
3867 bool queued, running;
3868 int old_prio, delta;
eb580751 3869 struct rq_flags rf;
70b97a7f 3870 struct rq *rq;
1da177e4 3871
75e45d51 3872 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3873 return;
3874 /*
3875 * We have to be careful, if called from sys_setpriority(),
3876 * the task might be in the middle of scheduling on another CPU.
3877 */
eb580751 3878 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3879 update_rq_clock(rq);
3880
1da177e4
LT
3881 /*
3882 * The RT priorities are set via sched_setscheduler(), but we still
3883 * allow the 'normal' nice value to be set - but as expected
3884 * it wont have any effect on scheduling until the task is
aab03e05 3885 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3886 */
aab03e05 3887 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3888 p->static_prio = NICE_TO_PRIO(nice);
3889 goto out_unlock;
3890 }
da0c1e65 3891 queued = task_on_rq_queued(p);
49bd21ef 3892 running = task_current(rq, p);
da0c1e65 3893 if (queued)
7a57f32a 3894 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3895 if (running)
3896 put_prev_task(rq, p);
1da177e4 3897
1da177e4 3898 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3899 set_load_weight(p, true);
b29739f9
IM
3900 old_prio = p->prio;
3901 p->prio = effective_prio(p);
3902 delta = p->prio - old_prio;
1da177e4 3903
da0c1e65 3904 if (queued) {
7134b3e9 3905 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3906 /*
d5f9f942
AM
3907 * If the task increased its priority or is running and
3908 * lowered its priority, then reschedule its CPU:
1da177e4 3909 */
d5f9f942 3910 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3911 resched_curr(rq);
1da177e4 3912 }
49bd21ef
PZ
3913 if (running)
3914 set_curr_task(rq, p);
1da177e4 3915out_unlock:
eb580751 3916 task_rq_unlock(rq, p, &rf);
1da177e4 3917}
1da177e4
LT
3918EXPORT_SYMBOL(set_user_nice);
3919
e43379f1
MM
3920/*
3921 * can_nice - check if a task can reduce its nice value
3922 * @p: task
3923 * @nice: nice value
3924 */
36c8b586 3925int can_nice(const struct task_struct *p, const int nice)
e43379f1 3926{
d1ccc66d 3927 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3928 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3929
78d7d407 3930 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3931 capable(CAP_SYS_NICE));
3932}
3933
1da177e4
LT
3934#ifdef __ARCH_WANT_SYS_NICE
3935
3936/*
3937 * sys_nice - change the priority of the current process.
3938 * @increment: priority increment
3939 *
3940 * sys_setpriority is a more generic, but much slower function that
3941 * does similar things.
3942 */
5add95d4 3943SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3944{
48f24c4d 3945 long nice, retval;
1da177e4
LT
3946
3947 /*
3948 * Setpriority might change our priority at the same moment.
3949 * We don't have to worry. Conceptually one call occurs first
3950 * and we have a single winner.
3951 */
a9467fa3 3952 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3953 nice = task_nice(current) + increment;
1da177e4 3954
a9467fa3 3955 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3956 if (increment < 0 && !can_nice(current, nice))
3957 return -EPERM;
3958
1da177e4
LT
3959 retval = security_task_setnice(current, nice);
3960 if (retval)
3961 return retval;
3962
3963 set_user_nice(current, nice);
3964 return 0;
3965}
3966
3967#endif
3968
3969/**
3970 * task_prio - return the priority value of a given task.
3971 * @p: the task in question.
3972 *
e69f6186 3973 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3974 * RT tasks are offset by -200. Normal tasks are centered
3975 * around 0, value goes from -16 to +15.
3976 */
36c8b586 3977int task_prio(const struct task_struct *p)
1da177e4
LT
3978{
3979 return p->prio - MAX_RT_PRIO;
3980}
3981
1da177e4 3982/**
d1ccc66d 3983 * idle_cpu - is a given CPU idle currently?
1da177e4 3984 * @cpu: the processor in question.
e69f6186
YB
3985 *
3986 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3987 */
3988int idle_cpu(int cpu)
3989{
908a3283
TG
3990 struct rq *rq = cpu_rq(cpu);
3991
3992 if (rq->curr != rq->idle)
3993 return 0;
3994
3995 if (rq->nr_running)
3996 return 0;
3997
3998#ifdef CONFIG_SMP
3999 if (!llist_empty(&rq->wake_list))
4000 return 0;
4001#endif
4002
4003 return 1;
1da177e4
LT
4004}
4005
943d355d
RJ
4006/**
4007 * available_idle_cpu - is a given CPU idle for enqueuing work.
4008 * @cpu: the CPU in question.
4009 *
4010 * Return: 1 if the CPU is currently idle. 0 otherwise.
4011 */
4012int available_idle_cpu(int cpu)
4013{
4014 if (!idle_cpu(cpu))
4015 return 0;
4016
247f2f6f
RJ
4017 if (vcpu_is_preempted(cpu))
4018 return 0;
4019
908a3283 4020 return 1;
1da177e4
LT
4021}
4022
1da177e4 4023/**
d1ccc66d 4024 * idle_task - return the idle task for a given CPU.
1da177e4 4025 * @cpu: the processor in question.
e69f6186 4026 *
d1ccc66d 4027 * Return: The idle task for the CPU @cpu.
1da177e4 4028 */
36c8b586 4029struct task_struct *idle_task(int cpu)
1da177e4
LT
4030{
4031 return cpu_rq(cpu)->idle;
4032}
4033
4034/**
4035 * find_process_by_pid - find a process with a matching PID value.
4036 * @pid: the pid in question.
e69f6186
YB
4037 *
4038 * The task of @pid, if found. %NULL otherwise.
1da177e4 4039 */
a9957449 4040static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4041{
228ebcbe 4042 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4043}
4044
c13db6b1
SR
4045/*
4046 * sched_setparam() passes in -1 for its policy, to let the functions
4047 * it calls know not to change it.
4048 */
4049#define SETPARAM_POLICY -1
4050
c365c292
TG
4051static void __setscheduler_params(struct task_struct *p,
4052 const struct sched_attr *attr)
1da177e4 4053{
d50dde5a
DF
4054 int policy = attr->sched_policy;
4055
c13db6b1 4056 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4057 policy = p->policy;
4058
1da177e4 4059 p->policy = policy;
d50dde5a 4060
aab03e05
DF
4061 if (dl_policy(policy))
4062 __setparam_dl(p, attr);
39fd8fd2 4063 else if (fair_policy(policy))
d50dde5a
DF
4064 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4065
39fd8fd2
PZ
4066 /*
4067 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4068 * !rt_policy. Always setting this ensures that things like
4069 * getparam()/getattr() don't report silly values for !rt tasks.
4070 */
4071 p->rt_priority = attr->sched_priority;
383afd09 4072 p->normal_prio = normal_prio(p);
9059393e 4073 set_load_weight(p, true);
c365c292 4074}
39fd8fd2 4075
c365c292
TG
4076/* Actually do priority change: must hold pi & rq lock. */
4077static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4078 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4079{
4080 __setscheduler_params(p, attr);
d50dde5a 4081
383afd09 4082 /*
0782e63b
TG
4083 * Keep a potential priority boosting if called from
4084 * sched_setscheduler().
383afd09 4085 */
acd58620 4086 p->prio = normal_prio(p);
0782e63b 4087 if (keep_boost)
acd58620 4088 p->prio = rt_effective_prio(p, p->prio);
383afd09 4089
aab03e05
DF
4090 if (dl_prio(p->prio))
4091 p->sched_class = &dl_sched_class;
4092 else if (rt_prio(p->prio))
ffd44db5
PZ
4093 p->sched_class = &rt_sched_class;
4094 else
4095 p->sched_class = &fair_sched_class;
1da177e4 4096}
aab03e05 4097
c69e8d9c 4098/*
d1ccc66d 4099 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4100 */
4101static bool check_same_owner(struct task_struct *p)
4102{
4103 const struct cred *cred = current_cred(), *pcred;
4104 bool match;
4105
4106 rcu_read_lock();
4107 pcred = __task_cred(p);
9c806aa0
EB
4108 match = (uid_eq(cred->euid, pcred->euid) ||
4109 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4110 rcu_read_unlock();
4111 return match;
4112}
4113
d50dde5a
DF
4114static int __sched_setscheduler(struct task_struct *p,
4115 const struct sched_attr *attr,
dbc7f069 4116 bool user, bool pi)
1da177e4 4117{
383afd09
SR
4118 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4119 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4120 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4121 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4122 const struct sched_class *prev_class;
eb580751 4123 struct rq_flags rf;
ca94c442 4124 int reset_on_fork;
7a57f32a 4125 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4126 struct rq *rq;
1da177e4 4127
896bbb25
SRV
4128 /* The pi code expects interrupts enabled */
4129 BUG_ON(pi && in_interrupt());
1da177e4 4130recheck:
d1ccc66d 4131 /* Double check policy once rq lock held: */
ca94c442
LP
4132 if (policy < 0) {
4133 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4134 policy = oldpolicy = p->policy;
ca94c442 4135 } else {
7479f3c9 4136 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4137
20f9cd2a 4138 if (!valid_policy(policy))
ca94c442
LP
4139 return -EINVAL;
4140 }
4141
794a56eb 4142 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4143 return -EINVAL;
4144
1da177e4
LT
4145 /*
4146 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4147 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4148 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4149 */
0bb040a4 4150 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4151 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4152 return -EINVAL;
aab03e05
DF
4153 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4154 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4155 return -EINVAL;
4156
37e4ab3f
OC
4157 /*
4158 * Allow unprivileged RT tasks to decrease priority:
4159 */
961ccddd 4160 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4161 if (fair_policy(policy)) {
d0ea0268 4162 if (attr->sched_nice < task_nice(p) &&
eaad4513 4163 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4164 return -EPERM;
4165 }
4166
e05606d3 4167 if (rt_policy(policy)) {
a44702e8
ON
4168 unsigned long rlim_rtprio =
4169 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4170
d1ccc66d 4171 /* Can't set/change the rt policy: */
8dc3e909
ON
4172 if (policy != p->policy && !rlim_rtprio)
4173 return -EPERM;
4174
d1ccc66d 4175 /* Can't increase priority: */
d50dde5a
DF
4176 if (attr->sched_priority > p->rt_priority &&
4177 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4178 return -EPERM;
4179 }
c02aa73b 4180
d44753b8
JL
4181 /*
4182 * Can't set/change SCHED_DEADLINE policy at all for now
4183 * (safest behavior); in the future we would like to allow
4184 * unprivileged DL tasks to increase their relative deadline
4185 * or reduce their runtime (both ways reducing utilization)
4186 */
4187 if (dl_policy(policy))
4188 return -EPERM;
4189
dd41f596 4190 /*
c02aa73b
DH
4191 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4192 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4193 */
1da1843f 4194 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4195 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4196 return -EPERM;
4197 }
5fe1d75f 4198
d1ccc66d 4199 /* Can't change other user's priorities: */
c69e8d9c 4200 if (!check_same_owner(p))
37e4ab3f 4201 return -EPERM;
ca94c442 4202
d1ccc66d 4203 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4204 if (p->sched_reset_on_fork && !reset_on_fork)
4205 return -EPERM;
37e4ab3f 4206 }
1da177e4 4207
725aad24 4208 if (user) {
794a56eb
JL
4209 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4210 return -EINVAL;
4211
b0ae1981 4212 retval = security_task_setscheduler(p);
725aad24
JF
4213 if (retval)
4214 return retval;
4215 }
4216
b29739f9 4217 /*
d1ccc66d 4218 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4219 * changing the priority of the task:
0122ec5b 4220 *
25985edc 4221 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4222 * runqueue lock must be held.
4223 */
eb580751 4224 rq = task_rq_lock(p, &rf);
80f5c1b8 4225 update_rq_clock(rq);
dc61b1d6 4226
34f971f6 4227 /*
d1ccc66d 4228 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4229 */
4230 if (p == rq->stop) {
eb580751 4231 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4232 return -EINVAL;
4233 }
4234
a51e9198 4235 /*
d6b1e911
TG
4236 * If not changing anything there's no need to proceed further,
4237 * but store a possible modification of reset_on_fork.
a51e9198 4238 */
d50dde5a 4239 if (unlikely(policy == p->policy)) {
d0ea0268 4240 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4241 goto change;
4242 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4243 goto change;
75381608 4244 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4245 goto change;
d50dde5a 4246
d6b1e911 4247 p->sched_reset_on_fork = reset_on_fork;
eb580751 4248 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4249 return 0;
4250 }
d50dde5a 4251change:
a51e9198 4252
dc61b1d6 4253 if (user) {
332ac17e 4254#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4255 /*
4256 * Do not allow realtime tasks into groups that have no runtime
4257 * assigned.
4258 */
4259 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4260 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4261 !task_group_is_autogroup(task_group(p))) {
eb580751 4262 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4263 return -EPERM;
4264 }
dc61b1d6 4265#endif
332ac17e 4266#ifdef CONFIG_SMP
794a56eb
JL
4267 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4268 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4269 cpumask_t *span = rq->rd->span;
332ac17e
DF
4270
4271 /*
4272 * Don't allow tasks with an affinity mask smaller than
4273 * the entire root_domain to become SCHED_DEADLINE. We
4274 * will also fail if there's no bandwidth available.
4275 */
e4099a5e
PZ
4276 if (!cpumask_subset(span, &p->cpus_allowed) ||
4277 rq->rd->dl_bw.bw == 0) {
eb580751 4278 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4279 return -EPERM;
4280 }
4281 }
4282#endif
4283 }
dc61b1d6 4284
d1ccc66d 4285 /* Re-check policy now with rq lock held: */
1da177e4
LT
4286 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4287 policy = oldpolicy = -1;
eb580751 4288 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4289 goto recheck;
4290 }
332ac17e
DF
4291
4292 /*
4293 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4294 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4295 * is available.
4296 */
06a76fe0 4297 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4298 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4299 return -EBUSY;
4300 }
4301
c365c292
TG
4302 p->sched_reset_on_fork = reset_on_fork;
4303 oldprio = p->prio;
4304
dbc7f069
PZ
4305 if (pi) {
4306 /*
4307 * Take priority boosted tasks into account. If the new
4308 * effective priority is unchanged, we just store the new
4309 * normal parameters and do not touch the scheduler class and
4310 * the runqueue. This will be done when the task deboost
4311 * itself.
4312 */
acd58620 4313 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4314 if (new_effective_prio == oldprio)
4315 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4316 }
4317
da0c1e65 4318 queued = task_on_rq_queued(p);
051a1d1a 4319 running = task_current(rq, p);
da0c1e65 4320 if (queued)
ff77e468 4321 dequeue_task(rq, p, queue_flags);
0e1f3483 4322 if (running)
f3cd1c4e 4323 put_prev_task(rq, p);
f6b53205 4324
83ab0aa0 4325 prev_class = p->sched_class;
dbc7f069 4326 __setscheduler(rq, p, attr, pi);
f6b53205 4327
da0c1e65 4328 if (queued) {
81a44c54
TG
4329 /*
4330 * We enqueue to tail when the priority of a task is
4331 * increased (user space view).
4332 */
ff77e468
PZ
4333 if (oldprio < p->prio)
4334 queue_flags |= ENQUEUE_HEAD;
1de64443 4335
ff77e468 4336 enqueue_task(rq, p, queue_flags);
81a44c54 4337 }
a399d233 4338 if (running)
b2bf6c31 4339 set_curr_task(rq, p);
cb469845 4340
da7a735e 4341 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4342
4343 /* Avoid rq from going away on us: */
4344 preempt_disable();
eb580751 4345 task_rq_unlock(rq, p, &rf);
b29739f9 4346
dbc7f069
PZ
4347 if (pi)
4348 rt_mutex_adjust_pi(p);
95e02ca9 4349
d1ccc66d 4350 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4351 balance_callback(rq);
4352 preempt_enable();
95e02ca9 4353
1da177e4
LT
4354 return 0;
4355}
961ccddd 4356
7479f3c9
PZ
4357static int _sched_setscheduler(struct task_struct *p, int policy,
4358 const struct sched_param *param, bool check)
4359{
4360 struct sched_attr attr = {
4361 .sched_policy = policy,
4362 .sched_priority = param->sched_priority,
4363 .sched_nice = PRIO_TO_NICE(p->static_prio),
4364 };
4365
c13db6b1
SR
4366 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4367 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4368 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4369 policy &= ~SCHED_RESET_ON_FORK;
4370 attr.sched_policy = policy;
4371 }
4372
dbc7f069 4373 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4374}
961ccddd
RR
4375/**
4376 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4377 * @p: the task in question.
4378 * @policy: new policy.
4379 * @param: structure containing the new RT priority.
4380 *
e69f6186
YB
4381 * Return: 0 on success. An error code otherwise.
4382 *
961ccddd
RR
4383 * NOTE that the task may be already dead.
4384 */
4385int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4386 const struct sched_param *param)
961ccddd 4387{
7479f3c9 4388 return _sched_setscheduler(p, policy, param, true);
961ccddd 4389}
1da177e4
LT
4390EXPORT_SYMBOL_GPL(sched_setscheduler);
4391
d50dde5a
DF
4392int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4393{
dbc7f069 4394 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4395}
4396EXPORT_SYMBOL_GPL(sched_setattr);
4397
794a56eb
JL
4398int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4399{
4400 return __sched_setscheduler(p, attr, false, true);
4401}
4402
961ccddd
RR
4403/**
4404 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4405 * @p: the task in question.
4406 * @policy: new policy.
4407 * @param: structure containing the new RT priority.
4408 *
4409 * Just like sched_setscheduler, only don't bother checking if the
4410 * current context has permission. For example, this is needed in
4411 * stop_machine(): we create temporary high priority worker threads,
4412 * but our caller might not have that capability.
e69f6186
YB
4413 *
4414 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4415 */
4416int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4417 const struct sched_param *param)
961ccddd 4418{
7479f3c9 4419 return _sched_setscheduler(p, policy, param, false);
961ccddd 4420}
84778472 4421EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4422
95cdf3b7
IM
4423static int
4424do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4425{
1da177e4
LT
4426 struct sched_param lparam;
4427 struct task_struct *p;
36c8b586 4428 int retval;
1da177e4
LT
4429
4430 if (!param || pid < 0)
4431 return -EINVAL;
4432 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4433 return -EFAULT;
5fe1d75f
ON
4434
4435 rcu_read_lock();
4436 retval = -ESRCH;
1da177e4 4437 p = find_process_by_pid(pid);
5fe1d75f
ON
4438 if (p != NULL)
4439 retval = sched_setscheduler(p, policy, &lparam);
4440 rcu_read_unlock();
36c8b586 4441
1da177e4
LT
4442 return retval;
4443}
4444
d50dde5a
DF
4445/*
4446 * Mimics kernel/events/core.c perf_copy_attr().
4447 */
d1ccc66d 4448static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4449{
4450 u32 size;
4451 int ret;
4452
96d4f267 4453 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
d50dde5a
DF
4454 return -EFAULT;
4455
d1ccc66d 4456 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4457 memset(attr, 0, sizeof(*attr));
4458
4459 ret = get_user(size, &uattr->size);
4460 if (ret)
4461 return ret;
4462
d1ccc66d
IM
4463 /* Bail out on silly large: */
4464 if (size > PAGE_SIZE)
d50dde5a
DF
4465 goto err_size;
4466
d1ccc66d
IM
4467 /* ABI compatibility quirk: */
4468 if (!size)
d50dde5a
DF
4469 size = SCHED_ATTR_SIZE_VER0;
4470
4471 if (size < SCHED_ATTR_SIZE_VER0)
4472 goto err_size;
4473
4474 /*
4475 * If we're handed a bigger struct than we know of,
4476 * ensure all the unknown bits are 0 - i.e. new
4477 * user-space does not rely on any kernel feature
4478 * extensions we dont know about yet.
4479 */
4480 if (size > sizeof(*attr)) {
4481 unsigned char __user *addr;
4482 unsigned char __user *end;
4483 unsigned char val;
4484
4485 addr = (void __user *)uattr + sizeof(*attr);
4486 end = (void __user *)uattr + size;
4487
4488 for (; addr < end; addr++) {
4489 ret = get_user(val, addr);
4490 if (ret)
4491 return ret;
4492 if (val)
4493 goto err_size;
4494 }
4495 size = sizeof(*attr);
4496 }
4497
4498 ret = copy_from_user(attr, uattr, size);
4499 if (ret)
4500 return -EFAULT;
4501
4502 /*
d1ccc66d 4503 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4504 * to be strict and return an error on out-of-bounds values?
4505 */
75e45d51 4506 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4507
e78c7bca 4508 return 0;
d50dde5a
DF
4509
4510err_size:
4511 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4512 return -E2BIG;
d50dde5a
DF
4513}
4514
1da177e4
LT
4515/**
4516 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4517 * @pid: the pid in question.
4518 * @policy: new policy.
4519 * @param: structure containing the new RT priority.
e69f6186
YB
4520 *
4521 * Return: 0 on success. An error code otherwise.
1da177e4 4522 */
d1ccc66d 4523SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4524{
c21761f1
JB
4525 if (policy < 0)
4526 return -EINVAL;
4527
1da177e4
LT
4528 return do_sched_setscheduler(pid, policy, param);
4529}
4530
4531/**
4532 * sys_sched_setparam - set/change the RT priority of a thread
4533 * @pid: the pid in question.
4534 * @param: structure containing the new RT priority.
e69f6186
YB
4535 *
4536 * Return: 0 on success. An error code otherwise.
1da177e4 4537 */
5add95d4 4538SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4539{
c13db6b1 4540 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4541}
4542
d50dde5a
DF
4543/**
4544 * sys_sched_setattr - same as above, but with extended sched_attr
4545 * @pid: the pid in question.
5778fccf 4546 * @uattr: structure containing the extended parameters.
db66d756 4547 * @flags: for future extension.
d50dde5a 4548 */
6d35ab48
PZ
4549SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4550 unsigned int, flags)
d50dde5a
DF
4551{
4552 struct sched_attr attr;
4553 struct task_struct *p;
4554 int retval;
4555
6d35ab48 4556 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4557 return -EINVAL;
4558
143cf23d
MK
4559 retval = sched_copy_attr(uattr, &attr);
4560 if (retval)
4561 return retval;
d50dde5a 4562
b14ed2c2 4563 if ((int)attr.sched_policy < 0)
dbdb2275 4564 return -EINVAL;
d50dde5a
DF
4565
4566 rcu_read_lock();
4567 retval = -ESRCH;
4568 p = find_process_by_pid(pid);
4569 if (p != NULL)
4570 retval = sched_setattr(p, &attr);
4571 rcu_read_unlock();
4572
4573 return retval;
4574}
4575
1da177e4
LT
4576/**
4577 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4578 * @pid: the pid in question.
e69f6186
YB
4579 *
4580 * Return: On success, the policy of the thread. Otherwise, a negative error
4581 * code.
1da177e4 4582 */
5add95d4 4583SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4584{
36c8b586 4585 struct task_struct *p;
3a5c359a 4586 int retval;
1da177e4
LT
4587
4588 if (pid < 0)
3a5c359a 4589 return -EINVAL;
1da177e4
LT
4590
4591 retval = -ESRCH;
5fe85be0 4592 rcu_read_lock();
1da177e4
LT
4593 p = find_process_by_pid(pid);
4594 if (p) {
4595 retval = security_task_getscheduler(p);
4596 if (!retval)
ca94c442
LP
4597 retval = p->policy
4598 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4599 }
5fe85be0 4600 rcu_read_unlock();
1da177e4
LT
4601 return retval;
4602}
4603
4604/**
ca94c442 4605 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4606 * @pid: the pid in question.
4607 * @param: structure containing the RT priority.
e69f6186
YB
4608 *
4609 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4610 * code.
1da177e4 4611 */
5add95d4 4612SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4613{
ce5f7f82 4614 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4615 struct task_struct *p;
3a5c359a 4616 int retval;
1da177e4
LT
4617
4618 if (!param || pid < 0)
3a5c359a 4619 return -EINVAL;
1da177e4 4620
5fe85be0 4621 rcu_read_lock();
1da177e4
LT
4622 p = find_process_by_pid(pid);
4623 retval = -ESRCH;
4624 if (!p)
4625 goto out_unlock;
4626
4627 retval = security_task_getscheduler(p);
4628 if (retval)
4629 goto out_unlock;
4630
ce5f7f82
PZ
4631 if (task_has_rt_policy(p))
4632 lp.sched_priority = p->rt_priority;
5fe85be0 4633 rcu_read_unlock();
1da177e4
LT
4634
4635 /*
4636 * This one might sleep, we cannot do it with a spinlock held ...
4637 */
4638 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4639
1da177e4
LT
4640 return retval;
4641
4642out_unlock:
5fe85be0 4643 rcu_read_unlock();
1da177e4
LT
4644 return retval;
4645}
4646
d50dde5a
DF
4647static int sched_read_attr(struct sched_attr __user *uattr,
4648 struct sched_attr *attr,
4649 unsigned int usize)
4650{
4651 int ret;
4652
96d4f267 4653 if (!access_ok(uattr, usize))
d50dde5a
DF
4654 return -EFAULT;
4655
4656 /*
4657 * If we're handed a smaller struct than we know of,
4658 * ensure all the unknown bits are 0 - i.e. old
4659 * user-space does not get uncomplete information.
4660 */
4661 if (usize < sizeof(*attr)) {
4662 unsigned char *addr;
4663 unsigned char *end;
4664
4665 addr = (void *)attr + usize;
4666 end = (void *)attr + sizeof(*attr);
4667
4668 for (; addr < end; addr++) {
4669 if (*addr)
22400674 4670 return -EFBIG;
d50dde5a
DF
4671 }
4672
4673 attr->size = usize;
4674 }
4675
4efbc454 4676 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4677 if (ret)
4678 return -EFAULT;
4679
22400674 4680 return 0;
d50dde5a
DF
4681}
4682
4683/**
aab03e05 4684 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4685 * @pid: the pid in question.
5778fccf 4686 * @uattr: structure containing the extended parameters.
d50dde5a 4687 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4688 * @flags: for future extension.
d50dde5a 4689 */
6d35ab48
PZ
4690SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4691 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4692{
4693 struct sched_attr attr = {
4694 .size = sizeof(struct sched_attr),
4695 };
4696 struct task_struct *p;
4697 int retval;
4698
4699 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4700 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4701 return -EINVAL;
4702
4703 rcu_read_lock();
4704 p = find_process_by_pid(pid);
4705 retval = -ESRCH;
4706 if (!p)
4707 goto out_unlock;
4708
4709 retval = security_task_getscheduler(p);
4710 if (retval)
4711 goto out_unlock;
4712
4713 attr.sched_policy = p->policy;
7479f3c9
PZ
4714 if (p->sched_reset_on_fork)
4715 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4716 if (task_has_dl_policy(p))
4717 __getparam_dl(p, &attr);
4718 else if (task_has_rt_policy(p))
d50dde5a
DF
4719 attr.sched_priority = p->rt_priority;
4720 else
d0ea0268 4721 attr.sched_nice = task_nice(p);
d50dde5a
DF
4722
4723 rcu_read_unlock();
4724
4725 retval = sched_read_attr(uattr, &attr, size);
4726 return retval;
4727
4728out_unlock:
4729 rcu_read_unlock();
4730 return retval;
4731}
4732
96f874e2 4733long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4734{
5a16f3d3 4735 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4736 struct task_struct *p;
4737 int retval;
1da177e4 4738
23f5d142 4739 rcu_read_lock();
1da177e4
LT
4740
4741 p = find_process_by_pid(pid);
4742 if (!p) {
23f5d142 4743 rcu_read_unlock();
1da177e4
LT
4744 return -ESRCH;
4745 }
4746
23f5d142 4747 /* Prevent p going away */
1da177e4 4748 get_task_struct(p);
23f5d142 4749 rcu_read_unlock();
1da177e4 4750
14a40ffc
TH
4751 if (p->flags & PF_NO_SETAFFINITY) {
4752 retval = -EINVAL;
4753 goto out_put_task;
4754 }
5a16f3d3
RR
4755 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4756 retval = -ENOMEM;
4757 goto out_put_task;
4758 }
4759 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4760 retval = -ENOMEM;
4761 goto out_free_cpus_allowed;
4762 }
1da177e4 4763 retval = -EPERM;
4c44aaaf
EB
4764 if (!check_same_owner(p)) {
4765 rcu_read_lock();
4766 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4767 rcu_read_unlock();
16303ab2 4768 goto out_free_new_mask;
4c44aaaf
EB
4769 }
4770 rcu_read_unlock();
4771 }
1da177e4 4772
b0ae1981 4773 retval = security_task_setscheduler(p);
e7834f8f 4774 if (retval)
16303ab2 4775 goto out_free_new_mask;
e7834f8f 4776
e4099a5e
PZ
4777
4778 cpuset_cpus_allowed(p, cpus_allowed);
4779 cpumask_and(new_mask, in_mask, cpus_allowed);
4780
332ac17e
DF
4781 /*
4782 * Since bandwidth control happens on root_domain basis,
4783 * if admission test is enabled, we only admit -deadline
4784 * tasks allowed to run on all the CPUs in the task's
4785 * root_domain.
4786 */
4787#ifdef CONFIG_SMP
f1e3a093
KT
4788 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4789 rcu_read_lock();
4790 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4791 retval = -EBUSY;
f1e3a093 4792 rcu_read_unlock();
16303ab2 4793 goto out_free_new_mask;
332ac17e 4794 }
f1e3a093 4795 rcu_read_unlock();
332ac17e
DF
4796 }
4797#endif
49246274 4798again:
25834c73 4799 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4800
8707d8b8 4801 if (!retval) {
5a16f3d3
RR
4802 cpuset_cpus_allowed(p, cpus_allowed);
4803 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4804 /*
4805 * We must have raced with a concurrent cpuset
4806 * update. Just reset the cpus_allowed to the
4807 * cpuset's cpus_allowed
4808 */
5a16f3d3 4809 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4810 goto again;
4811 }
4812 }
16303ab2 4813out_free_new_mask:
5a16f3d3
RR
4814 free_cpumask_var(new_mask);
4815out_free_cpus_allowed:
4816 free_cpumask_var(cpus_allowed);
4817out_put_task:
1da177e4 4818 put_task_struct(p);
1da177e4
LT
4819 return retval;
4820}
4821
4822static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4823 struct cpumask *new_mask)
1da177e4 4824{
96f874e2
RR
4825 if (len < cpumask_size())
4826 cpumask_clear(new_mask);
4827 else if (len > cpumask_size())
4828 len = cpumask_size();
4829
1da177e4
LT
4830 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4831}
4832
4833/**
d1ccc66d 4834 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4835 * @pid: pid of the process
4836 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4837 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4838 *
4839 * Return: 0 on success. An error code otherwise.
1da177e4 4840 */
5add95d4
HC
4841SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4842 unsigned long __user *, user_mask_ptr)
1da177e4 4843{
5a16f3d3 4844 cpumask_var_t new_mask;
1da177e4
LT
4845 int retval;
4846
5a16f3d3
RR
4847 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4848 return -ENOMEM;
1da177e4 4849
5a16f3d3
RR
4850 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4851 if (retval == 0)
4852 retval = sched_setaffinity(pid, new_mask);
4853 free_cpumask_var(new_mask);
4854 return retval;
1da177e4
LT
4855}
4856
96f874e2 4857long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4858{
36c8b586 4859 struct task_struct *p;
31605683 4860 unsigned long flags;
1da177e4 4861 int retval;
1da177e4 4862
23f5d142 4863 rcu_read_lock();
1da177e4
LT
4864
4865 retval = -ESRCH;
4866 p = find_process_by_pid(pid);
4867 if (!p)
4868 goto out_unlock;
4869
e7834f8f
DQ
4870 retval = security_task_getscheduler(p);
4871 if (retval)
4872 goto out_unlock;
4873
013fdb80 4874 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4875 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4876 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4877
4878out_unlock:
23f5d142 4879 rcu_read_unlock();
1da177e4 4880
9531b62f 4881 return retval;
1da177e4
LT
4882}
4883
4884/**
d1ccc66d 4885 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4886 * @pid: pid of the process
4887 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4888 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4889 *
599b4840
ZW
4890 * Return: size of CPU mask copied to user_mask_ptr on success. An
4891 * error code otherwise.
1da177e4 4892 */
5add95d4
HC
4893SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4894 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4895{
4896 int ret;
f17c8607 4897 cpumask_var_t mask;
1da177e4 4898
84fba5ec 4899 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4900 return -EINVAL;
4901 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4902 return -EINVAL;
4903
f17c8607
RR
4904 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4905 return -ENOMEM;
1da177e4 4906
f17c8607
RR
4907 ret = sched_getaffinity(pid, mask);
4908 if (ret == 0) {
4de373a1 4909 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4910
4911 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4912 ret = -EFAULT;
4913 else
cd3d8031 4914 ret = retlen;
f17c8607
RR
4915 }
4916 free_cpumask_var(mask);
1da177e4 4917
f17c8607 4918 return ret;
1da177e4
LT
4919}
4920
4921/**
4922 * sys_sched_yield - yield the current processor to other threads.
4923 *
dd41f596
IM
4924 * This function yields the current CPU to other tasks. If there are no
4925 * other threads running on this CPU then this function will return.
e69f6186
YB
4926 *
4927 * Return: 0.
1da177e4 4928 */
7d4dd4f1 4929static void do_sched_yield(void)
1da177e4 4930{
8a8c69c3
PZ
4931 struct rq_flags rf;
4932 struct rq *rq;
4933
246b3b33 4934 rq = this_rq_lock_irq(&rf);
1da177e4 4935
ae92882e 4936 schedstat_inc(rq->yld_count);
4530d7ab 4937 current->sched_class->yield_task(rq);
1da177e4
LT
4938
4939 /*
4940 * Since we are going to call schedule() anyway, there's
4941 * no need to preempt or enable interrupts:
4942 */
8a8c69c3
PZ
4943 preempt_disable();
4944 rq_unlock(rq, &rf);
ba74c144 4945 sched_preempt_enable_no_resched();
1da177e4
LT
4946
4947 schedule();
7d4dd4f1 4948}
1da177e4 4949
7d4dd4f1
DB
4950SYSCALL_DEFINE0(sched_yield)
4951{
4952 do_sched_yield();
1da177e4
LT
4953 return 0;
4954}
4955
35a773a0 4956#ifndef CONFIG_PREEMPT
02b67cc3 4957int __sched _cond_resched(void)
1da177e4 4958{
fe32d3cd 4959 if (should_resched(0)) {
a18b5d01 4960 preempt_schedule_common();
1da177e4
LT
4961 return 1;
4962 }
f79c3ad6 4963 rcu_all_qs();
1da177e4
LT
4964 return 0;
4965}
02b67cc3 4966EXPORT_SYMBOL(_cond_resched);
35a773a0 4967#endif
1da177e4
LT
4968
4969/*
613afbf8 4970 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4971 * call schedule, and on return reacquire the lock.
4972 *
41a2d6cf 4973 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4974 * operations here to prevent schedule() from being called twice (once via
4975 * spin_unlock(), once by hand).
4976 */
613afbf8 4977int __cond_resched_lock(spinlock_t *lock)
1da177e4 4978{
fe32d3cd 4979 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4980 int ret = 0;
4981
f607c668
PZ
4982 lockdep_assert_held(lock);
4983
4a81e832 4984 if (spin_needbreak(lock) || resched) {
1da177e4 4985 spin_unlock(lock);
d86ee480 4986 if (resched)
a18b5d01 4987 preempt_schedule_common();
95c354fe
NP
4988 else
4989 cpu_relax();
6df3cecb 4990 ret = 1;
1da177e4 4991 spin_lock(lock);
1da177e4 4992 }
6df3cecb 4993 return ret;
1da177e4 4994}
613afbf8 4995EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4996
1da177e4
LT
4997/**
4998 * yield - yield the current processor to other threads.
4999 *
8e3fabfd
PZ
5000 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5001 *
5002 * The scheduler is at all times free to pick the calling task as the most
5003 * eligible task to run, if removing the yield() call from your code breaks
5004 * it, its already broken.
5005 *
5006 * Typical broken usage is:
5007 *
5008 * while (!event)
d1ccc66d 5009 * yield();
8e3fabfd
PZ
5010 *
5011 * where one assumes that yield() will let 'the other' process run that will
5012 * make event true. If the current task is a SCHED_FIFO task that will never
5013 * happen. Never use yield() as a progress guarantee!!
5014 *
5015 * If you want to use yield() to wait for something, use wait_event().
5016 * If you want to use yield() to be 'nice' for others, use cond_resched().
5017 * If you still want to use yield(), do not!
1da177e4
LT
5018 */
5019void __sched yield(void)
5020{
5021 set_current_state(TASK_RUNNING);
7d4dd4f1 5022 do_sched_yield();
1da177e4 5023}
1da177e4
LT
5024EXPORT_SYMBOL(yield);
5025
d95f4122
MG
5026/**
5027 * yield_to - yield the current processor to another thread in
5028 * your thread group, or accelerate that thread toward the
5029 * processor it's on.
16addf95
RD
5030 * @p: target task
5031 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5032 *
5033 * It's the caller's job to ensure that the target task struct
5034 * can't go away on us before we can do any checks.
5035 *
e69f6186 5036 * Return:
7b270f60
PZ
5037 * true (>0) if we indeed boosted the target task.
5038 * false (0) if we failed to boost the target.
5039 * -ESRCH if there's no task to yield to.
d95f4122 5040 */
fa93384f 5041int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5042{
5043 struct task_struct *curr = current;
5044 struct rq *rq, *p_rq;
5045 unsigned long flags;
c3c18640 5046 int yielded = 0;
d95f4122
MG
5047
5048 local_irq_save(flags);
5049 rq = this_rq();
5050
5051again:
5052 p_rq = task_rq(p);
7b270f60
PZ
5053 /*
5054 * If we're the only runnable task on the rq and target rq also
5055 * has only one task, there's absolutely no point in yielding.
5056 */
5057 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5058 yielded = -ESRCH;
5059 goto out_irq;
5060 }
5061
d95f4122 5062 double_rq_lock(rq, p_rq);
39e24d8f 5063 if (task_rq(p) != p_rq) {
d95f4122
MG
5064 double_rq_unlock(rq, p_rq);
5065 goto again;
5066 }
5067
5068 if (!curr->sched_class->yield_to_task)
7b270f60 5069 goto out_unlock;
d95f4122
MG
5070
5071 if (curr->sched_class != p->sched_class)
7b270f60 5072 goto out_unlock;
d95f4122
MG
5073
5074 if (task_running(p_rq, p) || p->state)
7b270f60 5075 goto out_unlock;
d95f4122
MG
5076
5077 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5078 if (yielded) {
ae92882e 5079 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5080 /*
5081 * Make p's CPU reschedule; pick_next_entity takes care of
5082 * fairness.
5083 */
5084 if (preempt && rq != p_rq)
8875125e 5085 resched_curr(p_rq);
6d1cafd8 5086 }
d95f4122 5087
7b270f60 5088out_unlock:
d95f4122 5089 double_rq_unlock(rq, p_rq);
7b270f60 5090out_irq:
d95f4122
MG
5091 local_irq_restore(flags);
5092
7b270f60 5093 if (yielded > 0)
d95f4122
MG
5094 schedule();
5095
5096 return yielded;
5097}
5098EXPORT_SYMBOL_GPL(yield_to);
5099
10ab5643
TH
5100int io_schedule_prepare(void)
5101{
5102 int old_iowait = current->in_iowait;
5103
5104 current->in_iowait = 1;
5105 blk_schedule_flush_plug(current);
5106
5107 return old_iowait;
5108}
5109
5110void io_schedule_finish(int token)
5111{
5112 current->in_iowait = token;
5113}
5114
1da177e4 5115/*
41a2d6cf 5116 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5117 * that process accounting knows that this is a task in IO wait state.
1da177e4 5118 */
1da177e4
LT
5119long __sched io_schedule_timeout(long timeout)
5120{
10ab5643 5121 int token;
1da177e4
LT
5122 long ret;
5123
10ab5643 5124 token = io_schedule_prepare();
1da177e4 5125 ret = schedule_timeout(timeout);
10ab5643 5126 io_schedule_finish(token);
9cff8ade 5127
1da177e4
LT
5128 return ret;
5129}
9cff8ade 5130EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5131
10ab5643
TH
5132void io_schedule(void)
5133{
5134 int token;
5135
5136 token = io_schedule_prepare();
5137 schedule();
5138 io_schedule_finish(token);
5139}
5140EXPORT_SYMBOL(io_schedule);
5141
1da177e4
LT
5142/**
5143 * sys_sched_get_priority_max - return maximum RT priority.
5144 * @policy: scheduling class.
5145 *
e69f6186
YB
5146 * Return: On success, this syscall returns the maximum
5147 * rt_priority that can be used by a given scheduling class.
5148 * On failure, a negative error code is returned.
1da177e4 5149 */
5add95d4 5150SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5151{
5152 int ret = -EINVAL;
5153
5154 switch (policy) {
5155 case SCHED_FIFO:
5156 case SCHED_RR:
5157 ret = MAX_USER_RT_PRIO-1;
5158 break;
aab03e05 5159 case SCHED_DEADLINE:
1da177e4 5160 case SCHED_NORMAL:
b0a9499c 5161 case SCHED_BATCH:
dd41f596 5162 case SCHED_IDLE:
1da177e4
LT
5163 ret = 0;
5164 break;
5165 }
5166 return ret;
5167}
5168
5169/**
5170 * sys_sched_get_priority_min - return minimum RT priority.
5171 * @policy: scheduling class.
5172 *
e69f6186
YB
5173 * Return: On success, this syscall returns the minimum
5174 * rt_priority that can be used by a given scheduling class.
5175 * On failure, a negative error code is returned.
1da177e4 5176 */
5add95d4 5177SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5178{
5179 int ret = -EINVAL;
5180
5181 switch (policy) {
5182 case SCHED_FIFO:
5183 case SCHED_RR:
5184 ret = 1;
5185 break;
aab03e05 5186 case SCHED_DEADLINE:
1da177e4 5187 case SCHED_NORMAL:
b0a9499c 5188 case SCHED_BATCH:
dd41f596 5189 case SCHED_IDLE:
1da177e4
LT
5190 ret = 0;
5191 }
5192 return ret;
5193}
5194
abca5fc5 5195static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5196{
36c8b586 5197 struct task_struct *p;
a4ec24b4 5198 unsigned int time_slice;
eb580751 5199 struct rq_flags rf;
dba091b9 5200 struct rq *rq;
3a5c359a 5201 int retval;
1da177e4
LT
5202
5203 if (pid < 0)
3a5c359a 5204 return -EINVAL;
1da177e4
LT
5205
5206 retval = -ESRCH;
1a551ae7 5207 rcu_read_lock();
1da177e4
LT
5208 p = find_process_by_pid(pid);
5209 if (!p)
5210 goto out_unlock;
5211
5212 retval = security_task_getscheduler(p);
5213 if (retval)
5214 goto out_unlock;
5215
eb580751 5216 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5217 time_slice = 0;
5218 if (p->sched_class->get_rr_interval)
5219 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5220 task_rq_unlock(rq, p, &rf);
a4ec24b4 5221
1a551ae7 5222 rcu_read_unlock();
abca5fc5
AV
5223 jiffies_to_timespec64(time_slice, t);
5224 return 0;
3a5c359a 5225
1da177e4 5226out_unlock:
1a551ae7 5227 rcu_read_unlock();
1da177e4
LT
5228 return retval;
5229}
5230
2064a5ab
RD
5231/**
5232 * sys_sched_rr_get_interval - return the default timeslice of a process.
5233 * @pid: pid of the process.
5234 * @interval: userspace pointer to the timeslice value.
5235 *
5236 * this syscall writes the default timeslice value of a given process
5237 * into the user-space timespec buffer. A value of '0' means infinity.
5238 *
5239 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5240 * an error code.
5241 */
abca5fc5 5242SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5243 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5244{
5245 struct timespec64 t;
5246 int retval = sched_rr_get_interval(pid, &t);
5247
5248 if (retval == 0)
5249 retval = put_timespec64(&t, interval);
5250
5251 return retval;
5252}
5253
474b9c77 5254#ifdef CONFIG_COMPAT_32BIT_TIME
abca5fc5
AV
5255COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5256 compat_pid_t, pid,
9afc5eee 5257 struct old_timespec32 __user *, interval)
abca5fc5
AV
5258{
5259 struct timespec64 t;
5260 int retval = sched_rr_get_interval(pid, &t);
5261
5262 if (retval == 0)
9afc5eee 5263 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5264 return retval;
5265}
5266#endif
5267
82a1fcb9 5268void sched_show_task(struct task_struct *p)
1da177e4 5269{
1da177e4 5270 unsigned long free = 0;
4e79752c 5271 int ppid;
c930b2c0 5272
38200502
TH
5273 if (!try_get_task_stack(p))
5274 return;
20435d84
XX
5275
5276 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5277
5278 if (p->state == TASK_RUNNING)
3df0fc5b 5279 printk(KERN_CONT " running task ");
1da177e4 5280#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5281 free = stack_not_used(p);
1da177e4 5282#endif
a90e984c 5283 ppid = 0;
4e79752c 5284 rcu_read_lock();
a90e984c
ON
5285 if (pid_alive(p))
5286 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5287 rcu_read_unlock();
3df0fc5b 5288 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5289 task_pid_nr(p), ppid,
aa47b7e0 5290 (unsigned long)task_thread_info(p)->flags);
1da177e4 5291
3d1cb205 5292 print_worker_info(KERN_INFO, p);
5fb5e6de 5293 show_stack(p, NULL);
38200502 5294 put_task_stack(p);
1da177e4 5295}
0032f4e8 5296EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5297
5d68cc95
PZ
5298static inline bool
5299state_filter_match(unsigned long state_filter, struct task_struct *p)
5300{
5301 /* no filter, everything matches */
5302 if (!state_filter)
5303 return true;
5304
5305 /* filter, but doesn't match */
5306 if (!(p->state & state_filter))
5307 return false;
5308
5309 /*
5310 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5311 * TASK_KILLABLE).
5312 */
5313 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5314 return false;
5315
5316 return true;
5317}
5318
5319
e59e2ae2 5320void show_state_filter(unsigned long state_filter)
1da177e4 5321{
36c8b586 5322 struct task_struct *g, *p;
1da177e4 5323
4bd77321 5324#if BITS_PER_LONG == 32
3df0fc5b
PZ
5325 printk(KERN_INFO
5326 " task PC stack pid father\n");
1da177e4 5327#else
3df0fc5b
PZ
5328 printk(KERN_INFO
5329 " task PC stack pid father\n");
1da177e4 5330#endif
510f5acc 5331 rcu_read_lock();
5d07f420 5332 for_each_process_thread(g, p) {
1da177e4
LT
5333 /*
5334 * reset the NMI-timeout, listing all files on a slow
25985edc 5335 * console might take a lot of time:
57675cb9
AR
5336 * Also, reset softlockup watchdogs on all CPUs, because
5337 * another CPU might be blocked waiting for us to process
5338 * an IPI.
1da177e4
LT
5339 */
5340 touch_nmi_watchdog();
57675cb9 5341 touch_all_softlockup_watchdogs();
5d68cc95 5342 if (state_filter_match(state_filter, p))
82a1fcb9 5343 sched_show_task(p);
5d07f420 5344 }
1da177e4 5345
dd41f596 5346#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5347 if (!state_filter)
5348 sysrq_sched_debug_show();
dd41f596 5349#endif
510f5acc 5350 rcu_read_unlock();
e59e2ae2
IM
5351 /*
5352 * Only show locks if all tasks are dumped:
5353 */
93335a21 5354 if (!state_filter)
e59e2ae2 5355 debug_show_all_locks();
1da177e4
LT
5356}
5357
f340c0d1
IM
5358/**
5359 * init_idle - set up an idle thread for a given CPU
5360 * @idle: task in question
d1ccc66d 5361 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5362 *
5363 * NOTE: this function does not set the idle thread's NEED_RESCHED
5364 * flag, to make booting more robust.
5365 */
0db0628d 5366void init_idle(struct task_struct *idle, int cpu)
1da177e4 5367{
70b97a7f 5368 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5369 unsigned long flags;
5370
25834c73
PZ
5371 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5372 raw_spin_lock(&rq->lock);
5cbd54ef 5373
5e1576ed 5374 __sched_fork(0, idle);
06b83b5f 5375 idle->state = TASK_RUNNING;
dd41f596 5376 idle->se.exec_start = sched_clock();
c1de45ca 5377 idle->flags |= PF_IDLE;
dd41f596 5378
e1b77c92
MR
5379 kasan_unpoison_task_stack(idle);
5380
de9b8f5d
PZ
5381#ifdef CONFIG_SMP
5382 /*
5383 * Its possible that init_idle() gets called multiple times on a task,
5384 * in that case do_set_cpus_allowed() will not do the right thing.
5385 *
5386 * And since this is boot we can forgo the serialization.
5387 */
5388 set_cpus_allowed_common(idle, cpumask_of(cpu));
5389#endif
6506cf6c
PZ
5390 /*
5391 * We're having a chicken and egg problem, even though we are
d1ccc66d 5392 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5393 * lockdep check in task_group() will fail.
5394 *
5395 * Similar case to sched_fork(). / Alternatively we could
5396 * use task_rq_lock() here and obtain the other rq->lock.
5397 *
5398 * Silence PROVE_RCU
5399 */
5400 rcu_read_lock();
dd41f596 5401 __set_task_cpu(idle, cpu);
6506cf6c 5402 rcu_read_unlock();
1da177e4 5403
1da177e4 5404 rq->curr = rq->idle = idle;
da0c1e65 5405 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5406#ifdef CONFIG_SMP
3ca7a440 5407 idle->on_cpu = 1;
4866cde0 5408#endif
25834c73
PZ
5409 raw_spin_unlock(&rq->lock);
5410 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5411
5412 /* Set the preempt count _outside_ the spinlocks! */
01028747 5413 init_idle_preempt_count(idle, cpu);
55cd5340 5414
dd41f596
IM
5415 /*
5416 * The idle tasks have their own, simple scheduling class:
5417 */
5418 idle->sched_class = &idle_sched_class;
868baf07 5419 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5420 vtime_init_idle(idle, cpu);
de9b8f5d 5421#ifdef CONFIG_SMP
f1c6f1a7
CE
5422 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5423#endif
19978ca6
IM
5424}
5425
e1d4eeec
NP
5426#ifdef CONFIG_SMP
5427
f82f8042
JL
5428int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5429 const struct cpumask *trial)
5430{
06a76fe0 5431 int ret = 1;
f82f8042 5432
bb2bc55a
MG
5433 if (!cpumask_weight(cur))
5434 return ret;
5435
06a76fe0 5436 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5437
5438 return ret;
5439}
5440
7f51412a
JL
5441int task_can_attach(struct task_struct *p,
5442 const struct cpumask *cs_cpus_allowed)
5443{
5444 int ret = 0;
5445
5446 /*
5447 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5448 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5449 * affinity and isolating such threads by their set of
5450 * allowed nodes is unnecessary. Thus, cpusets are not
5451 * applicable for such threads. This prevents checking for
5452 * success of set_cpus_allowed_ptr() on all attached tasks
5453 * before cpus_allowed may be changed.
5454 */
5455 if (p->flags & PF_NO_SETAFFINITY) {
5456 ret = -EINVAL;
5457 goto out;
5458 }
5459
7f51412a 5460 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5461 cs_cpus_allowed))
5462 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5463
7f51412a
JL
5464out:
5465 return ret;
5466}
5467
f2cb1360 5468bool sched_smp_initialized __read_mostly;
e26fbffd 5469
e6628d5b
MG
5470#ifdef CONFIG_NUMA_BALANCING
5471/* Migrate current task p to target_cpu */
5472int migrate_task_to(struct task_struct *p, int target_cpu)
5473{
5474 struct migration_arg arg = { p, target_cpu };
5475 int curr_cpu = task_cpu(p);
5476
5477 if (curr_cpu == target_cpu)
5478 return 0;
5479
0c98d344 5480 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5481 return -EINVAL;
5482
5483 /* TODO: This is not properly updating schedstats */
5484
286549dc 5485 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5486 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5487}
0ec8aa00
PZ
5488
5489/*
5490 * Requeue a task on a given node and accurately track the number of NUMA
5491 * tasks on the runqueues
5492 */
5493void sched_setnuma(struct task_struct *p, int nid)
5494{
da0c1e65 5495 bool queued, running;
eb580751
PZ
5496 struct rq_flags rf;
5497 struct rq *rq;
0ec8aa00 5498
eb580751 5499 rq = task_rq_lock(p, &rf);
da0c1e65 5500 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5501 running = task_current(rq, p);
5502
da0c1e65 5503 if (queued)
1de64443 5504 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5505 if (running)
f3cd1c4e 5506 put_prev_task(rq, p);
0ec8aa00
PZ
5507
5508 p->numa_preferred_nid = nid;
0ec8aa00 5509
da0c1e65 5510 if (queued)
7134b3e9 5511 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5512 if (running)
b2bf6c31 5513 set_curr_task(rq, p);
eb580751 5514 task_rq_unlock(rq, p, &rf);
0ec8aa00 5515}
5cc389bc 5516#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5517
1da177e4 5518#ifdef CONFIG_HOTPLUG_CPU
054b9108 5519/*
d1ccc66d 5520 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5521 * offline.
054b9108 5522 */
48c5ccae 5523void idle_task_exit(void)
1da177e4 5524{
48c5ccae 5525 struct mm_struct *mm = current->active_mm;
e76bd8d9 5526
48c5ccae 5527 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5528
a53efe5f 5529 if (mm != &init_mm) {
252d2a41 5530 switch_mm(mm, &init_mm, current);
3eda69c9 5531 current->active_mm = &init_mm;
a53efe5f
MS
5532 finish_arch_post_lock_switch();
5533 }
48c5ccae 5534 mmdrop(mm);
1da177e4
LT
5535}
5536
5537/*
5d180232
PZ
5538 * Since this CPU is going 'away' for a while, fold any nr_active delta
5539 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5540 * nr_active count is stable. We need to take the teardown thread which
5541 * is calling this into account, so we hand in adjust = 1 to the load
5542 * calculation.
5d180232
PZ
5543 *
5544 * Also see the comment "Global load-average calculations".
1da177e4 5545 */
5d180232 5546static void calc_load_migrate(struct rq *rq)
1da177e4 5547{
d60585c5 5548 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5549 if (delta)
5550 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5551}
5552
3f1d2a31
PZ
5553static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5554{
5555}
5556
5557static const struct sched_class fake_sched_class = {
5558 .put_prev_task = put_prev_task_fake,
5559};
5560
5561static struct task_struct fake_task = {
5562 /*
5563 * Avoid pull_{rt,dl}_task()
5564 */
5565 .prio = MAX_PRIO + 1,
5566 .sched_class = &fake_sched_class,
5567};
5568
48f24c4d 5569/*
48c5ccae
PZ
5570 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5571 * try_to_wake_up()->select_task_rq().
5572 *
5573 * Called with rq->lock held even though we'er in stop_machine() and
5574 * there's no concurrency possible, we hold the required locks anyway
5575 * because of lock validation efforts.
1da177e4 5576 */
8a8c69c3 5577static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5578{
5e16bbc2 5579 struct rq *rq = dead_rq;
48c5ccae 5580 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5581 struct rq_flags orf = *rf;
48c5ccae 5582 int dest_cpu;
1da177e4
LT
5583
5584 /*
48c5ccae
PZ
5585 * Fudge the rq selection such that the below task selection loop
5586 * doesn't get stuck on the currently eligible stop task.
5587 *
5588 * We're currently inside stop_machine() and the rq is either stuck
5589 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5590 * either way we should never end up calling schedule() until we're
5591 * done here.
1da177e4 5592 */
48c5ccae 5593 rq->stop = NULL;
48f24c4d 5594
77bd3970
FW
5595 /*
5596 * put_prev_task() and pick_next_task() sched
5597 * class method both need to have an up-to-date
5598 * value of rq->clock[_task]
5599 */
5600 update_rq_clock(rq);
5601
5e16bbc2 5602 for (;;) {
48c5ccae
PZ
5603 /*
5604 * There's this thread running, bail when that's the only
d1ccc66d 5605 * remaining thread:
48c5ccae
PZ
5606 */
5607 if (rq->nr_running == 1)
dd41f596 5608 break;
48c5ccae 5609
cbce1a68 5610 /*
d1ccc66d 5611 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5612 */
8a8c69c3 5613 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5614 BUG_ON(!next);
5b713a3d 5615 put_prev_task(rq, next);
e692ab53 5616
5473e0cc
WL
5617 /*
5618 * Rules for changing task_struct::cpus_allowed are holding
5619 * both pi_lock and rq->lock, such that holding either
5620 * stabilizes the mask.
5621 *
5622 * Drop rq->lock is not quite as disastrous as it usually is
5623 * because !cpu_active at this point, which means load-balance
5624 * will not interfere. Also, stop-machine.
5625 */
8a8c69c3 5626 rq_unlock(rq, rf);
5473e0cc 5627 raw_spin_lock(&next->pi_lock);
8a8c69c3 5628 rq_relock(rq, rf);
5473e0cc
WL
5629
5630 /*
5631 * Since we're inside stop-machine, _nothing_ should have
5632 * changed the task, WARN if weird stuff happened, because in
5633 * that case the above rq->lock drop is a fail too.
5634 */
5635 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5636 raw_spin_unlock(&next->pi_lock);
5637 continue;
5638 }
5639
48c5ccae 5640 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5641 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5642 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5643 if (rq != dead_rq) {
8a8c69c3 5644 rq_unlock(rq, rf);
5e16bbc2 5645 rq = dead_rq;
8a8c69c3
PZ
5646 *rf = orf;
5647 rq_relock(rq, rf);
5e16bbc2 5648 }
5473e0cc 5649 raw_spin_unlock(&next->pi_lock);
1da177e4 5650 }
dce48a84 5651
48c5ccae 5652 rq->stop = stop;
dce48a84 5653}
1da177e4
LT
5654#endif /* CONFIG_HOTPLUG_CPU */
5655
f2cb1360 5656void set_rq_online(struct rq *rq)
1f11eb6a
GH
5657{
5658 if (!rq->online) {
5659 const struct sched_class *class;
5660
c6c4927b 5661 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5662 rq->online = 1;
5663
5664 for_each_class(class) {
5665 if (class->rq_online)
5666 class->rq_online(rq);
5667 }
5668 }
5669}
5670
f2cb1360 5671void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5672{
5673 if (rq->online) {
5674 const struct sched_class *class;
5675
5676 for_each_class(class) {
5677 if (class->rq_offline)
5678 class->rq_offline(rq);
5679 }
5680
c6c4927b 5681 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5682 rq->online = 0;
5683 }
5684}
5685
d1ccc66d
IM
5686/*
5687 * used to mark begin/end of suspend/resume:
5688 */
5689static int num_cpus_frozen;
d35be8ba 5690
1da177e4 5691/*
3a101d05
TH
5692 * Update cpusets according to cpu_active mask. If cpusets are
5693 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5694 * around partition_sched_domains().
d35be8ba
SB
5695 *
5696 * If we come here as part of a suspend/resume, don't touch cpusets because we
5697 * want to restore it back to its original state upon resume anyway.
1da177e4 5698 */
40190a78 5699static void cpuset_cpu_active(void)
e761b772 5700{
40190a78 5701 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5702 /*
5703 * num_cpus_frozen tracks how many CPUs are involved in suspend
5704 * resume sequence. As long as this is not the last online
5705 * operation in the resume sequence, just build a single sched
5706 * domain, ignoring cpusets.
5707 */
50e76632
PZ
5708 partition_sched_domains(1, NULL, NULL);
5709 if (--num_cpus_frozen)
135fb3e1 5710 return;
d35be8ba
SB
5711 /*
5712 * This is the last CPU online operation. So fall through and
5713 * restore the original sched domains by considering the
5714 * cpuset configurations.
5715 */
50e76632 5716 cpuset_force_rebuild();
3a101d05 5717 }
30e03acd 5718 cpuset_update_active_cpus();
3a101d05 5719}
e761b772 5720
40190a78 5721static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5722{
40190a78 5723 if (!cpuhp_tasks_frozen) {
06a76fe0 5724 if (dl_cpu_busy(cpu))
135fb3e1 5725 return -EBUSY;
30e03acd 5726 cpuset_update_active_cpus();
135fb3e1 5727 } else {
d35be8ba
SB
5728 num_cpus_frozen++;
5729 partition_sched_domains(1, NULL, NULL);
e761b772 5730 }
135fb3e1 5731 return 0;
e761b772 5732}
e761b772 5733
40190a78 5734int sched_cpu_activate(unsigned int cpu)
135fb3e1 5735{
7d976699 5736 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5737 struct rq_flags rf;
7d976699 5738
ba2591a5
PZ
5739#ifdef CONFIG_SCHED_SMT
5740 /*
c5511d03 5741 * When going up, increment the number of cores with SMT present.
ba2591a5 5742 */
c5511d03
PZI
5743 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5744 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 5745#endif
40190a78 5746 set_cpu_active(cpu, true);
135fb3e1 5747
40190a78 5748 if (sched_smp_initialized) {
135fb3e1 5749 sched_domains_numa_masks_set(cpu);
40190a78 5750 cpuset_cpu_active();
e761b772 5751 }
7d976699
TG
5752
5753 /*
5754 * Put the rq online, if not already. This happens:
5755 *
5756 * 1) In the early boot process, because we build the real domains
d1ccc66d 5757 * after all CPUs have been brought up.
7d976699
TG
5758 *
5759 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5760 * domains.
5761 */
8a8c69c3 5762 rq_lock_irqsave(rq, &rf);
7d976699
TG
5763 if (rq->rd) {
5764 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5765 set_rq_online(rq);
5766 }
8a8c69c3 5767 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5768
5769 update_max_interval();
5770
40190a78 5771 return 0;
135fb3e1
TG
5772}
5773
40190a78 5774int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5775{
135fb3e1
TG
5776 int ret;
5777
40190a78 5778 set_cpu_active(cpu, false);
b2454caa
PZ
5779 /*
5780 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5781 * users of this state to go away such that all new such users will
5782 * observe it.
5783 *
b2454caa
PZ
5784 * Do sync before park smpboot threads to take care the rcu boost case.
5785 */
309ba859 5786 synchronize_rcu();
40190a78 5787
c5511d03
PZI
5788#ifdef CONFIG_SCHED_SMT
5789 /*
5790 * When going down, decrement the number of cores with SMT present.
5791 */
5792 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5793 static_branch_dec_cpuslocked(&sched_smt_present);
5794#endif
5795
40190a78
TG
5796 if (!sched_smp_initialized)
5797 return 0;
5798
5799 ret = cpuset_cpu_inactive(cpu);
5800 if (ret) {
5801 set_cpu_active(cpu, true);
5802 return ret;
135fb3e1 5803 }
40190a78
TG
5804 sched_domains_numa_masks_clear(cpu);
5805 return 0;
135fb3e1
TG
5806}
5807
94baf7a5
TG
5808static void sched_rq_cpu_starting(unsigned int cpu)
5809{
5810 struct rq *rq = cpu_rq(cpu);
5811
5812 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5813 update_max_interval();
5814}
5815
135fb3e1
TG
5816int sched_cpu_starting(unsigned int cpu)
5817{
94baf7a5 5818 sched_rq_cpu_starting(cpu);
d84b3131 5819 sched_tick_start(cpu);
135fb3e1 5820 return 0;
e761b772 5821}
e761b772 5822
f2785ddb
TG
5823#ifdef CONFIG_HOTPLUG_CPU
5824int sched_cpu_dying(unsigned int cpu)
5825{
5826 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5827 struct rq_flags rf;
f2785ddb
TG
5828
5829 /* Handle pending wakeups and then migrate everything off */
5830 sched_ttwu_pending();
d84b3131 5831 sched_tick_stop(cpu);
8a8c69c3
PZ
5832
5833 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5834 if (rq->rd) {
5835 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5836 set_rq_offline(rq);
5837 }
8a8c69c3 5838 migrate_tasks(rq, &rf);
f2785ddb 5839 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5840 rq_unlock_irqrestore(rq, &rf);
5841
f2785ddb
TG
5842 calc_load_migrate(rq);
5843 update_max_interval();
00357f5e 5844 nohz_balance_exit_idle(rq);
e5ef27d0 5845 hrtick_clear(rq);
f2785ddb
TG
5846 return 0;
5847}
5848#endif
5849
1da177e4
LT
5850void __init sched_init_smp(void)
5851{
cb83b629
PZ
5852 sched_init_numa();
5853
6acce3ef
PZ
5854 /*
5855 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5856 * CPU masks are stable and all blatant races in the below code cannot
40fa3780
VS
5857 * happen. The hotplug lock is nevertheless taken to satisfy lockdep,
5858 * but there won't be any contention on it.
6acce3ef 5859 */
40fa3780 5860 cpus_read_lock();
712555ee 5861 mutex_lock(&sched_domains_mutex);
8d5dc512 5862 sched_init_domains(cpu_active_mask);
712555ee 5863 mutex_unlock(&sched_domains_mutex);
40fa3780 5864 cpus_read_unlock();
e761b772 5865
5c1e1767 5866 /* Move init over to a non-isolated CPU */
edb93821 5867 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5868 BUG();
19978ca6 5869 sched_init_granularity();
4212823f 5870
0e3900e6 5871 init_sched_rt_class();
1baca4ce 5872 init_sched_dl_class();
1b568f0a 5873
e26fbffd 5874 sched_smp_initialized = true;
1da177e4 5875}
e26fbffd
TG
5876
5877static int __init migration_init(void)
5878{
94baf7a5 5879 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5880 return 0;
1da177e4 5881}
e26fbffd
TG
5882early_initcall(migration_init);
5883
1da177e4
LT
5884#else
5885void __init sched_init_smp(void)
5886{
19978ca6 5887 sched_init_granularity();
1da177e4
LT
5888}
5889#endif /* CONFIG_SMP */
5890
5891int in_sched_functions(unsigned long addr)
5892{
1da177e4
LT
5893 return in_lock_functions(addr) ||
5894 (addr >= (unsigned long)__sched_text_start
5895 && addr < (unsigned long)__sched_text_end);
5896}
5897
029632fb 5898#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5899/*
5900 * Default task group.
5901 * Every task in system belongs to this group at bootup.
5902 */
029632fb 5903struct task_group root_task_group;
35cf4e50 5904LIST_HEAD(task_groups);
b0367629
WL
5905
5906/* Cacheline aligned slab cache for task_group */
5907static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5908#endif
6f505b16 5909
e6252c3e 5910DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5911DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5912
1da177e4
LT
5913void __init sched_init(void)
5914{
dd41f596 5915 int i, j;
434d53b0
MT
5916 unsigned long alloc_size = 0, ptr;
5917
5822a454 5918 wait_bit_init();
9dcb8b68 5919
434d53b0
MT
5920#ifdef CONFIG_FAIR_GROUP_SCHED
5921 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5922#endif
5923#ifdef CONFIG_RT_GROUP_SCHED
5924 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5925#endif
434d53b0 5926 if (alloc_size) {
36b7b6d4 5927 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5928
5929#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5930 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5931 ptr += nr_cpu_ids * sizeof(void **);
5932
07e06b01 5933 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5934 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5935
6d6bc0ad 5936#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5937#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5938 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5939 ptr += nr_cpu_ids * sizeof(void **);
5940
07e06b01 5941 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5942 ptr += nr_cpu_ids * sizeof(void **);
5943
6d6bc0ad 5944#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5945 }
df7c8e84 5946#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5947 for_each_possible_cpu(i) {
5948 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5949 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5950 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5951 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5952 }
b74e6278 5953#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5954
d1ccc66d
IM
5955 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5956 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5957
57d885fe
GH
5958#ifdef CONFIG_SMP
5959 init_defrootdomain();
5960#endif
5961
d0b27fa7 5962#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5963 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 5964 global_rt_period(), global_rt_runtime());
6d6bc0ad 5965#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 5966
7c941438 5967#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
5968 task_group_cache = KMEM_CACHE(task_group, 0);
5969
07e06b01
YZ
5970 list_add(&root_task_group.list, &task_groups);
5971 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 5972 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 5973 autogroup_init(&init_task);
7c941438 5974#endif /* CONFIG_CGROUP_SCHED */
6f505b16 5975
0a945022 5976 for_each_possible_cpu(i) {
70b97a7f 5977 struct rq *rq;
1da177e4
LT
5978
5979 rq = cpu_rq(i);
05fa785c 5980 raw_spin_lock_init(&rq->lock);
7897986b 5981 rq->nr_running = 0;
dce48a84
TG
5982 rq->calc_load_active = 0;
5983 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 5984 init_cfs_rq(&rq->cfs);
07c54f7a
AV
5985 init_rt_rq(&rq->rt);
5986 init_dl_rq(&rq->dl);
dd41f596 5987#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 5988 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 5989 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 5990 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 5991 /*
d1ccc66d 5992 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
5993 *
5994 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
5995 * gets 100% of the CPU resources in the system. This overall
5996 * system CPU resource is divided among the tasks of
07e06b01 5997 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
5998 * based on each entity's (task or task-group's) weight
5999 * (se->load.weight).
6000 *
07e06b01 6001 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6002 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6003 * then A0's share of the CPU resource is:
354d60c2 6004 *
0d905bca 6005 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6006 *
07e06b01
YZ
6007 * We achieve this by letting root_task_group's tasks sit
6008 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6009 */
ab84d31e 6010 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6011 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6012#endif /* CONFIG_FAIR_GROUP_SCHED */
6013
6014 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6015#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6016 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6017#endif
1da177e4 6018
dd41f596
IM
6019 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6020 rq->cpu_load[j] = 0;
fdf3e95d 6021
1da177e4 6022#ifdef CONFIG_SMP
41c7ce9a 6023 rq->sd = NULL;
57d885fe 6024 rq->rd = NULL;
ca6d75e6 6025 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6026 rq->balance_callback = NULL;
1da177e4 6027 rq->active_balance = 0;
dd41f596 6028 rq->next_balance = jiffies;
1da177e4 6029 rq->push_cpu = 0;
0a2966b4 6030 rq->cpu = i;
1f11eb6a 6031 rq->online = 0;
eae0c9df
MG
6032 rq->idle_stamp = 0;
6033 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6034 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6035
6036 INIT_LIST_HEAD(&rq->cfs_tasks);
6037
dc938520 6038 rq_attach_root(rq, &def_root_domain);
3451d024 6039#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6040 rq->last_load_update_tick = jiffies;
e022e0d3 6041 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6042 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6043#endif
9fd81dd5 6044#endif /* CONFIG_SMP */
77a021be 6045 hrtick_rq_init(rq);
1da177e4 6046 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6047 }
6048
9059393e 6049 set_load_weight(&init_task, false);
b50f60ce 6050
1da177e4
LT
6051 /*
6052 * The boot idle thread does lazy MMU switching as well:
6053 */
f1f10076 6054 mmgrab(&init_mm);
1da177e4
LT
6055 enter_lazy_tlb(&init_mm, current);
6056
6057 /*
6058 * Make us the idle thread. Technically, schedule() should not be
6059 * called from this thread, however somewhere below it might be,
6060 * but because we are the idle thread, we just pick up running again
6061 * when this runqueue becomes "idle".
6062 */
6063 init_idle(current, smp_processor_id());
dce48a84
TG
6064
6065 calc_load_update = jiffies + LOAD_FREQ;
6066
bf4d83f6 6067#ifdef CONFIG_SMP
29d5e047 6068 idle_thread_set_boot_cpu();
029632fb
PZ
6069#endif
6070 init_sched_fair_class();
6a7b3dc3 6071
4698f88c
JP
6072 init_schedstats();
6073
eb414681
JW
6074 psi_init();
6075
6892b75e 6076 scheduler_running = 1;
1da177e4
LT
6077}
6078
d902db1e 6079#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6080static inline int preempt_count_equals(int preempt_offset)
6081{
da7142e2 6082 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6083
4ba8216c 6084 return (nested == preempt_offset);
e4aafea2
FW
6085}
6086
d894837f 6087void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6088{
8eb23b9f
PZ
6089 /*
6090 * Blocking primitives will set (and therefore destroy) current->state,
6091 * since we will exit with TASK_RUNNING make sure we enter with it,
6092 * otherwise we will destroy state.
6093 */
00845eb9 6094 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6095 "do not call blocking ops when !TASK_RUNNING; "
6096 "state=%lx set at [<%p>] %pS\n",
6097 current->state,
6098 (void *)current->task_state_change,
00845eb9 6099 (void *)current->task_state_change);
8eb23b9f 6100
3427445a
PZ
6101 ___might_sleep(file, line, preempt_offset);
6102}
6103EXPORT_SYMBOL(__might_sleep);
6104
6105void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6106{
d1ccc66d
IM
6107 /* Ratelimiting timestamp: */
6108 static unsigned long prev_jiffy;
6109
d1c6d149 6110 unsigned long preempt_disable_ip;
1da177e4 6111
d1ccc66d
IM
6112 /* WARN_ON_ONCE() by default, no rate limit required: */
6113 rcu_sleep_check();
6114
db273be2
TG
6115 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6116 !is_idle_task(current)) ||
1c3c5eab
TG
6117 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6118 oops_in_progress)
aef745fc 6119 return;
1c3c5eab 6120
aef745fc
IM
6121 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6122 return;
6123 prev_jiffy = jiffies;
6124
d1ccc66d 6125 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6126 preempt_disable_ip = get_preempt_disable_ip(current);
6127
3df0fc5b
PZ
6128 printk(KERN_ERR
6129 "BUG: sleeping function called from invalid context at %s:%d\n",
6130 file, line);
6131 printk(KERN_ERR
6132 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6133 in_atomic(), irqs_disabled(),
6134 current->pid, current->comm);
aef745fc 6135
a8b686b3
ES
6136 if (task_stack_end_corrupted(current))
6137 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6138
aef745fc
IM
6139 debug_show_held_locks(current);
6140 if (irqs_disabled())
6141 print_irqtrace_events(current);
d1c6d149
VN
6142 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6143 && !preempt_count_equals(preempt_offset)) {
8f47b187 6144 pr_err("Preemption disabled at:");
d1c6d149 6145 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6146 pr_cont("\n");
6147 }
aef745fc 6148 dump_stack();
f0b22e39 6149 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6150}
3427445a 6151EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6152#endif
6153
6154#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6155void normalize_rt_tasks(void)
3a5e4dc1 6156{
dbc7f069 6157 struct task_struct *g, *p;
d50dde5a
DF
6158 struct sched_attr attr = {
6159 .sched_policy = SCHED_NORMAL,
6160 };
1da177e4 6161
3472eaa1 6162 read_lock(&tasklist_lock);
5d07f420 6163 for_each_process_thread(g, p) {
178be793
IM
6164 /*
6165 * Only normalize user tasks:
6166 */
3472eaa1 6167 if (p->flags & PF_KTHREAD)
178be793
IM
6168 continue;
6169
4fa8d299
JP
6170 p->se.exec_start = 0;
6171 schedstat_set(p->se.statistics.wait_start, 0);
6172 schedstat_set(p->se.statistics.sleep_start, 0);
6173 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6174
aab03e05 6175 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6176 /*
6177 * Renice negative nice level userspace
6178 * tasks back to 0:
6179 */
3472eaa1 6180 if (task_nice(p) < 0)
dd41f596 6181 set_user_nice(p, 0);
1da177e4 6182 continue;
dd41f596 6183 }
1da177e4 6184
dbc7f069 6185 __sched_setscheduler(p, &attr, false, false);
5d07f420 6186 }
3472eaa1 6187 read_unlock(&tasklist_lock);
1da177e4
LT
6188}
6189
6190#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6191
67fc4e0c 6192#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6193/*
67fc4e0c 6194 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6195 *
6196 * They can only be called when the whole system has been
6197 * stopped - every CPU needs to be quiescent, and no scheduling
6198 * activity can take place. Using them for anything else would
6199 * be a serious bug, and as a result, they aren't even visible
6200 * under any other configuration.
6201 */
6202
6203/**
d1ccc66d 6204 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6205 * @cpu: the processor in question.
6206 *
6207 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6208 *
6209 * Return: The current task for @cpu.
1df5c10a 6210 */
36c8b586 6211struct task_struct *curr_task(int cpu)
1df5c10a
LT
6212{
6213 return cpu_curr(cpu);
6214}
6215
67fc4e0c
JW
6216#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6217
6218#ifdef CONFIG_IA64
1df5c10a 6219/**
d1ccc66d 6220 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6221 * @cpu: the processor in question.
6222 * @p: the task pointer to set.
6223 *
6224 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6225 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6226 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6227 * must be called with all CPU's synchronized, and interrupts disabled, the
6228 * and caller must save the original value of the current task (see
6229 * curr_task() above) and restore that value before reenabling interrupts and
6230 * re-starting the system.
6231 *
6232 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6233 */
a458ae2e 6234void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6235{
6236 cpu_curr(cpu) = p;
6237}
6238
6239#endif
29f59db3 6240
7c941438 6241#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6242/* task_group_lock serializes the addition/removal of task groups */
6243static DEFINE_SPINLOCK(task_group_lock);
6244
2f5177f0 6245static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6246{
6247 free_fair_sched_group(tg);
6248 free_rt_sched_group(tg);
e9aa1dd1 6249 autogroup_free(tg);
b0367629 6250 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6251}
6252
6253/* allocate runqueue etc for a new task group */
ec7dc8ac 6254struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6255{
6256 struct task_group *tg;
bccbe08a 6257
b0367629 6258 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6259 if (!tg)
6260 return ERR_PTR(-ENOMEM);
6261
ec7dc8ac 6262 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6263 goto err;
6264
ec7dc8ac 6265 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6266 goto err;
6267
ace783b9
LZ
6268 return tg;
6269
6270err:
2f5177f0 6271 sched_free_group(tg);
ace783b9
LZ
6272 return ERR_PTR(-ENOMEM);
6273}
6274
6275void sched_online_group(struct task_group *tg, struct task_group *parent)
6276{
6277 unsigned long flags;
6278
8ed36996 6279 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6280 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6281
d1ccc66d
IM
6282 /* Root should already exist: */
6283 WARN_ON(!parent);
f473aa5e
PZ
6284
6285 tg->parent = parent;
f473aa5e 6286 INIT_LIST_HEAD(&tg->children);
09f2724a 6287 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6288 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6289
6290 online_fair_sched_group(tg);
29f59db3
SV
6291}
6292
9b5b7751 6293/* rcu callback to free various structures associated with a task group */
2f5177f0 6294static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6295{
d1ccc66d 6296 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6297 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6298}
6299
4cf86d77 6300void sched_destroy_group(struct task_group *tg)
ace783b9 6301{
d1ccc66d 6302 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6303 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6304}
6305
6306void sched_offline_group(struct task_group *tg)
29f59db3 6307{
8ed36996 6308 unsigned long flags;
29f59db3 6309
d1ccc66d 6310 /* End participation in shares distribution: */
6fe1f348 6311 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6312
6313 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6314 list_del_rcu(&tg->list);
f473aa5e 6315 list_del_rcu(&tg->siblings);
8ed36996 6316 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6317}
6318
ea86cb4b 6319static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6320{
8323f26c 6321 struct task_group *tg;
29f59db3 6322
f7b8a47d
KT
6323 /*
6324 * All callers are synchronized by task_rq_lock(); we do not use RCU
6325 * which is pointless here. Thus, we pass "true" to task_css_check()
6326 * to prevent lockdep warnings.
6327 */
6328 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6329 struct task_group, css);
6330 tg = autogroup_task_group(tsk, tg);
6331 tsk->sched_task_group = tg;
6332
810b3817 6333#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6334 if (tsk->sched_class->task_change_group)
6335 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6336 else
810b3817 6337#endif
b2b5ce02 6338 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6339}
6340
6341/*
6342 * Change task's runqueue when it moves between groups.
6343 *
6344 * The caller of this function should have put the task in its new group by
6345 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6346 * its new group.
6347 */
6348void sched_move_task(struct task_struct *tsk)
6349{
7a57f32a
PZ
6350 int queued, running, queue_flags =
6351 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6352 struct rq_flags rf;
6353 struct rq *rq;
6354
6355 rq = task_rq_lock(tsk, &rf);
1b1d6225 6356 update_rq_clock(rq);
ea86cb4b
VG
6357
6358 running = task_current(rq, tsk);
6359 queued = task_on_rq_queued(tsk);
6360
6361 if (queued)
7a57f32a 6362 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6363 if (running)
ea86cb4b
VG
6364 put_prev_task(rq, tsk);
6365
6366 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6367
da0c1e65 6368 if (queued)
7a57f32a 6369 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6370 if (running)
b2bf6c31 6371 set_curr_task(rq, tsk);
29f59db3 6372
eb580751 6373 task_rq_unlock(rq, tsk, &rf);
29f59db3 6374}
68318b8e 6375
a7c6d554 6376static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6377{
a7c6d554 6378 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6379}
6380
eb95419b
TH
6381static struct cgroup_subsys_state *
6382cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6383{
eb95419b
TH
6384 struct task_group *parent = css_tg(parent_css);
6385 struct task_group *tg;
68318b8e 6386
eb95419b 6387 if (!parent) {
68318b8e 6388 /* This is early initialization for the top cgroup */
07e06b01 6389 return &root_task_group.css;
68318b8e
SV
6390 }
6391
ec7dc8ac 6392 tg = sched_create_group(parent);
68318b8e
SV
6393 if (IS_ERR(tg))
6394 return ERR_PTR(-ENOMEM);
6395
68318b8e
SV
6396 return &tg->css;
6397}
6398
96b77745
KK
6399/* Expose task group only after completing cgroup initialization */
6400static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6401{
6402 struct task_group *tg = css_tg(css);
6403 struct task_group *parent = css_tg(css->parent);
6404
6405 if (parent)
6406 sched_online_group(tg, parent);
6407 return 0;
6408}
6409
2f5177f0 6410static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6411{
eb95419b 6412 struct task_group *tg = css_tg(css);
ace783b9 6413
2f5177f0 6414 sched_offline_group(tg);
ace783b9
LZ
6415}
6416
eb95419b 6417static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6418{
eb95419b 6419 struct task_group *tg = css_tg(css);
68318b8e 6420
2f5177f0
PZ
6421 /*
6422 * Relies on the RCU grace period between css_released() and this.
6423 */
6424 sched_free_group(tg);
ace783b9
LZ
6425}
6426
ea86cb4b
VG
6427/*
6428 * This is called before wake_up_new_task(), therefore we really only
6429 * have to set its group bits, all the other stuff does not apply.
6430 */
b53202e6 6431static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6432{
ea86cb4b
VG
6433 struct rq_flags rf;
6434 struct rq *rq;
6435
6436 rq = task_rq_lock(task, &rf);
6437
80f5c1b8 6438 update_rq_clock(rq);
ea86cb4b
VG
6439 sched_change_group(task, TASK_SET_GROUP);
6440
6441 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6442}
6443
1f7dd3e5 6444static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6445{
bb9d97b6 6446 struct task_struct *task;
1f7dd3e5 6447 struct cgroup_subsys_state *css;
7dc603c9 6448 int ret = 0;
bb9d97b6 6449
1f7dd3e5 6450 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6451#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6452 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6453 return -EINVAL;
b68aa230 6454#else
bb9d97b6
TH
6455 /* We don't support RT-tasks being in separate groups */
6456 if (task->sched_class != &fair_sched_class)
6457 return -EINVAL;
b68aa230 6458#endif
7dc603c9
PZ
6459 /*
6460 * Serialize against wake_up_new_task() such that if its
6461 * running, we're sure to observe its full state.
6462 */
6463 raw_spin_lock_irq(&task->pi_lock);
6464 /*
6465 * Avoid calling sched_move_task() before wake_up_new_task()
6466 * has happened. This would lead to problems with PELT, due to
6467 * move wanting to detach+attach while we're not attached yet.
6468 */
6469 if (task->state == TASK_NEW)
6470 ret = -EINVAL;
6471 raw_spin_unlock_irq(&task->pi_lock);
6472
6473 if (ret)
6474 break;
bb9d97b6 6475 }
7dc603c9 6476 return ret;
be367d09 6477}
68318b8e 6478
1f7dd3e5 6479static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6480{
bb9d97b6 6481 struct task_struct *task;
1f7dd3e5 6482 struct cgroup_subsys_state *css;
bb9d97b6 6483
1f7dd3e5 6484 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6485 sched_move_task(task);
68318b8e
SV
6486}
6487
052f1dc7 6488#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6489static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6490 struct cftype *cftype, u64 shareval)
68318b8e 6491{
182446d0 6492 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6493}
6494
182446d0
TH
6495static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6496 struct cftype *cft)
68318b8e 6497{
182446d0 6498 struct task_group *tg = css_tg(css);
68318b8e 6499
c8b28116 6500 return (u64) scale_load_down(tg->shares);
68318b8e 6501}
ab84d31e
PT
6502
6503#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6504static DEFINE_MUTEX(cfs_constraints_mutex);
6505
ab84d31e
PT
6506const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6507const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6508
a790de99
PT
6509static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6510
ab84d31e
PT
6511static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6512{
56f570e5 6513 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6514 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6515
6516 if (tg == &root_task_group)
6517 return -EINVAL;
6518
6519 /*
6520 * Ensure we have at some amount of bandwidth every period. This is
6521 * to prevent reaching a state of large arrears when throttled via
6522 * entity_tick() resulting in prolonged exit starvation.
6523 */
6524 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6525 return -EINVAL;
6526
6527 /*
6528 * Likewise, bound things on the otherside by preventing insane quota
6529 * periods. This also allows us to normalize in computing quota
6530 * feasibility.
6531 */
6532 if (period > max_cfs_quota_period)
6533 return -EINVAL;
6534
0e59bdae
KT
6535 /*
6536 * Prevent race between setting of cfs_rq->runtime_enabled and
6537 * unthrottle_offline_cfs_rqs().
6538 */
6539 get_online_cpus();
a790de99
PT
6540 mutex_lock(&cfs_constraints_mutex);
6541 ret = __cfs_schedulable(tg, period, quota);
6542 if (ret)
6543 goto out_unlock;
6544
58088ad0 6545 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6546 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6547 /*
6548 * If we need to toggle cfs_bandwidth_used, off->on must occur
6549 * before making related changes, and on->off must occur afterwards
6550 */
6551 if (runtime_enabled && !runtime_was_enabled)
6552 cfs_bandwidth_usage_inc();
ab84d31e
PT
6553 raw_spin_lock_irq(&cfs_b->lock);
6554 cfs_b->period = ns_to_ktime(period);
6555 cfs_b->quota = quota;
58088ad0 6556
a9cf55b2 6557 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6558
6559 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6560 if (runtime_enabled)
6561 start_cfs_bandwidth(cfs_b);
d1ccc66d 6562
ab84d31e
PT
6563 raw_spin_unlock_irq(&cfs_b->lock);
6564
0e59bdae 6565 for_each_online_cpu(i) {
ab84d31e 6566 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6567 struct rq *rq = cfs_rq->rq;
8a8c69c3 6568 struct rq_flags rf;
ab84d31e 6569
8a8c69c3 6570 rq_lock_irq(rq, &rf);
58088ad0 6571 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6572 cfs_rq->runtime_remaining = 0;
671fd9da 6573
029632fb 6574 if (cfs_rq->throttled)
671fd9da 6575 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6576 rq_unlock_irq(rq, &rf);
ab84d31e 6577 }
1ee14e6c
BS
6578 if (runtime_was_enabled && !runtime_enabled)
6579 cfs_bandwidth_usage_dec();
a790de99
PT
6580out_unlock:
6581 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6582 put_online_cpus();
ab84d31e 6583
a790de99 6584 return ret;
ab84d31e
PT
6585}
6586
6587int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6588{
6589 u64 quota, period;
6590
029632fb 6591 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6592 if (cfs_quota_us < 0)
6593 quota = RUNTIME_INF;
6594 else
6595 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6596
6597 return tg_set_cfs_bandwidth(tg, period, quota);
6598}
6599
6600long tg_get_cfs_quota(struct task_group *tg)
6601{
6602 u64 quota_us;
6603
029632fb 6604 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6605 return -1;
6606
029632fb 6607 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6608 do_div(quota_us, NSEC_PER_USEC);
6609
6610 return quota_us;
6611}
6612
6613int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6614{
6615 u64 quota, period;
6616
6617 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6618 quota = tg->cfs_bandwidth.quota;
ab84d31e 6619
ab84d31e
PT
6620 return tg_set_cfs_bandwidth(tg, period, quota);
6621}
6622
6623long tg_get_cfs_period(struct task_group *tg)
6624{
6625 u64 cfs_period_us;
6626
029632fb 6627 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6628 do_div(cfs_period_us, NSEC_PER_USEC);
6629
6630 return cfs_period_us;
6631}
6632
182446d0
TH
6633static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6634 struct cftype *cft)
ab84d31e 6635{
182446d0 6636 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6637}
6638
182446d0
TH
6639static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6640 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6641{
182446d0 6642 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6643}
6644
182446d0
TH
6645static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6646 struct cftype *cft)
ab84d31e 6647{
182446d0 6648 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6649}
6650
182446d0
TH
6651static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6652 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6653{
182446d0 6654 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6655}
6656
a790de99
PT
6657struct cfs_schedulable_data {
6658 struct task_group *tg;
6659 u64 period, quota;
6660};
6661
6662/*
6663 * normalize group quota/period to be quota/max_period
6664 * note: units are usecs
6665 */
6666static u64 normalize_cfs_quota(struct task_group *tg,
6667 struct cfs_schedulable_data *d)
6668{
6669 u64 quota, period;
6670
6671 if (tg == d->tg) {
6672 period = d->period;
6673 quota = d->quota;
6674 } else {
6675 period = tg_get_cfs_period(tg);
6676 quota = tg_get_cfs_quota(tg);
6677 }
6678
6679 /* note: these should typically be equivalent */
6680 if (quota == RUNTIME_INF || quota == -1)
6681 return RUNTIME_INF;
6682
6683 return to_ratio(period, quota);
6684}
6685
6686static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6687{
6688 struct cfs_schedulable_data *d = data;
029632fb 6689 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6690 s64 quota = 0, parent_quota = -1;
6691
6692 if (!tg->parent) {
6693 quota = RUNTIME_INF;
6694 } else {
029632fb 6695 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6696
6697 quota = normalize_cfs_quota(tg, d);
9c58c79a 6698 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6699
6700 /*
c53593e5
TH
6701 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6702 * always take the min. On cgroup1, only inherit when no
d1ccc66d 6703 * limit is set:
a790de99 6704 */
c53593e5
TH
6705 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6706 quota = min(quota, parent_quota);
6707 } else {
6708 if (quota == RUNTIME_INF)
6709 quota = parent_quota;
6710 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6711 return -EINVAL;
6712 }
a790de99 6713 }
9c58c79a 6714 cfs_b->hierarchical_quota = quota;
a790de99
PT
6715
6716 return 0;
6717}
6718
6719static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6720{
8277434e 6721 int ret;
a790de99
PT
6722 struct cfs_schedulable_data data = {
6723 .tg = tg,
6724 .period = period,
6725 .quota = quota,
6726 };
6727
6728 if (quota != RUNTIME_INF) {
6729 do_div(data.period, NSEC_PER_USEC);
6730 do_div(data.quota, NSEC_PER_USEC);
6731 }
6732
8277434e
PT
6733 rcu_read_lock();
6734 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6735 rcu_read_unlock();
6736
6737 return ret;
a790de99 6738}
e8da1b18 6739
a1f7164c 6740static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6741{
2da8ca82 6742 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6743 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6744
44ffc75b
TH
6745 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6746 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6747 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 6748
3d6c50c2
YW
6749 if (schedstat_enabled() && tg != &root_task_group) {
6750 u64 ws = 0;
6751 int i;
6752
6753 for_each_possible_cpu(i)
6754 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6755
6756 seq_printf(sf, "wait_sum %llu\n", ws);
6757 }
6758
e8da1b18
NR
6759 return 0;
6760}
ab84d31e 6761#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6762#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6763
052f1dc7 6764#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6765static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6766 struct cftype *cft, s64 val)
6f505b16 6767{
182446d0 6768 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6769}
6770
182446d0
TH
6771static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6772 struct cftype *cft)
6f505b16 6773{
182446d0 6774 return sched_group_rt_runtime(css_tg(css));
6f505b16 6775}
d0b27fa7 6776
182446d0
TH
6777static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6778 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6779{
182446d0 6780 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6781}
6782
182446d0
TH
6783static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6784 struct cftype *cft)
d0b27fa7 6785{
182446d0 6786 return sched_group_rt_period(css_tg(css));
d0b27fa7 6787}
6d6bc0ad 6788#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6789
a1f7164c 6790static struct cftype cpu_legacy_files[] = {
052f1dc7 6791#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6792 {
6793 .name = "shares",
f4c753b7
PM
6794 .read_u64 = cpu_shares_read_u64,
6795 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6796 },
052f1dc7 6797#endif
ab84d31e
PT
6798#ifdef CONFIG_CFS_BANDWIDTH
6799 {
6800 .name = "cfs_quota_us",
6801 .read_s64 = cpu_cfs_quota_read_s64,
6802 .write_s64 = cpu_cfs_quota_write_s64,
6803 },
6804 {
6805 .name = "cfs_period_us",
6806 .read_u64 = cpu_cfs_period_read_u64,
6807 .write_u64 = cpu_cfs_period_write_u64,
6808 },
e8da1b18
NR
6809 {
6810 .name = "stat",
a1f7164c 6811 .seq_show = cpu_cfs_stat_show,
e8da1b18 6812 },
ab84d31e 6813#endif
052f1dc7 6814#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6815 {
9f0c1e56 6816 .name = "rt_runtime_us",
06ecb27c
PM
6817 .read_s64 = cpu_rt_runtime_read,
6818 .write_s64 = cpu_rt_runtime_write,
6f505b16 6819 },
d0b27fa7
PZ
6820 {
6821 .name = "rt_period_us",
f4c753b7
PM
6822 .read_u64 = cpu_rt_period_read_uint,
6823 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6824 },
052f1dc7 6825#endif
d1ccc66d 6826 { } /* Terminate */
68318b8e
SV
6827};
6828
d41bf8c9
TH
6829static int cpu_extra_stat_show(struct seq_file *sf,
6830 struct cgroup_subsys_state *css)
0d593634 6831{
0d593634
TH
6832#ifdef CONFIG_CFS_BANDWIDTH
6833 {
d41bf8c9 6834 struct task_group *tg = css_tg(css);
0d593634
TH
6835 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6836 u64 throttled_usec;
6837
6838 throttled_usec = cfs_b->throttled_time;
6839 do_div(throttled_usec, NSEC_PER_USEC);
6840
6841 seq_printf(sf, "nr_periods %d\n"
6842 "nr_throttled %d\n"
6843 "throttled_usec %llu\n",
6844 cfs_b->nr_periods, cfs_b->nr_throttled,
6845 throttled_usec);
6846 }
6847#endif
6848 return 0;
6849}
6850
6851#ifdef CONFIG_FAIR_GROUP_SCHED
6852static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6853 struct cftype *cft)
6854{
6855 struct task_group *tg = css_tg(css);
6856 u64 weight = scale_load_down(tg->shares);
6857
6858 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6859}
6860
6861static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6862 struct cftype *cft, u64 weight)
6863{
6864 /*
6865 * cgroup weight knobs should use the common MIN, DFL and MAX
6866 * values which are 1, 100 and 10000 respectively. While it loses
6867 * a bit of range on both ends, it maps pretty well onto the shares
6868 * value used by scheduler and the round-trip conversions preserve
6869 * the original value over the entire range.
6870 */
6871 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6872 return -ERANGE;
6873
6874 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6875
6876 return sched_group_set_shares(css_tg(css), scale_load(weight));
6877}
6878
6879static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6880 struct cftype *cft)
6881{
6882 unsigned long weight = scale_load_down(css_tg(css)->shares);
6883 int last_delta = INT_MAX;
6884 int prio, delta;
6885
6886 /* find the closest nice value to the current weight */
6887 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6888 delta = abs(sched_prio_to_weight[prio] - weight);
6889 if (delta >= last_delta)
6890 break;
6891 last_delta = delta;
6892 }
6893
6894 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6895}
6896
6897static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6898 struct cftype *cft, s64 nice)
6899{
6900 unsigned long weight;
7281c8de 6901 int idx;
0d593634
TH
6902
6903 if (nice < MIN_NICE || nice > MAX_NICE)
6904 return -ERANGE;
6905
7281c8de
PZ
6906 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6907 idx = array_index_nospec(idx, 40);
6908 weight = sched_prio_to_weight[idx];
6909
0d593634
TH
6910 return sched_group_set_shares(css_tg(css), scale_load(weight));
6911}
6912#endif
6913
6914static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6915 long period, long quota)
6916{
6917 if (quota < 0)
6918 seq_puts(sf, "max");
6919 else
6920 seq_printf(sf, "%ld", quota);
6921
6922 seq_printf(sf, " %ld\n", period);
6923}
6924
6925/* caller should put the current value in *@periodp before calling */
6926static int __maybe_unused cpu_period_quota_parse(char *buf,
6927 u64 *periodp, u64 *quotap)
6928{
6929 char tok[21]; /* U64_MAX */
6930
6931 if (!sscanf(buf, "%s %llu", tok, periodp))
6932 return -EINVAL;
6933
6934 *periodp *= NSEC_PER_USEC;
6935
6936 if (sscanf(tok, "%llu", quotap))
6937 *quotap *= NSEC_PER_USEC;
6938 else if (!strcmp(tok, "max"))
6939 *quotap = RUNTIME_INF;
6940 else
6941 return -EINVAL;
6942
6943 return 0;
6944}
6945
6946#ifdef CONFIG_CFS_BANDWIDTH
6947static int cpu_max_show(struct seq_file *sf, void *v)
6948{
6949 struct task_group *tg = css_tg(seq_css(sf));
6950
6951 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6952 return 0;
6953}
6954
6955static ssize_t cpu_max_write(struct kernfs_open_file *of,
6956 char *buf, size_t nbytes, loff_t off)
6957{
6958 struct task_group *tg = css_tg(of_css(of));
6959 u64 period = tg_get_cfs_period(tg);
6960 u64 quota;
6961 int ret;
6962
6963 ret = cpu_period_quota_parse(buf, &period, &quota);
6964 if (!ret)
6965 ret = tg_set_cfs_bandwidth(tg, period, quota);
6966 return ret ?: nbytes;
6967}
6968#endif
6969
6970static struct cftype cpu_files[] = {
0d593634
TH
6971#ifdef CONFIG_FAIR_GROUP_SCHED
6972 {
6973 .name = "weight",
6974 .flags = CFTYPE_NOT_ON_ROOT,
6975 .read_u64 = cpu_weight_read_u64,
6976 .write_u64 = cpu_weight_write_u64,
6977 },
6978 {
6979 .name = "weight.nice",
6980 .flags = CFTYPE_NOT_ON_ROOT,
6981 .read_s64 = cpu_weight_nice_read_s64,
6982 .write_s64 = cpu_weight_nice_write_s64,
6983 },
6984#endif
6985#ifdef CONFIG_CFS_BANDWIDTH
6986 {
6987 .name = "max",
6988 .flags = CFTYPE_NOT_ON_ROOT,
6989 .seq_show = cpu_max_show,
6990 .write = cpu_max_write,
6991 },
6992#endif
6993 { } /* terminate */
6994};
6995
073219e9 6996struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 6997 .css_alloc = cpu_cgroup_css_alloc,
96b77745 6998 .css_online = cpu_cgroup_css_online,
2f5177f0 6999 .css_released = cpu_cgroup_css_released,
92fb9748 7000 .css_free = cpu_cgroup_css_free,
d41bf8c9 7001 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7002 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7003 .can_attach = cpu_cgroup_can_attach,
7004 .attach = cpu_cgroup_attach,
a1f7164c 7005 .legacy_cftypes = cpu_legacy_files,
0d593634 7006 .dfl_cftypes = cpu_files,
b38e42e9 7007 .early_init = true,
0d593634 7008 .threaded = true,
68318b8e
SV
7009};
7010
052f1dc7 7011#endif /* CONFIG_CGROUP_SCHED */
d842de87 7012
b637a328
PM
7013void dump_cpu_task(int cpu)
7014{
7015 pr_info("Task dump for CPU %d:\n", cpu);
7016 sched_show_task(cpu_curr(cpu));
7017}
ed82b8a1
AK
7018
7019/*
7020 * Nice levels are multiplicative, with a gentle 10% change for every
7021 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7022 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7023 * that remained on nice 0.
7024 *
7025 * The "10% effect" is relative and cumulative: from _any_ nice level,
7026 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7027 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7028 * If a task goes up by ~10% and another task goes down by ~10% then
7029 * the relative distance between them is ~25%.)
7030 */
7031const int sched_prio_to_weight[40] = {
7032 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7033 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7034 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7035 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7036 /* 0 */ 1024, 820, 655, 526, 423,
7037 /* 5 */ 335, 272, 215, 172, 137,
7038 /* 10 */ 110, 87, 70, 56, 45,
7039 /* 15 */ 36, 29, 23, 18, 15,
7040};
7041
7042/*
7043 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7044 *
7045 * In cases where the weight does not change often, we can use the
7046 * precalculated inverse to speed up arithmetics by turning divisions
7047 * into multiplications:
7048 */
7049const u32 sched_prio_to_wmult[40] = {
7050 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7051 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7052 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7053 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7054 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7055 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7056 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7057 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7058};
14a7405b
IM
7059
7060#undef CREATE_TRACE_POINTS