cputime: Use local_clock() for full dynticks cputime accounting
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
16a80163 517#define tsk_is_polling(t) 0
c24d20db
IM
518#endif
519
029632fb 520void resched_task(struct task_struct *p)
c24d20db
IM
521{
522 int cpu;
523
05fa785c 524 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 525
5ed0cec0 526 if (test_tsk_need_resched(p))
c24d20db
IM
527 return;
528
5ed0cec0 529 set_tsk_need_resched(p);
c24d20db
IM
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539}
540
029632fb 541void resched_cpu(int cpu)
c24d20db
IM
542{
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
05fa785c 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
547 return;
548 resched_task(cpu_curr(cpu));
05fa785c 549 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 550}
06d8308c
TG
551
552#ifdef CONFIG_NO_HZ
83cd4fe2
VP
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
057f3fad 567 rcu_read_lock();
83cd4fe2 568 for_each_domain(cpu, sd) {
057f3fad
PZ
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
83cd4fe2 575 }
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
45bf76df 606
45bf76df 607 /*
06d8308c
TG
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
45bf76df 611 */
5ed0cec0 612 set_tsk_need_resched(rq->idle);
45bf76df 613
06d8308c
TG
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
45bf76df
IM
618}
619
ca38062e 620static inline bool got_nohz_idle_kick(void)
45bf76df 621{
1c792db7
SS
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
624}
625
ca38062e 626#else /* CONFIG_NO_HZ */
45bf76df 627
ca38062e 628static inline bool got_nohz_idle_kick(void)
2069dd75 629{
ca38062e 630 return false;
2069dd75
PZ
631}
632
6d6bc0ad 633#endif /* CONFIG_NO_HZ */
d842de87 634
029632fb 635void sched_avg_update(struct rq *rq)
18d95a28 636{
e9e9250b
PZ
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
18d95a28
PZ
649}
650
6d6bc0ad 651#else /* !CONFIG_SMP */
029632fb 652void resched_task(struct task_struct *p)
18d95a28 653{
05fa785c 654 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 655 set_tsk_need_resched(p);
18d95a28 656}
6d6bc0ad 657#endif /* CONFIG_SMP */
18d95a28 658
a790de99
PT
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 661/*
8277434e
PT
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 666 */
029632fb 667int walk_tg_tree_from(struct task_group *from,
8277434e 668 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
669{
670 struct task_group *parent, *child;
eb755805 671 int ret;
c09595f6 672
8277434e
PT
673 parent = from;
674
c09595f6 675down:
eb755805
PZ
676 ret = (*down)(parent, data);
677 if (ret)
8277434e 678 goto out;
c09595f6
PZ
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683up:
684 continue;
685 }
eb755805 686 ret = (*up)(parent, data);
8277434e
PT
687 if (ret || parent == from)
688 goto out;
c09595f6
PZ
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
8277434e 694out:
eb755805 695 return ret;
c09595f6
PZ
696}
697
029632fb 698int tg_nop(struct task_group *tg, void *data)
eb755805 699{
e2b245f8 700 return 0;
eb755805 701}
18d95a28
PZ
702#endif
703
45bf76df
IM
704static void set_load_weight(struct task_struct *p)
705{
f05998d4
NR
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
dd41f596
IM
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
c8b28116 713 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 714 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
715 return;
716 }
71f8bd46 717
c8b28116 718 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 719 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
720}
721
371fd7e7 722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 723{
a64692a3 724 update_rq_clock(rq);
dd41f596 725 sched_info_queued(p);
371fd7e7 726 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
727}
728
371fd7e7 729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 730{
a64692a3 731 update_rq_clock(rq);
46ac22ba 732 sched_info_dequeued(p);
371fd7e7 733 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
734}
735
029632fb 736void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
737{
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
371fd7e7 741 enqueue_task(rq, p, flags);
1e3c88bd
PZ
742}
743
029632fb 744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
745{
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
371fd7e7 749 dequeue_task(rq, p, flags);
1e3c88bd
PZ
750}
751
fe44d621 752static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 753{
095c0aa8
GC
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
095c0aa8
GC
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 786 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802#endif
803
fe44d621
PZ
804 rq->clock_task += delta;
805
095c0aa8
GC
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809#endif
aa483808
VP
810}
811
34f971f6
PZ
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840}
841
14531189 842/*
dd41f596 843 * __normal_prio - return the priority that is based on the static prio
14531189 844 */
14531189
IM
845static inline int __normal_prio(struct task_struct *p)
846{
dd41f596 847 return p->static_prio;
14531189
IM
848}
849
b29739f9
IM
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
36c8b586 857static inline int normal_prio(struct task_struct *p)
b29739f9
IM
858{
859 int prio;
860
e05606d3 861 if (task_has_rt_policy(p))
b29739f9
IM
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
36c8b586 875static int effective_prio(struct task_struct *p)
b29739f9
IM
876{
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886}
887
1da177e4
LT
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
36c8b586 892inline int task_curr(const struct task_struct *p)
1da177e4
LT
893{
894 return cpu_curr(task_cpu(p)) == p;
895}
896
cb469845
SR
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
da7a735e 899 int oldprio)
cb469845
SR
900{
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
da7a735e
PZ
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
907}
908
029632fb 909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
910{
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
fd2f4419 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
931 rq->skip_clock_update = 1;
932}
933
582b336e
MT
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
1da177e4 941#ifdef CONFIG_SMP
dd41f596 942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 943{
e2912009
PZ
944#ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
077614ee
PZ
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
951
952#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 958 * see task_group().
6c6c54e1
PZ
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
0122ec5b
PZ
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965#endif
e2912009
PZ
966#endif
967
de1d7286 968 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 969
0c69774e 970 if (task_cpu(p) != new_cpu) {
582b336e
MT
971 struct task_migration_notifier tmn;
972
0a74bef8
PT
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 975 p->se.nr_migrations++;
a8b0ca17 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 983 }
dd41f596
IM
984
985 __set_task_cpu(p, new_cpu);
c65cc870
IM
986}
987
969c7921 988struct migration_arg {
36c8b586 989 struct task_struct *task;
1da177e4 990 int dest_cpu;
70b97a7f 991};
1da177e4 992
969c7921
TH
993static int migration_cpu_stop(void *data);
994
1da177e4
LT
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
85ba2d86
RM
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1da177e4
LT
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
85ba2d86 1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1012{
1013 unsigned long flags;
dd41f596 1014 int running, on_rq;
85ba2d86 1015 unsigned long ncsw;
70b97a7f 1016 struct rq *rq;
1da177e4 1017
3a5c359a
AK
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
fa490cfd 1026
3a5c359a
AK
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
85ba2d86
RM
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
3a5c359a 1041 cpu_relax();
85ba2d86 1042 }
fa490cfd 1043
3a5c359a
AK
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
27a9da65 1050 trace_sched_wait_task(p);
3a5c359a 1051 running = task_running(rq, p);
fd2f4419 1052 on_rq = p->on_rq;
85ba2d86 1053 ncsw = 0;
f31e11d8 1054 if (!match_state || p->state == match_state)
93dcf55f 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1056 task_rq_unlock(rq, p, &flags);
fa490cfd 1057
85ba2d86
RM
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
3a5c359a
AK
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
fa490cfd 1074
3a5c359a
AK
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
80dd99b3 1080 * So if it was still runnable (but just not actively
3a5c359a
AK
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
8eb90c30
TG
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1089 continue;
1090 }
fa490cfd 1091
3a5c359a
AK
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
85ba2d86
RM
1099
1100 return ncsw;
1da177e4
LT
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
25985edc 1110 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
36c8b586 1116void kick_process(struct task_struct *p)
1da177e4
LT
1117{
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125}
b43e3521 1126EXPORT_SYMBOL_GPL(kick_process);
476d139c 1127#endif /* CONFIG_SMP */
1da177e4 1128
970b13ba 1129#ifdef CONFIG_SMP
30da688e 1130/*
013fdb80 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1132 */
5da9a0fb
PZ
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
5da9a0fb 1135 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1136 enum { cpuset, possible, fail } state = cpuset;
1137 int dest_cpu;
5da9a0fb
PZ
1138
1139 /* Look for allowed, online CPU in same node. */
e3831edd 1140 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1141 if (!cpu_online(dest_cpu))
1142 continue;
1143 if (!cpu_active(dest_cpu))
1144 continue;
fa17b507 1145 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1146 return dest_cpu;
2baab4e9 1147 }
5da9a0fb 1148
2baab4e9
PZ
1149 for (;;) {
1150 /* Any allowed, online CPU? */
e3831edd 1151 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1152 if (!cpu_online(dest_cpu))
1153 continue;
1154 if (!cpu_active(dest_cpu))
1155 continue;
1156 goto out;
1157 }
5da9a0fb 1158
2baab4e9
PZ
1159 switch (state) {
1160 case cpuset:
1161 /* No more Mr. Nice Guy. */
1162 cpuset_cpus_allowed_fallback(p);
1163 state = possible;
1164 break;
1165
1166 case possible:
1167 do_set_cpus_allowed(p, cpu_possible_mask);
1168 state = fail;
1169 break;
1170
1171 case fail:
1172 BUG();
1173 break;
1174 }
1175 }
1176
1177out:
1178 if (state != cpuset) {
1179 /*
1180 * Don't tell them about moving exiting tasks or
1181 * kernel threads (both mm NULL), since they never
1182 * leave kernel.
1183 */
1184 if (p->mm && printk_ratelimit()) {
1185 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186 task_pid_nr(p), p->comm, cpu);
1187 }
5da9a0fb
PZ
1188 }
1189
1190 return dest_cpu;
1191}
1192
e2912009 1193/*
013fdb80 1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1195 */
970b13ba 1196static inline
7608dec2 1197int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1198{
7608dec2 1199 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1200
1201 /*
1202 * In order not to call set_task_cpu() on a blocking task we need
1203 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204 * cpu.
1205 *
1206 * Since this is common to all placement strategies, this lives here.
1207 *
1208 * [ this allows ->select_task() to simply return task_cpu(p) and
1209 * not worry about this generic constraint ]
1210 */
fa17b507 1211 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1212 !cpu_online(cpu)))
5da9a0fb 1213 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1214
1215 return cpu;
970b13ba 1216}
09a40af5
MG
1217
1218static void update_avg(u64 *avg, u64 sample)
1219{
1220 s64 diff = sample - *avg;
1221 *avg += diff >> 3;
1222}
970b13ba
PZ
1223#endif
1224
d7c01d27 1225static void
b84cb5df 1226ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1227{
d7c01d27 1228#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1229 struct rq *rq = this_rq();
1230
d7c01d27
PZ
1231#ifdef CONFIG_SMP
1232 int this_cpu = smp_processor_id();
1233
1234 if (cpu == this_cpu) {
1235 schedstat_inc(rq, ttwu_local);
1236 schedstat_inc(p, se.statistics.nr_wakeups_local);
1237 } else {
1238 struct sched_domain *sd;
1239
1240 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1241 rcu_read_lock();
d7c01d27
PZ
1242 for_each_domain(this_cpu, sd) {
1243 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244 schedstat_inc(sd, ttwu_wake_remote);
1245 break;
1246 }
1247 }
057f3fad 1248 rcu_read_unlock();
d7c01d27 1249 }
f339b9dc
PZ
1250
1251 if (wake_flags & WF_MIGRATED)
1252 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1253
d7c01d27
PZ
1254#endif /* CONFIG_SMP */
1255
1256 schedstat_inc(rq, ttwu_count);
9ed3811a 1257 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1258
1259 if (wake_flags & WF_SYNC)
9ed3811a 1260 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1261
d7c01d27
PZ
1262#endif /* CONFIG_SCHEDSTATS */
1263}
1264
1265static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266{
9ed3811a 1267 activate_task(rq, p, en_flags);
fd2f4419 1268 p->on_rq = 1;
c2f7115e
PZ
1269
1270 /* if a worker is waking up, notify workqueue */
1271 if (p->flags & PF_WQ_WORKER)
1272 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1273}
1274
23f41eeb
PZ
1275/*
1276 * Mark the task runnable and perform wakeup-preemption.
1277 */
89363381 1278static void
23f41eeb 1279ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1280{
89363381 1281 trace_sched_wakeup(p, true);
9ed3811a
TH
1282 check_preempt_curr(rq, p, wake_flags);
1283
1284 p->state = TASK_RUNNING;
1285#ifdef CONFIG_SMP
1286 if (p->sched_class->task_woken)
1287 p->sched_class->task_woken(rq, p);
1288
e69c6341 1289 if (rq->idle_stamp) {
9ed3811a
TH
1290 u64 delta = rq->clock - rq->idle_stamp;
1291 u64 max = 2*sysctl_sched_migration_cost;
1292
1293 if (delta > max)
1294 rq->avg_idle = max;
1295 else
1296 update_avg(&rq->avg_idle, delta);
1297 rq->idle_stamp = 0;
1298 }
1299#endif
1300}
1301
c05fbafb
PZ
1302static void
1303ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304{
1305#ifdef CONFIG_SMP
1306 if (p->sched_contributes_to_load)
1307 rq->nr_uninterruptible--;
1308#endif
1309
1310 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311 ttwu_do_wakeup(rq, p, wake_flags);
1312}
1313
1314/*
1315 * Called in case the task @p isn't fully descheduled from its runqueue,
1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317 * since all we need to do is flip p->state to TASK_RUNNING, since
1318 * the task is still ->on_rq.
1319 */
1320static int ttwu_remote(struct task_struct *p, int wake_flags)
1321{
1322 struct rq *rq;
1323 int ret = 0;
1324
1325 rq = __task_rq_lock(p);
1326 if (p->on_rq) {
1327 ttwu_do_wakeup(rq, p, wake_flags);
1328 ret = 1;
1329 }
1330 __task_rq_unlock(rq);
1331
1332 return ret;
1333}
1334
317f3941 1335#ifdef CONFIG_SMP
fa14ff4a 1336static void sched_ttwu_pending(void)
317f3941
PZ
1337{
1338 struct rq *rq = this_rq();
fa14ff4a
PZ
1339 struct llist_node *llist = llist_del_all(&rq->wake_list);
1340 struct task_struct *p;
317f3941
PZ
1341
1342 raw_spin_lock(&rq->lock);
1343
fa14ff4a
PZ
1344 while (llist) {
1345 p = llist_entry(llist, struct task_struct, wake_entry);
1346 llist = llist_next(llist);
317f3941
PZ
1347 ttwu_do_activate(rq, p, 0);
1348 }
1349
1350 raw_spin_unlock(&rq->lock);
1351}
1352
1353void scheduler_ipi(void)
1354{
ca38062e 1355 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1356 return;
1357
1358 /*
1359 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360 * traditionally all their work was done from the interrupt return
1361 * path. Now that we actually do some work, we need to make sure
1362 * we do call them.
1363 *
1364 * Some archs already do call them, luckily irq_enter/exit nest
1365 * properly.
1366 *
1367 * Arguably we should visit all archs and update all handlers,
1368 * however a fair share of IPIs are still resched only so this would
1369 * somewhat pessimize the simple resched case.
1370 */
1371 irq_enter();
fa14ff4a 1372 sched_ttwu_pending();
ca38062e
SS
1373
1374 /*
1375 * Check if someone kicked us for doing the nohz idle load balance.
1376 */
6eb57e0d
SS
1377 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378 this_rq()->idle_balance = 1;
ca38062e 1379 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1380 }
c5d753a5 1381 irq_exit();
317f3941
PZ
1382}
1383
1384static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385{
fa14ff4a 1386 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1387 smp_send_reschedule(cpu);
1388}
d6aa8f85 1389
39be3501 1390bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1391{
1392 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393}
d6aa8f85 1394#endif /* CONFIG_SMP */
317f3941 1395
c05fbafb
PZ
1396static void ttwu_queue(struct task_struct *p, int cpu)
1397{
1398 struct rq *rq = cpu_rq(cpu);
1399
17d9f311 1400#if defined(CONFIG_SMP)
39be3501 1401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1402 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1403 ttwu_queue_remote(p, cpu);
1404 return;
1405 }
1406#endif
1407
c05fbafb
PZ
1408 raw_spin_lock(&rq->lock);
1409 ttwu_do_activate(rq, p, 0);
1410 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1411}
1412
1413/**
1da177e4 1414 * try_to_wake_up - wake up a thread
9ed3811a 1415 * @p: the thread to be awakened
1da177e4 1416 * @state: the mask of task states that can be woken
9ed3811a 1417 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
9ed3811a
TH
1425 * Returns %true if @p was woken up, %false if it was already running
1426 * or @state didn't match @p's state.
1da177e4 1427 */
e4a52bcb
PZ
1428static int
1429try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1430{
1da177e4 1431 unsigned long flags;
c05fbafb 1432 int cpu, success = 0;
2398f2c6 1433
04e2f174 1434 smp_wmb();
013fdb80 1435 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1436 if (!(p->state & state))
1da177e4
LT
1437 goto out;
1438
c05fbafb 1439 success = 1; /* we're going to change ->state */
1da177e4 1440 cpu = task_cpu(p);
1da177e4 1441
c05fbafb
PZ
1442 if (p->on_rq && ttwu_remote(p, wake_flags))
1443 goto stat;
1da177e4 1444
1da177e4 1445#ifdef CONFIG_SMP
e9c84311 1446 /*
c05fbafb
PZ
1447 * If the owning (remote) cpu is still in the middle of schedule() with
1448 * this task as prev, wait until its done referencing the task.
e9c84311 1449 */
f3e94786 1450 while (p->on_cpu)
e4a52bcb 1451 cpu_relax();
0970d299 1452 /*
e4a52bcb 1453 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1454 */
e4a52bcb 1455 smp_rmb();
1da177e4 1456
a8e4f2ea 1457 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1458 p->state = TASK_WAKING;
e7693a36 1459
e4a52bcb 1460 if (p->sched_class->task_waking)
74f8e4b2 1461 p->sched_class->task_waking(p);
efbbd05a 1462
7608dec2 1463 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1464 if (task_cpu(p) != cpu) {
1465 wake_flags |= WF_MIGRATED;
e4a52bcb 1466 set_task_cpu(p, cpu);
f339b9dc 1467 }
1da177e4 1468#endif /* CONFIG_SMP */
1da177e4 1469
c05fbafb
PZ
1470 ttwu_queue(p, cpu);
1471stat:
b84cb5df 1472 ttwu_stat(p, cpu, wake_flags);
1da177e4 1473out:
013fdb80 1474 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1475
1476 return success;
1477}
1478
21aa9af0
TH
1479/**
1480 * try_to_wake_up_local - try to wake up a local task with rq lock held
1481 * @p: the thread to be awakened
1482 *
2acca55e 1483 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1485 * the current task.
21aa9af0
TH
1486 */
1487static void try_to_wake_up_local(struct task_struct *p)
1488{
1489 struct rq *rq = task_rq(p);
21aa9af0
TH
1490
1491 BUG_ON(rq != this_rq());
1492 BUG_ON(p == current);
1493 lockdep_assert_held(&rq->lock);
1494
2acca55e
PZ
1495 if (!raw_spin_trylock(&p->pi_lock)) {
1496 raw_spin_unlock(&rq->lock);
1497 raw_spin_lock(&p->pi_lock);
1498 raw_spin_lock(&rq->lock);
1499 }
1500
21aa9af0 1501 if (!(p->state & TASK_NORMAL))
2acca55e 1502 goto out;
21aa9af0 1503
fd2f4419 1504 if (!p->on_rq)
d7c01d27
PZ
1505 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1506
23f41eeb 1507 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1508 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1509out:
1510 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1511}
1512
50fa610a
DH
1513/**
1514 * wake_up_process - Wake up a specific process
1515 * @p: The process to be woken up.
1516 *
1517 * Attempt to wake up the nominated process and move it to the set of runnable
1518 * processes. Returns 1 if the process was woken up, 0 if it was already
1519 * running.
1520 *
1521 * It may be assumed that this function implies a write memory barrier before
1522 * changing the task state if and only if any tasks are woken up.
1523 */
7ad5b3a5 1524int wake_up_process(struct task_struct *p)
1da177e4 1525{
9067ac85
ON
1526 WARN_ON(task_is_stopped_or_traced(p));
1527 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1528}
1da177e4
LT
1529EXPORT_SYMBOL(wake_up_process);
1530
7ad5b3a5 1531int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1532{
1533 return try_to_wake_up(p, state, 0);
1534}
1535
1da177e4
LT
1536/*
1537 * Perform scheduler related setup for a newly forked process p.
1538 * p is forked by current.
dd41f596
IM
1539 *
1540 * __sched_fork() is basic setup used by init_idle() too:
1541 */
1542static void __sched_fork(struct task_struct *p)
1543{
fd2f4419
PZ
1544 p->on_rq = 0;
1545
1546 p->se.on_rq = 0;
dd41f596
IM
1547 p->se.exec_start = 0;
1548 p->se.sum_exec_runtime = 0;
f6cf891c 1549 p->se.prev_sum_exec_runtime = 0;
6c594c21 1550 p->se.nr_migrations = 0;
da7a735e 1551 p->se.vruntime = 0;
fd2f4419 1552 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1553
f4e26b12
PT
1554/*
1555 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1556 * removed when useful for applications beyond shares distribution (e.g.
1557 * load-balance).
1558 */
1559#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1560 p->se.avg.runnable_avg_period = 0;
1561 p->se.avg.runnable_avg_sum = 0;
1562#endif
6cfb0d5d 1563#ifdef CONFIG_SCHEDSTATS
41acab88 1564 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1565#endif
476d139c 1566
fa717060 1567 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1568
e107be36
AK
1569#ifdef CONFIG_PREEMPT_NOTIFIERS
1570 INIT_HLIST_HEAD(&p->preempt_notifiers);
1571#endif
cbee9f88
PZ
1572
1573#ifdef CONFIG_NUMA_BALANCING
1574 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1575 p->mm->numa_next_scan = jiffies;
b8593bfd 1576 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1577 p->mm->numa_scan_seq = 0;
1578 }
1579
1580 p->node_stamp = 0ULL;
1581 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1582 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1583 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1584 p->numa_work.next = &p->numa_work;
1585#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1586}
1587
1a687c2e 1588#ifdef CONFIG_NUMA_BALANCING
3105b86a 1589#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1590void set_numabalancing_state(bool enabled)
1591{
1592 if (enabled)
1593 sched_feat_set("NUMA");
1594 else
1595 sched_feat_set("NO_NUMA");
1596}
3105b86a
MG
1597#else
1598__read_mostly bool numabalancing_enabled;
1599
1600void set_numabalancing_state(bool enabled)
1601{
1602 numabalancing_enabled = enabled;
dd41f596 1603}
3105b86a 1604#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1605#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1606
1607/*
1608 * fork()/clone()-time setup:
1609 */
3e51e3ed 1610void sched_fork(struct task_struct *p)
dd41f596 1611{
0122ec5b 1612 unsigned long flags;
dd41f596
IM
1613 int cpu = get_cpu();
1614
1615 __sched_fork(p);
06b83b5f 1616 /*
0017d735 1617 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1618 * nobody will actually run it, and a signal or other external
1619 * event cannot wake it up and insert it on the runqueue either.
1620 */
0017d735 1621 p->state = TASK_RUNNING;
dd41f596 1622
c350a04e
MG
1623 /*
1624 * Make sure we do not leak PI boosting priority to the child.
1625 */
1626 p->prio = current->normal_prio;
1627
b9dc29e7
MG
1628 /*
1629 * Revert to default priority/policy on fork if requested.
1630 */
1631 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1632 if (task_has_rt_policy(p)) {
b9dc29e7 1633 p->policy = SCHED_NORMAL;
6c697bdf 1634 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1635 p->rt_priority = 0;
1636 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1637 p->static_prio = NICE_TO_PRIO(0);
1638
1639 p->prio = p->normal_prio = __normal_prio(p);
1640 set_load_weight(p);
6c697bdf 1641
b9dc29e7
MG
1642 /*
1643 * We don't need the reset flag anymore after the fork. It has
1644 * fulfilled its duty:
1645 */
1646 p->sched_reset_on_fork = 0;
1647 }
ca94c442 1648
2ddbf952
HS
1649 if (!rt_prio(p->prio))
1650 p->sched_class = &fair_sched_class;
b29739f9 1651
cd29fe6f
PZ
1652 if (p->sched_class->task_fork)
1653 p->sched_class->task_fork(p);
1654
86951599
PZ
1655 /*
1656 * The child is not yet in the pid-hash so no cgroup attach races,
1657 * and the cgroup is pinned to this child due to cgroup_fork()
1658 * is ran before sched_fork().
1659 *
1660 * Silence PROVE_RCU.
1661 */
0122ec5b 1662 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1663 set_task_cpu(p, cpu);
0122ec5b 1664 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1665
52f17b6c 1666#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1667 if (likely(sched_info_on()))
52f17b6c 1668 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1669#endif
3ca7a440
PZ
1670#if defined(CONFIG_SMP)
1671 p->on_cpu = 0;
4866cde0 1672#endif
bdd4e85d 1673#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1674 /* Want to start with kernel preemption disabled. */
a1261f54 1675 task_thread_info(p)->preempt_count = 1;
1da177e4 1676#endif
806c09a7 1677#ifdef CONFIG_SMP
917b627d 1678 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1679#endif
917b627d 1680
476d139c 1681 put_cpu();
1da177e4
LT
1682}
1683
1684/*
1685 * wake_up_new_task - wake up a newly created task for the first time.
1686 *
1687 * This function will do some initial scheduler statistics housekeeping
1688 * that must be done for every newly created context, then puts the task
1689 * on the runqueue and wakes it.
1690 */
3e51e3ed 1691void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1692{
1693 unsigned long flags;
dd41f596 1694 struct rq *rq;
fabf318e 1695
ab2515c4 1696 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1697#ifdef CONFIG_SMP
1698 /*
1699 * Fork balancing, do it here and not earlier because:
1700 * - cpus_allowed can change in the fork path
1701 * - any previously selected cpu might disappear through hotplug
fabf318e 1702 */
ab2515c4 1703 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1704#endif
1705
ab2515c4 1706 rq = __task_rq_lock(p);
cd29fe6f 1707 activate_task(rq, p, 0);
fd2f4419 1708 p->on_rq = 1;
89363381 1709 trace_sched_wakeup_new(p, true);
a7558e01 1710 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1711#ifdef CONFIG_SMP
efbbd05a
PZ
1712 if (p->sched_class->task_woken)
1713 p->sched_class->task_woken(rq, p);
9a897c5a 1714#endif
0122ec5b 1715 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1716}
1717
e107be36
AK
1718#ifdef CONFIG_PREEMPT_NOTIFIERS
1719
1720/**
80dd99b3 1721 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1722 * @notifier: notifier struct to register
e107be36
AK
1723 */
1724void preempt_notifier_register(struct preempt_notifier *notifier)
1725{
1726 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1727}
1728EXPORT_SYMBOL_GPL(preempt_notifier_register);
1729
1730/**
1731 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1732 * @notifier: notifier struct to unregister
e107be36
AK
1733 *
1734 * This is safe to call from within a preemption notifier.
1735 */
1736void preempt_notifier_unregister(struct preempt_notifier *notifier)
1737{
1738 hlist_del(&notifier->link);
1739}
1740EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1741
1742static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1743{
1744 struct preempt_notifier *notifier;
1745 struct hlist_node *node;
1746
1747 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1748 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1749}
1750
1751static void
1752fire_sched_out_preempt_notifiers(struct task_struct *curr,
1753 struct task_struct *next)
1754{
1755 struct preempt_notifier *notifier;
1756 struct hlist_node *node;
1757
1758 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1759 notifier->ops->sched_out(notifier, next);
1760}
1761
6d6bc0ad 1762#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1763
1764static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1765{
1766}
1767
1768static void
1769fire_sched_out_preempt_notifiers(struct task_struct *curr,
1770 struct task_struct *next)
1771{
1772}
1773
6d6bc0ad 1774#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1775
4866cde0
NP
1776/**
1777 * prepare_task_switch - prepare to switch tasks
1778 * @rq: the runqueue preparing to switch
421cee29 1779 * @prev: the current task that is being switched out
4866cde0
NP
1780 * @next: the task we are going to switch to.
1781 *
1782 * This is called with the rq lock held and interrupts off. It must
1783 * be paired with a subsequent finish_task_switch after the context
1784 * switch.
1785 *
1786 * prepare_task_switch sets up locking and calls architecture specific
1787 * hooks.
1788 */
e107be36
AK
1789static inline void
1790prepare_task_switch(struct rq *rq, struct task_struct *prev,
1791 struct task_struct *next)
4866cde0 1792{
895dd92c 1793 trace_sched_switch(prev, next);
fe4b04fa
PZ
1794 sched_info_switch(prev, next);
1795 perf_event_task_sched_out(prev, next);
e107be36 1796 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1797 prepare_lock_switch(rq, next);
1798 prepare_arch_switch(next);
1799}
1800
1da177e4
LT
1801/**
1802 * finish_task_switch - clean up after a task-switch
344babaa 1803 * @rq: runqueue associated with task-switch
1da177e4
LT
1804 * @prev: the thread we just switched away from.
1805 *
4866cde0
NP
1806 * finish_task_switch must be called after the context switch, paired
1807 * with a prepare_task_switch call before the context switch.
1808 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1809 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1810 *
1811 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1812 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1813 * with the lock held can cause deadlocks; see schedule() for
1814 * details.)
1815 */
a9957449 1816static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1817 __releases(rq->lock)
1818{
1da177e4 1819 struct mm_struct *mm = rq->prev_mm;
55a101f8 1820 long prev_state;
1da177e4
LT
1821
1822 rq->prev_mm = NULL;
1823
1824 /*
1825 * A task struct has one reference for the use as "current".
c394cc9f 1826 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1827 * schedule one last time. The schedule call will never return, and
1828 * the scheduled task must drop that reference.
c394cc9f 1829 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1830 * still held, otherwise prev could be scheduled on another cpu, die
1831 * there before we look at prev->state, and then the reference would
1832 * be dropped twice.
1833 * Manfred Spraul <manfred@colorfullife.com>
1834 */
55a101f8 1835 prev_state = prev->state;
bf9fae9f 1836 vtime_task_switch(prev);
4866cde0 1837 finish_arch_switch(prev);
a8d757ef 1838 perf_event_task_sched_in(prev, current);
4866cde0 1839 finish_lock_switch(rq, prev);
01f23e16 1840 finish_arch_post_lock_switch();
e8fa1362 1841
e107be36 1842 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1843 if (mm)
1844 mmdrop(mm);
c394cc9f 1845 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1846 /*
1847 * Remove function-return probe instances associated with this
1848 * task and put them back on the free list.
9761eea8 1849 */
c6fd91f0 1850 kprobe_flush_task(prev);
1da177e4 1851 put_task_struct(prev);
c6fd91f0 1852 }
1da177e4
LT
1853}
1854
3f029d3c
GH
1855#ifdef CONFIG_SMP
1856
1857/* assumes rq->lock is held */
1858static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1859{
1860 if (prev->sched_class->pre_schedule)
1861 prev->sched_class->pre_schedule(rq, prev);
1862}
1863
1864/* rq->lock is NOT held, but preemption is disabled */
1865static inline void post_schedule(struct rq *rq)
1866{
1867 if (rq->post_schedule) {
1868 unsigned long flags;
1869
05fa785c 1870 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1871 if (rq->curr->sched_class->post_schedule)
1872 rq->curr->sched_class->post_schedule(rq);
05fa785c 1873 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1874
1875 rq->post_schedule = 0;
1876 }
1877}
1878
1879#else
da19ab51 1880
3f029d3c
GH
1881static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1882{
1883}
1884
1885static inline void post_schedule(struct rq *rq)
1886{
1da177e4
LT
1887}
1888
3f029d3c
GH
1889#endif
1890
1da177e4
LT
1891/**
1892 * schedule_tail - first thing a freshly forked thread must call.
1893 * @prev: the thread we just switched away from.
1894 */
36c8b586 1895asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1896 __releases(rq->lock)
1897{
70b97a7f
IM
1898 struct rq *rq = this_rq();
1899
4866cde0 1900 finish_task_switch(rq, prev);
da19ab51 1901
3f029d3c
GH
1902 /*
1903 * FIXME: do we need to worry about rq being invalidated by the
1904 * task_switch?
1905 */
1906 post_schedule(rq);
70b97a7f 1907
4866cde0
NP
1908#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1909 /* In this case, finish_task_switch does not reenable preemption */
1910 preempt_enable();
1911#endif
1da177e4 1912 if (current->set_child_tid)
b488893a 1913 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1914}
1915
1916/*
1917 * context_switch - switch to the new MM and the new
1918 * thread's register state.
1919 */
dd41f596 1920static inline void
70b97a7f 1921context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1922 struct task_struct *next)
1da177e4 1923{
dd41f596 1924 struct mm_struct *mm, *oldmm;
1da177e4 1925
e107be36 1926 prepare_task_switch(rq, prev, next);
fe4b04fa 1927
dd41f596
IM
1928 mm = next->mm;
1929 oldmm = prev->active_mm;
9226d125
ZA
1930 /*
1931 * For paravirt, this is coupled with an exit in switch_to to
1932 * combine the page table reload and the switch backend into
1933 * one hypercall.
1934 */
224101ed 1935 arch_start_context_switch(prev);
9226d125 1936
31915ab4 1937 if (!mm) {
1da177e4
LT
1938 next->active_mm = oldmm;
1939 atomic_inc(&oldmm->mm_count);
1940 enter_lazy_tlb(oldmm, next);
1941 } else
1942 switch_mm(oldmm, mm, next);
1943
31915ab4 1944 if (!prev->mm) {
1da177e4 1945 prev->active_mm = NULL;
1da177e4
LT
1946 rq->prev_mm = oldmm;
1947 }
3a5f5e48
IM
1948 /*
1949 * Since the runqueue lock will be released by the next
1950 * task (which is an invalid locking op but in the case
1951 * of the scheduler it's an obvious special-case), so we
1952 * do an early lockdep release here:
1953 */
1954#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1955 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1956#endif
1da177e4 1957
91d1aa43 1958 context_tracking_task_switch(prev, next);
1da177e4
LT
1959 /* Here we just switch the register state and the stack. */
1960 switch_to(prev, next, prev);
1961
dd41f596
IM
1962 barrier();
1963 /*
1964 * this_rq must be evaluated again because prev may have moved
1965 * CPUs since it called schedule(), thus the 'rq' on its stack
1966 * frame will be invalid.
1967 */
1968 finish_task_switch(this_rq(), prev);
1da177e4
LT
1969}
1970
1971/*
1c3e8264 1972 * nr_running and nr_context_switches:
1da177e4
LT
1973 *
1974 * externally visible scheduler statistics: current number of runnable
1c3e8264 1975 * threads, total number of context switches performed since bootup.
1da177e4
LT
1976 */
1977unsigned long nr_running(void)
1978{
1979 unsigned long i, sum = 0;
1980
1981 for_each_online_cpu(i)
1982 sum += cpu_rq(i)->nr_running;
1983
1984 return sum;
f711f609 1985}
1da177e4 1986
1da177e4 1987unsigned long long nr_context_switches(void)
46cb4b7c 1988{
cc94abfc
SR
1989 int i;
1990 unsigned long long sum = 0;
46cb4b7c 1991
0a945022 1992 for_each_possible_cpu(i)
1da177e4 1993 sum += cpu_rq(i)->nr_switches;
46cb4b7c 1994
1da177e4
LT
1995 return sum;
1996}
483b4ee6 1997
1da177e4
LT
1998unsigned long nr_iowait(void)
1999{
2000 unsigned long i, sum = 0;
483b4ee6 2001
0a945022 2002 for_each_possible_cpu(i)
1da177e4 2003 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2004
1da177e4
LT
2005 return sum;
2006}
483b4ee6 2007
8c215bd3 2008unsigned long nr_iowait_cpu(int cpu)
69d25870 2009{
8c215bd3 2010 struct rq *this = cpu_rq(cpu);
69d25870
AV
2011 return atomic_read(&this->nr_iowait);
2012}
46cb4b7c 2013
69d25870
AV
2014unsigned long this_cpu_load(void)
2015{
2016 struct rq *this = this_rq();
2017 return this->cpu_load[0];
2018}
e790fb0b 2019
46cb4b7c 2020
5167e8d5
PZ
2021/*
2022 * Global load-average calculations
2023 *
2024 * We take a distributed and async approach to calculating the global load-avg
2025 * in order to minimize overhead.
2026 *
2027 * The global load average is an exponentially decaying average of nr_running +
2028 * nr_uninterruptible.
2029 *
2030 * Once every LOAD_FREQ:
2031 *
2032 * nr_active = 0;
2033 * for_each_possible_cpu(cpu)
2034 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2035 *
2036 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2037 *
2038 * Due to a number of reasons the above turns in the mess below:
2039 *
2040 * - for_each_possible_cpu() is prohibitively expensive on machines with
2041 * serious number of cpus, therefore we need to take a distributed approach
2042 * to calculating nr_active.
2043 *
2044 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2045 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2046 *
2047 * So assuming nr_active := 0 when we start out -- true per definition, we
2048 * can simply take per-cpu deltas and fold those into a global accumulate
2049 * to obtain the same result. See calc_load_fold_active().
2050 *
2051 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2052 * across the machine, we assume 10 ticks is sufficient time for every
2053 * cpu to have completed this task.
2054 *
2055 * This places an upper-bound on the IRQ-off latency of the machine. Then
2056 * again, being late doesn't loose the delta, just wrecks the sample.
2057 *
2058 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2059 * this would add another cross-cpu cacheline miss and atomic operation
2060 * to the wakeup path. Instead we increment on whatever cpu the task ran
2061 * when it went into uninterruptible state and decrement on whatever cpu
2062 * did the wakeup. This means that only the sum of nr_uninterruptible over
2063 * all cpus yields the correct result.
2064 *
2065 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2066 */
2067
dce48a84
TG
2068/* Variables and functions for calc_load */
2069static atomic_long_t calc_load_tasks;
2070static unsigned long calc_load_update;
2071unsigned long avenrun[3];
5167e8d5
PZ
2072EXPORT_SYMBOL(avenrun); /* should be removed */
2073
2074/**
2075 * get_avenrun - get the load average array
2076 * @loads: pointer to dest load array
2077 * @offset: offset to add
2078 * @shift: shift count to shift the result left
2079 *
2080 * These values are estimates at best, so no need for locking.
2081 */
2082void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2083{
2084 loads[0] = (avenrun[0] + offset) << shift;
2085 loads[1] = (avenrun[1] + offset) << shift;
2086 loads[2] = (avenrun[2] + offset) << shift;
2087}
46cb4b7c 2088
74f5187a
PZ
2089static long calc_load_fold_active(struct rq *this_rq)
2090{
2091 long nr_active, delta = 0;
2092
2093 nr_active = this_rq->nr_running;
2094 nr_active += (long) this_rq->nr_uninterruptible;
2095
2096 if (nr_active != this_rq->calc_load_active) {
2097 delta = nr_active - this_rq->calc_load_active;
2098 this_rq->calc_load_active = nr_active;
2099 }
2100
2101 return delta;
2102}
2103
5167e8d5
PZ
2104/*
2105 * a1 = a0 * e + a * (1 - e)
2106 */
0f004f5a
PZ
2107static unsigned long
2108calc_load(unsigned long load, unsigned long exp, unsigned long active)
2109{
2110 load *= exp;
2111 load += active * (FIXED_1 - exp);
2112 load += 1UL << (FSHIFT - 1);
2113 return load >> FSHIFT;
2114}
2115
74f5187a
PZ
2116#ifdef CONFIG_NO_HZ
2117/*
5167e8d5
PZ
2118 * Handle NO_HZ for the global load-average.
2119 *
2120 * Since the above described distributed algorithm to compute the global
2121 * load-average relies on per-cpu sampling from the tick, it is affected by
2122 * NO_HZ.
2123 *
2124 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2125 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2126 * when we read the global state.
2127 *
2128 * Obviously reality has to ruin such a delightfully simple scheme:
2129 *
2130 * - When we go NO_HZ idle during the window, we can negate our sample
2131 * contribution, causing under-accounting.
2132 *
2133 * We avoid this by keeping two idle-delta counters and flipping them
2134 * when the window starts, thus separating old and new NO_HZ load.
2135 *
2136 * The only trick is the slight shift in index flip for read vs write.
2137 *
2138 * 0s 5s 10s 15s
2139 * +10 +10 +10 +10
2140 * |-|-----------|-|-----------|-|-----------|-|
2141 * r:0 0 1 1 0 0 1 1 0
2142 * w:0 1 1 0 0 1 1 0 0
2143 *
2144 * This ensures we'll fold the old idle contribution in this window while
2145 * accumlating the new one.
2146 *
2147 * - When we wake up from NO_HZ idle during the window, we push up our
2148 * contribution, since we effectively move our sample point to a known
2149 * busy state.
2150 *
2151 * This is solved by pushing the window forward, and thus skipping the
2152 * sample, for this cpu (effectively using the idle-delta for this cpu which
2153 * was in effect at the time the window opened). This also solves the issue
2154 * of having to deal with a cpu having been in NOHZ idle for multiple
2155 * LOAD_FREQ intervals.
74f5187a
PZ
2156 *
2157 * When making the ILB scale, we should try to pull this in as well.
2158 */
5167e8d5
PZ
2159static atomic_long_t calc_load_idle[2];
2160static int calc_load_idx;
74f5187a 2161
5167e8d5 2162static inline int calc_load_write_idx(void)
74f5187a 2163{
5167e8d5
PZ
2164 int idx = calc_load_idx;
2165
2166 /*
2167 * See calc_global_nohz(), if we observe the new index, we also
2168 * need to observe the new update time.
2169 */
2170 smp_rmb();
2171
2172 /*
2173 * If the folding window started, make sure we start writing in the
2174 * next idle-delta.
2175 */
2176 if (!time_before(jiffies, calc_load_update))
2177 idx++;
2178
2179 return idx & 1;
2180}
2181
2182static inline int calc_load_read_idx(void)
2183{
2184 return calc_load_idx & 1;
2185}
2186
2187void calc_load_enter_idle(void)
2188{
2189 struct rq *this_rq = this_rq();
74f5187a
PZ
2190 long delta;
2191
5167e8d5
PZ
2192 /*
2193 * We're going into NOHZ mode, if there's any pending delta, fold it
2194 * into the pending idle delta.
2195 */
74f5187a 2196 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2197 if (delta) {
2198 int idx = calc_load_write_idx();
2199 atomic_long_add(delta, &calc_load_idle[idx]);
2200 }
74f5187a
PZ
2201}
2202
5167e8d5 2203void calc_load_exit_idle(void)
74f5187a 2204{
5167e8d5
PZ
2205 struct rq *this_rq = this_rq();
2206
2207 /*
2208 * If we're still before the sample window, we're done.
2209 */
2210 if (time_before(jiffies, this_rq->calc_load_update))
2211 return;
74f5187a
PZ
2212
2213 /*
5167e8d5
PZ
2214 * We woke inside or after the sample window, this means we're already
2215 * accounted through the nohz accounting, so skip the entire deal and
2216 * sync up for the next window.
74f5187a 2217 */
5167e8d5
PZ
2218 this_rq->calc_load_update = calc_load_update;
2219 if (time_before(jiffies, this_rq->calc_load_update + 10))
2220 this_rq->calc_load_update += LOAD_FREQ;
2221}
2222
2223static long calc_load_fold_idle(void)
2224{
2225 int idx = calc_load_read_idx();
2226 long delta = 0;
2227
2228 if (atomic_long_read(&calc_load_idle[idx]))
2229 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2230
2231 return delta;
2232}
0f004f5a
PZ
2233
2234/**
2235 * fixed_power_int - compute: x^n, in O(log n) time
2236 *
2237 * @x: base of the power
2238 * @frac_bits: fractional bits of @x
2239 * @n: power to raise @x to.
2240 *
2241 * By exploiting the relation between the definition of the natural power
2242 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2243 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2244 * (where: n_i \elem {0, 1}, the binary vector representing n),
2245 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2246 * of course trivially computable in O(log_2 n), the length of our binary
2247 * vector.
2248 */
2249static unsigned long
2250fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2251{
2252 unsigned long result = 1UL << frac_bits;
2253
2254 if (n) for (;;) {
2255 if (n & 1) {
2256 result *= x;
2257 result += 1UL << (frac_bits - 1);
2258 result >>= frac_bits;
2259 }
2260 n >>= 1;
2261 if (!n)
2262 break;
2263 x *= x;
2264 x += 1UL << (frac_bits - 1);
2265 x >>= frac_bits;
2266 }
2267
2268 return result;
2269}
2270
2271/*
2272 * a1 = a0 * e + a * (1 - e)
2273 *
2274 * a2 = a1 * e + a * (1 - e)
2275 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2276 * = a0 * e^2 + a * (1 - e) * (1 + e)
2277 *
2278 * a3 = a2 * e + a * (1 - e)
2279 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2280 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2281 *
2282 * ...
2283 *
2284 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2285 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2286 * = a0 * e^n + a * (1 - e^n)
2287 *
2288 * [1] application of the geometric series:
2289 *
2290 * n 1 - x^(n+1)
2291 * S_n := \Sum x^i = -------------
2292 * i=0 1 - x
2293 */
2294static unsigned long
2295calc_load_n(unsigned long load, unsigned long exp,
2296 unsigned long active, unsigned int n)
2297{
2298
2299 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2300}
2301
2302/*
2303 * NO_HZ can leave us missing all per-cpu ticks calling
2304 * calc_load_account_active(), but since an idle CPU folds its delta into
2305 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2306 * in the pending idle delta if our idle period crossed a load cycle boundary.
2307 *
2308 * Once we've updated the global active value, we need to apply the exponential
2309 * weights adjusted to the number of cycles missed.
2310 */
c308b56b 2311static void calc_global_nohz(void)
0f004f5a
PZ
2312{
2313 long delta, active, n;
2314
5167e8d5
PZ
2315 if (!time_before(jiffies, calc_load_update + 10)) {
2316 /*
2317 * Catch-up, fold however many we are behind still
2318 */
2319 delta = jiffies - calc_load_update - 10;
2320 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2321
5167e8d5
PZ
2322 active = atomic_long_read(&calc_load_tasks);
2323 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2324
5167e8d5
PZ
2325 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2326 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2327 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2328
5167e8d5
PZ
2329 calc_load_update += n * LOAD_FREQ;
2330 }
74f5187a 2331
5167e8d5
PZ
2332 /*
2333 * Flip the idle index...
2334 *
2335 * Make sure we first write the new time then flip the index, so that
2336 * calc_load_write_idx() will see the new time when it reads the new
2337 * index, this avoids a double flip messing things up.
2338 */
2339 smp_wmb();
2340 calc_load_idx++;
74f5187a 2341}
5167e8d5 2342#else /* !CONFIG_NO_HZ */
0f004f5a 2343
5167e8d5
PZ
2344static inline long calc_load_fold_idle(void) { return 0; }
2345static inline void calc_global_nohz(void) { }
74f5187a 2346
5167e8d5 2347#endif /* CONFIG_NO_HZ */
46cb4b7c 2348
46cb4b7c 2349/*
dce48a84
TG
2350 * calc_load - update the avenrun load estimates 10 ticks after the
2351 * CPUs have updated calc_load_tasks.
7835b98b 2352 */
0f004f5a 2353void calc_global_load(unsigned long ticks)
7835b98b 2354{
5167e8d5 2355 long active, delta;
1da177e4 2356
0f004f5a 2357 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2358 return;
1da177e4 2359
5167e8d5
PZ
2360 /*
2361 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2362 */
2363 delta = calc_load_fold_idle();
2364 if (delta)
2365 atomic_long_add(delta, &calc_load_tasks);
2366
dce48a84
TG
2367 active = atomic_long_read(&calc_load_tasks);
2368 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2369
dce48a84
TG
2370 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2371 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2372 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2373
dce48a84 2374 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2375
2376 /*
5167e8d5 2377 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2378 */
2379 calc_global_nohz();
dce48a84 2380}
1da177e4 2381
dce48a84 2382/*
74f5187a
PZ
2383 * Called from update_cpu_load() to periodically update this CPU's
2384 * active count.
dce48a84
TG
2385 */
2386static void calc_load_account_active(struct rq *this_rq)
2387{
74f5187a 2388 long delta;
08c183f3 2389
74f5187a
PZ
2390 if (time_before(jiffies, this_rq->calc_load_update))
2391 return;
783609c6 2392
74f5187a 2393 delta = calc_load_fold_active(this_rq);
74f5187a 2394 if (delta)
dce48a84 2395 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2396
2397 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2398}
2399
5167e8d5
PZ
2400/*
2401 * End of global load-average stuff
2402 */
2403
fdf3e95d
VP
2404/*
2405 * The exact cpuload at various idx values, calculated at every tick would be
2406 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2407 *
2408 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2409 * on nth tick when cpu may be busy, then we have:
2410 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2411 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2412 *
2413 * decay_load_missed() below does efficient calculation of
2414 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2415 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2416 *
2417 * The calculation is approximated on a 128 point scale.
2418 * degrade_zero_ticks is the number of ticks after which load at any
2419 * particular idx is approximated to be zero.
2420 * degrade_factor is a precomputed table, a row for each load idx.
2421 * Each column corresponds to degradation factor for a power of two ticks,
2422 * based on 128 point scale.
2423 * Example:
2424 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2425 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2426 *
2427 * With this power of 2 load factors, we can degrade the load n times
2428 * by looking at 1 bits in n and doing as many mult/shift instead of
2429 * n mult/shifts needed by the exact degradation.
2430 */
2431#define DEGRADE_SHIFT 7
2432static const unsigned char
2433 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2434static const unsigned char
2435 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2436 {0, 0, 0, 0, 0, 0, 0, 0},
2437 {64, 32, 8, 0, 0, 0, 0, 0},
2438 {96, 72, 40, 12, 1, 0, 0},
2439 {112, 98, 75, 43, 15, 1, 0},
2440 {120, 112, 98, 76, 45, 16, 2} };
2441
2442/*
2443 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2444 * would be when CPU is idle and so we just decay the old load without
2445 * adding any new load.
2446 */
2447static unsigned long
2448decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2449{
2450 int j = 0;
2451
2452 if (!missed_updates)
2453 return load;
2454
2455 if (missed_updates >= degrade_zero_ticks[idx])
2456 return 0;
2457
2458 if (idx == 1)
2459 return load >> missed_updates;
2460
2461 while (missed_updates) {
2462 if (missed_updates % 2)
2463 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2464
2465 missed_updates >>= 1;
2466 j++;
2467 }
2468 return load;
2469}
2470
46cb4b7c 2471/*
dd41f596 2472 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2473 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2474 * every tick. We fix it up based on jiffies.
46cb4b7c 2475 */
556061b0
PZ
2476static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2477 unsigned long pending_updates)
46cb4b7c 2478{
dd41f596 2479 int i, scale;
46cb4b7c 2480
dd41f596 2481 this_rq->nr_load_updates++;
46cb4b7c 2482
dd41f596 2483 /* Update our load: */
fdf3e95d
VP
2484 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2485 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2486 unsigned long old_load, new_load;
7d1e6a9b 2487
dd41f596 2488 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2489
dd41f596 2490 old_load = this_rq->cpu_load[i];
fdf3e95d 2491 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2492 new_load = this_load;
a25707f3
IM
2493 /*
2494 * Round up the averaging division if load is increasing. This
2495 * prevents us from getting stuck on 9 if the load is 10, for
2496 * example.
2497 */
2498 if (new_load > old_load)
fdf3e95d
VP
2499 new_load += scale - 1;
2500
2501 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2502 }
da2b71ed
SS
2503
2504 sched_avg_update(this_rq);
fdf3e95d
VP
2505}
2506
5aaa0b7a
PZ
2507#ifdef CONFIG_NO_HZ
2508/*
2509 * There is no sane way to deal with nohz on smp when using jiffies because the
2510 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2511 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2512 *
2513 * Therefore we cannot use the delta approach from the regular tick since that
2514 * would seriously skew the load calculation. However we'll make do for those
2515 * updates happening while idle (nohz_idle_balance) or coming out of idle
2516 * (tick_nohz_idle_exit).
2517 *
2518 * This means we might still be one tick off for nohz periods.
2519 */
2520
556061b0
PZ
2521/*
2522 * Called from nohz_idle_balance() to update the load ratings before doing the
2523 * idle balance.
2524 */
2525void update_idle_cpu_load(struct rq *this_rq)
2526{
5aaa0b7a 2527 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2528 unsigned long load = this_rq->load.weight;
2529 unsigned long pending_updates;
2530
2531 /*
5aaa0b7a 2532 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2533 */
2534 if (load || curr_jiffies == this_rq->last_load_update_tick)
2535 return;
2536
2537 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2538 this_rq->last_load_update_tick = curr_jiffies;
2539
2540 __update_cpu_load(this_rq, load, pending_updates);
2541}
2542
5aaa0b7a
PZ
2543/*
2544 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2545 */
2546void update_cpu_load_nohz(void)
2547{
2548 struct rq *this_rq = this_rq();
2549 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2550 unsigned long pending_updates;
2551
2552 if (curr_jiffies == this_rq->last_load_update_tick)
2553 return;
2554
2555 raw_spin_lock(&this_rq->lock);
2556 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2557 if (pending_updates) {
2558 this_rq->last_load_update_tick = curr_jiffies;
2559 /*
2560 * We were idle, this means load 0, the current load might be
2561 * !0 due to remote wakeups and the sort.
2562 */
2563 __update_cpu_load(this_rq, 0, pending_updates);
2564 }
2565 raw_spin_unlock(&this_rq->lock);
2566}
2567#endif /* CONFIG_NO_HZ */
2568
556061b0
PZ
2569/*
2570 * Called from scheduler_tick()
2571 */
fdf3e95d
VP
2572static void update_cpu_load_active(struct rq *this_rq)
2573{
556061b0 2574 /*
5aaa0b7a 2575 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2576 */
2577 this_rq->last_load_update_tick = jiffies;
2578 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2579
74f5187a 2580 calc_load_account_active(this_rq);
46cb4b7c
SS
2581}
2582
dd41f596 2583#ifdef CONFIG_SMP
8a0be9ef 2584
46cb4b7c 2585/*
38022906
PZ
2586 * sched_exec - execve() is a valuable balancing opportunity, because at
2587 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2588 */
38022906 2589void sched_exec(void)
46cb4b7c 2590{
38022906 2591 struct task_struct *p = current;
1da177e4 2592 unsigned long flags;
0017d735 2593 int dest_cpu;
46cb4b7c 2594
8f42ced9 2595 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2596 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2597 if (dest_cpu == smp_processor_id())
2598 goto unlock;
38022906 2599
8f42ced9 2600 if (likely(cpu_active(dest_cpu))) {
969c7921 2601 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2602
8f42ced9
PZ
2603 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2604 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2605 return;
2606 }
0017d735 2607unlock:
8f42ced9 2608 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2609}
dd41f596 2610
1da177e4
LT
2611#endif
2612
1da177e4 2613DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2614DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2615
2616EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2617EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2618
2619/*
c5f8d995 2620 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2621 * @p in case that task is currently running.
c5f8d995
HS
2622 *
2623 * Called with task_rq_lock() held on @rq.
1da177e4 2624 */
c5f8d995
HS
2625static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2626{
2627 u64 ns = 0;
2628
2629 if (task_current(rq, p)) {
2630 update_rq_clock(rq);
305e6835 2631 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2632 if ((s64)ns < 0)
2633 ns = 0;
2634 }
2635
2636 return ns;
2637}
2638
bb34d92f 2639unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2640{
1da177e4 2641 unsigned long flags;
41b86e9c 2642 struct rq *rq;
bb34d92f 2643 u64 ns = 0;
48f24c4d 2644
41b86e9c 2645 rq = task_rq_lock(p, &flags);
c5f8d995 2646 ns = do_task_delta_exec(p, rq);
0122ec5b 2647 task_rq_unlock(rq, p, &flags);
1508487e 2648
c5f8d995
HS
2649 return ns;
2650}
f06febc9 2651
c5f8d995
HS
2652/*
2653 * Return accounted runtime for the task.
2654 * In case the task is currently running, return the runtime plus current's
2655 * pending runtime that have not been accounted yet.
2656 */
2657unsigned long long task_sched_runtime(struct task_struct *p)
2658{
2659 unsigned long flags;
2660 struct rq *rq;
2661 u64 ns = 0;
2662
2663 rq = task_rq_lock(p, &flags);
2664 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2665 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2666
2667 return ns;
2668}
48f24c4d 2669
7835b98b
CL
2670/*
2671 * This function gets called by the timer code, with HZ frequency.
2672 * We call it with interrupts disabled.
7835b98b
CL
2673 */
2674void scheduler_tick(void)
2675{
7835b98b
CL
2676 int cpu = smp_processor_id();
2677 struct rq *rq = cpu_rq(cpu);
dd41f596 2678 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2679
2680 sched_clock_tick();
dd41f596 2681
05fa785c 2682 raw_spin_lock(&rq->lock);
3e51f33f 2683 update_rq_clock(rq);
fdf3e95d 2684 update_cpu_load_active(rq);
fa85ae24 2685 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2686 raw_spin_unlock(&rq->lock);
7835b98b 2687
e9d2b064 2688 perf_event_task_tick();
e220d2dc 2689
e418e1c2 2690#ifdef CONFIG_SMP
6eb57e0d 2691 rq->idle_balance = idle_cpu(cpu);
dd41f596 2692 trigger_load_balance(rq, cpu);
e418e1c2 2693#endif
1da177e4
LT
2694}
2695
132380a0 2696notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2697{
2698 if (in_lock_functions(addr)) {
2699 addr = CALLER_ADDR2;
2700 if (in_lock_functions(addr))
2701 addr = CALLER_ADDR3;
2702 }
2703 return addr;
2704}
1da177e4 2705
7e49fcce
SR
2706#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2707 defined(CONFIG_PREEMPT_TRACER))
2708
43627582 2709void __kprobes add_preempt_count(int val)
1da177e4 2710{
6cd8a4bb 2711#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2712 /*
2713 * Underflow?
2714 */
9a11b49a
IM
2715 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2716 return;
6cd8a4bb 2717#endif
1da177e4 2718 preempt_count() += val;
6cd8a4bb 2719#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2720 /*
2721 * Spinlock count overflowing soon?
2722 */
33859f7f
MOS
2723 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2724 PREEMPT_MASK - 10);
6cd8a4bb
SR
2725#endif
2726 if (preempt_count() == val)
2727 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2728}
2729EXPORT_SYMBOL(add_preempt_count);
2730
43627582 2731void __kprobes sub_preempt_count(int val)
1da177e4 2732{
6cd8a4bb 2733#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2734 /*
2735 * Underflow?
2736 */
01e3eb82 2737 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2738 return;
1da177e4
LT
2739 /*
2740 * Is the spinlock portion underflowing?
2741 */
9a11b49a
IM
2742 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2743 !(preempt_count() & PREEMPT_MASK)))
2744 return;
6cd8a4bb 2745#endif
9a11b49a 2746
6cd8a4bb
SR
2747 if (preempt_count() == val)
2748 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2749 preempt_count() -= val;
2750}
2751EXPORT_SYMBOL(sub_preempt_count);
2752
2753#endif
2754
2755/*
dd41f596 2756 * Print scheduling while atomic bug:
1da177e4 2757 */
dd41f596 2758static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2759{
664dfa65
DJ
2760 if (oops_in_progress)
2761 return;
2762
3df0fc5b
PZ
2763 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2764 prev->comm, prev->pid, preempt_count());
838225b4 2765
dd41f596 2766 debug_show_held_locks(prev);
e21f5b15 2767 print_modules();
dd41f596
IM
2768 if (irqs_disabled())
2769 print_irqtrace_events(prev);
6135fc1e 2770 dump_stack();
1c2927f1 2771 add_taint(TAINT_WARN);
dd41f596 2772}
1da177e4 2773
dd41f596
IM
2774/*
2775 * Various schedule()-time debugging checks and statistics:
2776 */
2777static inline void schedule_debug(struct task_struct *prev)
2778{
1da177e4 2779 /*
41a2d6cf 2780 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2781 * schedule() atomically, we ignore that path for now.
2782 * Otherwise, whine if we are scheduling when we should not be.
2783 */
3f33a7ce 2784 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2785 __schedule_bug(prev);
b3fbab05 2786 rcu_sleep_check();
dd41f596 2787
1da177e4
LT
2788 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2789
2d72376b 2790 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2791}
2792
6cecd084 2793static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2794{
61eadef6 2795 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2796 update_rq_clock(rq);
6cecd084 2797 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2798}
2799
dd41f596
IM
2800/*
2801 * Pick up the highest-prio task:
2802 */
2803static inline struct task_struct *
b67802ea 2804pick_next_task(struct rq *rq)
dd41f596 2805{
5522d5d5 2806 const struct sched_class *class;
dd41f596 2807 struct task_struct *p;
1da177e4
LT
2808
2809 /*
dd41f596
IM
2810 * Optimization: we know that if all tasks are in
2811 * the fair class we can call that function directly:
1da177e4 2812 */
953bfcd1 2813 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2814 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2815 if (likely(p))
2816 return p;
1da177e4
LT
2817 }
2818
34f971f6 2819 for_each_class(class) {
fb8d4724 2820 p = class->pick_next_task(rq);
dd41f596
IM
2821 if (p)
2822 return p;
dd41f596 2823 }
34f971f6
PZ
2824
2825 BUG(); /* the idle class will always have a runnable task */
dd41f596 2826}
1da177e4 2827
dd41f596 2828/*
c259e01a 2829 * __schedule() is the main scheduler function.
edde96ea
PE
2830 *
2831 * The main means of driving the scheduler and thus entering this function are:
2832 *
2833 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2834 *
2835 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2836 * paths. For example, see arch/x86/entry_64.S.
2837 *
2838 * To drive preemption between tasks, the scheduler sets the flag in timer
2839 * interrupt handler scheduler_tick().
2840 *
2841 * 3. Wakeups don't really cause entry into schedule(). They add a
2842 * task to the run-queue and that's it.
2843 *
2844 * Now, if the new task added to the run-queue preempts the current
2845 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2846 * called on the nearest possible occasion:
2847 *
2848 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2849 *
2850 * - in syscall or exception context, at the next outmost
2851 * preempt_enable(). (this might be as soon as the wake_up()'s
2852 * spin_unlock()!)
2853 *
2854 * - in IRQ context, return from interrupt-handler to
2855 * preemptible context
2856 *
2857 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2858 * then at the next:
2859 *
2860 * - cond_resched() call
2861 * - explicit schedule() call
2862 * - return from syscall or exception to user-space
2863 * - return from interrupt-handler to user-space
dd41f596 2864 */
c259e01a 2865static void __sched __schedule(void)
dd41f596
IM
2866{
2867 struct task_struct *prev, *next;
67ca7bde 2868 unsigned long *switch_count;
dd41f596 2869 struct rq *rq;
31656519 2870 int cpu;
dd41f596 2871
ff743345
PZ
2872need_resched:
2873 preempt_disable();
dd41f596
IM
2874 cpu = smp_processor_id();
2875 rq = cpu_rq(cpu);
25502a6c 2876 rcu_note_context_switch(cpu);
dd41f596 2877 prev = rq->curr;
dd41f596 2878
dd41f596 2879 schedule_debug(prev);
1da177e4 2880
31656519 2881 if (sched_feat(HRTICK))
f333fdc9 2882 hrtick_clear(rq);
8f4d37ec 2883
05fa785c 2884 raw_spin_lock_irq(&rq->lock);
1da177e4 2885
246d86b5 2886 switch_count = &prev->nivcsw;
1da177e4 2887 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2888 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2889 prev->state = TASK_RUNNING;
21aa9af0 2890 } else {
2acca55e
PZ
2891 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2892 prev->on_rq = 0;
2893
21aa9af0 2894 /*
2acca55e
PZ
2895 * If a worker went to sleep, notify and ask workqueue
2896 * whether it wants to wake up a task to maintain
2897 * concurrency.
21aa9af0
TH
2898 */
2899 if (prev->flags & PF_WQ_WORKER) {
2900 struct task_struct *to_wakeup;
2901
2902 to_wakeup = wq_worker_sleeping(prev, cpu);
2903 if (to_wakeup)
2904 try_to_wake_up_local(to_wakeup);
2905 }
21aa9af0 2906 }
dd41f596 2907 switch_count = &prev->nvcsw;
1da177e4
LT
2908 }
2909
3f029d3c 2910 pre_schedule(rq, prev);
f65eda4f 2911
dd41f596 2912 if (unlikely(!rq->nr_running))
1da177e4 2913 idle_balance(cpu, rq);
1da177e4 2914
df1c99d4 2915 put_prev_task(rq, prev);
b67802ea 2916 next = pick_next_task(rq);
f26f9aff
MG
2917 clear_tsk_need_resched(prev);
2918 rq->skip_clock_update = 0;
1da177e4 2919
1da177e4 2920 if (likely(prev != next)) {
1da177e4
LT
2921 rq->nr_switches++;
2922 rq->curr = next;
2923 ++*switch_count;
2924
dd41f596 2925 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2926 /*
246d86b5
ON
2927 * The context switch have flipped the stack from under us
2928 * and restored the local variables which were saved when
2929 * this task called schedule() in the past. prev == current
2930 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2931 */
2932 cpu = smp_processor_id();
2933 rq = cpu_rq(cpu);
1da177e4 2934 } else
05fa785c 2935 raw_spin_unlock_irq(&rq->lock);
1da177e4 2936
3f029d3c 2937 post_schedule(rq);
1da177e4 2938
ba74c144 2939 sched_preempt_enable_no_resched();
ff743345 2940 if (need_resched())
1da177e4
LT
2941 goto need_resched;
2942}
c259e01a 2943
9c40cef2
TG
2944static inline void sched_submit_work(struct task_struct *tsk)
2945{
3c7d5184 2946 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2947 return;
2948 /*
2949 * If we are going to sleep and we have plugged IO queued,
2950 * make sure to submit it to avoid deadlocks.
2951 */
2952 if (blk_needs_flush_plug(tsk))
2953 blk_schedule_flush_plug(tsk);
2954}
2955
6ebbe7a0 2956asmlinkage void __sched schedule(void)
c259e01a 2957{
9c40cef2
TG
2958 struct task_struct *tsk = current;
2959
2960 sched_submit_work(tsk);
c259e01a
TG
2961 __schedule();
2962}
1da177e4
LT
2963EXPORT_SYMBOL(schedule);
2964
91d1aa43 2965#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2966asmlinkage void __sched schedule_user(void)
2967{
2968 /*
2969 * If we come here after a random call to set_need_resched(),
2970 * or we have been woken up remotely but the IPI has not yet arrived,
2971 * we haven't yet exited the RCU idle mode. Do it here manually until
2972 * we find a better solution.
2973 */
91d1aa43 2974 user_exit();
20ab65e3 2975 schedule();
91d1aa43 2976 user_enter();
20ab65e3
FW
2977}
2978#endif
2979
c5491ea7
TG
2980/**
2981 * schedule_preempt_disabled - called with preemption disabled
2982 *
2983 * Returns with preemption disabled. Note: preempt_count must be 1
2984 */
2985void __sched schedule_preempt_disabled(void)
2986{
ba74c144 2987 sched_preempt_enable_no_resched();
c5491ea7
TG
2988 schedule();
2989 preempt_disable();
2990}
2991
c08f7829 2992#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 2993
c6eb3dda
PZ
2994static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2995{
c6eb3dda 2996 if (lock->owner != owner)
307bf980 2997 return false;
0d66bf6d
PZ
2998
2999 /*
c6eb3dda
PZ
3000 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3001 * lock->owner still matches owner, if that fails, owner might
3002 * point to free()d memory, if it still matches, the rcu_read_lock()
3003 * ensures the memory stays valid.
0d66bf6d 3004 */
c6eb3dda 3005 barrier();
0d66bf6d 3006
307bf980 3007 return owner->on_cpu;
c6eb3dda 3008}
0d66bf6d 3009
c6eb3dda
PZ
3010/*
3011 * Look out! "owner" is an entirely speculative pointer
3012 * access and not reliable.
3013 */
3014int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3015{
3016 if (!sched_feat(OWNER_SPIN))
3017 return 0;
0d66bf6d 3018
307bf980 3019 rcu_read_lock();
c6eb3dda
PZ
3020 while (owner_running(lock, owner)) {
3021 if (need_resched())
307bf980 3022 break;
0d66bf6d 3023
335d7afb 3024 arch_mutex_cpu_relax();
0d66bf6d 3025 }
307bf980 3026 rcu_read_unlock();
4b402210 3027
c6eb3dda 3028 /*
307bf980
TG
3029 * We break out the loop above on need_resched() and when the
3030 * owner changed, which is a sign for heavy contention. Return
3031 * success only when lock->owner is NULL.
c6eb3dda 3032 */
307bf980 3033 return lock->owner == NULL;
0d66bf6d
PZ
3034}
3035#endif
3036
1da177e4
LT
3037#ifdef CONFIG_PREEMPT
3038/*
2ed6e34f 3039 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3040 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3041 * occur there and call schedule directly.
3042 */
d1f74e20 3043asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3044{
3045 struct thread_info *ti = current_thread_info();
6478d880 3046
1da177e4
LT
3047 /*
3048 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3049 * we do not want to preempt the current task. Just return..
1da177e4 3050 */
beed33a8 3051 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3052 return;
3053
3a5c359a 3054 do {
d1f74e20 3055 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3056 __schedule();
d1f74e20 3057 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3058
3a5c359a
AK
3059 /*
3060 * Check again in case we missed a preemption opportunity
3061 * between schedule and now.
3062 */
3063 barrier();
5ed0cec0 3064 } while (need_resched());
1da177e4 3065}
1da177e4
LT
3066EXPORT_SYMBOL(preempt_schedule);
3067
3068/*
2ed6e34f 3069 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3070 * off of irq context.
3071 * Note, that this is called and return with irqs disabled. This will
3072 * protect us against recursive calling from irq.
3073 */
3074asmlinkage void __sched preempt_schedule_irq(void)
3075{
3076 struct thread_info *ti = current_thread_info();
6478d880 3077
2ed6e34f 3078 /* Catch callers which need to be fixed */
1da177e4
LT
3079 BUG_ON(ti->preempt_count || !irqs_disabled());
3080
91d1aa43 3081 user_exit();
3a5c359a
AK
3082 do {
3083 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3084 local_irq_enable();
c259e01a 3085 __schedule();
3a5c359a 3086 local_irq_disable();
3a5c359a 3087 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3088
3a5c359a
AK
3089 /*
3090 * Check again in case we missed a preemption opportunity
3091 * between schedule and now.
3092 */
3093 barrier();
5ed0cec0 3094 } while (need_resched());
1da177e4
LT
3095}
3096
3097#endif /* CONFIG_PREEMPT */
3098
63859d4f 3099int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3100 void *key)
1da177e4 3101{
63859d4f 3102 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3103}
1da177e4
LT
3104EXPORT_SYMBOL(default_wake_function);
3105
3106/*
41a2d6cf
IM
3107 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3108 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3109 * number) then we wake all the non-exclusive tasks and one exclusive task.
3110 *
3111 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3112 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3113 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3114 */
78ddb08f 3115static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3116 int nr_exclusive, int wake_flags, void *key)
1da177e4 3117{
2e45874c 3118 wait_queue_t *curr, *next;
1da177e4 3119
2e45874c 3120 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3121 unsigned flags = curr->flags;
3122
63859d4f 3123 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3124 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3125 break;
3126 }
3127}
3128
3129/**
3130 * __wake_up - wake up threads blocked on a waitqueue.
3131 * @q: the waitqueue
3132 * @mode: which threads
3133 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3134 * @key: is directly passed to the wakeup function
50fa610a
DH
3135 *
3136 * It may be assumed that this function implies a write memory barrier before
3137 * changing the task state if and only if any tasks are woken up.
1da177e4 3138 */
7ad5b3a5 3139void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3140 int nr_exclusive, void *key)
1da177e4
LT
3141{
3142 unsigned long flags;
3143
3144 spin_lock_irqsave(&q->lock, flags);
3145 __wake_up_common(q, mode, nr_exclusive, 0, key);
3146 spin_unlock_irqrestore(&q->lock, flags);
3147}
1da177e4
LT
3148EXPORT_SYMBOL(__wake_up);
3149
3150/*
3151 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3152 */
63b20011 3153void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3154{
63b20011 3155 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3156}
22c43c81 3157EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3158
4ede816a
DL
3159void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3160{
3161 __wake_up_common(q, mode, 1, 0, key);
3162}
bf294b41 3163EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3164
1da177e4 3165/**
4ede816a 3166 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3167 * @q: the waitqueue
3168 * @mode: which threads
3169 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3170 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3171 *
3172 * The sync wakeup differs that the waker knows that it will schedule
3173 * away soon, so while the target thread will be woken up, it will not
3174 * be migrated to another CPU - ie. the two threads are 'synchronized'
3175 * with each other. This can prevent needless bouncing between CPUs.
3176 *
3177 * On UP it can prevent extra preemption.
50fa610a
DH
3178 *
3179 * It may be assumed that this function implies a write memory barrier before
3180 * changing the task state if and only if any tasks are woken up.
1da177e4 3181 */
4ede816a
DL
3182void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3183 int nr_exclusive, void *key)
1da177e4
LT
3184{
3185 unsigned long flags;
7d478721 3186 int wake_flags = WF_SYNC;
1da177e4
LT
3187
3188 if (unlikely(!q))
3189 return;
3190
3191 if (unlikely(!nr_exclusive))
7d478721 3192 wake_flags = 0;
1da177e4
LT
3193
3194 spin_lock_irqsave(&q->lock, flags);
7d478721 3195 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3196 spin_unlock_irqrestore(&q->lock, flags);
3197}
4ede816a
DL
3198EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3199
3200/*
3201 * __wake_up_sync - see __wake_up_sync_key()
3202 */
3203void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3204{
3205 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3206}
1da177e4
LT
3207EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3208
65eb3dc6
KD
3209/**
3210 * complete: - signals a single thread waiting on this completion
3211 * @x: holds the state of this particular completion
3212 *
3213 * This will wake up a single thread waiting on this completion. Threads will be
3214 * awakened in the same order in which they were queued.
3215 *
3216 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3217 *
3218 * It may be assumed that this function implies a write memory barrier before
3219 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3220 */
b15136e9 3221void complete(struct completion *x)
1da177e4
LT
3222{
3223 unsigned long flags;
3224
3225 spin_lock_irqsave(&x->wait.lock, flags);
3226 x->done++;
d9514f6c 3227 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3228 spin_unlock_irqrestore(&x->wait.lock, flags);
3229}
3230EXPORT_SYMBOL(complete);
3231
65eb3dc6
KD
3232/**
3233 * complete_all: - signals all threads waiting on this completion
3234 * @x: holds the state of this particular completion
3235 *
3236 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3237 *
3238 * It may be assumed that this function implies a write memory barrier before
3239 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3240 */
b15136e9 3241void complete_all(struct completion *x)
1da177e4
LT
3242{
3243 unsigned long flags;
3244
3245 spin_lock_irqsave(&x->wait.lock, flags);
3246 x->done += UINT_MAX/2;
d9514f6c 3247 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3248 spin_unlock_irqrestore(&x->wait.lock, flags);
3249}
3250EXPORT_SYMBOL(complete_all);
3251
8cbbe86d
AK
3252static inline long __sched
3253do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3254{
1da177e4
LT
3255 if (!x->done) {
3256 DECLARE_WAITQUEUE(wait, current);
3257
a93d2f17 3258 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3259 do {
94d3d824 3260 if (signal_pending_state(state, current)) {
ea71a546
ON
3261 timeout = -ERESTARTSYS;
3262 break;
8cbbe86d
AK
3263 }
3264 __set_current_state(state);
1da177e4
LT
3265 spin_unlock_irq(&x->wait.lock);
3266 timeout = schedule_timeout(timeout);
3267 spin_lock_irq(&x->wait.lock);
ea71a546 3268 } while (!x->done && timeout);
1da177e4 3269 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3270 if (!x->done)
3271 return timeout;
1da177e4
LT
3272 }
3273 x->done--;
ea71a546 3274 return timeout ?: 1;
1da177e4 3275}
1da177e4 3276
8cbbe86d
AK
3277static long __sched
3278wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3279{
1da177e4
LT
3280 might_sleep();
3281
3282 spin_lock_irq(&x->wait.lock);
8cbbe86d 3283 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3284 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3285 return timeout;
3286}
1da177e4 3287
65eb3dc6
KD
3288/**
3289 * wait_for_completion: - waits for completion of a task
3290 * @x: holds the state of this particular completion
3291 *
3292 * This waits to be signaled for completion of a specific task. It is NOT
3293 * interruptible and there is no timeout.
3294 *
3295 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3296 * and interrupt capability. Also see complete().
3297 */
b15136e9 3298void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3299{
3300 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3301}
8cbbe86d 3302EXPORT_SYMBOL(wait_for_completion);
1da177e4 3303
65eb3dc6
KD
3304/**
3305 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3306 * @x: holds the state of this particular completion
3307 * @timeout: timeout value in jiffies
3308 *
3309 * This waits for either a completion of a specific task to be signaled or for a
3310 * specified timeout to expire. The timeout is in jiffies. It is not
3311 * interruptible.
c6dc7f05
BF
3312 *
3313 * The return value is 0 if timed out, and positive (at least 1, or number of
3314 * jiffies left till timeout) if completed.
65eb3dc6 3315 */
b15136e9 3316unsigned long __sched
8cbbe86d 3317wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3318{
8cbbe86d 3319 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3320}
8cbbe86d 3321EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3322
65eb3dc6
KD
3323/**
3324 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3325 * @x: holds the state of this particular completion
3326 *
3327 * This waits for completion of a specific task to be signaled. It is
3328 * interruptible.
c6dc7f05
BF
3329 *
3330 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3331 */
8cbbe86d 3332int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3333{
51e97990
AK
3334 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3335 if (t == -ERESTARTSYS)
3336 return t;
3337 return 0;
0fec171c 3338}
8cbbe86d 3339EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3340
65eb3dc6
KD
3341/**
3342 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3343 * @x: holds the state of this particular completion
3344 * @timeout: timeout value in jiffies
3345 *
3346 * This waits for either a completion of a specific task to be signaled or for a
3347 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3348 *
3349 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3350 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3351 */
6bf41237 3352long __sched
8cbbe86d
AK
3353wait_for_completion_interruptible_timeout(struct completion *x,
3354 unsigned long timeout)
0fec171c 3355{
8cbbe86d 3356 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3357}
8cbbe86d 3358EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3359
65eb3dc6
KD
3360/**
3361 * wait_for_completion_killable: - waits for completion of a task (killable)
3362 * @x: holds the state of this particular completion
3363 *
3364 * This waits to be signaled for completion of a specific task. It can be
3365 * interrupted by a kill signal.
c6dc7f05
BF
3366 *
3367 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3368 */
009e577e
MW
3369int __sched wait_for_completion_killable(struct completion *x)
3370{
3371 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3372 if (t == -ERESTARTSYS)
3373 return t;
3374 return 0;
3375}
3376EXPORT_SYMBOL(wait_for_completion_killable);
3377
0aa12fb4
SW
3378/**
3379 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3380 * @x: holds the state of this particular completion
3381 * @timeout: timeout value in jiffies
3382 *
3383 * This waits for either a completion of a specific task to be
3384 * signaled or for a specified timeout to expire. It can be
3385 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3386 *
3387 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3388 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3389 */
6bf41237 3390long __sched
0aa12fb4
SW
3391wait_for_completion_killable_timeout(struct completion *x,
3392 unsigned long timeout)
3393{
3394 return wait_for_common(x, timeout, TASK_KILLABLE);
3395}
3396EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3397
be4de352
DC
3398/**
3399 * try_wait_for_completion - try to decrement a completion without blocking
3400 * @x: completion structure
3401 *
3402 * Returns: 0 if a decrement cannot be done without blocking
3403 * 1 if a decrement succeeded.
3404 *
3405 * If a completion is being used as a counting completion,
3406 * attempt to decrement the counter without blocking. This
3407 * enables us to avoid waiting if the resource the completion
3408 * is protecting is not available.
3409 */
3410bool try_wait_for_completion(struct completion *x)
3411{
7539a3b3 3412 unsigned long flags;
be4de352
DC
3413 int ret = 1;
3414
7539a3b3 3415 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3416 if (!x->done)
3417 ret = 0;
3418 else
3419 x->done--;
7539a3b3 3420 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3421 return ret;
3422}
3423EXPORT_SYMBOL(try_wait_for_completion);
3424
3425/**
3426 * completion_done - Test to see if a completion has any waiters
3427 * @x: completion structure
3428 *
3429 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3430 * 1 if there are no waiters.
3431 *
3432 */
3433bool completion_done(struct completion *x)
3434{
7539a3b3 3435 unsigned long flags;
be4de352
DC
3436 int ret = 1;
3437
7539a3b3 3438 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3439 if (!x->done)
3440 ret = 0;
7539a3b3 3441 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3442 return ret;
3443}
3444EXPORT_SYMBOL(completion_done);
3445
8cbbe86d
AK
3446static long __sched
3447sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3448{
0fec171c
IM
3449 unsigned long flags;
3450 wait_queue_t wait;
3451
3452 init_waitqueue_entry(&wait, current);
1da177e4 3453
8cbbe86d 3454 __set_current_state(state);
1da177e4 3455
8cbbe86d
AK
3456 spin_lock_irqsave(&q->lock, flags);
3457 __add_wait_queue(q, &wait);
3458 spin_unlock(&q->lock);
3459 timeout = schedule_timeout(timeout);
3460 spin_lock_irq(&q->lock);
3461 __remove_wait_queue(q, &wait);
3462 spin_unlock_irqrestore(&q->lock, flags);
3463
3464 return timeout;
3465}
3466
3467void __sched interruptible_sleep_on(wait_queue_head_t *q)
3468{
3469 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3470}
1da177e4
LT
3471EXPORT_SYMBOL(interruptible_sleep_on);
3472
0fec171c 3473long __sched
95cdf3b7 3474interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3475{
8cbbe86d 3476 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3477}
1da177e4
LT
3478EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3479
0fec171c 3480void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3481{
8cbbe86d 3482 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3483}
1da177e4
LT
3484EXPORT_SYMBOL(sleep_on);
3485
0fec171c 3486long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3487{
8cbbe86d 3488 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3489}
1da177e4
LT
3490EXPORT_SYMBOL(sleep_on_timeout);
3491
b29739f9
IM
3492#ifdef CONFIG_RT_MUTEXES
3493
3494/*
3495 * rt_mutex_setprio - set the current priority of a task
3496 * @p: task
3497 * @prio: prio value (kernel-internal form)
3498 *
3499 * This function changes the 'effective' priority of a task. It does
3500 * not touch ->normal_prio like __setscheduler().
3501 *
3502 * Used by the rt_mutex code to implement priority inheritance logic.
3503 */
36c8b586 3504void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3505{
83b699ed 3506 int oldprio, on_rq, running;
70b97a7f 3507 struct rq *rq;
83ab0aa0 3508 const struct sched_class *prev_class;
b29739f9
IM
3509
3510 BUG_ON(prio < 0 || prio > MAX_PRIO);
3511
0122ec5b 3512 rq = __task_rq_lock(p);
b29739f9 3513
1c4dd99b
TG
3514 /*
3515 * Idle task boosting is a nono in general. There is one
3516 * exception, when PREEMPT_RT and NOHZ is active:
3517 *
3518 * The idle task calls get_next_timer_interrupt() and holds
3519 * the timer wheel base->lock on the CPU and another CPU wants
3520 * to access the timer (probably to cancel it). We can safely
3521 * ignore the boosting request, as the idle CPU runs this code
3522 * with interrupts disabled and will complete the lock
3523 * protected section without being interrupted. So there is no
3524 * real need to boost.
3525 */
3526 if (unlikely(p == rq->idle)) {
3527 WARN_ON(p != rq->curr);
3528 WARN_ON(p->pi_blocked_on);
3529 goto out_unlock;
3530 }
3531
a8027073 3532 trace_sched_pi_setprio(p, prio);
d5f9f942 3533 oldprio = p->prio;
83ab0aa0 3534 prev_class = p->sched_class;
fd2f4419 3535 on_rq = p->on_rq;
051a1d1a 3536 running = task_current(rq, p);
0e1f3483 3537 if (on_rq)
69be72c1 3538 dequeue_task(rq, p, 0);
0e1f3483
HS
3539 if (running)
3540 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3541
3542 if (rt_prio(prio))
3543 p->sched_class = &rt_sched_class;
3544 else
3545 p->sched_class = &fair_sched_class;
3546
b29739f9
IM
3547 p->prio = prio;
3548
0e1f3483
HS
3549 if (running)
3550 p->sched_class->set_curr_task(rq);
da7a735e 3551 if (on_rq)
371fd7e7 3552 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3553
da7a735e 3554 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3555out_unlock:
0122ec5b 3556 __task_rq_unlock(rq);
b29739f9 3557}
b29739f9 3558#endif
36c8b586 3559void set_user_nice(struct task_struct *p, long nice)
1da177e4 3560{
dd41f596 3561 int old_prio, delta, on_rq;
1da177e4 3562 unsigned long flags;
70b97a7f 3563 struct rq *rq;
1da177e4
LT
3564
3565 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3566 return;
3567 /*
3568 * We have to be careful, if called from sys_setpriority(),
3569 * the task might be in the middle of scheduling on another CPU.
3570 */
3571 rq = task_rq_lock(p, &flags);
3572 /*
3573 * The RT priorities are set via sched_setscheduler(), but we still
3574 * allow the 'normal' nice value to be set - but as expected
3575 * it wont have any effect on scheduling until the task is
dd41f596 3576 * SCHED_FIFO/SCHED_RR:
1da177e4 3577 */
e05606d3 3578 if (task_has_rt_policy(p)) {
1da177e4
LT
3579 p->static_prio = NICE_TO_PRIO(nice);
3580 goto out_unlock;
3581 }
fd2f4419 3582 on_rq = p->on_rq;
c09595f6 3583 if (on_rq)
69be72c1 3584 dequeue_task(rq, p, 0);
1da177e4 3585
1da177e4 3586 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3587 set_load_weight(p);
b29739f9
IM
3588 old_prio = p->prio;
3589 p->prio = effective_prio(p);
3590 delta = p->prio - old_prio;
1da177e4 3591
dd41f596 3592 if (on_rq) {
371fd7e7 3593 enqueue_task(rq, p, 0);
1da177e4 3594 /*
d5f9f942
AM
3595 * If the task increased its priority or is running and
3596 * lowered its priority, then reschedule its CPU:
1da177e4 3597 */
d5f9f942 3598 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3599 resched_task(rq->curr);
3600 }
3601out_unlock:
0122ec5b 3602 task_rq_unlock(rq, p, &flags);
1da177e4 3603}
1da177e4
LT
3604EXPORT_SYMBOL(set_user_nice);
3605
e43379f1
MM
3606/*
3607 * can_nice - check if a task can reduce its nice value
3608 * @p: task
3609 * @nice: nice value
3610 */
36c8b586 3611int can_nice(const struct task_struct *p, const int nice)
e43379f1 3612{
024f4747
MM
3613 /* convert nice value [19,-20] to rlimit style value [1,40] */
3614 int nice_rlim = 20 - nice;
48f24c4d 3615
78d7d407 3616 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3617 capable(CAP_SYS_NICE));
3618}
3619
1da177e4
LT
3620#ifdef __ARCH_WANT_SYS_NICE
3621
3622/*
3623 * sys_nice - change the priority of the current process.
3624 * @increment: priority increment
3625 *
3626 * sys_setpriority is a more generic, but much slower function that
3627 * does similar things.
3628 */
5add95d4 3629SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3630{
48f24c4d 3631 long nice, retval;
1da177e4
LT
3632
3633 /*
3634 * Setpriority might change our priority at the same moment.
3635 * We don't have to worry. Conceptually one call occurs first
3636 * and we have a single winner.
3637 */
e43379f1
MM
3638 if (increment < -40)
3639 increment = -40;
1da177e4
LT
3640 if (increment > 40)
3641 increment = 40;
3642
2b8f836f 3643 nice = TASK_NICE(current) + increment;
1da177e4
LT
3644 if (nice < -20)
3645 nice = -20;
3646 if (nice > 19)
3647 nice = 19;
3648
e43379f1
MM
3649 if (increment < 0 && !can_nice(current, nice))
3650 return -EPERM;
3651
1da177e4
LT
3652 retval = security_task_setnice(current, nice);
3653 if (retval)
3654 return retval;
3655
3656 set_user_nice(current, nice);
3657 return 0;
3658}
3659
3660#endif
3661
3662/**
3663 * task_prio - return the priority value of a given task.
3664 * @p: the task in question.
3665 *
3666 * This is the priority value as seen by users in /proc.
3667 * RT tasks are offset by -200. Normal tasks are centered
3668 * around 0, value goes from -16 to +15.
3669 */
36c8b586 3670int task_prio(const struct task_struct *p)
1da177e4
LT
3671{
3672 return p->prio - MAX_RT_PRIO;
3673}
3674
3675/**
3676 * task_nice - return the nice value of a given task.
3677 * @p: the task in question.
3678 */
36c8b586 3679int task_nice(const struct task_struct *p)
1da177e4
LT
3680{
3681 return TASK_NICE(p);
3682}
150d8bed 3683EXPORT_SYMBOL(task_nice);
1da177e4
LT
3684
3685/**
3686 * idle_cpu - is a given cpu idle currently?
3687 * @cpu: the processor in question.
3688 */
3689int idle_cpu(int cpu)
3690{
908a3283
TG
3691 struct rq *rq = cpu_rq(cpu);
3692
3693 if (rq->curr != rq->idle)
3694 return 0;
3695
3696 if (rq->nr_running)
3697 return 0;
3698
3699#ifdef CONFIG_SMP
3700 if (!llist_empty(&rq->wake_list))
3701 return 0;
3702#endif
3703
3704 return 1;
1da177e4
LT
3705}
3706
1da177e4
LT
3707/**
3708 * idle_task - return the idle task for a given cpu.
3709 * @cpu: the processor in question.
3710 */
36c8b586 3711struct task_struct *idle_task(int cpu)
1da177e4
LT
3712{
3713 return cpu_rq(cpu)->idle;
3714}
3715
3716/**
3717 * find_process_by_pid - find a process with a matching PID value.
3718 * @pid: the pid in question.
3719 */
a9957449 3720static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3721{
228ebcbe 3722 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3723}
3724
3725/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3726static void
3727__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3728{
1da177e4
LT
3729 p->policy = policy;
3730 p->rt_priority = prio;
b29739f9
IM
3731 p->normal_prio = normal_prio(p);
3732 /* we are holding p->pi_lock already */
3733 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3734 if (rt_prio(p->prio))
3735 p->sched_class = &rt_sched_class;
3736 else
3737 p->sched_class = &fair_sched_class;
2dd73a4f 3738 set_load_weight(p);
1da177e4
LT
3739}
3740
c69e8d9c
DH
3741/*
3742 * check the target process has a UID that matches the current process's
3743 */
3744static bool check_same_owner(struct task_struct *p)
3745{
3746 const struct cred *cred = current_cred(), *pcred;
3747 bool match;
3748
3749 rcu_read_lock();
3750 pcred = __task_cred(p);
9c806aa0
EB
3751 match = (uid_eq(cred->euid, pcred->euid) ||
3752 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3753 rcu_read_unlock();
3754 return match;
3755}
3756
961ccddd 3757static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3758 const struct sched_param *param, bool user)
1da177e4 3759{
83b699ed 3760 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3761 unsigned long flags;
83ab0aa0 3762 const struct sched_class *prev_class;
70b97a7f 3763 struct rq *rq;
ca94c442 3764 int reset_on_fork;
1da177e4 3765
66e5393a
SR
3766 /* may grab non-irq protected spin_locks */
3767 BUG_ON(in_interrupt());
1da177e4
LT
3768recheck:
3769 /* double check policy once rq lock held */
ca94c442
LP
3770 if (policy < 0) {
3771 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3772 policy = oldpolicy = p->policy;
ca94c442
LP
3773 } else {
3774 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3775 policy &= ~SCHED_RESET_ON_FORK;
3776
3777 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3778 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3779 policy != SCHED_IDLE)
3780 return -EINVAL;
3781 }
3782
1da177e4
LT
3783 /*
3784 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3785 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3786 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3787 */
3788 if (param->sched_priority < 0 ||
95cdf3b7 3789 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3790 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3791 return -EINVAL;
e05606d3 3792 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3793 return -EINVAL;
3794
37e4ab3f
OC
3795 /*
3796 * Allow unprivileged RT tasks to decrease priority:
3797 */
961ccddd 3798 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3799 if (rt_policy(policy)) {
a44702e8
ON
3800 unsigned long rlim_rtprio =
3801 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3802
3803 /* can't set/change the rt policy */
3804 if (policy != p->policy && !rlim_rtprio)
3805 return -EPERM;
3806
3807 /* can't increase priority */
3808 if (param->sched_priority > p->rt_priority &&
3809 param->sched_priority > rlim_rtprio)
3810 return -EPERM;
3811 }
c02aa73b 3812
dd41f596 3813 /*
c02aa73b
DH
3814 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3815 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3816 */
c02aa73b
DH
3817 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3818 if (!can_nice(p, TASK_NICE(p)))
3819 return -EPERM;
3820 }
5fe1d75f 3821
37e4ab3f 3822 /* can't change other user's priorities */
c69e8d9c 3823 if (!check_same_owner(p))
37e4ab3f 3824 return -EPERM;
ca94c442
LP
3825
3826 /* Normal users shall not reset the sched_reset_on_fork flag */
3827 if (p->sched_reset_on_fork && !reset_on_fork)
3828 return -EPERM;
37e4ab3f 3829 }
1da177e4 3830
725aad24 3831 if (user) {
b0ae1981 3832 retval = security_task_setscheduler(p);
725aad24
JF
3833 if (retval)
3834 return retval;
3835 }
3836
b29739f9
IM
3837 /*
3838 * make sure no PI-waiters arrive (or leave) while we are
3839 * changing the priority of the task:
0122ec5b 3840 *
25985edc 3841 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3842 * runqueue lock must be held.
3843 */
0122ec5b 3844 rq = task_rq_lock(p, &flags);
dc61b1d6 3845
34f971f6
PZ
3846 /*
3847 * Changing the policy of the stop threads its a very bad idea
3848 */
3849 if (p == rq->stop) {
0122ec5b 3850 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3851 return -EINVAL;
3852 }
3853
a51e9198
DF
3854 /*
3855 * If not changing anything there's no need to proceed further:
3856 */
3857 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3858 param->sched_priority == p->rt_priority))) {
45afb173 3859 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3860 return 0;
3861 }
3862
dc61b1d6
PZ
3863#ifdef CONFIG_RT_GROUP_SCHED
3864 if (user) {
3865 /*
3866 * Do not allow realtime tasks into groups that have no runtime
3867 * assigned.
3868 */
3869 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3870 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3871 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3872 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3873 return -EPERM;
3874 }
3875 }
3876#endif
3877
1da177e4
LT
3878 /* recheck policy now with rq lock held */
3879 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3880 policy = oldpolicy = -1;
0122ec5b 3881 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3882 goto recheck;
3883 }
fd2f4419 3884 on_rq = p->on_rq;
051a1d1a 3885 running = task_current(rq, p);
0e1f3483 3886 if (on_rq)
4ca9b72b 3887 dequeue_task(rq, p, 0);
0e1f3483
HS
3888 if (running)
3889 p->sched_class->put_prev_task(rq, p);
f6b53205 3890
ca94c442
LP
3891 p->sched_reset_on_fork = reset_on_fork;
3892
1da177e4 3893 oldprio = p->prio;
83ab0aa0 3894 prev_class = p->sched_class;
dd41f596 3895 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3896
0e1f3483
HS
3897 if (running)
3898 p->sched_class->set_curr_task(rq);
da7a735e 3899 if (on_rq)
4ca9b72b 3900 enqueue_task(rq, p, 0);
cb469845 3901
da7a735e 3902 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3903 task_rq_unlock(rq, p, &flags);
b29739f9 3904
95e02ca9
TG
3905 rt_mutex_adjust_pi(p);
3906
1da177e4
LT
3907 return 0;
3908}
961ccddd
RR
3909
3910/**
3911 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3912 * @p: the task in question.
3913 * @policy: new policy.
3914 * @param: structure containing the new RT priority.
3915 *
3916 * NOTE that the task may be already dead.
3917 */
3918int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3919 const struct sched_param *param)
961ccddd
RR
3920{
3921 return __sched_setscheduler(p, policy, param, true);
3922}
1da177e4
LT
3923EXPORT_SYMBOL_GPL(sched_setscheduler);
3924
961ccddd
RR
3925/**
3926 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3927 * @p: the task in question.
3928 * @policy: new policy.
3929 * @param: structure containing the new RT priority.
3930 *
3931 * Just like sched_setscheduler, only don't bother checking if the
3932 * current context has permission. For example, this is needed in
3933 * stop_machine(): we create temporary high priority worker threads,
3934 * but our caller might not have that capability.
3935 */
3936int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3937 const struct sched_param *param)
961ccddd
RR
3938{
3939 return __sched_setscheduler(p, policy, param, false);
3940}
3941
95cdf3b7
IM
3942static int
3943do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3944{
1da177e4
LT
3945 struct sched_param lparam;
3946 struct task_struct *p;
36c8b586 3947 int retval;
1da177e4
LT
3948
3949 if (!param || pid < 0)
3950 return -EINVAL;
3951 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3952 return -EFAULT;
5fe1d75f
ON
3953
3954 rcu_read_lock();
3955 retval = -ESRCH;
1da177e4 3956 p = find_process_by_pid(pid);
5fe1d75f
ON
3957 if (p != NULL)
3958 retval = sched_setscheduler(p, policy, &lparam);
3959 rcu_read_unlock();
36c8b586 3960
1da177e4
LT
3961 return retval;
3962}
3963
3964/**
3965 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3966 * @pid: the pid in question.
3967 * @policy: new policy.
3968 * @param: structure containing the new RT priority.
3969 */
5add95d4
HC
3970SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3971 struct sched_param __user *, param)
1da177e4 3972{
c21761f1
JB
3973 /* negative values for policy are not valid */
3974 if (policy < 0)
3975 return -EINVAL;
3976
1da177e4
LT
3977 return do_sched_setscheduler(pid, policy, param);
3978}
3979
3980/**
3981 * sys_sched_setparam - set/change the RT priority of a thread
3982 * @pid: the pid in question.
3983 * @param: structure containing the new RT priority.
3984 */
5add95d4 3985SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3986{
3987 return do_sched_setscheduler(pid, -1, param);
3988}
3989
3990/**
3991 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3992 * @pid: the pid in question.
3993 */
5add95d4 3994SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3995{
36c8b586 3996 struct task_struct *p;
3a5c359a 3997 int retval;
1da177e4
LT
3998
3999 if (pid < 0)
3a5c359a 4000 return -EINVAL;
1da177e4
LT
4001
4002 retval = -ESRCH;
5fe85be0 4003 rcu_read_lock();
1da177e4
LT
4004 p = find_process_by_pid(pid);
4005 if (p) {
4006 retval = security_task_getscheduler(p);
4007 if (!retval)
ca94c442
LP
4008 retval = p->policy
4009 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4010 }
5fe85be0 4011 rcu_read_unlock();
1da177e4
LT
4012 return retval;
4013}
4014
4015/**
ca94c442 4016 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4017 * @pid: the pid in question.
4018 * @param: structure containing the RT priority.
4019 */
5add95d4 4020SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4021{
4022 struct sched_param lp;
36c8b586 4023 struct task_struct *p;
3a5c359a 4024 int retval;
1da177e4
LT
4025
4026 if (!param || pid < 0)
3a5c359a 4027 return -EINVAL;
1da177e4 4028
5fe85be0 4029 rcu_read_lock();
1da177e4
LT
4030 p = find_process_by_pid(pid);
4031 retval = -ESRCH;
4032 if (!p)
4033 goto out_unlock;
4034
4035 retval = security_task_getscheduler(p);
4036 if (retval)
4037 goto out_unlock;
4038
4039 lp.sched_priority = p->rt_priority;
5fe85be0 4040 rcu_read_unlock();
1da177e4
LT
4041
4042 /*
4043 * This one might sleep, we cannot do it with a spinlock held ...
4044 */
4045 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4046
1da177e4
LT
4047 return retval;
4048
4049out_unlock:
5fe85be0 4050 rcu_read_unlock();
1da177e4
LT
4051 return retval;
4052}
4053
96f874e2 4054long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4055{
5a16f3d3 4056 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4057 struct task_struct *p;
4058 int retval;
1da177e4 4059
95402b38 4060 get_online_cpus();
23f5d142 4061 rcu_read_lock();
1da177e4
LT
4062
4063 p = find_process_by_pid(pid);
4064 if (!p) {
23f5d142 4065 rcu_read_unlock();
95402b38 4066 put_online_cpus();
1da177e4
LT
4067 return -ESRCH;
4068 }
4069
23f5d142 4070 /* Prevent p going away */
1da177e4 4071 get_task_struct(p);
23f5d142 4072 rcu_read_unlock();
1da177e4 4073
5a16f3d3
RR
4074 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4075 retval = -ENOMEM;
4076 goto out_put_task;
4077 }
4078 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4079 retval = -ENOMEM;
4080 goto out_free_cpus_allowed;
4081 }
1da177e4 4082 retval = -EPERM;
4c44aaaf
EB
4083 if (!check_same_owner(p)) {
4084 rcu_read_lock();
4085 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4086 rcu_read_unlock();
4087 goto out_unlock;
4088 }
4089 rcu_read_unlock();
4090 }
1da177e4 4091
b0ae1981 4092 retval = security_task_setscheduler(p);
e7834f8f
DQ
4093 if (retval)
4094 goto out_unlock;
4095
5a16f3d3
RR
4096 cpuset_cpus_allowed(p, cpus_allowed);
4097 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4098again:
5a16f3d3 4099 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4100
8707d8b8 4101 if (!retval) {
5a16f3d3
RR
4102 cpuset_cpus_allowed(p, cpus_allowed);
4103 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4104 /*
4105 * We must have raced with a concurrent cpuset
4106 * update. Just reset the cpus_allowed to the
4107 * cpuset's cpus_allowed
4108 */
5a16f3d3 4109 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4110 goto again;
4111 }
4112 }
1da177e4 4113out_unlock:
5a16f3d3
RR
4114 free_cpumask_var(new_mask);
4115out_free_cpus_allowed:
4116 free_cpumask_var(cpus_allowed);
4117out_put_task:
1da177e4 4118 put_task_struct(p);
95402b38 4119 put_online_cpus();
1da177e4
LT
4120 return retval;
4121}
4122
4123static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4124 struct cpumask *new_mask)
1da177e4 4125{
96f874e2
RR
4126 if (len < cpumask_size())
4127 cpumask_clear(new_mask);
4128 else if (len > cpumask_size())
4129 len = cpumask_size();
4130
1da177e4
LT
4131 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4132}
4133
4134/**
4135 * sys_sched_setaffinity - set the cpu affinity of a process
4136 * @pid: pid of the process
4137 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4138 * @user_mask_ptr: user-space pointer to the new cpu mask
4139 */
5add95d4
HC
4140SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4141 unsigned long __user *, user_mask_ptr)
1da177e4 4142{
5a16f3d3 4143 cpumask_var_t new_mask;
1da177e4
LT
4144 int retval;
4145
5a16f3d3
RR
4146 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4147 return -ENOMEM;
1da177e4 4148
5a16f3d3
RR
4149 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4150 if (retval == 0)
4151 retval = sched_setaffinity(pid, new_mask);
4152 free_cpumask_var(new_mask);
4153 return retval;
1da177e4
LT
4154}
4155
96f874e2 4156long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4157{
36c8b586 4158 struct task_struct *p;
31605683 4159 unsigned long flags;
1da177e4 4160 int retval;
1da177e4 4161
95402b38 4162 get_online_cpus();
23f5d142 4163 rcu_read_lock();
1da177e4
LT
4164
4165 retval = -ESRCH;
4166 p = find_process_by_pid(pid);
4167 if (!p)
4168 goto out_unlock;
4169
e7834f8f
DQ
4170 retval = security_task_getscheduler(p);
4171 if (retval)
4172 goto out_unlock;
4173
013fdb80 4174 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4175 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4176 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4177
4178out_unlock:
23f5d142 4179 rcu_read_unlock();
95402b38 4180 put_online_cpus();
1da177e4 4181
9531b62f 4182 return retval;
1da177e4
LT
4183}
4184
4185/**
4186 * sys_sched_getaffinity - get the cpu affinity of a process
4187 * @pid: pid of the process
4188 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4189 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4190 */
5add95d4
HC
4191SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4192 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4193{
4194 int ret;
f17c8607 4195 cpumask_var_t mask;
1da177e4 4196
84fba5ec 4197 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4198 return -EINVAL;
4199 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4200 return -EINVAL;
4201
f17c8607
RR
4202 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4203 return -ENOMEM;
1da177e4 4204
f17c8607
RR
4205 ret = sched_getaffinity(pid, mask);
4206 if (ret == 0) {
8bc037fb 4207 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4208
4209 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4210 ret = -EFAULT;
4211 else
cd3d8031 4212 ret = retlen;
f17c8607
RR
4213 }
4214 free_cpumask_var(mask);
1da177e4 4215
f17c8607 4216 return ret;
1da177e4
LT
4217}
4218
4219/**
4220 * sys_sched_yield - yield the current processor to other threads.
4221 *
dd41f596
IM
4222 * This function yields the current CPU to other tasks. If there are no
4223 * other threads running on this CPU then this function will return.
1da177e4 4224 */
5add95d4 4225SYSCALL_DEFINE0(sched_yield)
1da177e4 4226{
70b97a7f 4227 struct rq *rq = this_rq_lock();
1da177e4 4228
2d72376b 4229 schedstat_inc(rq, yld_count);
4530d7ab 4230 current->sched_class->yield_task(rq);
1da177e4
LT
4231
4232 /*
4233 * Since we are going to call schedule() anyway, there's
4234 * no need to preempt or enable interrupts:
4235 */
4236 __release(rq->lock);
8a25d5de 4237 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4238 do_raw_spin_unlock(&rq->lock);
ba74c144 4239 sched_preempt_enable_no_resched();
1da177e4
LT
4240
4241 schedule();
4242
4243 return 0;
4244}
4245
d86ee480
PZ
4246static inline int should_resched(void)
4247{
4248 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4249}
4250
e7b38404 4251static void __cond_resched(void)
1da177e4 4252{
e7aaaa69 4253 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4254 __schedule();
e7aaaa69 4255 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4256}
4257
02b67cc3 4258int __sched _cond_resched(void)
1da177e4 4259{
d86ee480 4260 if (should_resched()) {
1da177e4
LT
4261 __cond_resched();
4262 return 1;
4263 }
4264 return 0;
4265}
02b67cc3 4266EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4267
4268/*
613afbf8 4269 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4270 * call schedule, and on return reacquire the lock.
4271 *
41a2d6cf 4272 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4273 * operations here to prevent schedule() from being called twice (once via
4274 * spin_unlock(), once by hand).
4275 */
613afbf8 4276int __cond_resched_lock(spinlock_t *lock)
1da177e4 4277{
d86ee480 4278 int resched = should_resched();
6df3cecb
JK
4279 int ret = 0;
4280
f607c668
PZ
4281 lockdep_assert_held(lock);
4282
95c354fe 4283 if (spin_needbreak(lock) || resched) {
1da177e4 4284 spin_unlock(lock);
d86ee480 4285 if (resched)
95c354fe
NP
4286 __cond_resched();
4287 else
4288 cpu_relax();
6df3cecb 4289 ret = 1;
1da177e4 4290 spin_lock(lock);
1da177e4 4291 }
6df3cecb 4292 return ret;
1da177e4 4293}
613afbf8 4294EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4295
613afbf8 4296int __sched __cond_resched_softirq(void)
1da177e4
LT
4297{
4298 BUG_ON(!in_softirq());
4299
d86ee480 4300 if (should_resched()) {
98d82567 4301 local_bh_enable();
1da177e4
LT
4302 __cond_resched();
4303 local_bh_disable();
4304 return 1;
4305 }
4306 return 0;
4307}
613afbf8 4308EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4309
1da177e4
LT
4310/**
4311 * yield - yield the current processor to other threads.
4312 *
8e3fabfd
PZ
4313 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4314 *
4315 * The scheduler is at all times free to pick the calling task as the most
4316 * eligible task to run, if removing the yield() call from your code breaks
4317 * it, its already broken.
4318 *
4319 * Typical broken usage is:
4320 *
4321 * while (!event)
4322 * yield();
4323 *
4324 * where one assumes that yield() will let 'the other' process run that will
4325 * make event true. If the current task is a SCHED_FIFO task that will never
4326 * happen. Never use yield() as a progress guarantee!!
4327 *
4328 * If you want to use yield() to wait for something, use wait_event().
4329 * If you want to use yield() to be 'nice' for others, use cond_resched().
4330 * If you still want to use yield(), do not!
1da177e4
LT
4331 */
4332void __sched yield(void)
4333{
4334 set_current_state(TASK_RUNNING);
4335 sys_sched_yield();
4336}
1da177e4
LT
4337EXPORT_SYMBOL(yield);
4338
d95f4122
MG
4339/**
4340 * yield_to - yield the current processor to another thread in
4341 * your thread group, or accelerate that thread toward the
4342 * processor it's on.
16addf95
RD
4343 * @p: target task
4344 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4345 *
4346 * It's the caller's job to ensure that the target task struct
4347 * can't go away on us before we can do any checks.
4348 *
4349 * Returns true if we indeed boosted the target task.
4350 */
4351bool __sched yield_to(struct task_struct *p, bool preempt)
4352{
4353 struct task_struct *curr = current;
4354 struct rq *rq, *p_rq;
4355 unsigned long flags;
c3c18640 4356 int yielded = 0;
d95f4122
MG
4357
4358 local_irq_save(flags);
4359 rq = this_rq();
4360
4361again:
4362 p_rq = task_rq(p);
4363 double_rq_lock(rq, p_rq);
4364 while (task_rq(p) != p_rq) {
4365 double_rq_unlock(rq, p_rq);
4366 goto again;
4367 }
4368
4369 if (!curr->sched_class->yield_to_task)
4370 goto out;
4371
4372 if (curr->sched_class != p->sched_class)
4373 goto out;
4374
4375 if (task_running(p_rq, p) || p->state)
4376 goto out;
4377
4378 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4379 if (yielded) {
d95f4122 4380 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4381 /*
4382 * Make p's CPU reschedule; pick_next_entity takes care of
4383 * fairness.
4384 */
4385 if (preempt && rq != p_rq)
4386 resched_task(p_rq->curr);
4387 }
d95f4122
MG
4388
4389out:
4390 double_rq_unlock(rq, p_rq);
4391 local_irq_restore(flags);
4392
4393 if (yielded)
4394 schedule();
4395
4396 return yielded;
4397}
4398EXPORT_SYMBOL_GPL(yield_to);
4399
1da177e4 4400/*
41a2d6cf 4401 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4402 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4403 */
4404void __sched io_schedule(void)
4405{
54d35f29 4406 struct rq *rq = raw_rq();
1da177e4 4407
0ff92245 4408 delayacct_blkio_start();
1da177e4 4409 atomic_inc(&rq->nr_iowait);
73c10101 4410 blk_flush_plug(current);
8f0dfc34 4411 current->in_iowait = 1;
1da177e4 4412 schedule();
8f0dfc34 4413 current->in_iowait = 0;
1da177e4 4414 atomic_dec(&rq->nr_iowait);
0ff92245 4415 delayacct_blkio_end();
1da177e4 4416}
1da177e4
LT
4417EXPORT_SYMBOL(io_schedule);
4418
4419long __sched io_schedule_timeout(long timeout)
4420{
54d35f29 4421 struct rq *rq = raw_rq();
1da177e4
LT
4422 long ret;
4423
0ff92245 4424 delayacct_blkio_start();
1da177e4 4425 atomic_inc(&rq->nr_iowait);
73c10101 4426 blk_flush_plug(current);
8f0dfc34 4427 current->in_iowait = 1;
1da177e4 4428 ret = schedule_timeout(timeout);
8f0dfc34 4429 current->in_iowait = 0;
1da177e4 4430 atomic_dec(&rq->nr_iowait);
0ff92245 4431 delayacct_blkio_end();
1da177e4
LT
4432 return ret;
4433}
4434
4435/**
4436 * sys_sched_get_priority_max - return maximum RT priority.
4437 * @policy: scheduling class.
4438 *
4439 * this syscall returns the maximum rt_priority that can be used
4440 * by a given scheduling class.
4441 */
5add95d4 4442SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4443{
4444 int ret = -EINVAL;
4445
4446 switch (policy) {
4447 case SCHED_FIFO:
4448 case SCHED_RR:
4449 ret = MAX_USER_RT_PRIO-1;
4450 break;
4451 case SCHED_NORMAL:
b0a9499c 4452 case SCHED_BATCH:
dd41f596 4453 case SCHED_IDLE:
1da177e4
LT
4454 ret = 0;
4455 break;
4456 }
4457 return ret;
4458}
4459
4460/**
4461 * sys_sched_get_priority_min - return minimum RT priority.
4462 * @policy: scheduling class.
4463 *
4464 * this syscall returns the minimum rt_priority that can be used
4465 * by a given scheduling class.
4466 */
5add95d4 4467SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4468{
4469 int ret = -EINVAL;
4470
4471 switch (policy) {
4472 case SCHED_FIFO:
4473 case SCHED_RR:
4474 ret = 1;
4475 break;
4476 case SCHED_NORMAL:
b0a9499c 4477 case SCHED_BATCH:
dd41f596 4478 case SCHED_IDLE:
1da177e4
LT
4479 ret = 0;
4480 }
4481 return ret;
4482}
4483
4484/**
4485 * sys_sched_rr_get_interval - return the default timeslice of a process.
4486 * @pid: pid of the process.
4487 * @interval: userspace pointer to the timeslice value.
4488 *
4489 * this syscall writes the default timeslice value of a given process
4490 * into the user-space timespec buffer. A value of '0' means infinity.
4491 */
17da2bd9 4492SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4493 struct timespec __user *, interval)
1da177e4 4494{
36c8b586 4495 struct task_struct *p;
a4ec24b4 4496 unsigned int time_slice;
dba091b9
TG
4497 unsigned long flags;
4498 struct rq *rq;
3a5c359a 4499 int retval;
1da177e4 4500 struct timespec t;
1da177e4
LT
4501
4502 if (pid < 0)
3a5c359a 4503 return -EINVAL;
1da177e4
LT
4504
4505 retval = -ESRCH;
1a551ae7 4506 rcu_read_lock();
1da177e4
LT
4507 p = find_process_by_pid(pid);
4508 if (!p)
4509 goto out_unlock;
4510
4511 retval = security_task_getscheduler(p);
4512 if (retval)
4513 goto out_unlock;
4514
dba091b9
TG
4515 rq = task_rq_lock(p, &flags);
4516 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4517 task_rq_unlock(rq, p, &flags);
a4ec24b4 4518
1a551ae7 4519 rcu_read_unlock();
a4ec24b4 4520 jiffies_to_timespec(time_slice, &t);
1da177e4 4521 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4522 return retval;
3a5c359a 4523
1da177e4 4524out_unlock:
1a551ae7 4525 rcu_read_unlock();
1da177e4
LT
4526 return retval;
4527}
4528
7c731e0a 4529static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4530
82a1fcb9 4531void sched_show_task(struct task_struct *p)
1da177e4 4532{
1da177e4 4533 unsigned long free = 0;
4e79752c 4534 int ppid;
36c8b586 4535 unsigned state;
1da177e4 4536
1da177e4 4537 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4538 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4539 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4540#if BITS_PER_LONG == 32
1da177e4 4541 if (state == TASK_RUNNING)
3df0fc5b 4542 printk(KERN_CONT " running ");
1da177e4 4543 else
3df0fc5b 4544 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4545#else
4546 if (state == TASK_RUNNING)
3df0fc5b 4547 printk(KERN_CONT " running task ");
1da177e4 4548 else
3df0fc5b 4549 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4550#endif
4551#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4552 free = stack_not_used(p);
1da177e4 4553#endif
4e79752c
PM
4554 rcu_read_lock();
4555 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4556 rcu_read_unlock();
3df0fc5b 4557 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4558 task_pid_nr(p), ppid,
aa47b7e0 4559 (unsigned long)task_thread_info(p)->flags);
1da177e4 4560
5fb5e6de 4561 show_stack(p, NULL);
1da177e4
LT
4562}
4563
e59e2ae2 4564void show_state_filter(unsigned long state_filter)
1da177e4 4565{
36c8b586 4566 struct task_struct *g, *p;
1da177e4 4567
4bd77321 4568#if BITS_PER_LONG == 32
3df0fc5b
PZ
4569 printk(KERN_INFO
4570 " task PC stack pid father\n");
1da177e4 4571#else
3df0fc5b
PZ
4572 printk(KERN_INFO
4573 " task PC stack pid father\n");
1da177e4 4574#endif
510f5acc 4575 rcu_read_lock();
1da177e4
LT
4576 do_each_thread(g, p) {
4577 /*
4578 * reset the NMI-timeout, listing all files on a slow
25985edc 4579 * console might take a lot of time:
1da177e4
LT
4580 */
4581 touch_nmi_watchdog();
39bc89fd 4582 if (!state_filter || (p->state & state_filter))
82a1fcb9 4583 sched_show_task(p);
1da177e4
LT
4584 } while_each_thread(g, p);
4585
04c9167f
JF
4586 touch_all_softlockup_watchdogs();
4587
dd41f596
IM
4588#ifdef CONFIG_SCHED_DEBUG
4589 sysrq_sched_debug_show();
4590#endif
510f5acc 4591 rcu_read_unlock();
e59e2ae2
IM
4592 /*
4593 * Only show locks if all tasks are dumped:
4594 */
93335a21 4595 if (!state_filter)
e59e2ae2 4596 debug_show_all_locks();
1da177e4
LT
4597}
4598
1df21055
IM
4599void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4600{
dd41f596 4601 idle->sched_class = &idle_sched_class;
1df21055
IM
4602}
4603
f340c0d1
IM
4604/**
4605 * init_idle - set up an idle thread for a given CPU
4606 * @idle: task in question
4607 * @cpu: cpu the idle task belongs to
4608 *
4609 * NOTE: this function does not set the idle thread's NEED_RESCHED
4610 * flag, to make booting more robust.
4611 */
5c1e1767 4612void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4613{
70b97a7f 4614 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4615 unsigned long flags;
4616
05fa785c 4617 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4618
dd41f596 4619 __sched_fork(idle);
06b83b5f 4620 idle->state = TASK_RUNNING;
dd41f596
IM
4621 idle->se.exec_start = sched_clock();
4622
1e1b6c51 4623 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4624 /*
4625 * We're having a chicken and egg problem, even though we are
4626 * holding rq->lock, the cpu isn't yet set to this cpu so the
4627 * lockdep check in task_group() will fail.
4628 *
4629 * Similar case to sched_fork(). / Alternatively we could
4630 * use task_rq_lock() here and obtain the other rq->lock.
4631 *
4632 * Silence PROVE_RCU
4633 */
4634 rcu_read_lock();
dd41f596 4635 __set_task_cpu(idle, cpu);
6506cf6c 4636 rcu_read_unlock();
1da177e4 4637
1da177e4 4638 rq->curr = rq->idle = idle;
3ca7a440
PZ
4639#if defined(CONFIG_SMP)
4640 idle->on_cpu = 1;
4866cde0 4641#endif
05fa785c 4642 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4643
4644 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4645 task_thread_info(idle)->preempt_count = 0;
55cd5340 4646
dd41f596
IM
4647 /*
4648 * The idle tasks have their own, simple scheduling class:
4649 */
4650 idle->sched_class = &idle_sched_class;
868baf07 4651 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4652 vtime_init_idle(idle);
f1c6f1a7
CE
4653#if defined(CONFIG_SMP)
4654 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4655#endif
19978ca6
IM
4656}
4657
1da177e4 4658#ifdef CONFIG_SMP
1e1b6c51
KM
4659void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4660{
4661 if (p->sched_class && p->sched_class->set_cpus_allowed)
4662 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4663
4664 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4665 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4666}
4667
1da177e4
LT
4668/*
4669 * This is how migration works:
4670 *
969c7921
TH
4671 * 1) we invoke migration_cpu_stop() on the target CPU using
4672 * stop_one_cpu().
4673 * 2) stopper starts to run (implicitly forcing the migrated thread
4674 * off the CPU)
4675 * 3) it checks whether the migrated task is still in the wrong runqueue.
4676 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4677 * it and puts it into the right queue.
969c7921
TH
4678 * 5) stopper completes and stop_one_cpu() returns and the migration
4679 * is done.
1da177e4
LT
4680 */
4681
4682/*
4683 * Change a given task's CPU affinity. Migrate the thread to a
4684 * proper CPU and schedule it away if the CPU it's executing on
4685 * is removed from the allowed bitmask.
4686 *
4687 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4688 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4689 * call is not atomic; no spinlocks may be held.
4690 */
96f874e2 4691int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4692{
4693 unsigned long flags;
70b97a7f 4694 struct rq *rq;
969c7921 4695 unsigned int dest_cpu;
48f24c4d 4696 int ret = 0;
1da177e4
LT
4697
4698 rq = task_rq_lock(p, &flags);
e2912009 4699
db44fc01
YZ
4700 if (cpumask_equal(&p->cpus_allowed, new_mask))
4701 goto out;
4702
6ad4c188 4703 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4704 ret = -EINVAL;
4705 goto out;
4706 }
4707
db44fc01 4708 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4709 ret = -EINVAL;
4710 goto out;
4711 }
4712
1e1b6c51 4713 do_set_cpus_allowed(p, new_mask);
73fe6aae 4714
1da177e4 4715 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4716 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4717 goto out;
4718
969c7921 4719 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4720 if (p->on_rq) {
969c7921 4721 struct migration_arg arg = { p, dest_cpu };
1da177e4 4722 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4723 task_rq_unlock(rq, p, &flags);
969c7921 4724 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4725 tlb_migrate_finish(p->mm);
4726 return 0;
4727 }
4728out:
0122ec5b 4729 task_rq_unlock(rq, p, &flags);
48f24c4d 4730
1da177e4
LT
4731 return ret;
4732}
cd8ba7cd 4733EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4734
4735/*
41a2d6cf 4736 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4737 * this because either it can't run here any more (set_cpus_allowed()
4738 * away from this CPU, or CPU going down), or because we're
4739 * attempting to rebalance this task on exec (sched_exec).
4740 *
4741 * So we race with normal scheduler movements, but that's OK, as long
4742 * as the task is no longer on this CPU.
efc30814
KK
4743 *
4744 * Returns non-zero if task was successfully migrated.
1da177e4 4745 */
efc30814 4746static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4747{
70b97a7f 4748 struct rq *rq_dest, *rq_src;
e2912009 4749 int ret = 0;
1da177e4 4750
e761b772 4751 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4752 return ret;
1da177e4
LT
4753
4754 rq_src = cpu_rq(src_cpu);
4755 rq_dest = cpu_rq(dest_cpu);
4756
0122ec5b 4757 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4758 double_rq_lock(rq_src, rq_dest);
4759 /* Already moved. */
4760 if (task_cpu(p) != src_cpu)
b1e38734 4761 goto done;
1da177e4 4762 /* Affinity changed (again). */
fa17b507 4763 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4764 goto fail;
1da177e4 4765
e2912009
PZ
4766 /*
4767 * If we're not on a rq, the next wake-up will ensure we're
4768 * placed properly.
4769 */
fd2f4419 4770 if (p->on_rq) {
4ca9b72b 4771 dequeue_task(rq_src, p, 0);
e2912009 4772 set_task_cpu(p, dest_cpu);
4ca9b72b 4773 enqueue_task(rq_dest, p, 0);
15afe09b 4774 check_preempt_curr(rq_dest, p, 0);
1da177e4 4775 }
b1e38734 4776done:
efc30814 4777 ret = 1;
b1e38734 4778fail:
1da177e4 4779 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4780 raw_spin_unlock(&p->pi_lock);
efc30814 4781 return ret;
1da177e4
LT
4782}
4783
4784/*
969c7921
TH
4785 * migration_cpu_stop - this will be executed by a highprio stopper thread
4786 * and performs thread migration by bumping thread off CPU then
4787 * 'pushing' onto another runqueue.
1da177e4 4788 */
969c7921 4789static int migration_cpu_stop(void *data)
1da177e4 4790{
969c7921 4791 struct migration_arg *arg = data;
f7b4cddc 4792
969c7921
TH
4793 /*
4794 * The original target cpu might have gone down and we might
4795 * be on another cpu but it doesn't matter.
4796 */
f7b4cddc 4797 local_irq_disable();
969c7921 4798 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4799 local_irq_enable();
1da177e4 4800 return 0;
f7b4cddc
ON
4801}
4802
1da177e4 4803#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4804
054b9108 4805/*
48c5ccae
PZ
4806 * Ensures that the idle task is using init_mm right before its cpu goes
4807 * offline.
054b9108 4808 */
48c5ccae 4809void idle_task_exit(void)
1da177e4 4810{
48c5ccae 4811 struct mm_struct *mm = current->active_mm;
e76bd8d9 4812
48c5ccae 4813 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4814
48c5ccae
PZ
4815 if (mm != &init_mm)
4816 switch_mm(mm, &init_mm, current);
4817 mmdrop(mm);
1da177e4
LT
4818}
4819
4820/*
5d180232
PZ
4821 * Since this CPU is going 'away' for a while, fold any nr_active delta
4822 * we might have. Assumes we're called after migrate_tasks() so that the
4823 * nr_active count is stable.
4824 *
4825 * Also see the comment "Global load-average calculations".
1da177e4 4826 */
5d180232 4827static void calc_load_migrate(struct rq *rq)
1da177e4 4828{
5d180232
PZ
4829 long delta = calc_load_fold_active(rq);
4830 if (delta)
4831 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4832}
4833
48f24c4d 4834/*
48c5ccae
PZ
4835 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4836 * try_to_wake_up()->select_task_rq().
4837 *
4838 * Called with rq->lock held even though we'er in stop_machine() and
4839 * there's no concurrency possible, we hold the required locks anyway
4840 * because of lock validation efforts.
1da177e4 4841 */
48c5ccae 4842static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4843{
70b97a7f 4844 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4845 struct task_struct *next, *stop = rq->stop;
4846 int dest_cpu;
1da177e4
LT
4847
4848 /*
48c5ccae
PZ
4849 * Fudge the rq selection such that the below task selection loop
4850 * doesn't get stuck on the currently eligible stop task.
4851 *
4852 * We're currently inside stop_machine() and the rq is either stuck
4853 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4854 * either way we should never end up calling schedule() until we're
4855 * done here.
1da177e4 4856 */
48c5ccae 4857 rq->stop = NULL;
48f24c4d 4858
dd41f596 4859 for ( ; ; ) {
48c5ccae
PZ
4860 /*
4861 * There's this thread running, bail when that's the only
4862 * remaining thread.
4863 */
4864 if (rq->nr_running == 1)
dd41f596 4865 break;
48c5ccae 4866
b67802ea 4867 next = pick_next_task(rq);
48c5ccae 4868 BUG_ON(!next);
79c53799 4869 next->sched_class->put_prev_task(rq, next);
e692ab53 4870
48c5ccae
PZ
4871 /* Find suitable destination for @next, with force if needed. */
4872 dest_cpu = select_fallback_rq(dead_cpu, next);
4873 raw_spin_unlock(&rq->lock);
4874
4875 __migrate_task(next, dead_cpu, dest_cpu);
4876
4877 raw_spin_lock(&rq->lock);
1da177e4 4878 }
dce48a84 4879
48c5ccae 4880 rq->stop = stop;
dce48a84 4881}
48c5ccae 4882
1da177e4
LT
4883#endif /* CONFIG_HOTPLUG_CPU */
4884
e692ab53
NP
4885#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4886
4887static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4888 {
4889 .procname = "sched_domain",
c57baf1e 4890 .mode = 0555,
e0361851 4891 },
56992309 4892 {}
e692ab53
NP
4893};
4894
4895static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4896 {
4897 .procname = "kernel",
c57baf1e 4898 .mode = 0555,
e0361851
AD
4899 .child = sd_ctl_dir,
4900 },
56992309 4901 {}
e692ab53
NP
4902};
4903
4904static struct ctl_table *sd_alloc_ctl_entry(int n)
4905{
4906 struct ctl_table *entry =
5cf9f062 4907 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4908
e692ab53
NP
4909 return entry;
4910}
4911
6382bc90
MM
4912static void sd_free_ctl_entry(struct ctl_table **tablep)
4913{
cd790076 4914 struct ctl_table *entry;
6382bc90 4915
cd790076
MM
4916 /*
4917 * In the intermediate directories, both the child directory and
4918 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4919 * will always be set. In the lowest directory the names are
cd790076
MM
4920 * static strings and all have proc handlers.
4921 */
4922 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4923 if (entry->child)
4924 sd_free_ctl_entry(&entry->child);
cd790076
MM
4925 if (entry->proc_handler == NULL)
4926 kfree(entry->procname);
4927 }
6382bc90
MM
4928
4929 kfree(*tablep);
4930 *tablep = NULL;
4931}
4932
201c373e
NK
4933static int min_load_idx = 0;
4934static int max_load_idx = CPU_LOAD_IDX_MAX;
4935
e692ab53 4936static void
e0361851 4937set_table_entry(struct ctl_table *entry,
e692ab53 4938 const char *procname, void *data, int maxlen,
201c373e
NK
4939 umode_t mode, proc_handler *proc_handler,
4940 bool load_idx)
e692ab53 4941{
e692ab53
NP
4942 entry->procname = procname;
4943 entry->data = data;
4944 entry->maxlen = maxlen;
4945 entry->mode = mode;
4946 entry->proc_handler = proc_handler;
201c373e
NK
4947
4948 if (load_idx) {
4949 entry->extra1 = &min_load_idx;
4950 entry->extra2 = &max_load_idx;
4951 }
e692ab53
NP
4952}
4953
4954static struct ctl_table *
4955sd_alloc_ctl_domain_table(struct sched_domain *sd)
4956{
a5d8c348 4957 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4958
ad1cdc1d
MM
4959 if (table == NULL)
4960 return NULL;
4961
e0361851 4962 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4963 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4964 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4965 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4966 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4967 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4968 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4969 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4970 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4971 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4972 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4973 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4974 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4975 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4976 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4977 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4978 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4979 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4980 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4981 &sd->cache_nice_tries,
201c373e 4982 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4983 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4984 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4985 set_table_entry(&table[11], "name", sd->name,
201c373e 4986 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4987 /* &table[12] is terminator */
e692ab53
NP
4988
4989 return table;
4990}
4991
9a4e7159 4992static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4993{
4994 struct ctl_table *entry, *table;
4995 struct sched_domain *sd;
4996 int domain_num = 0, i;
4997 char buf[32];
4998
4999 for_each_domain(cpu, sd)
5000 domain_num++;
5001 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5002 if (table == NULL)
5003 return NULL;
e692ab53
NP
5004
5005 i = 0;
5006 for_each_domain(cpu, sd) {
5007 snprintf(buf, 32, "domain%d", i);
e692ab53 5008 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5009 entry->mode = 0555;
e692ab53
NP
5010 entry->child = sd_alloc_ctl_domain_table(sd);
5011 entry++;
5012 i++;
5013 }
5014 return table;
5015}
5016
5017static struct ctl_table_header *sd_sysctl_header;
6382bc90 5018static void register_sched_domain_sysctl(void)
e692ab53 5019{
6ad4c188 5020 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5021 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5022 char buf[32];
5023
7378547f
MM
5024 WARN_ON(sd_ctl_dir[0].child);
5025 sd_ctl_dir[0].child = entry;
5026
ad1cdc1d
MM
5027 if (entry == NULL)
5028 return;
5029
6ad4c188 5030 for_each_possible_cpu(i) {
e692ab53 5031 snprintf(buf, 32, "cpu%d", i);
e692ab53 5032 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5033 entry->mode = 0555;
e692ab53 5034 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5035 entry++;
e692ab53 5036 }
7378547f
MM
5037
5038 WARN_ON(sd_sysctl_header);
e692ab53
NP
5039 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5040}
6382bc90 5041
7378547f 5042/* may be called multiple times per register */
6382bc90
MM
5043static void unregister_sched_domain_sysctl(void)
5044{
7378547f
MM
5045 if (sd_sysctl_header)
5046 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5047 sd_sysctl_header = NULL;
7378547f
MM
5048 if (sd_ctl_dir[0].child)
5049 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5050}
e692ab53 5051#else
6382bc90
MM
5052static void register_sched_domain_sysctl(void)
5053{
5054}
5055static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5056{
5057}
5058#endif
5059
1f11eb6a
GH
5060static void set_rq_online(struct rq *rq)
5061{
5062 if (!rq->online) {
5063 const struct sched_class *class;
5064
c6c4927b 5065 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5066 rq->online = 1;
5067
5068 for_each_class(class) {
5069 if (class->rq_online)
5070 class->rq_online(rq);
5071 }
5072 }
5073}
5074
5075static void set_rq_offline(struct rq *rq)
5076{
5077 if (rq->online) {
5078 const struct sched_class *class;
5079
5080 for_each_class(class) {
5081 if (class->rq_offline)
5082 class->rq_offline(rq);
5083 }
5084
c6c4927b 5085 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5086 rq->online = 0;
5087 }
5088}
5089
1da177e4
LT
5090/*
5091 * migration_call - callback that gets triggered when a CPU is added.
5092 * Here we can start up the necessary migration thread for the new CPU.
5093 */
48f24c4d
IM
5094static int __cpuinit
5095migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5096{
48f24c4d 5097 int cpu = (long)hcpu;
1da177e4 5098 unsigned long flags;
969c7921 5099 struct rq *rq = cpu_rq(cpu);
1da177e4 5100
48c5ccae 5101 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5102
1da177e4 5103 case CPU_UP_PREPARE:
a468d389 5104 rq->calc_load_update = calc_load_update;
1da177e4 5105 break;
48f24c4d 5106
1da177e4 5107 case CPU_ONLINE:
1f94ef59 5108 /* Update our root-domain */
05fa785c 5109 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5110 if (rq->rd) {
c6c4927b 5111 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5112
5113 set_rq_online(rq);
1f94ef59 5114 }
05fa785c 5115 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5116 break;
48f24c4d 5117
1da177e4 5118#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5119 case CPU_DYING:
317f3941 5120 sched_ttwu_pending();
57d885fe 5121 /* Update our root-domain */
05fa785c 5122 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5123 if (rq->rd) {
c6c4927b 5124 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5125 set_rq_offline(rq);
57d885fe 5126 }
48c5ccae
PZ
5127 migrate_tasks(cpu);
5128 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5129 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5130 break;
48c5ccae 5131
5d180232 5132 case CPU_DEAD:
f319da0c 5133 calc_load_migrate(rq);
57d885fe 5134 break;
1da177e4
LT
5135#endif
5136 }
49c022e6
PZ
5137
5138 update_max_interval();
5139
1da177e4
LT
5140 return NOTIFY_OK;
5141}
5142
f38b0820
PM
5143/*
5144 * Register at high priority so that task migration (migrate_all_tasks)
5145 * happens before everything else. This has to be lower priority than
cdd6c482 5146 * the notifier in the perf_event subsystem, though.
1da177e4 5147 */
26c2143b 5148static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5149 .notifier_call = migration_call,
50a323b7 5150 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5151};
5152
3a101d05
TH
5153static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5154 unsigned long action, void *hcpu)
5155{
5156 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5157 case CPU_STARTING:
3a101d05
TH
5158 case CPU_DOWN_FAILED:
5159 set_cpu_active((long)hcpu, true);
5160 return NOTIFY_OK;
5161 default:
5162 return NOTIFY_DONE;
5163 }
5164}
5165
5166static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5167 unsigned long action, void *hcpu)
5168{
5169 switch (action & ~CPU_TASKS_FROZEN) {
5170 case CPU_DOWN_PREPARE:
5171 set_cpu_active((long)hcpu, false);
5172 return NOTIFY_OK;
5173 default:
5174 return NOTIFY_DONE;
5175 }
5176}
5177
7babe8db 5178static int __init migration_init(void)
1da177e4
LT
5179{
5180 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5181 int err;
48f24c4d 5182
3a101d05 5183 /* Initialize migration for the boot CPU */
07dccf33
AM
5184 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5185 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5186 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5187 register_cpu_notifier(&migration_notifier);
7babe8db 5188
3a101d05
TH
5189 /* Register cpu active notifiers */
5190 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5191 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5192
a004cd42 5193 return 0;
1da177e4 5194}
7babe8db 5195early_initcall(migration_init);
1da177e4
LT
5196#endif
5197
5198#ifdef CONFIG_SMP
476f3534 5199
4cb98839
PZ
5200static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5201
3e9830dc 5202#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5203
d039ac60 5204static __read_mostly int sched_debug_enabled;
f6630114 5205
d039ac60 5206static int __init sched_debug_setup(char *str)
f6630114 5207{
d039ac60 5208 sched_debug_enabled = 1;
f6630114
MT
5209
5210 return 0;
5211}
d039ac60
PZ
5212early_param("sched_debug", sched_debug_setup);
5213
5214static inline bool sched_debug(void)
5215{
5216 return sched_debug_enabled;
5217}
f6630114 5218
7c16ec58 5219static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5220 struct cpumask *groupmask)
1da177e4 5221{
4dcf6aff 5222 struct sched_group *group = sd->groups;
434d53b0 5223 char str[256];
1da177e4 5224
968ea6d8 5225 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5226 cpumask_clear(groupmask);
4dcf6aff
IM
5227
5228 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5229
5230 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5231 printk("does not load-balance\n");
4dcf6aff 5232 if (sd->parent)
3df0fc5b
PZ
5233 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5234 " has parent");
4dcf6aff 5235 return -1;
41c7ce9a
NP
5236 }
5237
3df0fc5b 5238 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5239
758b2cdc 5240 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5241 printk(KERN_ERR "ERROR: domain->span does not contain "
5242 "CPU%d\n", cpu);
4dcf6aff 5243 }
758b2cdc 5244 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5245 printk(KERN_ERR "ERROR: domain->groups does not contain"
5246 " CPU%d\n", cpu);
4dcf6aff 5247 }
1da177e4 5248
4dcf6aff 5249 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5250 do {
4dcf6aff 5251 if (!group) {
3df0fc5b
PZ
5252 printk("\n");
5253 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5254 break;
5255 }
5256
c3decf0d
PZ
5257 /*
5258 * Even though we initialize ->power to something semi-sane,
5259 * we leave power_orig unset. This allows us to detect if
5260 * domain iteration is still funny without causing /0 traps.
5261 */
5262 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5263 printk(KERN_CONT "\n");
5264 printk(KERN_ERR "ERROR: domain->cpu_power not "
5265 "set\n");
4dcf6aff
IM
5266 break;
5267 }
1da177e4 5268
758b2cdc 5269 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5270 printk(KERN_CONT "\n");
5271 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5272 break;
5273 }
1da177e4 5274
cb83b629
PZ
5275 if (!(sd->flags & SD_OVERLAP) &&
5276 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5277 printk(KERN_CONT "\n");
5278 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5279 break;
5280 }
1da177e4 5281
758b2cdc 5282 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5283
968ea6d8 5284 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5285
3df0fc5b 5286 printk(KERN_CONT " %s", str);
9c3f75cb 5287 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5288 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5289 group->sgp->power);
381512cf 5290 }
1da177e4 5291
4dcf6aff
IM
5292 group = group->next;
5293 } while (group != sd->groups);
3df0fc5b 5294 printk(KERN_CONT "\n");
1da177e4 5295
758b2cdc 5296 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5297 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5298
758b2cdc
RR
5299 if (sd->parent &&
5300 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5301 printk(KERN_ERR "ERROR: parent span is not a superset "
5302 "of domain->span\n");
4dcf6aff
IM
5303 return 0;
5304}
1da177e4 5305
4dcf6aff
IM
5306static void sched_domain_debug(struct sched_domain *sd, int cpu)
5307{
5308 int level = 0;
1da177e4 5309
d039ac60 5310 if (!sched_debug_enabled)
f6630114
MT
5311 return;
5312
4dcf6aff
IM
5313 if (!sd) {
5314 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5315 return;
5316 }
1da177e4 5317
4dcf6aff
IM
5318 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5319
5320 for (;;) {
4cb98839 5321 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5322 break;
1da177e4
LT
5323 level++;
5324 sd = sd->parent;
33859f7f 5325 if (!sd)
4dcf6aff
IM
5326 break;
5327 }
1da177e4 5328}
6d6bc0ad 5329#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5330# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5331static inline bool sched_debug(void)
5332{
5333 return false;
5334}
6d6bc0ad 5335#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5336
1a20ff27 5337static int sd_degenerate(struct sched_domain *sd)
245af2c7 5338{
758b2cdc 5339 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5340 return 1;
5341
5342 /* Following flags need at least 2 groups */
5343 if (sd->flags & (SD_LOAD_BALANCE |
5344 SD_BALANCE_NEWIDLE |
5345 SD_BALANCE_FORK |
89c4710e
SS
5346 SD_BALANCE_EXEC |
5347 SD_SHARE_CPUPOWER |
5348 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5349 if (sd->groups != sd->groups->next)
5350 return 0;
5351 }
5352
5353 /* Following flags don't use groups */
c88d5910 5354 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5355 return 0;
5356
5357 return 1;
5358}
5359
48f24c4d
IM
5360static int
5361sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5362{
5363 unsigned long cflags = sd->flags, pflags = parent->flags;
5364
5365 if (sd_degenerate(parent))
5366 return 1;
5367
758b2cdc 5368 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5369 return 0;
5370
245af2c7
SS
5371 /* Flags needing groups don't count if only 1 group in parent */
5372 if (parent->groups == parent->groups->next) {
5373 pflags &= ~(SD_LOAD_BALANCE |
5374 SD_BALANCE_NEWIDLE |
5375 SD_BALANCE_FORK |
89c4710e
SS
5376 SD_BALANCE_EXEC |
5377 SD_SHARE_CPUPOWER |
5378 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5379 if (nr_node_ids == 1)
5380 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5381 }
5382 if (~cflags & pflags)
5383 return 0;
5384
5385 return 1;
5386}
5387
dce840a0 5388static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5389{
dce840a0 5390 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5391
68e74568 5392 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5393 free_cpumask_var(rd->rto_mask);
5394 free_cpumask_var(rd->online);
5395 free_cpumask_var(rd->span);
5396 kfree(rd);
5397}
5398
57d885fe
GH
5399static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5400{
a0490fa3 5401 struct root_domain *old_rd = NULL;
57d885fe 5402 unsigned long flags;
57d885fe 5403
05fa785c 5404 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5405
5406 if (rq->rd) {
a0490fa3 5407 old_rd = rq->rd;
57d885fe 5408
c6c4927b 5409 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5410 set_rq_offline(rq);
57d885fe 5411
c6c4927b 5412 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5413
a0490fa3
IM
5414 /*
5415 * If we dont want to free the old_rt yet then
5416 * set old_rd to NULL to skip the freeing later
5417 * in this function:
5418 */
5419 if (!atomic_dec_and_test(&old_rd->refcount))
5420 old_rd = NULL;
57d885fe
GH
5421 }
5422
5423 atomic_inc(&rd->refcount);
5424 rq->rd = rd;
5425
c6c4927b 5426 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5427 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5428 set_rq_online(rq);
57d885fe 5429
05fa785c 5430 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5431
5432 if (old_rd)
dce840a0 5433 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5434}
5435
68c38fc3 5436static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5437{
5438 memset(rd, 0, sizeof(*rd));
5439
68c38fc3 5440 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5441 goto out;
68c38fc3 5442 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5443 goto free_span;
68c38fc3 5444 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5445 goto free_online;
6e0534f2 5446
68c38fc3 5447 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5448 goto free_rto_mask;
c6c4927b 5449 return 0;
6e0534f2 5450
68e74568
RR
5451free_rto_mask:
5452 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5453free_online:
5454 free_cpumask_var(rd->online);
5455free_span:
5456 free_cpumask_var(rd->span);
0c910d28 5457out:
c6c4927b 5458 return -ENOMEM;
57d885fe
GH
5459}
5460
029632fb
PZ
5461/*
5462 * By default the system creates a single root-domain with all cpus as
5463 * members (mimicking the global state we have today).
5464 */
5465struct root_domain def_root_domain;
5466
57d885fe
GH
5467static void init_defrootdomain(void)
5468{
68c38fc3 5469 init_rootdomain(&def_root_domain);
c6c4927b 5470
57d885fe
GH
5471 atomic_set(&def_root_domain.refcount, 1);
5472}
5473
dc938520 5474static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5475{
5476 struct root_domain *rd;
5477
5478 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5479 if (!rd)
5480 return NULL;
5481
68c38fc3 5482 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5483 kfree(rd);
5484 return NULL;
5485 }
57d885fe
GH
5486
5487 return rd;
5488}
5489
e3589f6c
PZ
5490static void free_sched_groups(struct sched_group *sg, int free_sgp)
5491{
5492 struct sched_group *tmp, *first;
5493
5494 if (!sg)
5495 return;
5496
5497 first = sg;
5498 do {
5499 tmp = sg->next;
5500
5501 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5502 kfree(sg->sgp);
5503
5504 kfree(sg);
5505 sg = tmp;
5506 } while (sg != first);
5507}
5508
dce840a0
PZ
5509static void free_sched_domain(struct rcu_head *rcu)
5510{
5511 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5512
5513 /*
5514 * If its an overlapping domain it has private groups, iterate and
5515 * nuke them all.
5516 */
5517 if (sd->flags & SD_OVERLAP) {
5518 free_sched_groups(sd->groups, 1);
5519 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5520 kfree(sd->groups->sgp);
dce840a0 5521 kfree(sd->groups);
9c3f75cb 5522 }
dce840a0
PZ
5523 kfree(sd);
5524}
5525
5526static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5527{
5528 call_rcu(&sd->rcu, free_sched_domain);
5529}
5530
5531static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5532{
5533 for (; sd; sd = sd->parent)
5534 destroy_sched_domain(sd, cpu);
5535}
5536
518cd623
PZ
5537/*
5538 * Keep a special pointer to the highest sched_domain that has
5539 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5540 * allows us to avoid some pointer chasing select_idle_sibling().
5541 *
5542 * Also keep a unique ID per domain (we use the first cpu number in
5543 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5544 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5545 */
5546DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5547DEFINE_PER_CPU(int, sd_llc_id);
5548
5549static void update_top_cache_domain(int cpu)
5550{
5551 struct sched_domain *sd;
5552 int id = cpu;
5553
5554 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5555 if (sd)
518cd623
PZ
5556 id = cpumask_first(sched_domain_span(sd));
5557
5558 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5559 per_cpu(sd_llc_id, cpu) = id;
5560}
5561
1da177e4 5562/*
0eab9146 5563 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5564 * hold the hotplug lock.
5565 */
0eab9146
IM
5566static void
5567cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5568{
70b97a7f 5569 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5570 struct sched_domain *tmp;
5571
5572 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5573 for (tmp = sd; tmp; ) {
245af2c7
SS
5574 struct sched_domain *parent = tmp->parent;
5575 if (!parent)
5576 break;
f29c9b1c 5577
1a848870 5578 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5579 tmp->parent = parent->parent;
1a848870
SS
5580 if (parent->parent)
5581 parent->parent->child = tmp;
dce840a0 5582 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5583 } else
5584 tmp = tmp->parent;
245af2c7
SS
5585 }
5586
1a848870 5587 if (sd && sd_degenerate(sd)) {
dce840a0 5588 tmp = sd;
245af2c7 5589 sd = sd->parent;
dce840a0 5590 destroy_sched_domain(tmp, cpu);
1a848870
SS
5591 if (sd)
5592 sd->child = NULL;
5593 }
1da177e4 5594
4cb98839 5595 sched_domain_debug(sd, cpu);
1da177e4 5596
57d885fe 5597 rq_attach_root(rq, rd);
dce840a0 5598 tmp = rq->sd;
674311d5 5599 rcu_assign_pointer(rq->sd, sd);
dce840a0 5600 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5601
5602 update_top_cache_domain(cpu);
1da177e4
LT
5603}
5604
5605/* cpus with isolated domains */
dcc30a35 5606static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5607
5608/* Setup the mask of cpus configured for isolated domains */
5609static int __init isolated_cpu_setup(char *str)
5610{
bdddd296 5611 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5612 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5613 return 1;
5614}
5615
8927f494 5616__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5617
d3081f52
PZ
5618static const struct cpumask *cpu_cpu_mask(int cpu)
5619{
5620 return cpumask_of_node(cpu_to_node(cpu));
5621}
5622
dce840a0
PZ
5623struct sd_data {
5624 struct sched_domain **__percpu sd;
5625 struct sched_group **__percpu sg;
9c3f75cb 5626 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5627};
5628
49a02c51 5629struct s_data {
21d42ccf 5630 struct sched_domain ** __percpu sd;
49a02c51
AH
5631 struct root_domain *rd;
5632};
5633
2109b99e 5634enum s_alloc {
2109b99e 5635 sa_rootdomain,
21d42ccf 5636 sa_sd,
dce840a0 5637 sa_sd_storage,
2109b99e
AH
5638 sa_none,
5639};
5640
54ab4ff4
PZ
5641struct sched_domain_topology_level;
5642
5643typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5644typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5645
e3589f6c
PZ
5646#define SDTL_OVERLAP 0x01
5647
eb7a74e6 5648struct sched_domain_topology_level {
2c402dc3
PZ
5649 sched_domain_init_f init;
5650 sched_domain_mask_f mask;
e3589f6c 5651 int flags;
cb83b629 5652 int numa_level;
54ab4ff4 5653 struct sd_data data;
eb7a74e6
PZ
5654};
5655
c1174876
PZ
5656/*
5657 * Build an iteration mask that can exclude certain CPUs from the upwards
5658 * domain traversal.
5659 *
5660 * Asymmetric node setups can result in situations where the domain tree is of
5661 * unequal depth, make sure to skip domains that already cover the entire
5662 * range.
5663 *
5664 * In that case build_sched_domains() will have terminated the iteration early
5665 * and our sibling sd spans will be empty. Domains should always include the
5666 * cpu they're built on, so check that.
5667 *
5668 */
5669static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5670{
5671 const struct cpumask *span = sched_domain_span(sd);
5672 struct sd_data *sdd = sd->private;
5673 struct sched_domain *sibling;
5674 int i;
5675
5676 for_each_cpu(i, span) {
5677 sibling = *per_cpu_ptr(sdd->sd, i);
5678 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5679 continue;
5680
5681 cpumask_set_cpu(i, sched_group_mask(sg));
5682 }
5683}
5684
5685/*
5686 * Return the canonical balance cpu for this group, this is the first cpu
5687 * of this group that's also in the iteration mask.
5688 */
5689int group_balance_cpu(struct sched_group *sg)
5690{
5691 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5692}
5693
e3589f6c
PZ
5694static int
5695build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5696{
5697 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5698 const struct cpumask *span = sched_domain_span(sd);
5699 struct cpumask *covered = sched_domains_tmpmask;
5700 struct sd_data *sdd = sd->private;
5701 struct sched_domain *child;
5702 int i;
5703
5704 cpumask_clear(covered);
5705
5706 for_each_cpu(i, span) {
5707 struct cpumask *sg_span;
5708
5709 if (cpumask_test_cpu(i, covered))
5710 continue;
5711
c1174876
PZ
5712 child = *per_cpu_ptr(sdd->sd, i);
5713
5714 /* See the comment near build_group_mask(). */
5715 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5716 continue;
5717
e3589f6c 5718 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5719 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5720
5721 if (!sg)
5722 goto fail;
5723
5724 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5725 if (child->child) {
5726 child = child->child;
5727 cpumask_copy(sg_span, sched_domain_span(child));
5728 } else
5729 cpumask_set_cpu(i, sg_span);
5730
5731 cpumask_or(covered, covered, sg_span);
5732
74a5ce20 5733 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5734 if (atomic_inc_return(&sg->sgp->ref) == 1)
5735 build_group_mask(sd, sg);
5736
c3decf0d
PZ
5737 /*
5738 * Initialize sgp->power such that even if we mess up the
5739 * domains and no possible iteration will get us here, we won't
5740 * die on a /0 trap.
5741 */
5742 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5743
c1174876
PZ
5744 /*
5745 * Make sure the first group of this domain contains the
5746 * canonical balance cpu. Otherwise the sched_domain iteration
5747 * breaks. See update_sg_lb_stats().
5748 */
74a5ce20 5749 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5750 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5751 groups = sg;
5752
5753 if (!first)
5754 first = sg;
5755 if (last)
5756 last->next = sg;
5757 last = sg;
5758 last->next = first;
5759 }
5760 sd->groups = groups;
5761
5762 return 0;
5763
5764fail:
5765 free_sched_groups(first, 0);
5766
5767 return -ENOMEM;
5768}
5769
dce840a0 5770static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5771{
dce840a0
PZ
5772 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5773 struct sched_domain *child = sd->child;
1da177e4 5774
dce840a0
PZ
5775 if (child)
5776 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5777
9c3f75cb 5778 if (sg) {
dce840a0 5779 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5780 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5781 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5782 }
dce840a0
PZ
5783
5784 return cpu;
1e9f28fa 5785}
1e9f28fa 5786
01a08546 5787/*
dce840a0
PZ
5788 * build_sched_groups will build a circular linked list of the groups
5789 * covered by the given span, and will set each group's ->cpumask correctly,
5790 * and ->cpu_power to 0.
e3589f6c
PZ
5791 *
5792 * Assumes the sched_domain tree is fully constructed
01a08546 5793 */
e3589f6c
PZ
5794static int
5795build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5796{
dce840a0
PZ
5797 struct sched_group *first = NULL, *last = NULL;
5798 struct sd_data *sdd = sd->private;
5799 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5800 struct cpumask *covered;
dce840a0 5801 int i;
9c1cfda2 5802
e3589f6c
PZ
5803 get_group(cpu, sdd, &sd->groups);
5804 atomic_inc(&sd->groups->ref);
5805
5806 if (cpu != cpumask_first(sched_domain_span(sd)))
5807 return 0;
5808
f96225fd
PZ
5809 lockdep_assert_held(&sched_domains_mutex);
5810 covered = sched_domains_tmpmask;
5811
dce840a0 5812 cpumask_clear(covered);
6711cab4 5813
dce840a0
PZ
5814 for_each_cpu(i, span) {
5815 struct sched_group *sg;
5816 int group = get_group(i, sdd, &sg);
5817 int j;
6711cab4 5818
dce840a0
PZ
5819 if (cpumask_test_cpu(i, covered))
5820 continue;
6711cab4 5821
dce840a0 5822 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5823 sg->sgp->power = 0;
c1174876 5824 cpumask_setall(sched_group_mask(sg));
0601a88d 5825
dce840a0
PZ
5826 for_each_cpu(j, span) {
5827 if (get_group(j, sdd, NULL) != group)
5828 continue;
0601a88d 5829
dce840a0
PZ
5830 cpumask_set_cpu(j, covered);
5831 cpumask_set_cpu(j, sched_group_cpus(sg));
5832 }
0601a88d 5833
dce840a0
PZ
5834 if (!first)
5835 first = sg;
5836 if (last)
5837 last->next = sg;
5838 last = sg;
5839 }
5840 last->next = first;
e3589f6c
PZ
5841
5842 return 0;
0601a88d 5843}
51888ca2 5844
89c4710e
SS
5845/*
5846 * Initialize sched groups cpu_power.
5847 *
5848 * cpu_power indicates the capacity of sched group, which is used while
5849 * distributing the load between different sched groups in a sched domain.
5850 * Typically cpu_power for all the groups in a sched domain will be same unless
5851 * there are asymmetries in the topology. If there are asymmetries, group
5852 * having more cpu_power will pickup more load compared to the group having
5853 * less cpu_power.
89c4710e
SS
5854 */
5855static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5856{
e3589f6c 5857 struct sched_group *sg = sd->groups;
89c4710e 5858
e3589f6c
PZ
5859 WARN_ON(!sd || !sg);
5860
5861 do {
5862 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5863 sg = sg->next;
5864 } while (sg != sd->groups);
89c4710e 5865
c1174876 5866 if (cpu != group_balance_cpu(sg))
e3589f6c 5867 return;
aae6d3dd 5868
d274cb30 5869 update_group_power(sd, cpu);
69e1e811 5870 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5871}
5872
029632fb
PZ
5873int __weak arch_sd_sibling_asym_packing(void)
5874{
5875 return 0*SD_ASYM_PACKING;
89c4710e
SS
5876}
5877
7c16ec58
MT
5878/*
5879 * Initializers for schedule domains
5880 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5881 */
5882
a5d8c348
IM
5883#ifdef CONFIG_SCHED_DEBUG
5884# define SD_INIT_NAME(sd, type) sd->name = #type
5885#else
5886# define SD_INIT_NAME(sd, type) do { } while (0)
5887#endif
5888
54ab4ff4
PZ
5889#define SD_INIT_FUNC(type) \
5890static noinline struct sched_domain * \
5891sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5892{ \
5893 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5894 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5895 SD_INIT_NAME(sd, type); \
5896 sd->private = &tl->data; \
5897 return sd; \
7c16ec58
MT
5898}
5899
5900SD_INIT_FUNC(CPU)
7c16ec58
MT
5901#ifdef CONFIG_SCHED_SMT
5902 SD_INIT_FUNC(SIBLING)
5903#endif
5904#ifdef CONFIG_SCHED_MC
5905 SD_INIT_FUNC(MC)
5906#endif
01a08546
HC
5907#ifdef CONFIG_SCHED_BOOK
5908 SD_INIT_FUNC(BOOK)
5909#endif
7c16ec58 5910
1d3504fc 5911static int default_relax_domain_level = -1;
60495e77 5912int sched_domain_level_max;
1d3504fc
HS
5913
5914static int __init setup_relax_domain_level(char *str)
5915{
a841f8ce
DS
5916 if (kstrtoint(str, 0, &default_relax_domain_level))
5917 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5918
1d3504fc
HS
5919 return 1;
5920}
5921__setup("relax_domain_level=", setup_relax_domain_level);
5922
5923static void set_domain_attribute(struct sched_domain *sd,
5924 struct sched_domain_attr *attr)
5925{
5926 int request;
5927
5928 if (!attr || attr->relax_domain_level < 0) {
5929 if (default_relax_domain_level < 0)
5930 return;
5931 else
5932 request = default_relax_domain_level;
5933 } else
5934 request = attr->relax_domain_level;
5935 if (request < sd->level) {
5936 /* turn off idle balance on this domain */
c88d5910 5937 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5938 } else {
5939 /* turn on idle balance on this domain */
c88d5910 5940 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5941 }
5942}
5943
54ab4ff4
PZ
5944static void __sdt_free(const struct cpumask *cpu_map);
5945static int __sdt_alloc(const struct cpumask *cpu_map);
5946
2109b99e
AH
5947static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5948 const struct cpumask *cpu_map)
5949{
5950 switch (what) {
2109b99e 5951 case sa_rootdomain:
822ff793
PZ
5952 if (!atomic_read(&d->rd->refcount))
5953 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5954 case sa_sd:
5955 free_percpu(d->sd); /* fall through */
dce840a0 5956 case sa_sd_storage:
54ab4ff4 5957 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5958 case sa_none:
5959 break;
5960 }
5961}
3404c8d9 5962
2109b99e
AH
5963static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5964 const struct cpumask *cpu_map)
5965{
dce840a0
PZ
5966 memset(d, 0, sizeof(*d));
5967
54ab4ff4
PZ
5968 if (__sdt_alloc(cpu_map))
5969 return sa_sd_storage;
dce840a0
PZ
5970 d->sd = alloc_percpu(struct sched_domain *);
5971 if (!d->sd)
5972 return sa_sd_storage;
2109b99e 5973 d->rd = alloc_rootdomain();
dce840a0 5974 if (!d->rd)
21d42ccf 5975 return sa_sd;
2109b99e
AH
5976 return sa_rootdomain;
5977}
57d885fe 5978
dce840a0
PZ
5979/*
5980 * NULL the sd_data elements we've used to build the sched_domain and
5981 * sched_group structure so that the subsequent __free_domain_allocs()
5982 * will not free the data we're using.
5983 */
5984static void claim_allocations(int cpu, struct sched_domain *sd)
5985{
5986 struct sd_data *sdd = sd->private;
dce840a0
PZ
5987
5988 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5989 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5990
e3589f6c 5991 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5992 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5993
5994 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5995 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5996}
5997
2c402dc3
PZ
5998#ifdef CONFIG_SCHED_SMT
5999static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6000{
2c402dc3 6001 return topology_thread_cpumask(cpu);
3bd65a80 6002}
2c402dc3 6003#endif
7f4588f3 6004
d069b916
PZ
6005/*
6006 * Topology list, bottom-up.
6007 */
2c402dc3 6008static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6009#ifdef CONFIG_SCHED_SMT
6010 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6011#endif
1e9f28fa 6012#ifdef CONFIG_SCHED_MC
2c402dc3 6013 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6014#endif
d069b916
PZ
6015#ifdef CONFIG_SCHED_BOOK
6016 { sd_init_BOOK, cpu_book_mask, },
6017#endif
6018 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6019 { NULL, },
6020};
6021
6022static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6023
cb83b629
PZ
6024#ifdef CONFIG_NUMA
6025
6026static int sched_domains_numa_levels;
cb83b629
PZ
6027static int *sched_domains_numa_distance;
6028static struct cpumask ***sched_domains_numa_masks;
6029static int sched_domains_curr_level;
6030
cb83b629
PZ
6031static inline int sd_local_flags(int level)
6032{
10717dcd 6033 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6034 return 0;
6035
6036 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6037}
6038
6039static struct sched_domain *
6040sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6041{
6042 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6043 int level = tl->numa_level;
6044 int sd_weight = cpumask_weight(
6045 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6046
6047 *sd = (struct sched_domain){
6048 .min_interval = sd_weight,
6049 .max_interval = 2*sd_weight,
6050 .busy_factor = 32,
870a0bb5 6051 .imbalance_pct = 125,
cb83b629
PZ
6052 .cache_nice_tries = 2,
6053 .busy_idx = 3,
6054 .idle_idx = 2,
6055 .newidle_idx = 0,
6056 .wake_idx = 0,
6057 .forkexec_idx = 0,
6058
6059 .flags = 1*SD_LOAD_BALANCE
6060 | 1*SD_BALANCE_NEWIDLE
6061 | 0*SD_BALANCE_EXEC
6062 | 0*SD_BALANCE_FORK
6063 | 0*SD_BALANCE_WAKE
6064 | 0*SD_WAKE_AFFINE
cb83b629 6065 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6066 | 0*SD_SHARE_PKG_RESOURCES
6067 | 1*SD_SERIALIZE
6068 | 0*SD_PREFER_SIBLING
6069 | sd_local_flags(level)
6070 ,
6071 .last_balance = jiffies,
6072 .balance_interval = sd_weight,
6073 };
6074 SD_INIT_NAME(sd, NUMA);
6075 sd->private = &tl->data;
6076
6077 /*
6078 * Ugly hack to pass state to sd_numa_mask()...
6079 */
6080 sched_domains_curr_level = tl->numa_level;
6081
6082 return sd;
6083}
6084
6085static const struct cpumask *sd_numa_mask(int cpu)
6086{
6087 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6088}
6089
d039ac60
PZ
6090static void sched_numa_warn(const char *str)
6091{
6092 static int done = false;
6093 int i,j;
6094
6095 if (done)
6096 return;
6097
6098 done = true;
6099
6100 printk(KERN_WARNING "ERROR: %s\n\n", str);
6101
6102 for (i = 0; i < nr_node_ids; i++) {
6103 printk(KERN_WARNING " ");
6104 for (j = 0; j < nr_node_ids; j++)
6105 printk(KERN_CONT "%02d ", node_distance(i,j));
6106 printk(KERN_CONT "\n");
6107 }
6108 printk(KERN_WARNING "\n");
6109}
6110
6111static bool find_numa_distance(int distance)
6112{
6113 int i;
6114
6115 if (distance == node_distance(0, 0))
6116 return true;
6117
6118 for (i = 0; i < sched_domains_numa_levels; i++) {
6119 if (sched_domains_numa_distance[i] == distance)
6120 return true;
6121 }
6122
6123 return false;
6124}
6125
cb83b629
PZ
6126static void sched_init_numa(void)
6127{
6128 int next_distance, curr_distance = node_distance(0, 0);
6129 struct sched_domain_topology_level *tl;
6130 int level = 0;
6131 int i, j, k;
6132
cb83b629
PZ
6133 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6134 if (!sched_domains_numa_distance)
6135 return;
6136
6137 /*
6138 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6139 * unique distances in the node_distance() table.
6140 *
6141 * Assumes node_distance(0,j) includes all distances in
6142 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6143 */
6144 next_distance = curr_distance;
6145 for (i = 0; i < nr_node_ids; i++) {
6146 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6147 for (k = 0; k < nr_node_ids; k++) {
6148 int distance = node_distance(i, k);
6149
6150 if (distance > curr_distance &&
6151 (distance < next_distance ||
6152 next_distance == curr_distance))
6153 next_distance = distance;
6154
6155 /*
6156 * While not a strong assumption it would be nice to know
6157 * about cases where if node A is connected to B, B is not
6158 * equally connected to A.
6159 */
6160 if (sched_debug() && node_distance(k, i) != distance)
6161 sched_numa_warn("Node-distance not symmetric");
6162
6163 if (sched_debug() && i && !find_numa_distance(distance))
6164 sched_numa_warn("Node-0 not representative");
6165 }
6166 if (next_distance != curr_distance) {
6167 sched_domains_numa_distance[level++] = next_distance;
6168 sched_domains_numa_levels = level;
6169 curr_distance = next_distance;
6170 } else break;
cb83b629 6171 }
d039ac60
PZ
6172
6173 /*
6174 * In case of sched_debug() we verify the above assumption.
6175 */
6176 if (!sched_debug())
6177 break;
cb83b629
PZ
6178 }
6179 /*
6180 * 'level' contains the number of unique distances, excluding the
6181 * identity distance node_distance(i,i).
6182 *
6183 * The sched_domains_nume_distance[] array includes the actual distance
6184 * numbers.
6185 */
6186
5f7865f3
TC
6187 /*
6188 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6189 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6190 * the array will contain less then 'level' members. This could be
6191 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6192 * in other functions.
6193 *
6194 * We reset it to 'level' at the end of this function.
6195 */
6196 sched_domains_numa_levels = 0;
6197
cb83b629
PZ
6198 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6199 if (!sched_domains_numa_masks)
6200 return;
6201
6202 /*
6203 * Now for each level, construct a mask per node which contains all
6204 * cpus of nodes that are that many hops away from us.
6205 */
6206 for (i = 0; i < level; i++) {
6207 sched_domains_numa_masks[i] =
6208 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6209 if (!sched_domains_numa_masks[i])
6210 return;
6211
6212 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6213 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6214 if (!mask)
6215 return;
6216
6217 sched_domains_numa_masks[i][j] = mask;
6218
6219 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6220 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6221 continue;
6222
6223 cpumask_or(mask, mask, cpumask_of_node(k));
6224 }
6225 }
6226 }
6227
6228 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6229 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6230 if (!tl)
6231 return;
6232
6233 /*
6234 * Copy the default topology bits..
6235 */
6236 for (i = 0; default_topology[i].init; i++)
6237 tl[i] = default_topology[i];
6238
6239 /*
6240 * .. and append 'j' levels of NUMA goodness.
6241 */
6242 for (j = 0; j < level; i++, j++) {
6243 tl[i] = (struct sched_domain_topology_level){
6244 .init = sd_numa_init,
6245 .mask = sd_numa_mask,
6246 .flags = SDTL_OVERLAP,
6247 .numa_level = j,
6248 };
6249 }
6250
6251 sched_domain_topology = tl;
5f7865f3
TC
6252
6253 sched_domains_numa_levels = level;
cb83b629 6254}
301a5cba
TC
6255
6256static void sched_domains_numa_masks_set(int cpu)
6257{
6258 int i, j;
6259 int node = cpu_to_node(cpu);
6260
6261 for (i = 0; i < sched_domains_numa_levels; i++) {
6262 for (j = 0; j < nr_node_ids; j++) {
6263 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6264 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6265 }
6266 }
6267}
6268
6269static void sched_domains_numa_masks_clear(int cpu)
6270{
6271 int i, j;
6272 for (i = 0; i < sched_domains_numa_levels; i++) {
6273 for (j = 0; j < nr_node_ids; j++)
6274 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6275 }
6276}
6277
6278/*
6279 * Update sched_domains_numa_masks[level][node] array when new cpus
6280 * are onlined.
6281 */
6282static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6283 unsigned long action,
6284 void *hcpu)
6285{
6286 int cpu = (long)hcpu;
6287
6288 switch (action & ~CPU_TASKS_FROZEN) {
6289 case CPU_ONLINE:
6290 sched_domains_numa_masks_set(cpu);
6291 break;
6292
6293 case CPU_DEAD:
6294 sched_domains_numa_masks_clear(cpu);
6295 break;
6296
6297 default:
6298 return NOTIFY_DONE;
6299 }
6300
6301 return NOTIFY_OK;
cb83b629
PZ
6302}
6303#else
6304static inline void sched_init_numa(void)
6305{
6306}
301a5cba
TC
6307
6308static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6309 unsigned long action,
6310 void *hcpu)
6311{
6312 return 0;
6313}
cb83b629
PZ
6314#endif /* CONFIG_NUMA */
6315
54ab4ff4
PZ
6316static int __sdt_alloc(const struct cpumask *cpu_map)
6317{
6318 struct sched_domain_topology_level *tl;
6319 int j;
6320
6321 for (tl = sched_domain_topology; tl->init; tl++) {
6322 struct sd_data *sdd = &tl->data;
6323
6324 sdd->sd = alloc_percpu(struct sched_domain *);
6325 if (!sdd->sd)
6326 return -ENOMEM;
6327
6328 sdd->sg = alloc_percpu(struct sched_group *);
6329 if (!sdd->sg)
6330 return -ENOMEM;
6331
9c3f75cb
PZ
6332 sdd->sgp = alloc_percpu(struct sched_group_power *);
6333 if (!sdd->sgp)
6334 return -ENOMEM;
6335
54ab4ff4
PZ
6336 for_each_cpu(j, cpu_map) {
6337 struct sched_domain *sd;
6338 struct sched_group *sg;
9c3f75cb 6339 struct sched_group_power *sgp;
54ab4ff4
PZ
6340
6341 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6342 GFP_KERNEL, cpu_to_node(j));
6343 if (!sd)
6344 return -ENOMEM;
6345
6346 *per_cpu_ptr(sdd->sd, j) = sd;
6347
6348 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6349 GFP_KERNEL, cpu_to_node(j));
6350 if (!sg)
6351 return -ENOMEM;
6352
30b4e9eb
IM
6353 sg->next = sg;
6354
54ab4ff4 6355 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6356
c1174876 6357 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6358 GFP_KERNEL, cpu_to_node(j));
6359 if (!sgp)
6360 return -ENOMEM;
6361
6362 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6363 }
6364 }
6365
6366 return 0;
6367}
6368
6369static void __sdt_free(const struct cpumask *cpu_map)
6370{
6371 struct sched_domain_topology_level *tl;
6372 int j;
6373
6374 for (tl = sched_domain_topology; tl->init; tl++) {
6375 struct sd_data *sdd = &tl->data;
6376
6377 for_each_cpu(j, cpu_map) {
fb2cf2c6 6378 struct sched_domain *sd;
6379
6380 if (sdd->sd) {
6381 sd = *per_cpu_ptr(sdd->sd, j);
6382 if (sd && (sd->flags & SD_OVERLAP))
6383 free_sched_groups(sd->groups, 0);
6384 kfree(*per_cpu_ptr(sdd->sd, j));
6385 }
6386
6387 if (sdd->sg)
6388 kfree(*per_cpu_ptr(sdd->sg, j));
6389 if (sdd->sgp)
6390 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6391 }
6392 free_percpu(sdd->sd);
fb2cf2c6 6393 sdd->sd = NULL;
54ab4ff4 6394 free_percpu(sdd->sg);
fb2cf2c6 6395 sdd->sg = NULL;
9c3f75cb 6396 free_percpu(sdd->sgp);
fb2cf2c6 6397 sdd->sgp = NULL;
54ab4ff4
PZ
6398 }
6399}
6400
2c402dc3
PZ
6401struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6402 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6403 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6404 int cpu)
6405{
54ab4ff4 6406 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6407 if (!sd)
d069b916 6408 return child;
2c402dc3 6409
2c402dc3 6410 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6411 if (child) {
6412 sd->level = child->level + 1;
6413 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6414 child->parent = sd;
60495e77 6415 }
d069b916 6416 sd->child = child;
a841f8ce 6417 set_domain_attribute(sd, attr);
2c402dc3
PZ
6418
6419 return sd;
6420}
6421
2109b99e
AH
6422/*
6423 * Build sched domains for a given set of cpus and attach the sched domains
6424 * to the individual cpus
6425 */
dce840a0
PZ
6426static int build_sched_domains(const struct cpumask *cpu_map,
6427 struct sched_domain_attr *attr)
2109b99e
AH
6428{
6429 enum s_alloc alloc_state = sa_none;
dce840a0 6430 struct sched_domain *sd;
2109b99e 6431 struct s_data d;
822ff793 6432 int i, ret = -ENOMEM;
9c1cfda2 6433
2109b99e
AH
6434 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6435 if (alloc_state != sa_rootdomain)
6436 goto error;
9c1cfda2 6437
dce840a0 6438 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6439 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6440 struct sched_domain_topology_level *tl;
6441
3bd65a80 6442 sd = NULL;
e3589f6c 6443 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6444 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6445 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6446 sd->flags |= SD_OVERLAP;
d110235d
PZ
6447 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6448 break;
e3589f6c 6449 }
d274cb30 6450
d069b916
PZ
6451 while (sd->child)
6452 sd = sd->child;
6453
21d42ccf 6454 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6455 }
6456
6457 /* Build the groups for the domains */
6458 for_each_cpu(i, cpu_map) {
6459 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6460 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6461 if (sd->flags & SD_OVERLAP) {
6462 if (build_overlap_sched_groups(sd, i))
6463 goto error;
6464 } else {
6465 if (build_sched_groups(sd, i))
6466 goto error;
6467 }
1cf51902 6468 }
a06dadbe 6469 }
9c1cfda2 6470
1da177e4 6471 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6472 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6473 if (!cpumask_test_cpu(i, cpu_map))
6474 continue;
9c1cfda2 6475
dce840a0
PZ
6476 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6477 claim_allocations(i, sd);
cd4ea6ae 6478 init_sched_groups_power(i, sd);
dce840a0 6479 }
f712c0c7 6480 }
9c1cfda2 6481
1da177e4 6482 /* Attach the domains */
dce840a0 6483 rcu_read_lock();
abcd083a 6484 for_each_cpu(i, cpu_map) {
21d42ccf 6485 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6486 cpu_attach_domain(sd, d.rd, i);
1da177e4 6487 }
dce840a0 6488 rcu_read_unlock();
51888ca2 6489
822ff793 6490 ret = 0;
51888ca2 6491error:
2109b99e 6492 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6493 return ret;
1da177e4 6494}
029190c5 6495
acc3f5d7 6496static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6497static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6498static struct sched_domain_attr *dattr_cur;
6499 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6500
6501/*
6502 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6503 * cpumask) fails, then fallback to a single sched domain,
6504 * as determined by the single cpumask fallback_doms.
029190c5 6505 */
4212823f 6506static cpumask_var_t fallback_doms;
029190c5 6507
ee79d1bd
HC
6508/*
6509 * arch_update_cpu_topology lets virtualized architectures update the
6510 * cpu core maps. It is supposed to return 1 if the topology changed
6511 * or 0 if it stayed the same.
6512 */
6513int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6514{
ee79d1bd 6515 return 0;
22e52b07
HC
6516}
6517
acc3f5d7
RR
6518cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6519{
6520 int i;
6521 cpumask_var_t *doms;
6522
6523 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6524 if (!doms)
6525 return NULL;
6526 for (i = 0; i < ndoms; i++) {
6527 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6528 free_sched_domains(doms, i);
6529 return NULL;
6530 }
6531 }
6532 return doms;
6533}
6534
6535void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6536{
6537 unsigned int i;
6538 for (i = 0; i < ndoms; i++)
6539 free_cpumask_var(doms[i]);
6540 kfree(doms);
6541}
6542
1a20ff27 6543/*
41a2d6cf 6544 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6545 * For now this just excludes isolated cpus, but could be used to
6546 * exclude other special cases in the future.
1a20ff27 6547 */
c4a8849a 6548static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6549{
7378547f
MM
6550 int err;
6551
22e52b07 6552 arch_update_cpu_topology();
029190c5 6553 ndoms_cur = 1;
acc3f5d7 6554 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6555 if (!doms_cur)
acc3f5d7
RR
6556 doms_cur = &fallback_doms;
6557 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6558 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6559 register_sched_domain_sysctl();
7378547f
MM
6560
6561 return err;
1a20ff27
DG
6562}
6563
1a20ff27
DG
6564/*
6565 * Detach sched domains from a group of cpus specified in cpu_map
6566 * These cpus will now be attached to the NULL domain
6567 */
96f874e2 6568static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6569{
6570 int i;
6571
dce840a0 6572 rcu_read_lock();
abcd083a 6573 for_each_cpu(i, cpu_map)
57d885fe 6574 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6575 rcu_read_unlock();
1a20ff27
DG
6576}
6577
1d3504fc
HS
6578/* handle null as "default" */
6579static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6580 struct sched_domain_attr *new, int idx_new)
6581{
6582 struct sched_domain_attr tmp;
6583
6584 /* fast path */
6585 if (!new && !cur)
6586 return 1;
6587
6588 tmp = SD_ATTR_INIT;
6589 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6590 new ? (new + idx_new) : &tmp,
6591 sizeof(struct sched_domain_attr));
6592}
6593
029190c5
PJ
6594/*
6595 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6596 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6597 * doms_new[] to the current sched domain partitioning, doms_cur[].
6598 * It destroys each deleted domain and builds each new domain.
6599 *
acc3f5d7 6600 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6601 * The masks don't intersect (don't overlap.) We should setup one
6602 * sched domain for each mask. CPUs not in any of the cpumasks will
6603 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6604 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6605 * it as it is.
6606 *
acc3f5d7
RR
6607 * The passed in 'doms_new' should be allocated using
6608 * alloc_sched_domains. This routine takes ownership of it and will
6609 * free_sched_domains it when done with it. If the caller failed the
6610 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6611 * and partition_sched_domains() will fallback to the single partition
6612 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6613 *
96f874e2 6614 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6615 * ndoms_new == 0 is a special case for destroying existing domains,
6616 * and it will not create the default domain.
dfb512ec 6617 *
029190c5
PJ
6618 * Call with hotplug lock held
6619 */
acc3f5d7 6620void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6621 struct sched_domain_attr *dattr_new)
029190c5 6622{
dfb512ec 6623 int i, j, n;
d65bd5ec 6624 int new_topology;
029190c5 6625
712555ee 6626 mutex_lock(&sched_domains_mutex);
a1835615 6627
7378547f
MM
6628 /* always unregister in case we don't destroy any domains */
6629 unregister_sched_domain_sysctl();
6630
d65bd5ec
HC
6631 /* Let architecture update cpu core mappings. */
6632 new_topology = arch_update_cpu_topology();
6633
dfb512ec 6634 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6635
6636 /* Destroy deleted domains */
6637 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6638 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6639 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6640 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6641 goto match1;
6642 }
6643 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6644 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6645match1:
6646 ;
6647 }
6648
e761b772
MK
6649 if (doms_new == NULL) {
6650 ndoms_cur = 0;
acc3f5d7 6651 doms_new = &fallback_doms;
6ad4c188 6652 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6653 WARN_ON_ONCE(dattr_new);
e761b772
MK
6654 }
6655
029190c5
PJ
6656 /* Build new domains */
6657 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6658 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6659 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6660 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6661 goto match2;
6662 }
6663 /* no match - add a new doms_new */
dce840a0 6664 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6665match2:
6666 ;
6667 }
6668
6669 /* Remember the new sched domains */
acc3f5d7
RR
6670 if (doms_cur != &fallback_doms)
6671 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6672 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6673 doms_cur = doms_new;
1d3504fc 6674 dattr_cur = dattr_new;
029190c5 6675 ndoms_cur = ndoms_new;
7378547f
MM
6676
6677 register_sched_domain_sysctl();
a1835615 6678
712555ee 6679 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6680}
6681
d35be8ba
SB
6682static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6683
1da177e4 6684/*
3a101d05
TH
6685 * Update cpusets according to cpu_active mask. If cpusets are
6686 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6687 * around partition_sched_domains().
d35be8ba
SB
6688 *
6689 * If we come here as part of a suspend/resume, don't touch cpusets because we
6690 * want to restore it back to its original state upon resume anyway.
1da177e4 6691 */
0b2e918a
TH
6692static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6693 void *hcpu)
e761b772 6694{
d35be8ba
SB
6695 switch (action) {
6696 case CPU_ONLINE_FROZEN:
6697 case CPU_DOWN_FAILED_FROZEN:
6698
6699 /*
6700 * num_cpus_frozen tracks how many CPUs are involved in suspend
6701 * resume sequence. As long as this is not the last online
6702 * operation in the resume sequence, just build a single sched
6703 * domain, ignoring cpusets.
6704 */
6705 num_cpus_frozen--;
6706 if (likely(num_cpus_frozen)) {
6707 partition_sched_domains(1, NULL, NULL);
6708 break;
6709 }
6710
6711 /*
6712 * This is the last CPU online operation. So fall through and
6713 * restore the original sched domains by considering the
6714 * cpuset configurations.
6715 */
6716
e761b772 6717 case CPU_ONLINE:
6ad4c188 6718 case CPU_DOWN_FAILED:
7ddf96b0 6719 cpuset_update_active_cpus(true);
d35be8ba 6720 break;
3a101d05
TH
6721 default:
6722 return NOTIFY_DONE;
6723 }
d35be8ba 6724 return NOTIFY_OK;
3a101d05 6725}
e761b772 6726
0b2e918a
TH
6727static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6728 void *hcpu)
3a101d05 6729{
d35be8ba 6730 switch (action) {
3a101d05 6731 case CPU_DOWN_PREPARE:
7ddf96b0 6732 cpuset_update_active_cpus(false);
d35be8ba
SB
6733 break;
6734 case CPU_DOWN_PREPARE_FROZEN:
6735 num_cpus_frozen++;
6736 partition_sched_domains(1, NULL, NULL);
6737 break;
e761b772
MK
6738 default:
6739 return NOTIFY_DONE;
6740 }
d35be8ba 6741 return NOTIFY_OK;
e761b772 6742}
e761b772 6743
1da177e4
LT
6744void __init sched_init_smp(void)
6745{
dcc30a35
RR
6746 cpumask_var_t non_isolated_cpus;
6747
6748 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6749 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6750
cb83b629
PZ
6751 sched_init_numa();
6752
95402b38 6753 get_online_cpus();
712555ee 6754 mutex_lock(&sched_domains_mutex);
c4a8849a 6755 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6756 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6757 if (cpumask_empty(non_isolated_cpus))
6758 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6759 mutex_unlock(&sched_domains_mutex);
95402b38 6760 put_online_cpus();
e761b772 6761
301a5cba 6762 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6763 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6764 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6765
6766 /* RT runtime code needs to handle some hotplug events */
6767 hotcpu_notifier(update_runtime, 0);
6768
b328ca18 6769 init_hrtick();
5c1e1767
NP
6770
6771 /* Move init over to a non-isolated CPU */
dcc30a35 6772 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6773 BUG();
19978ca6 6774 sched_init_granularity();
dcc30a35 6775 free_cpumask_var(non_isolated_cpus);
4212823f 6776
0e3900e6 6777 init_sched_rt_class();
1da177e4
LT
6778}
6779#else
6780void __init sched_init_smp(void)
6781{
19978ca6 6782 sched_init_granularity();
1da177e4
LT
6783}
6784#endif /* CONFIG_SMP */
6785
cd1bb94b
AB
6786const_debug unsigned int sysctl_timer_migration = 1;
6787
1da177e4
LT
6788int in_sched_functions(unsigned long addr)
6789{
1da177e4
LT
6790 return in_lock_functions(addr) ||
6791 (addr >= (unsigned long)__sched_text_start
6792 && addr < (unsigned long)__sched_text_end);
6793}
6794
029632fb
PZ
6795#ifdef CONFIG_CGROUP_SCHED
6796struct task_group root_task_group;
35cf4e50 6797LIST_HEAD(task_groups);
052f1dc7 6798#endif
6f505b16 6799
029632fb 6800DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6801
1da177e4
LT
6802void __init sched_init(void)
6803{
dd41f596 6804 int i, j;
434d53b0
MT
6805 unsigned long alloc_size = 0, ptr;
6806
6807#ifdef CONFIG_FAIR_GROUP_SCHED
6808 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6809#endif
6810#ifdef CONFIG_RT_GROUP_SCHED
6811 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6812#endif
df7c8e84 6813#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6814 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6815#endif
434d53b0 6816 if (alloc_size) {
36b7b6d4 6817 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6818
6819#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6820 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6821 ptr += nr_cpu_ids * sizeof(void **);
6822
07e06b01 6823 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6824 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6825
6d6bc0ad 6826#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6827#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6828 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6829 ptr += nr_cpu_ids * sizeof(void **);
6830
07e06b01 6831 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6832 ptr += nr_cpu_ids * sizeof(void **);
6833
6d6bc0ad 6834#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6835#ifdef CONFIG_CPUMASK_OFFSTACK
6836 for_each_possible_cpu(i) {
6837 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6838 ptr += cpumask_size();
6839 }
6840#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6841 }
dd41f596 6842
57d885fe
GH
6843#ifdef CONFIG_SMP
6844 init_defrootdomain();
6845#endif
6846
d0b27fa7
PZ
6847 init_rt_bandwidth(&def_rt_bandwidth,
6848 global_rt_period(), global_rt_runtime());
6849
6850#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6851 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6852 global_rt_period(), global_rt_runtime());
6d6bc0ad 6853#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6854
7c941438 6855#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6856 list_add(&root_task_group.list, &task_groups);
6857 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6858 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6859 autogroup_init(&init_task);
54c707e9 6860
7c941438 6861#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6862
54c707e9
GC
6863#ifdef CONFIG_CGROUP_CPUACCT
6864 root_cpuacct.cpustat = &kernel_cpustat;
6865 root_cpuacct.cpuusage = alloc_percpu(u64);
6866 /* Too early, not expected to fail */
6867 BUG_ON(!root_cpuacct.cpuusage);
6868#endif
0a945022 6869 for_each_possible_cpu(i) {
70b97a7f 6870 struct rq *rq;
1da177e4
LT
6871
6872 rq = cpu_rq(i);
05fa785c 6873 raw_spin_lock_init(&rq->lock);
7897986b 6874 rq->nr_running = 0;
dce48a84
TG
6875 rq->calc_load_active = 0;
6876 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6877 init_cfs_rq(&rq->cfs);
6f505b16 6878 init_rt_rq(&rq->rt, rq);
dd41f596 6879#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6880 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6881 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6882 /*
07e06b01 6883 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6884 *
6885 * In case of task-groups formed thr' the cgroup filesystem, it
6886 * gets 100% of the cpu resources in the system. This overall
6887 * system cpu resource is divided among the tasks of
07e06b01 6888 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6889 * based on each entity's (task or task-group's) weight
6890 * (se->load.weight).
6891 *
07e06b01 6892 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6893 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6894 * then A0's share of the cpu resource is:
6895 *
0d905bca 6896 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6897 *
07e06b01
YZ
6898 * We achieve this by letting root_task_group's tasks sit
6899 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6900 */
ab84d31e 6901 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6902 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6903#endif /* CONFIG_FAIR_GROUP_SCHED */
6904
6905 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6906#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6907 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6908 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6909#endif
1da177e4 6910
dd41f596
IM
6911 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6912 rq->cpu_load[j] = 0;
fdf3e95d
VP
6913
6914 rq->last_load_update_tick = jiffies;
6915
1da177e4 6916#ifdef CONFIG_SMP
41c7ce9a 6917 rq->sd = NULL;
57d885fe 6918 rq->rd = NULL;
1399fa78 6919 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6920 rq->post_schedule = 0;
1da177e4 6921 rq->active_balance = 0;
dd41f596 6922 rq->next_balance = jiffies;
1da177e4 6923 rq->push_cpu = 0;
0a2966b4 6924 rq->cpu = i;
1f11eb6a 6925 rq->online = 0;
eae0c9df
MG
6926 rq->idle_stamp = 0;
6927 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6928
6929 INIT_LIST_HEAD(&rq->cfs_tasks);
6930
dc938520 6931 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6932#ifdef CONFIG_NO_HZ
1c792db7 6933 rq->nohz_flags = 0;
83cd4fe2 6934#endif
1da177e4 6935#endif
8f4d37ec 6936 init_rq_hrtick(rq);
1da177e4 6937 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6938 }
6939
2dd73a4f 6940 set_load_weight(&init_task);
b50f60ce 6941
e107be36
AK
6942#ifdef CONFIG_PREEMPT_NOTIFIERS
6943 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6944#endif
6945
b50f60ce 6946#ifdef CONFIG_RT_MUTEXES
732375c6 6947 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6948#endif
6949
1da177e4
LT
6950 /*
6951 * The boot idle thread does lazy MMU switching as well:
6952 */
6953 atomic_inc(&init_mm.mm_count);
6954 enter_lazy_tlb(&init_mm, current);
6955
6956 /*
6957 * Make us the idle thread. Technically, schedule() should not be
6958 * called from this thread, however somewhere below it might be,
6959 * but because we are the idle thread, we just pick up running again
6960 * when this runqueue becomes "idle".
6961 */
6962 init_idle(current, smp_processor_id());
dce48a84
TG
6963
6964 calc_load_update = jiffies + LOAD_FREQ;
6965
dd41f596
IM
6966 /*
6967 * During early bootup we pretend to be a normal task:
6968 */
6969 current->sched_class = &fair_sched_class;
6892b75e 6970
bf4d83f6 6971#ifdef CONFIG_SMP
4cb98839 6972 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6973 /* May be allocated at isolcpus cmdline parse time */
6974 if (cpu_isolated_map == NULL)
6975 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6976 idle_thread_set_boot_cpu();
029632fb
PZ
6977#endif
6978 init_sched_fair_class();
6a7b3dc3 6979
6892b75e 6980 scheduler_running = 1;
1da177e4
LT
6981}
6982
d902db1e 6983#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6984static inline int preempt_count_equals(int preempt_offset)
6985{
234da7bc 6986 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6987
4ba8216c 6988 return (nested == preempt_offset);
e4aafea2
FW
6989}
6990
d894837f 6991void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6992{
1da177e4
LT
6993 static unsigned long prev_jiffy; /* ratelimiting */
6994
b3fbab05 6995 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6996 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6997 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6998 return;
6999 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7000 return;
7001 prev_jiffy = jiffies;
7002
3df0fc5b
PZ
7003 printk(KERN_ERR
7004 "BUG: sleeping function called from invalid context at %s:%d\n",
7005 file, line);
7006 printk(KERN_ERR
7007 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7008 in_atomic(), irqs_disabled(),
7009 current->pid, current->comm);
aef745fc
IM
7010
7011 debug_show_held_locks(current);
7012 if (irqs_disabled())
7013 print_irqtrace_events(current);
7014 dump_stack();
1da177e4
LT
7015}
7016EXPORT_SYMBOL(__might_sleep);
7017#endif
7018
7019#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7020static void normalize_task(struct rq *rq, struct task_struct *p)
7021{
da7a735e
PZ
7022 const struct sched_class *prev_class = p->sched_class;
7023 int old_prio = p->prio;
3a5e4dc1 7024 int on_rq;
3e51f33f 7025
fd2f4419 7026 on_rq = p->on_rq;
3a5e4dc1 7027 if (on_rq)
4ca9b72b 7028 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7029 __setscheduler(rq, p, SCHED_NORMAL, 0);
7030 if (on_rq) {
4ca9b72b 7031 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7032 resched_task(rq->curr);
7033 }
da7a735e
PZ
7034
7035 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7036}
7037
1da177e4
LT
7038void normalize_rt_tasks(void)
7039{
a0f98a1c 7040 struct task_struct *g, *p;
1da177e4 7041 unsigned long flags;
70b97a7f 7042 struct rq *rq;
1da177e4 7043
4cf5d77a 7044 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7045 do_each_thread(g, p) {
178be793
IM
7046 /*
7047 * Only normalize user tasks:
7048 */
7049 if (!p->mm)
7050 continue;
7051
6cfb0d5d 7052 p->se.exec_start = 0;
6cfb0d5d 7053#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7054 p->se.statistics.wait_start = 0;
7055 p->se.statistics.sleep_start = 0;
7056 p->se.statistics.block_start = 0;
6cfb0d5d 7057#endif
dd41f596
IM
7058
7059 if (!rt_task(p)) {
7060 /*
7061 * Renice negative nice level userspace
7062 * tasks back to 0:
7063 */
7064 if (TASK_NICE(p) < 0 && p->mm)
7065 set_user_nice(p, 0);
1da177e4 7066 continue;
dd41f596 7067 }
1da177e4 7068
1d615482 7069 raw_spin_lock(&p->pi_lock);
b29739f9 7070 rq = __task_rq_lock(p);
1da177e4 7071
178be793 7072 normalize_task(rq, p);
3a5e4dc1 7073
b29739f9 7074 __task_rq_unlock(rq);
1d615482 7075 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7076 } while_each_thread(g, p);
7077
4cf5d77a 7078 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7079}
7080
7081#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7082
67fc4e0c 7083#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7084/*
67fc4e0c 7085 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7086 *
7087 * They can only be called when the whole system has been
7088 * stopped - every CPU needs to be quiescent, and no scheduling
7089 * activity can take place. Using them for anything else would
7090 * be a serious bug, and as a result, they aren't even visible
7091 * under any other configuration.
7092 */
7093
7094/**
7095 * curr_task - return the current task for a given cpu.
7096 * @cpu: the processor in question.
7097 *
7098 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7099 */
36c8b586 7100struct task_struct *curr_task(int cpu)
1df5c10a
LT
7101{
7102 return cpu_curr(cpu);
7103}
7104
67fc4e0c
JW
7105#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7106
7107#ifdef CONFIG_IA64
1df5c10a
LT
7108/**
7109 * set_curr_task - set the current task for a given cpu.
7110 * @cpu: the processor in question.
7111 * @p: the task pointer to set.
7112 *
7113 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7114 * are serviced on a separate stack. It allows the architecture to switch the
7115 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7116 * must be called with all CPU's synchronized, and interrupts disabled, the
7117 * and caller must save the original value of the current task (see
7118 * curr_task() above) and restore that value before reenabling interrupts and
7119 * re-starting the system.
7120 *
7121 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7122 */
36c8b586 7123void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7124{
7125 cpu_curr(cpu) = p;
7126}
7127
7128#endif
29f59db3 7129
7c941438 7130#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7131/* task_group_lock serializes the addition/removal of task groups */
7132static DEFINE_SPINLOCK(task_group_lock);
7133
bccbe08a
PZ
7134static void free_sched_group(struct task_group *tg)
7135{
7136 free_fair_sched_group(tg);
7137 free_rt_sched_group(tg);
e9aa1dd1 7138 autogroup_free(tg);
bccbe08a
PZ
7139 kfree(tg);
7140}
7141
7142/* allocate runqueue etc for a new task group */
ec7dc8ac 7143struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7144{
7145 struct task_group *tg;
7146 unsigned long flags;
bccbe08a
PZ
7147
7148 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7149 if (!tg)
7150 return ERR_PTR(-ENOMEM);
7151
ec7dc8ac 7152 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7153 goto err;
7154
ec7dc8ac 7155 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7156 goto err;
7157
8ed36996 7158 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7159 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7160
7161 WARN_ON(!parent); /* root should already exist */
7162
7163 tg->parent = parent;
f473aa5e 7164 INIT_LIST_HEAD(&tg->children);
09f2724a 7165 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7166 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7167
9b5b7751 7168 return tg;
29f59db3
SV
7169
7170err:
6f505b16 7171 free_sched_group(tg);
29f59db3
SV
7172 return ERR_PTR(-ENOMEM);
7173}
7174
9b5b7751 7175/* rcu callback to free various structures associated with a task group */
6f505b16 7176static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7177{
29f59db3 7178 /* now it should be safe to free those cfs_rqs */
6f505b16 7179 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7180}
7181
9b5b7751 7182/* Destroy runqueue etc associated with a task group */
4cf86d77 7183void sched_destroy_group(struct task_group *tg)
29f59db3 7184{
8ed36996 7185 unsigned long flags;
9b5b7751 7186 int i;
29f59db3 7187
3d4b47b4
PZ
7188 /* end participation in shares distribution */
7189 for_each_possible_cpu(i)
bccbe08a 7190 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7191
7192 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7193 list_del_rcu(&tg->list);
f473aa5e 7194 list_del_rcu(&tg->siblings);
8ed36996 7195 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7196
9b5b7751 7197 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7198 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7199}
7200
9b5b7751 7201/* change task's runqueue when it moves between groups.
3a252015
IM
7202 * The caller of this function should have put the task in its new group
7203 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7204 * reflect its new group.
9b5b7751
SV
7205 */
7206void sched_move_task(struct task_struct *tsk)
29f59db3 7207{
8323f26c 7208 struct task_group *tg;
29f59db3
SV
7209 int on_rq, running;
7210 unsigned long flags;
7211 struct rq *rq;
7212
7213 rq = task_rq_lock(tsk, &flags);
7214
051a1d1a 7215 running = task_current(rq, tsk);
fd2f4419 7216 on_rq = tsk->on_rq;
29f59db3 7217
0e1f3483 7218 if (on_rq)
29f59db3 7219 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7220 if (unlikely(running))
7221 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7222
8323f26c
PZ
7223 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7224 lockdep_is_held(&tsk->sighand->siglock)),
7225 struct task_group, css);
7226 tg = autogroup_task_group(tsk, tg);
7227 tsk->sched_task_group = tg;
7228
810b3817 7229#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7230 if (tsk->sched_class->task_move_group)
7231 tsk->sched_class->task_move_group(tsk, on_rq);
7232 else
810b3817 7233#endif
b2b5ce02 7234 set_task_rq(tsk, task_cpu(tsk));
810b3817 7235
0e1f3483
HS
7236 if (unlikely(running))
7237 tsk->sched_class->set_curr_task(rq);
7238 if (on_rq)
371fd7e7 7239 enqueue_task(rq, tsk, 0);
29f59db3 7240
0122ec5b 7241 task_rq_unlock(rq, tsk, &flags);
29f59db3 7242}
7c941438 7243#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7244
a790de99 7245#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7246static unsigned long to_ratio(u64 period, u64 runtime)
7247{
7248 if (runtime == RUNTIME_INF)
9a7e0b18 7249 return 1ULL << 20;
9f0c1e56 7250
9a7e0b18 7251 return div64_u64(runtime << 20, period);
9f0c1e56 7252}
a790de99
PT
7253#endif
7254
7255#ifdef CONFIG_RT_GROUP_SCHED
7256/*
7257 * Ensure that the real time constraints are schedulable.
7258 */
7259static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7260
9a7e0b18
PZ
7261/* Must be called with tasklist_lock held */
7262static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7263{
9a7e0b18 7264 struct task_struct *g, *p;
b40b2e8e 7265
9a7e0b18 7266 do_each_thread(g, p) {
029632fb 7267 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7268 return 1;
7269 } while_each_thread(g, p);
b40b2e8e 7270
9a7e0b18
PZ
7271 return 0;
7272}
b40b2e8e 7273
9a7e0b18
PZ
7274struct rt_schedulable_data {
7275 struct task_group *tg;
7276 u64 rt_period;
7277 u64 rt_runtime;
7278};
b40b2e8e 7279
a790de99 7280static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7281{
7282 struct rt_schedulable_data *d = data;
7283 struct task_group *child;
7284 unsigned long total, sum = 0;
7285 u64 period, runtime;
b40b2e8e 7286
9a7e0b18
PZ
7287 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7288 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7289
9a7e0b18
PZ
7290 if (tg == d->tg) {
7291 period = d->rt_period;
7292 runtime = d->rt_runtime;
b40b2e8e 7293 }
b40b2e8e 7294
4653f803
PZ
7295 /*
7296 * Cannot have more runtime than the period.
7297 */
7298 if (runtime > period && runtime != RUNTIME_INF)
7299 return -EINVAL;
6f505b16 7300
4653f803
PZ
7301 /*
7302 * Ensure we don't starve existing RT tasks.
7303 */
9a7e0b18
PZ
7304 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7305 return -EBUSY;
6f505b16 7306
9a7e0b18 7307 total = to_ratio(period, runtime);
6f505b16 7308
4653f803
PZ
7309 /*
7310 * Nobody can have more than the global setting allows.
7311 */
7312 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7313 return -EINVAL;
6f505b16 7314
4653f803
PZ
7315 /*
7316 * The sum of our children's runtime should not exceed our own.
7317 */
9a7e0b18
PZ
7318 list_for_each_entry_rcu(child, &tg->children, siblings) {
7319 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7320 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7321
9a7e0b18
PZ
7322 if (child == d->tg) {
7323 period = d->rt_period;
7324 runtime = d->rt_runtime;
7325 }
6f505b16 7326
9a7e0b18 7327 sum += to_ratio(period, runtime);
9f0c1e56 7328 }
6f505b16 7329
9a7e0b18
PZ
7330 if (sum > total)
7331 return -EINVAL;
7332
7333 return 0;
6f505b16
PZ
7334}
7335
9a7e0b18 7336static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7337{
8277434e
PT
7338 int ret;
7339
9a7e0b18
PZ
7340 struct rt_schedulable_data data = {
7341 .tg = tg,
7342 .rt_period = period,
7343 .rt_runtime = runtime,
7344 };
7345
8277434e
PT
7346 rcu_read_lock();
7347 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7348 rcu_read_unlock();
7349
7350 return ret;
521f1a24
DG
7351}
7352
ab84d31e 7353static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7354 u64 rt_period, u64 rt_runtime)
6f505b16 7355{
ac086bc2 7356 int i, err = 0;
9f0c1e56 7357
9f0c1e56 7358 mutex_lock(&rt_constraints_mutex);
521f1a24 7359 read_lock(&tasklist_lock);
9a7e0b18
PZ
7360 err = __rt_schedulable(tg, rt_period, rt_runtime);
7361 if (err)
9f0c1e56 7362 goto unlock;
ac086bc2 7363
0986b11b 7364 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7365 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7366 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7367
7368 for_each_possible_cpu(i) {
7369 struct rt_rq *rt_rq = tg->rt_rq[i];
7370
0986b11b 7371 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7372 rt_rq->rt_runtime = rt_runtime;
0986b11b 7373 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7374 }
0986b11b 7375 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7376unlock:
521f1a24 7377 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7378 mutex_unlock(&rt_constraints_mutex);
7379
7380 return err;
6f505b16
PZ
7381}
7382
d0b27fa7
PZ
7383int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7384{
7385 u64 rt_runtime, rt_period;
7386
7387 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7388 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7389 if (rt_runtime_us < 0)
7390 rt_runtime = RUNTIME_INF;
7391
ab84d31e 7392 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7393}
7394
9f0c1e56
PZ
7395long sched_group_rt_runtime(struct task_group *tg)
7396{
7397 u64 rt_runtime_us;
7398
d0b27fa7 7399 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7400 return -1;
7401
d0b27fa7 7402 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7403 do_div(rt_runtime_us, NSEC_PER_USEC);
7404 return rt_runtime_us;
7405}
d0b27fa7
PZ
7406
7407int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7408{
7409 u64 rt_runtime, rt_period;
7410
7411 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7412 rt_runtime = tg->rt_bandwidth.rt_runtime;
7413
619b0488
R
7414 if (rt_period == 0)
7415 return -EINVAL;
7416
ab84d31e 7417 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7418}
7419
7420long sched_group_rt_period(struct task_group *tg)
7421{
7422 u64 rt_period_us;
7423
7424 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7425 do_div(rt_period_us, NSEC_PER_USEC);
7426 return rt_period_us;
7427}
7428
7429static int sched_rt_global_constraints(void)
7430{
4653f803 7431 u64 runtime, period;
d0b27fa7
PZ
7432 int ret = 0;
7433
ec5d4989
HS
7434 if (sysctl_sched_rt_period <= 0)
7435 return -EINVAL;
7436
4653f803
PZ
7437 runtime = global_rt_runtime();
7438 period = global_rt_period();
7439
7440 /*
7441 * Sanity check on the sysctl variables.
7442 */
7443 if (runtime > period && runtime != RUNTIME_INF)
7444 return -EINVAL;
10b612f4 7445
d0b27fa7 7446 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7447 read_lock(&tasklist_lock);
4653f803 7448 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7449 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7450 mutex_unlock(&rt_constraints_mutex);
7451
7452 return ret;
7453}
54e99124
DG
7454
7455int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7456{
7457 /* Don't accept realtime tasks when there is no way for them to run */
7458 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7459 return 0;
7460
7461 return 1;
7462}
7463
6d6bc0ad 7464#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7465static int sched_rt_global_constraints(void)
7466{
ac086bc2
PZ
7467 unsigned long flags;
7468 int i;
7469
ec5d4989
HS
7470 if (sysctl_sched_rt_period <= 0)
7471 return -EINVAL;
7472
60aa605d
PZ
7473 /*
7474 * There's always some RT tasks in the root group
7475 * -- migration, kstopmachine etc..
7476 */
7477 if (sysctl_sched_rt_runtime == 0)
7478 return -EBUSY;
7479
0986b11b 7480 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7481 for_each_possible_cpu(i) {
7482 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7483
0986b11b 7484 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7485 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7486 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7487 }
0986b11b 7488 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7489
d0b27fa7
PZ
7490 return 0;
7491}
6d6bc0ad 7492#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7493
ce0dbbbb
CW
7494int sched_rr_handler(struct ctl_table *table, int write,
7495 void __user *buffer, size_t *lenp,
7496 loff_t *ppos)
7497{
7498 int ret;
7499 static DEFINE_MUTEX(mutex);
7500
7501 mutex_lock(&mutex);
7502 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7503 /* make sure that internally we keep jiffies */
7504 /* also, writing zero resets timeslice to default */
7505 if (!ret && write) {
7506 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7507 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7508 }
7509 mutex_unlock(&mutex);
7510 return ret;
7511}
7512
d0b27fa7 7513int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7514 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7515 loff_t *ppos)
7516{
7517 int ret;
7518 int old_period, old_runtime;
7519 static DEFINE_MUTEX(mutex);
7520
7521 mutex_lock(&mutex);
7522 old_period = sysctl_sched_rt_period;
7523 old_runtime = sysctl_sched_rt_runtime;
7524
8d65af78 7525 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7526
7527 if (!ret && write) {
7528 ret = sched_rt_global_constraints();
7529 if (ret) {
7530 sysctl_sched_rt_period = old_period;
7531 sysctl_sched_rt_runtime = old_runtime;
7532 } else {
7533 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7534 def_rt_bandwidth.rt_period =
7535 ns_to_ktime(global_rt_period());
7536 }
7537 }
7538 mutex_unlock(&mutex);
7539
7540 return ret;
7541}
68318b8e 7542
052f1dc7 7543#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7544
7545/* return corresponding task_group object of a cgroup */
2b01dfe3 7546static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7547{
2b01dfe3
PM
7548 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7549 struct task_group, css);
68318b8e
SV
7550}
7551
92fb9748 7552static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7553{
ec7dc8ac 7554 struct task_group *tg, *parent;
68318b8e 7555
2b01dfe3 7556 if (!cgrp->parent) {
68318b8e 7557 /* This is early initialization for the top cgroup */
07e06b01 7558 return &root_task_group.css;
68318b8e
SV
7559 }
7560
ec7dc8ac
DG
7561 parent = cgroup_tg(cgrp->parent);
7562 tg = sched_create_group(parent);
68318b8e
SV
7563 if (IS_ERR(tg))
7564 return ERR_PTR(-ENOMEM);
7565
68318b8e
SV
7566 return &tg->css;
7567}
7568
92fb9748 7569static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7570{
2b01dfe3 7571 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7572
7573 sched_destroy_group(tg);
7574}
7575
761b3ef5 7576static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7577 struct cgroup_taskset *tset)
68318b8e 7578{
bb9d97b6
TH
7579 struct task_struct *task;
7580
7581 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7582#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7583 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7584 return -EINVAL;
b68aa230 7585#else
bb9d97b6
TH
7586 /* We don't support RT-tasks being in separate groups */
7587 if (task->sched_class != &fair_sched_class)
7588 return -EINVAL;
b68aa230 7589#endif
bb9d97b6 7590 }
be367d09
BB
7591 return 0;
7592}
68318b8e 7593
761b3ef5 7594static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7595 struct cgroup_taskset *tset)
68318b8e 7596{
bb9d97b6
TH
7597 struct task_struct *task;
7598
7599 cgroup_taskset_for_each(task, cgrp, tset)
7600 sched_move_task(task);
68318b8e
SV
7601}
7602
068c5cc5 7603static void
761b3ef5
LZ
7604cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7605 struct task_struct *task)
068c5cc5
PZ
7606{
7607 /*
7608 * cgroup_exit() is called in the copy_process() failure path.
7609 * Ignore this case since the task hasn't ran yet, this avoids
7610 * trying to poke a half freed task state from generic code.
7611 */
7612 if (!(task->flags & PF_EXITING))
7613 return;
7614
7615 sched_move_task(task);
7616}
7617
052f1dc7 7618#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7619static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7620 u64 shareval)
68318b8e 7621{
c8b28116 7622 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7623}
7624
f4c753b7 7625static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7626{
2b01dfe3 7627 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7628
c8b28116 7629 return (u64) scale_load_down(tg->shares);
68318b8e 7630}
ab84d31e
PT
7631
7632#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7633static DEFINE_MUTEX(cfs_constraints_mutex);
7634
ab84d31e
PT
7635const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7636const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7637
a790de99
PT
7638static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7639
ab84d31e
PT
7640static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7641{
56f570e5 7642 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7643 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7644
7645 if (tg == &root_task_group)
7646 return -EINVAL;
7647
7648 /*
7649 * Ensure we have at some amount of bandwidth every period. This is
7650 * to prevent reaching a state of large arrears when throttled via
7651 * entity_tick() resulting in prolonged exit starvation.
7652 */
7653 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7654 return -EINVAL;
7655
7656 /*
7657 * Likewise, bound things on the otherside by preventing insane quota
7658 * periods. This also allows us to normalize in computing quota
7659 * feasibility.
7660 */
7661 if (period > max_cfs_quota_period)
7662 return -EINVAL;
7663
a790de99
PT
7664 mutex_lock(&cfs_constraints_mutex);
7665 ret = __cfs_schedulable(tg, period, quota);
7666 if (ret)
7667 goto out_unlock;
7668
58088ad0 7669 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7670 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7671 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7672 raw_spin_lock_irq(&cfs_b->lock);
7673 cfs_b->period = ns_to_ktime(period);
7674 cfs_b->quota = quota;
58088ad0 7675
a9cf55b2 7676 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7677 /* restart the period timer (if active) to handle new period expiry */
7678 if (runtime_enabled && cfs_b->timer_active) {
7679 /* force a reprogram */
7680 cfs_b->timer_active = 0;
7681 __start_cfs_bandwidth(cfs_b);
7682 }
ab84d31e
PT
7683 raw_spin_unlock_irq(&cfs_b->lock);
7684
7685 for_each_possible_cpu(i) {
7686 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7687 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7688
7689 raw_spin_lock_irq(&rq->lock);
58088ad0 7690 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7691 cfs_rq->runtime_remaining = 0;
671fd9da 7692
029632fb 7693 if (cfs_rq->throttled)
671fd9da 7694 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7695 raw_spin_unlock_irq(&rq->lock);
7696 }
a790de99
PT
7697out_unlock:
7698 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7699
a790de99 7700 return ret;
ab84d31e
PT
7701}
7702
7703int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7704{
7705 u64 quota, period;
7706
029632fb 7707 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7708 if (cfs_quota_us < 0)
7709 quota = RUNTIME_INF;
7710 else
7711 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7712
7713 return tg_set_cfs_bandwidth(tg, period, quota);
7714}
7715
7716long tg_get_cfs_quota(struct task_group *tg)
7717{
7718 u64 quota_us;
7719
029632fb 7720 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7721 return -1;
7722
029632fb 7723 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7724 do_div(quota_us, NSEC_PER_USEC);
7725
7726 return quota_us;
7727}
7728
7729int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7730{
7731 u64 quota, period;
7732
7733 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7734 quota = tg->cfs_bandwidth.quota;
ab84d31e 7735
ab84d31e
PT
7736 return tg_set_cfs_bandwidth(tg, period, quota);
7737}
7738
7739long tg_get_cfs_period(struct task_group *tg)
7740{
7741 u64 cfs_period_us;
7742
029632fb 7743 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7744 do_div(cfs_period_us, NSEC_PER_USEC);
7745
7746 return cfs_period_us;
7747}
7748
7749static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7750{
7751 return tg_get_cfs_quota(cgroup_tg(cgrp));
7752}
7753
7754static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7755 s64 cfs_quota_us)
7756{
7757 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7758}
7759
7760static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7761{
7762 return tg_get_cfs_period(cgroup_tg(cgrp));
7763}
7764
7765static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7766 u64 cfs_period_us)
7767{
7768 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7769}
7770
a790de99
PT
7771struct cfs_schedulable_data {
7772 struct task_group *tg;
7773 u64 period, quota;
7774};
7775
7776/*
7777 * normalize group quota/period to be quota/max_period
7778 * note: units are usecs
7779 */
7780static u64 normalize_cfs_quota(struct task_group *tg,
7781 struct cfs_schedulable_data *d)
7782{
7783 u64 quota, period;
7784
7785 if (tg == d->tg) {
7786 period = d->period;
7787 quota = d->quota;
7788 } else {
7789 period = tg_get_cfs_period(tg);
7790 quota = tg_get_cfs_quota(tg);
7791 }
7792
7793 /* note: these should typically be equivalent */
7794 if (quota == RUNTIME_INF || quota == -1)
7795 return RUNTIME_INF;
7796
7797 return to_ratio(period, quota);
7798}
7799
7800static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7801{
7802 struct cfs_schedulable_data *d = data;
029632fb 7803 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7804 s64 quota = 0, parent_quota = -1;
7805
7806 if (!tg->parent) {
7807 quota = RUNTIME_INF;
7808 } else {
029632fb 7809 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7810
7811 quota = normalize_cfs_quota(tg, d);
7812 parent_quota = parent_b->hierarchal_quota;
7813
7814 /*
7815 * ensure max(child_quota) <= parent_quota, inherit when no
7816 * limit is set
7817 */
7818 if (quota == RUNTIME_INF)
7819 quota = parent_quota;
7820 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7821 return -EINVAL;
7822 }
7823 cfs_b->hierarchal_quota = quota;
7824
7825 return 0;
7826}
7827
7828static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7829{
8277434e 7830 int ret;
a790de99
PT
7831 struct cfs_schedulable_data data = {
7832 .tg = tg,
7833 .period = period,
7834 .quota = quota,
7835 };
7836
7837 if (quota != RUNTIME_INF) {
7838 do_div(data.period, NSEC_PER_USEC);
7839 do_div(data.quota, NSEC_PER_USEC);
7840 }
7841
8277434e
PT
7842 rcu_read_lock();
7843 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7844 rcu_read_unlock();
7845
7846 return ret;
a790de99 7847}
e8da1b18
NR
7848
7849static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7850 struct cgroup_map_cb *cb)
7851{
7852 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7853 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7854
7855 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7856 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7857 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7858
7859 return 0;
7860}
ab84d31e 7861#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7862#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7863
052f1dc7 7864#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7865static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7866 s64 val)
6f505b16 7867{
06ecb27c 7868 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7869}
7870
06ecb27c 7871static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7872{
06ecb27c 7873 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7874}
d0b27fa7
PZ
7875
7876static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7877 u64 rt_period_us)
7878{
7879 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7880}
7881
7882static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7883{
7884 return sched_group_rt_period(cgroup_tg(cgrp));
7885}
6d6bc0ad 7886#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7887
fe5c7cc2 7888static struct cftype cpu_files[] = {
052f1dc7 7889#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7890 {
7891 .name = "shares",
f4c753b7
PM
7892 .read_u64 = cpu_shares_read_u64,
7893 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7894 },
052f1dc7 7895#endif
ab84d31e
PT
7896#ifdef CONFIG_CFS_BANDWIDTH
7897 {
7898 .name = "cfs_quota_us",
7899 .read_s64 = cpu_cfs_quota_read_s64,
7900 .write_s64 = cpu_cfs_quota_write_s64,
7901 },
7902 {
7903 .name = "cfs_period_us",
7904 .read_u64 = cpu_cfs_period_read_u64,
7905 .write_u64 = cpu_cfs_period_write_u64,
7906 },
e8da1b18
NR
7907 {
7908 .name = "stat",
7909 .read_map = cpu_stats_show,
7910 },
ab84d31e 7911#endif
052f1dc7 7912#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7913 {
9f0c1e56 7914 .name = "rt_runtime_us",
06ecb27c
PM
7915 .read_s64 = cpu_rt_runtime_read,
7916 .write_s64 = cpu_rt_runtime_write,
6f505b16 7917 },
d0b27fa7
PZ
7918 {
7919 .name = "rt_period_us",
f4c753b7
PM
7920 .read_u64 = cpu_rt_period_read_uint,
7921 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7922 },
052f1dc7 7923#endif
4baf6e33 7924 { } /* terminate */
68318b8e
SV
7925};
7926
68318b8e 7927struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7928 .name = "cpu",
92fb9748
TH
7929 .css_alloc = cpu_cgroup_css_alloc,
7930 .css_free = cpu_cgroup_css_free,
bb9d97b6
TH
7931 .can_attach = cpu_cgroup_can_attach,
7932 .attach = cpu_cgroup_attach,
068c5cc5 7933 .exit = cpu_cgroup_exit,
38605cae 7934 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7935 .base_cftypes = cpu_files,
68318b8e
SV
7936 .early_init = 1,
7937};
7938
052f1dc7 7939#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7940
7941#ifdef CONFIG_CGROUP_CPUACCT
7942
7943/*
7944 * CPU accounting code for task groups.
7945 *
7946 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7947 * (balbir@in.ibm.com).
7948 */
7949
73fbec60
FW
7950struct cpuacct root_cpuacct;
7951
d842de87 7952/* create a new cpu accounting group */
92fb9748 7953static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
d842de87 7954{
54c707e9 7955 struct cpuacct *ca;
d842de87 7956
54c707e9
GC
7957 if (!cgrp->parent)
7958 return &root_cpuacct.css;
7959
7960 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7961 if (!ca)
ef12fefa 7962 goto out;
d842de87
SV
7963
7964 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7965 if (!ca->cpuusage)
7966 goto out_free_ca;
7967
54c707e9
GC
7968 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7969 if (!ca->cpustat)
7970 goto out_free_cpuusage;
934352f2 7971
d842de87 7972 return &ca->css;
ef12fefa 7973
54c707e9 7974out_free_cpuusage:
ef12fefa
BR
7975 free_percpu(ca->cpuusage);
7976out_free_ca:
7977 kfree(ca);
7978out:
7979 return ERR_PTR(-ENOMEM);
d842de87
SV
7980}
7981
7982/* destroy an existing cpu accounting group */
92fb9748 7983static void cpuacct_css_free(struct cgroup *cgrp)
d842de87 7984{
32cd756a 7985 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7986
54c707e9 7987 free_percpu(ca->cpustat);
d842de87
SV
7988 free_percpu(ca->cpuusage);
7989 kfree(ca);
7990}
7991
720f5498
KC
7992static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7993{
b36128c8 7994 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7995 u64 data;
7996
7997#ifndef CONFIG_64BIT
7998 /*
7999 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8000 */
05fa785c 8001 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8002 data = *cpuusage;
05fa785c 8003 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8004#else
8005 data = *cpuusage;
8006#endif
8007
8008 return data;
8009}
8010
8011static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8012{
b36128c8 8013 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8014
8015#ifndef CONFIG_64BIT
8016 /*
8017 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8018 */
05fa785c 8019 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8020 *cpuusage = val;
05fa785c 8021 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8022#else
8023 *cpuusage = val;
8024#endif
8025}
8026
d842de87 8027/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8028static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8029{
32cd756a 8030 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8031 u64 totalcpuusage = 0;
8032 int i;
8033
720f5498
KC
8034 for_each_present_cpu(i)
8035 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8036
8037 return totalcpuusage;
8038}
8039
0297b803
DG
8040static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8041 u64 reset)
8042{
8043 struct cpuacct *ca = cgroup_ca(cgrp);
8044 int err = 0;
8045 int i;
8046
8047 if (reset) {
8048 err = -EINVAL;
8049 goto out;
8050 }
8051
720f5498
KC
8052 for_each_present_cpu(i)
8053 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8054
0297b803
DG
8055out:
8056 return err;
8057}
8058
e9515c3c
KC
8059static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8060 struct seq_file *m)
8061{
8062 struct cpuacct *ca = cgroup_ca(cgroup);
8063 u64 percpu;
8064 int i;
8065
8066 for_each_present_cpu(i) {
8067 percpu = cpuacct_cpuusage_read(ca, i);
8068 seq_printf(m, "%llu ", (unsigned long long) percpu);
8069 }
8070 seq_printf(m, "\n");
8071 return 0;
8072}
8073
ef12fefa
BR
8074static const char *cpuacct_stat_desc[] = {
8075 [CPUACCT_STAT_USER] = "user",
8076 [CPUACCT_STAT_SYSTEM] = "system",
8077};
8078
8079static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8080 struct cgroup_map_cb *cb)
ef12fefa
BR
8081{
8082 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8083 int cpu;
8084 s64 val = 0;
ef12fefa 8085
54c707e9
GC
8086 for_each_online_cpu(cpu) {
8087 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8088 val += kcpustat->cpustat[CPUTIME_USER];
8089 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8090 }
54c707e9
GC
8091 val = cputime64_to_clock_t(val);
8092 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8093
54c707e9
GC
8094 val = 0;
8095 for_each_online_cpu(cpu) {
8096 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8097 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8098 val += kcpustat->cpustat[CPUTIME_IRQ];
8099 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8100 }
54c707e9
GC
8101
8102 val = cputime64_to_clock_t(val);
8103 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8104
ef12fefa
BR
8105 return 0;
8106}
8107
d842de87
SV
8108static struct cftype files[] = {
8109 {
8110 .name = "usage",
f4c753b7
PM
8111 .read_u64 = cpuusage_read,
8112 .write_u64 = cpuusage_write,
d842de87 8113 },
e9515c3c
KC
8114 {
8115 .name = "usage_percpu",
8116 .read_seq_string = cpuacct_percpu_seq_read,
8117 },
ef12fefa
BR
8118 {
8119 .name = "stat",
8120 .read_map = cpuacct_stats_show,
8121 },
4baf6e33 8122 { } /* terminate */
d842de87
SV
8123};
8124
d842de87
SV
8125/*
8126 * charge this task's execution time to its accounting group.
8127 *
8128 * called with rq->lock held.
8129 */
029632fb 8130void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8131{
8132 struct cpuacct *ca;
934352f2 8133 int cpu;
d842de87 8134
c40c6f85 8135 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8136 return;
8137
934352f2 8138 cpu = task_cpu(tsk);
a18b83b7
BR
8139
8140 rcu_read_lock();
8141
d842de87 8142 ca = task_ca(tsk);
d842de87 8143
44252e42 8144 for (; ca; ca = parent_ca(ca)) {
b36128c8 8145 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8146 *cpuusage += cputime;
8147 }
a18b83b7
BR
8148
8149 rcu_read_unlock();
d842de87
SV
8150}
8151
8152struct cgroup_subsys cpuacct_subsys = {
8153 .name = "cpuacct",
92fb9748
TH
8154 .css_alloc = cpuacct_css_alloc,
8155 .css_free = cpuacct_css_free,
d842de87 8156 .subsys_id = cpuacct_subsys_id,
4baf6e33 8157 .base_cftypes = files,
d842de87
SV
8158};
8159#endif /* CONFIG_CGROUP_CPUACCT */
b637a328
PM
8160
8161void dump_cpu_task(int cpu)
8162{
8163 pr_info("Task dump for CPU %d:\n", cpu);
8164 sched_show_task(cpu_curr(cpu));
8165}