sched: Update rq clock before setting fair group shares
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
029632fb 515void resched_task(struct task_struct *p)
c24d20db
IM
516{
517 int cpu;
518
05fa785c 519 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 520
5ed0cec0 521 if (test_tsk_need_resched(p))
c24d20db
IM
522 return;
523
5ed0cec0 524 set_tsk_need_resched(p);
c24d20db
IM
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id())
528 return;
529
530 /* NEED_RESCHED must be visible before we test polling */
531 smp_mb();
532 if (!tsk_is_polling(p))
533 smp_send_reschedule(cpu);
534}
535
029632fb 536void resched_cpu(int cpu)
c24d20db
IM
537{
538 struct rq *rq = cpu_rq(cpu);
539 unsigned long flags;
540
05fa785c 541 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
542 return;
543 resched_task(cpu_curr(cpu));
05fa785c 544 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 545}
06d8308c 546
3451d024 547#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu. This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558 int cpu = smp_processor_id();
559 int i;
560 struct sched_domain *sd;
561
057f3fad 562 rcu_read_lock();
83cd4fe2 563 for_each_domain(cpu, sd) {
057f3fad
PZ
564 for_each_cpu(i, sched_domain_span(sd)) {
565 if (!idle_cpu(i)) {
566 cpu = i;
567 goto unlock;
568 }
569 }
83cd4fe2 570 }
057f3fad
PZ
571unlock:
572 rcu_read_unlock();
83cd4fe2
VP
573 return cpu;
574}
06d8308c
TG
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
1c20091e 585static void wake_up_idle_cpu(int cpu)
06d8308c
TG
586{
587 struct rq *rq = cpu_rq(cpu);
588
589 if (cpu == smp_processor_id())
590 return;
591
592 /*
593 * This is safe, as this function is called with the timer
594 * wheel base lock of (cpu) held. When the CPU is on the way
595 * to idle and has not yet set rq->curr to idle then it will
596 * be serialized on the timer wheel base lock and take the new
597 * timer into account automatically.
598 */
599 if (rq->curr != rq->idle)
600 return;
45bf76df 601
45bf76df 602 /*
06d8308c
TG
603 * We can set TIF_RESCHED on the idle task of the other CPU
604 * lockless. The worst case is that the other CPU runs the
605 * idle task through an additional NOOP schedule()
45bf76df 606 */
5ed0cec0 607 set_tsk_need_resched(rq->idle);
45bf76df 608
06d8308c
TG
609 /* NEED_RESCHED must be visible before we test polling */
610 smp_mb();
611 if (!tsk_is_polling(rq->idle))
612 smp_send_reschedule(cpu);
45bf76df
IM
613}
614
c5bfece2 615static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 616{
c5bfece2 617 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
618 if (cpu != smp_processor_id() ||
619 tick_nohz_tick_stopped())
620 smp_send_reschedule(cpu);
621 return true;
622 }
623
624 return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
c5bfece2 629 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
630 wake_up_idle_cpu(cpu);
631}
632
ca38062e 633static inline bool got_nohz_idle_kick(void)
45bf76df 634{
1c792db7
SS
635 int cpu = smp_processor_id();
636 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
637}
638
3451d024 639#else /* CONFIG_NO_HZ_COMMON */
45bf76df 640
ca38062e 641static inline bool got_nohz_idle_kick(void)
2069dd75 642{
ca38062e 643 return false;
2069dd75
PZ
644}
645
3451d024 646#endif /* CONFIG_NO_HZ_COMMON */
d842de87 647
ce831b38
FW
648#ifdef CONFIG_NO_HZ_FULL
649bool sched_can_stop_tick(void)
650{
651 struct rq *rq;
652
653 rq = this_rq();
654
655 /* Make sure rq->nr_running update is visible after the IPI */
656 smp_rmb();
657
658 /* More than one running task need preemption */
659 if (rq->nr_running > 1)
660 return false;
661
662 return true;
663}
664#endif /* CONFIG_NO_HZ_FULL */
d842de87 665
029632fb 666void sched_avg_update(struct rq *rq)
18d95a28 667{
e9e9250b
PZ
668 s64 period = sched_avg_period();
669
670 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
671 /*
672 * Inline assembly required to prevent the compiler
673 * optimising this loop into a divmod call.
674 * See __iter_div_u64_rem() for another example of this.
675 */
676 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
677 rq->age_stamp += period;
678 rq->rt_avg /= 2;
679 }
18d95a28
PZ
680}
681
6d6bc0ad 682#else /* !CONFIG_SMP */
029632fb 683void resched_task(struct task_struct *p)
18d95a28 684{
05fa785c 685 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 686 set_tsk_need_resched(p);
18d95a28 687}
6d6bc0ad 688#endif /* CONFIG_SMP */
18d95a28 689
a790de99
PT
690#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 692/*
8277434e
PT
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
695 *
696 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 697 */
029632fb 698int walk_tg_tree_from(struct task_group *from,
8277434e 699 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
700{
701 struct task_group *parent, *child;
eb755805 702 int ret;
c09595f6 703
8277434e
PT
704 parent = from;
705
c09595f6 706down:
eb755805
PZ
707 ret = (*down)(parent, data);
708 if (ret)
8277434e 709 goto out;
c09595f6
PZ
710 list_for_each_entry_rcu(child, &parent->children, siblings) {
711 parent = child;
712 goto down;
713
714up:
715 continue;
716 }
eb755805 717 ret = (*up)(parent, data);
8277434e
PT
718 if (ret || parent == from)
719 goto out;
c09595f6
PZ
720
721 child = parent;
722 parent = parent->parent;
723 if (parent)
724 goto up;
8277434e 725out:
eb755805 726 return ret;
c09595f6
PZ
727}
728
029632fb 729int tg_nop(struct task_group *tg, void *data)
eb755805 730{
e2b245f8 731 return 0;
eb755805 732}
18d95a28
PZ
733#endif
734
45bf76df
IM
735static void set_load_weight(struct task_struct *p)
736{
f05998d4
NR
737 int prio = p->static_prio - MAX_RT_PRIO;
738 struct load_weight *load = &p->se.load;
739
dd41f596
IM
740 /*
741 * SCHED_IDLE tasks get minimal weight:
742 */
743 if (p->policy == SCHED_IDLE) {
c8b28116 744 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 745 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
746 return;
747 }
71f8bd46 748
c8b28116 749 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 750 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
751}
752
371fd7e7 753static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 754{
a64692a3 755 update_rq_clock(rq);
dd41f596 756 sched_info_queued(p);
371fd7e7 757 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
758}
759
371fd7e7 760static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 761{
a64692a3 762 update_rq_clock(rq);
46ac22ba 763 sched_info_dequeued(p);
371fd7e7 764 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
765}
766
029632fb 767void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
768{
769 if (task_contributes_to_load(p))
770 rq->nr_uninterruptible--;
771
371fd7e7 772 enqueue_task(rq, p, flags);
1e3c88bd
PZ
773}
774
029632fb 775void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible++;
779
371fd7e7 780 dequeue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
fe44d621 783static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 784{
095c0aa8
GC
785/*
786 * In theory, the compile should just see 0 here, and optimize out the call
787 * to sched_rt_avg_update. But I don't trust it...
788 */
789#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
790 s64 steal = 0, irq_delta = 0;
791#endif
792#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 793 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
794
795 /*
796 * Since irq_time is only updated on {soft,}irq_exit, we might run into
797 * this case when a previous update_rq_clock() happened inside a
798 * {soft,}irq region.
799 *
800 * When this happens, we stop ->clock_task and only update the
801 * prev_irq_time stamp to account for the part that fit, so that a next
802 * update will consume the rest. This ensures ->clock_task is
803 * monotonic.
804 *
805 * It does however cause some slight miss-attribution of {soft,}irq
806 * time, a more accurate solution would be to update the irq_time using
807 * the current rq->clock timestamp, except that would require using
808 * atomic ops.
809 */
810 if (irq_delta > delta)
811 irq_delta = delta;
812
813 rq->prev_irq_time += irq_delta;
814 delta -= irq_delta;
095c0aa8
GC
815#endif
816#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 817 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
818 u64 st;
819
820 steal = paravirt_steal_clock(cpu_of(rq));
821 steal -= rq->prev_steal_time_rq;
822
823 if (unlikely(steal > delta))
824 steal = delta;
825
826 st = steal_ticks(steal);
827 steal = st * TICK_NSEC;
828
829 rq->prev_steal_time_rq += steal;
830
831 delta -= steal;
832 }
833#endif
834
fe44d621
PZ
835 rq->clock_task += delta;
836
095c0aa8
GC
837#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
838 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
839 sched_rt_avg_update(rq, irq_delta + steal);
840#endif
aa483808
VP
841}
842
34f971f6
PZ
843void sched_set_stop_task(int cpu, struct task_struct *stop)
844{
845 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
846 struct task_struct *old_stop = cpu_rq(cpu)->stop;
847
848 if (stop) {
849 /*
850 * Make it appear like a SCHED_FIFO task, its something
851 * userspace knows about and won't get confused about.
852 *
853 * Also, it will make PI more or less work without too
854 * much confusion -- but then, stop work should not
855 * rely on PI working anyway.
856 */
857 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
858
859 stop->sched_class = &stop_sched_class;
860 }
861
862 cpu_rq(cpu)->stop = stop;
863
864 if (old_stop) {
865 /*
866 * Reset it back to a normal scheduling class so that
867 * it can die in pieces.
868 */
869 old_stop->sched_class = &rt_sched_class;
870 }
871}
872
14531189 873/*
dd41f596 874 * __normal_prio - return the priority that is based on the static prio
14531189 875 */
14531189
IM
876static inline int __normal_prio(struct task_struct *p)
877{
dd41f596 878 return p->static_prio;
14531189
IM
879}
880
b29739f9
IM
881/*
882 * Calculate the expected normal priority: i.e. priority
883 * without taking RT-inheritance into account. Might be
884 * boosted by interactivity modifiers. Changes upon fork,
885 * setprio syscalls, and whenever the interactivity
886 * estimator recalculates.
887 */
36c8b586 888static inline int normal_prio(struct task_struct *p)
b29739f9
IM
889{
890 int prio;
891
e05606d3 892 if (task_has_rt_policy(p))
b29739f9
IM
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
36c8b586 906static int effective_prio(struct task_struct *p)
b29739f9
IM
907{
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917}
918
1da177e4
LT
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 */
36c8b586 923inline int task_curr(const struct task_struct *p)
1da177e4
LT
924{
925 return cpu_curr(task_cpu(p)) == p;
926}
927
cb469845
SR
928static inline void check_class_changed(struct rq *rq, struct task_struct *p,
929 const struct sched_class *prev_class,
da7a735e 930 int oldprio)
cb469845
SR
931{
932 if (prev_class != p->sched_class) {
933 if (prev_class->switched_from)
da7a735e
PZ
934 prev_class->switched_from(rq, p);
935 p->sched_class->switched_to(rq, p);
936 } else if (oldprio != p->prio)
937 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
938}
939
029632fb 940void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
941{
942 const struct sched_class *class;
943
944 if (p->sched_class == rq->curr->sched_class) {
945 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
946 } else {
947 for_each_class(class) {
948 if (class == rq->curr->sched_class)
949 break;
950 if (class == p->sched_class) {
951 resched_task(rq->curr);
952 break;
953 }
954 }
955 }
956
957 /*
958 * A queue event has occurred, and we're going to schedule. In
959 * this case, we can save a useless back to back clock update.
960 */
fd2f4419 961 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
962 rq->skip_clock_update = 1;
963}
964
582b336e
MT
965static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
966
967void register_task_migration_notifier(struct notifier_block *n)
968{
969 atomic_notifier_chain_register(&task_migration_notifier, n);
970}
971
1da177e4 972#ifdef CONFIG_SMP
dd41f596 973void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 974{
e2912009
PZ
975#ifdef CONFIG_SCHED_DEBUG
976 /*
977 * We should never call set_task_cpu() on a blocked task,
978 * ttwu() will sort out the placement.
979 */
077614ee
PZ
980 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
981 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
982
983#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
984 /*
985 * The caller should hold either p->pi_lock or rq->lock, when changing
986 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
987 *
988 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 989 * see task_group().
6c6c54e1
PZ
990 *
991 * Furthermore, all task_rq users should acquire both locks, see
992 * task_rq_lock().
993 */
0122ec5b
PZ
994 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
995 lockdep_is_held(&task_rq(p)->lock)));
996#endif
e2912009
PZ
997#endif
998
de1d7286 999 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1000
0c69774e 1001 if (task_cpu(p) != new_cpu) {
582b336e
MT
1002 struct task_migration_notifier tmn;
1003
0a74bef8
PT
1004 if (p->sched_class->migrate_task_rq)
1005 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1006 p->se.nr_migrations++;
a8b0ca17 1007 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
1008
1009 tmn.task = p;
1010 tmn.from_cpu = task_cpu(p);
1011 tmn.to_cpu = new_cpu;
1012
1013 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 1014 }
dd41f596
IM
1015
1016 __set_task_cpu(p, new_cpu);
c65cc870
IM
1017}
1018
969c7921 1019struct migration_arg {
36c8b586 1020 struct task_struct *task;
1da177e4 1021 int dest_cpu;
70b97a7f 1022};
1da177e4 1023
969c7921
TH
1024static int migration_cpu_stop(void *data);
1025
1da177e4
LT
1026/*
1027 * wait_task_inactive - wait for a thread to unschedule.
1028 *
85ba2d86
RM
1029 * If @match_state is nonzero, it's the @p->state value just checked and
1030 * not expected to change. If it changes, i.e. @p might have woken up,
1031 * then return zero. When we succeed in waiting for @p to be off its CPU,
1032 * we return a positive number (its total switch count). If a second call
1033 * a short while later returns the same number, the caller can be sure that
1034 * @p has remained unscheduled the whole time.
1035 *
1da177e4
LT
1036 * The caller must ensure that the task *will* unschedule sometime soon,
1037 * else this function might spin for a *long* time. This function can't
1038 * be called with interrupts off, or it may introduce deadlock with
1039 * smp_call_function() if an IPI is sent by the same process we are
1040 * waiting to become inactive.
1041 */
85ba2d86 1042unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1043{
1044 unsigned long flags;
dd41f596 1045 int running, on_rq;
85ba2d86 1046 unsigned long ncsw;
70b97a7f 1047 struct rq *rq;
1da177e4 1048
3a5c359a
AK
1049 for (;;) {
1050 /*
1051 * We do the initial early heuristics without holding
1052 * any task-queue locks at all. We'll only try to get
1053 * the runqueue lock when things look like they will
1054 * work out!
1055 */
1056 rq = task_rq(p);
fa490cfd 1057
3a5c359a
AK
1058 /*
1059 * If the task is actively running on another CPU
1060 * still, just relax and busy-wait without holding
1061 * any locks.
1062 *
1063 * NOTE! Since we don't hold any locks, it's not
1064 * even sure that "rq" stays as the right runqueue!
1065 * But we don't care, since "task_running()" will
1066 * return false if the runqueue has changed and p
1067 * is actually now running somewhere else!
1068 */
85ba2d86
RM
1069 while (task_running(rq, p)) {
1070 if (match_state && unlikely(p->state != match_state))
1071 return 0;
3a5c359a 1072 cpu_relax();
85ba2d86 1073 }
fa490cfd 1074
3a5c359a
AK
1075 /*
1076 * Ok, time to look more closely! We need the rq
1077 * lock now, to be *sure*. If we're wrong, we'll
1078 * just go back and repeat.
1079 */
1080 rq = task_rq_lock(p, &flags);
27a9da65 1081 trace_sched_wait_task(p);
3a5c359a 1082 running = task_running(rq, p);
fd2f4419 1083 on_rq = p->on_rq;
85ba2d86 1084 ncsw = 0;
f31e11d8 1085 if (!match_state || p->state == match_state)
93dcf55f 1086 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1087 task_rq_unlock(rq, p, &flags);
fa490cfd 1088
85ba2d86
RM
1089 /*
1090 * If it changed from the expected state, bail out now.
1091 */
1092 if (unlikely(!ncsw))
1093 break;
1094
3a5c359a
AK
1095 /*
1096 * Was it really running after all now that we
1097 * checked with the proper locks actually held?
1098 *
1099 * Oops. Go back and try again..
1100 */
1101 if (unlikely(running)) {
1102 cpu_relax();
1103 continue;
1104 }
fa490cfd 1105
3a5c359a
AK
1106 /*
1107 * It's not enough that it's not actively running,
1108 * it must be off the runqueue _entirely_, and not
1109 * preempted!
1110 *
80dd99b3 1111 * So if it was still runnable (but just not actively
3a5c359a
AK
1112 * running right now), it's preempted, and we should
1113 * yield - it could be a while.
1114 */
1115 if (unlikely(on_rq)) {
8eb90c30
TG
1116 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1117
1118 set_current_state(TASK_UNINTERRUPTIBLE);
1119 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1120 continue;
1121 }
fa490cfd 1122
3a5c359a
AK
1123 /*
1124 * Ahh, all good. It wasn't running, and it wasn't
1125 * runnable, which means that it will never become
1126 * running in the future either. We're all done!
1127 */
1128 break;
1129 }
85ba2d86
RM
1130
1131 return ncsw;
1da177e4
LT
1132}
1133
1134/***
1135 * kick_process - kick a running thread to enter/exit the kernel
1136 * @p: the to-be-kicked thread
1137 *
1138 * Cause a process which is running on another CPU to enter
1139 * kernel-mode, without any delay. (to get signals handled.)
1140 *
25985edc 1141 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1142 * because all it wants to ensure is that the remote task enters
1143 * the kernel. If the IPI races and the task has been migrated
1144 * to another CPU then no harm is done and the purpose has been
1145 * achieved as well.
1146 */
36c8b586 1147void kick_process(struct task_struct *p)
1da177e4
LT
1148{
1149 int cpu;
1150
1151 preempt_disable();
1152 cpu = task_cpu(p);
1153 if ((cpu != smp_processor_id()) && task_curr(p))
1154 smp_send_reschedule(cpu);
1155 preempt_enable();
1156}
b43e3521 1157EXPORT_SYMBOL_GPL(kick_process);
476d139c 1158#endif /* CONFIG_SMP */
1da177e4 1159
970b13ba 1160#ifdef CONFIG_SMP
30da688e 1161/*
013fdb80 1162 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1163 */
5da9a0fb
PZ
1164static int select_fallback_rq(int cpu, struct task_struct *p)
1165{
aa00d89c
TC
1166 int nid = cpu_to_node(cpu);
1167 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1168 enum { cpuset, possible, fail } state = cpuset;
1169 int dest_cpu;
5da9a0fb 1170
aa00d89c
TC
1171 /*
1172 * If the node that the cpu is on has been offlined, cpu_to_node()
1173 * will return -1. There is no cpu on the node, and we should
1174 * select the cpu on the other node.
1175 */
1176 if (nid != -1) {
1177 nodemask = cpumask_of_node(nid);
1178
1179 /* Look for allowed, online CPU in same node. */
1180 for_each_cpu(dest_cpu, nodemask) {
1181 if (!cpu_online(dest_cpu))
1182 continue;
1183 if (!cpu_active(dest_cpu))
1184 continue;
1185 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1186 return dest_cpu;
1187 }
2baab4e9 1188 }
5da9a0fb 1189
2baab4e9
PZ
1190 for (;;) {
1191 /* Any allowed, online CPU? */
e3831edd 1192 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1193 if (!cpu_online(dest_cpu))
1194 continue;
1195 if (!cpu_active(dest_cpu))
1196 continue;
1197 goto out;
1198 }
5da9a0fb 1199
2baab4e9
PZ
1200 switch (state) {
1201 case cpuset:
1202 /* No more Mr. Nice Guy. */
1203 cpuset_cpus_allowed_fallback(p);
1204 state = possible;
1205 break;
1206
1207 case possible:
1208 do_set_cpus_allowed(p, cpu_possible_mask);
1209 state = fail;
1210 break;
1211
1212 case fail:
1213 BUG();
1214 break;
1215 }
1216 }
1217
1218out:
1219 if (state != cpuset) {
1220 /*
1221 * Don't tell them about moving exiting tasks or
1222 * kernel threads (both mm NULL), since they never
1223 * leave kernel.
1224 */
1225 if (p->mm && printk_ratelimit()) {
1226 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1227 task_pid_nr(p), p->comm, cpu);
1228 }
5da9a0fb
PZ
1229 }
1230
1231 return dest_cpu;
1232}
1233
e2912009 1234/*
013fdb80 1235 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1236 */
970b13ba 1237static inline
7608dec2 1238int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1239{
7608dec2 1240 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1241
1242 /*
1243 * In order not to call set_task_cpu() on a blocking task we need
1244 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1245 * cpu.
1246 *
1247 * Since this is common to all placement strategies, this lives here.
1248 *
1249 * [ this allows ->select_task() to simply return task_cpu(p) and
1250 * not worry about this generic constraint ]
1251 */
fa17b507 1252 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1253 !cpu_online(cpu)))
5da9a0fb 1254 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1255
1256 return cpu;
970b13ba 1257}
09a40af5
MG
1258
1259static void update_avg(u64 *avg, u64 sample)
1260{
1261 s64 diff = sample - *avg;
1262 *avg += diff >> 3;
1263}
970b13ba
PZ
1264#endif
1265
d7c01d27 1266static void
b84cb5df 1267ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1268{
d7c01d27 1269#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1270 struct rq *rq = this_rq();
1271
d7c01d27
PZ
1272#ifdef CONFIG_SMP
1273 int this_cpu = smp_processor_id();
1274
1275 if (cpu == this_cpu) {
1276 schedstat_inc(rq, ttwu_local);
1277 schedstat_inc(p, se.statistics.nr_wakeups_local);
1278 } else {
1279 struct sched_domain *sd;
1280
1281 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1282 rcu_read_lock();
d7c01d27
PZ
1283 for_each_domain(this_cpu, sd) {
1284 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1285 schedstat_inc(sd, ttwu_wake_remote);
1286 break;
1287 }
1288 }
057f3fad 1289 rcu_read_unlock();
d7c01d27 1290 }
f339b9dc
PZ
1291
1292 if (wake_flags & WF_MIGRATED)
1293 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1294
d7c01d27
PZ
1295#endif /* CONFIG_SMP */
1296
1297 schedstat_inc(rq, ttwu_count);
9ed3811a 1298 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1299
1300 if (wake_flags & WF_SYNC)
9ed3811a 1301 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1302
d7c01d27
PZ
1303#endif /* CONFIG_SCHEDSTATS */
1304}
1305
1306static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1307{
9ed3811a 1308 activate_task(rq, p, en_flags);
fd2f4419 1309 p->on_rq = 1;
c2f7115e
PZ
1310
1311 /* if a worker is waking up, notify workqueue */
1312 if (p->flags & PF_WQ_WORKER)
1313 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1314}
1315
23f41eeb
PZ
1316/*
1317 * Mark the task runnable and perform wakeup-preemption.
1318 */
89363381 1319static void
23f41eeb 1320ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1321{
9ed3811a 1322 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1323 trace_sched_wakeup(p, true);
9ed3811a
TH
1324
1325 p->state = TASK_RUNNING;
1326#ifdef CONFIG_SMP
1327 if (p->sched_class->task_woken)
1328 p->sched_class->task_woken(rq, p);
1329
e69c6341 1330 if (rq->idle_stamp) {
9ed3811a
TH
1331 u64 delta = rq->clock - rq->idle_stamp;
1332 u64 max = 2*sysctl_sched_migration_cost;
1333
1334 if (delta > max)
1335 rq->avg_idle = max;
1336 else
1337 update_avg(&rq->avg_idle, delta);
1338 rq->idle_stamp = 0;
1339 }
1340#endif
1341}
1342
c05fbafb
PZ
1343static void
1344ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1345{
1346#ifdef CONFIG_SMP
1347 if (p->sched_contributes_to_load)
1348 rq->nr_uninterruptible--;
1349#endif
1350
1351 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1352 ttwu_do_wakeup(rq, p, wake_flags);
1353}
1354
1355/*
1356 * Called in case the task @p isn't fully descheduled from its runqueue,
1357 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1358 * since all we need to do is flip p->state to TASK_RUNNING, since
1359 * the task is still ->on_rq.
1360 */
1361static int ttwu_remote(struct task_struct *p, int wake_flags)
1362{
1363 struct rq *rq;
1364 int ret = 0;
1365
1366 rq = __task_rq_lock(p);
1367 if (p->on_rq) {
1368 ttwu_do_wakeup(rq, p, wake_flags);
1369 ret = 1;
1370 }
1371 __task_rq_unlock(rq);
1372
1373 return ret;
1374}
1375
317f3941 1376#ifdef CONFIG_SMP
fa14ff4a 1377static void sched_ttwu_pending(void)
317f3941
PZ
1378{
1379 struct rq *rq = this_rq();
fa14ff4a
PZ
1380 struct llist_node *llist = llist_del_all(&rq->wake_list);
1381 struct task_struct *p;
317f3941
PZ
1382
1383 raw_spin_lock(&rq->lock);
1384
fa14ff4a
PZ
1385 while (llist) {
1386 p = llist_entry(llist, struct task_struct, wake_entry);
1387 llist = llist_next(llist);
317f3941
PZ
1388 ttwu_do_activate(rq, p, 0);
1389 }
1390
1391 raw_spin_unlock(&rq->lock);
1392}
1393
1394void scheduler_ipi(void)
1395{
ff442c51
FW
1396 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
1397 && !tick_nohz_full_cpu(smp_processor_id()))
c5d753a5
PZ
1398 return;
1399
1400 /*
1401 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1402 * traditionally all their work was done from the interrupt return
1403 * path. Now that we actually do some work, we need to make sure
1404 * we do call them.
1405 *
1406 * Some archs already do call them, luckily irq_enter/exit nest
1407 * properly.
1408 *
1409 * Arguably we should visit all archs and update all handlers,
1410 * however a fair share of IPIs are still resched only so this would
1411 * somewhat pessimize the simple resched case.
1412 */
1413 irq_enter();
ff442c51 1414 tick_nohz_full_check();
fa14ff4a 1415 sched_ttwu_pending();
ca38062e
SS
1416
1417 /*
1418 * Check if someone kicked us for doing the nohz idle load balance.
1419 */
6eb57e0d
SS
1420 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1421 this_rq()->idle_balance = 1;
ca38062e 1422 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1423 }
c5d753a5 1424 irq_exit();
317f3941
PZ
1425}
1426
1427static void ttwu_queue_remote(struct task_struct *p, int cpu)
1428{
fa14ff4a 1429 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1430 smp_send_reschedule(cpu);
1431}
d6aa8f85 1432
39be3501 1433bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1434{
1435 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1436}
d6aa8f85 1437#endif /* CONFIG_SMP */
317f3941 1438
c05fbafb
PZ
1439static void ttwu_queue(struct task_struct *p, int cpu)
1440{
1441 struct rq *rq = cpu_rq(cpu);
1442
17d9f311 1443#if defined(CONFIG_SMP)
39be3501 1444 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1445 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1446 ttwu_queue_remote(p, cpu);
1447 return;
1448 }
1449#endif
1450
c05fbafb
PZ
1451 raw_spin_lock(&rq->lock);
1452 ttwu_do_activate(rq, p, 0);
1453 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1454}
1455
1456/**
1da177e4 1457 * try_to_wake_up - wake up a thread
9ed3811a 1458 * @p: the thread to be awakened
1da177e4 1459 * @state: the mask of task states that can be woken
9ed3811a 1460 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1461 *
1462 * Put it on the run-queue if it's not already there. The "current"
1463 * thread is always on the run-queue (except when the actual
1464 * re-schedule is in progress), and as such you're allowed to do
1465 * the simpler "current->state = TASK_RUNNING" to mark yourself
1466 * runnable without the overhead of this.
1467 *
9ed3811a
TH
1468 * Returns %true if @p was woken up, %false if it was already running
1469 * or @state didn't match @p's state.
1da177e4 1470 */
e4a52bcb
PZ
1471static int
1472try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1473{
1da177e4 1474 unsigned long flags;
c05fbafb 1475 int cpu, success = 0;
2398f2c6 1476
04e2f174 1477 smp_wmb();
013fdb80 1478 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1479 if (!(p->state & state))
1da177e4
LT
1480 goto out;
1481
c05fbafb 1482 success = 1; /* we're going to change ->state */
1da177e4 1483 cpu = task_cpu(p);
1da177e4 1484
c05fbafb
PZ
1485 if (p->on_rq && ttwu_remote(p, wake_flags))
1486 goto stat;
1da177e4 1487
1da177e4 1488#ifdef CONFIG_SMP
e9c84311 1489 /*
c05fbafb
PZ
1490 * If the owning (remote) cpu is still in the middle of schedule() with
1491 * this task as prev, wait until its done referencing the task.
e9c84311 1492 */
f3e94786 1493 while (p->on_cpu)
e4a52bcb 1494 cpu_relax();
0970d299 1495 /*
e4a52bcb 1496 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1497 */
e4a52bcb 1498 smp_rmb();
1da177e4 1499
a8e4f2ea 1500 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1501 p->state = TASK_WAKING;
e7693a36 1502
e4a52bcb 1503 if (p->sched_class->task_waking)
74f8e4b2 1504 p->sched_class->task_waking(p);
efbbd05a 1505
7608dec2 1506 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1507 if (task_cpu(p) != cpu) {
1508 wake_flags |= WF_MIGRATED;
e4a52bcb 1509 set_task_cpu(p, cpu);
f339b9dc 1510 }
1da177e4 1511#endif /* CONFIG_SMP */
1da177e4 1512
c05fbafb
PZ
1513 ttwu_queue(p, cpu);
1514stat:
b84cb5df 1515 ttwu_stat(p, cpu, wake_flags);
1da177e4 1516out:
013fdb80 1517 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1518
1519 return success;
1520}
1521
21aa9af0
TH
1522/**
1523 * try_to_wake_up_local - try to wake up a local task with rq lock held
1524 * @p: the thread to be awakened
1525 *
2acca55e 1526 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1527 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1528 * the current task.
21aa9af0
TH
1529 */
1530static void try_to_wake_up_local(struct task_struct *p)
1531{
1532 struct rq *rq = task_rq(p);
21aa9af0 1533
383efcd0
TH
1534 if (WARN_ON_ONCE(rq != this_rq()) ||
1535 WARN_ON_ONCE(p == current))
1536 return;
1537
21aa9af0
TH
1538 lockdep_assert_held(&rq->lock);
1539
2acca55e
PZ
1540 if (!raw_spin_trylock(&p->pi_lock)) {
1541 raw_spin_unlock(&rq->lock);
1542 raw_spin_lock(&p->pi_lock);
1543 raw_spin_lock(&rq->lock);
1544 }
1545
21aa9af0 1546 if (!(p->state & TASK_NORMAL))
2acca55e 1547 goto out;
21aa9af0 1548
fd2f4419 1549 if (!p->on_rq)
d7c01d27
PZ
1550 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1551
23f41eeb 1552 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1553 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1554out:
1555 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1556}
1557
50fa610a
DH
1558/**
1559 * wake_up_process - Wake up a specific process
1560 * @p: The process to be woken up.
1561 *
1562 * Attempt to wake up the nominated process and move it to the set of runnable
1563 * processes. Returns 1 if the process was woken up, 0 if it was already
1564 * running.
1565 *
1566 * It may be assumed that this function implies a write memory barrier before
1567 * changing the task state if and only if any tasks are woken up.
1568 */
7ad5b3a5 1569int wake_up_process(struct task_struct *p)
1da177e4 1570{
9067ac85
ON
1571 WARN_ON(task_is_stopped_or_traced(p));
1572 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1573}
1da177e4
LT
1574EXPORT_SYMBOL(wake_up_process);
1575
7ad5b3a5 1576int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1577{
1578 return try_to_wake_up(p, state, 0);
1579}
1580
1da177e4
LT
1581/*
1582 * Perform scheduler related setup for a newly forked process p.
1583 * p is forked by current.
dd41f596
IM
1584 *
1585 * __sched_fork() is basic setup used by init_idle() too:
1586 */
1587static void __sched_fork(struct task_struct *p)
1588{
fd2f4419
PZ
1589 p->on_rq = 0;
1590
1591 p->se.on_rq = 0;
dd41f596
IM
1592 p->se.exec_start = 0;
1593 p->se.sum_exec_runtime = 0;
f6cf891c 1594 p->se.prev_sum_exec_runtime = 0;
6c594c21 1595 p->se.nr_migrations = 0;
da7a735e 1596 p->se.vruntime = 0;
fd2f4419 1597 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1598
f4e26b12
PT
1599/*
1600 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1601 * removed when useful for applications beyond shares distribution (e.g.
1602 * load-balance).
1603 */
1604#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1605 p->se.avg.runnable_avg_period = 0;
1606 p->se.avg.runnable_avg_sum = 0;
1607#endif
6cfb0d5d 1608#ifdef CONFIG_SCHEDSTATS
41acab88 1609 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1610#endif
476d139c 1611
fa717060 1612 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1613
e107be36
AK
1614#ifdef CONFIG_PREEMPT_NOTIFIERS
1615 INIT_HLIST_HEAD(&p->preempt_notifiers);
1616#endif
cbee9f88
PZ
1617
1618#ifdef CONFIG_NUMA_BALANCING
1619 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1620 p->mm->numa_next_scan = jiffies;
b8593bfd 1621 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1622 p->mm->numa_scan_seq = 0;
1623 }
1624
1625 p->node_stamp = 0ULL;
1626 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1627 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1628 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1629 p->numa_work.next = &p->numa_work;
1630#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1631}
1632
1a687c2e 1633#ifdef CONFIG_NUMA_BALANCING
3105b86a 1634#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1635void set_numabalancing_state(bool enabled)
1636{
1637 if (enabled)
1638 sched_feat_set("NUMA");
1639 else
1640 sched_feat_set("NO_NUMA");
1641}
3105b86a
MG
1642#else
1643__read_mostly bool numabalancing_enabled;
1644
1645void set_numabalancing_state(bool enabled)
1646{
1647 numabalancing_enabled = enabled;
dd41f596 1648}
3105b86a 1649#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1650#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1651
1652/*
1653 * fork()/clone()-time setup:
1654 */
3e51e3ed 1655void sched_fork(struct task_struct *p)
dd41f596 1656{
0122ec5b 1657 unsigned long flags;
dd41f596
IM
1658 int cpu = get_cpu();
1659
1660 __sched_fork(p);
06b83b5f 1661 /*
0017d735 1662 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1663 * nobody will actually run it, and a signal or other external
1664 * event cannot wake it up and insert it on the runqueue either.
1665 */
0017d735 1666 p->state = TASK_RUNNING;
dd41f596 1667
c350a04e
MG
1668 /*
1669 * Make sure we do not leak PI boosting priority to the child.
1670 */
1671 p->prio = current->normal_prio;
1672
b9dc29e7
MG
1673 /*
1674 * Revert to default priority/policy on fork if requested.
1675 */
1676 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1677 if (task_has_rt_policy(p)) {
b9dc29e7 1678 p->policy = SCHED_NORMAL;
6c697bdf 1679 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1680 p->rt_priority = 0;
1681 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1682 p->static_prio = NICE_TO_PRIO(0);
1683
1684 p->prio = p->normal_prio = __normal_prio(p);
1685 set_load_weight(p);
6c697bdf 1686
b9dc29e7
MG
1687 /*
1688 * We don't need the reset flag anymore after the fork. It has
1689 * fulfilled its duty:
1690 */
1691 p->sched_reset_on_fork = 0;
1692 }
ca94c442 1693
2ddbf952
HS
1694 if (!rt_prio(p->prio))
1695 p->sched_class = &fair_sched_class;
b29739f9 1696
cd29fe6f
PZ
1697 if (p->sched_class->task_fork)
1698 p->sched_class->task_fork(p);
1699
86951599
PZ
1700 /*
1701 * The child is not yet in the pid-hash so no cgroup attach races,
1702 * and the cgroup is pinned to this child due to cgroup_fork()
1703 * is ran before sched_fork().
1704 *
1705 * Silence PROVE_RCU.
1706 */
0122ec5b 1707 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1708 set_task_cpu(p, cpu);
0122ec5b 1709 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1710
52f17b6c 1711#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1712 if (likely(sched_info_on()))
52f17b6c 1713 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1714#endif
3ca7a440
PZ
1715#if defined(CONFIG_SMP)
1716 p->on_cpu = 0;
4866cde0 1717#endif
bdd4e85d 1718#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1719 /* Want to start with kernel preemption disabled. */
a1261f54 1720 task_thread_info(p)->preempt_count = 1;
1da177e4 1721#endif
806c09a7 1722#ifdef CONFIG_SMP
917b627d 1723 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1724#endif
917b627d 1725
476d139c 1726 put_cpu();
1da177e4
LT
1727}
1728
1729/*
1730 * wake_up_new_task - wake up a newly created task for the first time.
1731 *
1732 * This function will do some initial scheduler statistics housekeeping
1733 * that must be done for every newly created context, then puts the task
1734 * on the runqueue and wakes it.
1735 */
3e51e3ed 1736void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1737{
1738 unsigned long flags;
dd41f596 1739 struct rq *rq;
fabf318e 1740
ab2515c4 1741 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1742#ifdef CONFIG_SMP
1743 /*
1744 * Fork balancing, do it here and not earlier because:
1745 * - cpus_allowed can change in the fork path
1746 * - any previously selected cpu might disappear through hotplug
fabf318e 1747 */
ab2515c4 1748 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1749#endif
1750
ab2515c4 1751 rq = __task_rq_lock(p);
cd29fe6f 1752 activate_task(rq, p, 0);
fd2f4419 1753 p->on_rq = 1;
89363381 1754 trace_sched_wakeup_new(p, true);
a7558e01 1755 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1756#ifdef CONFIG_SMP
efbbd05a
PZ
1757 if (p->sched_class->task_woken)
1758 p->sched_class->task_woken(rq, p);
9a897c5a 1759#endif
0122ec5b 1760 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1761}
1762
e107be36
AK
1763#ifdef CONFIG_PREEMPT_NOTIFIERS
1764
1765/**
80dd99b3 1766 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1767 * @notifier: notifier struct to register
e107be36
AK
1768 */
1769void preempt_notifier_register(struct preempt_notifier *notifier)
1770{
1771 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1772}
1773EXPORT_SYMBOL_GPL(preempt_notifier_register);
1774
1775/**
1776 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1777 * @notifier: notifier struct to unregister
e107be36
AK
1778 *
1779 * This is safe to call from within a preemption notifier.
1780 */
1781void preempt_notifier_unregister(struct preempt_notifier *notifier)
1782{
1783 hlist_del(&notifier->link);
1784}
1785EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1786
1787static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1788{
1789 struct preempt_notifier *notifier;
e107be36 1790
b67bfe0d 1791 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1792 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1793}
1794
1795static void
1796fire_sched_out_preempt_notifiers(struct task_struct *curr,
1797 struct task_struct *next)
1798{
1799 struct preempt_notifier *notifier;
e107be36 1800
b67bfe0d 1801 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1802 notifier->ops->sched_out(notifier, next);
1803}
1804
6d6bc0ad 1805#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1806
1807static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1808{
1809}
1810
1811static void
1812fire_sched_out_preempt_notifiers(struct task_struct *curr,
1813 struct task_struct *next)
1814{
1815}
1816
6d6bc0ad 1817#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1818
4866cde0
NP
1819/**
1820 * prepare_task_switch - prepare to switch tasks
1821 * @rq: the runqueue preparing to switch
421cee29 1822 * @prev: the current task that is being switched out
4866cde0
NP
1823 * @next: the task we are going to switch to.
1824 *
1825 * This is called with the rq lock held and interrupts off. It must
1826 * be paired with a subsequent finish_task_switch after the context
1827 * switch.
1828 *
1829 * prepare_task_switch sets up locking and calls architecture specific
1830 * hooks.
1831 */
e107be36
AK
1832static inline void
1833prepare_task_switch(struct rq *rq, struct task_struct *prev,
1834 struct task_struct *next)
4866cde0 1835{
895dd92c 1836 trace_sched_switch(prev, next);
fe4b04fa
PZ
1837 sched_info_switch(prev, next);
1838 perf_event_task_sched_out(prev, next);
e107be36 1839 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1840 prepare_lock_switch(rq, next);
1841 prepare_arch_switch(next);
1842}
1843
1da177e4
LT
1844/**
1845 * finish_task_switch - clean up after a task-switch
344babaa 1846 * @rq: runqueue associated with task-switch
1da177e4
LT
1847 * @prev: the thread we just switched away from.
1848 *
4866cde0
NP
1849 * finish_task_switch must be called after the context switch, paired
1850 * with a prepare_task_switch call before the context switch.
1851 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1852 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1853 *
1854 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1855 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1856 * with the lock held can cause deadlocks; see schedule() for
1857 * details.)
1858 */
a9957449 1859static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1860 __releases(rq->lock)
1861{
1da177e4 1862 struct mm_struct *mm = rq->prev_mm;
55a101f8 1863 long prev_state;
1da177e4
LT
1864
1865 rq->prev_mm = NULL;
1866
1867 /*
1868 * A task struct has one reference for the use as "current".
c394cc9f 1869 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1870 * schedule one last time. The schedule call will never return, and
1871 * the scheduled task must drop that reference.
c394cc9f 1872 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1873 * still held, otherwise prev could be scheduled on another cpu, die
1874 * there before we look at prev->state, and then the reference would
1875 * be dropped twice.
1876 * Manfred Spraul <manfred@colorfullife.com>
1877 */
55a101f8 1878 prev_state = prev->state;
bf9fae9f 1879 vtime_task_switch(prev);
4866cde0 1880 finish_arch_switch(prev);
a8d757ef 1881 perf_event_task_sched_in(prev, current);
4866cde0 1882 finish_lock_switch(rq, prev);
01f23e16 1883 finish_arch_post_lock_switch();
e8fa1362 1884
e107be36 1885 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1886 if (mm)
1887 mmdrop(mm);
c394cc9f 1888 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1889 /*
1890 * Remove function-return probe instances associated with this
1891 * task and put them back on the free list.
9761eea8 1892 */
c6fd91f0 1893 kprobe_flush_task(prev);
1da177e4 1894 put_task_struct(prev);
c6fd91f0 1895 }
99e5ada9
FW
1896
1897 tick_nohz_task_switch(current);
1da177e4
LT
1898}
1899
3f029d3c
GH
1900#ifdef CONFIG_SMP
1901
1902/* assumes rq->lock is held */
1903static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1904{
1905 if (prev->sched_class->pre_schedule)
1906 prev->sched_class->pre_schedule(rq, prev);
1907}
1908
1909/* rq->lock is NOT held, but preemption is disabled */
1910static inline void post_schedule(struct rq *rq)
1911{
1912 if (rq->post_schedule) {
1913 unsigned long flags;
1914
05fa785c 1915 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1916 if (rq->curr->sched_class->post_schedule)
1917 rq->curr->sched_class->post_schedule(rq);
05fa785c 1918 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1919
1920 rq->post_schedule = 0;
1921 }
1922}
1923
1924#else
da19ab51 1925
3f029d3c
GH
1926static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1927{
1928}
1929
1930static inline void post_schedule(struct rq *rq)
1931{
1da177e4
LT
1932}
1933
3f029d3c
GH
1934#endif
1935
1da177e4
LT
1936/**
1937 * schedule_tail - first thing a freshly forked thread must call.
1938 * @prev: the thread we just switched away from.
1939 */
36c8b586 1940asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1941 __releases(rq->lock)
1942{
70b97a7f
IM
1943 struct rq *rq = this_rq();
1944
4866cde0 1945 finish_task_switch(rq, prev);
da19ab51 1946
3f029d3c
GH
1947 /*
1948 * FIXME: do we need to worry about rq being invalidated by the
1949 * task_switch?
1950 */
1951 post_schedule(rq);
70b97a7f 1952
4866cde0
NP
1953#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1954 /* In this case, finish_task_switch does not reenable preemption */
1955 preempt_enable();
1956#endif
1da177e4 1957 if (current->set_child_tid)
b488893a 1958 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1959}
1960
1961/*
1962 * context_switch - switch to the new MM and the new
1963 * thread's register state.
1964 */
dd41f596 1965static inline void
70b97a7f 1966context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1967 struct task_struct *next)
1da177e4 1968{
dd41f596 1969 struct mm_struct *mm, *oldmm;
1da177e4 1970
e107be36 1971 prepare_task_switch(rq, prev, next);
fe4b04fa 1972
dd41f596
IM
1973 mm = next->mm;
1974 oldmm = prev->active_mm;
9226d125
ZA
1975 /*
1976 * For paravirt, this is coupled with an exit in switch_to to
1977 * combine the page table reload and the switch backend into
1978 * one hypercall.
1979 */
224101ed 1980 arch_start_context_switch(prev);
9226d125 1981
31915ab4 1982 if (!mm) {
1da177e4
LT
1983 next->active_mm = oldmm;
1984 atomic_inc(&oldmm->mm_count);
1985 enter_lazy_tlb(oldmm, next);
1986 } else
1987 switch_mm(oldmm, mm, next);
1988
31915ab4 1989 if (!prev->mm) {
1da177e4 1990 prev->active_mm = NULL;
1da177e4
LT
1991 rq->prev_mm = oldmm;
1992 }
3a5f5e48
IM
1993 /*
1994 * Since the runqueue lock will be released by the next
1995 * task (which is an invalid locking op but in the case
1996 * of the scheduler it's an obvious special-case), so we
1997 * do an early lockdep release here:
1998 */
1999#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2000 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2001#endif
1da177e4 2002
91d1aa43 2003 context_tracking_task_switch(prev, next);
1da177e4
LT
2004 /* Here we just switch the register state and the stack. */
2005 switch_to(prev, next, prev);
2006
dd41f596
IM
2007 barrier();
2008 /*
2009 * this_rq must be evaluated again because prev may have moved
2010 * CPUs since it called schedule(), thus the 'rq' on its stack
2011 * frame will be invalid.
2012 */
2013 finish_task_switch(this_rq(), prev);
1da177e4
LT
2014}
2015
2016/*
1c3e8264 2017 * nr_running and nr_context_switches:
1da177e4
LT
2018 *
2019 * externally visible scheduler statistics: current number of runnable
1c3e8264 2020 * threads, total number of context switches performed since bootup.
1da177e4
LT
2021 */
2022unsigned long nr_running(void)
2023{
2024 unsigned long i, sum = 0;
2025
2026 for_each_online_cpu(i)
2027 sum += cpu_rq(i)->nr_running;
2028
2029 return sum;
f711f609 2030}
1da177e4 2031
1da177e4 2032unsigned long long nr_context_switches(void)
46cb4b7c 2033{
cc94abfc
SR
2034 int i;
2035 unsigned long long sum = 0;
46cb4b7c 2036
0a945022 2037 for_each_possible_cpu(i)
1da177e4 2038 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2039
1da177e4
LT
2040 return sum;
2041}
483b4ee6 2042
1da177e4
LT
2043unsigned long nr_iowait(void)
2044{
2045 unsigned long i, sum = 0;
483b4ee6 2046
0a945022 2047 for_each_possible_cpu(i)
1da177e4 2048 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2049
1da177e4
LT
2050 return sum;
2051}
483b4ee6 2052
8c215bd3 2053unsigned long nr_iowait_cpu(int cpu)
69d25870 2054{
8c215bd3 2055 struct rq *this = cpu_rq(cpu);
69d25870
AV
2056 return atomic_read(&this->nr_iowait);
2057}
46cb4b7c 2058
dd41f596 2059#ifdef CONFIG_SMP
8a0be9ef 2060
46cb4b7c 2061/*
38022906
PZ
2062 * sched_exec - execve() is a valuable balancing opportunity, because at
2063 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2064 */
38022906 2065void sched_exec(void)
46cb4b7c 2066{
38022906 2067 struct task_struct *p = current;
1da177e4 2068 unsigned long flags;
0017d735 2069 int dest_cpu;
46cb4b7c 2070
8f42ced9 2071 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2072 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2073 if (dest_cpu == smp_processor_id())
2074 goto unlock;
38022906 2075
8f42ced9 2076 if (likely(cpu_active(dest_cpu))) {
969c7921 2077 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2078
8f42ced9
PZ
2079 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2080 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2081 return;
2082 }
0017d735 2083unlock:
8f42ced9 2084 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2085}
dd41f596 2086
1da177e4
LT
2087#endif
2088
1da177e4 2089DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2090DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2091
2092EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2093EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2094
2095/*
c5f8d995 2096 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2097 * @p in case that task is currently running.
c5f8d995
HS
2098 *
2099 * Called with task_rq_lock() held on @rq.
1da177e4 2100 */
c5f8d995
HS
2101static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2102{
2103 u64 ns = 0;
2104
2105 if (task_current(rq, p)) {
2106 update_rq_clock(rq);
305e6835 2107 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2108 if ((s64)ns < 0)
2109 ns = 0;
2110 }
2111
2112 return ns;
2113}
2114
bb34d92f 2115unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2116{
1da177e4 2117 unsigned long flags;
41b86e9c 2118 struct rq *rq;
bb34d92f 2119 u64 ns = 0;
48f24c4d 2120
41b86e9c 2121 rq = task_rq_lock(p, &flags);
c5f8d995 2122 ns = do_task_delta_exec(p, rq);
0122ec5b 2123 task_rq_unlock(rq, p, &flags);
1508487e 2124
c5f8d995
HS
2125 return ns;
2126}
f06febc9 2127
c5f8d995
HS
2128/*
2129 * Return accounted runtime for the task.
2130 * In case the task is currently running, return the runtime plus current's
2131 * pending runtime that have not been accounted yet.
2132 */
2133unsigned long long task_sched_runtime(struct task_struct *p)
2134{
2135 unsigned long flags;
2136 struct rq *rq;
2137 u64 ns = 0;
2138
2139 rq = task_rq_lock(p, &flags);
2140 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2141 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2142
2143 return ns;
2144}
48f24c4d 2145
7835b98b
CL
2146/*
2147 * This function gets called by the timer code, with HZ frequency.
2148 * We call it with interrupts disabled.
7835b98b
CL
2149 */
2150void scheduler_tick(void)
2151{
7835b98b
CL
2152 int cpu = smp_processor_id();
2153 struct rq *rq = cpu_rq(cpu);
dd41f596 2154 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2155
2156 sched_clock_tick();
dd41f596 2157
05fa785c 2158 raw_spin_lock(&rq->lock);
3e51f33f 2159 update_rq_clock(rq);
fdf3e95d 2160 update_cpu_load_active(rq);
fa85ae24 2161 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2162 raw_spin_unlock(&rq->lock);
7835b98b 2163
e9d2b064 2164 perf_event_task_tick();
e220d2dc 2165
e418e1c2 2166#ifdef CONFIG_SMP
6eb57e0d 2167 rq->idle_balance = idle_cpu(cpu);
dd41f596 2168 trigger_load_balance(rq, cpu);
e418e1c2 2169#endif
265f22a9 2170 rq_last_tick_reset(rq);
1da177e4
LT
2171}
2172
265f22a9
FW
2173#ifdef CONFIG_NO_HZ_FULL
2174/**
2175 * scheduler_tick_max_deferment
2176 *
2177 * Keep at least one tick per second when a single
2178 * active task is running because the scheduler doesn't
2179 * yet completely support full dynticks environment.
2180 *
2181 * This makes sure that uptime, CFS vruntime, load
2182 * balancing, etc... continue to move forward, even
2183 * with a very low granularity.
2184 */
2185u64 scheduler_tick_max_deferment(void)
2186{
2187 struct rq *rq = this_rq();
2188 unsigned long next, now = ACCESS_ONCE(jiffies);
2189
2190 next = rq->last_sched_tick + HZ;
2191
2192 if (time_before_eq(next, now))
2193 return 0;
2194
2195 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2196}
265f22a9 2197#endif
1da177e4 2198
132380a0 2199notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2200{
2201 if (in_lock_functions(addr)) {
2202 addr = CALLER_ADDR2;
2203 if (in_lock_functions(addr))
2204 addr = CALLER_ADDR3;
2205 }
2206 return addr;
2207}
1da177e4 2208
7e49fcce
SR
2209#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2210 defined(CONFIG_PREEMPT_TRACER))
2211
43627582 2212void __kprobes add_preempt_count(int val)
1da177e4 2213{
6cd8a4bb 2214#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2215 /*
2216 * Underflow?
2217 */
9a11b49a
IM
2218 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2219 return;
6cd8a4bb 2220#endif
1da177e4 2221 preempt_count() += val;
6cd8a4bb 2222#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2223 /*
2224 * Spinlock count overflowing soon?
2225 */
33859f7f
MOS
2226 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2227 PREEMPT_MASK - 10);
6cd8a4bb
SR
2228#endif
2229 if (preempt_count() == val)
2230 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2231}
2232EXPORT_SYMBOL(add_preempt_count);
2233
43627582 2234void __kprobes sub_preempt_count(int val)
1da177e4 2235{
6cd8a4bb 2236#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2237 /*
2238 * Underflow?
2239 */
01e3eb82 2240 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2241 return;
1da177e4
LT
2242 /*
2243 * Is the spinlock portion underflowing?
2244 */
9a11b49a
IM
2245 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2246 !(preempt_count() & PREEMPT_MASK)))
2247 return;
6cd8a4bb 2248#endif
9a11b49a 2249
6cd8a4bb
SR
2250 if (preempt_count() == val)
2251 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2252 preempt_count() -= val;
2253}
2254EXPORT_SYMBOL(sub_preempt_count);
2255
2256#endif
2257
2258/*
dd41f596 2259 * Print scheduling while atomic bug:
1da177e4 2260 */
dd41f596 2261static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2262{
664dfa65
DJ
2263 if (oops_in_progress)
2264 return;
2265
3df0fc5b
PZ
2266 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2267 prev->comm, prev->pid, preempt_count());
838225b4 2268
dd41f596 2269 debug_show_held_locks(prev);
e21f5b15 2270 print_modules();
dd41f596
IM
2271 if (irqs_disabled())
2272 print_irqtrace_events(prev);
6135fc1e 2273 dump_stack();
373d4d09 2274 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2275}
1da177e4 2276
dd41f596
IM
2277/*
2278 * Various schedule()-time debugging checks and statistics:
2279 */
2280static inline void schedule_debug(struct task_struct *prev)
2281{
1da177e4 2282 /*
41a2d6cf 2283 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2284 * schedule() atomically, we ignore that path for now.
2285 * Otherwise, whine if we are scheduling when we should not be.
2286 */
3f33a7ce 2287 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2288 __schedule_bug(prev);
b3fbab05 2289 rcu_sleep_check();
dd41f596 2290
1da177e4
LT
2291 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2292
2d72376b 2293 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2294}
2295
6cecd084 2296static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2297{
61eadef6 2298 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2299 update_rq_clock(rq);
6cecd084 2300 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2301}
2302
dd41f596
IM
2303/*
2304 * Pick up the highest-prio task:
2305 */
2306static inline struct task_struct *
b67802ea 2307pick_next_task(struct rq *rq)
dd41f596 2308{
5522d5d5 2309 const struct sched_class *class;
dd41f596 2310 struct task_struct *p;
1da177e4
LT
2311
2312 /*
dd41f596
IM
2313 * Optimization: we know that if all tasks are in
2314 * the fair class we can call that function directly:
1da177e4 2315 */
953bfcd1 2316 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2317 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2318 if (likely(p))
2319 return p;
1da177e4
LT
2320 }
2321
34f971f6 2322 for_each_class(class) {
fb8d4724 2323 p = class->pick_next_task(rq);
dd41f596
IM
2324 if (p)
2325 return p;
dd41f596 2326 }
34f971f6
PZ
2327
2328 BUG(); /* the idle class will always have a runnable task */
dd41f596 2329}
1da177e4 2330
dd41f596 2331/*
c259e01a 2332 * __schedule() is the main scheduler function.
edde96ea
PE
2333 *
2334 * The main means of driving the scheduler and thus entering this function are:
2335 *
2336 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2337 *
2338 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2339 * paths. For example, see arch/x86/entry_64.S.
2340 *
2341 * To drive preemption between tasks, the scheduler sets the flag in timer
2342 * interrupt handler scheduler_tick().
2343 *
2344 * 3. Wakeups don't really cause entry into schedule(). They add a
2345 * task to the run-queue and that's it.
2346 *
2347 * Now, if the new task added to the run-queue preempts the current
2348 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2349 * called on the nearest possible occasion:
2350 *
2351 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2352 *
2353 * - in syscall or exception context, at the next outmost
2354 * preempt_enable(). (this might be as soon as the wake_up()'s
2355 * spin_unlock()!)
2356 *
2357 * - in IRQ context, return from interrupt-handler to
2358 * preemptible context
2359 *
2360 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2361 * then at the next:
2362 *
2363 * - cond_resched() call
2364 * - explicit schedule() call
2365 * - return from syscall or exception to user-space
2366 * - return from interrupt-handler to user-space
dd41f596 2367 */
c259e01a 2368static void __sched __schedule(void)
dd41f596
IM
2369{
2370 struct task_struct *prev, *next;
67ca7bde 2371 unsigned long *switch_count;
dd41f596 2372 struct rq *rq;
31656519 2373 int cpu;
dd41f596 2374
ff743345
PZ
2375need_resched:
2376 preempt_disable();
dd41f596
IM
2377 cpu = smp_processor_id();
2378 rq = cpu_rq(cpu);
25502a6c 2379 rcu_note_context_switch(cpu);
dd41f596 2380 prev = rq->curr;
dd41f596 2381
dd41f596 2382 schedule_debug(prev);
1da177e4 2383
31656519 2384 if (sched_feat(HRTICK))
f333fdc9 2385 hrtick_clear(rq);
8f4d37ec 2386
05fa785c 2387 raw_spin_lock_irq(&rq->lock);
1da177e4 2388
246d86b5 2389 switch_count = &prev->nivcsw;
1da177e4 2390 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2391 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2392 prev->state = TASK_RUNNING;
21aa9af0 2393 } else {
2acca55e
PZ
2394 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2395 prev->on_rq = 0;
2396
21aa9af0 2397 /*
2acca55e
PZ
2398 * If a worker went to sleep, notify and ask workqueue
2399 * whether it wants to wake up a task to maintain
2400 * concurrency.
21aa9af0
TH
2401 */
2402 if (prev->flags & PF_WQ_WORKER) {
2403 struct task_struct *to_wakeup;
2404
2405 to_wakeup = wq_worker_sleeping(prev, cpu);
2406 if (to_wakeup)
2407 try_to_wake_up_local(to_wakeup);
2408 }
21aa9af0 2409 }
dd41f596 2410 switch_count = &prev->nvcsw;
1da177e4
LT
2411 }
2412
3f029d3c 2413 pre_schedule(rq, prev);
f65eda4f 2414
dd41f596 2415 if (unlikely(!rq->nr_running))
1da177e4 2416 idle_balance(cpu, rq);
1da177e4 2417
df1c99d4 2418 put_prev_task(rq, prev);
b67802ea 2419 next = pick_next_task(rq);
f26f9aff
MG
2420 clear_tsk_need_resched(prev);
2421 rq->skip_clock_update = 0;
1da177e4 2422
1da177e4 2423 if (likely(prev != next)) {
1da177e4
LT
2424 rq->nr_switches++;
2425 rq->curr = next;
2426 ++*switch_count;
2427
dd41f596 2428 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2429 /*
246d86b5
ON
2430 * The context switch have flipped the stack from under us
2431 * and restored the local variables which were saved when
2432 * this task called schedule() in the past. prev == current
2433 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2434 */
2435 cpu = smp_processor_id();
2436 rq = cpu_rq(cpu);
1da177e4 2437 } else
05fa785c 2438 raw_spin_unlock_irq(&rq->lock);
1da177e4 2439
3f029d3c 2440 post_schedule(rq);
1da177e4 2441
ba74c144 2442 sched_preempt_enable_no_resched();
ff743345 2443 if (need_resched())
1da177e4
LT
2444 goto need_resched;
2445}
c259e01a 2446
9c40cef2
TG
2447static inline void sched_submit_work(struct task_struct *tsk)
2448{
3c7d5184 2449 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2450 return;
2451 /*
2452 * If we are going to sleep and we have plugged IO queued,
2453 * make sure to submit it to avoid deadlocks.
2454 */
2455 if (blk_needs_flush_plug(tsk))
2456 blk_schedule_flush_plug(tsk);
2457}
2458
6ebbe7a0 2459asmlinkage void __sched schedule(void)
c259e01a 2460{
9c40cef2
TG
2461 struct task_struct *tsk = current;
2462
2463 sched_submit_work(tsk);
c259e01a
TG
2464 __schedule();
2465}
1da177e4
LT
2466EXPORT_SYMBOL(schedule);
2467
91d1aa43 2468#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2469asmlinkage void __sched schedule_user(void)
2470{
2471 /*
2472 * If we come here after a random call to set_need_resched(),
2473 * or we have been woken up remotely but the IPI has not yet arrived,
2474 * we haven't yet exited the RCU idle mode. Do it here manually until
2475 * we find a better solution.
2476 */
91d1aa43 2477 user_exit();
20ab65e3 2478 schedule();
91d1aa43 2479 user_enter();
20ab65e3
FW
2480}
2481#endif
2482
c5491ea7
TG
2483/**
2484 * schedule_preempt_disabled - called with preemption disabled
2485 *
2486 * Returns with preemption disabled. Note: preempt_count must be 1
2487 */
2488void __sched schedule_preempt_disabled(void)
2489{
ba74c144 2490 sched_preempt_enable_no_resched();
c5491ea7
TG
2491 schedule();
2492 preempt_disable();
2493}
2494
1da177e4
LT
2495#ifdef CONFIG_PREEMPT
2496/*
2ed6e34f 2497 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2498 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2499 * occur there and call schedule directly.
2500 */
d1f74e20 2501asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
2502{
2503 struct thread_info *ti = current_thread_info();
6478d880 2504
1da177e4
LT
2505 /*
2506 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2507 * we do not want to preempt the current task. Just return..
1da177e4 2508 */
beed33a8 2509 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
2510 return;
2511
3a5c359a 2512 do {
d1f74e20 2513 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 2514 __schedule();
d1f74e20 2515 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 2516
3a5c359a
AK
2517 /*
2518 * Check again in case we missed a preemption opportunity
2519 * between schedule and now.
2520 */
2521 barrier();
5ed0cec0 2522 } while (need_resched());
1da177e4 2523}
1da177e4
LT
2524EXPORT_SYMBOL(preempt_schedule);
2525
2526/*
2ed6e34f 2527 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2528 * off of irq context.
2529 * Note, that this is called and return with irqs disabled. This will
2530 * protect us against recursive calling from irq.
2531 */
2532asmlinkage void __sched preempt_schedule_irq(void)
2533{
2534 struct thread_info *ti = current_thread_info();
b22366cd 2535 enum ctx_state prev_state;
6478d880 2536
2ed6e34f 2537 /* Catch callers which need to be fixed */
1da177e4
LT
2538 BUG_ON(ti->preempt_count || !irqs_disabled());
2539
b22366cd
FW
2540 prev_state = exception_enter();
2541
3a5c359a
AK
2542 do {
2543 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 2544 local_irq_enable();
c259e01a 2545 __schedule();
3a5c359a 2546 local_irq_disable();
3a5c359a 2547 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 2548
3a5c359a
AK
2549 /*
2550 * Check again in case we missed a preemption opportunity
2551 * between schedule and now.
2552 */
2553 barrier();
5ed0cec0 2554 } while (need_resched());
b22366cd
FW
2555
2556 exception_exit(prev_state);
1da177e4
LT
2557}
2558
2559#endif /* CONFIG_PREEMPT */
2560
63859d4f 2561int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2562 void *key)
1da177e4 2563{
63859d4f 2564 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2565}
1da177e4
LT
2566EXPORT_SYMBOL(default_wake_function);
2567
2568/*
41a2d6cf
IM
2569 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2570 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2571 * number) then we wake all the non-exclusive tasks and one exclusive task.
2572 *
2573 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2574 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2575 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2576 */
78ddb08f 2577static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2578 int nr_exclusive, int wake_flags, void *key)
1da177e4 2579{
2e45874c 2580 wait_queue_t *curr, *next;
1da177e4 2581
2e45874c 2582 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2583 unsigned flags = curr->flags;
2584
63859d4f 2585 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2586 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2587 break;
2588 }
2589}
2590
2591/**
2592 * __wake_up - wake up threads blocked on a waitqueue.
2593 * @q: the waitqueue
2594 * @mode: which threads
2595 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2596 * @key: is directly passed to the wakeup function
50fa610a
DH
2597 *
2598 * It may be assumed that this function implies a write memory barrier before
2599 * changing the task state if and only if any tasks are woken up.
1da177e4 2600 */
7ad5b3a5 2601void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2602 int nr_exclusive, void *key)
1da177e4
LT
2603{
2604 unsigned long flags;
2605
2606 spin_lock_irqsave(&q->lock, flags);
2607 __wake_up_common(q, mode, nr_exclusive, 0, key);
2608 spin_unlock_irqrestore(&q->lock, flags);
2609}
1da177e4
LT
2610EXPORT_SYMBOL(__wake_up);
2611
2612/*
2613 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2614 */
63b20011 2615void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2616{
63b20011 2617 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2618}
22c43c81 2619EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2620
4ede816a
DL
2621void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2622{
2623 __wake_up_common(q, mode, 1, 0, key);
2624}
bf294b41 2625EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2626
1da177e4 2627/**
4ede816a 2628 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2629 * @q: the waitqueue
2630 * @mode: which threads
2631 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2632 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2633 *
2634 * The sync wakeup differs that the waker knows that it will schedule
2635 * away soon, so while the target thread will be woken up, it will not
2636 * be migrated to another CPU - ie. the two threads are 'synchronized'
2637 * with each other. This can prevent needless bouncing between CPUs.
2638 *
2639 * On UP it can prevent extra preemption.
50fa610a
DH
2640 *
2641 * It may be assumed that this function implies a write memory barrier before
2642 * changing the task state if and only if any tasks are woken up.
1da177e4 2643 */
4ede816a
DL
2644void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2645 int nr_exclusive, void *key)
1da177e4
LT
2646{
2647 unsigned long flags;
7d478721 2648 int wake_flags = WF_SYNC;
1da177e4
LT
2649
2650 if (unlikely(!q))
2651 return;
2652
2653 if (unlikely(!nr_exclusive))
7d478721 2654 wake_flags = 0;
1da177e4
LT
2655
2656 spin_lock_irqsave(&q->lock, flags);
7d478721 2657 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2658 spin_unlock_irqrestore(&q->lock, flags);
2659}
4ede816a
DL
2660EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2661
2662/*
2663 * __wake_up_sync - see __wake_up_sync_key()
2664 */
2665void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2666{
2667 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2668}
1da177e4
LT
2669EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2670
65eb3dc6
KD
2671/**
2672 * complete: - signals a single thread waiting on this completion
2673 * @x: holds the state of this particular completion
2674 *
2675 * This will wake up a single thread waiting on this completion. Threads will be
2676 * awakened in the same order in which they were queued.
2677 *
2678 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2679 *
2680 * It may be assumed that this function implies a write memory barrier before
2681 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2682 */
b15136e9 2683void complete(struct completion *x)
1da177e4
LT
2684{
2685 unsigned long flags;
2686
2687 spin_lock_irqsave(&x->wait.lock, flags);
2688 x->done++;
d9514f6c 2689 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2690 spin_unlock_irqrestore(&x->wait.lock, flags);
2691}
2692EXPORT_SYMBOL(complete);
2693
65eb3dc6
KD
2694/**
2695 * complete_all: - signals all threads waiting on this completion
2696 * @x: holds the state of this particular completion
2697 *
2698 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2699 *
2700 * It may be assumed that this function implies a write memory barrier before
2701 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2702 */
b15136e9 2703void complete_all(struct completion *x)
1da177e4
LT
2704{
2705 unsigned long flags;
2706
2707 spin_lock_irqsave(&x->wait.lock, flags);
2708 x->done += UINT_MAX/2;
d9514f6c 2709 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2710 spin_unlock_irqrestore(&x->wait.lock, flags);
2711}
2712EXPORT_SYMBOL(complete_all);
2713
8cbbe86d 2714static inline long __sched
686855f5
VD
2715do_wait_for_common(struct completion *x,
2716 long (*action)(long), long timeout, int state)
1da177e4 2717{
1da177e4
LT
2718 if (!x->done) {
2719 DECLARE_WAITQUEUE(wait, current);
2720
a93d2f17 2721 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2722 do {
94d3d824 2723 if (signal_pending_state(state, current)) {
ea71a546
ON
2724 timeout = -ERESTARTSYS;
2725 break;
8cbbe86d
AK
2726 }
2727 __set_current_state(state);
1da177e4 2728 spin_unlock_irq(&x->wait.lock);
686855f5 2729 timeout = action(timeout);
1da177e4 2730 spin_lock_irq(&x->wait.lock);
ea71a546 2731 } while (!x->done && timeout);
1da177e4 2732 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2733 if (!x->done)
2734 return timeout;
1da177e4
LT
2735 }
2736 x->done--;
ea71a546 2737 return timeout ?: 1;
1da177e4 2738}
1da177e4 2739
686855f5
VD
2740static inline long __sched
2741__wait_for_common(struct completion *x,
2742 long (*action)(long), long timeout, int state)
1da177e4 2743{
1da177e4
LT
2744 might_sleep();
2745
2746 spin_lock_irq(&x->wait.lock);
686855f5 2747 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2748 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2749 return timeout;
2750}
1da177e4 2751
686855f5
VD
2752static long __sched
2753wait_for_common(struct completion *x, long timeout, int state)
2754{
2755 return __wait_for_common(x, schedule_timeout, timeout, state);
2756}
2757
2758static long __sched
2759wait_for_common_io(struct completion *x, long timeout, int state)
2760{
2761 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2762}
2763
65eb3dc6
KD
2764/**
2765 * wait_for_completion: - waits for completion of a task
2766 * @x: holds the state of this particular completion
2767 *
2768 * This waits to be signaled for completion of a specific task. It is NOT
2769 * interruptible and there is no timeout.
2770 *
2771 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2772 * and interrupt capability. Also see complete().
2773 */
b15136e9 2774void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2775{
2776 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2777}
8cbbe86d 2778EXPORT_SYMBOL(wait_for_completion);
1da177e4 2779
65eb3dc6
KD
2780/**
2781 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2782 * @x: holds the state of this particular completion
2783 * @timeout: timeout value in jiffies
2784 *
2785 * This waits for either a completion of a specific task to be signaled or for a
2786 * specified timeout to expire. The timeout is in jiffies. It is not
2787 * interruptible.
c6dc7f05
BF
2788 *
2789 * The return value is 0 if timed out, and positive (at least 1, or number of
2790 * jiffies left till timeout) if completed.
65eb3dc6 2791 */
b15136e9 2792unsigned long __sched
8cbbe86d 2793wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2794{
8cbbe86d 2795 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2796}
8cbbe86d 2797EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2798
686855f5
VD
2799/**
2800 * wait_for_completion_io: - waits for completion of a task
2801 * @x: holds the state of this particular completion
2802 *
2803 * This waits to be signaled for completion of a specific task. It is NOT
2804 * interruptible and there is no timeout. The caller is accounted as waiting
2805 * for IO.
2806 */
2807void __sched wait_for_completion_io(struct completion *x)
2808{
2809 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2810}
2811EXPORT_SYMBOL(wait_for_completion_io);
2812
2813/**
2814 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2815 * @x: holds the state of this particular completion
2816 * @timeout: timeout value in jiffies
2817 *
2818 * This waits for either a completion of a specific task to be signaled or for a
2819 * specified timeout to expire. The timeout is in jiffies. It is not
2820 * interruptible. The caller is accounted as waiting for IO.
2821 *
2822 * The return value is 0 if timed out, and positive (at least 1, or number of
2823 * jiffies left till timeout) if completed.
2824 */
2825unsigned long __sched
2826wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2827{
2828 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2829}
2830EXPORT_SYMBOL(wait_for_completion_io_timeout);
2831
65eb3dc6
KD
2832/**
2833 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2834 * @x: holds the state of this particular completion
2835 *
2836 * This waits for completion of a specific task to be signaled. It is
2837 * interruptible.
c6dc7f05
BF
2838 *
2839 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2840 */
8cbbe86d 2841int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2842{
51e97990
AK
2843 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2844 if (t == -ERESTARTSYS)
2845 return t;
2846 return 0;
0fec171c 2847}
8cbbe86d 2848EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2849
65eb3dc6
KD
2850/**
2851 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2852 * @x: holds the state of this particular completion
2853 * @timeout: timeout value in jiffies
2854 *
2855 * This waits for either a completion of a specific task to be signaled or for a
2856 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
2857 *
2858 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2859 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 2860 */
6bf41237 2861long __sched
8cbbe86d
AK
2862wait_for_completion_interruptible_timeout(struct completion *x,
2863 unsigned long timeout)
0fec171c 2864{
8cbbe86d 2865 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2866}
8cbbe86d 2867EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2868
65eb3dc6
KD
2869/**
2870 * wait_for_completion_killable: - waits for completion of a task (killable)
2871 * @x: holds the state of this particular completion
2872 *
2873 * This waits to be signaled for completion of a specific task. It can be
2874 * interrupted by a kill signal.
c6dc7f05
BF
2875 *
2876 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2877 */
009e577e
MW
2878int __sched wait_for_completion_killable(struct completion *x)
2879{
2880 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2881 if (t == -ERESTARTSYS)
2882 return t;
2883 return 0;
2884}
2885EXPORT_SYMBOL(wait_for_completion_killable);
2886
0aa12fb4
SW
2887/**
2888 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2889 * @x: holds the state of this particular completion
2890 * @timeout: timeout value in jiffies
2891 *
2892 * This waits for either a completion of a specific task to be
2893 * signaled or for a specified timeout to expire. It can be
2894 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
2895 *
2896 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2897 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 2898 */
6bf41237 2899long __sched
0aa12fb4
SW
2900wait_for_completion_killable_timeout(struct completion *x,
2901 unsigned long timeout)
2902{
2903 return wait_for_common(x, timeout, TASK_KILLABLE);
2904}
2905EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2906
be4de352
DC
2907/**
2908 * try_wait_for_completion - try to decrement a completion without blocking
2909 * @x: completion structure
2910 *
2911 * Returns: 0 if a decrement cannot be done without blocking
2912 * 1 if a decrement succeeded.
2913 *
2914 * If a completion is being used as a counting completion,
2915 * attempt to decrement the counter without blocking. This
2916 * enables us to avoid waiting if the resource the completion
2917 * is protecting is not available.
2918 */
2919bool try_wait_for_completion(struct completion *x)
2920{
7539a3b3 2921 unsigned long flags;
be4de352
DC
2922 int ret = 1;
2923
7539a3b3 2924 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2925 if (!x->done)
2926 ret = 0;
2927 else
2928 x->done--;
7539a3b3 2929 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2930 return ret;
2931}
2932EXPORT_SYMBOL(try_wait_for_completion);
2933
2934/**
2935 * completion_done - Test to see if a completion has any waiters
2936 * @x: completion structure
2937 *
2938 * Returns: 0 if there are waiters (wait_for_completion() in progress)
2939 * 1 if there are no waiters.
2940 *
2941 */
2942bool completion_done(struct completion *x)
2943{
7539a3b3 2944 unsigned long flags;
be4de352
DC
2945 int ret = 1;
2946
7539a3b3 2947 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2948 if (!x->done)
2949 ret = 0;
7539a3b3 2950 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2951 return ret;
2952}
2953EXPORT_SYMBOL(completion_done);
2954
8cbbe86d
AK
2955static long __sched
2956sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2957{
0fec171c
IM
2958 unsigned long flags;
2959 wait_queue_t wait;
2960
2961 init_waitqueue_entry(&wait, current);
1da177e4 2962
8cbbe86d 2963 __set_current_state(state);
1da177e4 2964
8cbbe86d
AK
2965 spin_lock_irqsave(&q->lock, flags);
2966 __add_wait_queue(q, &wait);
2967 spin_unlock(&q->lock);
2968 timeout = schedule_timeout(timeout);
2969 spin_lock_irq(&q->lock);
2970 __remove_wait_queue(q, &wait);
2971 spin_unlock_irqrestore(&q->lock, flags);
2972
2973 return timeout;
2974}
2975
2976void __sched interruptible_sleep_on(wait_queue_head_t *q)
2977{
2978 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2979}
1da177e4
LT
2980EXPORT_SYMBOL(interruptible_sleep_on);
2981
0fec171c 2982long __sched
95cdf3b7 2983interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2984{
8cbbe86d 2985 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2986}
1da177e4
LT
2987EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2988
0fec171c 2989void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2990{
8cbbe86d 2991 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2992}
1da177e4
LT
2993EXPORT_SYMBOL(sleep_on);
2994
0fec171c 2995long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2996{
8cbbe86d 2997 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2998}
1da177e4
LT
2999EXPORT_SYMBOL(sleep_on_timeout);
3000
b29739f9
IM
3001#ifdef CONFIG_RT_MUTEXES
3002
3003/*
3004 * rt_mutex_setprio - set the current priority of a task
3005 * @p: task
3006 * @prio: prio value (kernel-internal form)
3007 *
3008 * This function changes the 'effective' priority of a task. It does
3009 * not touch ->normal_prio like __setscheduler().
3010 *
3011 * Used by the rt_mutex code to implement priority inheritance logic.
3012 */
36c8b586 3013void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3014{
83b699ed 3015 int oldprio, on_rq, running;
70b97a7f 3016 struct rq *rq;
83ab0aa0 3017 const struct sched_class *prev_class;
b29739f9
IM
3018
3019 BUG_ON(prio < 0 || prio > MAX_PRIO);
3020
0122ec5b 3021 rq = __task_rq_lock(p);
b29739f9 3022
1c4dd99b
TG
3023 /*
3024 * Idle task boosting is a nono in general. There is one
3025 * exception, when PREEMPT_RT and NOHZ is active:
3026 *
3027 * The idle task calls get_next_timer_interrupt() and holds
3028 * the timer wheel base->lock on the CPU and another CPU wants
3029 * to access the timer (probably to cancel it). We can safely
3030 * ignore the boosting request, as the idle CPU runs this code
3031 * with interrupts disabled and will complete the lock
3032 * protected section without being interrupted. So there is no
3033 * real need to boost.
3034 */
3035 if (unlikely(p == rq->idle)) {
3036 WARN_ON(p != rq->curr);
3037 WARN_ON(p->pi_blocked_on);
3038 goto out_unlock;
3039 }
3040
a8027073 3041 trace_sched_pi_setprio(p, prio);
d5f9f942 3042 oldprio = p->prio;
83ab0aa0 3043 prev_class = p->sched_class;
fd2f4419 3044 on_rq = p->on_rq;
051a1d1a 3045 running = task_current(rq, p);
0e1f3483 3046 if (on_rq)
69be72c1 3047 dequeue_task(rq, p, 0);
0e1f3483
HS
3048 if (running)
3049 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3050
3051 if (rt_prio(prio))
3052 p->sched_class = &rt_sched_class;
3053 else
3054 p->sched_class = &fair_sched_class;
3055
b29739f9
IM
3056 p->prio = prio;
3057
0e1f3483
HS
3058 if (running)
3059 p->sched_class->set_curr_task(rq);
da7a735e 3060 if (on_rq)
371fd7e7 3061 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3062
da7a735e 3063 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3064out_unlock:
0122ec5b 3065 __task_rq_unlock(rq);
b29739f9 3066}
b29739f9 3067#endif
36c8b586 3068void set_user_nice(struct task_struct *p, long nice)
1da177e4 3069{
dd41f596 3070 int old_prio, delta, on_rq;
1da177e4 3071 unsigned long flags;
70b97a7f 3072 struct rq *rq;
1da177e4
LT
3073
3074 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3075 return;
3076 /*
3077 * We have to be careful, if called from sys_setpriority(),
3078 * the task might be in the middle of scheduling on another CPU.
3079 */
3080 rq = task_rq_lock(p, &flags);
3081 /*
3082 * The RT priorities are set via sched_setscheduler(), but we still
3083 * allow the 'normal' nice value to be set - but as expected
3084 * it wont have any effect on scheduling until the task is
dd41f596 3085 * SCHED_FIFO/SCHED_RR:
1da177e4 3086 */
e05606d3 3087 if (task_has_rt_policy(p)) {
1da177e4
LT
3088 p->static_prio = NICE_TO_PRIO(nice);
3089 goto out_unlock;
3090 }
fd2f4419 3091 on_rq = p->on_rq;
c09595f6 3092 if (on_rq)
69be72c1 3093 dequeue_task(rq, p, 0);
1da177e4 3094
1da177e4 3095 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3096 set_load_weight(p);
b29739f9
IM
3097 old_prio = p->prio;
3098 p->prio = effective_prio(p);
3099 delta = p->prio - old_prio;
1da177e4 3100
dd41f596 3101 if (on_rq) {
371fd7e7 3102 enqueue_task(rq, p, 0);
1da177e4 3103 /*
d5f9f942
AM
3104 * If the task increased its priority or is running and
3105 * lowered its priority, then reschedule its CPU:
1da177e4 3106 */
d5f9f942 3107 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3108 resched_task(rq->curr);
3109 }
3110out_unlock:
0122ec5b 3111 task_rq_unlock(rq, p, &flags);
1da177e4 3112}
1da177e4
LT
3113EXPORT_SYMBOL(set_user_nice);
3114
e43379f1
MM
3115/*
3116 * can_nice - check if a task can reduce its nice value
3117 * @p: task
3118 * @nice: nice value
3119 */
36c8b586 3120int can_nice(const struct task_struct *p, const int nice)
e43379f1 3121{
024f4747
MM
3122 /* convert nice value [19,-20] to rlimit style value [1,40] */
3123 int nice_rlim = 20 - nice;
48f24c4d 3124
78d7d407 3125 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3126 capable(CAP_SYS_NICE));
3127}
3128
1da177e4
LT
3129#ifdef __ARCH_WANT_SYS_NICE
3130
3131/*
3132 * sys_nice - change the priority of the current process.
3133 * @increment: priority increment
3134 *
3135 * sys_setpriority is a more generic, but much slower function that
3136 * does similar things.
3137 */
5add95d4 3138SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3139{
48f24c4d 3140 long nice, retval;
1da177e4
LT
3141
3142 /*
3143 * Setpriority might change our priority at the same moment.
3144 * We don't have to worry. Conceptually one call occurs first
3145 * and we have a single winner.
3146 */
e43379f1
MM
3147 if (increment < -40)
3148 increment = -40;
1da177e4
LT
3149 if (increment > 40)
3150 increment = 40;
3151
2b8f836f 3152 nice = TASK_NICE(current) + increment;
1da177e4
LT
3153 if (nice < -20)
3154 nice = -20;
3155 if (nice > 19)
3156 nice = 19;
3157
e43379f1
MM
3158 if (increment < 0 && !can_nice(current, nice))
3159 return -EPERM;
3160
1da177e4
LT
3161 retval = security_task_setnice(current, nice);
3162 if (retval)
3163 return retval;
3164
3165 set_user_nice(current, nice);
3166 return 0;
3167}
3168
3169#endif
3170
3171/**
3172 * task_prio - return the priority value of a given task.
3173 * @p: the task in question.
3174 *
3175 * This is the priority value as seen by users in /proc.
3176 * RT tasks are offset by -200. Normal tasks are centered
3177 * around 0, value goes from -16 to +15.
3178 */
36c8b586 3179int task_prio(const struct task_struct *p)
1da177e4
LT
3180{
3181 return p->prio - MAX_RT_PRIO;
3182}
3183
3184/**
3185 * task_nice - return the nice value of a given task.
3186 * @p: the task in question.
3187 */
36c8b586 3188int task_nice(const struct task_struct *p)
1da177e4
LT
3189{
3190 return TASK_NICE(p);
3191}
150d8bed 3192EXPORT_SYMBOL(task_nice);
1da177e4
LT
3193
3194/**
3195 * idle_cpu - is a given cpu idle currently?
3196 * @cpu: the processor in question.
3197 */
3198int idle_cpu(int cpu)
3199{
908a3283
TG
3200 struct rq *rq = cpu_rq(cpu);
3201
3202 if (rq->curr != rq->idle)
3203 return 0;
3204
3205 if (rq->nr_running)
3206 return 0;
3207
3208#ifdef CONFIG_SMP
3209 if (!llist_empty(&rq->wake_list))
3210 return 0;
3211#endif
3212
3213 return 1;
1da177e4
LT
3214}
3215
1da177e4
LT
3216/**
3217 * idle_task - return the idle task for a given cpu.
3218 * @cpu: the processor in question.
3219 */
36c8b586 3220struct task_struct *idle_task(int cpu)
1da177e4
LT
3221{
3222 return cpu_rq(cpu)->idle;
3223}
3224
3225/**
3226 * find_process_by_pid - find a process with a matching PID value.
3227 * @pid: the pid in question.
3228 */
a9957449 3229static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3230{
228ebcbe 3231 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3232}
3233
3234/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3235static void
3236__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3237{
1da177e4
LT
3238 p->policy = policy;
3239 p->rt_priority = prio;
b29739f9
IM
3240 p->normal_prio = normal_prio(p);
3241 /* we are holding p->pi_lock already */
3242 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3243 if (rt_prio(p->prio))
3244 p->sched_class = &rt_sched_class;
3245 else
3246 p->sched_class = &fair_sched_class;
2dd73a4f 3247 set_load_weight(p);
1da177e4
LT
3248}
3249
c69e8d9c
DH
3250/*
3251 * check the target process has a UID that matches the current process's
3252 */
3253static bool check_same_owner(struct task_struct *p)
3254{
3255 const struct cred *cred = current_cred(), *pcred;
3256 bool match;
3257
3258 rcu_read_lock();
3259 pcred = __task_cred(p);
9c806aa0
EB
3260 match = (uid_eq(cred->euid, pcred->euid) ||
3261 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3262 rcu_read_unlock();
3263 return match;
3264}
3265
961ccddd 3266static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3267 const struct sched_param *param, bool user)
1da177e4 3268{
83b699ed 3269 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3270 unsigned long flags;
83ab0aa0 3271 const struct sched_class *prev_class;
70b97a7f 3272 struct rq *rq;
ca94c442 3273 int reset_on_fork;
1da177e4 3274
66e5393a
SR
3275 /* may grab non-irq protected spin_locks */
3276 BUG_ON(in_interrupt());
1da177e4
LT
3277recheck:
3278 /* double check policy once rq lock held */
ca94c442
LP
3279 if (policy < 0) {
3280 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3281 policy = oldpolicy = p->policy;
ca94c442
LP
3282 } else {
3283 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3284 policy &= ~SCHED_RESET_ON_FORK;
3285
3286 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3287 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3288 policy != SCHED_IDLE)
3289 return -EINVAL;
3290 }
3291
1da177e4
LT
3292 /*
3293 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3294 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3295 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3296 */
3297 if (param->sched_priority < 0 ||
95cdf3b7 3298 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3299 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3300 return -EINVAL;
e05606d3 3301 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3302 return -EINVAL;
3303
37e4ab3f
OC
3304 /*
3305 * Allow unprivileged RT tasks to decrease priority:
3306 */
961ccddd 3307 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3308 if (rt_policy(policy)) {
a44702e8
ON
3309 unsigned long rlim_rtprio =
3310 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3311
3312 /* can't set/change the rt policy */
3313 if (policy != p->policy && !rlim_rtprio)
3314 return -EPERM;
3315
3316 /* can't increase priority */
3317 if (param->sched_priority > p->rt_priority &&
3318 param->sched_priority > rlim_rtprio)
3319 return -EPERM;
3320 }
c02aa73b 3321
dd41f596 3322 /*
c02aa73b
DH
3323 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3324 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3325 */
c02aa73b
DH
3326 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3327 if (!can_nice(p, TASK_NICE(p)))
3328 return -EPERM;
3329 }
5fe1d75f 3330
37e4ab3f 3331 /* can't change other user's priorities */
c69e8d9c 3332 if (!check_same_owner(p))
37e4ab3f 3333 return -EPERM;
ca94c442
LP
3334
3335 /* Normal users shall not reset the sched_reset_on_fork flag */
3336 if (p->sched_reset_on_fork && !reset_on_fork)
3337 return -EPERM;
37e4ab3f 3338 }
1da177e4 3339
725aad24 3340 if (user) {
b0ae1981 3341 retval = security_task_setscheduler(p);
725aad24
JF
3342 if (retval)
3343 return retval;
3344 }
3345
b29739f9
IM
3346 /*
3347 * make sure no PI-waiters arrive (or leave) while we are
3348 * changing the priority of the task:
0122ec5b 3349 *
25985edc 3350 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3351 * runqueue lock must be held.
3352 */
0122ec5b 3353 rq = task_rq_lock(p, &flags);
dc61b1d6 3354
34f971f6
PZ
3355 /*
3356 * Changing the policy of the stop threads its a very bad idea
3357 */
3358 if (p == rq->stop) {
0122ec5b 3359 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3360 return -EINVAL;
3361 }
3362
a51e9198
DF
3363 /*
3364 * If not changing anything there's no need to proceed further:
3365 */
3366 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3367 param->sched_priority == p->rt_priority))) {
45afb173 3368 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3369 return 0;
3370 }
3371
dc61b1d6
PZ
3372#ifdef CONFIG_RT_GROUP_SCHED
3373 if (user) {
3374 /*
3375 * Do not allow realtime tasks into groups that have no runtime
3376 * assigned.
3377 */
3378 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3379 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3380 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3381 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3382 return -EPERM;
3383 }
3384 }
3385#endif
3386
1da177e4
LT
3387 /* recheck policy now with rq lock held */
3388 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3389 policy = oldpolicy = -1;
0122ec5b 3390 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3391 goto recheck;
3392 }
fd2f4419 3393 on_rq = p->on_rq;
051a1d1a 3394 running = task_current(rq, p);
0e1f3483 3395 if (on_rq)
4ca9b72b 3396 dequeue_task(rq, p, 0);
0e1f3483
HS
3397 if (running)
3398 p->sched_class->put_prev_task(rq, p);
f6b53205 3399
ca94c442
LP
3400 p->sched_reset_on_fork = reset_on_fork;
3401
1da177e4 3402 oldprio = p->prio;
83ab0aa0 3403 prev_class = p->sched_class;
dd41f596 3404 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3405
0e1f3483
HS
3406 if (running)
3407 p->sched_class->set_curr_task(rq);
da7a735e 3408 if (on_rq)
4ca9b72b 3409 enqueue_task(rq, p, 0);
cb469845 3410
da7a735e 3411 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3412 task_rq_unlock(rq, p, &flags);
b29739f9 3413
95e02ca9
TG
3414 rt_mutex_adjust_pi(p);
3415
1da177e4
LT
3416 return 0;
3417}
961ccddd
RR
3418
3419/**
3420 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3421 * @p: the task in question.
3422 * @policy: new policy.
3423 * @param: structure containing the new RT priority.
3424 *
3425 * NOTE that the task may be already dead.
3426 */
3427int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3428 const struct sched_param *param)
961ccddd
RR
3429{
3430 return __sched_setscheduler(p, policy, param, true);
3431}
1da177e4
LT
3432EXPORT_SYMBOL_GPL(sched_setscheduler);
3433
961ccddd
RR
3434/**
3435 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3436 * @p: the task in question.
3437 * @policy: new policy.
3438 * @param: structure containing the new RT priority.
3439 *
3440 * Just like sched_setscheduler, only don't bother checking if the
3441 * current context has permission. For example, this is needed in
3442 * stop_machine(): we create temporary high priority worker threads,
3443 * but our caller might not have that capability.
3444 */
3445int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3446 const struct sched_param *param)
961ccddd
RR
3447{
3448 return __sched_setscheduler(p, policy, param, false);
3449}
3450
95cdf3b7
IM
3451static int
3452do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3453{
1da177e4
LT
3454 struct sched_param lparam;
3455 struct task_struct *p;
36c8b586 3456 int retval;
1da177e4
LT
3457
3458 if (!param || pid < 0)
3459 return -EINVAL;
3460 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3461 return -EFAULT;
5fe1d75f
ON
3462
3463 rcu_read_lock();
3464 retval = -ESRCH;
1da177e4 3465 p = find_process_by_pid(pid);
5fe1d75f
ON
3466 if (p != NULL)
3467 retval = sched_setscheduler(p, policy, &lparam);
3468 rcu_read_unlock();
36c8b586 3469
1da177e4
LT
3470 return retval;
3471}
3472
3473/**
3474 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3475 * @pid: the pid in question.
3476 * @policy: new policy.
3477 * @param: structure containing the new RT priority.
3478 */
5add95d4
HC
3479SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3480 struct sched_param __user *, param)
1da177e4 3481{
c21761f1
JB
3482 /* negative values for policy are not valid */
3483 if (policy < 0)
3484 return -EINVAL;
3485
1da177e4
LT
3486 return do_sched_setscheduler(pid, policy, param);
3487}
3488
3489/**
3490 * sys_sched_setparam - set/change the RT priority of a thread
3491 * @pid: the pid in question.
3492 * @param: structure containing the new RT priority.
3493 */
5add95d4 3494SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3495{
3496 return do_sched_setscheduler(pid, -1, param);
3497}
3498
3499/**
3500 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3501 * @pid: the pid in question.
3502 */
5add95d4 3503SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3504{
36c8b586 3505 struct task_struct *p;
3a5c359a 3506 int retval;
1da177e4
LT
3507
3508 if (pid < 0)
3a5c359a 3509 return -EINVAL;
1da177e4
LT
3510
3511 retval = -ESRCH;
5fe85be0 3512 rcu_read_lock();
1da177e4
LT
3513 p = find_process_by_pid(pid);
3514 if (p) {
3515 retval = security_task_getscheduler(p);
3516 if (!retval)
ca94c442
LP
3517 retval = p->policy
3518 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3519 }
5fe85be0 3520 rcu_read_unlock();
1da177e4
LT
3521 return retval;
3522}
3523
3524/**
ca94c442 3525 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3526 * @pid: the pid in question.
3527 * @param: structure containing the RT priority.
3528 */
5add95d4 3529SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3530{
3531 struct sched_param lp;
36c8b586 3532 struct task_struct *p;
3a5c359a 3533 int retval;
1da177e4
LT
3534
3535 if (!param || pid < 0)
3a5c359a 3536 return -EINVAL;
1da177e4 3537
5fe85be0 3538 rcu_read_lock();
1da177e4
LT
3539 p = find_process_by_pid(pid);
3540 retval = -ESRCH;
3541 if (!p)
3542 goto out_unlock;
3543
3544 retval = security_task_getscheduler(p);
3545 if (retval)
3546 goto out_unlock;
3547
3548 lp.sched_priority = p->rt_priority;
5fe85be0 3549 rcu_read_unlock();
1da177e4
LT
3550
3551 /*
3552 * This one might sleep, we cannot do it with a spinlock held ...
3553 */
3554 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3555
1da177e4
LT
3556 return retval;
3557
3558out_unlock:
5fe85be0 3559 rcu_read_unlock();
1da177e4
LT
3560 return retval;
3561}
3562
96f874e2 3563long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3564{
5a16f3d3 3565 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3566 struct task_struct *p;
3567 int retval;
1da177e4 3568
95402b38 3569 get_online_cpus();
23f5d142 3570 rcu_read_lock();
1da177e4
LT
3571
3572 p = find_process_by_pid(pid);
3573 if (!p) {
23f5d142 3574 rcu_read_unlock();
95402b38 3575 put_online_cpus();
1da177e4
LT
3576 return -ESRCH;
3577 }
3578
23f5d142 3579 /* Prevent p going away */
1da177e4 3580 get_task_struct(p);
23f5d142 3581 rcu_read_unlock();
1da177e4 3582
14a40ffc
TH
3583 if (p->flags & PF_NO_SETAFFINITY) {
3584 retval = -EINVAL;
3585 goto out_put_task;
3586 }
5a16f3d3
RR
3587 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3588 retval = -ENOMEM;
3589 goto out_put_task;
3590 }
3591 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3592 retval = -ENOMEM;
3593 goto out_free_cpus_allowed;
3594 }
1da177e4 3595 retval = -EPERM;
4c44aaaf
EB
3596 if (!check_same_owner(p)) {
3597 rcu_read_lock();
3598 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3599 rcu_read_unlock();
3600 goto out_unlock;
3601 }
3602 rcu_read_unlock();
3603 }
1da177e4 3604
b0ae1981 3605 retval = security_task_setscheduler(p);
e7834f8f
DQ
3606 if (retval)
3607 goto out_unlock;
3608
5a16f3d3
RR
3609 cpuset_cpus_allowed(p, cpus_allowed);
3610 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3611again:
5a16f3d3 3612 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3613
8707d8b8 3614 if (!retval) {
5a16f3d3
RR
3615 cpuset_cpus_allowed(p, cpus_allowed);
3616 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3617 /*
3618 * We must have raced with a concurrent cpuset
3619 * update. Just reset the cpus_allowed to the
3620 * cpuset's cpus_allowed
3621 */
5a16f3d3 3622 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3623 goto again;
3624 }
3625 }
1da177e4 3626out_unlock:
5a16f3d3
RR
3627 free_cpumask_var(new_mask);
3628out_free_cpus_allowed:
3629 free_cpumask_var(cpus_allowed);
3630out_put_task:
1da177e4 3631 put_task_struct(p);
95402b38 3632 put_online_cpus();
1da177e4
LT
3633 return retval;
3634}
3635
3636static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3637 struct cpumask *new_mask)
1da177e4 3638{
96f874e2
RR
3639 if (len < cpumask_size())
3640 cpumask_clear(new_mask);
3641 else if (len > cpumask_size())
3642 len = cpumask_size();
3643
1da177e4
LT
3644 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3645}
3646
3647/**
3648 * sys_sched_setaffinity - set the cpu affinity of a process
3649 * @pid: pid of the process
3650 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3651 * @user_mask_ptr: user-space pointer to the new cpu mask
3652 */
5add95d4
HC
3653SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3654 unsigned long __user *, user_mask_ptr)
1da177e4 3655{
5a16f3d3 3656 cpumask_var_t new_mask;
1da177e4
LT
3657 int retval;
3658
5a16f3d3
RR
3659 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3660 return -ENOMEM;
1da177e4 3661
5a16f3d3
RR
3662 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3663 if (retval == 0)
3664 retval = sched_setaffinity(pid, new_mask);
3665 free_cpumask_var(new_mask);
3666 return retval;
1da177e4
LT
3667}
3668
96f874e2 3669long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3670{
36c8b586 3671 struct task_struct *p;
31605683 3672 unsigned long flags;
1da177e4 3673 int retval;
1da177e4 3674
95402b38 3675 get_online_cpus();
23f5d142 3676 rcu_read_lock();
1da177e4
LT
3677
3678 retval = -ESRCH;
3679 p = find_process_by_pid(pid);
3680 if (!p)
3681 goto out_unlock;
3682
e7834f8f
DQ
3683 retval = security_task_getscheduler(p);
3684 if (retval)
3685 goto out_unlock;
3686
013fdb80 3687 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3688 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3689 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3690
3691out_unlock:
23f5d142 3692 rcu_read_unlock();
95402b38 3693 put_online_cpus();
1da177e4 3694
9531b62f 3695 return retval;
1da177e4
LT
3696}
3697
3698/**
3699 * sys_sched_getaffinity - get the cpu affinity of a process
3700 * @pid: pid of the process
3701 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3702 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3703 */
5add95d4
HC
3704SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3705 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3706{
3707 int ret;
f17c8607 3708 cpumask_var_t mask;
1da177e4 3709
84fba5ec 3710 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3711 return -EINVAL;
3712 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3713 return -EINVAL;
3714
f17c8607
RR
3715 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3716 return -ENOMEM;
1da177e4 3717
f17c8607
RR
3718 ret = sched_getaffinity(pid, mask);
3719 if (ret == 0) {
8bc037fb 3720 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3721
3722 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3723 ret = -EFAULT;
3724 else
cd3d8031 3725 ret = retlen;
f17c8607
RR
3726 }
3727 free_cpumask_var(mask);
1da177e4 3728
f17c8607 3729 return ret;
1da177e4
LT
3730}
3731
3732/**
3733 * sys_sched_yield - yield the current processor to other threads.
3734 *
dd41f596
IM
3735 * This function yields the current CPU to other tasks. If there are no
3736 * other threads running on this CPU then this function will return.
1da177e4 3737 */
5add95d4 3738SYSCALL_DEFINE0(sched_yield)
1da177e4 3739{
70b97a7f 3740 struct rq *rq = this_rq_lock();
1da177e4 3741
2d72376b 3742 schedstat_inc(rq, yld_count);
4530d7ab 3743 current->sched_class->yield_task(rq);
1da177e4
LT
3744
3745 /*
3746 * Since we are going to call schedule() anyway, there's
3747 * no need to preempt or enable interrupts:
3748 */
3749 __release(rq->lock);
8a25d5de 3750 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3751 do_raw_spin_unlock(&rq->lock);
ba74c144 3752 sched_preempt_enable_no_resched();
1da177e4
LT
3753
3754 schedule();
3755
3756 return 0;
3757}
3758
d86ee480
PZ
3759static inline int should_resched(void)
3760{
3761 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3762}
3763
e7b38404 3764static void __cond_resched(void)
1da177e4 3765{
e7aaaa69 3766 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 3767 __schedule();
e7aaaa69 3768 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
3769}
3770
02b67cc3 3771int __sched _cond_resched(void)
1da177e4 3772{
d86ee480 3773 if (should_resched()) {
1da177e4
LT
3774 __cond_resched();
3775 return 1;
3776 }
3777 return 0;
3778}
02b67cc3 3779EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3780
3781/*
613afbf8 3782 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3783 * call schedule, and on return reacquire the lock.
3784 *
41a2d6cf 3785 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3786 * operations here to prevent schedule() from being called twice (once via
3787 * spin_unlock(), once by hand).
3788 */
613afbf8 3789int __cond_resched_lock(spinlock_t *lock)
1da177e4 3790{
d86ee480 3791 int resched = should_resched();
6df3cecb
JK
3792 int ret = 0;
3793
f607c668
PZ
3794 lockdep_assert_held(lock);
3795
95c354fe 3796 if (spin_needbreak(lock) || resched) {
1da177e4 3797 spin_unlock(lock);
d86ee480 3798 if (resched)
95c354fe
NP
3799 __cond_resched();
3800 else
3801 cpu_relax();
6df3cecb 3802 ret = 1;
1da177e4 3803 spin_lock(lock);
1da177e4 3804 }
6df3cecb 3805 return ret;
1da177e4 3806}
613afbf8 3807EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3808
613afbf8 3809int __sched __cond_resched_softirq(void)
1da177e4
LT
3810{
3811 BUG_ON(!in_softirq());
3812
d86ee480 3813 if (should_resched()) {
98d82567 3814 local_bh_enable();
1da177e4
LT
3815 __cond_resched();
3816 local_bh_disable();
3817 return 1;
3818 }
3819 return 0;
3820}
613afbf8 3821EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3822
1da177e4
LT
3823/**
3824 * yield - yield the current processor to other threads.
3825 *
8e3fabfd
PZ
3826 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3827 *
3828 * The scheduler is at all times free to pick the calling task as the most
3829 * eligible task to run, if removing the yield() call from your code breaks
3830 * it, its already broken.
3831 *
3832 * Typical broken usage is:
3833 *
3834 * while (!event)
3835 * yield();
3836 *
3837 * where one assumes that yield() will let 'the other' process run that will
3838 * make event true. If the current task is a SCHED_FIFO task that will never
3839 * happen. Never use yield() as a progress guarantee!!
3840 *
3841 * If you want to use yield() to wait for something, use wait_event().
3842 * If you want to use yield() to be 'nice' for others, use cond_resched().
3843 * If you still want to use yield(), do not!
1da177e4
LT
3844 */
3845void __sched yield(void)
3846{
3847 set_current_state(TASK_RUNNING);
3848 sys_sched_yield();
3849}
1da177e4
LT
3850EXPORT_SYMBOL(yield);
3851
d95f4122
MG
3852/**
3853 * yield_to - yield the current processor to another thread in
3854 * your thread group, or accelerate that thread toward the
3855 * processor it's on.
16addf95
RD
3856 * @p: target task
3857 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3858 *
3859 * It's the caller's job to ensure that the target task struct
3860 * can't go away on us before we can do any checks.
3861 *
7b270f60
PZ
3862 * Returns:
3863 * true (>0) if we indeed boosted the target task.
3864 * false (0) if we failed to boost the target.
3865 * -ESRCH if there's no task to yield to.
d95f4122
MG
3866 */
3867bool __sched yield_to(struct task_struct *p, bool preempt)
3868{
3869 struct task_struct *curr = current;
3870 struct rq *rq, *p_rq;
3871 unsigned long flags;
c3c18640 3872 int yielded = 0;
d95f4122
MG
3873
3874 local_irq_save(flags);
3875 rq = this_rq();
3876
3877again:
3878 p_rq = task_rq(p);
7b270f60
PZ
3879 /*
3880 * If we're the only runnable task on the rq and target rq also
3881 * has only one task, there's absolutely no point in yielding.
3882 */
3883 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3884 yielded = -ESRCH;
3885 goto out_irq;
3886 }
3887
d95f4122
MG
3888 double_rq_lock(rq, p_rq);
3889 while (task_rq(p) != p_rq) {
3890 double_rq_unlock(rq, p_rq);
3891 goto again;
3892 }
3893
3894 if (!curr->sched_class->yield_to_task)
7b270f60 3895 goto out_unlock;
d95f4122
MG
3896
3897 if (curr->sched_class != p->sched_class)
7b270f60 3898 goto out_unlock;
d95f4122
MG
3899
3900 if (task_running(p_rq, p) || p->state)
7b270f60 3901 goto out_unlock;
d95f4122
MG
3902
3903 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3904 if (yielded) {
d95f4122 3905 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3906 /*
3907 * Make p's CPU reschedule; pick_next_entity takes care of
3908 * fairness.
3909 */
3910 if (preempt && rq != p_rq)
3911 resched_task(p_rq->curr);
3912 }
d95f4122 3913
7b270f60 3914out_unlock:
d95f4122 3915 double_rq_unlock(rq, p_rq);
7b270f60 3916out_irq:
d95f4122
MG
3917 local_irq_restore(flags);
3918
7b270f60 3919 if (yielded > 0)
d95f4122
MG
3920 schedule();
3921
3922 return yielded;
3923}
3924EXPORT_SYMBOL_GPL(yield_to);
3925
1da177e4 3926/*
41a2d6cf 3927 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3928 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3929 */
3930void __sched io_schedule(void)
3931{
54d35f29 3932 struct rq *rq = raw_rq();
1da177e4 3933
0ff92245 3934 delayacct_blkio_start();
1da177e4 3935 atomic_inc(&rq->nr_iowait);
73c10101 3936 blk_flush_plug(current);
8f0dfc34 3937 current->in_iowait = 1;
1da177e4 3938 schedule();
8f0dfc34 3939 current->in_iowait = 0;
1da177e4 3940 atomic_dec(&rq->nr_iowait);
0ff92245 3941 delayacct_blkio_end();
1da177e4 3942}
1da177e4
LT
3943EXPORT_SYMBOL(io_schedule);
3944
3945long __sched io_schedule_timeout(long timeout)
3946{
54d35f29 3947 struct rq *rq = raw_rq();
1da177e4
LT
3948 long ret;
3949
0ff92245 3950 delayacct_blkio_start();
1da177e4 3951 atomic_inc(&rq->nr_iowait);
73c10101 3952 blk_flush_plug(current);
8f0dfc34 3953 current->in_iowait = 1;
1da177e4 3954 ret = schedule_timeout(timeout);
8f0dfc34 3955 current->in_iowait = 0;
1da177e4 3956 atomic_dec(&rq->nr_iowait);
0ff92245 3957 delayacct_blkio_end();
1da177e4
LT
3958 return ret;
3959}
3960
3961/**
3962 * sys_sched_get_priority_max - return maximum RT priority.
3963 * @policy: scheduling class.
3964 *
3965 * this syscall returns the maximum rt_priority that can be used
3966 * by a given scheduling class.
3967 */
5add95d4 3968SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
3969{
3970 int ret = -EINVAL;
3971
3972 switch (policy) {
3973 case SCHED_FIFO:
3974 case SCHED_RR:
3975 ret = MAX_USER_RT_PRIO-1;
3976 break;
3977 case SCHED_NORMAL:
b0a9499c 3978 case SCHED_BATCH:
dd41f596 3979 case SCHED_IDLE:
1da177e4
LT
3980 ret = 0;
3981 break;
3982 }
3983 return ret;
3984}
3985
3986/**
3987 * sys_sched_get_priority_min - return minimum RT priority.
3988 * @policy: scheduling class.
3989 *
3990 * this syscall returns the minimum rt_priority that can be used
3991 * by a given scheduling class.
3992 */
5add95d4 3993SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
3994{
3995 int ret = -EINVAL;
3996
3997 switch (policy) {
3998 case SCHED_FIFO:
3999 case SCHED_RR:
4000 ret = 1;
4001 break;
4002 case SCHED_NORMAL:
b0a9499c 4003 case SCHED_BATCH:
dd41f596 4004 case SCHED_IDLE:
1da177e4
LT
4005 ret = 0;
4006 }
4007 return ret;
4008}
4009
4010/**
4011 * sys_sched_rr_get_interval - return the default timeslice of a process.
4012 * @pid: pid of the process.
4013 * @interval: userspace pointer to the timeslice value.
4014 *
4015 * this syscall writes the default timeslice value of a given process
4016 * into the user-space timespec buffer. A value of '0' means infinity.
4017 */
17da2bd9 4018SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4019 struct timespec __user *, interval)
1da177e4 4020{
36c8b586 4021 struct task_struct *p;
a4ec24b4 4022 unsigned int time_slice;
dba091b9
TG
4023 unsigned long flags;
4024 struct rq *rq;
3a5c359a 4025 int retval;
1da177e4 4026 struct timespec t;
1da177e4
LT
4027
4028 if (pid < 0)
3a5c359a 4029 return -EINVAL;
1da177e4
LT
4030
4031 retval = -ESRCH;
1a551ae7 4032 rcu_read_lock();
1da177e4
LT
4033 p = find_process_by_pid(pid);
4034 if (!p)
4035 goto out_unlock;
4036
4037 retval = security_task_getscheduler(p);
4038 if (retval)
4039 goto out_unlock;
4040
dba091b9
TG
4041 rq = task_rq_lock(p, &flags);
4042 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4043 task_rq_unlock(rq, p, &flags);
a4ec24b4 4044
1a551ae7 4045 rcu_read_unlock();
a4ec24b4 4046 jiffies_to_timespec(time_slice, &t);
1da177e4 4047 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4048 return retval;
3a5c359a 4049
1da177e4 4050out_unlock:
1a551ae7 4051 rcu_read_unlock();
1da177e4
LT
4052 return retval;
4053}
4054
7c731e0a 4055static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4056
82a1fcb9 4057void sched_show_task(struct task_struct *p)
1da177e4 4058{
1da177e4 4059 unsigned long free = 0;
4e79752c 4060 int ppid;
36c8b586 4061 unsigned state;
1da177e4 4062
1da177e4 4063 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4064 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4065 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4066#if BITS_PER_LONG == 32
1da177e4 4067 if (state == TASK_RUNNING)
3df0fc5b 4068 printk(KERN_CONT " running ");
1da177e4 4069 else
3df0fc5b 4070 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4071#else
4072 if (state == TASK_RUNNING)
3df0fc5b 4073 printk(KERN_CONT " running task ");
1da177e4 4074 else
3df0fc5b 4075 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4076#endif
4077#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4078 free = stack_not_used(p);
1da177e4 4079#endif
4e79752c
PM
4080 rcu_read_lock();
4081 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4082 rcu_read_unlock();
3df0fc5b 4083 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4084 task_pid_nr(p), ppid,
aa47b7e0 4085 (unsigned long)task_thread_info(p)->flags);
1da177e4 4086
3d1cb205 4087 print_worker_info(KERN_INFO, p);
5fb5e6de 4088 show_stack(p, NULL);
1da177e4
LT
4089}
4090
e59e2ae2 4091void show_state_filter(unsigned long state_filter)
1da177e4 4092{
36c8b586 4093 struct task_struct *g, *p;
1da177e4 4094
4bd77321 4095#if BITS_PER_LONG == 32
3df0fc5b
PZ
4096 printk(KERN_INFO
4097 " task PC stack pid father\n");
1da177e4 4098#else
3df0fc5b
PZ
4099 printk(KERN_INFO
4100 " task PC stack pid father\n");
1da177e4 4101#endif
510f5acc 4102 rcu_read_lock();
1da177e4
LT
4103 do_each_thread(g, p) {
4104 /*
4105 * reset the NMI-timeout, listing all files on a slow
25985edc 4106 * console might take a lot of time:
1da177e4
LT
4107 */
4108 touch_nmi_watchdog();
39bc89fd 4109 if (!state_filter || (p->state & state_filter))
82a1fcb9 4110 sched_show_task(p);
1da177e4
LT
4111 } while_each_thread(g, p);
4112
04c9167f
JF
4113 touch_all_softlockup_watchdogs();
4114
dd41f596
IM
4115#ifdef CONFIG_SCHED_DEBUG
4116 sysrq_sched_debug_show();
4117#endif
510f5acc 4118 rcu_read_unlock();
e59e2ae2
IM
4119 /*
4120 * Only show locks if all tasks are dumped:
4121 */
93335a21 4122 if (!state_filter)
e59e2ae2 4123 debug_show_all_locks();
1da177e4
LT
4124}
4125
1df21055
IM
4126void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4127{
dd41f596 4128 idle->sched_class = &idle_sched_class;
1df21055
IM
4129}
4130
f340c0d1
IM
4131/**
4132 * init_idle - set up an idle thread for a given CPU
4133 * @idle: task in question
4134 * @cpu: cpu the idle task belongs to
4135 *
4136 * NOTE: this function does not set the idle thread's NEED_RESCHED
4137 * flag, to make booting more robust.
4138 */
5c1e1767 4139void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4140{
70b97a7f 4141 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4142 unsigned long flags;
4143
05fa785c 4144 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4145
dd41f596 4146 __sched_fork(idle);
06b83b5f 4147 idle->state = TASK_RUNNING;
dd41f596
IM
4148 idle->se.exec_start = sched_clock();
4149
1e1b6c51 4150 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4151 /*
4152 * We're having a chicken and egg problem, even though we are
4153 * holding rq->lock, the cpu isn't yet set to this cpu so the
4154 * lockdep check in task_group() will fail.
4155 *
4156 * Similar case to sched_fork(). / Alternatively we could
4157 * use task_rq_lock() here and obtain the other rq->lock.
4158 *
4159 * Silence PROVE_RCU
4160 */
4161 rcu_read_lock();
dd41f596 4162 __set_task_cpu(idle, cpu);
6506cf6c 4163 rcu_read_unlock();
1da177e4 4164
1da177e4 4165 rq->curr = rq->idle = idle;
3ca7a440
PZ
4166#if defined(CONFIG_SMP)
4167 idle->on_cpu = 1;
4866cde0 4168#endif
05fa785c 4169 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4170
4171 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4172 task_thread_info(idle)->preempt_count = 0;
55cd5340 4173
dd41f596
IM
4174 /*
4175 * The idle tasks have their own, simple scheduling class:
4176 */
4177 idle->sched_class = &idle_sched_class;
868baf07 4178 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4179 vtime_init_idle(idle);
f1c6f1a7
CE
4180#if defined(CONFIG_SMP)
4181 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4182#endif
19978ca6
IM
4183}
4184
1da177e4 4185#ifdef CONFIG_SMP
1e1b6c51
KM
4186void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4187{
4188 if (p->sched_class && p->sched_class->set_cpus_allowed)
4189 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4190
4191 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4192 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4193}
4194
1da177e4
LT
4195/*
4196 * This is how migration works:
4197 *
969c7921
TH
4198 * 1) we invoke migration_cpu_stop() on the target CPU using
4199 * stop_one_cpu().
4200 * 2) stopper starts to run (implicitly forcing the migrated thread
4201 * off the CPU)
4202 * 3) it checks whether the migrated task is still in the wrong runqueue.
4203 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4204 * it and puts it into the right queue.
969c7921
TH
4205 * 5) stopper completes and stop_one_cpu() returns and the migration
4206 * is done.
1da177e4
LT
4207 */
4208
4209/*
4210 * Change a given task's CPU affinity. Migrate the thread to a
4211 * proper CPU and schedule it away if the CPU it's executing on
4212 * is removed from the allowed bitmask.
4213 *
4214 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4215 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4216 * call is not atomic; no spinlocks may be held.
4217 */
96f874e2 4218int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4219{
4220 unsigned long flags;
70b97a7f 4221 struct rq *rq;
969c7921 4222 unsigned int dest_cpu;
48f24c4d 4223 int ret = 0;
1da177e4
LT
4224
4225 rq = task_rq_lock(p, &flags);
e2912009 4226
db44fc01
YZ
4227 if (cpumask_equal(&p->cpus_allowed, new_mask))
4228 goto out;
4229
6ad4c188 4230 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4231 ret = -EINVAL;
4232 goto out;
4233 }
4234
1e1b6c51 4235 do_set_cpus_allowed(p, new_mask);
73fe6aae 4236
1da177e4 4237 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4238 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4239 goto out;
4240
969c7921 4241 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4242 if (p->on_rq) {
969c7921 4243 struct migration_arg arg = { p, dest_cpu };
1da177e4 4244 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4245 task_rq_unlock(rq, p, &flags);
969c7921 4246 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4247 tlb_migrate_finish(p->mm);
4248 return 0;
4249 }
4250out:
0122ec5b 4251 task_rq_unlock(rq, p, &flags);
48f24c4d 4252
1da177e4
LT
4253 return ret;
4254}
cd8ba7cd 4255EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4256
4257/*
41a2d6cf 4258 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4259 * this because either it can't run here any more (set_cpus_allowed()
4260 * away from this CPU, or CPU going down), or because we're
4261 * attempting to rebalance this task on exec (sched_exec).
4262 *
4263 * So we race with normal scheduler movements, but that's OK, as long
4264 * as the task is no longer on this CPU.
efc30814
KK
4265 *
4266 * Returns non-zero if task was successfully migrated.
1da177e4 4267 */
efc30814 4268static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4269{
70b97a7f 4270 struct rq *rq_dest, *rq_src;
e2912009 4271 int ret = 0;
1da177e4 4272
e761b772 4273 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4274 return ret;
1da177e4
LT
4275
4276 rq_src = cpu_rq(src_cpu);
4277 rq_dest = cpu_rq(dest_cpu);
4278
0122ec5b 4279 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4280 double_rq_lock(rq_src, rq_dest);
4281 /* Already moved. */
4282 if (task_cpu(p) != src_cpu)
b1e38734 4283 goto done;
1da177e4 4284 /* Affinity changed (again). */
fa17b507 4285 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4286 goto fail;
1da177e4 4287
e2912009
PZ
4288 /*
4289 * If we're not on a rq, the next wake-up will ensure we're
4290 * placed properly.
4291 */
fd2f4419 4292 if (p->on_rq) {
4ca9b72b 4293 dequeue_task(rq_src, p, 0);
e2912009 4294 set_task_cpu(p, dest_cpu);
4ca9b72b 4295 enqueue_task(rq_dest, p, 0);
15afe09b 4296 check_preempt_curr(rq_dest, p, 0);
1da177e4 4297 }
b1e38734 4298done:
efc30814 4299 ret = 1;
b1e38734 4300fail:
1da177e4 4301 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4302 raw_spin_unlock(&p->pi_lock);
efc30814 4303 return ret;
1da177e4
LT
4304}
4305
4306/*
969c7921
TH
4307 * migration_cpu_stop - this will be executed by a highprio stopper thread
4308 * and performs thread migration by bumping thread off CPU then
4309 * 'pushing' onto another runqueue.
1da177e4 4310 */
969c7921 4311static int migration_cpu_stop(void *data)
1da177e4 4312{
969c7921 4313 struct migration_arg *arg = data;
f7b4cddc 4314
969c7921
TH
4315 /*
4316 * The original target cpu might have gone down and we might
4317 * be on another cpu but it doesn't matter.
4318 */
f7b4cddc 4319 local_irq_disable();
969c7921 4320 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4321 local_irq_enable();
1da177e4 4322 return 0;
f7b4cddc
ON
4323}
4324
1da177e4 4325#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4326
054b9108 4327/*
48c5ccae
PZ
4328 * Ensures that the idle task is using init_mm right before its cpu goes
4329 * offline.
054b9108 4330 */
48c5ccae 4331void idle_task_exit(void)
1da177e4 4332{
48c5ccae 4333 struct mm_struct *mm = current->active_mm;
e76bd8d9 4334
48c5ccae 4335 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4336
48c5ccae
PZ
4337 if (mm != &init_mm)
4338 switch_mm(mm, &init_mm, current);
4339 mmdrop(mm);
1da177e4
LT
4340}
4341
4342/*
5d180232
PZ
4343 * Since this CPU is going 'away' for a while, fold any nr_active delta
4344 * we might have. Assumes we're called after migrate_tasks() so that the
4345 * nr_active count is stable.
4346 *
4347 * Also see the comment "Global load-average calculations".
1da177e4 4348 */
5d180232 4349static void calc_load_migrate(struct rq *rq)
1da177e4 4350{
5d180232
PZ
4351 long delta = calc_load_fold_active(rq);
4352 if (delta)
4353 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4354}
4355
48f24c4d 4356/*
48c5ccae
PZ
4357 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4358 * try_to_wake_up()->select_task_rq().
4359 *
4360 * Called with rq->lock held even though we'er in stop_machine() and
4361 * there's no concurrency possible, we hold the required locks anyway
4362 * because of lock validation efforts.
1da177e4 4363 */
48c5ccae 4364static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4365{
70b97a7f 4366 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4367 struct task_struct *next, *stop = rq->stop;
4368 int dest_cpu;
1da177e4
LT
4369
4370 /*
48c5ccae
PZ
4371 * Fudge the rq selection such that the below task selection loop
4372 * doesn't get stuck on the currently eligible stop task.
4373 *
4374 * We're currently inside stop_machine() and the rq is either stuck
4375 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4376 * either way we should never end up calling schedule() until we're
4377 * done here.
1da177e4 4378 */
48c5ccae 4379 rq->stop = NULL;
48f24c4d 4380
77bd3970
FW
4381 /*
4382 * put_prev_task() and pick_next_task() sched
4383 * class method both need to have an up-to-date
4384 * value of rq->clock[_task]
4385 */
4386 update_rq_clock(rq);
4387
dd41f596 4388 for ( ; ; ) {
48c5ccae
PZ
4389 /*
4390 * There's this thread running, bail when that's the only
4391 * remaining thread.
4392 */
4393 if (rq->nr_running == 1)
dd41f596 4394 break;
48c5ccae 4395
b67802ea 4396 next = pick_next_task(rq);
48c5ccae 4397 BUG_ON(!next);
79c53799 4398 next->sched_class->put_prev_task(rq, next);
e692ab53 4399
48c5ccae
PZ
4400 /* Find suitable destination for @next, with force if needed. */
4401 dest_cpu = select_fallback_rq(dead_cpu, next);
4402 raw_spin_unlock(&rq->lock);
4403
4404 __migrate_task(next, dead_cpu, dest_cpu);
4405
4406 raw_spin_lock(&rq->lock);
1da177e4 4407 }
dce48a84 4408
48c5ccae 4409 rq->stop = stop;
dce48a84 4410}
48c5ccae 4411
1da177e4
LT
4412#endif /* CONFIG_HOTPLUG_CPU */
4413
e692ab53
NP
4414#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4415
4416static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4417 {
4418 .procname = "sched_domain",
c57baf1e 4419 .mode = 0555,
e0361851 4420 },
56992309 4421 {}
e692ab53
NP
4422};
4423
4424static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4425 {
4426 .procname = "kernel",
c57baf1e 4427 .mode = 0555,
e0361851
AD
4428 .child = sd_ctl_dir,
4429 },
56992309 4430 {}
e692ab53
NP
4431};
4432
4433static struct ctl_table *sd_alloc_ctl_entry(int n)
4434{
4435 struct ctl_table *entry =
5cf9f062 4436 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4437
e692ab53
NP
4438 return entry;
4439}
4440
6382bc90
MM
4441static void sd_free_ctl_entry(struct ctl_table **tablep)
4442{
cd790076 4443 struct ctl_table *entry;
6382bc90 4444
cd790076
MM
4445 /*
4446 * In the intermediate directories, both the child directory and
4447 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4448 * will always be set. In the lowest directory the names are
cd790076
MM
4449 * static strings and all have proc handlers.
4450 */
4451 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4452 if (entry->child)
4453 sd_free_ctl_entry(&entry->child);
cd790076
MM
4454 if (entry->proc_handler == NULL)
4455 kfree(entry->procname);
4456 }
6382bc90
MM
4457
4458 kfree(*tablep);
4459 *tablep = NULL;
4460}
4461
201c373e 4462static int min_load_idx = 0;
fd9b86d3 4463static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4464
e692ab53 4465static void
e0361851 4466set_table_entry(struct ctl_table *entry,
e692ab53 4467 const char *procname, void *data, int maxlen,
201c373e
NK
4468 umode_t mode, proc_handler *proc_handler,
4469 bool load_idx)
e692ab53 4470{
e692ab53
NP
4471 entry->procname = procname;
4472 entry->data = data;
4473 entry->maxlen = maxlen;
4474 entry->mode = mode;
4475 entry->proc_handler = proc_handler;
201c373e
NK
4476
4477 if (load_idx) {
4478 entry->extra1 = &min_load_idx;
4479 entry->extra2 = &max_load_idx;
4480 }
e692ab53
NP
4481}
4482
4483static struct ctl_table *
4484sd_alloc_ctl_domain_table(struct sched_domain *sd)
4485{
a5d8c348 4486 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4487
ad1cdc1d
MM
4488 if (table == NULL)
4489 return NULL;
4490
e0361851 4491 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4492 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4493 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4494 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4495 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4496 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4497 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4498 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4499 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4500 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4501 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4502 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4503 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4504 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4505 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4506 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4507 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4508 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4509 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4510 &sd->cache_nice_tries,
201c373e 4511 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4512 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4513 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4514 set_table_entry(&table[11], "name", sd->name,
201c373e 4515 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4516 /* &table[12] is terminator */
e692ab53
NP
4517
4518 return table;
4519}
4520
9a4e7159 4521static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4522{
4523 struct ctl_table *entry, *table;
4524 struct sched_domain *sd;
4525 int domain_num = 0, i;
4526 char buf[32];
4527
4528 for_each_domain(cpu, sd)
4529 domain_num++;
4530 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4531 if (table == NULL)
4532 return NULL;
e692ab53
NP
4533
4534 i = 0;
4535 for_each_domain(cpu, sd) {
4536 snprintf(buf, 32, "domain%d", i);
e692ab53 4537 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4538 entry->mode = 0555;
e692ab53
NP
4539 entry->child = sd_alloc_ctl_domain_table(sd);
4540 entry++;
4541 i++;
4542 }
4543 return table;
4544}
4545
4546static struct ctl_table_header *sd_sysctl_header;
6382bc90 4547static void register_sched_domain_sysctl(void)
e692ab53 4548{
6ad4c188 4549 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4550 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4551 char buf[32];
4552
7378547f
MM
4553 WARN_ON(sd_ctl_dir[0].child);
4554 sd_ctl_dir[0].child = entry;
4555
ad1cdc1d
MM
4556 if (entry == NULL)
4557 return;
4558
6ad4c188 4559 for_each_possible_cpu(i) {
e692ab53 4560 snprintf(buf, 32, "cpu%d", i);
e692ab53 4561 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4562 entry->mode = 0555;
e692ab53 4563 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4564 entry++;
e692ab53 4565 }
7378547f
MM
4566
4567 WARN_ON(sd_sysctl_header);
e692ab53
NP
4568 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4569}
6382bc90 4570
7378547f 4571/* may be called multiple times per register */
6382bc90
MM
4572static void unregister_sched_domain_sysctl(void)
4573{
7378547f
MM
4574 if (sd_sysctl_header)
4575 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4576 sd_sysctl_header = NULL;
7378547f
MM
4577 if (sd_ctl_dir[0].child)
4578 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4579}
e692ab53 4580#else
6382bc90
MM
4581static void register_sched_domain_sysctl(void)
4582{
4583}
4584static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4585{
4586}
4587#endif
4588
1f11eb6a
GH
4589static void set_rq_online(struct rq *rq)
4590{
4591 if (!rq->online) {
4592 const struct sched_class *class;
4593
c6c4927b 4594 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4595 rq->online = 1;
4596
4597 for_each_class(class) {
4598 if (class->rq_online)
4599 class->rq_online(rq);
4600 }
4601 }
4602}
4603
4604static void set_rq_offline(struct rq *rq)
4605{
4606 if (rq->online) {
4607 const struct sched_class *class;
4608
4609 for_each_class(class) {
4610 if (class->rq_offline)
4611 class->rq_offline(rq);
4612 }
4613
c6c4927b 4614 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4615 rq->online = 0;
4616 }
4617}
4618
1da177e4
LT
4619/*
4620 * migration_call - callback that gets triggered when a CPU is added.
4621 * Here we can start up the necessary migration thread for the new CPU.
4622 */
48f24c4d
IM
4623static int __cpuinit
4624migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4625{
48f24c4d 4626 int cpu = (long)hcpu;
1da177e4 4627 unsigned long flags;
969c7921 4628 struct rq *rq = cpu_rq(cpu);
1da177e4 4629
48c5ccae 4630 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4631
1da177e4 4632 case CPU_UP_PREPARE:
a468d389 4633 rq->calc_load_update = calc_load_update;
1da177e4 4634 break;
48f24c4d 4635
1da177e4 4636 case CPU_ONLINE:
1f94ef59 4637 /* Update our root-domain */
05fa785c 4638 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4639 if (rq->rd) {
c6c4927b 4640 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4641
4642 set_rq_online(rq);
1f94ef59 4643 }
05fa785c 4644 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4645 break;
48f24c4d 4646
1da177e4 4647#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4648 case CPU_DYING:
317f3941 4649 sched_ttwu_pending();
57d885fe 4650 /* Update our root-domain */
05fa785c 4651 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4652 if (rq->rd) {
c6c4927b 4653 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4654 set_rq_offline(rq);
57d885fe 4655 }
48c5ccae
PZ
4656 migrate_tasks(cpu);
4657 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4658 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4659 break;
48c5ccae 4660
5d180232 4661 case CPU_DEAD:
f319da0c 4662 calc_load_migrate(rq);
57d885fe 4663 break;
1da177e4
LT
4664#endif
4665 }
49c022e6
PZ
4666
4667 update_max_interval();
4668
1da177e4
LT
4669 return NOTIFY_OK;
4670}
4671
f38b0820
PM
4672/*
4673 * Register at high priority so that task migration (migrate_all_tasks)
4674 * happens before everything else. This has to be lower priority than
cdd6c482 4675 * the notifier in the perf_event subsystem, though.
1da177e4 4676 */
26c2143b 4677static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 4678 .notifier_call = migration_call,
50a323b7 4679 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4680};
4681
3a101d05
TH
4682static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4683 unsigned long action, void *hcpu)
4684{
4685 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4686 case CPU_STARTING:
3a101d05
TH
4687 case CPU_DOWN_FAILED:
4688 set_cpu_active((long)hcpu, true);
4689 return NOTIFY_OK;
4690 default:
4691 return NOTIFY_DONE;
4692 }
4693}
4694
4695static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4696 unsigned long action, void *hcpu)
4697{
4698 switch (action & ~CPU_TASKS_FROZEN) {
4699 case CPU_DOWN_PREPARE:
4700 set_cpu_active((long)hcpu, false);
4701 return NOTIFY_OK;
4702 default:
4703 return NOTIFY_DONE;
4704 }
4705}
4706
7babe8db 4707static int __init migration_init(void)
1da177e4
LT
4708{
4709 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4710 int err;
48f24c4d 4711
3a101d05 4712 /* Initialize migration for the boot CPU */
07dccf33
AM
4713 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4714 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4715 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4716 register_cpu_notifier(&migration_notifier);
7babe8db 4717
3a101d05
TH
4718 /* Register cpu active notifiers */
4719 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4720 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4721
a004cd42 4722 return 0;
1da177e4 4723}
7babe8db 4724early_initcall(migration_init);
1da177e4
LT
4725#endif
4726
4727#ifdef CONFIG_SMP
476f3534 4728
4cb98839
PZ
4729static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4730
3e9830dc 4731#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4732
d039ac60 4733static __read_mostly int sched_debug_enabled;
f6630114 4734
d039ac60 4735static int __init sched_debug_setup(char *str)
f6630114 4736{
d039ac60 4737 sched_debug_enabled = 1;
f6630114
MT
4738
4739 return 0;
4740}
d039ac60
PZ
4741early_param("sched_debug", sched_debug_setup);
4742
4743static inline bool sched_debug(void)
4744{
4745 return sched_debug_enabled;
4746}
f6630114 4747
7c16ec58 4748static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4749 struct cpumask *groupmask)
1da177e4 4750{
4dcf6aff 4751 struct sched_group *group = sd->groups;
434d53b0 4752 char str[256];
1da177e4 4753
968ea6d8 4754 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4755 cpumask_clear(groupmask);
4dcf6aff
IM
4756
4757 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4758
4759 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4760 printk("does not load-balance\n");
4dcf6aff 4761 if (sd->parent)
3df0fc5b
PZ
4762 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4763 " has parent");
4dcf6aff 4764 return -1;
41c7ce9a
NP
4765 }
4766
3df0fc5b 4767 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4768
758b2cdc 4769 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4770 printk(KERN_ERR "ERROR: domain->span does not contain "
4771 "CPU%d\n", cpu);
4dcf6aff 4772 }
758b2cdc 4773 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4774 printk(KERN_ERR "ERROR: domain->groups does not contain"
4775 " CPU%d\n", cpu);
4dcf6aff 4776 }
1da177e4 4777
4dcf6aff 4778 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4779 do {
4dcf6aff 4780 if (!group) {
3df0fc5b
PZ
4781 printk("\n");
4782 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4783 break;
4784 }
4785
c3decf0d
PZ
4786 /*
4787 * Even though we initialize ->power to something semi-sane,
4788 * we leave power_orig unset. This allows us to detect if
4789 * domain iteration is still funny without causing /0 traps.
4790 */
4791 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4792 printk(KERN_CONT "\n");
4793 printk(KERN_ERR "ERROR: domain->cpu_power not "
4794 "set\n");
4dcf6aff
IM
4795 break;
4796 }
1da177e4 4797
758b2cdc 4798 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4799 printk(KERN_CONT "\n");
4800 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4801 break;
4802 }
1da177e4 4803
cb83b629
PZ
4804 if (!(sd->flags & SD_OVERLAP) &&
4805 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4806 printk(KERN_CONT "\n");
4807 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4808 break;
4809 }
1da177e4 4810
758b2cdc 4811 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4812
968ea6d8 4813 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4814
3df0fc5b 4815 printk(KERN_CONT " %s", str);
9c3f75cb 4816 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4817 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4818 group->sgp->power);
381512cf 4819 }
1da177e4 4820
4dcf6aff
IM
4821 group = group->next;
4822 } while (group != sd->groups);
3df0fc5b 4823 printk(KERN_CONT "\n");
1da177e4 4824
758b2cdc 4825 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4826 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4827
758b2cdc
RR
4828 if (sd->parent &&
4829 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4830 printk(KERN_ERR "ERROR: parent span is not a superset "
4831 "of domain->span\n");
4dcf6aff
IM
4832 return 0;
4833}
1da177e4 4834
4dcf6aff
IM
4835static void sched_domain_debug(struct sched_domain *sd, int cpu)
4836{
4837 int level = 0;
1da177e4 4838
d039ac60 4839 if (!sched_debug_enabled)
f6630114
MT
4840 return;
4841
4dcf6aff
IM
4842 if (!sd) {
4843 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4844 return;
4845 }
1da177e4 4846
4dcf6aff
IM
4847 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4848
4849 for (;;) {
4cb98839 4850 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4851 break;
1da177e4
LT
4852 level++;
4853 sd = sd->parent;
33859f7f 4854 if (!sd)
4dcf6aff
IM
4855 break;
4856 }
1da177e4 4857}
6d6bc0ad 4858#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4859# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4860static inline bool sched_debug(void)
4861{
4862 return false;
4863}
6d6bc0ad 4864#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4865
1a20ff27 4866static int sd_degenerate(struct sched_domain *sd)
245af2c7 4867{
758b2cdc 4868 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4869 return 1;
4870
4871 /* Following flags need at least 2 groups */
4872 if (sd->flags & (SD_LOAD_BALANCE |
4873 SD_BALANCE_NEWIDLE |
4874 SD_BALANCE_FORK |
89c4710e
SS
4875 SD_BALANCE_EXEC |
4876 SD_SHARE_CPUPOWER |
4877 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4878 if (sd->groups != sd->groups->next)
4879 return 0;
4880 }
4881
4882 /* Following flags don't use groups */
c88d5910 4883 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4884 return 0;
4885
4886 return 1;
4887}
4888
48f24c4d
IM
4889static int
4890sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4891{
4892 unsigned long cflags = sd->flags, pflags = parent->flags;
4893
4894 if (sd_degenerate(parent))
4895 return 1;
4896
758b2cdc 4897 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4898 return 0;
4899
245af2c7
SS
4900 /* Flags needing groups don't count if only 1 group in parent */
4901 if (parent->groups == parent->groups->next) {
4902 pflags &= ~(SD_LOAD_BALANCE |
4903 SD_BALANCE_NEWIDLE |
4904 SD_BALANCE_FORK |
89c4710e
SS
4905 SD_BALANCE_EXEC |
4906 SD_SHARE_CPUPOWER |
4907 SD_SHARE_PKG_RESOURCES);
5436499e
KC
4908 if (nr_node_ids == 1)
4909 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4910 }
4911 if (~cflags & pflags)
4912 return 0;
4913
4914 return 1;
4915}
4916
dce840a0 4917static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4918{
dce840a0 4919 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4920
68e74568 4921 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4922 free_cpumask_var(rd->rto_mask);
4923 free_cpumask_var(rd->online);
4924 free_cpumask_var(rd->span);
4925 kfree(rd);
4926}
4927
57d885fe
GH
4928static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4929{
a0490fa3 4930 struct root_domain *old_rd = NULL;
57d885fe 4931 unsigned long flags;
57d885fe 4932
05fa785c 4933 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4934
4935 if (rq->rd) {
a0490fa3 4936 old_rd = rq->rd;
57d885fe 4937
c6c4927b 4938 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4939 set_rq_offline(rq);
57d885fe 4940
c6c4927b 4941 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4942
a0490fa3
IM
4943 /*
4944 * If we dont want to free the old_rt yet then
4945 * set old_rd to NULL to skip the freeing later
4946 * in this function:
4947 */
4948 if (!atomic_dec_and_test(&old_rd->refcount))
4949 old_rd = NULL;
57d885fe
GH
4950 }
4951
4952 atomic_inc(&rd->refcount);
4953 rq->rd = rd;
4954
c6c4927b 4955 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 4956 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 4957 set_rq_online(rq);
57d885fe 4958
05fa785c 4959 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
4960
4961 if (old_rd)
dce840a0 4962 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
4963}
4964
68c38fc3 4965static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
4966{
4967 memset(rd, 0, sizeof(*rd));
4968
68c38fc3 4969 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 4970 goto out;
68c38fc3 4971 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 4972 goto free_span;
68c38fc3 4973 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 4974 goto free_online;
6e0534f2 4975
68c38fc3 4976 if (cpupri_init(&rd->cpupri) != 0)
68e74568 4977 goto free_rto_mask;
c6c4927b 4978 return 0;
6e0534f2 4979
68e74568
RR
4980free_rto_mask:
4981 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
4982free_online:
4983 free_cpumask_var(rd->online);
4984free_span:
4985 free_cpumask_var(rd->span);
0c910d28 4986out:
c6c4927b 4987 return -ENOMEM;
57d885fe
GH
4988}
4989
029632fb
PZ
4990/*
4991 * By default the system creates a single root-domain with all cpus as
4992 * members (mimicking the global state we have today).
4993 */
4994struct root_domain def_root_domain;
4995
57d885fe
GH
4996static void init_defrootdomain(void)
4997{
68c38fc3 4998 init_rootdomain(&def_root_domain);
c6c4927b 4999
57d885fe
GH
5000 atomic_set(&def_root_domain.refcount, 1);
5001}
5002
dc938520 5003static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5004{
5005 struct root_domain *rd;
5006
5007 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5008 if (!rd)
5009 return NULL;
5010
68c38fc3 5011 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5012 kfree(rd);
5013 return NULL;
5014 }
57d885fe
GH
5015
5016 return rd;
5017}
5018
e3589f6c
PZ
5019static void free_sched_groups(struct sched_group *sg, int free_sgp)
5020{
5021 struct sched_group *tmp, *first;
5022
5023 if (!sg)
5024 return;
5025
5026 first = sg;
5027 do {
5028 tmp = sg->next;
5029
5030 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5031 kfree(sg->sgp);
5032
5033 kfree(sg);
5034 sg = tmp;
5035 } while (sg != first);
5036}
5037
dce840a0
PZ
5038static void free_sched_domain(struct rcu_head *rcu)
5039{
5040 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5041
5042 /*
5043 * If its an overlapping domain it has private groups, iterate and
5044 * nuke them all.
5045 */
5046 if (sd->flags & SD_OVERLAP) {
5047 free_sched_groups(sd->groups, 1);
5048 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5049 kfree(sd->groups->sgp);
dce840a0 5050 kfree(sd->groups);
9c3f75cb 5051 }
dce840a0
PZ
5052 kfree(sd);
5053}
5054
5055static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5056{
5057 call_rcu(&sd->rcu, free_sched_domain);
5058}
5059
5060static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5061{
5062 for (; sd; sd = sd->parent)
5063 destroy_sched_domain(sd, cpu);
5064}
5065
518cd623
PZ
5066/*
5067 * Keep a special pointer to the highest sched_domain that has
5068 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5069 * allows us to avoid some pointer chasing select_idle_sibling().
5070 *
5071 * Also keep a unique ID per domain (we use the first cpu number in
5072 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5073 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5074 */
5075DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5076DEFINE_PER_CPU(int, sd_llc_id);
5077
5078static void update_top_cache_domain(int cpu)
5079{
5080 struct sched_domain *sd;
5081 int id = cpu;
5082
5083 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5084 if (sd)
518cd623
PZ
5085 id = cpumask_first(sched_domain_span(sd));
5086
5087 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5088 per_cpu(sd_llc_id, cpu) = id;
5089}
5090
1da177e4 5091/*
0eab9146 5092 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5093 * hold the hotplug lock.
5094 */
0eab9146
IM
5095static void
5096cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5097{
70b97a7f 5098 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5099 struct sched_domain *tmp;
5100
5101 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5102 for (tmp = sd; tmp; ) {
245af2c7
SS
5103 struct sched_domain *parent = tmp->parent;
5104 if (!parent)
5105 break;
f29c9b1c 5106
1a848870 5107 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5108 tmp->parent = parent->parent;
1a848870
SS
5109 if (parent->parent)
5110 parent->parent->child = tmp;
dce840a0 5111 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5112 } else
5113 tmp = tmp->parent;
245af2c7
SS
5114 }
5115
1a848870 5116 if (sd && sd_degenerate(sd)) {
dce840a0 5117 tmp = sd;
245af2c7 5118 sd = sd->parent;
dce840a0 5119 destroy_sched_domain(tmp, cpu);
1a848870
SS
5120 if (sd)
5121 sd->child = NULL;
5122 }
1da177e4 5123
4cb98839 5124 sched_domain_debug(sd, cpu);
1da177e4 5125
57d885fe 5126 rq_attach_root(rq, rd);
dce840a0 5127 tmp = rq->sd;
674311d5 5128 rcu_assign_pointer(rq->sd, sd);
dce840a0 5129 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5130
5131 update_top_cache_domain(cpu);
1da177e4
LT
5132}
5133
5134/* cpus with isolated domains */
dcc30a35 5135static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5136
5137/* Setup the mask of cpus configured for isolated domains */
5138static int __init isolated_cpu_setup(char *str)
5139{
bdddd296 5140 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5141 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5142 return 1;
5143}
5144
8927f494 5145__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5146
d3081f52
PZ
5147static const struct cpumask *cpu_cpu_mask(int cpu)
5148{
5149 return cpumask_of_node(cpu_to_node(cpu));
5150}
5151
dce840a0
PZ
5152struct sd_data {
5153 struct sched_domain **__percpu sd;
5154 struct sched_group **__percpu sg;
9c3f75cb 5155 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5156};
5157
49a02c51 5158struct s_data {
21d42ccf 5159 struct sched_domain ** __percpu sd;
49a02c51
AH
5160 struct root_domain *rd;
5161};
5162
2109b99e 5163enum s_alloc {
2109b99e 5164 sa_rootdomain,
21d42ccf 5165 sa_sd,
dce840a0 5166 sa_sd_storage,
2109b99e
AH
5167 sa_none,
5168};
5169
54ab4ff4
PZ
5170struct sched_domain_topology_level;
5171
5172typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5173typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5174
e3589f6c
PZ
5175#define SDTL_OVERLAP 0x01
5176
eb7a74e6 5177struct sched_domain_topology_level {
2c402dc3
PZ
5178 sched_domain_init_f init;
5179 sched_domain_mask_f mask;
e3589f6c 5180 int flags;
cb83b629 5181 int numa_level;
54ab4ff4 5182 struct sd_data data;
eb7a74e6
PZ
5183};
5184
c1174876
PZ
5185/*
5186 * Build an iteration mask that can exclude certain CPUs from the upwards
5187 * domain traversal.
5188 *
5189 * Asymmetric node setups can result in situations where the domain tree is of
5190 * unequal depth, make sure to skip domains that already cover the entire
5191 * range.
5192 *
5193 * In that case build_sched_domains() will have terminated the iteration early
5194 * and our sibling sd spans will be empty. Domains should always include the
5195 * cpu they're built on, so check that.
5196 *
5197 */
5198static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5199{
5200 const struct cpumask *span = sched_domain_span(sd);
5201 struct sd_data *sdd = sd->private;
5202 struct sched_domain *sibling;
5203 int i;
5204
5205 for_each_cpu(i, span) {
5206 sibling = *per_cpu_ptr(sdd->sd, i);
5207 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5208 continue;
5209
5210 cpumask_set_cpu(i, sched_group_mask(sg));
5211 }
5212}
5213
5214/*
5215 * Return the canonical balance cpu for this group, this is the first cpu
5216 * of this group that's also in the iteration mask.
5217 */
5218int group_balance_cpu(struct sched_group *sg)
5219{
5220 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5221}
5222
e3589f6c
PZ
5223static int
5224build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5225{
5226 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5227 const struct cpumask *span = sched_domain_span(sd);
5228 struct cpumask *covered = sched_domains_tmpmask;
5229 struct sd_data *sdd = sd->private;
5230 struct sched_domain *child;
5231 int i;
5232
5233 cpumask_clear(covered);
5234
5235 for_each_cpu(i, span) {
5236 struct cpumask *sg_span;
5237
5238 if (cpumask_test_cpu(i, covered))
5239 continue;
5240
c1174876
PZ
5241 child = *per_cpu_ptr(sdd->sd, i);
5242
5243 /* See the comment near build_group_mask(). */
5244 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5245 continue;
5246
e3589f6c 5247 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5248 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5249
5250 if (!sg)
5251 goto fail;
5252
5253 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5254 if (child->child) {
5255 child = child->child;
5256 cpumask_copy(sg_span, sched_domain_span(child));
5257 } else
5258 cpumask_set_cpu(i, sg_span);
5259
5260 cpumask_or(covered, covered, sg_span);
5261
74a5ce20 5262 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5263 if (atomic_inc_return(&sg->sgp->ref) == 1)
5264 build_group_mask(sd, sg);
5265
c3decf0d
PZ
5266 /*
5267 * Initialize sgp->power such that even if we mess up the
5268 * domains and no possible iteration will get us here, we won't
5269 * die on a /0 trap.
5270 */
5271 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5272
c1174876
PZ
5273 /*
5274 * Make sure the first group of this domain contains the
5275 * canonical balance cpu. Otherwise the sched_domain iteration
5276 * breaks. See update_sg_lb_stats().
5277 */
74a5ce20 5278 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5279 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5280 groups = sg;
5281
5282 if (!first)
5283 first = sg;
5284 if (last)
5285 last->next = sg;
5286 last = sg;
5287 last->next = first;
5288 }
5289 sd->groups = groups;
5290
5291 return 0;
5292
5293fail:
5294 free_sched_groups(first, 0);
5295
5296 return -ENOMEM;
5297}
5298
dce840a0 5299static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5300{
dce840a0
PZ
5301 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5302 struct sched_domain *child = sd->child;
1da177e4 5303
dce840a0
PZ
5304 if (child)
5305 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5306
9c3f75cb 5307 if (sg) {
dce840a0 5308 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5309 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5310 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5311 }
dce840a0
PZ
5312
5313 return cpu;
1e9f28fa 5314}
1e9f28fa 5315
01a08546 5316/*
dce840a0
PZ
5317 * build_sched_groups will build a circular linked list of the groups
5318 * covered by the given span, and will set each group's ->cpumask correctly,
5319 * and ->cpu_power to 0.
e3589f6c
PZ
5320 *
5321 * Assumes the sched_domain tree is fully constructed
01a08546 5322 */
e3589f6c
PZ
5323static int
5324build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5325{
dce840a0
PZ
5326 struct sched_group *first = NULL, *last = NULL;
5327 struct sd_data *sdd = sd->private;
5328 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5329 struct cpumask *covered;
dce840a0 5330 int i;
9c1cfda2 5331
e3589f6c
PZ
5332 get_group(cpu, sdd, &sd->groups);
5333 atomic_inc(&sd->groups->ref);
5334
5335 if (cpu != cpumask_first(sched_domain_span(sd)))
5336 return 0;
5337
f96225fd
PZ
5338 lockdep_assert_held(&sched_domains_mutex);
5339 covered = sched_domains_tmpmask;
5340
dce840a0 5341 cpumask_clear(covered);
6711cab4 5342
dce840a0
PZ
5343 for_each_cpu(i, span) {
5344 struct sched_group *sg;
5345 int group = get_group(i, sdd, &sg);
5346 int j;
6711cab4 5347
dce840a0
PZ
5348 if (cpumask_test_cpu(i, covered))
5349 continue;
6711cab4 5350
dce840a0 5351 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5352 sg->sgp->power = 0;
c1174876 5353 cpumask_setall(sched_group_mask(sg));
0601a88d 5354
dce840a0
PZ
5355 for_each_cpu(j, span) {
5356 if (get_group(j, sdd, NULL) != group)
5357 continue;
0601a88d 5358
dce840a0
PZ
5359 cpumask_set_cpu(j, covered);
5360 cpumask_set_cpu(j, sched_group_cpus(sg));
5361 }
0601a88d 5362
dce840a0
PZ
5363 if (!first)
5364 first = sg;
5365 if (last)
5366 last->next = sg;
5367 last = sg;
5368 }
5369 last->next = first;
e3589f6c
PZ
5370
5371 return 0;
0601a88d 5372}
51888ca2 5373
89c4710e
SS
5374/*
5375 * Initialize sched groups cpu_power.
5376 *
5377 * cpu_power indicates the capacity of sched group, which is used while
5378 * distributing the load between different sched groups in a sched domain.
5379 * Typically cpu_power for all the groups in a sched domain will be same unless
5380 * there are asymmetries in the topology. If there are asymmetries, group
5381 * having more cpu_power will pickup more load compared to the group having
5382 * less cpu_power.
89c4710e
SS
5383 */
5384static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5385{
e3589f6c 5386 struct sched_group *sg = sd->groups;
89c4710e 5387
e3589f6c
PZ
5388 WARN_ON(!sd || !sg);
5389
5390 do {
5391 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5392 sg = sg->next;
5393 } while (sg != sd->groups);
89c4710e 5394
c1174876 5395 if (cpu != group_balance_cpu(sg))
e3589f6c 5396 return;
aae6d3dd 5397
d274cb30 5398 update_group_power(sd, cpu);
69e1e811 5399 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5400}
5401
029632fb
PZ
5402int __weak arch_sd_sibling_asym_packing(void)
5403{
5404 return 0*SD_ASYM_PACKING;
89c4710e
SS
5405}
5406
7c16ec58
MT
5407/*
5408 * Initializers for schedule domains
5409 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5410 */
5411
a5d8c348
IM
5412#ifdef CONFIG_SCHED_DEBUG
5413# define SD_INIT_NAME(sd, type) sd->name = #type
5414#else
5415# define SD_INIT_NAME(sd, type) do { } while (0)
5416#endif
5417
54ab4ff4
PZ
5418#define SD_INIT_FUNC(type) \
5419static noinline struct sched_domain * \
5420sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5421{ \
5422 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5423 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5424 SD_INIT_NAME(sd, type); \
5425 sd->private = &tl->data; \
5426 return sd; \
7c16ec58
MT
5427}
5428
5429SD_INIT_FUNC(CPU)
7c16ec58
MT
5430#ifdef CONFIG_SCHED_SMT
5431 SD_INIT_FUNC(SIBLING)
5432#endif
5433#ifdef CONFIG_SCHED_MC
5434 SD_INIT_FUNC(MC)
5435#endif
01a08546
HC
5436#ifdef CONFIG_SCHED_BOOK
5437 SD_INIT_FUNC(BOOK)
5438#endif
7c16ec58 5439
1d3504fc 5440static int default_relax_domain_level = -1;
60495e77 5441int sched_domain_level_max;
1d3504fc
HS
5442
5443static int __init setup_relax_domain_level(char *str)
5444{
a841f8ce
DS
5445 if (kstrtoint(str, 0, &default_relax_domain_level))
5446 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5447
1d3504fc
HS
5448 return 1;
5449}
5450__setup("relax_domain_level=", setup_relax_domain_level);
5451
5452static void set_domain_attribute(struct sched_domain *sd,
5453 struct sched_domain_attr *attr)
5454{
5455 int request;
5456
5457 if (!attr || attr->relax_domain_level < 0) {
5458 if (default_relax_domain_level < 0)
5459 return;
5460 else
5461 request = default_relax_domain_level;
5462 } else
5463 request = attr->relax_domain_level;
5464 if (request < sd->level) {
5465 /* turn off idle balance on this domain */
c88d5910 5466 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5467 } else {
5468 /* turn on idle balance on this domain */
c88d5910 5469 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5470 }
5471}
5472
54ab4ff4
PZ
5473static void __sdt_free(const struct cpumask *cpu_map);
5474static int __sdt_alloc(const struct cpumask *cpu_map);
5475
2109b99e
AH
5476static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5477 const struct cpumask *cpu_map)
5478{
5479 switch (what) {
2109b99e 5480 case sa_rootdomain:
822ff793
PZ
5481 if (!atomic_read(&d->rd->refcount))
5482 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5483 case sa_sd:
5484 free_percpu(d->sd); /* fall through */
dce840a0 5485 case sa_sd_storage:
54ab4ff4 5486 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5487 case sa_none:
5488 break;
5489 }
5490}
3404c8d9 5491
2109b99e
AH
5492static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5493 const struct cpumask *cpu_map)
5494{
dce840a0
PZ
5495 memset(d, 0, sizeof(*d));
5496
54ab4ff4
PZ
5497 if (__sdt_alloc(cpu_map))
5498 return sa_sd_storage;
dce840a0
PZ
5499 d->sd = alloc_percpu(struct sched_domain *);
5500 if (!d->sd)
5501 return sa_sd_storage;
2109b99e 5502 d->rd = alloc_rootdomain();
dce840a0 5503 if (!d->rd)
21d42ccf 5504 return sa_sd;
2109b99e
AH
5505 return sa_rootdomain;
5506}
57d885fe 5507
dce840a0
PZ
5508/*
5509 * NULL the sd_data elements we've used to build the sched_domain and
5510 * sched_group structure so that the subsequent __free_domain_allocs()
5511 * will not free the data we're using.
5512 */
5513static void claim_allocations(int cpu, struct sched_domain *sd)
5514{
5515 struct sd_data *sdd = sd->private;
dce840a0
PZ
5516
5517 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5518 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5519
e3589f6c 5520 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5521 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5522
5523 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5524 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5525}
5526
2c402dc3
PZ
5527#ifdef CONFIG_SCHED_SMT
5528static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5529{
2c402dc3 5530 return topology_thread_cpumask(cpu);
3bd65a80 5531}
2c402dc3 5532#endif
7f4588f3 5533
d069b916
PZ
5534/*
5535 * Topology list, bottom-up.
5536 */
2c402dc3 5537static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5538#ifdef CONFIG_SCHED_SMT
5539 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5540#endif
1e9f28fa 5541#ifdef CONFIG_SCHED_MC
2c402dc3 5542 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5543#endif
d069b916
PZ
5544#ifdef CONFIG_SCHED_BOOK
5545 { sd_init_BOOK, cpu_book_mask, },
5546#endif
5547 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5548 { NULL, },
5549};
5550
5551static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5552
cb83b629
PZ
5553#ifdef CONFIG_NUMA
5554
5555static int sched_domains_numa_levels;
cb83b629
PZ
5556static int *sched_domains_numa_distance;
5557static struct cpumask ***sched_domains_numa_masks;
5558static int sched_domains_curr_level;
5559
cb83b629
PZ
5560static inline int sd_local_flags(int level)
5561{
10717dcd 5562 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5563 return 0;
5564
5565 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5566}
5567
5568static struct sched_domain *
5569sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5570{
5571 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5572 int level = tl->numa_level;
5573 int sd_weight = cpumask_weight(
5574 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5575
5576 *sd = (struct sched_domain){
5577 .min_interval = sd_weight,
5578 .max_interval = 2*sd_weight,
5579 .busy_factor = 32,
870a0bb5 5580 .imbalance_pct = 125,
cb83b629
PZ
5581 .cache_nice_tries = 2,
5582 .busy_idx = 3,
5583 .idle_idx = 2,
5584 .newidle_idx = 0,
5585 .wake_idx = 0,
5586 .forkexec_idx = 0,
5587
5588 .flags = 1*SD_LOAD_BALANCE
5589 | 1*SD_BALANCE_NEWIDLE
5590 | 0*SD_BALANCE_EXEC
5591 | 0*SD_BALANCE_FORK
5592 | 0*SD_BALANCE_WAKE
5593 | 0*SD_WAKE_AFFINE
cb83b629 5594 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5595 | 0*SD_SHARE_PKG_RESOURCES
5596 | 1*SD_SERIALIZE
5597 | 0*SD_PREFER_SIBLING
5598 | sd_local_flags(level)
5599 ,
5600 .last_balance = jiffies,
5601 .balance_interval = sd_weight,
5602 };
5603 SD_INIT_NAME(sd, NUMA);
5604 sd->private = &tl->data;
5605
5606 /*
5607 * Ugly hack to pass state to sd_numa_mask()...
5608 */
5609 sched_domains_curr_level = tl->numa_level;
5610
5611 return sd;
5612}
5613
5614static const struct cpumask *sd_numa_mask(int cpu)
5615{
5616 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5617}
5618
d039ac60
PZ
5619static void sched_numa_warn(const char *str)
5620{
5621 static int done = false;
5622 int i,j;
5623
5624 if (done)
5625 return;
5626
5627 done = true;
5628
5629 printk(KERN_WARNING "ERROR: %s\n\n", str);
5630
5631 for (i = 0; i < nr_node_ids; i++) {
5632 printk(KERN_WARNING " ");
5633 for (j = 0; j < nr_node_ids; j++)
5634 printk(KERN_CONT "%02d ", node_distance(i,j));
5635 printk(KERN_CONT "\n");
5636 }
5637 printk(KERN_WARNING "\n");
5638}
5639
5640static bool find_numa_distance(int distance)
5641{
5642 int i;
5643
5644 if (distance == node_distance(0, 0))
5645 return true;
5646
5647 for (i = 0; i < sched_domains_numa_levels; i++) {
5648 if (sched_domains_numa_distance[i] == distance)
5649 return true;
5650 }
5651
5652 return false;
5653}
5654
cb83b629
PZ
5655static void sched_init_numa(void)
5656{
5657 int next_distance, curr_distance = node_distance(0, 0);
5658 struct sched_domain_topology_level *tl;
5659 int level = 0;
5660 int i, j, k;
5661
cb83b629
PZ
5662 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5663 if (!sched_domains_numa_distance)
5664 return;
5665
5666 /*
5667 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5668 * unique distances in the node_distance() table.
5669 *
5670 * Assumes node_distance(0,j) includes all distances in
5671 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5672 */
5673 next_distance = curr_distance;
5674 for (i = 0; i < nr_node_ids; i++) {
5675 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5676 for (k = 0; k < nr_node_ids; k++) {
5677 int distance = node_distance(i, k);
5678
5679 if (distance > curr_distance &&
5680 (distance < next_distance ||
5681 next_distance == curr_distance))
5682 next_distance = distance;
5683
5684 /*
5685 * While not a strong assumption it would be nice to know
5686 * about cases where if node A is connected to B, B is not
5687 * equally connected to A.
5688 */
5689 if (sched_debug() && node_distance(k, i) != distance)
5690 sched_numa_warn("Node-distance not symmetric");
5691
5692 if (sched_debug() && i && !find_numa_distance(distance))
5693 sched_numa_warn("Node-0 not representative");
5694 }
5695 if (next_distance != curr_distance) {
5696 sched_domains_numa_distance[level++] = next_distance;
5697 sched_domains_numa_levels = level;
5698 curr_distance = next_distance;
5699 } else break;
cb83b629 5700 }
d039ac60
PZ
5701
5702 /*
5703 * In case of sched_debug() we verify the above assumption.
5704 */
5705 if (!sched_debug())
5706 break;
cb83b629
PZ
5707 }
5708 /*
5709 * 'level' contains the number of unique distances, excluding the
5710 * identity distance node_distance(i,i).
5711 *
28b4a521 5712 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5713 * numbers.
5714 */
5715
5f7865f3
TC
5716 /*
5717 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5718 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5719 * the array will contain less then 'level' members. This could be
5720 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5721 * in other functions.
5722 *
5723 * We reset it to 'level' at the end of this function.
5724 */
5725 sched_domains_numa_levels = 0;
5726
cb83b629
PZ
5727 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5728 if (!sched_domains_numa_masks)
5729 return;
5730
5731 /*
5732 * Now for each level, construct a mask per node which contains all
5733 * cpus of nodes that are that many hops away from us.
5734 */
5735 for (i = 0; i < level; i++) {
5736 sched_domains_numa_masks[i] =
5737 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5738 if (!sched_domains_numa_masks[i])
5739 return;
5740
5741 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5742 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5743 if (!mask)
5744 return;
5745
5746 sched_domains_numa_masks[i][j] = mask;
5747
5748 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5749 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5750 continue;
5751
5752 cpumask_or(mask, mask, cpumask_of_node(k));
5753 }
5754 }
5755 }
5756
5757 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5758 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5759 if (!tl)
5760 return;
5761
5762 /*
5763 * Copy the default topology bits..
5764 */
5765 for (i = 0; default_topology[i].init; i++)
5766 tl[i] = default_topology[i];
5767
5768 /*
5769 * .. and append 'j' levels of NUMA goodness.
5770 */
5771 for (j = 0; j < level; i++, j++) {
5772 tl[i] = (struct sched_domain_topology_level){
5773 .init = sd_numa_init,
5774 .mask = sd_numa_mask,
5775 .flags = SDTL_OVERLAP,
5776 .numa_level = j,
5777 };
5778 }
5779
5780 sched_domain_topology = tl;
5f7865f3
TC
5781
5782 sched_domains_numa_levels = level;
cb83b629 5783}
301a5cba
TC
5784
5785static void sched_domains_numa_masks_set(int cpu)
5786{
5787 int i, j;
5788 int node = cpu_to_node(cpu);
5789
5790 for (i = 0; i < sched_domains_numa_levels; i++) {
5791 for (j = 0; j < nr_node_ids; j++) {
5792 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5793 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5794 }
5795 }
5796}
5797
5798static void sched_domains_numa_masks_clear(int cpu)
5799{
5800 int i, j;
5801 for (i = 0; i < sched_domains_numa_levels; i++) {
5802 for (j = 0; j < nr_node_ids; j++)
5803 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5804 }
5805}
5806
5807/*
5808 * Update sched_domains_numa_masks[level][node] array when new cpus
5809 * are onlined.
5810 */
5811static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5812 unsigned long action,
5813 void *hcpu)
5814{
5815 int cpu = (long)hcpu;
5816
5817 switch (action & ~CPU_TASKS_FROZEN) {
5818 case CPU_ONLINE:
5819 sched_domains_numa_masks_set(cpu);
5820 break;
5821
5822 case CPU_DEAD:
5823 sched_domains_numa_masks_clear(cpu);
5824 break;
5825
5826 default:
5827 return NOTIFY_DONE;
5828 }
5829
5830 return NOTIFY_OK;
cb83b629
PZ
5831}
5832#else
5833static inline void sched_init_numa(void)
5834{
5835}
301a5cba
TC
5836
5837static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5838 unsigned long action,
5839 void *hcpu)
5840{
5841 return 0;
5842}
cb83b629
PZ
5843#endif /* CONFIG_NUMA */
5844
54ab4ff4
PZ
5845static int __sdt_alloc(const struct cpumask *cpu_map)
5846{
5847 struct sched_domain_topology_level *tl;
5848 int j;
5849
5850 for (tl = sched_domain_topology; tl->init; tl++) {
5851 struct sd_data *sdd = &tl->data;
5852
5853 sdd->sd = alloc_percpu(struct sched_domain *);
5854 if (!sdd->sd)
5855 return -ENOMEM;
5856
5857 sdd->sg = alloc_percpu(struct sched_group *);
5858 if (!sdd->sg)
5859 return -ENOMEM;
5860
9c3f75cb
PZ
5861 sdd->sgp = alloc_percpu(struct sched_group_power *);
5862 if (!sdd->sgp)
5863 return -ENOMEM;
5864
54ab4ff4
PZ
5865 for_each_cpu(j, cpu_map) {
5866 struct sched_domain *sd;
5867 struct sched_group *sg;
9c3f75cb 5868 struct sched_group_power *sgp;
54ab4ff4
PZ
5869
5870 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5871 GFP_KERNEL, cpu_to_node(j));
5872 if (!sd)
5873 return -ENOMEM;
5874
5875 *per_cpu_ptr(sdd->sd, j) = sd;
5876
5877 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5878 GFP_KERNEL, cpu_to_node(j));
5879 if (!sg)
5880 return -ENOMEM;
5881
30b4e9eb
IM
5882 sg->next = sg;
5883
54ab4ff4 5884 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5885
c1174876 5886 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5887 GFP_KERNEL, cpu_to_node(j));
5888 if (!sgp)
5889 return -ENOMEM;
5890
5891 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5892 }
5893 }
5894
5895 return 0;
5896}
5897
5898static void __sdt_free(const struct cpumask *cpu_map)
5899{
5900 struct sched_domain_topology_level *tl;
5901 int j;
5902
5903 for (tl = sched_domain_topology; tl->init; tl++) {
5904 struct sd_data *sdd = &tl->data;
5905
5906 for_each_cpu(j, cpu_map) {
fb2cf2c6 5907 struct sched_domain *sd;
5908
5909 if (sdd->sd) {
5910 sd = *per_cpu_ptr(sdd->sd, j);
5911 if (sd && (sd->flags & SD_OVERLAP))
5912 free_sched_groups(sd->groups, 0);
5913 kfree(*per_cpu_ptr(sdd->sd, j));
5914 }
5915
5916 if (sdd->sg)
5917 kfree(*per_cpu_ptr(sdd->sg, j));
5918 if (sdd->sgp)
5919 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5920 }
5921 free_percpu(sdd->sd);
fb2cf2c6 5922 sdd->sd = NULL;
54ab4ff4 5923 free_percpu(sdd->sg);
fb2cf2c6 5924 sdd->sg = NULL;
9c3f75cb 5925 free_percpu(sdd->sgp);
fb2cf2c6 5926 sdd->sgp = NULL;
54ab4ff4
PZ
5927 }
5928}
5929
2c402dc3
PZ
5930struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5931 struct s_data *d, const struct cpumask *cpu_map,
d069b916 5932 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
5933 int cpu)
5934{
54ab4ff4 5935 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5936 if (!sd)
d069b916 5937 return child;
2c402dc3 5938
2c402dc3 5939 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
5940 if (child) {
5941 sd->level = child->level + 1;
5942 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 5943 child->parent = sd;
60495e77 5944 }
d069b916 5945 sd->child = child;
a841f8ce 5946 set_domain_attribute(sd, attr);
2c402dc3
PZ
5947
5948 return sd;
5949}
5950
2109b99e
AH
5951/*
5952 * Build sched domains for a given set of cpus and attach the sched domains
5953 * to the individual cpus
5954 */
dce840a0
PZ
5955static int build_sched_domains(const struct cpumask *cpu_map,
5956 struct sched_domain_attr *attr)
2109b99e
AH
5957{
5958 enum s_alloc alloc_state = sa_none;
dce840a0 5959 struct sched_domain *sd;
2109b99e 5960 struct s_data d;
822ff793 5961 int i, ret = -ENOMEM;
9c1cfda2 5962
2109b99e
AH
5963 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5964 if (alloc_state != sa_rootdomain)
5965 goto error;
9c1cfda2 5966
dce840a0 5967 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 5968 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
5969 struct sched_domain_topology_level *tl;
5970
3bd65a80 5971 sd = NULL;
e3589f6c 5972 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 5973 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
5974 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5975 sd->flags |= SD_OVERLAP;
d110235d
PZ
5976 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5977 break;
e3589f6c 5978 }
d274cb30 5979
d069b916
PZ
5980 while (sd->child)
5981 sd = sd->child;
5982
21d42ccf 5983 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
5984 }
5985
5986 /* Build the groups for the domains */
5987 for_each_cpu(i, cpu_map) {
5988 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5989 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
5990 if (sd->flags & SD_OVERLAP) {
5991 if (build_overlap_sched_groups(sd, i))
5992 goto error;
5993 } else {
5994 if (build_sched_groups(sd, i))
5995 goto error;
5996 }
1cf51902 5997 }
a06dadbe 5998 }
9c1cfda2 5999
1da177e4 6000 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6001 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6002 if (!cpumask_test_cpu(i, cpu_map))
6003 continue;
9c1cfda2 6004
dce840a0
PZ
6005 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6006 claim_allocations(i, sd);
cd4ea6ae 6007 init_sched_groups_power(i, sd);
dce840a0 6008 }
f712c0c7 6009 }
9c1cfda2 6010
1da177e4 6011 /* Attach the domains */
dce840a0 6012 rcu_read_lock();
abcd083a 6013 for_each_cpu(i, cpu_map) {
21d42ccf 6014 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6015 cpu_attach_domain(sd, d.rd, i);
1da177e4 6016 }
dce840a0 6017 rcu_read_unlock();
51888ca2 6018
822ff793 6019 ret = 0;
51888ca2 6020error:
2109b99e 6021 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6022 return ret;
1da177e4 6023}
029190c5 6024
acc3f5d7 6025static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6026static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6027static struct sched_domain_attr *dattr_cur;
6028 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6029
6030/*
6031 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6032 * cpumask) fails, then fallback to a single sched domain,
6033 * as determined by the single cpumask fallback_doms.
029190c5 6034 */
4212823f 6035static cpumask_var_t fallback_doms;
029190c5 6036
ee79d1bd
HC
6037/*
6038 * arch_update_cpu_topology lets virtualized architectures update the
6039 * cpu core maps. It is supposed to return 1 if the topology changed
6040 * or 0 if it stayed the same.
6041 */
6042int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6043{
ee79d1bd 6044 return 0;
22e52b07
HC
6045}
6046
acc3f5d7
RR
6047cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6048{
6049 int i;
6050 cpumask_var_t *doms;
6051
6052 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6053 if (!doms)
6054 return NULL;
6055 for (i = 0; i < ndoms; i++) {
6056 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6057 free_sched_domains(doms, i);
6058 return NULL;
6059 }
6060 }
6061 return doms;
6062}
6063
6064void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6065{
6066 unsigned int i;
6067 for (i = 0; i < ndoms; i++)
6068 free_cpumask_var(doms[i]);
6069 kfree(doms);
6070}
6071
1a20ff27 6072/*
41a2d6cf 6073 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6074 * For now this just excludes isolated cpus, but could be used to
6075 * exclude other special cases in the future.
1a20ff27 6076 */
c4a8849a 6077static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6078{
7378547f
MM
6079 int err;
6080
22e52b07 6081 arch_update_cpu_topology();
029190c5 6082 ndoms_cur = 1;
acc3f5d7 6083 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6084 if (!doms_cur)
acc3f5d7
RR
6085 doms_cur = &fallback_doms;
6086 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6087 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6088 register_sched_domain_sysctl();
7378547f
MM
6089
6090 return err;
1a20ff27
DG
6091}
6092
1a20ff27
DG
6093/*
6094 * Detach sched domains from a group of cpus specified in cpu_map
6095 * These cpus will now be attached to the NULL domain
6096 */
96f874e2 6097static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6098{
6099 int i;
6100
dce840a0 6101 rcu_read_lock();
abcd083a 6102 for_each_cpu(i, cpu_map)
57d885fe 6103 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6104 rcu_read_unlock();
1a20ff27
DG
6105}
6106
1d3504fc
HS
6107/* handle null as "default" */
6108static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6109 struct sched_domain_attr *new, int idx_new)
6110{
6111 struct sched_domain_attr tmp;
6112
6113 /* fast path */
6114 if (!new && !cur)
6115 return 1;
6116
6117 tmp = SD_ATTR_INIT;
6118 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6119 new ? (new + idx_new) : &tmp,
6120 sizeof(struct sched_domain_attr));
6121}
6122
029190c5
PJ
6123/*
6124 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6125 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6126 * doms_new[] to the current sched domain partitioning, doms_cur[].
6127 * It destroys each deleted domain and builds each new domain.
6128 *
acc3f5d7 6129 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6130 * The masks don't intersect (don't overlap.) We should setup one
6131 * sched domain for each mask. CPUs not in any of the cpumasks will
6132 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6133 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6134 * it as it is.
6135 *
acc3f5d7
RR
6136 * The passed in 'doms_new' should be allocated using
6137 * alloc_sched_domains. This routine takes ownership of it and will
6138 * free_sched_domains it when done with it. If the caller failed the
6139 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6140 * and partition_sched_domains() will fallback to the single partition
6141 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6142 *
96f874e2 6143 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6144 * ndoms_new == 0 is a special case for destroying existing domains,
6145 * and it will not create the default domain.
dfb512ec 6146 *
029190c5
PJ
6147 * Call with hotplug lock held
6148 */
acc3f5d7 6149void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6150 struct sched_domain_attr *dattr_new)
029190c5 6151{
dfb512ec 6152 int i, j, n;
d65bd5ec 6153 int new_topology;
029190c5 6154
712555ee 6155 mutex_lock(&sched_domains_mutex);
a1835615 6156
7378547f
MM
6157 /* always unregister in case we don't destroy any domains */
6158 unregister_sched_domain_sysctl();
6159
d65bd5ec
HC
6160 /* Let architecture update cpu core mappings. */
6161 new_topology = arch_update_cpu_topology();
6162
dfb512ec 6163 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6164
6165 /* Destroy deleted domains */
6166 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6167 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6168 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6169 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6170 goto match1;
6171 }
6172 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6173 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6174match1:
6175 ;
6176 }
6177
e761b772
MK
6178 if (doms_new == NULL) {
6179 ndoms_cur = 0;
acc3f5d7 6180 doms_new = &fallback_doms;
6ad4c188 6181 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6182 WARN_ON_ONCE(dattr_new);
e761b772
MK
6183 }
6184
029190c5
PJ
6185 /* Build new domains */
6186 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6187 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6188 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6189 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6190 goto match2;
6191 }
6192 /* no match - add a new doms_new */
dce840a0 6193 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6194match2:
6195 ;
6196 }
6197
6198 /* Remember the new sched domains */
acc3f5d7
RR
6199 if (doms_cur != &fallback_doms)
6200 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6201 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6202 doms_cur = doms_new;
1d3504fc 6203 dattr_cur = dattr_new;
029190c5 6204 ndoms_cur = ndoms_new;
7378547f
MM
6205
6206 register_sched_domain_sysctl();
a1835615 6207
712555ee 6208 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6209}
6210
d35be8ba
SB
6211static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6212
1da177e4 6213/*
3a101d05
TH
6214 * Update cpusets according to cpu_active mask. If cpusets are
6215 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6216 * around partition_sched_domains().
d35be8ba
SB
6217 *
6218 * If we come here as part of a suspend/resume, don't touch cpusets because we
6219 * want to restore it back to its original state upon resume anyway.
1da177e4 6220 */
0b2e918a
TH
6221static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6222 void *hcpu)
e761b772 6223{
d35be8ba
SB
6224 switch (action) {
6225 case CPU_ONLINE_FROZEN:
6226 case CPU_DOWN_FAILED_FROZEN:
6227
6228 /*
6229 * num_cpus_frozen tracks how many CPUs are involved in suspend
6230 * resume sequence. As long as this is not the last online
6231 * operation in the resume sequence, just build a single sched
6232 * domain, ignoring cpusets.
6233 */
6234 num_cpus_frozen--;
6235 if (likely(num_cpus_frozen)) {
6236 partition_sched_domains(1, NULL, NULL);
6237 break;
6238 }
6239
6240 /*
6241 * This is the last CPU online operation. So fall through and
6242 * restore the original sched domains by considering the
6243 * cpuset configurations.
6244 */
6245
e761b772 6246 case CPU_ONLINE:
6ad4c188 6247 case CPU_DOWN_FAILED:
7ddf96b0 6248 cpuset_update_active_cpus(true);
d35be8ba 6249 break;
3a101d05
TH
6250 default:
6251 return NOTIFY_DONE;
6252 }
d35be8ba 6253 return NOTIFY_OK;
3a101d05 6254}
e761b772 6255
0b2e918a
TH
6256static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6257 void *hcpu)
3a101d05 6258{
d35be8ba 6259 switch (action) {
3a101d05 6260 case CPU_DOWN_PREPARE:
7ddf96b0 6261 cpuset_update_active_cpus(false);
d35be8ba
SB
6262 break;
6263 case CPU_DOWN_PREPARE_FROZEN:
6264 num_cpus_frozen++;
6265 partition_sched_domains(1, NULL, NULL);
6266 break;
e761b772
MK
6267 default:
6268 return NOTIFY_DONE;
6269 }
d35be8ba 6270 return NOTIFY_OK;
e761b772 6271}
e761b772 6272
1da177e4
LT
6273void __init sched_init_smp(void)
6274{
dcc30a35
RR
6275 cpumask_var_t non_isolated_cpus;
6276
6277 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6278 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6279
cb83b629
PZ
6280 sched_init_numa();
6281
95402b38 6282 get_online_cpus();
712555ee 6283 mutex_lock(&sched_domains_mutex);
c4a8849a 6284 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6285 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6286 if (cpumask_empty(non_isolated_cpus))
6287 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6288 mutex_unlock(&sched_domains_mutex);
95402b38 6289 put_online_cpus();
e761b772 6290
301a5cba 6291 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6292 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6293 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6294
b328ca18 6295 init_hrtick();
5c1e1767
NP
6296
6297 /* Move init over to a non-isolated CPU */
dcc30a35 6298 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6299 BUG();
19978ca6 6300 sched_init_granularity();
dcc30a35 6301 free_cpumask_var(non_isolated_cpus);
4212823f 6302
0e3900e6 6303 init_sched_rt_class();
1da177e4
LT
6304}
6305#else
6306void __init sched_init_smp(void)
6307{
19978ca6 6308 sched_init_granularity();
1da177e4
LT
6309}
6310#endif /* CONFIG_SMP */
6311
cd1bb94b
AB
6312const_debug unsigned int sysctl_timer_migration = 1;
6313
1da177e4
LT
6314int in_sched_functions(unsigned long addr)
6315{
1da177e4
LT
6316 return in_lock_functions(addr) ||
6317 (addr >= (unsigned long)__sched_text_start
6318 && addr < (unsigned long)__sched_text_end);
6319}
6320
029632fb 6321#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6322/*
6323 * Default task group.
6324 * Every task in system belongs to this group at bootup.
6325 */
029632fb 6326struct task_group root_task_group;
35cf4e50 6327LIST_HEAD(task_groups);
052f1dc7 6328#endif
6f505b16 6329
e6252c3e 6330DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6331
1da177e4
LT
6332void __init sched_init(void)
6333{
dd41f596 6334 int i, j;
434d53b0
MT
6335 unsigned long alloc_size = 0, ptr;
6336
6337#ifdef CONFIG_FAIR_GROUP_SCHED
6338 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6339#endif
6340#ifdef CONFIG_RT_GROUP_SCHED
6341 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6342#endif
df7c8e84 6343#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6344 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6345#endif
434d53b0 6346 if (alloc_size) {
36b7b6d4 6347 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6348
6349#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6350 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6351 ptr += nr_cpu_ids * sizeof(void **);
6352
07e06b01 6353 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6354 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6355
6d6bc0ad 6356#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6357#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6358 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6359 ptr += nr_cpu_ids * sizeof(void **);
6360
07e06b01 6361 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6362 ptr += nr_cpu_ids * sizeof(void **);
6363
6d6bc0ad 6364#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6365#ifdef CONFIG_CPUMASK_OFFSTACK
6366 for_each_possible_cpu(i) {
e6252c3e 6367 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6368 ptr += cpumask_size();
6369 }
6370#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6371 }
dd41f596 6372
57d885fe
GH
6373#ifdef CONFIG_SMP
6374 init_defrootdomain();
6375#endif
6376
d0b27fa7
PZ
6377 init_rt_bandwidth(&def_rt_bandwidth,
6378 global_rt_period(), global_rt_runtime());
6379
6380#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6381 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6382 global_rt_period(), global_rt_runtime());
6d6bc0ad 6383#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6384
7c941438 6385#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6386 list_add(&root_task_group.list, &task_groups);
6387 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6388 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6389 autogroup_init(&init_task);
54c707e9 6390
7c941438 6391#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6392
0a945022 6393 for_each_possible_cpu(i) {
70b97a7f 6394 struct rq *rq;
1da177e4
LT
6395
6396 rq = cpu_rq(i);
05fa785c 6397 raw_spin_lock_init(&rq->lock);
7897986b 6398 rq->nr_running = 0;
dce48a84
TG
6399 rq->calc_load_active = 0;
6400 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6401 init_cfs_rq(&rq->cfs);
6f505b16 6402 init_rt_rq(&rq->rt, rq);
dd41f596 6403#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6404 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6405 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6406 /*
07e06b01 6407 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6408 *
6409 * In case of task-groups formed thr' the cgroup filesystem, it
6410 * gets 100% of the cpu resources in the system. This overall
6411 * system cpu resource is divided among the tasks of
07e06b01 6412 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6413 * based on each entity's (task or task-group's) weight
6414 * (se->load.weight).
6415 *
07e06b01 6416 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6417 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6418 * then A0's share of the cpu resource is:
6419 *
0d905bca 6420 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6421 *
07e06b01
YZ
6422 * We achieve this by letting root_task_group's tasks sit
6423 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6424 */
ab84d31e 6425 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6426 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6427#endif /* CONFIG_FAIR_GROUP_SCHED */
6428
6429 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6430#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6431 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6432 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6433#endif
1da177e4 6434
dd41f596
IM
6435 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6436 rq->cpu_load[j] = 0;
fdf3e95d
VP
6437
6438 rq->last_load_update_tick = jiffies;
6439
1da177e4 6440#ifdef CONFIG_SMP
41c7ce9a 6441 rq->sd = NULL;
57d885fe 6442 rq->rd = NULL;
1399fa78 6443 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6444 rq->post_schedule = 0;
1da177e4 6445 rq->active_balance = 0;
dd41f596 6446 rq->next_balance = jiffies;
1da177e4 6447 rq->push_cpu = 0;
0a2966b4 6448 rq->cpu = i;
1f11eb6a 6449 rq->online = 0;
eae0c9df
MG
6450 rq->idle_stamp = 0;
6451 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6452
6453 INIT_LIST_HEAD(&rq->cfs_tasks);
6454
dc938520 6455 rq_attach_root(rq, &def_root_domain);
3451d024 6456#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6457 rq->nohz_flags = 0;
83cd4fe2 6458#endif
265f22a9
FW
6459#ifdef CONFIG_NO_HZ_FULL
6460 rq->last_sched_tick = 0;
6461#endif
1da177e4 6462#endif
8f4d37ec 6463 init_rq_hrtick(rq);
1da177e4 6464 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6465 }
6466
2dd73a4f 6467 set_load_weight(&init_task);
b50f60ce 6468
e107be36
AK
6469#ifdef CONFIG_PREEMPT_NOTIFIERS
6470 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6471#endif
6472
b50f60ce 6473#ifdef CONFIG_RT_MUTEXES
732375c6 6474 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6475#endif
6476
1da177e4
LT
6477 /*
6478 * The boot idle thread does lazy MMU switching as well:
6479 */
6480 atomic_inc(&init_mm.mm_count);
6481 enter_lazy_tlb(&init_mm, current);
6482
6483 /*
6484 * Make us the idle thread. Technically, schedule() should not be
6485 * called from this thread, however somewhere below it might be,
6486 * but because we are the idle thread, we just pick up running again
6487 * when this runqueue becomes "idle".
6488 */
6489 init_idle(current, smp_processor_id());
dce48a84
TG
6490
6491 calc_load_update = jiffies + LOAD_FREQ;
6492
dd41f596
IM
6493 /*
6494 * During early bootup we pretend to be a normal task:
6495 */
6496 current->sched_class = &fair_sched_class;
6892b75e 6497
bf4d83f6 6498#ifdef CONFIG_SMP
4cb98839 6499 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6500 /* May be allocated at isolcpus cmdline parse time */
6501 if (cpu_isolated_map == NULL)
6502 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6503 idle_thread_set_boot_cpu();
029632fb
PZ
6504#endif
6505 init_sched_fair_class();
6a7b3dc3 6506
6892b75e 6507 scheduler_running = 1;
1da177e4
LT
6508}
6509
d902db1e 6510#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6511static inline int preempt_count_equals(int preempt_offset)
6512{
234da7bc 6513 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6514
4ba8216c 6515 return (nested == preempt_offset);
e4aafea2
FW
6516}
6517
d894837f 6518void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6519{
1da177e4
LT
6520 static unsigned long prev_jiffy; /* ratelimiting */
6521
b3fbab05 6522 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6523 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6524 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6525 return;
6526 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6527 return;
6528 prev_jiffy = jiffies;
6529
3df0fc5b
PZ
6530 printk(KERN_ERR
6531 "BUG: sleeping function called from invalid context at %s:%d\n",
6532 file, line);
6533 printk(KERN_ERR
6534 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6535 in_atomic(), irqs_disabled(),
6536 current->pid, current->comm);
aef745fc
IM
6537
6538 debug_show_held_locks(current);
6539 if (irqs_disabled())
6540 print_irqtrace_events(current);
6541 dump_stack();
1da177e4
LT
6542}
6543EXPORT_SYMBOL(__might_sleep);
6544#endif
6545
6546#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6547static void normalize_task(struct rq *rq, struct task_struct *p)
6548{
da7a735e
PZ
6549 const struct sched_class *prev_class = p->sched_class;
6550 int old_prio = p->prio;
3a5e4dc1 6551 int on_rq;
3e51f33f 6552
fd2f4419 6553 on_rq = p->on_rq;
3a5e4dc1 6554 if (on_rq)
4ca9b72b 6555 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6556 __setscheduler(rq, p, SCHED_NORMAL, 0);
6557 if (on_rq) {
4ca9b72b 6558 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6559 resched_task(rq->curr);
6560 }
da7a735e
PZ
6561
6562 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6563}
6564
1da177e4
LT
6565void normalize_rt_tasks(void)
6566{
a0f98a1c 6567 struct task_struct *g, *p;
1da177e4 6568 unsigned long flags;
70b97a7f 6569 struct rq *rq;
1da177e4 6570
4cf5d77a 6571 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6572 do_each_thread(g, p) {
178be793
IM
6573 /*
6574 * Only normalize user tasks:
6575 */
6576 if (!p->mm)
6577 continue;
6578
6cfb0d5d 6579 p->se.exec_start = 0;
6cfb0d5d 6580#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6581 p->se.statistics.wait_start = 0;
6582 p->se.statistics.sleep_start = 0;
6583 p->se.statistics.block_start = 0;
6cfb0d5d 6584#endif
dd41f596
IM
6585
6586 if (!rt_task(p)) {
6587 /*
6588 * Renice negative nice level userspace
6589 * tasks back to 0:
6590 */
6591 if (TASK_NICE(p) < 0 && p->mm)
6592 set_user_nice(p, 0);
1da177e4 6593 continue;
dd41f596 6594 }
1da177e4 6595
1d615482 6596 raw_spin_lock(&p->pi_lock);
b29739f9 6597 rq = __task_rq_lock(p);
1da177e4 6598
178be793 6599 normalize_task(rq, p);
3a5e4dc1 6600
b29739f9 6601 __task_rq_unlock(rq);
1d615482 6602 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6603 } while_each_thread(g, p);
6604
4cf5d77a 6605 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6606}
6607
6608#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6609
67fc4e0c 6610#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6611/*
67fc4e0c 6612 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6613 *
6614 * They can only be called when the whole system has been
6615 * stopped - every CPU needs to be quiescent, and no scheduling
6616 * activity can take place. Using them for anything else would
6617 * be a serious bug, and as a result, they aren't even visible
6618 * under any other configuration.
6619 */
6620
6621/**
6622 * curr_task - return the current task for a given cpu.
6623 * @cpu: the processor in question.
6624 *
6625 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6626 */
36c8b586 6627struct task_struct *curr_task(int cpu)
1df5c10a
LT
6628{
6629 return cpu_curr(cpu);
6630}
6631
67fc4e0c
JW
6632#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6633
6634#ifdef CONFIG_IA64
1df5c10a
LT
6635/**
6636 * set_curr_task - set the current task for a given cpu.
6637 * @cpu: the processor in question.
6638 * @p: the task pointer to set.
6639 *
6640 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6641 * are serviced on a separate stack. It allows the architecture to switch the
6642 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6643 * must be called with all CPU's synchronized, and interrupts disabled, the
6644 * and caller must save the original value of the current task (see
6645 * curr_task() above) and restore that value before reenabling interrupts and
6646 * re-starting the system.
6647 *
6648 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6649 */
36c8b586 6650void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6651{
6652 cpu_curr(cpu) = p;
6653}
6654
6655#endif
29f59db3 6656
7c941438 6657#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6658/* task_group_lock serializes the addition/removal of task groups */
6659static DEFINE_SPINLOCK(task_group_lock);
6660
bccbe08a
PZ
6661static void free_sched_group(struct task_group *tg)
6662{
6663 free_fair_sched_group(tg);
6664 free_rt_sched_group(tg);
e9aa1dd1 6665 autogroup_free(tg);
bccbe08a
PZ
6666 kfree(tg);
6667}
6668
6669/* allocate runqueue etc for a new task group */
ec7dc8ac 6670struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6671{
6672 struct task_group *tg;
bccbe08a
PZ
6673
6674 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6675 if (!tg)
6676 return ERR_PTR(-ENOMEM);
6677
ec7dc8ac 6678 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6679 goto err;
6680
ec7dc8ac 6681 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6682 goto err;
6683
ace783b9
LZ
6684 return tg;
6685
6686err:
6687 free_sched_group(tg);
6688 return ERR_PTR(-ENOMEM);
6689}
6690
6691void sched_online_group(struct task_group *tg, struct task_group *parent)
6692{
6693 unsigned long flags;
6694
8ed36996 6695 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6696 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6697
6698 WARN_ON(!parent); /* root should already exist */
6699
6700 tg->parent = parent;
f473aa5e 6701 INIT_LIST_HEAD(&tg->children);
09f2724a 6702 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6703 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6704}
6705
9b5b7751 6706/* rcu callback to free various structures associated with a task group */
6f505b16 6707static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6708{
29f59db3 6709 /* now it should be safe to free those cfs_rqs */
6f505b16 6710 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6711}
6712
9b5b7751 6713/* Destroy runqueue etc associated with a task group */
4cf86d77 6714void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6715{
6716 /* wait for possible concurrent references to cfs_rqs complete */
6717 call_rcu(&tg->rcu, free_sched_group_rcu);
6718}
6719
6720void sched_offline_group(struct task_group *tg)
29f59db3 6721{
8ed36996 6722 unsigned long flags;
9b5b7751 6723 int i;
29f59db3 6724
3d4b47b4
PZ
6725 /* end participation in shares distribution */
6726 for_each_possible_cpu(i)
bccbe08a 6727 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6728
6729 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6730 list_del_rcu(&tg->list);
f473aa5e 6731 list_del_rcu(&tg->siblings);
8ed36996 6732 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6733}
6734
9b5b7751 6735/* change task's runqueue when it moves between groups.
3a252015
IM
6736 * The caller of this function should have put the task in its new group
6737 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6738 * reflect its new group.
9b5b7751
SV
6739 */
6740void sched_move_task(struct task_struct *tsk)
29f59db3 6741{
8323f26c 6742 struct task_group *tg;
29f59db3
SV
6743 int on_rq, running;
6744 unsigned long flags;
6745 struct rq *rq;
6746
6747 rq = task_rq_lock(tsk, &flags);
6748
051a1d1a 6749 running = task_current(rq, tsk);
fd2f4419 6750 on_rq = tsk->on_rq;
29f59db3 6751
0e1f3483 6752 if (on_rq)
29f59db3 6753 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6754 if (unlikely(running))
6755 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6756
8323f26c
PZ
6757 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6758 lockdep_is_held(&tsk->sighand->siglock)),
6759 struct task_group, css);
6760 tg = autogroup_task_group(tsk, tg);
6761 tsk->sched_task_group = tg;
6762
810b3817 6763#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6764 if (tsk->sched_class->task_move_group)
6765 tsk->sched_class->task_move_group(tsk, on_rq);
6766 else
810b3817 6767#endif
b2b5ce02 6768 set_task_rq(tsk, task_cpu(tsk));
810b3817 6769
0e1f3483
HS
6770 if (unlikely(running))
6771 tsk->sched_class->set_curr_task(rq);
6772 if (on_rq)
371fd7e7 6773 enqueue_task(rq, tsk, 0);
29f59db3 6774
0122ec5b 6775 task_rq_unlock(rq, tsk, &flags);
29f59db3 6776}
7c941438 6777#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6778
a790de99 6779#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6780static unsigned long to_ratio(u64 period, u64 runtime)
6781{
6782 if (runtime == RUNTIME_INF)
9a7e0b18 6783 return 1ULL << 20;
9f0c1e56 6784
9a7e0b18 6785 return div64_u64(runtime << 20, period);
9f0c1e56 6786}
a790de99
PT
6787#endif
6788
6789#ifdef CONFIG_RT_GROUP_SCHED
6790/*
6791 * Ensure that the real time constraints are schedulable.
6792 */
6793static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6794
9a7e0b18
PZ
6795/* Must be called with tasklist_lock held */
6796static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6797{
9a7e0b18 6798 struct task_struct *g, *p;
b40b2e8e 6799
9a7e0b18 6800 do_each_thread(g, p) {
029632fb 6801 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6802 return 1;
6803 } while_each_thread(g, p);
b40b2e8e 6804
9a7e0b18
PZ
6805 return 0;
6806}
b40b2e8e 6807
9a7e0b18
PZ
6808struct rt_schedulable_data {
6809 struct task_group *tg;
6810 u64 rt_period;
6811 u64 rt_runtime;
6812};
b40b2e8e 6813
a790de99 6814static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6815{
6816 struct rt_schedulable_data *d = data;
6817 struct task_group *child;
6818 unsigned long total, sum = 0;
6819 u64 period, runtime;
b40b2e8e 6820
9a7e0b18
PZ
6821 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6822 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6823
9a7e0b18
PZ
6824 if (tg == d->tg) {
6825 period = d->rt_period;
6826 runtime = d->rt_runtime;
b40b2e8e 6827 }
b40b2e8e 6828
4653f803
PZ
6829 /*
6830 * Cannot have more runtime than the period.
6831 */
6832 if (runtime > period && runtime != RUNTIME_INF)
6833 return -EINVAL;
6f505b16 6834
4653f803
PZ
6835 /*
6836 * Ensure we don't starve existing RT tasks.
6837 */
9a7e0b18
PZ
6838 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6839 return -EBUSY;
6f505b16 6840
9a7e0b18 6841 total = to_ratio(period, runtime);
6f505b16 6842
4653f803
PZ
6843 /*
6844 * Nobody can have more than the global setting allows.
6845 */
6846 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6847 return -EINVAL;
6f505b16 6848
4653f803
PZ
6849 /*
6850 * The sum of our children's runtime should not exceed our own.
6851 */
9a7e0b18
PZ
6852 list_for_each_entry_rcu(child, &tg->children, siblings) {
6853 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6854 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6855
9a7e0b18
PZ
6856 if (child == d->tg) {
6857 period = d->rt_period;
6858 runtime = d->rt_runtime;
6859 }
6f505b16 6860
9a7e0b18 6861 sum += to_ratio(period, runtime);
9f0c1e56 6862 }
6f505b16 6863
9a7e0b18
PZ
6864 if (sum > total)
6865 return -EINVAL;
6866
6867 return 0;
6f505b16
PZ
6868}
6869
9a7e0b18 6870static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6871{
8277434e
PT
6872 int ret;
6873
9a7e0b18
PZ
6874 struct rt_schedulable_data data = {
6875 .tg = tg,
6876 .rt_period = period,
6877 .rt_runtime = runtime,
6878 };
6879
8277434e
PT
6880 rcu_read_lock();
6881 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6882 rcu_read_unlock();
6883
6884 return ret;
521f1a24
DG
6885}
6886
ab84d31e 6887static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6888 u64 rt_period, u64 rt_runtime)
6f505b16 6889{
ac086bc2 6890 int i, err = 0;
9f0c1e56 6891
9f0c1e56 6892 mutex_lock(&rt_constraints_mutex);
521f1a24 6893 read_lock(&tasklist_lock);
9a7e0b18
PZ
6894 err = __rt_schedulable(tg, rt_period, rt_runtime);
6895 if (err)
9f0c1e56 6896 goto unlock;
ac086bc2 6897
0986b11b 6898 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6899 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6900 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6901
6902 for_each_possible_cpu(i) {
6903 struct rt_rq *rt_rq = tg->rt_rq[i];
6904
0986b11b 6905 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6906 rt_rq->rt_runtime = rt_runtime;
0986b11b 6907 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6908 }
0986b11b 6909 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6910unlock:
521f1a24 6911 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6912 mutex_unlock(&rt_constraints_mutex);
6913
6914 return err;
6f505b16
PZ
6915}
6916
25cc7da7 6917static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6918{
6919 u64 rt_runtime, rt_period;
6920
6921 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6922 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6923 if (rt_runtime_us < 0)
6924 rt_runtime = RUNTIME_INF;
6925
ab84d31e 6926 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6927}
6928
25cc7da7 6929static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6930{
6931 u64 rt_runtime_us;
6932
d0b27fa7 6933 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6934 return -1;
6935
d0b27fa7 6936 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6937 do_div(rt_runtime_us, NSEC_PER_USEC);
6938 return rt_runtime_us;
6939}
d0b27fa7 6940
25cc7da7 6941static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
6942{
6943 u64 rt_runtime, rt_period;
6944
6945 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6946 rt_runtime = tg->rt_bandwidth.rt_runtime;
6947
619b0488
R
6948 if (rt_period == 0)
6949 return -EINVAL;
6950
ab84d31e 6951 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6952}
6953
25cc7da7 6954static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6955{
6956 u64 rt_period_us;
6957
6958 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6959 do_div(rt_period_us, NSEC_PER_USEC);
6960 return rt_period_us;
6961}
6962
6963static int sched_rt_global_constraints(void)
6964{
4653f803 6965 u64 runtime, period;
d0b27fa7
PZ
6966 int ret = 0;
6967
ec5d4989
HS
6968 if (sysctl_sched_rt_period <= 0)
6969 return -EINVAL;
6970
4653f803
PZ
6971 runtime = global_rt_runtime();
6972 period = global_rt_period();
6973
6974 /*
6975 * Sanity check on the sysctl variables.
6976 */
6977 if (runtime > period && runtime != RUNTIME_INF)
6978 return -EINVAL;
10b612f4 6979
d0b27fa7 6980 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6981 read_lock(&tasklist_lock);
4653f803 6982 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6983 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6984 mutex_unlock(&rt_constraints_mutex);
6985
6986 return ret;
6987}
54e99124 6988
25cc7da7 6989static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6990{
6991 /* Don't accept realtime tasks when there is no way for them to run */
6992 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6993 return 0;
6994
6995 return 1;
6996}
6997
6d6bc0ad 6998#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6999static int sched_rt_global_constraints(void)
7000{
ac086bc2
PZ
7001 unsigned long flags;
7002 int i;
7003
ec5d4989
HS
7004 if (sysctl_sched_rt_period <= 0)
7005 return -EINVAL;
7006
60aa605d
PZ
7007 /*
7008 * There's always some RT tasks in the root group
7009 * -- migration, kstopmachine etc..
7010 */
7011 if (sysctl_sched_rt_runtime == 0)
7012 return -EBUSY;
7013
0986b11b 7014 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7015 for_each_possible_cpu(i) {
7016 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7017
0986b11b 7018 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7019 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7020 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7021 }
0986b11b 7022 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7023
d0b27fa7
PZ
7024 return 0;
7025}
6d6bc0ad 7026#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7027
ce0dbbbb
CW
7028int sched_rr_handler(struct ctl_table *table, int write,
7029 void __user *buffer, size_t *lenp,
7030 loff_t *ppos)
7031{
7032 int ret;
7033 static DEFINE_MUTEX(mutex);
7034
7035 mutex_lock(&mutex);
7036 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7037 /* make sure that internally we keep jiffies */
7038 /* also, writing zero resets timeslice to default */
7039 if (!ret && write) {
7040 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7041 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7042 }
7043 mutex_unlock(&mutex);
7044 return ret;
7045}
7046
d0b27fa7 7047int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7048 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7049 loff_t *ppos)
7050{
7051 int ret;
7052 int old_period, old_runtime;
7053 static DEFINE_MUTEX(mutex);
7054
7055 mutex_lock(&mutex);
7056 old_period = sysctl_sched_rt_period;
7057 old_runtime = sysctl_sched_rt_runtime;
7058
8d65af78 7059 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7060
7061 if (!ret && write) {
7062 ret = sched_rt_global_constraints();
7063 if (ret) {
7064 sysctl_sched_rt_period = old_period;
7065 sysctl_sched_rt_runtime = old_runtime;
7066 } else {
7067 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7068 def_rt_bandwidth.rt_period =
7069 ns_to_ktime(global_rt_period());
7070 }
7071 }
7072 mutex_unlock(&mutex);
7073
7074 return ret;
7075}
68318b8e 7076
052f1dc7 7077#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7078
7079/* return corresponding task_group object of a cgroup */
2b01dfe3 7080static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7081{
2b01dfe3
PM
7082 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7083 struct task_group, css);
68318b8e
SV
7084}
7085
92fb9748 7086static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7087{
ec7dc8ac 7088 struct task_group *tg, *parent;
68318b8e 7089
2b01dfe3 7090 if (!cgrp->parent) {
68318b8e 7091 /* This is early initialization for the top cgroup */
07e06b01 7092 return &root_task_group.css;
68318b8e
SV
7093 }
7094
ec7dc8ac
DG
7095 parent = cgroup_tg(cgrp->parent);
7096 tg = sched_create_group(parent);
68318b8e
SV
7097 if (IS_ERR(tg))
7098 return ERR_PTR(-ENOMEM);
7099
68318b8e
SV
7100 return &tg->css;
7101}
7102
ace783b9
LZ
7103static int cpu_cgroup_css_online(struct cgroup *cgrp)
7104{
7105 struct task_group *tg = cgroup_tg(cgrp);
7106 struct task_group *parent;
7107
7108 if (!cgrp->parent)
7109 return 0;
7110
7111 parent = cgroup_tg(cgrp->parent);
7112 sched_online_group(tg, parent);
7113 return 0;
7114}
7115
92fb9748 7116static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7117{
2b01dfe3 7118 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7119
7120 sched_destroy_group(tg);
7121}
7122
ace783b9
LZ
7123static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7124{
7125 struct task_group *tg = cgroup_tg(cgrp);
7126
7127 sched_offline_group(tg);
7128}
7129
761b3ef5 7130static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7131 struct cgroup_taskset *tset)
68318b8e 7132{
bb9d97b6
TH
7133 struct task_struct *task;
7134
7135 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7136#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7137 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7138 return -EINVAL;
b68aa230 7139#else
bb9d97b6
TH
7140 /* We don't support RT-tasks being in separate groups */
7141 if (task->sched_class != &fair_sched_class)
7142 return -EINVAL;
b68aa230 7143#endif
bb9d97b6 7144 }
be367d09
BB
7145 return 0;
7146}
68318b8e 7147
761b3ef5 7148static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7149 struct cgroup_taskset *tset)
68318b8e 7150{
bb9d97b6
TH
7151 struct task_struct *task;
7152
7153 cgroup_taskset_for_each(task, cgrp, tset)
7154 sched_move_task(task);
68318b8e
SV
7155}
7156
068c5cc5 7157static void
761b3ef5
LZ
7158cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7159 struct task_struct *task)
068c5cc5
PZ
7160{
7161 /*
7162 * cgroup_exit() is called in the copy_process() failure path.
7163 * Ignore this case since the task hasn't ran yet, this avoids
7164 * trying to poke a half freed task state from generic code.
7165 */
7166 if (!(task->flags & PF_EXITING))
7167 return;
7168
7169 sched_move_task(task);
7170}
7171
052f1dc7 7172#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7173static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7174 u64 shareval)
68318b8e 7175{
c8b28116 7176 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7177}
7178
f4c753b7 7179static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7180{
2b01dfe3 7181 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7182
c8b28116 7183 return (u64) scale_load_down(tg->shares);
68318b8e 7184}
ab84d31e
PT
7185
7186#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7187static DEFINE_MUTEX(cfs_constraints_mutex);
7188
ab84d31e
PT
7189const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7190const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7191
a790de99
PT
7192static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7193
ab84d31e
PT
7194static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7195{
56f570e5 7196 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7197 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7198
7199 if (tg == &root_task_group)
7200 return -EINVAL;
7201
7202 /*
7203 * Ensure we have at some amount of bandwidth every period. This is
7204 * to prevent reaching a state of large arrears when throttled via
7205 * entity_tick() resulting in prolonged exit starvation.
7206 */
7207 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7208 return -EINVAL;
7209
7210 /*
7211 * Likewise, bound things on the otherside by preventing insane quota
7212 * periods. This also allows us to normalize in computing quota
7213 * feasibility.
7214 */
7215 if (period > max_cfs_quota_period)
7216 return -EINVAL;
7217
a790de99
PT
7218 mutex_lock(&cfs_constraints_mutex);
7219 ret = __cfs_schedulable(tg, period, quota);
7220 if (ret)
7221 goto out_unlock;
7222
58088ad0 7223 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7224 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7225 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7226 raw_spin_lock_irq(&cfs_b->lock);
7227 cfs_b->period = ns_to_ktime(period);
7228 cfs_b->quota = quota;
58088ad0 7229
a9cf55b2 7230 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7231 /* restart the period timer (if active) to handle new period expiry */
7232 if (runtime_enabled && cfs_b->timer_active) {
7233 /* force a reprogram */
7234 cfs_b->timer_active = 0;
7235 __start_cfs_bandwidth(cfs_b);
7236 }
ab84d31e
PT
7237 raw_spin_unlock_irq(&cfs_b->lock);
7238
7239 for_each_possible_cpu(i) {
7240 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7241 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7242
7243 raw_spin_lock_irq(&rq->lock);
58088ad0 7244 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7245 cfs_rq->runtime_remaining = 0;
671fd9da 7246
029632fb 7247 if (cfs_rq->throttled)
671fd9da 7248 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7249 raw_spin_unlock_irq(&rq->lock);
7250 }
a790de99
PT
7251out_unlock:
7252 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7253
a790de99 7254 return ret;
ab84d31e
PT
7255}
7256
7257int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7258{
7259 u64 quota, period;
7260
029632fb 7261 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7262 if (cfs_quota_us < 0)
7263 quota = RUNTIME_INF;
7264 else
7265 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7266
7267 return tg_set_cfs_bandwidth(tg, period, quota);
7268}
7269
7270long tg_get_cfs_quota(struct task_group *tg)
7271{
7272 u64 quota_us;
7273
029632fb 7274 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7275 return -1;
7276
029632fb 7277 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7278 do_div(quota_us, NSEC_PER_USEC);
7279
7280 return quota_us;
7281}
7282
7283int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7284{
7285 u64 quota, period;
7286
7287 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7288 quota = tg->cfs_bandwidth.quota;
ab84d31e 7289
ab84d31e
PT
7290 return tg_set_cfs_bandwidth(tg, period, quota);
7291}
7292
7293long tg_get_cfs_period(struct task_group *tg)
7294{
7295 u64 cfs_period_us;
7296
029632fb 7297 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7298 do_div(cfs_period_us, NSEC_PER_USEC);
7299
7300 return cfs_period_us;
7301}
7302
7303static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7304{
7305 return tg_get_cfs_quota(cgroup_tg(cgrp));
7306}
7307
7308static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7309 s64 cfs_quota_us)
7310{
7311 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7312}
7313
7314static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7315{
7316 return tg_get_cfs_period(cgroup_tg(cgrp));
7317}
7318
7319static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7320 u64 cfs_period_us)
7321{
7322 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7323}
7324
a790de99
PT
7325struct cfs_schedulable_data {
7326 struct task_group *tg;
7327 u64 period, quota;
7328};
7329
7330/*
7331 * normalize group quota/period to be quota/max_period
7332 * note: units are usecs
7333 */
7334static u64 normalize_cfs_quota(struct task_group *tg,
7335 struct cfs_schedulable_data *d)
7336{
7337 u64 quota, period;
7338
7339 if (tg == d->tg) {
7340 period = d->period;
7341 quota = d->quota;
7342 } else {
7343 period = tg_get_cfs_period(tg);
7344 quota = tg_get_cfs_quota(tg);
7345 }
7346
7347 /* note: these should typically be equivalent */
7348 if (quota == RUNTIME_INF || quota == -1)
7349 return RUNTIME_INF;
7350
7351 return to_ratio(period, quota);
7352}
7353
7354static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7355{
7356 struct cfs_schedulable_data *d = data;
029632fb 7357 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7358 s64 quota = 0, parent_quota = -1;
7359
7360 if (!tg->parent) {
7361 quota = RUNTIME_INF;
7362 } else {
029632fb 7363 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7364
7365 quota = normalize_cfs_quota(tg, d);
7366 parent_quota = parent_b->hierarchal_quota;
7367
7368 /*
7369 * ensure max(child_quota) <= parent_quota, inherit when no
7370 * limit is set
7371 */
7372 if (quota == RUNTIME_INF)
7373 quota = parent_quota;
7374 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7375 return -EINVAL;
7376 }
7377 cfs_b->hierarchal_quota = quota;
7378
7379 return 0;
7380}
7381
7382static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7383{
8277434e 7384 int ret;
a790de99
PT
7385 struct cfs_schedulable_data data = {
7386 .tg = tg,
7387 .period = period,
7388 .quota = quota,
7389 };
7390
7391 if (quota != RUNTIME_INF) {
7392 do_div(data.period, NSEC_PER_USEC);
7393 do_div(data.quota, NSEC_PER_USEC);
7394 }
7395
8277434e
PT
7396 rcu_read_lock();
7397 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7398 rcu_read_unlock();
7399
7400 return ret;
a790de99 7401}
e8da1b18
NR
7402
7403static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7404 struct cgroup_map_cb *cb)
7405{
7406 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7407 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7408
7409 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7410 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7411 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7412
7413 return 0;
7414}
ab84d31e 7415#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7416#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7417
052f1dc7 7418#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7419static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7420 s64 val)
6f505b16 7421{
06ecb27c 7422 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7423}
7424
06ecb27c 7425static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7426{
06ecb27c 7427 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7428}
d0b27fa7
PZ
7429
7430static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7431 u64 rt_period_us)
7432{
7433 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7434}
7435
7436static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7437{
7438 return sched_group_rt_period(cgroup_tg(cgrp));
7439}
6d6bc0ad 7440#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7441
fe5c7cc2 7442static struct cftype cpu_files[] = {
052f1dc7 7443#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7444 {
7445 .name = "shares",
f4c753b7
PM
7446 .read_u64 = cpu_shares_read_u64,
7447 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7448 },
052f1dc7 7449#endif
ab84d31e
PT
7450#ifdef CONFIG_CFS_BANDWIDTH
7451 {
7452 .name = "cfs_quota_us",
7453 .read_s64 = cpu_cfs_quota_read_s64,
7454 .write_s64 = cpu_cfs_quota_write_s64,
7455 },
7456 {
7457 .name = "cfs_period_us",
7458 .read_u64 = cpu_cfs_period_read_u64,
7459 .write_u64 = cpu_cfs_period_write_u64,
7460 },
e8da1b18
NR
7461 {
7462 .name = "stat",
7463 .read_map = cpu_stats_show,
7464 },
ab84d31e 7465#endif
052f1dc7 7466#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7467 {
9f0c1e56 7468 .name = "rt_runtime_us",
06ecb27c
PM
7469 .read_s64 = cpu_rt_runtime_read,
7470 .write_s64 = cpu_rt_runtime_write,
6f505b16 7471 },
d0b27fa7
PZ
7472 {
7473 .name = "rt_period_us",
f4c753b7
PM
7474 .read_u64 = cpu_rt_period_read_uint,
7475 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7476 },
052f1dc7 7477#endif
4baf6e33 7478 { } /* terminate */
68318b8e
SV
7479};
7480
68318b8e 7481struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7482 .name = "cpu",
92fb9748
TH
7483 .css_alloc = cpu_cgroup_css_alloc,
7484 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7485 .css_online = cpu_cgroup_css_online,
7486 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7487 .can_attach = cpu_cgroup_can_attach,
7488 .attach = cpu_cgroup_attach,
068c5cc5 7489 .exit = cpu_cgroup_exit,
38605cae 7490 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7491 .base_cftypes = cpu_files,
68318b8e
SV
7492 .early_init = 1,
7493};
7494
052f1dc7 7495#endif /* CONFIG_CGROUP_SCHED */
d842de87 7496
b637a328
PM
7497void dump_cpu_task(int cpu)
7498{
7499 pr_info("Task dump for CPU %d:\n", cpu);
7500 sched_show_task(cpu_curr(cpu));
7501}