Merge branch 'akpm' (patches from Andrew Morton)
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
0970d299 299/*
0122ec5b 300 * __task_rq_lock - lock the rq @p resides on.
b29739f9 301 */
70b97a7f 302static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
303 __acquires(rq->lock)
304{
0970d299
PZ
305 struct rq *rq;
306
0122ec5b
PZ
307 lockdep_assert_held(&p->pi_lock);
308
3a5c359a 309 for (;;) {
0970d299 310 rq = task_rq(p);
05fa785c 311 raw_spin_lock(&rq->lock);
65cc8e48 312 if (likely(rq == task_rq(p)))
3a5c359a 313 return rq;
05fa785c 314 raw_spin_unlock(&rq->lock);
b29739f9 315 }
b29739f9
IM
316}
317
1da177e4 318/*
0122ec5b 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 320 */
70b97a7f 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 322 __acquires(p->pi_lock)
1da177e4
LT
323 __acquires(rq->lock)
324{
70b97a7f 325 struct rq *rq;
1da177e4 326
3a5c359a 327 for (;;) {
0122ec5b 328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
0122ec5b
PZ
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 335 }
1da177e4
LT
336}
337
a9957449 338static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
339 __releases(rq->lock)
340{
05fa785c 341 raw_spin_unlock(&rq->lock);
b29739f9
IM
342}
343
0122ec5b
PZ
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 346 __releases(rq->lock)
0122ec5b 347 __releases(p->pi_lock)
1da177e4 348{
0122ec5b
PZ
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
351}
352
1da177e4 353/*
cc2a73b5 354 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 355 */
a9957449 356static struct rq *this_rq_lock(void)
1da177e4
LT
357 __acquires(rq->lock)
358{
70b97a7f 359 struct rq *rq;
1da177e4
LT
360
361 local_irq_disable();
362 rq = this_rq();
05fa785c 363 raw_spin_lock(&rq->lock);
1da177e4
LT
364
365 return rq;
366}
367
8f4d37ec
PZ
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
971ee28c
PZ
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
971ee28c 415 __hrtick_restart(rq);
31656519 416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
971ee28c 433 __hrtick_restart(rq);
31656519 434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
029632fb 514void resched_task(struct task_struct *p)
c24d20db
IM
515{
516 int cpu;
517
b021fe3e 518 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 519
5ed0cec0 520 if (test_tsk_need_resched(p))
c24d20db
IM
521 return;
522
5ed0cec0 523 set_tsk_need_resched(p);
c24d20db
IM
524
525 cpu = task_cpu(p);
f27dde8d
PZ
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
c24d20db 528 return;
f27dde8d 529 }
c24d20db
IM
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#endif /* CONFIG_SMP */
18d95a28 697
a790de99
PT
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 700/*
8277434e
PT
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 705 */
029632fb 706int walk_tg_tree_from(struct task_group *from,
8277434e 707 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
708{
709 struct task_group *parent, *child;
eb755805 710 int ret;
c09595f6 711
8277434e
PT
712 parent = from;
713
c09595f6 714down:
eb755805
PZ
715 ret = (*down)(parent, data);
716 if (ret)
8277434e 717 goto out;
c09595f6
PZ
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
eb755805 725 ret = (*up)(parent, data);
8277434e
PT
726 if (ret || parent == from)
727 goto out;
c09595f6
PZ
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
8277434e 733out:
eb755805 734 return ret;
c09595f6
PZ
735}
736
029632fb 737int tg_nop(struct task_group *tg, void *data)
eb755805 738{
e2b245f8 739 return 0;
eb755805 740}
18d95a28
PZ
741#endif
742
45bf76df
IM
743static void set_load_weight(struct task_struct *p)
744{
f05998d4
NR
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
dd41f596
IM
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
c8b28116 752 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 753 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
754 return;
755 }
71f8bd46 756
c8b28116 757 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 758 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
759}
760
371fd7e7 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 762{
a64692a3 763 update_rq_clock(rq);
43148951 764 sched_info_queued(rq, p);
371fd7e7 765 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
766}
767
371fd7e7 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 769{
a64692a3 770 update_rq_clock(rq);
43148951 771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
fe44d621 791static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 792{
095c0aa8
GC
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
095c0aa8
GC
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 825 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
fe44d621
PZ
843 rq->clock_task += delta;
844
095c0aa8
GC
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
aa483808
VP
849}
850
34f971f6
PZ
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
14531189 881/*
dd41f596 882 * __normal_prio - return the priority that is based on the static prio
14531189 883 */
14531189
IM
884static inline int __normal_prio(struct task_struct *p)
885{
dd41f596 886 return p->static_prio;
14531189
IM
887}
888
b29739f9
IM
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
36c8b586 896static inline int normal_prio(struct task_struct *p)
b29739f9
IM
897{
898 int prio;
899
aab03e05
DF
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
2d3d891d 948 } else if (oldprio != p->prio || dl_task(p))
da7a735e 949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
286549dc 1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
ac66f547
PZ
1115 return ret;
1116}
1117
969c7921 1118struct migration_arg {
36c8b586 1119 struct task_struct *task;
1da177e4 1120 int dest_cpu;
70b97a7f 1121};
1da177e4 1122
969c7921
TH
1123static int migration_cpu_stop(void *data);
1124
1da177e4
LT
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
85ba2d86
RM
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1da177e4
LT
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
85ba2d86 1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1142{
1143 unsigned long flags;
dd41f596 1144 int running, on_rq;
85ba2d86 1145 unsigned long ncsw;
70b97a7f 1146 struct rq *rq;
1da177e4 1147
3a5c359a
AK
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
fa490cfd 1156
3a5c359a
AK
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
85ba2d86
RM
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
3a5c359a 1171 cpu_relax();
85ba2d86 1172 }
fa490cfd 1173
3a5c359a
AK
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
27a9da65 1180 trace_sched_wait_task(p);
3a5c359a 1181 running = task_running(rq, p);
fd2f4419 1182 on_rq = p->on_rq;
85ba2d86 1183 ncsw = 0;
f31e11d8 1184 if (!match_state || p->state == match_state)
93dcf55f 1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1186 task_rq_unlock(rq, p, &flags);
fa490cfd 1187
85ba2d86
RM
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
3a5c359a
AK
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
fa490cfd 1204
3a5c359a
AK
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
80dd99b3 1210 * So if it was still runnable (but just not actively
3a5c359a
AK
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
8eb90c30
TG
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1219 continue;
1220 }
fa490cfd 1221
3a5c359a
AK
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
85ba2d86
RM
1229
1230 return ncsw;
1da177e4
LT
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
25985edc 1240 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
36c8b586 1246void kick_process(struct task_struct *p)
1da177e4
LT
1247{
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255}
b43e3521 1256EXPORT_SYMBOL_GPL(kick_process);
476d139c 1257#endif /* CONFIG_SMP */
1da177e4 1258
970b13ba 1259#ifdef CONFIG_SMP
30da688e 1260/*
013fdb80 1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1262 */
5da9a0fb
PZ
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
aa00d89c
TC
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb 1269
aa00d89c
TC
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
2baab4e9 1287 }
5da9a0fb 1288
2baab4e9
PZ
1289 for (;;) {
1290 /* Any allowed, online CPU? */
e3831edd 1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
5da9a0fb 1298
2baab4e9
PZ
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
5da9a0fb
PZ
1328 }
1329
1330 return dest_cpu;
1331}
1332
e2912009 1333/*
013fdb80 1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1335 */
970b13ba 1336static inline
ac66f547 1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1338{
ac66f547 1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
fa17b507 1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1352 !cpu_online(cpu)))
5da9a0fb 1353 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1354
1355 return cpu;
970b13ba 1356}
09a40af5
MG
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362}
970b13ba
PZ
1363#endif
1364
d7c01d27 1365static void
b84cb5df 1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1367{
d7c01d27 1368#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1369 struct rq *rq = this_rq();
1370
d7c01d27
PZ
1371#ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1381 rcu_read_lock();
d7c01d27
PZ
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
057f3fad 1388 rcu_read_unlock();
d7c01d27 1389 }
f339b9dc
PZ
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
d7c01d27
PZ
1394#endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
9ed3811a 1397 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1398
1399 if (wake_flags & WF_SYNC)
9ed3811a 1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1401
d7c01d27
PZ
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
9ed3811a 1407 activate_task(rq, p, en_flags);
fd2f4419 1408 p->on_rq = 1;
c2f7115e
PZ
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1413}
1414
23f41eeb
PZ
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
89363381 1418static void
23f41eeb 1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1420{
9ed3811a 1421 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1422 trace_sched_wakeup(p, true);
9ed3811a
TH
1423
1424 p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
e69c6341 1429 if (rq->idle_stamp) {
78becc27 1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1431 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1432
abfafa54
JL
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
9ed3811a 1436 rq->avg_idle = max;
abfafa54 1437
9ed3811a
TH
1438 rq->idle_stamp = 0;
1439 }
1440#endif
1441}
1442
c05fbafb
PZ
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449#endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1ad4ec0d
FW
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
c05fbafb
PZ
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476}
1477
317f3941 1478#ifdef CONFIG_SMP
fa14ff4a 1479static void sched_ttwu_pending(void)
317f3941
PZ
1480{
1481 struct rq *rq = this_rq();
fa14ff4a
PZ
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
317f3941
PZ
1484
1485 raw_spin_lock(&rq->lock);
1486
fa14ff4a
PZ
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
317f3941
PZ
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
f27dde8d
PZ
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
8cb75e0c 1503 preempt_fold_need_resched();
f27dde8d 1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
aab03e05
DF
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1724 p->dl.dl_period = 0;
aab03e05
DF
1725 p->dl.flags = 0;
1726
fa717060 1727 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1728
e107be36
AK
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
cbee9f88
PZ
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
5e1576ed
RR
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
cbee9f88
PZ
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1747 p->numa_work.next = &p->numa_work;
f809ca9a 1748 p->numa_faults = NULL;
745d6147 1749 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
cbee9f88 1753#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1754}
1755
1a687c2e 1756#ifdef CONFIG_NUMA_BALANCING
3105b86a 1757#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1758void set_numabalancing_state(bool enabled)
1759{
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764}
3105b86a
MG
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770 numabalancing_enabled = enabled;
dd41f596 1771}
3105b86a 1772#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793}
1794#endif
1795#endif
dd41f596
IM
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
aab03e05 1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1801{
0122ec5b 1802 unsigned long flags;
dd41f596
IM
1803 int cpu = get_cpu();
1804
5e1576ed 1805 __sched_fork(clone_flags, p);
06b83b5f 1806 /*
0017d735 1807 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
0017d735 1811 p->state = TASK_RUNNING;
dd41f596 1812
c350a04e
MG
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
b9dc29e7
MG
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1823 p->policy = SCHED_NORMAL;
6c697bdf 1824 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
6c697bdf 1831
b9dc29e7
MG
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
ca94c442 1838
aab03e05
DF
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
2ddbf952 1845 p->sched_class = &fair_sched_class;
aab03e05 1846 }
b29739f9 1847
cd29fe6f
PZ
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
86951599
PZ
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
0122ec5b 1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1859 set_task_cpu(p, cpu);
0122ec5b 1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1861
52f17b6c 1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1863 if (likely(sched_info_on()))
52f17b6c 1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1865#endif
3ca7a440
PZ
1866#if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
4866cde0 1868#endif
01028747 1869 init_task_preempt_count(p);
806c09a7 1870#ifdef CONFIG_SMP
917b627d 1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1873#endif
917b627d 1874
476d139c 1875 put_cpu();
aab03e05 1876 return 0;
1da177e4
LT
1877}
1878
332ac17e
DF
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898 return &cpu_rq(i)->rd->dl_bw;
1899}
1900
de212f18 1901static inline int dl_bw_cpus(int i)
332ac17e 1902{
de212f18
PZ
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
332ac17e
DF
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914 return &cpu_rq(i)->dl.dl_bw;
1915}
1916
de212f18 1917static inline int dl_bw_cpus(int i)
332ac17e
DF
1918{
1919 return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926 dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932 dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952{
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 1955 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1958 int cpus, err = -1;
332ac17e
DF
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
de212f18 1969 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1da177e4
LT
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
3e51e3ed 1997void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1998{
1999 unsigned long flags;
dd41f596 2000 struct rq *rq;
fabf318e 2001
ab2515c4 2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2003#ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
fabf318e 2008 */
ac66f547 2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2010#endif
2011
a75cdaa9
AS
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
ab2515c4 2014 rq = __task_rq_lock(p);
cd29fe6f 2015 activate_task(rq, p, 0);
fd2f4419 2016 p->on_rq = 1;
89363381 2017 trace_sched_wakeup_new(p, true);
a7558e01 2018 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2019#ifdef CONFIG_SMP
efbbd05a
PZ
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
9a897c5a 2022#endif
0122ec5b 2023 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2024}
2025
e107be36
AK
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
80dd99b3 2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2030 * @notifier: notifier struct to register
e107be36
AK
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2040 * @notifier: notifier struct to unregister
e107be36
AK
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046 hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052 struct preempt_notifier *notifier;
e107be36 2053
b67bfe0d 2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061{
2062 struct preempt_notifier *notifier;
e107be36 2063
b67bfe0d 2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2065 notifier->ops->sched_out(notifier, next);
2066}
2067
6d6bc0ad 2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077{
2078}
2079
6d6bc0ad 2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2081
4866cde0
NP
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
421cee29 2085 * @prev: the current task that is being switched out
4866cde0
NP
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
e107be36
AK
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
4866cde0 2098{
895dd92c 2099 trace_sched_switch(prev, next);
43148951 2100 sched_info_switch(rq, prev, next);
fe4b04fa 2101 perf_event_task_sched_out(prev, next);
e107be36 2102 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105}
2106
1da177e4
LT
2107/**
2108 * finish_task_switch - clean up after a task-switch
344babaa 2109 * @rq: runqueue associated with task-switch
1da177e4
LT
2110 * @prev: the thread we just switched away from.
2111 *
4866cde0
NP
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2118 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
a9957449 2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2123 __releases(rq->lock)
2124{
1da177e4 2125 struct mm_struct *mm = rq->prev_mm;
55a101f8 2126 long prev_state;
1da177e4
LT
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
c394cc9f 2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
c394cc9f 2135 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
55a101f8 2141 prev_state = prev->state;
bf9fae9f 2142 vtime_task_switch(prev);
4866cde0 2143 finish_arch_switch(prev);
a8d757ef 2144 perf_event_task_sched_in(prev, current);
4866cde0 2145 finish_lock_switch(rq, prev);
01f23e16 2146 finish_arch_post_lock_switch();
e8fa1362 2147
e107be36 2148 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2149 if (mm)
2150 mmdrop(mm);
c394cc9f 2151 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2152 task_numa_free(prev);
2153
e6c390f2
DF
2154 if (prev->sched_class->task_dead)
2155 prev->sched_class->task_dead(prev);
2156
c6fd91f0 2157 /*
2158 * Remove function-return probe instances associated with this
2159 * task and put them back on the free list.
9761eea8 2160 */
c6fd91f0 2161 kprobe_flush_task(prev);
1da177e4 2162 put_task_struct(prev);
c6fd91f0 2163 }
99e5ada9
FW
2164
2165 tick_nohz_task_switch(current);
1da177e4
LT
2166}
2167
3f029d3c
GH
2168#ifdef CONFIG_SMP
2169
2170/* assumes rq->lock is held */
2171static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2172{
2173 if (prev->sched_class->pre_schedule)
2174 prev->sched_class->pre_schedule(rq, prev);
2175}
2176
2177/* rq->lock is NOT held, but preemption is disabled */
2178static inline void post_schedule(struct rq *rq)
2179{
2180 if (rq->post_schedule) {
2181 unsigned long flags;
2182
05fa785c 2183 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2184 if (rq->curr->sched_class->post_schedule)
2185 rq->curr->sched_class->post_schedule(rq);
05fa785c 2186 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2187
2188 rq->post_schedule = 0;
2189 }
2190}
2191
2192#else
da19ab51 2193
3f029d3c
GH
2194static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2195{
2196}
2197
2198static inline void post_schedule(struct rq *rq)
2199{
1da177e4
LT
2200}
2201
3f029d3c
GH
2202#endif
2203
1da177e4
LT
2204/**
2205 * schedule_tail - first thing a freshly forked thread must call.
2206 * @prev: the thread we just switched away from.
2207 */
36c8b586 2208asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2209 __releases(rq->lock)
2210{
70b97a7f
IM
2211 struct rq *rq = this_rq();
2212
4866cde0 2213 finish_task_switch(rq, prev);
da19ab51 2214
3f029d3c
GH
2215 /*
2216 * FIXME: do we need to worry about rq being invalidated by the
2217 * task_switch?
2218 */
2219 post_schedule(rq);
70b97a7f 2220
4866cde0
NP
2221#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2222 /* In this case, finish_task_switch does not reenable preemption */
2223 preempt_enable();
2224#endif
1da177e4 2225 if (current->set_child_tid)
b488893a 2226 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2227}
2228
2229/*
2230 * context_switch - switch to the new MM and the new
2231 * thread's register state.
2232 */
dd41f596 2233static inline void
70b97a7f 2234context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2235 struct task_struct *next)
1da177e4 2236{
dd41f596 2237 struct mm_struct *mm, *oldmm;
1da177e4 2238
e107be36 2239 prepare_task_switch(rq, prev, next);
fe4b04fa 2240
dd41f596
IM
2241 mm = next->mm;
2242 oldmm = prev->active_mm;
9226d125
ZA
2243 /*
2244 * For paravirt, this is coupled with an exit in switch_to to
2245 * combine the page table reload and the switch backend into
2246 * one hypercall.
2247 */
224101ed 2248 arch_start_context_switch(prev);
9226d125 2249
31915ab4 2250 if (!mm) {
1da177e4
LT
2251 next->active_mm = oldmm;
2252 atomic_inc(&oldmm->mm_count);
2253 enter_lazy_tlb(oldmm, next);
2254 } else
2255 switch_mm(oldmm, mm, next);
2256
31915ab4 2257 if (!prev->mm) {
1da177e4 2258 prev->active_mm = NULL;
1da177e4
LT
2259 rq->prev_mm = oldmm;
2260 }
3a5f5e48
IM
2261 /*
2262 * Since the runqueue lock will be released by the next
2263 * task (which is an invalid locking op but in the case
2264 * of the scheduler it's an obvious special-case), so we
2265 * do an early lockdep release here:
2266 */
2267#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2268 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2269#endif
1da177e4 2270
91d1aa43 2271 context_tracking_task_switch(prev, next);
1da177e4
LT
2272 /* Here we just switch the register state and the stack. */
2273 switch_to(prev, next, prev);
2274
dd41f596
IM
2275 barrier();
2276 /*
2277 * this_rq must be evaluated again because prev may have moved
2278 * CPUs since it called schedule(), thus the 'rq' on its stack
2279 * frame will be invalid.
2280 */
2281 finish_task_switch(this_rq(), prev);
1da177e4
LT
2282}
2283
2284/*
1c3e8264 2285 * nr_running and nr_context_switches:
1da177e4
LT
2286 *
2287 * externally visible scheduler statistics: current number of runnable
1c3e8264 2288 * threads, total number of context switches performed since bootup.
1da177e4
LT
2289 */
2290unsigned long nr_running(void)
2291{
2292 unsigned long i, sum = 0;
2293
2294 for_each_online_cpu(i)
2295 sum += cpu_rq(i)->nr_running;
2296
2297 return sum;
f711f609 2298}
1da177e4 2299
1da177e4 2300unsigned long long nr_context_switches(void)
46cb4b7c 2301{
cc94abfc
SR
2302 int i;
2303 unsigned long long sum = 0;
46cb4b7c 2304
0a945022 2305 for_each_possible_cpu(i)
1da177e4 2306 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2307
1da177e4
LT
2308 return sum;
2309}
483b4ee6 2310
1da177e4
LT
2311unsigned long nr_iowait(void)
2312{
2313 unsigned long i, sum = 0;
483b4ee6 2314
0a945022 2315 for_each_possible_cpu(i)
1da177e4 2316 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2317
1da177e4
LT
2318 return sum;
2319}
483b4ee6 2320
8c215bd3 2321unsigned long nr_iowait_cpu(int cpu)
69d25870 2322{
8c215bd3 2323 struct rq *this = cpu_rq(cpu);
69d25870
AV
2324 return atomic_read(&this->nr_iowait);
2325}
46cb4b7c 2326
dd41f596 2327#ifdef CONFIG_SMP
8a0be9ef 2328
46cb4b7c 2329/*
38022906
PZ
2330 * sched_exec - execve() is a valuable balancing opportunity, because at
2331 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2332 */
38022906 2333void sched_exec(void)
46cb4b7c 2334{
38022906 2335 struct task_struct *p = current;
1da177e4 2336 unsigned long flags;
0017d735 2337 int dest_cpu;
46cb4b7c 2338
8f42ced9 2339 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2340 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2341 if (dest_cpu == smp_processor_id())
2342 goto unlock;
38022906 2343
8f42ced9 2344 if (likely(cpu_active(dest_cpu))) {
969c7921 2345 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2346
8f42ced9
PZ
2347 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2349 return;
2350 }
0017d735 2351unlock:
8f42ced9 2352 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2353}
dd41f596 2354
1da177e4
LT
2355#endif
2356
1da177e4 2357DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2358DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2359
2360EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2361EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2362
2363/*
c5f8d995 2364 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2365 * @p in case that task is currently running.
c5f8d995
HS
2366 *
2367 * Called with task_rq_lock() held on @rq.
1da177e4 2368 */
c5f8d995
HS
2369static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2370{
2371 u64 ns = 0;
2372
2373 if (task_current(rq, p)) {
2374 update_rq_clock(rq);
78becc27 2375 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2376 if ((s64)ns < 0)
2377 ns = 0;
2378 }
2379
2380 return ns;
2381}
2382
bb34d92f 2383unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2384{
1da177e4 2385 unsigned long flags;
41b86e9c 2386 struct rq *rq;
bb34d92f 2387 u64 ns = 0;
48f24c4d 2388
41b86e9c 2389 rq = task_rq_lock(p, &flags);
c5f8d995 2390 ns = do_task_delta_exec(p, rq);
0122ec5b 2391 task_rq_unlock(rq, p, &flags);
1508487e 2392
c5f8d995
HS
2393 return ns;
2394}
f06febc9 2395
c5f8d995
HS
2396/*
2397 * Return accounted runtime for the task.
2398 * In case the task is currently running, return the runtime plus current's
2399 * pending runtime that have not been accounted yet.
2400 */
2401unsigned long long task_sched_runtime(struct task_struct *p)
2402{
2403 unsigned long flags;
2404 struct rq *rq;
2405 u64 ns = 0;
2406
911b2898
PZ
2407#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2408 /*
2409 * 64-bit doesn't need locks to atomically read a 64bit value.
2410 * So we have a optimization chance when the task's delta_exec is 0.
2411 * Reading ->on_cpu is racy, but this is ok.
2412 *
2413 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2414 * If we race with it entering cpu, unaccounted time is 0. This is
2415 * indistinguishable from the read occurring a few cycles earlier.
2416 */
2417 if (!p->on_cpu)
2418 return p->se.sum_exec_runtime;
2419#endif
2420
c5f8d995
HS
2421 rq = task_rq_lock(p, &flags);
2422 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2423 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2424
2425 return ns;
2426}
48f24c4d 2427
7835b98b
CL
2428/*
2429 * This function gets called by the timer code, with HZ frequency.
2430 * We call it with interrupts disabled.
7835b98b
CL
2431 */
2432void scheduler_tick(void)
2433{
7835b98b
CL
2434 int cpu = smp_processor_id();
2435 struct rq *rq = cpu_rq(cpu);
dd41f596 2436 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2437
2438 sched_clock_tick();
dd41f596 2439
05fa785c 2440 raw_spin_lock(&rq->lock);
3e51f33f 2441 update_rq_clock(rq);
fa85ae24 2442 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2443 update_cpu_load_active(rq);
05fa785c 2444 raw_spin_unlock(&rq->lock);
7835b98b 2445
e9d2b064 2446 perf_event_task_tick();
e220d2dc 2447
e418e1c2 2448#ifdef CONFIG_SMP
6eb57e0d 2449 rq->idle_balance = idle_cpu(cpu);
7caff66f 2450 trigger_load_balance(rq);
e418e1c2 2451#endif
265f22a9 2452 rq_last_tick_reset(rq);
1da177e4
LT
2453}
2454
265f22a9
FW
2455#ifdef CONFIG_NO_HZ_FULL
2456/**
2457 * scheduler_tick_max_deferment
2458 *
2459 * Keep at least one tick per second when a single
2460 * active task is running because the scheduler doesn't
2461 * yet completely support full dynticks environment.
2462 *
2463 * This makes sure that uptime, CFS vruntime, load
2464 * balancing, etc... continue to move forward, even
2465 * with a very low granularity.
e69f6186
YB
2466 *
2467 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2468 */
2469u64 scheduler_tick_max_deferment(void)
2470{
2471 struct rq *rq = this_rq();
2472 unsigned long next, now = ACCESS_ONCE(jiffies);
2473
2474 next = rq->last_sched_tick + HZ;
2475
2476 if (time_before_eq(next, now))
2477 return 0;
2478
8fe8ff09 2479 return jiffies_to_nsecs(next - now);
1da177e4 2480}
265f22a9 2481#endif
1da177e4 2482
132380a0 2483notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2484{
2485 if (in_lock_functions(addr)) {
2486 addr = CALLER_ADDR2;
2487 if (in_lock_functions(addr))
2488 addr = CALLER_ADDR3;
2489 }
2490 return addr;
2491}
1da177e4 2492
7e49fcce
SR
2493#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2494 defined(CONFIG_PREEMPT_TRACER))
2495
bdb43806 2496void __kprobes preempt_count_add(int val)
1da177e4 2497{
6cd8a4bb 2498#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2499 /*
2500 * Underflow?
2501 */
9a11b49a
IM
2502 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2503 return;
6cd8a4bb 2504#endif
bdb43806 2505 __preempt_count_add(val);
6cd8a4bb 2506#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2507 /*
2508 * Spinlock count overflowing soon?
2509 */
33859f7f
MOS
2510 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2511 PREEMPT_MASK - 10);
6cd8a4bb
SR
2512#endif
2513 if (preempt_count() == val)
2514 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2515}
bdb43806 2516EXPORT_SYMBOL(preempt_count_add);
1da177e4 2517
bdb43806 2518void __kprobes preempt_count_sub(int val)
1da177e4 2519{
6cd8a4bb 2520#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2521 /*
2522 * Underflow?
2523 */
01e3eb82 2524 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2525 return;
1da177e4
LT
2526 /*
2527 * Is the spinlock portion underflowing?
2528 */
9a11b49a
IM
2529 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2530 !(preempt_count() & PREEMPT_MASK)))
2531 return;
6cd8a4bb 2532#endif
9a11b49a 2533
6cd8a4bb
SR
2534 if (preempt_count() == val)
2535 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2536 __preempt_count_sub(val);
1da177e4 2537}
bdb43806 2538EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2539
2540#endif
2541
2542/*
dd41f596 2543 * Print scheduling while atomic bug:
1da177e4 2544 */
dd41f596 2545static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2546{
664dfa65
DJ
2547 if (oops_in_progress)
2548 return;
2549
3df0fc5b
PZ
2550 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2551 prev->comm, prev->pid, preempt_count());
838225b4 2552
dd41f596 2553 debug_show_held_locks(prev);
e21f5b15 2554 print_modules();
dd41f596
IM
2555 if (irqs_disabled())
2556 print_irqtrace_events(prev);
6135fc1e 2557 dump_stack();
373d4d09 2558 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2559}
1da177e4 2560
dd41f596
IM
2561/*
2562 * Various schedule()-time debugging checks and statistics:
2563 */
2564static inline void schedule_debug(struct task_struct *prev)
2565{
1da177e4 2566 /*
41a2d6cf 2567 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2568 * schedule() atomically, we ignore that path. Otherwise whine
2569 * if we are scheduling when we should not.
1da177e4 2570 */
192301e7 2571 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2572 __schedule_bug(prev);
b3fbab05 2573 rcu_sleep_check();
dd41f596 2574
1da177e4
LT
2575 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2576
2d72376b 2577 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2578}
2579
6cecd084 2580static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2581{
61eadef6 2582 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2583 update_rq_clock(rq);
6cecd084 2584 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2585}
2586
dd41f596
IM
2587/*
2588 * Pick up the highest-prio task:
2589 */
2590static inline struct task_struct *
b67802ea 2591pick_next_task(struct rq *rq)
dd41f596 2592{
5522d5d5 2593 const struct sched_class *class;
dd41f596 2594 struct task_struct *p;
1da177e4
LT
2595
2596 /*
dd41f596
IM
2597 * Optimization: we know that if all tasks are in
2598 * the fair class we can call that function directly:
1da177e4 2599 */
953bfcd1 2600 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2601 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2602 if (likely(p))
2603 return p;
1da177e4
LT
2604 }
2605
34f971f6 2606 for_each_class(class) {
fb8d4724 2607 p = class->pick_next_task(rq);
dd41f596
IM
2608 if (p)
2609 return p;
dd41f596 2610 }
34f971f6
PZ
2611
2612 BUG(); /* the idle class will always have a runnable task */
dd41f596 2613}
1da177e4 2614
dd41f596 2615/*
c259e01a 2616 * __schedule() is the main scheduler function.
edde96ea
PE
2617 *
2618 * The main means of driving the scheduler and thus entering this function are:
2619 *
2620 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2621 *
2622 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2623 * paths. For example, see arch/x86/entry_64.S.
2624 *
2625 * To drive preemption between tasks, the scheduler sets the flag in timer
2626 * interrupt handler scheduler_tick().
2627 *
2628 * 3. Wakeups don't really cause entry into schedule(). They add a
2629 * task to the run-queue and that's it.
2630 *
2631 * Now, if the new task added to the run-queue preempts the current
2632 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2633 * called on the nearest possible occasion:
2634 *
2635 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2636 *
2637 * - in syscall or exception context, at the next outmost
2638 * preempt_enable(). (this might be as soon as the wake_up()'s
2639 * spin_unlock()!)
2640 *
2641 * - in IRQ context, return from interrupt-handler to
2642 * preemptible context
2643 *
2644 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2645 * then at the next:
2646 *
2647 * - cond_resched() call
2648 * - explicit schedule() call
2649 * - return from syscall or exception to user-space
2650 * - return from interrupt-handler to user-space
dd41f596 2651 */
c259e01a 2652static void __sched __schedule(void)
dd41f596
IM
2653{
2654 struct task_struct *prev, *next;
67ca7bde 2655 unsigned long *switch_count;
dd41f596 2656 struct rq *rq;
31656519 2657 int cpu;
dd41f596 2658
ff743345
PZ
2659need_resched:
2660 preempt_disable();
dd41f596
IM
2661 cpu = smp_processor_id();
2662 rq = cpu_rq(cpu);
25502a6c 2663 rcu_note_context_switch(cpu);
dd41f596 2664 prev = rq->curr;
dd41f596 2665
dd41f596 2666 schedule_debug(prev);
1da177e4 2667
31656519 2668 if (sched_feat(HRTICK))
f333fdc9 2669 hrtick_clear(rq);
8f4d37ec 2670
e0acd0a6
ON
2671 /*
2672 * Make sure that signal_pending_state()->signal_pending() below
2673 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2674 * done by the caller to avoid the race with signal_wake_up().
2675 */
2676 smp_mb__before_spinlock();
05fa785c 2677 raw_spin_lock_irq(&rq->lock);
1da177e4 2678
246d86b5 2679 switch_count = &prev->nivcsw;
1da177e4 2680 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2681 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2682 prev->state = TASK_RUNNING;
21aa9af0 2683 } else {
2acca55e
PZ
2684 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2685 prev->on_rq = 0;
2686
21aa9af0 2687 /*
2acca55e
PZ
2688 * If a worker went to sleep, notify and ask workqueue
2689 * whether it wants to wake up a task to maintain
2690 * concurrency.
21aa9af0
TH
2691 */
2692 if (prev->flags & PF_WQ_WORKER) {
2693 struct task_struct *to_wakeup;
2694
2695 to_wakeup = wq_worker_sleeping(prev, cpu);
2696 if (to_wakeup)
2697 try_to_wake_up_local(to_wakeup);
2698 }
21aa9af0 2699 }
dd41f596 2700 switch_count = &prev->nvcsw;
1da177e4
LT
2701 }
2702
3f029d3c 2703 pre_schedule(rq, prev);
f65eda4f 2704
dd41f596 2705 if (unlikely(!rq->nr_running))
1da177e4 2706 idle_balance(cpu, rq);
1da177e4 2707
df1c99d4 2708 put_prev_task(rq, prev);
b67802ea 2709 next = pick_next_task(rq);
f26f9aff 2710 clear_tsk_need_resched(prev);
f27dde8d 2711 clear_preempt_need_resched();
f26f9aff 2712 rq->skip_clock_update = 0;
1da177e4 2713
1da177e4 2714 if (likely(prev != next)) {
1da177e4
LT
2715 rq->nr_switches++;
2716 rq->curr = next;
2717 ++*switch_count;
2718
dd41f596 2719 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2720 /*
246d86b5
ON
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2725 */
2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu);
1da177e4 2728 } else
05fa785c 2729 raw_spin_unlock_irq(&rq->lock);
1da177e4 2730
3f029d3c 2731 post_schedule(rq);
1da177e4 2732
ba74c144 2733 sched_preempt_enable_no_resched();
ff743345 2734 if (need_resched())
1da177e4
LT
2735 goto need_resched;
2736}
c259e01a 2737
9c40cef2
TG
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
3c7d5184 2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2741 return;
2742 /*
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2745 */
2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk);
2748}
2749
6ebbe7a0 2750asmlinkage void __sched schedule(void)
c259e01a 2751{
9c40cef2
TG
2752 struct task_struct *tsk = current;
2753
2754 sched_submit_work(tsk);
c259e01a
TG
2755 __schedule();
2756}
1da177e4
LT
2757EXPORT_SYMBOL(schedule);
2758
91d1aa43 2759#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2760asmlinkage void __sched schedule_user(void)
2761{
2762 /*
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2767 */
91d1aa43 2768 user_exit();
20ab65e3 2769 schedule();
91d1aa43 2770 user_enter();
20ab65e3
FW
2771}
2772#endif
2773
c5491ea7
TG
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
ba74c144 2781 sched_preempt_enable_no_resched();
c5491ea7
TG
2782 schedule();
2783 preempt_disable();
2784}
2785
1da177e4
LT
2786#ifdef CONFIG_PREEMPT
2787/*
2ed6e34f 2788 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2789 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2790 * occur there and call schedule directly.
2791 */
d1f74e20 2792asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2793{
1da177e4
LT
2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2796 * we do not want to preempt the current task. Just return..
1da177e4 2797 */
fbb00b56 2798 if (likely(!preemptible()))
1da177e4
LT
2799 return;
2800
3a5c359a 2801 do {
bdb43806 2802 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2803 __schedule();
bdb43806 2804 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2805
3a5c359a
AK
2806 /*
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2809 */
2810 barrier();
5ed0cec0 2811 } while (need_resched());
1da177e4 2812}
1da177e4 2813EXPORT_SYMBOL(preempt_schedule);
32e475d7 2814#endif /* CONFIG_PREEMPT */
1da177e4
LT
2815
2816/*
2ed6e34f 2817 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage void __sched preempt_schedule_irq(void)
2823{
b22366cd 2824 enum ctx_state prev_state;
6478d880 2825
2ed6e34f 2826 /* Catch callers which need to be fixed */
f27dde8d 2827 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2828
b22366cd
FW
2829 prev_state = exception_enter();
2830
3a5c359a 2831 do {
bdb43806 2832 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2833 local_irq_enable();
c259e01a 2834 __schedule();
3a5c359a 2835 local_irq_disable();
bdb43806 2836 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2837
3a5c359a
AK
2838 /*
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2841 */
2842 barrier();
5ed0cec0 2843 } while (need_resched());
b22366cd
FW
2844
2845 exception_exit(prev_state);
1da177e4
LT
2846}
2847
63859d4f 2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2849 void *key)
1da177e4 2850{
63859d4f 2851 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2852}
1da177e4
LT
2853EXPORT_SYMBOL(default_wake_function);
2854
8cbbe86d
AK
2855static long __sched
2856sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2857{
0fec171c
IM
2858 unsigned long flags;
2859 wait_queue_t wait;
2860
2861 init_waitqueue_entry(&wait, current);
1da177e4 2862
8cbbe86d 2863 __set_current_state(state);
1da177e4 2864
8cbbe86d
AK
2865 spin_lock_irqsave(&q->lock, flags);
2866 __add_wait_queue(q, &wait);
2867 spin_unlock(&q->lock);
2868 timeout = schedule_timeout(timeout);
2869 spin_lock_irq(&q->lock);
2870 __remove_wait_queue(q, &wait);
2871 spin_unlock_irqrestore(&q->lock, flags);
2872
2873 return timeout;
2874}
2875
2876void __sched interruptible_sleep_on(wait_queue_head_t *q)
2877{
2878 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2879}
1da177e4
LT
2880EXPORT_SYMBOL(interruptible_sleep_on);
2881
0fec171c 2882long __sched
95cdf3b7 2883interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2884{
8cbbe86d 2885 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2886}
1da177e4
LT
2887EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2888
0fec171c 2889void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2890{
8cbbe86d 2891 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2892}
1da177e4
LT
2893EXPORT_SYMBOL(sleep_on);
2894
0fec171c 2895long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2896{
8cbbe86d 2897 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2898}
1da177e4
LT
2899EXPORT_SYMBOL(sleep_on_timeout);
2900
b29739f9
IM
2901#ifdef CONFIG_RT_MUTEXES
2902
2903/*
2904 * rt_mutex_setprio - set the current priority of a task
2905 * @p: task
2906 * @prio: prio value (kernel-internal form)
2907 *
2908 * This function changes the 'effective' priority of a task. It does
2909 * not touch ->normal_prio like __setscheduler().
2910 *
2911 * Used by the rt_mutex code to implement priority inheritance logic.
2912 */
36c8b586 2913void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2914{
2d3d891d 2915 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2916 struct rq *rq;
83ab0aa0 2917 const struct sched_class *prev_class;
b29739f9 2918
aab03e05 2919 BUG_ON(prio > MAX_PRIO);
b29739f9 2920
0122ec5b 2921 rq = __task_rq_lock(p);
b29739f9 2922
1c4dd99b
TG
2923 /*
2924 * Idle task boosting is a nono in general. There is one
2925 * exception, when PREEMPT_RT and NOHZ is active:
2926 *
2927 * The idle task calls get_next_timer_interrupt() and holds
2928 * the timer wheel base->lock on the CPU and another CPU wants
2929 * to access the timer (probably to cancel it). We can safely
2930 * ignore the boosting request, as the idle CPU runs this code
2931 * with interrupts disabled and will complete the lock
2932 * protected section without being interrupted. So there is no
2933 * real need to boost.
2934 */
2935 if (unlikely(p == rq->idle)) {
2936 WARN_ON(p != rq->curr);
2937 WARN_ON(p->pi_blocked_on);
2938 goto out_unlock;
2939 }
2940
a8027073 2941 trace_sched_pi_setprio(p, prio);
2d3d891d 2942 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2943 oldprio = p->prio;
83ab0aa0 2944 prev_class = p->sched_class;
fd2f4419 2945 on_rq = p->on_rq;
051a1d1a 2946 running = task_current(rq, p);
0e1f3483 2947 if (on_rq)
69be72c1 2948 dequeue_task(rq, p, 0);
0e1f3483
HS
2949 if (running)
2950 p->sched_class->put_prev_task(rq, p);
dd41f596 2951
2d3d891d
DF
2952 /*
2953 * Boosting condition are:
2954 * 1. -rt task is running and holds mutex A
2955 * --> -dl task blocks on mutex A
2956 *
2957 * 2. -dl task is running and holds mutex A
2958 * --> -dl task blocks on mutex A and could preempt the
2959 * running task
2960 */
2961 if (dl_prio(prio)) {
2962 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2963 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2964 p->dl.dl_boosted = 1;
2965 p->dl.dl_throttled = 0;
2966 enqueue_flag = ENQUEUE_REPLENISH;
2967 } else
2968 p->dl.dl_boosted = 0;
aab03e05 2969 p->sched_class = &dl_sched_class;
2d3d891d
DF
2970 } else if (rt_prio(prio)) {
2971 if (dl_prio(oldprio))
2972 p->dl.dl_boosted = 0;
2973 if (oldprio < prio)
2974 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2975 p->sched_class = &rt_sched_class;
2d3d891d
DF
2976 } else {
2977 if (dl_prio(oldprio))
2978 p->dl.dl_boosted = 0;
dd41f596 2979 p->sched_class = &fair_sched_class;
2d3d891d 2980 }
dd41f596 2981
b29739f9
IM
2982 p->prio = prio;
2983
0e1f3483
HS
2984 if (running)
2985 p->sched_class->set_curr_task(rq);
da7a735e 2986 if (on_rq)
2d3d891d 2987 enqueue_task(rq, p, enqueue_flag);
cb469845 2988
da7a735e 2989 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2990out_unlock:
0122ec5b 2991 __task_rq_unlock(rq);
b29739f9 2992}
b29739f9 2993#endif
d50dde5a 2994
36c8b586 2995void set_user_nice(struct task_struct *p, long nice)
1da177e4 2996{
dd41f596 2997 int old_prio, delta, on_rq;
1da177e4 2998 unsigned long flags;
70b97a7f 2999 struct rq *rq;
1da177e4
LT
3000
3001 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3002 return;
3003 /*
3004 * We have to be careful, if called from sys_setpriority(),
3005 * the task might be in the middle of scheduling on another CPU.
3006 */
3007 rq = task_rq_lock(p, &flags);
3008 /*
3009 * The RT priorities are set via sched_setscheduler(), but we still
3010 * allow the 'normal' nice value to be set - but as expected
3011 * it wont have any effect on scheduling until the task is
aab03e05 3012 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3013 */
aab03e05 3014 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3015 p->static_prio = NICE_TO_PRIO(nice);
3016 goto out_unlock;
3017 }
fd2f4419 3018 on_rq = p->on_rq;
c09595f6 3019 if (on_rq)
69be72c1 3020 dequeue_task(rq, p, 0);
1da177e4 3021
1da177e4 3022 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3023 set_load_weight(p);
b29739f9
IM
3024 old_prio = p->prio;
3025 p->prio = effective_prio(p);
3026 delta = p->prio - old_prio;
1da177e4 3027
dd41f596 3028 if (on_rq) {
371fd7e7 3029 enqueue_task(rq, p, 0);
1da177e4 3030 /*
d5f9f942
AM
3031 * If the task increased its priority or is running and
3032 * lowered its priority, then reschedule its CPU:
1da177e4 3033 */
d5f9f942 3034 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3035 resched_task(rq->curr);
3036 }
3037out_unlock:
0122ec5b 3038 task_rq_unlock(rq, p, &flags);
1da177e4 3039}
1da177e4
LT
3040EXPORT_SYMBOL(set_user_nice);
3041
e43379f1
MM
3042/*
3043 * can_nice - check if a task can reduce its nice value
3044 * @p: task
3045 * @nice: nice value
3046 */
36c8b586 3047int can_nice(const struct task_struct *p, const int nice)
e43379f1 3048{
024f4747
MM
3049 /* convert nice value [19,-20] to rlimit style value [1,40] */
3050 int nice_rlim = 20 - nice;
48f24c4d 3051
78d7d407 3052 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3053 capable(CAP_SYS_NICE));
3054}
3055
1da177e4
LT
3056#ifdef __ARCH_WANT_SYS_NICE
3057
3058/*
3059 * sys_nice - change the priority of the current process.
3060 * @increment: priority increment
3061 *
3062 * sys_setpriority is a more generic, but much slower function that
3063 * does similar things.
3064 */
5add95d4 3065SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3066{
48f24c4d 3067 long nice, retval;
1da177e4
LT
3068
3069 /*
3070 * Setpriority might change our priority at the same moment.
3071 * We don't have to worry. Conceptually one call occurs first
3072 * and we have a single winner.
3073 */
e43379f1
MM
3074 if (increment < -40)
3075 increment = -40;
1da177e4
LT
3076 if (increment > 40)
3077 increment = 40;
3078
2b8f836f 3079 nice = TASK_NICE(current) + increment;
1da177e4
LT
3080 if (nice < -20)
3081 nice = -20;
3082 if (nice > 19)
3083 nice = 19;
3084
e43379f1
MM
3085 if (increment < 0 && !can_nice(current, nice))
3086 return -EPERM;
3087
1da177e4
LT
3088 retval = security_task_setnice(current, nice);
3089 if (retval)
3090 return retval;
3091
3092 set_user_nice(current, nice);
3093 return 0;
3094}
3095
3096#endif
3097
3098/**
3099 * task_prio - return the priority value of a given task.
3100 * @p: the task in question.
3101 *
e69f6186 3102 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3103 * RT tasks are offset by -200. Normal tasks are centered
3104 * around 0, value goes from -16 to +15.
3105 */
36c8b586 3106int task_prio(const struct task_struct *p)
1da177e4
LT
3107{
3108 return p->prio - MAX_RT_PRIO;
3109}
3110
3111/**
3112 * task_nice - return the nice value of a given task.
3113 * @p: the task in question.
e69f6186
YB
3114 *
3115 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3116 */
36c8b586 3117int task_nice(const struct task_struct *p)
1da177e4
LT
3118{
3119 return TASK_NICE(p);
3120}
150d8bed 3121EXPORT_SYMBOL(task_nice);
1da177e4
LT
3122
3123/**
3124 * idle_cpu - is a given cpu idle currently?
3125 * @cpu: the processor in question.
e69f6186
YB
3126 *
3127 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3128 */
3129int idle_cpu(int cpu)
3130{
908a3283
TG
3131 struct rq *rq = cpu_rq(cpu);
3132
3133 if (rq->curr != rq->idle)
3134 return 0;
3135
3136 if (rq->nr_running)
3137 return 0;
3138
3139#ifdef CONFIG_SMP
3140 if (!llist_empty(&rq->wake_list))
3141 return 0;
3142#endif
3143
3144 return 1;
1da177e4
LT
3145}
3146
1da177e4
LT
3147/**
3148 * idle_task - return the idle task for a given cpu.
3149 * @cpu: the processor in question.
e69f6186
YB
3150 *
3151 * Return: The idle task for the cpu @cpu.
1da177e4 3152 */
36c8b586 3153struct task_struct *idle_task(int cpu)
1da177e4
LT
3154{
3155 return cpu_rq(cpu)->idle;
3156}
3157
3158/**
3159 * find_process_by_pid - find a process with a matching PID value.
3160 * @pid: the pid in question.
e69f6186
YB
3161 *
3162 * The task of @pid, if found. %NULL otherwise.
1da177e4 3163 */
a9957449 3164static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3165{
228ebcbe 3166 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3167}
3168
aab03e05
DF
3169/*
3170 * This function initializes the sched_dl_entity of a newly becoming
3171 * SCHED_DEADLINE task.
3172 *
3173 * Only the static values are considered here, the actual runtime and the
3174 * absolute deadline will be properly calculated when the task is enqueued
3175 * for the first time with its new policy.
3176 */
3177static void
3178__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3179{
3180 struct sched_dl_entity *dl_se = &p->dl;
3181
3182 init_dl_task_timer(dl_se);
3183 dl_se->dl_runtime = attr->sched_runtime;
3184 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3185 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3186 dl_se->flags = attr->sched_flags;
332ac17e 3187 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3188 dl_se->dl_throttled = 0;
3189 dl_se->dl_new = 1;
3190}
3191
d50dde5a
DF
3192/* Actually do priority change: must hold pi & rq lock. */
3193static void __setscheduler(struct rq *rq, struct task_struct *p,
3194 const struct sched_attr *attr)
1da177e4 3195{
d50dde5a
DF
3196 int policy = attr->sched_policy;
3197
39fd8fd2
PZ
3198 if (policy == -1) /* setparam */
3199 policy = p->policy;
3200
1da177e4 3201 p->policy = policy;
d50dde5a 3202
aab03e05
DF
3203 if (dl_policy(policy))
3204 __setparam_dl(p, attr);
39fd8fd2 3205 else if (fair_policy(policy))
d50dde5a
DF
3206 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3207
39fd8fd2
PZ
3208 /*
3209 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3210 * !rt_policy. Always setting this ensures that things like
3211 * getparam()/getattr() don't report silly values for !rt tasks.
3212 */
3213 p->rt_priority = attr->sched_priority;
3214
b29739f9 3215 p->normal_prio = normal_prio(p);
b29739f9 3216 p->prio = rt_mutex_getprio(p);
d50dde5a 3217
aab03e05
DF
3218 if (dl_prio(p->prio))
3219 p->sched_class = &dl_sched_class;
3220 else if (rt_prio(p->prio))
ffd44db5
PZ
3221 p->sched_class = &rt_sched_class;
3222 else
3223 p->sched_class = &fair_sched_class;
d50dde5a 3224
2dd73a4f 3225 set_load_weight(p);
1da177e4 3226}
aab03e05
DF
3227
3228static void
3229__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3230{
3231 struct sched_dl_entity *dl_se = &p->dl;
3232
3233 attr->sched_priority = p->rt_priority;
3234 attr->sched_runtime = dl_se->dl_runtime;
3235 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3236 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3237 attr->sched_flags = dl_se->flags;
3238}
3239
3240/*
3241 * This function validates the new parameters of a -deadline task.
3242 * We ask for the deadline not being zero, and greater or equal
755378a4 3243 * than the runtime, as well as the period of being zero or
332ac17e
DF
3244 * greater than deadline. Furthermore, we have to be sure that
3245 * user parameters are above the internal resolution (1us); we
3246 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3247 */
3248static bool
3249__checkparam_dl(const struct sched_attr *attr)
3250{
3251 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3252 (attr->sched_period == 0 ||
3253 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3254 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3255 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3256}
3257
c69e8d9c
DH
3258/*
3259 * check the target process has a UID that matches the current process's
3260 */
3261static bool check_same_owner(struct task_struct *p)
3262{
3263 const struct cred *cred = current_cred(), *pcred;
3264 bool match;
3265
3266 rcu_read_lock();
3267 pcred = __task_cred(p);
9c806aa0
EB
3268 match = (uid_eq(cred->euid, pcred->euid) ||
3269 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3270 rcu_read_unlock();
3271 return match;
3272}
3273
d50dde5a
DF
3274static int __sched_setscheduler(struct task_struct *p,
3275 const struct sched_attr *attr,
3276 bool user)
1da177e4 3277{
83b699ed 3278 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3279 int policy = attr->sched_policy;
1da177e4 3280 unsigned long flags;
83ab0aa0 3281 const struct sched_class *prev_class;
70b97a7f 3282 struct rq *rq;
ca94c442 3283 int reset_on_fork;
1da177e4 3284
66e5393a
SR
3285 /* may grab non-irq protected spin_locks */
3286 BUG_ON(in_interrupt());
1da177e4
LT
3287recheck:
3288 /* double check policy once rq lock held */
ca94c442
LP
3289 if (policy < 0) {
3290 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3291 policy = oldpolicy = p->policy;
ca94c442 3292 } else {
7479f3c9 3293 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3294
aab03e05
DF
3295 if (policy != SCHED_DEADLINE &&
3296 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3297 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298 policy != SCHED_IDLE)
3299 return -EINVAL;
3300 }
3301
7479f3c9
PZ
3302 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3303 return -EINVAL;
3304
1da177e4
LT
3305 /*
3306 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3309 */
0bb040a4 3310 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3311 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3312 return -EINVAL;
aab03e05
DF
3313 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3314 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3315 return -EINVAL;
3316
37e4ab3f
OC
3317 /*
3318 * Allow unprivileged RT tasks to decrease priority:
3319 */
961ccddd 3320 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3321 if (fair_policy(policy)) {
eaad4513
PZ
3322 if (attr->sched_nice < TASK_NICE(p) &&
3323 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3324 return -EPERM;
3325 }
3326
e05606d3 3327 if (rt_policy(policy)) {
a44702e8
ON
3328 unsigned long rlim_rtprio =
3329 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3330
3331 /* can't set/change the rt policy */
3332 if (policy != p->policy && !rlim_rtprio)
3333 return -EPERM;
3334
3335 /* can't increase priority */
d50dde5a
DF
3336 if (attr->sched_priority > p->rt_priority &&
3337 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3338 return -EPERM;
3339 }
c02aa73b 3340
dd41f596 3341 /*
c02aa73b
DH
3342 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3343 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3344 */
c02aa73b
DH
3345 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3346 if (!can_nice(p, TASK_NICE(p)))
3347 return -EPERM;
3348 }
5fe1d75f 3349
37e4ab3f 3350 /* can't change other user's priorities */
c69e8d9c 3351 if (!check_same_owner(p))
37e4ab3f 3352 return -EPERM;
ca94c442
LP
3353
3354 /* Normal users shall not reset the sched_reset_on_fork flag */
3355 if (p->sched_reset_on_fork && !reset_on_fork)
3356 return -EPERM;
37e4ab3f 3357 }
1da177e4 3358
725aad24 3359 if (user) {
b0ae1981 3360 retval = security_task_setscheduler(p);
725aad24
JF
3361 if (retval)
3362 return retval;
3363 }
3364
b29739f9
IM
3365 /*
3366 * make sure no PI-waiters arrive (or leave) while we are
3367 * changing the priority of the task:
0122ec5b 3368 *
25985edc 3369 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3370 * runqueue lock must be held.
3371 */
0122ec5b 3372 rq = task_rq_lock(p, &flags);
dc61b1d6 3373
34f971f6
PZ
3374 /*
3375 * Changing the policy of the stop threads its a very bad idea
3376 */
3377 if (p == rq->stop) {
0122ec5b 3378 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3379 return -EINVAL;
3380 }
3381
a51e9198
DF
3382 /*
3383 * If not changing anything there's no need to proceed further:
3384 */
d50dde5a
DF
3385 if (unlikely(policy == p->policy)) {
3386 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3387 goto change;
3388 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3389 goto change;
aab03e05
DF
3390 if (dl_policy(policy))
3391 goto change;
d50dde5a 3392
45afb173 3393 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3394 return 0;
3395 }
d50dde5a 3396change:
a51e9198 3397
dc61b1d6 3398 if (user) {
332ac17e 3399#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3400 /*
3401 * Do not allow realtime tasks into groups that have no runtime
3402 * assigned.
3403 */
3404 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3405 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3406 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3407 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3408 return -EPERM;
3409 }
dc61b1d6 3410#endif
332ac17e
DF
3411#ifdef CONFIG_SMP
3412 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3413 cpumask_t *span = rq->rd->span;
332ac17e
DF
3414
3415 /*
3416 * Don't allow tasks with an affinity mask smaller than
3417 * the entire root_domain to become SCHED_DEADLINE. We
3418 * will also fail if there's no bandwidth available.
3419 */
e4099a5e
PZ
3420 if (!cpumask_subset(span, &p->cpus_allowed) ||
3421 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3422 task_rq_unlock(rq, p, &flags);
3423 return -EPERM;
3424 }
3425 }
3426#endif
3427 }
dc61b1d6 3428
1da177e4
LT
3429 /* recheck policy now with rq lock held */
3430 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3431 policy = oldpolicy = -1;
0122ec5b 3432 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3433 goto recheck;
3434 }
332ac17e
DF
3435
3436 /*
3437 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3438 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3439 * is available.
3440 */
e4099a5e 3441 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3442 task_rq_unlock(rq, p, &flags);
3443 return -EBUSY;
3444 }
3445
fd2f4419 3446 on_rq = p->on_rq;
051a1d1a 3447 running = task_current(rq, p);
0e1f3483 3448 if (on_rq)
4ca9b72b 3449 dequeue_task(rq, p, 0);
0e1f3483
HS
3450 if (running)
3451 p->sched_class->put_prev_task(rq, p);
f6b53205 3452
ca94c442
LP
3453 p->sched_reset_on_fork = reset_on_fork;
3454
1da177e4 3455 oldprio = p->prio;
83ab0aa0 3456 prev_class = p->sched_class;
d50dde5a 3457 __setscheduler(rq, p, attr);
f6b53205 3458
0e1f3483
HS
3459 if (running)
3460 p->sched_class->set_curr_task(rq);
da7a735e 3461 if (on_rq)
4ca9b72b 3462 enqueue_task(rq, p, 0);
cb469845 3463
da7a735e 3464 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3465 task_rq_unlock(rq, p, &flags);
b29739f9 3466
95e02ca9
TG
3467 rt_mutex_adjust_pi(p);
3468
1da177e4
LT
3469 return 0;
3470}
961ccddd 3471
7479f3c9
PZ
3472static int _sched_setscheduler(struct task_struct *p, int policy,
3473 const struct sched_param *param, bool check)
3474{
3475 struct sched_attr attr = {
3476 .sched_policy = policy,
3477 .sched_priority = param->sched_priority,
3478 .sched_nice = PRIO_TO_NICE(p->static_prio),
3479 };
3480
3481 /*
3482 * Fixup the legacy SCHED_RESET_ON_FORK hack
3483 */
3484 if (policy & SCHED_RESET_ON_FORK) {
3485 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3486 policy &= ~SCHED_RESET_ON_FORK;
3487 attr.sched_policy = policy;
3488 }
3489
3490 return __sched_setscheduler(p, &attr, check);
3491}
961ccddd
RR
3492/**
3493 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3494 * @p: the task in question.
3495 * @policy: new policy.
3496 * @param: structure containing the new RT priority.
3497 *
e69f6186
YB
3498 * Return: 0 on success. An error code otherwise.
3499 *
961ccddd
RR
3500 * NOTE that the task may be already dead.
3501 */
3502int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3503 const struct sched_param *param)
961ccddd 3504{
7479f3c9 3505 return _sched_setscheduler(p, policy, param, true);
961ccddd 3506}
1da177e4
LT
3507EXPORT_SYMBOL_GPL(sched_setscheduler);
3508
d50dde5a
DF
3509int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3510{
3511 return __sched_setscheduler(p, attr, true);
3512}
3513EXPORT_SYMBOL_GPL(sched_setattr);
3514
961ccddd
RR
3515/**
3516 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3517 * @p: the task in question.
3518 * @policy: new policy.
3519 * @param: structure containing the new RT priority.
3520 *
3521 * Just like sched_setscheduler, only don't bother checking if the
3522 * current context has permission. For example, this is needed in
3523 * stop_machine(): we create temporary high priority worker threads,
3524 * but our caller might not have that capability.
e69f6186
YB
3525 *
3526 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3527 */
3528int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3529 const struct sched_param *param)
961ccddd 3530{
7479f3c9 3531 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3532}
3533
95cdf3b7
IM
3534static int
3535do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3536{
1da177e4
LT
3537 struct sched_param lparam;
3538 struct task_struct *p;
36c8b586 3539 int retval;
1da177e4
LT
3540
3541 if (!param || pid < 0)
3542 return -EINVAL;
3543 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3544 return -EFAULT;
5fe1d75f
ON
3545
3546 rcu_read_lock();
3547 retval = -ESRCH;
1da177e4 3548 p = find_process_by_pid(pid);
5fe1d75f
ON
3549 if (p != NULL)
3550 retval = sched_setscheduler(p, policy, &lparam);
3551 rcu_read_unlock();
36c8b586 3552
1da177e4
LT
3553 return retval;
3554}
3555
d50dde5a
DF
3556/*
3557 * Mimics kernel/events/core.c perf_copy_attr().
3558 */
3559static int sched_copy_attr(struct sched_attr __user *uattr,
3560 struct sched_attr *attr)
3561{
3562 u32 size;
3563 int ret;
3564
3565 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3566 return -EFAULT;
3567
3568 /*
3569 * zero the full structure, so that a short copy will be nice.
3570 */
3571 memset(attr, 0, sizeof(*attr));
3572
3573 ret = get_user(size, &uattr->size);
3574 if (ret)
3575 return ret;
3576
3577 if (size > PAGE_SIZE) /* silly large */
3578 goto err_size;
3579
3580 if (!size) /* abi compat */
3581 size = SCHED_ATTR_SIZE_VER0;
3582
3583 if (size < SCHED_ATTR_SIZE_VER0)
3584 goto err_size;
3585
3586 /*
3587 * If we're handed a bigger struct than we know of,
3588 * ensure all the unknown bits are 0 - i.e. new
3589 * user-space does not rely on any kernel feature
3590 * extensions we dont know about yet.
3591 */
3592 if (size > sizeof(*attr)) {
3593 unsigned char __user *addr;
3594 unsigned char __user *end;
3595 unsigned char val;
3596
3597 addr = (void __user *)uattr + sizeof(*attr);
3598 end = (void __user *)uattr + size;
3599
3600 for (; addr < end; addr++) {
3601 ret = get_user(val, addr);
3602 if (ret)
3603 return ret;
3604 if (val)
3605 goto err_size;
3606 }
3607 size = sizeof(*attr);
3608 }
3609
3610 ret = copy_from_user(attr, uattr, size);
3611 if (ret)
3612 return -EFAULT;
3613
3614 /*
3615 * XXX: do we want to be lenient like existing syscalls; or do we want
3616 * to be strict and return an error on out-of-bounds values?
3617 */
3618 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3619
3620out:
3621 return ret;
3622
3623err_size:
3624 put_user(sizeof(*attr), &uattr->size);
3625 ret = -E2BIG;
3626 goto out;
3627}
3628
1da177e4
LT
3629/**
3630 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3631 * @pid: the pid in question.
3632 * @policy: new policy.
3633 * @param: structure containing the new RT priority.
e69f6186
YB
3634 *
3635 * Return: 0 on success. An error code otherwise.
1da177e4 3636 */
5add95d4
HC
3637SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3638 struct sched_param __user *, param)
1da177e4 3639{
c21761f1
JB
3640 /* negative values for policy are not valid */
3641 if (policy < 0)
3642 return -EINVAL;
3643
1da177e4
LT
3644 return do_sched_setscheduler(pid, policy, param);
3645}
3646
3647/**
3648 * sys_sched_setparam - set/change the RT priority of a thread
3649 * @pid: the pid in question.
3650 * @param: structure containing the new RT priority.
e69f6186
YB
3651 *
3652 * Return: 0 on success. An error code otherwise.
1da177e4 3653 */
5add95d4 3654SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3655{
3656 return do_sched_setscheduler(pid, -1, param);
3657}
3658
d50dde5a
DF
3659/**
3660 * sys_sched_setattr - same as above, but with extended sched_attr
3661 * @pid: the pid in question.
5778fccf 3662 * @uattr: structure containing the extended parameters.
d50dde5a 3663 */
6d35ab48
PZ
3664SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3665 unsigned int, flags)
d50dde5a
DF
3666{
3667 struct sched_attr attr;
3668 struct task_struct *p;
3669 int retval;
3670
6d35ab48 3671 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3672 return -EINVAL;
3673
3674 if (sched_copy_attr(uattr, &attr))
3675 return -EFAULT;
3676
3677 rcu_read_lock();
3678 retval = -ESRCH;
3679 p = find_process_by_pid(pid);
3680 if (p != NULL)
3681 retval = sched_setattr(p, &attr);
3682 rcu_read_unlock();
3683
3684 return retval;
3685}
3686
1da177e4
LT
3687/**
3688 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3689 * @pid: the pid in question.
e69f6186
YB
3690 *
3691 * Return: On success, the policy of the thread. Otherwise, a negative error
3692 * code.
1da177e4 3693 */
5add95d4 3694SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3695{
36c8b586 3696 struct task_struct *p;
3a5c359a 3697 int retval;
1da177e4
LT
3698
3699 if (pid < 0)
3a5c359a 3700 return -EINVAL;
1da177e4
LT
3701
3702 retval = -ESRCH;
5fe85be0 3703 rcu_read_lock();
1da177e4
LT
3704 p = find_process_by_pid(pid);
3705 if (p) {
3706 retval = security_task_getscheduler(p);
3707 if (!retval)
ca94c442
LP
3708 retval = p->policy
3709 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3710 }
5fe85be0 3711 rcu_read_unlock();
1da177e4
LT
3712 return retval;
3713}
3714
3715/**
ca94c442 3716 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3717 * @pid: the pid in question.
3718 * @param: structure containing the RT priority.
e69f6186
YB
3719 *
3720 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3721 * code.
1da177e4 3722 */
5add95d4 3723SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3724{
3725 struct sched_param lp;
36c8b586 3726 struct task_struct *p;
3a5c359a 3727 int retval;
1da177e4
LT
3728
3729 if (!param || pid < 0)
3a5c359a 3730 return -EINVAL;
1da177e4 3731
5fe85be0 3732 rcu_read_lock();
1da177e4
LT
3733 p = find_process_by_pid(pid);
3734 retval = -ESRCH;
3735 if (!p)
3736 goto out_unlock;
3737
3738 retval = security_task_getscheduler(p);
3739 if (retval)
3740 goto out_unlock;
3741
aab03e05
DF
3742 if (task_has_dl_policy(p)) {
3743 retval = -EINVAL;
3744 goto out_unlock;
3745 }
1da177e4 3746 lp.sched_priority = p->rt_priority;
5fe85be0 3747 rcu_read_unlock();
1da177e4
LT
3748
3749 /*
3750 * This one might sleep, we cannot do it with a spinlock held ...
3751 */
3752 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3753
1da177e4
LT
3754 return retval;
3755
3756out_unlock:
5fe85be0 3757 rcu_read_unlock();
1da177e4
LT
3758 return retval;
3759}
3760
d50dde5a
DF
3761static int sched_read_attr(struct sched_attr __user *uattr,
3762 struct sched_attr *attr,
3763 unsigned int usize)
3764{
3765 int ret;
3766
3767 if (!access_ok(VERIFY_WRITE, uattr, usize))
3768 return -EFAULT;
3769
3770 /*
3771 * If we're handed a smaller struct than we know of,
3772 * ensure all the unknown bits are 0 - i.e. old
3773 * user-space does not get uncomplete information.
3774 */
3775 if (usize < sizeof(*attr)) {
3776 unsigned char *addr;
3777 unsigned char *end;
3778
3779 addr = (void *)attr + usize;
3780 end = (void *)attr + sizeof(*attr);
3781
3782 for (; addr < end; addr++) {
3783 if (*addr)
3784 goto err_size;
3785 }
3786
3787 attr->size = usize;
3788 }
3789
4efbc454 3790 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3791 if (ret)
3792 return -EFAULT;
3793
3794out:
3795 return ret;
3796
3797err_size:
3798 ret = -E2BIG;
3799 goto out;
3800}
3801
3802/**
aab03e05 3803 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3804 * @pid: the pid in question.
5778fccf 3805 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3806 * @size: sizeof(attr) for fwd/bwd comp.
3807 */
6d35ab48
PZ
3808SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3809 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3810{
3811 struct sched_attr attr = {
3812 .size = sizeof(struct sched_attr),
3813 };
3814 struct task_struct *p;
3815 int retval;
3816
3817 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3818 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3819 return -EINVAL;
3820
3821 rcu_read_lock();
3822 p = find_process_by_pid(pid);
3823 retval = -ESRCH;
3824 if (!p)
3825 goto out_unlock;
3826
3827 retval = security_task_getscheduler(p);
3828 if (retval)
3829 goto out_unlock;
3830
3831 attr.sched_policy = p->policy;
7479f3c9
PZ
3832 if (p->sched_reset_on_fork)
3833 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3834 if (task_has_dl_policy(p))
3835 __getparam_dl(p, &attr);
3836 else if (task_has_rt_policy(p))
d50dde5a
DF
3837 attr.sched_priority = p->rt_priority;
3838 else
3839 attr.sched_nice = TASK_NICE(p);
3840
3841 rcu_read_unlock();
3842
3843 retval = sched_read_attr(uattr, &attr, size);
3844 return retval;
3845
3846out_unlock:
3847 rcu_read_unlock();
3848 return retval;
3849}
3850
96f874e2 3851long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3852{
5a16f3d3 3853 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3854 struct task_struct *p;
3855 int retval;
1da177e4 3856
23f5d142 3857 rcu_read_lock();
1da177e4
LT
3858
3859 p = find_process_by_pid(pid);
3860 if (!p) {
23f5d142 3861 rcu_read_unlock();
1da177e4
LT
3862 return -ESRCH;
3863 }
3864
23f5d142 3865 /* Prevent p going away */
1da177e4 3866 get_task_struct(p);
23f5d142 3867 rcu_read_unlock();
1da177e4 3868
14a40ffc
TH
3869 if (p->flags & PF_NO_SETAFFINITY) {
3870 retval = -EINVAL;
3871 goto out_put_task;
3872 }
5a16f3d3
RR
3873 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3874 retval = -ENOMEM;
3875 goto out_put_task;
3876 }
3877 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3878 retval = -ENOMEM;
3879 goto out_free_cpus_allowed;
3880 }
1da177e4 3881 retval = -EPERM;
4c44aaaf
EB
3882 if (!check_same_owner(p)) {
3883 rcu_read_lock();
3884 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3885 rcu_read_unlock();
3886 goto out_unlock;
3887 }
3888 rcu_read_unlock();
3889 }
1da177e4 3890
b0ae1981 3891 retval = security_task_setscheduler(p);
e7834f8f
DQ
3892 if (retval)
3893 goto out_unlock;
3894
e4099a5e
PZ
3895
3896 cpuset_cpus_allowed(p, cpus_allowed);
3897 cpumask_and(new_mask, in_mask, cpus_allowed);
3898
332ac17e
DF
3899 /*
3900 * Since bandwidth control happens on root_domain basis,
3901 * if admission test is enabled, we only admit -deadline
3902 * tasks allowed to run on all the CPUs in the task's
3903 * root_domain.
3904 */
3905#ifdef CONFIG_SMP
3906 if (task_has_dl_policy(p)) {
3907 const struct cpumask *span = task_rq(p)->rd->span;
3908
e4099a5e 3909 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3910 retval = -EBUSY;
3911 goto out_unlock;
3912 }
3913 }
3914#endif
49246274 3915again:
5a16f3d3 3916 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3917
8707d8b8 3918 if (!retval) {
5a16f3d3
RR
3919 cpuset_cpus_allowed(p, cpus_allowed);
3920 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3921 /*
3922 * We must have raced with a concurrent cpuset
3923 * update. Just reset the cpus_allowed to the
3924 * cpuset's cpus_allowed
3925 */
5a16f3d3 3926 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3927 goto again;
3928 }
3929 }
1da177e4 3930out_unlock:
5a16f3d3
RR
3931 free_cpumask_var(new_mask);
3932out_free_cpus_allowed:
3933 free_cpumask_var(cpus_allowed);
3934out_put_task:
1da177e4 3935 put_task_struct(p);
1da177e4
LT
3936 return retval;
3937}
3938
3939static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3940 struct cpumask *new_mask)
1da177e4 3941{
96f874e2
RR
3942 if (len < cpumask_size())
3943 cpumask_clear(new_mask);
3944 else if (len > cpumask_size())
3945 len = cpumask_size();
3946
1da177e4
LT
3947 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3948}
3949
3950/**
3951 * sys_sched_setaffinity - set the cpu affinity of a process
3952 * @pid: pid of the process
3953 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3954 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3955 *
3956 * Return: 0 on success. An error code otherwise.
1da177e4 3957 */
5add95d4
HC
3958SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3959 unsigned long __user *, user_mask_ptr)
1da177e4 3960{
5a16f3d3 3961 cpumask_var_t new_mask;
1da177e4
LT
3962 int retval;
3963
5a16f3d3
RR
3964 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3965 return -ENOMEM;
1da177e4 3966
5a16f3d3
RR
3967 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3968 if (retval == 0)
3969 retval = sched_setaffinity(pid, new_mask);
3970 free_cpumask_var(new_mask);
3971 return retval;
1da177e4
LT
3972}
3973
96f874e2 3974long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3975{
36c8b586 3976 struct task_struct *p;
31605683 3977 unsigned long flags;
1da177e4 3978 int retval;
1da177e4 3979
23f5d142 3980 rcu_read_lock();
1da177e4
LT
3981
3982 retval = -ESRCH;
3983 p = find_process_by_pid(pid);
3984 if (!p)
3985 goto out_unlock;
3986
e7834f8f
DQ
3987 retval = security_task_getscheduler(p);
3988 if (retval)
3989 goto out_unlock;
3990
013fdb80 3991 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3992 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3993 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3994
3995out_unlock:
23f5d142 3996 rcu_read_unlock();
1da177e4 3997
9531b62f 3998 return retval;
1da177e4
LT
3999}
4000
4001/**
4002 * sys_sched_getaffinity - get the cpu affinity of a process
4003 * @pid: pid of the process
4004 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4005 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4006 *
4007 * Return: 0 on success. An error code otherwise.
1da177e4 4008 */
5add95d4
HC
4009SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4010 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4011{
4012 int ret;
f17c8607 4013 cpumask_var_t mask;
1da177e4 4014
84fba5ec 4015 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4016 return -EINVAL;
4017 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4018 return -EINVAL;
4019
f17c8607
RR
4020 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4021 return -ENOMEM;
1da177e4 4022
f17c8607
RR
4023 ret = sched_getaffinity(pid, mask);
4024 if (ret == 0) {
8bc037fb 4025 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4026
4027 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4028 ret = -EFAULT;
4029 else
cd3d8031 4030 ret = retlen;
f17c8607
RR
4031 }
4032 free_cpumask_var(mask);
1da177e4 4033
f17c8607 4034 return ret;
1da177e4
LT
4035}
4036
4037/**
4038 * sys_sched_yield - yield the current processor to other threads.
4039 *
dd41f596
IM
4040 * This function yields the current CPU to other tasks. If there are no
4041 * other threads running on this CPU then this function will return.
e69f6186
YB
4042 *
4043 * Return: 0.
1da177e4 4044 */
5add95d4 4045SYSCALL_DEFINE0(sched_yield)
1da177e4 4046{
70b97a7f 4047 struct rq *rq = this_rq_lock();
1da177e4 4048
2d72376b 4049 schedstat_inc(rq, yld_count);
4530d7ab 4050 current->sched_class->yield_task(rq);
1da177e4
LT
4051
4052 /*
4053 * Since we are going to call schedule() anyway, there's
4054 * no need to preempt or enable interrupts:
4055 */
4056 __release(rq->lock);
8a25d5de 4057 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4058 do_raw_spin_unlock(&rq->lock);
ba74c144 4059 sched_preempt_enable_no_resched();
1da177e4
LT
4060
4061 schedule();
4062
4063 return 0;
4064}
4065
e7b38404 4066static void __cond_resched(void)
1da177e4 4067{
bdb43806 4068 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4069 __schedule();
bdb43806 4070 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4071}
4072
02b67cc3 4073int __sched _cond_resched(void)
1da177e4 4074{
d86ee480 4075 if (should_resched()) {
1da177e4
LT
4076 __cond_resched();
4077 return 1;
4078 }
4079 return 0;
4080}
02b67cc3 4081EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4082
4083/*
613afbf8 4084 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4085 * call schedule, and on return reacquire the lock.
4086 *
41a2d6cf 4087 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4088 * operations here to prevent schedule() from being called twice (once via
4089 * spin_unlock(), once by hand).
4090 */
613afbf8 4091int __cond_resched_lock(spinlock_t *lock)
1da177e4 4092{
d86ee480 4093 int resched = should_resched();
6df3cecb
JK
4094 int ret = 0;
4095
f607c668
PZ
4096 lockdep_assert_held(lock);
4097
95c354fe 4098 if (spin_needbreak(lock) || resched) {
1da177e4 4099 spin_unlock(lock);
d86ee480 4100 if (resched)
95c354fe
NP
4101 __cond_resched();
4102 else
4103 cpu_relax();
6df3cecb 4104 ret = 1;
1da177e4 4105 spin_lock(lock);
1da177e4 4106 }
6df3cecb 4107 return ret;
1da177e4 4108}
613afbf8 4109EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4110
613afbf8 4111int __sched __cond_resched_softirq(void)
1da177e4
LT
4112{
4113 BUG_ON(!in_softirq());
4114
d86ee480 4115 if (should_resched()) {
98d82567 4116 local_bh_enable();
1da177e4
LT
4117 __cond_resched();
4118 local_bh_disable();
4119 return 1;
4120 }
4121 return 0;
4122}
613afbf8 4123EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4124
1da177e4
LT
4125/**
4126 * yield - yield the current processor to other threads.
4127 *
8e3fabfd
PZ
4128 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4129 *
4130 * The scheduler is at all times free to pick the calling task as the most
4131 * eligible task to run, if removing the yield() call from your code breaks
4132 * it, its already broken.
4133 *
4134 * Typical broken usage is:
4135 *
4136 * while (!event)
4137 * yield();
4138 *
4139 * where one assumes that yield() will let 'the other' process run that will
4140 * make event true. If the current task is a SCHED_FIFO task that will never
4141 * happen. Never use yield() as a progress guarantee!!
4142 *
4143 * If you want to use yield() to wait for something, use wait_event().
4144 * If you want to use yield() to be 'nice' for others, use cond_resched().
4145 * If you still want to use yield(), do not!
1da177e4
LT
4146 */
4147void __sched yield(void)
4148{
4149 set_current_state(TASK_RUNNING);
4150 sys_sched_yield();
4151}
1da177e4
LT
4152EXPORT_SYMBOL(yield);
4153
d95f4122
MG
4154/**
4155 * yield_to - yield the current processor to another thread in
4156 * your thread group, or accelerate that thread toward the
4157 * processor it's on.
16addf95
RD
4158 * @p: target task
4159 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4160 *
4161 * It's the caller's job to ensure that the target task struct
4162 * can't go away on us before we can do any checks.
4163 *
e69f6186 4164 * Return:
7b270f60
PZ
4165 * true (>0) if we indeed boosted the target task.
4166 * false (0) if we failed to boost the target.
4167 * -ESRCH if there's no task to yield to.
d95f4122
MG
4168 */
4169bool __sched yield_to(struct task_struct *p, bool preempt)
4170{
4171 struct task_struct *curr = current;
4172 struct rq *rq, *p_rq;
4173 unsigned long flags;
c3c18640 4174 int yielded = 0;
d95f4122
MG
4175
4176 local_irq_save(flags);
4177 rq = this_rq();
4178
4179again:
4180 p_rq = task_rq(p);
7b270f60
PZ
4181 /*
4182 * If we're the only runnable task on the rq and target rq also
4183 * has only one task, there's absolutely no point in yielding.
4184 */
4185 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4186 yielded = -ESRCH;
4187 goto out_irq;
4188 }
4189
d95f4122 4190 double_rq_lock(rq, p_rq);
39e24d8f 4191 if (task_rq(p) != p_rq) {
d95f4122
MG
4192 double_rq_unlock(rq, p_rq);
4193 goto again;
4194 }
4195
4196 if (!curr->sched_class->yield_to_task)
7b270f60 4197 goto out_unlock;
d95f4122
MG
4198
4199 if (curr->sched_class != p->sched_class)
7b270f60 4200 goto out_unlock;
d95f4122
MG
4201
4202 if (task_running(p_rq, p) || p->state)
7b270f60 4203 goto out_unlock;
d95f4122
MG
4204
4205 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4206 if (yielded) {
d95f4122 4207 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4208 /*
4209 * Make p's CPU reschedule; pick_next_entity takes care of
4210 * fairness.
4211 */
4212 if (preempt && rq != p_rq)
4213 resched_task(p_rq->curr);
4214 }
d95f4122 4215
7b270f60 4216out_unlock:
d95f4122 4217 double_rq_unlock(rq, p_rq);
7b270f60 4218out_irq:
d95f4122
MG
4219 local_irq_restore(flags);
4220
7b270f60 4221 if (yielded > 0)
d95f4122
MG
4222 schedule();
4223
4224 return yielded;
4225}
4226EXPORT_SYMBOL_GPL(yield_to);
4227
1da177e4 4228/*
41a2d6cf 4229 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4230 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4231 */
4232void __sched io_schedule(void)
4233{
54d35f29 4234 struct rq *rq = raw_rq();
1da177e4 4235
0ff92245 4236 delayacct_blkio_start();
1da177e4 4237 atomic_inc(&rq->nr_iowait);
73c10101 4238 blk_flush_plug(current);
8f0dfc34 4239 current->in_iowait = 1;
1da177e4 4240 schedule();
8f0dfc34 4241 current->in_iowait = 0;
1da177e4 4242 atomic_dec(&rq->nr_iowait);
0ff92245 4243 delayacct_blkio_end();
1da177e4 4244}
1da177e4
LT
4245EXPORT_SYMBOL(io_schedule);
4246
4247long __sched io_schedule_timeout(long timeout)
4248{
54d35f29 4249 struct rq *rq = raw_rq();
1da177e4
LT
4250 long ret;
4251
0ff92245 4252 delayacct_blkio_start();
1da177e4 4253 atomic_inc(&rq->nr_iowait);
73c10101 4254 blk_flush_plug(current);
8f0dfc34 4255 current->in_iowait = 1;
1da177e4 4256 ret = schedule_timeout(timeout);
8f0dfc34 4257 current->in_iowait = 0;
1da177e4 4258 atomic_dec(&rq->nr_iowait);
0ff92245 4259 delayacct_blkio_end();
1da177e4
LT
4260 return ret;
4261}
4262
4263/**
4264 * sys_sched_get_priority_max - return maximum RT priority.
4265 * @policy: scheduling class.
4266 *
e69f6186
YB
4267 * Return: On success, this syscall returns the maximum
4268 * rt_priority that can be used by a given scheduling class.
4269 * On failure, a negative error code is returned.
1da177e4 4270 */
5add95d4 4271SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4272{
4273 int ret = -EINVAL;
4274
4275 switch (policy) {
4276 case SCHED_FIFO:
4277 case SCHED_RR:
4278 ret = MAX_USER_RT_PRIO-1;
4279 break;
aab03e05 4280 case SCHED_DEADLINE:
1da177e4 4281 case SCHED_NORMAL:
b0a9499c 4282 case SCHED_BATCH:
dd41f596 4283 case SCHED_IDLE:
1da177e4
LT
4284 ret = 0;
4285 break;
4286 }
4287 return ret;
4288}
4289
4290/**
4291 * sys_sched_get_priority_min - return minimum RT priority.
4292 * @policy: scheduling class.
4293 *
e69f6186
YB
4294 * Return: On success, this syscall returns the minimum
4295 * rt_priority that can be used by a given scheduling class.
4296 * On failure, a negative error code is returned.
1da177e4 4297 */
5add95d4 4298SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4299{
4300 int ret = -EINVAL;
4301
4302 switch (policy) {
4303 case SCHED_FIFO:
4304 case SCHED_RR:
4305 ret = 1;
4306 break;
aab03e05 4307 case SCHED_DEADLINE:
1da177e4 4308 case SCHED_NORMAL:
b0a9499c 4309 case SCHED_BATCH:
dd41f596 4310 case SCHED_IDLE:
1da177e4
LT
4311 ret = 0;
4312 }
4313 return ret;
4314}
4315
4316/**
4317 * sys_sched_rr_get_interval - return the default timeslice of a process.
4318 * @pid: pid of the process.
4319 * @interval: userspace pointer to the timeslice value.
4320 *
4321 * this syscall writes the default timeslice value of a given process
4322 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4323 *
4324 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4325 * an error code.
1da177e4 4326 */
17da2bd9 4327SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4328 struct timespec __user *, interval)
1da177e4 4329{
36c8b586 4330 struct task_struct *p;
a4ec24b4 4331 unsigned int time_slice;
dba091b9
TG
4332 unsigned long flags;
4333 struct rq *rq;
3a5c359a 4334 int retval;
1da177e4 4335 struct timespec t;
1da177e4
LT
4336
4337 if (pid < 0)
3a5c359a 4338 return -EINVAL;
1da177e4
LT
4339
4340 retval = -ESRCH;
1a551ae7 4341 rcu_read_lock();
1da177e4
LT
4342 p = find_process_by_pid(pid);
4343 if (!p)
4344 goto out_unlock;
4345
4346 retval = security_task_getscheduler(p);
4347 if (retval)
4348 goto out_unlock;
4349
dba091b9 4350 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4351 time_slice = 0;
4352 if (p->sched_class->get_rr_interval)
4353 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4354 task_rq_unlock(rq, p, &flags);
a4ec24b4 4355
1a551ae7 4356 rcu_read_unlock();
a4ec24b4 4357 jiffies_to_timespec(time_slice, &t);
1da177e4 4358 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4359 return retval;
3a5c359a 4360
1da177e4 4361out_unlock:
1a551ae7 4362 rcu_read_unlock();
1da177e4
LT
4363 return retval;
4364}
4365
7c731e0a 4366static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4367
82a1fcb9 4368void sched_show_task(struct task_struct *p)
1da177e4 4369{
1da177e4 4370 unsigned long free = 0;
4e79752c 4371 int ppid;
36c8b586 4372 unsigned state;
1da177e4 4373
1da177e4 4374 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4375 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4376 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4377#if BITS_PER_LONG == 32
1da177e4 4378 if (state == TASK_RUNNING)
3df0fc5b 4379 printk(KERN_CONT " running ");
1da177e4 4380 else
3df0fc5b 4381 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4382#else
4383 if (state == TASK_RUNNING)
3df0fc5b 4384 printk(KERN_CONT " running task ");
1da177e4 4385 else
3df0fc5b 4386 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4387#endif
4388#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4389 free = stack_not_used(p);
1da177e4 4390#endif
4e79752c
PM
4391 rcu_read_lock();
4392 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4393 rcu_read_unlock();
3df0fc5b 4394 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4395 task_pid_nr(p), ppid,
aa47b7e0 4396 (unsigned long)task_thread_info(p)->flags);
1da177e4 4397
3d1cb205 4398 print_worker_info(KERN_INFO, p);
5fb5e6de 4399 show_stack(p, NULL);
1da177e4
LT
4400}
4401
e59e2ae2 4402void show_state_filter(unsigned long state_filter)
1da177e4 4403{
36c8b586 4404 struct task_struct *g, *p;
1da177e4 4405
4bd77321 4406#if BITS_PER_LONG == 32
3df0fc5b
PZ
4407 printk(KERN_INFO
4408 " task PC stack pid father\n");
1da177e4 4409#else
3df0fc5b
PZ
4410 printk(KERN_INFO
4411 " task PC stack pid father\n");
1da177e4 4412#endif
510f5acc 4413 rcu_read_lock();
1da177e4
LT
4414 do_each_thread(g, p) {
4415 /*
4416 * reset the NMI-timeout, listing all files on a slow
25985edc 4417 * console might take a lot of time:
1da177e4
LT
4418 */
4419 touch_nmi_watchdog();
39bc89fd 4420 if (!state_filter || (p->state & state_filter))
82a1fcb9 4421 sched_show_task(p);
1da177e4
LT
4422 } while_each_thread(g, p);
4423
04c9167f
JF
4424 touch_all_softlockup_watchdogs();
4425
dd41f596
IM
4426#ifdef CONFIG_SCHED_DEBUG
4427 sysrq_sched_debug_show();
4428#endif
510f5acc 4429 rcu_read_unlock();
e59e2ae2
IM
4430 /*
4431 * Only show locks if all tasks are dumped:
4432 */
93335a21 4433 if (!state_filter)
e59e2ae2 4434 debug_show_all_locks();
1da177e4
LT
4435}
4436
0db0628d 4437void init_idle_bootup_task(struct task_struct *idle)
1df21055 4438{
dd41f596 4439 idle->sched_class = &idle_sched_class;
1df21055
IM
4440}
4441
f340c0d1
IM
4442/**
4443 * init_idle - set up an idle thread for a given CPU
4444 * @idle: task in question
4445 * @cpu: cpu the idle task belongs to
4446 *
4447 * NOTE: this function does not set the idle thread's NEED_RESCHED
4448 * flag, to make booting more robust.
4449 */
0db0628d 4450void init_idle(struct task_struct *idle, int cpu)
1da177e4 4451{
70b97a7f 4452 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4453 unsigned long flags;
4454
05fa785c 4455 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4456
5e1576ed 4457 __sched_fork(0, idle);
06b83b5f 4458 idle->state = TASK_RUNNING;
dd41f596
IM
4459 idle->se.exec_start = sched_clock();
4460
1e1b6c51 4461 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4462 /*
4463 * We're having a chicken and egg problem, even though we are
4464 * holding rq->lock, the cpu isn't yet set to this cpu so the
4465 * lockdep check in task_group() will fail.
4466 *
4467 * Similar case to sched_fork(). / Alternatively we could
4468 * use task_rq_lock() here and obtain the other rq->lock.
4469 *
4470 * Silence PROVE_RCU
4471 */
4472 rcu_read_lock();
dd41f596 4473 __set_task_cpu(idle, cpu);
6506cf6c 4474 rcu_read_unlock();
1da177e4 4475
1da177e4 4476 rq->curr = rq->idle = idle;
3ca7a440
PZ
4477#if defined(CONFIG_SMP)
4478 idle->on_cpu = 1;
4866cde0 4479#endif
05fa785c 4480 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4481
4482 /* Set the preempt count _outside_ the spinlocks! */
01028747 4483 init_idle_preempt_count(idle, cpu);
55cd5340 4484
dd41f596
IM
4485 /*
4486 * The idle tasks have their own, simple scheduling class:
4487 */
4488 idle->sched_class = &idle_sched_class;
868baf07 4489 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4490 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4491#if defined(CONFIG_SMP)
4492 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4493#endif
19978ca6
IM
4494}
4495
1da177e4 4496#ifdef CONFIG_SMP
1e1b6c51
KM
4497void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4498{
4499 if (p->sched_class && p->sched_class->set_cpus_allowed)
4500 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4501
4502 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4503 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4504}
4505
1da177e4
LT
4506/*
4507 * This is how migration works:
4508 *
969c7921
TH
4509 * 1) we invoke migration_cpu_stop() on the target CPU using
4510 * stop_one_cpu().
4511 * 2) stopper starts to run (implicitly forcing the migrated thread
4512 * off the CPU)
4513 * 3) it checks whether the migrated task is still in the wrong runqueue.
4514 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4515 * it and puts it into the right queue.
969c7921
TH
4516 * 5) stopper completes and stop_one_cpu() returns and the migration
4517 * is done.
1da177e4
LT
4518 */
4519
4520/*
4521 * Change a given task's CPU affinity. Migrate the thread to a
4522 * proper CPU and schedule it away if the CPU it's executing on
4523 * is removed from the allowed bitmask.
4524 *
4525 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4526 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4527 * call is not atomic; no spinlocks may be held.
4528 */
96f874e2 4529int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4530{
4531 unsigned long flags;
70b97a7f 4532 struct rq *rq;
969c7921 4533 unsigned int dest_cpu;
48f24c4d 4534 int ret = 0;
1da177e4
LT
4535
4536 rq = task_rq_lock(p, &flags);
e2912009 4537
db44fc01
YZ
4538 if (cpumask_equal(&p->cpus_allowed, new_mask))
4539 goto out;
4540
6ad4c188 4541 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4542 ret = -EINVAL;
4543 goto out;
4544 }
4545
1e1b6c51 4546 do_set_cpus_allowed(p, new_mask);
73fe6aae 4547
1da177e4 4548 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4549 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4550 goto out;
4551
969c7921 4552 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4553 if (p->on_rq) {
969c7921 4554 struct migration_arg arg = { p, dest_cpu };
1da177e4 4555 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4556 task_rq_unlock(rq, p, &flags);
969c7921 4557 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4558 tlb_migrate_finish(p->mm);
4559 return 0;
4560 }
4561out:
0122ec5b 4562 task_rq_unlock(rq, p, &flags);
48f24c4d 4563
1da177e4
LT
4564 return ret;
4565}
cd8ba7cd 4566EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4567
4568/*
41a2d6cf 4569 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4570 * this because either it can't run here any more (set_cpus_allowed()
4571 * away from this CPU, or CPU going down), or because we're
4572 * attempting to rebalance this task on exec (sched_exec).
4573 *
4574 * So we race with normal scheduler movements, but that's OK, as long
4575 * as the task is no longer on this CPU.
efc30814
KK
4576 *
4577 * Returns non-zero if task was successfully migrated.
1da177e4 4578 */
efc30814 4579static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4580{
70b97a7f 4581 struct rq *rq_dest, *rq_src;
e2912009 4582 int ret = 0;
1da177e4 4583
e761b772 4584 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4585 return ret;
1da177e4
LT
4586
4587 rq_src = cpu_rq(src_cpu);
4588 rq_dest = cpu_rq(dest_cpu);
4589
0122ec5b 4590 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4591 double_rq_lock(rq_src, rq_dest);
4592 /* Already moved. */
4593 if (task_cpu(p) != src_cpu)
b1e38734 4594 goto done;
1da177e4 4595 /* Affinity changed (again). */
fa17b507 4596 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4597 goto fail;
1da177e4 4598
e2912009
PZ
4599 /*
4600 * If we're not on a rq, the next wake-up will ensure we're
4601 * placed properly.
4602 */
fd2f4419 4603 if (p->on_rq) {
4ca9b72b 4604 dequeue_task(rq_src, p, 0);
e2912009 4605 set_task_cpu(p, dest_cpu);
4ca9b72b 4606 enqueue_task(rq_dest, p, 0);
15afe09b 4607 check_preempt_curr(rq_dest, p, 0);
1da177e4 4608 }
b1e38734 4609done:
efc30814 4610 ret = 1;
b1e38734 4611fail:
1da177e4 4612 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4613 raw_spin_unlock(&p->pi_lock);
efc30814 4614 return ret;
1da177e4
LT
4615}
4616
e6628d5b
MG
4617#ifdef CONFIG_NUMA_BALANCING
4618/* Migrate current task p to target_cpu */
4619int migrate_task_to(struct task_struct *p, int target_cpu)
4620{
4621 struct migration_arg arg = { p, target_cpu };
4622 int curr_cpu = task_cpu(p);
4623
4624 if (curr_cpu == target_cpu)
4625 return 0;
4626
4627 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4628 return -EINVAL;
4629
4630 /* TODO: This is not properly updating schedstats */
4631
286549dc 4632 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4633 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4634}
0ec8aa00
PZ
4635
4636/*
4637 * Requeue a task on a given node and accurately track the number of NUMA
4638 * tasks on the runqueues
4639 */
4640void sched_setnuma(struct task_struct *p, int nid)
4641{
4642 struct rq *rq;
4643 unsigned long flags;
4644 bool on_rq, running;
4645
4646 rq = task_rq_lock(p, &flags);
4647 on_rq = p->on_rq;
4648 running = task_current(rq, p);
4649
4650 if (on_rq)
4651 dequeue_task(rq, p, 0);
4652 if (running)
4653 p->sched_class->put_prev_task(rq, p);
4654
4655 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4656
4657 if (running)
4658 p->sched_class->set_curr_task(rq);
4659 if (on_rq)
4660 enqueue_task(rq, p, 0);
4661 task_rq_unlock(rq, p, &flags);
4662}
e6628d5b
MG
4663#endif
4664
1da177e4 4665/*
969c7921
TH
4666 * migration_cpu_stop - this will be executed by a highprio stopper thread
4667 * and performs thread migration by bumping thread off CPU then
4668 * 'pushing' onto another runqueue.
1da177e4 4669 */
969c7921 4670static int migration_cpu_stop(void *data)
1da177e4 4671{
969c7921 4672 struct migration_arg *arg = data;
f7b4cddc 4673
969c7921
TH
4674 /*
4675 * The original target cpu might have gone down and we might
4676 * be on another cpu but it doesn't matter.
4677 */
f7b4cddc 4678 local_irq_disable();
969c7921 4679 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4680 local_irq_enable();
1da177e4 4681 return 0;
f7b4cddc
ON
4682}
4683
1da177e4 4684#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4685
054b9108 4686/*
48c5ccae
PZ
4687 * Ensures that the idle task is using init_mm right before its cpu goes
4688 * offline.
054b9108 4689 */
48c5ccae 4690void idle_task_exit(void)
1da177e4 4691{
48c5ccae 4692 struct mm_struct *mm = current->active_mm;
e76bd8d9 4693
48c5ccae 4694 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4695
48c5ccae
PZ
4696 if (mm != &init_mm)
4697 switch_mm(mm, &init_mm, current);
4698 mmdrop(mm);
1da177e4
LT
4699}
4700
4701/*
5d180232
PZ
4702 * Since this CPU is going 'away' for a while, fold any nr_active delta
4703 * we might have. Assumes we're called after migrate_tasks() so that the
4704 * nr_active count is stable.
4705 *
4706 * Also see the comment "Global load-average calculations".
1da177e4 4707 */
5d180232 4708static void calc_load_migrate(struct rq *rq)
1da177e4 4709{
5d180232
PZ
4710 long delta = calc_load_fold_active(rq);
4711 if (delta)
4712 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4713}
4714
48f24c4d 4715/*
48c5ccae
PZ
4716 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4717 * try_to_wake_up()->select_task_rq().
4718 *
4719 * Called with rq->lock held even though we'er in stop_machine() and
4720 * there's no concurrency possible, we hold the required locks anyway
4721 * because of lock validation efforts.
1da177e4 4722 */
48c5ccae 4723static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4724{
70b97a7f 4725 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4726 struct task_struct *next, *stop = rq->stop;
4727 int dest_cpu;
1da177e4
LT
4728
4729 /*
48c5ccae
PZ
4730 * Fudge the rq selection such that the below task selection loop
4731 * doesn't get stuck on the currently eligible stop task.
4732 *
4733 * We're currently inside stop_machine() and the rq is either stuck
4734 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4735 * either way we should never end up calling schedule() until we're
4736 * done here.
1da177e4 4737 */
48c5ccae 4738 rq->stop = NULL;
48f24c4d 4739
77bd3970
FW
4740 /*
4741 * put_prev_task() and pick_next_task() sched
4742 * class method both need to have an up-to-date
4743 * value of rq->clock[_task]
4744 */
4745 update_rq_clock(rq);
4746
dd41f596 4747 for ( ; ; ) {
48c5ccae
PZ
4748 /*
4749 * There's this thread running, bail when that's the only
4750 * remaining thread.
4751 */
4752 if (rq->nr_running == 1)
dd41f596 4753 break;
48c5ccae 4754
b67802ea 4755 next = pick_next_task(rq);
48c5ccae 4756 BUG_ON(!next);
79c53799 4757 next->sched_class->put_prev_task(rq, next);
e692ab53 4758
48c5ccae
PZ
4759 /* Find suitable destination for @next, with force if needed. */
4760 dest_cpu = select_fallback_rq(dead_cpu, next);
4761 raw_spin_unlock(&rq->lock);
4762
4763 __migrate_task(next, dead_cpu, dest_cpu);
4764
4765 raw_spin_lock(&rq->lock);
1da177e4 4766 }
dce48a84 4767
48c5ccae 4768 rq->stop = stop;
dce48a84 4769}
48c5ccae 4770
1da177e4
LT
4771#endif /* CONFIG_HOTPLUG_CPU */
4772
e692ab53
NP
4773#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4774
4775static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4776 {
4777 .procname = "sched_domain",
c57baf1e 4778 .mode = 0555,
e0361851 4779 },
56992309 4780 {}
e692ab53
NP
4781};
4782
4783static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4784 {
4785 .procname = "kernel",
c57baf1e 4786 .mode = 0555,
e0361851
AD
4787 .child = sd_ctl_dir,
4788 },
56992309 4789 {}
e692ab53
NP
4790};
4791
4792static struct ctl_table *sd_alloc_ctl_entry(int n)
4793{
4794 struct ctl_table *entry =
5cf9f062 4795 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4796
e692ab53
NP
4797 return entry;
4798}
4799
6382bc90
MM
4800static void sd_free_ctl_entry(struct ctl_table **tablep)
4801{
cd790076 4802 struct ctl_table *entry;
6382bc90 4803
cd790076
MM
4804 /*
4805 * In the intermediate directories, both the child directory and
4806 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4807 * will always be set. In the lowest directory the names are
cd790076
MM
4808 * static strings and all have proc handlers.
4809 */
4810 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4811 if (entry->child)
4812 sd_free_ctl_entry(&entry->child);
cd790076
MM
4813 if (entry->proc_handler == NULL)
4814 kfree(entry->procname);
4815 }
6382bc90
MM
4816
4817 kfree(*tablep);
4818 *tablep = NULL;
4819}
4820
201c373e 4821static int min_load_idx = 0;
fd9b86d3 4822static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4823
e692ab53 4824static void
e0361851 4825set_table_entry(struct ctl_table *entry,
e692ab53 4826 const char *procname, void *data, int maxlen,
201c373e
NK
4827 umode_t mode, proc_handler *proc_handler,
4828 bool load_idx)
e692ab53 4829{
e692ab53
NP
4830 entry->procname = procname;
4831 entry->data = data;
4832 entry->maxlen = maxlen;
4833 entry->mode = mode;
4834 entry->proc_handler = proc_handler;
201c373e
NK
4835
4836 if (load_idx) {
4837 entry->extra1 = &min_load_idx;
4838 entry->extra2 = &max_load_idx;
4839 }
e692ab53
NP
4840}
4841
4842static struct ctl_table *
4843sd_alloc_ctl_domain_table(struct sched_domain *sd)
4844{
a5d8c348 4845 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4846
ad1cdc1d
MM
4847 if (table == NULL)
4848 return NULL;
4849
e0361851 4850 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4851 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4852 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4853 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4854 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4855 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4856 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4857 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4858 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4859 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4860 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4861 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4862 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4863 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4864 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4865 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4866 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4867 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4868 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4869 &sd->cache_nice_tries,
201c373e 4870 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4871 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4872 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4873 set_table_entry(&table[11], "name", sd->name,
201c373e 4874 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4875 /* &table[12] is terminator */
e692ab53
NP
4876
4877 return table;
4878}
4879
be7002e6 4880static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4881{
4882 struct ctl_table *entry, *table;
4883 struct sched_domain *sd;
4884 int domain_num = 0, i;
4885 char buf[32];
4886
4887 for_each_domain(cpu, sd)
4888 domain_num++;
4889 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4890 if (table == NULL)
4891 return NULL;
e692ab53
NP
4892
4893 i = 0;
4894 for_each_domain(cpu, sd) {
4895 snprintf(buf, 32, "domain%d", i);
e692ab53 4896 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4897 entry->mode = 0555;
e692ab53
NP
4898 entry->child = sd_alloc_ctl_domain_table(sd);
4899 entry++;
4900 i++;
4901 }
4902 return table;
4903}
4904
4905static struct ctl_table_header *sd_sysctl_header;
6382bc90 4906static void register_sched_domain_sysctl(void)
e692ab53 4907{
6ad4c188 4908 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4909 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4910 char buf[32];
4911
7378547f
MM
4912 WARN_ON(sd_ctl_dir[0].child);
4913 sd_ctl_dir[0].child = entry;
4914
ad1cdc1d
MM
4915 if (entry == NULL)
4916 return;
4917
6ad4c188 4918 for_each_possible_cpu(i) {
e692ab53 4919 snprintf(buf, 32, "cpu%d", i);
e692ab53 4920 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4921 entry->mode = 0555;
e692ab53 4922 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4923 entry++;
e692ab53 4924 }
7378547f
MM
4925
4926 WARN_ON(sd_sysctl_header);
e692ab53
NP
4927 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4928}
6382bc90 4929
7378547f 4930/* may be called multiple times per register */
6382bc90
MM
4931static void unregister_sched_domain_sysctl(void)
4932{
7378547f
MM
4933 if (sd_sysctl_header)
4934 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4935 sd_sysctl_header = NULL;
7378547f
MM
4936 if (sd_ctl_dir[0].child)
4937 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4938}
e692ab53 4939#else
6382bc90
MM
4940static void register_sched_domain_sysctl(void)
4941{
4942}
4943static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4944{
4945}
4946#endif
4947
1f11eb6a
GH
4948static void set_rq_online(struct rq *rq)
4949{
4950 if (!rq->online) {
4951 const struct sched_class *class;
4952
c6c4927b 4953 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4954 rq->online = 1;
4955
4956 for_each_class(class) {
4957 if (class->rq_online)
4958 class->rq_online(rq);
4959 }
4960 }
4961}
4962
4963static void set_rq_offline(struct rq *rq)
4964{
4965 if (rq->online) {
4966 const struct sched_class *class;
4967
4968 for_each_class(class) {
4969 if (class->rq_offline)
4970 class->rq_offline(rq);
4971 }
4972
c6c4927b 4973 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4974 rq->online = 0;
4975 }
4976}
4977
1da177e4
LT
4978/*
4979 * migration_call - callback that gets triggered when a CPU is added.
4980 * Here we can start up the necessary migration thread for the new CPU.
4981 */
0db0628d 4982static int
48f24c4d 4983migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4984{
48f24c4d 4985 int cpu = (long)hcpu;
1da177e4 4986 unsigned long flags;
969c7921 4987 struct rq *rq = cpu_rq(cpu);
1da177e4 4988
48c5ccae 4989 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4990
1da177e4 4991 case CPU_UP_PREPARE:
a468d389 4992 rq->calc_load_update = calc_load_update;
1da177e4 4993 break;
48f24c4d 4994
1da177e4 4995 case CPU_ONLINE:
1f94ef59 4996 /* Update our root-domain */
05fa785c 4997 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4998 if (rq->rd) {
c6c4927b 4999 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5000
5001 set_rq_online(rq);
1f94ef59 5002 }
05fa785c 5003 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5004 break;
48f24c4d 5005
1da177e4 5006#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5007 case CPU_DYING:
317f3941 5008 sched_ttwu_pending();
57d885fe 5009 /* Update our root-domain */
05fa785c 5010 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5011 if (rq->rd) {
c6c4927b 5012 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5013 set_rq_offline(rq);
57d885fe 5014 }
48c5ccae
PZ
5015 migrate_tasks(cpu);
5016 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5017 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5018 break;
48c5ccae 5019
5d180232 5020 case CPU_DEAD:
f319da0c 5021 calc_load_migrate(rq);
57d885fe 5022 break;
1da177e4
LT
5023#endif
5024 }
49c022e6
PZ
5025
5026 update_max_interval();
5027
1da177e4
LT
5028 return NOTIFY_OK;
5029}
5030
f38b0820
PM
5031/*
5032 * Register at high priority so that task migration (migrate_all_tasks)
5033 * happens before everything else. This has to be lower priority than
cdd6c482 5034 * the notifier in the perf_event subsystem, though.
1da177e4 5035 */
0db0628d 5036static struct notifier_block migration_notifier = {
1da177e4 5037 .notifier_call = migration_call,
50a323b7 5038 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5039};
5040
0db0628d 5041static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5042 unsigned long action, void *hcpu)
5043{
5044 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5045 case CPU_STARTING:
3a101d05
TH
5046 case CPU_DOWN_FAILED:
5047 set_cpu_active((long)hcpu, true);
5048 return NOTIFY_OK;
5049 default:
5050 return NOTIFY_DONE;
5051 }
5052}
5053
0db0628d 5054static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5055 unsigned long action, void *hcpu)
5056{
de212f18
PZ
5057 unsigned long flags;
5058 long cpu = (long)hcpu;
5059
3a101d05
TH
5060 switch (action & ~CPU_TASKS_FROZEN) {
5061 case CPU_DOWN_PREPARE:
de212f18
PZ
5062 set_cpu_active(cpu, false);
5063
5064 /* explicitly allow suspend */
5065 if (!(action & CPU_TASKS_FROZEN)) {
5066 struct dl_bw *dl_b = dl_bw_of(cpu);
5067 bool overflow;
5068 int cpus;
5069
5070 raw_spin_lock_irqsave(&dl_b->lock, flags);
5071 cpus = dl_bw_cpus(cpu);
5072 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5073 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5074
5075 if (overflow)
5076 return notifier_from_errno(-EBUSY);
5077 }
3a101d05 5078 return NOTIFY_OK;
3a101d05 5079 }
de212f18
PZ
5080
5081 return NOTIFY_DONE;
3a101d05
TH
5082}
5083
7babe8db 5084static int __init migration_init(void)
1da177e4
LT
5085{
5086 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5087 int err;
48f24c4d 5088
3a101d05 5089 /* Initialize migration for the boot CPU */
07dccf33
AM
5090 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5091 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5092 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5093 register_cpu_notifier(&migration_notifier);
7babe8db 5094
3a101d05
TH
5095 /* Register cpu active notifiers */
5096 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5097 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5098
a004cd42 5099 return 0;
1da177e4 5100}
7babe8db 5101early_initcall(migration_init);
1da177e4
LT
5102#endif
5103
5104#ifdef CONFIG_SMP
476f3534 5105
4cb98839
PZ
5106static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5107
3e9830dc 5108#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5109
d039ac60 5110static __read_mostly int sched_debug_enabled;
f6630114 5111
d039ac60 5112static int __init sched_debug_setup(char *str)
f6630114 5113{
d039ac60 5114 sched_debug_enabled = 1;
f6630114
MT
5115
5116 return 0;
5117}
d039ac60
PZ
5118early_param("sched_debug", sched_debug_setup);
5119
5120static inline bool sched_debug(void)
5121{
5122 return sched_debug_enabled;
5123}
f6630114 5124
7c16ec58 5125static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5126 struct cpumask *groupmask)
1da177e4 5127{
4dcf6aff 5128 struct sched_group *group = sd->groups;
434d53b0 5129 char str[256];
1da177e4 5130
968ea6d8 5131 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5132 cpumask_clear(groupmask);
4dcf6aff
IM
5133
5134 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5135
5136 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5137 printk("does not load-balance\n");
4dcf6aff 5138 if (sd->parent)
3df0fc5b
PZ
5139 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5140 " has parent");
4dcf6aff 5141 return -1;
41c7ce9a
NP
5142 }
5143
3df0fc5b 5144 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5145
758b2cdc 5146 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5147 printk(KERN_ERR "ERROR: domain->span does not contain "
5148 "CPU%d\n", cpu);
4dcf6aff 5149 }
758b2cdc 5150 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5151 printk(KERN_ERR "ERROR: domain->groups does not contain"
5152 " CPU%d\n", cpu);
4dcf6aff 5153 }
1da177e4 5154
4dcf6aff 5155 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5156 do {
4dcf6aff 5157 if (!group) {
3df0fc5b
PZ
5158 printk("\n");
5159 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5160 break;
5161 }
5162
c3decf0d
PZ
5163 /*
5164 * Even though we initialize ->power to something semi-sane,
5165 * we leave power_orig unset. This allows us to detect if
5166 * domain iteration is still funny without causing /0 traps.
5167 */
5168 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5169 printk(KERN_CONT "\n");
5170 printk(KERN_ERR "ERROR: domain->cpu_power not "
5171 "set\n");
4dcf6aff
IM
5172 break;
5173 }
1da177e4 5174
758b2cdc 5175 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5176 printk(KERN_CONT "\n");
5177 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5178 break;
5179 }
1da177e4 5180
cb83b629
PZ
5181 if (!(sd->flags & SD_OVERLAP) &&
5182 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5183 printk(KERN_CONT "\n");
5184 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5185 break;
5186 }
1da177e4 5187
758b2cdc 5188 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5189
968ea6d8 5190 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5191
3df0fc5b 5192 printk(KERN_CONT " %s", str);
9c3f75cb 5193 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5194 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5195 group->sgp->power);
381512cf 5196 }
1da177e4 5197
4dcf6aff
IM
5198 group = group->next;
5199 } while (group != sd->groups);
3df0fc5b 5200 printk(KERN_CONT "\n");
1da177e4 5201
758b2cdc 5202 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5203 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5204
758b2cdc
RR
5205 if (sd->parent &&
5206 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5207 printk(KERN_ERR "ERROR: parent span is not a superset "
5208 "of domain->span\n");
4dcf6aff
IM
5209 return 0;
5210}
1da177e4 5211
4dcf6aff
IM
5212static void sched_domain_debug(struct sched_domain *sd, int cpu)
5213{
5214 int level = 0;
1da177e4 5215
d039ac60 5216 if (!sched_debug_enabled)
f6630114
MT
5217 return;
5218
4dcf6aff
IM
5219 if (!sd) {
5220 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5221 return;
5222 }
1da177e4 5223
4dcf6aff
IM
5224 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5225
5226 for (;;) {
4cb98839 5227 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5228 break;
1da177e4
LT
5229 level++;
5230 sd = sd->parent;
33859f7f 5231 if (!sd)
4dcf6aff
IM
5232 break;
5233 }
1da177e4 5234}
6d6bc0ad 5235#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5236# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5237static inline bool sched_debug(void)
5238{
5239 return false;
5240}
6d6bc0ad 5241#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5242
1a20ff27 5243static int sd_degenerate(struct sched_domain *sd)
245af2c7 5244{
758b2cdc 5245 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5246 return 1;
5247
5248 /* Following flags need at least 2 groups */
5249 if (sd->flags & (SD_LOAD_BALANCE |
5250 SD_BALANCE_NEWIDLE |
5251 SD_BALANCE_FORK |
89c4710e
SS
5252 SD_BALANCE_EXEC |
5253 SD_SHARE_CPUPOWER |
5254 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5255 if (sd->groups != sd->groups->next)
5256 return 0;
5257 }
5258
5259 /* Following flags don't use groups */
c88d5910 5260 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5261 return 0;
5262
5263 return 1;
5264}
5265
48f24c4d
IM
5266static int
5267sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5268{
5269 unsigned long cflags = sd->flags, pflags = parent->flags;
5270
5271 if (sd_degenerate(parent))
5272 return 1;
5273
758b2cdc 5274 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5275 return 0;
5276
245af2c7
SS
5277 /* Flags needing groups don't count if only 1 group in parent */
5278 if (parent->groups == parent->groups->next) {
5279 pflags &= ~(SD_LOAD_BALANCE |
5280 SD_BALANCE_NEWIDLE |
5281 SD_BALANCE_FORK |
89c4710e
SS
5282 SD_BALANCE_EXEC |
5283 SD_SHARE_CPUPOWER |
10866e62
PZ
5284 SD_SHARE_PKG_RESOURCES |
5285 SD_PREFER_SIBLING);
5436499e
KC
5286 if (nr_node_ids == 1)
5287 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5288 }
5289 if (~cflags & pflags)
5290 return 0;
5291
5292 return 1;
5293}
5294
dce840a0 5295static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5296{
dce840a0 5297 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5298
68e74568 5299 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5300 cpudl_cleanup(&rd->cpudl);
1baca4ce 5301 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5302 free_cpumask_var(rd->rto_mask);
5303 free_cpumask_var(rd->online);
5304 free_cpumask_var(rd->span);
5305 kfree(rd);
5306}
5307
57d885fe
GH
5308static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5309{
a0490fa3 5310 struct root_domain *old_rd = NULL;
57d885fe 5311 unsigned long flags;
57d885fe 5312
05fa785c 5313 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5314
5315 if (rq->rd) {
a0490fa3 5316 old_rd = rq->rd;
57d885fe 5317
c6c4927b 5318 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5319 set_rq_offline(rq);
57d885fe 5320
c6c4927b 5321 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5322
a0490fa3 5323 /*
0515973f 5324 * If we dont want to free the old_rd yet then
a0490fa3
IM
5325 * set old_rd to NULL to skip the freeing later
5326 * in this function:
5327 */
5328 if (!atomic_dec_and_test(&old_rd->refcount))
5329 old_rd = NULL;
57d885fe
GH
5330 }
5331
5332 atomic_inc(&rd->refcount);
5333 rq->rd = rd;
5334
c6c4927b 5335 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5336 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5337 set_rq_online(rq);
57d885fe 5338
05fa785c 5339 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5340
5341 if (old_rd)
dce840a0 5342 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5343}
5344
68c38fc3 5345static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5346{
5347 memset(rd, 0, sizeof(*rd));
5348
68c38fc3 5349 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5350 goto out;
68c38fc3 5351 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5352 goto free_span;
1baca4ce 5353 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5354 goto free_online;
1baca4ce
JL
5355 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5356 goto free_dlo_mask;
6e0534f2 5357
332ac17e 5358 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5359 if (cpudl_init(&rd->cpudl) != 0)
5360 goto free_dlo_mask;
332ac17e 5361
68c38fc3 5362 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5363 goto free_rto_mask;
c6c4927b 5364 return 0;
6e0534f2 5365
68e74568
RR
5366free_rto_mask:
5367 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5368free_dlo_mask:
5369 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5370free_online:
5371 free_cpumask_var(rd->online);
5372free_span:
5373 free_cpumask_var(rd->span);
0c910d28 5374out:
c6c4927b 5375 return -ENOMEM;
57d885fe
GH
5376}
5377
029632fb
PZ
5378/*
5379 * By default the system creates a single root-domain with all cpus as
5380 * members (mimicking the global state we have today).
5381 */
5382struct root_domain def_root_domain;
5383
57d885fe
GH
5384static void init_defrootdomain(void)
5385{
68c38fc3 5386 init_rootdomain(&def_root_domain);
c6c4927b 5387
57d885fe
GH
5388 atomic_set(&def_root_domain.refcount, 1);
5389}
5390
dc938520 5391static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5392{
5393 struct root_domain *rd;
5394
5395 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5396 if (!rd)
5397 return NULL;
5398
68c38fc3 5399 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5400 kfree(rd);
5401 return NULL;
5402 }
57d885fe
GH
5403
5404 return rd;
5405}
5406
e3589f6c
PZ
5407static void free_sched_groups(struct sched_group *sg, int free_sgp)
5408{
5409 struct sched_group *tmp, *first;
5410
5411 if (!sg)
5412 return;
5413
5414 first = sg;
5415 do {
5416 tmp = sg->next;
5417
5418 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5419 kfree(sg->sgp);
5420
5421 kfree(sg);
5422 sg = tmp;
5423 } while (sg != first);
5424}
5425
dce840a0
PZ
5426static void free_sched_domain(struct rcu_head *rcu)
5427{
5428 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5429
5430 /*
5431 * If its an overlapping domain it has private groups, iterate and
5432 * nuke them all.
5433 */
5434 if (sd->flags & SD_OVERLAP) {
5435 free_sched_groups(sd->groups, 1);
5436 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5437 kfree(sd->groups->sgp);
dce840a0 5438 kfree(sd->groups);
9c3f75cb 5439 }
dce840a0
PZ
5440 kfree(sd);
5441}
5442
5443static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5444{
5445 call_rcu(&sd->rcu, free_sched_domain);
5446}
5447
5448static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5449{
5450 for (; sd; sd = sd->parent)
5451 destroy_sched_domain(sd, cpu);
5452}
5453
518cd623
PZ
5454/*
5455 * Keep a special pointer to the highest sched_domain that has
5456 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5457 * allows us to avoid some pointer chasing select_idle_sibling().
5458 *
5459 * Also keep a unique ID per domain (we use the first cpu number in
5460 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5461 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5462 */
5463DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5464DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5465DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5466DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5467DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5468DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5469
5470static void update_top_cache_domain(int cpu)
5471{
5472 struct sched_domain *sd;
5d4cf996 5473 struct sched_domain *busy_sd = NULL;
518cd623 5474 int id = cpu;
7d9ffa89 5475 int size = 1;
518cd623
PZ
5476
5477 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5478 if (sd) {
518cd623 5479 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5480 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5481 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5482 }
5d4cf996 5483 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5484
5485 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5486 per_cpu(sd_llc_size, cpu) = size;
518cd623 5487 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5488
5489 sd = lowest_flag_domain(cpu, SD_NUMA);
5490 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5491
5492 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5493 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5494}
5495
1da177e4 5496/*
0eab9146 5497 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5498 * hold the hotplug lock.
5499 */
0eab9146
IM
5500static void
5501cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5502{
70b97a7f 5503 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5504 struct sched_domain *tmp;
5505
5506 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5507 for (tmp = sd; tmp; ) {
245af2c7
SS
5508 struct sched_domain *parent = tmp->parent;
5509 if (!parent)
5510 break;
f29c9b1c 5511
1a848870 5512 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5513 tmp->parent = parent->parent;
1a848870
SS
5514 if (parent->parent)
5515 parent->parent->child = tmp;
10866e62
PZ
5516 /*
5517 * Transfer SD_PREFER_SIBLING down in case of a
5518 * degenerate parent; the spans match for this
5519 * so the property transfers.
5520 */
5521 if (parent->flags & SD_PREFER_SIBLING)
5522 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5523 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5524 } else
5525 tmp = tmp->parent;
245af2c7
SS
5526 }
5527
1a848870 5528 if (sd && sd_degenerate(sd)) {
dce840a0 5529 tmp = sd;
245af2c7 5530 sd = sd->parent;
dce840a0 5531 destroy_sched_domain(tmp, cpu);
1a848870
SS
5532 if (sd)
5533 sd->child = NULL;
5534 }
1da177e4 5535
4cb98839 5536 sched_domain_debug(sd, cpu);
1da177e4 5537
57d885fe 5538 rq_attach_root(rq, rd);
dce840a0 5539 tmp = rq->sd;
674311d5 5540 rcu_assign_pointer(rq->sd, sd);
dce840a0 5541 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5542
5543 update_top_cache_domain(cpu);
1da177e4
LT
5544}
5545
5546/* cpus with isolated domains */
dcc30a35 5547static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5548
5549/* Setup the mask of cpus configured for isolated domains */
5550static int __init isolated_cpu_setup(char *str)
5551{
bdddd296 5552 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5553 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5554 return 1;
5555}
5556
8927f494 5557__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5558
d3081f52
PZ
5559static const struct cpumask *cpu_cpu_mask(int cpu)
5560{
5561 return cpumask_of_node(cpu_to_node(cpu));
5562}
5563
dce840a0
PZ
5564struct sd_data {
5565 struct sched_domain **__percpu sd;
5566 struct sched_group **__percpu sg;
9c3f75cb 5567 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5568};
5569
49a02c51 5570struct s_data {
21d42ccf 5571 struct sched_domain ** __percpu sd;
49a02c51
AH
5572 struct root_domain *rd;
5573};
5574
2109b99e 5575enum s_alloc {
2109b99e 5576 sa_rootdomain,
21d42ccf 5577 sa_sd,
dce840a0 5578 sa_sd_storage,
2109b99e
AH
5579 sa_none,
5580};
5581
54ab4ff4
PZ
5582struct sched_domain_topology_level;
5583
5584typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5585typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5586
e3589f6c
PZ
5587#define SDTL_OVERLAP 0x01
5588
eb7a74e6 5589struct sched_domain_topology_level {
2c402dc3
PZ
5590 sched_domain_init_f init;
5591 sched_domain_mask_f mask;
e3589f6c 5592 int flags;
cb83b629 5593 int numa_level;
54ab4ff4 5594 struct sd_data data;
eb7a74e6
PZ
5595};
5596
c1174876
PZ
5597/*
5598 * Build an iteration mask that can exclude certain CPUs from the upwards
5599 * domain traversal.
5600 *
5601 * Asymmetric node setups can result in situations where the domain tree is of
5602 * unequal depth, make sure to skip domains that already cover the entire
5603 * range.
5604 *
5605 * In that case build_sched_domains() will have terminated the iteration early
5606 * and our sibling sd spans will be empty. Domains should always include the
5607 * cpu they're built on, so check that.
5608 *
5609 */
5610static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5611{
5612 const struct cpumask *span = sched_domain_span(sd);
5613 struct sd_data *sdd = sd->private;
5614 struct sched_domain *sibling;
5615 int i;
5616
5617 for_each_cpu(i, span) {
5618 sibling = *per_cpu_ptr(sdd->sd, i);
5619 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5620 continue;
5621
5622 cpumask_set_cpu(i, sched_group_mask(sg));
5623 }
5624}
5625
5626/*
5627 * Return the canonical balance cpu for this group, this is the first cpu
5628 * of this group that's also in the iteration mask.
5629 */
5630int group_balance_cpu(struct sched_group *sg)
5631{
5632 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5633}
5634
e3589f6c
PZ
5635static int
5636build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5637{
5638 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5639 const struct cpumask *span = sched_domain_span(sd);
5640 struct cpumask *covered = sched_domains_tmpmask;
5641 struct sd_data *sdd = sd->private;
5642 struct sched_domain *child;
5643 int i;
5644
5645 cpumask_clear(covered);
5646
5647 for_each_cpu(i, span) {
5648 struct cpumask *sg_span;
5649
5650 if (cpumask_test_cpu(i, covered))
5651 continue;
5652
c1174876
PZ
5653 child = *per_cpu_ptr(sdd->sd, i);
5654
5655 /* See the comment near build_group_mask(). */
5656 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5657 continue;
5658
e3589f6c 5659 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5660 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5661
5662 if (!sg)
5663 goto fail;
5664
5665 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5666 if (child->child) {
5667 child = child->child;
5668 cpumask_copy(sg_span, sched_domain_span(child));
5669 } else
5670 cpumask_set_cpu(i, sg_span);
5671
5672 cpumask_or(covered, covered, sg_span);
5673
74a5ce20 5674 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5675 if (atomic_inc_return(&sg->sgp->ref) == 1)
5676 build_group_mask(sd, sg);
5677
c3decf0d
PZ
5678 /*
5679 * Initialize sgp->power such that even if we mess up the
5680 * domains and no possible iteration will get us here, we won't
5681 * die on a /0 trap.
5682 */
5683 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5684 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5685
c1174876
PZ
5686 /*
5687 * Make sure the first group of this domain contains the
5688 * canonical balance cpu. Otherwise the sched_domain iteration
5689 * breaks. See update_sg_lb_stats().
5690 */
74a5ce20 5691 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5692 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5693 groups = sg;
5694
5695 if (!first)
5696 first = sg;
5697 if (last)
5698 last->next = sg;
5699 last = sg;
5700 last->next = first;
5701 }
5702 sd->groups = groups;
5703
5704 return 0;
5705
5706fail:
5707 free_sched_groups(first, 0);
5708
5709 return -ENOMEM;
5710}
5711
dce840a0 5712static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5713{
dce840a0
PZ
5714 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5715 struct sched_domain *child = sd->child;
1da177e4 5716
dce840a0
PZ
5717 if (child)
5718 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5719
9c3f75cb 5720 if (sg) {
dce840a0 5721 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5722 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5723 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5724 }
dce840a0
PZ
5725
5726 return cpu;
1e9f28fa 5727}
1e9f28fa 5728
01a08546 5729/*
dce840a0
PZ
5730 * build_sched_groups will build a circular linked list of the groups
5731 * covered by the given span, and will set each group's ->cpumask correctly,
5732 * and ->cpu_power to 0.
e3589f6c
PZ
5733 *
5734 * Assumes the sched_domain tree is fully constructed
01a08546 5735 */
e3589f6c
PZ
5736static int
5737build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5738{
dce840a0
PZ
5739 struct sched_group *first = NULL, *last = NULL;
5740 struct sd_data *sdd = sd->private;
5741 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5742 struct cpumask *covered;
dce840a0 5743 int i;
9c1cfda2 5744
e3589f6c
PZ
5745 get_group(cpu, sdd, &sd->groups);
5746 atomic_inc(&sd->groups->ref);
5747
0936629f 5748 if (cpu != cpumask_first(span))
e3589f6c
PZ
5749 return 0;
5750
f96225fd
PZ
5751 lockdep_assert_held(&sched_domains_mutex);
5752 covered = sched_domains_tmpmask;
5753
dce840a0 5754 cpumask_clear(covered);
6711cab4 5755
dce840a0
PZ
5756 for_each_cpu(i, span) {
5757 struct sched_group *sg;
cd08e923 5758 int group, j;
6711cab4 5759
dce840a0
PZ
5760 if (cpumask_test_cpu(i, covered))
5761 continue;
6711cab4 5762
cd08e923 5763 group = get_group(i, sdd, &sg);
dce840a0 5764 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5765 sg->sgp->power = 0;
c1174876 5766 cpumask_setall(sched_group_mask(sg));
0601a88d 5767
dce840a0
PZ
5768 for_each_cpu(j, span) {
5769 if (get_group(j, sdd, NULL) != group)
5770 continue;
0601a88d 5771
dce840a0
PZ
5772 cpumask_set_cpu(j, covered);
5773 cpumask_set_cpu(j, sched_group_cpus(sg));
5774 }
0601a88d 5775
dce840a0
PZ
5776 if (!first)
5777 first = sg;
5778 if (last)
5779 last->next = sg;
5780 last = sg;
5781 }
5782 last->next = first;
e3589f6c
PZ
5783
5784 return 0;
0601a88d 5785}
51888ca2 5786
89c4710e
SS
5787/*
5788 * Initialize sched groups cpu_power.
5789 *
5790 * cpu_power indicates the capacity of sched group, which is used while
5791 * distributing the load between different sched groups in a sched domain.
5792 * Typically cpu_power for all the groups in a sched domain will be same unless
5793 * there are asymmetries in the topology. If there are asymmetries, group
5794 * having more cpu_power will pickup more load compared to the group having
5795 * less cpu_power.
89c4710e
SS
5796 */
5797static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5798{
e3589f6c 5799 struct sched_group *sg = sd->groups;
89c4710e 5800
94c95ba6 5801 WARN_ON(!sg);
e3589f6c
PZ
5802
5803 do {
5804 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5805 sg = sg->next;
5806 } while (sg != sd->groups);
89c4710e 5807
c1174876 5808 if (cpu != group_balance_cpu(sg))
e3589f6c 5809 return;
aae6d3dd 5810
d274cb30 5811 update_group_power(sd, cpu);
69e1e811 5812 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5813}
5814
029632fb
PZ
5815int __weak arch_sd_sibling_asym_packing(void)
5816{
5817 return 0*SD_ASYM_PACKING;
89c4710e
SS
5818}
5819
7c16ec58
MT
5820/*
5821 * Initializers for schedule domains
5822 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5823 */
5824
a5d8c348
IM
5825#ifdef CONFIG_SCHED_DEBUG
5826# define SD_INIT_NAME(sd, type) sd->name = #type
5827#else
5828# define SD_INIT_NAME(sd, type) do { } while (0)
5829#endif
5830
54ab4ff4
PZ
5831#define SD_INIT_FUNC(type) \
5832static noinline struct sched_domain * \
5833sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5834{ \
5835 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5836 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5837 SD_INIT_NAME(sd, type); \
5838 sd->private = &tl->data; \
5839 return sd; \
7c16ec58
MT
5840}
5841
5842SD_INIT_FUNC(CPU)
7c16ec58
MT
5843#ifdef CONFIG_SCHED_SMT
5844 SD_INIT_FUNC(SIBLING)
5845#endif
5846#ifdef CONFIG_SCHED_MC
5847 SD_INIT_FUNC(MC)
5848#endif
01a08546
HC
5849#ifdef CONFIG_SCHED_BOOK
5850 SD_INIT_FUNC(BOOK)
5851#endif
7c16ec58 5852
1d3504fc 5853static int default_relax_domain_level = -1;
60495e77 5854int sched_domain_level_max;
1d3504fc
HS
5855
5856static int __init setup_relax_domain_level(char *str)
5857{
a841f8ce
DS
5858 if (kstrtoint(str, 0, &default_relax_domain_level))
5859 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5860
1d3504fc
HS
5861 return 1;
5862}
5863__setup("relax_domain_level=", setup_relax_domain_level);
5864
5865static void set_domain_attribute(struct sched_domain *sd,
5866 struct sched_domain_attr *attr)
5867{
5868 int request;
5869
5870 if (!attr || attr->relax_domain_level < 0) {
5871 if (default_relax_domain_level < 0)
5872 return;
5873 else
5874 request = default_relax_domain_level;
5875 } else
5876 request = attr->relax_domain_level;
5877 if (request < sd->level) {
5878 /* turn off idle balance on this domain */
c88d5910 5879 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5880 } else {
5881 /* turn on idle balance on this domain */
c88d5910 5882 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5883 }
5884}
5885
54ab4ff4
PZ
5886static void __sdt_free(const struct cpumask *cpu_map);
5887static int __sdt_alloc(const struct cpumask *cpu_map);
5888
2109b99e
AH
5889static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5890 const struct cpumask *cpu_map)
5891{
5892 switch (what) {
2109b99e 5893 case sa_rootdomain:
822ff793
PZ
5894 if (!atomic_read(&d->rd->refcount))
5895 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5896 case sa_sd:
5897 free_percpu(d->sd); /* fall through */
dce840a0 5898 case sa_sd_storage:
54ab4ff4 5899 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5900 case sa_none:
5901 break;
5902 }
5903}
3404c8d9 5904
2109b99e
AH
5905static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5906 const struct cpumask *cpu_map)
5907{
dce840a0
PZ
5908 memset(d, 0, sizeof(*d));
5909
54ab4ff4
PZ
5910 if (__sdt_alloc(cpu_map))
5911 return sa_sd_storage;
dce840a0
PZ
5912 d->sd = alloc_percpu(struct sched_domain *);
5913 if (!d->sd)
5914 return sa_sd_storage;
2109b99e 5915 d->rd = alloc_rootdomain();
dce840a0 5916 if (!d->rd)
21d42ccf 5917 return sa_sd;
2109b99e
AH
5918 return sa_rootdomain;
5919}
57d885fe 5920
dce840a0
PZ
5921/*
5922 * NULL the sd_data elements we've used to build the sched_domain and
5923 * sched_group structure so that the subsequent __free_domain_allocs()
5924 * will not free the data we're using.
5925 */
5926static void claim_allocations(int cpu, struct sched_domain *sd)
5927{
5928 struct sd_data *sdd = sd->private;
dce840a0
PZ
5929
5930 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5931 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5932
e3589f6c 5933 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5934 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5935
5936 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5937 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5938}
5939
2c402dc3
PZ
5940#ifdef CONFIG_SCHED_SMT
5941static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5942{
2c402dc3 5943 return topology_thread_cpumask(cpu);
3bd65a80 5944}
2c402dc3 5945#endif
7f4588f3 5946
d069b916
PZ
5947/*
5948 * Topology list, bottom-up.
5949 */
2c402dc3 5950static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5951#ifdef CONFIG_SCHED_SMT
5952 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5953#endif
1e9f28fa 5954#ifdef CONFIG_SCHED_MC
2c402dc3 5955 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5956#endif
d069b916
PZ
5957#ifdef CONFIG_SCHED_BOOK
5958 { sd_init_BOOK, cpu_book_mask, },
5959#endif
5960 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5961 { NULL, },
5962};
5963
5964static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5965
27723a68
VK
5966#define for_each_sd_topology(tl) \
5967 for (tl = sched_domain_topology; tl->init; tl++)
5968
cb83b629
PZ
5969#ifdef CONFIG_NUMA
5970
5971static int sched_domains_numa_levels;
cb83b629
PZ
5972static int *sched_domains_numa_distance;
5973static struct cpumask ***sched_domains_numa_masks;
5974static int sched_domains_curr_level;
5975
cb83b629
PZ
5976static inline int sd_local_flags(int level)
5977{
10717dcd 5978 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5979 return 0;
5980
5981 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5982}
5983
5984static struct sched_domain *
5985sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5986{
5987 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5988 int level = tl->numa_level;
5989 int sd_weight = cpumask_weight(
5990 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5991
5992 *sd = (struct sched_domain){
5993 .min_interval = sd_weight,
5994 .max_interval = 2*sd_weight,
5995 .busy_factor = 32,
870a0bb5 5996 .imbalance_pct = 125,
cb83b629
PZ
5997 .cache_nice_tries = 2,
5998 .busy_idx = 3,
5999 .idle_idx = 2,
6000 .newidle_idx = 0,
6001 .wake_idx = 0,
6002 .forkexec_idx = 0,
6003
6004 .flags = 1*SD_LOAD_BALANCE
6005 | 1*SD_BALANCE_NEWIDLE
6006 | 0*SD_BALANCE_EXEC
6007 | 0*SD_BALANCE_FORK
6008 | 0*SD_BALANCE_WAKE
6009 | 0*SD_WAKE_AFFINE
cb83b629 6010 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6011 | 0*SD_SHARE_PKG_RESOURCES
6012 | 1*SD_SERIALIZE
6013 | 0*SD_PREFER_SIBLING
3a7053b3 6014 | 1*SD_NUMA
cb83b629
PZ
6015 | sd_local_flags(level)
6016 ,
6017 .last_balance = jiffies,
6018 .balance_interval = sd_weight,
6019 };
6020 SD_INIT_NAME(sd, NUMA);
6021 sd->private = &tl->data;
6022
6023 /*
6024 * Ugly hack to pass state to sd_numa_mask()...
6025 */
6026 sched_domains_curr_level = tl->numa_level;
6027
6028 return sd;
6029}
6030
6031static const struct cpumask *sd_numa_mask(int cpu)
6032{
6033 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6034}
6035
d039ac60
PZ
6036static void sched_numa_warn(const char *str)
6037{
6038 static int done = false;
6039 int i,j;
6040
6041 if (done)
6042 return;
6043
6044 done = true;
6045
6046 printk(KERN_WARNING "ERROR: %s\n\n", str);
6047
6048 for (i = 0; i < nr_node_ids; i++) {
6049 printk(KERN_WARNING " ");
6050 for (j = 0; j < nr_node_ids; j++)
6051 printk(KERN_CONT "%02d ", node_distance(i,j));
6052 printk(KERN_CONT "\n");
6053 }
6054 printk(KERN_WARNING "\n");
6055}
6056
6057static bool find_numa_distance(int distance)
6058{
6059 int i;
6060
6061 if (distance == node_distance(0, 0))
6062 return true;
6063
6064 for (i = 0; i < sched_domains_numa_levels; i++) {
6065 if (sched_domains_numa_distance[i] == distance)
6066 return true;
6067 }
6068
6069 return false;
6070}
6071
cb83b629
PZ
6072static void sched_init_numa(void)
6073{
6074 int next_distance, curr_distance = node_distance(0, 0);
6075 struct sched_domain_topology_level *tl;
6076 int level = 0;
6077 int i, j, k;
6078
cb83b629
PZ
6079 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6080 if (!sched_domains_numa_distance)
6081 return;
6082
6083 /*
6084 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6085 * unique distances in the node_distance() table.
6086 *
6087 * Assumes node_distance(0,j) includes all distances in
6088 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6089 */
6090 next_distance = curr_distance;
6091 for (i = 0; i < nr_node_ids; i++) {
6092 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6093 for (k = 0; k < nr_node_ids; k++) {
6094 int distance = node_distance(i, k);
6095
6096 if (distance > curr_distance &&
6097 (distance < next_distance ||
6098 next_distance == curr_distance))
6099 next_distance = distance;
6100
6101 /*
6102 * While not a strong assumption it would be nice to know
6103 * about cases where if node A is connected to B, B is not
6104 * equally connected to A.
6105 */
6106 if (sched_debug() && node_distance(k, i) != distance)
6107 sched_numa_warn("Node-distance not symmetric");
6108
6109 if (sched_debug() && i && !find_numa_distance(distance))
6110 sched_numa_warn("Node-0 not representative");
6111 }
6112 if (next_distance != curr_distance) {
6113 sched_domains_numa_distance[level++] = next_distance;
6114 sched_domains_numa_levels = level;
6115 curr_distance = next_distance;
6116 } else break;
cb83b629 6117 }
d039ac60
PZ
6118
6119 /*
6120 * In case of sched_debug() we verify the above assumption.
6121 */
6122 if (!sched_debug())
6123 break;
cb83b629
PZ
6124 }
6125 /*
6126 * 'level' contains the number of unique distances, excluding the
6127 * identity distance node_distance(i,i).
6128 *
28b4a521 6129 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6130 * numbers.
6131 */
6132
5f7865f3
TC
6133 /*
6134 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6135 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6136 * the array will contain less then 'level' members. This could be
6137 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6138 * in other functions.
6139 *
6140 * We reset it to 'level' at the end of this function.
6141 */
6142 sched_domains_numa_levels = 0;
6143
cb83b629
PZ
6144 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6145 if (!sched_domains_numa_masks)
6146 return;
6147
6148 /*
6149 * Now for each level, construct a mask per node which contains all
6150 * cpus of nodes that are that many hops away from us.
6151 */
6152 for (i = 0; i < level; i++) {
6153 sched_domains_numa_masks[i] =
6154 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6155 if (!sched_domains_numa_masks[i])
6156 return;
6157
6158 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6159 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6160 if (!mask)
6161 return;
6162
6163 sched_domains_numa_masks[i][j] = mask;
6164
6165 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6166 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6167 continue;
6168
6169 cpumask_or(mask, mask, cpumask_of_node(k));
6170 }
6171 }
6172 }
6173
6174 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6175 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6176 if (!tl)
6177 return;
6178
6179 /*
6180 * Copy the default topology bits..
6181 */
6182 for (i = 0; default_topology[i].init; i++)
6183 tl[i] = default_topology[i];
6184
6185 /*
6186 * .. and append 'j' levels of NUMA goodness.
6187 */
6188 for (j = 0; j < level; i++, j++) {
6189 tl[i] = (struct sched_domain_topology_level){
6190 .init = sd_numa_init,
6191 .mask = sd_numa_mask,
6192 .flags = SDTL_OVERLAP,
6193 .numa_level = j,
6194 };
6195 }
6196
6197 sched_domain_topology = tl;
5f7865f3
TC
6198
6199 sched_domains_numa_levels = level;
cb83b629 6200}
301a5cba
TC
6201
6202static void sched_domains_numa_masks_set(int cpu)
6203{
6204 int i, j;
6205 int node = cpu_to_node(cpu);
6206
6207 for (i = 0; i < sched_domains_numa_levels; i++) {
6208 for (j = 0; j < nr_node_ids; j++) {
6209 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6210 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6211 }
6212 }
6213}
6214
6215static void sched_domains_numa_masks_clear(int cpu)
6216{
6217 int i, j;
6218 for (i = 0; i < sched_domains_numa_levels; i++) {
6219 for (j = 0; j < nr_node_ids; j++)
6220 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6221 }
6222}
6223
6224/*
6225 * Update sched_domains_numa_masks[level][node] array when new cpus
6226 * are onlined.
6227 */
6228static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6229 unsigned long action,
6230 void *hcpu)
6231{
6232 int cpu = (long)hcpu;
6233
6234 switch (action & ~CPU_TASKS_FROZEN) {
6235 case CPU_ONLINE:
6236 sched_domains_numa_masks_set(cpu);
6237 break;
6238
6239 case CPU_DEAD:
6240 sched_domains_numa_masks_clear(cpu);
6241 break;
6242
6243 default:
6244 return NOTIFY_DONE;
6245 }
6246
6247 return NOTIFY_OK;
cb83b629
PZ
6248}
6249#else
6250static inline void sched_init_numa(void)
6251{
6252}
301a5cba
TC
6253
6254static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6255 unsigned long action,
6256 void *hcpu)
6257{
6258 return 0;
6259}
cb83b629
PZ
6260#endif /* CONFIG_NUMA */
6261
54ab4ff4
PZ
6262static int __sdt_alloc(const struct cpumask *cpu_map)
6263{
6264 struct sched_domain_topology_level *tl;
6265 int j;
6266
27723a68 6267 for_each_sd_topology(tl) {
54ab4ff4
PZ
6268 struct sd_data *sdd = &tl->data;
6269
6270 sdd->sd = alloc_percpu(struct sched_domain *);
6271 if (!sdd->sd)
6272 return -ENOMEM;
6273
6274 sdd->sg = alloc_percpu(struct sched_group *);
6275 if (!sdd->sg)
6276 return -ENOMEM;
6277
9c3f75cb
PZ
6278 sdd->sgp = alloc_percpu(struct sched_group_power *);
6279 if (!sdd->sgp)
6280 return -ENOMEM;
6281
54ab4ff4
PZ
6282 for_each_cpu(j, cpu_map) {
6283 struct sched_domain *sd;
6284 struct sched_group *sg;
9c3f75cb 6285 struct sched_group_power *sgp;
54ab4ff4
PZ
6286
6287 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6288 GFP_KERNEL, cpu_to_node(j));
6289 if (!sd)
6290 return -ENOMEM;
6291
6292 *per_cpu_ptr(sdd->sd, j) = sd;
6293
6294 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6295 GFP_KERNEL, cpu_to_node(j));
6296 if (!sg)
6297 return -ENOMEM;
6298
30b4e9eb
IM
6299 sg->next = sg;
6300
54ab4ff4 6301 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6302
c1174876 6303 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6304 GFP_KERNEL, cpu_to_node(j));
6305 if (!sgp)
6306 return -ENOMEM;
6307
6308 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6309 }
6310 }
6311
6312 return 0;
6313}
6314
6315static void __sdt_free(const struct cpumask *cpu_map)
6316{
6317 struct sched_domain_topology_level *tl;
6318 int j;
6319
27723a68 6320 for_each_sd_topology(tl) {
54ab4ff4
PZ
6321 struct sd_data *sdd = &tl->data;
6322
6323 for_each_cpu(j, cpu_map) {
fb2cf2c6 6324 struct sched_domain *sd;
6325
6326 if (sdd->sd) {
6327 sd = *per_cpu_ptr(sdd->sd, j);
6328 if (sd && (sd->flags & SD_OVERLAP))
6329 free_sched_groups(sd->groups, 0);
6330 kfree(*per_cpu_ptr(sdd->sd, j));
6331 }
6332
6333 if (sdd->sg)
6334 kfree(*per_cpu_ptr(sdd->sg, j));
6335 if (sdd->sgp)
6336 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6337 }
6338 free_percpu(sdd->sd);
fb2cf2c6 6339 sdd->sd = NULL;
54ab4ff4 6340 free_percpu(sdd->sg);
fb2cf2c6 6341 sdd->sg = NULL;
9c3f75cb 6342 free_percpu(sdd->sgp);
fb2cf2c6 6343 sdd->sgp = NULL;
54ab4ff4
PZ
6344 }
6345}
6346
2c402dc3 6347struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6348 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6349 struct sched_domain *child, int cpu)
2c402dc3 6350{
54ab4ff4 6351 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6352 if (!sd)
d069b916 6353 return child;
2c402dc3 6354
2c402dc3 6355 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6356 if (child) {
6357 sd->level = child->level + 1;
6358 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6359 child->parent = sd;
c75e0128 6360 sd->child = child;
60495e77 6361 }
a841f8ce 6362 set_domain_attribute(sd, attr);
2c402dc3
PZ
6363
6364 return sd;
6365}
6366
2109b99e
AH
6367/*
6368 * Build sched domains for a given set of cpus and attach the sched domains
6369 * to the individual cpus
6370 */
dce840a0
PZ
6371static int build_sched_domains(const struct cpumask *cpu_map,
6372 struct sched_domain_attr *attr)
2109b99e 6373{
1c632169 6374 enum s_alloc alloc_state;
dce840a0 6375 struct sched_domain *sd;
2109b99e 6376 struct s_data d;
822ff793 6377 int i, ret = -ENOMEM;
9c1cfda2 6378
2109b99e
AH
6379 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6380 if (alloc_state != sa_rootdomain)
6381 goto error;
9c1cfda2 6382
dce840a0 6383 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6384 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6385 struct sched_domain_topology_level *tl;
6386
3bd65a80 6387 sd = NULL;
27723a68 6388 for_each_sd_topology(tl) {
4a850cbe 6389 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6390 if (tl == sched_domain_topology)
6391 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6392 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6393 sd->flags |= SD_OVERLAP;
d110235d
PZ
6394 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6395 break;
e3589f6c 6396 }
dce840a0
PZ
6397 }
6398
6399 /* Build the groups for the domains */
6400 for_each_cpu(i, cpu_map) {
6401 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6402 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6403 if (sd->flags & SD_OVERLAP) {
6404 if (build_overlap_sched_groups(sd, i))
6405 goto error;
6406 } else {
6407 if (build_sched_groups(sd, i))
6408 goto error;
6409 }
1cf51902 6410 }
a06dadbe 6411 }
9c1cfda2 6412
1da177e4 6413 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6414 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6415 if (!cpumask_test_cpu(i, cpu_map))
6416 continue;
9c1cfda2 6417
dce840a0
PZ
6418 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6419 claim_allocations(i, sd);
cd4ea6ae 6420 init_sched_groups_power(i, sd);
dce840a0 6421 }
f712c0c7 6422 }
9c1cfda2 6423
1da177e4 6424 /* Attach the domains */
dce840a0 6425 rcu_read_lock();
abcd083a 6426 for_each_cpu(i, cpu_map) {
21d42ccf 6427 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6428 cpu_attach_domain(sd, d.rd, i);
1da177e4 6429 }
dce840a0 6430 rcu_read_unlock();
51888ca2 6431
822ff793 6432 ret = 0;
51888ca2 6433error:
2109b99e 6434 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6435 return ret;
1da177e4 6436}
029190c5 6437
acc3f5d7 6438static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6439static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6440static struct sched_domain_attr *dattr_cur;
6441 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6442
6443/*
6444 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6445 * cpumask) fails, then fallback to a single sched domain,
6446 * as determined by the single cpumask fallback_doms.
029190c5 6447 */
4212823f 6448static cpumask_var_t fallback_doms;
029190c5 6449
ee79d1bd
HC
6450/*
6451 * arch_update_cpu_topology lets virtualized architectures update the
6452 * cpu core maps. It is supposed to return 1 if the topology changed
6453 * or 0 if it stayed the same.
6454 */
6455int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6456{
ee79d1bd 6457 return 0;
22e52b07
HC
6458}
6459
acc3f5d7
RR
6460cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6461{
6462 int i;
6463 cpumask_var_t *doms;
6464
6465 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6466 if (!doms)
6467 return NULL;
6468 for (i = 0; i < ndoms; i++) {
6469 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6470 free_sched_domains(doms, i);
6471 return NULL;
6472 }
6473 }
6474 return doms;
6475}
6476
6477void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6478{
6479 unsigned int i;
6480 for (i = 0; i < ndoms; i++)
6481 free_cpumask_var(doms[i]);
6482 kfree(doms);
6483}
6484
1a20ff27 6485/*
41a2d6cf 6486 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6487 * For now this just excludes isolated cpus, but could be used to
6488 * exclude other special cases in the future.
1a20ff27 6489 */
c4a8849a 6490static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6491{
7378547f
MM
6492 int err;
6493
22e52b07 6494 arch_update_cpu_topology();
029190c5 6495 ndoms_cur = 1;
acc3f5d7 6496 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6497 if (!doms_cur)
acc3f5d7
RR
6498 doms_cur = &fallback_doms;
6499 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6500 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6501 register_sched_domain_sysctl();
7378547f
MM
6502
6503 return err;
1a20ff27
DG
6504}
6505
1a20ff27
DG
6506/*
6507 * Detach sched domains from a group of cpus specified in cpu_map
6508 * These cpus will now be attached to the NULL domain
6509 */
96f874e2 6510static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6511{
6512 int i;
6513
dce840a0 6514 rcu_read_lock();
abcd083a 6515 for_each_cpu(i, cpu_map)
57d885fe 6516 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6517 rcu_read_unlock();
1a20ff27
DG
6518}
6519
1d3504fc
HS
6520/* handle null as "default" */
6521static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6522 struct sched_domain_attr *new, int idx_new)
6523{
6524 struct sched_domain_attr tmp;
6525
6526 /* fast path */
6527 if (!new && !cur)
6528 return 1;
6529
6530 tmp = SD_ATTR_INIT;
6531 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6532 new ? (new + idx_new) : &tmp,
6533 sizeof(struct sched_domain_attr));
6534}
6535
029190c5
PJ
6536/*
6537 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6538 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6539 * doms_new[] to the current sched domain partitioning, doms_cur[].
6540 * It destroys each deleted domain and builds each new domain.
6541 *
acc3f5d7 6542 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6543 * The masks don't intersect (don't overlap.) We should setup one
6544 * sched domain for each mask. CPUs not in any of the cpumasks will
6545 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6546 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6547 * it as it is.
6548 *
acc3f5d7
RR
6549 * The passed in 'doms_new' should be allocated using
6550 * alloc_sched_domains. This routine takes ownership of it and will
6551 * free_sched_domains it when done with it. If the caller failed the
6552 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6553 * and partition_sched_domains() will fallback to the single partition
6554 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6555 *
96f874e2 6556 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6557 * ndoms_new == 0 is a special case for destroying existing domains,
6558 * and it will not create the default domain.
dfb512ec 6559 *
029190c5
PJ
6560 * Call with hotplug lock held
6561 */
acc3f5d7 6562void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6563 struct sched_domain_attr *dattr_new)
029190c5 6564{
dfb512ec 6565 int i, j, n;
d65bd5ec 6566 int new_topology;
029190c5 6567
712555ee 6568 mutex_lock(&sched_domains_mutex);
a1835615 6569
7378547f
MM
6570 /* always unregister in case we don't destroy any domains */
6571 unregister_sched_domain_sysctl();
6572
d65bd5ec
HC
6573 /* Let architecture update cpu core mappings. */
6574 new_topology = arch_update_cpu_topology();
6575
dfb512ec 6576 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6577
6578 /* Destroy deleted domains */
6579 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6580 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6581 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6582 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6583 goto match1;
6584 }
6585 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6586 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6587match1:
6588 ;
6589 }
6590
c8d2d47a 6591 n = ndoms_cur;
e761b772 6592 if (doms_new == NULL) {
c8d2d47a 6593 n = 0;
acc3f5d7 6594 doms_new = &fallback_doms;
6ad4c188 6595 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6596 WARN_ON_ONCE(dattr_new);
e761b772
MK
6597 }
6598
029190c5
PJ
6599 /* Build new domains */
6600 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6601 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6602 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6603 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6604 goto match2;
6605 }
6606 /* no match - add a new doms_new */
dce840a0 6607 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6608match2:
6609 ;
6610 }
6611
6612 /* Remember the new sched domains */
acc3f5d7
RR
6613 if (doms_cur != &fallback_doms)
6614 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6615 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6616 doms_cur = doms_new;
1d3504fc 6617 dattr_cur = dattr_new;
029190c5 6618 ndoms_cur = ndoms_new;
7378547f
MM
6619
6620 register_sched_domain_sysctl();
a1835615 6621
712555ee 6622 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6623}
6624
d35be8ba
SB
6625static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6626
1da177e4 6627/*
3a101d05
TH
6628 * Update cpusets according to cpu_active mask. If cpusets are
6629 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6630 * around partition_sched_domains().
d35be8ba
SB
6631 *
6632 * If we come here as part of a suspend/resume, don't touch cpusets because we
6633 * want to restore it back to its original state upon resume anyway.
1da177e4 6634 */
0b2e918a
TH
6635static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6636 void *hcpu)
e761b772 6637{
d35be8ba
SB
6638 switch (action) {
6639 case CPU_ONLINE_FROZEN:
6640 case CPU_DOWN_FAILED_FROZEN:
6641
6642 /*
6643 * num_cpus_frozen tracks how many CPUs are involved in suspend
6644 * resume sequence. As long as this is not the last online
6645 * operation in the resume sequence, just build a single sched
6646 * domain, ignoring cpusets.
6647 */
6648 num_cpus_frozen--;
6649 if (likely(num_cpus_frozen)) {
6650 partition_sched_domains(1, NULL, NULL);
6651 break;
6652 }
6653
6654 /*
6655 * This is the last CPU online operation. So fall through and
6656 * restore the original sched domains by considering the
6657 * cpuset configurations.
6658 */
6659
e761b772 6660 case CPU_ONLINE:
6ad4c188 6661 case CPU_DOWN_FAILED:
7ddf96b0 6662 cpuset_update_active_cpus(true);
d35be8ba 6663 break;
3a101d05
TH
6664 default:
6665 return NOTIFY_DONE;
6666 }
d35be8ba 6667 return NOTIFY_OK;
3a101d05 6668}
e761b772 6669
0b2e918a
TH
6670static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6671 void *hcpu)
3a101d05 6672{
d35be8ba 6673 switch (action) {
3a101d05 6674 case CPU_DOWN_PREPARE:
7ddf96b0 6675 cpuset_update_active_cpus(false);
d35be8ba
SB
6676 break;
6677 case CPU_DOWN_PREPARE_FROZEN:
6678 num_cpus_frozen++;
6679 partition_sched_domains(1, NULL, NULL);
6680 break;
e761b772
MK
6681 default:
6682 return NOTIFY_DONE;
6683 }
d35be8ba 6684 return NOTIFY_OK;
e761b772 6685}
e761b772 6686
1da177e4
LT
6687void __init sched_init_smp(void)
6688{
dcc30a35
RR
6689 cpumask_var_t non_isolated_cpus;
6690
6691 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6692 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6693
cb83b629
PZ
6694 sched_init_numa();
6695
6acce3ef
PZ
6696 /*
6697 * There's no userspace yet to cause hotplug operations; hence all the
6698 * cpu masks are stable and all blatant races in the below code cannot
6699 * happen.
6700 */
712555ee 6701 mutex_lock(&sched_domains_mutex);
c4a8849a 6702 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6703 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6704 if (cpumask_empty(non_isolated_cpus))
6705 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6706 mutex_unlock(&sched_domains_mutex);
e761b772 6707
301a5cba 6708 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6709 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6710 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6711
b328ca18 6712 init_hrtick();
5c1e1767
NP
6713
6714 /* Move init over to a non-isolated CPU */
dcc30a35 6715 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6716 BUG();
19978ca6 6717 sched_init_granularity();
dcc30a35 6718 free_cpumask_var(non_isolated_cpus);
4212823f 6719
0e3900e6 6720 init_sched_rt_class();
1baca4ce 6721 init_sched_dl_class();
1da177e4
LT
6722}
6723#else
6724void __init sched_init_smp(void)
6725{
19978ca6 6726 sched_init_granularity();
1da177e4
LT
6727}
6728#endif /* CONFIG_SMP */
6729
cd1bb94b
AB
6730const_debug unsigned int sysctl_timer_migration = 1;
6731
1da177e4
LT
6732int in_sched_functions(unsigned long addr)
6733{
1da177e4
LT
6734 return in_lock_functions(addr) ||
6735 (addr >= (unsigned long)__sched_text_start
6736 && addr < (unsigned long)__sched_text_end);
6737}
6738
029632fb 6739#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6740/*
6741 * Default task group.
6742 * Every task in system belongs to this group at bootup.
6743 */
029632fb 6744struct task_group root_task_group;
35cf4e50 6745LIST_HEAD(task_groups);
052f1dc7 6746#endif
6f505b16 6747
e6252c3e 6748DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6749
1da177e4
LT
6750void __init sched_init(void)
6751{
dd41f596 6752 int i, j;
434d53b0
MT
6753 unsigned long alloc_size = 0, ptr;
6754
6755#ifdef CONFIG_FAIR_GROUP_SCHED
6756 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6757#endif
6758#ifdef CONFIG_RT_GROUP_SCHED
6759 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6760#endif
df7c8e84 6761#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6762 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6763#endif
434d53b0 6764 if (alloc_size) {
36b7b6d4 6765 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6766
6767#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6768 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6769 ptr += nr_cpu_ids * sizeof(void **);
6770
07e06b01 6771 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6772 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6773
6d6bc0ad 6774#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6775#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6776 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6777 ptr += nr_cpu_ids * sizeof(void **);
6778
07e06b01 6779 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6780 ptr += nr_cpu_ids * sizeof(void **);
6781
6d6bc0ad 6782#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6783#ifdef CONFIG_CPUMASK_OFFSTACK
6784 for_each_possible_cpu(i) {
e6252c3e 6785 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6786 ptr += cpumask_size();
6787 }
6788#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6789 }
dd41f596 6790
332ac17e
DF
6791 init_rt_bandwidth(&def_rt_bandwidth,
6792 global_rt_period(), global_rt_runtime());
6793 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6794 global_rt_period(), global_rt_runtime());
332ac17e 6795
57d885fe
GH
6796#ifdef CONFIG_SMP
6797 init_defrootdomain();
6798#endif
6799
d0b27fa7 6800#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6801 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6802 global_rt_period(), global_rt_runtime());
6d6bc0ad 6803#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6804
7c941438 6805#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6806 list_add(&root_task_group.list, &task_groups);
6807 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6808 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6809 autogroup_init(&init_task);
54c707e9 6810
7c941438 6811#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6812
0a945022 6813 for_each_possible_cpu(i) {
70b97a7f 6814 struct rq *rq;
1da177e4
LT
6815
6816 rq = cpu_rq(i);
05fa785c 6817 raw_spin_lock_init(&rq->lock);
7897986b 6818 rq->nr_running = 0;
dce48a84
TG
6819 rq->calc_load_active = 0;
6820 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6821 init_cfs_rq(&rq->cfs);
6f505b16 6822 init_rt_rq(&rq->rt, rq);
aab03e05 6823 init_dl_rq(&rq->dl, rq);
dd41f596 6824#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6825 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6826 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6827 /*
07e06b01 6828 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6829 *
6830 * In case of task-groups formed thr' the cgroup filesystem, it
6831 * gets 100% of the cpu resources in the system. This overall
6832 * system cpu resource is divided among the tasks of
07e06b01 6833 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6834 * based on each entity's (task or task-group's) weight
6835 * (se->load.weight).
6836 *
07e06b01 6837 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6838 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6839 * then A0's share of the cpu resource is:
6840 *
0d905bca 6841 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6842 *
07e06b01
YZ
6843 * We achieve this by letting root_task_group's tasks sit
6844 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6845 */
ab84d31e 6846 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6847 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6848#endif /* CONFIG_FAIR_GROUP_SCHED */
6849
6850 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6851#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6852 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6853 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6854#endif
1da177e4 6855
dd41f596
IM
6856 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6857 rq->cpu_load[j] = 0;
fdf3e95d
VP
6858
6859 rq->last_load_update_tick = jiffies;
6860
1da177e4 6861#ifdef CONFIG_SMP
41c7ce9a 6862 rq->sd = NULL;
57d885fe 6863 rq->rd = NULL;
1399fa78 6864 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6865 rq->post_schedule = 0;
1da177e4 6866 rq->active_balance = 0;
dd41f596 6867 rq->next_balance = jiffies;
1da177e4 6868 rq->push_cpu = 0;
0a2966b4 6869 rq->cpu = i;
1f11eb6a 6870 rq->online = 0;
eae0c9df
MG
6871 rq->idle_stamp = 0;
6872 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6873 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6874
6875 INIT_LIST_HEAD(&rq->cfs_tasks);
6876
dc938520 6877 rq_attach_root(rq, &def_root_domain);
3451d024 6878#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6879 rq->nohz_flags = 0;
83cd4fe2 6880#endif
265f22a9
FW
6881#ifdef CONFIG_NO_HZ_FULL
6882 rq->last_sched_tick = 0;
6883#endif
1da177e4 6884#endif
8f4d37ec 6885 init_rq_hrtick(rq);
1da177e4 6886 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6887 }
6888
2dd73a4f 6889 set_load_weight(&init_task);
b50f60ce 6890
e107be36
AK
6891#ifdef CONFIG_PREEMPT_NOTIFIERS
6892 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6893#endif
6894
1da177e4
LT
6895 /*
6896 * The boot idle thread does lazy MMU switching as well:
6897 */
6898 atomic_inc(&init_mm.mm_count);
6899 enter_lazy_tlb(&init_mm, current);
6900
6901 /*
6902 * Make us the idle thread. Technically, schedule() should not be
6903 * called from this thread, however somewhere below it might be,
6904 * but because we are the idle thread, we just pick up running again
6905 * when this runqueue becomes "idle".
6906 */
6907 init_idle(current, smp_processor_id());
dce48a84
TG
6908
6909 calc_load_update = jiffies + LOAD_FREQ;
6910
dd41f596
IM
6911 /*
6912 * During early bootup we pretend to be a normal task:
6913 */
6914 current->sched_class = &fair_sched_class;
6892b75e 6915
bf4d83f6 6916#ifdef CONFIG_SMP
4cb98839 6917 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6918 /* May be allocated at isolcpus cmdline parse time */
6919 if (cpu_isolated_map == NULL)
6920 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6921 idle_thread_set_boot_cpu();
029632fb
PZ
6922#endif
6923 init_sched_fair_class();
6a7b3dc3 6924
6892b75e 6925 scheduler_running = 1;
1da177e4
LT
6926}
6927
d902db1e 6928#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6929static inline int preempt_count_equals(int preempt_offset)
6930{
234da7bc 6931 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6932
4ba8216c 6933 return (nested == preempt_offset);
e4aafea2
FW
6934}
6935
d894837f 6936void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6937{
1da177e4
LT
6938 static unsigned long prev_jiffy; /* ratelimiting */
6939
b3fbab05 6940 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6941 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6942 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6943 return;
6944 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6945 return;
6946 prev_jiffy = jiffies;
6947
3df0fc5b
PZ
6948 printk(KERN_ERR
6949 "BUG: sleeping function called from invalid context at %s:%d\n",
6950 file, line);
6951 printk(KERN_ERR
6952 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6953 in_atomic(), irqs_disabled(),
6954 current->pid, current->comm);
aef745fc
IM
6955
6956 debug_show_held_locks(current);
6957 if (irqs_disabled())
6958 print_irqtrace_events(current);
6959 dump_stack();
1da177e4
LT
6960}
6961EXPORT_SYMBOL(__might_sleep);
6962#endif
6963
6964#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6965static void normalize_task(struct rq *rq, struct task_struct *p)
6966{
da7a735e 6967 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6968 struct sched_attr attr = {
6969 .sched_policy = SCHED_NORMAL,
6970 };
da7a735e 6971 int old_prio = p->prio;
3a5e4dc1 6972 int on_rq;
3e51f33f 6973
fd2f4419 6974 on_rq = p->on_rq;
3a5e4dc1 6975 if (on_rq)
4ca9b72b 6976 dequeue_task(rq, p, 0);
d50dde5a 6977 __setscheduler(rq, p, &attr);
3a5e4dc1 6978 if (on_rq) {
4ca9b72b 6979 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6980 resched_task(rq->curr);
6981 }
da7a735e
PZ
6982
6983 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6984}
6985
1da177e4
LT
6986void normalize_rt_tasks(void)
6987{
a0f98a1c 6988 struct task_struct *g, *p;
1da177e4 6989 unsigned long flags;
70b97a7f 6990 struct rq *rq;
1da177e4 6991
4cf5d77a 6992 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6993 do_each_thread(g, p) {
178be793
IM
6994 /*
6995 * Only normalize user tasks:
6996 */
6997 if (!p->mm)
6998 continue;
6999
6cfb0d5d 7000 p->se.exec_start = 0;
6cfb0d5d 7001#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7002 p->se.statistics.wait_start = 0;
7003 p->se.statistics.sleep_start = 0;
7004 p->se.statistics.block_start = 0;
6cfb0d5d 7005#endif
dd41f596 7006
aab03e05 7007 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7008 /*
7009 * Renice negative nice level userspace
7010 * tasks back to 0:
7011 */
7012 if (TASK_NICE(p) < 0 && p->mm)
7013 set_user_nice(p, 0);
1da177e4 7014 continue;
dd41f596 7015 }
1da177e4 7016
1d615482 7017 raw_spin_lock(&p->pi_lock);
b29739f9 7018 rq = __task_rq_lock(p);
1da177e4 7019
178be793 7020 normalize_task(rq, p);
3a5e4dc1 7021
b29739f9 7022 __task_rq_unlock(rq);
1d615482 7023 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7024 } while_each_thread(g, p);
7025
4cf5d77a 7026 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7027}
7028
7029#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7030
67fc4e0c 7031#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7032/*
67fc4e0c 7033 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7034 *
7035 * They can only be called when the whole system has been
7036 * stopped - every CPU needs to be quiescent, and no scheduling
7037 * activity can take place. Using them for anything else would
7038 * be a serious bug, and as a result, they aren't even visible
7039 * under any other configuration.
7040 */
7041
7042/**
7043 * curr_task - return the current task for a given cpu.
7044 * @cpu: the processor in question.
7045 *
7046 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7047 *
7048 * Return: The current task for @cpu.
1df5c10a 7049 */
36c8b586 7050struct task_struct *curr_task(int cpu)
1df5c10a
LT
7051{
7052 return cpu_curr(cpu);
7053}
7054
67fc4e0c
JW
7055#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7056
7057#ifdef CONFIG_IA64
1df5c10a
LT
7058/**
7059 * set_curr_task - set the current task for a given cpu.
7060 * @cpu: the processor in question.
7061 * @p: the task pointer to set.
7062 *
7063 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7064 * are serviced on a separate stack. It allows the architecture to switch the
7065 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7066 * must be called with all CPU's synchronized, and interrupts disabled, the
7067 * and caller must save the original value of the current task (see
7068 * curr_task() above) and restore that value before reenabling interrupts and
7069 * re-starting the system.
7070 *
7071 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7072 */
36c8b586 7073void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7074{
7075 cpu_curr(cpu) = p;
7076}
7077
7078#endif
29f59db3 7079
7c941438 7080#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7081/* task_group_lock serializes the addition/removal of task groups */
7082static DEFINE_SPINLOCK(task_group_lock);
7083
bccbe08a
PZ
7084static void free_sched_group(struct task_group *tg)
7085{
7086 free_fair_sched_group(tg);
7087 free_rt_sched_group(tg);
e9aa1dd1 7088 autogroup_free(tg);
bccbe08a
PZ
7089 kfree(tg);
7090}
7091
7092/* allocate runqueue etc for a new task group */
ec7dc8ac 7093struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7094{
7095 struct task_group *tg;
bccbe08a
PZ
7096
7097 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7098 if (!tg)
7099 return ERR_PTR(-ENOMEM);
7100
ec7dc8ac 7101 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7102 goto err;
7103
ec7dc8ac 7104 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7105 goto err;
7106
ace783b9
LZ
7107 return tg;
7108
7109err:
7110 free_sched_group(tg);
7111 return ERR_PTR(-ENOMEM);
7112}
7113
7114void sched_online_group(struct task_group *tg, struct task_group *parent)
7115{
7116 unsigned long flags;
7117
8ed36996 7118 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7119 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7120
7121 WARN_ON(!parent); /* root should already exist */
7122
7123 tg->parent = parent;
f473aa5e 7124 INIT_LIST_HEAD(&tg->children);
09f2724a 7125 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7126 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7127}
7128
9b5b7751 7129/* rcu callback to free various structures associated with a task group */
6f505b16 7130static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7131{
29f59db3 7132 /* now it should be safe to free those cfs_rqs */
6f505b16 7133 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7134}
7135
9b5b7751 7136/* Destroy runqueue etc associated with a task group */
4cf86d77 7137void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7138{
7139 /* wait for possible concurrent references to cfs_rqs complete */
7140 call_rcu(&tg->rcu, free_sched_group_rcu);
7141}
7142
7143void sched_offline_group(struct task_group *tg)
29f59db3 7144{
8ed36996 7145 unsigned long flags;
9b5b7751 7146 int i;
29f59db3 7147
3d4b47b4
PZ
7148 /* end participation in shares distribution */
7149 for_each_possible_cpu(i)
bccbe08a 7150 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7151
7152 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7153 list_del_rcu(&tg->list);
f473aa5e 7154 list_del_rcu(&tg->siblings);
8ed36996 7155 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7156}
7157
9b5b7751 7158/* change task's runqueue when it moves between groups.
3a252015
IM
7159 * The caller of this function should have put the task in its new group
7160 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7161 * reflect its new group.
9b5b7751
SV
7162 */
7163void sched_move_task(struct task_struct *tsk)
29f59db3 7164{
8323f26c 7165 struct task_group *tg;
29f59db3
SV
7166 int on_rq, running;
7167 unsigned long flags;
7168 struct rq *rq;
7169
7170 rq = task_rq_lock(tsk, &flags);
7171
051a1d1a 7172 running = task_current(rq, tsk);
fd2f4419 7173 on_rq = tsk->on_rq;
29f59db3 7174
0e1f3483 7175 if (on_rq)
29f59db3 7176 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7177 if (unlikely(running))
7178 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7179
8af01f56 7180 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7181 lockdep_is_held(&tsk->sighand->siglock)),
7182 struct task_group, css);
7183 tg = autogroup_task_group(tsk, tg);
7184 tsk->sched_task_group = tg;
7185
810b3817 7186#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7187 if (tsk->sched_class->task_move_group)
7188 tsk->sched_class->task_move_group(tsk, on_rq);
7189 else
810b3817 7190#endif
b2b5ce02 7191 set_task_rq(tsk, task_cpu(tsk));
810b3817 7192
0e1f3483
HS
7193 if (unlikely(running))
7194 tsk->sched_class->set_curr_task(rq);
7195 if (on_rq)
371fd7e7 7196 enqueue_task(rq, tsk, 0);
29f59db3 7197
0122ec5b 7198 task_rq_unlock(rq, tsk, &flags);
29f59db3 7199}
7c941438 7200#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7201
a790de99
PT
7202#ifdef CONFIG_RT_GROUP_SCHED
7203/*
7204 * Ensure that the real time constraints are schedulable.
7205 */
7206static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7207
9a7e0b18
PZ
7208/* Must be called with tasklist_lock held */
7209static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7210{
9a7e0b18 7211 struct task_struct *g, *p;
b40b2e8e 7212
9a7e0b18 7213 do_each_thread(g, p) {
029632fb 7214 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7215 return 1;
7216 } while_each_thread(g, p);
b40b2e8e 7217
9a7e0b18
PZ
7218 return 0;
7219}
b40b2e8e 7220
9a7e0b18
PZ
7221struct rt_schedulable_data {
7222 struct task_group *tg;
7223 u64 rt_period;
7224 u64 rt_runtime;
7225};
b40b2e8e 7226
a790de99 7227static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7228{
7229 struct rt_schedulable_data *d = data;
7230 struct task_group *child;
7231 unsigned long total, sum = 0;
7232 u64 period, runtime;
b40b2e8e 7233
9a7e0b18
PZ
7234 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7235 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7236
9a7e0b18
PZ
7237 if (tg == d->tg) {
7238 period = d->rt_period;
7239 runtime = d->rt_runtime;
b40b2e8e 7240 }
b40b2e8e 7241
4653f803
PZ
7242 /*
7243 * Cannot have more runtime than the period.
7244 */
7245 if (runtime > period && runtime != RUNTIME_INF)
7246 return -EINVAL;
6f505b16 7247
4653f803
PZ
7248 /*
7249 * Ensure we don't starve existing RT tasks.
7250 */
9a7e0b18
PZ
7251 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7252 return -EBUSY;
6f505b16 7253
9a7e0b18 7254 total = to_ratio(period, runtime);
6f505b16 7255
4653f803
PZ
7256 /*
7257 * Nobody can have more than the global setting allows.
7258 */
7259 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7260 return -EINVAL;
6f505b16 7261
4653f803
PZ
7262 /*
7263 * The sum of our children's runtime should not exceed our own.
7264 */
9a7e0b18
PZ
7265 list_for_each_entry_rcu(child, &tg->children, siblings) {
7266 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7267 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7268
9a7e0b18
PZ
7269 if (child == d->tg) {
7270 period = d->rt_period;
7271 runtime = d->rt_runtime;
7272 }
6f505b16 7273
9a7e0b18 7274 sum += to_ratio(period, runtime);
9f0c1e56 7275 }
6f505b16 7276
9a7e0b18
PZ
7277 if (sum > total)
7278 return -EINVAL;
7279
7280 return 0;
6f505b16
PZ
7281}
7282
9a7e0b18 7283static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7284{
8277434e
PT
7285 int ret;
7286
9a7e0b18
PZ
7287 struct rt_schedulable_data data = {
7288 .tg = tg,
7289 .rt_period = period,
7290 .rt_runtime = runtime,
7291 };
7292
8277434e
PT
7293 rcu_read_lock();
7294 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7295 rcu_read_unlock();
7296
7297 return ret;
521f1a24
DG
7298}
7299
ab84d31e 7300static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7301 u64 rt_period, u64 rt_runtime)
6f505b16 7302{
ac086bc2 7303 int i, err = 0;
9f0c1e56 7304
9f0c1e56 7305 mutex_lock(&rt_constraints_mutex);
521f1a24 7306 read_lock(&tasklist_lock);
9a7e0b18
PZ
7307 err = __rt_schedulable(tg, rt_period, rt_runtime);
7308 if (err)
9f0c1e56 7309 goto unlock;
ac086bc2 7310
0986b11b 7311 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7312 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7313 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7314
7315 for_each_possible_cpu(i) {
7316 struct rt_rq *rt_rq = tg->rt_rq[i];
7317
0986b11b 7318 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7319 rt_rq->rt_runtime = rt_runtime;
0986b11b 7320 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7321 }
0986b11b 7322 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7323unlock:
521f1a24 7324 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7325 mutex_unlock(&rt_constraints_mutex);
7326
7327 return err;
6f505b16
PZ
7328}
7329
25cc7da7 7330static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7331{
7332 u64 rt_runtime, rt_period;
7333
7334 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7335 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7336 if (rt_runtime_us < 0)
7337 rt_runtime = RUNTIME_INF;
7338
ab84d31e 7339 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7340}
7341
25cc7da7 7342static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7343{
7344 u64 rt_runtime_us;
7345
d0b27fa7 7346 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7347 return -1;
7348
d0b27fa7 7349 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7350 do_div(rt_runtime_us, NSEC_PER_USEC);
7351 return rt_runtime_us;
7352}
d0b27fa7 7353
25cc7da7 7354static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7355{
7356 u64 rt_runtime, rt_period;
7357
7358 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7359 rt_runtime = tg->rt_bandwidth.rt_runtime;
7360
619b0488
R
7361 if (rt_period == 0)
7362 return -EINVAL;
7363
ab84d31e 7364 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7365}
7366
25cc7da7 7367static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7368{
7369 u64 rt_period_us;
7370
7371 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7372 do_div(rt_period_us, NSEC_PER_USEC);
7373 return rt_period_us;
7374}
332ac17e 7375#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7376
332ac17e 7377#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7378static int sched_rt_global_constraints(void)
7379{
7380 int ret = 0;
7381
7382 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7383 read_lock(&tasklist_lock);
4653f803 7384 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7385 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7386 mutex_unlock(&rt_constraints_mutex);
7387
7388 return ret;
7389}
54e99124 7390
25cc7da7 7391static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7392{
7393 /* Don't accept realtime tasks when there is no way for them to run */
7394 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7395 return 0;
7396
7397 return 1;
7398}
7399
6d6bc0ad 7400#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7401static int sched_rt_global_constraints(void)
7402{
ac086bc2 7403 unsigned long flags;
332ac17e 7404 int i, ret = 0;
ec5d4989 7405
0986b11b 7406 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7407 for_each_possible_cpu(i) {
7408 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7409
0986b11b 7410 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7411 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7412 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7413 }
0986b11b 7414 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7415
332ac17e 7416 return ret;
d0b27fa7 7417}
6d6bc0ad 7418#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7419
332ac17e
DF
7420static int sched_dl_global_constraints(void)
7421{
1724813d
PZ
7422 u64 runtime = global_rt_runtime();
7423 u64 period = global_rt_period();
332ac17e 7424 u64 new_bw = to_ratio(period, runtime);
1724813d 7425 int cpu, ret = 0;
49516342 7426 unsigned long flags;
332ac17e
DF
7427
7428 /*
7429 * Here we want to check the bandwidth not being set to some
7430 * value smaller than the currently allocated bandwidth in
7431 * any of the root_domains.
7432 *
7433 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7434 * cycling on root_domains... Discussion on different/better
7435 * solutions is welcome!
7436 */
1724813d
PZ
7437 for_each_possible_cpu(cpu) {
7438 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7439
49516342 7440 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7441 if (new_bw < dl_b->total_bw)
7442 ret = -EBUSY;
49516342 7443 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7444
7445 if (ret)
7446 break;
332ac17e
DF
7447 }
7448
1724813d 7449 return ret;
332ac17e
DF
7450}
7451
1724813d 7452static void sched_dl_do_global(void)
ce0dbbbb 7453{
1724813d
PZ
7454 u64 new_bw = -1;
7455 int cpu;
49516342 7456 unsigned long flags;
ce0dbbbb 7457
1724813d
PZ
7458 def_dl_bandwidth.dl_period = global_rt_period();
7459 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7460
7461 if (global_rt_runtime() != RUNTIME_INF)
7462 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7463
7464 /*
7465 * FIXME: As above...
7466 */
7467 for_each_possible_cpu(cpu) {
7468 struct dl_bw *dl_b = dl_bw_of(cpu);
7469
49516342 7470 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7471 dl_b->bw = new_bw;
49516342 7472 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7473 }
1724813d
PZ
7474}
7475
7476static int sched_rt_global_validate(void)
7477{
7478 if (sysctl_sched_rt_period <= 0)
7479 return -EINVAL;
7480
e9e7cb38
JL
7481 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7482 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7483 return -EINVAL;
7484
7485 return 0;
7486}
7487
7488static void sched_rt_do_global(void)
7489{
7490 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7491 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7492}
7493
d0b27fa7 7494int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7495 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7496 loff_t *ppos)
7497{
d0b27fa7
PZ
7498 int old_period, old_runtime;
7499 static DEFINE_MUTEX(mutex);
1724813d 7500 int ret;
d0b27fa7
PZ
7501
7502 mutex_lock(&mutex);
7503 old_period = sysctl_sched_rt_period;
7504 old_runtime = sysctl_sched_rt_runtime;
7505
8d65af78 7506 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7507
7508 if (!ret && write) {
1724813d
PZ
7509 ret = sched_rt_global_validate();
7510 if (ret)
7511 goto undo;
7512
d0b27fa7 7513 ret = sched_rt_global_constraints();
1724813d
PZ
7514 if (ret)
7515 goto undo;
7516
7517 ret = sched_dl_global_constraints();
7518 if (ret)
7519 goto undo;
7520
7521 sched_rt_do_global();
7522 sched_dl_do_global();
7523 }
7524 if (0) {
7525undo:
7526 sysctl_sched_rt_period = old_period;
7527 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7528 }
7529 mutex_unlock(&mutex);
7530
7531 return ret;
7532}
68318b8e 7533
1724813d 7534int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7535 void __user *buffer, size_t *lenp,
7536 loff_t *ppos)
7537{
7538 int ret;
332ac17e 7539 static DEFINE_MUTEX(mutex);
332ac17e
DF
7540
7541 mutex_lock(&mutex);
332ac17e 7542 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7543 /* make sure that internally we keep jiffies */
7544 /* also, writing zero resets timeslice to default */
332ac17e 7545 if (!ret && write) {
1724813d
PZ
7546 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7547 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7548 }
7549 mutex_unlock(&mutex);
332ac17e
DF
7550 return ret;
7551}
7552
052f1dc7 7553#ifdef CONFIG_CGROUP_SCHED
68318b8e 7554
a7c6d554 7555static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7556{
a7c6d554 7557 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7558}
7559
eb95419b
TH
7560static struct cgroup_subsys_state *
7561cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7562{
eb95419b
TH
7563 struct task_group *parent = css_tg(parent_css);
7564 struct task_group *tg;
68318b8e 7565
eb95419b 7566 if (!parent) {
68318b8e 7567 /* This is early initialization for the top cgroup */
07e06b01 7568 return &root_task_group.css;
68318b8e
SV
7569 }
7570
ec7dc8ac 7571 tg = sched_create_group(parent);
68318b8e
SV
7572 if (IS_ERR(tg))
7573 return ERR_PTR(-ENOMEM);
7574
68318b8e
SV
7575 return &tg->css;
7576}
7577
eb95419b 7578static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7579{
eb95419b
TH
7580 struct task_group *tg = css_tg(css);
7581 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7582
63876986
TH
7583 if (parent)
7584 sched_online_group(tg, parent);
ace783b9
LZ
7585 return 0;
7586}
7587
eb95419b 7588static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7589{
eb95419b 7590 struct task_group *tg = css_tg(css);
68318b8e
SV
7591
7592 sched_destroy_group(tg);
7593}
7594
eb95419b 7595static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7596{
eb95419b 7597 struct task_group *tg = css_tg(css);
ace783b9
LZ
7598
7599 sched_offline_group(tg);
7600}
7601
eb95419b 7602static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7603 struct cgroup_taskset *tset)
68318b8e 7604{
bb9d97b6
TH
7605 struct task_struct *task;
7606
d99c8727 7607 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7608#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7609 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7610 return -EINVAL;
b68aa230 7611#else
bb9d97b6
TH
7612 /* We don't support RT-tasks being in separate groups */
7613 if (task->sched_class != &fair_sched_class)
7614 return -EINVAL;
b68aa230 7615#endif
bb9d97b6 7616 }
be367d09
BB
7617 return 0;
7618}
68318b8e 7619
eb95419b 7620static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7621 struct cgroup_taskset *tset)
68318b8e 7622{
bb9d97b6
TH
7623 struct task_struct *task;
7624
d99c8727 7625 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7626 sched_move_task(task);
68318b8e
SV
7627}
7628
eb95419b
TH
7629static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7630 struct cgroup_subsys_state *old_css,
7631 struct task_struct *task)
068c5cc5
PZ
7632{
7633 /*
7634 * cgroup_exit() is called in the copy_process() failure path.
7635 * Ignore this case since the task hasn't ran yet, this avoids
7636 * trying to poke a half freed task state from generic code.
7637 */
7638 if (!(task->flags & PF_EXITING))
7639 return;
7640
7641 sched_move_task(task);
7642}
7643
052f1dc7 7644#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7645static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7646 struct cftype *cftype, u64 shareval)
68318b8e 7647{
182446d0 7648 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7649}
7650
182446d0
TH
7651static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7652 struct cftype *cft)
68318b8e 7653{
182446d0 7654 struct task_group *tg = css_tg(css);
68318b8e 7655
c8b28116 7656 return (u64) scale_load_down(tg->shares);
68318b8e 7657}
ab84d31e
PT
7658
7659#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7660static DEFINE_MUTEX(cfs_constraints_mutex);
7661
ab84d31e
PT
7662const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7663const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7664
a790de99
PT
7665static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7666
ab84d31e
PT
7667static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7668{
56f570e5 7669 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7670 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7671
7672 if (tg == &root_task_group)
7673 return -EINVAL;
7674
7675 /*
7676 * Ensure we have at some amount of bandwidth every period. This is
7677 * to prevent reaching a state of large arrears when throttled via
7678 * entity_tick() resulting in prolonged exit starvation.
7679 */
7680 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7681 return -EINVAL;
7682
7683 /*
7684 * Likewise, bound things on the otherside by preventing insane quota
7685 * periods. This also allows us to normalize in computing quota
7686 * feasibility.
7687 */
7688 if (period > max_cfs_quota_period)
7689 return -EINVAL;
7690
a790de99
PT
7691 mutex_lock(&cfs_constraints_mutex);
7692 ret = __cfs_schedulable(tg, period, quota);
7693 if (ret)
7694 goto out_unlock;
7695
58088ad0 7696 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7697 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7698 /*
7699 * If we need to toggle cfs_bandwidth_used, off->on must occur
7700 * before making related changes, and on->off must occur afterwards
7701 */
7702 if (runtime_enabled && !runtime_was_enabled)
7703 cfs_bandwidth_usage_inc();
ab84d31e
PT
7704 raw_spin_lock_irq(&cfs_b->lock);
7705 cfs_b->period = ns_to_ktime(period);
7706 cfs_b->quota = quota;
58088ad0 7707
a9cf55b2 7708 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7709 /* restart the period timer (if active) to handle new period expiry */
7710 if (runtime_enabled && cfs_b->timer_active) {
7711 /* force a reprogram */
7712 cfs_b->timer_active = 0;
7713 __start_cfs_bandwidth(cfs_b);
7714 }
ab84d31e
PT
7715 raw_spin_unlock_irq(&cfs_b->lock);
7716
7717 for_each_possible_cpu(i) {
7718 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7719 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7720
7721 raw_spin_lock_irq(&rq->lock);
58088ad0 7722 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7723 cfs_rq->runtime_remaining = 0;
671fd9da 7724
029632fb 7725 if (cfs_rq->throttled)
671fd9da 7726 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7727 raw_spin_unlock_irq(&rq->lock);
7728 }
1ee14e6c
BS
7729 if (runtime_was_enabled && !runtime_enabled)
7730 cfs_bandwidth_usage_dec();
a790de99
PT
7731out_unlock:
7732 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7733
a790de99 7734 return ret;
ab84d31e
PT
7735}
7736
7737int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7738{
7739 u64 quota, period;
7740
029632fb 7741 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7742 if (cfs_quota_us < 0)
7743 quota = RUNTIME_INF;
7744 else
7745 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7746
7747 return tg_set_cfs_bandwidth(tg, period, quota);
7748}
7749
7750long tg_get_cfs_quota(struct task_group *tg)
7751{
7752 u64 quota_us;
7753
029632fb 7754 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7755 return -1;
7756
029632fb 7757 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7758 do_div(quota_us, NSEC_PER_USEC);
7759
7760 return quota_us;
7761}
7762
7763int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7764{
7765 u64 quota, period;
7766
7767 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7768 quota = tg->cfs_bandwidth.quota;
ab84d31e 7769
ab84d31e
PT
7770 return tg_set_cfs_bandwidth(tg, period, quota);
7771}
7772
7773long tg_get_cfs_period(struct task_group *tg)
7774{
7775 u64 cfs_period_us;
7776
029632fb 7777 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7778 do_div(cfs_period_us, NSEC_PER_USEC);
7779
7780 return cfs_period_us;
7781}
7782
182446d0
TH
7783static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7784 struct cftype *cft)
ab84d31e 7785{
182446d0 7786 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7787}
7788
182446d0
TH
7789static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7790 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7791{
182446d0 7792 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7793}
7794
182446d0
TH
7795static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7796 struct cftype *cft)
ab84d31e 7797{
182446d0 7798 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7799}
7800
182446d0
TH
7801static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7802 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7803{
182446d0 7804 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7805}
7806
a790de99
PT
7807struct cfs_schedulable_data {
7808 struct task_group *tg;
7809 u64 period, quota;
7810};
7811
7812/*
7813 * normalize group quota/period to be quota/max_period
7814 * note: units are usecs
7815 */
7816static u64 normalize_cfs_quota(struct task_group *tg,
7817 struct cfs_schedulable_data *d)
7818{
7819 u64 quota, period;
7820
7821 if (tg == d->tg) {
7822 period = d->period;
7823 quota = d->quota;
7824 } else {
7825 period = tg_get_cfs_period(tg);
7826 quota = tg_get_cfs_quota(tg);
7827 }
7828
7829 /* note: these should typically be equivalent */
7830 if (quota == RUNTIME_INF || quota == -1)
7831 return RUNTIME_INF;
7832
7833 return to_ratio(period, quota);
7834}
7835
7836static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7837{
7838 struct cfs_schedulable_data *d = data;
029632fb 7839 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7840 s64 quota = 0, parent_quota = -1;
7841
7842 if (!tg->parent) {
7843 quota = RUNTIME_INF;
7844 } else {
029632fb 7845 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7846
7847 quota = normalize_cfs_quota(tg, d);
7848 parent_quota = parent_b->hierarchal_quota;
7849
7850 /*
7851 * ensure max(child_quota) <= parent_quota, inherit when no
7852 * limit is set
7853 */
7854 if (quota == RUNTIME_INF)
7855 quota = parent_quota;
7856 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7857 return -EINVAL;
7858 }
7859 cfs_b->hierarchal_quota = quota;
7860
7861 return 0;
7862}
7863
7864static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7865{
8277434e 7866 int ret;
a790de99
PT
7867 struct cfs_schedulable_data data = {
7868 .tg = tg,
7869 .period = period,
7870 .quota = quota,
7871 };
7872
7873 if (quota != RUNTIME_INF) {
7874 do_div(data.period, NSEC_PER_USEC);
7875 do_div(data.quota, NSEC_PER_USEC);
7876 }
7877
8277434e
PT
7878 rcu_read_lock();
7879 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7880 rcu_read_unlock();
7881
7882 return ret;
a790de99 7883}
e8da1b18 7884
2da8ca82 7885static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7886{
2da8ca82 7887 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7888 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7889
44ffc75b
TH
7890 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7891 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7892 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7893
7894 return 0;
7895}
ab84d31e 7896#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7897#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7898
052f1dc7 7899#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7900static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7901 struct cftype *cft, s64 val)
6f505b16 7902{
182446d0 7903 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7904}
7905
182446d0
TH
7906static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7907 struct cftype *cft)
6f505b16 7908{
182446d0 7909 return sched_group_rt_runtime(css_tg(css));
6f505b16 7910}
d0b27fa7 7911
182446d0
TH
7912static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7913 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7914{
182446d0 7915 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7916}
7917
182446d0
TH
7918static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7919 struct cftype *cft)
d0b27fa7 7920{
182446d0 7921 return sched_group_rt_period(css_tg(css));
d0b27fa7 7922}
6d6bc0ad 7923#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7924
fe5c7cc2 7925static struct cftype cpu_files[] = {
052f1dc7 7926#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7927 {
7928 .name = "shares",
f4c753b7
PM
7929 .read_u64 = cpu_shares_read_u64,
7930 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7931 },
052f1dc7 7932#endif
ab84d31e
PT
7933#ifdef CONFIG_CFS_BANDWIDTH
7934 {
7935 .name = "cfs_quota_us",
7936 .read_s64 = cpu_cfs_quota_read_s64,
7937 .write_s64 = cpu_cfs_quota_write_s64,
7938 },
7939 {
7940 .name = "cfs_period_us",
7941 .read_u64 = cpu_cfs_period_read_u64,
7942 .write_u64 = cpu_cfs_period_write_u64,
7943 },
e8da1b18
NR
7944 {
7945 .name = "stat",
2da8ca82 7946 .seq_show = cpu_stats_show,
e8da1b18 7947 },
ab84d31e 7948#endif
052f1dc7 7949#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7950 {
9f0c1e56 7951 .name = "rt_runtime_us",
06ecb27c
PM
7952 .read_s64 = cpu_rt_runtime_read,
7953 .write_s64 = cpu_rt_runtime_write,
6f505b16 7954 },
d0b27fa7
PZ
7955 {
7956 .name = "rt_period_us",
f4c753b7
PM
7957 .read_u64 = cpu_rt_period_read_uint,
7958 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7959 },
052f1dc7 7960#endif
4baf6e33 7961 { } /* terminate */
68318b8e
SV
7962};
7963
68318b8e 7964struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7965 .name = "cpu",
92fb9748
TH
7966 .css_alloc = cpu_cgroup_css_alloc,
7967 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7968 .css_online = cpu_cgroup_css_online,
7969 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7970 .can_attach = cpu_cgroup_can_attach,
7971 .attach = cpu_cgroup_attach,
068c5cc5 7972 .exit = cpu_cgroup_exit,
38605cae 7973 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7974 .base_cftypes = cpu_files,
68318b8e
SV
7975 .early_init = 1,
7976};
7977
052f1dc7 7978#endif /* CONFIG_CGROUP_SCHED */
d842de87 7979
b637a328
PM
7980void dump_cpu_task(int cpu)
7981{
7982 pr_info("Task dump for CPU %d:\n", cpu);
7983 sched_show_task(cpu_curr(cpu));
7984}