sched/fair: Remove idle_balance() declaration in sched.h
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
0970d299 299/*
0122ec5b 300 * __task_rq_lock - lock the rq @p resides on.
b29739f9 301 */
70b97a7f 302static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
303 __acquires(rq->lock)
304{
0970d299
PZ
305 struct rq *rq;
306
0122ec5b
PZ
307 lockdep_assert_held(&p->pi_lock);
308
3a5c359a 309 for (;;) {
0970d299 310 rq = task_rq(p);
05fa785c 311 raw_spin_lock(&rq->lock);
65cc8e48 312 if (likely(rq == task_rq(p)))
3a5c359a 313 return rq;
05fa785c 314 raw_spin_unlock(&rq->lock);
b29739f9 315 }
b29739f9
IM
316}
317
1da177e4 318/*
0122ec5b 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 320 */
70b97a7f 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 322 __acquires(p->pi_lock)
1da177e4
LT
323 __acquires(rq->lock)
324{
70b97a7f 325 struct rq *rq;
1da177e4 326
3a5c359a 327 for (;;) {
0122ec5b 328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
0122ec5b
PZ
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 335 }
1da177e4
LT
336}
337
a9957449 338static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
339 __releases(rq->lock)
340{
05fa785c 341 raw_spin_unlock(&rq->lock);
b29739f9
IM
342}
343
0122ec5b
PZ
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 346 __releases(rq->lock)
0122ec5b 347 __releases(p->pi_lock)
1da177e4 348{
0122ec5b
PZ
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
351}
352
1da177e4 353/*
cc2a73b5 354 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 355 */
a9957449 356static struct rq *this_rq_lock(void)
1da177e4
LT
357 __acquires(rq->lock)
358{
70b97a7f 359 struct rq *rq;
1da177e4
LT
360
361 local_irq_disable();
362 rq = this_rq();
05fa785c 363 raw_spin_lock(&rq->lock);
1da177e4
LT
364
365 return rq;
366}
367
8f4d37ec
PZ
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
971ee28c
PZ
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
971ee28c 415 __hrtick_restart(rq);
31656519 416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
971ee28c 433 __hrtick_restart(rq);
31656519 434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
029632fb 514void resched_task(struct task_struct *p)
c24d20db
IM
515{
516 int cpu;
517
b021fe3e 518 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 519
5ed0cec0 520 if (test_tsk_need_resched(p))
c24d20db
IM
521 return;
522
5ed0cec0 523 set_tsk_need_resched(p);
c24d20db
IM
524
525 cpu = task_cpu(p);
f27dde8d
PZ
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
c24d20db 528 return;
f27dde8d 529 }
c24d20db
IM
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#endif /* CONFIG_SMP */
18d95a28 697
a790de99
PT
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 700/*
8277434e
PT
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 705 */
029632fb 706int walk_tg_tree_from(struct task_group *from,
8277434e 707 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
708{
709 struct task_group *parent, *child;
eb755805 710 int ret;
c09595f6 711
8277434e
PT
712 parent = from;
713
c09595f6 714down:
eb755805
PZ
715 ret = (*down)(parent, data);
716 if (ret)
8277434e 717 goto out;
c09595f6
PZ
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
eb755805 725 ret = (*up)(parent, data);
8277434e
PT
726 if (ret || parent == from)
727 goto out;
c09595f6
PZ
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
8277434e 733out:
eb755805 734 return ret;
c09595f6
PZ
735}
736
029632fb 737int tg_nop(struct task_group *tg, void *data)
eb755805 738{
e2b245f8 739 return 0;
eb755805 740}
18d95a28
PZ
741#endif
742
45bf76df
IM
743static void set_load_weight(struct task_struct *p)
744{
f05998d4
NR
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
dd41f596
IM
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
c8b28116 752 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 753 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
754 return;
755 }
71f8bd46 756
c8b28116 757 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 758 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
759}
760
371fd7e7 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 762{
a64692a3 763 update_rq_clock(rq);
43148951 764 sched_info_queued(rq, p);
371fd7e7 765 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
766}
767
371fd7e7 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 769{
a64692a3 770 update_rq_clock(rq);
43148951 771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
fe44d621 791static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 792{
095c0aa8
GC
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
095c0aa8
GC
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 825 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
fe44d621
PZ
843 rq->clock_task += delta;
844
095c0aa8
GC
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
aa483808
VP
849}
850
34f971f6
PZ
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
14531189 881/*
dd41f596 882 * __normal_prio - return the priority that is based on the static prio
14531189 883 */
14531189
IM
884static inline int __normal_prio(struct task_struct *p)
885{
dd41f596 886 return p->static_prio;
14531189
IM
887}
888
b29739f9
IM
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
36c8b586 896static inline int normal_prio(struct task_struct *p)
b29739f9
IM
897{
898 int prio;
899
aab03e05
DF
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
2d3d891d 948 } else if (oldprio != p->prio || dl_task(p))
da7a735e 949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
286549dc 1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
ac66f547
PZ
1115 return ret;
1116}
1117
969c7921 1118struct migration_arg {
36c8b586 1119 struct task_struct *task;
1da177e4 1120 int dest_cpu;
70b97a7f 1121};
1da177e4 1122
969c7921
TH
1123static int migration_cpu_stop(void *data);
1124
1da177e4
LT
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
85ba2d86
RM
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1da177e4
LT
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
85ba2d86 1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1142{
1143 unsigned long flags;
dd41f596 1144 int running, on_rq;
85ba2d86 1145 unsigned long ncsw;
70b97a7f 1146 struct rq *rq;
1da177e4 1147
3a5c359a
AK
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
fa490cfd 1156
3a5c359a
AK
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
85ba2d86
RM
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
3a5c359a 1171 cpu_relax();
85ba2d86 1172 }
fa490cfd 1173
3a5c359a
AK
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
27a9da65 1180 trace_sched_wait_task(p);
3a5c359a 1181 running = task_running(rq, p);
fd2f4419 1182 on_rq = p->on_rq;
85ba2d86 1183 ncsw = 0;
f31e11d8 1184 if (!match_state || p->state == match_state)
93dcf55f 1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1186 task_rq_unlock(rq, p, &flags);
fa490cfd 1187
85ba2d86
RM
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
3a5c359a
AK
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
fa490cfd 1204
3a5c359a
AK
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
80dd99b3 1210 * So if it was still runnable (but just not actively
3a5c359a
AK
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
8eb90c30
TG
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1219 continue;
1220 }
fa490cfd 1221
3a5c359a
AK
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
85ba2d86
RM
1229
1230 return ncsw;
1da177e4
LT
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
25985edc 1240 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
36c8b586 1246void kick_process(struct task_struct *p)
1da177e4
LT
1247{
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255}
b43e3521 1256EXPORT_SYMBOL_GPL(kick_process);
476d139c 1257#endif /* CONFIG_SMP */
1da177e4 1258
970b13ba 1259#ifdef CONFIG_SMP
30da688e 1260/*
013fdb80 1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1262 */
5da9a0fb
PZ
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
aa00d89c
TC
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb 1269
aa00d89c
TC
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
2baab4e9 1287 }
5da9a0fb 1288
2baab4e9
PZ
1289 for (;;) {
1290 /* Any allowed, online CPU? */
e3831edd 1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
5da9a0fb 1298
2baab4e9
PZ
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
5da9a0fb
PZ
1328 }
1329
1330 return dest_cpu;
1331}
1332
e2912009 1333/*
013fdb80 1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1335 */
970b13ba 1336static inline
ac66f547 1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1338{
ac66f547 1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
fa17b507 1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1352 !cpu_online(cpu)))
5da9a0fb 1353 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1354
1355 return cpu;
970b13ba 1356}
09a40af5
MG
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362}
970b13ba
PZ
1363#endif
1364
d7c01d27 1365static void
b84cb5df 1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1367{
d7c01d27 1368#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1369 struct rq *rq = this_rq();
1370
d7c01d27
PZ
1371#ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1381 rcu_read_lock();
d7c01d27
PZ
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
057f3fad 1388 rcu_read_unlock();
d7c01d27 1389 }
f339b9dc
PZ
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
d7c01d27
PZ
1394#endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
9ed3811a 1397 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1398
1399 if (wake_flags & WF_SYNC)
9ed3811a 1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1401
d7c01d27
PZ
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
9ed3811a 1407 activate_task(rq, p, en_flags);
fd2f4419 1408 p->on_rq = 1;
c2f7115e
PZ
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1413}
1414
23f41eeb
PZ
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
89363381 1418static void
23f41eeb 1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1420{
9ed3811a 1421 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1422 trace_sched_wakeup(p, true);
9ed3811a
TH
1423
1424 p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
e69c6341 1429 if (rq->idle_stamp) {
78becc27 1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1431 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1432
abfafa54
JL
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
9ed3811a 1436 rq->avg_idle = max;
abfafa54 1437
9ed3811a
TH
1438 rq->idle_stamp = 0;
1439 }
1440#endif
1441}
1442
c05fbafb
PZ
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449#endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1ad4ec0d
FW
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
c05fbafb
PZ
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476}
1477
317f3941 1478#ifdef CONFIG_SMP
fa14ff4a 1479static void sched_ttwu_pending(void)
317f3941
PZ
1480{
1481 struct rq *rq = this_rq();
fa14ff4a
PZ
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
317f3941
PZ
1484
1485 raw_spin_lock(&rq->lock);
1486
fa14ff4a
PZ
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
317f3941
PZ
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
f27dde8d
PZ
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
8cb75e0c 1503 preempt_fold_need_resched();
f27dde8d 1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
aab03e05
DF
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1724 p->dl.dl_period = 0;
aab03e05
DF
1725 p->dl.flags = 0;
1726
fa717060 1727 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1728
e107be36
AK
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
cbee9f88
PZ
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
5e1576ed
RR
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
cbee9f88
PZ
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1747 p->numa_work.next = &p->numa_work;
ff1df896
RR
1748 p->numa_faults_memory = NULL;
1749 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1750 p->last_task_numa_placement = 0;
1751 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1752
1753 INIT_LIST_HEAD(&p->numa_entry);
1754 p->numa_group = NULL;
cbee9f88 1755#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1756}
1757
1a687c2e 1758#ifdef CONFIG_NUMA_BALANCING
3105b86a 1759#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1760void set_numabalancing_state(bool enabled)
1761{
1762 if (enabled)
1763 sched_feat_set("NUMA");
1764 else
1765 sched_feat_set("NO_NUMA");
1766}
3105b86a
MG
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772 numabalancing_enabled = enabled;
dd41f596 1773}
3105b86a 1774#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780 struct ctl_table t;
1781 int err;
1782 int state = numabalancing_enabled;
1783
1784 if (write && !capable(CAP_SYS_ADMIN))
1785 return -EPERM;
1786
1787 t = *table;
1788 t.data = &state;
1789 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790 if (err < 0)
1791 return err;
1792 if (write)
1793 set_numabalancing_state(state);
1794 return err;
1795}
1796#endif
1797#endif
dd41f596
IM
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
aab03e05 1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1803{
0122ec5b 1804 unsigned long flags;
dd41f596
IM
1805 int cpu = get_cpu();
1806
5e1576ed 1807 __sched_fork(clone_flags, p);
06b83b5f 1808 /*
0017d735 1809 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1810 * nobody will actually run it, and a signal or other external
1811 * event cannot wake it up and insert it on the runqueue either.
1812 */
0017d735 1813 p->state = TASK_RUNNING;
dd41f596 1814
c350a04e
MG
1815 /*
1816 * Make sure we do not leak PI boosting priority to the child.
1817 */
1818 p->prio = current->normal_prio;
1819
b9dc29e7
MG
1820 /*
1821 * Revert to default priority/policy on fork if requested.
1822 */
1823 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1824 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1825 p->policy = SCHED_NORMAL;
6c697bdf 1826 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1827 p->rt_priority = 0;
1828 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1829 p->static_prio = NICE_TO_PRIO(0);
1830
1831 p->prio = p->normal_prio = __normal_prio(p);
1832 set_load_weight(p);
6c697bdf 1833
b9dc29e7
MG
1834 /*
1835 * We don't need the reset flag anymore after the fork. It has
1836 * fulfilled its duty:
1837 */
1838 p->sched_reset_on_fork = 0;
1839 }
ca94c442 1840
aab03e05
DF
1841 if (dl_prio(p->prio)) {
1842 put_cpu();
1843 return -EAGAIN;
1844 } else if (rt_prio(p->prio)) {
1845 p->sched_class = &rt_sched_class;
1846 } else {
2ddbf952 1847 p->sched_class = &fair_sched_class;
aab03e05 1848 }
b29739f9 1849
cd29fe6f
PZ
1850 if (p->sched_class->task_fork)
1851 p->sched_class->task_fork(p);
1852
86951599
PZ
1853 /*
1854 * The child is not yet in the pid-hash so no cgroup attach races,
1855 * and the cgroup is pinned to this child due to cgroup_fork()
1856 * is ran before sched_fork().
1857 *
1858 * Silence PROVE_RCU.
1859 */
0122ec5b 1860 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1861 set_task_cpu(p, cpu);
0122ec5b 1862 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1863
52f17b6c 1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1865 if (likely(sched_info_on()))
52f17b6c 1866 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1867#endif
3ca7a440
PZ
1868#if defined(CONFIG_SMP)
1869 p->on_cpu = 0;
4866cde0 1870#endif
01028747 1871 init_task_preempt_count(p);
806c09a7 1872#ifdef CONFIG_SMP
917b627d 1873 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1874 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1875#endif
917b627d 1876
476d139c 1877 put_cpu();
aab03e05 1878 return 0;
1da177e4
LT
1879}
1880
332ac17e
DF
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883 if (runtime == RUNTIME_INF)
1884 return 1ULL << 20;
1885
1886 /*
1887 * Doing this here saves a lot of checks in all
1888 * the calling paths, and returning zero seems
1889 * safe for them anyway.
1890 */
1891 if (period == 0)
1892 return 0;
1893
1894 return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900 return &cpu_rq(i)->rd->dl_bw;
1901}
1902
de212f18 1903static inline int dl_bw_cpus(int i)
332ac17e 1904{
de212f18
PZ
1905 struct root_domain *rd = cpu_rq(i)->rd;
1906 int cpus = 0;
1907
1908 for_each_cpu_and(i, rd->span, cpu_active_mask)
1909 cpus++;
1910
1911 return cpus;
332ac17e
DF
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916 return &cpu_rq(i)->dl.dl_bw;
1917}
1918
de212f18 1919static inline int dl_bw_cpus(int i)
332ac17e
DF
1920{
1921 return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928 dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934 dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940 return dl_b->bw != -1 &&
1941 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953 const struct sched_attr *attr)
1954{
1955
1956 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957 u64 period = attr->sched_period;
1958 u64 runtime = attr->sched_runtime;
1959 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1960 int cpus, err = -1;
332ac17e
DF
1961
1962 if (new_bw == p->dl.dl_bw)
1963 return 0;
1964
1965 /*
1966 * Either if a task, enters, leave, or stays -deadline but changes
1967 * its parameters, we may need to update accordingly the total
1968 * allocated bandwidth of the container.
1969 */
1970 raw_spin_lock(&dl_b->lock);
de212f18 1971 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1972 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974 __dl_add(dl_b, new_bw);
1975 err = 0;
1976 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978 __dl_clear(dl_b, p->dl.dl_bw);
1979 __dl_add(dl_b, new_bw);
1980 err = 0;
1981 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982 __dl_clear(dl_b, p->dl.dl_bw);
1983 err = 0;
1984 }
1985 raw_spin_unlock(&dl_b->lock);
1986
1987 return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1da177e4
LT
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
3e51e3ed 1999void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2000{
2001 unsigned long flags;
dd41f596 2002 struct rq *rq;
fabf318e 2003
ab2515c4 2004 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2005#ifdef CONFIG_SMP
2006 /*
2007 * Fork balancing, do it here and not earlier because:
2008 * - cpus_allowed can change in the fork path
2009 * - any previously selected cpu might disappear through hotplug
fabf318e 2010 */
ac66f547 2011 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2012#endif
2013
a75cdaa9
AS
2014 /* Initialize new task's runnable average */
2015 init_task_runnable_average(p);
ab2515c4 2016 rq = __task_rq_lock(p);
cd29fe6f 2017 activate_task(rq, p, 0);
fd2f4419 2018 p->on_rq = 1;
89363381 2019 trace_sched_wakeup_new(p, true);
a7558e01 2020 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2021#ifdef CONFIG_SMP
efbbd05a
PZ
2022 if (p->sched_class->task_woken)
2023 p->sched_class->task_woken(rq, p);
9a897c5a 2024#endif
0122ec5b 2025 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2026}
2027
e107be36
AK
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
80dd99b3 2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2032 * @notifier: notifier struct to register
e107be36
AK
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2042 * @notifier: notifier struct to unregister
e107be36
AK
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048 hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054 struct preempt_notifier *notifier;
e107be36 2055
b67bfe0d 2056 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2057 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062 struct task_struct *next)
2063{
2064 struct preempt_notifier *notifier;
e107be36 2065
b67bfe0d 2066 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2067 notifier->ops->sched_out(notifier, next);
2068}
2069
6d6bc0ad 2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078 struct task_struct *next)
2079{
2080}
2081
6d6bc0ad 2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2083
4866cde0
NP
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
421cee29 2087 * @prev: the current task that is being switched out
4866cde0
NP
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
e107be36
AK
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099 struct task_struct *next)
4866cde0 2100{
895dd92c 2101 trace_sched_switch(prev, next);
43148951 2102 sched_info_switch(rq, prev, next);
fe4b04fa 2103 perf_event_task_sched_out(prev, next);
e107be36 2104 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2105 prepare_lock_switch(rq, next);
2106 prepare_arch_switch(next);
2107}
2108
1da177e4
LT
2109/**
2110 * finish_task_switch - clean up after a task-switch
344babaa 2111 * @rq: runqueue associated with task-switch
1da177e4
LT
2112 * @prev: the thread we just switched away from.
2113 *
4866cde0
NP
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2120 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
a9957449 2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2125 __releases(rq->lock)
2126{
1da177e4 2127 struct mm_struct *mm = rq->prev_mm;
55a101f8 2128 long prev_state;
1da177e4
LT
2129
2130 rq->prev_mm = NULL;
2131
2132 /*
2133 * A task struct has one reference for the use as "current".
c394cc9f 2134 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2135 * schedule one last time. The schedule call will never return, and
2136 * the scheduled task must drop that reference.
c394cc9f 2137 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2138 * still held, otherwise prev could be scheduled on another cpu, die
2139 * there before we look at prev->state, and then the reference would
2140 * be dropped twice.
2141 * Manfred Spraul <manfred@colorfullife.com>
2142 */
55a101f8 2143 prev_state = prev->state;
bf9fae9f 2144 vtime_task_switch(prev);
4866cde0 2145 finish_arch_switch(prev);
a8d757ef 2146 perf_event_task_sched_in(prev, current);
4866cde0 2147 finish_lock_switch(rq, prev);
01f23e16 2148 finish_arch_post_lock_switch();
e8fa1362 2149
e107be36 2150 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2151 if (mm)
2152 mmdrop(mm);
c394cc9f 2153 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2154 task_numa_free(prev);
2155
e6c390f2
DF
2156 if (prev->sched_class->task_dead)
2157 prev->sched_class->task_dead(prev);
2158
c6fd91f0 2159 /*
2160 * Remove function-return probe instances associated with this
2161 * task and put them back on the free list.
9761eea8 2162 */
c6fd91f0 2163 kprobe_flush_task(prev);
1da177e4 2164 put_task_struct(prev);
c6fd91f0 2165 }
99e5ada9
FW
2166
2167 tick_nohz_task_switch(current);
1da177e4
LT
2168}
2169
3f029d3c
GH
2170#ifdef CONFIG_SMP
2171
3f029d3c
GH
2172/* rq->lock is NOT held, but preemption is disabled */
2173static inline void post_schedule(struct rq *rq)
2174{
2175 if (rq->post_schedule) {
2176 unsigned long flags;
2177
05fa785c 2178 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2179 if (rq->curr->sched_class->post_schedule)
2180 rq->curr->sched_class->post_schedule(rq);
05fa785c 2181 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2182
2183 rq->post_schedule = 0;
2184 }
2185}
2186
2187#else
da19ab51 2188
3f029d3c
GH
2189static inline void post_schedule(struct rq *rq)
2190{
1da177e4
LT
2191}
2192
3f029d3c
GH
2193#endif
2194
1da177e4
LT
2195/**
2196 * schedule_tail - first thing a freshly forked thread must call.
2197 * @prev: the thread we just switched away from.
2198 */
36c8b586 2199asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2200 __releases(rq->lock)
2201{
70b97a7f
IM
2202 struct rq *rq = this_rq();
2203
4866cde0 2204 finish_task_switch(rq, prev);
da19ab51 2205
3f029d3c
GH
2206 /*
2207 * FIXME: do we need to worry about rq being invalidated by the
2208 * task_switch?
2209 */
2210 post_schedule(rq);
70b97a7f 2211
4866cde0
NP
2212#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2213 /* In this case, finish_task_switch does not reenable preemption */
2214 preempt_enable();
2215#endif
1da177e4 2216 if (current->set_child_tid)
b488893a 2217 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2218}
2219
2220/*
2221 * context_switch - switch to the new MM and the new
2222 * thread's register state.
2223 */
dd41f596 2224static inline void
70b97a7f 2225context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2226 struct task_struct *next)
1da177e4 2227{
dd41f596 2228 struct mm_struct *mm, *oldmm;
1da177e4 2229
e107be36 2230 prepare_task_switch(rq, prev, next);
fe4b04fa 2231
dd41f596
IM
2232 mm = next->mm;
2233 oldmm = prev->active_mm;
9226d125
ZA
2234 /*
2235 * For paravirt, this is coupled with an exit in switch_to to
2236 * combine the page table reload and the switch backend into
2237 * one hypercall.
2238 */
224101ed 2239 arch_start_context_switch(prev);
9226d125 2240
31915ab4 2241 if (!mm) {
1da177e4
LT
2242 next->active_mm = oldmm;
2243 atomic_inc(&oldmm->mm_count);
2244 enter_lazy_tlb(oldmm, next);
2245 } else
2246 switch_mm(oldmm, mm, next);
2247
31915ab4 2248 if (!prev->mm) {
1da177e4 2249 prev->active_mm = NULL;
1da177e4
LT
2250 rq->prev_mm = oldmm;
2251 }
3a5f5e48
IM
2252 /*
2253 * Since the runqueue lock will be released by the next
2254 * task (which is an invalid locking op but in the case
2255 * of the scheduler it's an obvious special-case), so we
2256 * do an early lockdep release here:
2257 */
2258#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2259 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2260#endif
1da177e4 2261
91d1aa43 2262 context_tracking_task_switch(prev, next);
1da177e4
LT
2263 /* Here we just switch the register state and the stack. */
2264 switch_to(prev, next, prev);
2265
dd41f596
IM
2266 barrier();
2267 /*
2268 * this_rq must be evaluated again because prev may have moved
2269 * CPUs since it called schedule(), thus the 'rq' on its stack
2270 * frame will be invalid.
2271 */
2272 finish_task_switch(this_rq(), prev);
1da177e4
LT
2273}
2274
2275/*
1c3e8264 2276 * nr_running and nr_context_switches:
1da177e4
LT
2277 *
2278 * externally visible scheduler statistics: current number of runnable
1c3e8264 2279 * threads, total number of context switches performed since bootup.
1da177e4
LT
2280 */
2281unsigned long nr_running(void)
2282{
2283 unsigned long i, sum = 0;
2284
2285 for_each_online_cpu(i)
2286 sum += cpu_rq(i)->nr_running;
2287
2288 return sum;
f711f609 2289}
1da177e4 2290
1da177e4 2291unsigned long long nr_context_switches(void)
46cb4b7c 2292{
cc94abfc
SR
2293 int i;
2294 unsigned long long sum = 0;
46cb4b7c 2295
0a945022 2296 for_each_possible_cpu(i)
1da177e4 2297 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2298
1da177e4
LT
2299 return sum;
2300}
483b4ee6 2301
1da177e4
LT
2302unsigned long nr_iowait(void)
2303{
2304 unsigned long i, sum = 0;
483b4ee6 2305
0a945022 2306 for_each_possible_cpu(i)
1da177e4 2307 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2308
1da177e4
LT
2309 return sum;
2310}
483b4ee6 2311
8c215bd3 2312unsigned long nr_iowait_cpu(int cpu)
69d25870 2313{
8c215bd3 2314 struct rq *this = cpu_rq(cpu);
69d25870
AV
2315 return atomic_read(&this->nr_iowait);
2316}
46cb4b7c 2317
dd41f596 2318#ifdef CONFIG_SMP
8a0be9ef 2319
46cb4b7c 2320/*
38022906
PZ
2321 * sched_exec - execve() is a valuable balancing opportunity, because at
2322 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2323 */
38022906 2324void sched_exec(void)
46cb4b7c 2325{
38022906 2326 struct task_struct *p = current;
1da177e4 2327 unsigned long flags;
0017d735 2328 int dest_cpu;
46cb4b7c 2329
8f42ced9 2330 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2331 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2332 if (dest_cpu == smp_processor_id())
2333 goto unlock;
38022906 2334
8f42ced9 2335 if (likely(cpu_active(dest_cpu))) {
969c7921 2336 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2337
8f42ced9
PZ
2338 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2339 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2340 return;
2341 }
0017d735 2342unlock:
8f42ced9 2343 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2344}
dd41f596 2345
1da177e4
LT
2346#endif
2347
1da177e4 2348DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2349DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2350
2351EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2352EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2353
2354/*
c5f8d995 2355 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2356 * @p in case that task is currently running.
c5f8d995
HS
2357 *
2358 * Called with task_rq_lock() held on @rq.
1da177e4 2359 */
c5f8d995
HS
2360static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2361{
2362 u64 ns = 0;
2363
2364 if (task_current(rq, p)) {
2365 update_rq_clock(rq);
78becc27 2366 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2367 if ((s64)ns < 0)
2368 ns = 0;
2369 }
2370
2371 return ns;
2372}
2373
bb34d92f 2374unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2375{
1da177e4 2376 unsigned long flags;
41b86e9c 2377 struct rq *rq;
bb34d92f 2378 u64 ns = 0;
48f24c4d 2379
41b86e9c 2380 rq = task_rq_lock(p, &flags);
c5f8d995 2381 ns = do_task_delta_exec(p, rq);
0122ec5b 2382 task_rq_unlock(rq, p, &flags);
1508487e 2383
c5f8d995
HS
2384 return ns;
2385}
f06febc9 2386
c5f8d995
HS
2387/*
2388 * Return accounted runtime for the task.
2389 * In case the task is currently running, return the runtime plus current's
2390 * pending runtime that have not been accounted yet.
2391 */
2392unsigned long long task_sched_runtime(struct task_struct *p)
2393{
2394 unsigned long flags;
2395 struct rq *rq;
2396 u64 ns = 0;
2397
911b2898
PZ
2398#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2399 /*
2400 * 64-bit doesn't need locks to atomically read a 64bit value.
2401 * So we have a optimization chance when the task's delta_exec is 0.
2402 * Reading ->on_cpu is racy, but this is ok.
2403 *
2404 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2405 * If we race with it entering cpu, unaccounted time is 0. This is
2406 * indistinguishable from the read occurring a few cycles earlier.
2407 */
2408 if (!p->on_cpu)
2409 return p->se.sum_exec_runtime;
2410#endif
2411
c5f8d995
HS
2412 rq = task_rq_lock(p, &flags);
2413 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2414 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2415
2416 return ns;
2417}
48f24c4d 2418
7835b98b
CL
2419/*
2420 * This function gets called by the timer code, with HZ frequency.
2421 * We call it with interrupts disabled.
7835b98b
CL
2422 */
2423void scheduler_tick(void)
2424{
7835b98b
CL
2425 int cpu = smp_processor_id();
2426 struct rq *rq = cpu_rq(cpu);
dd41f596 2427 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2428
2429 sched_clock_tick();
dd41f596 2430
05fa785c 2431 raw_spin_lock(&rq->lock);
3e51f33f 2432 update_rq_clock(rq);
fa85ae24 2433 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2434 update_cpu_load_active(rq);
05fa785c 2435 raw_spin_unlock(&rq->lock);
7835b98b 2436
e9d2b064 2437 perf_event_task_tick();
e220d2dc 2438
e418e1c2 2439#ifdef CONFIG_SMP
6eb57e0d 2440 rq->idle_balance = idle_cpu(cpu);
7caff66f 2441 trigger_load_balance(rq);
e418e1c2 2442#endif
265f22a9 2443 rq_last_tick_reset(rq);
1da177e4
LT
2444}
2445
265f22a9
FW
2446#ifdef CONFIG_NO_HZ_FULL
2447/**
2448 * scheduler_tick_max_deferment
2449 *
2450 * Keep at least one tick per second when a single
2451 * active task is running because the scheduler doesn't
2452 * yet completely support full dynticks environment.
2453 *
2454 * This makes sure that uptime, CFS vruntime, load
2455 * balancing, etc... continue to move forward, even
2456 * with a very low granularity.
e69f6186
YB
2457 *
2458 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2459 */
2460u64 scheduler_tick_max_deferment(void)
2461{
2462 struct rq *rq = this_rq();
2463 unsigned long next, now = ACCESS_ONCE(jiffies);
2464
2465 next = rq->last_sched_tick + HZ;
2466
2467 if (time_before_eq(next, now))
2468 return 0;
2469
8fe8ff09 2470 return jiffies_to_nsecs(next - now);
1da177e4 2471}
265f22a9 2472#endif
1da177e4 2473
132380a0 2474notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2475{
2476 if (in_lock_functions(addr)) {
2477 addr = CALLER_ADDR2;
2478 if (in_lock_functions(addr))
2479 addr = CALLER_ADDR3;
2480 }
2481 return addr;
2482}
1da177e4 2483
7e49fcce
SR
2484#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2485 defined(CONFIG_PREEMPT_TRACER))
2486
bdb43806 2487void __kprobes preempt_count_add(int val)
1da177e4 2488{
6cd8a4bb 2489#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2490 /*
2491 * Underflow?
2492 */
9a11b49a
IM
2493 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2494 return;
6cd8a4bb 2495#endif
bdb43806 2496 __preempt_count_add(val);
6cd8a4bb 2497#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2498 /*
2499 * Spinlock count overflowing soon?
2500 */
33859f7f
MOS
2501 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2502 PREEMPT_MASK - 10);
6cd8a4bb
SR
2503#endif
2504 if (preempt_count() == val)
2505 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2506}
bdb43806 2507EXPORT_SYMBOL(preempt_count_add);
1da177e4 2508
bdb43806 2509void __kprobes preempt_count_sub(int val)
1da177e4 2510{
6cd8a4bb 2511#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2512 /*
2513 * Underflow?
2514 */
01e3eb82 2515 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2516 return;
1da177e4
LT
2517 /*
2518 * Is the spinlock portion underflowing?
2519 */
9a11b49a
IM
2520 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2521 !(preempt_count() & PREEMPT_MASK)))
2522 return;
6cd8a4bb 2523#endif
9a11b49a 2524
6cd8a4bb
SR
2525 if (preempt_count() == val)
2526 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2527 __preempt_count_sub(val);
1da177e4 2528}
bdb43806 2529EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2530
2531#endif
2532
2533/*
dd41f596 2534 * Print scheduling while atomic bug:
1da177e4 2535 */
dd41f596 2536static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2537{
664dfa65
DJ
2538 if (oops_in_progress)
2539 return;
2540
3df0fc5b
PZ
2541 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2542 prev->comm, prev->pid, preempt_count());
838225b4 2543
dd41f596 2544 debug_show_held_locks(prev);
e21f5b15 2545 print_modules();
dd41f596
IM
2546 if (irqs_disabled())
2547 print_irqtrace_events(prev);
6135fc1e 2548 dump_stack();
373d4d09 2549 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2550}
1da177e4 2551
dd41f596
IM
2552/*
2553 * Various schedule()-time debugging checks and statistics:
2554 */
2555static inline void schedule_debug(struct task_struct *prev)
2556{
1da177e4 2557 /*
41a2d6cf 2558 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2559 * schedule() atomically, we ignore that path. Otherwise whine
2560 * if we are scheduling when we should not.
1da177e4 2561 */
192301e7 2562 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2563 __schedule_bug(prev);
b3fbab05 2564 rcu_sleep_check();
dd41f596 2565
1da177e4
LT
2566 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2567
2d72376b 2568 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2569}
2570
2571/*
2572 * Pick up the highest-prio task:
2573 */
2574static inline struct task_struct *
606dba2e 2575pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2576{
5522d5d5 2577 const struct sched_class *class;
dd41f596 2578 struct task_struct *p;
1da177e4
LT
2579
2580 /*
dd41f596
IM
2581 * Optimization: we know that if all tasks are in
2582 * the fair class we can call that function directly:
1da177e4 2583 */
38033c37
PZ
2584 if (likely(prev->sched_class == &fair_sched_class &&
2585 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2586 p = fair_sched_class.pick_next_task(rq, prev);
dd41f596
IM
2587 if (likely(p))
2588 return p;
1da177e4
LT
2589 }
2590
34f971f6 2591 for_each_class(class) {
606dba2e 2592 p = class->pick_next_task(rq, prev);
dd41f596
IM
2593 if (p)
2594 return p;
dd41f596 2595 }
34f971f6
PZ
2596
2597 BUG(); /* the idle class will always have a runnable task */
dd41f596 2598}
1da177e4 2599
dd41f596 2600/*
c259e01a 2601 * __schedule() is the main scheduler function.
edde96ea
PE
2602 *
2603 * The main means of driving the scheduler and thus entering this function are:
2604 *
2605 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2606 *
2607 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2608 * paths. For example, see arch/x86/entry_64.S.
2609 *
2610 * To drive preemption between tasks, the scheduler sets the flag in timer
2611 * interrupt handler scheduler_tick().
2612 *
2613 * 3. Wakeups don't really cause entry into schedule(). They add a
2614 * task to the run-queue and that's it.
2615 *
2616 * Now, if the new task added to the run-queue preempts the current
2617 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2618 * called on the nearest possible occasion:
2619 *
2620 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2621 *
2622 * - in syscall or exception context, at the next outmost
2623 * preempt_enable(). (this might be as soon as the wake_up()'s
2624 * spin_unlock()!)
2625 *
2626 * - in IRQ context, return from interrupt-handler to
2627 * preemptible context
2628 *
2629 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2630 * then at the next:
2631 *
2632 * - cond_resched() call
2633 * - explicit schedule() call
2634 * - return from syscall or exception to user-space
2635 * - return from interrupt-handler to user-space
dd41f596 2636 */
c259e01a 2637static void __sched __schedule(void)
dd41f596
IM
2638{
2639 struct task_struct *prev, *next;
67ca7bde 2640 unsigned long *switch_count;
dd41f596 2641 struct rq *rq;
31656519 2642 int cpu;
dd41f596 2643
ff743345
PZ
2644need_resched:
2645 preempt_disable();
dd41f596
IM
2646 cpu = smp_processor_id();
2647 rq = cpu_rq(cpu);
25502a6c 2648 rcu_note_context_switch(cpu);
dd41f596 2649 prev = rq->curr;
dd41f596 2650
dd41f596 2651 schedule_debug(prev);
1da177e4 2652
31656519 2653 if (sched_feat(HRTICK))
f333fdc9 2654 hrtick_clear(rq);
8f4d37ec 2655
e0acd0a6
ON
2656 /*
2657 * Make sure that signal_pending_state()->signal_pending() below
2658 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2659 * done by the caller to avoid the race with signal_wake_up().
2660 */
2661 smp_mb__before_spinlock();
05fa785c 2662 raw_spin_lock_irq(&rq->lock);
1da177e4 2663
246d86b5 2664 switch_count = &prev->nivcsw;
1da177e4 2665 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2666 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2667 prev->state = TASK_RUNNING;
21aa9af0 2668 } else {
2acca55e
PZ
2669 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2670 prev->on_rq = 0;
2671
21aa9af0 2672 /*
2acca55e
PZ
2673 * If a worker went to sleep, notify and ask workqueue
2674 * whether it wants to wake up a task to maintain
2675 * concurrency.
21aa9af0
TH
2676 */
2677 if (prev->flags & PF_WQ_WORKER) {
2678 struct task_struct *to_wakeup;
2679
2680 to_wakeup = wq_worker_sleeping(prev, cpu);
2681 if (to_wakeup)
2682 try_to_wake_up_local(to_wakeup);
2683 }
21aa9af0 2684 }
dd41f596 2685 switch_count = &prev->nvcsw;
1da177e4
LT
2686 }
2687
606dba2e
PZ
2688 if (prev->on_rq || rq->skip_clock_update < 0)
2689 update_rq_clock(rq);
2690
2691 next = pick_next_task(rq, prev);
f26f9aff 2692 clear_tsk_need_resched(prev);
f27dde8d 2693 clear_preempt_need_resched();
f26f9aff 2694 rq->skip_clock_update = 0;
1da177e4 2695
1da177e4 2696 if (likely(prev != next)) {
1da177e4
LT
2697 rq->nr_switches++;
2698 rq->curr = next;
2699 ++*switch_count;
2700
dd41f596 2701 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2702 /*
246d86b5
ON
2703 * The context switch have flipped the stack from under us
2704 * and restored the local variables which were saved when
2705 * this task called schedule() in the past. prev == current
2706 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2707 */
2708 cpu = smp_processor_id();
2709 rq = cpu_rq(cpu);
1da177e4 2710 } else
05fa785c 2711 raw_spin_unlock_irq(&rq->lock);
1da177e4 2712
3f029d3c 2713 post_schedule(rq);
1da177e4 2714
ba74c144 2715 sched_preempt_enable_no_resched();
ff743345 2716 if (need_resched())
1da177e4
LT
2717 goto need_resched;
2718}
c259e01a 2719
9c40cef2
TG
2720static inline void sched_submit_work(struct task_struct *tsk)
2721{
3c7d5184 2722 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2723 return;
2724 /*
2725 * If we are going to sleep and we have plugged IO queued,
2726 * make sure to submit it to avoid deadlocks.
2727 */
2728 if (blk_needs_flush_plug(tsk))
2729 blk_schedule_flush_plug(tsk);
2730}
2731
6ebbe7a0 2732asmlinkage void __sched schedule(void)
c259e01a 2733{
9c40cef2
TG
2734 struct task_struct *tsk = current;
2735
2736 sched_submit_work(tsk);
c259e01a
TG
2737 __schedule();
2738}
1da177e4
LT
2739EXPORT_SYMBOL(schedule);
2740
91d1aa43 2741#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2742asmlinkage void __sched schedule_user(void)
2743{
2744 /*
2745 * If we come here after a random call to set_need_resched(),
2746 * or we have been woken up remotely but the IPI has not yet arrived,
2747 * we haven't yet exited the RCU idle mode. Do it here manually until
2748 * we find a better solution.
2749 */
91d1aa43 2750 user_exit();
20ab65e3 2751 schedule();
91d1aa43 2752 user_enter();
20ab65e3
FW
2753}
2754#endif
2755
c5491ea7
TG
2756/**
2757 * schedule_preempt_disabled - called with preemption disabled
2758 *
2759 * Returns with preemption disabled. Note: preempt_count must be 1
2760 */
2761void __sched schedule_preempt_disabled(void)
2762{
ba74c144 2763 sched_preempt_enable_no_resched();
c5491ea7
TG
2764 schedule();
2765 preempt_disable();
2766}
2767
1da177e4
LT
2768#ifdef CONFIG_PREEMPT
2769/*
2ed6e34f 2770 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2771 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2772 * occur there and call schedule directly.
2773 */
d1f74e20 2774asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2775{
1da177e4
LT
2776 /*
2777 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2778 * we do not want to preempt the current task. Just return..
1da177e4 2779 */
fbb00b56 2780 if (likely(!preemptible()))
1da177e4
LT
2781 return;
2782
3a5c359a 2783 do {
bdb43806 2784 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2785 __schedule();
bdb43806 2786 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2787
3a5c359a
AK
2788 /*
2789 * Check again in case we missed a preemption opportunity
2790 * between schedule and now.
2791 */
2792 barrier();
5ed0cec0 2793 } while (need_resched());
1da177e4 2794}
1da177e4 2795EXPORT_SYMBOL(preempt_schedule);
32e475d7 2796#endif /* CONFIG_PREEMPT */
1da177e4
LT
2797
2798/*
2ed6e34f 2799 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2800 * off of irq context.
2801 * Note, that this is called and return with irqs disabled. This will
2802 * protect us against recursive calling from irq.
2803 */
2804asmlinkage void __sched preempt_schedule_irq(void)
2805{
b22366cd 2806 enum ctx_state prev_state;
6478d880 2807
2ed6e34f 2808 /* Catch callers which need to be fixed */
f27dde8d 2809 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2810
b22366cd
FW
2811 prev_state = exception_enter();
2812
3a5c359a 2813 do {
bdb43806 2814 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2815 local_irq_enable();
c259e01a 2816 __schedule();
3a5c359a 2817 local_irq_disable();
bdb43806 2818 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2819
3a5c359a
AK
2820 /*
2821 * Check again in case we missed a preemption opportunity
2822 * between schedule and now.
2823 */
2824 barrier();
5ed0cec0 2825 } while (need_resched());
b22366cd
FW
2826
2827 exception_exit(prev_state);
1da177e4
LT
2828}
2829
63859d4f 2830int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2831 void *key)
1da177e4 2832{
63859d4f 2833 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2834}
1da177e4
LT
2835EXPORT_SYMBOL(default_wake_function);
2836
8cbbe86d
AK
2837static long __sched
2838sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2839{
0fec171c
IM
2840 unsigned long flags;
2841 wait_queue_t wait;
2842
2843 init_waitqueue_entry(&wait, current);
1da177e4 2844
8cbbe86d 2845 __set_current_state(state);
1da177e4 2846
8cbbe86d
AK
2847 spin_lock_irqsave(&q->lock, flags);
2848 __add_wait_queue(q, &wait);
2849 spin_unlock(&q->lock);
2850 timeout = schedule_timeout(timeout);
2851 spin_lock_irq(&q->lock);
2852 __remove_wait_queue(q, &wait);
2853 spin_unlock_irqrestore(&q->lock, flags);
2854
2855 return timeout;
2856}
2857
2858void __sched interruptible_sleep_on(wait_queue_head_t *q)
2859{
2860 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2861}
1da177e4
LT
2862EXPORT_SYMBOL(interruptible_sleep_on);
2863
0fec171c 2864long __sched
95cdf3b7 2865interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2866{
8cbbe86d 2867 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2868}
1da177e4
LT
2869EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2870
0fec171c 2871void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2872{
8cbbe86d 2873 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2874}
1da177e4
LT
2875EXPORT_SYMBOL(sleep_on);
2876
0fec171c 2877long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2878{
8cbbe86d 2879 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2880}
1da177e4
LT
2881EXPORT_SYMBOL(sleep_on_timeout);
2882
b29739f9
IM
2883#ifdef CONFIG_RT_MUTEXES
2884
2885/*
2886 * rt_mutex_setprio - set the current priority of a task
2887 * @p: task
2888 * @prio: prio value (kernel-internal form)
2889 *
2890 * This function changes the 'effective' priority of a task. It does
2891 * not touch ->normal_prio like __setscheduler().
2892 *
2893 * Used by the rt_mutex code to implement priority inheritance logic.
2894 */
36c8b586 2895void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2896{
2d3d891d 2897 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2898 struct rq *rq;
83ab0aa0 2899 const struct sched_class *prev_class;
b29739f9 2900
aab03e05 2901 BUG_ON(prio > MAX_PRIO);
b29739f9 2902
0122ec5b 2903 rq = __task_rq_lock(p);
b29739f9 2904
1c4dd99b
TG
2905 /*
2906 * Idle task boosting is a nono in general. There is one
2907 * exception, when PREEMPT_RT and NOHZ is active:
2908 *
2909 * The idle task calls get_next_timer_interrupt() and holds
2910 * the timer wheel base->lock on the CPU and another CPU wants
2911 * to access the timer (probably to cancel it). We can safely
2912 * ignore the boosting request, as the idle CPU runs this code
2913 * with interrupts disabled and will complete the lock
2914 * protected section without being interrupted. So there is no
2915 * real need to boost.
2916 */
2917 if (unlikely(p == rq->idle)) {
2918 WARN_ON(p != rq->curr);
2919 WARN_ON(p->pi_blocked_on);
2920 goto out_unlock;
2921 }
2922
a8027073 2923 trace_sched_pi_setprio(p, prio);
2d3d891d 2924 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2925 oldprio = p->prio;
83ab0aa0 2926 prev_class = p->sched_class;
fd2f4419 2927 on_rq = p->on_rq;
051a1d1a 2928 running = task_current(rq, p);
0e1f3483 2929 if (on_rq)
69be72c1 2930 dequeue_task(rq, p, 0);
0e1f3483
HS
2931 if (running)
2932 p->sched_class->put_prev_task(rq, p);
dd41f596 2933
2d3d891d
DF
2934 /*
2935 * Boosting condition are:
2936 * 1. -rt task is running and holds mutex A
2937 * --> -dl task blocks on mutex A
2938 *
2939 * 2. -dl task is running and holds mutex A
2940 * --> -dl task blocks on mutex A and could preempt the
2941 * running task
2942 */
2943 if (dl_prio(prio)) {
2944 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2945 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2946 p->dl.dl_boosted = 1;
2947 p->dl.dl_throttled = 0;
2948 enqueue_flag = ENQUEUE_REPLENISH;
2949 } else
2950 p->dl.dl_boosted = 0;
aab03e05 2951 p->sched_class = &dl_sched_class;
2d3d891d
DF
2952 } else if (rt_prio(prio)) {
2953 if (dl_prio(oldprio))
2954 p->dl.dl_boosted = 0;
2955 if (oldprio < prio)
2956 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2957 p->sched_class = &rt_sched_class;
2d3d891d
DF
2958 } else {
2959 if (dl_prio(oldprio))
2960 p->dl.dl_boosted = 0;
dd41f596 2961 p->sched_class = &fair_sched_class;
2d3d891d 2962 }
dd41f596 2963
b29739f9
IM
2964 p->prio = prio;
2965
0e1f3483
HS
2966 if (running)
2967 p->sched_class->set_curr_task(rq);
da7a735e 2968 if (on_rq)
2d3d891d 2969 enqueue_task(rq, p, enqueue_flag);
cb469845 2970
da7a735e 2971 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2972out_unlock:
0122ec5b 2973 __task_rq_unlock(rq);
b29739f9 2974}
b29739f9 2975#endif
d50dde5a 2976
36c8b586 2977void set_user_nice(struct task_struct *p, long nice)
1da177e4 2978{
dd41f596 2979 int old_prio, delta, on_rq;
1da177e4 2980 unsigned long flags;
70b97a7f 2981 struct rq *rq;
1da177e4 2982
d0ea0268 2983 if (task_nice(p) == nice || nice < -20 || nice > 19)
1da177e4
LT
2984 return;
2985 /*
2986 * We have to be careful, if called from sys_setpriority(),
2987 * the task might be in the middle of scheduling on another CPU.
2988 */
2989 rq = task_rq_lock(p, &flags);
2990 /*
2991 * The RT priorities are set via sched_setscheduler(), but we still
2992 * allow the 'normal' nice value to be set - but as expected
2993 * it wont have any effect on scheduling until the task is
aab03e05 2994 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2995 */
aab03e05 2996 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
2997 p->static_prio = NICE_TO_PRIO(nice);
2998 goto out_unlock;
2999 }
fd2f4419 3000 on_rq = p->on_rq;
c09595f6 3001 if (on_rq)
69be72c1 3002 dequeue_task(rq, p, 0);
1da177e4 3003
1da177e4 3004 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3005 set_load_weight(p);
b29739f9
IM
3006 old_prio = p->prio;
3007 p->prio = effective_prio(p);
3008 delta = p->prio - old_prio;
1da177e4 3009
dd41f596 3010 if (on_rq) {
371fd7e7 3011 enqueue_task(rq, p, 0);
1da177e4 3012 /*
d5f9f942
AM
3013 * If the task increased its priority or is running and
3014 * lowered its priority, then reschedule its CPU:
1da177e4 3015 */
d5f9f942 3016 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3017 resched_task(rq->curr);
3018 }
3019out_unlock:
0122ec5b 3020 task_rq_unlock(rq, p, &flags);
1da177e4 3021}
1da177e4
LT
3022EXPORT_SYMBOL(set_user_nice);
3023
e43379f1
MM
3024/*
3025 * can_nice - check if a task can reduce its nice value
3026 * @p: task
3027 * @nice: nice value
3028 */
36c8b586 3029int can_nice(const struct task_struct *p, const int nice)
e43379f1 3030{
024f4747
MM
3031 /* convert nice value [19,-20] to rlimit style value [1,40] */
3032 int nice_rlim = 20 - nice;
48f24c4d 3033
78d7d407 3034 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3035 capable(CAP_SYS_NICE));
3036}
3037
1da177e4
LT
3038#ifdef __ARCH_WANT_SYS_NICE
3039
3040/*
3041 * sys_nice - change the priority of the current process.
3042 * @increment: priority increment
3043 *
3044 * sys_setpriority is a more generic, but much slower function that
3045 * does similar things.
3046 */
5add95d4 3047SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3048{
48f24c4d 3049 long nice, retval;
1da177e4
LT
3050
3051 /*
3052 * Setpriority might change our priority at the same moment.
3053 * We don't have to worry. Conceptually one call occurs first
3054 * and we have a single winner.
3055 */
e43379f1
MM
3056 if (increment < -40)
3057 increment = -40;
1da177e4
LT
3058 if (increment > 40)
3059 increment = 40;
3060
d0ea0268 3061 nice = task_nice(current) + increment;
1da177e4
LT
3062 if (nice < -20)
3063 nice = -20;
3064 if (nice > 19)
3065 nice = 19;
3066
e43379f1
MM
3067 if (increment < 0 && !can_nice(current, nice))
3068 return -EPERM;
3069
1da177e4
LT
3070 retval = security_task_setnice(current, nice);
3071 if (retval)
3072 return retval;
3073
3074 set_user_nice(current, nice);
3075 return 0;
3076}
3077
3078#endif
3079
3080/**
3081 * task_prio - return the priority value of a given task.
3082 * @p: the task in question.
3083 *
e69f6186 3084 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3085 * RT tasks are offset by -200. Normal tasks are centered
3086 * around 0, value goes from -16 to +15.
3087 */
36c8b586 3088int task_prio(const struct task_struct *p)
1da177e4
LT
3089{
3090 return p->prio - MAX_RT_PRIO;
3091}
3092
1da177e4
LT
3093/**
3094 * idle_cpu - is a given cpu idle currently?
3095 * @cpu: the processor in question.
e69f6186
YB
3096 *
3097 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3098 */
3099int idle_cpu(int cpu)
3100{
908a3283
TG
3101 struct rq *rq = cpu_rq(cpu);
3102
3103 if (rq->curr != rq->idle)
3104 return 0;
3105
3106 if (rq->nr_running)
3107 return 0;
3108
3109#ifdef CONFIG_SMP
3110 if (!llist_empty(&rq->wake_list))
3111 return 0;
3112#endif
3113
3114 return 1;
1da177e4
LT
3115}
3116
1da177e4
LT
3117/**
3118 * idle_task - return the idle task for a given cpu.
3119 * @cpu: the processor in question.
e69f6186
YB
3120 *
3121 * Return: The idle task for the cpu @cpu.
1da177e4 3122 */
36c8b586 3123struct task_struct *idle_task(int cpu)
1da177e4
LT
3124{
3125 return cpu_rq(cpu)->idle;
3126}
3127
3128/**
3129 * find_process_by_pid - find a process with a matching PID value.
3130 * @pid: the pid in question.
e69f6186
YB
3131 *
3132 * The task of @pid, if found. %NULL otherwise.
1da177e4 3133 */
a9957449 3134static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3135{
228ebcbe 3136 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3137}
3138
aab03e05
DF
3139/*
3140 * This function initializes the sched_dl_entity of a newly becoming
3141 * SCHED_DEADLINE task.
3142 *
3143 * Only the static values are considered here, the actual runtime and the
3144 * absolute deadline will be properly calculated when the task is enqueued
3145 * for the first time with its new policy.
3146 */
3147static void
3148__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3149{
3150 struct sched_dl_entity *dl_se = &p->dl;
3151
3152 init_dl_task_timer(dl_se);
3153 dl_se->dl_runtime = attr->sched_runtime;
3154 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3155 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3156 dl_se->flags = attr->sched_flags;
332ac17e 3157 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3158 dl_se->dl_throttled = 0;
3159 dl_se->dl_new = 1;
3160}
3161
d50dde5a
DF
3162/* Actually do priority change: must hold pi & rq lock. */
3163static void __setscheduler(struct rq *rq, struct task_struct *p,
3164 const struct sched_attr *attr)
1da177e4 3165{
d50dde5a
DF
3166 int policy = attr->sched_policy;
3167
39fd8fd2
PZ
3168 if (policy == -1) /* setparam */
3169 policy = p->policy;
3170
1da177e4 3171 p->policy = policy;
d50dde5a 3172
aab03e05
DF
3173 if (dl_policy(policy))
3174 __setparam_dl(p, attr);
39fd8fd2 3175 else if (fair_policy(policy))
d50dde5a
DF
3176 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3177
39fd8fd2
PZ
3178 /*
3179 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3180 * !rt_policy. Always setting this ensures that things like
3181 * getparam()/getattr() don't report silly values for !rt tasks.
3182 */
3183 p->rt_priority = attr->sched_priority;
3184
b29739f9 3185 p->normal_prio = normal_prio(p);
b29739f9 3186 p->prio = rt_mutex_getprio(p);
d50dde5a 3187
aab03e05
DF
3188 if (dl_prio(p->prio))
3189 p->sched_class = &dl_sched_class;
3190 else if (rt_prio(p->prio))
ffd44db5
PZ
3191 p->sched_class = &rt_sched_class;
3192 else
3193 p->sched_class = &fair_sched_class;
d50dde5a 3194
2dd73a4f 3195 set_load_weight(p);
1da177e4 3196}
aab03e05
DF
3197
3198static void
3199__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3200{
3201 struct sched_dl_entity *dl_se = &p->dl;
3202
3203 attr->sched_priority = p->rt_priority;
3204 attr->sched_runtime = dl_se->dl_runtime;
3205 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3206 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3207 attr->sched_flags = dl_se->flags;
3208}
3209
3210/*
3211 * This function validates the new parameters of a -deadline task.
3212 * We ask for the deadline not being zero, and greater or equal
755378a4 3213 * than the runtime, as well as the period of being zero or
332ac17e
DF
3214 * greater than deadline. Furthermore, we have to be sure that
3215 * user parameters are above the internal resolution (1us); we
3216 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3217 */
3218static bool
3219__checkparam_dl(const struct sched_attr *attr)
3220{
3221 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3222 (attr->sched_period == 0 ||
3223 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3224 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3225 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3226}
3227
c69e8d9c
DH
3228/*
3229 * check the target process has a UID that matches the current process's
3230 */
3231static bool check_same_owner(struct task_struct *p)
3232{
3233 const struct cred *cred = current_cred(), *pcred;
3234 bool match;
3235
3236 rcu_read_lock();
3237 pcred = __task_cred(p);
9c806aa0
EB
3238 match = (uid_eq(cred->euid, pcred->euid) ||
3239 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3240 rcu_read_unlock();
3241 return match;
3242}
3243
d50dde5a
DF
3244static int __sched_setscheduler(struct task_struct *p,
3245 const struct sched_attr *attr,
3246 bool user)
1da177e4 3247{
83b699ed 3248 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3249 int policy = attr->sched_policy;
1da177e4 3250 unsigned long flags;
83ab0aa0 3251 const struct sched_class *prev_class;
70b97a7f 3252 struct rq *rq;
ca94c442 3253 int reset_on_fork;
1da177e4 3254
66e5393a
SR
3255 /* may grab non-irq protected spin_locks */
3256 BUG_ON(in_interrupt());
1da177e4
LT
3257recheck:
3258 /* double check policy once rq lock held */
ca94c442
LP
3259 if (policy < 0) {
3260 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3261 policy = oldpolicy = p->policy;
ca94c442 3262 } else {
7479f3c9 3263 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3264
aab03e05
DF
3265 if (policy != SCHED_DEADLINE &&
3266 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3267 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3268 policy != SCHED_IDLE)
3269 return -EINVAL;
3270 }
3271
7479f3c9
PZ
3272 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3273 return -EINVAL;
3274
1da177e4
LT
3275 /*
3276 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3277 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3278 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3279 */
0bb040a4 3280 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3281 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3282 return -EINVAL;
aab03e05
DF
3283 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3284 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3285 return -EINVAL;
3286
37e4ab3f
OC
3287 /*
3288 * Allow unprivileged RT tasks to decrease priority:
3289 */
961ccddd 3290 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3291 if (fair_policy(policy)) {
d0ea0268 3292 if (attr->sched_nice < task_nice(p) &&
eaad4513 3293 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3294 return -EPERM;
3295 }
3296
e05606d3 3297 if (rt_policy(policy)) {
a44702e8
ON
3298 unsigned long rlim_rtprio =
3299 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3300
3301 /* can't set/change the rt policy */
3302 if (policy != p->policy && !rlim_rtprio)
3303 return -EPERM;
3304
3305 /* can't increase priority */
d50dde5a
DF
3306 if (attr->sched_priority > p->rt_priority &&
3307 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3308 return -EPERM;
3309 }
c02aa73b 3310
dd41f596 3311 /*
c02aa73b
DH
3312 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3313 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3314 */
c02aa73b 3315 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3316 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3317 return -EPERM;
3318 }
5fe1d75f 3319
37e4ab3f 3320 /* can't change other user's priorities */
c69e8d9c 3321 if (!check_same_owner(p))
37e4ab3f 3322 return -EPERM;
ca94c442
LP
3323
3324 /* Normal users shall not reset the sched_reset_on_fork flag */
3325 if (p->sched_reset_on_fork && !reset_on_fork)
3326 return -EPERM;
37e4ab3f 3327 }
1da177e4 3328
725aad24 3329 if (user) {
b0ae1981 3330 retval = security_task_setscheduler(p);
725aad24
JF
3331 if (retval)
3332 return retval;
3333 }
3334
b29739f9
IM
3335 /*
3336 * make sure no PI-waiters arrive (or leave) while we are
3337 * changing the priority of the task:
0122ec5b 3338 *
25985edc 3339 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3340 * runqueue lock must be held.
3341 */
0122ec5b 3342 rq = task_rq_lock(p, &flags);
dc61b1d6 3343
34f971f6
PZ
3344 /*
3345 * Changing the policy of the stop threads its a very bad idea
3346 */
3347 if (p == rq->stop) {
0122ec5b 3348 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3349 return -EINVAL;
3350 }
3351
a51e9198
DF
3352 /*
3353 * If not changing anything there's no need to proceed further:
3354 */
d50dde5a 3355 if (unlikely(policy == p->policy)) {
d0ea0268 3356 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3357 goto change;
3358 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3359 goto change;
aab03e05
DF
3360 if (dl_policy(policy))
3361 goto change;
d50dde5a 3362
45afb173 3363 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3364 return 0;
3365 }
d50dde5a 3366change:
a51e9198 3367
dc61b1d6 3368 if (user) {
332ac17e 3369#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3370 /*
3371 * Do not allow realtime tasks into groups that have no runtime
3372 * assigned.
3373 */
3374 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3375 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3376 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3377 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3378 return -EPERM;
3379 }
dc61b1d6 3380#endif
332ac17e
DF
3381#ifdef CONFIG_SMP
3382 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3383 cpumask_t *span = rq->rd->span;
332ac17e
DF
3384
3385 /*
3386 * Don't allow tasks with an affinity mask smaller than
3387 * the entire root_domain to become SCHED_DEADLINE. We
3388 * will also fail if there's no bandwidth available.
3389 */
e4099a5e
PZ
3390 if (!cpumask_subset(span, &p->cpus_allowed) ||
3391 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3392 task_rq_unlock(rq, p, &flags);
3393 return -EPERM;
3394 }
3395 }
3396#endif
3397 }
dc61b1d6 3398
1da177e4
LT
3399 /* recheck policy now with rq lock held */
3400 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3401 policy = oldpolicy = -1;
0122ec5b 3402 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3403 goto recheck;
3404 }
332ac17e
DF
3405
3406 /*
3407 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3408 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3409 * is available.
3410 */
e4099a5e 3411 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3412 task_rq_unlock(rq, p, &flags);
3413 return -EBUSY;
3414 }
3415
fd2f4419 3416 on_rq = p->on_rq;
051a1d1a 3417 running = task_current(rq, p);
0e1f3483 3418 if (on_rq)
4ca9b72b 3419 dequeue_task(rq, p, 0);
0e1f3483
HS
3420 if (running)
3421 p->sched_class->put_prev_task(rq, p);
f6b53205 3422
ca94c442
LP
3423 p->sched_reset_on_fork = reset_on_fork;
3424
1da177e4 3425 oldprio = p->prio;
83ab0aa0 3426 prev_class = p->sched_class;
d50dde5a 3427 __setscheduler(rq, p, attr);
f6b53205 3428
0e1f3483
HS
3429 if (running)
3430 p->sched_class->set_curr_task(rq);
da7a735e 3431 if (on_rq)
4ca9b72b 3432 enqueue_task(rq, p, 0);
cb469845 3433
da7a735e 3434 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3435 task_rq_unlock(rq, p, &flags);
b29739f9 3436
95e02ca9
TG
3437 rt_mutex_adjust_pi(p);
3438
1da177e4
LT
3439 return 0;
3440}
961ccddd 3441
7479f3c9
PZ
3442static int _sched_setscheduler(struct task_struct *p, int policy,
3443 const struct sched_param *param, bool check)
3444{
3445 struct sched_attr attr = {
3446 .sched_policy = policy,
3447 .sched_priority = param->sched_priority,
3448 .sched_nice = PRIO_TO_NICE(p->static_prio),
3449 };
3450
3451 /*
3452 * Fixup the legacy SCHED_RESET_ON_FORK hack
3453 */
3454 if (policy & SCHED_RESET_ON_FORK) {
3455 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3456 policy &= ~SCHED_RESET_ON_FORK;
3457 attr.sched_policy = policy;
3458 }
3459
3460 return __sched_setscheduler(p, &attr, check);
3461}
961ccddd
RR
3462/**
3463 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3464 * @p: the task in question.
3465 * @policy: new policy.
3466 * @param: structure containing the new RT priority.
3467 *
e69f6186
YB
3468 * Return: 0 on success. An error code otherwise.
3469 *
961ccddd
RR
3470 * NOTE that the task may be already dead.
3471 */
3472int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3473 const struct sched_param *param)
961ccddd 3474{
7479f3c9 3475 return _sched_setscheduler(p, policy, param, true);
961ccddd 3476}
1da177e4
LT
3477EXPORT_SYMBOL_GPL(sched_setscheduler);
3478
d50dde5a
DF
3479int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3480{
3481 return __sched_setscheduler(p, attr, true);
3482}
3483EXPORT_SYMBOL_GPL(sched_setattr);
3484
961ccddd
RR
3485/**
3486 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3487 * @p: the task in question.
3488 * @policy: new policy.
3489 * @param: structure containing the new RT priority.
3490 *
3491 * Just like sched_setscheduler, only don't bother checking if the
3492 * current context has permission. For example, this is needed in
3493 * stop_machine(): we create temporary high priority worker threads,
3494 * but our caller might not have that capability.
e69f6186
YB
3495 *
3496 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3497 */
3498int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3499 const struct sched_param *param)
961ccddd 3500{
7479f3c9 3501 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3502}
3503
95cdf3b7
IM
3504static int
3505do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3506{
1da177e4
LT
3507 struct sched_param lparam;
3508 struct task_struct *p;
36c8b586 3509 int retval;
1da177e4
LT
3510
3511 if (!param || pid < 0)
3512 return -EINVAL;
3513 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3514 return -EFAULT;
5fe1d75f
ON
3515
3516 rcu_read_lock();
3517 retval = -ESRCH;
1da177e4 3518 p = find_process_by_pid(pid);
5fe1d75f
ON
3519 if (p != NULL)
3520 retval = sched_setscheduler(p, policy, &lparam);
3521 rcu_read_unlock();
36c8b586 3522
1da177e4
LT
3523 return retval;
3524}
3525
d50dde5a
DF
3526/*
3527 * Mimics kernel/events/core.c perf_copy_attr().
3528 */
3529static int sched_copy_attr(struct sched_attr __user *uattr,
3530 struct sched_attr *attr)
3531{
3532 u32 size;
3533 int ret;
3534
3535 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3536 return -EFAULT;
3537
3538 /*
3539 * zero the full structure, so that a short copy will be nice.
3540 */
3541 memset(attr, 0, sizeof(*attr));
3542
3543 ret = get_user(size, &uattr->size);
3544 if (ret)
3545 return ret;
3546
3547 if (size > PAGE_SIZE) /* silly large */
3548 goto err_size;
3549
3550 if (!size) /* abi compat */
3551 size = SCHED_ATTR_SIZE_VER0;
3552
3553 if (size < SCHED_ATTR_SIZE_VER0)
3554 goto err_size;
3555
3556 /*
3557 * If we're handed a bigger struct than we know of,
3558 * ensure all the unknown bits are 0 - i.e. new
3559 * user-space does not rely on any kernel feature
3560 * extensions we dont know about yet.
3561 */
3562 if (size > sizeof(*attr)) {
3563 unsigned char __user *addr;
3564 unsigned char __user *end;
3565 unsigned char val;
3566
3567 addr = (void __user *)uattr + sizeof(*attr);
3568 end = (void __user *)uattr + size;
3569
3570 for (; addr < end; addr++) {
3571 ret = get_user(val, addr);
3572 if (ret)
3573 return ret;
3574 if (val)
3575 goto err_size;
3576 }
3577 size = sizeof(*attr);
3578 }
3579
3580 ret = copy_from_user(attr, uattr, size);
3581 if (ret)
3582 return -EFAULT;
3583
3584 /*
3585 * XXX: do we want to be lenient like existing syscalls; or do we want
3586 * to be strict and return an error on out-of-bounds values?
3587 */
3588 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3589
3590out:
3591 return ret;
3592
3593err_size:
3594 put_user(sizeof(*attr), &uattr->size);
3595 ret = -E2BIG;
3596 goto out;
3597}
3598
1da177e4
LT
3599/**
3600 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3601 * @pid: the pid in question.
3602 * @policy: new policy.
3603 * @param: structure containing the new RT priority.
e69f6186
YB
3604 *
3605 * Return: 0 on success. An error code otherwise.
1da177e4 3606 */
5add95d4
HC
3607SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3608 struct sched_param __user *, param)
1da177e4 3609{
c21761f1
JB
3610 /* negative values for policy are not valid */
3611 if (policy < 0)
3612 return -EINVAL;
3613
1da177e4
LT
3614 return do_sched_setscheduler(pid, policy, param);
3615}
3616
3617/**
3618 * sys_sched_setparam - set/change the RT priority of a thread
3619 * @pid: the pid in question.
3620 * @param: structure containing the new RT priority.
e69f6186
YB
3621 *
3622 * Return: 0 on success. An error code otherwise.
1da177e4 3623 */
5add95d4 3624SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3625{
3626 return do_sched_setscheduler(pid, -1, param);
3627}
3628
d50dde5a
DF
3629/**
3630 * sys_sched_setattr - same as above, but with extended sched_attr
3631 * @pid: the pid in question.
5778fccf 3632 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3633 */
3634SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3635{
3636 struct sched_attr attr;
3637 struct task_struct *p;
3638 int retval;
3639
3640 if (!uattr || pid < 0)
3641 return -EINVAL;
3642
3643 if (sched_copy_attr(uattr, &attr))
3644 return -EFAULT;
3645
3646 rcu_read_lock();
3647 retval = -ESRCH;
3648 p = find_process_by_pid(pid);
3649 if (p != NULL)
3650 retval = sched_setattr(p, &attr);
3651 rcu_read_unlock();
3652
3653 return retval;
3654}
3655
1da177e4
LT
3656/**
3657 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3658 * @pid: the pid in question.
e69f6186
YB
3659 *
3660 * Return: On success, the policy of the thread. Otherwise, a negative error
3661 * code.
1da177e4 3662 */
5add95d4 3663SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3664{
36c8b586 3665 struct task_struct *p;
3a5c359a 3666 int retval;
1da177e4
LT
3667
3668 if (pid < 0)
3a5c359a 3669 return -EINVAL;
1da177e4
LT
3670
3671 retval = -ESRCH;
5fe85be0 3672 rcu_read_lock();
1da177e4
LT
3673 p = find_process_by_pid(pid);
3674 if (p) {
3675 retval = security_task_getscheduler(p);
3676 if (!retval)
ca94c442
LP
3677 retval = p->policy
3678 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3679 }
5fe85be0 3680 rcu_read_unlock();
1da177e4
LT
3681 return retval;
3682}
3683
3684/**
ca94c442 3685 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3686 * @pid: the pid in question.
3687 * @param: structure containing the RT priority.
e69f6186
YB
3688 *
3689 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3690 * code.
1da177e4 3691 */
5add95d4 3692SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3693{
3694 struct sched_param lp;
36c8b586 3695 struct task_struct *p;
3a5c359a 3696 int retval;
1da177e4
LT
3697
3698 if (!param || pid < 0)
3a5c359a 3699 return -EINVAL;
1da177e4 3700
5fe85be0 3701 rcu_read_lock();
1da177e4
LT
3702 p = find_process_by_pid(pid);
3703 retval = -ESRCH;
3704 if (!p)
3705 goto out_unlock;
3706
3707 retval = security_task_getscheduler(p);
3708 if (retval)
3709 goto out_unlock;
3710
aab03e05
DF
3711 if (task_has_dl_policy(p)) {
3712 retval = -EINVAL;
3713 goto out_unlock;
3714 }
1da177e4 3715 lp.sched_priority = p->rt_priority;
5fe85be0 3716 rcu_read_unlock();
1da177e4
LT
3717
3718 /*
3719 * This one might sleep, we cannot do it with a spinlock held ...
3720 */
3721 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3722
1da177e4
LT
3723 return retval;
3724
3725out_unlock:
5fe85be0 3726 rcu_read_unlock();
1da177e4
LT
3727 return retval;
3728}
3729
d50dde5a
DF
3730static int sched_read_attr(struct sched_attr __user *uattr,
3731 struct sched_attr *attr,
3732 unsigned int usize)
3733{
3734 int ret;
3735
3736 if (!access_ok(VERIFY_WRITE, uattr, usize))
3737 return -EFAULT;
3738
3739 /*
3740 * If we're handed a smaller struct than we know of,
3741 * ensure all the unknown bits are 0 - i.e. old
3742 * user-space does not get uncomplete information.
3743 */
3744 if (usize < sizeof(*attr)) {
3745 unsigned char *addr;
3746 unsigned char *end;
3747
3748 addr = (void *)attr + usize;
3749 end = (void *)attr + sizeof(*attr);
3750
3751 for (; addr < end; addr++) {
3752 if (*addr)
3753 goto err_size;
3754 }
3755
3756 attr->size = usize;
3757 }
3758
3759 ret = copy_to_user(uattr, attr, usize);
3760 if (ret)
3761 return -EFAULT;
3762
3763out:
3764 return ret;
3765
3766err_size:
3767 ret = -E2BIG;
3768 goto out;
3769}
3770
3771/**
aab03e05 3772 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3773 * @pid: the pid in question.
5778fccf 3774 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3775 * @size: sizeof(attr) for fwd/bwd comp.
3776 */
3777SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3778 unsigned int, size)
3779{
3780 struct sched_attr attr = {
3781 .size = sizeof(struct sched_attr),
3782 };
3783 struct task_struct *p;
3784 int retval;
3785
3786 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3787 size < SCHED_ATTR_SIZE_VER0)
3788 return -EINVAL;
3789
3790 rcu_read_lock();
3791 p = find_process_by_pid(pid);
3792 retval = -ESRCH;
3793 if (!p)
3794 goto out_unlock;
3795
3796 retval = security_task_getscheduler(p);
3797 if (retval)
3798 goto out_unlock;
3799
3800 attr.sched_policy = p->policy;
7479f3c9
PZ
3801 if (p->sched_reset_on_fork)
3802 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3803 if (task_has_dl_policy(p))
3804 __getparam_dl(p, &attr);
3805 else if (task_has_rt_policy(p))
d50dde5a
DF
3806 attr.sched_priority = p->rt_priority;
3807 else
d0ea0268 3808 attr.sched_nice = task_nice(p);
d50dde5a
DF
3809
3810 rcu_read_unlock();
3811
3812 retval = sched_read_attr(uattr, &attr, size);
3813 return retval;
3814
3815out_unlock:
3816 rcu_read_unlock();
3817 return retval;
3818}
3819
96f874e2 3820long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3821{
5a16f3d3 3822 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3823 struct task_struct *p;
3824 int retval;
1da177e4 3825
23f5d142 3826 rcu_read_lock();
1da177e4
LT
3827
3828 p = find_process_by_pid(pid);
3829 if (!p) {
23f5d142 3830 rcu_read_unlock();
1da177e4
LT
3831 return -ESRCH;
3832 }
3833
23f5d142 3834 /* Prevent p going away */
1da177e4 3835 get_task_struct(p);
23f5d142 3836 rcu_read_unlock();
1da177e4 3837
14a40ffc
TH
3838 if (p->flags & PF_NO_SETAFFINITY) {
3839 retval = -EINVAL;
3840 goto out_put_task;
3841 }
5a16f3d3
RR
3842 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3843 retval = -ENOMEM;
3844 goto out_put_task;
3845 }
3846 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3847 retval = -ENOMEM;
3848 goto out_free_cpus_allowed;
3849 }
1da177e4 3850 retval = -EPERM;
4c44aaaf
EB
3851 if (!check_same_owner(p)) {
3852 rcu_read_lock();
3853 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3854 rcu_read_unlock();
3855 goto out_unlock;
3856 }
3857 rcu_read_unlock();
3858 }
1da177e4 3859
b0ae1981 3860 retval = security_task_setscheduler(p);
e7834f8f
DQ
3861 if (retval)
3862 goto out_unlock;
3863
e4099a5e
PZ
3864
3865 cpuset_cpus_allowed(p, cpus_allowed);
3866 cpumask_and(new_mask, in_mask, cpus_allowed);
3867
332ac17e
DF
3868 /*
3869 * Since bandwidth control happens on root_domain basis,
3870 * if admission test is enabled, we only admit -deadline
3871 * tasks allowed to run on all the CPUs in the task's
3872 * root_domain.
3873 */
3874#ifdef CONFIG_SMP
3875 if (task_has_dl_policy(p)) {
3876 const struct cpumask *span = task_rq(p)->rd->span;
3877
e4099a5e 3878 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3879 retval = -EBUSY;
3880 goto out_unlock;
3881 }
3882 }
3883#endif
49246274 3884again:
5a16f3d3 3885 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3886
8707d8b8 3887 if (!retval) {
5a16f3d3
RR
3888 cpuset_cpus_allowed(p, cpus_allowed);
3889 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3890 /*
3891 * We must have raced with a concurrent cpuset
3892 * update. Just reset the cpus_allowed to the
3893 * cpuset's cpus_allowed
3894 */
5a16f3d3 3895 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3896 goto again;
3897 }
3898 }
1da177e4 3899out_unlock:
5a16f3d3
RR
3900 free_cpumask_var(new_mask);
3901out_free_cpus_allowed:
3902 free_cpumask_var(cpus_allowed);
3903out_put_task:
1da177e4 3904 put_task_struct(p);
1da177e4
LT
3905 return retval;
3906}
3907
3908static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3909 struct cpumask *new_mask)
1da177e4 3910{
96f874e2
RR
3911 if (len < cpumask_size())
3912 cpumask_clear(new_mask);
3913 else if (len > cpumask_size())
3914 len = cpumask_size();
3915
1da177e4
LT
3916 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3917}
3918
3919/**
3920 * sys_sched_setaffinity - set the cpu affinity of a process
3921 * @pid: pid of the process
3922 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3923 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3924 *
3925 * Return: 0 on success. An error code otherwise.
1da177e4 3926 */
5add95d4
HC
3927SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3928 unsigned long __user *, user_mask_ptr)
1da177e4 3929{
5a16f3d3 3930 cpumask_var_t new_mask;
1da177e4
LT
3931 int retval;
3932
5a16f3d3
RR
3933 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3934 return -ENOMEM;
1da177e4 3935
5a16f3d3
RR
3936 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3937 if (retval == 0)
3938 retval = sched_setaffinity(pid, new_mask);
3939 free_cpumask_var(new_mask);
3940 return retval;
1da177e4
LT
3941}
3942
96f874e2 3943long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3944{
36c8b586 3945 struct task_struct *p;
31605683 3946 unsigned long flags;
1da177e4 3947 int retval;
1da177e4 3948
23f5d142 3949 rcu_read_lock();
1da177e4
LT
3950
3951 retval = -ESRCH;
3952 p = find_process_by_pid(pid);
3953 if (!p)
3954 goto out_unlock;
3955
e7834f8f
DQ
3956 retval = security_task_getscheduler(p);
3957 if (retval)
3958 goto out_unlock;
3959
013fdb80 3960 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3961 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3962 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3963
3964out_unlock:
23f5d142 3965 rcu_read_unlock();
1da177e4 3966
9531b62f 3967 return retval;
1da177e4
LT
3968}
3969
3970/**
3971 * sys_sched_getaffinity - get the cpu affinity of a process
3972 * @pid: pid of the process
3973 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3974 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3975 *
3976 * Return: 0 on success. An error code otherwise.
1da177e4 3977 */
5add95d4
HC
3978SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3979 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3980{
3981 int ret;
f17c8607 3982 cpumask_var_t mask;
1da177e4 3983
84fba5ec 3984 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3985 return -EINVAL;
3986 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3987 return -EINVAL;
3988
f17c8607
RR
3989 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3990 return -ENOMEM;
1da177e4 3991
f17c8607
RR
3992 ret = sched_getaffinity(pid, mask);
3993 if (ret == 0) {
8bc037fb 3994 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3995
3996 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3997 ret = -EFAULT;
3998 else
cd3d8031 3999 ret = retlen;
f17c8607
RR
4000 }
4001 free_cpumask_var(mask);
1da177e4 4002
f17c8607 4003 return ret;
1da177e4
LT
4004}
4005
4006/**
4007 * sys_sched_yield - yield the current processor to other threads.
4008 *
dd41f596
IM
4009 * This function yields the current CPU to other tasks. If there are no
4010 * other threads running on this CPU then this function will return.
e69f6186
YB
4011 *
4012 * Return: 0.
1da177e4 4013 */
5add95d4 4014SYSCALL_DEFINE0(sched_yield)
1da177e4 4015{
70b97a7f 4016 struct rq *rq = this_rq_lock();
1da177e4 4017
2d72376b 4018 schedstat_inc(rq, yld_count);
4530d7ab 4019 current->sched_class->yield_task(rq);
1da177e4
LT
4020
4021 /*
4022 * Since we are going to call schedule() anyway, there's
4023 * no need to preempt or enable interrupts:
4024 */
4025 __release(rq->lock);
8a25d5de 4026 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4027 do_raw_spin_unlock(&rq->lock);
ba74c144 4028 sched_preempt_enable_no_resched();
1da177e4
LT
4029
4030 schedule();
4031
4032 return 0;
4033}
4034
e7b38404 4035static void __cond_resched(void)
1da177e4 4036{
bdb43806 4037 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4038 __schedule();
bdb43806 4039 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4040}
4041
02b67cc3 4042int __sched _cond_resched(void)
1da177e4 4043{
d86ee480 4044 if (should_resched()) {
1da177e4
LT
4045 __cond_resched();
4046 return 1;
4047 }
4048 return 0;
4049}
02b67cc3 4050EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4051
4052/*
613afbf8 4053 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4054 * call schedule, and on return reacquire the lock.
4055 *
41a2d6cf 4056 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4057 * operations here to prevent schedule() from being called twice (once via
4058 * spin_unlock(), once by hand).
4059 */
613afbf8 4060int __cond_resched_lock(spinlock_t *lock)
1da177e4 4061{
d86ee480 4062 int resched = should_resched();
6df3cecb
JK
4063 int ret = 0;
4064
f607c668
PZ
4065 lockdep_assert_held(lock);
4066
95c354fe 4067 if (spin_needbreak(lock) || resched) {
1da177e4 4068 spin_unlock(lock);
d86ee480 4069 if (resched)
95c354fe
NP
4070 __cond_resched();
4071 else
4072 cpu_relax();
6df3cecb 4073 ret = 1;
1da177e4 4074 spin_lock(lock);
1da177e4 4075 }
6df3cecb 4076 return ret;
1da177e4 4077}
613afbf8 4078EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4079
613afbf8 4080int __sched __cond_resched_softirq(void)
1da177e4
LT
4081{
4082 BUG_ON(!in_softirq());
4083
d86ee480 4084 if (should_resched()) {
98d82567 4085 local_bh_enable();
1da177e4
LT
4086 __cond_resched();
4087 local_bh_disable();
4088 return 1;
4089 }
4090 return 0;
4091}
613afbf8 4092EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4093
1da177e4
LT
4094/**
4095 * yield - yield the current processor to other threads.
4096 *
8e3fabfd
PZ
4097 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4098 *
4099 * The scheduler is at all times free to pick the calling task as the most
4100 * eligible task to run, if removing the yield() call from your code breaks
4101 * it, its already broken.
4102 *
4103 * Typical broken usage is:
4104 *
4105 * while (!event)
4106 * yield();
4107 *
4108 * where one assumes that yield() will let 'the other' process run that will
4109 * make event true. If the current task is a SCHED_FIFO task that will never
4110 * happen. Never use yield() as a progress guarantee!!
4111 *
4112 * If you want to use yield() to wait for something, use wait_event().
4113 * If you want to use yield() to be 'nice' for others, use cond_resched().
4114 * If you still want to use yield(), do not!
1da177e4
LT
4115 */
4116void __sched yield(void)
4117{
4118 set_current_state(TASK_RUNNING);
4119 sys_sched_yield();
4120}
1da177e4
LT
4121EXPORT_SYMBOL(yield);
4122
d95f4122
MG
4123/**
4124 * yield_to - yield the current processor to another thread in
4125 * your thread group, or accelerate that thread toward the
4126 * processor it's on.
16addf95
RD
4127 * @p: target task
4128 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4129 *
4130 * It's the caller's job to ensure that the target task struct
4131 * can't go away on us before we can do any checks.
4132 *
e69f6186 4133 * Return:
7b270f60
PZ
4134 * true (>0) if we indeed boosted the target task.
4135 * false (0) if we failed to boost the target.
4136 * -ESRCH if there's no task to yield to.
d95f4122
MG
4137 */
4138bool __sched yield_to(struct task_struct *p, bool preempt)
4139{
4140 struct task_struct *curr = current;
4141 struct rq *rq, *p_rq;
4142 unsigned long flags;
c3c18640 4143 int yielded = 0;
d95f4122
MG
4144
4145 local_irq_save(flags);
4146 rq = this_rq();
4147
4148again:
4149 p_rq = task_rq(p);
7b270f60
PZ
4150 /*
4151 * If we're the only runnable task on the rq and target rq also
4152 * has only one task, there's absolutely no point in yielding.
4153 */
4154 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4155 yielded = -ESRCH;
4156 goto out_irq;
4157 }
4158
d95f4122 4159 double_rq_lock(rq, p_rq);
39e24d8f 4160 if (task_rq(p) != p_rq) {
d95f4122
MG
4161 double_rq_unlock(rq, p_rq);
4162 goto again;
4163 }
4164
4165 if (!curr->sched_class->yield_to_task)
7b270f60 4166 goto out_unlock;
d95f4122
MG
4167
4168 if (curr->sched_class != p->sched_class)
7b270f60 4169 goto out_unlock;
d95f4122
MG
4170
4171 if (task_running(p_rq, p) || p->state)
7b270f60 4172 goto out_unlock;
d95f4122
MG
4173
4174 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4175 if (yielded) {
d95f4122 4176 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4177 /*
4178 * Make p's CPU reschedule; pick_next_entity takes care of
4179 * fairness.
4180 */
4181 if (preempt && rq != p_rq)
4182 resched_task(p_rq->curr);
4183 }
d95f4122 4184
7b270f60 4185out_unlock:
d95f4122 4186 double_rq_unlock(rq, p_rq);
7b270f60 4187out_irq:
d95f4122
MG
4188 local_irq_restore(flags);
4189
7b270f60 4190 if (yielded > 0)
d95f4122
MG
4191 schedule();
4192
4193 return yielded;
4194}
4195EXPORT_SYMBOL_GPL(yield_to);
4196
1da177e4 4197/*
41a2d6cf 4198 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4199 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4200 */
4201void __sched io_schedule(void)
4202{
54d35f29 4203 struct rq *rq = raw_rq();
1da177e4 4204
0ff92245 4205 delayacct_blkio_start();
1da177e4 4206 atomic_inc(&rq->nr_iowait);
73c10101 4207 blk_flush_plug(current);
8f0dfc34 4208 current->in_iowait = 1;
1da177e4 4209 schedule();
8f0dfc34 4210 current->in_iowait = 0;
1da177e4 4211 atomic_dec(&rq->nr_iowait);
0ff92245 4212 delayacct_blkio_end();
1da177e4 4213}
1da177e4
LT
4214EXPORT_SYMBOL(io_schedule);
4215
4216long __sched io_schedule_timeout(long timeout)
4217{
54d35f29 4218 struct rq *rq = raw_rq();
1da177e4
LT
4219 long ret;
4220
0ff92245 4221 delayacct_blkio_start();
1da177e4 4222 atomic_inc(&rq->nr_iowait);
73c10101 4223 blk_flush_plug(current);
8f0dfc34 4224 current->in_iowait = 1;
1da177e4 4225 ret = schedule_timeout(timeout);
8f0dfc34 4226 current->in_iowait = 0;
1da177e4 4227 atomic_dec(&rq->nr_iowait);
0ff92245 4228 delayacct_blkio_end();
1da177e4
LT
4229 return ret;
4230}
4231
4232/**
4233 * sys_sched_get_priority_max - return maximum RT priority.
4234 * @policy: scheduling class.
4235 *
e69f6186
YB
4236 * Return: On success, this syscall returns the maximum
4237 * rt_priority that can be used by a given scheduling class.
4238 * On failure, a negative error code is returned.
1da177e4 4239 */
5add95d4 4240SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4241{
4242 int ret = -EINVAL;
4243
4244 switch (policy) {
4245 case SCHED_FIFO:
4246 case SCHED_RR:
4247 ret = MAX_USER_RT_PRIO-1;
4248 break;
aab03e05 4249 case SCHED_DEADLINE:
1da177e4 4250 case SCHED_NORMAL:
b0a9499c 4251 case SCHED_BATCH:
dd41f596 4252 case SCHED_IDLE:
1da177e4
LT
4253 ret = 0;
4254 break;
4255 }
4256 return ret;
4257}
4258
4259/**
4260 * sys_sched_get_priority_min - return minimum RT priority.
4261 * @policy: scheduling class.
4262 *
e69f6186
YB
4263 * Return: On success, this syscall returns the minimum
4264 * rt_priority that can be used by a given scheduling class.
4265 * On failure, a negative error code is returned.
1da177e4 4266 */
5add95d4 4267SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4268{
4269 int ret = -EINVAL;
4270
4271 switch (policy) {
4272 case SCHED_FIFO:
4273 case SCHED_RR:
4274 ret = 1;
4275 break;
aab03e05 4276 case SCHED_DEADLINE:
1da177e4 4277 case SCHED_NORMAL:
b0a9499c 4278 case SCHED_BATCH:
dd41f596 4279 case SCHED_IDLE:
1da177e4
LT
4280 ret = 0;
4281 }
4282 return ret;
4283}
4284
4285/**
4286 * sys_sched_rr_get_interval - return the default timeslice of a process.
4287 * @pid: pid of the process.
4288 * @interval: userspace pointer to the timeslice value.
4289 *
4290 * this syscall writes the default timeslice value of a given process
4291 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4292 *
4293 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4294 * an error code.
1da177e4 4295 */
17da2bd9 4296SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4297 struct timespec __user *, interval)
1da177e4 4298{
36c8b586 4299 struct task_struct *p;
a4ec24b4 4300 unsigned int time_slice;
dba091b9
TG
4301 unsigned long flags;
4302 struct rq *rq;
3a5c359a 4303 int retval;
1da177e4 4304 struct timespec t;
1da177e4
LT
4305
4306 if (pid < 0)
3a5c359a 4307 return -EINVAL;
1da177e4
LT
4308
4309 retval = -ESRCH;
1a551ae7 4310 rcu_read_lock();
1da177e4
LT
4311 p = find_process_by_pid(pid);
4312 if (!p)
4313 goto out_unlock;
4314
4315 retval = security_task_getscheduler(p);
4316 if (retval)
4317 goto out_unlock;
4318
dba091b9 4319 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4320 time_slice = 0;
4321 if (p->sched_class->get_rr_interval)
4322 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4323 task_rq_unlock(rq, p, &flags);
a4ec24b4 4324
1a551ae7 4325 rcu_read_unlock();
a4ec24b4 4326 jiffies_to_timespec(time_slice, &t);
1da177e4 4327 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4328 return retval;
3a5c359a 4329
1da177e4 4330out_unlock:
1a551ae7 4331 rcu_read_unlock();
1da177e4
LT
4332 return retval;
4333}
4334
7c731e0a 4335static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4336
82a1fcb9 4337void sched_show_task(struct task_struct *p)
1da177e4 4338{
1da177e4 4339 unsigned long free = 0;
4e79752c 4340 int ppid;
36c8b586 4341 unsigned state;
1da177e4 4342
1da177e4 4343 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4344 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4345 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4346#if BITS_PER_LONG == 32
1da177e4 4347 if (state == TASK_RUNNING)
3df0fc5b 4348 printk(KERN_CONT " running ");
1da177e4 4349 else
3df0fc5b 4350 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4351#else
4352 if (state == TASK_RUNNING)
3df0fc5b 4353 printk(KERN_CONT " running task ");
1da177e4 4354 else
3df0fc5b 4355 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4356#endif
4357#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4358 free = stack_not_used(p);
1da177e4 4359#endif
4e79752c
PM
4360 rcu_read_lock();
4361 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4362 rcu_read_unlock();
3df0fc5b 4363 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4364 task_pid_nr(p), ppid,
aa47b7e0 4365 (unsigned long)task_thread_info(p)->flags);
1da177e4 4366
3d1cb205 4367 print_worker_info(KERN_INFO, p);
5fb5e6de 4368 show_stack(p, NULL);
1da177e4
LT
4369}
4370
e59e2ae2 4371void show_state_filter(unsigned long state_filter)
1da177e4 4372{
36c8b586 4373 struct task_struct *g, *p;
1da177e4 4374
4bd77321 4375#if BITS_PER_LONG == 32
3df0fc5b
PZ
4376 printk(KERN_INFO
4377 " task PC stack pid father\n");
1da177e4 4378#else
3df0fc5b
PZ
4379 printk(KERN_INFO
4380 " task PC stack pid father\n");
1da177e4 4381#endif
510f5acc 4382 rcu_read_lock();
1da177e4
LT
4383 do_each_thread(g, p) {
4384 /*
4385 * reset the NMI-timeout, listing all files on a slow
25985edc 4386 * console might take a lot of time:
1da177e4
LT
4387 */
4388 touch_nmi_watchdog();
39bc89fd 4389 if (!state_filter || (p->state & state_filter))
82a1fcb9 4390 sched_show_task(p);
1da177e4
LT
4391 } while_each_thread(g, p);
4392
04c9167f
JF
4393 touch_all_softlockup_watchdogs();
4394
dd41f596
IM
4395#ifdef CONFIG_SCHED_DEBUG
4396 sysrq_sched_debug_show();
4397#endif
510f5acc 4398 rcu_read_unlock();
e59e2ae2
IM
4399 /*
4400 * Only show locks if all tasks are dumped:
4401 */
93335a21 4402 if (!state_filter)
e59e2ae2 4403 debug_show_all_locks();
1da177e4
LT
4404}
4405
0db0628d 4406void init_idle_bootup_task(struct task_struct *idle)
1df21055 4407{
dd41f596 4408 idle->sched_class = &idle_sched_class;
1df21055
IM
4409}
4410
f340c0d1
IM
4411/**
4412 * init_idle - set up an idle thread for a given CPU
4413 * @idle: task in question
4414 * @cpu: cpu the idle task belongs to
4415 *
4416 * NOTE: this function does not set the idle thread's NEED_RESCHED
4417 * flag, to make booting more robust.
4418 */
0db0628d 4419void init_idle(struct task_struct *idle, int cpu)
1da177e4 4420{
70b97a7f 4421 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4422 unsigned long flags;
4423
05fa785c 4424 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4425
5e1576ed 4426 __sched_fork(0, idle);
06b83b5f 4427 idle->state = TASK_RUNNING;
dd41f596
IM
4428 idle->se.exec_start = sched_clock();
4429
1e1b6c51 4430 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4431 /*
4432 * We're having a chicken and egg problem, even though we are
4433 * holding rq->lock, the cpu isn't yet set to this cpu so the
4434 * lockdep check in task_group() will fail.
4435 *
4436 * Similar case to sched_fork(). / Alternatively we could
4437 * use task_rq_lock() here and obtain the other rq->lock.
4438 *
4439 * Silence PROVE_RCU
4440 */
4441 rcu_read_lock();
dd41f596 4442 __set_task_cpu(idle, cpu);
6506cf6c 4443 rcu_read_unlock();
1da177e4 4444
1da177e4 4445 rq->curr = rq->idle = idle;
3ca7a440
PZ
4446#if defined(CONFIG_SMP)
4447 idle->on_cpu = 1;
4866cde0 4448#endif
05fa785c 4449 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4450
4451 /* Set the preempt count _outside_ the spinlocks! */
01028747 4452 init_idle_preempt_count(idle, cpu);
55cd5340 4453
dd41f596
IM
4454 /*
4455 * The idle tasks have their own, simple scheduling class:
4456 */
4457 idle->sched_class = &idle_sched_class;
868baf07 4458 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4459 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4460#if defined(CONFIG_SMP)
4461 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4462#endif
19978ca6
IM
4463}
4464
1da177e4 4465#ifdef CONFIG_SMP
1e1b6c51
KM
4466void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4467{
4468 if (p->sched_class && p->sched_class->set_cpus_allowed)
4469 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4470
4471 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4472 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4473}
4474
1da177e4
LT
4475/*
4476 * This is how migration works:
4477 *
969c7921
TH
4478 * 1) we invoke migration_cpu_stop() on the target CPU using
4479 * stop_one_cpu().
4480 * 2) stopper starts to run (implicitly forcing the migrated thread
4481 * off the CPU)
4482 * 3) it checks whether the migrated task is still in the wrong runqueue.
4483 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4484 * it and puts it into the right queue.
969c7921
TH
4485 * 5) stopper completes and stop_one_cpu() returns and the migration
4486 * is done.
1da177e4
LT
4487 */
4488
4489/*
4490 * Change a given task's CPU affinity. Migrate the thread to a
4491 * proper CPU and schedule it away if the CPU it's executing on
4492 * is removed from the allowed bitmask.
4493 *
4494 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4495 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4496 * call is not atomic; no spinlocks may be held.
4497 */
96f874e2 4498int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4499{
4500 unsigned long flags;
70b97a7f 4501 struct rq *rq;
969c7921 4502 unsigned int dest_cpu;
48f24c4d 4503 int ret = 0;
1da177e4
LT
4504
4505 rq = task_rq_lock(p, &flags);
e2912009 4506
db44fc01
YZ
4507 if (cpumask_equal(&p->cpus_allowed, new_mask))
4508 goto out;
4509
6ad4c188 4510 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4511 ret = -EINVAL;
4512 goto out;
4513 }
4514
1e1b6c51 4515 do_set_cpus_allowed(p, new_mask);
73fe6aae 4516
1da177e4 4517 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4518 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4519 goto out;
4520
969c7921 4521 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4522 if (p->on_rq) {
969c7921 4523 struct migration_arg arg = { p, dest_cpu };
1da177e4 4524 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4525 task_rq_unlock(rq, p, &flags);
969c7921 4526 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4527 tlb_migrate_finish(p->mm);
4528 return 0;
4529 }
4530out:
0122ec5b 4531 task_rq_unlock(rq, p, &flags);
48f24c4d 4532
1da177e4
LT
4533 return ret;
4534}
cd8ba7cd 4535EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4536
4537/*
41a2d6cf 4538 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4539 * this because either it can't run here any more (set_cpus_allowed()
4540 * away from this CPU, or CPU going down), or because we're
4541 * attempting to rebalance this task on exec (sched_exec).
4542 *
4543 * So we race with normal scheduler movements, but that's OK, as long
4544 * as the task is no longer on this CPU.
efc30814
KK
4545 *
4546 * Returns non-zero if task was successfully migrated.
1da177e4 4547 */
efc30814 4548static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4549{
70b97a7f 4550 struct rq *rq_dest, *rq_src;
e2912009 4551 int ret = 0;
1da177e4 4552
e761b772 4553 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4554 return ret;
1da177e4
LT
4555
4556 rq_src = cpu_rq(src_cpu);
4557 rq_dest = cpu_rq(dest_cpu);
4558
0122ec5b 4559 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4560 double_rq_lock(rq_src, rq_dest);
4561 /* Already moved. */
4562 if (task_cpu(p) != src_cpu)
b1e38734 4563 goto done;
1da177e4 4564 /* Affinity changed (again). */
fa17b507 4565 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4566 goto fail;
1da177e4 4567
e2912009
PZ
4568 /*
4569 * If we're not on a rq, the next wake-up will ensure we're
4570 * placed properly.
4571 */
fd2f4419 4572 if (p->on_rq) {
4ca9b72b 4573 dequeue_task(rq_src, p, 0);
e2912009 4574 set_task_cpu(p, dest_cpu);
4ca9b72b 4575 enqueue_task(rq_dest, p, 0);
15afe09b 4576 check_preempt_curr(rq_dest, p, 0);
1da177e4 4577 }
b1e38734 4578done:
efc30814 4579 ret = 1;
b1e38734 4580fail:
1da177e4 4581 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4582 raw_spin_unlock(&p->pi_lock);
efc30814 4583 return ret;
1da177e4
LT
4584}
4585
e6628d5b
MG
4586#ifdef CONFIG_NUMA_BALANCING
4587/* Migrate current task p to target_cpu */
4588int migrate_task_to(struct task_struct *p, int target_cpu)
4589{
4590 struct migration_arg arg = { p, target_cpu };
4591 int curr_cpu = task_cpu(p);
4592
4593 if (curr_cpu == target_cpu)
4594 return 0;
4595
4596 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4597 return -EINVAL;
4598
4599 /* TODO: This is not properly updating schedstats */
4600
286549dc 4601 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4602 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4603}
0ec8aa00
PZ
4604
4605/*
4606 * Requeue a task on a given node and accurately track the number of NUMA
4607 * tasks on the runqueues
4608 */
4609void sched_setnuma(struct task_struct *p, int nid)
4610{
4611 struct rq *rq;
4612 unsigned long flags;
4613 bool on_rq, running;
4614
4615 rq = task_rq_lock(p, &flags);
4616 on_rq = p->on_rq;
4617 running = task_current(rq, p);
4618
4619 if (on_rq)
4620 dequeue_task(rq, p, 0);
4621 if (running)
4622 p->sched_class->put_prev_task(rq, p);
4623
4624 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4625
4626 if (running)
4627 p->sched_class->set_curr_task(rq);
4628 if (on_rq)
4629 enqueue_task(rq, p, 0);
4630 task_rq_unlock(rq, p, &flags);
4631}
e6628d5b
MG
4632#endif
4633
1da177e4 4634/*
969c7921
TH
4635 * migration_cpu_stop - this will be executed by a highprio stopper thread
4636 * and performs thread migration by bumping thread off CPU then
4637 * 'pushing' onto another runqueue.
1da177e4 4638 */
969c7921 4639static int migration_cpu_stop(void *data)
1da177e4 4640{
969c7921 4641 struct migration_arg *arg = data;
f7b4cddc 4642
969c7921
TH
4643 /*
4644 * The original target cpu might have gone down and we might
4645 * be on another cpu but it doesn't matter.
4646 */
f7b4cddc 4647 local_irq_disable();
969c7921 4648 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4649 local_irq_enable();
1da177e4 4650 return 0;
f7b4cddc
ON
4651}
4652
1da177e4 4653#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4654
054b9108 4655/*
48c5ccae
PZ
4656 * Ensures that the idle task is using init_mm right before its cpu goes
4657 * offline.
054b9108 4658 */
48c5ccae 4659void idle_task_exit(void)
1da177e4 4660{
48c5ccae 4661 struct mm_struct *mm = current->active_mm;
e76bd8d9 4662
48c5ccae 4663 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4664
48c5ccae
PZ
4665 if (mm != &init_mm)
4666 switch_mm(mm, &init_mm, current);
4667 mmdrop(mm);
1da177e4
LT
4668}
4669
4670/*
5d180232
PZ
4671 * Since this CPU is going 'away' for a while, fold any nr_active delta
4672 * we might have. Assumes we're called after migrate_tasks() so that the
4673 * nr_active count is stable.
4674 *
4675 * Also see the comment "Global load-average calculations".
1da177e4 4676 */
5d180232 4677static void calc_load_migrate(struct rq *rq)
1da177e4 4678{
5d180232
PZ
4679 long delta = calc_load_fold_active(rq);
4680 if (delta)
4681 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4682}
4683
48f24c4d 4684/*
48c5ccae
PZ
4685 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4686 * try_to_wake_up()->select_task_rq().
4687 *
4688 * Called with rq->lock held even though we'er in stop_machine() and
4689 * there's no concurrency possible, we hold the required locks anyway
4690 * because of lock validation efforts.
1da177e4 4691 */
48c5ccae 4692static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4693{
70b97a7f 4694 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4695 struct task_struct *next, *stop = rq->stop;
4696 int dest_cpu;
1da177e4
LT
4697
4698 /*
48c5ccae
PZ
4699 * Fudge the rq selection such that the below task selection loop
4700 * doesn't get stuck on the currently eligible stop task.
4701 *
4702 * We're currently inside stop_machine() and the rq is either stuck
4703 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4704 * either way we should never end up calling schedule() until we're
4705 * done here.
1da177e4 4706 */
48c5ccae 4707 rq->stop = NULL;
48f24c4d 4708
77bd3970
FW
4709 /*
4710 * put_prev_task() and pick_next_task() sched
4711 * class method both need to have an up-to-date
4712 * value of rq->clock[_task]
4713 */
4714 update_rq_clock(rq);
4715
dd41f596 4716 for ( ; ; ) {
48c5ccae
PZ
4717 /*
4718 * There's this thread running, bail when that's the only
4719 * remaining thread.
4720 */
4721 if (rq->nr_running == 1)
dd41f596 4722 break;
48c5ccae 4723
606dba2e 4724 next = pick_next_task(rq, NULL);
48c5ccae 4725 BUG_ON(!next);
79c53799 4726 next->sched_class->put_prev_task(rq, next);
e692ab53 4727
48c5ccae
PZ
4728 /* Find suitable destination for @next, with force if needed. */
4729 dest_cpu = select_fallback_rq(dead_cpu, next);
4730 raw_spin_unlock(&rq->lock);
4731
4732 __migrate_task(next, dead_cpu, dest_cpu);
4733
4734 raw_spin_lock(&rq->lock);
1da177e4 4735 }
dce48a84 4736
48c5ccae 4737 rq->stop = stop;
dce48a84 4738}
48c5ccae 4739
1da177e4
LT
4740#endif /* CONFIG_HOTPLUG_CPU */
4741
e692ab53
NP
4742#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4743
4744static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4745 {
4746 .procname = "sched_domain",
c57baf1e 4747 .mode = 0555,
e0361851 4748 },
56992309 4749 {}
e692ab53
NP
4750};
4751
4752static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4753 {
4754 .procname = "kernel",
c57baf1e 4755 .mode = 0555,
e0361851
AD
4756 .child = sd_ctl_dir,
4757 },
56992309 4758 {}
e692ab53
NP
4759};
4760
4761static struct ctl_table *sd_alloc_ctl_entry(int n)
4762{
4763 struct ctl_table *entry =
5cf9f062 4764 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4765
e692ab53
NP
4766 return entry;
4767}
4768
6382bc90
MM
4769static void sd_free_ctl_entry(struct ctl_table **tablep)
4770{
cd790076 4771 struct ctl_table *entry;
6382bc90 4772
cd790076
MM
4773 /*
4774 * In the intermediate directories, both the child directory and
4775 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4776 * will always be set. In the lowest directory the names are
cd790076
MM
4777 * static strings and all have proc handlers.
4778 */
4779 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4780 if (entry->child)
4781 sd_free_ctl_entry(&entry->child);
cd790076
MM
4782 if (entry->proc_handler == NULL)
4783 kfree(entry->procname);
4784 }
6382bc90
MM
4785
4786 kfree(*tablep);
4787 *tablep = NULL;
4788}
4789
201c373e 4790static int min_load_idx = 0;
fd9b86d3 4791static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4792
e692ab53 4793static void
e0361851 4794set_table_entry(struct ctl_table *entry,
e692ab53 4795 const char *procname, void *data, int maxlen,
201c373e
NK
4796 umode_t mode, proc_handler *proc_handler,
4797 bool load_idx)
e692ab53 4798{
e692ab53
NP
4799 entry->procname = procname;
4800 entry->data = data;
4801 entry->maxlen = maxlen;
4802 entry->mode = mode;
4803 entry->proc_handler = proc_handler;
201c373e
NK
4804
4805 if (load_idx) {
4806 entry->extra1 = &min_load_idx;
4807 entry->extra2 = &max_load_idx;
4808 }
e692ab53
NP
4809}
4810
4811static struct ctl_table *
4812sd_alloc_ctl_domain_table(struct sched_domain *sd)
4813{
37e6bae8 4814 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4815
ad1cdc1d
MM
4816 if (table == NULL)
4817 return NULL;
4818
e0361851 4819 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4820 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4821 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4822 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4823 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4824 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4825 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4826 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4827 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4828 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4829 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4830 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4831 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4832 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4833 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4834 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4835 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4836 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4837 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4838 &sd->cache_nice_tries,
201c373e 4839 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4840 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4841 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4842 set_table_entry(&table[11], "max_newidle_lb_cost",
4843 &sd->max_newidle_lb_cost,
4844 sizeof(long), 0644, proc_doulongvec_minmax, false);
4845 set_table_entry(&table[12], "name", sd->name,
201c373e 4846 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4847 /* &table[13] is terminator */
e692ab53
NP
4848
4849 return table;
4850}
4851
be7002e6 4852static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4853{
4854 struct ctl_table *entry, *table;
4855 struct sched_domain *sd;
4856 int domain_num = 0, i;
4857 char buf[32];
4858
4859 for_each_domain(cpu, sd)
4860 domain_num++;
4861 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4862 if (table == NULL)
4863 return NULL;
e692ab53
NP
4864
4865 i = 0;
4866 for_each_domain(cpu, sd) {
4867 snprintf(buf, 32, "domain%d", i);
e692ab53 4868 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4869 entry->mode = 0555;
e692ab53
NP
4870 entry->child = sd_alloc_ctl_domain_table(sd);
4871 entry++;
4872 i++;
4873 }
4874 return table;
4875}
4876
4877static struct ctl_table_header *sd_sysctl_header;
6382bc90 4878static void register_sched_domain_sysctl(void)
e692ab53 4879{
6ad4c188 4880 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4881 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4882 char buf[32];
4883
7378547f
MM
4884 WARN_ON(sd_ctl_dir[0].child);
4885 sd_ctl_dir[0].child = entry;
4886
ad1cdc1d
MM
4887 if (entry == NULL)
4888 return;
4889
6ad4c188 4890 for_each_possible_cpu(i) {
e692ab53 4891 snprintf(buf, 32, "cpu%d", i);
e692ab53 4892 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4893 entry->mode = 0555;
e692ab53 4894 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4895 entry++;
e692ab53 4896 }
7378547f
MM
4897
4898 WARN_ON(sd_sysctl_header);
e692ab53
NP
4899 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4900}
6382bc90 4901
7378547f 4902/* may be called multiple times per register */
6382bc90
MM
4903static void unregister_sched_domain_sysctl(void)
4904{
7378547f
MM
4905 if (sd_sysctl_header)
4906 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4907 sd_sysctl_header = NULL;
7378547f
MM
4908 if (sd_ctl_dir[0].child)
4909 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4910}
e692ab53 4911#else
6382bc90
MM
4912static void register_sched_domain_sysctl(void)
4913{
4914}
4915static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4916{
4917}
4918#endif
4919
1f11eb6a
GH
4920static void set_rq_online(struct rq *rq)
4921{
4922 if (!rq->online) {
4923 const struct sched_class *class;
4924
c6c4927b 4925 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4926 rq->online = 1;
4927
4928 for_each_class(class) {
4929 if (class->rq_online)
4930 class->rq_online(rq);
4931 }
4932 }
4933}
4934
4935static void set_rq_offline(struct rq *rq)
4936{
4937 if (rq->online) {
4938 const struct sched_class *class;
4939
4940 for_each_class(class) {
4941 if (class->rq_offline)
4942 class->rq_offline(rq);
4943 }
4944
c6c4927b 4945 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4946 rq->online = 0;
4947 }
4948}
4949
1da177e4
LT
4950/*
4951 * migration_call - callback that gets triggered when a CPU is added.
4952 * Here we can start up the necessary migration thread for the new CPU.
4953 */
0db0628d 4954static int
48f24c4d 4955migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4956{
48f24c4d 4957 int cpu = (long)hcpu;
1da177e4 4958 unsigned long flags;
969c7921 4959 struct rq *rq = cpu_rq(cpu);
1da177e4 4960
48c5ccae 4961 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4962
1da177e4 4963 case CPU_UP_PREPARE:
a468d389 4964 rq->calc_load_update = calc_load_update;
1da177e4 4965 break;
48f24c4d 4966
1da177e4 4967 case CPU_ONLINE:
1f94ef59 4968 /* Update our root-domain */
05fa785c 4969 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4970 if (rq->rd) {
c6c4927b 4971 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4972
4973 set_rq_online(rq);
1f94ef59 4974 }
05fa785c 4975 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4976 break;
48f24c4d 4977
1da177e4 4978#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4979 case CPU_DYING:
317f3941 4980 sched_ttwu_pending();
57d885fe 4981 /* Update our root-domain */
05fa785c 4982 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4983 if (rq->rd) {
c6c4927b 4984 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4985 set_rq_offline(rq);
57d885fe 4986 }
48c5ccae
PZ
4987 migrate_tasks(cpu);
4988 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4989 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4990 break;
48c5ccae 4991
5d180232 4992 case CPU_DEAD:
f319da0c 4993 calc_load_migrate(rq);
57d885fe 4994 break;
1da177e4
LT
4995#endif
4996 }
49c022e6
PZ
4997
4998 update_max_interval();
4999
1da177e4
LT
5000 return NOTIFY_OK;
5001}
5002
f38b0820
PM
5003/*
5004 * Register at high priority so that task migration (migrate_all_tasks)
5005 * happens before everything else. This has to be lower priority than
cdd6c482 5006 * the notifier in the perf_event subsystem, though.
1da177e4 5007 */
0db0628d 5008static struct notifier_block migration_notifier = {
1da177e4 5009 .notifier_call = migration_call,
50a323b7 5010 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5011};
5012
0db0628d 5013static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5014 unsigned long action, void *hcpu)
5015{
5016 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5017 case CPU_STARTING:
3a101d05
TH
5018 case CPU_DOWN_FAILED:
5019 set_cpu_active((long)hcpu, true);
5020 return NOTIFY_OK;
5021 default:
5022 return NOTIFY_DONE;
5023 }
5024}
5025
0db0628d 5026static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5027 unsigned long action, void *hcpu)
5028{
de212f18
PZ
5029 unsigned long flags;
5030 long cpu = (long)hcpu;
5031
3a101d05
TH
5032 switch (action & ~CPU_TASKS_FROZEN) {
5033 case CPU_DOWN_PREPARE:
de212f18
PZ
5034 set_cpu_active(cpu, false);
5035
5036 /* explicitly allow suspend */
5037 if (!(action & CPU_TASKS_FROZEN)) {
5038 struct dl_bw *dl_b = dl_bw_of(cpu);
5039 bool overflow;
5040 int cpus;
5041
5042 raw_spin_lock_irqsave(&dl_b->lock, flags);
5043 cpus = dl_bw_cpus(cpu);
5044 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5045 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5046
5047 if (overflow)
5048 return notifier_from_errno(-EBUSY);
5049 }
3a101d05 5050 return NOTIFY_OK;
3a101d05 5051 }
de212f18
PZ
5052
5053 return NOTIFY_DONE;
3a101d05
TH
5054}
5055
7babe8db 5056static int __init migration_init(void)
1da177e4
LT
5057{
5058 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5059 int err;
48f24c4d 5060
3a101d05 5061 /* Initialize migration for the boot CPU */
07dccf33
AM
5062 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5063 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5064 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5065 register_cpu_notifier(&migration_notifier);
7babe8db 5066
3a101d05
TH
5067 /* Register cpu active notifiers */
5068 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5069 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5070
a004cd42 5071 return 0;
1da177e4 5072}
7babe8db 5073early_initcall(migration_init);
1da177e4
LT
5074#endif
5075
5076#ifdef CONFIG_SMP
476f3534 5077
4cb98839
PZ
5078static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5079
3e9830dc 5080#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5081
d039ac60 5082static __read_mostly int sched_debug_enabled;
f6630114 5083
d039ac60 5084static int __init sched_debug_setup(char *str)
f6630114 5085{
d039ac60 5086 sched_debug_enabled = 1;
f6630114
MT
5087
5088 return 0;
5089}
d039ac60
PZ
5090early_param("sched_debug", sched_debug_setup);
5091
5092static inline bool sched_debug(void)
5093{
5094 return sched_debug_enabled;
5095}
f6630114 5096
7c16ec58 5097static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5098 struct cpumask *groupmask)
1da177e4 5099{
4dcf6aff 5100 struct sched_group *group = sd->groups;
434d53b0 5101 char str[256];
1da177e4 5102
968ea6d8 5103 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5104 cpumask_clear(groupmask);
4dcf6aff
IM
5105
5106 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5107
5108 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5109 printk("does not load-balance\n");
4dcf6aff 5110 if (sd->parent)
3df0fc5b
PZ
5111 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5112 " has parent");
4dcf6aff 5113 return -1;
41c7ce9a
NP
5114 }
5115
3df0fc5b 5116 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5117
758b2cdc 5118 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5119 printk(KERN_ERR "ERROR: domain->span does not contain "
5120 "CPU%d\n", cpu);
4dcf6aff 5121 }
758b2cdc 5122 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5123 printk(KERN_ERR "ERROR: domain->groups does not contain"
5124 " CPU%d\n", cpu);
4dcf6aff 5125 }
1da177e4 5126
4dcf6aff 5127 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5128 do {
4dcf6aff 5129 if (!group) {
3df0fc5b
PZ
5130 printk("\n");
5131 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5132 break;
5133 }
5134
c3decf0d
PZ
5135 /*
5136 * Even though we initialize ->power to something semi-sane,
5137 * we leave power_orig unset. This allows us to detect if
5138 * domain iteration is still funny without causing /0 traps.
5139 */
5140 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5141 printk(KERN_CONT "\n");
5142 printk(KERN_ERR "ERROR: domain->cpu_power not "
5143 "set\n");
4dcf6aff
IM
5144 break;
5145 }
1da177e4 5146
758b2cdc 5147 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5148 printk(KERN_CONT "\n");
5149 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5150 break;
5151 }
1da177e4 5152
cb83b629
PZ
5153 if (!(sd->flags & SD_OVERLAP) &&
5154 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5155 printk(KERN_CONT "\n");
5156 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5157 break;
5158 }
1da177e4 5159
758b2cdc 5160 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5161
968ea6d8 5162 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5163
3df0fc5b 5164 printk(KERN_CONT " %s", str);
9c3f75cb 5165 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5166 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5167 group->sgp->power);
381512cf 5168 }
1da177e4 5169
4dcf6aff
IM
5170 group = group->next;
5171 } while (group != sd->groups);
3df0fc5b 5172 printk(KERN_CONT "\n");
1da177e4 5173
758b2cdc 5174 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5175 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5176
758b2cdc
RR
5177 if (sd->parent &&
5178 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5179 printk(KERN_ERR "ERROR: parent span is not a superset "
5180 "of domain->span\n");
4dcf6aff
IM
5181 return 0;
5182}
1da177e4 5183
4dcf6aff
IM
5184static void sched_domain_debug(struct sched_domain *sd, int cpu)
5185{
5186 int level = 0;
1da177e4 5187
d039ac60 5188 if (!sched_debug_enabled)
f6630114
MT
5189 return;
5190
4dcf6aff
IM
5191 if (!sd) {
5192 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5193 return;
5194 }
1da177e4 5195
4dcf6aff
IM
5196 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5197
5198 for (;;) {
4cb98839 5199 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5200 break;
1da177e4
LT
5201 level++;
5202 sd = sd->parent;
33859f7f 5203 if (!sd)
4dcf6aff
IM
5204 break;
5205 }
1da177e4 5206}
6d6bc0ad 5207#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5208# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5209static inline bool sched_debug(void)
5210{
5211 return false;
5212}
6d6bc0ad 5213#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5214
1a20ff27 5215static int sd_degenerate(struct sched_domain *sd)
245af2c7 5216{
758b2cdc 5217 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5218 return 1;
5219
5220 /* Following flags need at least 2 groups */
5221 if (sd->flags & (SD_LOAD_BALANCE |
5222 SD_BALANCE_NEWIDLE |
5223 SD_BALANCE_FORK |
89c4710e
SS
5224 SD_BALANCE_EXEC |
5225 SD_SHARE_CPUPOWER |
5226 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5227 if (sd->groups != sd->groups->next)
5228 return 0;
5229 }
5230
5231 /* Following flags don't use groups */
c88d5910 5232 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5233 return 0;
5234
5235 return 1;
5236}
5237
48f24c4d
IM
5238static int
5239sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5240{
5241 unsigned long cflags = sd->flags, pflags = parent->flags;
5242
5243 if (sd_degenerate(parent))
5244 return 1;
5245
758b2cdc 5246 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5247 return 0;
5248
245af2c7
SS
5249 /* Flags needing groups don't count if only 1 group in parent */
5250 if (parent->groups == parent->groups->next) {
5251 pflags &= ~(SD_LOAD_BALANCE |
5252 SD_BALANCE_NEWIDLE |
5253 SD_BALANCE_FORK |
89c4710e
SS
5254 SD_BALANCE_EXEC |
5255 SD_SHARE_CPUPOWER |
10866e62
PZ
5256 SD_SHARE_PKG_RESOURCES |
5257 SD_PREFER_SIBLING);
5436499e
KC
5258 if (nr_node_ids == 1)
5259 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5260 }
5261 if (~cflags & pflags)
5262 return 0;
5263
5264 return 1;
5265}
5266
dce840a0 5267static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5268{
dce840a0 5269 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5270
68e74568 5271 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5272 cpudl_cleanup(&rd->cpudl);
1baca4ce 5273 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5274 free_cpumask_var(rd->rto_mask);
5275 free_cpumask_var(rd->online);
5276 free_cpumask_var(rd->span);
5277 kfree(rd);
5278}
5279
57d885fe
GH
5280static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5281{
a0490fa3 5282 struct root_domain *old_rd = NULL;
57d885fe 5283 unsigned long flags;
57d885fe 5284
05fa785c 5285 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5286
5287 if (rq->rd) {
a0490fa3 5288 old_rd = rq->rd;
57d885fe 5289
c6c4927b 5290 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5291 set_rq_offline(rq);
57d885fe 5292
c6c4927b 5293 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5294
a0490fa3 5295 /*
0515973f 5296 * If we dont want to free the old_rd yet then
a0490fa3
IM
5297 * set old_rd to NULL to skip the freeing later
5298 * in this function:
5299 */
5300 if (!atomic_dec_and_test(&old_rd->refcount))
5301 old_rd = NULL;
57d885fe
GH
5302 }
5303
5304 atomic_inc(&rd->refcount);
5305 rq->rd = rd;
5306
c6c4927b 5307 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5308 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5309 set_rq_online(rq);
57d885fe 5310
05fa785c 5311 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5312
5313 if (old_rd)
dce840a0 5314 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5315}
5316
68c38fc3 5317static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5318{
5319 memset(rd, 0, sizeof(*rd));
5320
68c38fc3 5321 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5322 goto out;
68c38fc3 5323 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5324 goto free_span;
1baca4ce 5325 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5326 goto free_online;
1baca4ce
JL
5327 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5328 goto free_dlo_mask;
6e0534f2 5329
332ac17e 5330 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5331 if (cpudl_init(&rd->cpudl) != 0)
5332 goto free_dlo_mask;
332ac17e 5333
68c38fc3 5334 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5335 goto free_rto_mask;
c6c4927b 5336 return 0;
6e0534f2 5337
68e74568
RR
5338free_rto_mask:
5339 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5340free_dlo_mask:
5341 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5342free_online:
5343 free_cpumask_var(rd->online);
5344free_span:
5345 free_cpumask_var(rd->span);
0c910d28 5346out:
c6c4927b 5347 return -ENOMEM;
57d885fe
GH
5348}
5349
029632fb
PZ
5350/*
5351 * By default the system creates a single root-domain with all cpus as
5352 * members (mimicking the global state we have today).
5353 */
5354struct root_domain def_root_domain;
5355
57d885fe
GH
5356static void init_defrootdomain(void)
5357{
68c38fc3 5358 init_rootdomain(&def_root_domain);
c6c4927b 5359
57d885fe
GH
5360 atomic_set(&def_root_domain.refcount, 1);
5361}
5362
dc938520 5363static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5364{
5365 struct root_domain *rd;
5366
5367 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5368 if (!rd)
5369 return NULL;
5370
68c38fc3 5371 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5372 kfree(rd);
5373 return NULL;
5374 }
57d885fe
GH
5375
5376 return rd;
5377}
5378
e3589f6c
PZ
5379static void free_sched_groups(struct sched_group *sg, int free_sgp)
5380{
5381 struct sched_group *tmp, *first;
5382
5383 if (!sg)
5384 return;
5385
5386 first = sg;
5387 do {
5388 tmp = sg->next;
5389
5390 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5391 kfree(sg->sgp);
5392
5393 kfree(sg);
5394 sg = tmp;
5395 } while (sg != first);
5396}
5397
dce840a0
PZ
5398static void free_sched_domain(struct rcu_head *rcu)
5399{
5400 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5401
5402 /*
5403 * If its an overlapping domain it has private groups, iterate and
5404 * nuke them all.
5405 */
5406 if (sd->flags & SD_OVERLAP) {
5407 free_sched_groups(sd->groups, 1);
5408 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5409 kfree(sd->groups->sgp);
dce840a0 5410 kfree(sd->groups);
9c3f75cb 5411 }
dce840a0
PZ
5412 kfree(sd);
5413}
5414
5415static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5416{
5417 call_rcu(&sd->rcu, free_sched_domain);
5418}
5419
5420static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5421{
5422 for (; sd; sd = sd->parent)
5423 destroy_sched_domain(sd, cpu);
5424}
5425
518cd623
PZ
5426/*
5427 * Keep a special pointer to the highest sched_domain that has
5428 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5429 * allows us to avoid some pointer chasing select_idle_sibling().
5430 *
5431 * Also keep a unique ID per domain (we use the first cpu number in
5432 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5433 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5434 */
5435DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5436DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5437DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5438DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5439DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5440DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5441
5442static void update_top_cache_domain(int cpu)
5443{
5444 struct sched_domain *sd;
5d4cf996 5445 struct sched_domain *busy_sd = NULL;
518cd623 5446 int id = cpu;
7d9ffa89 5447 int size = 1;
518cd623
PZ
5448
5449 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5450 if (sd) {
518cd623 5451 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5452 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5453 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5454 }
5d4cf996 5455 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5456
5457 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5458 per_cpu(sd_llc_size, cpu) = size;
518cd623 5459 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5460
5461 sd = lowest_flag_domain(cpu, SD_NUMA);
5462 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5463
5464 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5465 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5466}
5467
1da177e4 5468/*
0eab9146 5469 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5470 * hold the hotplug lock.
5471 */
0eab9146
IM
5472static void
5473cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5474{
70b97a7f 5475 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5476 struct sched_domain *tmp;
5477
5478 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5479 for (tmp = sd; tmp; ) {
245af2c7
SS
5480 struct sched_domain *parent = tmp->parent;
5481 if (!parent)
5482 break;
f29c9b1c 5483
1a848870 5484 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5485 tmp->parent = parent->parent;
1a848870
SS
5486 if (parent->parent)
5487 parent->parent->child = tmp;
10866e62
PZ
5488 /*
5489 * Transfer SD_PREFER_SIBLING down in case of a
5490 * degenerate parent; the spans match for this
5491 * so the property transfers.
5492 */
5493 if (parent->flags & SD_PREFER_SIBLING)
5494 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5495 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5496 } else
5497 tmp = tmp->parent;
245af2c7
SS
5498 }
5499
1a848870 5500 if (sd && sd_degenerate(sd)) {
dce840a0 5501 tmp = sd;
245af2c7 5502 sd = sd->parent;
dce840a0 5503 destroy_sched_domain(tmp, cpu);
1a848870
SS
5504 if (sd)
5505 sd->child = NULL;
5506 }
1da177e4 5507
4cb98839 5508 sched_domain_debug(sd, cpu);
1da177e4 5509
57d885fe 5510 rq_attach_root(rq, rd);
dce840a0 5511 tmp = rq->sd;
674311d5 5512 rcu_assign_pointer(rq->sd, sd);
dce840a0 5513 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5514
5515 update_top_cache_domain(cpu);
1da177e4
LT
5516}
5517
5518/* cpus with isolated domains */
dcc30a35 5519static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5520
5521/* Setup the mask of cpus configured for isolated domains */
5522static int __init isolated_cpu_setup(char *str)
5523{
bdddd296 5524 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5525 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5526 return 1;
5527}
5528
8927f494 5529__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5530
d3081f52
PZ
5531static const struct cpumask *cpu_cpu_mask(int cpu)
5532{
5533 return cpumask_of_node(cpu_to_node(cpu));
5534}
5535
dce840a0
PZ
5536struct sd_data {
5537 struct sched_domain **__percpu sd;
5538 struct sched_group **__percpu sg;
9c3f75cb 5539 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5540};
5541
49a02c51 5542struct s_data {
21d42ccf 5543 struct sched_domain ** __percpu sd;
49a02c51
AH
5544 struct root_domain *rd;
5545};
5546
2109b99e 5547enum s_alloc {
2109b99e 5548 sa_rootdomain,
21d42ccf 5549 sa_sd,
dce840a0 5550 sa_sd_storage,
2109b99e
AH
5551 sa_none,
5552};
5553
54ab4ff4
PZ
5554struct sched_domain_topology_level;
5555
5556typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5557typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5558
e3589f6c
PZ
5559#define SDTL_OVERLAP 0x01
5560
eb7a74e6 5561struct sched_domain_topology_level {
2c402dc3
PZ
5562 sched_domain_init_f init;
5563 sched_domain_mask_f mask;
e3589f6c 5564 int flags;
cb83b629 5565 int numa_level;
54ab4ff4 5566 struct sd_data data;
eb7a74e6
PZ
5567};
5568
c1174876
PZ
5569/*
5570 * Build an iteration mask that can exclude certain CPUs from the upwards
5571 * domain traversal.
5572 *
5573 * Asymmetric node setups can result in situations where the domain tree is of
5574 * unequal depth, make sure to skip domains that already cover the entire
5575 * range.
5576 *
5577 * In that case build_sched_domains() will have terminated the iteration early
5578 * and our sibling sd spans will be empty. Domains should always include the
5579 * cpu they're built on, so check that.
5580 *
5581 */
5582static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5583{
5584 const struct cpumask *span = sched_domain_span(sd);
5585 struct sd_data *sdd = sd->private;
5586 struct sched_domain *sibling;
5587 int i;
5588
5589 for_each_cpu(i, span) {
5590 sibling = *per_cpu_ptr(sdd->sd, i);
5591 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5592 continue;
5593
5594 cpumask_set_cpu(i, sched_group_mask(sg));
5595 }
5596}
5597
5598/*
5599 * Return the canonical balance cpu for this group, this is the first cpu
5600 * of this group that's also in the iteration mask.
5601 */
5602int group_balance_cpu(struct sched_group *sg)
5603{
5604 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5605}
5606
e3589f6c
PZ
5607static int
5608build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5609{
5610 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5611 const struct cpumask *span = sched_domain_span(sd);
5612 struct cpumask *covered = sched_domains_tmpmask;
5613 struct sd_data *sdd = sd->private;
5614 struct sched_domain *child;
5615 int i;
5616
5617 cpumask_clear(covered);
5618
5619 for_each_cpu(i, span) {
5620 struct cpumask *sg_span;
5621
5622 if (cpumask_test_cpu(i, covered))
5623 continue;
5624
c1174876
PZ
5625 child = *per_cpu_ptr(sdd->sd, i);
5626
5627 /* See the comment near build_group_mask(). */
5628 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5629 continue;
5630
e3589f6c 5631 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5632 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5633
5634 if (!sg)
5635 goto fail;
5636
5637 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5638 if (child->child) {
5639 child = child->child;
5640 cpumask_copy(sg_span, sched_domain_span(child));
5641 } else
5642 cpumask_set_cpu(i, sg_span);
5643
5644 cpumask_or(covered, covered, sg_span);
5645
74a5ce20 5646 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5647 if (atomic_inc_return(&sg->sgp->ref) == 1)
5648 build_group_mask(sd, sg);
5649
c3decf0d
PZ
5650 /*
5651 * Initialize sgp->power such that even if we mess up the
5652 * domains and no possible iteration will get us here, we won't
5653 * die on a /0 trap.
5654 */
5655 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5656 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5657
c1174876
PZ
5658 /*
5659 * Make sure the first group of this domain contains the
5660 * canonical balance cpu. Otherwise the sched_domain iteration
5661 * breaks. See update_sg_lb_stats().
5662 */
74a5ce20 5663 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5664 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5665 groups = sg;
5666
5667 if (!first)
5668 first = sg;
5669 if (last)
5670 last->next = sg;
5671 last = sg;
5672 last->next = first;
5673 }
5674 sd->groups = groups;
5675
5676 return 0;
5677
5678fail:
5679 free_sched_groups(first, 0);
5680
5681 return -ENOMEM;
5682}
5683
dce840a0 5684static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5685{
dce840a0
PZ
5686 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5687 struct sched_domain *child = sd->child;
1da177e4 5688
dce840a0
PZ
5689 if (child)
5690 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5691
9c3f75cb 5692 if (sg) {
dce840a0 5693 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5694 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5695 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5696 }
dce840a0
PZ
5697
5698 return cpu;
1e9f28fa 5699}
1e9f28fa 5700
01a08546 5701/*
dce840a0
PZ
5702 * build_sched_groups will build a circular linked list of the groups
5703 * covered by the given span, and will set each group's ->cpumask correctly,
5704 * and ->cpu_power to 0.
e3589f6c
PZ
5705 *
5706 * Assumes the sched_domain tree is fully constructed
01a08546 5707 */
e3589f6c
PZ
5708static int
5709build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5710{
dce840a0
PZ
5711 struct sched_group *first = NULL, *last = NULL;
5712 struct sd_data *sdd = sd->private;
5713 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5714 struct cpumask *covered;
dce840a0 5715 int i;
9c1cfda2 5716
e3589f6c
PZ
5717 get_group(cpu, sdd, &sd->groups);
5718 atomic_inc(&sd->groups->ref);
5719
0936629f 5720 if (cpu != cpumask_first(span))
e3589f6c
PZ
5721 return 0;
5722
f96225fd
PZ
5723 lockdep_assert_held(&sched_domains_mutex);
5724 covered = sched_domains_tmpmask;
5725
dce840a0 5726 cpumask_clear(covered);
6711cab4 5727
dce840a0
PZ
5728 for_each_cpu(i, span) {
5729 struct sched_group *sg;
cd08e923 5730 int group, j;
6711cab4 5731
dce840a0
PZ
5732 if (cpumask_test_cpu(i, covered))
5733 continue;
6711cab4 5734
cd08e923 5735 group = get_group(i, sdd, &sg);
dce840a0 5736 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5737 sg->sgp->power = 0;
c1174876 5738 cpumask_setall(sched_group_mask(sg));
0601a88d 5739
dce840a0
PZ
5740 for_each_cpu(j, span) {
5741 if (get_group(j, sdd, NULL) != group)
5742 continue;
0601a88d 5743
dce840a0
PZ
5744 cpumask_set_cpu(j, covered);
5745 cpumask_set_cpu(j, sched_group_cpus(sg));
5746 }
0601a88d 5747
dce840a0
PZ
5748 if (!first)
5749 first = sg;
5750 if (last)
5751 last->next = sg;
5752 last = sg;
5753 }
5754 last->next = first;
e3589f6c
PZ
5755
5756 return 0;
0601a88d 5757}
51888ca2 5758
89c4710e
SS
5759/*
5760 * Initialize sched groups cpu_power.
5761 *
5762 * cpu_power indicates the capacity of sched group, which is used while
5763 * distributing the load between different sched groups in a sched domain.
5764 * Typically cpu_power for all the groups in a sched domain will be same unless
5765 * there are asymmetries in the topology. If there are asymmetries, group
5766 * having more cpu_power will pickup more load compared to the group having
5767 * less cpu_power.
89c4710e
SS
5768 */
5769static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5770{
e3589f6c 5771 struct sched_group *sg = sd->groups;
89c4710e 5772
94c95ba6 5773 WARN_ON(!sg);
e3589f6c
PZ
5774
5775 do {
5776 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5777 sg = sg->next;
5778 } while (sg != sd->groups);
89c4710e 5779
c1174876 5780 if (cpu != group_balance_cpu(sg))
e3589f6c 5781 return;
aae6d3dd 5782
d274cb30 5783 update_group_power(sd, cpu);
69e1e811 5784 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5785}
5786
029632fb
PZ
5787int __weak arch_sd_sibling_asym_packing(void)
5788{
5789 return 0*SD_ASYM_PACKING;
89c4710e
SS
5790}
5791
7c16ec58
MT
5792/*
5793 * Initializers for schedule domains
5794 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5795 */
5796
a5d8c348
IM
5797#ifdef CONFIG_SCHED_DEBUG
5798# define SD_INIT_NAME(sd, type) sd->name = #type
5799#else
5800# define SD_INIT_NAME(sd, type) do { } while (0)
5801#endif
5802
54ab4ff4
PZ
5803#define SD_INIT_FUNC(type) \
5804static noinline struct sched_domain * \
5805sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5806{ \
5807 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5808 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5809 SD_INIT_NAME(sd, type); \
5810 sd->private = &tl->data; \
5811 return sd; \
7c16ec58
MT
5812}
5813
5814SD_INIT_FUNC(CPU)
7c16ec58
MT
5815#ifdef CONFIG_SCHED_SMT
5816 SD_INIT_FUNC(SIBLING)
5817#endif
5818#ifdef CONFIG_SCHED_MC
5819 SD_INIT_FUNC(MC)
5820#endif
01a08546
HC
5821#ifdef CONFIG_SCHED_BOOK
5822 SD_INIT_FUNC(BOOK)
5823#endif
7c16ec58 5824
1d3504fc 5825static int default_relax_domain_level = -1;
60495e77 5826int sched_domain_level_max;
1d3504fc
HS
5827
5828static int __init setup_relax_domain_level(char *str)
5829{
a841f8ce
DS
5830 if (kstrtoint(str, 0, &default_relax_domain_level))
5831 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5832
1d3504fc
HS
5833 return 1;
5834}
5835__setup("relax_domain_level=", setup_relax_domain_level);
5836
5837static void set_domain_attribute(struct sched_domain *sd,
5838 struct sched_domain_attr *attr)
5839{
5840 int request;
5841
5842 if (!attr || attr->relax_domain_level < 0) {
5843 if (default_relax_domain_level < 0)
5844 return;
5845 else
5846 request = default_relax_domain_level;
5847 } else
5848 request = attr->relax_domain_level;
5849 if (request < sd->level) {
5850 /* turn off idle balance on this domain */
c88d5910 5851 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5852 } else {
5853 /* turn on idle balance on this domain */
c88d5910 5854 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5855 }
5856}
5857
54ab4ff4
PZ
5858static void __sdt_free(const struct cpumask *cpu_map);
5859static int __sdt_alloc(const struct cpumask *cpu_map);
5860
2109b99e
AH
5861static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5862 const struct cpumask *cpu_map)
5863{
5864 switch (what) {
2109b99e 5865 case sa_rootdomain:
822ff793
PZ
5866 if (!atomic_read(&d->rd->refcount))
5867 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5868 case sa_sd:
5869 free_percpu(d->sd); /* fall through */
dce840a0 5870 case sa_sd_storage:
54ab4ff4 5871 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5872 case sa_none:
5873 break;
5874 }
5875}
3404c8d9 5876
2109b99e
AH
5877static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5878 const struct cpumask *cpu_map)
5879{
dce840a0
PZ
5880 memset(d, 0, sizeof(*d));
5881
54ab4ff4
PZ
5882 if (__sdt_alloc(cpu_map))
5883 return sa_sd_storage;
dce840a0
PZ
5884 d->sd = alloc_percpu(struct sched_domain *);
5885 if (!d->sd)
5886 return sa_sd_storage;
2109b99e 5887 d->rd = alloc_rootdomain();
dce840a0 5888 if (!d->rd)
21d42ccf 5889 return sa_sd;
2109b99e
AH
5890 return sa_rootdomain;
5891}
57d885fe 5892
dce840a0
PZ
5893/*
5894 * NULL the sd_data elements we've used to build the sched_domain and
5895 * sched_group structure so that the subsequent __free_domain_allocs()
5896 * will not free the data we're using.
5897 */
5898static void claim_allocations(int cpu, struct sched_domain *sd)
5899{
5900 struct sd_data *sdd = sd->private;
dce840a0
PZ
5901
5902 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5903 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5904
e3589f6c 5905 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5906 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5907
5908 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5909 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5910}
5911
2c402dc3
PZ
5912#ifdef CONFIG_SCHED_SMT
5913static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5914{
2c402dc3 5915 return topology_thread_cpumask(cpu);
3bd65a80 5916}
2c402dc3 5917#endif
7f4588f3 5918
d069b916
PZ
5919/*
5920 * Topology list, bottom-up.
5921 */
2c402dc3 5922static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5923#ifdef CONFIG_SCHED_SMT
5924 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5925#endif
1e9f28fa 5926#ifdef CONFIG_SCHED_MC
2c402dc3 5927 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5928#endif
d069b916
PZ
5929#ifdef CONFIG_SCHED_BOOK
5930 { sd_init_BOOK, cpu_book_mask, },
5931#endif
5932 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5933 { NULL, },
5934};
5935
5936static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5937
27723a68
VK
5938#define for_each_sd_topology(tl) \
5939 for (tl = sched_domain_topology; tl->init; tl++)
5940
cb83b629
PZ
5941#ifdef CONFIG_NUMA
5942
5943static int sched_domains_numa_levels;
cb83b629
PZ
5944static int *sched_domains_numa_distance;
5945static struct cpumask ***sched_domains_numa_masks;
5946static int sched_domains_curr_level;
5947
cb83b629
PZ
5948static inline int sd_local_flags(int level)
5949{
10717dcd 5950 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5951 return 0;
5952
5953 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5954}
5955
5956static struct sched_domain *
5957sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5958{
5959 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5960 int level = tl->numa_level;
5961 int sd_weight = cpumask_weight(
5962 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5963
5964 *sd = (struct sched_domain){
5965 .min_interval = sd_weight,
5966 .max_interval = 2*sd_weight,
5967 .busy_factor = 32,
870a0bb5 5968 .imbalance_pct = 125,
cb83b629
PZ
5969 .cache_nice_tries = 2,
5970 .busy_idx = 3,
5971 .idle_idx = 2,
5972 .newidle_idx = 0,
5973 .wake_idx = 0,
5974 .forkexec_idx = 0,
5975
5976 .flags = 1*SD_LOAD_BALANCE
5977 | 1*SD_BALANCE_NEWIDLE
5978 | 0*SD_BALANCE_EXEC
5979 | 0*SD_BALANCE_FORK
5980 | 0*SD_BALANCE_WAKE
5981 | 0*SD_WAKE_AFFINE
cb83b629 5982 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5983 | 0*SD_SHARE_PKG_RESOURCES
5984 | 1*SD_SERIALIZE
5985 | 0*SD_PREFER_SIBLING
3a7053b3 5986 | 1*SD_NUMA
cb83b629
PZ
5987 | sd_local_flags(level)
5988 ,
5989 .last_balance = jiffies,
5990 .balance_interval = sd_weight,
5991 };
5992 SD_INIT_NAME(sd, NUMA);
5993 sd->private = &tl->data;
5994
5995 /*
5996 * Ugly hack to pass state to sd_numa_mask()...
5997 */
5998 sched_domains_curr_level = tl->numa_level;
5999
6000 return sd;
6001}
6002
6003static const struct cpumask *sd_numa_mask(int cpu)
6004{
6005 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6006}
6007
d039ac60
PZ
6008static void sched_numa_warn(const char *str)
6009{
6010 static int done = false;
6011 int i,j;
6012
6013 if (done)
6014 return;
6015
6016 done = true;
6017
6018 printk(KERN_WARNING "ERROR: %s\n\n", str);
6019
6020 for (i = 0; i < nr_node_ids; i++) {
6021 printk(KERN_WARNING " ");
6022 for (j = 0; j < nr_node_ids; j++)
6023 printk(KERN_CONT "%02d ", node_distance(i,j));
6024 printk(KERN_CONT "\n");
6025 }
6026 printk(KERN_WARNING "\n");
6027}
6028
6029static bool find_numa_distance(int distance)
6030{
6031 int i;
6032
6033 if (distance == node_distance(0, 0))
6034 return true;
6035
6036 for (i = 0; i < sched_domains_numa_levels; i++) {
6037 if (sched_domains_numa_distance[i] == distance)
6038 return true;
6039 }
6040
6041 return false;
6042}
6043
cb83b629
PZ
6044static void sched_init_numa(void)
6045{
6046 int next_distance, curr_distance = node_distance(0, 0);
6047 struct sched_domain_topology_level *tl;
6048 int level = 0;
6049 int i, j, k;
6050
cb83b629
PZ
6051 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6052 if (!sched_domains_numa_distance)
6053 return;
6054
6055 /*
6056 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6057 * unique distances in the node_distance() table.
6058 *
6059 * Assumes node_distance(0,j) includes all distances in
6060 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6061 */
6062 next_distance = curr_distance;
6063 for (i = 0; i < nr_node_ids; i++) {
6064 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6065 for (k = 0; k < nr_node_ids; k++) {
6066 int distance = node_distance(i, k);
6067
6068 if (distance > curr_distance &&
6069 (distance < next_distance ||
6070 next_distance == curr_distance))
6071 next_distance = distance;
6072
6073 /*
6074 * While not a strong assumption it would be nice to know
6075 * about cases where if node A is connected to B, B is not
6076 * equally connected to A.
6077 */
6078 if (sched_debug() && node_distance(k, i) != distance)
6079 sched_numa_warn("Node-distance not symmetric");
6080
6081 if (sched_debug() && i && !find_numa_distance(distance))
6082 sched_numa_warn("Node-0 not representative");
6083 }
6084 if (next_distance != curr_distance) {
6085 sched_domains_numa_distance[level++] = next_distance;
6086 sched_domains_numa_levels = level;
6087 curr_distance = next_distance;
6088 } else break;
cb83b629 6089 }
d039ac60
PZ
6090
6091 /*
6092 * In case of sched_debug() we verify the above assumption.
6093 */
6094 if (!sched_debug())
6095 break;
cb83b629
PZ
6096 }
6097 /*
6098 * 'level' contains the number of unique distances, excluding the
6099 * identity distance node_distance(i,i).
6100 *
28b4a521 6101 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6102 * numbers.
6103 */
6104
5f7865f3
TC
6105 /*
6106 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6107 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6108 * the array will contain less then 'level' members. This could be
6109 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6110 * in other functions.
6111 *
6112 * We reset it to 'level' at the end of this function.
6113 */
6114 sched_domains_numa_levels = 0;
6115
cb83b629
PZ
6116 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6117 if (!sched_domains_numa_masks)
6118 return;
6119
6120 /*
6121 * Now for each level, construct a mask per node which contains all
6122 * cpus of nodes that are that many hops away from us.
6123 */
6124 for (i = 0; i < level; i++) {
6125 sched_domains_numa_masks[i] =
6126 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6127 if (!sched_domains_numa_masks[i])
6128 return;
6129
6130 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6131 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6132 if (!mask)
6133 return;
6134
6135 sched_domains_numa_masks[i][j] = mask;
6136
6137 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6138 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6139 continue;
6140
6141 cpumask_or(mask, mask, cpumask_of_node(k));
6142 }
6143 }
6144 }
6145
6146 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6147 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6148 if (!tl)
6149 return;
6150
6151 /*
6152 * Copy the default topology bits..
6153 */
6154 for (i = 0; default_topology[i].init; i++)
6155 tl[i] = default_topology[i];
6156
6157 /*
6158 * .. and append 'j' levels of NUMA goodness.
6159 */
6160 for (j = 0; j < level; i++, j++) {
6161 tl[i] = (struct sched_domain_topology_level){
6162 .init = sd_numa_init,
6163 .mask = sd_numa_mask,
6164 .flags = SDTL_OVERLAP,
6165 .numa_level = j,
6166 };
6167 }
6168
6169 sched_domain_topology = tl;
5f7865f3
TC
6170
6171 sched_domains_numa_levels = level;
cb83b629 6172}
301a5cba
TC
6173
6174static void sched_domains_numa_masks_set(int cpu)
6175{
6176 int i, j;
6177 int node = cpu_to_node(cpu);
6178
6179 for (i = 0; i < sched_domains_numa_levels; i++) {
6180 for (j = 0; j < nr_node_ids; j++) {
6181 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6182 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6183 }
6184 }
6185}
6186
6187static void sched_domains_numa_masks_clear(int cpu)
6188{
6189 int i, j;
6190 for (i = 0; i < sched_domains_numa_levels; i++) {
6191 for (j = 0; j < nr_node_ids; j++)
6192 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6193 }
6194}
6195
6196/*
6197 * Update sched_domains_numa_masks[level][node] array when new cpus
6198 * are onlined.
6199 */
6200static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6201 unsigned long action,
6202 void *hcpu)
6203{
6204 int cpu = (long)hcpu;
6205
6206 switch (action & ~CPU_TASKS_FROZEN) {
6207 case CPU_ONLINE:
6208 sched_domains_numa_masks_set(cpu);
6209 break;
6210
6211 case CPU_DEAD:
6212 sched_domains_numa_masks_clear(cpu);
6213 break;
6214
6215 default:
6216 return NOTIFY_DONE;
6217 }
6218
6219 return NOTIFY_OK;
cb83b629
PZ
6220}
6221#else
6222static inline void sched_init_numa(void)
6223{
6224}
301a5cba
TC
6225
6226static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6227 unsigned long action,
6228 void *hcpu)
6229{
6230 return 0;
6231}
cb83b629
PZ
6232#endif /* CONFIG_NUMA */
6233
54ab4ff4
PZ
6234static int __sdt_alloc(const struct cpumask *cpu_map)
6235{
6236 struct sched_domain_topology_level *tl;
6237 int j;
6238
27723a68 6239 for_each_sd_topology(tl) {
54ab4ff4
PZ
6240 struct sd_data *sdd = &tl->data;
6241
6242 sdd->sd = alloc_percpu(struct sched_domain *);
6243 if (!sdd->sd)
6244 return -ENOMEM;
6245
6246 sdd->sg = alloc_percpu(struct sched_group *);
6247 if (!sdd->sg)
6248 return -ENOMEM;
6249
9c3f75cb
PZ
6250 sdd->sgp = alloc_percpu(struct sched_group_power *);
6251 if (!sdd->sgp)
6252 return -ENOMEM;
6253
54ab4ff4
PZ
6254 for_each_cpu(j, cpu_map) {
6255 struct sched_domain *sd;
6256 struct sched_group *sg;
9c3f75cb 6257 struct sched_group_power *sgp;
54ab4ff4
PZ
6258
6259 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6260 GFP_KERNEL, cpu_to_node(j));
6261 if (!sd)
6262 return -ENOMEM;
6263
6264 *per_cpu_ptr(sdd->sd, j) = sd;
6265
6266 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6267 GFP_KERNEL, cpu_to_node(j));
6268 if (!sg)
6269 return -ENOMEM;
6270
30b4e9eb
IM
6271 sg->next = sg;
6272
54ab4ff4 6273 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6274
c1174876 6275 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6276 GFP_KERNEL, cpu_to_node(j));
6277 if (!sgp)
6278 return -ENOMEM;
6279
6280 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6281 }
6282 }
6283
6284 return 0;
6285}
6286
6287static void __sdt_free(const struct cpumask *cpu_map)
6288{
6289 struct sched_domain_topology_level *tl;
6290 int j;
6291
27723a68 6292 for_each_sd_topology(tl) {
54ab4ff4
PZ
6293 struct sd_data *sdd = &tl->data;
6294
6295 for_each_cpu(j, cpu_map) {
fb2cf2c6 6296 struct sched_domain *sd;
6297
6298 if (sdd->sd) {
6299 sd = *per_cpu_ptr(sdd->sd, j);
6300 if (sd && (sd->flags & SD_OVERLAP))
6301 free_sched_groups(sd->groups, 0);
6302 kfree(*per_cpu_ptr(sdd->sd, j));
6303 }
6304
6305 if (sdd->sg)
6306 kfree(*per_cpu_ptr(sdd->sg, j));
6307 if (sdd->sgp)
6308 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6309 }
6310 free_percpu(sdd->sd);
fb2cf2c6 6311 sdd->sd = NULL;
54ab4ff4 6312 free_percpu(sdd->sg);
fb2cf2c6 6313 sdd->sg = NULL;
9c3f75cb 6314 free_percpu(sdd->sgp);
fb2cf2c6 6315 sdd->sgp = NULL;
54ab4ff4
PZ
6316 }
6317}
6318
2c402dc3 6319struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6320 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6321 struct sched_domain *child, int cpu)
2c402dc3 6322{
54ab4ff4 6323 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6324 if (!sd)
d069b916 6325 return child;
2c402dc3 6326
2c402dc3 6327 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6328 if (child) {
6329 sd->level = child->level + 1;
6330 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6331 child->parent = sd;
c75e0128 6332 sd->child = child;
60495e77 6333 }
a841f8ce 6334 set_domain_attribute(sd, attr);
2c402dc3
PZ
6335
6336 return sd;
6337}
6338
2109b99e
AH
6339/*
6340 * Build sched domains for a given set of cpus and attach the sched domains
6341 * to the individual cpus
6342 */
dce840a0
PZ
6343static int build_sched_domains(const struct cpumask *cpu_map,
6344 struct sched_domain_attr *attr)
2109b99e 6345{
1c632169 6346 enum s_alloc alloc_state;
dce840a0 6347 struct sched_domain *sd;
2109b99e 6348 struct s_data d;
822ff793 6349 int i, ret = -ENOMEM;
9c1cfda2 6350
2109b99e
AH
6351 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6352 if (alloc_state != sa_rootdomain)
6353 goto error;
9c1cfda2 6354
dce840a0 6355 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6356 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6357 struct sched_domain_topology_level *tl;
6358
3bd65a80 6359 sd = NULL;
27723a68 6360 for_each_sd_topology(tl) {
4a850cbe 6361 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6362 if (tl == sched_domain_topology)
6363 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6364 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6365 sd->flags |= SD_OVERLAP;
d110235d
PZ
6366 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6367 break;
e3589f6c 6368 }
dce840a0
PZ
6369 }
6370
6371 /* Build the groups for the domains */
6372 for_each_cpu(i, cpu_map) {
6373 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6374 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6375 if (sd->flags & SD_OVERLAP) {
6376 if (build_overlap_sched_groups(sd, i))
6377 goto error;
6378 } else {
6379 if (build_sched_groups(sd, i))
6380 goto error;
6381 }
1cf51902 6382 }
a06dadbe 6383 }
9c1cfda2 6384
1da177e4 6385 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6386 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6387 if (!cpumask_test_cpu(i, cpu_map))
6388 continue;
9c1cfda2 6389
dce840a0
PZ
6390 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6391 claim_allocations(i, sd);
cd4ea6ae 6392 init_sched_groups_power(i, sd);
dce840a0 6393 }
f712c0c7 6394 }
9c1cfda2 6395
1da177e4 6396 /* Attach the domains */
dce840a0 6397 rcu_read_lock();
abcd083a 6398 for_each_cpu(i, cpu_map) {
21d42ccf 6399 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6400 cpu_attach_domain(sd, d.rd, i);
1da177e4 6401 }
dce840a0 6402 rcu_read_unlock();
51888ca2 6403
822ff793 6404 ret = 0;
51888ca2 6405error:
2109b99e 6406 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6407 return ret;
1da177e4 6408}
029190c5 6409
acc3f5d7 6410static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6411static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6412static struct sched_domain_attr *dattr_cur;
6413 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6414
6415/*
6416 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6417 * cpumask) fails, then fallback to a single sched domain,
6418 * as determined by the single cpumask fallback_doms.
029190c5 6419 */
4212823f 6420static cpumask_var_t fallback_doms;
029190c5 6421
ee79d1bd
HC
6422/*
6423 * arch_update_cpu_topology lets virtualized architectures update the
6424 * cpu core maps. It is supposed to return 1 if the topology changed
6425 * or 0 if it stayed the same.
6426 */
6427int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6428{
ee79d1bd 6429 return 0;
22e52b07
HC
6430}
6431
acc3f5d7
RR
6432cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6433{
6434 int i;
6435 cpumask_var_t *doms;
6436
6437 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6438 if (!doms)
6439 return NULL;
6440 for (i = 0; i < ndoms; i++) {
6441 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6442 free_sched_domains(doms, i);
6443 return NULL;
6444 }
6445 }
6446 return doms;
6447}
6448
6449void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6450{
6451 unsigned int i;
6452 for (i = 0; i < ndoms; i++)
6453 free_cpumask_var(doms[i]);
6454 kfree(doms);
6455}
6456
1a20ff27 6457/*
41a2d6cf 6458 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6459 * For now this just excludes isolated cpus, but could be used to
6460 * exclude other special cases in the future.
1a20ff27 6461 */
c4a8849a 6462static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6463{
7378547f
MM
6464 int err;
6465
22e52b07 6466 arch_update_cpu_topology();
029190c5 6467 ndoms_cur = 1;
acc3f5d7 6468 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6469 if (!doms_cur)
acc3f5d7
RR
6470 doms_cur = &fallback_doms;
6471 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6472 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6473 register_sched_domain_sysctl();
7378547f
MM
6474
6475 return err;
1a20ff27
DG
6476}
6477
1a20ff27
DG
6478/*
6479 * Detach sched domains from a group of cpus specified in cpu_map
6480 * These cpus will now be attached to the NULL domain
6481 */
96f874e2 6482static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6483{
6484 int i;
6485
dce840a0 6486 rcu_read_lock();
abcd083a 6487 for_each_cpu(i, cpu_map)
57d885fe 6488 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6489 rcu_read_unlock();
1a20ff27
DG
6490}
6491
1d3504fc
HS
6492/* handle null as "default" */
6493static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6494 struct sched_domain_attr *new, int idx_new)
6495{
6496 struct sched_domain_attr tmp;
6497
6498 /* fast path */
6499 if (!new && !cur)
6500 return 1;
6501
6502 tmp = SD_ATTR_INIT;
6503 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6504 new ? (new + idx_new) : &tmp,
6505 sizeof(struct sched_domain_attr));
6506}
6507
029190c5
PJ
6508/*
6509 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6510 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6511 * doms_new[] to the current sched domain partitioning, doms_cur[].
6512 * It destroys each deleted domain and builds each new domain.
6513 *
acc3f5d7 6514 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6515 * The masks don't intersect (don't overlap.) We should setup one
6516 * sched domain for each mask. CPUs not in any of the cpumasks will
6517 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6518 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6519 * it as it is.
6520 *
acc3f5d7
RR
6521 * The passed in 'doms_new' should be allocated using
6522 * alloc_sched_domains. This routine takes ownership of it and will
6523 * free_sched_domains it when done with it. If the caller failed the
6524 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6525 * and partition_sched_domains() will fallback to the single partition
6526 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6527 *
96f874e2 6528 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6529 * ndoms_new == 0 is a special case for destroying existing domains,
6530 * and it will not create the default domain.
dfb512ec 6531 *
029190c5
PJ
6532 * Call with hotplug lock held
6533 */
acc3f5d7 6534void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6535 struct sched_domain_attr *dattr_new)
029190c5 6536{
dfb512ec 6537 int i, j, n;
d65bd5ec 6538 int new_topology;
029190c5 6539
712555ee 6540 mutex_lock(&sched_domains_mutex);
a1835615 6541
7378547f
MM
6542 /* always unregister in case we don't destroy any domains */
6543 unregister_sched_domain_sysctl();
6544
d65bd5ec
HC
6545 /* Let architecture update cpu core mappings. */
6546 new_topology = arch_update_cpu_topology();
6547
dfb512ec 6548 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6549
6550 /* Destroy deleted domains */
6551 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6552 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6553 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6554 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6555 goto match1;
6556 }
6557 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6558 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6559match1:
6560 ;
6561 }
6562
c8d2d47a 6563 n = ndoms_cur;
e761b772 6564 if (doms_new == NULL) {
c8d2d47a 6565 n = 0;
acc3f5d7 6566 doms_new = &fallback_doms;
6ad4c188 6567 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6568 WARN_ON_ONCE(dattr_new);
e761b772
MK
6569 }
6570
029190c5
PJ
6571 /* Build new domains */
6572 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6573 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6574 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6575 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6576 goto match2;
6577 }
6578 /* no match - add a new doms_new */
dce840a0 6579 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6580match2:
6581 ;
6582 }
6583
6584 /* Remember the new sched domains */
acc3f5d7
RR
6585 if (doms_cur != &fallback_doms)
6586 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6587 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6588 doms_cur = doms_new;
1d3504fc 6589 dattr_cur = dattr_new;
029190c5 6590 ndoms_cur = ndoms_new;
7378547f
MM
6591
6592 register_sched_domain_sysctl();
a1835615 6593
712555ee 6594 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6595}
6596
d35be8ba
SB
6597static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6598
1da177e4 6599/*
3a101d05
TH
6600 * Update cpusets according to cpu_active mask. If cpusets are
6601 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6602 * around partition_sched_domains().
d35be8ba
SB
6603 *
6604 * If we come here as part of a suspend/resume, don't touch cpusets because we
6605 * want to restore it back to its original state upon resume anyway.
1da177e4 6606 */
0b2e918a
TH
6607static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6608 void *hcpu)
e761b772 6609{
d35be8ba
SB
6610 switch (action) {
6611 case CPU_ONLINE_FROZEN:
6612 case CPU_DOWN_FAILED_FROZEN:
6613
6614 /*
6615 * num_cpus_frozen tracks how many CPUs are involved in suspend
6616 * resume sequence. As long as this is not the last online
6617 * operation in the resume sequence, just build a single sched
6618 * domain, ignoring cpusets.
6619 */
6620 num_cpus_frozen--;
6621 if (likely(num_cpus_frozen)) {
6622 partition_sched_domains(1, NULL, NULL);
6623 break;
6624 }
6625
6626 /*
6627 * This is the last CPU online operation. So fall through and
6628 * restore the original sched domains by considering the
6629 * cpuset configurations.
6630 */
6631
e761b772 6632 case CPU_ONLINE:
6ad4c188 6633 case CPU_DOWN_FAILED:
7ddf96b0 6634 cpuset_update_active_cpus(true);
d35be8ba 6635 break;
3a101d05
TH
6636 default:
6637 return NOTIFY_DONE;
6638 }
d35be8ba 6639 return NOTIFY_OK;
3a101d05 6640}
e761b772 6641
0b2e918a
TH
6642static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6643 void *hcpu)
3a101d05 6644{
d35be8ba 6645 switch (action) {
3a101d05 6646 case CPU_DOWN_PREPARE:
7ddf96b0 6647 cpuset_update_active_cpus(false);
d35be8ba
SB
6648 break;
6649 case CPU_DOWN_PREPARE_FROZEN:
6650 num_cpus_frozen++;
6651 partition_sched_domains(1, NULL, NULL);
6652 break;
e761b772
MK
6653 default:
6654 return NOTIFY_DONE;
6655 }
d35be8ba 6656 return NOTIFY_OK;
e761b772 6657}
e761b772 6658
1da177e4
LT
6659void __init sched_init_smp(void)
6660{
dcc30a35
RR
6661 cpumask_var_t non_isolated_cpus;
6662
6663 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6664 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6665
cb83b629
PZ
6666 sched_init_numa();
6667
6acce3ef
PZ
6668 /*
6669 * There's no userspace yet to cause hotplug operations; hence all the
6670 * cpu masks are stable and all blatant races in the below code cannot
6671 * happen.
6672 */
712555ee 6673 mutex_lock(&sched_domains_mutex);
c4a8849a 6674 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6675 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6676 if (cpumask_empty(non_isolated_cpus))
6677 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6678 mutex_unlock(&sched_domains_mutex);
e761b772 6679
301a5cba 6680 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6681 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6682 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6683
b328ca18 6684 init_hrtick();
5c1e1767
NP
6685
6686 /* Move init over to a non-isolated CPU */
dcc30a35 6687 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6688 BUG();
19978ca6 6689 sched_init_granularity();
dcc30a35 6690 free_cpumask_var(non_isolated_cpus);
4212823f 6691
0e3900e6 6692 init_sched_rt_class();
1baca4ce 6693 init_sched_dl_class();
1da177e4
LT
6694}
6695#else
6696void __init sched_init_smp(void)
6697{
19978ca6 6698 sched_init_granularity();
1da177e4
LT
6699}
6700#endif /* CONFIG_SMP */
6701
cd1bb94b
AB
6702const_debug unsigned int sysctl_timer_migration = 1;
6703
1da177e4
LT
6704int in_sched_functions(unsigned long addr)
6705{
1da177e4
LT
6706 return in_lock_functions(addr) ||
6707 (addr >= (unsigned long)__sched_text_start
6708 && addr < (unsigned long)__sched_text_end);
6709}
6710
029632fb 6711#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6712/*
6713 * Default task group.
6714 * Every task in system belongs to this group at bootup.
6715 */
029632fb 6716struct task_group root_task_group;
35cf4e50 6717LIST_HEAD(task_groups);
052f1dc7 6718#endif
6f505b16 6719
e6252c3e 6720DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6721
1da177e4
LT
6722void __init sched_init(void)
6723{
dd41f596 6724 int i, j;
434d53b0
MT
6725 unsigned long alloc_size = 0, ptr;
6726
6727#ifdef CONFIG_FAIR_GROUP_SCHED
6728 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6729#endif
6730#ifdef CONFIG_RT_GROUP_SCHED
6731 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6732#endif
df7c8e84 6733#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6734 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6735#endif
434d53b0 6736 if (alloc_size) {
36b7b6d4 6737 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6738
6739#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6740 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6741 ptr += nr_cpu_ids * sizeof(void **);
6742
07e06b01 6743 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6744 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6745
6d6bc0ad 6746#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6747#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6748 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6749 ptr += nr_cpu_ids * sizeof(void **);
6750
07e06b01 6751 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6752 ptr += nr_cpu_ids * sizeof(void **);
6753
6d6bc0ad 6754#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6755#ifdef CONFIG_CPUMASK_OFFSTACK
6756 for_each_possible_cpu(i) {
e6252c3e 6757 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6758 ptr += cpumask_size();
6759 }
6760#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6761 }
dd41f596 6762
332ac17e
DF
6763 init_rt_bandwidth(&def_rt_bandwidth,
6764 global_rt_period(), global_rt_runtime());
6765 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6766 global_rt_period(), global_rt_runtime());
332ac17e 6767
57d885fe
GH
6768#ifdef CONFIG_SMP
6769 init_defrootdomain();
6770#endif
6771
d0b27fa7 6772#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6773 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6774 global_rt_period(), global_rt_runtime());
6d6bc0ad 6775#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6776
7c941438 6777#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6778 list_add(&root_task_group.list, &task_groups);
6779 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6780 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6781 autogroup_init(&init_task);
54c707e9 6782
7c941438 6783#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6784
0a945022 6785 for_each_possible_cpu(i) {
70b97a7f 6786 struct rq *rq;
1da177e4
LT
6787
6788 rq = cpu_rq(i);
05fa785c 6789 raw_spin_lock_init(&rq->lock);
7897986b 6790 rq->nr_running = 0;
dce48a84
TG
6791 rq->calc_load_active = 0;
6792 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6793 init_cfs_rq(&rq->cfs);
6f505b16 6794 init_rt_rq(&rq->rt, rq);
aab03e05 6795 init_dl_rq(&rq->dl, rq);
dd41f596 6796#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6797 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6798 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6799 /*
07e06b01 6800 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6801 *
6802 * In case of task-groups formed thr' the cgroup filesystem, it
6803 * gets 100% of the cpu resources in the system. This overall
6804 * system cpu resource is divided among the tasks of
07e06b01 6805 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6806 * based on each entity's (task or task-group's) weight
6807 * (se->load.weight).
6808 *
07e06b01 6809 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6810 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6811 * then A0's share of the cpu resource is:
6812 *
0d905bca 6813 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6814 *
07e06b01
YZ
6815 * We achieve this by letting root_task_group's tasks sit
6816 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6817 */
ab84d31e 6818 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6819 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6820#endif /* CONFIG_FAIR_GROUP_SCHED */
6821
6822 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6823#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6824 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6825 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6826#endif
1da177e4 6827
dd41f596
IM
6828 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6829 rq->cpu_load[j] = 0;
fdf3e95d
VP
6830
6831 rq->last_load_update_tick = jiffies;
6832
1da177e4 6833#ifdef CONFIG_SMP
41c7ce9a 6834 rq->sd = NULL;
57d885fe 6835 rq->rd = NULL;
1399fa78 6836 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6837 rq->post_schedule = 0;
1da177e4 6838 rq->active_balance = 0;
dd41f596 6839 rq->next_balance = jiffies;
1da177e4 6840 rq->push_cpu = 0;
0a2966b4 6841 rq->cpu = i;
1f11eb6a 6842 rq->online = 0;
eae0c9df
MG
6843 rq->idle_stamp = 0;
6844 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6845 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6846
6847 INIT_LIST_HEAD(&rq->cfs_tasks);
6848
dc938520 6849 rq_attach_root(rq, &def_root_domain);
3451d024 6850#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6851 rq->nohz_flags = 0;
83cd4fe2 6852#endif
265f22a9
FW
6853#ifdef CONFIG_NO_HZ_FULL
6854 rq->last_sched_tick = 0;
6855#endif
1da177e4 6856#endif
8f4d37ec 6857 init_rq_hrtick(rq);
1da177e4 6858 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6859 }
6860
2dd73a4f 6861 set_load_weight(&init_task);
b50f60ce 6862
e107be36
AK
6863#ifdef CONFIG_PREEMPT_NOTIFIERS
6864 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6865#endif
6866
1da177e4
LT
6867 /*
6868 * The boot idle thread does lazy MMU switching as well:
6869 */
6870 atomic_inc(&init_mm.mm_count);
6871 enter_lazy_tlb(&init_mm, current);
6872
6873 /*
6874 * Make us the idle thread. Technically, schedule() should not be
6875 * called from this thread, however somewhere below it might be,
6876 * but because we are the idle thread, we just pick up running again
6877 * when this runqueue becomes "idle".
6878 */
6879 init_idle(current, smp_processor_id());
dce48a84
TG
6880
6881 calc_load_update = jiffies + LOAD_FREQ;
6882
dd41f596
IM
6883 /*
6884 * During early bootup we pretend to be a normal task:
6885 */
6886 current->sched_class = &fair_sched_class;
6892b75e 6887
bf4d83f6 6888#ifdef CONFIG_SMP
4cb98839 6889 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6890 /* May be allocated at isolcpus cmdline parse time */
6891 if (cpu_isolated_map == NULL)
6892 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6893 idle_thread_set_boot_cpu();
029632fb
PZ
6894#endif
6895 init_sched_fair_class();
6a7b3dc3 6896
6892b75e 6897 scheduler_running = 1;
1da177e4
LT
6898}
6899
d902db1e 6900#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6901static inline int preempt_count_equals(int preempt_offset)
6902{
234da7bc 6903 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6904
4ba8216c 6905 return (nested == preempt_offset);
e4aafea2
FW
6906}
6907
d894837f 6908void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6909{
1da177e4
LT
6910 static unsigned long prev_jiffy; /* ratelimiting */
6911
b3fbab05 6912 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6913 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6914 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6915 return;
6916 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6917 return;
6918 prev_jiffy = jiffies;
6919
3df0fc5b
PZ
6920 printk(KERN_ERR
6921 "BUG: sleeping function called from invalid context at %s:%d\n",
6922 file, line);
6923 printk(KERN_ERR
6924 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6925 in_atomic(), irqs_disabled(),
6926 current->pid, current->comm);
aef745fc
IM
6927
6928 debug_show_held_locks(current);
6929 if (irqs_disabled())
6930 print_irqtrace_events(current);
6931 dump_stack();
1da177e4
LT
6932}
6933EXPORT_SYMBOL(__might_sleep);
6934#endif
6935
6936#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6937static void normalize_task(struct rq *rq, struct task_struct *p)
6938{
da7a735e 6939 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6940 struct sched_attr attr = {
6941 .sched_policy = SCHED_NORMAL,
6942 };
da7a735e 6943 int old_prio = p->prio;
3a5e4dc1 6944 int on_rq;
3e51f33f 6945
fd2f4419 6946 on_rq = p->on_rq;
3a5e4dc1 6947 if (on_rq)
4ca9b72b 6948 dequeue_task(rq, p, 0);
d50dde5a 6949 __setscheduler(rq, p, &attr);
3a5e4dc1 6950 if (on_rq) {
4ca9b72b 6951 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6952 resched_task(rq->curr);
6953 }
da7a735e
PZ
6954
6955 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6956}
6957
1da177e4
LT
6958void normalize_rt_tasks(void)
6959{
a0f98a1c 6960 struct task_struct *g, *p;
1da177e4 6961 unsigned long flags;
70b97a7f 6962 struct rq *rq;
1da177e4 6963
4cf5d77a 6964 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6965 do_each_thread(g, p) {
178be793
IM
6966 /*
6967 * Only normalize user tasks:
6968 */
6969 if (!p->mm)
6970 continue;
6971
6cfb0d5d 6972 p->se.exec_start = 0;
6cfb0d5d 6973#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6974 p->se.statistics.wait_start = 0;
6975 p->se.statistics.sleep_start = 0;
6976 p->se.statistics.block_start = 0;
6cfb0d5d 6977#endif
dd41f596 6978
aab03e05 6979 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6980 /*
6981 * Renice negative nice level userspace
6982 * tasks back to 0:
6983 */
d0ea0268 6984 if (task_nice(p) < 0 && p->mm)
dd41f596 6985 set_user_nice(p, 0);
1da177e4 6986 continue;
dd41f596 6987 }
1da177e4 6988
1d615482 6989 raw_spin_lock(&p->pi_lock);
b29739f9 6990 rq = __task_rq_lock(p);
1da177e4 6991
178be793 6992 normalize_task(rq, p);
3a5e4dc1 6993
b29739f9 6994 __task_rq_unlock(rq);
1d615482 6995 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6996 } while_each_thread(g, p);
6997
4cf5d77a 6998 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6999}
7000
7001#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7002
67fc4e0c 7003#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7004/*
67fc4e0c 7005 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7006 *
7007 * They can only be called when the whole system has been
7008 * stopped - every CPU needs to be quiescent, and no scheduling
7009 * activity can take place. Using them for anything else would
7010 * be a serious bug, and as a result, they aren't even visible
7011 * under any other configuration.
7012 */
7013
7014/**
7015 * curr_task - return the current task for a given cpu.
7016 * @cpu: the processor in question.
7017 *
7018 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7019 *
7020 * Return: The current task for @cpu.
1df5c10a 7021 */
36c8b586 7022struct task_struct *curr_task(int cpu)
1df5c10a
LT
7023{
7024 return cpu_curr(cpu);
7025}
7026
67fc4e0c
JW
7027#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7028
7029#ifdef CONFIG_IA64
1df5c10a
LT
7030/**
7031 * set_curr_task - set the current task for a given cpu.
7032 * @cpu: the processor in question.
7033 * @p: the task pointer to set.
7034 *
7035 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7036 * are serviced on a separate stack. It allows the architecture to switch the
7037 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7038 * must be called with all CPU's synchronized, and interrupts disabled, the
7039 * and caller must save the original value of the current task (see
7040 * curr_task() above) and restore that value before reenabling interrupts and
7041 * re-starting the system.
7042 *
7043 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7044 */
36c8b586 7045void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7046{
7047 cpu_curr(cpu) = p;
7048}
7049
7050#endif
29f59db3 7051
7c941438 7052#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7053/* task_group_lock serializes the addition/removal of task groups */
7054static DEFINE_SPINLOCK(task_group_lock);
7055
bccbe08a
PZ
7056static void free_sched_group(struct task_group *tg)
7057{
7058 free_fair_sched_group(tg);
7059 free_rt_sched_group(tg);
e9aa1dd1 7060 autogroup_free(tg);
bccbe08a
PZ
7061 kfree(tg);
7062}
7063
7064/* allocate runqueue etc for a new task group */
ec7dc8ac 7065struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7066{
7067 struct task_group *tg;
bccbe08a
PZ
7068
7069 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7070 if (!tg)
7071 return ERR_PTR(-ENOMEM);
7072
ec7dc8ac 7073 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7074 goto err;
7075
ec7dc8ac 7076 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7077 goto err;
7078
ace783b9
LZ
7079 return tg;
7080
7081err:
7082 free_sched_group(tg);
7083 return ERR_PTR(-ENOMEM);
7084}
7085
7086void sched_online_group(struct task_group *tg, struct task_group *parent)
7087{
7088 unsigned long flags;
7089
8ed36996 7090 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7091 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7092
7093 WARN_ON(!parent); /* root should already exist */
7094
7095 tg->parent = parent;
f473aa5e 7096 INIT_LIST_HEAD(&tg->children);
09f2724a 7097 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7098 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7099}
7100
9b5b7751 7101/* rcu callback to free various structures associated with a task group */
6f505b16 7102static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7103{
29f59db3 7104 /* now it should be safe to free those cfs_rqs */
6f505b16 7105 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7106}
7107
9b5b7751 7108/* Destroy runqueue etc associated with a task group */
4cf86d77 7109void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7110{
7111 /* wait for possible concurrent references to cfs_rqs complete */
7112 call_rcu(&tg->rcu, free_sched_group_rcu);
7113}
7114
7115void sched_offline_group(struct task_group *tg)
29f59db3 7116{
8ed36996 7117 unsigned long flags;
9b5b7751 7118 int i;
29f59db3 7119
3d4b47b4
PZ
7120 /* end participation in shares distribution */
7121 for_each_possible_cpu(i)
bccbe08a 7122 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7123
7124 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7125 list_del_rcu(&tg->list);
f473aa5e 7126 list_del_rcu(&tg->siblings);
8ed36996 7127 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7128}
7129
9b5b7751 7130/* change task's runqueue when it moves between groups.
3a252015
IM
7131 * The caller of this function should have put the task in its new group
7132 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7133 * reflect its new group.
9b5b7751
SV
7134 */
7135void sched_move_task(struct task_struct *tsk)
29f59db3 7136{
8323f26c 7137 struct task_group *tg;
29f59db3
SV
7138 int on_rq, running;
7139 unsigned long flags;
7140 struct rq *rq;
7141
7142 rq = task_rq_lock(tsk, &flags);
7143
051a1d1a 7144 running = task_current(rq, tsk);
fd2f4419 7145 on_rq = tsk->on_rq;
29f59db3 7146
0e1f3483 7147 if (on_rq)
29f59db3 7148 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7149 if (unlikely(running))
7150 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7151
8af01f56 7152 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7153 lockdep_is_held(&tsk->sighand->siglock)),
7154 struct task_group, css);
7155 tg = autogroup_task_group(tsk, tg);
7156 tsk->sched_task_group = tg;
7157
810b3817 7158#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7159 if (tsk->sched_class->task_move_group)
7160 tsk->sched_class->task_move_group(tsk, on_rq);
7161 else
810b3817 7162#endif
b2b5ce02 7163 set_task_rq(tsk, task_cpu(tsk));
810b3817 7164
0e1f3483
HS
7165 if (unlikely(running))
7166 tsk->sched_class->set_curr_task(rq);
7167 if (on_rq)
371fd7e7 7168 enqueue_task(rq, tsk, 0);
29f59db3 7169
0122ec5b 7170 task_rq_unlock(rq, tsk, &flags);
29f59db3 7171}
7c941438 7172#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7173
a790de99
PT
7174#ifdef CONFIG_RT_GROUP_SCHED
7175/*
7176 * Ensure that the real time constraints are schedulable.
7177 */
7178static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7179
9a7e0b18
PZ
7180/* Must be called with tasklist_lock held */
7181static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7182{
9a7e0b18 7183 struct task_struct *g, *p;
b40b2e8e 7184
9a7e0b18 7185 do_each_thread(g, p) {
029632fb 7186 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7187 return 1;
7188 } while_each_thread(g, p);
b40b2e8e 7189
9a7e0b18
PZ
7190 return 0;
7191}
b40b2e8e 7192
9a7e0b18
PZ
7193struct rt_schedulable_data {
7194 struct task_group *tg;
7195 u64 rt_period;
7196 u64 rt_runtime;
7197};
b40b2e8e 7198
a790de99 7199static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7200{
7201 struct rt_schedulable_data *d = data;
7202 struct task_group *child;
7203 unsigned long total, sum = 0;
7204 u64 period, runtime;
b40b2e8e 7205
9a7e0b18
PZ
7206 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7207 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7208
9a7e0b18
PZ
7209 if (tg == d->tg) {
7210 period = d->rt_period;
7211 runtime = d->rt_runtime;
b40b2e8e 7212 }
b40b2e8e 7213
4653f803
PZ
7214 /*
7215 * Cannot have more runtime than the period.
7216 */
7217 if (runtime > period && runtime != RUNTIME_INF)
7218 return -EINVAL;
6f505b16 7219
4653f803
PZ
7220 /*
7221 * Ensure we don't starve existing RT tasks.
7222 */
9a7e0b18
PZ
7223 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7224 return -EBUSY;
6f505b16 7225
9a7e0b18 7226 total = to_ratio(period, runtime);
6f505b16 7227
4653f803
PZ
7228 /*
7229 * Nobody can have more than the global setting allows.
7230 */
7231 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7232 return -EINVAL;
6f505b16 7233
4653f803
PZ
7234 /*
7235 * The sum of our children's runtime should not exceed our own.
7236 */
9a7e0b18
PZ
7237 list_for_each_entry_rcu(child, &tg->children, siblings) {
7238 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7239 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7240
9a7e0b18
PZ
7241 if (child == d->tg) {
7242 period = d->rt_period;
7243 runtime = d->rt_runtime;
7244 }
6f505b16 7245
9a7e0b18 7246 sum += to_ratio(period, runtime);
9f0c1e56 7247 }
6f505b16 7248
9a7e0b18
PZ
7249 if (sum > total)
7250 return -EINVAL;
7251
7252 return 0;
6f505b16
PZ
7253}
7254
9a7e0b18 7255static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7256{
8277434e
PT
7257 int ret;
7258
9a7e0b18
PZ
7259 struct rt_schedulable_data data = {
7260 .tg = tg,
7261 .rt_period = period,
7262 .rt_runtime = runtime,
7263 };
7264
8277434e
PT
7265 rcu_read_lock();
7266 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7267 rcu_read_unlock();
7268
7269 return ret;
521f1a24
DG
7270}
7271
ab84d31e 7272static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7273 u64 rt_period, u64 rt_runtime)
6f505b16 7274{
ac086bc2 7275 int i, err = 0;
9f0c1e56 7276
9f0c1e56 7277 mutex_lock(&rt_constraints_mutex);
521f1a24 7278 read_lock(&tasklist_lock);
9a7e0b18
PZ
7279 err = __rt_schedulable(tg, rt_period, rt_runtime);
7280 if (err)
9f0c1e56 7281 goto unlock;
ac086bc2 7282
0986b11b 7283 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7284 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7285 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7286
7287 for_each_possible_cpu(i) {
7288 struct rt_rq *rt_rq = tg->rt_rq[i];
7289
0986b11b 7290 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7291 rt_rq->rt_runtime = rt_runtime;
0986b11b 7292 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7293 }
0986b11b 7294 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7295unlock:
521f1a24 7296 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7297 mutex_unlock(&rt_constraints_mutex);
7298
7299 return err;
6f505b16
PZ
7300}
7301
25cc7da7 7302static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7303{
7304 u64 rt_runtime, rt_period;
7305
7306 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7307 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7308 if (rt_runtime_us < 0)
7309 rt_runtime = RUNTIME_INF;
7310
ab84d31e 7311 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7312}
7313
25cc7da7 7314static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7315{
7316 u64 rt_runtime_us;
7317
d0b27fa7 7318 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7319 return -1;
7320
d0b27fa7 7321 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7322 do_div(rt_runtime_us, NSEC_PER_USEC);
7323 return rt_runtime_us;
7324}
d0b27fa7 7325
25cc7da7 7326static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7327{
7328 u64 rt_runtime, rt_period;
7329
7330 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7331 rt_runtime = tg->rt_bandwidth.rt_runtime;
7332
619b0488
R
7333 if (rt_period == 0)
7334 return -EINVAL;
7335
ab84d31e 7336 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7337}
7338
25cc7da7 7339static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7340{
7341 u64 rt_period_us;
7342
7343 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7344 do_div(rt_period_us, NSEC_PER_USEC);
7345 return rt_period_us;
7346}
332ac17e 7347#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7348
332ac17e 7349#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7350static int sched_rt_global_constraints(void)
7351{
7352 int ret = 0;
7353
7354 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7355 read_lock(&tasklist_lock);
4653f803 7356 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7357 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7358 mutex_unlock(&rt_constraints_mutex);
7359
7360 return ret;
7361}
54e99124 7362
25cc7da7 7363static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7364{
7365 /* Don't accept realtime tasks when there is no way for them to run */
7366 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7367 return 0;
7368
7369 return 1;
7370}
7371
6d6bc0ad 7372#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7373static int sched_rt_global_constraints(void)
7374{
ac086bc2 7375 unsigned long flags;
332ac17e 7376 int i, ret = 0;
ec5d4989 7377
0986b11b 7378 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7379 for_each_possible_cpu(i) {
7380 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7381
0986b11b 7382 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7383 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7384 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7385 }
0986b11b 7386 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7387
332ac17e 7388 return ret;
d0b27fa7 7389}
6d6bc0ad 7390#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7391
332ac17e
DF
7392static int sched_dl_global_constraints(void)
7393{
1724813d
PZ
7394 u64 runtime = global_rt_runtime();
7395 u64 period = global_rt_period();
332ac17e 7396 u64 new_bw = to_ratio(period, runtime);
1724813d 7397 int cpu, ret = 0;
332ac17e
DF
7398
7399 /*
7400 * Here we want to check the bandwidth not being set to some
7401 * value smaller than the currently allocated bandwidth in
7402 * any of the root_domains.
7403 *
7404 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7405 * cycling on root_domains... Discussion on different/better
7406 * solutions is welcome!
7407 */
1724813d
PZ
7408 for_each_possible_cpu(cpu) {
7409 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e
DF
7410
7411 raw_spin_lock(&dl_b->lock);
1724813d
PZ
7412 if (new_bw < dl_b->total_bw)
7413 ret = -EBUSY;
332ac17e 7414 raw_spin_unlock(&dl_b->lock);
1724813d
PZ
7415
7416 if (ret)
7417 break;
332ac17e
DF
7418 }
7419
1724813d 7420 return ret;
332ac17e
DF
7421}
7422
1724813d 7423static void sched_dl_do_global(void)
ce0dbbbb 7424{
1724813d
PZ
7425 u64 new_bw = -1;
7426 int cpu;
ce0dbbbb 7427
1724813d
PZ
7428 def_dl_bandwidth.dl_period = global_rt_period();
7429 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7430
7431 if (global_rt_runtime() != RUNTIME_INF)
7432 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7433
7434 /*
7435 * FIXME: As above...
7436 */
7437 for_each_possible_cpu(cpu) {
7438 struct dl_bw *dl_b = dl_bw_of(cpu);
7439
7440 raw_spin_lock(&dl_b->lock);
7441 dl_b->bw = new_bw;
7442 raw_spin_unlock(&dl_b->lock);
ce0dbbbb 7443 }
1724813d
PZ
7444}
7445
7446static int sched_rt_global_validate(void)
7447{
7448 if (sysctl_sched_rt_period <= 0)
7449 return -EINVAL;
7450
7451 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7452 return -EINVAL;
7453
7454 return 0;
7455}
7456
7457static void sched_rt_do_global(void)
7458{
7459 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7460 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7461}
7462
d0b27fa7 7463int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7464 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7465 loff_t *ppos)
7466{
d0b27fa7
PZ
7467 int old_period, old_runtime;
7468 static DEFINE_MUTEX(mutex);
1724813d 7469 int ret;
d0b27fa7
PZ
7470
7471 mutex_lock(&mutex);
7472 old_period = sysctl_sched_rt_period;
7473 old_runtime = sysctl_sched_rt_runtime;
7474
8d65af78 7475 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7476
7477 if (!ret && write) {
1724813d
PZ
7478 ret = sched_rt_global_validate();
7479 if (ret)
7480 goto undo;
7481
d0b27fa7 7482 ret = sched_rt_global_constraints();
1724813d
PZ
7483 if (ret)
7484 goto undo;
7485
7486 ret = sched_dl_global_constraints();
7487 if (ret)
7488 goto undo;
7489
7490 sched_rt_do_global();
7491 sched_dl_do_global();
7492 }
7493 if (0) {
7494undo:
7495 sysctl_sched_rt_period = old_period;
7496 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7497 }
7498 mutex_unlock(&mutex);
7499
7500 return ret;
7501}
68318b8e 7502
1724813d 7503int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7504 void __user *buffer, size_t *lenp,
7505 loff_t *ppos)
7506{
7507 int ret;
332ac17e 7508 static DEFINE_MUTEX(mutex);
332ac17e
DF
7509
7510 mutex_lock(&mutex);
332ac17e 7511 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7512 /* make sure that internally we keep jiffies */
7513 /* also, writing zero resets timeslice to default */
332ac17e 7514 if (!ret && write) {
1724813d
PZ
7515 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7516 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7517 }
7518 mutex_unlock(&mutex);
332ac17e
DF
7519 return ret;
7520}
7521
052f1dc7 7522#ifdef CONFIG_CGROUP_SCHED
68318b8e 7523
a7c6d554 7524static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7525{
a7c6d554 7526 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7527}
7528
eb95419b
TH
7529static struct cgroup_subsys_state *
7530cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7531{
eb95419b
TH
7532 struct task_group *parent = css_tg(parent_css);
7533 struct task_group *tg;
68318b8e 7534
eb95419b 7535 if (!parent) {
68318b8e 7536 /* This is early initialization for the top cgroup */
07e06b01 7537 return &root_task_group.css;
68318b8e
SV
7538 }
7539
ec7dc8ac 7540 tg = sched_create_group(parent);
68318b8e
SV
7541 if (IS_ERR(tg))
7542 return ERR_PTR(-ENOMEM);
7543
68318b8e
SV
7544 return &tg->css;
7545}
7546
eb95419b 7547static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7548{
eb95419b
TH
7549 struct task_group *tg = css_tg(css);
7550 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7551
63876986
TH
7552 if (parent)
7553 sched_online_group(tg, parent);
ace783b9
LZ
7554 return 0;
7555}
7556
eb95419b 7557static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7558{
eb95419b 7559 struct task_group *tg = css_tg(css);
68318b8e
SV
7560
7561 sched_destroy_group(tg);
7562}
7563
eb95419b 7564static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7565{
eb95419b 7566 struct task_group *tg = css_tg(css);
ace783b9
LZ
7567
7568 sched_offline_group(tg);
7569}
7570
eb95419b 7571static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7572 struct cgroup_taskset *tset)
68318b8e 7573{
bb9d97b6
TH
7574 struct task_struct *task;
7575
d99c8727 7576 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7577#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7578 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7579 return -EINVAL;
b68aa230 7580#else
bb9d97b6
TH
7581 /* We don't support RT-tasks being in separate groups */
7582 if (task->sched_class != &fair_sched_class)
7583 return -EINVAL;
b68aa230 7584#endif
bb9d97b6 7585 }
be367d09
BB
7586 return 0;
7587}
68318b8e 7588
eb95419b 7589static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7590 struct cgroup_taskset *tset)
68318b8e 7591{
bb9d97b6
TH
7592 struct task_struct *task;
7593
d99c8727 7594 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7595 sched_move_task(task);
68318b8e
SV
7596}
7597
eb95419b
TH
7598static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7599 struct cgroup_subsys_state *old_css,
7600 struct task_struct *task)
068c5cc5
PZ
7601{
7602 /*
7603 * cgroup_exit() is called in the copy_process() failure path.
7604 * Ignore this case since the task hasn't ran yet, this avoids
7605 * trying to poke a half freed task state from generic code.
7606 */
7607 if (!(task->flags & PF_EXITING))
7608 return;
7609
7610 sched_move_task(task);
7611}
7612
052f1dc7 7613#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7614static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7615 struct cftype *cftype, u64 shareval)
68318b8e 7616{
182446d0 7617 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7618}
7619
182446d0
TH
7620static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7621 struct cftype *cft)
68318b8e 7622{
182446d0 7623 struct task_group *tg = css_tg(css);
68318b8e 7624
c8b28116 7625 return (u64) scale_load_down(tg->shares);
68318b8e 7626}
ab84d31e
PT
7627
7628#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7629static DEFINE_MUTEX(cfs_constraints_mutex);
7630
ab84d31e
PT
7631const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7632const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7633
a790de99
PT
7634static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7635
ab84d31e
PT
7636static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7637{
56f570e5 7638 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7639 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7640
7641 if (tg == &root_task_group)
7642 return -EINVAL;
7643
7644 /*
7645 * Ensure we have at some amount of bandwidth every period. This is
7646 * to prevent reaching a state of large arrears when throttled via
7647 * entity_tick() resulting in prolonged exit starvation.
7648 */
7649 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7650 return -EINVAL;
7651
7652 /*
7653 * Likewise, bound things on the otherside by preventing insane quota
7654 * periods. This also allows us to normalize in computing quota
7655 * feasibility.
7656 */
7657 if (period > max_cfs_quota_period)
7658 return -EINVAL;
7659
a790de99
PT
7660 mutex_lock(&cfs_constraints_mutex);
7661 ret = __cfs_schedulable(tg, period, quota);
7662 if (ret)
7663 goto out_unlock;
7664
58088ad0 7665 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7666 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7667 /*
7668 * If we need to toggle cfs_bandwidth_used, off->on must occur
7669 * before making related changes, and on->off must occur afterwards
7670 */
7671 if (runtime_enabled && !runtime_was_enabled)
7672 cfs_bandwidth_usage_inc();
ab84d31e
PT
7673 raw_spin_lock_irq(&cfs_b->lock);
7674 cfs_b->period = ns_to_ktime(period);
7675 cfs_b->quota = quota;
58088ad0 7676
a9cf55b2 7677 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7678 /* restart the period timer (if active) to handle new period expiry */
7679 if (runtime_enabled && cfs_b->timer_active) {
7680 /* force a reprogram */
7681 cfs_b->timer_active = 0;
7682 __start_cfs_bandwidth(cfs_b);
7683 }
ab84d31e
PT
7684 raw_spin_unlock_irq(&cfs_b->lock);
7685
7686 for_each_possible_cpu(i) {
7687 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7688 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7689
7690 raw_spin_lock_irq(&rq->lock);
58088ad0 7691 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7692 cfs_rq->runtime_remaining = 0;
671fd9da 7693
029632fb 7694 if (cfs_rq->throttled)
671fd9da 7695 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7696 raw_spin_unlock_irq(&rq->lock);
7697 }
1ee14e6c
BS
7698 if (runtime_was_enabled && !runtime_enabled)
7699 cfs_bandwidth_usage_dec();
a790de99
PT
7700out_unlock:
7701 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7702
a790de99 7703 return ret;
ab84d31e
PT
7704}
7705
7706int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7707{
7708 u64 quota, period;
7709
029632fb 7710 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7711 if (cfs_quota_us < 0)
7712 quota = RUNTIME_INF;
7713 else
7714 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7715
7716 return tg_set_cfs_bandwidth(tg, period, quota);
7717}
7718
7719long tg_get_cfs_quota(struct task_group *tg)
7720{
7721 u64 quota_us;
7722
029632fb 7723 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7724 return -1;
7725
029632fb 7726 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7727 do_div(quota_us, NSEC_PER_USEC);
7728
7729 return quota_us;
7730}
7731
7732int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7733{
7734 u64 quota, period;
7735
7736 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7737 quota = tg->cfs_bandwidth.quota;
ab84d31e 7738
ab84d31e
PT
7739 return tg_set_cfs_bandwidth(tg, period, quota);
7740}
7741
7742long tg_get_cfs_period(struct task_group *tg)
7743{
7744 u64 cfs_period_us;
7745
029632fb 7746 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7747 do_div(cfs_period_us, NSEC_PER_USEC);
7748
7749 return cfs_period_us;
7750}
7751
182446d0
TH
7752static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7753 struct cftype *cft)
ab84d31e 7754{
182446d0 7755 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7756}
7757
182446d0
TH
7758static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7759 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7760{
182446d0 7761 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7762}
7763
182446d0
TH
7764static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7765 struct cftype *cft)
ab84d31e 7766{
182446d0 7767 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7768}
7769
182446d0
TH
7770static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7771 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7772{
182446d0 7773 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7774}
7775
a790de99
PT
7776struct cfs_schedulable_data {
7777 struct task_group *tg;
7778 u64 period, quota;
7779};
7780
7781/*
7782 * normalize group quota/period to be quota/max_period
7783 * note: units are usecs
7784 */
7785static u64 normalize_cfs_quota(struct task_group *tg,
7786 struct cfs_schedulable_data *d)
7787{
7788 u64 quota, period;
7789
7790 if (tg == d->tg) {
7791 period = d->period;
7792 quota = d->quota;
7793 } else {
7794 period = tg_get_cfs_period(tg);
7795 quota = tg_get_cfs_quota(tg);
7796 }
7797
7798 /* note: these should typically be equivalent */
7799 if (quota == RUNTIME_INF || quota == -1)
7800 return RUNTIME_INF;
7801
7802 return to_ratio(period, quota);
7803}
7804
7805static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7806{
7807 struct cfs_schedulable_data *d = data;
029632fb 7808 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7809 s64 quota = 0, parent_quota = -1;
7810
7811 if (!tg->parent) {
7812 quota = RUNTIME_INF;
7813 } else {
029632fb 7814 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7815
7816 quota = normalize_cfs_quota(tg, d);
7817 parent_quota = parent_b->hierarchal_quota;
7818
7819 /*
7820 * ensure max(child_quota) <= parent_quota, inherit when no
7821 * limit is set
7822 */
7823 if (quota == RUNTIME_INF)
7824 quota = parent_quota;
7825 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7826 return -EINVAL;
7827 }
7828 cfs_b->hierarchal_quota = quota;
7829
7830 return 0;
7831}
7832
7833static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7834{
8277434e 7835 int ret;
a790de99
PT
7836 struct cfs_schedulable_data data = {
7837 .tg = tg,
7838 .period = period,
7839 .quota = quota,
7840 };
7841
7842 if (quota != RUNTIME_INF) {
7843 do_div(data.period, NSEC_PER_USEC);
7844 do_div(data.quota, NSEC_PER_USEC);
7845 }
7846
8277434e
PT
7847 rcu_read_lock();
7848 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7849 rcu_read_unlock();
7850
7851 return ret;
a790de99 7852}
e8da1b18 7853
2da8ca82 7854static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7855{
2da8ca82 7856 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7857 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7858
44ffc75b
TH
7859 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7860 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7861 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7862
7863 return 0;
7864}
ab84d31e 7865#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7866#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7867
052f1dc7 7868#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7869static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7870 struct cftype *cft, s64 val)
6f505b16 7871{
182446d0 7872 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7873}
7874
182446d0
TH
7875static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7876 struct cftype *cft)
6f505b16 7877{
182446d0 7878 return sched_group_rt_runtime(css_tg(css));
6f505b16 7879}
d0b27fa7 7880
182446d0
TH
7881static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7882 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7883{
182446d0 7884 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7885}
7886
182446d0
TH
7887static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7888 struct cftype *cft)
d0b27fa7 7889{
182446d0 7890 return sched_group_rt_period(css_tg(css));
d0b27fa7 7891}
6d6bc0ad 7892#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7893
fe5c7cc2 7894static struct cftype cpu_files[] = {
052f1dc7 7895#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7896 {
7897 .name = "shares",
f4c753b7
PM
7898 .read_u64 = cpu_shares_read_u64,
7899 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7900 },
052f1dc7 7901#endif
ab84d31e
PT
7902#ifdef CONFIG_CFS_BANDWIDTH
7903 {
7904 .name = "cfs_quota_us",
7905 .read_s64 = cpu_cfs_quota_read_s64,
7906 .write_s64 = cpu_cfs_quota_write_s64,
7907 },
7908 {
7909 .name = "cfs_period_us",
7910 .read_u64 = cpu_cfs_period_read_u64,
7911 .write_u64 = cpu_cfs_period_write_u64,
7912 },
e8da1b18
NR
7913 {
7914 .name = "stat",
2da8ca82 7915 .seq_show = cpu_stats_show,
e8da1b18 7916 },
ab84d31e 7917#endif
052f1dc7 7918#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7919 {
9f0c1e56 7920 .name = "rt_runtime_us",
06ecb27c
PM
7921 .read_s64 = cpu_rt_runtime_read,
7922 .write_s64 = cpu_rt_runtime_write,
6f505b16 7923 },
d0b27fa7
PZ
7924 {
7925 .name = "rt_period_us",
f4c753b7
PM
7926 .read_u64 = cpu_rt_period_read_uint,
7927 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7928 },
052f1dc7 7929#endif
4baf6e33 7930 { } /* terminate */
68318b8e
SV
7931};
7932
68318b8e 7933struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7934 .name = "cpu",
92fb9748
TH
7935 .css_alloc = cpu_cgroup_css_alloc,
7936 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7937 .css_online = cpu_cgroup_css_online,
7938 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7939 .can_attach = cpu_cgroup_can_attach,
7940 .attach = cpu_cgroup_attach,
068c5cc5 7941 .exit = cpu_cgroup_exit,
38605cae 7942 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7943 .base_cftypes = cpu_files,
68318b8e
SV
7944 .early_init = 1,
7945};
7946
052f1dc7 7947#endif /* CONFIG_CGROUP_SCHED */
d842de87 7948
b637a328
PM
7949void dump_cpu_task(int cpu)
7950{
7951 pr_info("Task dump for CPU %d:\n", cpu);
7952 sched_show_task(cpu_curr(cpu));
7953}