sched: Ensure a task has a non-normalized vruntime when returning back to CFS
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
c5905afb
IM
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
169}
170
171static void sched_feat_enable(int i)
172{
c5905afb
IM
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
1a687c2e 181static int sched_feat_set(char *cmp)
f00b45c1 182{
f00b45c1 183 int i;
1a687c2e 184 int neg = 0;
f00b45c1 185
524429c3 186 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
187 neg = 1;
188 cmp += 3;
189 }
190
f8b6d1cc 191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 193 if (neg) {
f00b45c1 194 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
195 sched_feat_disable(i);
196 } else {
f00b45c1 197 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
198 sched_feat_enable(i);
199 }
f00b45c1
PZ
200 break;
201 }
202 }
203
1a687c2e
MG
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
5cd08fbf 214 struct inode *inode;
1a687c2e
MG
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
5cd08fbf
JB
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
1a687c2e 228 i = sched_feat_set(cmp);
5cd08fbf 229 mutex_unlock(&inode->i_mutex);
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
3fa0818b
RR
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
1da177e4 292/*
cc2a73b5 293 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 294 */
a9957449 295static struct rq *this_rq_lock(void)
1da177e4
LT
296 __acquires(rq->lock)
297{
70b97a7f 298 struct rq *rq;
1da177e4
LT
299
300 local_irq_disable();
301 rq = this_rq();
05fa785c 302 raw_spin_lock(&rq->lock);
1da177e4
LT
303
304 return rq;
305}
306
8f4d37ec
PZ
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 310 */
8f4d37ec 311
8f4d37ec
PZ
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
8f4d37ec
PZ
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
05fa785c 328 raw_spin_lock(&rq->lock);
3e51f33f 329 update_rq_clock(rq);
8f4d37ec 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 331 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
332
333 return HRTIMER_NORESTART;
334}
335
95e904c7 336#ifdef CONFIG_SMP
971ee28c 337
4961b6e1 338static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 341
4961b6e1 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
343}
344
31656519
PZ
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
b328ca18 349{
31656519 350 struct rq *rq = arg;
b328ca18 351
05fa785c 352 raw_spin_lock(&rq->lock);
971ee28c 353 __hrtick_restart(rq);
31656519 354 rq->hrtick_csd_pending = 0;
05fa785c 355 raw_spin_unlock(&rq->lock);
b328ca18
PZ
356}
357
31656519
PZ
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
029632fb 363void hrtick_start(struct rq *rq, u64 delay)
b328ca18 364{
31656519 365 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 375
cc584b21 376 hrtimer_set_expires(timer, time);
31656519
PZ
377
378 if (rq == this_rq()) {
971ee28c 379 __hrtick_restart(rq);
31656519 380 } else if (!rq->hrtick_csd_pending) {
c46fff2a 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
382 rq->hrtick_csd_pending = 1;
383 }
b328ca18
PZ
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
31656519 398 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
fa748203 405static __init void init_hrtick(void)
b328ca18
PZ
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
31656519 424}
b328ca18 425
006c75f1 426static inline void init_hrtick(void)
8f4d37ec 427{
8f4d37ec 428}
31656519 429#endif /* CONFIG_SMP */
8f4d37ec 430
31656519 431static void init_rq_hrtick(struct rq *rq)
8f4d37ec 432{
31656519
PZ
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
8f4d37ec 435
31656519
PZ
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
8f4d37ec 440
31656519
PZ
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
8f4d37ec 443}
006c75f1 444#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
8f4d37ec
PZ
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
b328ca18
PZ
453static inline void init_hrtick(void)
454{
455}
006c75f1 456#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 457
fd99f91a
PZ
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
e3baac47 472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
e3baac47
PZ
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
316c1608 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
fd99f91a
PZ
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
e3baac47
PZ
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
fd99f91a
PZ
521#endif
522
76751049
PZ
523void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524{
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545}
546
547void wake_up_q(struct wake_q_head *head)
548{
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567}
568
c24d20db 569/*
8875125e 570 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
8875125e 576void resched_curr(struct rq *rq)
c24d20db 577{
8875125e 578 struct task_struct *curr = rq->curr;
c24d20db
IM
579 int cpu;
580
8875125e 581 lockdep_assert_held(&rq->lock);
c24d20db 582
8875125e 583 if (test_tsk_need_resched(curr))
c24d20db
IM
584 return;
585
8875125e 586 cpu = cpu_of(rq);
fd99f91a 587
f27dde8d 588 if (cpu == smp_processor_id()) {
8875125e 589 set_tsk_need_resched(curr);
f27dde8d 590 set_preempt_need_resched();
c24d20db 591 return;
f27dde8d 592 }
c24d20db 593
8875125e 594 if (set_nr_and_not_polling(curr))
c24d20db 595 smp_send_reschedule(cpu);
dfc68f29
AL
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
598}
599
029632fb 600void resched_cpu(int cpu)
c24d20db
IM
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
05fa785c 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 606 return;
8875125e 607 resched_curr(rq);
05fa785c 608 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 609}
06d8308c 610
b021fe3e 611#ifdef CONFIG_SMP
3451d024 612#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
613/*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
bc7a34b8 621int get_nohz_timer_target(void)
83cd4fe2 622{
bc7a34b8 623 int i, cpu = smp_processor_id();
83cd4fe2
VP
624 struct sched_domain *sd;
625
bc7a34b8 626 if (!idle_cpu(cpu))
6201b4d6
VK
627 return cpu;
628
057f3fad 629 rcu_read_lock();
83cd4fe2 630 for_each_domain(cpu, sd) {
057f3fad
PZ
631 for_each_cpu(i, sched_domain_span(sd)) {
632 if (!idle_cpu(i)) {
633 cpu = i;
634 goto unlock;
635 }
636 }
83cd4fe2 637 }
057f3fad
PZ
638unlock:
639 rcu_read_unlock();
83cd4fe2
VP
640 return cpu;
641}
06d8308c
TG
642/*
643 * When add_timer_on() enqueues a timer into the timer wheel of an
644 * idle CPU then this timer might expire before the next timer event
645 * which is scheduled to wake up that CPU. In case of a completely
646 * idle system the next event might even be infinite time into the
647 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648 * leaves the inner idle loop so the newly added timer is taken into
649 * account when the CPU goes back to idle and evaluates the timer
650 * wheel for the next timer event.
651 */
1c20091e 652static void wake_up_idle_cpu(int cpu)
06d8308c
TG
653{
654 struct rq *rq = cpu_rq(cpu);
655
656 if (cpu == smp_processor_id())
657 return;
658
67b9ca70 659 if (set_nr_and_not_polling(rq->idle))
06d8308c 660 smp_send_reschedule(cpu);
dfc68f29
AL
661 else
662 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
663}
664
c5bfece2 665static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 666{
53c5fa16
FW
667 /*
668 * We just need the target to call irq_exit() and re-evaluate
669 * the next tick. The nohz full kick at least implies that.
670 * If needed we can still optimize that later with an
671 * empty IRQ.
672 */
c5bfece2 673 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
674 if (cpu != smp_processor_id() ||
675 tick_nohz_tick_stopped())
53c5fa16 676 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
677 return true;
678 }
679
680 return false;
681}
682
683void wake_up_nohz_cpu(int cpu)
684{
c5bfece2 685 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
686 wake_up_idle_cpu(cpu);
687}
688
ca38062e 689static inline bool got_nohz_idle_kick(void)
45bf76df 690{
1c792db7 691 int cpu = smp_processor_id();
873b4c65
VG
692
693 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
694 return false;
695
696 if (idle_cpu(cpu) && !need_resched())
697 return true;
698
699 /*
700 * We can't run Idle Load Balance on this CPU for this time so we
701 * cancel it and clear NOHZ_BALANCE_KICK
702 */
703 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
704 return false;
45bf76df
IM
705}
706
3451d024 707#else /* CONFIG_NO_HZ_COMMON */
45bf76df 708
ca38062e 709static inline bool got_nohz_idle_kick(void)
2069dd75 710{
ca38062e 711 return false;
2069dd75
PZ
712}
713
3451d024 714#endif /* CONFIG_NO_HZ_COMMON */
d842de87 715
ce831b38
FW
716#ifdef CONFIG_NO_HZ_FULL
717bool sched_can_stop_tick(void)
718{
1e78cdbd
RR
719 /*
720 * FIFO realtime policy runs the highest priority task. Other runnable
721 * tasks are of a lower priority. The scheduler tick does nothing.
722 */
723 if (current->policy == SCHED_FIFO)
724 return true;
725
726 /*
727 * Round-robin realtime tasks time slice with other tasks at the same
728 * realtime priority. Is this task the only one at this priority?
729 */
730 if (current->policy == SCHED_RR) {
731 struct sched_rt_entity *rt_se = &current->rt;
732
733 return rt_se->run_list.prev == rt_se->run_list.next;
734 }
735
3882ec64
FW
736 /*
737 * More than one running task need preemption.
738 * nr_running update is assumed to be visible
739 * after IPI is sent from wakers.
740 */
541b8264
VK
741 if (this_rq()->nr_running > 1)
742 return false;
ce831b38 743
541b8264 744 return true;
ce831b38
FW
745}
746#endif /* CONFIG_NO_HZ_FULL */
d842de87 747
029632fb 748void sched_avg_update(struct rq *rq)
18d95a28 749{
e9e9250b
PZ
750 s64 period = sched_avg_period();
751
78becc27 752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
753 /*
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
757 */
758 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
759 rq->age_stamp += period;
760 rq->rt_avg /= 2;
761 }
18d95a28
PZ
762}
763
6d6bc0ad 764#endif /* CONFIG_SMP */
18d95a28 765
a790de99
PT
766#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 768/*
8277434e
PT
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
771 *
772 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 773 */
029632fb 774int walk_tg_tree_from(struct task_group *from,
8277434e 775 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
776{
777 struct task_group *parent, *child;
eb755805 778 int ret;
c09595f6 779
8277434e
PT
780 parent = from;
781
c09595f6 782down:
eb755805
PZ
783 ret = (*down)(parent, data);
784 if (ret)
8277434e 785 goto out;
c09595f6
PZ
786 list_for_each_entry_rcu(child, &parent->children, siblings) {
787 parent = child;
788 goto down;
789
790up:
791 continue;
792 }
eb755805 793 ret = (*up)(parent, data);
8277434e
PT
794 if (ret || parent == from)
795 goto out;
c09595f6
PZ
796
797 child = parent;
798 parent = parent->parent;
799 if (parent)
800 goto up;
8277434e 801out:
eb755805 802 return ret;
c09595f6
PZ
803}
804
029632fb 805int tg_nop(struct task_group *tg, void *data)
eb755805 806{
e2b245f8 807 return 0;
eb755805 808}
18d95a28
PZ
809#endif
810
45bf76df
IM
811static void set_load_weight(struct task_struct *p)
812{
f05998d4
NR
813 int prio = p->static_prio - MAX_RT_PRIO;
814 struct load_weight *load = &p->se.load;
815
dd41f596
IM
816 /*
817 * SCHED_IDLE tasks get minimal weight:
818 */
819 if (p->policy == SCHED_IDLE) {
c8b28116 820 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 821 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
822 return;
823 }
71f8bd46 824
c8b28116 825 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 826 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
827}
828
371fd7e7 829static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 830{
a64692a3 831 update_rq_clock(rq);
43148951 832 sched_info_queued(rq, p);
371fd7e7 833 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
834}
835
371fd7e7 836static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 837{
a64692a3 838 update_rq_clock(rq);
43148951 839 sched_info_dequeued(rq, p);
371fd7e7 840 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
841}
842
029632fb 843void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
844{
845 if (task_contributes_to_load(p))
846 rq->nr_uninterruptible--;
847
371fd7e7 848 enqueue_task(rq, p, flags);
1e3c88bd
PZ
849}
850
029632fb 851void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
852{
853 if (task_contributes_to_load(p))
854 rq->nr_uninterruptible++;
855
371fd7e7 856 dequeue_task(rq, p, flags);
1e3c88bd
PZ
857}
858
fe44d621 859static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 860{
095c0aa8
GC
861/*
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
864 */
865#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 s64 steal = 0, irq_delta = 0;
867#endif
868#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
870
871 /*
872 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 * this case when a previous update_rq_clock() happened inside a
874 * {soft,}irq region.
875 *
876 * When this happens, we stop ->clock_task and only update the
877 * prev_irq_time stamp to account for the part that fit, so that a next
878 * update will consume the rest. This ensures ->clock_task is
879 * monotonic.
880 *
881 * It does however cause some slight miss-attribution of {soft,}irq
882 * time, a more accurate solution would be to update the irq_time using
883 * the current rq->clock timestamp, except that would require using
884 * atomic ops.
885 */
886 if (irq_delta > delta)
887 irq_delta = delta;
888
889 rq->prev_irq_time += irq_delta;
890 delta -= irq_delta;
095c0aa8
GC
891#endif
892#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 893 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
894 steal = paravirt_steal_clock(cpu_of(rq));
895 steal -= rq->prev_steal_time_rq;
896
897 if (unlikely(steal > delta))
898 steal = delta;
899
095c0aa8 900 rq->prev_steal_time_rq += steal;
095c0aa8
GC
901 delta -= steal;
902 }
903#endif
904
fe44d621
PZ
905 rq->clock_task += delta;
906
095c0aa8 907#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
909 sched_rt_avg_update(rq, irq_delta + steal);
910#endif
aa483808
VP
911}
912
34f971f6
PZ
913void sched_set_stop_task(int cpu, struct task_struct *stop)
914{
915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 struct task_struct *old_stop = cpu_rq(cpu)->stop;
917
918 if (stop) {
919 /*
920 * Make it appear like a SCHED_FIFO task, its something
921 * userspace knows about and won't get confused about.
922 *
923 * Also, it will make PI more or less work without too
924 * much confusion -- but then, stop work should not
925 * rely on PI working anyway.
926 */
927 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928
929 stop->sched_class = &stop_sched_class;
930 }
931
932 cpu_rq(cpu)->stop = stop;
933
934 if (old_stop) {
935 /*
936 * Reset it back to a normal scheduling class so that
937 * it can die in pieces.
938 */
939 old_stop->sched_class = &rt_sched_class;
940 }
941}
942
14531189 943/*
dd41f596 944 * __normal_prio - return the priority that is based on the static prio
14531189 945 */
14531189
IM
946static inline int __normal_prio(struct task_struct *p)
947{
dd41f596 948 return p->static_prio;
14531189
IM
949}
950
b29739f9
IM
951/*
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
957 */
36c8b586 958static inline int normal_prio(struct task_struct *p)
b29739f9
IM
959{
960 int prio;
961
aab03e05
DF
962 if (task_has_dl_policy(p))
963 prio = MAX_DL_PRIO-1;
964 else if (task_has_rt_policy(p))
b29739f9
IM
965 prio = MAX_RT_PRIO-1 - p->rt_priority;
966 else
967 prio = __normal_prio(p);
968 return prio;
969}
970
971/*
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
977 */
36c8b586 978static int effective_prio(struct task_struct *p)
b29739f9
IM
979{
980 p->normal_prio = normal_prio(p);
981 /*
982 * If we are RT tasks or we were boosted to RT priority,
983 * keep the priority unchanged. Otherwise, update priority
984 * to the normal priority:
985 */
986 if (!rt_prio(p->prio))
987 return p->normal_prio;
988 return p->prio;
989}
990
1da177e4
LT
991/**
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
e69f6186
YB
994 *
995 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 996 */
36c8b586 997inline int task_curr(const struct task_struct *p)
1da177e4
LT
998{
999 return cpu_curr(task_cpu(p)) == p;
1000}
1001
67dfa1b7 1002/*
4c9a4bc8
PZ
1003 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004 * use the balance_callback list if you want balancing.
1005 *
1006 * this means any call to check_class_changed() must be followed by a call to
1007 * balance_callback().
67dfa1b7 1008 */
cb469845
SR
1009static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 const struct sched_class *prev_class,
da7a735e 1011 int oldprio)
cb469845
SR
1012{
1013 if (prev_class != p->sched_class) {
1014 if (prev_class->switched_from)
da7a735e 1015 prev_class->switched_from(rq, p);
4c9a4bc8 1016
da7a735e 1017 p->sched_class->switched_to(rq, p);
2d3d891d 1018 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1019 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1020}
1021
029632fb 1022void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1023{
1024 const struct sched_class *class;
1025
1026 if (p->sched_class == rq->curr->sched_class) {
1027 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1028 } else {
1029 for_each_class(class) {
1030 if (class == rq->curr->sched_class)
1031 break;
1032 if (class == p->sched_class) {
8875125e 1033 resched_curr(rq);
1e5a7405
PZ
1034 break;
1035 }
1036 }
1037 }
1038
1039 /*
1040 * A queue event has occurred, and we're going to schedule. In
1041 * this case, we can save a useless back to back clock update.
1042 */
da0c1e65 1043 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1044 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1045}
1046
1da177e4 1047#ifdef CONFIG_SMP
5cc389bc
PZ
1048/*
1049 * This is how migration works:
1050 *
1051 * 1) we invoke migration_cpu_stop() on the target CPU using
1052 * stop_one_cpu().
1053 * 2) stopper starts to run (implicitly forcing the migrated thread
1054 * off the CPU)
1055 * 3) it checks whether the migrated task is still in the wrong runqueue.
1056 * 4) if it's in the wrong runqueue then the migration thread removes
1057 * it and puts it into the right queue.
1058 * 5) stopper completes and stop_one_cpu() returns and the migration
1059 * is done.
1060 */
1061
1062/*
1063 * move_queued_task - move a queued task to new rq.
1064 *
1065 * Returns (locked) new rq. Old rq's lock is released.
1066 */
5e16bbc2 1067static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1068{
5cc389bc
PZ
1069 lockdep_assert_held(&rq->lock);
1070
1071 dequeue_task(rq, p, 0);
1072 p->on_rq = TASK_ON_RQ_MIGRATING;
1073 set_task_cpu(p, new_cpu);
1074 raw_spin_unlock(&rq->lock);
1075
1076 rq = cpu_rq(new_cpu);
1077
1078 raw_spin_lock(&rq->lock);
1079 BUG_ON(task_cpu(p) != new_cpu);
1080 p->on_rq = TASK_ON_RQ_QUEUED;
1081 enqueue_task(rq, p, 0);
1082 check_preempt_curr(rq, p, 0);
1083
1084 return rq;
1085}
1086
1087struct migration_arg {
1088 struct task_struct *task;
1089 int dest_cpu;
1090};
1091
1092/*
1093 * Move (not current) task off this cpu, onto dest cpu. We're doing
1094 * this because either it can't run here any more (set_cpus_allowed()
1095 * away from this CPU, or CPU going down), or because we're
1096 * attempting to rebalance this task on exec (sched_exec).
1097 *
1098 * So we race with normal scheduler movements, but that's OK, as long
1099 * as the task is no longer on this CPU.
5cc389bc 1100 */
5e16bbc2 1101static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1102{
5cc389bc 1103 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1104 return rq;
5cc389bc
PZ
1105
1106 /* Affinity changed (again). */
1107 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1108 return rq;
5cc389bc 1109
5e16bbc2
PZ
1110 rq = move_queued_task(rq, p, dest_cpu);
1111
1112 return rq;
5cc389bc
PZ
1113}
1114
1115/*
1116 * migration_cpu_stop - this will be executed by a highprio stopper thread
1117 * and performs thread migration by bumping thread off CPU then
1118 * 'pushing' onto another runqueue.
1119 */
1120static int migration_cpu_stop(void *data)
1121{
1122 struct migration_arg *arg = data;
5e16bbc2
PZ
1123 struct task_struct *p = arg->task;
1124 struct rq *rq = this_rq();
5cc389bc
PZ
1125
1126 /*
1127 * The original target cpu might have gone down and we might
1128 * be on another cpu but it doesn't matter.
1129 */
1130 local_irq_disable();
1131 /*
1132 * We need to explicitly wake pending tasks before running
1133 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1135 */
1136 sched_ttwu_pending();
5e16bbc2
PZ
1137
1138 raw_spin_lock(&p->pi_lock);
1139 raw_spin_lock(&rq->lock);
1140 /*
1141 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 * we're holding p->pi_lock.
1144 */
1145 if (task_rq(p) == rq && task_on_rq_queued(p))
1146 rq = __migrate_task(rq, p, arg->dest_cpu);
1147 raw_spin_unlock(&rq->lock);
1148 raw_spin_unlock(&p->pi_lock);
1149
5cc389bc
PZ
1150 local_irq_enable();
1151 return 0;
1152}
1153
1154void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1155{
1156 if (p->sched_class->set_cpus_allowed)
1157 p->sched_class->set_cpus_allowed(p, new_mask);
1158
1159 cpumask_copy(&p->cpus_allowed, new_mask);
1160 p->nr_cpus_allowed = cpumask_weight(new_mask);
1161}
1162
1163/*
1164 * Change a given task's CPU affinity. Migrate the thread to a
1165 * proper CPU and schedule it away if the CPU it's executing on
1166 * is removed from the allowed bitmask.
1167 *
1168 * NOTE: the caller must have a valid reference to the task, the
1169 * task must not exit() & deallocate itself prematurely. The
1170 * call is not atomic; no spinlocks may be held.
1171 */
1172int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1173{
1174 unsigned long flags;
1175 struct rq *rq;
1176 unsigned int dest_cpu;
1177 int ret = 0;
1178
1179 rq = task_rq_lock(p, &flags);
1180
1181 if (cpumask_equal(&p->cpus_allowed, new_mask))
1182 goto out;
1183
1184 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1185 ret = -EINVAL;
1186 goto out;
1187 }
1188
1189 do_set_cpus_allowed(p, new_mask);
1190
1191 /* Can the task run on the task's current CPU? If so, we're done */
1192 if (cpumask_test_cpu(task_cpu(p), new_mask))
1193 goto out;
1194
1195 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1196 if (task_running(rq, p) || p->state == TASK_WAKING) {
1197 struct migration_arg arg = { p, dest_cpu };
1198 /* Need help from migration thread: drop lock and wait. */
1199 task_rq_unlock(rq, p, &flags);
1200 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1201 tlb_migrate_finish(p->mm);
1202 return 0;
cbce1a68
PZ
1203 } else if (task_on_rq_queued(p)) {
1204 /*
1205 * OK, since we're going to drop the lock immediately
1206 * afterwards anyway.
1207 */
1208 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1209 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1210 lockdep_pin_lock(&rq->lock);
1211 }
5cc389bc
PZ
1212out:
1213 task_rq_unlock(rq, p, &flags);
1214
1215 return ret;
1216}
1217EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1218
dd41f596 1219void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1220{
e2912009
PZ
1221#ifdef CONFIG_SCHED_DEBUG
1222 /*
1223 * We should never call set_task_cpu() on a blocked task,
1224 * ttwu() will sort out the placement.
1225 */
077614ee 1226 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1227 !p->on_rq);
0122ec5b
PZ
1228
1229#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1230 /*
1231 * The caller should hold either p->pi_lock or rq->lock, when changing
1232 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1233 *
1234 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1235 * see task_group().
6c6c54e1
PZ
1236 *
1237 * Furthermore, all task_rq users should acquire both locks, see
1238 * task_rq_lock().
1239 */
0122ec5b
PZ
1240 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1241 lockdep_is_held(&task_rq(p)->lock)));
1242#endif
e2912009
PZ
1243#endif
1244
de1d7286 1245 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1246
0c69774e 1247 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1248 if (p->sched_class->migrate_task_rq)
1249 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1250 p->se.nr_migrations++;
ff303e66 1251 perf_event_task_migrate(p);
0c69774e 1252 }
dd41f596
IM
1253
1254 __set_task_cpu(p, new_cpu);
c65cc870
IM
1255}
1256
ac66f547
PZ
1257static void __migrate_swap_task(struct task_struct *p, int cpu)
1258{
da0c1e65 1259 if (task_on_rq_queued(p)) {
ac66f547
PZ
1260 struct rq *src_rq, *dst_rq;
1261
1262 src_rq = task_rq(p);
1263 dst_rq = cpu_rq(cpu);
1264
1265 deactivate_task(src_rq, p, 0);
1266 set_task_cpu(p, cpu);
1267 activate_task(dst_rq, p, 0);
1268 check_preempt_curr(dst_rq, p, 0);
1269 } else {
1270 /*
1271 * Task isn't running anymore; make it appear like we migrated
1272 * it before it went to sleep. This means on wakeup we make the
1273 * previous cpu our targer instead of where it really is.
1274 */
1275 p->wake_cpu = cpu;
1276 }
1277}
1278
1279struct migration_swap_arg {
1280 struct task_struct *src_task, *dst_task;
1281 int src_cpu, dst_cpu;
1282};
1283
1284static int migrate_swap_stop(void *data)
1285{
1286 struct migration_swap_arg *arg = data;
1287 struct rq *src_rq, *dst_rq;
1288 int ret = -EAGAIN;
1289
1290 src_rq = cpu_rq(arg->src_cpu);
1291 dst_rq = cpu_rq(arg->dst_cpu);
1292
74602315
PZ
1293 double_raw_lock(&arg->src_task->pi_lock,
1294 &arg->dst_task->pi_lock);
ac66f547
PZ
1295 double_rq_lock(src_rq, dst_rq);
1296 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1297 goto unlock;
1298
1299 if (task_cpu(arg->src_task) != arg->src_cpu)
1300 goto unlock;
1301
1302 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1303 goto unlock;
1304
1305 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1306 goto unlock;
1307
1308 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1309 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1310
1311 ret = 0;
1312
1313unlock:
1314 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1315 raw_spin_unlock(&arg->dst_task->pi_lock);
1316 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1317
1318 return ret;
1319}
1320
1321/*
1322 * Cross migrate two tasks
1323 */
1324int migrate_swap(struct task_struct *cur, struct task_struct *p)
1325{
1326 struct migration_swap_arg arg;
1327 int ret = -EINVAL;
1328
ac66f547
PZ
1329 arg = (struct migration_swap_arg){
1330 .src_task = cur,
1331 .src_cpu = task_cpu(cur),
1332 .dst_task = p,
1333 .dst_cpu = task_cpu(p),
1334 };
1335
1336 if (arg.src_cpu == arg.dst_cpu)
1337 goto out;
1338
6acce3ef
PZ
1339 /*
1340 * These three tests are all lockless; this is OK since all of them
1341 * will be re-checked with proper locks held further down the line.
1342 */
ac66f547
PZ
1343 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1344 goto out;
1345
1346 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1347 goto out;
1348
1349 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1350 goto out;
1351
286549dc 1352 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1353 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1354
1355out:
ac66f547
PZ
1356 return ret;
1357}
1358
1da177e4
LT
1359/*
1360 * wait_task_inactive - wait for a thread to unschedule.
1361 *
85ba2d86
RM
1362 * If @match_state is nonzero, it's the @p->state value just checked and
1363 * not expected to change. If it changes, i.e. @p might have woken up,
1364 * then return zero. When we succeed in waiting for @p to be off its CPU,
1365 * we return a positive number (its total switch count). If a second call
1366 * a short while later returns the same number, the caller can be sure that
1367 * @p has remained unscheduled the whole time.
1368 *
1da177e4
LT
1369 * The caller must ensure that the task *will* unschedule sometime soon,
1370 * else this function might spin for a *long* time. This function can't
1371 * be called with interrupts off, or it may introduce deadlock with
1372 * smp_call_function() if an IPI is sent by the same process we are
1373 * waiting to become inactive.
1374 */
85ba2d86 1375unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1376{
1377 unsigned long flags;
da0c1e65 1378 int running, queued;
85ba2d86 1379 unsigned long ncsw;
70b97a7f 1380 struct rq *rq;
1da177e4 1381
3a5c359a
AK
1382 for (;;) {
1383 /*
1384 * We do the initial early heuristics without holding
1385 * any task-queue locks at all. We'll only try to get
1386 * the runqueue lock when things look like they will
1387 * work out!
1388 */
1389 rq = task_rq(p);
fa490cfd 1390
3a5c359a
AK
1391 /*
1392 * If the task is actively running on another CPU
1393 * still, just relax and busy-wait without holding
1394 * any locks.
1395 *
1396 * NOTE! Since we don't hold any locks, it's not
1397 * even sure that "rq" stays as the right runqueue!
1398 * But we don't care, since "task_running()" will
1399 * return false if the runqueue has changed and p
1400 * is actually now running somewhere else!
1401 */
85ba2d86
RM
1402 while (task_running(rq, p)) {
1403 if (match_state && unlikely(p->state != match_state))
1404 return 0;
3a5c359a 1405 cpu_relax();
85ba2d86 1406 }
fa490cfd 1407
3a5c359a
AK
1408 /*
1409 * Ok, time to look more closely! We need the rq
1410 * lock now, to be *sure*. If we're wrong, we'll
1411 * just go back and repeat.
1412 */
1413 rq = task_rq_lock(p, &flags);
27a9da65 1414 trace_sched_wait_task(p);
3a5c359a 1415 running = task_running(rq, p);
da0c1e65 1416 queued = task_on_rq_queued(p);
85ba2d86 1417 ncsw = 0;
f31e11d8 1418 if (!match_state || p->state == match_state)
93dcf55f 1419 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1420 task_rq_unlock(rq, p, &flags);
fa490cfd 1421
85ba2d86
RM
1422 /*
1423 * If it changed from the expected state, bail out now.
1424 */
1425 if (unlikely(!ncsw))
1426 break;
1427
3a5c359a
AK
1428 /*
1429 * Was it really running after all now that we
1430 * checked with the proper locks actually held?
1431 *
1432 * Oops. Go back and try again..
1433 */
1434 if (unlikely(running)) {
1435 cpu_relax();
1436 continue;
1437 }
fa490cfd 1438
3a5c359a
AK
1439 /*
1440 * It's not enough that it's not actively running,
1441 * it must be off the runqueue _entirely_, and not
1442 * preempted!
1443 *
80dd99b3 1444 * So if it was still runnable (but just not actively
3a5c359a
AK
1445 * running right now), it's preempted, and we should
1446 * yield - it could be a while.
1447 */
da0c1e65 1448 if (unlikely(queued)) {
8eb90c30
TG
1449 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1450
1451 set_current_state(TASK_UNINTERRUPTIBLE);
1452 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1453 continue;
1454 }
fa490cfd 1455
3a5c359a
AK
1456 /*
1457 * Ahh, all good. It wasn't running, and it wasn't
1458 * runnable, which means that it will never become
1459 * running in the future either. We're all done!
1460 */
1461 break;
1462 }
85ba2d86
RM
1463
1464 return ncsw;
1da177e4
LT
1465}
1466
1467/***
1468 * kick_process - kick a running thread to enter/exit the kernel
1469 * @p: the to-be-kicked thread
1470 *
1471 * Cause a process which is running on another CPU to enter
1472 * kernel-mode, without any delay. (to get signals handled.)
1473 *
25985edc 1474 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1475 * because all it wants to ensure is that the remote task enters
1476 * the kernel. If the IPI races and the task has been migrated
1477 * to another CPU then no harm is done and the purpose has been
1478 * achieved as well.
1479 */
36c8b586 1480void kick_process(struct task_struct *p)
1da177e4
LT
1481{
1482 int cpu;
1483
1484 preempt_disable();
1485 cpu = task_cpu(p);
1486 if ((cpu != smp_processor_id()) && task_curr(p))
1487 smp_send_reschedule(cpu);
1488 preempt_enable();
1489}
b43e3521 1490EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1491
30da688e 1492/*
013fdb80 1493 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1494 */
5da9a0fb
PZ
1495static int select_fallback_rq(int cpu, struct task_struct *p)
1496{
aa00d89c
TC
1497 int nid = cpu_to_node(cpu);
1498 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1499 enum { cpuset, possible, fail } state = cpuset;
1500 int dest_cpu;
5da9a0fb 1501
aa00d89c
TC
1502 /*
1503 * If the node that the cpu is on has been offlined, cpu_to_node()
1504 * will return -1. There is no cpu on the node, and we should
1505 * select the cpu on the other node.
1506 */
1507 if (nid != -1) {
1508 nodemask = cpumask_of_node(nid);
1509
1510 /* Look for allowed, online CPU in same node. */
1511 for_each_cpu(dest_cpu, nodemask) {
1512 if (!cpu_online(dest_cpu))
1513 continue;
1514 if (!cpu_active(dest_cpu))
1515 continue;
1516 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1517 return dest_cpu;
1518 }
2baab4e9 1519 }
5da9a0fb 1520
2baab4e9
PZ
1521 for (;;) {
1522 /* Any allowed, online CPU? */
e3831edd 1523 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1524 if (!cpu_online(dest_cpu))
1525 continue;
1526 if (!cpu_active(dest_cpu))
1527 continue;
1528 goto out;
1529 }
5da9a0fb 1530
2baab4e9
PZ
1531 switch (state) {
1532 case cpuset:
1533 /* No more Mr. Nice Guy. */
1534 cpuset_cpus_allowed_fallback(p);
1535 state = possible;
1536 break;
1537
1538 case possible:
1539 do_set_cpus_allowed(p, cpu_possible_mask);
1540 state = fail;
1541 break;
1542
1543 case fail:
1544 BUG();
1545 break;
1546 }
1547 }
1548
1549out:
1550 if (state != cpuset) {
1551 /*
1552 * Don't tell them about moving exiting tasks or
1553 * kernel threads (both mm NULL), since they never
1554 * leave kernel.
1555 */
1556 if (p->mm && printk_ratelimit()) {
aac74dc4 1557 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1558 task_pid_nr(p), p->comm, cpu);
1559 }
5da9a0fb
PZ
1560 }
1561
1562 return dest_cpu;
1563}
1564
e2912009 1565/*
013fdb80 1566 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1567 */
970b13ba 1568static inline
ac66f547 1569int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1570{
cbce1a68
PZ
1571 lockdep_assert_held(&p->pi_lock);
1572
6c1d9410
WL
1573 if (p->nr_cpus_allowed > 1)
1574 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1575
1576 /*
1577 * In order not to call set_task_cpu() on a blocking task we need
1578 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1579 * cpu.
1580 *
1581 * Since this is common to all placement strategies, this lives here.
1582 *
1583 * [ this allows ->select_task() to simply return task_cpu(p) and
1584 * not worry about this generic constraint ]
1585 */
fa17b507 1586 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1587 !cpu_online(cpu)))
5da9a0fb 1588 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1589
1590 return cpu;
970b13ba 1591}
09a40af5
MG
1592
1593static void update_avg(u64 *avg, u64 sample)
1594{
1595 s64 diff = sample - *avg;
1596 *avg += diff >> 3;
1597}
5cc389bc 1598#endif /* CONFIG_SMP */
970b13ba 1599
d7c01d27 1600static void
b84cb5df 1601ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1602{
d7c01d27 1603#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1604 struct rq *rq = this_rq();
1605
d7c01d27
PZ
1606#ifdef CONFIG_SMP
1607 int this_cpu = smp_processor_id();
1608
1609 if (cpu == this_cpu) {
1610 schedstat_inc(rq, ttwu_local);
1611 schedstat_inc(p, se.statistics.nr_wakeups_local);
1612 } else {
1613 struct sched_domain *sd;
1614
1615 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1616 rcu_read_lock();
d7c01d27
PZ
1617 for_each_domain(this_cpu, sd) {
1618 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1619 schedstat_inc(sd, ttwu_wake_remote);
1620 break;
1621 }
1622 }
057f3fad 1623 rcu_read_unlock();
d7c01d27 1624 }
f339b9dc
PZ
1625
1626 if (wake_flags & WF_MIGRATED)
1627 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1628
d7c01d27
PZ
1629#endif /* CONFIG_SMP */
1630
1631 schedstat_inc(rq, ttwu_count);
9ed3811a 1632 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1633
1634 if (wake_flags & WF_SYNC)
9ed3811a 1635 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1636
d7c01d27
PZ
1637#endif /* CONFIG_SCHEDSTATS */
1638}
1639
1640static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1641{
9ed3811a 1642 activate_task(rq, p, en_flags);
da0c1e65 1643 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1644
1645 /* if a worker is waking up, notify workqueue */
1646 if (p->flags & PF_WQ_WORKER)
1647 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1648}
1649
23f41eeb
PZ
1650/*
1651 * Mark the task runnable and perform wakeup-preemption.
1652 */
89363381 1653static void
23f41eeb 1654ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1655{
9ed3811a 1656 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1657 p->state = TASK_RUNNING;
fbd705a0
PZ
1658 trace_sched_wakeup(p);
1659
9ed3811a 1660#ifdef CONFIG_SMP
4c9a4bc8
PZ
1661 if (p->sched_class->task_woken) {
1662 /*
cbce1a68
PZ
1663 * Our task @p is fully woken up and running; so its safe to
1664 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1665 */
cbce1a68 1666 lockdep_unpin_lock(&rq->lock);
9ed3811a 1667 p->sched_class->task_woken(rq, p);
cbce1a68 1668 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1669 }
9ed3811a 1670
e69c6341 1671 if (rq->idle_stamp) {
78becc27 1672 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1673 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1674
abfafa54
JL
1675 update_avg(&rq->avg_idle, delta);
1676
1677 if (rq->avg_idle > max)
9ed3811a 1678 rq->avg_idle = max;
abfafa54 1679
9ed3811a
TH
1680 rq->idle_stamp = 0;
1681 }
1682#endif
1683}
1684
c05fbafb
PZ
1685static void
1686ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1687{
cbce1a68
PZ
1688 lockdep_assert_held(&rq->lock);
1689
c05fbafb
PZ
1690#ifdef CONFIG_SMP
1691 if (p->sched_contributes_to_load)
1692 rq->nr_uninterruptible--;
1693#endif
1694
1695 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1696 ttwu_do_wakeup(rq, p, wake_flags);
1697}
1698
1699/*
1700 * Called in case the task @p isn't fully descheduled from its runqueue,
1701 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1702 * since all we need to do is flip p->state to TASK_RUNNING, since
1703 * the task is still ->on_rq.
1704 */
1705static int ttwu_remote(struct task_struct *p, int wake_flags)
1706{
1707 struct rq *rq;
1708 int ret = 0;
1709
1710 rq = __task_rq_lock(p);
da0c1e65 1711 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1712 /* check_preempt_curr() may use rq clock */
1713 update_rq_clock(rq);
c05fbafb
PZ
1714 ttwu_do_wakeup(rq, p, wake_flags);
1715 ret = 1;
1716 }
1717 __task_rq_unlock(rq);
1718
1719 return ret;
1720}
1721
317f3941 1722#ifdef CONFIG_SMP
e3baac47 1723void sched_ttwu_pending(void)
317f3941
PZ
1724{
1725 struct rq *rq = this_rq();
fa14ff4a
PZ
1726 struct llist_node *llist = llist_del_all(&rq->wake_list);
1727 struct task_struct *p;
e3baac47 1728 unsigned long flags;
317f3941 1729
e3baac47
PZ
1730 if (!llist)
1731 return;
1732
1733 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1734 lockdep_pin_lock(&rq->lock);
317f3941 1735
fa14ff4a
PZ
1736 while (llist) {
1737 p = llist_entry(llist, struct task_struct, wake_entry);
1738 llist = llist_next(llist);
317f3941
PZ
1739 ttwu_do_activate(rq, p, 0);
1740 }
1741
cbce1a68 1742 lockdep_unpin_lock(&rq->lock);
e3baac47 1743 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1744}
1745
1746void scheduler_ipi(void)
1747{
f27dde8d
PZ
1748 /*
1749 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1750 * TIF_NEED_RESCHED remotely (for the first time) will also send
1751 * this IPI.
1752 */
8cb75e0c 1753 preempt_fold_need_resched();
f27dde8d 1754
fd2ac4f4 1755 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1756 return;
1757
1758 /*
1759 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1760 * traditionally all their work was done from the interrupt return
1761 * path. Now that we actually do some work, we need to make sure
1762 * we do call them.
1763 *
1764 * Some archs already do call them, luckily irq_enter/exit nest
1765 * properly.
1766 *
1767 * Arguably we should visit all archs and update all handlers,
1768 * however a fair share of IPIs are still resched only so this would
1769 * somewhat pessimize the simple resched case.
1770 */
1771 irq_enter();
fa14ff4a 1772 sched_ttwu_pending();
ca38062e
SS
1773
1774 /*
1775 * Check if someone kicked us for doing the nohz idle load balance.
1776 */
873b4c65 1777 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1778 this_rq()->idle_balance = 1;
ca38062e 1779 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1780 }
c5d753a5 1781 irq_exit();
317f3941
PZ
1782}
1783
1784static void ttwu_queue_remote(struct task_struct *p, int cpu)
1785{
e3baac47
PZ
1786 struct rq *rq = cpu_rq(cpu);
1787
1788 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1789 if (!set_nr_if_polling(rq->idle))
1790 smp_send_reschedule(cpu);
1791 else
1792 trace_sched_wake_idle_without_ipi(cpu);
1793 }
317f3941 1794}
d6aa8f85 1795
f6be8af1
CL
1796void wake_up_if_idle(int cpu)
1797{
1798 struct rq *rq = cpu_rq(cpu);
1799 unsigned long flags;
1800
fd7de1e8
AL
1801 rcu_read_lock();
1802
1803 if (!is_idle_task(rcu_dereference(rq->curr)))
1804 goto out;
f6be8af1
CL
1805
1806 if (set_nr_if_polling(rq->idle)) {
1807 trace_sched_wake_idle_without_ipi(cpu);
1808 } else {
1809 raw_spin_lock_irqsave(&rq->lock, flags);
1810 if (is_idle_task(rq->curr))
1811 smp_send_reschedule(cpu);
1812 /* Else cpu is not in idle, do nothing here */
1813 raw_spin_unlock_irqrestore(&rq->lock, flags);
1814 }
fd7de1e8
AL
1815
1816out:
1817 rcu_read_unlock();
f6be8af1
CL
1818}
1819
39be3501 1820bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1821{
1822 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1823}
d6aa8f85 1824#endif /* CONFIG_SMP */
317f3941 1825
c05fbafb
PZ
1826static void ttwu_queue(struct task_struct *p, int cpu)
1827{
1828 struct rq *rq = cpu_rq(cpu);
1829
17d9f311 1830#if defined(CONFIG_SMP)
39be3501 1831 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1832 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1833 ttwu_queue_remote(p, cpu);
1834 return;
1835 }
1836#endif
1837
c05fbafb 1838 raw_spin_lock(&rq->lock);
cbce1a68 1839 lockdep_pin_lock(&rq->lock);
c05fbafb 1840 ttwu_do_activate(rq, p, 0);
cbce1a68 1841 lockdep_unpin_lock(&rq->lock);
c05fbafb 1842 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1843}
1844
1845/**
1da177e4 1846 * try_to_wake_up - wake up a thread
9ed3811a 1847 * @p: the thread to be awakened
1da177e4 1848 * @state: the mask of task states that can be woken
9ed3811a 1849 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1850 *
1851 * Put it on the run-queue if it's not already there. The "current"
1852 * thread is always on the run-queue (except when the actual
1853 * re-schedule is in progress), and as such you're allowed to do
1854 * the simpler "current->state = TASK_RUNNING" to mark yourself
1855 * runnable without the overhead of this.
1856 *
e69f6186 1857 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1858 * or @state didn't match @p's state.
1da177e4 1859 */
e4a52bcb
PZ
1860static int
1861try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1862{
1da177e4 1863 unsigned long flags;
c05fbafb 1864 int cpu, success = 0;
2398f2c6 1865
e0acd0a6
ON
1866 /*
1867 * If we are going to wake up a thread waiting for CONDITION we
1868 * need to ensure that CONDITION=1 done by the caller can not be
1869 * reordered with p->state check below. This pairs with mb() in
1870 * set_current_state() the waiting thread does.
1871 */
1872 smp_mb__before_spinlock();
013fdb80 1873 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1874 if (!(p->state & state))
1da177e4
LT
1875 goto out;
1876
fbd705a0
PZ
1877 trace_sched_waking(p);
1878
c05fbafb 1879 success = 1; /* we're going to change ->state */
1da177e4 1880 cpu = task_cpu(p);
1da177e4 1881
c05fbafb
PZ
1882 if (p->on_rq && ttwu_remote(p, wake_flags))
1883 goto stat;
1da177e4 1884
1da177e4 1885#ifdef CONFIG_SMP
e9c84311 1886 /*
c05fbafb
PZ
1887 * If the owning (remote) cpu is still in the middle of schedule() with
1888 * this task as prev, wait until its done referencing the task.
e9c84311 1889 */
f3e94786 1890 while (p->on_cpu)
e4a52bcb 1891 cpu_relax();
0970d299 1892 /*
e4a52bcb 1893 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1894 */
e4a52bcb 1895 smp_rmb();
1da177e4 1896
a8e4f2ea 1897 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1898 p->state = TASK_WAKING;
e7693a36 1899
e4a52bcb 1900 if (p->sched_class->task_waking)
74f8e4b2 1901 p->sched_class->task_waking(p);
efbbd05a 1902
ac66f547 1903 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1904 if (task_cpu(p) != cpu) {
1905 wake_flags |= WF_MIGRATED;
e4a52bcb 1906 set_task_cpu(p, cpu);
f339b9dc 1907 }
1da177e4 1908#endif /* CONFIG_SMP */
1da177e4 1909
c05fbafb
PZ
1910 ttwu_queue(p, cpu);
1911stat:
b84cb5df 1912 ttwu_stat(p, cpu, wake_flags);
1da177e4 1913out:
013fdb80 1914 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1915
1916 return success;
1917}
1918
21aa9af0
TH
1919/**
1920 * try_to_wake_up_local - try to wake up a local task with rq lock held
1921 * @p: the thread to be awakened
1922 *
2acca55e 1923 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1924 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1925 * the current task.
21aa9af0
TH
1926 */
1927static void try_to_wake_up_local(struct task_struct *p)
1928{
1929 struct rq *rq = task_rq(p);
21aa9af0 1930
383efcd0
TH
1931 if (WARN_ON_ONCE(rq != this_rq()) ||
1932 WARN_ON_ONCE(p == current))
1933 return;
1934
21aa9af0
TH
1935 lockdep_assert_held(&rq->lock);
1936
2acca55e 1937 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1938 /*
1939 * This is OK, because current is on_cpu, which avoids it being
1940 * picked for load-balance and preemption/IRQs are still
1941 * disabled avoiding further scheduler activity on it and we've
1942 * not yet picked a replacement task.
1943 */
1944 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
1945 raw_spin_unlock(&rq->lock);
1946 raw_spin_lock(&p->pi_lock);
1947 raw_spin_lock(&rq->lock);
cbce1a68 1948 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
1949 }
1950
21aa9af0 1951 if (!(p->state & TASK_NORMAL))
2acca55e 1952 goto out;
21aa9af0 1953
fbd705a0
PZ
1954 trace_sched_waking(p);
1955
da0c1e65 1956 if (!task_on_rq_queued(p))
d7c01d27
PZ
1957 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1958
23f41eeb 1959 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1960 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1961out:
1962 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1963}
1964
50fa610a
DH
1965/**
1966 * wake_up_process - Wake up a specific process
1967 * @p: The process to be woken up.
1968 *
1969 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1970 * processes.
1971 *
1972 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1973 *
1974 * It may be assumed that this function implies a write memory barrier before
1975 * changing the task state if and only if any tasks are woken up.
1976 */
7ad5b3a5 1977int wake_up_process(struct task_struct *p)
1da177e4 1978{
9067ac85
ON
1979 WARN_ON(task_is_stopped_or_traced(p));
1980 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1981}
1da177e4
LT
1982EXPORT_SYMBOL(wake_up_process);
1983
7ad5b3a5 1984int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1985{
1986 return try_to_wake_up(p, state, 0);
1987}
1988
a5e7be3b
JL
1989/*
1990 * This function clears the sched_dl_entity static params.
1991 */
1992void __dl_clear_params(struct task_struct *p)
1993{
1994 struct sched_dl_entity *dl_se = &p->dl;
1995
1996 dl_se->dl_runtime = 0;
1997 dl_se->dl_deadline = 0;
1998 dl_se->dl_period = 0;
1999 dl_se->flags = 0;
2000 dl_se->dl_bw = 0;
40767b0d
PZ
2001
2002 dl_se->dl_throttled = 0;
2003 dl_se->dl_new = 1;
2004 dl_se->dl_yielded = 0;
a5e7be3b
JL
2005}
2006
1da177e4
LT
2007/*
2008 * Perform scheduler related setup for a newly forked process p.
2009 * p is forked by current.
dd41f596
IM
2010 *
2011 * __sched_fork() is basic setup used by init_idle() too:
2012 */
5e1576ed 2013static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2014{
fd2f4419
PZ
2015 p->on_rq = 0;
2016
2017 p->se.on_rq = 0;
dd41f596
IM
2018 p->se.exec_start = 0;
2019 p->se.sum_exec_runtime = 0;
f6cf891c 2020 p->se.prev_sum_exec_runtime = 0;
6c594c21 2021 p->se.nr_migrations = 0;
da7a735e 2022 p->se.vruntime = 0;
fd2f4419 2023 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2024
2025#ifdef CONFIG_SCHEDSTATS
41acab88 2026 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2027#endif
476d139c 2028
aab03e05 2029 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2030 init_dl_task_timer(&p->dl);
a5e7be3b 2031 __dl_clear_params(p);
aab03e05 2032
fa717060 2033 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2034
e107be36
AK
2035#ifdef CONFIG_PREEMPT_NOTIFIERS
2036 INIT_HLIST_HEAD(&p->preempt_notifiers);
2037#endif
cbee9f88
PZ
2038
2039#ifdef CONFIG_NUMA_BALANCING
2040 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2041 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2042 p->mm->numa_scan_seq = 0;
2043 }
2044
5e1576ed
RR
2045 if (clone_flags & CLONE_VM)
2046 p->numa_preferred_nid = current->numa_preferred_nid;
2047 else
2048 p->numa_preferred_nid = -1;
2049
cbee9f88
PZ
2050 p->node_stamp = 0ULL;
2051 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2052 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2053 p->numa_work.next = &p->numa_work;
44dba3d5 2054 p->numa_faults = NULL;
7e2703e6
RR
2055 p->last_task_numa_placement = 0;
2056 p->last_sum_exec_runtime = 0;
8c8a743c 2057
8c8a743c 2058 p->numa_group = NULL;
cbee9f88 2059#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2060}
2061
1a687c2e 2062#ifdef CONFIG_NUMA_BALANCING
3105b86a 2063#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
2064void set_numabalancing_state(bool enabled)
2065{
2066 if (enabled)
2067 sched_feat_set("NUMA");
2068 else
2069 sched_feat_set("NO_NUMA");
2070}
3105b86a
MG
2071#else
2072__read_mostly bool numabalancing_enabled;
2073
2074void set_numabalancing_state(bool enabled)
2075{
2076 numabalancing_enabled = enabled;
dd41f596 2077}
3105b86a 2078#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
2079
2080#ifdef CONFIG_PROC_SYSCTL
2081int sysctl_numa_balancing(struct ctl_table *table, int write,
2082 void __user *buffer, size_t *lenp, loff_t *ppos)
2083{
2084 struct ctl_table t;
2085 int err;
2086 int state = numabalancing_enabled;
2087
2088 if (write && !capable(CAP_SYS_ADMIN))
2089 return -EPERM;
2090
2091 t = *table;
2092 t.data = &state;
2093 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2094 if (err < 0)
2095 return err;
2096 if (write)
2097 set_numabalancing_state(state);
2098 return err;
2099}
2100#endif
2101#endif
dd41f596
IM
2102
2103/*
2104 * fork()/clone()-time setup:
2105 */
aab03e05 2106int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2107{
0122ec5b 2108 unsigned long flags;
dd41f596
IM
2109 int cpu = get_cpu();
2110
5e1576ed 2111 __sched_fork(clone_flags, p);
06b83b5f 2112 /*
0017d735 2113 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2114 * nobody will actually run it, and a signal or other external
2115 * event cannot wake it up and insert it on the runqueue either.
2116 */
0017d735 2117 p->state = TASK_RUNNING;
dd41f596 2118
c350a04e
MG
2119 /*
2120 * Make sure we do not leak PI boosting priority to the child.
2121 */
2122 p->prio = current->normal_prio;
2123
b9dc29e7
MG
2124 /*
2125 * Revert to default priority/policy on fork if requested.
2126 */
2127 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2128 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2129 p->policy = SCHED_NORMAL;
6c697bdf 2130 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2131 p->rt_priority = 0;
2132 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2133 p->static_prio = NICE_TO_PRIO(0);
2134
2135 p->prio = p->normal_prio = __normal_prio(p);
2136 set_load_weight(p);
6c697bdf 2137
b9dc29e7
MG
2138 /*
2139 * We don't need the reset flag anymore after the fork. It has
2140 * fulfilled its duty:
2141 */
2142 p->sched_reset_on_fork = 0;
2143 }
ca94c442 2144
aab03e05
DF
2145 if (dl_prio(p->prio)) {
2146 put_cpu();
2147 return -EAGAIN;
2148 } else if (rt_prio(p->prio)) {
2149 p->sched_class = &rt_sched_class;
2150 } else {
2ddbf952 2151 p->sched_class = &fair_sched_class;
aab03e05 2152 }
b29739f9 2153
cd29fe6f
PZ
2154 if (p->sched_class->task_fork)
2155 p->sched_class->task_fork(p);
2156
86951599
PZ
2157 /*
2158 * The child is not yet in the pid-hash so no cgroup attach races,
2159 * and the cgroup is pinned to this child due to cgroup_fork()
2160 * is ran before sched_fork().
2161 *
2162 * Silence PROVE_RCU.
2163 */
0122ec5b 2164 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2165 set_task_cpu(p, cpu);
0122ec5b 2166 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2167
f6db8347 2168#ifdef CONFIG_SCHED_INFO
dd41f596 2169 if (likely(sched_info_on()))
52f17b6c 2170 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2171#endif
3ca7a440
PZ
2172#if defined(CONFIG_SMP)
2173 p->on_cpu = 0;
4866cde0 2174#endif
01028747 2175 init_task_preempt_count(p);
806c09a7 2176#ifdef CONFIG_SMP
917b627d 2177 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2178 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2179#endif
917b627d 2180
476d139c 2181 put_cpu();
aab03e05 2182 return 0;
1da177e4
LT
2183}
2184
332ac17e
DF
2185unsigned long to_ratio(u64 period, u64 runtime)
2186{
2187 if (runtime == RUNTIME_INF)
2188 return 1ULL << 20;
2189
2190 /*
2191 * Doing this here saves a lot of checks in all
2192 * the calling paths, and returning zero seems
2193 * safe for them anyway.
2194 */
2195 if (period == 0)
2196 return 0;
2197
2198 return div64_u64(runtime << 20, period);
2199}
2200
2201#ifdef CONFIG_SMP
2202inline struct dl_bw *dl_bw_of(int i)
2203{
66339c31
KT
2204 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2205 "sched RCU must be held");
332ac17e
DF
2206 return &cpu_rq(i)->rd->dl_bw;
2207}
2208
de212f18 2209static inline int dl_bw_cpus(int i)
332ac17e 2210{
de212f18
PZ
2211 struct root_domain *rd = cpu_rq(i)->rd;
2212 int cpus = 0;
2213
66339c31
KT
2214 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2215 "sched RCU must be held");
de212f18
PZ
2216 for_each_cpu_and(i, rd->span, cpu_active_mask)
2217 cpus++;
2218
2219 return cpus;
332ac17e
DF
2220}
2221#else
2222inline struct dl_bw *dl_bw_of(int i)
2223{
2224 return &cpu_rq(i)->dl.dl_bw;
2225}
2226
de212f18 2227static inline int dl_bw_cpus(int i)
332ac17e
DF
2228{
2229 return 1;
2230}
2231#endif
2232
332ac17e
DF
2233/*
2234 * We must be sure that accepting a new task (or allowing changing the
2235 * parameters of an existing one) is consistent with the bandwidth
2236 * constraints. If yes, this function also accordingly updates the currently
2237 * allocated bandwidth to reflect the new situation.
2238 *
2239 * This function is called while holding p's rq->lock.
40767b0d
PZ
2240 *
2241 * XXX we should delay bw change until the task's 0-lag point, see
2242 * __setparam_dl().
332ac17e
DF
2243 */
2244static int dl_overflow(struct task_struct *p, int policy,
2245 const struct sched_attr *attr)
2246{
2247
2248 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2249 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2250 u64 runtime = attr->sched_runtime;
2251 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2252 int cpus, err = -1;
332ac17e
DF
2253
2254 if (new_bw == p->dl.dl_bw)
2255 return 0;
2256
2257 /*
2258 * Either if a task, enters, leave, or stays -deadline but changes
2259 * its parameters, we may need to update accordingly the total
2260 * allocated bandwidth of the container.
2261 */
2262 raw_spin_lock(&dl_b->lock);
de212f18 2263 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2264 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2265 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2266 __dl_add(dl_b, new_bw);
2267 err = 0;
2268 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2269 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2270 __dl_clear(dl_b, p->dl.dl_bw);
2271 __dl_add(dl_b, new_bw);
2272 err = 0;
2273 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2274 __dl_clear(dl_b, p->dl.dl_bw);
2275 err = 0;
2276 }
2277 raw_spin_unlock(&dl_b->lock);
2278
2279 return err;
2280}
2281
2282extern void init_dl_bw(struct dl_bw *dl_b);
2283
1da177e4
LT
2284/*
2285 * wake_up_new_task - wake up a newly created task for the first time.
2286 *
2287 * This function will do some initial scheduler statistics housekeeping
2288 * that must be done for every newly created context, then puts the task
2289 * on the runqueue and wakes it.
2290 */
3e51e3ed 2291void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2292{
2293 unsigned long flags;
dd41f596 2294 struct rq *rq;
fabf318e 2295
ab2515c4 2296 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2297#ifdef CONFIG_SMP
2298 /*
2299 * Fork balancing, do it here and not earlier because:
2300 * - cpus_allowed can change in the fork path
2301 * - any previously selected cpu might disappear through hotplug
fabf318e 2302 */
ac66f547 2303 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2304#endif
2305
a75cdaa9 2306 /* Initialize new task's runnable average */
540247fb 2307 init_entity_runnable_average(&p->se);
ab2515c4 2308 rq = __task_rq_lock(p);
cd29fe6f 2309 activate_task(rq, p, 0);
da0c1e65 2310 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2311 trace_sched_wakeup_new(p);
a7558e01 2312 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2313#ifdef CONFIG_SMP
efbbd05a
PZ
2314 if (p->sched_class->task_woken)
2315 p->sched_class->task_woken(rq, p);
9a897c5a 2316#endif
0122ec5b 2317 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2318}
2319
e107be36
AK
2320#ifdef CONFIG_PREEMPT_NOTIFIERS
2321
1cde2930
PZ
2322static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2323
2ecd9d29
PZ
2324void preempt_notifier_inc(void)
2325{
2326 static_key_slow_inc(&preempt_notifier_key);
2327}
2328EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2329
2330void preempt_notifier_dec(void)
2331{
2332 static_key_slow_dec(&preempt_notifier_key);
2333}
2334EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2335
e107be36 2336/**
80dd99b3 2337 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2338 * @notifier: notifier struct to register
e107be36
AK
2339 */
2340void preempt_notifier_register(struct preempt_notifier *notifier)
2341{
2ecd9d29
PZ
2342 if (!static_key_false(&preempt_notifier_key))
2343 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2344
e107be36
AK
2345 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2346}
2347EXPORT_SYMBOL_GPL(preempt_notifier_register);
2348
2349/**
2350 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2351 * @notifier: notifier struct to unregister
e107be36 2352 *
d84525a8 2353 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2354 */
2355void preempt_notifier_unregister(struct preempt_notifier *notifier)
2356{
2357 hlist_del(&notifier->link);
2358}
2359EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2360
1cde2930 2361static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2362{
2363 struct preempt_notifier *notifier;
e107be36 2364
b67bfe0d 2365 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2366 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2367}
2368
1cde2930
PZ
2369static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2370{
2371 if (static_key_false(&preempt_notifier_key))
2372 __fire_sched_in_preempt_notifiers(curr);
2373}
2374
e107be36 2375static void
1cde2930
PZ
2376__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2377 struct task_struct *next)
e107be36
AK
2378{
2379 struct preempt_notifier *notifier;
e107be36 2380
b67bfe0d 2381 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2382 notifier->ops->sched_out(notifier, next);
2383}
2384
1cde2930
PZ
2385static __always_inline void
2386fire_sched_out_preempt_notifiers(struct task_struct *curr,
2387 struct task_struct *next)
2388{
2389 if (static_key_false(&preempt_notifier_key))
2390 __fire_sched_out_preempt_notifiers(curr, next);
2391}
2392
6d6bc0ad 2393#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2394
1cde2930 2395static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2396{
2397}
2398
1cde2930 2399static inline void
e107be36
AK
2400fire_sched_out_preempt_notifiers(struct task_struct *curr,
2401 struct task_struct *next)
2402{
2403}
2404
6d6bc0ad 2405#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2406
4866cde0
NP
2407/**
2408 * prepare_task_switch - prepare to switch tasks
2409 * @rq: the runqueue preparing to switch
421cee29 2410 * @prev: the current task that is being switched out
4866cde0
NP
2411 * @next: the task we are going to switch to.
2412 *
2413 * This is called with the rq lock held and interrupts off. It must
2414 * be paired with a subsequent finish_task_switch after the context
2415 * switch.
2416 *
2417 * prepare_task_switch sets up locking and calls architecture specific
2418 * hooks.
2419 */
e107be36
AK
2420static inline void
2421prepare_task_switch(struct rq *rq, struct task_struct *prev,
2422 struct task_struct *next)
4866cde0 2423{
895dd92c 2424 trace_sched_switch(prev, next);
43148951 2425 sched_info_switch(rq, prev, next);
fe4b04fa 2426 perf_event_task_sched_out(prev, next);
e107be36 2427 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2428 prepare_lock_switch(rq, next);
2429 prepare_arch_switch(next);
2430}
2431
1da177e4
LT
2432/**
2433 * finish_task_switch - clean up after a task-switch
2434 * @prev: the thread we just switched away from.
2435 *
4866cde0
NP
2436 * finish_task_switch must be called after the context switch, paired
2437 * with a prepare_task_switch call before the context switch.
2438 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2439 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2440 *
2441 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2442 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2443 * with the lock held can cause deadlocks; see schedule() for
2444 * details.)
dfa50b60
ON
2445 *
2446 * The context switch have flipped the stack from under us and restored the
2447 * local variables which were saved when this task called schedule() in the
2448 * past. prev == current is still correct but we need to recalculate this_rq
2449 * because prev may have moved to another CPU.
1da177e4 2450 */
dfa50b60 2451static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2452 __releases(rq->lock)
2453{
dfa50b60 2454 struct rq *rq = this_rq();
1da177e4 2455 struct mm_struct *mm = rq->prev_mm;
55a101f8 2456 long prev_state;
1da177e4
LT
2457
2458 rq->prev_mm = NULL;
2459
2460 /*
2461 * A task struct has one reference for the use as "current".
c394cc9f 2462 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2463 * schedule one last time. The schedule call will never return, and
2464 * the scheduled task must drop that reference.
c394cc9f 2465 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2466 * still held, otherwise prev could be scheduled on another cpu, die
2467 * there before we look at prev->state, and then the reference would
2468 * be dropped twice.
2469 * Manfred Spraul <manfred@colorfullife.com>
2470 */
55a101f8 2471 prev_state = prev->state;
bf9fae9f 2472 vtime_task_switch(prev);
a8d757ef 2473 perf_event_task_sched_in(prev, current);
4866cde0 2474 finish_lock_switch(rq, prev);
01f23e16 2475 finish_arch_post_lock_switch();
e8fa1362 2476
e107be36 2477 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2478 if (mm)
2479 mmdrop(mm);
c394cc9f 2480 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2481 if (prev->sched_class->task_dead)
2482 prev->sched_class->task_dead(prev);
2483
c6fd91f0 2484 /*
2485 * Remove function-return probe instances associated with this
2486 * task and put them back on the free list.
9761eea8 2487 */
c6fd91f0 2488 kprobe_flush_task(prev);
1da177e4 2489 put_task_struct(prev);
c6fd91f0 2490 }
99e5ada9
FW
2491
2492 tick_nohz_task_switch(current);
dfa50b60 2493 return rq;
1da177e4
LT
2494}
2495
3f029d3c
GH
2496#ifdef CONFIG_SMP
2497
3f029d3c 2498/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2499static void __balance_callback(struct rq *rq)
3f029d3c 2500{
e3fca9e7
PZ
2501 struct callback_head *head, *next;
2502 void (*func)(struct rq *rq);
2503 unsigned long flags;
3f029d3c 2504
e3fca9e7
PZ
2505 raw_spin_lock_irqsave(&rq->lock, flags);
2506 head = rq->balance_callback;
2507 rq->balance_callback = NULL;
2508 while (head) {
2509 func = (void (*)(struct rq *))head->func;
2510 next = head->next;
2511 head->next = NULL;
2512 head = next;
3f029d3c 2513
e3fca9e7 2514 func(rq);
3f029d3c 2515 }
e3fca9e7
PZ
2516 raw_spin_unlock_irqrestore(&rq->lock, flags);
2517}
2518
2519static inline void balance_callback(struct rq *rq)
2520{
2521 if (unlikely(rq->balance_callback))
2522 __balance_callback(rq);
3f029d3c
GH
2523}
2524
2525#else
da19ab51 2526
e3fca9e7 2527static inline void balance_callback(struct rq *rq)
3f029d3c 2528{
1da177e4
LT
2529}
2530
3f029d3c
GH
2531#endif
2532
1da177e4
LT
2533/**
2534 * schedule_tail - first thing a freshly forked thread must call.
2535 * @prev: the thread we just switched away from.
2536 */
722a9f92 2537asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2538 __releases(rq->lock)
2539{
1a43a14a 2540 struct rq *rq;
da19ab51 2541
1a43a14a
ON
2542 /* finish_task_switch() drops rq->lock and enables preemtion */
2543 preempt_disable();
dfa50b60 2544 rq = finish_task_switch(prev);
e3fca9e7 2545 balance_callback(rq);
1a43a14a 2546 preempt_enable();
70b97a7f 2547
1da177e4 2548 if (current->set_child_tid)
b488893a 2549 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2550}
2551
2552/*
dfa50b60 2553 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2554 */
dfa50b60 2555static inline struct rq *
70b97a7f 2556context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2557 struct task_struct *next)
1da177e4 2558{
dd41f596 2559 struct mm_struct *mm, *oldmm;
1da177e4 2560
e107be36 2561 prepare_task_switch(rq, prev, next);
fe4b04fa 2562
dd41f596
IM
2563 mm = next->mm;
2564 oldmm = prev->active_mm;
9226d125
ZA
2565 /*
2566 * For paravirt, this is coupled with an exit in switch_to to
2567 * combine the page table reload and the switch backend into
2568 * one hypercall.
2569 */
224101ed 2570 arch_start_context_switch(prev);
9226d125 2571
31915ab4 2572 if (!mm) {
1da177e4
LT
2573 next->active_mm = oldmm;
2574 atomic_inc(&oldmm->mm_count);
2575 enter_lazy_tlb(oldmm, next);
2576 } else
2577 switch_mm(oldmm, mm, next);
2578
31915ab4 2579 if (!prev->mm) {
1da177e4 2580 prev->active_mm = NULL;
1da177e4
LT
2581 rq->prev_mm = oldmm;
2582 }
3a5f5e48
IM
2583 /*
2584 * Since the runqueue lock will be released by the next
2585 * task (which is an invalid locking op but in the case
2586 * of the scheduler it's an obvious special-case), so we
2587 * do an early lockdep release here:
2588 */
cbce1a68 2589 lockdep_unpin_lock(&rq->lock);
8a25d5de 2590 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2591
2592 /* Here we just switch the register state and the stack. */
2593 switch_to(prev, next, prev);
dd41f596 2594 barrier();
dfa50b60
ON
2595
2596 return finish_task_switch(prev);
1da177e4
LT
2597}
2598
2599/*
1c3e8264 2600 * nr_running and nr_context_switches:
1da177e4
LT
2601 *
2602 * externally visible scheduler statistics: current number of runnable
1c3e8264 2603 * threads, total number of context switches performed since bootup.
1da177e4
LT
2604 */
2605unsigned long nr_running(void)
2606{
2607 unsigned long i, sum = 0;
2608
2609 for_each_online_cpu(i)
2610 sum += cpu_rq(i)->nr_running;
2611
2612 return sum;
f711f609 2613}
1da177e4 2614
2ee507c4
TC
2615/*
2616 * Check if only the current task is running on the cpu.
2617 */
2618bool single_task_running(void)
2619{
2620 if (cpu_rq(smp_processor_id())->nr_running == 1)
2621 return true;
2622 else
2623 return false;
2624}
2625EXPORT_SYMBOL(single_task_running);
2626
1da177e4 2627unsigned long long nr_context_switches(void)
46cb4b7c 2628{
cc94abfc
SR
2629 int i;
2630 unsigned long long sum = 0;
46cb4b7c 2631
0a945022 2632 for_each_possible_cpu(i)
1da177e4 2633 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2634
1da177e4
LT
2635 return sum;
2636}
483b4ee6 2637
1da177e4
LT
2638unsigned long nr_iowait(void)
2639{
2640 unsigned long i, sum = 0;
483b4ee6 2641
0a945022 2642 for_each_possible_cpu(i)
1da177e4 2643 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2644
1da177e4
LT
2645 return sum;
2646}
483b4ee6 2647
8c215bd3 2648unsigned long nr_iowait_cpu(int cpu)
69d25870 2649{
8c215bd3 2650 struct rq *this = cpu_rq(cpu);
69d25870
AV
2651 return atomic_read(&this->nr_iowait);
2652}
46cb4b7c 2653
372ba8cb
MG
2654void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2655{
3289bdb4
PZ
2656 struct rq *rq = this_rq();
2657 *nr_waiters = atomic_read(&rq->nr_iowait);
2658 *load = rq->load.weight;
372ba8cb
MG
2659}
2660
dd41f596 2661#ifdef CONFIG_SMP
8a0be9ef 2662
46cb4b7c 2663/*
38022906
PZ
2664 * sched_exec - execve() is a valuable balancing opportunity, because at
2665 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2666 */
38022906 2667void sched_exec(void)
46cb4b7c 2668{
38022906 2669 struct task_struct *p = current;
1da177e4 2670 unsigned long flags;
0017d735 2671 int dest_cpu;
46cb4b7c 2672
8f42ced9 2673 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2674 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2675 if (dest_cpu == smp_processor_id())
2676 goto unlock;
38022906 2677
8f42ced9 2678 if (likely(cpu_active(dest_cpu))) {
969c7921 2679 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2680
8f42ced9
PZ
2681 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2682 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2683 return;
2684 }
0017d735 2685unlock:
8f42ced9 2686 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2687}
dd41f596 2688
1da177e4
LT
2689#endif
2690
1da177e4 2691DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2692DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2693
2694EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2695EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2696
c5f8d995
HS
2697/*
2698 * Return accounted runtime for the task.
2699 * In case the task is currently running, return the runtime plus current's
2700 * pending runtime that have not been accounted yet.
2701 */
2702unsigned long long task_sched_runtime(struct task_struct *p)
2703{
2704 unsigned long flags;
2705 struct rq *rq;
6e998916 2706 u64 ns;
c5f8d995 2707
911b2898
PZ
2708#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2709 /*
2710 * 64-bit doesn't need locks to atomically read a 64bit value.
2711 * So we have a optimization chance when the task's delta_exec is 0.
2712 * Reading ->on_cpu is racy, but this is ok.
2713 *
2714 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2715 * If we race with it entering cpu, unaccounted time is 0. This is
2716 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2717 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2718 * been accounted, so we're correct here as well.
911b2898 2719 */
da0c1e65 2720 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2721 return p->se.sum_exec_runtime;
2722#endif
2723
c5f8d995 2724 rq = task_rq_lock(p, &flags);
6e998916
SG
2725 /*
2726 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2727 * project cycles that may never be accounted to this
2728 * thread, breaking clock_gettime().
2729 */
2730 if (task_current(rq, p) && task_on_rq_queued(p)) {
2731 update_rq_clock(rq);
2732 p->sched_class->update_curr(rq);
2733 }
2734 ns = p->se.sum_exec_runtime;
0122ec5b 2735 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2736
2737 return ns;
2738}
48f24c4d 2739
7835b98b
CL
2740/*
2741 * This function gets called by the timer code, with HZ frequency.
2742 * We call it with interrupts disabled.
7835b98b
CL
2743 */
2744void scheduler_tick(void)
2745{
7835b98b
CL
2746 int cpu = smp_processor_id();
2747 struct rq *rq = cpu_rq(cpu);
dd41f596 2748 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2749
2750 sched_clock_tick();
dd41f596 2751
05fa785c 2752 raw_spin_lock(&rq->lock);
3e51f33f 2753 update_rq_clock(rq);
fa85ae24 2754 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2755 update_cpu_load_active(rq);
3289bdb4 2756 calc_global_load_tick(rq);
05fa785c 2757 raw_spin_unlock(&rq->lock);
7835b98b 2758
e9d2b064 2759 perf_event_task_tick();
e220d2dc 2760
e418e1c2 2761#ifdef CONFIG_SMP
6eb57e0d 2762 rq->idle_balance = idle_cpu(cpu);
7caff66f 2763 trigger_load_balance(rq);
e418e1c2 2764#endif
265f22a9 2765 rq_last_tick_reset(rq);
1da177e4
LT
2766}
2767
265f22a9
FW
2768#ifdef CONFIG_NO_HZ_FULL
2769/**
2770 * scheduler_tick_max_deferment
2771 *
2772 * Keep at least one tick per second when a single
2773 * active task is running because the scheduler doesn't
2774 * yet completely support full dynticks environment.
2775 *
2776 * This makes sure that uptime, CFS vruntime, load
2777 * balancing, etc... continue to move forward, even
2778 * with a very low granularity.
e69f6186
YB
2779 *
2780 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2781 */
2782u64 scheduler_tick_max_deferment(void)
2783{
2784 struct rq *rq = this_rq();
316c1608 2785 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2786
2787 next = rq->last_sched_tick + HZ;
2788
2789 if (time_before_eq(next, now))
2790 return 0;
2791
8fe8ff09 2792 return jiffies_to_nsecs(next - now);
1da177e4 2793}
265f22a9 2794#endif
1da177e4 2795
132380a0 2796notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2797{
2798 if (in_lock_functions(addr)) {
2799 addr = CALLER_ADDR2;
2800 if (in_lock_functions(addr))
2801 addr = CALLER_ADDR3;
2802 }
2803 return addr;
2804}
1da177e4 2805
7e49fcce
SR
2806#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2807 defined(CONFIG_PREEMPT_TRACER))
2808
edafe3a5 2809void preempt_count_add(int val)
1da177e4 2810{
6cd8a4bb 2811#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2812 /*
2813 * Underflow?
2814 */
9a11b49a
IM
2815 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2816 return;
6cd8a4bb 2817#endif
bdb43806 2818 __preempt_count_add(val);
6cd8a4bb 2819#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2820 /*
2821 * Spinlock count overflowing soon?
2822 */
33859f7f
MOS
2823 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2824 PREEMPT_MASK - 10);
6cd8a4bb 2825#endif
8f47b187
TG
2826 if (preempt_count() == val) {
2827 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2828#ifdef CONFIG_DEBUG_PREEMPT
2829 current->preempt_disable_ip = ip;
2830#endif
2831 trace_preempt_off(CALLER_ADDR0, ip);
2832 }
1da177e4 2833}
bdb43806 2834EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2835NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2836
edafe3a5 2837void preempt_count_sub(int val)
1da177e4 2838{
6cd8a4bb 2839#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2840 /*
2841 * Underflow?
2842 */
01e3eb82 2843 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2844 return;
1da177e4
LT
2845 /*
2846 * Is the spinlock portion underflowing?
2847 */
9a11b49a
IM
2848 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2849 !(preempt_count() & PREEMPT_MASK)))
2850 return;
6cd8a4bb 2851#endif
9a11b49a 2852
6cd8a4bb
SR
2853 if (preempt_count() == val)
2854 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2855 __preempt_count_sub(val);
1da177e4 2856}
bdb43806 2857EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2858NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2859
2860#endif
2861
2862/*
dd41f596 2863 * Print scheduling while atomic bug:
1da177e4 2864 */
dd41f596 2865static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2866{
664dfa65
DJ
2867 if (oops_in_progress)
2868 return;
2869
3df0fc5b
PZ
2870 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2871 prev->comm, prev->pid, preempt_count());
838225b4 2872
dd41f596 2873 debug_show_held_locks(prev);
e21f5b15 2874 print_modules();
dd41f596
IM
2875 if (irqs_disabled())
2876 print_irqtrace_events(prev);
8f47b187
TG
2877#ifdef CONFIG_DEBUG_PREEMPT
2878 if (in_atomic_preempt_off()) {
2879 pr_err("Preemption disabled at:");
2880 print_ip_sym(current->preempt_disable_ip);
2881 pr_cont("\n");
2882 }
2883#endif
6135fc1e 2884 dump_stack();
373d4d09 2885 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2886}
1da177e4 2887
dd41f596
IM
2888/*
2889 * Various schedule()-time debugging checks and statistics:
2890 */
2891static inline void schedule_debug(struct task_struct *prev)
2892{
0d9e2632
AT
2893#ifdef CONFIG_SCHED_STACK_END_CHECK
2894 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2895#endif
1da177e4 2896 /*
41a2d6cf 2897 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2898 * schedule() atomically, we ignore that path. Otherwise whine
2899 * if we are scheduling when we should not.
1da177e4 2900 */
192301e7 2901 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2902 __schedule_bug(prev);
b3fbab05 2903 rcu_sleep_check();
dd41f596 2904
1da177e4
LT
2905 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2906
2d72376b 2907 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2908}
2909
2910/*
2911 * Pick up the highest-prio task:
2912 */
2913static inline struct task_struct *
606dba2e 2914pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2915{
37e117c0 2916 const struct sched_class *class = &fair_sched_class;
dd41f596 2917 struct task_struct *p;
1da177e4
LT
2918
2919 /*
dd41f596
IM
2920 * Optimization: we know that if all tasks are in
2921 * the fair class we can call that function directly:
1da177e4 2922 */
37e117c0 2923 if (likely(prev->sched_class == class &&
38033c37 2924 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2925 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2926 if (unlikely(p == RETRY_TASK))
2927 goto again;
2928
2929 /* assumes fair_sched_class->next == idle_sched_class */
2930 if (unlikely(!p))
2931 p = idle_sched_class.pick_next_task(rq, prev);
2932
2933 return p;
1da177e4
LT
2934 }
2935
37e117c0 2936again:
34f971f6 2937 for_each_class(class) {
606dba2e 2938 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2939 if (p) {
2940 if (unlikely(p == RETRY_TASK))
2941 goto again;
dd41f596 2942 return p;
37e117c0 2943 }
dd41f596 2944 }
34f971f6
PZ
2945
2946 BUG(); /* the idle class will always have a runnable task */
dd41f596 2947}
1da177e4 2948
dd41f596 2949/*
c259e01a 2950 * __schedule() is the main scheduler function.
edde96ea
PE
2951 *
2952 * The main means of driving the scheduler and thus entering this function are:
2953 *
2954 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2955 *
2956 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2957 * paths. For example, see arch/x86/entry_64.S.
2958 *
2959 * To drive preemption between tasks, the scheduler sets the flag in timer
2960 * interrupt handler scheduler_tick().
2961 *
2962 * 3. Wakeups don't really cause entry into schedule(). They add a
2963 * task to the run-queue and that's it.
2964 *
2965 * Now, if the new task added to the run-queue preempts the current
2966 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2967 * called on the nearest possible occasion:
2968 *
2969 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2970 *
2971 * - in syscall or exception context, at the next outmost
2972 * preempt_enable(). (this might be as soon as the wake_up()'s
2973 * spin_unlock()!)
2974 *
2975 * - in IRQ context, return from interrupt-handler to
2976 * preemptible context
2977 *
2978 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2979 * then at the next:
2980 *
2981 * - cond_resched() call
2982 * - explicit schedule() call
2983 * - return from syscall or exception to user-space
2984 * - return from interrupt-handler to user-space
bfd9b2b5 2985 *
b30f0e3f 2986 * WARNING: must be called with preemption disabled!
dd41f596 2987 */
c259e01a 2988static void __sched __schedule(void)
dd41f596
IM
2989{
2990 struct task_struct *prev, *next;
67ca7bde 2991 unsigned long *switch_count;
dd41f596 2992 struct rq *rq;
31656519 2993 int cpu;
dd41f596 2994
dd41f596
IM
2995 cpu = smp_processor_id();
2996 rq = cpu_rq(cpu);
38200cf2 2997 rcu_note_context_switch();
dd41f596 2998 prev = rq->curr;
dd41f596 2999
dd41f596 3000 schedule_debug(prev);
1da177e4 3001
31656519 3002 if (sched_feat(HRTICK))
f333fdc9 3003 hrtick_clear(rq);
8f4d37ec 3004
e0acd0a6
ON
3005 /*
3006 * Make sure that signal_pending_state()->signal_pending() below
3007 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3008 * done by the caller to avoid the race with signal_wake_up().
3009 */
3010 smp_mb__before_spinlock();
05fa785c 3011 raw_spin_lock_irq(&rq->lock);
cbce1a68 3012 lockdep_pin_lock(&rq->lock);
1da177e4 3013
9edfbfed
PZ
3014 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3015
246d86b5 3016 switch_count = &prev->nivcsw;
1da177e4 3017 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3018 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3019 prev->state = TASK_RUNNING;
21aa9af0 3020 } else {
2acca55e
PZ
3021 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3022 prev->on_rq = 0;
3023
21aa9af0 3024 /*
2acca55e
PZ
3025 * If a worker went to sleep, notify and ask workqueue
3026 * whether it wants to wake up a task to maintain
3027 * concurrency.
21aa9af0
TH
3028 */
3029 if (prev->flags & PF_WQ_WORKER) {
3030 struct task_struct *to_wakeup;
3031
3032 to_wakeup = wq_worker_sleeping(prev, cpu);
3033 if (to_wakeup)
3034 try_to_wake_up_local(to_wakeup);
3035 }
21aa9af0 3036 }
dd41f596 3037 switch_count = &prev->nvcsw;
1da177e4
LT
3038 }
3039
9edfbfed 3040 if (task_on_rq_queued(prev))
606dba2e
PZ
3041 update_rq_clock(rq);
3042
3043 next = pick_next_task(rq, prev);
f26f9aff 3044 clear_tsk_need_resched(prev);
f27dde8d 3045 clear_preempt_need_resched();
9edfbfed 3046 rq->clock_skip_update = 0;
1da177e4 3047
1da177e4 3048 if (likely(prev != next)) {
1da177e4
LT
3049 rq->nr_switches++;
3050 rq->curr = next;
3051 ++*switch_count;
3052
dfa50b60
ON
3053 rq = context_switch(rq, prev, next); /* unlocks the rq */
3054 cpu = cpu_of(rq);
cbce1a68
PZ
3055 } else {
3056 lockdep_unpin_lock(&rq->lock);
05fa785c 3057 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3058 }
1da177e4 3059
e3fca9e7 3060 balance_callback(rq);
1da177e4 3061}
c259e01a 3062
9c40cef2
TG
3063static inline void sched_submit_work(struct task_struct *tsk)
3064{
3c7d5184 3065 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3066 return;
3067 /*
3068 * If we are going to sleep and we have plugged IO queued,
3069 * make sure to submit it to avoid deadlocks.
3070 */
3071 if (blk_needs_flush_plug(tsk))
3072 blk_schedule_flush_plug(tsk);
3073}
3074
722a9f92 3075asmlinkage __visible void __sched schedule(void)
c259e01a 3076{
9c40cef2
TG
3077 struct task_struct *tsk = current;
3078
3079 sched_submit_work(tsk);
bfd9b2b5 3080 do {
b30f0e3f 3081 preempt_disable();
bfd9b2b5 3082 __schedule();
b30f0e3f 3083 sched_preempt_enable_no_resched();
bfd9b2b5 3084 } while (need_resched());
c259e01a 3085}
1da177e4
LT
3086EXPORT_SYMBOL(schedule);
3087
91d1aa43 3088#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3089asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3090{
3091 /*
3092 * If we come here after a random call to set_need_resched(),
3093 * or we have been woken up remotely but the IPI has not yet arrived,
3094 * we haven't yet exited the RCU idle mode. Do it here manually until
3095 * we find a better solution.
7cc78f8f
AL
3096 *
3097 * NB: There are buggy callers of this function. Ideally we
c467ea76 3098 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3099 * too frequently to make sense yet.
20ab65e3 3100 */
7cc78f8f 3101 enum ctx_state prev_state = exception_enter();
20ab65e3 3102 schedule();
7cc78f8f 3103 exception_exit(prev_state);
20ab65e3
FW
3104}
3105#endif
3106
c5491ea7
TG
3107/**
3108 * schedule_preempt_disabled - called with preemption disabled
3109 *
3110 * Returns with preemption disabled. Note: preempt_count must be 1
3111 */
3112void __sched schedule_preempt_disabled(void)
3113{
ba74c144 3114 sched_preempt_enable_no_resched();
c5491ea7
TG
3115 schedule();
3116 preempt_disable();
3117}
3118
06b1f808 3119static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3120{
3121 do {
b30f0e3f 3122 preempt_active_enter();
a18b5d01 3123 __schedule();
b30f0e3f 3124 preempt_active_exit();
a18b5d01
FW
3125
3126 /*
3127 * Check again in case we missed a preemption opportunity
3128 * between schedule and now.
3129 */
a18b5d01
FW
3130 } while (need_resched());
3131}
3132
1da177e4
LT
3133#ifdef CONFIG_PREEMPT
3134/*
2ed6e34f 3135 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3136 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3137 * occur there and call schedule directly.
3138 */
722a9f92 3139asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3140{
1da177e4
LT
3141 /*
3142 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3143 * we do not want to preempt the current task. Just return..
1da177e4 3144 */
fbb00b56 3145 if (likely(!preemptible()))
1da177e4
LT
3146 return;
3147
a18b5d01 3148 preempt_schedule_common();
1da177e4 3149}
376e2424 3150NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3151EXPORT_SYMBOL(preempt_schedule);
009f60e2 3152
009f60e2 3153/**
4eaca0a8 3154 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3155 *
3156 * The tracing infrastructure uses preempt_enable_notrace to prevent
3157 * recursion and tracing preempt enabling caused by the tracing
3158 * infrastructure itself. But as tracing can happen in areas coming
3159 * from userspace or just about to enter userspace, a preempt enable
3160 * can occur before user_exit() is called. This will cause the scheduler
3161 * to be called when the system is still in usermode.
3162 *
3163 * To prevent this, the preempt_enable_notrace will use this function
3164 * instead of preempt_schedule() to exit user context if needed before
3165 * calling the scheduler.
3166 */
4eaca0a8 3167asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3168{
3169 enum ctx_state prev_ctx;
3170
3171 if (likely(!preemptible()))
3172 return;
3173
3174 do {
be690035
FW
3175 /*
3176 * Use raw __prempt_count() ops that don't call function.
3177 * We can't call functions before disabling preemption which
3178 * disarm preemption tracing recursions.
3179 */
3180 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3181 barrier();
009f60e2
ON
3182 /*
3183 * Needs preempt disabled in case user_exit() is traced
3184 * and the tracer calls preempt_enable_notrace() causing
3185 * an infinite recursion.
3186 */
3187 prev_ctx = exception_enter();
3188 __schedule();
3189 exception_exit(prev_ctx);
3190
009f60e2 3191 barrier();
be690035 3192 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
3193 } while (need_resched());
3194}
4eaca0a8 3195EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3196
32e475d7 3197#endif /* CONFIG_PREEMPT */
1da177e4
LT
3198
3199/*
2ed6e34f 3200 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3201 * off of irq context.
3202 * Note, that this is called and return with irqs disabled. This will
3203 * protect us against recursive calling from irq.
3204 */
722a9f92 3205asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3206{
b22366cd 3207 enum ctx_state prev_state;
6478d880 3208
2ed6e34f 3209 /* Catch callers which need to be fixed */
f27dde8d 3210 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3211
b22366cd
FW
3212 prev_state = exception_enter();
3213
3a5c359a 3214 do {
b30f0e3f 3215 preempt_active_enter();
3a5c359a 3216 local_irq_enable();
c259e01a 3217 __schedule();
3a5c359a 3218 local_irq_disable();
b30f0e3f 3219 preempt_active_exit();
5ed0cec0 3220 } while (need_resched());
b22366cd
FW
3221
3222 exception_exit(prev_state);
1da177e4
LT
3223}
3224
63859d4f 3225int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3226 void *key)
1da177e4 3227{
63859d4f 3228 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3229}
1da177e4
LT
3230EXPORT_SYMBOL(default_wake_function);
3231
b29739f9
IM
3232#ifdef CONFIG_RT_MUTEXES
3233
3234/*
3235 * rt_mutex_setprio - set the current priority of a task
3236 * @p: task
3237 * @prio: prio value (kernel-internal form)
3238 *
3239 * This function changes the 'effective' priority of a task. It does
3240 * not touch ->normal_prio like __setscheduler().
3241 *
c365c292
TG
3242 * Used by the rt_mutex code to implement priority inheritance
3243 * logic. Call site only calls if the priority of the task changed.
b29739f9 3244 */
36c8b586 3245void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3246{
da0c1e65 3247 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3248 struct rq *rq;
83ab0aa0 3249 const struct sched_class *prev_class;
b29739f9 3250
aab03e05 3251 BUG_ON(prio > MAX_PRIO);
b29739f9 3252
0122ec5b 3253 rq = __task_rq_lock(p);
b29739f9 3254
1c4dd99b
TG
3255 /*
3256 * Idle task boosting is a nono in general. There is one
3257 * exception, when PREEMPT_RT and NOHZ is active:
3258 *
3259 * The idle task calls get_next_timer_interrupt() and holds
3260 * the timer wheel base->lock on the CPU and another CPU wants
3261 * to access the timer (probably to cancel it). We can safely
3262 * ignore the boosting request, as the idle CPU runs this code
3263 * with interrupts disabled and will complete the lock
3264 * protected section without being interrupted. So there is no
3265 * real need to boost.
3266 */
3267 if (unlikely(p == rq->idle)) {
3268 WARN_ON(p != rq->curr);
3269 WARN_ON(p->pi_blocked_on);
3270 goto out_unlock;
3271 }
3272
a8027073 3273 trace_sched_pi_setprio(p, prio);
d5f9f942 3274 oldprio = p->prio;
83ab0aa0 3275 prev_class = p->sched_class;
da0c1e65 3276 queued = task_on_rq_queued(p);
051a1d1a 3277 running = task_current(rq, p);
da0c1e65 3278 if (queued)
69be72c1 3279 dequeue_task(rq, p, 0);
0e1f3483 3280 if (running)
f3cd1c4e 3281 put_prev_task(rq, p);
dd41f596 3282
2d3d891d
DF
3283 /*
3284 * Boosting condition are:
3285 * 1. -rt task is running and holds mutex A
3286 * --> -dl task blocks on mutex A
3287 *
3288 * 2. -dl task is running and holds mutex A
3289 * --> -dl task blocks on mutex A and could preempt the
3290 * running task
3291 */
3292 if (dl_prio(prio)) {
466af29b
ON
3293 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3294 if (!dl_prio(p->normal_prio) ||
3295 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3296 p->dl.dl_boosted = 1;
2d3d891d
DF
3297 enqueue_flag = ENQUEUE_REPLENISH;
3298 } else
3299 p->dl.dl_boosted = 0;
aab03e05 3300 p->sched_class = &dl_sched_class;
2d3d891d
DF
3301 } else if (rt_prio(prio)) {
3302 if (dl_prio(oldprio))
3303 p->dl.dl_boosted = 0;
3304 if (oldprio < prio)
3305 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3306 p->sched_class = &rt_sched_class;
2d3d891d
DF
3307 } else {
3308 if (dl_prio(oldprio))
3309 p->dl.dl_boosted = 0;
746db944
BS
3310 if (rt_prio(oldprio))
3311 p->rt.timeout = 0;
dd41f596 3312 p->sched_class = &fair_sched_class;
2d3d891d 3313 }
dd41f596 3314
b29739f9
IM
3315 p->prio = prio;
3316
0e1f3483
HS
3317 if (running)
3318 p->sched_class->set_curr_task(rq);
da0c1e65 3319 if (queued)
2d3d891d 3320 enqueue_task(rq, p, enqueue_flag);
cb469845 3321
da7a735e 3322 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3323out_unlock:
4c9a4bc8 3324 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3325 __task_rq_unlock(rq);
4c9a4bc8
PZ
3326
3327 balance_callback(rq);
3328 preempt_enable();
b29739f9 3329}
b29739f9 3330#endif
d50dde5a 3331
36c8b586 3332void set_user_nice(struct task_struct *p, long nice)
1da177e4 3333{
da0c1e65 3334 int old_prio, delta, queued;
1da177e4 3335 unsigned long flags;
70b97a7f 3336 struct rq *rq;
1da177e4 3337
75e45d51 3338 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3339 return;
3340 /*
3341 * We have to be careful, if called from sys_setpriority(),
3342 * the task might be in the middle of scheduling on another CPU.
3343 */
3344 rq = task_rq_lock(p, &flags);
3345 /*
3346 * The RT priorities are set via sched_setscheduler(), but we still
3347 * allow the 'normal' nice value to be set - but as expected
3348 * it wont have any effect on scheduling until the task is
aab03e05 3349 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3350 */
aab03e05 3351 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3352 p->static_prio = NICE_TO_PRIO(nice);
3353 goto out_unlock;
3354 }
da0c1e65
KT
3355 queued = task_on_rq_queued(p);
3356 if (queued)
69be72c1 3357 dequeue_task(rq, p, 0);
1da177e4 3358
1da177e4 3359 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3360 set_load_weight(p);
b29739f9
IM
3361 old_prio = p->prio;
3362 p->prio = effective_prio(p);
3363 delta = p->prio - old_prio;
1da177e4 3364
da0c1e65 3365 if (queued) {
371fd7e7 3366 enqueue_task(rq, p, 0);
1da177e4 3367 /*
d5f9f942
AM
3368 * If the task increased its priority or is running and
3369 * lowered its priority, then reschedule its CPU:
1da177e4 3370 */
d5f9f942 3371 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3372 resched_curr(rq);
1da177e4
LT
3373 }
3374out_unlock:
0122ec5b 3375 task_rq_unlock(rq, p, &flags);
1da177e4 3376}
1da177e4
LT
3377EXPORT_SYMBOL(set_user_nice);
3378
e43379f1
MM
3379/*
3380 * can_nice - check if a task can reduce its nice value
3381 * @p: task
3382 * @nice: nice value
3383 */
36c8b586 3384int can_nice(const struct task_struct *p, const int nice)
e43379f1 3385{
024f4747 3386 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3387 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3388
78d7d407 3389 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3390 capable(CAP_SYS_NICE));
3391}
3392
1da177e4
LT
3393#ifdef __ARCH_WANT_SYS_NICE
3394
3395/*
3396 * sys_nice - change the priority of the current process.
3397 * @increment: priority increment
3398 *
3399 * sys_setpriority is a more generic, but much slower function that
3400 * does similar things.
3401 */
5add95d4 3402SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3403{
48f24c4d 3404 long nice, retval;
1da177e4
LT
3405
3406 /*
3407 * Setpriority might change our priority at the same moment.
3408 * We don't have to worry. Conceptually one call occurs first
3409 * and we have a single winner.
3410 */
a9467fa3 3411 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3412 nice = task_nice(current) + increment;
1da177e4 3413
a9467fa3 3414 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3415 if (increment < 0 && !can_nice(current, nice))
3416 return -EPERM;
3417
1da177e4
LT
3418 retval = security_task_setnice(current, nice);
3419 if (retval)
3420 return retval;
3421
3422 set_user_nice(current, nice);
3423 return 0;
3424}
3425
3426#endif
3427
3428/**
3429 * task_prio - return the priority value of a given task.
3430 * @p: the task in question.
3431 *
e69f6186 3432 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3433 * RT tasks are offset by -200. Normal tasks are centered
3434 * around 0, value goes from -16 to +15.
3435 */
36c8b586 3436int task_prio(const struct task_struct *p)
1da177e4
LT
3437{
3438 return p->prio - MAX_RT_PRIO;
3439}
3440
1da177e4
LT
3441/**
3442 * idle_cpu - is a given cpu idle currently?
3443 * @cpu: the processor in question.
e69f6186
YB
3444 *
3445 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3446 */
3447int idle_cpu(int cpu)
3448{
908a3283
TG
3449 struct rq *rq = cpu_rq(cpu);
3450
3451 if (rq->curr != rq->idle)
3452 return 0;
3453
3454 if (rq->nr_running)
3455 return 0;
3456
3457#ifdef CONFIG_SMP
3458 if (!llist_empty(&rq->wake_list))
3459 return 0;
3460#endif
3461
3462 return 1;
1da177e4
LT
3463}
3464
1da177e4
LT
3465/**
3466 * idle_task - return the idle task for a given cpu.
3467 * @cpu: the processor in question.
e69f6186
YB
3468 *
3469 * Return: The idle task for the cpu @cpu.
1da177e4 3470 */
36c8b586 3471struct task_struct *idle_task(int cpu)
1da177e4
LT
3472{
3473 return cpu_rq(cpu)->idle;
3474}
3475
3476/**
3477 * find_process_by_pid - find a process with a matching PID value.
3478 * @pid: the pid in question.
e69f6186
YB
3479 *
3480 * The task of @pid, if found. %NULL otherwise.
1da177e4 3481 */
a9957449 3482static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3483{
228ebcbe 3484 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3485}
3486
aab03e05
DF
3487/*
3488 * This function initializes the sched_dl_entity of a newly becoming
3489 * SCHED_DEADLINE task.
3490 *
3491 * Only the static values are considered here, the actual runtime and the
3492 * absolute deadline will be properly calculated when the task is enqueued
3493 * for the first time with its new policy.
3494 */
3495static void
3496__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3497{
3498 struct sched_dl_entity *dl_se = &p->dl;
3499
aab03e05
DF
3500 dl_se->dl_runtime = attr->sched_runtime;
3501 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3502 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3503 dl_se->flags = attr->sched_flags;
332ac17e 3504 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3505
3506 /*
3507 * Changing the parameters of a task is 'tricky' and we're not doing
3508 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3509 *
3510 * What we SHOULD do is delay the bandwidth release until the 0-lag
3511 * point. This would include retaining the task_struct until that time
3512 * and change dl_overflow() to not immediately decrement the current
3513 * amount.
3514 *
3515 * Instead we retain the current runtime/deadline and let the new
3516 * parameters take effect after the current reservation period lapses.
3517 * This is safe (albeit pessimistic) because the 0-lag point is always
3518 * before the current scheduling deadline.
3519 *
3520 * We can still have temporary overloads because we do not delay the
3521 * change in bandwidth until that time; so admission control is
3522 * not on the safe side. It does however guarantee tasks will never
3523 * consume more than promised.
3524 */
aab03e05
DF
3525}
3526
c13db6b1
SR
3527/*
3528 * sched_setparam() passes in -1 for its policy, to let the functions
3529 * it calls know not to change it.
3530 */
3531#define SETPARAM_POLICY -1
3532
c365c292
TG
3533static void __setscheduler_params(struct task_struct *p,
3534 const struct sched_attr *attr)
1da177e4 3535{
d50dde5a
DF
3536 int policy = attr->sched_policy;
3537
c13db6b1 3538 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3539 policy = p->policy;
3540
1da177e4 3541 p->policy = policy;
d50dde5a 3542
aab03e05
DF
3543 if (dl_policy(policy))
3544 __setparam_dl(p, attr);
39fd8fd2 3545 else if (fair_policy(policy))
d50dde5a
DF
3546 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3547
39fd8fd2
PZ
3548 /*
3549 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3550 * !rt_policy. Always setting this ensures that things like
3551 * getparam()/getattr() don't report silly values for !rt tasks.
3552 */
3553 p->rt_priority = attr->sched_priority;
383afd09 3554 p->normal_prio = normal_prio(p);
c365c292
TG
3555 set_load_weight(p);
3556}
39fd8fd2 3557
c365c292
TG
3558/* Actually do priority change: must hold pi & rq lock. */
3559static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3560 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3561{
3562 __setscheduler_params(p, attr);
d50dde5a 3563
383afd09 3564 /*
0782e63b
TG
3565 * Keep a potential priority boosting if called from
3566 * sched_setscheduler().
383afd09 3567 */
0782e63b
TG
3568 if (keep_boost)
3569 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3570 else
3571 p->prio = normal_prio(p);
383afd09 3572
aab03e05
DF
3573 if (dl_prio(p->prio))
3574 p->sched_class = &dl_sched_class;
3575 else if (rt_prio(p->prio))
ffd44db5
PZ
3576 p->sched_class = &rt_sched_class;
3577 else
3578 p->sched_class = &fair_sched_class;
1da177e4 3579}
aab03e05
DF
3580
3581static void
3582__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3583{
3584 struct sched_dl_entity *dl_se = &p->dl;
3585
3586 attr->sched_priority = p->rt_priority;
3587 attr->sched_runtime = dl_se->dl_runtime;
3588 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3589 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3590 attr->sched_flags = dl_se->flags;
3591}
3592
3593/*
3594 * This function validates the new parameters of a -deadline task.
3595 * We ask for the deadline not being zero, and greater or equal
755378a4 3596 * than the runtime, as well as the period of being zero or
332ac17e 3597 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3598 * user parameters are above the internal resolution of 1us (we
3599 * check sched_runtime only since it is always the smaller one) and
3600 * below 2^63 ns (we have to check both sched_deadline and
3601 * sched_period, as the latter can be zero).
aab03e05
DF
3602 */
3603static bool
3604__checkparam_dl(const struct sched_attr *attr)
3605{
b0827819
JL
3606 /* deadline != 0 */
3607 if (attr->sched_deadline == 0)
3608 return false;
3609
3610 /*
3611 * Since we truncate DL_SCALE bits, make sure we're at least
3612 * that big.
3613 */
3614 if (attr->sched_runtime < (1ULL << DL_SCALE))
3615 return false;
3616
3617 /*
3618 * Since we use the MSB for wrap-around and sign issues, make
3619 * sure it's not set (mind that period can be equal to zero).
3620 */
3621 if (attr->sched_deadline & (1ULL << 63) ||
3622 attr->sched_period & (1ULL << 63))
3623 return false;
3624
3625 /* runtime <= deadline <= period (if period != 0) */
3626 if ((attr->sched_period != 0 &&
3627 attr->sched_period < attr->sched_deadline) ||
3628 attr->sched_deadline < attr->sched_runtime)
3629 return false;
3630
3631 return true;
aab03e05
DF
3632}
3633
c69e8d9c
DH
3634/*
3635 * check the target process has a UID that matches the current process's
3636 */
3637static bool check_same_owner(struct task_struct *p)
3638{
3639 const struct cred *cred = current_cred(), *pcred;
3640 bool match;
3641
3642 rcu_read_lock();
3643 pcred = __task_cred(p);
9c806aa0
EB
3644 match = (uid_eq(cred->euid, pcred->euid) ||
3645 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3646 rcu_read_unlock();
3647 return match;
3648}
3649
75381608
WL
3650static bool dl_param_changed(struct task_struct *p,
3651 const struct sched_attr *attr)
3652{
3653 struct sched_dl_entity *dl_se = &p->dl;
3654
3655 if (dl_se->dl_runtime != attr->sched_runtime ||
3656 dl_se->dl_deadline != attr->sched_deadline ||
3657 dl_se->dl_period != attr->sched_period ||
3658 dl_se->flags != attr->sched_flags)
3659 return true;
3660
3661 return false;
3662}
3663
d50dde5a
DF
3664static int __sched_setscheduler(struct task_struct *p,
3665 const struct sched_attr *attr,
dbc7f069 3666 bool user, bool pi)
1da177e4 3667{
383afd09
SR
3668 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3669 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3670 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3671 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3672 unsigned long flags;
83ab0aa0 3673 const struct sched_class *prev_class;
70b97a7f 3674 struct rq *rq;
ca94c442 3675 int reset_on_fork;
1da177e4 3676
66e5393a
SR
3677 /* may grab non-irq protected spin_locks */
3678 BUG_ON(in_interrupt());
1da177e4
LT
3679recheck:
3680 /* double check policy once rq lock held */
ca94c442
LP
3681 if (policy < 0) {
3682 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3683 policy = oldpolicy = p->policy;
ca94c442 3684 } else {
7479f3c9 3685 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3686
aab03e05
DF
3687 if (policy != SCHED_DEADLINE &&
3688 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3689 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3690 policy != SCHED_IDLE)
3691 return -EINVAL;
3692 }
3693
7479f3c9
PZ
3694 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3695 return -EINVAL;
3696
1da177e4
LT
3697 /*
3698 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3699 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3700 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3701 */
0bb040a4 3702 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3703 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3704 return -EINVAL;
aab03e05
DF
3705 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3706 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3707 return -EINVAL;
3708
37e4ab3f
OC
3709 /*
3710 * Allow unprivileged RT tasks to decrease priority:
3711 */
961ccddd 3712 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3713 if (fair_policy(policy)) {
d0ea0268 3714 if (attr->sched_nice < task_nice(p) &&
eaad4513 3715 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3716 return -EPERM;
3717 }
3718
e05606d3 3719 if (rt_policy(policy)) {
a44702e8
ON
3720 unsigned long rlim_rtprio =
3721 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3722
3723 /* can't set/change the rt policy */
3724 if (policy != p->policy && !rlim_rtprio)
3725 return -EPERM;
3726
3727 /* can't increase priority */
d50dde5a
DF
3728 if (attr->sched_priority > p->rt_priority &&
3729 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3730 return -EPERM;
3731 }
c02aa73b 3732
d44753b8
JL
3733 /*
3734 * Can't set/change SCHED_DEADLINE policy at all for now
3735 * (safest behavior); in the future we would like to allow
3736 * unprivileged DL tasks to increase their relative deadline
3737 * or reduce their runtime (both ways reducing utilization)
3738 */
3739 if (dl_policy(policy))
3740 return -EPERM;
3741
dd41f596 3742 /*
c02aa73b
DH
3743 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3744 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3745 */
c02aa73b 3746 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3747 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3748 return -EPERM;
3749 }
5fe1d75f 3750
37e4ab3f 3751 /* can't change other user's priorities */
c69e8d9c 3752 if (!check_same_owner(p))
37e4ab3f 3753 return -EPERM;
ca94c442
LP
3754
3755 /* Normal users shall not reset the sched_reset_on_fork flag */
3756 if (p->sched_reset_on_fork && !reset_on_fork)
3757 return -EPERM;
37e4ab3f 3758 }
1da177e4 3759
725aad24 3760 if (user) {
b0ae1981 3761 retval = security_task_setscheduler(p);
725aad24
JF
3762 if (retval)
3763 return retval;
3764 }
3765
b29739f9
IM
3766 /*
3767 * make sure no PI-waiters arrive (or leave) while we are
3768 * changing the priority of the task:
0122ec5b 3769 *
25985edc 3770 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3771 * runqueue lock must be held.
3772 */
0122ec5b 3773 rq = task_rq_lock(p, &flags);
dc61b1d6 3774
34f971f6
PZ
3775 /*
3776 * Changing the policy of the stop threads its a very bad idea
3777 */
3778 if (p == rq->stop) {
0122ec5b 3779 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3780 return -EINVAL;
3781 }
3782
a51e9198 3783 /*
d6b1e911
TG
3784 * If not changing anything there's no need to proceed further,
3785 * but store a possible modification of reset_on_fork.
a51e9198 3786 */
d50dde5a 3787 if (unlikely(policy == p->policy)) {
d0ea0268 3788 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3789 goto change;
3790 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3791 goto change;
75381608 3792 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3793 goto change;
d50dde5a 3794
d6b1e911 3795 p->sched_reset_on_fork = reset_on_fork;
45afb173 3796 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3797 return 0;
3798 }
d50dde5a 3799change:
a51e9198 3800
dc61b1d6 3801 if (user) {
332ac17e 3802#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3803 /*
3804 * Do not allow realtime tasks into groups that have no runtime
3805 * assigned.
3806 */
3807 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3808 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3809 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3810 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3811 return -EPERM;
3812 }
dc61b1d6 3813#endif
332ac17e
DF
3814#ifdef CONFIG_SMP
3815 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3816 cpumask_t *span = rq->rd->span;
332ac17e
DF
3817
3818 /*
3819 * Don't allow tasks with an affinity mask smaller than
3820 * the entire root_domain to become SCHED_DEADLINE. We
3821 * will also fail if there's no bandwidth available.
3822 */
e4099a5e
PZ
3823 if (!cpumask_subset(span, &p->cpus_allowed) ||
3824 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3825 task_rq_unlock(rq, p, &flags);
3826 return -EPERM;
3827 }
3828 }
3829#endif
3830 }
dc61b1d6 3831
1da177e4
LT
3832 /* recheck policy now with rq lock held */
3833 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3834 policy = oldpolicy = -1;
0122ec5b 3835 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3836 goto recheck;
3837 }
332ac17e
DF
3838
3839 /*
3840 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3841 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3842 * is available.
3843 */
e4099a5e 3844 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3845 task_rq_unlock(rq, p, &flags);
3846 return -EBUSY;
3847 }
3848
c365c292
TG
3849 p->sched_reset_on_fork = reset_on_fork;
3850 oldprio = p->prio;
3851
dbc7f069
PZ
3852 if (pi) {
3853 /*
3854 * Take priority boosted tasks into account. If the new
3855 * effective priority is unchanged, we just store the new
3856 * normal parameters and do not touch the scheduler class and
3857 * the runqueue. This will be done when the task deboost
3858 * itself.
3859 */
3860 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3861 if (new_effective_prio == oldprio) {
3862 __setscheduler_params(p, attr);
3863 task_rq_unlock(rq, p, &flags);
3864 return 0;
3865 }
c365c292
TG
3866 }
3867
da0c1e65 3868 queued = task_on_rq_queued(p);
051a1d1a 3869 running = task_current(rq, p);
da0c1e65 3870 if (queued)
4ca9b72b 3871 dequeue_task(rq, p, 0);
0e1f3483 3872 if (running)
f3cd1c4e 3873 put_prev_task(rq, p);
f6b53205 3874
83ab0aa0 3875 prev_class = p->sched_class;
dbc7f069 3876 __setscheduler(rq, p, attr, pi);
f6b53205 3877
0e1f3483
HS
3878 if (running)
3879 p->sched_class->set_curr_task(rq);
da0c1e65 3880 if (queued) {
81a44c54
TG
3881 /*
3882 * We enqueue to tail when the priority of a task is
3883 * increased (user space view).
3884 */
3885 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3886 }
cb469845 3887
da7a735e 3888 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3889 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3890 task_rq_unlock(rq, p, &flags);
b29739f9 3891
dbc7f069
PZ
3892 if (pi)
3893 rt_mutex_adjust_pi(p);
95e02ca9 3894
4c9a4bc8
PZ
3895 /*
3896 * Run balance callbacks after we've adjusted the PI chain.
3897 */
3898 balance_callback(rq);
3899 preempt_enable();
95e02ca9 3900
1da177e4
LT
3901 return 0;
3902}
961ccddd 3903
7479f3c9
PZ
3904static int _sched_setscheduler(struct task_struct *p, int policy,
3905 const struct sched_param *param, bool check)
3906{
3907 struct sched_attr attr = {
3908 .sched_policy = policy,
3909 .sched_priority = param->sched_priority,
3910 .sched_nice = PRIO_TO_NICE(p->static_prio),
3911 };
3912
c13db6b1
SR
3913 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3914 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3915 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3916 policy &= ~SCHED_RESET_ON_FORK;
3917 attr.sched_policy = policy;
3918 }
3919
dbc7f069 3920 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3921}
961ccddd
RR
3922/**
3923 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3924 * @p: the task in question.
3925 * @policy: new policy.
3926 * @param: structure containing the new RT priority.
3927 *
e69f6186
YB
3928 * Return: 0 on success. An error code otherwise.
3929 *
961ccddd
RR
3930 * NOTE that the task may be already dead.
3931 */
3932int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3933 const struct sched_param *param)
961ccddd 3934{
7479f3c9 3935 return _sched_setscheduler(p, policy, param, true);
961ccddd 3936}
1da177e4
LT
3937EXPORT_SYMBOL_GPL(sched_setscheduler);
3938
d50dde5a
DF
3939int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3940{
dbc7f069 3941 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
3942}
3943EXPORT_SYMBOL_GPL(sched_setattr);
3944
961ccddd
RR
3945/**
3946 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3947 * @p: the task in question.
3948 * @policy: new policy.
3949 * @param: structure containing the new RT priority.
3950 *
3951 * Just like sched_setscheduler, only don't bother checking if the
3952 * current context has permission. For example, this is needed in
3953 * stop_machine(): we create temporary high priority worker threads,
3954 * but our caller might not have that capability.
e69f6186
YB
3955 *
3956 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3957 */
3958int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3959 const struct sched_param *param)
961ccddd 3960{
7479f3c9 3961 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3962}
3963
95cdf3b7
IM
3964static int
3965do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3966{
1da177e4
LT
3967 struct sched_param lparam;
3968 struct task_struct *p;
36c8b586 3969 int retval;
1da177e4
LT
3970
3971 if (!param || pid < 0)
3972 return -EINVAL;
3973 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3974 return -EFAULT;
5fe1d75f
ON
3975
3976 rcu_read_lock();
3977 retval = -ESRCH;
1da177e4 3978 p = find_process_by_pid(pid);
5fe1d75f
ON
3979 if (p != NULL)
3980 retval = sched_setscheduler(p, policy, &lparam);
3981 rcu_read_unlock();
36c8b586 3982
1da177e4
LT
3983 return retval;
3984}
3985
d50dde5a
DF
3986/*
3987 * Mimics kernel/events/core.c perf_copy_attr().
3988 */
3989static int sched_copy_attr(struct sched_attr __user *uattr,
3990 struct sched_attr *attr)
3991{
3992 u32 size;
3993 int ret;
3994
3995 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3996 return -EFAULT;
3997
3998 /*
3999 * zero the full structure, so that a short copy will be nice.
4000 */
4001 memset(attr, 0, sizeof(*attr));
4002
4003 ret = get_user(size, &uattr->size);
4004 if (ret)
4005 return ret;
4006
4007 if (size > PAGE_SIZE) /* silly large */
4008 goto err_size;
4009
4010 if (!size) /* abi compat */
4011 size = SCHED_ATTR_SIZE_VER0;
4012
4013 if (size < SCHED_ATTR_SIZE_VER0)
4014 goto err_size;
4015
4016 /*
4017 * If we're handed a bigger struct than we know of,
4018 * ensure all the unknown bits are 0 - i.e. new
4019 * user-space does not rely on any kernel feature
4020 * extensions we dont know about yet.
4021 */
4022 if (size > sizeof(*attr)) {
4023 unsigned char __user *addr;
4024 unsigned char __user *end;
4025 unsigned char val;
4026
4027 addr = (void __user *)uattr + sizeof(*attr);
4028 end = (void __user *)uattr + size;
4029
4030 for (; addr < end; addr++) {
4031 ret = get_user(val, addr);
4032 if (ret)
4033 return ret;
4034 if (val)
4035 goto err_size;
4036 }
4037 size = sizeof(*attr);
4038 }
4039
4040 ret = copy_from_user(attr, uattr, size);
4041 if (ret)
4042 return -EFAULT;
4043
4044 /*
4045 * XXX: do we want to be lenient like existing syscalls; or do we want
4046 * to be strict and return an error on out-of-bounds values?
4047 */
75e45d51 4048 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4049
e78c7bca 4050 return 0;
d50dde5a
DF
4051
4052err_size:
4053 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4054 return -E2BIG;
d50dde5a
DF
4055}
4056
1da177e4
LT
4057/**
4058 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4059 * @pid: the pid in question.
4060 * @policy: new policy.
4061 * @param: structure containing the new RT priority.
e69f6186
YB
4062 *
4063 * Return: 0 on success. An error code otherwise.
1da177e4 4064 */
5add95d4
HC
4065SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4066 struct sched_param __user *, param)
1da177e4 4067{
c21761f1
JB
4068 /* negative values for policy are not valid */
4069 if (policy < 0)
4070 return -EINVAL;
4071
1da177e4
LT
4072 return do_sched_setscheduler(pid, policy, param);
4073}
4074
4075/**
4076 * sys_sched_setparam - set/change the RT priority of a thread
4077 * @pid: the pid in question.
4078 * @param: structure containing the new RT priority.
e69f6186
YB
4079 *
4080 * Return: 0 on success. An error code otherwise.
1da177e4 4081 */
5add95d4 4082SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4083{
c13db6b1 4084 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4085}
4086
d50dde5a
DF
4087/**
4088 * sys_sched_setattr - same as above, but with extended sched_attr
4089 * @pid: the pid in question.
5778fccf 4090 * @uattr: structure containing the extended parameters.
db66d756 4091 * @flags: for future extension.
d50dde5a 4092 */
6d35ab48
PZ
4093SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4094 unsigned int, flags)
d50dde5a
DF
4095{
4096 struct sched_attr attr;
4097 struct task_struct *p;
4098 int retval;
4099
6d35ab48 4100 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4101 return -EINVAL;
4102
143cf23d
MK
4103 retval = sched_copy_attr(uattr, &attr);
4104 if (retval)
4105 return retval;
d50dde5a 4106
b14ed2c2 4107 if ((int)attr.sched_policy < 0)
dbdb2275 4108 return -EINVAL;
d50dde5a
DF
4109
4110 rcu_read_lock();
4111 retval = -ESRCH;
4112 p = find_process_by_pid(pid);
4113 if (p != NULL)
4114 retval = sched_setattr(p, &attr);
4115 rcu_read_unlock();
4116
4117 return retval;
4118}
4119
1da177e4
LT
4120/**
4121 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4122 * @pid: the pid in question.
e69f6186
YB
4123 *
4124 * Return: On success, the policy of the thread. Otherwise, a negative error
4125 * code.
1da177e4 4126 */
5add95d4 4127SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4128{
36c8b586 4129 struct task_struct *p;
3a5c359a 4130 int retval;
1da177e4
LT
4131
4132 if (pid < 0)
3a5c359a 4133 return -EINVAL;
1da177e4
LT
4134
4135 retval = -ESRCH;
5fe85be0 4136 rcu_read_lock();
1da177e4
LT
4137 p = find_process_by_pid(pid);
4138 if (p) {
4139 retval = security_task_getscheduler(p);
4140 if (!retval)
ca94c442
LP
4141 retval = p->policy
4142 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4143 }
5fe85be0 4144 rcu_read_unlock();
1da177e4
LT
4145 return retval;
4146}
4147
4148/**
ca94c442 4149 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4150 * @pid: the pid in question.
4151 * @param: structure containing the RT priority.
e69f6186
YB
4152 *
4153 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4154 * code.
1da177e4 4155 */
5add95d4 4156SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4157{
ce5f7f82 4158 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4159 struct task_struct *p;
3a5c359a 4160 int retval;
1da177e4
LT
4161
4162 if (!param || pid < 0)
3a5c359a 4163 return -EINVAL;
1da177e4 4164
5fe85be0 4165 rcu_read_lock();
1da177e4
LT
4166 p = find_process_by_pid(pid);
4167 retval = -ESRCH;
4168 if (!p)
4169 goto out_unlock;
4170
4171 retval = security_task_getscheduler(p);
4172 if (retval)
4173 goto out_unlock;
4174
ce5f7f82
PZ
4175 if (task_has_rt_policy(p))
4176 lp.sched_priority = p->rt_priority;
5fe85be0 4177 rcu_read_unlock();
1da177e4
LT
4178
4179 /*
4180 * This one might sleep, we cannot do it with a spinlock held ...
4181 */
4182 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4183
1da177e4
LT
4184 return retval;
4185
4186out_unlock:
5fe85be0 4187 rcu_read_unlock();
1da177e4
LT
4188 return retval;
4189}
4190
d50dde5a
DF
4191static int sched_read_attr(struct sched_attr __user *uattr,
4192 struct sched_attr *attr,
4193 unsigned int usize)
4194{
4195 int ret;
4196
4197 if (!access_ok(VERIFY_WRITE, uattr, usize))
4198 return -EFAULT;
4199
4200 /*
4201 * If we're handed a smaller struct than we know of,
4202 * ensure all the unknown bits are 0 - i.e. old
4203 * user-space does not get uncomplete information.
4204 */
4205 if (usize < sizeof(*attr)) {
4206 unsigned char *addr;
4207 unsigned char *end;
4208
4209 addr = (void *)attr + usize;
4210 end = (void *)attr + sizeof(*attr);
4211
4212 for (; addr < end; addr++) {
4213 if (*addr)
22400674 4214 return -EFBIG;
d50dde5a
DF
4215 }
4216
4217 attr->size = usize;
4218 }
4219
4efbc454 4220 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4221 if (ret)
4222 return -EFAULT;
4223
22400674 4224 return 0;
d50dde5a
DF
4225}
4226
4227/**
aab03e05 4228 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4229 * @pid: the pid in question.
5778fccf 4230 * @uattr: structure containing the extended parameters.
d50dde5a 4231 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4232 * @flags: for future extension.
d50dde5a 4233 */
6d35ab48
PZ
4234SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4235 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4236{
4237 struct sched_attr attr = {
4238 .size = sizeof(struct sched_attr),
4239 };
4240 struct task_struct *p;
4241 int retval;
4242
4243 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4244 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4245 return -EINVAL;
4246
4247 rcu_read_lock();
4248 p = find_process_by_pid(pid);
4249 retval = -ESRCH;
4250 if (!p)
4251 goto out_unlock;
4252
4253 retval = security_task_getscheduler(p);
4254 if (retval)
4255 goto out_unlock;
4256
4257 attr.sched_policy = p->policy;
7479f3c9
PZ
4258 if (p->sched_reset_on_fork)
4259 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4260 if (task_has_dl_policy(p))
4261 __getparam_dl(p, &attr);
4262 else if (task_has_rt_policy(p))
d50dde5a
DF
4263 attr.sched_priority = p->rt_priority;
4264 else
d0ea0268 4265 attr.sched_nice = task_nice(p);
d50dde5a
DF
4266
4267 rcu_read_unlock();
4268
4269 retval = sched_read_attr(uattr, &attr, size);
4270 return retval;
4271
4272out_unlock:
4273 rcu_read_unlock();
4274 return retval;
4275}
4276
96f874e2 4277long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4278{
5a16f3d3 4279 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4280 struct task_struct *p;
4281 int retval;
1da177e4 4282
23f5d142 4283 rcu_read_lock();
1da177e4
LT
4284
4285 p = find_process_by_pid(pid);
4286 if (!p) {
23f5d142 4287 rcu_read_unlock();
1da177e4
LT
4288 return -ESRCH;
4289 }
4290
23f5d142 4291 /* Prevent p going away */
1da177e4 4292 get_task_struct(p);
23f5d142 4293 rcu_read_unlock();
1da177e4 4294
14a40ffc
TH
4295 if (p->flags & PF_NO_SETAFFINITY) {
4296 retval = -EINVAL;
4297 goto out_put_task;
4298 }
5a16f3d3
RR
4299 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4300 retval = -ENOMEM;
4301 goto out_put_task;
4302 }
4303 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4304 retval = -ENOMEM;
4305 goto out_free_cpus_allowed;
4306 }
1da177e4 4307 retval = -EPERM;
4c44aaaf
EB
4308 if (!check_same_owner(p)) {
4309 rcu_read_lock();
4310 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4311 rcu_read_unlock();
16303ab2 4312 goto out_free_new_mask;
4c44aaaf
EB
4313 }
4314 rcu_read_unlock();
4315 }
1da177e4 4316
b0ae1981 4317 retval = security_task_setscheduler(p);
e7834f8f 4318 if (retval)
16303ab2 4319 goto out_free_new_mask;
e7834f8f 4320
e4099a5e
PZ
4321
4322 cpuset_cpus_allowed(p, cpus_allowed);
4323 cpumask_and(new_mask, in_mask, cpus_allowed);
4324
332ac17e
DF
4325 /*
4326 * Since bandwidth control happens on root_domain basis,
4327 * if admission test is enabled, we only admit -deadline
4328 * tasks allowed to run on all the CPUs in the task's
4329 * root_domain.
4330 */
4331#ifdef CONFIG_SMP
f1e3a093
KT
4332 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4333 rcu_read_lock();
4334 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4335 retval = -EBUSY;
f1e3a093 4336 rcu_read_unlock();
16303ab2 4337 goto out_free_new_mask;
332ac17e 4338 }
f1e3a093 4339 rcu_read_unlock();
332ac17e
DF
4340 }
4341#endif
49246274 4342again:
5a16f3d3 4343 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4344
8707d8b8 4345 if (!retval) {
5a16f3d3
RR
4346 cpuset_cpus_allowed(p, cpus_allowed);
4347 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4348 /*
4349 * We must have raced with a concurrent cpuset
4350 * update. Just reset the cpus_allowed to the
4351 * cpuset's cpus_allowed
4352 */
5a16f3d3 4353 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4354 goto again;
4355 }
4356 }
16303ab2 4357out_free_new_mask:
5a16f3d3
RR
4358 free_cpumask_var(new_mask);
4359out_free_cpus_allowed:
4360 free_cpumask_var(cpus_allowed);
4361out_put_task:
1da177e4 4362 put_task_struct(p);
1da177e4
LT
4363 return retval;
4364}
4365
4366static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4367 struct cpumask *new_mask)
1da177e4 4368{
96f874e2
RR
4369 if (len < cpumask_size())
4370 cpumask_clear(new_mask);
4371 else if (len > cpumask_size())
4372 len = cpumask_size();
4373
1da177e4
LT
4374 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4375}
4376
4377/**
4378 * sys_sched_setaffinity - set the cpu affinity of a process
4379 * @pid: pid of the process
4380 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4381 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4382 *
4383 * Return: 0 on success. An error code otherwise.
1da177e4 4384 */
5add95d4
HC
4385SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4386 unsigned long __user *, user_mask_ptr)
1da177e4 4387{
5a16f3d3 4388 cpumask_var_t new_mask;
1da177e4
LT
4389 int retval;
4390
5a16f3d3
RR
4391 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4392 return -ENOMEM;
1da177e4 4393
5a16f3d3
RR
4394 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4395 if (retval == 0)
4396 retval = sched_setaffinity(pid, new_mask);
4397 free_cpumask_var(new_mask);
4398 return retval;
1da177e4
LT
4399}
4400
96f874e2 4401long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4402{
36c8b586 4403 struct task_struct *p;
31605683 4404 unsigned long flags;
1da177e4 4405 int retval;
1da177e4 4406
23f5d142 4407 rcu_read_lock();
1da177e4
LT
4408
4409 retval = -ESRCH;
4410 p = find_process_by_pid(pid);
4411 if (!p)
4412 goto out_unlock;
4413
e7834f8f
DQ
4414 retval = security_task_getscheduler(p);
4415 if (retval)
4416 goto out_unlock;
4417
013fdb80 4418 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4419 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4420 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4421
4422out_unlock:
23f5d142 4423 rcu_read_unlock();
1da177e4 4424
9531b62f 4425 return retval;
1da177e4
LT
4426}
4427
4428/**
4429 * sys_sched_getaffinity - get the cpu affinity of a process
4430 * @pid: pid of the process
4431 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4432 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4433 *
4434 * Return: 0 on success. An error code otherwise.
1da177e4 4435 */
5add95d4
HC
4436SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4437 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4438{
4439 int ret;
f17c8607 4440 cpumask_var_t mask;
1da177e4 4441
84fba5ec 4442 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4443 return -EINVAL;
4444 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4445 return -EINVAL;
4446
f17c8607
RR
4447 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4448 return -ENOMEM;
1da177e4 4449
f17c8607
RR
4450 ret = sched_getaffinity(pid, mask);
4451 if (ret == 0) {
8bc037fb 4452 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4453
4454 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4455 ret = -EFAULT;
4456 else
cd3d8031 4457 ret = retlen;
f17c8607
RR
4458 }
4459 free_cpumask_var(mask);
1da177e4 4460
f17c8607 4461 return ret;
1da177e4
LT
4462}
4463
4464/**
4465 * sys_sched_yield - yield the current processor to other threads.
4466 *
dd41f596
IM
4467 * This function yields the current CPU to other tasks. If there are no
4468 * other threads running on this CPU then this function will return.
e69f6186
YB
4469 *
4470 * Return: 0.
1da177e4 4471 */
5add95d4 4472SYSCALL_DEFINE0(sched_yield)
1da177e4 4473{
70b97a7f 4474 struct rq *rq = this_rq_lock();
1da177e4 4475
2d72376b 4476 schedstat_inc(rq, yld_count);
4530d7ab 4477 current->sched_class->yield_task(rq);
1da177e4
LT
4478
4479 /*
4480 * Since we are going to call schedule() anyway, there's
4481 * no need to preempt or enable interrupts:
4482 */
4483 __release(rq->lock);
8a25d5de 4484 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4485 do_raw_spin_unlock(&rq->lock);
ba74c144 4486 sched_preempt_enable_no_resched();
1da177e4
LT
4487
4488 schedule();
4489
4490 return 0;
4491}
4492
02b67cc3 4493int __sched _cond_resched(void)
1da177e4 4494{
fe32d3cd 4495 if (should_resched(0)) {
a18b5d01 4496 preempt_schedule_common();
1da177e4
LT
4497 return 1;
4498 }
4499 return 0;
4500}
02b67cc3 4501EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4502
4503/*
613afbf8 4504 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4505 * call schedule, and on return reacquire the lock.
4506 *
41a2d6cf 4507 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4508 * operations here to prevent schedule() from being called twice (once via
4509 * spin_unlock(), once by hand).
4510 */
613afbf8 4511int __cond_resched_lock(spinlock_t *lock)
1da177e4 4512{
fe32d3cd 4513 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4514 int ret = 0;
4515
f607c668
PZ
4516 lockdep_assert_held(lock);
4517
4a81e832 4518 if (spin_needbreak(lock) || resched) {
1da177e4 4519 spin_unlock(lock);
d86ee480 4520 if (resched)
a18b5d01 4521 preempt_schedule_common();
95c354fe
NP
4522 else
4523 cpu_relax();
6df3cecb 4524 ret = 1;
1da177e4 4525 spin_lock(lock);
1da177e4 4526 }
6df3cecb 4527 return ret;
1da177e4 4528}
613afbf8 4529EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4530
613afbf8 4531int __sched __cond_resched_softirq(void)
1da177e4
LT
4532{
4533 BUG_ON(!in_softirq());
4534
fe32d3cd 4535 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4536 local_bh_enable();
a18b5d01 4537 preempt_schedule_common();
1da177e4
LT
4538 local_bh_disable();
4539 return 1;
4540 }
4541 return 0;
4542}
613afbf8 4543EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4544
1da177e4
LT
4545/**
4546 * yield - yield the current processor to other threads.
4547 *
8e3fabfd
PZ
4548 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4549 *
4550 * The scheduler is at all times free to pick the calling task as the most
4551 * eligible task to run, if removing the yield() call from your code breaks
4552 * it, its already broken.
4553 *
4554 * Typical broken usage is:
4555 *
4556 * while (!event)
4557 * yield();
4558 *
4559 * where one assumes that yield() will let 'the other' process run that will
4560 * make event true. If the current task is a SCHED_FIFO task that will never
4561 * happen. Never use yield() as a progress guarantee!!
4562 *
4563 * If you want to use yield() to wait for something, use wait_event().
4564 * If you want to use yield() to be 'nice' for others, use cond_resched().
4565 * If you still want to use yield(), do not!
1da177e4
LT
4566 */
4567void __sched yield(void)
4568{
4569 set_current_state(TASK_RUNNING);
4570 sys_sched_yield();
4571}
1da177e4
LT
4572EXPORT_SYMBOL(yield);
4573
d95f4122
MG
4574/**
4575 * yield_to - yield the current processor to another thread in
4576 * your thread group, or accelerate that thread toward the
4577 * processor it's on.
16addf95
RD
4578 * @p: target task
4579 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4580 *
4581 * It's the caller's job to ensure that the target task struct
4582 * can't go away on us before we can do any checks.
4583 *
e69f6186 4584 * Return:
7b270f60
PZ
4585 * true (>0) if we indeed boosted the target task.
4586 * false (0) if we failed to boost the target.
4587 * -ESRCH if there's no task to yield to.
d95f4122 4588 */
fa93384f 4589int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4590{
4591 struct task_struct *curr = current;
4592 struct rq *rq, *p_rq;
4593 unsigned long flags;
c3c18640 4594 int yielded = 0;
d95f4122
MG
4595
4596 local_irq_save(flags);
4597 rq = this_rq();
4598
4599again:
4600 p_rq = task_rq(p);
7b270f60
PZ
4601 /*
4602 * If we're the only runnable task on the rq and target rq also
4603 * has only one task, there's absolutely no point in yielding.
4604 */
4605 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4606 yielded = -ESRCH;
4607 goto out_irq;
4608 }
4609
d95f4122 4610 double_rq_lock(rq, p_rq);
39e24d8f 4611 if (task_rq(p) != p_rq) {
d95f4122
MG
4612 double_rq_unlock(rq, p_rq);
4613 goto again;
4614 }
4615
4616 if (!curr->sched_class->yield_to_task)
7b270f60 4617 goto out_unlock;
d95f4122
MG
4618
4619 if (curr->sched_class != p->sched_class)
7b270f60 4620 goto out_unlock;
d95f4122
MG
4621
4622 if (task_running(p_rq, p) || p->state)
7b270f60 4623 goto out_unlock;
d95f4122
MG
4624
4625 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4626 if (yielded) {
d95f4122 4627 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4628 /*
4629 * Make p's CPU reschedule; pick_next_entity takes care of
4630 * fairness.
4631 */
4632 if (preempt && rq != p_rq)
8875125e 4633 resched_curr(p_rq);
6d1cafd8 4634 }
d95f4122 4635
7b270f60 4636out_unlock:
d95f4122 4637 double_rq_unlock(rq, p_rq);
7b270f60 4638out_irq:
d95f4122
MG
4639 local_irq_restore(flags);
4640
7b270f60 4641 if (yielded > 0)
d95f4122
MG
4642 schedule();
4643
4644 return yielded;
4645}
4646EXPORT_SYMBOL_GPL(yield_to);
4647
1da177e4 4648/*
41a2d6cf 4649 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4650 * that process accounting knows that this is a task in IO wait state.
1da177e4 4651 */
1da177e4
LT
4652long __sched io_schedule_timeout(long timeout)
4653{
9cff8ade
N
4654 int old_iowait = current->in_iowait;
4655 struct rq *rq;
1da177e4
LT
4656 long ret;
4657
9cff8ade 4658 current->in_iowait = 1;
10d784ea 4659 blk_schedule_flush_plug(current);
9cff8ade 4660
0ff92245 4661 delayacct_blkio_start();
9cff8ade 4662 rq = raw_rq();
1da177e4
LT
4663 atomic_inc(&rq->nr_iowait);
4664 ret = schedule_timeout(timeout);
9cff8ade 4665 current->in_iowait = old_iowait;
1da177e4 4666 atomic_dec(&rq->nr_iowait);
0ff92245 4667 delayacct_blkio_end();
9cff8ade 4668
1da177e4
LT
4669 return ret;
4670}
9cff8ade 4671EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4672
4673/**
4674 * sys_sched_get_priority_max - return maximum RT priority.
4675 * @policy: scheduling class.
4676 *
e69f6186
YB
4677 * Return: On success, this syscall returns the maximum
4678 * rt_priority that can be used by a given scheduling class.
4679 * On failure, a negative error code is returned.
1da177e4 4680 */
5add95d4 4681SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4682{
4683 int ret = -EINVAL;
4684
4685 switch (policy) {
4686 case SCHED_FIFO:
4687 case SCHED_RR:
4688 ret = MAX_USER_RT_PRIO-1;
4689 break;
aab03e05 4690 case SCHED_DEADLINE:
1da177e4 4691 case SCHED_NORMAL:
b0a9499c 4692 case SCHED_BATCH:
dd41f596 4693 case SCHED_IDLE:
1da177e4
LT
4694 ret = 0;
4695 break;
4696 }
4697 return ret;
4698}
4699
4700/**
4701 * sys_sched_get_priority_min - return minimum RT priority.
4702 * @policy: scheduling class.
4703 *
e69f6186
YB
4704 * Return: On success, this syscall returns the minimum
4705 * rt_priority that can be used by a given scheduling class.
4706 * On failure, a negative error code is returned.
1da177e4 4707 */
5add95d4 4708SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4709{
4710 int ret = -EINVAL;
4711
4712 switch (policy) {
4713 case SCHED_FIFO:
4714 case SCHED_RR:
4715 ret = 1;
4716 break;
aab03e05 4717 case SCHED_DEADLINE:
1da177e4 4718 case SCHED_NORMAL:
b0a9499c 4719 case SCHED_BATCH:
dd41f596 4720 case SCHED_IDLE:
1da177e4
LT
4721 ret = 0;
4722 }
4723 return ret;
4724}
4725
4726/**
4727 * sys_sched_rr_get_interval - return the default timeslice of a process.
4728 * @pid: pid of the process.
4729 * @interval: userspace pointer to the timeslice value.
4730 *
4731 * this syscall writes the default timeslice value of a given process
4732 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4733 *
4734 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4735 * an error code.
1da177e4 4736 */
17da2bd9 4737SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4738 struct timespec __user *, interval)
1da177e4 4739{
36c8b586 4740 struct task_struct *p;
a4ec24b4 4741 unsigned int time_slice;
dba091b9
TG
4742 unsigned long flags;
4743 struct rq *rq;
3a5c359a 4744 int retval;
1da177e4 4745 struct timespec t;
1da177e4
LT
4746
4747 if (pid < 0)
3a5c359a 4748 return -EINVAL;
1da177e4
LT
4749
4750 retval = -ESRCH;
1a551ae7 4751 rcu_read_lock();
1da177e4
LT
4752 p = find_process_by_pid(pid);
4753 if (!p)
4754 goto out_unlock;
4755
4756 retval = security_task_getscheduler(p);
4757 if (retval)
4758 goto out_unlock;
4759
dba091b9 4760 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4761 time_slice = 0;
4762 if (p->sched_class->get_rr_interval)
4763 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4764 task_rq_unlock(rq, p, &flags);
a4ec24b4 4765
1a551ae7 4766 rcu_read_unlock();
a4ec24b4 4767 jiffies_to_timespec(time_slice, &t);
1da177e4 4768 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4769 return retval;
3a5c359a 4770
1da177e4 4771out_unlock:
1a551ae7 4772 rcu_read_unlock();
1da177e4
LT
4773 return retval;
4774}
4775
7c731e0a 4776static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4777
82a1fcb9 4778void sched_show_task(struct task_struct *p)
1da177e4 4779{
1da177e4 4780 unsigned long free = 0;
4e79752c 4781 int ppid;
1f8a7633 4782 unsigned long state = p->state;
1da177e4 4783
1f8a7633
TH
4784 if (state)
4785 state = __ffs(state) + 1;
28d0686c 4786 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4787 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4788#if BITS_PER_LONG == 32
1da177e4 4789 if (state == TASK_RUNNING)
3df0fc5b 4790 printk(KERN_CONT " running ");
1da177e4 4791 else
3df0fc5b 4792 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4793#else
4794 if (state == TASK_RUNNING)
3df0fc5b 4795 printk(KERN_CONT " running task ");
1da177e4 4796 else
3df0fc5b 4797 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4798#endif
4799#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4800 free = stack_not_used(p);
1da177e4 4801#endif
a90e984c 4802 ppid = 0;
4e79752c 4803 rcu_read_lock();
a90e984c
ON
4804 if (pid_alive(p))
4805 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4806 rcu_read_unlock();
3df0fc5b 4807 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4808 task_pid_nr(p), ppid,
aa47b7e0 4809 (unsigned long)task_thread_info(p)->flags);
1da177e4 4810
3d1cb205 4811 print_worker_info(KERN_INFO, p);
5fb5e6de 4812 show_stack(p, NULL);
1da177e4
LT
4813}
4814
e59e2ae2 4815void show_state_filter(unsigned long state_filter)
1da177e4 4816{
36c8b586 4817 struct task_struct *g, *p;
1da177e4 4818
4bd77321 4819#if BITS_PER_LONG == 32
3df0fc5b
PZ
4820 printk(KERN_INFO
4821 " task PC stack pid father\n");
1da177e4 4822#else
3df0fc5b
PZ
4823 printk(KERN_INFO
4824 " task PC stack pid father\n");
1da177e4 4825#endif
510f5acc 4826 rcu_read_lock();
5d07f420 4827 for_each_process_thread(g, p) {
1da177e4
LT
4828 /*
4829 * reset the NMI-timeout, listing all files on a slow
25985edc 4830 * console might take a lot of time:
1da177e4
LT
4831 */
4832 touch_nmi_watchdog();
39bc89fd 4833 if (!state_filter || (p->state & state_filter))
82a1fcb9 4834 sched_show_task(p);
5d07f420 4835 }
1da177e4 4836
04c9167f
JF
4837 touch_all_softlockup_watchdogs();
4838
dd41f596
IM
4839#ifdef CONFIG_SCHED_DEBUG
4840 sysrq_sched_debug_show();
4841#endif
510f5acc 4842 rcu_read_unlock();
e59e2ae2
IM
4843 /*
4844 * Only show locks if all tasks are dumped:
4845 */
93335a21 4846 if (!state_filter)
e59e2ae2 4847 debug_show_all_locks();
1da177e4
LT
4848}
4849
0db0628d 4850void init_idle_bootup_task(struct task_struct *idle)
1df21055 4851{
dd41f596 4852 idle->sched_class = &idle_sched_class;
1df21055
IM
4853}
4854
f340c0d1
IM
4855/**
4856 * init_idle - set up an idle thread for a given CPU
4857 * @idle: task in question
4858 * @cpu: cpu the idle task belongs to
4859 *
4860 * NOTE: this function does not set the idle thread's NEED_RESCHED
4861 * flag, to make booting more robust.
4862 */
0db0628d 4863void init_idle(struct task_struct *idle, int cpu)
1da177e4 4864{
70b97a7f 4865 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4866 unsigned long flags;
4867
05fa785c 4868 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4869
5e1576ed 4870 __sched_fork(0, idle);
06b83b5f 4871 idle->state = TASK_RUNNING;
dd41f596
IM
4872 idle->se.exec_start = sched_clock();
4873
1e1b6c51 4874 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4875 /*
4876 * We're having a chicken and egg problem, even though we are
4877 * holding rq->lock, the cpu isn't yet set to this cpu so the
4878 * lockdep check in task_group() will fail.
4879 *
4880 * Similar case to sched_fork(). / Alternatively we could
4881 * use task_rq_lock() here and obtain the other rq->lock.
4882 *
4883 * Silence PROVE_RCU
4884 */
4885 rcu_read_lock();
dd41f596 4886 __set_task_cpu(idle, cpu);
6506cf6c 4887 rcu_read_unlock();
1da177e4 4888
1da177e4 4889 rq->curr = rq->idle = idle;
da0c1e65 4890 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4891#if defined(CONFIG_SMP)
4892 idle->on_cpu = 1;
4866cde0 4893#endif
05fa785c 4894 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4895
4896 /* Set the preempt count _outside_ the spinlocks! */
01028747 4897 init_idle_preempt_count(idle, cpu);
55cd5340 4898
dd41f596
IM
4899 /*
4900 * The idle tasks have their own, simple scheduling class:
4901 */
4902 idle->sched_class = &idle_sched_class;
868baf07 4903 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4904 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4905#if defined(CONFIG_SMP)
4906 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4907#endif
19978ca6
IM
4908}
4909
f82f8042
JL
4910int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4911 const struct cpumask *trial)
4912{
4913 int ret = 1, trial_cpus;
4914 struct dl_bw *cur_dl_b;
4915 unsigned long flags;
4916
bb2bc55a
MG
4917 if (!cpumask_weight(cur))
4918 return ret;
4919
75e23e49 4920 rcu_read_lock_sched();
f82f8042
JL
4921 cur_dl_b = dl_bw_of(cpumask_any(cur));
4922 trial_cpus = cpumask_weight(trial);
4923
4924 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4925 if (cur_dl_b->bw != -1 &&
4926 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4927 ret = 0;
4928 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4929 rcu_read_unlock_sched();
f82f8042
JL
4930
4931 return ret;
4932}
4933
7f51412a
JL
4934int task_can_attach(struct task_struct *p,
4935 const struct cpumask *cs_cpus_allowed)
4936{
4937 int ret = 0;
4938
4939 /*
4940 * Kthreads which disallow setaffinity shouldn't be moved
4941 * to a new cpuset; we don't want to change their cpu
4942 * affinity and isolating such threads by their set of
4943 * allowed nodes is unnecessary. Thus, cpusets are not
4944 * applicable for such threads. This prevents checking for
4945 * success of set_cpus_allowed_ptr() on all attached tasks
4946 * before cpus_allowed may be changed.
4947 */
4948 if (p->flags & PF_NO_SETAFFINITY) {
4949 ret = -EINVAL;
4950 goto out;
4951 }
4952
4953#ifdef CONFIG_SMP
4954 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4955 cs_cpus_allowed)) {
4956 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4957 cs_cpus_allowed);
75e23e49 4958 struct dl_bw *dl_b;
7f51412a
JL
4959 bool overflow;
4960 int cpus;
4961 unsigned long flags;
4962
75e23e49
JL
4963 rcu_read_lock_sched();
4964 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4965 raw_spin_lock_irqsave(&dl_b->lock, flags);
4966 cpus = dl_bw_cpus(dest_cpu);
4967 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4968 if (overflow)
4969 ret = -EBUSY;
4970 else {
4971 /*
4972 * We reserve space for this task in the destination
4973 * root_domain, as we can't fail after this point.
4974 * We will free resources in the source root_domain
4975 * later on (see set_cpus_allowed_dl()).
4976 */
4977 __dl_add(dl_b, p->dl.dl_bw);
4978 }
4979 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4980 rcu_read_unlock_sched();
7f51412a
JL
4981
4982 }
4983#endif
4984out:
4985 return ret;
4986}
4987
1da177e4 4988#ifdef CONFIG_SMP
1da177e4 4989
e6628d5b
MG
4990#ifdef CONFIG_NUMA_BALANCING
4991/* Migrate current task p to target_cpu */
4992int migrate_task_to(struct task_struct *p, int target_cpu)
4993{
4994 struct migration_arg arg = { p, target_cpu };
4995 int curr_cpu = task_cpu(p);
4996
4997 if (curr_cpu == target_cpu)
4998 return 0;
4999
5000 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5001 return -EINVAL;
5002
5003 /* TODO: This is not properly updating schedstats */
5004
286549dc 5005 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5006 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5007}
0ec8aa00
PZ
5008
5009/*
5010 * Requeue a task on a given node and accurately track the number of NUMA
5011 * tasks on the runqueues
5012 */
5013void sched_setnuma(struct task_struct *p, int nid)
5014{
5015 struct rq *rq;
5016 unsigned long flags;
da0c1e65 5017 bool queued, running;
0ec8aa00
PZ
5018
5019 rq = task_rq_lock(p, &flags);
da0c1e65 5020 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5021 running = task_current(rq, p);
5022
da0c1e65 5023 if (queued)
0ec8aa00
PZ
5024 dequeue_task(rq, p, 0);
5025 if (running)
f3cd1c4e 5026 put_prev_task(rq, p);
0ec8aa00
PZ
5027
5028 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5029
5030 if (running)
5031 p->sched_class->set_curr_task(rq);
da0c1e65 5032 if (queued)
0ec8aa00
PZ
5033 enqueue_task(rq, p, 0);
5034 task_rq_unlock(rq, p, &flags);
5035}
5cc389bc 5036#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5037
1da177e4 5038#ifdef CONFIG_HOTPLUG_CPU
054b9108 5039/*
48c5ccae
PZ
5040 * Ensures that the idle task is using init_mm right before its cpu goes
5041 * offline.
054b9108 5042 */
48c5ccae 5043void idle_task_exit(void)
1da177e4 5044{
48c5ccae 5045 struct mm_struct *mm = current->active_mm;
e76bd8d9 5046
48c5ccae 5047 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5048
a53efe5f 5049 if (mm != &init_mm) {
48c5ccae 5050 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5051 finish_arch_post_lock_switch();
5052 }
48c5ccae 5053 mmdrop(mm);
1da177e4
LT
5054}
5055
5056/*
5d180232
PZ
5057 * Since this CPU is going 'away' for a while, fold any nr_active delta
5058 * we might have. Assumes we're called after migrate_tasks() so that the
5059 * nr_active count is stable.
5060 *
5061 * Also see the comment "Global load-average calculations".
1da177e4 5062 */
5d180232 5063static void calc_load_migrate(struct rq *rq)
1da177e4 5064{
5d180232
PZ
5065 long delta = calc_load_fold_active(rq);
5066 if (delta)
5067 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5068}
5069
3f1d2a31
PZ
5070static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5071{
5072}
5073
5074static const struct sched_class fake_sched_class = {
5075 .put_prev_task = put_prev_task_fake,
5076};
5077
5078static struct task_struct fake_task = {
5079 /*
5080 * Avoid pull_{rt,dl}_task()
5081 */
5082 .prio = MAX_PRIO + 1,
5083 .sched_class = &fake_sched_class,
5084};
5085
48f24c4d 5086/*
48c5ccae
PZ
5087 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5088 * try_to_wake_up()->select_task_rq().
5089 *
5090 * Called with rq->lock held even though we'er in stop_machine() and
5091 * there's no concurrency possible, we hold the required locks anyway
5092 * because of lock validation efforts.
1da177e4 5093 */
5e16bbc2 5094static void migrate_tasks(struct rq *dead_rq)
1da177e4 5095{
5e16bbc2 5096 struct rq *rq = dead_rq;
48c5ccae
PZ
5097 struct task_struct *next, *stop = rq->stop;
5098 int dest_cpu;
1da177e4
LT
5099
5100 /*
48c5ccae
PZ
5101 * Fudge the rq selection such that the below task selection loop
5102 * doesn't get stuck on the currently eligible stop task.
5103 *
5104 * We're currently inside stop_machine() and the rq is either stuck
5105 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5106 * either way we should never end up calling schedule() until we're
5107 * done here.
1da177e4 5108 */
48c5ccae 5109 rq->stop = NULL;
48f24c4d 5110
77bd3970
FW
5111 /*
5112 * put_prev_task() and pick_next_task() sched
5113 * class method both need to have an up-to-date
5114 * value of rq->clock[_task]
5115 */
5116 update_rq_clock(rq);
5117
5e16bbc2 5118 for (;;) {
48c5ccae
PZ
5119 /*
5120 * There's this thread running, bail when that's the only
5121 * remaining thread.
5122 */
5123 if (rq->nr_running == 1)
dd41f596 5124 break;
48c5ccae 5125
cbce1a68
PZ
5126 /*
5127 * Ensure rq->lock covers the entire task selection
5128 * until the migration.
5129 */
5130 lockdep_pin_lock(&rq->lock);
3f1d2a31 5131 next = pick_next_task(rq, &fake_task);
48c5ccae 5132 BUG_ON(!next);
79c53799 5133 next->sched_class->put_prev_task(rq, next);
e692ab53 5134
48c5ccae 5135 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5136 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5137
cbce1a68 5138 lockdep_unpin_lock(&rq->lock);
5e16bbc2
PZ
5139 rq = __migrate_task(rq, next, dest_cpu);
5140 if (rq != dead_rq) {
5141 raw_spin_unlock(&rq->lock);
5142 rq = dead_rq;
5143 raw_spin_lock(&rq->lock);
5144 }
1da177e4 5145 }
dce48a84 5146
48c5ccae 5147 rq->stop = stop;
dce48a84 5148}
1da177e4
LT
5149#endif /* CONFIG_HOTPLUG_CPU */
5150
e692ab53
NP
5151#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5152
5153static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5154 {
5155 .procname = "sched_domain",
c57baf1e 5156 .mode = 0555,
e0361851 5157 },
56992309 5158 {}
e692ab53
NP
5159};
5160
5161static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5162 {
5163 .procname = "kernel",
c57baf1e 5164 .mode = 0555,
e0361851
AD
5165 .child = sd_ctl_dir,
5166 },
56992309 5167 {}
e692ab53
NP
5168};
5169
5170static struct ctl_table *sd_alloc_ctl_entry(int n)
5171{
5172 struct ctl_table *entry =
5cf9f062 5173 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5174
e692ab53
NP
5175 return entry;
5176}
5177
6382bc90
MM
5178static void sd_free_ctl_entry(struct ctl_table **tablep)
5179{
cd790076 5180 struct ctl_table *entry;
6382bc90 5181
cd790076
MM
5182 /*
5183 * In the intermediate directories, both the child directory and
5184 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5185 * will always be set. In the lowest directory the names are
cd790076
MM
5186 * static strings and all have proc handlers.
5187 */
5188 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5189 if (entry->child)
5190 sd_free_ctl_entry(&entry->child);
cd790076
MM
5191 if (entry->proc_handler == NULL)
5192 kfree(entry->procname);
5193 }
6382bc90
MM
5194
5195 kfree(*tablep);
5196 *tablep = NULL;
5197}
5198
201c373e 5199static int min_load_idx = 0;
fd9b86d3 5200static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5201
e692ab53 5202static void
e0361851 5203set_table_entry(struct ctl_table *entry,
e692ab53 5204 const char *procname, void *data, int maxlen,
201c373e
NK
5205 umode_t mode, proc_handler *proc_handler,
5206 bool load_idx)
e692ab53 5207{
e692ab53
NP
5208 entry->procname = procname;
5209 entry->data = data;
5210 entry->maxlen = maxlen;
5211 entry->mode = mode;
5212 entry->proc_handler = proc_handler;
201c373e
NK
5213
5214 if (load_idx) {
5215 entry->extra1 = &min_load_idx;
5216 entry->extra2 = &max_load_idx;
5217 }
e692ab53
NP
5218}
5219
5220static struct ctl_table *
5221sd_alloc_ctl_domain_table(struct sched_domain *sd)
5222{
37e6bae8 5223 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5224
ad1cdc1d
MM
5225 if (table == NULL)
5226 return NULL;
5227
e0361851 5228 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5229 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5230 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5231 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5232 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5233 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5234 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5235 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5236 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5237 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5238 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5239 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5240 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5241 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5242 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5243 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5244 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5245 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5246 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5247 &sd->cache_nice_tries,
201c373e 5248 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5249 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5250 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5251 set_table_entry(&table[11], "max_newidle_lb_cost",
5252 &sd->max_newidle_lb_cost,
5253 sizeof(long), 0644, proc_doulongvec_minmax, false);
5254 set_table_entry(&table[12], "name", sd->name,
201c373e 5255 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5256 /* &table[13] is terminator */
e692ab53
NP
5257
5258 return table;
5259}
5260
be7002e6 5261static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5262{
5263 struct ctl_table *entry, *table;
5264 struct sched_domain *sd;
5265 int domain_num = 0, i;
5266 char buf[32];
5267
5268 for_each_domain(cpu, sd)
5269 domain_num++;
5270 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5271 if (table == NULL)
5272 return NULL;
e692ab53
NP
5273
5274 i = 0;
5275 for_each_domain(cpu, sd) {
5276 snprintf(buf, 32, "domain%d", i);
e692ab53 5277 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5278 entry->mode = 0555;
e692ab53
NP
5279 entry->child = sd_alloc_ctl_domain_table(sd);
5280 entry++;
5281 i++;
5282 }
5283 return table;
5284}
5285
5286static struct ctl_table_header *sd_sysctl_header;
6382bc90 5287static void register_sched_domain_sysctl(void)
e692ab53 5288{
6ad4c188 5289 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5290 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5291 char buf[32];
5292
7378547f
MM
5293 WARN_ON(sd_ctl_dir[0].child);
5294 sd_ctl_dir[0].child = entry;
5295
ad1cdc1d
MM
5296 if (entry == NULL)
5297 return;
5298
6ad4c188 5299 for_each_possible_cpu(i) {
e692ab53 5300 snprintf(buf, 32, "cpu%d", i);
e692ab53 5301 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5302 entry->mode = 0555;
e692ab53 5303 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5304 entry++;
e692ab53 5305 }
7378547f
MM
5306
5307 WARN_ON(sd_sysctl_header);
e692ab53
NP
5308 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5309}
6382bc90 5310
7378547f 5311/* may be called multiple times per register */
6382bc90
MM
5312static void unregister_sched_domain_sysctl(void)
5313{
781b0203 5314 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5315 sd_sysctl_header = NULL;
7378547f
MM
5316 if (sd_ctl_dir[0].child)
5317 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5318}
e692ab53 5319#else
6382bc90
MM
5320static void register_sched_domain_sysctl(void)
5321{
5322}
5323static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5324{
5325}
5cc389bc 5326#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5327
1f11eb6a
GH
5328static void set_rq_online(struct rq *rq)
5329{
5330 if (!rq->online) {
5331 const struct sched_class *class;
5332
c6c4927b 5333 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5334 rq->online = 1;
5335
5336 for_each_class(class) {
5337 if (class->rq_online)
5338 class->rq_online(rq);
5339 }
5340 }
5341}
5342
5343static void set_rq_offline(struct rq *rq)
5344{
5345 if (rq->online) {
5346 const struct sched_class *class;
5347
5348 for_each_class(class) {
5349 if (class->rq_offline)
5350 class->rq_offline(rq);
5351 }
5352
c6c4927b 5353 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5354 rq->online = 0;
5355 }
5356}
5357
1da177e4
LT
5358/*
5359 * migration_call - callback that gets triggered when a CPU is added.
5360 * Here we can start up the necessary migration thread for the new CPU.
5361 */
0db0628d 5362static int
48f24c4d 5363migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5364{
48f24c4d 5365 int cpu = (long)hcpu;
1da177e4 5366 unsigned long flags;
969c7921 5367 struct rq *rq = cpu_rq(cpu);
1da177e4 5368
48c5ccae 5369 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5370
1da177e4 5371 case CPU_UP_PREPARE:
a468d389 5372 rq->calc_load_update = calc_load_update;
1da177e4 5373 break;
48f24c4d 5374
1da177e4 5375 case CPU_ONLINE:
1f94ef59 5376 /* Update our root-domain */
05fa785c 5377 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5378 if (rq->rd) {
c6c4927b 5379 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5380
5381 set_rq_online(rq);
1f94ef59 5382 }
05fa785c 5383 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5384 break;
48f24c4d 5385
1da177e4 5386#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5387 case CPU_DYING:
317f3941 5388 sched_ttwu_pending();
57d885fe 5389 /* Update our root-domain */
05fa785c 5390 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5391 if (rq->rd) {
c6c4927b 5392 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5393 set_rq_offline(rq);
57d885fe 5394 }
5e16bbc2 5395 migrate_tasks(rq);
48c5ccae 5396 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5397 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5398 break;
48c5ccae 5399
5d180232 5400 case CPU_DEAD:
f319da0c 5401 calc_load_migrate(rq);
57d885fe 5402 break;
1da177e4
LT
5403#endif
5404 }
49c022e6
PZ
5405
5406 update_max_interval();
5407
1da177e4
LT
5408 return NOTIFY_OK;
5409}
5410
f38b0820
PM
5411/*
5412 * Register at high priority so that task migration (migrate_all_tasks)
5413 * happens before everything else. This has to be lower priority than
cdd6c482 5414 * the notifier in the perf_event subsystem, though.
1da177e4 5415 */
0db0628d 5416static struct notifier_block migration_notifier = {
1da177e4 5417 .notifier_call = migration_call,
50a323b7 5418 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5419};
5420
6a82b60d 5421static void set_cpu_rq_start_time(void)
a803f026
CM
5422{
5423 int cpu = smp_processor_id();
5424 struct rq *rq = cpu_rq(cpu);
5425 rq->age_stamp = sched_clock_cpu(cpu);
5426}
5427
0db0628d 5428static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5429 unsigned long action, void *hcpu)
5430{
5431 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5432 case CPU_STARTING:
5433 set_cpu_rq_start_time();
5434 return NOTIFY_OK;
3a101d05
TH
5435 case CPU_DOWN_FAILED:
5436 set_cpu_active((long)hcpu, true);
5437 return NOTIFY_OK;
5438 default:
5439 return NOTIFY_DONE;
5440 }
5441}
5442
0db0628d 5443static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5444 unsigned long action, void *hcpu)
5445{
5446 switch (action & ~CPU_TASKS_FROZEN) {
5447 case CPU_DOWN_PREPARE:
3c18d447 5448 set_cpu_active((long)hcpu, false);
3a101d05 5449 return NOTIFY_OK;
3c18d447
JL
5450 default:
5451 return NOTIFY_DONE;
3a101d05
TH
5452 }
5453}
5454
7babe8db 5455static int __init migration_init(void)
1da177e4
LT
5456{
5457 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5458 int err;
48f24c4d 5459
3a101d05 5460 /* Initialize migration for the boot CPU */
07dccf33
AM
5461 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5462 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5463 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5464 register_cpu_notifier(&migration_notifier);
7babe8db 5465
3a101d05
TH
5466 /* Register cpu active notifiers */
5467 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5468 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5469
a004cd42 5470 return 0;
1da177e4 5471}
7babe8db 5472early_initcall(migration_init);
476f3534 5473
4cb98839
PZ
5474static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5475
3e9830dc 5476#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5477
d039ac60 5478static __read_mostly int sched_debug_enabled;
f6630114 5479
d039ac60 5480static int __init sched_debug_setup(char *str)
f6630114 5481{
d039ac60 5482 sched_debug_enabled = 1;
f6630114
MT
5483
5484 return 0;
5485}
d039ac60
PZ
5486early_param("sched_debug", sched_debug_setup);
5487
5488static inline bool sched_debug(void)
5489{
5490 return sched_debug_enabled;
5491}
f6630114 5492
7c16ec58 5493static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5494 struct cpumask *groupmask)
1da177e4 5495{
4dcf6aff 5496 struct sched_group *group = sd->groups;
1da177e4 5497
96f874e2 5498 cpumask_clear(groupmask);
4dcf6aff
IM
5499
5500 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5501
5502 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5503 printk("does not load-balance\n");
4dcf6aff 5504 if (sd->parent)
3df0fc5b
PZ
5505 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5506 " has parent");
4dcf6aff 5507 return -1;
41c7ce9a
NP
5508 }
5509
333470ee
TH
5510 printk(KERN_CONT "span %*pbl level %s\n",
5511 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5512
758b2cdc 5513 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5514 printk(KERN_ERR "ERROR: domain->span does not contain "
5515 "CPU%d\n", cpu);
4dcf6aff 5516 }
758b2cdc 5517 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5518 printk(KERN_ERR "ERROR: domain->groups does not contain"
5519 " CPU%d\n", cpu);
4dcf6aff 5520 }
1da177e4 5521
4dcf6aff 5522 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5523 do {
4dcf6aff 5524 if (!group) {
3df0fc5b
PZ
5525 printk("\n");
5526 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5527 break;
5528 }
5529
758b2cdc 5530 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5531 printk(KERN_CONT "\n");
5532 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5533 break;
5534 }
1da177e4 5535
cb83b629
PZ
5536 if (!(sd->flags & SD_OVERLAP) &&
5537 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5538 printk(KERN_CONT "\n");
5539 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5540 break;
5541 }
1da177e4 5542
758b2cdc 5543 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5544
333470ee
TH
5545 printk(KERN_CONT " %*pbl",
5546 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5547 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5548 printk(KERN_CONT " (cpu_capacity = %d)",
5549 group->sgc->capacity);
381512cf 5550 }
1da177e4 5551
4dcf6aff
IM
5552 group = group->next;
5553 } while (group != sd->groups);
3df0fc5b 5554 printk(KERN_CONT "\n");
1da177e4 5555
758b2cdc 5556 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5557 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5558
758b2cdc
RR
5559 if (sd->parent &&
5560 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5561 printk(KERN_ERR "ERROR: parent span is not a superset "
5562 "of domain->span\n");
4dcf6aff
IM
5563 return 0;
5564}
1da177e4 5565
4dcf6aff
IM
5566static void sched_domain_debug(struct sched_domain *sd, int cpu)
5567{
5568 int level = 0;
1da177e4 5569
d039ac60 5570 if (!sched_debug_enabled)
f6630114
MT
5571 return;
5572
4dcf6aff
IM
5573 if (!sd) {
5574 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5575 return;
5576 }
1da177e4 5577
4dcf6aff
IM
5578 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5579
5580 for (;;) {
4cb98839 5581 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5582 break;
1da177e4
LT
5583 level++;
5584 sd = sd->parent;
33859f7f 5585 if (!sd)
4dcf6aff
IM
5586 break;
5587 }
1da177e4 5588}
6d6bc0ad 5589#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5590# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5591static inline bool sched_debug(void)
5592{
5593 return false;
5594}
6d6bc0ad 5595#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5596
1a20ff27 5597static int sd_degenerate(struct sched_domain *sd)
245af2c7 5598{
758b2cdc 5599 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5600 return 1;
5601
5602 /* Following flags need at least 2 groups */
5603 if (sd->flags & (SD_LOAD_BALANCE |
5604 SD_BALANCE_NEWIDLE |
5605 SD_BALANCE_FORK |
89c4710e 5606 SD_BALANCE_EXEC |
5d4dfddd 5607 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5608 SD_SHARE_PKG_RESOURCES |
5609 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5610 if (sd->groups != sd->groups->next)
5611 return 0;
5612 }
5613
5614 /* Following flags don't use groups */
c88d5910 5615 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5616 return 0;
5617
5618 return 1;
5619}
5620
48f24c4d
IM
5621static int
5622sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5623{
5624 unsigned long cflags = sd->flags, pflags = parent->flags;
5625
5626 if (sd_degenerate(parent))
5627 return 1;
5628
758b2cdc 5629 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5630 return 0;
5631
245af2c7
SS
5632 /* Flags needing groups don't count if only 1 group in parent */
5633 if (parent->groups == parent->groups->next) {
5634 pflags &= ~(SD_LOAD_BALANCE |
5635 SD_BALANCE_NEWIDLE |
5636 SD_BALANCE_FORK |
89c4710e 5637 SD_BALANCE_EXEC |
5d4dfddd 5638 SD_SHARE_CPUCAPACITY |
10866e62 5639 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5640 SD_PREFER_SIBLING |
5641 SD_SHARE_POWERDOMAIN);
5436499e
KC
5642 if (nr_node_ids == 1)
5643 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5644 }
5645 if (~cflags & pflags)
5646 return 0;
5647
5648 return 1;
5649}
5650
dce840a0 5651static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5652{
dce840a0 5653 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5654
68e74568 5655 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5656 cpudl_cleanup(&rd->cpudl);
1baca4ce 5657 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5658 free_cpumask_var(rd->rto_mask);
5659 free_cpumask_var(rd->online);
5660 free_cpumask_var(rd->span);
5661 kfree(rd);
5662}
5663
57d885fe
GH
5664static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5665{
a0490fa3 5666 struct root_domain *old_rd = NULL;
57d885fe 5667 unsigned long flags;
57d885fe 5668
05fa785c 5669 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5670
5671 if (rq->rd) {
a0490fa3 5672 old_rd = rq->rd;
57d885fe 5673
c6c4927b 5674 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5675 set_rq_offline(rq);
57d885fe 5676
c6c4927b 5677 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5678
a0490fa3 5679 /*
0515973f 5680 * If we dont want to free the old_rd yet then
a0490fa3
IM
5681 * set old_rd to NULL to skip the freeing later
5682 * in this function:
5683 */
5684 if (!atomic_dec_and_test(&old_rd->refcount))
5685 old_rd = NULL;
57d885fe
GH
5686 }
5687
5688 atomic_inc(&rd->refcount);
5689 rq->rd = rd;
5690
c6c4927b 5691 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5692 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5693 set_rq_online(rq);
57d885fe 5694
05fa785c 5695 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5696
5697 if (old_rd)
dce840a0 5698 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5699}
5700
68c38fc3 5701static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5702{
5703 memset(rd, 0, sizeof(*rd));
5704
68c38fc3 5705 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5706 goto out;
68c38fc3 5707 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5708 goto free_span;
1baca4ce 5709 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5710 goto free_online;
1baca4ce
JL
5711 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5712 goto free_dlo_mask;
6e0534f2 5713
332ac17e 5714 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5715 if (cpudl_init(&rd->cpudl) != 0)
5716 goto free_dlo_mask;
332ac17e 5717
68c38fc3 5718 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5719 goto free_rto_mask;
c6c4927b 5720 return 0;
6e0534f2 5721
68e74568
RR
5722free_rto_mask:
5723 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5724free_dlo_mask:
5725 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5726free_online:
5727 free_cpumask_var(rd->online);
5728free_span:
5729 free_cpumask_var(rd->span);
0c910d28 5730out:
c6c4927b 5731 return -ENOMEM;
57d885fe
GH
5732}
5733
029632fb
PZ
5734/*
5735 * By default the system creates a single root-domain with all cpus as
5736 * members (mimicking the global state we have today).
5737 */
5738struct root_domain def_root_domain;
5739
57d885fe
GH
5740static void init_defrootdomain(void)
5741{
68c38fc3 5742 init_rootdomain(&def_root_domain);
c6c4927b 5743
57d885fe
GH
5744 atomic_set(&def_root_domain.refcount, 1);
5745}
5746
dc938520 5747static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5748{
5749 struct root_domain *rd;
5750
5751 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5752 if (!rd)
5753 return NULL;
5754
68c38fc3 5755 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5756 kfree(rd);
5757 return NULL;
5758 }
57d885fe
GH
5759
5760 return rd;
5761}
5762
63b2ca30 5763static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5764{
5765 struct sched_group *tmp, *first;
5766
5767 if (!sg)
5768 return;
5769
5770 first = sg;
5771 do {
5772 tmp = sg->next;
5773
63b2ca30
NP
5774 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5775 kfree(sg->sgc);
e3589f6c
PZ
5776
5777 kfree(sg);
5778 sg = tmp;
5779 } while (sg != first);
5780}
5781
dce840a0
PZ
5782static void free_sched_domain(struct rcu_head *rcu)
5783{
5784 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5785
5786 /*
5787 * If its an overlapping domain it has private groups, iterate and
5788 * nuke them all.
5789 */
5790 if (sd->flags & SD_OVERLAP) {
5791 free_sched_groups(sd->groups, 1);
5792 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5793 kfree(sd->groups->sgc);
dce840a0 5794 kfree(sd->groups);
9c3f75cb 5795 }
dce840a0
PZ
5796 kfree(sd);
5797}
5798
5799static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5800{
5801 call_rcu(&sd->rcu, free_sched_domain);
5802}
5803
5804static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5805{
5806 for (; sd; sd = sd->parent)
5807 destroy_sched_domain(sd, cpu);
5808}
5809
518cd623
PZ
5810/*
5811 * Keep a special pointer to the highest sched_domain that has
5812 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5813 * allows us to avoid some pointer chasing select_idle_sibling().
5814 *
5815 * Also keep a unique ID per domain (we use the first cpu number in
5816 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5817 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5818 */
5819DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5820DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5821DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5822DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5823DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5824DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5825
5826static void update_top_cache_domain(int cpu)
5827{
5828 struct sched_domain *sd;
5d4cf996 5829 struct sched_domain *busy_sd = NULL;
518cd623 5830 int id = cpu;
7d9ffa89 5831 int size = 1;
518cd623
PZ
5832
5833 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5834 if (sd) {
518cd623 5835 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5836 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5837 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5838 }
5d4cf996 5839 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5840
5841 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5842 per_cpu(sd_llc_size, cpu) = size;
518cd623 5843 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5844
5845 sd = lowest_flag_domain(cpu, SD_NUMA);
5846 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5847
5848 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5849 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5850}
5851
1da177e4 5852/*
0eab9146 5853 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5854 * hold the hotplug lock.
5855 */
0eab9146
IM
5856static void
5857cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5858{
70b97a7f 5859 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5860 struct sched_domain *tmp;
5861
5862 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5863 for (tmp = sd; tmp; ) {
245af2c7
SS
5864 struct sched_domain *parent = tmp->parent;
5865 if (!parent)
5866 break;
f29c9b1c 5867
1a848870 5868 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5869 tmp->parent = parent->parent;
1a848870
SS
5870 if (parent->parent)
5871 parent->parent->child = tmp;
10866e62
PZ
5872 /*
5873 * Transfer SD_PREFER_SIBLING down in case of a
5874 * degenerate parent; the spans match for this
5875 * so the property transfers.
5876 */
5877 if (parent->flags & SD_PREFER_SIBLING)
5878 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5879 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5880 } else
5881 tmp = tmp->parent;
245af2c7
SS
5882 }
5883
1a848870 5884 if (sd && sd_degenerate(sd)) {
dce840a0 5885 tmp = sd;
245af2c7 5886 sd = sd->parent;
dce840a0 5887 destroy_sched_domain(tmp, cpu);
1a848870
SS
5888 if (sd)
5889 sd->child = NULL;
5890 }
1da177e4 5891
4cb98839 5892 sched_domain_debug(sd, cpu);
1da177e4 5893
57d885fe 5894 rq_attach_root(rq, rd);
dce840a0 5895 tmp = rq->sd;
674311d5 5896 rcu_assign_pointer(rq->sd, sd);
dce840a0 5897 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5898
5899 update_top_cache_domain(cpu);
1da177e4
LT
5900}
5901
1da177e4
LT
5902/* Setup the mask of cpus configured for isolated domains */
5903static int __init isolated_cpu_setup(char *str)
5904{
bdddd296 5905 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5906 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5907 return 1;
5908}
5909
8927f494 5910__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5911
49a02c51 5912struct s_data {
21d42ccf 5913 struct sched_domain ** __percpu sd;
49a02c51
AH
5914 struct root_domain *rd;
5915};
5916
2109b99e 5917enum s_alloc {
2109b99e 5918 sa_rootdomain,
21d42ccf 5919 sa_sd,
dce840a0 5920 sa_sd_storage,
2109b99e
AH
5921 sa_none,
5922};
5923
c1174876
PZ
5924/*
5925 * Build an iteration mask that can exclude certain CPUs from the upwards
5926 * domain traversal.
5927 *
5928 * Asymmetric node setups can result in situations where the domain tree is of
5929 * unequal depth, make sure to skip domains that already cover the entire
5930 * range.
5931 *
5932 * In that case build_sched_domains() will have terminated the iteration early
5933 * and our sibling sd spans will be empty. Domains should always include the
5934 * cpu they're built on, so check that.
5935 *
5936 */
5937static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5938{
5939 const struct cpumask *span = sched_domain_span(sd);
5940 struct sd_data *sdd = sd->private;
5941 struct sched_domain *sibling;
5942 int i;
5943
5944 for_each_cpu(i, span) {
5945 sibling = *per_cpu_ptr(sdd->sd, i);
5946 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5947 continue;
5948
5949 cpumask_set_cpu(i, sched_group_mask(sg));
5950 }
5951}
5952
5953/*
5954 * Return the canonical balance cpu for this group, this is the first cpu
5955 * of this group that's also in the iteration mask.
5956 */
5957int group_balance_cpu(struct sched_group *sg)
5958{
5959 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5960}
5961
e3589f6c
PZ
5962static int
5963build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5964{
5965 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5966 const struct cpumask *span = sched_domain_span(sd);
5967 struct cpumask *covered = sched_domains_tmpmask;
5968 struct sd_data *sdd = sd->private;
aaecac4a 5969 struct sched_domain *sibling;
e3589f6c
PZ
5970 int i;
5971
5972 cpumask_clear(covered);
5973
5974 for_each_cpu(i, span) {
5975 struct cpumask *sg_span;
5976
5977 if (cpumask_test_cpu(i, covered))
5978 continue;
5979
aaecac4a 5980 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5981
5982 /* See the comment near build_group_mask(). */
aaecac4a 5983 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5984 continue;
5985
e3589f6c 5986 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5987 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5988
5989 if (!sg)
5990 goto fail;
5991
5992 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5993 if (sibling->child)
5994 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5995 else
e3589f6c
PZ
5996 cpumask_set_cpu(i, sg_span);
5997
5998 cpumask_or(covered, covered, sg_span);
5999
63b2ca30
NP
6000 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6001 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6002 build_group_mask(sd, sg);
6003
c3decf0d 6004 /*
63b2ca30 6005 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6006 * domains and no possible iteration will get us here, we won't
6007 * die on a /0 trap.
6008 */
ca8ce3d0 6009 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6010
c1174876
PZ
6011 /*
6012 * Make sure the first group of this domain contains the
6013 * canonical balance cpu. Otherwise the sched_domain iteration
6014 * breaks. See update_sg_lb_stats().
6015 */
74a5ce20 6016 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6017 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6018 groups = sg;
6019
6020 if (!first)
6021 first = sg;
6022 if (last)
6023 last->next = sg;
6024 last = sg;
6025 last->next = first;
6026 }
6027 sd->groups = groups;
6028
6029 return 0;
6030
6031fail:
6032 free_sched_groups(first, 0);
6033
6034 return -ENOMEM;
6035}
6036
dce840a0 6037static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6038{
dce840a0
PZ
6039 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6040 struct sched_domain *child = sd->child;
1da177e4 6041
dce840a0
PZ
6042 if (child)
6043 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6044
9c3f75cb 6045 if (sg) {
dce840a0 6046 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6047 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6048 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6049 }
dce840a0
PZ
6050
6051 return cpu;
1e9f28fa 6052}
1e9f28fa 6053
01a08546 6054/*
dce840a0
PZ
6055 * build_sched_groups will build a circular linked list of the groups
6056 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6057 * and ->cpu_capacity to 0.
e3589f6c
PZ
6058 *
6059 * Assumes the sched_domain tree is fully constructed
01a08546 6060 */
e3589f6c
PZ
6061static int
6062build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6063{
dce840a0
PZ
6064 struct sched_group *first = NULL, *last = NULL;
6065 struct sd_data *sdd = sd->private;
6066 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6067 struct cpumask *covered;
dce840a0 6068 int i;
9c1cfda2 6069
e3589f6c
PZ
6070 get_group(cpu, sdd, &sd->groups);
6071 atomic_inc(&sd->groups->ref);
6072
0936629f 6073 if (cpu != cpumask_first(span))
e3589f6c
PZ
6074 return 0;
6075
f96225fd
PZ
6076 lockdep_assert_held(&sched_domains_mutex);
6077 covered = sched_domains_tmpmask;
6078
dce840a0 6079 cpumask_clear(covered);
6711cab4 6080
dce840a0
PZ
6081 for_each_cpu(i, span) {
6082 struct sched_group *sg;
cd08e923 6083 int group, j;
6711cab4 6084
dce840a0
PZ
6085 if (cpumask_test_cpu(i, covered))
6086 continue;
6711cab4 6087
cd08e923 6088 group = get_group(i, sdd, &sg);
c1174876 6089 cpumask_setall(sched_group_mask(sg));
0601a88d 6090
dce840a0
PZ
6091 for_each_cpu(j, span) {
6092 if (get_group(j, sdd, NULL) != group)
6093 continue;
0601a88d 6094
dce840a0
PZ
6095 cpumask_set_cpu(j, covered);
6096 cpumask_set_cpu(j, sched_group_cpus(sg));
6097 }
0601a88d 6098
dce840a0
PZ
6099 if (!first)
6100 first = sg;
6101 if (last)
6102 last->next = sg;
6103 last = sg;
6104 }
6105 last->next = first;
e3589f6c
PZ
6106
6107 return 0;
0601a88d 6108}
51888ca2 6109
89c4710e 6110/*
63b2ca30 6111 * Initialize sched groups cpu_capacity.
89c4710e 6112 *
63b2ca30 6113 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6114 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6115 * Typically cpu_capacity for all the groups in a sched domain will be same
6116 * unless there are asymmetries in the topology. If there are asymmetries,
6117 * group having more cpu_capacity will pickup more load compared to the
6118 * group having less cpu_capacity.
89c4710e 6119 */
63b2ca30 6120static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6121{
e3589f6c 6122 struct sched_group *sg = sd->groups;
89c4710e 6123
94c95ba6 6124 WARN_ON(!sg);
e3589f6c
PZ
6125
6126 do {
6127 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6128 sg = sg->next;
6129 } while (sg != sd->groups);
89c4710e 6130
c1174876 6131 if (cpu != group_balance_cpu(sg))
e3589f6c 6132 return;
aae6d3dd 6133
63b2ca30
NP
6134 update_group_capacity(sd, cpu);
6135 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6136}
6137
7c16ec58
MT
6138/*
6139 * Initializers for schedule domains
6140 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6141 */
6142
1d3504fc 6143static int default_relax_domain_level = -1;
60495e77 6144int sched_domain_level_max;
1d3504fc
HS
6145
6146static int __init setup_relax_domain_level(char *str)
6147{
a841f8ce
DS
6148 if (kstrtoint(str, 0, &default_relax_domain_level))
6149 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6150
1d3504fc
HS
6151 return 1;
6152}
6153__setup("relax_domain_level=", setup_relax_domain_level);
6154
6155static void set_domain_attribute(struct sched_domain *sd,
6156 struct sched_domain_attr *attr)
6157{
6158 int request;
6159
6160 if (!attr || attr->relax_domain_level < 0) {
6161 if (default_relax_domain_level < 0)
6162 return;
6163 else
6164 request = default_relax_domain_level;
6165 } else
6166 request = attr->relax_domain_level;
6167 if (request < sd->level) {
6168 /* turn off idle balance on this domain */
c88d5910 6169 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6170 } else {
6171 /* turn on idle balance on this domain */
c88d5910 6172 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6173 }
6174}
6175
54ab4ff4
PZ
6176static void __sdt_free(const struct cpumask *cpu_map);
6177static int __sdt_alloc(const struct cpumask *cpu_map);
6178
2109b99e
AH
6179static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6180 const struct cpumask *cpu_map)
6181{
6182 switch (what) {
2109b99e 6183 case sa_rootdomain:
822ff793
PZ
6184 if (!atomic_read(&d->rd->refcount))
6185 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6186 case sa_sd:
6187 free_percpu(d->sd); /* fall through */
dce840a0 6188 case sa_sd_storage:
54ab4ff4 6189 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6190 case sa_none:
6191 break;
6192 }
6193}
3404c8d9 6194
2109b99e
AH
6195static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6196 const struct cpumask *cpu_map)
6197{
dce840a0
PZ
6198 memset(d, 0, sizeof(*d));
6199
54ab4ff4
PZ
6200 if (__sdt_alloc(cpu_map))
6201 return sa_sd_storage;
dce840a0
PZ
6202 d->sd = alloc_percpu(struct sched_domain *);
6203 if (!d->sd)
6204 return sa_sd_storage;
2109b99e 6205 d->rd = alloc_rootdomain();
dce840a0 6206 if (!d->rd)
21d42ccf 6207 return sa_sd;
2109b99e
AH
6208 return sa_rootdomain;
6209}
57d885fe 6210
dce840a0
PZ
6211/*
6212 * NULL the sd_data elements we've used to build the sched_domain and
6213 * sched_group structure so that the subsequent __free_domain_allocs()
6214 * will not free the data we're using.
6215 */
6216static void claim_allocations(int cpu, struct sched_domain *sd)
6217{
6218 struct sd_data *sdd = sd->private;
dce840a0
PZ
6219
6220 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6221 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6222
e3589f6c 6223 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6224 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6225
63b2ca30
NP
6226 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6227 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6228}
6229
cb83b629 6230#ifdef CONFIG_NUMA
cb83b629 6231static int sched_domains_numa_levels;
e3fe70b1 6232enum numa_topology_type sched_numa_topology_type;
cb83b629 6233static int *sched_domains_numa_distance;
9942f79b 6234int sched_max_numa_distance;
cb83b629
PZ
6235static struct cpumask ***sched_domains_numa_masks;
6236static int sched_domains_curr_level;
143e1e28 6237#endif
cb83b629 6238
143e1e28
VG
6239/*
6240 * SD_flags allowed in topology descriptions.
6241 *
5d4dfddd 6242 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6243 * SD_SHARE_PKG_RESOURCES - describes shared caches
6244 * SD_NUMA - describes NUMA topologies
d77b3ed5 6245 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6246 *
6247 * Odd one out:
6248 * SD_ASYM_PACKING - describes SMT quirks
6249 */
6250#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6251 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6252 SD_SHARE_PKG_RESOURCES | \
6253 SD_NUMA | \
d77b3ed5
VG
6254 SD_ASYM_PACKING | \
6255 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6256
6257static struct sched_domain *
143e1e28 6258sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6259{
6260 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6261 int sd_weight, sd_flags = 0;
6262
6263#ifdef CONFIG_NUMA
6264 /*
6265 * Ugly hack to pass state to sd_numa_mask()...
6266 */
6267 sched_domains_curr_level = tl->numa_level;
6268#endif
6269
6270 sd_weight = cpumask_weight(tl->mask(cpu));
6271
6272 if (tl->sd_flags)
6273 sd_flags = (*tl->sd_flags)();
6274 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6275 "wrong sd_flags in topology description\n"))
6276 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6277
6278 *sd = (struct sched_domain){
6279 .min_interval = sd_weight,
6280 .max_interval = 2*sd_weight,
6281 .busy_factor = 32,
870a0bb5 6282 .imbalance_pct = 125,
143e1e28
VG
6283
6284 .cache_nice_tries = 0,
6285 .busy_idx = 0,
6286 .idle_idx = 0,
cb83b629
PZ
6287 .newidle_idx = 0,
6288 .wake_idx = 0,
6289 .forkexec_idx = 0,
6290
6291 .flags = 1*SD_LOAD_BALANCE
6292 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6293 | 1*SD_BALANCE_EXEC
6294 | 1*SD_BALANCE_FORK
cb83b629 6295 | 0*SD_BALANCE_WAKE
143e1e28 6296 | 1*SD_WAKE_AFFINE
5d4dfddd 6297 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6298 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6299 | 0*SD_SERIALIZE
cb83b629 6300 | 0*SD_PREFER_SIBLING
143e1e28
VG
6301 | 0*SD_NUMA
6302 | sd_flags
cb83b629 6303 ,
143e1e28 6304
cb83b629
PZ
6305 .last_balance = jiffies,
6306 .balance_interval = sd_weight,
143e1e28 6307 .smt_gain = 0,
2b4cfe64
JL
6308 .max_newidle_lb_cost = 0,
6309 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6310#ifdef CONFIG_SCHED_DEBUG
6311 .name = tl->name,
6312#endif
cb83b629 6313 };
cb83b629
PZ
6314
6315 /*
143e1e28 6316 * Convert topological properties into behaviour.
cb83b629 6317 */
143e1e28 6318
5d4dfddd 6319 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6320 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6321 sd->imbalance_pct = 110;
6322 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6323
6324 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6325 sd->imbalance_pct = 117;
6326 sd->cache_nice_tries = 1;
6327 sd->busy_idx = 2;
6328
6329#ifdef CONFIG_NUMA
6330 } else if (sd->flags & SD_NUMA) {
6331 sd->cache_nice_tries = 2;
6332 sd->busy_idx = 3;
6333 sd->idle_idx = 2;
6334
6335 sd->flags |= SD_SERIALIZE;
6336 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6337 sd->flags &= ~(SD_BALANCE_EXEC |
6338 SD_BALANCE_FORK |
6339 SD_WAKE_AFFINE);
6340 }
6341
6342#endif
6343 } else {
6344 sd->flags |= SD_PREFER_SIBLING;
6345 sd->cache_nice_tries = 1;
6346 sd->busy_idx = 2;
6347 sd->idle_idx = 1;
6348 }
6349
6350 sd->private = &tl->data;
cb83b629
PZ
6351
6352 return sd;
6353}
6354
143e1e28
VG
6355/*
6356 * Topology list, bottom-up.
6357 */
6358static struct sched_domain_topology_level default_topology[] = {
6359#ifdef CONFIG_SCHED_SMT
6360 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6361#endif
6362#ifdef CONFIG_SCHED_MC
6363 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6364#endif
6365 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6366 { NULL, },
6367};
6368
6369struct sched_domain_topology_level *sched_domain_topology = default_topology;
6370
6371#define for_each_sd_topology(tl) \
6372 for (tl = sched_domain_topology; tl->mask; tl++)
6373
6374void set_sched_topology(struct sched_domain_topology_level *tl)
6375{
6376 sched_domain_topology = tl;
6377}
6378
6379#ifdef CONFIG_NUMA
6380
cb83b629
PZ
6381static const struct cpumask *sd_numa_mask(int cpu)
6382{
6383 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6384}
6385
d039ac60
PZ
6386static void sched_numa_warn(const char *str)
6387{
6388 static int done = false;
6389 int i,j;
6390
6391 if (done)
6392 return;
6393
6394 done = true;
6395
6396 printk(KERN_WARNING "ERROR: %s\n\n", str);
6397
6398 for (i = 0; i < nr_node_ids; i++) {
6399 printk(KERN_WARNING " ");
6400 for (j = 0; j < nr_node_ids; j++)
6401 printk(KERN_CONT "%02d ", node_distance(i,j));
6402 printk(KERN_CONT "\n");
6403 }
6404 printk(KERN_WARNING "\n");
6405}
6406
9942f79b 6407bool find_numa_distance(int distance)
d039ac60
PZ
6408{
6409 int i;
6410
6411 if (distance == node_distance(0, 0))
6412 return true;
6413
6414 for (i = 0; i < sched_domains_numa_levels; i++) {
6415 if (sched_domains_numa_distance[i] == distance)
6416 return true;
6417 }
6418
6419 return false;
6420}
6421
e3fe70b1
RR
6422/*
6423 * A system can have three types of NUMA topology:
6424 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6425 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6426 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6427 *
6428 * The difference between a glueless mesh topology and a backplane
6429 * topology lies in whether communication between not directly
6430 * connected nodes goes through intermediary nodes (where programs
6431 * could run), or through backplane controllers. This affects
6432 * placement of programs.
6433 *
6434 * The type of topology can be discerned with the following tests:
6435 * - If the maximum distance between any nodes is 1 hop, the system
6436 * is directly connected.
6437 * - If for two nodes A and B, located N > 1 hops away from each other,
6438 * there is an intermediary node C, which is < N hops away from both
6439 * nodes A and B, the system is a glueless mesh.
6440 */
6441static void init_numa_topology_type(void)
6442{
6443 int a, b, c, n;
6444
6445 n = sched_max_numa_distance;
6446
e237882b 6447 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6448 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6449 return;
6450 }
e3fe70b1
RR
6451
6452 for_each_online_node(a) {
6453 for_each_online_node(b) {
6454 /* Find two nodes furthest removed from each other. */
6455 if (node_distance(a, b) < n)
6456 continue;
6457
6458 /* Is there an intermediary node between a and b? */
6459 for_each_online_node(c) {
6460 if (node_distance(a, c) < n &&
6461 node_distance(b, c) < n) {
6462 sched_numa_topology_type =
6463 NUMA_GLUELESS_MESH;
6464 return;
6465 }
6466 }
6467
6468 sched_numa_topology_type = NUMA_BACKPLANE;
6469 return;
6470 }
6471 }
6472}
6473
cb83b629
PZ
6474static void sched_init_numa(void)
6475{
6476 int next_distance, curr_distance = node_distance(0, 0);
6477 struct sched_domain_topology_level *tl;
6478 int level = 0;
6479 int i, j, k;
6480
cb83b629
PZ
6481 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6482 if (!sched_domains_numa_distance)
6483 return;
6484
6485 /*
6486 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6487 * unique distances in the node_distance() table.
6488 *
6489 * Assumes node_distance(0,j) includes all distances in
6490 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6491 */
6492 next_distance = curr_distance;
6493 for (i = 0; i < nr_node_ids; i++) {
6494 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6495 for (k = 0; k < nr_node_ids; k++) {
6496 int distance = node_distance(i, k);
6497
6498 if (distance > curr_distance &&
6499 (distance < next_distance ||
6500 next_distance == curr_distance))
6501 next_distance = distance;
6502
6503 /*
6504 * While not a strong assumption it would be nice to know
6505 * about cases where if node A is connected to B, B is not
6506 * equally connected to A.
6507 */
6508 if (sched_debug() && node_distance(k, i) != distance)
6509 sched_numa_warn("Node-distance not symmetric");
6510
6511 if (sched_debug() && i && !find_numa_distance(distance))
6512 sched_numa_warn("Node-0 not representative");
6513 }
6514 if (next_distance != curr_distance) {
6515 sched_domains_numa_distance[level++] = next_distance;
6516 sched_domains_numa_levels = level;
6517 curr_distance = next_distance;
6518 } else break;
cb83b629 6519 }
d039ac60
PZ
6520
6521 /*
6522 * In case of sched_debug() we verify the above assumption.
6523 */
6524 if (!sched_debug())
6525 break;
cb83b629 6526 }
c123588b
AR
6527
6528 if (!level)
6529 return;
6530
cb83b629
PZ
6531 /*
6532 * 'level' contains the number of unique distances, excluding the
6533 * identity distance node_distance(i,i).
6534 *
28b4a521 6535 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6536 * numbers.
6537 */
6538
5f7865f3
TC
6539 /*
6540 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6541 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6542 * the array will contain less then 'level' members. This could be
6543 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6544 * in other functions.
6545 *
6546 * We reset it to 'level' at the end of this function.
6547 */
6548 sched_domains_numa_levels = 0;
6549
cb83b629
PZ
6550 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6551 if (!sched_domains_numa_masks)
6552 return;
6553
6554 /*
6555 * Now for each level, construct a mask per node which contains all
6556 * cpus of nodes that are that many hops away from us.
6557 */
6558 for (i = 0; i < level; i++) {
6559 sched_domains_numa_masks[i] =
6560 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6561 if (!sched_domains_numa_masks[i])
6562 return;
6563
6564 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6565 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6566 if (!mask)
6567 return;
6568
6569 sched_domains_numa_masks[i][j] = mask;
6570
6571 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6572 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6573 continue;
6574
6575 cpumask_or(mask, mask, cpumask_of_node(k));
6576 }
6577 }
6578 }
6579
143e1e28
VG
6580 /* Compute default topology size */
6581 for (i = 0; sched_domain_topology[i].mask; i++);
6582
c515db8c 6583 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6584 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6585 if (!tl)
6586 return;
6587
6588 /*
6589 * Copy the default topology bits..
6590 */
143e1e28
VG
6591 for (i = 0; sched_domain_topology[i].mask; i++)
6592 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6593
6594 /*
6595 * .. and append 'j' levels of NUMA goodness.
6596 */
6597 for (j = 0; j < level; i++, j++) {
6598 tl[i] = (struct sched_domain_topology_level){
cb83b629 6599 .mask = sd_numa_mask,
143e1e28 6600 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6601 .flags = SDTL_OVERLAP,
6602 .numa_level = j,
143e1e28 6603 SD_INIT_NAME(NUMA)
cb83b629
PZ
6604 };
6605 }
6606
6607 sched_domain_topology = tl;
5f7865f3
TC
6608
6609 sched_domains_numa_levels = level;
9942f79b 6610 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6611
6612 init_numa_topology_type();
cb83b629 6613}
301a5cba
TC
6614
6615static void sched_domains_numa_masks_set(int cpu)
6616{
6617 int i, j;
6618 int node = cpu_to_node(cpu);
6619
6620 for (i = 0; i < sched_domains_numa_levels; i++) {
6621 for (j = 0; j < nr_node_ids; j++) {
6622 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6623 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6624 }
6625 }
6626}
6627
6628static void sched_domains_numa_masks_clear(int cpu)
6629{
6630 int i, j;
6631 for (i = 0; i < sched_domains_numa_levels; i++) {
6632 for (j = 0; j < nr_node_ids; j++)
6633 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6634 }
6635}
6636
6637/*
6638 * Update sched_domains_numa_masks[level][node] array when new cpus
6639 * are onlined.
6640 */
6641static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6642 unsigned long action,
6643 void *hcpu)
6644{
6645 int cpu = (long)hcpu;
6646
6647 switch (action & ~CPU_TASKS_FROZEN) {
6648 case CPU_ONLINE:
6649 sched_domains_numa_masks_set(cpu);
6650 break;
6651
6652 case CPU_DEAD:
6653 sched_domains_numa_masks_clear(cpu);
6654 break;
6655
6656 default:
6657 return NOTIFY_DONE;
6658 }
6659
6660 return NOTIFY_OK;
cb83b629
PZ
6661}
6662#else
6663static inline void sched_init_numa(void)
6664{
6665}
301a5cba
TC
6666
6667static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6668 unsigned long action,
6669 void *hcpu)
6670{
6671 return 0;
6672}
cb83b629
PZ
6673#endif /* CONFIG_NUMA */
6674
54ab4ff4
PZ
6675static int __sdt_alloc(const struct cpumask *cpu_map)
6676{
6677 struct sched_domain_topology_level *tl;
6678 int j;
6679
27723a68 6680 for_each_sd_topology(tl) {
54ab4ff4
PZ
6681 struct sd_data *sdd = &tl->data;
6682
6683 sdd->sd = alloc_percpu(struct sched_domain *);
6684 if (!sdd->sd)
6685 return -ENOMEM;
6686
6687 sdd->sg = alloc_percpu(struct sched_group *);
6688 if (!sdd->sg)
6689 return -ENOMEM;
6690
63b2ca30
NP
6691 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6692 if (!sdd->sgc)
9c3f75cb
PZ
6693 return -ENOMEM;
6694
54ab4ff4
PZ
6695 for_each_cpu(j, cpu_map) {
6696 struct sched_domain *sd;
6697 struct sched_group *sg;
63b2ca30 6698 struct sched_group_capacity *sgc;
54ab4ff4 6699
5cc389bc 6700 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6701 GFP_KERNEL, cpu_to_node(j));
6702 if (!sd)
6703 return -ENOMEM;
6704
6705 *per_cpu_ptr(sdd->sd, j) = sd;
6706
6707 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6708 GFP_KERNEL, cpu_to_node(j));
6709 if (!sg)
6710 return -ENOMEM;
6711
30b4e9eb
IM
6712 sg->next = sg;
6713
54ab4ff4 6714 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6715
63b2ca30 6716 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6717 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6718 if (!sgc)
9c3f75cb
PZ
6719 return -ENOMEM;
6720
63b2ca30 6721 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6722 }
6723 }
6724
6725 return 0;
6726}
6727
6728static void __sdt_free(const struct cpumask *cpu_map)
6729{
6730 struct sched_domain_topology_level *tl;
6731 int j;
6732
27723a68 6733 for_each_sd_topology(tl) {
54ab4ff4
PZ
6734 struct sd_data *sdd = &tl->data;
6735
6736 for_each_cpu(j, cpu_map) {
fb2cf2c6 6737 struct sched_domain *sd;
6738
6739 if (sdd->sd) {
6740 sd = *per_cpu_ptr(sdd->sd, j);
6741 if (sd && (sd->flags & SD_OVERLAP))
6742 free_sched_groups(sd->groups, 0);
6743 kfree(*per_cpu_ptr(sdd->sd, j));
6744 }
6745
6746 if (sdd->sg)
6747 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6748 if (sdd->sgc)
6749 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6750 }
6751 free_percpu(sdd->sd);
fb2cf2c6 6752 sdd->sd = NULL;
54ab4ff4 6753 free_percpu(sdd->sg);
fb2cf2c6 6754 sdd->sg = NULL;
63b2ca30
NP
6755 free_percpu(sdd->sgc);
6756 sdd->sgc = NULL;
54ab4ff4
PZ
6757 }
6758}
6759
2c402dc3 6760struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6761 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6762 struct sched_domain *child, int cpu)
2c402dc3 6763{
143e1e28 6764 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6765 if (!sd)
d069b916 6766 return child;
2c402dc3 6767
2c402dc3 6768 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6769 if (child) {
6770 sd->level = child->level + 1;
6771 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6772 child->parent = sd;
c75e0128 6773 sd->child = child;
6ae72dff
PZ
6774
6775 if (!cpumask_subset(sched_domain_span(child),
6776 sched_domain_span(sd))) {
6777 pr_err("BUG: arch topology borken\n");
6778#ifdef CONFIG_SCHED_DEBUG
6779 pr_err(" the %s domain not a subset of the %s domain\n",
6780 child->name, sd->name);
6781#endif
6782 /* Fixup, ensure @sd has at least @child cpus. */
6783 cpumask_or(sched_domain_span(sd),
6784 sched_domain_span(sd),
6785 sched_domain_span(child));
6786 }
6787
60495e77 6788 }
a841f8ce 6789 set_domain_attribute(sd, attr);
2c402dc3
PZ
6790
6791 return sd;
6792}
6793
2109b99e
AH
6794/*
6795 * Build sched domains for a given set of cpus and attach the sched domains
6796 * to the individual cpus
6797 */
dce840a0
PZ
6798static int build_sched_domains(const struct cpumask *cpu_map,
6799 struct sched_domain_attr *attr)
2109b99e 6800{
1c632169 6801 enum s_alloc alloc_state;
dce840a0 6802 struct sched_domain *sd;
2109b99e 6803 struct s_data d;
822ff793 6804 int i, ret = -ENOMEM;
9c1cfda2 6805
2109b99e
AH
6806 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6807 if (alloc_state != sa_rootdomain)
6808 goto error;
9c1cfda2 6809
dce840a0 6810 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6811 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6812 struct sched_domain_topology_level *tl;
6813
3bd65a80 6814 sd = NULL;
27723a68 6815 for_each_sd_topology(tl) {
4a850cbe 6816 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6817 if (tl == sched_domain_topology)
6818 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6819 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6820 sd->flags |= SD_OVERLAP;
d110235d
PZ
6821 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6822 break;
e3589f6c 6823 }
dce840a0
PZ
6824 }
6825
6826 /* Build the groups for the domains */
6827 for_each_cpu(i, cpu_map) {
6828 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6829 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6830 if (sd->flags & SD_OVERLAP) {
6831 if (build_overlap_sched_groups(sd, i))
6832 goto error;
6833 } else {
6834 if (build_sched_groups(sd, i))
6835 goto error;
6836 }
1cf51902 6837 }
a06dadbe 6838 }
9c1cfda2 6839
ced549fa 6840 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6841 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6842 if (!cpumask_test_cpu(i, cpu_map))
6843 continue;
9c1cfda2 6844
dce840a0
PZ
6845 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6846 claim_allocations(i, sd);
63b2ca30 6847 init_sched_groups_capacity(i, sd);
dce840a0 6848 }
f712c0c7 6849 }
9c1cfda2 6850
1da177e4 6851 /* Attach the domains */
dce840a0 6852 rcu_read_lock();
abcd083a 6853 for_each_cpu(i, cpu_map) {
21d42ccf 6854 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6855 cpu_attach_domain(sd, d.rd, i);
1da177e4 6856 }
dce840a0 6857 rcu_read_unlock();
51888ca2 6858
822ff793 6859 ret = 0;
51888ca2 6860error:
2109b99e 6861 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6862 return ret;
1da177e4 6863}
029190c5 6864
acc3f5d7 6865static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6866static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6867static struct sched_domain_attr *dattr_cur;
6868 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6869
6870/*
6871 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6872 * cpumask) fails, then fallback to a single sched domain,
6873 * as determined by the single cpumask fallback_doms.
029190c5 6874 */
4212823f 6875static cpumask_var_t fallback_doms;
029190c5 6876
ee79d1bd
HC
6877/*
6878 * arch_update_cpu_topology lets virtualized architectures update the
6879 * cpu core maps. It is supposed to return 1 if the topology changed
6880 * or 0 if it stayed the same.
6881 */
52f5684c 6882int __weak arch_update_cpu_topology(void)
22e52b07 6883{
ee79d1bd 6884 return 0;
22e52b07
HC
6885}
6886
acc3f5d7
RR
6887cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6888{
6889 int i;
6890 cpumask_var_t *doms;
6891
6892 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6893 if (!doms)
6894 return NULL;
6895 for (i = 0; i < ndoms; i++) {
6896 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6897 free_sched_domains(doms, i);
6898 return NULL;
6899 }
6900 }
6901 return doms;
6902}
6903
6904void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6905{
6906 unsigned int i;
6907 for (i = 0; i < ndoms; i++)
6908 free_cpumask_var(doms[i]);
6909 kfree(doms);
6910}
6911
1a20ff27 6912/*
41a2d6cf 6913 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6914 * For now this just excludes isolated cpus, but could be used to
6915 * exclude other special cases in the future.
1a20ff27 6916 */
c4a8849a 6917static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6918{
7378547f
MM
6919 int err;
6920
22e52b07 6921 arch_update_cpu_topology();
029190c5 6922 ndoms_cur = 1;
acc3f5d7 6923 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6924 if (!doms_cur)
acc3f5d7
RR
6925 doms_cur = &fallback_doms;
6926 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6927 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6928 register_sched_domain_sysctl();
7378547f
MM
6929
6930 return err;
1a20ff27
DG
6931}
6932
1a20ff27
DG
6933/*
6934 * Detach sched domains from a group of cpus specified in cpu_map
6935 * These cpus will now be attached to the NULL domain
6936 */
96f874e2 6937static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6938{
6939 int i;
6940
dce840a0 6941 rcu_read_lock();
abcd083a 6942 for_each_cpu(i, cpu_map)
57d885fe 6943 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6944 rcu_read_unlock();
1a20ff27
DG
6945}
6946
1d3504fc
HS
6947/* handle null as "default" */
6948static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6949 struct sched_domain_attr *new, int idx_new)
6950{
6951 struct sched_domain_attr tmp;
6952
6953 /* fast path */
6954 if (!new && !cur)
6955 return 1;
6956
6957 tmp = SD_ATTR_INIT;
6958 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6959 new ? (new + idx_new) : &tmp,
6960 sizeof(struct sched_domain_attr));
6961}
6962
029190c5
PJ
6963/*
6964 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6965 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6966 * doms_new[] to the current sched domain partitioning, doms_cur[].
6967 * It destroys each deleted domain and builds each new domain.
6968 *
acc3f5d7 6969 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6970 * The masks don't intersect (don't overlap.) We should setup one
6971 * sched domain for each mask. CPUs not in any of the cpumasks will
6972 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6973 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6974 * it as it is.
6975 *
acc3f5d7
RR
6976 * The passed in 'doms_new' should be allocated using
6977 * alloc_sched_domains. This routine takes ownership of it and will
6978 * free_sched_domains it when done with it. If the caller failed the
6979 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6980 * and partition_sched_domains() will fallback to the single partition
6981 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6982 *
96f874e2 6983 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6984 * ndoms_new == 0 is a special case for destroying existing domains,
6985 * and it will not create the default domain.
dfb512ec 6986 *
029190c5
PJ
6987 * Call with hotplug lock held
6988 */
acc3f5d7 6989void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6990 struct sched_domain_attr *dattr_new)
029190c5 6991{
dfb512ec 6992 int i, j, n;
d65bd5ec 6993 int new_topology;
029190c5 6994
712555ee 6995 mutex_lock(&sched_domains_mutex);
a1835615 6996
7378547f
MM
6997 /* always unregister in case we don't destroy any domains */
6998 unregister_sched_domain_sysctl();
6999
d65bd5ec
HC
7000 /* Let architecture update cpu core mappings. */
7001 new_topology = arch_update_cpu_topology();
7002
dfb512ec 7003 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7004
7005 /* Destroy deleted domains */
7006 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7007 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7008 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7009 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7010 goto match1;
7011 }
7012 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7013 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7014match1:
7015 ;
7016 }
7017
c8d2d47a 7018 n = ndoms_cur;
e761b772 7019 if (doms_new == NULL) {
c8d2d47a 7020 n = 0;
acc3f5d7 7021 doms_new = &fallback_doms;
6ad4c188 7022 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7023 WARN_ON_ONCE(dattr_new);
e761b772
MK
7024 }
7025
029190c5
PJ
7026 /* Build new domains */
7027 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7028 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7029 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7030 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7031 goto match2;
7032 }
7033 /* no match - add a new doms_new */
dce840a0 7034 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7035match2:
7036 ;
7037 }
7038
7039 /* Remember the new sched domains */
acc3f5d7
RR
7040 if (doms_cur != &fallback_doms)
7041 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7042 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7043 doms_cur = doms_new;
1d3504fc 7044 dattr_cur = dattr_new;
029190c5 7045 ndoms_cur = ndoms_new;
7378547f
MM
7046
7047 register_sched_domain_sysctl();
a1835615 7048
712555ee 7049 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7050}
7051
d35be8ba
SB
7052static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7053
1da177e4 7054/*
3a101d05
TH
7055 * Update cpusets according to cpu_active mask. If cpusets are
7056 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7057 * around partition_sched_domains().
d35be8ba
SB
7058 *
7059 * If we come here as part of a suspend/resume, don't touch cpusets because we
7060 * want to restore it back to its original state upon resume anyway.
1da177e4 7061 */
0b2e918a
TH
7062static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7063 void *hcpu)
e761b772 7064{
d35be8ba
SB
7065 switch (action) {
7066 case CPU_ONLINE_FROZEN:
7067 case CPU_DOWN_FAILED_FROZEN:
7068
7069 /*
7070 * num_cpus_frozen tracks how many CPUs are involved in suspend
7071 * resume sequence. As long as this is not the last online
7072 * operation in the resume sequence, just build a single sched
7073 * domain, ignoring cpusets.
7074 */
7075 num_cpus_frozen--;
7076 if (likely(num_cpus_frozen)) {
7077 partition_sched_domains(1, NULL, NULL);
7078 break;
7079 }
7080
7081 /*
7082 * This is the last CPU online operation. So fall through and
7083 * restore the original sched domains by considering the
7084 * cpuset configurations.
7085 */
7086
e761b772 7087 case CPU_ONLINE:
7ddf96b0 7088 cpuset_update_active_cpus(true);
d35be8ba 7089 break;
3a101d05
TH
7090 default:
7091 return NOTIFY_DONE;
7092 }
d35be8ba 7093 return NOTIFY_OK;
3a101d05 7094}
e761b772 7095
0b2e918a
TH
7096static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7097 void *hcpu)
3a101d05 7098{
3c18d447
JL
7099 unsigned long flags;
7100 long cpu = (long)hcpu;
7101 struct dl_bw *dl_b;
533445c6
OS
7102 bool overflow;
7103 int cpus;
3c18d447 7104
533445c6 7105 switch (action) {
3a101d05 7106 case CPU_DOWN_PREPARE:
533445c6
OS
7107 rcu_read_lock_sched();
7108 dl_b = dl_bw_of(cpu);
3c18d447 7109
533445c6
OS
7110 raw_spin_lock_irqsave(&dl_b->lock, flags);
7111 cpus = dl_bw_cpus(cpu);
7112 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7113 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7114
533445c6 7115 rcu_read_unlock_sched();
3c18d447 7116
533445c6
OS
7117 if (overflow)
7118 return notifier_from_errno(-EBUSY);
7ddf96b0 7119 cpuset_update_active_cpus(false);
d35be8ba
SB
7120 break;
7121 case CPU_DOWN_PREPARE_FROZEN:
7122 num_cpus_frozen++;
7123 partition_sched_domains(1, NULL, NULL);
7124 break;
e761b772
MK
7125 default:
7126 return NOTIFY_DONE;
7127 }
d35be8ba 7128 return NOTIFY_OK;
e761b772 7129}
e761b772 7130
1da177e4
LT
7131void __init sched_init_smp(void)
7132{
dcc30a35
RR
7133 cpumask_var_t non_isolated_cpus;
7134
7135 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7136 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7137
8cb9764f
CM
7138 /* nohz_full won't take effect without isolating the cpus. */
7139 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7140
cb83b629
PZ
7141 sched_init_numa();
7142
6acce3ef
PZ
7143 /*
7144 * There's no userspace yet to cause hotplug operations; hence all the
7145 * cpu masks are stable and all blatant races in the below code cannot
7146 * happen.
7147 */
712555ee 7148 mutex_lock(&sched_domains_mutex);
c4a8849a 7149 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7150 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7151 if (cpumask_empty(non_isolated_cpus))
7152 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7153 mutex_unlock(&sched_domains_mutex);
e761b772 7154
301a5cba 7155 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7156 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7157 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7158
b328ca18 7159 init_hrtick();
5c1e1767
NP
7160
7161 /* Move init over to a non-isolated CPU */
dcc30a35 7162 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7163 BUG();
19978ca6 7164 sched_init_granularity();
dcc30a35 7165 free_cpumask_var(non_isolated_cpus);
4212823f 7166
0e3900e6 7167 init_sched_rt_class();
1baca4ce 7168 init_sched_dl_class();
1da177e4
LT
7169}
7170#else
7171void __init sched_init_smp(void)
7172{
19978ca6 7173 sched_init_granularity();
1da177e4
LT
7174}
7175#endif /* CONFIG_SMP */
7176
7177int in_sched_functions(unsigned long addr)
7178{
1da177e4
LT
7179 return in_lock_functions(addr) ||
7180 (addr >= (unsigned long)__sched_text_start
7181 && addr < (unsigned long)__sched_text_end);
7182}
7183
029632fb 7184#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7185/*
7186 * Default task group.
7187 * Every task in system belongs to this group at bootup.
7188 */
029632fb 7189struct task_group root_task_group;
35cf4e50 7190LIST_HEAD(task_groups);
052f1dc7 7191#endif
6f505b16 7192
e6252c3e 7193DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7194
1da177e4
LT
7195void __init sched_init(void)
7196{
dd41f596 7197 int i, j;
434d53b0
MT
7198 unsigned long alloc_size = 0, ptr;
7199
7200#ifdef CONFIG_FAIR_GROUP_SCHED
7201 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7202#endif
7203#ifdef CONFIG_RT_GROUP_SCHED
7204 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7205#endif
434d53b0 7206 if (alloc_size) {
36b7b6d4 7207 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7208
7209#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7210 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7211 ptr += nr_cpu_ids * sizeof(void **);
7212
07e06b01 7213 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7214 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7215
6d6bc0ad 7216#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7217#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7218 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7219 ptr += nr_cpu_ids * sizeof(void **);
7220
07e06b01 7221 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7222 ptr += nr_cpu_ids * sizeof(void **);
7223
6d6bc0ad 7224#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7225 }
df7c8e84 7226#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7227 for_each_possible_cpu(i) {
7228 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7229 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7230 }
b74e6278 7231#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7232
332ac17e
DF
7233 init_rt_bandwidth(&def_rt_bandwidth,
7234 global_rt_period(), global_rt_runtime());
7235 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7236 global_rt_period(), global_rt_runtime());
332ac17e 7237
57d885fe
GH
7238#ifdef CONFIG_SMP
7239 init_defrootdomain();
7240#endif
7241
d0b27fa7 7242#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7243 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7244 global_rt_period(), global_rt_runtime());
6d6bc0ad 7245#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7246
7c941438 7247#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7248 list_add(&root_task_group.list, &task_groups);
7249 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7250 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7251 autogroup_init(&init_task);
54c707e9 7252
7c941438 7253#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7254
0a945022 7255 for_each_possible_cpu(i) {
70b97a7f 7256 struct rq *rq;
1da177e4
LT
7257
7258 rq = cpu_rq(i);
05fa785c 7259 raw_spin_lock_init(&rq->lock);
7897986b 7260 rq->nr_running = 0;
dce48a84
TG
7261 rq->calc_load_active = 0;
7262 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7263 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7264 init_rt_rq(&rq->rt);
7265 init_dl_rq(&rq->dl);
dd41f596 7266#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7267 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7268 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7269 /*
07e06b01 7270 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7271 *
7272 * In case of task-groups formed thr' the cgroup filesystem, it
7273 * gets 100% of the cpu resources in the system. This overall
7274 * system cpu resource is divided among the tasks of
07e06b01 7275 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7276 * based on each entity's (task or task-group's) weight
7277 * (se->load.weight).
7278 *
07e06b01 7279 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7280 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7281 * then A0's share of the cpu resource is:
7282 *
0d905bca 7283 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7284 *
07e06b01
YZ
7285 * We achieve this by letting root_task_group's tasks sit
7286 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7287 */
ab84d31e 7288 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7289 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7290#endif /* CONFIG_FAIR_GROUP_SCHED */
7291
7292 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7293#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7294 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7295#endif
1da177e4 7296
dd41f596
IM
7297 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7298 rq->cpu_load[j] = 0;
fdf3e95d
VP
7299
7300 rq->last_load_update_tick = jiffies;
7301
1da177e4 7302#ifdef CONFIG_SMP
41c7ce9a 7303 rq->sd = NULL;
57d885fe 7304 rq->rd = NULL;
ca6d75e6 7305 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7306 rq->balance_callback = NULL;
1da177e4 7307 rq->active_balance = 0;
dd41f596 7308 rq->next_balance = jiffies;
1da177e4 7309 rq->push_cpu = 0;
0a2966b4 7310 rq->cpu = i;
1f11eb6a 7311 rq->online = 0;
eae0c9df
MG
7312 rq->idle_stamp = 0;
7313 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7314 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7315
7316 INIT_LIST_HEAD(&rq->cfs_tasks);
7317
dc938520 7318 rq_attach_root(rq, &def_root_domain);
3451d024 7319#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7320 rq->nohz_flags = 0;
83cd4fe2 7321#endif
265f22a9
FW
7322#ifdef CONFIG_NO_HZ_FULL
7323 rq->last_sched_tick = 0;
7324#endif
1da177e4 7325#endif
8f4d37ec 7326 init_rq_hrtick(rq);
1da177e4 7327 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7328 }
7329
2dd73a4f 7330 set_load_weight(&init_task);
b50f60ce 7331
e107be36
AK
7332#ifdef CONFIG_PREEMPT_NOTIFIERS
7333 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7334#endif
7335
1da177e4
LT
7336 /*
7337 * The boot idle thread does lazy MMU switching as well:
7338 */
7339 atomic_inc(&init_mm.mm_count);
7340 enter_lazy_tlb(&init_mm, current);
7341
1b537c7d
YD
7342 /*
7343 * During early bootup we pretend to be a normal task:
7344 */
7345 current->sched_class = &fair_sched_class;
7346
1da177e4
LT
7347 /*
7348 * Make us the idle thread. Technically, schedule() should not be
7349 * called from this thread, however somewhere below it might be,
7350 * but because we are the idle thread, we just pick up running again
7351 * when this runqueue becomes "idle".
7352 */
7353 init_idle(current, smp_processor_id());
dce48a84
TG
7354
7355 calc_load_update = jiffies + LOAD_FREQ;
7356
bf4d83f6 7357#ifdef CONFIG_SMP
4cb98839 7358 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7359 /* May be allocated at isolcpus cmdline parse time */
7360 if (cpu_isolated_map == NULL)
7361 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7362 idle_thread_set_boot_cpu();
a803f026 7363 set_cpu_rq_start_time();
029632fb
PZ
7364#endif
7365 init_sched_fair_class();
6a7b3dc3 7366
6892b75e 7367 scheduler_running = 1;
1da177e4
LT
7368}
7369
d902db1e 7370#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7371static inline int preempt_count_equals(int preempt_offset)
7372{
234da7bc 7373 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7374
4ba8216c 7375 return (nested == preempt_offset);
e4aafea2
FW
7376}
7377
d894837f 7378void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7379{
8eb23b9f
PZ
7380 /*
7381 * Blocking primitives will set (and therefore destroy) current->state,
7382 * since we will exit with TASK_RUNNING make sure we enter with it,
7383 * otherwise we will destroy state.
7384 */
00845eb9 7385 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7386 "do not call blocking ops when !TASK_RUNNING; "
7387 "state=%lx set at [<%p>] %pS\n",
7388 current->state,
7389 (void *)current->task_state_change,
00845eb9 7390 (void *)current->task_state_change);
8eb23b9f 7391
3427445a
PZ
7392 ___might_sleep(file, line, preempt_offset);
7393}
7394EXPORT_SYMBOL(__might_sleep);
7395
7396void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7397{
1da177e4
LT
7398 static unsigned long prev_jiffy; /* ratelimiting */
7399
b3fbab05 7400 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7401 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7402 !is_idle_task(current)) ||
e4aafea2 7403 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7404 return;
7405 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7406 return;
7407 prev_jiffy = jiffies;
7408
3df0fc5b
PZ
7409 printk(KERN_ERR
7410 "BUG: sleeping function called from invalid context at %s:%d\n",
7411 file, line);
7412 printk(KERN_ERR
7413 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7414 in_atomic(), irqs_disabled(),
7415 current->pid, current->comm);
aef745fc 7416
a8b686b3
ES
7417 if (task_stack_end_corrupted(current))
7418 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7419
aef745fc
IM
7420 debug_show_held_locks(current);
7421 if (irqs_disabled())
7422 print_irqtrace_events(current);
8f47b187
TG
7423#ifdef CONFIG_DEBUG_PREEMPT
7424 if (!preempt_count_equals(preempt_offset)) {
7425 pr_err("Preemption disabled at:");
7426 print_ip_sym(current->preempt_disable_ip);
7427 pr_cont("\n");
7428 }
7429#endif
aef745fc 7430 dump_stack();
1da177e4 7431}
3427445a 7432EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7433#endif
7434
7435#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7436void normalize_rt_tasks(void)
3a5e4dc1 7437{
dbc7f069 7438 struct task_struct *g, *p;
d50dde5a
DF
7439 struct sched_attr attr = {
7440 .sched_policy = SCHED_NORMAL,
7441 };
1da177e4 7442
3472eaa1 7443 read_lock(&tasklist_lock);
5d07f420 7444 for_each_process_thread(g, p) {
178be793
IM
7445 /*
7446 * Only normalize user tasks:
7447 */
3472eaa1 7448 if (p->flags & PF_KTHREAD)
178be793
IM
7449 continue;
7450
6cfb0d5d 7451 p->se.exec_start = 0;
6cfb0d5d 7452#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7453 p->se.statistics.wait_start = 0;
7454 p->se.statistics.sleep_start = 0;
7455 p->se.statistics.block_start = 0;
6cfb0d5d 7456#endif
dd41f596 7457
aab03e05 7458 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7459 /*
7460 * Renice negative nice level userspace
7461 * tasks back to 0:
7462 */
3472eaa1 7463 if (task_nice(p) < 0)
dd41f596 7464 set_user_nice(p, 0);
1da177e4 7465 continue;
dd41f596 7466 }
1da177e4 7467
dbc7f069 7468 __sched_setscheduler(p, &attr, false, false);
5d07f420 7469 }
3472eaa1 7470 read_unlock(&tasklist_lock);
1da177e4
LT
7471}
7472
7473#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7474
67fc4e0c 7475#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7476/*
67fc4e0c 7477 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7478 *
7479 * They can only be called when the whole system has been
7480 * stopped - every CPU needs to be quiescent, and no scheduling
7481 * activity can take place. Using them for anything else would
7482 * be a serious bug, and as a result, they aren't even visible
7483 * under any other configuration.
7484 */
7485
7486/**
7487 * curr_task - return the current task for a given cpu.
7488 * @cpu: the processor in question.
7489 *
7490 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7491 *
7492 * Return: The current task for @cpu.
1df5c10a 7493 */
36c8b586 7494struct task_struct *curr_task(int cpu)
1df5c10a
LT
7495{
7496 return cpu_curr(cpu);
7497}
7498
67fc4e0c
JW
7499#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7500
7501#ifdef CONFIG_IA64
1df5c10a
LT
7502/**
7503 * set_curr_task - set the current task for a given cpu.
7504 * @cpu: the processor in question.
7505 * @p: the task pointer to set.
7506 *
7507 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7508 * are serviced on a separate stack. It allows the architecture to switch the
7509 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7510 * must be called with all CPU's synchronized, and interrupts disabled, the
7511 * and caller must save the original value of the current task (see
7512 * curr_task() above) and restore that value before reenabling interrupts and
7513 * re-starting the system.
7514 *
7515 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7516 */
36c8b586 7517void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7518{
7519 cpu_curr(cpu) = p;
7520}
7521
7522#endif
29f59db3 7523
7c941438 7524#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7525/* task_group_lock serializes the addition/removal of task groups */
7526static DEFINE_SPINLOCK(task_group_lock);
7527
bccbe08a
PZ
7528static void free_sched_group(struct task_group *tg)
7529{
7530 free_fair_sched_group(tg);
7531 free_rt_sched_group(tg);
e9aa1dd1 7532 autogroup_free(tg);
bccbe08a
PZ
7533 kfree(tg);
7534}
7535
7536/* allocate runqueue etc for a new task group */
ec7dc8ac 7537struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7538{
7539 struct task_group *tg;
bccbe08a
PZ
7540
7541 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7542 if (!tg)
7543 return ERR_PTR(-ENOMEM);
7544
ec7dc8ac 7545 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7546 goto err;
7547
ec7dc8ac 7548 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7549 goto err;
7550
ace783b9
LZ
7551 return tg;
7552
7553err:
7554 free_sched_group(tg);
7555 return ERR_PTR(-ENOMEM);
7556}
7557
7558void sched_online_group(struct task_group *tg, struct task_group *parent)
7559{
7560 unsigned long flags;
7561
8ed36996 7562 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7563 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7564
7565 WARN_ON(!parent); /* root should already exist */
7566
7567 tg->parent = parent;
f473aa5e 7568 INIT_LIST_HEAD(&tg->children);
09f2724a 7569 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7570 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7571}
7572
9b5b7751 7573/* rcu callback to free various structures associated with a task group */
6f505b16 7574static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7575{
29f59db3 7576 /* now it should be safe to free those cfs_rqs */
6f505b16 7577 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7578}
7579
9b5b7751 7580/* Destroy runqueue etc associated with a task group */
4cf86d77 7581void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7582{
7583 /* wait for possible concurrent references to cfs_rqs complete */
7584 call_rcu(&tg->rcu, free_sched_group_rcu);
7585}
7586
7587void sched_offline_group(struct task_group *tg)
29f59db3 7588{
8ed36996 7589 unsigned long flags;
9b5b7751 7590 int i;
29f59db3 7591
3d4b47b4
PZ
7592 /* end participation in shares distribution */
7593 for_each_possible_cpu(i)
bccbe08a 7594 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7595
7596 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7597 list_del_rcu(&tg->list);
f473aa5e 7598 list_del_rcu(&tg->siblings);
8ed36996 7599 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7600}
7601
9b5b7751 7602/* change task's runqueue when it moves between groups.
3a252015
IM
7603 * The caller of this function should have put the task in its new group
7604 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7605 * reflect its new group.
9b5b7751
SV
7606 */
7607void sched_move_task(struct task_struct *tsk)
29f59db3 7608{
8323f26c 7609 struct task_group *tg;
da0c1e65 7610 int queued, running;
29f59db3
SV
7611 unsigned long flags;
7612 struct rq *rq;
7613
7614 rq = task_rq_lock(tsk, &flags);
7615
051a1d1a 7616 running = task_current(rq, tsk);
da0c1e65 7617 queued = task_on_rq_queued(tsk);
29f59db3 7618
da0c1e65 7619 if (queued)
29f59db3 7620 dequeue_task(rq, tsk, 0);
0e1f3483 7621 if (unlikely(running))
f3cd1c4e 7622 put_prev_task(rq, tsk);
29f59db3 7623
f7b8a47d
KT
7624 /*
7625 * All callers are synchronized by task_rq_lock(); we do not use RCU
7626 * which is pointless here. Thus, we pass "true" to task_css_check()
7627 * to prevent lockdep warnings.
7628 */
7629 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7630 struct task_group, css);
7631 tg = autogroup_task_group(tsk, tg);
7632 tsk->sched_task_group = tg;
7633
810b3817 7634#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7635 if (tsk->sched_class->task_move_group)
da0c1e65 7636 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7637 else
810b3817 7638#endif
b2b5ce02 7639 set_task_rq(tsk, task_cpu(tsk));
810b3817 7640
0e1f3483
HS
7641 if (unlikely(running))
7642 tsk->sched_class->set_curr_task(rq);
da0c1e65 7643 if (queued)
371fd7e7 7644 enqueue_task(rq, tsk, 0);
29f59db3 7645
0122ec5b 7646 task_rq_unlock(rq, tsk, &flags);
29f59db3 7647}
7c941438 7648#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7649
a790de99
PT
7650#ifdef CONFIG_RT_GROUP_SCHED
7651/*
7652 * Ensure that the real time constraints are schedulable.
7653 */
7654static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7655
9a7e0b18
PZ
7656/* Must be called with tasklist_lock held */
7657static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7658{
9a7e0b18 7659 struct task_struct *g, *p;
b40b2e8e 7660
1fe89e1b
PZ
7661 /*
7662 * Autogroups do not have RT tasks; see autogroup_create().
7663 */
7664 if (task_group_is_autogroup(tg))
7665 return 0;
7666
5d07f420 7667 for_each_process_thread(g, p) {
8651c658 7668 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7669 return 1;
5d07f420 7670 }
b40b2e8e 7671
9a7e0b18
PZ
7672 return 0;
7673}
b40b2e8e 7674
9a7e0b18
PZ
7675struct rt_schedulable_data {
7676 struct task_group *tg;
7677 u64 rt_period;
7678 u64 rt_runtime;
7679};
b40b2e8e 7680
a790de99 7681static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7682{
7683 struct rt_schedulable_data *d = data;
7684 struct task_group *child;
7685 unsigned long total, sum = 0;
7686 u64 period, runtime;
b40b2e8e 7687
9a7e0b18
PZ
7688 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7689 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7690
9a7e0b18
PZ
7691 if (tg == d->tg) {
7692 period = d->rt_period;
7693 runtime = d->rt_runtime;
b40b2e8e 7694 }
b40b2e8e 7695
4653f803
PZ
7696 /*
7697 * Cannot have more runtime than the period.
7698 */
7699 if (runtime > period && runtime != RUNTIME_INF)
7700 return -EINVAL;
6f505b16 7701
4653f803
PZ
7702 /*
7703 * Ensure we don't starve existing RT tasks.
7704 */
9a7e0b18
PZ
7705 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7706 return -EBUSY;
6f505b16 7707
9a7e0b18 7708 total = to_ratio(period, runtime);
6f505b16 7709
4653f803
PZ
7710 /*
7711 * Nobody can have more than the global setting allows.
7712 */
7713 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7714 return -EINVAL;
6f505b16 7715
4653f803
PZ
7716 /*
7717 * The sum of our children's runtime should not exceed our own.
7718 */
9a7e0b18
PZ
7719 list_for_each_entry_rcu(child, &tg->children, siblings) {
7720 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7721 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7722
9a7e0b18
PZ
7723 if (child == d->tg) {
7724 period = d->rt_period;
7725 runtime = d->rt_runtime;
7726 }
6f505b16 7727
9a7e0b18 7728 sum += to_ratio(period, runtime);
9f0c1e56 7729 }
6f505b16 7730
9a7e0b18
PZ
7731 if (sum > total)
7732 return -EINVAL;
7733
7734 return 0;
6f505b16
PZ
7735}
7736
9a7e0b18 7737static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7738{
8277434e
PT
7739 int ret;
7740
9a7e0b18
PZ
7741 struct rt_schedulable_data data = {
7742 .tg = tg,
7743 .rt_period = period,
7744 .rt_runtime = runtime,
7745 };
7746
8277434e
PT
7747 rcu_read_lock();
7748 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7749 rcu_read_unlock();
7750
7751 return ret;
521f1a24
DG
7752}
7753
ab84d31e 7754static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7755 u64 rt_period, u64 rt_runtime)
6f505b16 7756{
ac086bc2 7757 int i, err = 0;
9f0c1e56 7758
2636ed5f
PZ
7759 /*
7760 * Disallowing the root group RT runtime is BAD, it would disallow the
7761 * kernel creating (and or operating) RT threads.
7762 */
7763 if (tg == &root_task_group && rt_runtime == 0)
7764 return -EINVAL;
7765
7766 /* No period doesn't make any sense. */
7767 if (rt_period == 0)
7768 return -EINVAL;
7769
9f0c1e56 7770 mutex_lock(&rt_constraints_mutex);
521f1a24 7771 read_lock(&tasklist_lock);
9a7e0b18
PZ
7772 err = __rt_schedulable(tg, rt_period, rt_runtime);
7773 if (err)
9f0c1e56 7774 goto unlock;
ac086bc2 7775
0986b11b 7776 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7777 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7778 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7779
7780 for_each_possible_cpu(i) {
7781 struct rt_rq *rt_rq = tg->rt_rq[i];
7782
0986b11b 7783 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7784 rt_rq->rt_runtime = rt_runtime;
0986b11b 7785 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7786 }
0986b11b 7787 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7788unlock:
521f1a24 7789 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7790 mutex_unlock(&rt_constraints_mutex);
7791
7792 return err;
6f505b16
PZ
7793}
7794
25cc7da7 7795static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7796{
7797 u64 rt_runtime, rt_period;
7798
7799 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7800 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7801 if (rt_runtime_us < 0)
7802 rt_runtime = RUNTIME_INF;
7803
ab84d31e 7804 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7805}
7806
25cc7da7 7807static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7808{
7809 u64 rt_runtime_us;
7810
d0b27fa7 7811 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7812 return -1;
7813
d0b27fa7 7814 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7815 do_div(rt_runtime_us, NSEC_PER_USEC);
7816 return rt_runtime_us;
7817}
d0b27fa7 7818
ce2f5fe4 7819static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7820{
7821 u64 rt_runtime, rt_period;
7822
ce2f5fe4 7823 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7824 rt_runtime = tg->rt_bandwidth.rt_runtime;
7825
ab84d31e 7826 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7827}
7828
25cc7da7 7829static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7830{
7831 u64 rt_period_us;
7832
7833 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7834 do_div(rt_period_us, NSEC_PER_USEC);
7835 return rt_period_us;
7836}
332ac17e 7837#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7838
332ac17e 7839#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7840static int sched_rt_global_constraints(void)
7841{
7842 int ret = 0;
7843
7844 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7845 read_lock(&tasklist_lock);
4653f803 7846 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7847 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7848 mutex_unlock(&rt_constraints_mutex);
7849
7850 return ret;
7851}
54e99124 7852
25cc7da7 7853static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7854{
7855 /* Don't accept realtime tasks when there is no way for them to run */
7856 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7857 return 0;
7858
7859 return 1;
7860}
7861
6d6bc0ad 7862#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7863static int sched_rt_global_constraints(void)
7864{
ac086bc2 7865 unsigned long flags;
332ac17e 7866 int i, ret = 0;
ec5d4989 7867
0986b11b 7868 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7869 for_each_possible_cpu(i) {
7870 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7871
0986b11b 7872 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7873 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7874 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7875 }
0986b11b 7876 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7877
332ac17e 7878 return ret;
d0b27fa7 7879}
6d6bc0ad 7880#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7881
a1963b81 7882static int sched_dl_global_validate(void)
332ac17e 7883{
1724813d
PZ
7884 u64 runtime = global_rt_runtime();
7885 u64 period = global_rt_period();
332ac17e 7886 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7887 struct dl_bw *dl_b;
1724813d 7888 int cpu, ret = 0;
49516342 7889 unsigned long flags;
332ac17e
DF
7890
7891 /*
7892 * Here we want to check the bandwidth not being set to some
7893 * value smaller than the currently allocated bandwidth in
7894 * any of the root_domains.
7895 *
7896 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7897 * cycling on root_domains... Discussion on different/better
7898 * solutions is welcome!
7899 */
1724813d 7900 for_each_possible_cpu(cpu) {
f10e00f4
KT
7901 rcu_read_lock_sched();
7902 dl_b = dl_bw_of(cpu);
332ac17e 7903
49516342 7904 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7905 if (new_bw < dl_b->total_bw)
7906 ret = -EBUSY;
49516342 7907 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7908
f10e00f4
KT
7909 rcu_read_unlock_sched();
7910
1724813d
PZ
7911 if (ret)
7912 break;
332ac17e
DF
7913 }
7914
1724813d 7915 return ret;
332ac17e
DF
7916}
7917
1724813d 7918static void sched_dl_do_global(void)
ce0dbbbb 7919{
1724813d 7920 u64 new_bw = -1;
f10e00f4 7921 struct dl_bw *dl_b;
1724813d 7922 int cpu;
49516342 7923 unsigned long flags;
ce0dbbbb 7924
1724813d
PZ
7925 def_dl_bandwidth.dl_period = global_rt_period();
7926 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7927
7928 if (global_rt_runtime() != RUNTIME_INF)
7929 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7930
7931 /*
7932 * FIXME: As above...
7933 */
7934 for_each_possible_cpu(cpu) {
f10e00f4
KT
7935 rcu_read_lock_sched();
7936 dl_b = dl_bw_of(cpu);
1724813d 7937
49516342 7938 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7939 dl_b->bw = new_bw;
49516342 7940 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7941
7942 rcu_read_unlock_sched();
ce0dbbbb 7943 }
1724813d
PZ
7944}
7945
7946static int sched_rt_global_validate(void)
7947{
7948 if (sysctl_sched_rt_period <= 0)
7949 return -EINVAL;
7950
e9e7cb38
JL
7951 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7952 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7953 return -EINVAL;
7954
7955 return 0;
7956}
7957
7958static void sched_rt_do_global(void)
7959{
7960 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7961 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7962}
7963
d0b27fa7 7964int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7965 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7966 loff_t *ppos)
7967{
d0b27fa7
PZ
7968 int old_period, old_runtime;
7969 static DEFINE_MUTEX(mutex);
1724813d 7970 int ret;
d0b27fa7
PZ
7971
7972 mutex_lock(&mutex);
7973 old_period = sysctl_sched_rt_period;
7974 old_runtime = sysctl_sched_rt_runtime;
7975
8d65af78 7976 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7977
7978 if (!ret && write) {
1724813d
PZ
7979 ret = sched_rt_global_validate();
7980 if (ret)
7981 goto undo;
7982
a1963b81 7983 ret = sched_dl_global_validate();
1724813d
PZ
7984 if (ret)
7985 goto undo;
7986
a1963b81 7987 ret = sched_rt_global_constraints();
1724813d
PZ
7988 if (ret)
7989 goto undo;
7990
7991 sched_rt_do_global();
7992 sched_dl_do_global();
7993 }
7994 if (0) {
7995undo:
7996 sysctl_sched_rt_period = old_period;
7997 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7998 }
7999 mutex_unlock(&mutex);
8000
8001 return ret;
8002}
68318b8e 8003
1724813d 8004int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8005 void __user *buffer, size_t *lenp,
8006 loff_t *ppos)
8007{
8008 int ret;
332ac17e 8009 static DEFINE_MUTEX(mutex);
332ac17e
DF
8010
8011 mutex_lock(&mutex);
332ac17e 8012 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8013 /* make sure that internally we keep jiffies */
8014 /* also, writing zero resets timeslice to default */
332ac17e 8015 if (!ret && write) {
1724813d
PZ
8016 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8017 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8018 }
8019 mutex_unlock(&mutex);
332ac17e
DF
8020 return ret;
8021}
8022
052f1dc7 8023#ifdef CONFIG_CGROUP_SCHED
68318b8e 8024
a7c6d554 8025static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8026{
a7c6d554 8027 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8028}
8029
eb95419b
TH
8030static struct cgroup_subsys_state *
8031cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8032{
eb95419b
TH
8033 struct task_group *parent = css_tg(parent_css);
8034 struct task_group *tg;
68318b8e 8035
eb95419b 8036 if (!parent) {
68318b8e 8037 /* This is early initialization for the top cgroup */
07e06b01 8038 return &root_task_group.css;
68318b8e
SV
8039 }
8040
ec7dc8ac 8041 tg = sched_create_group(parent);
68318b8e
SV
8042 if (IS_ERR(tg))
8043 return ERR_PTR(-ENOMEM);
8044
68318b8e
SV
8045 return &tg->css;
8046}
8047
eb95419b 8048static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8049{
eb95419b 8050 struct task_group *tg = css_tg(css);
5c9d535b 8051 struct task_group *parent = css_tg(css->parent);
ace783b9 8052
63876986
TH
8053 if (parent)
8054 sched_online_group(tg, parent);
ace783b9
LZ
8055 return 0;
8056}
8057
eb95419b 8058static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8059{
eb95419b 8060 struct task_group *tg = css_tg(css);
68318b8e
SV
8061
8062 sched_destroy_group(tg);
8063}
8064
eb95419b 8065static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8066{
eb95419b 8067 struct task_group *tg = css_tg(css);
ace783b9
LZ
8068
8069 sched_offline_group(tg);
8070}
8071
eeb61e53
KT
8072static void cpu_cgroup_fork(struct task_struct *task)
8073{
8074 sched_move_task(task);
8075}
8076
eb95419b 8077static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8078 struct cgroup_taskset *tset)
68318b8e 8079{
bb9d97b6
TH
8080 struct task_struct *task;
8081
924f0d9a 8082 cgroup_taskset_for_each(task, tset) {
b68aa230 8083#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8084 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8085 return -EINVAL;
b68aa230 8086#else
bb9d97b6
TH
8087 /* We don't support RT-tasks being in separate groups */
8088 if (task->sched_class != &fair_sched_class)
8089 return -EINVAL;
b68aa230 8090#endif
bb9d97b6 8091 }
be367d09
BB
8092 return 0;
8093}
68318b8e 8094
eb95419b 8095static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8096 struct cgroup_taskset *tset)
68318b8e 8097{
bb9d97b6
TH
8098 struct task_struct *task;
8099
924f0d9a 8100 cgroup_taskset_for_each(task, tset)
bb9d97b6 8101 sched_move_task(task);
68318b8e
SV
8102}
8103
eb95419b
TH
8104static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8105 struct cgroup_subsys_state *old_css,
8106 struct task_struct *task)
068c5cc5
PZ
8107{
8108 /*
8109 * cgroup_exit() is called in the copy_process() failure path.
8110 * Ignore this case since the task hasn't ran yet, this avoids
8111 * trying to poke a half freed task state from generic code.
8112 */
8113 if (!(task->flags & PF_EXITING))
8114 return;
8115
8116 sched_move_task(task);
8117}
8118
052f1dc7 8119#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8120static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8121 struct cftype *cftype, u64 shareval)
68318b8e 8122{
182446d0 8123 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8124}
8125
182446d0
TH
8126static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8127 struct cftype *cft)
68318b8e 8128{
182446d0 8129 struct task_group *tg = css_tg(css);
68318b8e 8130
c8b28116 8131 return (u64) scale_load_down(tg->shares);
68318b8e 8132}
ab84d31e
PT
8133
8134#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8135static DEFINE_MUTEX(cfs_constraints_mutex);
8136
ab84d31e
PT
8137const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8138const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8139
a790de99
PT
8140static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8141
ab84d31e
PT
8142static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8143{
56f570e5 8144 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8145 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8146
8147 if (tg == &root_task_group)
8148 return -EINVAL;
8149
8150 /*
8151 * Ensure we have at some amount of bandwidth every period. This is
8152 * to prevent reaching a state of large arrears when throttled via
8153 * entity_tick() resulting in prolonged exit starvation.
8154 */
8155 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8156 return -EINVAL;
8157
8158 /*
8159 * Likewise, bound things on the otherside by preventing insane quota
8160 * periods. This also allows us to normalize in computing quota
8161 * feasibility.
8162 */
8163 if (period > max_cfs_quota_period)
8164 return -EINVAL;
8165
0e59bdae
KT
8166 /*
8167 * Prevent race between setting of cfs_rq->runtime_enabled and
8168 * unthrottle_offline_cfs_rqs().
8169 */
8170 get_online_cpus();
a790de99
PT
8171 mutex_lock(&cfs_constraints_mutex);
8172 ret = __cfs_schedulable(tg, period, quota);
8173 if (ret)
8174 goto out_unlock;
8175
58088ad0 8176 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8177 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8178 /*
8179 * If we need to toggle cfs_bandwidth_used, off->on must occur
8180 * before making related changes, and on->off must occur afterwards
8181 */
8182 if (runtime_enabled && !runtime_was_enabled)
8183 cfs_bandwidth_usage_inc();
ab84d31e
PT
8184 raw_spin_lock_irq(&cfs_b->lock);
8185 cfs_b->period = ns_to_ktime(period);
8186 cfs_b->quota = quota;
58088ad0 8187
a9cf55b2 8188 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8189 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8190 if (runtime_enabled)
8191 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8192 raw_spin_unlock_irq(&cfs_b->lock);
8193
0e59bdae 8194 for_each_online_cpu(i) {
ab84d31e 8195 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8196 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8197
8198 raw_spin_lock_irq(&rq->lock);
58088ad0 8199 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8200 cfs_rq->runtime_remaining = 0;
671fd9da 8201
029632fb 8202 if (cfs_rq->throttled)
671fd9da 8203 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8204 raw_spin_unlock_irq(&rq->lock);
8205 }
1ee14e6c
BS
8206 if (runtime_was_enabled && !runtime_enabled)
8207 cfs_bandwidth_usage_dec();
a790de99
PT
8208out_unlock:
8209 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8210 put_online_cpus();
ab84d31e 8211
a790de99 8212 return ret;
ab84d31e
PT
8213}
8214
8215int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8216{
8217 u64 quota, period;
8218
029632fb 8219 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8220 if (cfs_quota_us < 0)
8221 quota = RUNTIME_INF;
8222 else
8223 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8224
8225 return tg_set_cfs_bandwidth(tg, period, quota);
8226}
8227
8228long tg_get_cfs_quota(struct task_group *tg)
8229{
8230 u64 quota_us;
8231
029632fb 8232 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8233 return -1;
8234
029632fb 8235 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8236 do_div(quota_us, NSEC_PER_USEC);
8237
8238 return quota_us;
8239}
8240
8241int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8242{
8243 u64 quota, period;
8244
8245 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8246 quota = tg->cfs_bandwidth.quota;
ab84d31e 8247
ab84d31e
PT
8248 return tg_set_cfs_bandwidth(tg, period, quota);
8249}
8250
8251long tg_get_cfs_period(struct task_group *tg)
8252{
8253 u64 cfs_period_us;
8254
029632fb 8255 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8256 do_div(cfs_period_us, NSEC_PER_USEC);
8257
8258 return cfs_period_us;
8259}
8260
182446d0
TH
8261static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8262 struct cftype *cft)
ab84d31e 8263{
182446d0 8264 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8265}
8266
182446d0
TH
8267static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8268 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8269{
182446d0 8270 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8271}
8272
182446d0
TH
8273static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8274 struct cftype *cft)
ab84d31e 8275{
182446d0 8276 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8277}
8278
182446d0
TH
8279static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8280 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8281{
182446d0 8282 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8283}
8284
a790de99
PT
8285struct cfs_schedulable_data {
8286 struct task_group *tg;
8287 u64 period, quota;
8288};
8289
8290/*
8291 * normalize group quota/period to be quota/max_period
8292 * note: units are usecs
8293 */
8294static u64 normalize_cfs_quota(struct task_group *tg,
8295 struct cfs_schedulable_data *d)
8296{
8297 u64 quota, period;
8298
8299 if (tg == d->tg) {
8300 period = d->period;
8301 quota = d->quota;
8302 } else {
8303 period = tg_get_cfs_period(tg);
8304 quota = tg_get_cfs_quota(tg);
8305 }
8306
8307 /* note: these should typically be equivalent */
8308 if (quota == RUNTIME_INF || quota == -1)
8309 return RUNTIME_INF;
8310
8311 return to_ratio(period, quota);
8312}
8313
8314static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8315{
8316 struct cfs_schedulable_data *d = data;
029632fb 8317 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8318 s64 quota = 0, parent_quota = -1;
8319
8320 if (!tg->parent) {
8321 quota = RUNTIME_INF;
8322 } else {
029632fb 8323 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8324
8325 quota = normalize_cfs_quota(tg, d);
9c58c79a 8326 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8327
8328 /*
8329 * ensure max(child_quota) <= parent_quota, inherit when no
8330 * limit is set
8331 */
8332 if (quota == RUNTIME_INF)
8333 quota = parent_quota;
8334 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8335 return -EINVAL;
8336 }
9c58c79a 8337 cfs_b->hierarchical_quota = quota;
a790de99
PT
8338
8339 return 0;
8340}
8341
8342static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8343{
8277434e 8344 int ret;
a790de99
PT
8345 struct cfs_schedulable_data data = {
8346 .tg = tg,
8347 .period = period,
8348 .quota = quota,
8349 };
8350
8351 if (quota != RUNTIME_INF) {
8352 do_div(data.period, NSEC_PER_USEC);
8353 do_div(data.quota, NSEC_PER_USEC);
8354 }
8355
8277434e
PT
8356 rcu_read_lock();
8357 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8358 rcu_read_unlock();
8359
8360 return ret;
a790de99 8361}
e8da1b18 8362
2da8ca82 8363static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8364{
2da8ca82 8365 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8366 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8367
44ffc75b
TH
8368 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8369 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8370 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8371
8372 return 0;
8373}
ab84d31e 8374#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8375#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8376
052f1dc7 8377#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8378static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8379 struct cftype *cft, s64 val)
6f505b16 8380{
182446d0 8381 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8382}
8383
182446d0
TH
8384static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8385 struct cftype *cft)
6f505b16 8386{
182446d0 8387 return sched_group_rt_runtime(css_tg(css));
6f505b16 8388}
d0b27fa7 8389
182446d0
TH
8390static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8391 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8392{
182446d0 8393 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8394}
8395
182446d0
TH
8396static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8397 struct cftype *cft)
d0b27fa7 8398{
182446d0 8399 return sched_group_rt_period(css_tg(css));
d0b27fa7 8400}
6d6bc0ad 8401#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8402
fe5c7cc2 8403static struct cftype cpu_files[] = {
052f1dc7 8404#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8405 {
8406 .name = "shares",
f4c753b7
PM
8407 .read_u64 = cpu_shares_read_u64,
8408 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8409 },
052f1dc7 8410#endif
ab84d31e
PT
8411#ifdef CONFIG_CFS_BANDWIDTH
8412 {
8413 .name = "cfs_quota_us",
8414 .read_s64 = cpu_cfs_quota_read_s64,
8415 .write_s64 = cpu_cfs_quota_write_s64,
8416 },
8417 {
8418 .name = "cfs_period_us",
8419 .read_u64 = cpu_cfs_period_read_u64,
8420 .write_u64 = cpu_cfs_period_write_u64,
8421 },
e8da1b18
NR
8422 {
8423 .name = "stat",
2da8ca82 8424 .seq_show = cpu_stats_show,
e8da1b18 8425 },
ab84d31e 8426#endif
052f1dc7 8427#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8428 {
9f0c1e56 8429 .name = "rt_runtime_us",
06ecb27c
PM
8430 .read_s64 = cpu_rt_runtime_read,
8431 .write_s64 = cpu_rt_runtime_write,
6f505b16 8432 },
d0b27fa7
PZ
8433 {
8434 .name = "rt_period_us",
f4c753b7
PM
8435 .read_u64 = cpu_rt_period_read_uint,
8436 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8437 },
052f1dc7 8438#endif
4baf6e33 8439 { } /* terminate */
68318b8e
SV
8440};
8441
073219e9 8442struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8443 .css_alloc = cpu_cgroup_css_alloc,
8444 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8445 .css_online = cpu_cgroup_css_online,
8446 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8447 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8448 .can_attach = cpu_cgroup_can_attach,
8449 .attach = cpu_cgroup_attach,
068c5cc5 8450 .exit = cpu_cgroup_exit,
5577964e 8451 .legacy_cftypes = cpu_files,
68318b8e
SV
8452 .early_init = 1,
8453};
8454
052f1dc7 8455#endif /* CONFIG_CGROUP_SCHED */
d842de87 8456
b637a328
PM
8457void dump_cpu_task(int cpu)
8458{
8459 pr_info("Task dump for CPU %d:\n", cpu);
8460 sched_show_task(cpu_curr(cpu));
8461}