cgroup: add subsystem pointer to cgroup_subsys_state
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
029632fb 515void resched_task(struct task_struct *p)
c24d20db
IM
516{
517 int cpu;
518
05fa785c 519 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 520
5ed0cec0 521 if (test_tsk_need_resched(p))
c24d20db
IM
522 return;
523
5ed0cec0 524 set_tsk_need_resched(p);
c24d20db
IM
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id())
528 return;
529
530 /* NEED_RESCHED must be visible before we test polling */
531 smp_mb();
532 if (!tsk_is_polling(p))
533 smp_send_reschedule(cpu);
534}
535
029632fb 536void resched_cpu(int cpu)
c24d20db
IM
537{
538 struct rq *rq = cpu_rq(cpu);
539 unsigned long flags;
540
05fa785c 541 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
542 return;
543 resched_task(cpu_curr(cpu));
05fa785c 544 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 545}
06d8308c 546
3451d024 547#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu. This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558 int cpu = smp_processor_id();
559 int i;
560 struct sched_domain *sd;
561
057f3fad 562 rcu_read_lock();
83cd4fe2 563 for_each_domain(cpu, sd) {
057f3fad
PZ
564 for_each_cpu(i, sched_domain_span(sd)) {
565 if (!idle_cpu(i)) {
566 cpu = i;
567 goto unlock;
568 }
569 }
83cd4fe2 570 }
057f3fad
PZ
571unlock:
572 rcu_read_unlock();
83cd4fe2
VP
573 return cpu;
574}
06d8308c
TG
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
1c20091e 585static void wake_up_idle_cpu(int cpu)
06d8308c
TG
586{
587 struct rq *rq = cpu_rq(cpu);
588
589 if (cpu == smp_processor_id())
590 return;
591
592 /*
593 * This is safe, as this function is called with the timer
594 * wheel base lock of (cpu) held. When the CPU is on the way
595 * to idle and has not yet set rq->curr to idle then it will
596 * be serialized on the timer wheel base lock and take the new
597 * timer into account automatically.
598 */
599 if (rq->curr != rq->idle)
600 return;
45bf76df 601
45bf76df 602 /*
06d8308c
TG
603 * We can set TIF_RESCHED on the idle task of the other CPU
604 * lockless. The worst case is that the other CPU runs the
605 * idle task through an additional NOOP schedule()
45bf76df 606 */
5ed0cec0 607 set_tsk_need_resched(rq->idle);
45bf76df 608
06d8308c
TG
609 /* NEED_RESCHED must be visible before we test polling */
610 smp_mb();
611 if (!tsk_is_polling(rq->idle))
612 smp_send_reschedule(cpu);
45bf76df
IM
613}
614
c5bfece2 615static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 616{
c5bfece2 617 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
618 if (cpu != smp_processor_id() ||
619 tick_nohz_tick_stopped())
620 smp_send_reschedule(cpu);
621 return true;
622 }
623
624 return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
c5bfece2 629 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
630 wake_up_idle_cpu(cpu);
631}
632
ca38062e 633static inline bool got_nohz_idle_kick(void)
45bf76df 634{
1c792db7 635 int cpu = smp_processor_id();
873b4c65
VG
636
637 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638 return false;
639
640 if (idle_cpu(cpu) && !need_resched())
641 return true;
642
643 /*
644 * We can't run Idle Load Balance on this CPU for this time so we
645 * cancel it and clear NOHZ_BALANCE_KICK
646 */
647 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648 return false;
45bf76df
IM
649}
650
3451d024 651#else /* CONFIG_NO_HZ_COMMON */
45bf76df 652
ca38062e 653static inline bool got_nohz_idle_kick(void)
2069dd75 654{
ca38062e 655 return false;
2069dd75
PZ
656}
657
3451d024 658#endif /* CONFIG_NO_HZ_COMMON */
d842de87 659
ce831b38
FW
660#ifdef CONFIG_NO_HZ_FULL
661bool sched_can_stop_tick(void)
662{
663 struct rq *rq;
664
665 rq = this_rq();
666
667 /* Make sure rq->nr_running update is visible after the IPI */
668 smp_rmb();
669
670 /* More than one running task need preemption */
671 if (rq->nr_running > 1)
672 return false;
673
674 return true;
675}
676#endif /* CONFIG_NO_HZ_FULL */
d842de87 677
029632fb 678void sched_avg_update(struct rq *rq)
18d95a28 679{
e9e9250b
PZ
680 s64 period = sched_avg_period();
681
78becc27 682 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
683 /*
684 * Inline assembly required to prevent the compiler
685 * optimising this loop into a divmod call.
686 * See __iter_div_u64_rem() for another example of this.
687 */
688 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
689 rq->age_stamp += period;
690 rq->rt_avg /= 2;
691 }
18d95a28
PZ
692}
693
6d6bc0ad 694#else /* !CONFIG_SMP */
029632fb 695void resched_task(struct task_struct *p)
18d95a28 696{
05fa785c 697 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 698 set_tsk_need_resched(p);
18d95a28 699}
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
45bf76df
IM
747static void set_load_weight(struct task_struct *p)
748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
758 return;
759 }
71f8bd46 760
c8b28116 761 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 762 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
763}
764
371fd7e7 765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 766{
a64692a3 767 update_rq_clock(rq);
dd41f596 768 sched_info_queued(p);
371fd7e7 769 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
770}
771
371fd7e7 772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 773{
a64692a3 774 update_rq_clock(rq);
46ac22ba 775 sched_info_dequeued(p);
371fd7e7 776 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
777}
778
029632fb 779void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
371fd7e7 784 enqueue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
029632fb 787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
788{
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
371fd7e7 792 dequeue_task(rq, p, flags);
1e3c88bd
PZ
793}
794
fe44d621 795static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 796{
095c0aa8
GC
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
095c0aa8
GC
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 829 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
830 u64 st;
831
832 steal = paravirt_steal_clock(cpu_of(rq));
833 steal -= rq->prev_steal_time_rq;
834
835 if (unlikely(steal > delta))
836 steal = delta;
837
838 st = steal_ticks(steal);
839 steal = st * TICK_NSEC;
840
841 rq->prev_steal_time_rq += steal;
842
843 delta -= steal;
844 }
845#endif
846
fe44d621
PZ
847 rq->clock_task += delta;
848
095c0aa8
GC
849#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851 sched_rt_avg_update(rq, irq_delta + steal);
852#endif
aa483808
VP
853}
854
34f971f6
PZ
855void sched_set_stop_task(int cpu, struct task_struct *stop)
856{
857 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 struct task_struct *old_stop = cpu_rq(cpu)->stop;
859
860 if (stop) {
861 /*
862 * Make it appear like a SCHED_FIFO task, its something
863 * userspace knows about and won't get confused about.
864 *
865 * Also, it will make PI more or less work without too
866 * much confusion -- but then, stop work should not
867 * rely on PI working anyway.
868 */
869 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870
871 stop->sched_class = &stop_sched_class;
872 }
873
874 cpu_rq(cpu)->stop = stop;
875
876 if (old_stop) {
877 /*
878 * Reset it back to a normal scheduling class so that
879 * it can die in pieces.
880 */
881 old_stop->sched_class = &rt_sched_class;
882 }
883}
884
14531189 885/*
dd41f596 886 * __normal_prio - return the priority that is based on the static prio
14531189 887 */
14531189
IM
888static inline int __normal_prio(struct task_struct *p)
889{
dd41f596 890 return p->static_prio;
14531189
IM
891}
892
b29739f9
IM
893/*
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
899 */
36c8b586 900static inline int normal_prio(struct task_struct *p)
b29739f9
IM
901{
902 int prio;
903
e05606d3 904 if (task_has_rt_policy(p))
b29739f9
IM
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
906 else
907 prio = __normal_prio(p);
908 return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
36c8b586 918static int effective_prio(struct task_struct *p)
b29739f9
IM
919{
920 p->normal_prio = normal_prio(p);
921 /*
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
925 */
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
928 return p->prio;
929}
930
1da177e4
LT
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
582b336e
MT
977static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978
979void register_task_migration_notifier(struct notifier_block *n)
980{
981 atomic_notifier_chain_register(&task_migration_notifier, n);
982}
983
1da177e4 984#ifdef CONFIG_SMP
dd41f596 985void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 986{
e2912009
PZ
987#ifdef CONFIG_SCHED_DEBUG
988 /*
989 * We should never call set_task_cpu() on a blocked task,
990 * ttwu() will sort out the placement.
991 */
077614ee
PZ
992 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
994
995#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
996 /*
997 * The caller should hold either p->pi_lock or rq->lock, when changing
998 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999 *
1000 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1001 * see task_group().
6c6c54e1
PZ
1002 *
1003 * Furthermore, all task_rq users should acquire both locks, see
1004 * task_rq_lock().
1005 */
0122ec5b
PZ
1006 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007 lockdep_is_held(&task_rq(p)->lock)));
1008#endif
e2912009
PZ
1009#endif
1010
de1d7286 1011 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1012
0c69774e 1013 if (task_cpu(p) != new_cpu) {
582b336e
MT
1014 struct task_migration_notifier tmn;
1015
0a74bef8
PT
1016 if (p->sched_class->migrate_task_rq)
1017 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1018 p->se.nr_migrations++;
a8b0ca17 1019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
1020
1021 tmn.task = p;
1022 tmn.from_cpu = task_cpu(p);
1023 tmn.to_cpu = new_cpu;
1024
1025 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 1026 }
dd41f596
IM
1027
1028 __set_task_cpu(p, new_cpu);
c65cc870
IM
1029}
1030
969c7921 1031struct migration_arg {
36c8b586 1032 struct task_struct *task;
1da177e4 1033 int dest_cpu;
70b97a7f 1034};
1da177e4 1035
969c7921
TH
1036static int migration_cpu_stop(void *data);
1037
1da177e4
LT
1038/*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
85ba2d86
RM
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change. If it changes, i.e. @p might have woken up,
1043 * then return zero. When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count). If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1047 *
1da177e4
LT
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
85ba2d86 1054unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1055{
1056 unsigned long flags;
dd41f596 1057 int running, on_rq;
85ba2d86 1058 unsigned long ncsw;
70b97a7f 1059 struct rq *rq;
1da177e4 1060
3a5c359a
AK
1061 for (;;) {
1062 /*
1063 * We do the initial early heuristics without holding
1064 * any task-queue locks at all. We'll only try to get
1065 * the runqueue lock when things look like they will
1066 * work out!
1067 */
1068 rq = task_rq(p);
fa490cfd 1069
3a5c359a
AK
1070 /*
1071 * If the task is actively running on another CPU
1072 * still, just relax and busy-wait without holding
1073 * any locks.
1074 *
1075 * NOTE! Since we don't hold any locks, it's not
1076 * even sure that "rq" stays as the right runqueue!
1077 * But we don't care, since "task_running()" will
1078 * return false if the runqueue has changed and p
1079 * is actually now running somewhere else!
1080 */
85ba2d86
RM
1081 while (task_running(rq, p)) {
1082 if (match_state && unlikely(p->state != match_state))
1083 return 0;
3a5c359a 1084 cpu_relax();
85ba2d86 1085 }
fa490cfd 1086
3a5c359a
AK
1087 /*
1088 * Ok, time to look more closely! We need the rq
1089 * lock now, to be *sure*. If we're wrong, we'll
1090 * just go back and repeat.
1091 */
1092 rq = task_rq_lock(p, &flags);
27a9da65 1093 trace_sched_wait_task(p);
3a5c359a 1094 running = task_running(rq, p);
fd2f4419 1095 on_rq = p->on_rq;
85ba2d86 1096 ncsw = 0;
f31e11d8 1097 if (!match_state || p->state == match_state)
93dcf55f 1098 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1099 task_rq_unlock(rq, p, &flags);
fa490cfd 1100
85ba2d86
RM
1101 /*
1102 * If it changed from the expected state, bail out now.
1103 */
1104 if (unlikely(!ncsw))
1105 break;
1106
3a5c359a
AK
1107 /*
1108 * Was it really running after all now that we
1109 * checked with the proper locks actually held?
1110 *
1111 * Oops. Go back and try again..
1112 */
1113 if (unlikely(running)) {
1114 cpu_relax();
1115 continue;
1116 }
fa490cfd 1117
3a5c359a
AK
1118 /*
1119 * It's not enough that it's not actively running,
1120 * it must be off the runqueue _entirely_, and not
1121 * preempted!
1122 *
80dd99b3 1123 * So if it was still runnable (but just not actively
3a5c359a
AK
1124 * running right now), it's preempted, and we should
1125 * yield - it could be a while.
1126 */
1127 if (unlikely(on_rq)) {
8eb90c30
TG
1128 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129
1130 set_current_state(TASK_UNINTERRUPTIBLE);
1131 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1132 continue;
1133 }
fa490cfd 1134
3a5c359a
AK
1135 /*
1136 * Ahh, all good. It wasn't running, and it wasn't
1137 * runnable, which means that it will never become
1138 * running in the future either. We're all done!
1139 */
1140 break;
1141 }
85ba2d86
RM
1142
1143 return ncsw;
1da177e4
LT
1144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
25985edc 1153 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
36c8b586 1159void kick_process(struct task_struct *p)
1da177e4
LT
1160{
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168}
b43e3521 1169EXPORT_SYMBOL_GPL(kick_process);
476d139c 1170#endif /* CONFIG_SMP */
1da177e4 1171
970b13ba 1172#ifdef CONFIG_SMP
30da688e 1173/*
013fdb80 1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1175 */
5da9a0fb
PZ
1176static int select_fallback_rq(int cpu, struct task_struct *p)
1177{
aa00d89c
TC
1178 int nid = cpu_to_node(cpu);
1179 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1180 enum { cpuset, possible, fail } state = cpuset;
1181 int dest_cpu;
5da9a0fb 1182
aa00d89c
TC
1183 /*
1184 * If the node that the cpu is on has been offlined, cpu_to_node()
1185 * will return -1. There is no cpu on the node, and we should
1186 * select the cpu on the other node.
1187 */
1188 if (nid != -1) {
1189 nodemask = cpumask_of_node(nid);
1190
1191 /* Look for allowed, online CPU in same node. */
1192 for_each_cpu(dest_cpu, nodemask) {
1193 if (!cpu_online(dest_cpu))
1194 continue;
1195 if (!cpu_active(dest_cpu))
1196 continue;
1197 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198 return dest_cpu;
1199 }
2baab4e9 1200 }
5da9a0fb 1201
2baab4e9
PZ
1202 for (;;) {
1203 /* Any allowed, online CPU? */
e3831edd 1204 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1205 if (!cpu_online(dest_cpu))
1206 continue;
1207 if (!cpu_active(dest_cpu))
1208 continue;
1209 goto out;
1210 }
5da9a0fb 1211
2baab4e9
PZ
1212 switch (state) {
1213 case cpuset:
1214 /* No more Mr. Nice Guy. */
1215 cpuset_cpus_allowed_fallback(p);
1216 state = possible;
1217 break;
1218
1219 case possible:
1220 do_set_cpus_allowed(p, cpu_possible_mask);
1221 state = fail;
1222 break;
1223
1224 case fail:
1225 BUG();
1226 break;
1227 }
1228 }
1229
1230out:
1231 if (state != cpuset) {
1232 /*
1233 * Don't tell them about moving exiting tasks or
1234 * kernel threads (both mm NULL), since they never
1235 * leave kernel.
1236 */
1237 if (p->mm && printk_ratelimit()) {
1238 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239 task_pid_nr(p), p->comm, cpu);
1240 }
5da9a0fb
PZ
1241 }
1242
1243 return dest_cpu;
1244}
1245
e2912009 1246/*
013fdb80 1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1248 */
970b13ba 1249static inline
7608dec2 1250int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1251{
7608dec2 1252 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1253
1254 /*
1255 * In order not to call set_task_cpu() on a blocking task we need
1256 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257 * cpu.
1258 *
1259 * Since this is common to all placement strategies, this lives here.
1260 *
1261 * [ this allows ->select_task() to simply return task_cpu(p) and
1262 * not worry about this generic constraint ]
1263 */
fa17b507 1264 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1265 !cpu_online(cpu)))
5da9a0fb 1266 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1267
1268 return cpu;
970b13ba 1269}
09a40af5
MG
1270
1271static void update_avg(u64 *avg, u64 sample)
1272{
1273 s64 diff = sample - *avg;
1274 *avg += diff >> 3;
1275}
970b13ba
PZ
1276#endif
1277
d7c01d27 1278static void
b84cb5df 1279ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1280{
d7c01d27 1281#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1282 struct rq *rq = this_rq();
1283
d7c01d27
PZ
1284#ifdef CONFIG_SMP
1285 int this_cpu = smp_processor_id();
1286
1287 if (cpu == this_cpu) {
1288 schedstat_inc(rq, ttwu_local);
1289 schedstat_inc(p, se.statistics.nr_wakeups_local);
1290 } else {
1291 struct sched_domain *sd;
1292
1293 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1294 rcu_read_lock();
d7c01d27
PZ
1295 for_each_domain(this_cpu, sd) {
1296 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297 schedstat_inc(sd, ttwu_wake_remote);
1298 break;
1299 }
1300 }
057f3fad 1301 rcu_read_unlock();
d7c01d27 1302 }
f339b9dc
PZ
1303
1304 if (wake_flags & WF_MIGRATED)
1305 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306
d7c01d27
PZ
1307#endif /* CONFIG_SMP */
1308
1309 schedstat_inc(rq, ttwu_count);
9ed3811a 1310 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1311
1312 if (wake_flags & WF_SYNC)
9ed3811a 1313 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1314
d7c01d27
PZ
1315#endif /* CONFIG_SCHEDSTATS */
1316}
1317
1318static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319{
9ed3811a 1320 activate_task(rq, p, en_flags);
fd2f4419 1321 p->on_rq = 1;
c2f7115e
PZ
1322
1323 /* if a worker is waking up, notify workqueue */
1324 if (p->flags & PF_WQ_WORKER)
1325 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1326}
1327
23f41eeb
PZ
1328/*
1329 * Mark the task runnable and perform wakeup-preemption.
1330 */
89363381 1331static void
23f41eeb 1332ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1333{
9ed3811a 1334 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1335 trace_sched_wakeup(p, true);
9ed3811a
TH
1336
1337 p->state = TASK_RUNNING;
1338#ifdef CONFIG_SMP
1339 if (p->sched_class->task_woken)
1340 p->sched_class->task_woken(rq, p);
1341
e69c6341 1342 if (rq->idle_stamp) {
78becc27 1343 u64 delta = rq_clock(rq) - rq->idle_stamp;
9ed3811a
TH
1344 u64 max = 2*sysctl_sched_migration_cost;
1345
1346 if (delta > max)
1347 rq->avg_idle = max;
1348 else
1349 update_avg(&rq->avg_idle, delta);
1350 rq->idle_stamp = 0;
1351 }
1352#endif
1353}
1354
c05fbafb
PZ
1355static void
1356ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357{
1358#ifdef CONFIG_SMP
1359 if (p->sched_contributes_to_load)
1360 rq->nr_uninterruptible--;
1361#endif
1362
1363 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364 ttwu_do_wakeup(rq, p, wake_flags);
1365}
1366
1367/*
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1372 */
1373static int ttwu_remote(struct task_struct *p, int wake_flags)
1374{
1375 struct rq *rq;
1376 int ret = 0;
1377
1378 rq = __task_rq_lock(p);
1379 if (p->on_rq) {
1ad4ec0d
FW
1380 /* check_preempt_curr() may use rq clock */
1381 update_rq_clock(rq);
c05fbafb
PZ
1382 ttwu_do_wakeup(rq, p, wake_flags);
1383 ret = 1;
1384 }
1385 __task_rq_unlock(rq);
1386
1387 return ret;
1388}
1389
317f3941 1390#ifdef CONFIG_SMP
fa14ff4a 1391static void sched_ttwu_pending(void)
317f3941
PZ
1392{
1393 struct rq *rq = this_rq();
fa14ff4a
PZ
1394 struct llist_node *llist = llist_del_all(&rq->wake_list);
1395 struct task_struct *p;
317f3941
PZ
1396
1397 raw_spin_lock(&rq->lock);
1398
fa14ff4a
PZ
1399 while (llist) {
1400 p = llist_entry(llist, struct task_struct, wake_entry);
1401 llist = llist_next(llist);
317f3941
PZ
1402 ttwu_do_activate(rq, p, 0);
1403 }
1404
1405 raw_spin_unlock(&rq->lock);
1406}
1407
1408void scheduler_ipi(void)
1409{
873b4c65
VG
1410 if (llist_empty(&this_rq()->wake_list)
1411 && !tick_nohz_full_cpu(smp_processor_id())
1412 && !got_nohz_idle_kick())
c5d753a5
PZ
1413 return;
1414
1415 /*
1416 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1417 * traditionally all their work was done from the interrupt return
1418 * path. Now that we actually do some work, we need to make sure
1419 * we do call them.
1420 *
1421 * Some archs already do call them, luckily irq_enter/exit nest
1422 * properly.
1423 *
1424 * Arguably we should visit all archs and update all handlers,
1425 * however a fair share of IPIs are still resched only so this would
1426 * somewhat pessimize the simple resched case.
1427 */
1428 irq_enter();
ff442c51 1429 tick_nohz_full_check();
fa14ff4a 1430 sched_ttwu_pending();
ca38062e
SS
1431
1432 /*
1433 * Check if someone kicked us for doing the nohz idle load balance.
1434 */
873b4c65 1435 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1436 this_rq()->idle_balance = 1;
ca38062e 1437 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1438 }
c5d753a5 1439 irq_exit();
317f3941
PZ
1440}
1441
1442static void ttwu_queue_remote(struct task_struct *p, int cpu)
1443{
fa14ff4a 1444 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1445 smp_send_reschedule(cpu);
1446}
d6aa8f85 1447
39be3501 1448bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1449{
1450 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1451}
d6aa8f85 1452#endif /* CONFIG_SMP */
317f3941 1453
c05fbafb
PZ
1454static void ttwu_queue(struct task_struct *p, int cpu)
1455{
1456 struct rq *rq = cpu_rq(cpu);
1457
17d9f311 1458#if defined(CONFIG_SMP)
39be3501 1459 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1460 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1461 ttwu_queue_remote(p, cpu);
1462 return;
1463 }
1464#endif
1465
c05fbafb
PZ
1466 raw_spin_lock(&rq->lock);
1467 ttwu_do_activate(rq, p, 0);
1468 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1469}
1470
1471/**
1da177e4 1472 * try_to_wake_up - wake up a thread
9ed3811a 1473 * @p: the thread to be awakened
1da177e4 1474 * @state: the mask of task states that can be woken
9ed3811a 1475 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1476 *
1477 * Put it on the run-queue if it's not already there. The "current"
1478 * thread is always on the run-queue (except when the actual
1479 * re-schedule is in progress), and as such you're allowed to do
1480 * the simpler "current->state = TASK_RUNNING" to mark yourself
1481 * runnable without the overhead of this.
1482 *
9ed3811a
TH
1483 * Returns %true if @p was woken up, %false if it was already running
1484 * or @state didn't match @p's state.
1da177e4 1485 */
e4a52bcb
PZ
1486static int
1487try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1488{
1da177e4 1489 unsigned long flags;
c05fbafb 1490 int cpu, success = 0;
2398f2c6 1491
04e2f174 1492 smp_wmb();
013fdb80 1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1494 if (!(p->state & state))
1da177e4
LT
1495 goto out;
1496
c05fbafb 1497 success = 1; /* we're going to change ->state */
1da177e4 1498 cpu = task_cpu(p);
1da177e4 1499
c05fbafb
PZ
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1501 goto stat;
1da177e4 1502
1da177e4 1503#ifdef CONFIG_SMP
e9c84311 1504 /*
c05fbafb
PZ
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
e9c84311 1507 */
f3e94786 1508 while (p->on_cpu)
e4a52bcb 1509 cpu_relax();
0970d299 1510 /*
e4a52bcb 1511 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1512 */
e4a52bcb 1513 smp_rmb();
1da177e4 1514
a8e4f2ea 1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1516 p->state = TASK_WAKING;
e7693a36 1517
e4a52bcb 1518 if (p->sched_class->task_waking)
74f8e4b2 1519 p->sched_class->task_waking(p);
efbbd05a 1520
7608dec2 1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
e4a52bcb 1524 set_task_cpu(p, cpu);
f339b9dc 1525 }
1da177e4 1526#endif /* CONFIG_SMP */
1da177e4 1527
c05fbafb
PZ
1528 ttwu_queue(p, cpu);
1529stat:
b84cb5df 1530 ttwu_stat(p, cpu, wake_flags);
1da177e4 1531out:
013fdb80 1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1533
1534 return success;
1535}
1536
21aa9af0
TH
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
2acca55e 1541 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1543 * the current task.
21aa9af0
TH
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547 struct rq *rq = task_rq(p);
21aa9af0 1548
383efcd0
TH
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1551 return;
1552
21aa9af0
TH
1553 lockdep_assert_held(&rq->lock);
1554
2acca55e
PZ
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1559 }
1560
21aa9af0 1561 if (!(p->state & TASK_NORMAL))
2acca55e 1562 goto out;
21aa9af0 1563
fd2f4419 1564 if (!p->on_rq)
d7c01d27
PZ
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
23f41eeb 1567 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1568 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1569out:
1570 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1571}
1572
50fa610a
DH
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes. Returns 1 if the process was woken up, 0 if it was already
1579 * running.
1580 *
1581 * It may be assumed that this function implies a write memory barrier before
1582 * changing the task state if and only if any tasks are woken up.
1583 */
7ad5b3a5 1584int wake_up_process(struct task_struct *p)
1da177e4 1585{
9067ac85
ON
1586 WARN_ON(task_is_stopped_or_traced(p));
1587 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1588}
1da177e4
LT
1589EXPORT_SYMBOL(wake_up_process);
1590
7ad5b3a5 1591int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1592{
1593 return try_to_wake_up(p, state, 0);
1594}
1595
1da177e4
LT
1596/*
1597 * Perform scheduler related setup for a newly forked process p.
1598 * p is forked by current.
dd41f596
IM
1599 *
1600 * __sched_fork() is basic setup used by init_idle() too:
1601 */
1602static void __sched_fork(struct task_struct *p)
1603{
fd2f4419
PZ
1604 p->on_rq = 0;
1605
1606 p->se.on_rq = 0;
dd41f596
IM
1607 p->se.exec_start = 0;
1608 p->se.sum_exec_runtime = 0;
f6cf891c 1609 p->se.prev_sum_exec_runtime = 0;
6c594c21 1610 p->se.nr_migrations = 0;
da7a735e 1611 p->se.vruntime = 0;
fd2f4419 1612 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1613
1614#ifdef CONFIG_SCHEDSTATS
41acab88 1615 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1616#endif
476d139c 1617
fa717060 1618 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1619
e107be36
AK
1620#ifdef CONFIG_PREEMPT_NOTIFIERS
1621 INIT_HLIST_HEAD(&p->preempt_notifiers);
1622#endif
cbee9f88
PZ
1623
1624#ifdef CONFIG_NUMA_BALANCING
1625 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1626 p->mm->numa_next_scan = jiffies;
b8593bfd 1627 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1628 p->mm->numa_scan_seq = 0;
1629 }
1630
1631 p->node_stamp = 0ULL;
1632 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1633 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1634 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1635 p->numa_work.next = &p->numa_work;
1636#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1637}
1638
1a687c2e 1639#ifdef CONFIG_NUMA_BALANCING
3105b86a 1640#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1641void set_numabalancing_state(bool enabled)
1642{
1643 if (enabled)
1644 sched_feat_set("NUMA");
1645 else
1646 sched_feat_set("NO_NUMA");
1647}
3105b86a
MG
1648#else
1649__read_mostly bool numabalancing_enabled;
1650
1651void set_numabalancing_state(bool enabled)
1652{
1653 numabalancing_enabled = enabled;
dd41f596 1654}
3105b86a 1655#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1656#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1657
1658/*
1659 * fork()/clone()-time setup:
1660 */
3e51e3ed 1661void sched_fork(struct task_struct *p)
dd41f596 1662{
0122ec5b 1663 unsigned long flags;
dd41f596
IM
1664 int cpu = get_cpu();
1665
1666 __sched_fork(p);
06b83b5f 1667 /*
0017d735 1668 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1669 * nobody will actually run it, and a signal or other external
1670 * event cannot wake it up and insert it on the runqueue either.
1671 */
0017d735 1672 p->state = TASK_RUNNING;
dd41f596 1673
c350a04e
MG
1674 /*
1675 * Make sure we do not leak PI boosting priority to the child.
1676 */
1677 p->prio = current->normal_prio;
1678
b9dc29e7
MG
1679 /*
1680 * Revert to default priority/policy on fork if requested.
1681 */
1682 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1683 if (task_has_rt_policy(p)) {
b9dc29e7 1684 p->policy = SCHED_NORMAL;
6c697bdf 1685 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1686 p->rt_priority = 0;
1687 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1688 p->static_prio = NICE_TO_PRIO(0);
1689
1690 p->prio = p->normal_prio = __normal_prio(p);
1691 set_load_weight(p);
6c697bdf 1692
b9dc29e7
MG
1693 /*
1694 * We don't need the reset flag anymore after the fork. It has
1695 * fulfilled its duty:
1696 */
1697 p->sched_reset_on_fork = 0;
1698 }
ca94c442 1699
2ddbf952
HS
1700 if (!rt_prio(p->prio))
1701 p->sched_class = &fair_sched_class;
b29739f9 1702
cd29fe6f
PZ
1703 if (p->sched_class->task_fork)
1704 p->sched_class->task_fork(p);
1705
86951599
PZ
1706 /*
1707 * The child is not yet in the pid-hash so no cgroup attach races,
1708 * and the cgroup is pinned to this child due to cgroup_fork()
1709 * is ran before sched_fork().
1710 *
1711 * Silence PROVE_RCU.
1712 */
0122ec5b 1713 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1714 set_task_cpu(p, cpu);
0122ec5b 1715 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1716
52f17b6c 1717#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1718 if (likely(sched_info_on()))
52f17b6c 1719 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1720#endif
3ca7a440
PZ
1721#if defined(CONFIG_SMP)
1722 p->on_cpu = 0;
4866cde0 1723#endif
bdd4e85d 1724#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1725 /* Want to start with kernel preemption disabled. */
a1261f54 1726 task_thread_info(p)->preempt_count = 1;
1da177e4 1727#endif
806c09a7 1728#ifdef CONFIG_SMP
917b627d 1729 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1730#endif
917b627d 1731
476d139c 1732 put_cpu();
1da177e4
LT
1733}
1734
1735/*
1736 * wake_up_new_task - wake up a newly created task for the first time.
1737 *
1738 * This function will do some initial scheduler statistics housekeeping
1739 * that must be done for every newly created context, then puts the task
1740 * on the runqueue and wakes it.
1741 */
3e51e3ed 1742void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1743{
1744 unsigned long flags;
dd41f596 1745 struct rq *rq;
fabf318e 1746
ab2515c4 1747 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1748#ifdef CONFIG_SMP
1749 /*
1750 * Fork balancing, do it here and not earlier because:
1751 * - cpus_allowed can change in the fork path
1752 * - any previously selected cpu might disappear through hotplug
fabf318e 1753 */
ab2515c4 1754 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1755#endif
1756
a75cdaa9
AS
1757 /* Initialize new task's runnable average */
1758 init_task_runnable_average(p);
ab2515c4 1759 rq = __task_rq_lock(p);
cd29fe6f 1760 activate_task(rq, p, 0);
fd2f4419 1761 p->on_rq = 1;
89363381 1762 trace_sched_wakeup_new(p, true);
a7558e01 1763 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1764#ifdef CONFIG_SMP
efbbd05a
PZ
1765 if (p->sched_class->task_woken)
1766 p->sched_class->task_woken(rq, p);
9a897c5a 1767#endif
0122ec5b 1768 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1769}
1770
e107be36
AK
1771#ifdef CONFIG_PREEMPT_NOTIFIERS
1772
1773/**
80dd99b3 1774 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1775 * @notifier: notifier struct to register
e107be36
AK
1776 */
1777void preempt_notifier_register(struct preempt_notifier *notifier)
1778{
1779 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1780}
1781EXPORT_SYMBOL_GPL(preempt_notifier_register);
1782
1783/**
1784 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1785 * @notifier: notifier struct to unregister
e107be36
AK
1786 *
1787 * This is safe to call from within a preemption notifier.
1788 */
1789void preempt_notifier_unregister(struct preempt_notifier *notifier)
1790{
1791 hlist_del(&notifier->link);
1792}
1793EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1794
1795static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1796{
1797 struct preempt_notifier *notifier;
e107be36 1798
b67bfe0d 1799 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1800 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1801}
1802
1803static void
1804fire_sched_out_preempt_notifiers(struct task_struct *curr,
1805 struct task_struct *next)
1806{
1807 struct preempt_notifier *notifier;
e107be36 1808
b67bfe0d 1809 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1810 notifier->ops->sched_out(notifier, next);
1811}
1812
6d6bc0ad 1813#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1814
1815static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1816{
1817}
1818
1819static void
1820fire_sched_out_preempt_notifiers(struct task_struct *curr,
1821 struct task_struct *next)
1822{
1823}
1824
6d6bc0ad 1825#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1826
4866cde0
NP
1827/**
1828 * prepare_task_switch - prepare to switch tasks
1829 * @rq: the runqueue preparing to switch
421cee29 1830 * @prev: the current task that is being switched out
4866cde0
NP
1831 * @next: the task we are going to switch to.
1832 *
1833 * This is called with the rq lock held and interrupts off. It must
1834 * be paired with a subsequent finish_task_switch after the context
1835 * switch.
1836 *
1837 * prepare_task_switch sets up locking and calls architecture specific
1838 * hooks.
1839 */
e107be36
AK
1840static inline void
1841prepare_task_switch(struct rq *rq, struct task_struct *prev,
1842 struct task_struct *next)
4866cde0 1843{
895dd92c 1844 trace_sched_switch(prev, next);
fe4b04fa
PZ
1845 sched_info_switch(prev, next);
1846 perf_event_task_sched_out(prev, next);
e107be36 1847 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1848 prepare_lock_switch(rq, next);
1849 prepare_arch_switch(next);
1850}
1851
1da177e4
LT
1852/**
1853 * finish_task_switch - clean up after a task-switch
344babaa 1854 * @rq: runqueue associated with task-switch
1da177e4
LT
1855 * @prev: the thread we just switched away from.
1856 *
4866cde0
NP
1857 * finish_task_switch must be called after the context switch, paired
1858 * with a prepare_task_switch call before the context switch.
1859 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1860 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1861 *
1862 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1863 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1864 * with the lock held can cause deadlocks; see schedule() for
1865 * details.)
1866 */
a9957449 1867static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1868 __releases(rq->lock)
1869{
1da177e4 1870 struct mm_struct *mm = rq->prev_mm;
55a101f8 1871 long prev_state;
1da177e4
LT
1872
1873 rq->prev_mm = NULL;
1874
1875 /*
1876 * A task struct has one reference for the use as "current".
c394cc9f 1877 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1878 * schedule one last time. The schedule call will never return, and
1879 * the scheduled task must drop that reference.
c394cc9f 1880 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1881 * still held, otherwise prev could be scheduled on another cpu, die
1882 * there before we look at prev->state, and then the reference would
1883 * be dropped twice.
1884 * Manfred Spraul <manfred@colorfullife.com>
1885 */
55a101f8 1886 prev_state = prev->state;
bf9fae9f 1887 vtime_task_switch(prev);
4866cde0 1888 finish_arch_switch(prev);
a8d757ef 1889 perf_event_task_sched_in(prev, current);
4866cde0 1890 finish_lock_switch(rq, prev);
01f23e16 1891 finish_arch_post_lock_switch();
e8fa1362 1892
e107be36 1893 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1894 if (mm)
1895 mmdrop(mm);
c394cc9f 1896 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1897 /*
1898 * Remove function-return probe instances associated with this
1899 * task and put them back on the free list.
9761eea8 1900 */
c6fd91f0 1901 kprobe_flush_task(prev);
1da177e4 1902 put_task_struct(prev);
c6fd91f0 1903 }
99e5ada9
FW
1904
1905 tick_nohz_task_switch(current);
1da177e4
LT
1906}
1907
3f029d3c
GH
1908#ifdef CONFIG_SMP
1909
1910/* assumes rq->lock is held */
1911static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1912{
1913 if (prev->sched_class->pre_schedule)
1914 prev->sched_class->pre_schedule(rq, prev);
1915}
1916
1917/* rq->lock is NOT held, but preemption is disabled */
1918static inline void post_schedule(struct rq *rq)
1919{
1920 if (rq->post_schedule) {
1921 unsigned long flags;
1922
05fa785c 1923 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1924 if (rq->curr->sched_class->post_schedule)
1925 rq->curr->sched_class->post_schedule(rq);
05fa785c 1926 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1927
1928 rq->post_schedule = 0;
1929 }
1930}
1931
1932#else
da19ab51 1933
3f029d3c
GH
1934static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1935{
1936}
1937
1938static inline void post_schedule(struct rq *rq)
1939{
1da177e4
LT
1940}
1941
3f029d3c
GH
1942#endif
1943
1da177e4
LT
1944/**
1945 * schedule_tail - first thing a freshly forked thread must call.
1946 * @prev: the thread we just switched away from.
1947 */
36c8b586 1948asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1949 __releases(rq->lock)
1950{
70b97a7f
IM
1951 struct rq *rq = this_rq();
1952
4866cde0 1953 finish_task_switch(rq, prev);
da19ab51 1954
3f029d3c
GH
1955 /*
1956 * FIXME: do we need to worry about rq being invalidated by the
1957 * task_switch?
1958 */
1959 post_schedule(rq);
70b97a7f 1960
4866cde0
NP
1961#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1962 /* In this case, finish_task_switch does not reenable preemption */
1963 preempt_enable();
1964#endif
1da177e4 1965 if (current->set_child_tid)
b488893a 1966 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1967}
1968
1969/*
1970 * context_switch - switch to the new MM and the new
1971 * thread's register state.
1972 */
dd41f596 1973static inline void
70b97a7f 1974context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1975 struct task_struct *next)
1da177e4 1976{
dd41f596 1977 struct mm_struct *mm, *oldmm;
1da177e4 1978
e107be36 1979 prepare_task_switch(rq, prev, next);
fe4b04fa 1980
dd41f596
IM
1981 mm = next->mm;
1982 oldmm = prev->active_mm;
9226d125
ZA
1983 /*
1984 * For paravirt, this is coupled with an exit in switch_to to
1985 * combine the page table reload and the switch backend into
1986 * one hypercall.
1987 */
224101ed 1988 arch_start_context_switch(prev);
9226d125 1989
31915ab4 1990 if (!mm) {
1da177e4
LT
1991 next->active_mm = oldmm;
1992 atomic_inc(&oldmm->mm_count);
1993 enter_lazy_tlb(oldmm, next);
1994 } else
1995 switch_mm(oldmm, mm, next);
1996
31915ab4 1997 if (!prev->mm) {
1da177e4 1998 prev->active_mm = NULL;
1da177e4
LT
1999 rq->prev_mm = oldmm;
2000 }
3a5f5e48
IM
2001 /*
2002 * Since the runqueue lock will be released by the next
2003 * task (which is an invalid locking op but in the case
2004 * of the scheduler it's an obvious special-case), so we
2005 * do an early lockdep release here:
2006 */
2007#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2008 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2009#endif
1da177e4 2010
91d1aa43 2011 context_tracking_task_switch(prev, next);
1da177e4
LT
2012 /* Here we just switch the register state and the stack. */
2013 switch_to(prev, next, prev);
2014
dd41f596
IM
2015 barrier();
2016 /*
2017 * this_rq must be evaluated again because prev may have moved
2018 * CPUs since it called schedule(), thus the 'rq' on its stack
2019 * frame will be invalid.
2020 */
2021 finish_task_switch(this_rq(), prev);
1da177e4
LT
2022}
2023
2024/*
1c3e8264 2025 * nr_running and nr_context_switches:
1da177e4
LT
2026 *
2027 * externally visible scheduler statistics: current number of runnable
1c3e8264 2028 * threads, total number of context switches performed since bootup.
1da177e4
LT
2029 */
2030unsigned long nr_running(void)
2031{
2032 unsigned long i, sum = 0;
2033
2034 for_each_online_cpu(i)
2035 sum += cpu_rq(i)->nr_running;
2036
2037 return sum;
f711f609 2038}
1da177e4 2039
1da177e4 2040unsigned long long nr_context_switches(void)
46cb4b7c 2041{
cc94abfc
SR
2042 int i;
2043 unsigned long long sum = 0;
46cb4b7c 2044
0a945022 2045 for_each_possible_cpu(i)
1da177e4 2046 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2047
1da177e4
LT
2048 return sum;
2049}
483b4ee6 2050
1da177e4
LT
2051unsigned long nr_iowait(void)
2052{
2053 unsigned long i, sum = 0;
483b4ee6 2054
0a945022 2055 for_each_possible_cpu(i)
1da177e4 2056 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2057
1da177e4
LT
2058 return sum;
2059}
483b4ee6 2060
8c215bd3 2061unsigned long nr_iowait_cpu(int cpu)
69d25870 2062{
8c215bd3 2063 struct rq *this = cpu_rq(cpu);
69d25870
AV
2064 return atomic_read(&this->nr_iowait);
2065}
46cb4b7c 2066
dd41f596 2067#ifdef CONFIG_SMP
8a0be9ef 2068
46cb4b7c 2069/*
38022906
PZ
2070 * sched_exec - execve() is a valuable balancing opportunity, because at
2071 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2072 */
38022906 2073void sched_exec(void)
46cb4b7c 2074{
38022906 2075 struct task_struct *p = current;
1da177e4 2076 unsigned long flags;
0017d735 2077 int dest_cpu;
46cb4b7c 2078
8f42ced9 2079 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2080 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2081 if (dest_cpu == smp_processor_id())
2082 goto unlock;
38022906 2083
8f42ced9 2084 if (likely(cpu_active(dest_cpu))) {
969c7921 2085 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2086
8f42ced9
PZ
2087 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2088 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2089 return;
2090 }
0017d735 2091unlock:
8f42ced9 2092 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2093}
dd41f596 2094
1da177e4
LT
2095#endif
2096
1da177e4 2097DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2098DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2099
2100EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2101EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2102
2103/*
c5f8d995 2104 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2105 * @p in case that task is currently running.
c5f8d995
HS
2106 *
2107 * Called with task_rq_lock() held on @rq.
1da177e4 2108 */
c5f8d995
HS
2109static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2110{
2111 u64 ns = 0;
2112
2113 if (task_current(rq, p)) {
2114 update_rq_clock(rq);
78becc27 2115 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2116 if ((s64)ns < 0)
2117 ns = 0;
2118 }
2119
2120 return ns;
2121}
2122
bb34d92f 2123unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2124{
1da177e4 2125 unsigned long flags;
41b86e9c 2126 struct rq *rq;
bb34d92f 2127 u64 ns = 0;
48f24c4d 2128
41b86e9c 2129 rq = task_rq_lock(p, &flags);
c5f8d995 2130 ns = do_task_delta_exec(p, rq);
0122ec5b 2131 task_rq_unlock(rq, p, &flags);
1508487e 2132
c5f8d995
HS
2133 return ns;
2134}
f06febc9 2135
c5f8d995
HS
2136/*
2137 * Return accounted runtime for the task.
2138 * In case the task is currently running, return the runtime plus current's
2139 * pending runtime that have not been accounted yet.
2140 */
2141unsigned long long task_sched_runtime(struct task_struct *p)
2142{
2143 unsigned long flags;
2144 struct rq *rq;
2145 u64 ns = 0;
2146
2147 rq = task_rq_lock(p, &flags);
2148 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2149 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2150
2151 return ns;
2152}
48f24c4d 2153
7835b98b
CL
2154/*
2155 * This function gets called by the timer code, with HZ frequency.
2156 * We call it with interrupts disabled.
7835b98b
CL
2157 */
2158void scheduler_tick(void)
2159{
7835b98b
CL
2160 int cpu = smp_processor_id();
2161 struct rq *rq = cpu_rq(cpu);
dd41f596 2162 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2163
2164 sched_clock_tick();
dd41f596 2165
05fa785c 2166 raw_spin_lock(&rq->lock);
3e51f33f 2167 update_rq_clock(rq);
fa85ae24 2168 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2169 update_cpu_load_active(rq);
05fa785c 2170 raw_spin_unlock(&rq->lock);
7835b98b 2171
e9d2b064 2172 perf_event_task_tick();
e220d2dc 2173
e418e1c2 2174#ifdef CONFIG_SMP
6eb57e0d 2175 rq->idle_balance = idle_cpu(cpu);
dd41f596 2176 trigger_load_balance(rq, cpu);
e418e1c2 2177#endif
265f22a9 2178 rq_last_tick_reset(rq);
1da177e4
LT
2179}
2180
265f22a9
FW
2181#ifdef CONFIG_NO_HZ_FULL
2182/**
2183 * scheduler_tick_max_deferment
2184 *
2185 * Keep at least one tick per second when a single
2186 * active task is running because the scheduler doesn't
2187 * yet completely support full dynticks environment.
2188 *
2189 * This makes sure that uptime, CFS vruntime, load
2190 * balancing, etc... continue to move forward, even
2191 * with a very low granularity.
2192 */
2193u64 scheduler_tick_max_deferment(void)
2194{
2195 struct rq *rq = this_rq();
2196 unsigned long next, now = ACCESS_ONCE(jiffies);
2197
2198 next = rq->last_sched_tick + HZ;
2199
2200 if (time_before_eq(next, now))
2201 return 0;
2202
2203 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2204}
265f22a9 2205#endif
1da177e4 2206
132380a0 2207notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2208{
2209 if (in_lock_functions(addr)) {
2210 addr = CALLER_ADDR2;
2211 if (in_lock_functions(addr))
2212 addr = CALLER_ADDR3;
2213 }
2214 return addr;
2215}
1da177e4 2216
7e49fcce
SR
2217#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2218 defined(CONFIG_PREEMPT_TRACER))
2219
43627582 2220void __kprobes add_preempt_count(int val)
1da177e4 2221{
6cd8a4bb 2222#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2223 /*
2224 * Underflow?
2225 */
9a11b49a
IM
2226 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2227 return;
6cd8a4bb 2228#endif
1da177e4 2229 preempt_count() += val;
6cd8a4bb 2230#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2231 /*
2232 * Spinlock count overflowing soon?
2233 */
33859f7f
MOS
2234 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2235 PREEMPT_MASK - 10);
6cd8a4bb
SR
2236#endif
2237 if (preempt_count() == val)
2238 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2239}
2240EXPORT_SYMBOL(add_preempt_count);
2241
43627582 2242void __kprobes sub_preempt_count(int val)
1da177e4 2243{
6cd8a4bb 2244#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2245 /*
2246 * Underflow?
2247 */
01e3eb82 2248 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2249 return;
1da177e4
LT
2250 /*
2251 * Is the spinlock portion underflowing?
2252 */
9a11b49a
IM
2253 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2254 !(preempt_count() & PREEMPT_MASK)))
2255 return;
6cd8a4bb 2256#endif
9a11b49a 2257
6cd8a4bb
SR
2258 if (preempt_count() == val)
2259 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2260 preempt_count() -= val;
2261}
2262EXPORT_SYMBOL(sub_preempt_count);
2263
2264#endif
2265
2266/*
dd41f596 2267 * Print scheduling while atomic bug:
1da177e4 2268 */
dd41f596 2269static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2270{
664dfa65
DJ
2271 if (oops_in_progress)
2272 return;
2273
3df0fc5b
PZ
2274 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2275 prev->comm, prev->pid, preempt_count());
838225b4 2276
dd41f596 2277 debug_show_held_locks(prev);
e21f5b15 2278 print_modules();
dd41f596
IM
2279 if (irqs_disabled())
2280 print_irqtrace_events(prev);
6135fc1e 2281 dump_stack();
373d4d09 2282 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2283}
1da177e4 2284
dd41f596
IM
2285/*
2286 * Various schedule()-time debugging checks and statistics:
2287 */
2288static inline void schedule_debug(struct task_struct *prev)
2289{
1da177e4 2290 /*
41a2d6cf 2291 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2292 * schedule() atomically, we ignore that path for now.
2293 * Otherwise, whine if we are scheduling when we should not be.
2294 */
3f33a7ce 2295 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2296 __schedule_bug(prev);
b3fbab05 2297 rcu_sleep_check();
dd41f596 2298
1da177e4
LT
2299 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2300
2d72376b 2301 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2302}
2303
6cecd084 2304static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2305{
61eadef6 2306 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2307 update_rq_clock(rq);
6cecd084 2308 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2309}
2310
dd41f596
IM
2311/*
2312 * Pick up the highest-prio task:
2313 */
2314static inline struct task_struct *
b67802ea 2315pick_next_task(struct rq *rq)
dd41f596 2316{
5522d5d5 2317 const struct sched_class *class;
dd41f596 2318 struct task_struct *p;
1da177e4
LT
2319
2320 /*
dd41f596
IM
2321 * Optimization: we know that if all tasks are in
2322 * the fair class we can call that function directly:
1da177e4 2323 */
953bfcd1 2324 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2325 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2326 if (likely(p))
2327 return p;
1da177e4
LT
2328 }
2329
34f971f6 2330 for_each_class(class) {
fb8d4724 2331 p = class->pick_next_task(rq);
dd41f596
IM
2332 if (p)
2333 return p;
dd41f596 2334 }
34f971f6
PZ
2335
2336 BUG(); /* the idle class will always have a runnable task */
dd41f596 2337}
1da177e4 2338
dd41f596 2339/*
c259e01a 2340 * __schedule() is the main scheduler function.
edde96ea
PE
2341 *
2342 * The main means of driving the scheduler and thus entering this function are:
2343 *
2344 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2345 *
2346 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2347 * paths. For example, see arch/x86/entry_64.S.
2348 *
2349 * To drive preemption between tasks, the scheduler sets the flag in timer
2350 * interrupt handler scheduler_tick().
2351 *
2352 * 3. Wakeups don't really cause entry into schedule(). They add a
2353 * task to the run-queue and that's it.
2354 *
2355 * Now, if the new task added to the run-queue preempts the current
2356 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2357 * called on the nearest possible occasion:
2358 *
2359 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2360 *
2361 * - in syscall or exception context, at the next outmost
2362 * preempt_enable(). (this might be as soon as the wake_up()'s
2363 * spin_unlock()!)
2364 *
2365 * - in IRQ context, return from interrupt-handler to
2366 * preemptible context
2367 *
2368 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2369 * then at the next:
2370 *
2371 * - cond_resched() call
2372 * - explicit schedule() call
2373 * - return from syscall or exception to user-space
2374 * - return from interrupt-handler to user-space
dd41f596 2375 */
c259e01a 2376static void __sched __schedule(void)
dd41f596
IM
2377{
2378 struct task_struct *prev, *next;
67ca7bde 2379 unsigned long *switch_count;
dd41f596 2380 struct rq *rq;
31656519 2381 int cpu;
dd41f596 2382
ff743345
PZ
2383need_resched:
2384 preempt_disable();
dd41f596
IM
2385 cpu = smp_processor_id();
2386 rq = cpu_rq(cpu);
25502a6c 2387 rcu_note_context_switch(cpu);
dd41f596 2388 prev = rq->curr;
dd41f596 2389
dd41f596 2390 schedule_debug(prev);
1da177e4 2391
31656519 2392 if (sched_feat(HRTICK))
f333fdc9 2393 hrtick_clear(rq);
8f4d37ec 2394
05fa785c 2395 raw_spin_lock_irq(&rq->lock);
1da177e4 2396
246d86b5 2397 switch_count = &prev->nivcsw;
1da177e4 2398 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2399 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2400 prev->state = TASK_RUNNING;
21aa9af0 2401 } else {
2acca55e
PZ
2402 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2403 prev->on_rq = 0;
2404
21aa9af0 2405 /*
2acca55e
PZ
2406 * If a worker went to sleep, notify and ask workqueue
2407 * whether it wants to wake up a task to maintain
2408 * concurrency.
21aa9af0
TH
2409 */
2410 if (prev->flags & PF_WQ_WORKER) {
2411 struct task_struct *to_wakeup;
2412
2413 to_wakeup = wq_worker_sleeping(prev, cpu);
2414 if (to_wakeup)
2415 try_to_wake_up_local(to_wakeup);
2416 }
21aa9af0 2417 }
dd41f596 2418 switch_count = &prev->nvcsw;
1da177e4
LT
2419 }
2420
3f029d3c 2421 pre_schedule(rq, prev);
f65eda4f 2422
dd41f596 2423 if (unlikely(!rq->nr_running))
1da177e4 2424 idle_balance(cpu, rq);
1da177e4 2425
df1c99d4 2426 put_prev_task(rq, prev);
b67802ea 2427 next = pick_next_task(rq);
f26f9aff
MG
2428 clear_tsk_need_resched(prev);
2429 rq->skip_clock_update = 0;
1da177e4 2430
1da177e4 2431 if (likely(prev != next)) {
1da177e4
LT
2432 rq->nr_switches++;
2433 rq->curr = next;
2434 ++*switch_count;
2435
dd41f596 2436 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2437 /*
246d86b5
ON
2438 * The context switch have flipped the stack from under us
2439 * and restored the local variables which were saved when
2440 * this task called schedule() in the past. prev == current
2441 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2442 */
2443 cpu = smp_processor_id();
2444 rq = cpu_rq(cpu);
1da177e4 2445 } else
05fa785c 2446 raw_spin_unlock_irq(&rq->lock);
1da177e4 2447
3f029d3c 2448 post_schedule(rq);
1da177e4 2449
ba74c144 2450 sched_preempt_enable_no_resched();
ff743345 2451 if (need_resched())
1da177e4
LT
2452 goto need_resched;
2453}
c259e01a 2454
9c40cef2
TG
2455static inline void sched_submit_work(struct task_struct *tsk)
2456{
3c7d5184 2457 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2458 return;
2459 /*
2460 * If we are going to sleep and we have plugged IO queued,
2461 * make sure to submit it to avoid deadlocks.
2462 */
2463 if (blk_needs_flush_plug(tsk))
2464 blk_schedule_flush_plug(tsk);
2465}
2466
6ebbe7a0 2467asmlinkage void __sched schedule(void)
c259e01a 2468{
9c40cef2
TG
2469 struct task_struct *tsk = current;
2470
2471 sched_submit_work(tsk);
c259e01a
TG
2472 __schedule();
2473}
1da177e4
LT
2474EXPORT_SYMBOL(schedule);
2475
91d1aa43 2476#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2477asmlinkage void __sched schedule_user(void)
2478{
2479 /*
2480 * If we come here after a random call to set_need_resched(),
2481 * or we have been woken up remotely but the IPI has not yet arrived,
2482 * we haven't yet exited the RCU idle mode. Do it here manually until
2483 * we find a better solution.
2484 */
91d1aa43 2485 user_exit();
20ab65e3 2486 schedule();
91d1aa43 2487 user_enter();
20ab65e3
FW
2488}
2489#endif
2490
c5491ea7
TG
2491/**
2492 * schedule_preempt_disabled - called with preemption disabled
2493 *
2494 * Returns with preemption disabled. Note: preempt_count must be 1
2495 */
2496void __sched schedule_preempt_disabled(void)
2497{
ba74c144 2498 sched_preempt_enable_no_resched();
c5491ea7
TG
2499 schedule();
2500 preempt_disable();
2501}
2502
1da177e4
LT
2503#ifdef CONFIG_PREEMPT
2504/*
2ed6e34f 2505 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2506 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2507 * occur there and call schedule directly.
2508 */
d1f74e20 2509asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
2510{
2511 struct thread_info *ti = current_thread_info();
6478d880 2512
1da177e4
LT
2513 /*
2514 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2515 * we do not want to preempt the current task. Just return..
1da177e4 2516 */
beed33a8 2517 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
2518 return;
2519
3a5c359a 2520 do {
d1f74e20 2521 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 2522 __schedule();
d1f74e20 2523 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 2524
3a5c359a
AK
2525 /*
2526 * Check again in case we missed a preemption opportunity
2527 * between schedule and now.
2528 */
2529 barrier();
5ed0cec0 2530 } while (need_resched());
1da177e4 2531}
1da177e4
LT
2532EXPORT_SYMBOL(preempt_schedule);
2533
2534/*
2ed6e34f 2535 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2536 * off of irq context.
2537 * Note, that this is called and return with irqs disabled. This will
2538 * protect us against recursive calling from irq.
2539 */
2540asmlinkage void __sched preempt_schedule_irq(void)
2541{
2542 struct thread_info *ti = current_thread_info();
b22366cd 2543 enum ctx_state prev_state;
6478d880 2544
2ed6e34f 2545 /* Catch callers which need to be fixed */
1da177e4
LT
2546 BUG_ON(ti->preempt_count || !irqs_disabled());
2547
b22366cd
FW
2548 prev_state = exception_enter();
2549
3a5c359a
AK
2550 do {
2551 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 2552 local_irq_enable();
c259e01a 2553 __schedule();
3a5c359a 2554 local_irq_disable();
3a5c359a 2555 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 2556
3a5c359a
AK
2557 /*
2558 * Check again in case we missed a preemption opportunity
2559 * between schedule and now.
2560 */
2561 barrier();
5ed0cec0 2562 } while (need_resched());
b22366cd
FW
2563
2564 exception_exit(prev_state);
1da177e4
LT
2565}
2566
2567#endif /* CONFIG_PREEMPT */
2568
63859d4f 2569int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2570 void *key)
1da177e4 2571{
63859d4f 2572 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2573}
1da177e4
LT
2574EXPORT_SYMBOL(default_wake_function);
2575
2576/*
41a2d6cf
IM
2577 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2578 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2579 * number) then we wake all the non-exclusive tasks and one exclusive task.
2580 *
2581 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2582 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2583 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2584 */
78ddb08f 2585static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2586 int nr_exclusive, int wake_flags, void *key)
1da177e4 2587{
2e45874c 2588 wait_queue_t *curr, *next;
1da177e4 2589
2e45874c 2590 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2591 unsigned flags = curr->flags;
2592
63859d4f 2593 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2594 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2595 break;
2596 }
2597}
2598
2599/**
2600 * __wake_up - wake up threads blocked on a waitqueue.
2601 * @q: the waitqueue
2602 * @mode: which threads
2603 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2604 * @key: is directly passed to the wakeup function
50fa610a
DH
2605 *
2606 * It may be assumed that this function implies a write memory barrier before
2607 * changing the task state if and only if any tasks are woken up.
1da177e4 2608 */
7ad5b3a5 2609void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2610 int nr_exclusive, void *key)
1da177e4
LT
2611{
2612 unsigned long flags;
2613
2614 spin_lock_irqsave(&q->lock, flags);
2615 __wake_up_common(q, mode, nr_exclusive, 0, key);
2616 spin_unlock_irqrestore(&q->lock, flags);
2617}
1da177e4
LT
2618EXPORT_SYMBOL(__wake_up);
2619
2620/*
2621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2622 */
63b20011 2623void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2624{
63b20011 2625 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2626}
22c43c81 2627EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2628
4ede816a
DL
2629void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2630{
2631 __wake_up_common(q, mode, 1, 0, key);
2632}
bf294b41 2633EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2634
1da177e4 2635/**
4ede816a 2636 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2637 * @q: the waitqueue
2638 * @mode: which threads
2639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2640 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2641 *
2642 * The sync wakeup differs that the waker knows that it will schedule
2643 * away soon, so while the target thread will be woken up, it will not
2644 * be migrated to another CPU - ie. the two threads are 'synchronized'
2645 * with each other. This can prevent needless bouncing between CPUs.
2646 *
2647 * On UP it can prevent extra preemption.
50fa610a
DH
2648 *
2649 * It may be assumed that this function implies a write memory barrier before
2650 * changing the task state if and only if any tasks are woken up.
1da177e4 2651 */
4ede816a
DL
2652void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2653 int nr_exclusive, void *key)
1da177e4
LT
2654{
2655 unsigned long flags;
7d478721 2656 int wake_flags = WF_SYNC;
1da177e4
LT
2657
2658 if (unlikely(!q))
2659 return;
2660
2661 if (unlikely(!nr_exclusive))
7d478721 2662 wake_flags = 0;
1da177e4
LT
2663
2664 spin_lock_irqsave(&q->lock, flags);
7d478721 2665 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2666 spin_unlock_irqrestore(&q->lock, flags);
2667}
4ede816a
DL
2668EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2669
2670/*
2671 * __wake_up_sync - see __wake_up_sync_key()
2672 */
2673void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2674{
2675 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2676}
1da177e4
LT
2677EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2678
65eb3dc6
KD
2679/**
2680 * complete: - signals a single thread waiting on this completion
2681 * @x: holds the state of this particular completion
2682 *
2683 * This will wake up a single thread waiting on this completion. Threads will be
2684 * awakened in the same order in which they were queued.
2685 *
2686 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2687 *
2688 * It may be assumed that this function implies a write memory barrier before
2689 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2690 */
b15136e9 2691void complete(struct completion *x)
1da177e4
LT
2692{
2693 unsigned long flags;
2694
2695 spin_lock_irqsave(&x->wait.lock, flags);
2696 x->done++;
d9514f6c 2697 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2698 spin_unlock_irqrestore(&x->wait.lock, flags);
2699}
2700EXPORT_SYMBOL(complete);
2701
65eb3dc6
KD
2702/**
2703 * complete_all: - signals all threads waiting on this completion
2704 * @x: holds the state of this particular completion
2705 *
2706 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2707 *
2708 * It may be assumed that this function implies a write memory barrier before
2709 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2710 */
b15136e9 2711void complete_all(struct completion *x)
1da177e4
LT
2712{
2713 unsigned long flags;
2714
2715 spin_lock_irqsave(&x->wait.lock, flags);
2716 x->done += UINT_MAX/2;
d9514f6c 2717 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2718 spin_unlock_irqrestore(&x->wait.lock, flags);
2719}
2720EXPORT_SYMBOL(complete_all);
2721
8cbbe86d 2722static inline long __sched
686855f5
VD
2723do_wait_for_common(struct completion *x,
2724 long (*action)(long), long timeout, int state)
1da177e4 2725{
1da177e4
LT
2726 if (!x->done) {
2727 DECLARE_WAITQUEUE(wait, current);
2728
a93d2f17 2729 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2730 do {
94d3d824 2731 if (signal_pending_state(state, current)) {
ea71a546
ON
2732 timeout = -ERESTARTSYS;
2733 break;
8cbbe86d
AK
2734 }
2735 __set_current_state(state);
1da177e4 2736 spin_unlock_irq(&x->wait.lock);
686855f5 2737 timeout = action(timeout);
1da177e4 2738 spin_lock_irq(&x->wait.lock);
ea71a546 2739 } while (!x->done && timeout);
1da177e4 2740 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2741 if (!x->done)
2742 return timeout;
1da177e4
LT
2743 }
2744 x->done--;
ea71a546 2745 return timeout ?: 1;
1da177e4 2746}
1da177e4 2747
686855f5
VD
2748static inline long __sched
2749__wait_for_common(struct completion *x,
2750 long (*action)(long), long timeout, int state)
1da177e4 2751{
1da177e4
LT
2752 might_sleep();
2753
2754 spin_lock_irq(&x->wait.lock);
686855f5 2755 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2756 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2757 return timeout;
2758}
1da177e4 2759
686855f5
VD
2760static long __sched
2761wait_for_common(struct completion *x, long timeout, int state)
2762{
2763 return __wait_for_common(x, schedule_timeout, timeout, state);
2764}
2765
2766static long __sched
2767wait_for_common_io(struct completion *x, long timeout, int state)
2768{
2769 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2770}
2771
65eb3dc6
KD
2772/**
2773 * wait_for_completion: - waits for completion of a task
2774 * @x: holds the state of this particular completion
2775 *
2776 * This waits to be signaled for completion of a specific task. It is NOT
2777 * interruptible and there is no timeout.
2778 *
2779 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2780 * and interrupt capability. Also see complete().
2781 */
b15136e9 2782void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2783{
2784 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2785}
8cbbe86d 2786EXPORT_SYMBOL(wait_for_completion);
1da177e4 2787
65eb3dc6
KD
2788/**
2789 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2790 * @x: holds the state of this particular completion
2791 * @timeout: timeout value in jiffies
2792 *
2793 * This waits for either a completion of a specific task to be signaled or for a
2794 * specified timeout to expire. The timeout is in jiffies. It is not
2795 * interruptible.
c6dc7f05
BF
2796 *
2797 * The return value is 0 if timed out, and positive (at least 1, or number of
2798 * jiffies left till timeout) if completed.
65eb3dc6 2799 */
b15136e9 2800unsigned long __sched
8cbbe86d 2801wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2802{
8cbbe86d 2803 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2804}
8cbbe86d 2805EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2806
686855f5
VD
2807/**
2808 * wait_for_completion_io: - waits for completion of a task
2809 * @x: holds the state of this particular completion
2810 *
2811 * This waits to be signaled for completion of a specific task. It is NOT
2812 * interruptible and there is no timeout. The caller is accounted as waiting
2813 * for IO.
2814 */
2815void __sched wait_for_completion_io(struct completion *x)
2816{
2817 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2818}
2819EXPORT_SYMBOL(wait_for_completion_io);
2820
2821/**
2822 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2823 * @x: holds the state of this particular completion
2824 * @timeout: timeout value in jiffies
2825 *
2826 * This waits for either a completion of a specific task to be signaled or for a
2827 * specified timeout to expire. The timeout is in jiffies. It is not
2828 * interruptible. The caller is accounted as waiting for IO.
2829 *
2830 * The return value is 0 if timed out, and positive (at least 1, or number of
2831 * jiffies left till timeout) if completed.
2832 */
2833unsigned long __sched
2834wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2835{
2836 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2837}
2838EXPORT_SYMBOL(wait_for_completion_io_timeout);
2839
65eb3dc6
KD
2840/**
2841 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2842 * @x: holds the state of this particular completion
2843 *
2844 * This waits for completion of a specific task to be signaled. It is
2845 * interruptible.
c6dc7f05
BF
2846 *
2847 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2848 */
8cbbe86d 2849int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2850{
51e97990
AK
2851 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2852 if (t == -ERESTARTSYS)
2853 return t;
2854 return 0;
0fec171c 2855}
8cbbe86d 2856EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2857
65eb3dc6
KD
2858/**
2859 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2860 * @x: holds the state of this particular completion
2861 * @timeout: timeout value in jiffies
2862 *
2863 * This waits for either a completion of a specific task to be signaled or for a
2864 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
2865 *
2866 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2867 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 2868 */
6bf41237 2869long __sched
8cbbe86d
AK
2870wait_for_completion_interruptible_timeout(struct completion *x,
2871 unsigned long timeout)
0fec171c 2872{
8cbbe86d 2873 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2874}
8cbbe86d 2875EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2876
65eb3dc6
KD
2877/**
2878 * wait_for_completion_killable: - waits for completion of a task (killable)
2879 * @x: holds the state of this particular completion
2880 *
2881 * This waits to be signaled for completion of a specific task. It can be
2882 * interrupted by a kill signal.
c6dc7f05
BF
2883 *
2884 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2885 */
009e577e
MW
2886int __sched wait_for_completion_killable(struct completion *x)
2887{
2888 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2889 if (t == -ERESTARTSYS)
2890 return t;
2891 return 0;
2892}
2893EXPORT_SYMBOL(wait_for_completion_killable);
2894
0aa12fb4
SW
2895/**
2896 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2897 * @x: holds the state of this particular completion
2898 * @timeout: timeout value in jiffies
2899 *
2900 * This waits for either a completion of a specific task to be
2901 * signaled or for a specified timeout to expire. It can be
2902 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
2903 *
2904 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2905 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 2906 */
6bf41237 2907long __sched
0aa12fb4
SW
2908wait_for_completion_killable_timeout(struct completion *x,
2909 unsigned long timeout)
2910{
2911 return wait_for_common(x, timeout, TASK_KILLABLE);
2912}
2913EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2914
be4de352
DC
2915/**
2916 * try_wait_for_completion - try to decrement a completion without blocking
2917 * @x: completion structure
2918 *
2919 * Returns: 0 if a decrement cannot be done without blocking
2920 * 1 if a decrement succeeded.
2921 *
2922 * If a completion is being used as a counting completion,
2923 * attempt to decrement the counter without blocking. This
2924 * enables us to avoid waiting if the resource the completion
2925 * is protecting is not available.
2926 */
2927bool try_wait_for_completion(struct completion *x)
2928{
7539a3b3 2929 unsigned long flags;
be4de352
DC
2930 int ret = 1;
2931
7539a3b3 2932 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2933 if (!x->done)
2934 ret = 0;
2935 else
2936 x->done--;
7539a3b3 2937 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2938 return ret;
2939}
2940EXPORT_SYMBOL(try_wait_for_completion);
2941
2942/**
2943 * completion_done - Test to see if a completion has any waiters
2944 * @x: completion structure
2945 *
2946 * Returns: 0 if there are waiters (wait_for_completion() in progress)
2947 * 1 if there are no waiters.
2948 *
2949 */
2950bool completion_done(struct completion *x)
2951{
7539a3b3 2952 unsigned long flags;
be4de352
DC
2953 int ret = 1;
2954
7539a3b3 2955 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2956 if (!x->done)
2957 ret = 0;
7539a3b3 2958 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2959 return ret;
2960}
2961EXPORT_SYMBOL(completion_done);
2962
8cbbe86d
AK
2963static long __sched
2964sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2965{
0fec171c
IM
2966 unsigned long flags;
2967 wait_queue_t wait;
2968
2969 init_waitqueue_entry(&wait, current);
1da177e4 2970
8cbbe86d 2971 __set_current_state(state);
1da177e4 2972
8cbbe86d
AK
2973 spin_lock_irqsave(&q->lock, flags);
2974 __add_wait_queue(q, &wait);
2975 spin_unlock(&q->lock);
2976 timeout = schedule_timeout(timeout);
2977 spin_lock_irq(&q->lock);
2978 __remove_wait_queue(q, &wait);
2979 spin_unlock_irqrestore(&q->lock, flags);
2980
2981 return timeout;
2982}
2983
2984void __sched interruptible_sleep_on(wait_queue_head_t *q)
2985{
2986 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2987}
1da177e4
LT
2988EXPORT_SYMBOL(interruptible_sleep_on);
2989
0fec171c 2990long __sched
95cdf3b7 2991interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2992{
8cbbe86d 2993 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2994}
1da177e4
LT
2995EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2996
0fec171c 2997void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2998{
8cbbe86d 2999 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3000}
1da177e4
LT
3001EXPORT_SYMBOL(sleep_on);
3002
0fec171c 3003long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3004{
8cbbe86d 3005 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3006}
1da177e4
LT
3007EXPORT_SYMBOL(sleep_on_timeout);
3008
b29739f9
IM
3009#ifdef CONFIG_RT_MUTEXES
3010
3011/*
3012 * rt_mutex_setprio - set the current priority of a task
3013 * @p: task
3014 * @prio: prio value (kernel-internal form)
3015 *
3016 * This function changes the 'effective' priority of a task. It does
3017 * not touch ->normal_prio like __setscheduler().
3018 *
3019 * Used by the rt_mutex code to implement priority inheritance logic.
3020 */
36c8b586 3021void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3022{
83b699ed 3023 int oldprio, on_rq, running;
70b97a7f 3024 struct rq *rq;
83ab0aa0 3025 const struct sched_class *prev_class;
b29739f9
IM
3026
3027 BUG_ON(prio < 0 || prio > MAX_PRIO);
3028
0122ec5b 3029 rq = __task_rq_lock(p);
b29739f9 3030
1c4dd99b
TG
3031 /*
3032 * Idle task boosting is a nono in general. There is one
3033 * exception, when PREEMPT_RT and NOHZ is active:
3034 *
3035 * The idle task calls get_next_timer_interrupt() and holds
3036 * the timer wheel base->lock on the CPU and another CPU wants
3037 * to access the timer (probably to cancel it). We can safely
3038 * ignore the boosting request, as the idle CPU runs this code
3039 * with interrupts disabled and will complete the lock
3040 * protected section without being interrupted. So there is no
3041 * real need to boost.
3042 */
3043 if (unlikely(p == rq->idle)) {
3044 WARN_ON(p != rq->curr);
3045 WARN_ON(p->pi_blocked_on);
3046 goto out_unlock;
3047 }
3048
a8027073 3049 trace_sched_pi_setprio(p, prio);
d5f9f942 3050 oldprio = p->prio;
83ab0aa0 3051 prev_class = p->sched_class;
fd2f4419 3052 on_rq = p->on_rq;
051a1d1a 3053 running = task_current(rq, p);
0e1f3483 3054 if (on_rq)
69be72c1 3055 dequeue_task(rq, p, 0);
0e1f3483
HS
3056 if (running)
3057 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3058
3059 if (rt_prio(prio))
3060 p->sched_class = &rt_sched_class;
3061 else
3062 p->sched_class = &fair_sched_class;
3063
b29739f9
IM
3064 p->prio = prio;
3065
0e1f3483
HS
3066 if (running)
3067 p->sched_class->set_curr_task(rq);
da7a735e 3068 if (on_rq)
371fd7e7 3069 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3070
da7a735e 3071 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3072out_unlock:
0122ec5b 3073 __task_rq_unlock(rq);
b29739f9 3074}
b29739f9 3075#endif
36c8b586 3076void set_user_nice(struct task_struct *p, long nice)
1da177e4 3077{
dd41f596 3078 int old_prio, delta, on_rq;
1da177e4 3079 unsigned long flags;
70b97a7f 3080 struct rq *rq;
1da177e4
LT
3081
3082 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3083 return;
3084 /*
3085 * We have to be careful, if called from sys_setpriority(),
3086 * the task might be in the middle of scheduling on another CPU.
3087 */
3088 rq = task_rq_lock(p, &flags);
3089 /*
3090 * The RT priorities are set via sched_setscheduler(), but we still
3091 * allow the 'normal' nice value to be set - but as expected
3092 * it wont have any effect on scheduling until the task is
dd41f596 3093 * SCHED_FIFO/SCHED_RR:
1da177e4 3094 */
e05606d3 3095 if (task_has_rt_policy(p)) {
1da177e4
LT
3096 p->static_prio = NICE_TO_PRIO(nice);
3097 goto out_unlock;
3098 }
fd2f4419 3099 on_rq = p->on_rq;
c09595f6 3100 if (on_rq)
69be72c1 3101 dequeue_task(rq, p, 0);
1da177e4 3102
1da177e4 3103 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3104 set_load_weight(p);
b29739f9
IM
3105 old_prio = p->prio;
3106 p->prio = effective_prio(p);
3107 delta = p->prio - old_prio;
1da177e4 3108
dd41f596 3109 if (on_rq) {
371fd7e7 3110 enqueue_task(rq, p, 0);
1da177e4 3111 /*
d5f9f942
AM
3112 * If the task increased its priority or is running and
3113 * lowered its priority, then reschedule its CPU:
1da177e4 3114 */
d5f9f942 3115 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3116 resched_task(rq->curr);
3117 }
3118out_unlock:
0122ec5b 3119 task_rq_unlock(rq, p, &flags);
1da177e4 3120}
1da177e4
LT
3121EXPORT_SYMBOL(set_user_nice);
3122
e43379f1
MM
3123/*
3124 * can_nice - check if a task can reduce its nice value
3125 * @p: task
3126 * @nice: nice value
3127 */
36c8b586 3128int can_nice(const struct task_struct *p, const int nice)
e43379f1 3129{
024f4747
MM
3130 /* convert nice value [19,-20] to rlimit style value [1,40] */
3131 int nice_rlim = 20 - nice;
48f24c4d 3132
78d7d407 3133 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3134 capable(CAP_SYS_NICE));
3135}
3136
1da177e4
LT
3137#ifdef __ARCH_WANT_SYS_NICE
3138
3139/*
3140 * sys_nice - change the priority of the current process.
3141 * @increment: priority increment
3142 *
3143 * sys_setpriority is a more generic, but much slower function that
3144 * does similar things.
3145 */
5add95d4 3146SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3147{
48f24c4d 3148 long nice, retval;
1da177e4
LT
3149
3150 /*
3151 * Setpriority might change our priority at the same moment.
3152 * We don't have to worry. Conceptually one call occurs first
3153 * and we have a single winner.
3154 */
e43379f1
MM
3155 if (increment < -40)
3156 increment = -40;
1da177e4
LT
3157 if (increment > 40)
3158 increment = 40;
3159
2b8f836f 3160 nice = TASK_NICE(current) + increment;
1da177e4
LT
3161 if (nice < -20)
3162 nice = -20;
3163 if (nice > 19)
3164 nice = 19;
3165
e43379f1
MM
3166 if (increment < 0 && !can_nice(current, nice))
3167 return -EPERM;
3168
1da177e4
LT
3169 retval = security_task_setnice(current, nice);
3170 if (retval)
3171 return retval;
3172
3173 set_user_nice(current, nice);
3174 return 0;
3175}
3176
3177#endif
3178
3179/**
3180 * task_prio - return the priority value of a given task.
3181 * @p: the task in question.
3182 *
3183 * This is the priority value as seen by users in /proc.
3184 * RT tasks are offset by -200. Normal tasks are centered
3185 * around 0, value goes from -16 to +15.
3186 */
36c8b586 3187int task_prio(const struct task_struct *p)
1da177e4
LT
3188{
3189 return p->prio - MAX_RT_PRIO;
3190}
3191
3192/**
3193 * task_nice - return the nice value of a given task.
3194 * @p: the task in question.
3195 */
36c8b586 3196int task_nice(const struct task_struct *p)
1da177e4
LT
3197{
3198 return TASK_NICE(p);
3199}
150d8bed 3200EXPORT_SYMBOL(task_nice);
1da177e4
LT
3201
3202/**
3203 * idle_cpu - is a given cpu idle currently?
3204 * @cpu: the processor in question.
3205 */
3206int idle_cpu(int cpu)
3207{
908a3283
TG
3208 struct rq *rq = cpu_rq(cpu);
3209
3210 if (rq->curr != rq->idle)
3211 return 0;
3212
3213 if (rq->nr_running)
3214 return 0;
3215
3216#ifdef CONFIG_SMP
3217 if (!llist_empty(&rq->wake_list))
3218 return 0;
3219#endif
3220
3221 return 1;
1da177e4
LT
3222}
3223
1da177e4
LT
3224/**
3225 * idle_task - return the idle task for a given cpu.
3226 * @cpu: the processor in question.
3227 */
36c8b586 3228struct task_struct *idle_task(int cpu)
1da177e4
LT
3229{
3230 return cpu_rq(cpu)->idle;
3231}
3232
3233/**
3234 * find_process_by_pid - find a process with a matching PID value.
3235 * @pid: the pid in question.
3236 */
a9957449 3237static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3238{
228ebcbe 3239 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3240}
3241
3242/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3243static void
3244__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3245{
1da177e4
LT
3246 p->policy = policy;
3247 p->rt_priority = prio;
b29739f9
IM
3248 p->normal_prio = normal_prio(p);
3249 /* we are holding p->pi_lock already */
3250 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3251 if (rt_prio(p->prio))
3252 p->sched_class = &rt_sched_class;
3253 else
3254 p->sched_class = &fair_sched_class;
2dd73a4f 3255 set_load_weight(p);
1da177e4
LT
3256}
3257
c69e8d9c
DH
3258/*
3259 * check the target process has a UID that matches the current process's
3260 */
3261static bool check_same_owner(struct task_struct *p)
3262{
3263 const struct cred *cred = current_cred(), *pcred;
3264 bool match;
3265
3266 rcu_read_lock();
3267 pcred = __task_cred(p);
9c806aa0
EB
3268 match = (uid_eq(cred->euid, pcred->euid) ||
3269 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3270 rcu_read_unlock();
3271 return match;
3272}
3273
961ccddd 3274static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3275 const struct sched_param *param, bool user)
1da177e4 3276{
83b699ed 3277 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3278 unsigned long flags;
83ab0aa0 3279 const struct sched_class *prev_class;
70b97a7f 3280 struct rq *rq;
ca94c442 3281 int reset_on_fork;
1da177e4 3282
66e5393a
SR
3283 /* may grab non-irq protected spin_locks */
3284 BUG_ON(in_interrupt());
1da177e4
LT
3285recheck:
3286 /* double check policy once rq lock held */
ca94c442
LP
3287 if (policy < 0) {
3288 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3289 policy = oldpolicy = p->policy;
ca94c442
LP
3290 } else {
3291 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3292 policy &= ~SCHED_RESET_ON_FORK;
3293
3294 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3295 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3296 policy != SCHED_IDLE)
3297 return -EINVAL;
3298 }
3299
1da177e4
LT
3300 /*
3301 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3302 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3303 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3304 */
3305 if (param->sched_priority < 0 ||
95cdf3b7 3306 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3307 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3308 return -EINVAL;
e05606d3 3309 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3310 return -EINVAL;
3311
37e4ab3f
OC
3312 /*
3313 * Allow unprivileged RT tasks to decrease priority:
3314 */
961ccddd 3315 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3316 if (rt_policy(policy)) {
a44702e8
ON
3317 unsigned long rlim_rtprio =
3318 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3319
3320 /* can't set/change the rt policy */
3321 if (policy != p->policy && !rlim_rtprio)
3322 return -EPERM;
3323
3324 /* can't increase priority */
3325 if (param->sched_priority > p->rt_priority &&
3326 param->sched_priority > rlim_rtprio)
3327 return -EPERM;
3328 }
c02aa73b 3329
dd41f596 3330 /*
c02aa73b
DH
3331 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3332 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3333 */
c02aa73b
DH
3334 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3335 if (!can_nice(p, TASK_NICE(p)))
3336 return -EPERM;
3337 }
5fe1d75f 3338
37e4ab3f 3339 /* can't change other user's priorities */
c69e8d9c 3340 if (!check_same_owner(p))
37e4ab3f 3341 return -EPERM;
ca94c442
LP
3342
3343 /* Normal users shall not reset the sched_reset_on_fork flag */
3344 if (p->sched_reset_on_fork && !reset_on_fork)
3345 return -EPERM;
37e4ab3f 3346 }
1da177e4 3347
725aad24 3348 if (user) {
b0ae1981 3349 retval = security_task_setscheduler(p);
725aad24
JF
3350 if (retval)
3351 return retval;
3352 }
3353
b29739f9
IM
3354 /*
3355 * make sure no PI-waiters arrive (or leave) while we are
3356 * changing the priority of the task:
0122ec5b 3357 *
25985edc 3358 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3359 * runqueue lock must be held.
3360 */
0122ec5b 3361 rq = task_rq_lock(p, &flags);
dc61b1d6 3362
34f971f6
PZ
3363 /*
3364 * Changing the policy of the stop threads its a very bad idea
3365 */
3366 if (p == rq->stop) {
0122ec5b 3367 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3368 return -EINVAL;
3369 }
3370
a51e9198
DF
3371 /*
3372 * If not changing anything there's no need to proceed further:
3373 */
3374 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3375 param->sched_priority == p->rt_priority))) {
45afb173 3376 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3377 return 0;
3378 }
3379
dc61b1d6
PZ
3380#ifdef CONFIG_RT_GROUP_SCHED
3381 if (user) {
3382 /*
3383 * Do not allow realtime tasks into groups that have no runtime
3384 * assigned.
3385 */
3386 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3387 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3388 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3389 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3390 return -EPERM;
3391 }
3392 }
3393#endif
3394
1da177e4
LT
3395 /* recheck policy now with rq lock held */
3396 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3397 policy = oldpolicy = -1;
0122ec5b 3398 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3399 goto recheck;
3400 }
fd2f4419 3401 on_rq = p->on_rq;
051a1d1a 3402 running = task_current(rq, p);
0e1f3483 3403 if (on_rq)
4ca9b72b 3404 dequeue_task(rq, p, 0);
0e1f3483
HS
3405 if (running)
3406 p->sched_class->put_prev_task(rq, p);
f6b53205 3407
ca94c442
LP
3408 p->sched_reset_on_fork = reset_on_fork;
3409
1da177e4 3410 oldprio = p->prio;
83ab0aa0 3411 prev_class = p->sched_class;
dd41f596 3412 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3413
0e1f3483
HS
3414 if (running)
3415 p->sched_class->set_curr_task(rq);
da7a735e 3416 if (on_rq)
4ca9b72b 3417 enqueue_task(rq, p, 0);
cb469845 3418
da7a735e 3419 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3420 task_rq_unlock(rq, p, &flags);
b29739f9 3421
95e02ca9
TG
3422 rt_mutex_adjust_pi(p);
3423
1da177e4
LT
3424 return 0;
3425}
961ccddd
RR
3426
3427/**
3428 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3429 * @p: the task in question.
3430 * @policy: new policy.
3431 * @param: structure containing the new RT priority.
3432 *
3433 * NOTE that the task may be already dead.
3434 */
3435int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3436 const struct sched_param *param)
961ccddd
RR
3437{
3438 return __sched_setscheduler(p, policy, param, true);
3439}
1da177e4
LT
3440EXPORT_SYMBOL_GPL(sched_setscheduler);
3441
961ccddd
RR
3442/**
3443 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3444 * @p: the task in question.
3445 * @policy: new policy.
3446 * @param: structure containing the new RT priority.
3447 *
3448 * Just like sched_setscheduler, only don't bother checking if the
3449 * current context has permission. For example, this is needed in
3450 * stop_machine(): we create temporary high priority worker threads,
3451 * but our caller might not have that capability.
3452 */
3453int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3454 const struct sched_param *param)
961ccddd
RR
3455{
3456 return __sched_setscheduler(p, policy, param, false);
3457}
3458
95cdf3b7
IM
3459static int
3460do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3461{
1da177e4
LT
3462 struct sched_param lparam;
3463 struct task_struct *p;
36c8b586 3464 int retval;
1da177e4
LT
3465
3466 if (!param || pid < 0)
3467 return -EINVAL;
3468 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3469 return -EFAULT;
5fe1d75f
ON
3470
3471 rcu_read_lock();
3472 retval = -ESRCH;
1da177e4 3473 p = find_process_by_pid(pid);
5fe1d75f
ON
3474 if (p != NULL)
3475 retval = sched_setscheduler(p, policy, &lparam);
3476 rcu_read_unlock();
36c8b586 3477
1da177e4
LT
3478 return retval;
3479}
3480
3481/**
3482 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3483 * @pid: the pid in question.
3484 * @policy: new policy.
3485 * @param: structure containing the new RT priority.
3486 */
5add95d4
HC
3487SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3488 struct sched_param __user *, param)
1da177e4 3489{
c21761f1
JB
3490 /* negative values for policy are not valid */
3491 if (policy < 0)
3492 return -EINVAL;
3493
1da177e4
LT
3494 return do_sched_setscheduler(pid, policy, param);
3495}
3496
3497/**
3498 * sys_sched_setparam - set/change the RT priority of a thread
3499 * @pid: the pid in question.
3500 * @param: structure containing the new RT priority.
3501 */
5add95d4 3502SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3503{
3504 return do_sched_setscheduler(pid, -1, param);
3505}
3506
3507/**
3508 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3509 * @pid: the pid in question.
3510 */
5add95d4 3511SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3512{
36c8b586 3513 struct task_struct *p;
3a5c359a 3514 int retval;
1da177e4
LT
3515
3516 if (pid < 0)
3a5c359a 3517 return -EINVAL;
1da177e4
LT
3518
3519 retval = -ESRCH;
5fe85be0 3520 rcu_read_lock();
1da177e4
LT
3521 p = find_process_by_pid(pid);
3522 if (p) {
3523 retval = security_task_getscheduler(p);
3524 if (!retval)
ca94c442
LP
3525 retval = p->policy
3526 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3527 }
5fe85be0 3528 rcu_read_unlock();
1da177e4
LT
3529 return retval;
3530}
3531
3532/**
ca94c442 3533 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3534 * @pid: the pid in question.
3535 * @param: structure containing the RT priority.
3536 */
5add95d4 3537SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3538{
3539 struct sched_param lp;
36c8b586 3540 struct task_struct *p;
3a5c359a 3541 int retval;
1da177e4
LT
3542
3543 if (!param || pid < 0)
3a5c359a 3544 return -EINVAL;
1da177e4 3545
5fe85be0 3546 rcu_read_lock();
1da177e4
LT
3547 p = find_process_by_pid(pid);
3548 retval = -ESRCH;
3549 if (!p)
3550 goto out_unlock;
3551
3552 retval = security_task_getscheduler(p);
3553 if (retval)
3554 goto out_unlock;
3555
3556 lp.sched_priority = p->rt_priority;
5fe85be0 3557 rcu_read_unlock();
1da177e4
LT
3558
3559 /*
3560 * This one might sleep, we cannot do it with a spinlock held ...
3561 */
3562 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3563
1da177e4
LT
3564 return retval;
3565
3566out_unlock:
5fe85be0 3567 rcu_read_unlock();
1da177e4
LT
3568 return retval;
3569}
3570
96f874e2 3571long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3572{
5a16f3d3 3573 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3574 struct task_struct *p;
3575 int retval;
1da177e4 3576
95402b38 3577 get_online_cpus();
23f5d142 3578 rcu_read_lock();
1da177e4
LT
3579
3580 p = find_process_by_pid(pid);
3581 if (!p) {
23f5d142 3582 rcu_read_unlock();
95402b38 3583 put_online_cpus();
1da177e4
LT
3584 return -ESRCH;
3585 }
3586
23f5d142 3587 /* Prevent p going away */
1da177e4 3588 get_task_struct(p);
23f5d142 3589 rcu_read_unlock();
1da177e4 3590
14a40ffc
TH
3591 if (p->flags & PF_NO_SETAFFINITY) {
3592 retval = -EINVAL;
3593 goto out_put_task;
3594 }
5a16f3d3
RR
3595 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3596 retval = -ENOMEM;
3597 goto out_put_task;
3598 }
3599 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3600 retval = -ENOMEM;
3601 goto out_free_cpus_allowed;
3602 }
1da177e4 3603 retval = -EPERM;
4c44aaaf
EB
3604 if (!check_same_owner(p)) {
3605 rcu_read_lock();
3606 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3607 rcu_read_unlock();
3608 goto out_unlock;
3609 }
3610 rcu_read_unlock();
3611 }
1da177e4 3612
b0ae1981 3613 retval = security_task_setscheduler(p);
e7834f8f
DQ
3614 if (retval)
3615 goto out_unlock;
3616
5a16f3d3
RR
3617 cpuset_cpus_allowed(p, cpus_allowed);
3618 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3619again:
5a16f3d3 3620 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3621
8707d8b8 3622 if (!retval) {
5a16f3d3
RR
3623 cpuset_cpus_allowed(p, cpus_allowed);
3624 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3625 /*
3626 * We must have raced with a concurrent cpuset
3627 * update. Just reset the cpus_allowed to the
3628 * cpuset's cpus_allowed
3629 */
5a16f3d3 3630 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3631 goto again;
3632 }
3633 }
1da177e4 3634out_unlock:
5a16f3d3
RR
3635 free_cpumask_var(new_mask);
3636out_free_cpus_allowed:
3637 free_cpumask_var(cpus_allowed);
3638out_put_task:
1da177e4 3639 put_task_struct(p);
95402b38 3640 put_online_cpus();
1da177e4
LT
3641 return retval;
3642}
3643
3644static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3645 struct cpumask *new_mask)
1da177e4 3646{
96f874e2
RR
3647 if (len < cpumask_size())
3648 cpumask_clear(new_mask);
3649 else if (len > cpumask_size())
3650 len = cpumask_size();
3651
1da177e4
LT
3652 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3653}
3654
3655/**
3656 * sys_sched_setaffinity - set the cpu affinity of a process
3657 * @pid: pid of the process
3658 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3659 * @user_mask_ptr: user-space pointer to the new cpu mask
3660 */
5add95d4
HC
3661SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3662 unsigned long __user *, user_mask_ptr)
1da177e4 3663{
5a16f3d3 3664 cpumask_var_t new_mask;
1da177e4
LT
3665 int retval;
3666
5a16f3d3
RR
3667 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3668 return -ENOMEM;
1da177e4 3669
5a16f3d3
RR
3670 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3671 if (retval == 0)
3672 retval = sched_setaffinity(pid, new_mask);
3673 free_cpumask_var(new_mask);
3674 return retval;
1da177e4
LT
3675}
3676
96f874e2 3677long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3678{
36c8b586 3679 struct task_struct *p;
31605683 3680 unsigned long flags;
1da177e4 3681 int retval;
1da177e4 3682
95402b38 3683 get_online_cpus();
23f5d142 3684 rcu_read_lock();
1da177e4
LT
3685
3686 retval = -ESRCH;
3687 p = find_process_by_pid(pid);
3688 if (!p)
3689 goto out_unlock;
3690
e7834f8f
DQ
3691 retval = security_task_getscheduler(p);
3692 if (retval)
3693 goto out_unlock;
3694
013fdb80 3695 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3696 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3697 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3698
3699out_unlock:
23f5d142 3700 rcu_read_unlock();
95402b38 3701 put_online_cpus();
1da177e4 3702
9531b62f 3703 return retval;
1da177e4
LT
3704}
3705
3706/**
3707 * sys_sched_getaffinity - get the cpu affinity of a process
3708 * @pid: pid of the process
3709 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3710 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3711 */
5add95d4
HC
3712SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3713 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3714{
3715 int ret;
f17c8607 3716 cpumask_var_t mask;
1da177e4 3717
84fba5ec 3718 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3719 return -EINVAL;
3720 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3721 return -EINVAL;
3722
f17c8607
RR
3723 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3724 return -ENOMEM;
1da177e4 3725
f17c8607
RR
3726 ret = sched_getaffinity(pid, mask);
3727 if (ret == 0) {
8bc037fb 3728 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3729
3730 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3731 ret = -EFAULT;
3732 else
cd3d8031 3733 ret = retlen;
f17c8607
RR
3734 }
3735 free_cpumask_var(mask);
1da177e4 3736
f17c8607 3737 return ret;
1da177e4
LT
3738}
3739
3740/**
3741 * sys_sched_yield - yield the current processor to other threads.
3742 *
dd41f596
IM
3743 * This function yields the current CPU to other tasks. If there are no
3744 * other threads running on this CPU then this function will return.
1da177e4 3745 */
5add95d4 3746SYSCALL_DEFINE0(sched_yield)
1da177e4 3747{
70b97a7f 3748 struct rq *rq = this_rq_lock();
1da177e4 3749
2d72376b 3750 schedstat_inc(rq, yld_count);
4530d7ab 3751 current->sched_class->yield_task(rq);
1da177e4
LT
3752
3753 /*
3754 * Since we are going to call schedule() anyway, there's
3755 * no need to preempt or enable interrupts:
3756 */
3757 __release(rq->lock);
8a25d5de 3758 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3759 do_raw_spin_unlock(&rq->lock);
ba74c144 3760 sched_preempt_enable_no_resched();
1da177e4
LT
3761
3762 schedule();
3763
3764 return 0;
3765}
3766
d86ee480
PZ
3767static inline int should_resched(void)
3768{
3769 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3770}
3771
e7b38404 3772static void __cond_resched(void)
1da177e4 3773{
e7aaaa69 3774 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 3775 __schedule();
e7aaaa69 3776 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
3777}
3778
02b67cc3 3779int __sched _cond_resched(void)
1da177e4 3780{
d86ee480 3781 if (should_resched()) {
1da177e4
LT
3782 __cond_resched();
3783 return 1;
3784 }
3785 return 0;
3786}
02b67cc3 3787EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3788
3789/*
613afbf8 3790 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3791 * call schedule, and on return reacquire the lock.
3792 *
41a2d6cf 3793 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3794 * operations here to prevent schedule() from being called twice (once via
3795 * spin_unlock(), once by hand).
3796 */
613afbf8 3797int __cond_resched_lock(spinlock_t *lock)
1da177e4 3798{
d86ee480 3799 int resched = should_resched();
6df3cecb
JK
3800 int ret = 0;
3801
f607c668
PZ
3802 lockdep_assert_held(lock);
3803
95c354fe 3804 if (spin_needbreak(lock) || resched) {
1da177e4 3805 spin_unlock(lock);
d86ee480 3806 if (resched)
95c354fe
NP
3807 __cond_resched();
3808 else
3809 cpu_relax();
6df3cecb 3810 ret = 1;
1da177e4 3811 spin_lock(lock);
1da177e4 3812 }
6df3cecb 3813 return ret;
1da177e4 3814}
613afbf8 3815EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3816
613afbf8 3817int __sched __cond_resched_softirq(void)
1da177e4
LT
3818{
3819 BUG_ON(!in_softirq());
3820
d86ee480 3821 if (should_resched()) {
98d82567 3822 local_bh_enable();
1da177e4
LT
3823 __cond_resched();
3824 local_bh_disable();
3825 return 1;
3826 }
3827 return 0;
3828}
613afbf8 3829EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3830
1da177e4
LT
3831/**
3832 * yield - yield the current processor to other threads.
3833 *
8e3fabfd
PZ
3834 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3835 *
3836 * The scheduler is at all times free to pick the calling task as the most
3837 * eligible task to run, if removing the yield() call from your code breaks
3838 * it, its already broken.
3839 *
3840 * Typical broken usage is:
3841 *
3842 * while (!event)
3843 * yield();
3844 *
3845 * where one assumes that yield() will let 'the other' process run that will
3846 * make event true. If the current task is a SCHED_FIFO task that will never
3847 * happen. Never use yield() as a progress guarantee!!
3848 *
3849 * If you want to use yield() to wait for something, use wait_event().
3850 * If you want to use yield() to be 'nice' for others, use cond_resched().
3851 * If you still want to use yield(), do not!
1da177e4
LT
3852 */
3853void __sched yield(void)
3854{
3855 set_current_state(TASK_RUNNING);
3856 sys_sched_yield();
3857}
1da177e4
LT
3858EXPORT_SYMBOL(yield);
3859
d95f4122
MG
3860/**
3861 * yield_to - yield the current processor to another thread in
3862 * your thread group, or accelerate that thread toward the
3863 * processor it's on.
16addf95
RD
3864 * @p: target task
3865 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3866 *
3867 * It's the caller's job to ensure that the target task struct
3868 * can't go away on us before we can do any checks.
3869 *
7b270f60
PZ
3870 * Returns:
3871 * true (>0) if we indeed boosted the target task.
3872 * false (0) if we failed to boost the target.
3873 * -ESRCH if there's no task to yield to.
d95f4122
MG
3874 */
3875bool __sched yield_to(struct task_struct *p, bool preempt)
3876{
3877 struct task_struct *curr = current;
3878 struct rq *rq, *p_rq;
3879 unsigned long flags;
c3c18640 3880 int yielded = 0;
d95f4122
MG
3881
3882 local_irq_save(flags);
3883 rq = this_rq();
3884
3885again:
3886 p_rq = task_rq(p);
7b270f60
PZ
3887 /*
3888 * If we're the only runnable task on the rq and target rq also
3889 * has only one task, there's absolutely no point in yielding.
3890 */
3891 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3892 yielded = -ESRCH;
3893 goto out_irq;
3894 }
3895
d95f4122
MG
3896 double_rq_lock(rq, p_rq);
3897 while (task_rq(p) != p_rq) {
3898 double_rq_unlock(rq, p_rq);
3899 goto again;
3900 }
3901
3902 if (!curr->sched_class->yield_to_task)
7b270f60 3903 goto out_unlock;
d95f4122
MG
3904
3905 if (curr->sched_class != p->sched_class)
7b270f60 3906 goto out_unlock;
d95f4122
MG
3907
3908 if (task_running(p_rq, p) || p->state)
7b270f60 3909 goto out_unlock;
d95f4122
MG
3910
3911 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3912 if (yielded) {
d95f4122 3913 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3914 /*
3915 * Make p's CPU reschedule; pick_next_entity takes care of
3916 * fairness.
3917 */
3918 if (preempt && rq != p_rq)
3919 resched_task(p_rq->curr);
3920 }
d95f4122 3921
7b270f60 3922out_unlock:
d95f4122 3923 double_rq_unlock(rq, p_rq);
7b270f60 3924out_irq:
d95f4122
MG
3925 local_irq_restore(flags);
3926
7b270f60 3927 if (yielded > 0)
d95f4122
MG
3928 schedule();
3929
3930 return yielded;
3931}
3932EXPORT_SYMBOL_GPL(yield_to);
3933
1da177e4 3934/*
41a2d6cf 3935 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3936 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3937 */
3938void __sched io_schedule(void)
3939{
54d35f29 3940 struct rq *rq = raw_rq();
1da177e4 3941
0ff92245 3942 delayacct_blkio_start();
1da177e4 3943 atomic_inc(&rq->nr_iowait);
73c10101 3944 blk_flush_plug(current);
8f0dfc34 3945 current->in_iowait = 1;
1da177e4 3946 schedule();
8f0dfc34 3947 current->in_iowait = 0;
1da177e4 3948 atomic_dec(&rq->nr_iowait);
0ff92245 3949 delayacct_blkio_end();
1da177e4 3950}
1da177e4
LT
3951EXPORT_SYMBOL(io_schedule);
3952
3953long __sched io_schedule_timeout(long timeout)
3954{
54d35f29 3955 struct rq *rq = raw_rq();
1da177e4
LT
3956 long ret;
3957
0ff92245 3958 delayacct_blkio_start();
1da177e4 3959 atomic_inc(&rq->nr_iowait);
73c10101 3960 blk_flush_plug(current);
8f0dfc34 3961 current->in_iowait = 1;
1da177e4 3962 ret = schedule_timeout(timeout);
8f0dfc34 3963 current->in_iowait = 0;
1da177e4 3964 atomic_dec(&rq->nr_iowait);
0ff92245 3965 delayacct_blkio_end();
1da177e4
LT
3966 return ret;
3967}
3968
3969/**
3970 * sys_sched_get_priority_max - return maximum RT priority.
3971 * @policy: scheduling class.
3972 *
3973 * this syscall returns the maximum rt_priority that can be used
3974 * by a given scheduling class.
3975 */
5add95d4 3976SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
3977{
3978 int ret = -EINVAL;
3979
3980 switch (policy) {
3981 case SCHED_FIFO:
3982 case SCHED_RR:
3983 ret = MAX_USER_RT_PRIO-1;
3984 break;
3985 case SCHED_NORMAL:
b0a9499c 3986 case SCHED_BATCH:
dd41f596 3987 case SCHED_IDLE:
1da177e4
LT
3988 ret = 0;
3989 break;
3990 }
3991 return ret;
3992}
3993
3994/**
3995 * sys_sched_get_priority_min - return minimum RT priority.
3996 * @policy: scheduling class.
3997 *
3998 * this syscall returns the minimum rt_priority that can be used
3999 * by a given scheduling class.
4000 */
5add95d4 4001SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4002{
4003 int ret = -EINVAL;
4004
4005 switch (policy) {
4006 case SCHED_FIFO:
4007 case SCHED_RR:
4008 ret = 1;
4009 break;
4010 case SCHED_NORMAL:
b0a9499c 4011 case SCHED_BATCH:
dd41f596 4012 case SCHED_IDLE:
1da177e4
LT
4013 ret = 0;
4014 }
4015 return ret;
4016}
4017
4018/**
4019 * sys_sched_rr_get_interval - return the default timeslice of a process.
4020 * @pid: pid of the process.
4021 * @interval: userspace pointer to the timeslice value.
4022 *
4023 * this syscall writes the default timeslice value of a given process
4024 * into the user-space timespec buffer. A value of '0' means infinity.
4025 */
17da2bd9 4026SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4027 struct timespec __user *, interval)
1da177e4 4028{
36c8b586 4029 struct task_struct *p;
a4ec24b4 4030 unsigned int time_slice;
dba091b9
TG
4031 unsigned long flags;
4032 struct rq *rq;
3a5c359a 4033 int retval;
1da177e4 4034 struct timespec t;
1da177e4
LT
4035
4036 if (pid < 0)
3a5c359a 4037 return -EINVAL;
1da177e4
LT
4038
4039 retval = -ESRCH;
1a551ae7 4040 rcu_read_lock();
1da177e4
LT
4041 p = find_process_by_pid(pid);
4042 if (!p)
4043 goto out_unlock;
4044
4045 retval = security_task_getscheduler(p);
4046 if (retval)
4047 goto out_unlock;
4048
dba091b9
TG
4049 rq = task_rq_lock(p, &flags);
4050 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4051 task_rq_unlock(rq, p, &flags);
a4ec24b4 4052
1a551ae7 4053 rcu_read_unlock();
a4ec24b4 4054 jiffies_to_timespec(time_slice, &t);
1da177e4 4055 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4056 return retval;
3a5c359a 4057
1da177e4 4058out_unlock:
1a551ae7 4059 rcu_read_unlock();
1da177e4
LT
4060 return retval;
4061}
4062
7c731e0a 4063static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4064
82a1fcb9 4065void sched_show_task(struct task_struct *p)
1da177e4 4066{
1da177e4 4067 unsigned long free = 0;
4e79752c 4068 int ppid;
36c8b586 4069 unsigned state;
1da177e4 4070
1da177e4 4071 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4072 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4073 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4074#if BITS_PER_LONG == 32
1da177e4 4075 if (state == TASK_RUNNING)
3df0fc5b 4076 printk(KERN_CONT " running ");
1da177e4 4077 else
3df0fc5b 4078 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4079#else
4080 if (state == TASK_RUNNING)
3df0fc5b 4081 printk(KERN_CONT " running task ");
1da177e4 4082 else
3df0fc5b 4083 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4084#endif
4085#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4086 free = stack_not_used(p);
1da177e4 4087#endif
4e79752c
PM
4088 rcu_read_lock();
4089 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4090 rcu_read_unlock();
3df0fc5b 4091 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4092 task_pid_nr(p), ppid,
aa47b7e0 4093 (unsigned long)task_thread_info(p)->flags);
1da177e4 4094
3d1cb205 4095 print_worker_info(KERN_INFO, p);
5fb5e6de 4096 show_stack(p, NULL);
1da177e4
LT
4097}
4098
e59e2ae2 4099void show_state_filter(unsigned long state_filter)
1da177e4 4100{
36c8b586 4101 struct task_struct *g, *p;
1da177e4 4102
4bd77321 4103#if BITS_PER_LONG == 32
3df0fc5b
PZ
4104 printk(KERN_INFO
4105 " task PC stack pid father\n");
1da177e4 4106#else
3df0fc5b
PZ
4107 printk(KERN_INFO
4108 " task PC stack pid father\n");
1da177e4 4109#endif
510f5acc 4110 rcu_read_lock();
1da177e4
LT
4111 do_each_thread(g, p) {
4112 /*
4113 * reset the NMI-timeout, listing all files on a slow
25985edc 4114 * console might take a lot of time:
1da177e4
LT
4115 */
4116 touch_nmi_watchdog();
39bc89fd 4117 if (!state_filter || (p->state & state_filter))
82a1fcb9 4118 sched_show_task(p);
1da177e4
LT
4119 } while_each_thread(g, p);
4120
04c9167f
JF
4121 touch_all_softlockup_watchdogs();
4122
dd41f596
IM
4123#ifdef CONFIG_SCHED_DEBUG
4124 sysrq_sched_debug_show();
4125#endif
510f5acc 4126 rcu_read_unlock();
e59e2ae2
IM
4127 /*
4128 * Only show locks if all tasks are dumped:
4129 */
93335a21 4130 if (!state_filter)
e59e2ae2 4131 debug_show_all_locks();
1da177e4
LT
4132}
4133
1df21055
IM
4134void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4135{
dd41f596 4136 idle->sched_class = &idle_sched_class;
1df21055
IM
4137}
4138
f340c0d1
IM
4139/**
4140 * init_idle - set up an idle thread for a given CPU
4141 * @idle: task in question
4142 * @cpu: cpu the idle task belongs to
4143 *
4144 * NOTE: this function does not set the idle thread's NEED_RESCHED
4145 * flag, to make booting more robust.
4146 */
5c1e1767 4147void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4148{
70b97a7f 4149 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4150 unsigned long flags;
4151
05fa785c 4152 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4153
dd41f596 4154 __sched_fork(idle);
06b83b5f 4155 idle->state = TASK_RUNNING;
dd41f596
IM
4156 idle->se.exec_start = sched_clock();
4157
1e1b6c51 4158 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4159 /*
4160 * We're having a chicken and egg problem, even though we are
4161 * holding rq->lock, the cpu isn't yet set to this cpu so the
4162 * lockdep check in task_group() will fail.
4163 *
4164 * Similar case to sched_fork(). / Alternatively we could
4165 * use task_rq_lock() here and obtain the other rq->lock.
4166 *
4167 * Silence PROVE_RCU
4168 */
4169 rcu_read_lock();
dd41f596 4170 __set_task_cpu(idle, cpu);
6506cf6c 4171 rcu_read_unlock();
1da177e4 4172
1da177e4 4173 rq->curr = rq->idle = idle;
3ca7a440
PZ
4174#if defined(CONFIG_SMP)
4175 idle->on_cpu = 1;
4866cde0 4176#endif
05fa785c 4177 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4178
4179 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4180 task_thread_info(idle)->preempt_count = 0;
55cd5340 4181
dd41f596
IM
4182 /*
4183 * The idle tasks have their own, simple scheduling class:
4184 */
4185 idle->sched_class = &idle_sched_class;
868baf07 4186 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4187 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4188#if defined(CONFIG_SMP)
4189 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4190#endif
19978ca6
IM
4191}
4192
1da177e4 4193#ifdef CONFIG_SMP
1e1b6c51
KM
4194void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4195{
4196 if (p->sched_class && p->sched_class->set_cpus_allowed)
4197 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4198
4199 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4200 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4201}
4202
1da177e4
LT
4203/*
4204 * This is how migration works:
4205 *
969c7921
TH
4206 * 1) we invoke migration_cpu_stop() on the target CPU using
4207 * stop_one_cpu().
4208 * 2) stopper starts to run (implicitly forcing the migrated thread
4209 * off the CPU)
4210 * 3) it checks whether the migrated task is still in the wrong runqueue.
4211 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4212 * it and puts it into the right queue.
969c7921
TH
4213 * 5) stopper completes and stop_one_cpu() returns and the migration
4214 * is done.
1da177e4
LT
4215 */
4216
4217/*
4218 * Change a given task's CPU affinity. Migrate the thread to a
4219 * proper CPU and schedule it away if the CPU it's executing on
4220 * is removed from the allowed bitmask.
4221 *
4222 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4223 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4224 * call is not atomic; no spinlocks may be held.
4225 */
96f874e2 4226int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4227{
4228 unsigned long flags;
70b97a7f 4229 struct rq *rq;
969c7921 4230 unsigned int dest_cpu;
48f24c4d 4231 int ret = 0;
1da177e4
LT
4232
4233 rq = task_rq_lock(p, &flags);
e2912009 4234
db44fc01
YZ
4235 if (cpumask_equal(&p->cpus_allowed, new_mask))
4236 goto out;
4237
6ad4c188 4238 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4239 ret = -EINVAL;
4240 goto out;
4241 }
4242
1e1b6c51 4243 do_set_cpus_allowed(p, new_mask);
73fe6aae 4244
1da177e4 4245 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4246 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4247 goto out;
4248
969c7921 4249 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4250 if (p->on_rq) {
969c7921 4251 struct migration_arg arg = { p, dest_cpu };
1da177e4 4252 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4253 task_rq_unlock(rq, p, &flags);
969c7921 4254 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4255 tlb_migrate_finish(p->mm);
4256 return 0;
4257 }
4258out:
0122ec5b 4259 task_rq_unlock(rq, p, &flags);
48f24c4d 4260
1da177e4
LT
4261 return ret;
4262}
cd8ba7cd 4263EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4264
4265/*
41a2d6cf 4266 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4267 * this because either it can't run here any more (set_cpus_allowed()
4268 * away from this CPU, or CPU going down), or because we're
4269 * attempting to rebalance this task on exec (sched_exec).
4270 *
4271 * So we race with normal scheduler movements, but that's OK, as long
4272 * as the task is no longer on this CPU.
efc30814
KK
4273 *
4274 * Returns non-zero if task was successfully migrated.
1da177e4 4275 */
efc30814 4276static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4277{
70b97a7f 4278 struct rq *rq_dest, *rq_src;
e2912009 4279 int ret = 0;
1da177e4 4280
e761b772 4281 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4282 return ret;
1da177e4
LT
4283
4284 rq_src = cpu_rq(src_cpu);
4285 rq_dest = cpu_rq(dest_cpu);
4286
0122ec5b 4287 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4288 double_rq_lock(rq_src, rq_dest);
4289 /* Already moved. */
4290 if (task_cpu(p) != src_cpu)
b1e38734 4291 goto done;
1da177e4 4292 /* Affinity changed (again). */
fa17b507 4293 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4294 goto fail;
1da177e4 4295
e2912009
PZ
4296 /*
4297 * If we're not on a rq, the next wake-up will ensure we're
4298 * placed properly.
4299 */
fd2f4419 4300 if (p->on_rq) {
4ca9b72b 4301 dequeue_task(rq_src, p, 0);
e2912009 4302 set_task_cpu(p, dest_cpu);
4ca9b72b 4303 enqueue_task(rq_dest, p, 0);
15afe09b 4304 check_preempt_curr(rq_dest, p, 0);
1da177e4 4305 }
b1e38734 4306done:
efc30814 4307 ret = 1;
b1e38734 4308fail:
1da177e4 4309 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4310 raw_spin_unlock(&p->pi_lock);
efc30814 4311 return ret;
1da177e4
LT
4312}
4313
4314/*
969c7921
TH
4315 * migration_cpu_stop - this will be executed by a highprio stopper thread
4316 * and performs thread migration by bumping thread off CPU then
4317 * 'pushing' onto another runqueue.
1da177e4 4318 */
969c7921 4319static int migration_cpu_stop(void *data)
1da177e4 4320{
969c7921 4321 struct migration_arg *arg = data;
f7b4cddc 4322
969c7921
TH
4323 /*
4324 * The original target cpu might have gone down and we might
4325 * be on another cpu but it doesn't matter.
4326 */
f7b4cddc 4327 local_irq_disable();
969c7921 4328 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4329 local_irq_enable();
1da177e4 4330 return 0;
f7b4cddc
ON
4331}
4332
1da177e4 4333#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4334
054b9108 4335/*
48c5ccae
PZ
4336 * Ensures that the idle task is using init_mm right before its cpu goes
4337 * offline.
054b9108 4338 */
48c5ccae 4339void idle_task_exit(void)
1da177e4 4340{
48c5ccae 4341 struct mm_struct *mm = current->active_mm;
e76bd8d9 4342
48c5ccae 4343 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4344
48c5ccae
PZ
4345 if (mm != &init_mm)
4346 switch_mm(mm, &init_mm, current);
4347 mmdrop(mm);
1da177e4
LT
4348}
4349
4350/*
5d180232
PZ
4351 * Since this CPU is going 'away' for a while, fold any nr_active delta
4352 * we might have. Assumes we're called after migrate_tasks() so that the
4353 * nr_active count is stable.
4354 *
4355 * Also see the comment "Global load-average calculations".
1da177e4 4356 */
5d180232 4357static void calc_load_migrate(struct rq *rq)
1da177e4 4358{
5d180232
PZ
4359 long delta = calc_load_fold_active(rq);
4360 if (delta)
4361 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4362}
4363
48f24c4d 4364/*
48c5ccae
PZ
4365 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4366 * try_to_wake_up()->select_task_rq().
4367 *
4368 * Called with rq->lock held even though we'er in stop_machine() and
4369 * there's no concurrency possible, we hold the required locks anyway
4370 * because of lock validation efforts.
1da177e4 4371 */
48c5ccae 4372static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4373{
70b97a7f 4374 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4375 struct task_struct *next, *stop = rq->stop;
4376 int dest_cpu;
1da177e4
LT
4377
4378 /*
48c5ccae
PZ
4379 * Fudge the rq selection such that the below task selection loop
4380 * doesn't get stuck on the currently eligible stop task.
4381 *
4382 * We're currently inside stop_machine() and the rq is either stuck
4383 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4384 * either way we should never end up calling schedule() until we're
4385 * done here.
1da177e4 4386 */
48c5ccae 4387 rq->stop = NULL;
48f24c4d 4388
77bd3970
FW
4389 /*
4390 * put_prev_task() and pick_next_task() sched
4391 * class method both need to have an up-to-date
4392 * value of rq->clock[_task]
4393 */
4394 update_rq_clock(rq);
4395
dd41f596 4396 for ( ; ; ) {
48c5ccae
PZ
4397 /*
4398 * There's this thread running, bail when that's the only
4399 * remaining thread.
4400 */
4401 if (rq->nr_running == 1)
dd41f596 4402 break;
48c5ccae 4403
b67802ea 4404 next = pick_next_task(rq);
48c5ccae 4405 BUG_ON(!next);
79c53799 4406 next->sched_class->put_prev_task(rq, next);
e692ab53 4407
48c5ccae
PZ
4408 /* Find suitable destination for @next, with force if needed. */
4409 dest_cpu = select_fallback_rq(dead_cpu, next);
4410 raw_spin_unlock(&rq->lock);
4411
4412 __migrate_task(next, dead_cpu, dest_cpu);
4413
4414 raw_spin_lock(&rq->lock);
1da177e4 4415 }
dce48a84 4416
48c5ccae 4417 rq->stop = stop;
dce48a84 4418}
48c5ccae 4419
1da177e4
LT
4420#endif /* CONFIG_HOTPLUG_CPU */
4421
e692ab53
NP
4422#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4423
4424static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4425 {
4426 .procname = "sched_domain",
c57baf1e 4427 .mode = 0555,
e0361851 4428 },
56992309 4429 {}
e692ab53
NP
4430};
4431
4432static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4433 {
4434 .procname = "kernel",
c57baf1e 4435 .mode = 0555,
e0361851
AD
4436 .child = sd_ctl_dir,
4437 },
56992309 4438 {}
e692ab53
NP
4439};
4440
4441static struct ctl_table *sd_alloc_ctl_entry(int n)
4442{
4443 struct ctl_table *entry =
5cf9f062 4444 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4445
e692ab53
NP
4446 return entry;
4447}
4448
6382bc90
MM
4449static void sd_free_ctl_entry(struct ctl_table **tablep)
4450{
cd790076 4451 struct ctl_table *entry;
6382bc90 4452
cd790076
MM
4453 /*
4454 * In the intermediate directories, both the child directory and
4455 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4456 * will always be set. In the lowest directory the names are
cd790076
MM
4457 * static strings and all have proc handlers.
4458 */
4459 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4460 if (entry->child)
4461 sd_free_ctl_entry(&entry->child);
cd790076
MM
4462 if (entry->proc_handler == NULL)
4463 kfree(entry->procname);
4464 }
6382bc90
MM
4465
4466 kfree(*tablep);
4467 *tablep = NULL;
4468}
4469
201c373e 4470static int min_load_idx = 0;
fd9b86d3 4471static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4472
e692ab53 4473static void
e0361851 4474set_table_entry(struct ctl_table *entry,
e692ab53 4475 const char *procname, void *data, int maxlen,
201c373e
NK
4476 umode_t mode, proc_handler *proc_handler,
4477 bool load_idx)
e692ab53 4478{
e692ab53
NP
4479 entry->procname = procname;
4480 entry->data = data;
4481 entry->maxlen = maxlen;
4482 entry->mode = mode;
4483 entry->proc_handler = proc_handler;
201c373e
NK
4484
4485 if (load_idx) {
4486 entry->extra1 = &min_load_idx;
4487 entry->extra2 = &max_load_idx;
4488 }
e692ab53
NP
4489}
4490
4491static struct ctl_table *
4492sd_alloc_ctl_domain_table(struct sched_domain *sd)
4493{
a5d8c348 4494 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4495
ad1cdc1d
MM
4496 if (table == NULL)
4497 return NULL;
4498
e0361851 4499 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4500 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4501 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4502 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4503 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4504 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4505 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4506 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4507 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4508 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4509 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4510 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4511 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4512 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4513 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4514 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4515 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4516 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4517 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4518 &sd->cache_nice_tries,
201c373e 4519 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4520 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4521 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4522 set_table_entry(&table[11], "name", sd->name,
201c373e 4523 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4524 /* &table[12] is terminator */
e692ab53
NP
4525
4526 return table;
4527}
4528
be7002e6 4529static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4530{
4531 struct ctl_table *entry, *table;
4532 struct sched_domain *sd;
4533 int domain_num = 0, i;
4534 char buf[32];
4535
4536 for_each_domain(cpu, sd)
4537 domain_num++;
4538 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4539 if (table == NULL)
4540 return NULL;
e692ab53
NP
4541
4542 i = 0;
4543 for_each_domain(cpu, sd) {
4544 snprintf(buf, 32, "domain%d", i);
e692ab53 4545 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4546 entry->mode = 0555;
e692ab53
NP
4547 entry->child = sd_alloc_ctl_domain_table(sd);
4548 entry++;
4549 i++;
4550 }
4551 return table;
4552}
4553
4554static struct ctl_table_header *sd_sysctl_header;
6382bc90 4555static void register_sched_domain_sysctl(void)
e692ab53 4556{
6ad4c188 4557 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4558 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4559 char buf[32];
4560
7378547f
MM
4561 WARN_ON(sd_ctl_dir[0].child);
4562 sd_ctl_dir[0].child = entry;
4563
ad1cdc1d
MM
4564 if (entry == NULL)
4565 return;
4566
6ad4c188 4567 for_each_possible_cpu(i) {
e692ab53 4568 snprintf(buf, 32, "cpu%d", i);
e692ab53 4569 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4570 entry->mode = 0555;
e692ab53 4571 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4572 entry++;
e692ab53 4573 }
7378547f
MM
4574
4575 WARN_ON(sd_sysctl_header);
e692ab53
NP
4576 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4577}
6382bc90 4578
7378547f 4579/* may be called multiple times per register */
6382bc90
MM
4580static void unregister_sched_domain_sysctl(void)
4581{
7378547f
MM
4582 if (sd_sysctl_header)
4583 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4584 sd_sysctl_header = NULL;
7378547f
MM
4585 if (sd_ctl_dir[0].child)
4586 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4587}
e692ab53 4588#else
6382bc90
MM
4589static void register_sched_domain_sysctl(void)
4590{
4591}
4592static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4593{
4594}
4595#endif
4596
1f11eb6a
GH
4597static void set_rq_online(struct rq *rq)
4598{
4599 if (!rq->online) {
4600 const struct sched_class *class;
4601
c6c4927b 4602 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4603 rq->online = 1;
4604
4605 for_each_class(class) {
4606 if (class->rq_online)
4607 class->rq_online(rq);
4608 }
4609 }
4610}
4611
4612static void set_rq_offline(struct rq *rq)
4613{
4614 if (rq->online) {
4615 const struct sched_class *class;
4616
4617 for_each_class(class) {
4618 if (class->rq_offline)
4619 class->rq_offline(rq);
4620 }
4621
c6c4927b 4622 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4623 rq->online = 0;
4624 }
4625}
4626
1da177e4
LT
4627/*
4628 * migration_call - callback that gets triggered when a CPU is added.
4629 * Here we can start up the necessary migration thread for the new CPU.
4630 */
48f24c4d
IM
4631static int __cpuinit
4632migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4633{
48f24c4d 4634 int cpu = (long)hcpu;
1da177e4 4635 unsigned long flags;
969c7921 4636 struct rq *rq = cpu_rq(cpu);
1da177e4 4637
48c5ccae 4638 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4639
1da177e4 4640 case CPU_UP_PREPARE:
a468d389 4641 rq->calc_load_update = calc_load_update;
1da177e4 4642 break;
48f24c4d 4643
1da177e4 4644 case CPU_ONLINE:
1f94ef59 4645 /* Update our root-domain */
05fa785c 4646 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4647 if (rq->rd) {
c6c4927b 4648 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4649
4650 set_rq_online(rq);
1f94ef59 4651 }
05fa785c 4652 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4653 break;
48f24c4d 4654
1da177e4 4655#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4656 case CPU_DYING:
317f3941 4657 sched_ttwu_pending();
57d885fe 4658 /* Update our root-domain */
05fa785c 4659 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4660 if (rq->rd) {
c6c4927b 4661 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4662 set_rq_offline(rq);
57d885fe 4663 }
48c5ccae
PZ
4664 migrate_tasks(cpu);
4665 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4666 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4667 break;
48c5ccae 4668
5d180232 4669 case CPU_DEAD:
f319da0c 4670 calc_load_migrate(rq);
57d885fe 4671 break;
1da177e4
LT
4672#endif
4673 }
49c022e6
PZ
4674
4675 update_max_interval();
4676
1da177e4
LT
4677 return NOTIFY_OK;
4678}
4679
f38b0820
PM
4680/*
4681 * Register at high priority so that task migration (migrate_all_tasks)
4682 * happens before everything else. This has to be lower priority than
cdd6c482 4683 * the notifier in the perf_event subsystem, though.
1da177e4 4684 */
26c2143b 4685static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 4686 .notifier_call = migration_call,
50a323b7 4687 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4688};
4689
3a101d05
TH
4690static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4691 unsigned long action, void *hcpu)
4692{
4693 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4694 case CPU_STARTING:
3a101d05
TH
4695 case CPU_DOWN_FAILED:
4696 set_cpu_active((long)hcpu, true);
4697 return NOTIFY_OK;
4698 default:
4699 return NOTIFY_DONE;
4700 }
4701}
4702
4703static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4704 unsigned long action, void *hcpu)
4705{
4706 switch (action & ~CPU_TASKS_FROZEN) {
4707 case CPU_DOWN_PREPARE:
4708 set_cpu_active((long)hcpu, false);
4709 return NOTIFY_OK;
4710 default:
4711 return NOTIFY_DONE;
4712 }
4713}
4714
7babe8db 4715static int __init migration_init(void)
1da177e4
LT
4716{
4717 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4718 int err;
48f24c4d 4719
3a101d05 4720 /* Initialize migration for the boot CPU */
07dccf33
AM
4721 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4722 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4723 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4724 register_cpu_notifier(&migration_notifier);
7babe8db 4725
3a101d05
TH
4726 /* Register cpu active notifiers */
4727 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4728 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4729
a004cd42 4730 return 0;
1da177e4 4731}
7babe8db 4732early_initcall(migration_init);
1da177e4
LT
4733#endif
4734
4735#ifdef CONFIG_SMP
476f3534 4736
4cb98839
PZ
4737static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4738
3e9830dc 4739#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4740
d039ac60 4741static __read_mostly int sched_debug_enabled;
f6630114 4742
d039ac60 4743static int __init sched_debug_setup(char *str)
f6630114 4744{
d039ac60 4745 sched_debug_enabled = 1;
f6630114
MT
4746
4747 return 0;
4748}
d039ac60
PZ
4749early_param("sched_debug", sched_debug_setup);
4750
4751static inline bool sched_debug(void)
4752{
4753 return sched_debug_enabled;
4754}
f6630114 4755
7c16ec58 4756static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4757 struct cpumask *groupmask)
1da177e4 4758{
4dcf6aff 4759 struct sched_group *group = sd->groups;
434d53b0 4760 char str[256];
1da177e4 4761
968ea6d8 4762 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4763 cpumask_clear(groupmask);
4dcf6aff
IM
4764
4765 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4766
4767 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4768 printk("does not load-balance\n");
4dcf6aff 4769 if (sd->parent)
3df0fc5b
PZ
4770 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4771 " has parent");
4dcf6aff 4772 return -1;
41c7ce9a
NP
4773 }
4774
3df0fc5b 4775 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4776
758b2cdc 4777 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4778 printk(KERN_ERR "ERROR: domain->span does not contain "
4779 "CPU%d\n", cpu);
4dcf6aff 4780 }
758b2cdc 4781 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4782 printk(KERN_ERR "ERROR: domain->groups does not contain"
4783 " CPU%d\n", cpu);
4dcf6aff 4784 }
1da177e4 4785
4dcf6aff 4786 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4787 do {
4dcf6aff 4788 if (!group) {
3df0fc5b
PZ
4789 printk("\n");
4790 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4791 break;
4792 }
4793
c3decf0d
PZ
4794 /*
4795 * Even though we initialize ->power to something semi-sane,
4796 * we leave power_orig unset. This allows us to detect if
4797 * domain iteration is still funny without causing /0 traps.
4798 */
4799 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4800 printk(KERN_CONT "\n");
4801 printk(KERN_ERR "ERROR: domain->cpu_power not "
4802 "set\n");
4dcf6aff
IM
4803 break;
4804 }
1da177e4 4805
758b2cdc 4806 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4807 printk(KERN_CONT "\n");
4808 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4809 break;
4810 }
1da177e4 4811
cb83b629
PZ
4812 if (!(sd->flags & SD_OVERLAP) &&
4813 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4814 printk(KERN_CONT "\n");
4815 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4816 break;
4817 }
1da177e4 4818
758b2cdc 4819 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4820
968ea6d8 4821 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4822
3df0fc5b 4823 printk(KERN_CONT " %s", str);
9c3f75cb 4824 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4825 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4826 group->sgp->power);
381512cf 4827 }
1da177e4 4828
4dcf6aff
IM
4829 group = group->next;
4830 } while (group != sd->groups);
3df0fc5b 4831 printk(KERN_CONT "\n");
1da177e4 4832
758b2cdc 4833 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4834 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4835
758b2cdc
RR
4836 if (sd->parent &&
4837 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4838 printk(KERN_ERR "ERROR: parent span is not a superset "
4839 "of domain->span\n");
4dcf6aff
IM
4840 return 0;
4841}
1da177e4 4842
4dcf6aff
IM
4843static void sched_domain_debug(struct sched_domain *sd, int cpu)
4844{
4845 int level = 0;
1da177e4 4846
d039ac60 4847 if (!sched_debug_enabled)
f6630114
MT
4848 return;
4849
4dcf6aff
IM
4850 if (!sd) {
4851 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4852 return;
4853 }
1da177e4 4854
4dcf6aff
IM
4855 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4856
4857 for (;;) {
4cb98839 4858 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4859 break;
1da177e4
LT
4860 level++;
4861 sd = sd->parent;
33859f7f 4862 if (!sd)
4dcf6aff
IM
4863 break;
4864 }
1da177e4 4865}
6d6bc0ad 4866#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4867# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4868static inline bool sched_debug(void)
4869{
4870 return false;
4871}
6d6bc0ad 4872#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4873
1a20ff27 4874static int sd_degenerate(struct sched_domain *sd)
245af2c7 4875{
758b2cdc 4876 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4877 return 1;
4878
4879 /* Following flags need at least 2 groups */
4880 if (sd->flags & (SD_LOAD_BALANCE |
4881 SD_BALANCE_NEWIDLE |
4882 SD_BALANCE_FORK |
89c4710e
SS
4883 SD_BALANCE_EXEC |
4884 SD_SHARE_CPUPOWER |
4885 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4886 if (sd->groups != sd->groups->next)
4887 return 0;
4888 }
4889
4890 /* Following flags don't use groups */
c88d5910 4891 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4892 return 0;
4893
4894 return 1;
4895}
4896
48f24c4d
IM
4897static int
4898sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4899{
4900 unsigned long cflags = sd->flags, pflags = parent->flags;
4901
4902 if (sd_degenerate(parent))
4903 return 1;
4904
758b2cdc 4905 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4906 return 0;
4907
245af2c7
SS
4908 /* Flags needing groups don't count if only 1 group in parent */
4909 if (parent->groups == parent->groups->next) {
4910 pflags &= ~(SD_LOAD_BALANCE |
4911 SD_BALANCE_NEWIDLE |
4912 SD_BALANCE_FORK |
89c4710e
SS
4913 SD_BALANCE_EXEC |
4914 SD_SHARE_CPUPOWER |
4915 SD_SHARE_PKG_RESOURCES);
5436499e
KC
4916 if (nr_node_ids == 1)
4917 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4918 }
4919 if (~cflags & pflags)
4920 return 0;
4921
4922 return 1;
4923}
4924
dce840a0 4925static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4926{
dce840a0 4927 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4928
68e74568 4929 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4930 free_cpumask_var(rd->rto_mask);
4931 free_cpumask_var(rd->online);
4932 free_cpumask_var(rd->span);
4933 kfree(rd);
4934}
4935
57d885fe
GH
4936static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4937{
a0490fa3 4938 struct root_domain *old_rd = NULL;
57d885fe 4939 unsigned long flags;
57d885fe 4940
05fa785c 4941 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4942
4943 if (rq->rd) {
a0490fa3 4944 old_rd = rq->rd;
57d885fe 4945
c6c4927b 4946 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4947 set_rq_offline(rq);
57d885fe 4948
c6c4927b 4949 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4950
a0490fa3
IM
4951 /*
4952 * If we dont want to free the old_rt yet then
4953 * set old_rd to NULL to skip the freeing later
4954 * in this function:
4955 */
4956 if (!atomic_dec_and_test(&old_rd->refcount))
4957 old_rd = NULL;
57d885fe
GH
4958 }
4959
4960 atomic_inc(&rd->refcount);
4961 rq->rd = rd;
4962
c6c4927b 4963 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 4964 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 4965 set_rq_online(rq);
57d885fe 4966
05fa785c 4967 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
4968
4969 if (old_rd)
dce840a0 4970 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
4971}
4972
68c38fc3 4973static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
4974{
4975 memset(rd, 0, sizeof(*rd));
4976
68c38fc3 4977 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 4978 goto out;
68c38fc3 4979 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 4980 goto free_span;
68c38fc3 4981 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 4982 goto free_online;
6e0534f2 4983
68c38fc3 4984 if (cpupri_init(&rd->cpupri) != 0)
68e74568 4985 goto free_rto_mask;
c6c4927b 4986 return 0;
6e0534f2 4987
68e74568
RR
4988free_rto_mask:
4989 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
4990free_online:
4991 free_cpumask_var(rd->online);
4992free_span:
4993 free_cpumask_var(rd->span);
0c910d28 4994out:
c6c4927b 4995 return -ENOMEM;
57d885fe
GH
4996}
4997
029632fb
PZ
4998/*
4999 * By default the system creates a single root-domain with all cpus as
5000 * members (mimicking the global state we have today).
5001 */
5002struct root_domain def_root_domain;
5003
57d885fe
GH
5004static void init_defrootdomain(void)
5005{
68c38fc3 5006 init_rootdomain(&def_root_domain);
c6c4927b 5007
57d885fe
GH
5008 atomic_set(&def_root_domain.refcount, 1);
5009}
5010
dc938520 5011static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5012{
5013 struct root_domain *rd;
5014
5015 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5016 if (!rd)
5017 return NULL;
5018
68c38fc3 5019 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5020 kfree(rd);
5021 return NULL;
5022 }
57d885fe
GH
5023
5024 return rd;
5025}
5026
e3589f6c
PZ
5027static void free_sched_groups(struct sched_group *sg, int free_sgp)
5028{
5029 struct sched_group *tmp, *first;
5030
5031 if (!sg)
5032 return;
5033
5034 first = sg;
5035 do {
5036 tmp = sg->next;
5037
5038 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5039 kfree(sg->sgp);
5040
5041 kfree(sg);
5042 sg = tmp;
5043 } while (sg != first);
5044}
5045
dce840a0
PZ
5046static void free_sched_domain(struct rcu_head *rcu)
5047{
5048 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5049
5050 /*
5051 * If its an overlapping domain it has private groups, iterate and
5052 * nuke them all.
5053 */
5054 if (sd->flags & SD_OVERLAP) {
5055 free_sched_groups(sd->groups, 1);
5056 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5057 kfree(sd->groups->sgp);
dce840a0 5058 kfree(sd->groups);
9c3f75cb 5059 }
dce840a0
PZ
5060 kfree(sd);
5061}
5062
5063static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5064{
5065 call_rcu(&sd->rcu, free_sched_domain);
5066}
5067
5068static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5069{
5070 for (; sd; sd = sd->parent)
5071 destroy_sched_domain(sd, cpu);
5072}
5073
518cd623
PZ
5074/*
5075 * Keep a special pointer to the highest sched_domain that has
5076 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5077 * allows us to avoid some pointer chasing select_idle_sibling().
5078 *
5079 * Also keep a unique ID per domain (we use the first cpu number in
5080 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5081 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5082 */
5083DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5084DEFINE_PER_CPU(int, sd_llc_id);
5085
5086static void update_top_cache_domain(int cpu)
5087{
5088 struct sched_domain *sd;
5089 int id = cpu;
5090
5091 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5092 if (sd)
518cd623
PZ
5093 id = cpumask_first(sched_domain_span(sd));
5094
5095 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5096 per_cpu(sd_llc_id, cpu) = id;
5097}
5098
1da177e4 5099/*
0eab9146 5100 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5101 * hold the hotplug lock.
5102 */
0eab9146
IM
5103static void
5104cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5105{
70b97a7f 5106 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5107 struct sched_domain *tmp;
5108
5109 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5110 for (tmp = sd; tmp; ) {
245af2c7
SS
5111 struct sched_domain *parent = tmp->parent;
5112 if (!parent)
5113 break;
f29c9b1c 5114
1a848870 5115 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5116 tmp->parent = parent->parent;
1a848870
SS
5117 if (parent->parent)
5118 parent->parent->child = tmp;
dce840a0 5119 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5120 } else
5121 tmp = tmp->parent;
245af2c7
SS
5122 }
5123
1a848870 5124 if (sd && sd_degenerate(sd)) {
dce840a0 5125 tmp = sd;
245af2c7 5126 sd = sd->parent;
dce840a0 5127 destroy_sched_domain(tmp, cpu);
1a848870
SS
5128 if (sd)
5129 sd->child = NULL;
5130 }
1da177e4 5131
4cb98839 5132 sched_domain_debug(sd, cpu);
1da177e4 5133
57d885fe 5134 rq_attach_root(rq, rd);
dce840a0 5135 tmp = rq->sd;
674311d5 5136 rcu_assign_pointer(rq->sd, sd);
dce840a0 5137 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5138
5139 update_top_cache_domain(cpu);
1da177e4
LT
5140}
5141
5142/* cpus with isolated domains */
dcc30a35 5143static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5144
5145/* Setup the mask of cpus configured for isolated domains */
5146static int __init isolated_cpu_setup(char *str)
5147{
bdddd296 5148 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5149 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5150 return 1;
5151}
5152
8927f494 5153__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5154
d3081f52
PZ
5155static const struct cpumask *cpu_cpu_mask(int cpu)
5156{
5157 return cpumask_of_node(cpu_to_node(cpu));
5158}
5159
dce840a0
PZ
5160struct sd_data {
5161 struct sched_domain **__percpu sd;
5162 struct sched_group **__percpu sg;
9c3f75cb 5163 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5164};
5165
49a02c51 5166struct s_data {
21d42ccf 5167 struct sched_domain ** __percpu sd;
49a02c51
AH
5168 struct root_domain *rd;
5169};
5170
2109b99e 5171enum s_alloc {
2109b99e 5172 sa_rootdomain,
21d42ccf 5173 sa_sd,
dce840a0 5174 sa_sd_storage,
2109b99e
AH
5175 sa_none,
5176};
5177
54ab4ff4
PZ
5178struct sched_domain_topology_level;
5179
5180typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5181typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5182
e3589f6c
PZ
5183#define SDTL_OVERLAP 0x01
5184
eb7a74e6 5185struct sched_domain_topology_level {
2c402dc3
PZ
5186 sched_domain_init_f init;
5187 sched_domain_mask_f mask;
e3589f6c 5188 int flags;
cb83b629 5189 int numa_level;
54ab4ff4 5190 struct sd_data data;
eb7a74e6
PZ
5191};
5192
c1174876
PZ
5193/*
5194 * Build an iteration mask that can exclude certain CPUs from the upwards
5195 * domain traversal.
5196 *
5197 * Asymmetric node setups can result in situations where the domain tree is of
5198 * unequal depth, make sure to skip domains that already cover the entire
5199 * range.
5200 *
5201 * In that case build_sched_domains() will have terminated the iteration early
5202 * and our sibling sd spans will be empty. Domains should always include the
5203 * cpu they're built on, so check that.
5204 *
5205 */
5206static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5207{
5208 const struct cpumask *span = sched_domain_span(sd);
5209 struct sd_data *sdd = sd->private;
5210 struct sched_domain *sibling;
5211 int i;
5212
5213 for_each_cpu(i, span) {
5214 sibling = *per_cpu_ptr(sdd->sd, i);
5215 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5216 continue;
5217
5218 cpumask_set_cpu(i, sched_group_mask(sg));
5219 }
5220}
5221
5222/*
5223 * Return the canonical balance cpu for this group, this is the first cpu
5224 * of this group that's also in the iteration mask.
5225 */
5226int group_balance_cpu(struct sched_group *sg)
5227{
5228 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5229}
5230
e3589f6c
PZ
5231static int
5232build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5233{
5234 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5235 const struct cpumask *span = sched_domain_span(sd);
5236 struct cpumask *covered = sched_domains_tmpmask;
5237 struct sd_data *sdd = sd->private;
5238 struct sched_domain *child;
5239 int i;
5240
5241 cpumask_clear(covered);
5242
5243 for_each_cpu(i, span) {
5244 struct cpumask *sg_span;
5245
5246 if (cpumask_test_cpu(i, covered))
5247 continue;
5248
c1174876
PZ
5249 child = *per_cpu_ptr(sdd->sd, i);
5250
5251 /* See the comment near build_group_mask(). */
5252 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5253 continue;
5254
e3589f6c 5255 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5256 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5257
5258 if (!sg)
5259 goto fail;
5260
5261 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5262 if (child->child) {
5263 child = child->child;
5264 cpumask_copy(sg_span, sched_domain_span(child));
5265 } else
5266 cpumask_set_cpu(i, sg_span);
5267
5268 cpumask_or(covered, covered, sg_span);
5269
74a5ce20 5270 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5271 if (atomic_inc_return(&sg->sgp->ref) == 1)
5272 build_group_mask(sd, sg);
5273
c3decf0d
PZ
5274 /*
5275 * Initialize sgp->power such that even if we mess up the
5276 * domains and no possible iteration will get us here, we won't
5277 * die on a /0 trap.
5278 */
5279 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5280
c1174876
PZ
5281 /*
5282 * Make sure the first group of this domain contains the
5283 * canonical balance cpu. Otherwise the sched_domain iteration
5284 * breaks. See update_sg_lb_stats().
5285 */
74a5ce20 5286 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5287 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5288 groups = sg;
5289
5290 if (!first)
5291 first = sg;
5292 if (last)
5293 last->next = sg;
5294 last = sg;
5295 last->next = first;
5296 }
5297 sd->groups = groups;
5298
5299 return 0;
5300
5301fail:
5302 free_sched_groups(first, 0);
5303
5304 return -ENOMEM;
5305}
5306
dce840a0 5307static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5308{
dce840a0
PZ
5309 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5310 struct sched_domain *child = sd->child;
1da177e4 5311
dce840a0
PZ
5312 if (child)
5313 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5314
9c3f75cb 5315 if (sg) {
dce840a0 5316 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5317 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5318 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5319 }
dce840a0
PZ
5320
5321 return cpu;
1e9f28fa 5322}
1e9f28fa 5323
01a08546 5324/*
dce840a0
PZ
5325 * build_sched_groups will build a circular linked list of the groups
5326 * covered by the given span, and will set each group's ->cpumask correctly,
5327 * and ->cpu_power to 0.
e3589f6c
PZ
5328 *
5329 * Assumes the sched_domain tree is fully constructed
01a08546 5330 */
e3589f6c
PZ
5331static int
5332build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5333{
dce840a0
PZ
5334 struct sched_group *first = NULL, *last = NULL;
5335 struct sd_data *sdd = sd->private;
5336 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5337 struct cpumask *covered;
dce840a0 5338 int i;
9c1cfda2 5339
e3589f6c
PZ
5340 get_group(cpu, sdd, &sd->groups);
5341 atomic_inc(&sd->groups->ref);
5342
0936629f 5343 if (cpu != cpumask_first(span))
e3589f6c
PZ
5344 return 0;
5345
f96225fd
PZ
5346 lockdep_assert_held(&sched_domains_mutex);
5347 covered = sched_domains_tmpmask;
5348
dce840a0 5349 cpumask_clear(covered);
6711cab4 5350
dce840a0
PZ
5351 for_each_cpu(i, span) {
5352 struct sched_group *sg;
cd08e923 5353 int group, j;
6711cab4 5354
dce840a0
PZ
5355 if (cpumask_test_cpu(i, covered))
5356 continue;
6711cab4 5357
cd08e923 5358 group = get_group(i, sdd, &sg);
dce840a0 5359 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5360 sg->sgp->power = 0;
c1174876 5361 cpumask_setall(sched_group_mask(sg));
0601a88d 5362
dce840a0
PZ
5363 for_each_cpu(j, span) {
5364 if (get_group(j, sdd, NULL) != group)
5365 continue;
0601a88d 5366
dce840a0
PZ
5367 cpumask_set_cpu(j, covered);
5368 cpumask_set_cpu(j, sched_group_cpus(sg));
5369 }
0601a88d 5370
dce840a0
PZ
5371 if (!first)
5372 first = sg;
5373 if (last)
5374 last->next = sg;
5375 last = sg;
5376 }
5377 last->next = first;
e3589f6c
PZ
5378
5379 return 0;
0601a88d 5380}
51888ca2 5381
89c4710e
SS
5382/*
5383 * Initialize sched groups cpu_power.
5384 *
5385 * cpu_power indicates the capacity of sched group, which is used while
5386 * distributing the load between different sched groups in a sched domain.
5387 * Typically cpu_power for all the groups in a sched domain will be same unless
5388 * there are asymmetries in the topology. If there are asymmetries, group
5389 * having more cpu_power will pickup more load compared to the group having
5390 * less cpu_power.
89c4710e
SS
5391 */
5392static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5393{
e3589f6c 5394 struct sched_group *sg = sd->groups;
89c4710e 5395
94c95ba6 5396 WARN_ON(!sg);
e3589f6c
PZ
5397
5398 do {
5399 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5400 sg = sg->next;
5401 } while (sg != sd->groups);
89c4710e 5402
c1174876 5403 if (cpu != group_balance_cpu(sg))
e3589f6c 5404 return;
aae6d3dd 5405
d274cb30 5406 update_group_power(sd, cpu);
69e1e811 5407 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5408}
5409
029632fb
PZ
5410int __weak arch_sd_sibling_asym_packing(void)
5411{
5412 return 0*SD_ASYM_PACKING;
89c4710e
SS
5413}
5414
7c16ec58
MT
5415/*
5416 * Initializers for schedule domains
5417 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5418 */
5419
a5d8c348
IM
5420#ifdef CONFIG_SCHED_DEBUG
5421# define SD_INIT_NAME(sd, type) sd->name = #type
5422#else
5423# define SD_INIT_NAME(sd, type) do { } while (0)
5424#endif
5425
54ab4ff4
PZ
5426#define SD_INIT_FUNC(type) \
5427static noinline struct sched_domain * \
5428sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5429{ \
5430 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5431 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5432 SD_INIT_NAME(sd, type); \
5433 sd->private = &tl->data; \
5434 return sd; \
7c16ec58
MT
5435}
5436
5437SD_INIT_FUNC(CPU)
7c16ec58
MT
5438#ifdef CONFIG_SCHED_SMT
5439 SD_INIT_FUNC(SIBLING)
5440#endif
5441#ifdef CONFIG_SCHED_MC
5442 SD_INIT_FUNC(MC)
5443#endif
01a08546
HC
5444#ifdef CONFIG_SCHED_BOOK
5445 SD_INIT_FUNC(BOOK)
5446#endif
7c16ec58 5447
1d3504fc 5448static int default_relax_domain_level = -1;
60495e77 5449int sched_domain_level_max;
1d3504fc
HS
5450
5451static int __init setup_relax_domain_level(char *str)
5452{
a841f8ce
DS
5453 if (kstrtoint(str, 0, &default_relax_domain_level))
5454 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5455
1d3504fc
HS
5456 return 1;
5457}
5458__setup("relax_domain_level=", setup_relax_domain_level);
5459
5460static void set_domain_attribute(struct sched_domain *sd,
5461 struct sched_domain_attr *attr)
5462{
5463 int request;
5464
5465 if (!attr || attr->relax_domain_level < 0) {
5466 if (default_relax_domain_level < 0)
5467 return;
5468 else
5469 request = default_relax_domain_level;
5470 } else
5471 request = attr->relax_domain_level;
5472 if (request < sd->level) {
5473 /* turn off idle balance on this domain */
c88d5910 5474 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5475 } else {
5476 /* turn on idle balance on this domain */
c88d5910 5477 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5478 }
5479}
5480
54ab4ff4
PZ
5481static void __sdt_free(const struct cpumask *cpu_map);
5482static int __sdt_alloc(const struct cpumask *cpu_map);
5483
2109b99e
AH
5484static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5485 const struct cpumask *cpu_map)
5486{
5487 switch (what) {
2109b99e 5488 case sa_rootdomain:
822ff793
PZ
5489 if (!atomic_read(&d->rd->refcount))
5490 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5491 case sa_sd:
5492 free_percpu(d->sd); /* fall through */
dce840a0 5493 case sa_sd_storage:
54ab4ff4 5494 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5495 case sa_none:
5496 break;
5497 }
5498}
3404c8d9 5499
2109b99e
AH
5500static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5501 const struct cpumask *cpu_map)
5502{
dce840a0
PZ
5503 memset(d, 0, sizeof(*d));
5504
54ab4ff4
PZ
5505 if (__sdt_alloc(cpu_map))
5506 return sa_sd_storage;
dce840a0
PZ
5507 d->sd = alloc_percpu(struct sched_domain *);
5508 if (!d->sd)
5509 return sa_sd_storage;
2109b99e 5510 d->rd = alloc_rootdomain();
dce840a0 5511 if (!d->rd)
21d42ccf 5512 return sa_sd;
2109b99e
AH
5513 return sa_rootdomain;
5514}
57d885fe 5515
dce840a0
PZ
5516/*
5517 * NULL the sd_data elements we've used to build the sched_domain and
5518 * sched_group structure so that the subsequent __free_domain_allocs()
5519 * will not free the data we're using.
5520 */
5521static void claim_allocations(int cpu, struct sched_domain *sd)
5522{
5523 struct sd_data *sdd = sd->private;
dce840a0
PZ
5524
5525 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5526 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5527
e3589f6c 5528 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5529 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5530
5531 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5532 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5533}
5534
2c402dc3
PZ
5535#ifdef CONFIG_SCHED_SMT
5536static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5537{
2c402dc3 5538 return topology_thread_cpumask(cpu);
3bd65a80 5539}
2c402dc3 5540#endif
7f4588f3 5541
d069b916
PZ
5542/*
5543 * Topology list, bottom-up.
5544 */
2c402dc3 5545static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5546#ifdef CONFIG_SCHED_SMT
5547 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5548#endif
1e9f28fa 5549#ifdef CONFIG_SCHED_MC
2c402dc3 5550 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5551#endif
d069b916
PZ
5552#ifdef CONFIG_SCHED_BOOK
5553 { sd_init_BOOK, cpu_book_mask, },
5554#endif
5555 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5556 { NULL, },
5557};
5558
5559static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5560
27723a68
VK
5561#define for_each_sd_topology(tl) \
5562 for (tl = sched_domain_topology; tl->init; tl++)
5563
cb83b629
PZ
5564#ifdef CONFIG_NUMA
5565
5566static int sched_domains_numa_levels;
cb83b629
PZ
5567static int *sched_domains_numa_distance;
5568static struct cpumask ***sched_domains_numa_masks;
5569static int sched_domains_curr_level;
5570
cb83b629
PZ
5571static inline int sd_local_flags(int level)
5572{
10717dcd 5573 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5574 return 0;
5575
5576 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5577}
5578
5579static struct sched_domain *
5580sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5581{
5582 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5583 int level = tl->numa_level;
5584 int sd_weight = cpumask_weight(
5585 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5586
5587 *sd = (struct sched_domain){
5588 .min_interval = sd_weight,
5589 .max_interval = 2*sd_weight,
5590 .busy_factor = 32,
870a0bb5 5591 .imbalance_pct = 125,
cb83b629
PZ
5592 .cache_nice_tries = 2,
5593 .busy_idx = 3,
5594 .idle_idx = 2,
5595 .newidle_idx = 0,
5596 .wake_idx = 0,
5597 .forkexec_idx = 0,
5598
5599 .flags = 1*SD_LOAD_BALANCE
5600 | 1*SD_BALANCE_NEWIDLE
5601 | 0*SD_BALANCE_EXEC
5602 | 0*SD_BALANCE_FORK
5603 | 0*SD_BALANCE_WAKE
5604 | 0*SD_WAKE_AFFINE
cb83b629 5605 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5606 | 0*SD_SHARE_PKG_RESOURCES
5607 | 1*SD_SERIALIZE
5608 | 0*SD_PREFER_SIBLING
5609 | sd_local_flags(level)
5610 ,
5611 .last_balance = jiffies,
5612 .balance_interval = sd_weight,
5613 };
5614 SD_INIT_NAME(sd, NUMA);
5615 sd->private = &tl->data;
5616
5617 /*
5618 * Ugly hack to pass state to sd_numa_mask()...
5619 */
5620 sched_domains_curr_level = tl->numa_level;
5621
5622 return sd;
5623}
5624
5625static const struct cpumask *sd_numa_mask(int cpu)
5626{
5627 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5628}
5629
d039ac60
PZ
5630static void sched_numa_warn(const char *str)
5631{
5632 static int done = false;
5633 int i,j;
5634
5635 if (done)
5636 return;
5637
5638 done = true;
5639
5640 printk(KERN_WARNING "ERROR: %s\n\n", str);
5641
5642 for (i = 0; i < nr_node_ids; i++) {
5643 printk(KERN_WARNING " ");
5644 for (j = 0; j < nr_node_ids; j++)
5645 printk(KERN_CONT "%02d ", node_distance(i,j));
5646 printk(KERN_CONT "\n");
5647 }
5648 printk(KERN_WARNING "\n");
5649}
5650
5651static bool find_numa_distance(int distance)
5652{
5653 int i;
5654
5655 if (distance == node_distance(0, 0))
5656 return true;
5657
5658 for (i = 0; i < sched_domains_numa_levels; i++) {
5659 if (sched_domains_numa_distance[i] == distance)
5660 return true;
5661 }
5662
5663 return false;
5664}
5665
cb83b629
PZ
5666static void sched_init_numa(void)
5667{
5668 int next_distance, curr_distance = node_distance(0, 0);
5669 struct sched_domain_topology_level *tl;
5670 int level = 0;
5671 int i, j, k;
5672
cb83b629
PZ
5673 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5674 if (!sched_domains_numa_distance)
5675 return;
5676
5677 /*
5678 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5679 * unique distances in the node_distance() table.
5680 *
5681 * Assumes node_distance(0,j) includes all distances in
5682 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5683 */
5684 next_distance = curr_distance;
5685 for (i = 0; i < nr_node_ids; i++) {
5686 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5687 for (k = 0; k < nr_node_ids; k++) {
5688 int distance = node_distance(i, k);
5689
5690 if (distance > curr_distance &&
5691 (distance < next_distance ||
5692 next_distance == curr_distance))
5693 next_distance = distance;
5694
5695 /*
5696 * While not a strong assumption it would be nice to know
5697 * about cases where if node A is connected to B, B is not
5698 * equally connected to A.
5699 */
5700 if (sched_debug() && node_distance(k, i) != distance)
5701 sched_numa_warn("Node-distance not symmetric");
5702
5703 if (sched_debug() && i && !find_numa_distance(distance))
5704 sched_numa_warn("Node-0 not representative");
5705 }
5706 if (next_distance != curr_distance) {
5707 sched_domains_numa_distance[level++] = next_distance;
5708 sched_domains_numa_levels = level;
5709 curr_distance = next_distance;
5710 } else break;
cb83b629 5711 }
d039ac60
PZ
5712
5713 /*
5714 * In case of sched_debug() we verify the above assumption.
5715 */
5716 if (!sched_debug())
5717 break;
cb83b629
PZ
5718 }
5719 /*
5720 * 'level' contains the number of unique distances, excluding the
5721 * identity distance node_distance(i,i).
5722 *
28b4a521 5723 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5724 * numbers.
5725 */
5726
5f7865f3
TC
5727 /*
5728 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5729 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5730 * the array will contain less then 'level' members. This could be
5731 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5732 * in other functions.
5733 *
5734 * We reset it to 'level' at the end of this function.
5735 */
5736 sched_domains_numa_levels = 0;
5737
cb83b629
PZ
5738 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5739 if (!sched_domains_numa_masks)
5740 return;
5741
5742 /*
5743 * Now for each level, construct a mask per node which contains all
5744 * cpus of nodes that are that many hops away from us.
5745 */
5746 for (i = 0; i < level; i++) {
5747 sched_domains_numa_masks[i] =
5748 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5749 if (!sched_domains_numa_masks[i])
5750 return;
5751
5752 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5753 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5754 if (!mask)
5755 return;
5756
5757 sched_domains_numa_masks[i][j] = mask;
5758
5759 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5760 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5761 continue;
5762
5763 cpumask_or(mask, mask, cpumask_of_node(k));
5764 }
5765 }
5766 }
5767
5768 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5769 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5770 if (!tl)
5771 return;
5772
5773 /*
5774 * Copy the default topology bits..
5775 */
5776 for (i = 0; default_topology[i].init; i++)
5777 tl[i] = default_topology[i];
5778
5779 /*
5780 * .. and append 'j' levels of NUMA goodness.
5781 */
5782 for (j = 0; j < level; i++, j++) {
5783 tl[i] = (struct sched_domain_topology_level){
5784 .init = sd_numa_init,
5785 .mask = sd_numa_mask,
5786 .flags = SDTL_OVERLAP,
5787 .numa_level = j,
5788 };
5789 }
5790
5791 sched_domain_topology = tl;
5f7865f3
TC
5792
5793 sched_domains_numa_levels = level;
cb83b629 5794}
301a5cba
TC
5795
5796static void sched_domains_numa_masks_set(int cpu)
5797{
5798 int i, j;
5799 int node = cpu_to_node(cpu);
5800
5801 for (i = 0; i < sched_domains_numa_levels; i++) {
5802 for (j = 0; j < nr_node_ids; j++) {
5803 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5804 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5805 }
5806 }
5807}
5808
5809static void sched_domains_numa_masks_clear(int cpu)
5810{
5811 int i, j;
5812 for (i = 0; i < sched_domains_numa_levels; i++) {
5813 for (j = 0; j < nr_node_ids; j++)
5814 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5815 }
5816}
5817
5818/*
5819 * Update sched_domains_numa_masks[level][node] array when new cpus
5820 * are onlined.
5821 */
5822static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5823 unsigned long action,
5824 void *hcpu)
5825{
5826 int cpu = (long)hcpu;
5827
5828 switch (action & ~CPU_TASKS_FROZEN) {
5829 case CPU_ONLINE:
5830 sched_domains_numa_masks_set(cpu);
5831 break;
5832
5833 case CPU_DEAD:
5834 sched_domains_numa_masks_clear(cpu);
5835 break;
5836
5837 default:
5838 return NOTIFY_DONE;
5839 }
5840
5841 return NOTIFY_OK;
cb83b629
PZ
5842}
5843#else
5844static inline void sched_init_numa(void)
5845{
5846}
301a5cba
TC
5847
5848static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5849 unsigned long action,
5850 void *hcpu)
5851{
5852 return 0;
5853}
cb83b629
PZ
5854#endif /* CONFIG_NUMA */
5855
54ab4ff4
PZ
5856static int __sdt_alloc(const struct cpumask *cpu_map)
5857{
5858 struct sched_domain_topology_level *tl;
5859 int j;
5860
27723a68 5861 for_each_sd_topology(tl) {
54ab4ff4
PZ
5862 struct sd_data *sdd = &tl->data;
5863
5864 sdd->sd = alloc_percpu(struct sched_domain *);
5865 if (!sdd->sd)
5866 return -ENOMEM;
5867
5868 sdd->sg = alloc_percpu(struct sched_group *);
5869 if (!sdd->sg)
5870 return -ENOMEM;
5871
9c3f75cb
PZ
5872 sdd->sgp = alloc_percpu(struct sched_group_power *);
5873 if (!sdd->sgp)
5874 return -ENOMEM;
5875
54ab4ff4
PZ
5876 for_each_cpu(j, cpu_map) {
5877 struct sched_domain *sd;
5878 struct sched_group *sg;
9c3f75cb 5879 struct sched_group_power *sgp;
54ab4ff4
PZ
5880
5881 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5882 GFP_KERNEL, cpu_to_node(j));
5883 if (!sd)
5884 return -ENOMEM;
5885
5886 *per_cpu_ptr(sdd->sd, j) = sd;
5887
5888 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5889 GFP_KERNEL, cpu_to_node(j));
5890 if (!sg)
5891 return -ENOMEM;
5892
30b4e9eb
IM
5893 sg->next = sg;
5894
54ab4ff4 5895 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5896
c1174876 5897 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5898 GFP_KERNEL, cpu_to_node(j));
5899 if (!sgp)
5900 return -ENOMEM;
5901
5902 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5903 }
5904 }
5905
5906 return 0;
5907}
5908
5909static void __sdt_free(const struct cpumask *cpu_map)
5910{
5911 struct sched_domain_topology_level *tl;
5912 int j;
5913
27723a68 5914 for_each_sd_topology(tl) {
54ab4ff4
PZ
5915 struct sd_data *sdd = &tl->data;
5916
5917 for_each_cpu(j, cpu_map) {
fb2cf2c6 5918 struct sched_domain *sd;
5919
5920 if (sdd->sd) {
5921 sd = *per_cpu_ptr(sdd->sd, j);
5922 if (sd && (sd->flags & SD_OVERLAP))
5923 free_sched_groups(sd->groups, 0);
5924 kfree(*per_cpu_ptr(sdd->sd, j));
5925 }
5926
5927 if (sdd->sg)
5928 kfree(*per_cpu_ptr(sdd->sg, j));
5929 if (sdd->sgp)
5930 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5931 }
5932 free_percpu(sdd->sd);
fb2cf2c6 5933 sdd->sd = NULL;
54ab4ff4 5934 free_percpu(sdd->sg);
fb2cf2c6 5935 sdd->sg = NULL;
9c3f75cb 5936 free_percpu(sdd->sgp);
fb2cf2c6 5937 sdd->sgp = NULL;
54ab4ff4
PZ
5938 }
5939}
5940
2c402dc3 5941struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
5942 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5943 struct sched_domain *child, int cpu)
2c402dc3 5944{
54ab4ff4 5945 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5946 if (!sd)
d069b916 5947 return child;
2c402dc3 5948
2c402dc3 5949 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
5950 if (child) {
5951 sd->level = child->level + 1;
5952 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 5953 child->parent = sd;
c75e0128 5954 sd->child = child;
60495e77 5955 }
a841f8ce 5956 set_domain_attribute(sd, attr);
2c402dc3
PZ
5957
5958 return sd;
5959}
5960
2109b99e
AH
5961/*
5962 * Build sched domains for a given set of cpus and attach the sched domains
5963 * to the individual cpus
5964 */
dce840a0
PZ
5965static int build_sched_domains(const struct cpumask *cpu_map,
5966 struct sched_domain_attr *attr)
2109b99e 5967{
1c632169 5968 enum s_alloc alloc_state;
dce840a0 5969 struct sched_domain *sd;
2109b99e 5970 struct s_data d;
822ff793 5971 int i, ret = -ENOMEM;
9c1cfda2 5972
2109b99e
AH
5973 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5974 if (alloc_state != sa_rootdomain)
5975 goto error;
9c1cfda2 5976
dce840a0 5977 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 5978 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
5979 struct sched_domain_topology_level *tl;
5980
3bd65a80 5981 sd = NULL;
27723a68 5982 for_each_sd_topology(tl) {
4a850cbe 5983 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
5984 if (tl == sched_domain_topology)
5985 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
5986 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5987 sd->flags |= SD_OVERLAP;
d110235d
PZ
5988 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5989 break;
e3589f6c 5990 }
dce840a0
PZ
5991 }
5992
5993 /* Build the groups for the domains */
5994 for_each_cpu(i, cpu_map) {
5995 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5996 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
5997 if (sd->flags & SD_OVERLAP) {
5998 if (build_overlap_sched_groups(sd, i))
5999 goto error;
6000 } else {
6001 if (build_sched_groups(sd, i))
6002 goto error;
6003 }
1cf51902 6004 }
a06dadbe 6005 }
9c1cfda2 6006
1da177e4 6007 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6008 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6009 if (!cpumask_test_cpu(i, cpu_map))
6010 continue;
9c1cfda2 6011
dce840a0
PZ
6012 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6013 claim_allocations(i, sd);
cd4ea6ae 6014 init_sched_groups_power(i, sd);
dce840a0 6015 }
f712c0c7 6016 }
9c1cfda2 6017
1da177e4 6018 /* Attach the domains */
dce840a0 6019 rcu_read_lock();
abcd083a 6020 for_each_cpu(i, cpu_map) {
21d42ccf 6021 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6022 cpu_attach_domain(sd, d.rd, i);
1da177e4 6023 }
dce840a0 6024 rcu_read_unlock();
51888ca2 6025
822ff793 6026 ret = 0;
51888ca2 6027error:
2109b99e 6028 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6029 return ret;
1da177e4 6030}
029190c5 6031
acc3f5d7 6032static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6033static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6034static struct sched_domain_attr *dattr_cur;
6035 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6036
6037/*
6038 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6039 * cpumask) fails, then fallback to a single sched domain,
6040 * as determined by the single cpumask fallback_doms.
029190c5 6041 */
4212823f 6042static cpumask_var_t fallback_doms;
029190c5 6043
ee79d1bd
HC
6044/*
6045 * arch_update_cpu_topology lets virtualized architectures update the
6046 * cpu core maps. It is supposed to return 1 if the topology changed
6047 * or 0 if it stayed the same.
6048 */
6049int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6050{
ee79d1bd 6051 return 0;
22e52b07
HC
6052}
6053
acc3f5d7
RR
6054cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6055{
6056 int i;
6057 cpumask_var_t *doms;
6058
6059 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6060 if (!doms)
6061 return NULL;
6062 for (i = 0; i < ndoms; i++) {
6063 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6064 free_sched_domains(doms, i);
6065 return NULL;
6066 }
6067 }
6068 return doms;
6069}
6070
6071void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6072{
6073 unsigned int i;
6074 for (i = 0; i < ndoms; i++)
6075 free_cpumask_var(doms[i]);
6076 kfree(doms);
6077}
6078
1a20ff27 6079/*
41a2d6cf 6080 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6081 * For now this just excludes isolated cpus, but could be used to
6082 * exclude other special cases in the future.
1a20ff27 6083 */
c4a8849a 6084static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6085{
7378547f
MM
6086 int err;
6087
22e52b07 6088 arch_update_cpu_topology();
029190c5 6089 ndoms_cur = 1;
acc3f5d7 6090 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6091 if (!doms_cur)
acc3f5d7
RR
6092 doms_cur = &fallback_doms;
6093 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6094 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6095 register_sched_domain_sysctl();
7378547f
MM
6096
6097 return err;
1a20ff27
DG
6098}
6099
1a20ff27
DG
6100/*
6101 * Detach sched domains from a group of cpus specified in cpu_map
6102 * These cpus will now be attached to the NULL domain
6103 */
96f874e2 6104static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6105{
6106 int i;
6107
dce840a0 6108 rcu_read_lock();
abcd083a 6109 for_each_cpu(i, cpu_map)
57d885fe 6110 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6111 rcu_read_unlock();
1a20ff27
DG
6112}
6113
1d3504fc
HS
6114/* handle null as "default" */
6115static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6116 struct sched_domain_attr *new, int idx_new)
6117{
6118 struct sched_domain_attr tmp;
6119
6120 /* fast path */
6121 if (!new && !cur)
6122 return 1;
6123
6124 tmp = SD_ATTR_INIT;
6125 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6126 new ? (new + idx_new) : &tmp,
6127 sizeof(struct sched_domain_attr));
6128}
6129
029190c5
PJ
6130/*
6131 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6132 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6133 * doms_new[] to the current sched domain partitioning, doms_cur[].
6134 * It destroys each deleted domain and builds each new domain.
6135 *
acc3f5d7 6136 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6137 * The masks don't intersect (don't overlap.) We should setup one
6138 * sched domain for each mask. CPUs not in any of the cpumasks will
6139 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6140 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6141 * it as it is.
6142 *
acc3f5d7
RR
6143 * The passed in 'doms_new' should be allocated using
6144 * alloc_sched_domains. This routine takes ownership of it and will
6145 * free_sched_domains it when done with it. If the caller failed the
6146 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6147 * and partition_sched_domains() will fallback to the single partition
6148 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6149 *
96f874e2 6150 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6151 * ndoms_new == 0 is a special case for destroying existing domains,
6152 * and it will not create the default domain.
dfb512ec 6153 *
029190c5
PJ
6154 * Call with hotplug lock held
6155 */
acc3f5d7 6156void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6157 struct sched_domain_attr *dattr_new)
029190c5 6158{
dfb512ec 6159 int i, j, n;
d65bd5ec 6160 int new_topology;
029190c5 6161
712555ee 6162 mutex_lock(&sched_domains_mutex);
a1835615 6163
7378547f
MM
6164 /* always unregister in case we don't destroy any domains */
6165 unregister_sched_domain_sysctl();
6166
d65bd5ec
HC
6167 /* Let architecture update cpu core mappings. */
6168 new_topology = arch_update_cpu_topology();
6169
dfb512ec 6170 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6171
6172 /* Destroy deleted domains */
6173 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6174 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6175 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6176 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6177 goto match1;
6178 }
6179 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6180 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6181match1:
6182 ;
6183 }
6184
e761b772
MK
6185 if (doms_new == NULL) {
6186 ndoms_cur = 0;
acc3f5d7 6187 doms_new = &fallback_doms;
6ad4c188 6188 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6189 WARN_ON_ONCE(dattr_new);
e761b772
MK
6190 }
6191
029190c5
PJ
6192 /* Build new domains */
6193 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6194 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6195 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6196 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6197 goto match2;
6198 }
6199 /* no match - add a new doms_new */
dce840a0 6200 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6201match2:
6202 ;
6203 }
6204
6205 /* Remember the new sched domains */
acc3f5d7
RR
6206 if (doms_cur != &fallback_doms)
6207 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6208 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6209 doms_cur = doms_new;
1d3504fc 6210 dattr_cur = dattr_new;
029190c5 6211 ndoms_cur = ndoms_new;
7378547f
MM
6212
6213 register_sched_domain_sysctl();
a1835615 6214
712555ee 6215 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6216}
6217
d35be8ba
SB
6218static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6219
1da177e4 6220/*
3a101d05
TH
6221 * Update cpusets according to cpu_active mask. If cpusets are
6222 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6223 * around partition_sched_domains().
d35be8ba
SB
6224 *
6225 * If we come here as part of a suspend/resume, don't touch cpusets because we
6226 * want to restore it back to its original state upon resume anyway.
1da177e4 6227 */
0b2e918a
TH
6228static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6229 void *hcpu)
e761b772 6230{
d35be8ba
SB
6231 switch (action) {
6232 case CPU_ONLINE_FROZEN:
6233 case CPU_DOWN_FAILED_FROZEN:
6234
6235 /*
6236 * num_cpus_frozen tracks how many CPUs are involved in suspend
6237 * resume sequence. As long as this is not the last online
6238 * operation in the resume sequence, just build a single sched
6239 * domain, ignoring cpusets.
6240 */
6241 num_cpus_frozen--;
6242 if (likely(num_cpus_frozen)) {
6243 partition_sched_domains(1, NULL, NULL);
6244 break;
6245 }
6246
6247 /*
6248 * This is the last CPU online operation. So fall through and
6249 * restore the original sched domains by considering the
6250 * cpuset configurations.
6251 */
6252
e761b772 6253 case CPU_ONLINE:
6ad4c188 6254 case CPU_DOWN_FAILED:
7ddf96b0 6255 cpuset_update_active_cpus(true);
d35be8ba 6256 break;
3a101d05
TH
6257 default:
6258 return NOTIFY_DONE;
6259 }
d35be8ba 6260 return NOTIFY_OK;
3a101d05 6261}
e761b772 6262
0b2e918a
TH
6263static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6264 void *hcpu)
3a101d05 6265{
d35be8ba 6266 switch (action) {
3a101d05 6267 case CPU_DOWN_PREPARE:
7ddf96b0 6268 cpuset_update_active_cpus(false);
d35be8ba
SB
6269 break;
6270 case CPU_DOWN_PREPARE_FROZEN:
6271 num_cpus_frozen++;
6272 partition_sched_domains(1, NULL, NULL);
6273 break;
e761b772
MK
6274 default:
6275 return NOTIFY_DONE;
6276 }
d35be8ba 6277 return NOTIFY_OK;
e761b772 6278}
e761b772 6279
1da177e4
LT
6280void __init sched_init_smp(void)
6281{
dcc30a35
RR
6282 cpumask_var_t non_isolated_cpus;
6283
6284 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6285 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6286
cb83b629
PZ
6287 sched_init_numa();
6288
95402b38 6289 get_online_cpus();
712555ee 6290 mutex_lock(&sched_domains_mutex);
c4a8849a 6291 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6292 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6293 if (cpumask_empty(non_isolated_cpus))
6294 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6295 mutex_unlock(&sched_domains_mutex);
95402b38 6296 put_online_cpus();
e761b772 6297
301a5cba 6298 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6299 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6300 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6301
b328ca18 6302 init_hrtick();
5c1e1767
NP
6303
6304 /* Move init over to a non-isolated CPU */
dcc30a35 6305 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6306 BUG();
19978ca6 6307 sched_init_granularity();
dcc30a35 6308 free_cpumask_var(non_isolated_cpus);
4212823f 6309
0e3900e6 6310 init_sched_rt_class();
1da177e4
LT
6311}
6312#else
6313void __init sched_init_smp(void)
6314{
19978ca6 6315 sched_init_granularity();
1da177e4
LT
6316}
6317#endif /* CONFIG_SMP */
6318
cd1bb94b
AB
6319const_debug unsigned int sysctl_timer_migration = 1;
6320
1da177e4
LT
6321int in_sched_functions(unsigned long addr)
6322{
1da177e4
LT
6323 return in_lock_functions(addr) ||
6324 (addr >= (unsigned long)__sched_text_start
6325 && addr < (unsigned long)__sched_text_end);
6326}
6327
029632fb 6328#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6329/*
6330 * Default task group.
6331 * Every task in system belongs to this group at bootup.
6332 */
029632fb 6333struct task_group root_task_group;
35cf4e50 6334LIST_HEAD(task_groups);
052f1dc7 6335#endif
6f505b16 6336
e6252c3e 6337DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6338
1da177e4
LT
6339void __init sched_init(void)
6340{
dd41f596 6341 int i, j;
434d53b0
MT
6342 unsigned long alloc_size = 0, ptr;
6343
6344#ifdef CONFIG_FAIR_GROUP_SCHED
6345 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6346#endif
6347#ifdef CONFIG_RT_GROUP_SCHED
6348 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6349#endif
df7c8e84 6350#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6351 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6352#endif
434d53b0 6353 if (alloc_size) {
36b7b6d4 6354 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6355
6356#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6357 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6358 ptr += nr_cpu_ids * sizeof(void **);
6359
07e06b01 6360 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6361 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6362
6d6bc0ad 6363#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6364#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6365 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6366 ptr += nr_cpu_ids * sizeof(void **);
6367
07e06b01 6368 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6369 ptr += nr_cpu_ids * sizeof(void **);
6370
6d6bc0ad 6371#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6372#ifdef CONFIG_CPUMASK_OFFSTACK
6373 for_each_possible_cpu(i) {
e6252c3e 6374 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6375 ptr += cpumask_size();
6376 }
6377#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6378 }
dd41f596 6379
57d885fe
GH
6380#ifdef CONFIG_SMP
6381 init_defrootdomain();
6382#endif
6383
d0b27fa7
PZ
6384 init_rt_bandwidth(&def_rt_bandwidth,
6385 global_rt_period(), global_rt_runtime());
6386
6387#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6388 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6389 global_rt_period(), global_rt_runtime());
6d6bc0ad 6390#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6391
7c941438 6392#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6393 list_add(&root_task_group.list, &task_groups);
6394 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6395 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6396 autogroup_init(&init_task);
54c707e9 6397
7c941438 6398#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6399
0a945022 6400 for_each_possible_cpu(i) {
70b97a7f 6401 struct rq *rq;
1da177e4
LT
6402
6403 rq = cpu_rq(i);
05fa785c 6404 raw_spin_lock_init(&rq->lock);
7897986b 6405 rq->nr_running = 0;
dce48a84
TG
6406 rq->calc_load_active = 0;
6407 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6408 init_cfs_rq(&rq->cfs);
6f505b16 6409 init_rt_rq(&rq->rt, rq);
dd41f596 6410#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6411 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6412 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6413 /*
07e06b01 6414 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6415 *
6416 * In case of task-groups formed thr' the cgroup filesystem, it
6417 * gets 100% of the cpu resources in the system. This overall
6418 * system cpu resource is divided among the tasks of
07e06b01 6419 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6420 * based on each entity's (task or task-group's) weight
6421 * (se->load.weight).
6422 *
07e06b01 6423 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6424 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6425 * then A0's share of the cpu resource is:
6426 *
0d905bca 6427 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6428 *
07e06b01
YZ
6429 * We achieve this by letting root_task_group's tasks sit
6430 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6431 */
ab84d31e 6432 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6433 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6434#endif /* CONFIG_FAIR_GROUP_SCHED */
6435
6436 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6437#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6438 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6439 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6440#endif
1da177e4 6441
dd41f596
IM
6442 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6443 rq->cpu_load[j] = 0;
fdf3e95d
VP
6444
6445 rq->last_load_update_tick = jiffies;
6446
1da177e4 6447#ifdef CONFIG_SMP
41c7ce9a 6448 rq->sd = NULL;
57d885fe 6449 rq->rd = NULL;
1399fa78 6450 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6451 rq->post_schedule = 0;
1da177e4 6452 rq->active_balance = 0;
dd41f596 6453 rq->next_balance = jiffies;
1da177e4 6454 rq->push_cpu = 0;
0a2966b4 6455 rq->cpu = i;
1f11eb6a 6456 rq->online = 0;
eae0c9df
MG
6457 rq->idle_stamp = 0;
6458 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6459
6460 INIT_LIST_HEAD(&rq->cfs_tasks);
6461
dc938520 6462 rq_attach_root(rq, &def_root_domain);
3451d024 6463#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6464 rq->nohz_flags = 0;
83cd4fe2 6465#endif
265f22a9
FW
6466#ifdef CONFIG_NO_HZ_FULL
6467 rq->last_sched_tick = 0;
6468#endif
1da177e4 6469#endif
8f4d37ec 6470 init_rq_hrtick(rq);
1da177e4 6471 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6472 }
6473
2dd73a4f 6474 set_load_weight(&init_task);
b50f60ce 6475
e107be36
AK
6476#ifdef CONFIG_PREEMPT_NOTIFIERS
6477 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6478#endif
6479
b50f60ce 6480#ifdef CONFIG_RT_MUTEXES
732375c6 6481 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6482#endif
6483
1da177e4
LT
6484 /*
6485 * The boot idle thread does lazy MMU switching as well:
6486 */
6487 atomic_inc(&init_mm.mm_count);
6488 enter_lazy_tlb(&init_mm, current);
6489
6490 /*
6491 * Make us the idle thread. Technically, schedule() should not be
6492 * called from this thread, however somewhere below it might be,
6493 * but because we are the idle thread, we just pick up running again
6494 * when this runqueue becomes "idle".
6495 */
6496 init_idle(current, smp_processor_id());
dce48a84
TG
6497
6498 calc_load_update = jiffies + LOAD_FREQ;
6499
dd41f596
IM
6500 /*
6501 * During early bootup we pretend to be a normal task:
6502 */
6503 current->sched_class = &fair_sched_class;
6892b75e 6504
bf4d83f6 6505#ifdef CONFIG_SMP
4cb98839 6506 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6507 /* May be allocated at isolcpus cmdline parse time */
6508 if (cpu_isolated_map == NULL)
6509 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6510 idle_thread_set_boot_cpu();
029632fb
PZ
6511#endif
6512 init_sched_fair_class();
6a7b3dc3 6513
6892b75e 6514 scheduler_running = 1;
1da177e4
LT
6515}
6516
d902db1e 6517#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6518static inline int preempt_count_equals(int preempt_offset)
6519{
234da7bc 6520 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6521
4ba8216c 6522 return (nested == preempt_offset);
e4aafea2
FW
6523}
6524
d894837f 6525void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6526{
1da177e4
LT
6527 static unsigned long prev_jiffy; /* ratelimiting */
6528
b3fbab05 6529 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6530 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6531 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6532 return;
6533 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6534 return;
6535 prev_jiffy = jiffies;
6536
3df0fc5b
PZ
6537 printk(KERN_ERR
6538 "BUG: sleeping function called from invalid context at %s:%d\n",
6539 file, line);
6540 printk(KERN_ERR
6541 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6542 in_atomic(), irqs_disabled(),
6543 current->pid, current->comm);
aef745fc
IM
6544
6545 debug_show_held_locks(current);
6546 if (irqs_disabled())
6547 print_irqtrace_events(current);
6548 dump_stack();
1da177e4
LT
6549}
6550EXPORT_SYMBOL(__might_sleep);
6551#endif
6552
6553#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6554static void normalize_task(struct rq *rq, struct task_struct *p)
6555{
da7a735e
PZ
6556 const struct sched_class *prev_class = p->sched_class;
6557 int old_prio = p->prio;
3a5e4dc1 6558 int on_rq;
3e51f33f 6559
fd2f4419 6560 on_rq = p->on_rq;
3a5e4dc1 6561 if (on_rq)
4ca9b72b 6562 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6563 __setscheduler(rq, p, SCHED_NORMAL, 0);
6564 if (on_rq) {
4ca9b72b 6565 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6566 resched_task(rq->curr);
6567 }
da7a735e
PZ
6568
6569 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6570}
6571
1da177e4
LT
6572void normalize_rt_tasks(void)
6573{
a0f98a1c 6574 struct task_struct *g, *p;
1da177e4 6575 unsigned long flags;
70b97a7f 6576 struct rq *rq;
1da177e4 6577
4cf5d77a 6578 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6579 do_each_thread(g, p) {
178be793
IM
6580 /*
6581 * Only normalize user tasks:
6582 */
6583 if (!p->mm)
6584 continue;
6585
6cfb0d5d 6586 p->se.exec_start = 0;
6cfb0d5d 6587#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6588 p->se.statistics.wait_start = 0;
6589 p->se.statistics.sleep_start = 0;
6590 p->se.statistics.block_start = 0;
6cfb0d5d 6591#endif
dd41f596
IM
6592
6593 if (!rt_task(p)) {
6594 /*
6595 * Renice negative nice level userspace
6596 * tasks back to 0:
6597 */
6598 if (TASK_NICE(p) < 0 && p->mm)
6599 set_user_nice(p, 0);
1da177e4 6600 continue;
dd41f596 6601 }
1da177e4 6602
1d615482 6603 raw_spin_lock(&p->pi_lock);
b29739f9 6604 rq = __task_rq_lock(p);
1da177e4 6605
178be793 6606 normalize_task(rq, p);
3a5e4dc1 6607
b29739f9 6608 __task_rq_unlock(rq);
1d615482 6609 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6610 } while_each_thread(g, p);
6611
4cf5d77a 6612 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6613}
6614
6615#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6616
67fc4e0c 6617#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6618/*
67fc4e0c 6619 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6620 *
6621 * They can only be called when the whole system has been
6622 * stopped - every CPU needs to be quiescent, and no scheduling
6623 * activity can take place. Using them for anything else would
6624 * be a serious bug, and as a result, they aren't even visible
6625 * under any other configuration.
6626 */
6627
6628/**
6629 * curr_task - return the current task for a given cpu.
6630 * @cpu: the processor in question.
6631 *
6632 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6633 */
36c8b586 6634struct task_struct *curr_task(int cpu)
1df5c10a
LT
6635{
6636 return cpu_curr(cpu);
6637}
6638
67fc4e0c
JW
6639#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6640
6641#ifdef CONFIG_IA64
1df5c10a
LT
6642/**
6643 * set_curr_task - set the current task for a given cpu.
6644 * @cpu: the processor in question.
6645 * @p: the task pointer to set.
6646 *
6647 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6648 * are serviced on a separate stack. It allows the architecture to switch the
6649 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6650 * must be called with all CPU's synchronized, and interrupts disabled, the
6651 * and caller must save the original value of the current task (see
6652 * curr_task() above) and restore that value before reenabling interrupts and
6653 * re-starting the system.
6654 *
6655 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6656 */
36c8b586 6657void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6658{
6659 cpu_curr(cpu) = p;
6660}
6661
6662#endif
29f59db3 6663
7c941438 6664#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6665/* task_group_lock serializes the addition/removal of task groups */
6666static DEFINE_SPINLOCK(task_group_lock);
6667
bccbe08a
PZ
6668static void free_sched_group(struct task_group *tg)
6669{
6670 free_fair_sched_group(tg);
6671 free_rt_sched_group(tg);
e9aa1dd1 6672 autogroup_free(tg);
bccbe08a
PZ
6673 kfree(tg);
6674}
6675
6676/* allocate runqueue etc for a new task group */
ec7dc8ac 6677struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6678{
6679 struct task_group *tg;
bccbe08a
PZ
6680
6681 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6682 if (!tg)
6683 return ERR_PTR(-ENOMEM);
6684
ec7dc8ac 6685 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6686 goto err;
6687
ec7dc8ac 6688 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6689 goto err;
6690
ace783b9
LZ
6691 return tg;
6692
6693err:
6694 free_sched_group(tg);
6695 return ERR_PTR(-ENOMEM);
6696}
6697
6698void sched_online_group(struct task_group *tg, struct task_group *parent)
6699{
6700 unsigned long flags;
6701
8ed36996 6702 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6703 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6704
6705 WARN_ON(!parent); /* root should already exist */
6706
6707 tg->parent = parent;
f473aa5e 6708 INIT_LIST_HEAD(&tg->children);
09f2724a 6709 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6710 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6711}
6712
9b5b7751 6713/* rcu callback to free various structures associated with a task group */
6f505b16 6714static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6715{
29f59db3 6716 /* now it should be safe to free those cfs_rqs */
6f505b16 6717 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6718}
6719
9b5b7751 6720/* Destroy runqueue etc associated with a task group */
4cf86d77 6721void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6722{
6723 /* wait for possible concurrent references to cfs_rqs complete */
6724 call_rcu(&tg->rcu, free_sched_group_rcu);
6725}
6726
6727void sched_offline_group(struct task_group *tg)
29f59db3 6728{
8ed36996 6729 unsigned long flags;
9b5b7751 6730 int i;
29f59db3 6731
3d4b47b4
PZ
6732 /* end participation in shares distribution */
6733 for_each_possible_cpu(i)
bccbe08a 6734 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6735
6736 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6737 list_del_rcu(&tg->list);
f473aa5e 6738 list_del_rcu(&tg->siblings);
8ed36996 6739 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6740}
6741
9b5b7751 6742/* change task's runqueue when it moves between groups.
3a252015
IM
6743 * The caller of this function should have put the task in its new group
6744 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6745 * reflect its new group.
9b5b7751
SV
6746 */
6747void sched_move_task(struct task_struct *tsk)
29f59db3 6748{
8323f26c 6749 struct task_group *tg;
29f59db3
SV
6750 int on_rq, running;
6751 unsigned long flags;
6752 struct rq *rq;
6753
6754 rq = task_rq_lock(tsk, &flags);
6755
051a1d1a 6756 running = task_current(rq, tsk);
fd2f4419 6757 on_rq = tsk->on_rq;
29f59db3 6758
0e1f3483 6759 if (on_rq)
29f59db3 6760 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6761 if (unlikely(running))
6762 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6763
8af01f56 6764 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6765 lockdep_is_held(&tsk->sighand->siglock)),
6766 struct task_group, css);
6767 tg = autogroup_task_group(tsk, tg);
6768 tsk->sched_task_group = tg;
6769
810b3817 6770#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6771 if (tsk->sched_class->task_move_group)
6772 tsk->sched_class->task_move_group(tsk, on_rq);
6773 else
810b3817 6774#endif
b2b5ce02 6775 set_task_rq(tsk, task_cpu(tsk));
810b3817 6776
0e1f3483
HS
6777 if (unlikely(running))
6778 tsk->sched_class->set_curr_task(rq);
6779 if (on_rq)
371fd7e7 6780 enqueue_task(rq, tsk, 0);
29f59db3 6781
0122ec5b 6782 task_rq_unlock(rq, tsk, &flags);
29f59db3 6783}
7c941438 6784#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6785
a790de99 6786#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6787static unsigned long to_ratio(u64 period, u64 runtime)
6788{
6789 if (runtime == RUNTIME_INF)
9a7e0b18 6790 return 1ULL << 20;
9f0c1e56 6791
9a7e0b18 6792 return div64_u64(runtime << 20, period);
9f0c1e56 6793}
a790de99
PT
6794#endif
6795
6796#ifdef CONFIG_RT_GROUP_SCHED
6797/*
6798 * Ensure that the real time constraints are schedulable.
6799 */
6800static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6801
9a7e0b18
PZ
6802/* Must be called with tasklist_lock held */
6803static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6804{
9a7e0b18 6805 struct task_struct *g, *p;
b40b2e8e 6806
9a7e0b18 6807 do_each_thread(g, p) {
029632fb 6808 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6809 return 1;
6810 } while_each_thread(g, p);
b40b2e8e 6811
9a7e0b18
PZ
6812 return 0;
6813}
b40b2e8e 6814
9a7e0b18
PZ
6815struct rt_schedulable_data {
6816 struct task_group *tg;
6817 u64 rt_period;
6818 u64 rt_runtime;
6819};
b40b2e8e 6820
a790de99 6821static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6822{
6823 struct rt_schedulable_data *d = data;
6824 struct task_group *child;
6825 unsigned long total, sum = 0;
6826 u64 period, runtime;
b40b2e8e 6827
9a7e0b18
PZ
6828 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6829 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6830
9a7e0b18
PZ
6831 if (tg == d->tg) {
6832 period = d->rt_period;
6833 runtime = d->rt_runtime;
b40b2e8e 6834 }
b40b2e8e 6835
4653f803
PZ
6836 /*
6837 * Cannot have more runtime than the period.
6838 */
6839 if (runtime > period && runtime != RUNTIME_INF)
6840 return -EINVAL;
6f505b16 6841
4653f803
PZ
6842 /*
6843 * Ensure we don't starve existing RT tasks.
6844 */
9a7e0b18
PZ
6845 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6846 return -EBUSY;
6f505b16 6847
9a7e0b18 6848 total = to_ratio(period, runtime);
6f505b16 6849
4653f803
PZ
6850 /*
6851 * Nobody can have more than the global setting allows.
6852 */
6853 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6854 return -EINVAL;
6f505b16 6855
4653f803
PZ
6856 /*
6857 * The sum of our children's runtime should not exceed our own.
6858 */
9a7e0b18
PZ
6859 list_for_each_entry_rcu(child, &tg->children, siblings) {
6860 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6861 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6862
9a7e0b18
PZ
6863 if (child == d->tg) {
6864 period = d->rt_period;
6865 runtime = d->rt_runtime;
6866 }
6f505b16 6867
9a7e0b18 6868 sum += to_ratio(period, runtime);
9f0c1e56 6869 }
6f505b16 6870
9a7e0b18
PZ
6871 if (sum > total)
6872 return -EINVAL;
6873
6874 return 0;
6f505b16
PZ
6875}
6876
9a7e0b18 6877static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6878{
8277434e
PT
6879 int ret;
6880
9a7e0b18
PZ
6881 struct rt_schedulable_data data = {
6882 .tg = tg,
6883 .rt_period = period,
6884 .rt_runtime = runtime,
6885 };
6886
8277434e
PT
6887 rcu_read_lock();
6888 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6889 rcu_read_unlock();
6890
6891 return ret;
521f1a24
DG
6892}
6893
ab84d31e 6894static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6895 u64 rt_period, u64 rt_runtime)
6f505b16 6896{
ac086bc2 6897 int i, err = 0;
9f0c1e56 6898
9f0c1e56 6899 mutex_lock(&rt_constraints_mutex);
521f1a24 6900 read_lock(&tasklist_lock);
9a7e0b18
PZ
6901 err = __rt_schedulable(tg, rt_period, rt_runtime);
6902 if (err)
9f0c1e56 6903 goto unlock;
ac086bc2 6904
0986b11b 6905 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6906 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6907 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6908
6909 for_each_possible_cpu(i) {
6910 struct rt_rq *rt_rq = tg->rt_rq[i];
6911
0986b11b 6912 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6913 rt_rq->rt_runtime = rt_runtime;
0986b11b 6914 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6915 }
0986b11b 6916 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6917unlock:
521f1a24 6918 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6919 mutex_unlock(&rt_constraints_mutex);
6920
6921 return err;
6f505b16
PZ
6922}
6923
25cc7da7 6924static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6925{
6926 u64 rt_runtime, rt_period;
6927
6928 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6929 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6930 if (rt_runtime_us < 0)
6931 rt_runtime = RUNTIME_INF;
6932
ab84d31e 6933 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6934}
6935
25cc7da7 6936static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6937{
6938 u64 rt_runtime_us;
6939
d0b27fa7 6940 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6941 return -1;
6942
d0b27fa7 6943 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6944 do_div(rt_runtime_us, NSEC_PER_USEC);
6945 return rt_runtime_us;
6946}
d0b27fa7 6947
25cc7da7 6948static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
6949{
6950 u64 rt_runtime, rt_period;
6951
6952 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6953 rt_runtime = tg->rt_bandwidth.rt_runtime;
6954
619b0488
R
6955 if (rt_period == 0)
6956 return -EINVAL;
6957
ab84d31e 6958 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6959}
6960
25cc7da7 6961static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6962{
6963 u64 rt_period_us;
6964
6965 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6966 do_div(rt_period_us, NSEC_PER_USEC);
6967 return rt_period_us;
6968}
6969
6970static int sched_rt_global_constraints(void)
6971{
4653f803 6972 u64 runtime, period;
d0b27fa7
PZ
6973 int ret = 0;
6974
ec5d4989
HS
6975 if (sysctl_sched_rt_period <= 0)
6976 return -EINVAL;
6977
4653f803
PZ
6978 runtime = global_rt_runtime();
6979 period = global_rt_period();
6980
6981 /*
6982 * Sanity check on the sysctl variables.
6983 */
6984 if (runtime > period && runtime != RUNTIME_INF)
6985 return -EINVAL;
10b612f4 6986
d0b27fa7 6987 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6988 read_lock(&tasklist_lock);
4653f803 6989 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6990 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6991 mutex_unlock(&rt_constraints_mutex);
6992
6993 return ret;
6994}
54e99124 6995
25cc7da7 6996static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6997{
6998 /* Don't accept realtime tasks when there is no way for them to run */
6999 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7000 return 0;
7001
7002 return 1;
7003}
7004
6d6bc0ad 7005#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7006static int sched_rt_global_constraints(void)
7007{
ac086bc2
PZ
7008 unsigned long flags;
7009 int i;
7010
ec5d4989
HS
7011 if (sysctl_sched_rt_period <= 0)
7012 return -EINVAL;
7013
60aa605d
PZ
7014 /*
7015 * There's always some RT tasks in the root group
7016 * -- migration, kstopmachine etc..
7017 */
7018 if (sysctl_sched_rt_runtime == 0)
7019 return -EBUSY;
7020
0986b11b 7021 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7022 for_each_possible_cpu(i) {
7023 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7024
0986b11b 7025 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7026 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7027 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7028 }
0986b11b 7029 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7030
d0b27fa7
PZ
7031 return 0;
7032}
6d6bc0ad 7033#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7034
ce0dbbbb
CW
7035int sched_rr_handler(struct ctl_table *table, int write,
7036 void __user *buffer, size_t *lenp,
7037 loff_t *ppos)
7038{
7039 int ret;
7040 static DEFINE_MUTEX(mutex);
7041
7042 mutex_lock(&mutex);
7043 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7044 /* make sure that internally we keep jiffies */
7045 /* also, writing zero resets timeslice to default */
7046 if (!ret && write) {
7047 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7048 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7049 }
7050 mutex_unlock(&mutex);
7051 return ret;
7052}
7053
d0b27fa7 7054int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7055 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7056 loff_t *ppos)
7057{
7058 int ret;
7059 int old_period, old_runtime;
7060 static DEFINE_MUTEX(mutex);
7061
7062 mutex_lock(&mutex);
7063 old_period = sysctl_sched_rt_period;
7064 old_runtime = sysctl_sched_rt_runtime;
7065
8d65af78 7066 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7067
7068 if (!ret && write) {
7069 ret = sched_rt_global_constraints();
7070 if (ret) {
7071 sysctl_sched_rt_period = old_period;
7072 sysctl_sched_rt_runtime = old_runtime;
7073 } else {
7074 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7075 def_rt_bandwidth.rt_period =
7076 ns_to_ktime(global_rt_period());
7077 }
7078 }
7079 mutex_unlock(&mutex);
7080
7081 return ret;
7082}
68318b8e 7083
052f1dc7 7084#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7085
7086/* return corresponding task_group object of a cgroup */
2b01dfe3 7087static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7088{
8af01f56 7089 return container_of(cgroup_css(cgrp, cpu_cgroup_subsys_id),
2b01dfe3 7090 struct task_group, css);
68318b8e
SV
7091}
7092
92fb9748 7093static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7094{
ec7dc8ac 7095 struct task_group *tg, *parent;
68318b8e 7096
2b01dfe3 7097 if (!cgrp->parent) {
68318b8e 7098 /* This is early initialization for the top cgroup */
07e06b01 7099 return &root_task_group.css;
68318b8e
SV
7100 }
7101
ec7dc8ac
DG
7102 parent = cgroup_tg(cgrp->parent);
7103 tg = sched_create_group(parent);
68318b8e
SV
7104 if (IS_ERR(tg))
7105 return ERR_PTR(-ENOMEM);
7106
68318b8e
SV
7107 return &tg->css;
7108}
7109
ace783b9
LZ
7110static int cpu_cgroup_css_online(struct cgroup *cgrp)
7111{
7112 struct task_group *tg = cgroup_tg(cgrp);
7113 struct task_group *parent;
7114
7115 if (!cgrp->parent)
7116 return 0;
7117
7118 parent = cgroup_tg(cgrp->parent);
7119 sched_online_group(tg, parent);
7120 return 0;
7121}
7122
92fb9748 7123static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7124{
2b01dfe3 7125 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7126
7127 sched_destroy_group(tg);
7128}
7129
ace783b9
LZ
7130static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7131{
7132 struct task_group *tg = cgroup_tg(cgrp);
7133
7134 sched_offline_group(tg);
7135}
7136
761b3ef5 7137static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7138 struct cgroup_taskset *tset)
68318b8e 7139{
bb9d97b6
TH
7140 struct task_struct *task;
7141
7142 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7143#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7144 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7145 return -EINVAL;
b68aa230 7146#else
bb9d97b6
TH
7147 /* We don't support RT-tasks being in separate groups */
7148 if (task->sched_class != &fair_sched_class)
7149 return -EINVAL;
b68aa230 7150#endif
bb9d97b6 7151 }
be367d09
BB
7152 return 0;
7153}
68318b8e 7154
761b3ef5 7155static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7156 struct cgroup_taskset *tset)
68318b8e 7157{
bb9d97b6
TH
7158 struct task_struct *task;
7159
7160 cgroup_taskset_for_each(task, cgrp, tset)
7161 sched_move_task(task);
68318b8e
SV
7162}
7163
068c5cc5 7164static void
761b3ef5
LZ
7165cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7166 struct task_struct *task)
068c5cc5
PZ
7167{
7168 /*
7169 * cgroup_exit() is called in the copy_process() failure path.
7170 * Ignore this case since the task hasn't ran yet, this avoids
7171 * trying to poke a half freed task state from generic code.
7172 */
7173 if (!(task->flags & PF_EXITING))
7174 return;
7175
7176 sched_move_task(task);
7177}
7178
052f1dc7 7179#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7180static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7181 u64 shareval)
68318b8e 7182{
c8b28116 7183 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7184}
7185
f4c753b7 7186static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7187{
2b01dfe3 7188 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7189
c8b28116 7190 return (u64) scale_load_down(tg->shares);
68318b8e 7191}
ab84d31e
PT
7192
7193#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7194static DEFINE_MUTEX(cfs_constraints_mutex);
7195
ab84d31e
PT
7196const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7197const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7198
a790de99
PT
7199static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7200
ab84d31e
PT
7201static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7202{
56f570e5 7203 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7204 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7205
7206 if (tg == &root_task_group)
7207 return -EINVAL;
7208
7209 /*
7210 * Ensure we have at some amount of bandwidth every period. This is
7211 * to prevent reaching a state of large arrears when throttled via
7212 * entity_tick() resulting in prolonged exit starvation.
7213 */
7214 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7215 return -EINVAL;
7216
7217 /*
7218 * Likewise, bound things on the otherside by preventing insane quota
7219 * periods. This also allows us to normalize in computing quota
7220 * feasibility.
7221 */
7222 if (period > max_cfs_quota_period)
7223 return -EINVAL;
7224
a790de99
PT
7225 mutex_lock(&cfs_constraints_mutex);
7226 ret = __cfs_schedulable(tg, period, quota);
7227 if (ret)
7228 goto out_unlock;
7229
58088ad0 7230 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7231 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7232 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7233 raw_spin_lock_irq(&cfs_b->lock);
7234 cfs_b->period = ns_to_ktime(period);
7235 cfs_b->quota = quota;
58088ad0 7236
a9cf55b2 7237 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7238 /* restart the period timer (if active) to handle new period expiry */
7239 if (runtime_enabled && cfs_b->timer_active) {
7240 /* force a reprogram */
7241 cfs_b->timer_active = 0;
7242 __start_cfs_bandwidth(cfs_b);
7243 }
ab84d31e
PT
7244 raw_spin_unlock_irq(&cfs_b->lock);
7245
7246 for_each_possible_cpu(i) {
7247 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7248 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7249
7250 raw_spin_lock_irq(&rq->lock);
58088ad0 7251 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7252 cfs_rq->runtime_remaining = 0;
671fd9da 7253
029632fb 7254 if (cfs_rq->throttled)
671fd9da 7255 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7256 raw_spin_unlock_irq(&rq->lock);
7257 }
a790de99
PT
7258out_unlock:
7259 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7260
a790de99 7261 return ret;
ab84d31e
PT
7262}
7263
7264int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7265{
7266 u64 quota, period;
7267
029632fb 7268 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7269 if (cfs_quota_us < 0)
7270 quota = RUNTIME_INF;
7271 else
7272 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7273
7274 return tg_set_cfs_bandwidth(tg, period, quota);
7275}
7276
7277long tg_get_cfs_quota(struct task_group *tg)
7278{
7279 u64 quota_us;
7280
029632fb 7281 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7282 return -1;
7283
029632fb 7284 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7285 do_div(quota_us, NSEC_PER_USEC);
7286
7287 return quota_us;
7288}
7289
7290int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7291{
7292 u64 quota, period;
7293
7294 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7295 quota = tg->cfs_bandwidth.quota;
ab84d31e 7296
ab84d31e
PT
7297 return tg_set_cfs_bandwidth(tg, period, quota);
7298}
7299
7300long tg_get_cfs_period(struct task_group *tg)
7301{
7302 u64 cfs_period_us;
7303
029632fb 7304 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7305 do_div(cfs_period_us, NSEC_PER_USEC);
7306
7307 return cfs_period_us;
7308}
7309
7310static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7311{
7312 return tg_get_cfs_quota(cgroup_tg(cgrp));
7313}
7314
7315static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7316 s64 cfs_quota_us)
7317{
7318 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7319}
7320
7321static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7322{
7323 return tg_get_cfs_period(cgroup_tg(cgrp));
7324}
7325
7326static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7327 u64 cfs_period_us)
7328{
7329 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7330}
7331
a790de99
PT
7332struct cfs_schedulable_data {
7333 struct task_group *tg;
7334 u64 period, quota;
7335};
7336
7337/*
7338 * normalize group quota/period to be quota/max_period
7339 * note: units are usecs
7340 */
7341static u64 normalize_cfs_quota(struct task_group *tg,
7342 struct cfs_schedulable_data *d)
7343{
7344 u64 quota, period;
7345
7346 if (tg == d->tg) {
7347 period = d->period;
7348 quota = d->quota;
7349 } else {
7350 period = tg_get_cfs_period(tg);
7351 quota = tg_get_cfs_quota(tg);
7352 }
7353
7354 /* note: these should typically be equivalent */
7355 if (quota == RUNTIME_INF || quota == -1)
7356 return RUNTIME_INF;
7357
7358 return to_ratio(period, quota);
7359}
7360
7361static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7362{
7363 struct cfs_schedulable_data *d = data;
029632fb 7364 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7365 s64 quota = 0, parent_quota = -1;
7366
7367 if (!tg->parent) {
7368 quota = RUNTIME_INF;
7369 } else {
029632fb 7370 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7371
7372 quota = normalize_cfs_quota(tg, d);
7373 parent_quota = parent_b->hierarchal_quota;
7374
7375 /*
7376 * ensure max(child_quota) <= parent_quota, inherit when no
7377 * limit is set
7378 */
7379 if (quota == RUNTIME_INF)
7380 quota = parent_quota;
7381 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7382 return -EINVAL;
7383 }
7384 cfs_b->hierarchal_quota = quota;
7385
7386 return 0;
7387}
7388
7389static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7390{
8277434e 7391 int ret;
a790de99
PT
7392 struct cfs_schedulable_data data = {
7393 .tg = tg,
7394 .period = period,
7395 .quota = quota,
7396 };
7397
7398 if (quota != RUNTIME_INF) {
7399 do_div(data.period, NSEC_PER_USEC);
7400 do_div(data.quota, NSEC_PER_USEC);
7401 }
7402
8277434e
PT
7403 rcu_read_lock();
7404 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7405 rcu_read_unlock();
7406
7407 return ret;
a790de99 7408}
e8da1b18
NR
7409
7410static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7411 struct cgroup_map_cb *cb)
7412{
7413 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7414 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7415
7416 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7417 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7418 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7419
7420 return 0;
7421}
ab84d31e 7422#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7423#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7424
052f1dc7 7425#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7426static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7427 s64 val)
6f505b16 7428{
06ecb27c 7429 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7430}
7431
06ecb27c 7432static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7433{
06ecb27c 7434 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7435}
d0b27fa7
PZ
7436
7437static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7438 u64 rt_period_us)
7439{
7440 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7441}
7442
7443static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7444{
7445 return sched_group_rt_period(cgroup_tg(cgrp));
7446}
6d6bc0ad 7447#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7448
fe5c7cc2 7449static struct cftype cpu_files[] = {
052f1dc7 7450#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7451 {
7452 .name = "shares",
f4c753b7
PM
7453 .read_u64 = cpu_shares_read_u64,
7454 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7455 },
052f1dc7 7456#endif
ab84d31e
PT
7457#ifdef CONFIG_CFS_BANDWIDTH
7458 {
7459 .name = "cfs_quota_us",
7460 .read_s64 = cpu_cfs_quota_read_s64,
7461 .write_s64 = cpu_cfs_quota_write_s64,
7462 },
7463 {
7464 .name = "cfs_period_us",
7465 .read_u64 = cpu_cfs_period_read_u64,
7466 .write_u64 = cpu_cfs_period_write_u64,
7467 },
e8da1b18
NR
7468 {
7469 .name = "stat",
7470 .read_map = cpu_stats_show,
7471 },
ab84d31e 7472#endif
052f1dc7 7473#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7474 {
9f0c1e56 7475 .name = "rt_runtime_us",
06ecb27c
PM
7476 .read_s64 = cpu_rt_runtime_read,
7477 .write_s64 = cpu_rt_runtime_write,
6f505b16 7478 },
d0b27fa7
PZ
7479 {
7480 .name = "rt_period_us",
f4c753b7
PM
7481 .read_u64 = cpu_rt_period_read_uint,
7482 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7483 },
052f1dc7 7484#endif
4baf6e33 7485 { } /* terminate */
68318b8e
SV
7486};
7487
68318b8e 7488struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7489 .name = "cpu",
92fb9748
TH
7490 .css_alloc = cpu_cgroup_css_alloc,
7491 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7492 .css_online = cpu_cgroup_css_online,
7493 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7494 .can_attach = cpu_cgroup_can_attach,
7495 .attach = cpu_cgroup_attach,
068c5cc5 7496 .exit = cpu_cgroup_exit,
38605cae 7497 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7498 .base_cftypes = cpu_files,
68318b8e
SV
7499 .early_init = 1,
7500};
7501
052f1dc7 7502#endif /* CONFIG_CGROUP_SCHED */
d842de87 7503
b637a328
PM
7504void dump_cpu_task(int cpu)
7505{
7506 pr_info("Task dump for CPU %d:\n", cpu);
7507 sched_show_task(cpu_curr(cpu));
7508}