sched: Mark RCU reader in sched_show_task()
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
1292531f 145static const char * const sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
f00b45c1
PZ
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
7740191c 200 char *cmp;
f00b45c1
PZ
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
7740191c 211 cmp = strstrip(buf);
f00b45c1 212
524429c3 213 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
214 neg = 1;
215 cmp += 3;
216 }
217
f8b6d1cc 218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 220 if (neg) {
f00b45c1 221 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
222 sched_feat_disable(i);
223 } else {
f00b45c1 224 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
225 sched_feat_enable(i);
226 }
f00b45c1
PZ
227 break;
228 }
229 }
230
f8b6d1cc 231 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
232 return -EINVAL;
233
42994724 234 *ppos += cnt;
f00b45c1
PZ
235
236 return cnt;
237}
238
34f3a814
LZ
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
828c0950 244static const struct file_operations sched_feat_fops = {
34f3a814
LZ
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
f00b45c1
PZ
250};
251
252static __init int sched_init_debug(void)
253{
f00b45c1
PZ
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
f8b6d1cc 260#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 261
b82d9fdd
PZ
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
e9e9250b
PZ
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
fa85ae24 276/*
9f0c1e56 277 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
278 * default: 1s
279 */
9f0c1e56 280unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 281
029632fb 282__read_mostly int scheduler_running;
6892b75e 283
9f0c1e56
PZ
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
fa85ae24 289
fa85ae24 290
1da177e4 291
0970d299 292/*
0122ec5b 293 * __task_rq_lock - lock the rq @p resides on.
b29739f9 294 */
70b97a7f 295static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
296 __acquires(rq->lock)
297{
0970d299
PZ
298 struct rq *rq;
299
0122ec5b
PZ
300 lockdep_assert_held(&p->pi_lock);
301
3a5c359a 302 for (;;) {
0970d299 303 rq = task_rq(p);
05fa785c 304 raw_spin_lock(&rq->lock);
65cc8e48 305 if (likely(rq == task_rq(p)))
3a5c359a 306 return rq;
05fa785c 307 raw_spin_unlock(&rq->lock);
b29739f9 308 }
b29739f9
IM
309}
310
1da177e4 311/*
0122ec5b 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 313 */
70b97a7f 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 315 __acquires(p->pi_lock)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4 319
3a5c359a 320 for (;;) {
0122ec5b 321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 322 rq = task_rq(p);
05fa785c 323 raw_spin_lock(&rq->lock);
65cc8e48 324 if (likely(rq == task_rq(p)))
3a5c359a 325 return rq;
0122ec5b
PZ
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 328 }
1da177e4
LT
329}
330
a9957449 331static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
332 __releases(rq->lock)
333{
05fa785c 334 raw_spin_unlock(&rq->lock);
b29739f9
IM
335}
336
0122ec5b
PZ
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 339 __releases(rq->lock)
0122ec5b 340 __releases(p->pi_lock)
1da177e4 341{
0122ec5b
PZ
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
344}
345
1da177e4 346/*
cc2a73b5 347 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 348 */
a9957449 349static struct rq *this_rq_lock(void)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4
LT
353
354 local_irq_disable();
355 rq = this_rq();
05fa785c 356 raw_spin_lock(&rq->lock);
1da177e4
LT
357
358 return rq;
359}
360
8f4d37ec
PZ
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
31656519
PZ
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
b328ca18 402{
31656519 403 struct rq *rq = arg;
b328ca18 404
05fa785c 405 raw_spin_lock(&rq->lock);
31656519
PZ
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
05fa785c 408 raw_spin_unlock(&rq->lock);
b328ca18
PZ
409}
410
31656519
PZ
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
029632fb 416void hrtick_start(struct rq *rq, u64 delay)
b328ca18 417{
31656519
PZ
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 420
cc584b21 421 hrtimer_set_expires(timer, time);
31656519
PZ
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
6e275637 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
427 rq->hrtick_csd_pending = 1;
428 }
b328ca18
PZ
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
31656519 443 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
fa748203 450static __init void init_hrtick(void)
b328ca18
PZ
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
31656519
PZ
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
029632fb 460void hrtick_start(struct rq *rq, u64 delay)
31656519 461{
7f1e2ca9 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 463 HRTIMER_MODE_REL_PINNED, 0);
31656519 464}
b328ca18 465
006c75f1 466static inline void init_hrtick(void)
8f4d37ec 467{
8f4d37ec 468}
31656519 469#endif /* CONFIG_SMP */
8f4d37ec 470
31656519 471static void init_rq_hrtick(struct rq *rq)
8f4d37ec 472{
31656519
PZ
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
8f4d37ec 475
31656519
PZ
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
8f4d37ec 480
31656519
PZ
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
8f4d37ec 483}
006c75f1 484#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
8f4d37ec
PZ
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
b328ca18
PZ
493static inline void init_hrtick(void)
494{
495}
006c75f1 496#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 497
c24d20db
IM
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
16a80163 508#define tsk_is_polling(t) 0
c24d20db
IM
509#endif
510
029632fb 511void resched_task(struct task_struct *p)
c24d20db
IM
512{
513 int cpu;
514
05fa785c 515 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 516
5ed0cec0 517 if (test_tsk_need_resched(p))
c24d20db
IM
518 return;
519
5ed0cec0 520 set_tsk_need_resched(p);
c24d20db
IM
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
05fa785c 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
538 return;
539 resched_task(cpu_curr(cpu));
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c
TG
542
543#ifdef CONFIG_NO_HZ
83cd4fe2
VP
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
057f3fad 558 rcu_read_lock();
83cd4fe2 559 for_each_domain(cpu, sd) {
057f3fad
PZ
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
83cd4fe2 566 }
057f3fad
PZ
567unlock:
568 rcu_read_unlock();
83cd4fe2
VP
569 return cpu;
570}
06d8308c
TG
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
45bf76df 597
45bf76df 598 /*
06d8308c
TG
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
45bf76df 602 */
5ed0cec0 603 set_tsk_need_resched(rq->idle);
45bf76df 604
06d8308c
TG
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
45bf76df
IM
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7
SS
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
615}
616
ca38062e 617#else /* CONFIG_NO_HZ */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
6d6bc0ad 624#endif /* CONFIG_NO_HZ */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#else /* !CONFIG_SMP */
029632fb 643void resched_task(struct task_struct *p)
18d95a28 644{
05fa785c 645 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 646 set_tsk_need_resched(p);
18d95a28 647}
6d6bc0ad 648#endif /* CONFIG_SMP */
18d95a28 649
a790de99
PT
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 652/*
8277434e
PT
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 657 */
029632fb 658int walk_tg_tree_from(struct task_group *from,
8277434e 659 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
660{
661 struct task_group *parent, *child;
eb755805 662 int ret;
c09595f6 663
8277434e
PT
664 parent = from;
665
c09595f6 666down:
eb755805
PZ
667 ret = (*down)(parent, data);
668 if (ret)
8277434e 669 goto out;
c09595f6
PZ
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
eb755805 677 ret = (*up)(parent, data);
8277434e
PT
678 if (ret || parent == from)
679 goto out;
c09595f6
PZ
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
8277434e 685out:
eb755805 686 return ret;
c09595f6
PZ
687}
688
029632fb 689int tg_nop(struct task_group *tg, void *data)
eb755805 690{
e2b245f8 691 return 0;
eb755805 692}
18d95a28
PZ
693#endif
694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
fe44d621 743static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 744{
095c0aa8
GC
745/*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750 s64 steal = 0, irq_delta = 0;
751#endif
752#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 753 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
754
755 /*
756 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757 * this case when a previous update_rq_clock() happened inside a
758 * {soft,}irq region.
759 *
760 * When this happens, we stop ->clock_task and only update the
761 * prev_irq_time stamp to account for the part that fit, so that a next
762 * update will consume the rest. This ensures ->clock_task is
763 * monotonic.
764 *
765 * It does however cause some slight miss-attribution of {soft,}irq
766 * time, a more accurate solution would be to update the irq_time using
767 * the current rq->clock timestamp, except that would require using
768 * atomic ops.
769 */
770 if (irq_delta > delta)
771 irq_delta = delta;
772
773 rq->prev_irq_time += irq_delta;
774 delta -= irq_delta;
095c0aa8
GC
775#endif
776#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 777 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
778 u64 st;
779
780 steal = paravirt_steal_clock(cpu_of(rq));
781 steal -= rq->prev_steal_time_rq;
782
783 if (unlikely(steal > delta))
784 steal = delta;
785
786 st = steal_ticks(steal);
787 steal = st * TICK_NSEC;
788
789 rq->prev_steal_time_rq += steal;
790
791 delta -= steal;
792 }
793#endif
794
fe44d621
PZ
795 rq->clock_task += delta;
796
095c0aa8
GC
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799 sched_rt_avg_update(rq, irq_delta + steal);
800#endif
aa483808
VP
801}
802
34f971f6
PZ
803void sched_set_stop_task(int cpu, struct task_struct *stop)
804{
805 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806 struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808 if (stop) {
809 /*
810 * Make it appear like a SCHED_FIFO task, its something
811 * userspace knows about and won't get confused about.
812 *
813 * Also, it will make PI more or less work without too
814 * much confusion -- but then, stop work should not
815 * rely on PI working anyway.
816 */
817 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819 stop->sched_class = &stop_sched_class;
820 }
821
822 cpu_rq(cpu)->stop = stop;
823
824 if (old_stop) {
825 /*
826 * Reset it back to a normal scheduling class so that
827 * it can die in pieces.
828 */
829 old_stop->sched_class = &rt_sched_class;
830 }
831}
832
14531189 833/*
dd41f596 834 * __normal_prio - return the priority that is based on the static prio
14531189 835 */
14531189
IM
836static inline int __normal_prio(struct task_struct *p)
837{
dd41f596 838 return p->static_prio;
14531189
IM
839}
840
b29739f9
IM
841/*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
36c8b586 848static inline int normal_prio(struct task_struct *p)
b29739f9
IM
849{
850 int prio;
851
e05606d3 852 if (task_has_rt_policy(p))
b29739f9
IM
853 prio = MAX_RT_PRIO-1 - p->rt_priority;
854 else
855 prio = __normal_prio(p);
856 return prio;
857}
858
859/*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
36c8b586 866static int effective_prio(struct task_struct *p)
b29739f9
IM
867{
868 p->normal_prio = normal_prio(p);
869 /*
870 * If we are RT tasks or we were boosted to RT priority,
871 * keep the priority unchanged. Otherwise, update priority
872 * to the normal priority:
873 */
874 if (!rt_prio(p->prio))
875 return p->normal_prio;
876 return p->prio;
877}
878
1da177e4
LT
879/**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
36c8b586 883inline int task_curr(const struct task_struct *p)
1da177e4
LT
884{
885 return cpu_curr(task_cpu(p)) == p;
886}
887
cb469845
SR
888static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889 const struct sched_class *prev_class,
da7a735e 890 int oldprio)
cb469845
SR
891{
892 if (prev_class != p->sched_class) {
893 if (prev_class->switched_from)
da7a735e
PZ
894 prev_class->switched_from(rq, p);
895 p->sched_class->switched_to(rq, p);
896 } else if (oldprio != p->prio)
897 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
898}
899
029632fb 900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
901{
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
911 resched_task(rq->curr);
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
fd2f4419 921 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
922 rq->skip_clock_update = 1;
923}
924
1da177e4 925#ifdef CONFIG_SMP
dd41f596 926void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 927{
e2912009
PZ
928#ifdef CONFIG_SCHED_DEBUG
929 /*
930 * We should never call set_task_cpu() on a blocked task,
931 * ttwu() will sort out the placement.
932 */
077614ee
PZ
933 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
935
936#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
937 /*
938 * The caller should hold either p->pi_lock or rq->lock, when changing
939 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940 *
941 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 942 * see task_group().
6c6c54e1
PZ
943 *
944 * Furthermore, all task_rq users should acquire both locks, see
945 * task_rq_lock().
946 */
0122ec5b
PZ
947 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948 lockdep_is_held(&task_rq(p)->lock)));
949#endif
e2912009
PZ
950#endif
951
de1d7286 952 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 953
0c69774e
PZ
954 if (task_cpu(p) != new_cpu) {
955 p->se.nr_migrations++;
a8b0ca17 956 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 957 }
dd41f596
IM
958
959 __set_task_cpu(p, new_cpu);
c65cc870
IM
960}
961
969c7921 962struct migration_arg {
36c8b586 963 struct task_struct *task;
1da177e4 964 int dest_cpu;
70b97a7f 965};
1da177e4 966
969c7921
TH
967static int migration_cpu_stop(void *data);
968
1da177e4
LT
969/*
970 * wait_task_inactive - wait for a thread to unschedule.
971 *
85ba2d86
RM
972 * If @match_state is nonzero, it's the @p->state value just checked and
973 * not expected to change. If it changes, i.e. @p might have woken up,
974 * then return zero. When we succeed in waiting for @p to be off its CPU,
975 * we return a positive number (its total switch count). If a second call
976 * a short while later returns the same number, the caller can be sure that
977 * @p has remained unscheduled the whole time.
978 *
1da177e4
LT
979 * The caller must ensure that the task *will* unschedule sometime soon,
980 * else this function might spin for a *long* time. This function can't
981 * be called with interrupts off, or it may introduce deadlock with
982 * smp_call_function() if an IPI is sent by the same process we are
983 * waiting to become inactive.
984 */
85ba2d86 985unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
986{
987 unsigned long flags;
dd41f596 988 int running, on_rq;
85ba2d86 989 unsigned long ncsw;
70b97a7f 990 struct rq *rq;
1da177e4 991
3a5c359a
AK
992 for (;;) {
993 /*
994 * We do the initial early heuristics without holding
995 * any task-queue locks at all. We'll only try to get
996 * the runqueue lock when things look like they will
997 * work out!
998 */
999 rq = task_rq(p);
fa490cfd 1000
3a5c359a
AK
1001 /*
1002 * If the task is actively running on another CPU
1003 * still, just relax and busy-wait without holding
1004 * any locks.
1005 *
1006 * NOTE! Since we don't hold any locks, it's not
1007 * even sure that "rq" stays as the right runqueue!
1008 * But we don't care, since "task_running()" will
1009 * return false if the runqueue has changed and p
1010 * is actually now running somewhere else!
1011 */
85ba2d86
RM
1012 while (task_running(rq, p)) {
1013 if (match_state && unlikely(p->state != match_state))
1014 return 0;
3a5c359a 1015 cpu_relax();
85ba2d86 1016 }
fa490cfd 1017
3a5c359a
AK
1018 /*
1019 * Ok, time to look more closely! We need the rq
1020 * lock now, to be *sure*. If we're wrong, we'll
1021 * just go back and repeat.
1022 */
1023 rq = task_rq_lock(p, &flags);
27a9da65 1024 trace_sched_wait_task(p);
3a5c359a 1025 running = task_running(rq, p);
fd2f4419 1026 on_rq = p->on_rq;
85ba2d86 1027 ncsw = 0;
f31e11d8 1028 if (!match_state || p->state == match_state)
93dcf55f 1029 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1030 task_rq_unlock(rq, p, &flags);
fa490cfd 1031
85ba2d86
RM
1032 /*
1033 * If it changed from the expected state, bail out now.
1034 */
1035 if (unlikely(!ncsw))
1036 break;
1037
3a5c359a
AK
1038 /*
1039 * Was it really running after all now that we
1040 * checked with the proper locks actually held?
1041 *
1042 * Oops. Go back and try again..
1043 */
1044 if (unlikely(running)) {
1045 cpu_relax();
1046 continue;
1047 }
fa490cfd 1048
3a5c359a
AK
1049 /*
1050 * It's not enough that it's not actively running,
1051 * it must be off the runqueue _entirely_, and not
1052 * preempted!
1053 *
80dd99b3 1054 * So if it was still runnable (but just not actively
3a5c359a
AK
1055 * running right now), it's preempted, and we should
1056 * yield - it could be a while.
1057 */
1058 if (unlikely(on_rq)) {
8eb90c30
TG
1059 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060
1061 set_current_state(TASK_UNINTERRUPTIBLE);
1062 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1063 continue;
1064 }
fa490cfd 1065
3a5c359a
AK
1066 /*
1067 * Ahh, all good. It wasn't running, and it wasn't
1068 * runnable, which means that it will never become
1069 * running in the future either. We're all done!
1070 */
1071 break;
1072 }
85ba2d86
RM
1073
1074 return ncsw;
1da177e4
LT
1075}
1076
1077/***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
25985edc 1084 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
36c8b586 1090void kick_process(struct task_struct *p)
1da177e4
LT
1091{
1092 int cpu;
1093
1094 preempt_disable();
1095 cpu = task_cpu(p);
1096 if ((cpu != smp_processor_id()) && task_curr(p))
1097 smp_send_reschedule(cpu);
1098 preempt_enable();
1099}
b43e3521 1100EXPORT_SYMBOL_GPL(kick_process);
476d139c 1101#endif /* CONFIG_SMP */
1da177e4 1102
970b13ba 1103#ifdef CONFIG_SMP
30da688e 1104/*
013fdb80 1105 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1106 */
5da9a0fb
PZ
1107static int select_fallback_rq(int cpu, struct task_struct *p)
1108{
5da9a0fb 1109 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1110 enum { cpuset, possible, fail } state = cpuset;
1111 int dest_cpu;
5da9a0fb
PZ
1112
1113 /* Look for allowed, online CPU in same node. */
e3831edd 1114 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1115 if (!cpu_online(dest_cpu))
1116 continue;
1117 if (!cpu_active(dest_cpu))
1118 continue;
fa17b507 1119 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1120 return dest_cpu;
2baab4e9 1121 }
5da9a0fb 1122
2baab4e9
PZ
1123 for (;;) {
1124 /* Any allowed, online CPU? */
e3831edd 1125 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1126 if (!cpu_online(dest_cpu))
1127 continue;
1128 if (!cpu_active(dest_cpu))
1129 continue;
1130 goto out;
1131 }
5da9a0fb 1132
2baab4e9
PZ
1133 switch (state) {
1134 case cpuset:
1135 /* No more Mr. Nice Guy. */
1136 cpuset_cpus_allowed_fallback(p);
1137 state = possible;
1138 break;
1139
1140 case possible:
1141 do_set_cpus_allowed(p, cpu_possible_mask);
1142 state = fail;
1143 break;
1144
1145 case fail:
1146 BUG();
1147 break;
1148 }
1149 }
1150
1151out:
1152 if (state != cpuset) {
1153 /*
1154 * Don't tell them about moving exiting tasks or
1155 * kernel threads (both mm NULL), since they never
1156 * leave kernel.
1157 */
1158 if (p->mm && printk_ratelimit()) {
1159 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160 task_pid_nr(p), p->comm, cpu);
1161 }
5da9a0fb
PZ
1162 }
1163
1164 return dest_cpu;
1165}
1166
e2912009 1167/*
013fdb80 1168 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1169 */
970b13ba 1170static inline
7608dec2 1171int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1172{
7608dec2 1173 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1174
1175 /*
1176 * In order not to call set_task_cpu() on a blocking task we need
1177 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178 * cpu.
1179 *
1180 * Since this is common to all placement strategies, this lives here.
1181 *
1182 * [ this allows ->select_task() to simply return task_cpu(p) and
1183 * not worry about this generic constraint ]
1184 */
fa17b507 1185 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1186 !cpu_online(cpu)))
5da9a0fb 1187 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1188
1189 return cpu;
970b13ba 1190}
09a40af5
MG
1191
1192static void update_avg(u64 *avg, u64 sample)
1193{
1194 s64 diff = sample - *avg;
1195 *avg += diff >> 3;
1196}
970b13ba
PZ
1197#endif
1198
d7c01d27 1199static void
b84cb5df 1200ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1201{
d7c01d27 1202#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1203 struct rq *rq = this_rq();
1204
d7c01d27
PZ
1205#ifdef CONFIG_SMP
1206 int this_cpu = smp_processor_id();
1207
1208 if (cpu == this_cpu) {
1209 schedstat_inc(rq, ttwu_local);
1210 schedstat_inc(p, se.statistics.nr_wakeups_local);
1211 } else {
1212 struct sched_domain *sd;
1213
1214 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1215 rcu_read_lock();
d7c01d27
PZ
1216 for_each_domain(this_cpu, sd) {
1217 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218 schedstat_inc(sd, ttwu_wake_remote);
1219 break;
1220 }
1221 }
057f3fad 1222 rcu_read_unlock();
d7c01d27 1223 }
f339b9dc
PZ
1224
1225 if (wake_flags & WF_MIGRATED)
1226 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227
d7c01d27
PZ
1228#endif /* CONFIG_SMP */
1229
1230 schedstat_inc(rq, ttwu_count);
9ed3811a 1231 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1232
1233 if (wake_flags & WF_SYNC)
9ed3811a 1234 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1235
d7c01d27
PZ
1236#endif /* CONFIG_SCHEDSTATS */
1237}
1238
1239static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240{
9ed3811a 1241 activate_task(rq, p, en_flags);
fd2f4419 1242 p->on_rq = 1;
c2f7115e
PZ
1243
1244 /* if a worker is waking up, notify workqueue */
1245 if (p->flags & PF_WQ_WORKER)
1246 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1247}
1248
23f41eeb
PZ
1249/*
1250 * Mark the task runnable and perform wakeup-preemption.
1251 */
89363381 1252static void
23f41eeb 1253ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1254{
89363381 1255 trace_sched_wakeup(p, true);
9ed3811a
TH
1256 check_preempt_curr(rq, p, wake_flags);
1257
1258 p->state = TASK_RUNNING;
1259#ifdef CONFIG_SMP
1260 if (p->sched_class->task_woken)
1261 p->sched_class->task_woken(rq, p);
1262
e69c6341 1263 if (rq->idle_stamp) {
9ed3811a
TH
1264 u64 delta = rq->clock - rq->idle_stamp;
1265 u64 max = 2*sysctl_sched_migration_cost;
1266
1267 if (delta > max)
1268 rq->avg_idle = max;
1269 else
1270 update_avg(&rq->avg_idle, delta);
1271 rq->idle_stamp = 0;
1272 }
1273#endif
1274}
1275
c05fbafb
PZ
1276static void
1277ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278{
1279#ifdef CONFIG_SMP
1280 if (p->sched_contributes_to_load)
1281 rq->nr_uninterruptible--;
1282#endif
1283
1284 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285 ttwu_do_wakeup(rq, p, wake_flags);
1286}
1287
1288/*
1289 * Called in case the task @p isn't fully descheduled from its runqueue,
1290 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291 * since all we need to do is flip p->state to TASK_RUNNING, since
1292 * the task is still ->on_rq.
1293 */
1294static int ttwu_remote(struct task_struct *p, int wake_flags)
1295{
1296 struct rq *rq;
1297 int ret = 0;
1298
1299 rq = __task_rq_lock(p);
1300 if (p->on_rq) {
1301 ttwu_do_wakeup(rq, p, wake_flags);
1302 ret = 1;
1303 }
1304 __task_rq_unlock(rq);
1305
1306 return ret;
1307}
1308
317f3941 1309#ifdef CONFIG_SMP
fa14ff4a 1310static void sched_ttwu_pending(void)
317f3941
PZ
1311{
1312 struct rq *rq = this_rq();
fa14ff4a
PZ
1313 struct llist_node *llist = llist_del_all(&rq->wake_list);
1314 struct task_struct *p;
317f3941
PZ
1315
1316 raw_spin_lock(&rq->lock);
1317
fa14ff4a
PZ
1318 while (llist) {
1319 p = llist_entry(llist, struct task_struct, wake_entry);
1320 llist = llist_next(llist);
317f3941
PZ
1321 ttwu_do_activate(rq, p, 0);
1322 }
1323
1324 raw_spin_unlock(&rq->lock);
1325}
1326
1327void scheduler_ipi(void)
1328{
ca38062e 1329 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1330 return;
1331
1332 /*
1333 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334 * traditionally all their work was done from the interrupt return
1335 * path. Now that we actually do some work, we need to make sure
1336 * we do call them.
1337 *
1338 * Some archs already do call them, luckily irq_enter/exit nest
1339 * properly.
1340 *
1341 * Arguably we should visit all archs and update all handlers,
1342 * however a fair share of IPIs are still resched only so this would
1343 * somewhat pessimize the simple resched case.
1344 */
1345 irq_enter();
fa14ff4a 1346 sched_ttwu_pending();
ca38062e
SS
1347
1348 /*
1349 * Check if someone kicked us for doing the nohz idle load balance.
1350 */
6eb57e0d
SS
1351 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352 this_rq()->idle_balance = 1;
ca38062e 1353 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1354 }
c5d753a5 1355 irq_exit();
317f3941
PZ
1356}
1357
1358static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359{
fa14ff4a 1360 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1361 smp_send_reschedule(cpu);
1362}
d6aa8f85 1363
39be3501 1364bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1365{
1366 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1367}
d6aa8f85 1368#endif /* CONFIG_SMP */
317f3941 1369
c05fbafb
PZ
1370static void ttwu_queue(struct task_struct *p, int cpu)
1371{
1372 struct rq *rq = cpu_rq(cpu);
1373
17d9f311 1374#if defined(CONFIG_SMP)
39be3501 1375 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1376 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1377 ttwu_queue_remote(p, cpu);
1378 return;
1379 }
1380#endif
1381
c05fbafb
PZ
1382 raw_spin_lock(&rq->lock);
1383 ttwu_do_activate(rq, p, 0);
1384 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1385}
1386
1387/**
1da177e4 1388 * try_to_wake_up - wake up a thread
9ed3811a 1389 * @p: the thread to be awakened
1da177e4 1390 * @state: the mask of task states that can be woken
9ed3811a 1391 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1392 *
1393 * Put it on the run-queue if it's not already there. The "current"
1394 * thread is always on the run-queue (except when the actual
1395 * re-schedule is in progress), and as such you're allowed to do
1396 * the simpler "current->state = TASK_RUNNING" to mark yourself
1397 * runnable without the overhead of this.
1398 *
9ed3811a
TH
1399 * Returns %true if @p was woken up, %false if it was already running
1400 * or @state didn't match @p's state.
1da177e4 1401 */
e4a52bcb
PZ
1402static int
1403try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1404{
1da177e4 1405 unsigned long flags;
c05fbafb 1406 int cpu, success = 0;
2398f2c6 1407
04e2f174 1408 smp_wmb();
013fdb80 1409 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1410 if (!(p->state & state))
1da177e4
LT
1411 goto out;
1412
c05fbafb 1413 success = 1; /* we're going to change ->state */
1da177e4 1414 cpu = task_cpu(p);
1da177e4 1415
c05fbafb
PZ
1416 if (p->on_rq && ttwu_remote(p, wake_flags))
1417 goto stat;
1da177e4 1418
1da177e4 1419#ifdef CONFIG_SMP
e9c84311 1420 /*
c05fbafb
PZ
1421 * If the owning (remote) cpu is still in the middle of schedule() with
1422 * this task as prev, wait until its done referencing the task.
e9c84311 1423 */
f3e94786 1424 while (p->on_cpu)
e4a52bcb 1425 cpu_relax();
0970d299 1426 /*
e4a52bcb 1427 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1428 */
e4a52bcb 1429 smp_rmb();
1da177e4 1430
a8e4f2ea 1431 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1432 p->state = TASK_WAKING;
e7693a36 1433
e4a52bcb 1434 if (p->sched_class->task_waking)
74f8e4b2 1435 p->sched_class->task_waking(p);
efbbd05a 1436
7608dec2 1437 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1438 if (task_cpu(p) != cpu) {
1439 wake_flags |= WF_MIGRATED;
e4a52bcb 1440 set_task_cpu(p, cpu);
f339b9dc 1441 }
1da177e4 1442#endif /* CONFIG_SMP */
1da177e4 1443
c05fbafb
PZ
1444 ttwu_queue(p, cpu);
1445stat:
b84cb5df 1446 ttwu_stat(p, cpu, wake_flags);
1da177e4 1447out:
013fdb80 1448 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1449
1450 return success;
1451}
1452
21aa9af0
TH
1453/**
1454 * try_to_wake_up_local - try to wake up a local task with rq lock held
1455 * @p: the thread to be awakened
1456 *
2acca55e 1457 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1458 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1459 * the current task.
21aa9af0
TH
1460 */
1461static void try_to_wake_up_local(struct task_struct *p)
1462{
1463 struct rq *rq = task_rq(p);
21aa9af0
TH
1464
1465 BUG_ON(rq != this_rq());
1466 BUG_ON(p == current);
1467 lockdep_assert_held(&rq->lock);
1468
2acca55e
PZ
1469 if (!raw_spin_trylock(&p->pi_lock)) {
1470 raw_spin_unlock(&rq->lock);
1471 raw_spin_lock(&p->pi_lock);
1472 raw_spin_lock(&rq->lock);
1473 }
1474
21aa9af0 1475 if (!(p->state & TASK_NORMAL))
2acca55e 1476 goto out;
21aa9af0 1477
fd2f4419 1478 if (!p->on_rq)
d7c01d27
PZ
1479 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1480
23f41eeb 1481 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1482 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1483out:
1484 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1485}
1486
50fa610a
DH
1487/**
1488 * wake_up_process - Wake up a specific process
1489 * @p: The process to be woken up.
1490 *
1491 * Attempt to wake up the nominated process and move it to the set of runnable
1492 * processes. Returns 1 if the process was woken up, 0 if it was already
1493 * running.
1494 *
1495 * It may be assumed that this function implies a write memory barrier before
1496 * changing the task state if and only if any tasks are woken up.
1497 */
7ad5b3a5 1498int wake_up_process(struct task_struct *p)
1da177e4 1499{
d9514f6c 1500 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1501}
1da177e4
LT
1502EXPORT_SYMBOL(wake_up_process);
1503
7ad5b3a5 1504int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1505{
1506 return try_to_wake_up(p, state, 0);
1507}
1508
1da177e4
LT
1509/*
1510 * Perform scheduler related setup for a newly forked process p.
1511 * p is forked by current.
dd41f596
IM
1512 *
1513 * __sched_fork() is basic setup used by init_idle() too:
1514 */
1515static void __sched_fork(struct task_struct *p)
1516{
fd2f4419
PZ
1517 p->on_rq = 0;
1518
1519 p->se.on_rq = 0;
dd41f596
IM
1520 p->se.exec_start = 0;
1521 p->se.sum_exec_runtime = 0;
f6cf891c 1522 p->se.prev_sum_exec_runtime = 0;
6c594c21 1523 p->se.nr_migrations = 0;
da7a735e 1524 p->se.vruntime = 0;
fd2f4419 1525 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1526
1527#ifdef CONFIG_SCHEDSTATS
41acab88 1528 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1529#endif
476d139c 1530
fa717060 1531 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1532
e107be36
AK
1533#ifdef CONFIG_PREEMPT_NOTIFIERS
1534 INIT_HLIST_HEAD(&p->preempt_notifiers);
1535#endif
dd41f596
IM
1536}
1537
1538/*
1539 * fork()/clone()-time setup:
1540 */
3e51e3ed 1541void sched_fork(struct task_struct *p)
dd41f596 1542{
0122ec5b 1543 unsigned long flags;
dd41f596
IM
1544 int cpu = get_cpu();
1545
1546 __sched_fork(p);
06b83b5f 1547 /*
0017d735 1548 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1549 * nobody will actually run it, and a signal or other external
1550 * event cannot wake it up and insert it on the runqueue either.
1551 */
0017d735 1552 p->state = TASK_RUNNING;
dd41f596 1553
c350a04e
MG
1554 /*
1555 * Make sure we do not leak PI boosting priority to the child.
1556 */
1557 p->prio = current->normal_prio;
1558
b9dc29e7
MG
1559 /*
1560 * Revert to default priority/policy on fork if requested.
1561 */
1562 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1563 if (task_has_rt_policy(p)) {
b9dc29e7 1564 p->policy = SCHED_NORMAL;
6c697bdf 1565 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1566 p->rt_priority = 0;
1567 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1568 p->static_prio = NICE_TO_PRIO(0);
1569
1570 p->prio = p->normal_prio = __normal_prio(p);
1571 set_load_weight(p);
6c697bdf 1572
b9dc29e7
MG
1573 /*
1574 * We don't need the reset flag anymore after the fork. It has
1575 * fulfilled its duty:
1576 */
1577 p->sched_reset_on_fork = 0;
1578 }
ca94c442 1579
2ddbf952
HS
1580 if (!rt_prio(p->prio))
1581 p->sched_class = &fair_sched_class;
b29739f9 1582
cd29fe6f
PZ
1583 if (p->sched_class->task_fork)
1584 p->sched_class->task_fork(p);
1585
86951599
PZ
1586 /*
1587 * The child is not yet in the pid-hash so no cgroup attach races,
1588 * and the cgroup is pinned to this child due to cgroup_fork()
1589 * is ran before sched_fork().
1590 *
1591 * Silence PROVE_RCU.
1592 */
0122ec5b 1593 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1594 set_task_cpu(p, cpu);
0122ec5b 1595 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1596
52f17b6c 1597#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1598 if (likely(sched_info_on()))
52f17b6c 1599 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1600#endif
3ca7a440
PZ
1601#if defined(CONFIG_SMP)
1602 p->on_cpu = 0;
4866cde0 1603#endif
bdd4e85d 1604#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1605 /* Want to start with kernel preemption disabled. */
a1261f54 1606 task_thread_info(p)->preempt_count = 1;
1da177e4 1607#endif
806c09a7 1608#ifdef CONFIG_SMP
917b627d 1609 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1610#endif
917b627d 1611
476d139c 1612 put_cpu();
1da177e4
LT
1613}
1614
1615/*
1616 * wake_up_new_task - wake up a newly created task for the first time.
1617 *
1618 * This function will do some initial scheduler statistics housekeeping
1619 * that must be done for every newly created context, then puts the task
1620 * on the runqueue and wakes it.
1621 */
3e51e3ed 1622void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1623{
1624 unsigned long flags;
dd41f596 1625 struct rq *rq;
fabf318e 1626
ab2515c4 1627 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1628#ifdef CONFIG_SMP
1629 /*
1630 * Fork balancing, do it here and not earlier because:
1631 * - cpus_allowed can change in the fork path
1632 * - any previously selected cpu might disappear through hotplug
fabf318e 1633 */
ab2515c4 1634 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1635#endif
1636
ab2515c4 1637 rq = __task_rq_lock(p);
cd29fe6f 1638 activate_task(rq, p, 0);
fd2f4419 1639 p->on_rq = 1;
89363381 1640 trace_sched_wakeup_new(p, true);
a7558e01 1641 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1642#ifdef CONFIG_SMP
efbbd05a
PZ
1643 if (p->sched_class->task_woken)
1644 p->sched_class->task_woken(rq, p);
9a897c5a 1645#endif
0122ec5b 1646 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1647}
1648
e107be36
AK
1649#ifdef CONFIG_PREEMPT_NOTIFIERS
1650
1651/**
80dd99b3 1652 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1653 * @notifier: notifier struct to register
e107be36
AK
1654 */
1655void preempt_notifier_register(struct preempt_notifier *notifier)
1656{
1657 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1658}
1659EXPORT_SYMBOL_GPL(preempt_notifier_register);
1660
1661/**
1662 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1663 * @notifier: notifier struct to unregister
e107be36
AK
1664 *
1665 * This is safe to call from within a preemption notifier.
1666 */
1667void preempt_notifier_unregister(struct preempt_notifier *notifier)
1668{
1669 hlist_del(&notifier->link);
1670}
1671EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1672
1673static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1674{
1675 struct preempt_notifier *notifier;
1676 struct hlist_node *node;
1677
1678 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1679 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1680}
1681
1682static void
1683fire_sched_out_preempt_notifiers(struct task_struct *curr,
1684 struct task_struct *next)
1685{
1686 struct preempt_notifier *notifier;
1687 struct hlist_node *node;
1688
1689 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1690 notifier->ops->sched_out(notifier, next);
1691}
1692
6d6bc0ad 1693#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1694
1695static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1696{
1697}
1698
1699static void
1700fire_sched_out_preempt_notifiers(struct task_struct *curr,
1701 struct task_struct *next)
1702{
1703}
1704
6d6bc0ad 1705#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1706
4866cde0
NP
1707/**
1708 * prepare_task_switch - prepare to switch tasks
1709 * @rq: the runqueue preparing to switch
421cee29 1710 * @prev: the current task that is being switched out
4866cde0
NP
1711 * @next: the task we are going to switch to.
1712 *
1713 * This is called with the rq lock held and interrupts off. It must
1714 * be paired with a subsequent finish_task_switch after the context
1715 * switch.
1716 *
1717 * prepare_task_switch sets up locking and calls architecture specific
1718 * hooks.
1719 */
e107be36
AK
1720static inline void
1721prepare_task_switch(struct rq *rq, struct task_struct *prev,
1722 struct task_struct *next)
4866cde0 1723{
895dd92c 1724 trace_sched_switch(prev, next);
fe4b04fa
PZ
1725 sched_info_switch(prev, next);
1726 perf_event_task_sched_out(prev, next);
e107be36 1727 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1728 prepare_lock_switch(rq, next);
1729 prepare_arch_switch(next);
1730}
1731
1da177e4
LT
1732/**
1733 * finish_task_switch - clean up after a task-switch
344babaa 1734 * @rq: runqueue associated with task-switch
1da177e4
LT
1735 * @prev: the thread we just switched away from.
1736 *
4866cde0
NP
1737 * finish_task_switch must be called after the context switch, paired
1738 * with a prepare_task_switch call before the context switch.
1739 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1740 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1741 *
1742 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1743 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1744 * with the lock held can cause deadlocks; see schedule() for
1745 * details.)
1746 */
a9957449 1747static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1748 __releases(rq->lock)
1749{
1da177e4 1750 struct mm_struct *mm = rq->prev_mm;
55a101f8 1751 long prev_state;
1da177e4
LT
1752
1753 rq->prev_mm = NULL;
1754
1755 /*
1756 * A task struct has one reference for the use as "current".
c394cc9f 1757 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1758 * schedule one last time. The schedule call will never return, and
1759 * the scheduled task must drop that reference.
c394cc9f 1760 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1761 * still held, otherwise prev could be scheduled on another cpu, die
1762 * there before we look at prev->state, and then the reference would
1763 * be dropped twice.
1764 * Manfred Spraul <manfred@colorfullife.com>
1765 */
55a101f8 1766 prev_state = prev->state;
bf9fae9f 1767 vtime_task_switch(prev);
4866cde0 1768 finish_arch_switch(prev);
a8d757ef 1769 perf_event_task_sched_in(prev, current);
4866cde0 1770 finish_lock_switch(rq, prev);
01f23e16 1771 finish_arch_post_lock_switch();
e8fa1362 1772
e107be36 1773 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1774 if (mm)
1775 mmdrop(mm);
c394cc9f 1776 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1777 /*
1778 * Remove function-return probe instances associated with this
1779 * task and put them back on the free list.
9761eea8 1780 */
c6fd91f0 1781 kprobe_flush_task(prev);
1da177e4 1782 put_task_struct(prev);
c6fd91f0 1783 }
1da177e4
LT
1784}
1785
3f029d3c
GH
1786#ifdef CONFIG_SMP
1787
1788/* assumes rq->lock is held */
1789static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1790{
1791 if (prev->sched_class->pre_schedule)
1792 prev->sched_class->pre_schedule(rq, prev);
1793}
1794
1795/* rq->lock is NOT held, but preemption is disabled */
1796static inline void post_schedule(struct rq *rq)
1797{
1798 if (rq->post_schedule) {
1799 unsigned long flags;
1800
05fa785c 1801 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1802 if (rq->curr->sched_class->post_schedule)
1803 rq->curr->sched_class->post_schedule(rq);
05fa785c 1804 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1805
1806 rq->post_schedule = 0;
1807 }
1808}
1809
1810#else
da19ab51 1811
3f029d3c
GH
1812static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1813{
1814}
1815
1816static inline void post_schedule(struct rq *rq)
1817{
1da177e4
LT
1818}
1819
3f029d3c
GH
1820#endif
1821
1da177e4
LT
1822/**
1823 * schedule_tail - first thing a freshly forked thread must call.
1824 * @prev: the thread we just switched away from.
1825 */
36c8b586 1826asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1827 __releases(rq->lock)
1828{
70b97a7f
IM
1829 struct rq *rq = this_rq();
1830
4866cde0 1831 finish_task_switch(rq, prev);
da19ab51 1832
3f029d3c
GH
1833 /*
1834 * FIXME: do we need to worry about rq being invalidated by the
1835 * task_switch?
1836 */
1837 post_schedule(rq);
70b97a7f 1838
4866cde0
NP
1839#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1840 /* In this case, finish_task_switch does not reenable preemption */
1841 preempt_enable();
1842#endif
1da177e4 1843 if (current->set_child_tid)
b488893a 1844 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1845}
1846
1847/*
1848 * context_switch - switch to the new MM and the new
1849 * thread's register state.
1850 */
dd41f596 1851static inline void
70b97a7f 1852context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1853 struct task_struct *next)
1da177e4 1854{
dd41f596 1855 struct mm_struct *mm, *oldmm;
1da177e4 1856
e107be36 1857 prepare_task_switch(rq, prev, next);
fe4b04fa 1858
dd41f596
IM
1859 mm = next->mm;
1860 oldmm = prev->active_mm;
9226d125
ZA
1861 /*
1862 * For paravirt, this is coupled with an exit in switch_to to
1863 * combine the page table reload and the switch backend into
1864 * one hypercall.
1865 */
224101ed 1866 arch_start_context_switch(prev);
9226d125 1867
31915ab4 1868 if (!mm) {
1da177e4
LT
1869 next->active_mm = oldmm;
1870 atomic_inc(&oldmm->mm_count);
1871 enter_lazy_tlb(oldmm, next);
1872 } else
1873 switch_mm(oldmm, mm, next);
1874
31915ab4 1875 if (!prev->mm) {
1da177e4 1876 prev->active_mm = NULL;
1da177e4
LT
1877 rq->prev_mm = oldmm;
1878 }
3a5f5e48
IM
1879 /*
1880 * Since the runqueue lock will be released by the next
1881 * task (which is an invalid locking op but in the case
1882 * of the scheduler it's an obvious special-case), so we
1883 * do an early lockdep release here:
1884 */
1885#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1886 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1887#endif
1da177e4
LT
1888
1889 /* Here we just switch the register state and the stack. */
4d9a5d43 1890 rcu_user_hooks_switch(prev, next);
1da177e4
LT
1891 switch_to(prev, next, prev);
1892
dd41f596
IM
1893 barrier();
1894 /*
1895 * this_rq must be evaluated again because prev may have moved
1896 * CPUs since it called schedule(), thus the 'rq' on its stack
1897 * frame will be invalid.
1898 */
1899 finish_task_switch(this_rq(), prev);
1da177e4
LT
1900}
1901
1902/*
1903 * nr_running, nr_uninterruptible and nr_context_switches:
1904 *
1905 * externally visible scheduler statistics: current number of runnable
1906 * threads, current number of uninterruptible-sleeping threads, total
1907 * number of context switches performed since bootup.
1908 */
1909unsigned long nr_running(void)
1910{
1911 unsigned long i, sum = 0;
1912
1913 for_each_online_cpu(i)
1914 sum += cpu_rq(i)->nr_running;
1915
1916 return sum;
f711f609 1917}
1da177e4
LT
1918
1919unsigned long nr_uninterruptible(void)
f711f609 1920{
1da177e4 1921 unsigned long i, sum = 0;
f711f609 1922
0a945022 1923 for_each_possible_cpu(i)
1da177e4 1924 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
1925
1926 /*
1da177e4
LT
1927 * Since we read the counters lockless, it might be slightly
1928 * inaccurate. Do not allow it to go below zero though:
f711f609 1929 */
1da177e4
LT
1930 if (unlikely((long)sum < 0))
1931 sum = 0;
f711f609 1932
1da177e4 1933 return sum;
f711f609 1934}
f711f609 1935
1da177e4 1936unsigned long long nr_context_switches(void)
46cb4b7c 1937{
cc94abfc
SR
1938 int i;
1939 unsigned long long sum = 0;
46cb4b7c 1940
0a945022 1941 for_each_possible_cpu(i)
1da177e4 1942 sum += cpu_rq(i)->nr_switches;
46cb4b7c 1943
1da177e4
LT
1944 return sum;
1945}
483b4ee6 1946
1da177e4
LT
1947unsigned long nr_iowait(void)
1948{
1949 unsigned long i, sum = 0;
483b4ee6 1950
0a945022 1951 for_each_possible_cpu(i)
1da177e4 1952 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 1953
1da177e4
LT
1954 return sum;
1955}
483b4ee6 1956
8c215bd3 1957unsigned long nr_iowait_cpu(int cpu)
69d25870 1958{
8c215bd3 1959 struct rq *this = cpu_rq(cpu);
69d25870
AV
1960 return atomic_read(&this->nr_iowait);
1961}
46cb4b7c 1962
69d25870
AV
1963unsigned long this_cpu_load(void)
1964{
1965 struct rq *this = this_rq();
1966 return this->cpu_load[0];
1967}
e790fb0b 1968
46cb4b7c 1969
5167e8d5
PZ
1970/*
1971 * Global load-average calculations
1972 *
1973 * We take a distributed and async approach to calculating the global load-avg
1974 * in order to minimize overhead.
1975 *
1976 * The global load average is an exponentially decaying average of nr_running +
1977 * nr_uninterruptible.
1978 *
1979 * Once every LOAD_FREQ:
1980 *
1981 * nr_active = 0;
1982 * for_each_possible_cpu(cpu)
1983 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
1984 *
1985 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
1986 *
1987 * Due to a number of reasons the above turns in the mess below:
1988 *
1989 * - for_each_possible_cpu() is prohibitively expensive on machines with
1990 * serious number of cpus, therefore we need to take a distributed approach
1991 * to calculating nr_active.
1992 *
1993 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
1994 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
1995 *
1996 * So assuming nr_active := 0 when we start out -- true per definition, we
1997 * can simply take per-cpu deltas and fold those into a global accumulate
1998 * to obtain the same result. See calc_load_fold_active().
1999 *
2000 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2001 * across the machine, we assume 10 ticks is sufficient time for every
2002 * cpu to have completed this task.
2003 *
2004 * This places an upper-bound on the IRQ-off latency of the machine. Then
2005 * again, being late doesn't loose the delta, just wrecks the sample.
2006 *
2007 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2008 * this would add another cross-cpu cacheline miss and atomic operation
2009 * to the wakeup path. Instead we increment on whatever cpu the task ran
2010 * when it went into uninterruptible state and decrement on whatever cpu
2011 * did the wakeup. This means that only the sum of nr_uninterruptible over
2012 * all cpus yields the correct result.
2013 *
2014 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2015 */
2016
dce48a84
TG
2017/* Variables and functions for calc_load */
2018static atomic_long_t calc_load_tasks;
2019static unsigned long calc_load_update;
2020unsigned long avenrun[3];
5167e8d5
PZ
2021EXPORT_SYMBOL(avenrun); /* should be removed */
2022
2023/**
2024 * get_avenrun - get the load average array
2025 * @loads: pointer to dest load array
2026 * @offset: offset to add
2027 * @shift: shift count to shift the result left
2028 *
2029 * These values are estimates at best, so no need for locking.
2030 */
2031void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2032{
2033 loads[0] = (avenrun[0] + offset) << shift;
2034 loads[1] = (avenrun[1] + offset) << shift;
2035 loads[2] = (avenrun[2] + offset) << shift;
2036}
46cb4b7c 2037
74f5187a
PZ
2038static long calc_load_fold_active(struct rq *this_rq)
2039{
2040 long nr_active, delta = 0;
2041
2042 nr_active = this_rq->nr_running;
2043 nr_active += (long) this_rq->nr_uninterruptible;
2044
2045 if (nr_active != this_rq->calc_load_active) {
2046 delta = nr_active - this_rq->calc_load_active;
2047 this_rq->calc_load_active = nr_active;
2048 }
2049
2050 return delta;
2051}
2052
5167e8d5
PZ
2053/*
2054 * a1 = a0 * e + a * (1 - e)
2055 */
0f004f5a
PZ
2056static unsigned long
2057calc_load(unsigned long load, unsigned long exp, unsigned long active)
2058{
2059 load *= exp;
2060 load += active * (FIXED_1 - exp);
2061 load += 1UL << (FSHIFT - 1);
2062 return load >> FSHIFT;
2063}
2064
74f5187a
PZ
2065#ifdef CONFIG_NO_HZ
2066/*
5167e8d5
PZ
2067 * Handle NO_HZ for the global load-average.
2068 *
2069 * Since the above described distributed algorithm to compute the global
2070 * load-average relies on per-cpu sampling from the tick, it is affected by
2071 * NO_HZ.
2072 *
2073 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2074 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2075 * when we read the global state.
2076 *
2077 * Obviously reality has to ruin such a delightfully simple scheme:
2078 *
2079 * - When we go NO_HZ idle during the window, we can negate our sample
2080 * contribution, causing under-accounting.
2081 *
2082 * We avoid this by keeping two idle-delta counters and flipping them
2083 * when the window starts, thus separating old and new NO_HZ load.
2084 *
2085 * The only trick is the slight shift in index flip for read vs write.
2086 *
2087 * 0s 5s 10s 15s
2088 * +10 +10 +10 +10
2089 * |-|-----------|-|-----------|-|-----------|-|
2090 * r:0 0 1 1 0 0 1 1 0
2091 * w:0 1 1 0 0 1 1 0 0
2092 *
2093 * This ensures we'll fold the old idle contribution in this window while
2094 * accumlating the new one.
2095 *
2096 * - When we wake up from NO_HZ idle during the window, we push up our
2097 * contribution, since we effectively move our sample point to a known
2098 * busy state.
2099 *
2100 * This is solved by pushing the window forward, and thus skipping the
2101 * sample, for this cpu (effectively using the idle-delta for this cpu which
2102 * was in effect at the time the window opened). This also solves the issue
2103 * of having to deal with a cpu having been in NOHZ idle for multiple
2104 * LOAD_FREQ intervals.
74f5187a
PZ
2105 *
2106 * When making the ILB scale, we should try to pull this in as well.
2107 */
5167e8d5
PZ
2108static atomic_long_t calc_load_idle[2];
2109static int calc_load_idx;
74f5187a 2110
5167e8d5 2111static inline int calc_load_write_idx(void)
74f5187a 2112{
5167e8d5
PZ
2113 int idx = calc_load_idx;
2114
2115 /*
2116 * See calc_global_nohz(), if we observe the new index, we also
2117 * need to observe the new update time.
2118 */
2119 smp_rmb();
2120
2121 /*
2122 * If the folding window started, make sure we start writing in the
2123 * next idle-delta.
2124 */
2125 if (!time_before(jiffies, calc_load_update))
2126 idx++;
2127
2128 return idx & 1;
2129}
2130
2131static inline int calc_load_read_idx(void)
2132{
2133 return calc_load_idx & 1;
2134}
2135
2136void calc_load_enter_idle(void)
2137{
2138 struct rq *this_rq = this_rq();
74f5187a
PZ
2139 long delta;
2140
5167e8d5
PZ
2141 /*
2142 * We're going into NOHZ mode, if there's any pending delta, fold it
2143 * into the pending idle delta.
2144 */
74f5187a 2145 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2146 if (delta) {
2147 int idx = calc_load_write_idx();
2148 atomic_long_add(delta, &calc_load_idle[idx]);
2149 }
74f5187a
PZ
2150}
2151
5167e8d5 2152void calc_load_exit_idle(void)
74f5187a 2153{
5167e8d5
PZ
2154 struct rq *this_rq = this_rq();
2155
2156 /*
2157 * If we're still before the sample window, we're done.
2158 */
2159 if (time_before(jiffies, this_rq->calc_load_update))
2160 return;
74f5187a
PZ
2161
2162 /*
5167e8d5
PZ
2163 * We woke inside or after the sample window, this means we're already
2164 * accounted through the nohz accounting, so skip the entire deal and
2165 * sync up for the next window.
74f5187a 2166 */
5167e8d5
PZ
2167 this_rq->calc_load_update = calc_load_update;
2168 if (time_before(jiffies, this_rq->calc_load_update + 10))
2169 this_rq->calc_load_update += LOAD_FREQ;
2170}
2171
2172static long calc_load_fold_idle(void)
2173{
2174 int idx = calc_load_read_idx();
2175 long delta = 0;
2176
2177 if (atomic_long_read(&calc_load_idle[idx]))
2178 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2179
2180 return delta;
2181}
0f004f5a
PZ
2182
2183/**
2184 * fixed_power_int - compute: x^n, in O(log n) time
2185 *
2186 * @x: base of the power
2187 * @frac_bits: fractional bits of @x
2188 * @n: power to raise @x to.
2189 *
2190 * By exploiting the relation between the definition of the natural power
2191 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2192 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2193 * (where: n_i \elem {0, 1}, the binary vector representing n),
2194 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2195 * of course trivially computable in O(log_2 n), the length of our binary
2196 * vector.
2197 */
2198static unsigned long
2199fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2200{
2201 unsigned long result = 1UL << frac_bits;
2202
2203 if (n) for (;;) {
2204 if (n & 1) {
2205 result *= x;
2206 result += 1UL << (frac_bits - 1);
2207 result >>= frac_bits;
2208 }
2209 n >>= 1;
2210 if (!n)
2211 break;
2212 x *= x;
2213 x += 1UL << (frac_bits - 1);
2214 x >>= frac_bits;
2215 }
2216
2217 return result;
2218}
2219
2220/*
2221 * a1 = a0 * e + a * (1 - e)
2222 *
2223 * a2 = a1 * e + a * (1 - e)
2224 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2225 * = a0 * e^2 + a * (1 - e) * (1 + e)
2226 *
2227 * a3 = a2 * e + a * (1 - e)
2228 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2229 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2230 *
2231 * ...
2232 *
2233 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2234 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2235 * = a0 * e^n + a * (1 - e^n)
2236 *
2237 * [1] application of the geometric series:
2238 *
2239 * n 1 - x^(n+1)
2240 * S_n := \Sum x^i = -------------
2241 * i=0 1 - x
2242 */
2243static unsigned long
2244calc_load_n(unsigned long load, unsigned long exp,
2245 unsigned long active, unsigned int n)
2246{
2247
2248 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2249}
2250
2251/*
2252 * NO_HZ can leave us missing all per-cpu ticks calling
2253 * calc_load_account_active(), but since an idle CPU folds its delta into
2254 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2255 * in the pending idle delta if our idle period crossed a load cycle boundary.
2256 *
2257 * Once we've updated the global active value, we need to apply the exponential
2258 * weights adjusted to the number of cycles missed.
2259 */
c308b56b 2260static void calc_global_nohz(void)
0f004f5a
PZ
2261{
2262 long delta, active, n;
2263
5167e8d5
PZ
2264 if (!time_before(jiffies, calc_load_update + 10)) {
2265 /*
2266 * Catch-up, fold however many we are behind still
2267 */
2268 delta = jiffies - calc_load_update - 10;
2269 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2270
5167e8d5
PZ
2271 active = atomic_long_read(&calc_load_tasks);
2272 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2273
5167e8d5
PZ
2274 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2275 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2276 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2277
5167e8d5
PZ
2278 calc_load_update += n * LOAD_FREQ;
2279 }
74f5187a 2280
5167e8d5
PZ
2281 /*
2282 * Flip the idle index...
2283 *
2284 * Make sure we first write the new time then flip the index, so that
2285 * calc_load_write_idx() will see the new time when it reads the new
2286 * index, this avoids a double flip messing things up.
2287 */
2288 smp_wmb();
2289 calc_load_idx++;
74f5187a 2290}
5167e8d5 2291#else /* !CONFIG_NO_HZ */
0f004f5a 2292
5167e8d5
PZ
2293static inline long calc_load_fold_idle(void) { return 0; }
2294static inline void calc_global_nohz(void) { }
74f5187a 2295
5167e8d5 2296#endif /* CONFIG_NO_HZ */
46cb4b7c 2297
46cb4b7c 2298/*
dce48a84
TG
2299 * calc_load - update the avenrun load estimates 10 ticks after the
2300 * CPUs have updated calc_load_tasks.
7835b98b 2301 */
0f004f5a 2302void calc_global_load(unsigned long ticks)
7835b98b 2303{
5167e8d5 2304 long active, delta;
1da177e4 2305
0f004f5a 2306 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2307 return;
1da177e4 2308
5167e8d5
PZ
2309 /*
2310 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2311 */
2312 delta = calc_load_fold_idle();
2313 if (delta)
2314 atomic_long_add(delta, &calc_load_tasks);
2315
dce48a84
TG
2316 active = atomic_long_read(&calc_load_tasks);
2317 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2318
dce48a84
TG
2319 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2320 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2321 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2322
dce48a84 2323 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2324
2325 /*
5167e8d5 2326 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2327 */
2328 calc_global_nohz();
dce48a84 2329}
1da177e4 2330
dce48a84 2331/*
74f5187a
PZ
2332 * Called from update_cpu_load() to periodically update this CPU's
2333 * active count.
dce48a84
TG
2334 */
2335static void calc_load_account_active(struct rq *this_rq)
2336{
74f5187a 2337 long delta;
08c183f3 2338
74f5187a
PZ
2339 if (time_before(jiffies, this_rq->calc_load_update))
2340 return;
783609c6 2341
74f5187a 2342 delta = calc_load_fold_active(this_rq);
74f5187a 2343 if (delta)
dce48a84 2344 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2345
2346 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2347}
2348
5167e8d5
PZ
2349/*
2350 * End of global load-average stuff
2351 */
2352
fdf3e95d
VP
2353/*
2354 * The exact cpuload at various idx values, calculated at every tick would be
2355 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2356 *
2357 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2358 * on nth tick when cpu may be busy, then we have:
2359 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2360 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2361 *
2362 * decay_load_missed() below does efficient calculation of
2363 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2364 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2365 *
2366 * The calculation is approximated on a 128 point scale.
2367 * degrade_zero_ticks is the number of ticks after which load at any
2368 * particular idx is approximated to be zero.
2369 * degrade_factor is a precomputed table, a row for each load idx.
2370 * Each column corresponds to degradation factor for a power of two ticks,
2371 * based on 128 point scale.
2372 * Example:
2373 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2374 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2375 *
2376 * With this power of 2 load factors, we can degrade the load n times
2377 * by looking at 1 bits in n and doing as many mult/shift instead of
2378 * n mult/shifts needed by the exact degradation.
2379 */
2380#define DEGRADE_SHIFT 7
2381static const unsigned char
2382 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2383static const unsigned char
2384 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2385 {0, 0, 0, 0, 0, 0, 0, 0},
2386 {64, 32, 8, 0, 0, 0, 0, 0},
2387 {96, 72, 40, 12, 1, 0, 0},
2388 {112, 98, 75, 43, 15, 1, 0},
2389 {120, 112, 98, 76, 45, 16, 2} };
2390
2391/*
2392 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2393 * would be when CPU is idle and so we just decay the old load without
2394 * adding any new load.
2395 */
2396static unsigned long
2397decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2398{
2399 int j = 0;
2400
2401 if (!missed_updates)
2402 return load;
2403
2404 if (missed_updates >= degrade_zero_ticks[idx])
2405 return 0;
2406
2407 if (idx == 1)
2408 return load >> missed_updates;
2409
2410 while (missed_updates) {
2411 if (missed_updates % 2)
2412 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2413
2414 missed_updates >>= 1;
2415 j++;
2416 }
2417 return load;
2418}
2419
46cb4b7c 2420/*
dd41f596 2421 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2422 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2423 * every tick. We fix it up based on jiffies.
46cb4b7c 2424 */
556061b0
PZ
2425static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2426 unsigned long pending_updates)
46cb4b7c 2427{
dd41f596 2428 int i, scale;
46cb4b7c 2429
dd41f596 2430 this_rq->nr_load_updates++;
46cb4b7c 2431
dd41f596 2432 /* Update our load: */
fdf3e95d
VP
2433 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2434 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2435 unsigned long old_load, new_load;
7d1e6a9b 2436
dd41f596 2437 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2438
dd41f596 2439 old_load = this_rq->cpu_load[i];
fdf3e95d 2440 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2441 new_load = this_load;
a25707f3
IM
2442 /*
2443 * Round up the averaging division if load is increasing. This
2444 * prevents us from getting stuck on 9 if the load is 10, for
2445 * example.
2446 */
2447 if (new_load > old_load)
fdf3e95d
VP
2448 new_load += scale - 1;
2449
2450 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2451 }
da2b71ed
SS
2452
2453 sched_avg_update(this_rq);
fdf3e95d
VP
2454}
2455
5aaa0b7a
PZ
2456#ifdef CONFIG_NO_HZ
2457/*
2458 * There is no sane way to deal with nohz on smp when using jiffies because the
2459 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2460 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2461 *
2462 * Therefore we cannot use the delta approach from the regular tick since that
2463 * would seriously skew the load calculation. However we'll make do for those
2464 * updates happening while idle (nohz_idle_balance) or coming out of idle
2465 * (tick_nohz_idle_exit).
2466 *
2467 * This means we might still be one tick off for nohz periods.
2468 */
2469
556061b0
PZ
2470/*
2471 * Called from nohz_idle_balance() to update the load ratings before doing the
2472 * idle balance.
2473 */
2474void update_idle_cpu_load(struct rq *this_rq)
2475{
5aaa0b7a 2476 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2477 unsigned long load = this_rq->load.weight;
2478 unsigned long pending_updates;
2479
2480 /*
5aaa0b7a 2481 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2482 */
2483 if (load || curr_jiffies == this_rq->last_load_update_tick)
2484 return;
2485
2486 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2487 this_rq->last_load_update_tick = curr_jiffies;
2488
2489 __update_cpu_load(this_rq, load, pending_updates);
2490}
2491
5aaa0b7a
PZ
2492/*
2493 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2494 */
2495void update_cpu_load_nohz(void)
2496{
2497 struct rq *this_rq = this_rq();
2498 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2499 unsigned long pending_updates;
2500
2501 if (curr_jiffies == this_rq->last_load_update_tick)
2502 return;
2503
2504 raw_spin_lock(&this_rq->lock);
2505 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2506 if (pending_updates) {
2507 this_rq->last_load_update_tick = curr_jiffies;
2508 /*
2509 * We were idle, this means load 0, the current load might be
2510 * !0 due to remote wakeups and the sort.
2511 */
2512 __update_cpu_load(this_rq, 0, pending_updates);
2513 }
2514 raw_spin_unlock(&this_rq->lock);
2515}
2516#endif /* CONFIG_NO_HZ */
2517
556061b0
PZ
2518/*
2519 * Called from scheduler_tick()
2520 */
fdf3e95d
VP
2521static void update_cpu_load_active(struct rq *this_rq)
2522{
556061b0 2523 /*
5aaa0b7a 2524 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2525 */
2526 this_rq->last_load_update_tick = jiffies;
2527 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2528
74f5187a 2529 calc_load_account_active(this_rq);
46cb4b7c
SS
2530}
2531
dd41f596 2532#ifdef CONFIG_SMP
8a0be9ef 2533
46cb4b7c 2534/*
38022906
PZ
2535 * sched_exec - execve() is a valuable balancing opportunity, because at
2536 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2537 */
38022906 2538void sched_exec(void)
46cb4b7c 2539{
38022906 2540 struct task_struct *p = current;
1da177e4 2541 unsigned long flags;
0017d735 2542 int dest_cpu;
46cb4b7c 2543
8f42ced9 2544 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2545 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2546 if (dest_cpu == smp_processor_id())
2547 goto unlock;
38022906 2548
8f42ced9 2549 if (likely(cpu_active(dest_cpu))) {
969c7921 2550 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2551
8f42ced9
PZ
2552 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2553 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2554 return;
2555 }
0017d735 2556unlock:
8f42ced9 2557 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2558}
dd41f596 2559
1da177e4
LT
2560#endif
2561
1da177e4 2562DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2563DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2564
2565EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2566EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2567
2568/*
c5f8d995 2569 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2570 * @p in case that task is currently running.
c5f8d995
HS
2571 *
2572 * Called with task_rq_lock() held on @rq.
1da177e4 2573 */
c5f8d995
HS
2574static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2575{
2576 u64 ns = 0;
2577
2578 if (task_current(rq, p)) {
2579 update_rq_clock(rq);
305e6835 2580 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2581 if ((s64)ns < 0)
2582 ns = 0;
2583 }
2584
2585 return ns;
2586}
2587
bb34d92f 2588unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2589{
1da177e4 2590 unsigned long flags;
41b86e9c 2591 struct rq *rq;
bb34d92f 2592 u64 ns = 0;
48f24c4d 2593
41b86e9c 2594 rq = task_rq_lock(p, &flags);
c5f8d995 2595 ns = do_task_delta_exec(p, rq);
0122ec5b 2596 task_rq_unlock(rq, p, &flags);
1508487e 2597
c5f8d995
HS
2598 return ns;
2599}
f06febc9 2600
c5f8d995
HS
2601/*
2602 * Return accounted runtime for the task.
2603 * In case the task is currently running, return the runtime plus current's
2604 * pending runtime that have not been accounted yet.
2605 */
2606unsigned long long task_sched_runtime(struct task_struct *p)
2607{
2608 unsigned long flags;
2609 struct rq *rq;
2610 u64 ns = 0;
2611
2612 rq = task_rq_lock(p, &flags);
2613 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2614 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2615
2616 return ns;
2617}
48f24c4d 2618
7835b98b
CL
2619/*
2620 * This function gets called by the timer code, with HZ frequency.
2621 * We call it with interrupts disabled.
7835b98b
CL
2622 */
2623void scheduler_tick(void)
2624{
7835b98b
CL
2625 int cpu = smp_processor_id();
2626 struct rq *rq = cpu_rq(cpu);
dd41f596 2627 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2628
2629 sched_clock_tick();
dd41f596 2630
05fa785c 2631 raw_spin_lock(&rq->lock);
3e51f33f 2632 update_rq_clock(rq);
fdf3e95d 2633 update_cpu_load_active(rq);
fa85ae24 2634 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2635 raw_spin_unlock(&rq->lock);
7835b98b 2636
e9d2b064 2637 perf_event_task_tick();
e220d2dc 2638
e418e1c2 2639#ifdef CONFIG_SMP
6eb57e0d 2640 rq->idle_balance = idle_cpu(cpu);
dd41f596 2641 trigger_load_balance(rq, cpu);
e418e1c2 2642#endif
1da177e4
LT
2643}
2644
132380a0 2645notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2646{
2647 if (in_lock_functions(addr)) {
2648 addr = CALLER_ADDR2;
2649 if (in_lock_functions(addr))
2650 addr = CALLER_ADDR3;
2651 }
2652 return addr;
2653}
1da177e4 2654
7e49fcce
SR
2655#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2656 defined(CONFIG_PREEMPT_TRACER))
2657
43627582 2658void __kprobes add_preempt_count(int val)
1da177e4 2659{
6cd8a4bb 2660#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2661 /*
2662 * Underflow?
2663 */
9a11b49a
IM
2664 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2665 return;
6cd8a4bb 2666#endif
1da177e4 2667 preempt_count() += val;
6cd8a4bb 2668#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2669 /*
2670 * Spinlock count overflowing soon?
2671 */
33859f7f
MOS
2672 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2673 PREEMPT_MASK - 10);
6cd8a4bb
SR
2674#endif
2675 if (preempt_count() == val)
2676 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2677}
2678EXPORT_SYMBOL(add_preempt_count);
2679
43627582 2680void __kprobes sub_preempt_count(int val)
1da177e4 2681{
6cd8a4bb 2682#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2683 /*
2684 * Underflow?
2685 */
01e3eb82 2686 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2687 return;
1da177e4
LT
2688 /*
2689 * Is the spinlock portion underflowing?
2690 */
9a11b49a
IM
2691 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2692 !(preempt_count() & PREEMPT_MASK)))
2693 return;
6cd8a4bb 2694#endif
9a11b49a 2695
6cd8a4bb
SR
2696 if (preempt_count() == val)
2697 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2698 preempt_count() -= val;
2699}
2700EXPORT_SYMBOL(sub_preempt_count);
2701
2702#endif
2703
2704/*
dd41f596 2705 * Print scheduling while atomic bug:
1da177e4 2706 */
dd41f596 2707static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2708{
664dfa65
DJ
2709 if (oops_in_progress)
2710 return;
2711
3df0fc5b
PZ
2712 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2713 prev->comm, prev->pid, preempt_count());
838225b4 2714
dd41f596 2715 debug_show_held_locks(prev);
e21f5b15 2716 print_modules();
dd41f596
IM
2717 if (irqs_disabled())
2718 print_irqtrace_events(prev);
6135fc1e 2719 dump_stack();
1c2927f1 2720 add_taint(TAINT_WARN);
dd41f596 2721}
1da177e4 2722
dd41f596
IM
2723/*
2724 * Various schedule()-time debugging checks and statistics:
2725 */
2726static inline void schedule_debug(struct task_struct *prev)
2727{
1da177e4 2728 /*
41a2d6cf 2729 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2730 * schedule() atomically, we ignore that path for now.
2731 * Otherwise, whine if we are scheduling when we should not be.
2732 */
3f33a7ce 2733 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2734 __schedule_bug(prev);
b3fbab05 2735 rcu_sleep_check();
dd41f596 2736
1da177e4
LT
2737 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2738
2d72376b 2739 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2740}
2741
6cecd084 2742static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2743{
61eadef6 2744 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2745 update_rq_clock(rq);
6cecd084 2746 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2747}
2748
dd41f596
IM
2749/*
2750 * Pick up the highest-prio task:
2751 */
2752static inline struct task_struct *
b67802ea 2753pick_next_task(struct rq *rq)
dd41f596 2754{
5522d5d5 2755 const struct sched_class *class;
dd41f596 2756 struct task_struct *p;
1da177e4
LT
2757
2758 /*
dd41f596
IM
2759 * Optimization: we know that if all tasks are in
2760 * the fair class we can call that function directly:
1da177e4 2761 */
953bfcd1 2762 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2763 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2764 if (likely(p))
2765 return p;
1da177e4
LT
2766 }
2767
34f971f6 2768 for_each_class(class) {
fb8d4724 2769 p = class->pick_next_task(rq);
dd41f596
IM
2770 if (p)
2771 return p;
dd41f596 2772 }
34f971f6
PZ
2773
2774 BUG(); /* the idle class will always have a runnable task */
dd41f596 2775}
1da177e4 2776
dd41f596 2777/*
c259e01a 2778 * __schedule() is the main scheduler function.
edde96ea
PE
2779 *
2780 * The main means of driving the scheduler and thus entering this function are:
2781 *
2782 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2783 *
2784 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2785 * paths. For example, see arch/x86/entry_64.S.
2786 *
2787 * To drive preemption between tasks, the scheduler sets the flag in timer
2788 * interrupt handler scheduler_tick().
2789 *
2790 * 3. Wakeups don't really cause entry into schedule(). They add a
2791 * task to the run-queue and that's it.
2792 *
2793 * Now, if the new task added to the run-queue preempts the current
2794 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2795 * called on the nearest possible occasion:
2796 *
2797 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2798 *
2799 * - in syscall or exception context, at the next outmost
2800 * preempt_enable(). (this might be as soon as the wake_up()'s
2801 * spin_unlock()!)
2802 *
2803 * - in IRQ context, return from interrupt-handler to
2804 * preemptible context
2805 *
2806 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2807 * then at the next:
2808 *
2809 * - cond_resched() call
2810 * - explicit schedule() call
2811 * - return from syscall or exception to user-space
2812 * - return from interrupt-handler to user-space
dd41f596 2813 */
c259e01a 2814static void __sched __schedule(void)
dd41f596
IM
2815{
2816 struct task_struct *prev, *next;
67ca7bde 2817 unsigned long *switch_count;
dd41f596 2818 struct rq *rq;
31656519 2819 int cpu;
dd41f596 2820
ff743345
PZ
2821need_resched:
2822 preempt_disable();
dd41f596
IM
2823 cpu = smp_processor_id();
2824 rq = cpu_rq(cpu);
25502a6c 2825 rcu_note_context_switch(cpu);
dd41f596 2826 prev = rq->curr;
dd41f596 2827
dd41f596 2828 schedule_debug(prev);
1da177e4 2829
31656519 2830 if (sched_feat(HRTICK))
f333fdc9 2831 hrtick_clear(rq);
8f4d37ec 2832
05fa785c 2833 raw_spin_lock_irq(&rq->lock);
1da177e4 2834
246d86b5 2835 switch_count = &prev->nivcsw;
1da177e4 2836 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2837 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2838 prev->state = TASK_RUNNING;
21aa9af0 2839 } else {
2acca55e
PZ
2840 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2841 prev->on_rq = 0;
2842
21aa9af0 2843 /*
2acca55e
PZ
2844 * If a worker went to sleep, notify and ask workqueue
2845 * whether it wants to wake up a task to maintain
2846 * concurrency.
21aa9af0
TH
2847 */
2848 if (prev->flags & PF_WQ_WORKER) {
2849 struct task_struct *to_wakeup;
2850
2851 to_wakeup = wq_worker_sleeping(prev, cpu);
2852 if (to_wakeup)
2853 try_to_wake_up_local(to_wakeup);
2854 }
21aa9af0 2855 }
dd41f596 2856 switch_count = &prev->nvcsw;
1da177e4
LT
2857 }
2858
3f029d3c 2859 pre_schedule(rq, prev);
f65eda4f 2860
dd41f596 2861 if (unlikely(!rq->nr_running))
1da177e4 2862 idle_balance(cpu, rq);
1da177e4 2863
df1c99d4 2864 put_prev_task(rq, prev);
b67802ea 2865 next = pick_next_task(rq);
f26f9aff
MG
2866 clear_tsk_need_resched(prev);
2867 rq->skip_clock_update = 0;
1da177e4 2868
1da177e4 2869 if (likely(prev != next)) {
1da177e4
LT
2870 rq->nr_switches++;
2871 rq->curr = next;
2872 ++*switch_count;
2873
dd41f596 2874 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2875 /*
246d86b5
ON
2876 * The context switch have flipped the stack from under us
2877 * and restored the local variables which were saved when
2878 * this task called schedule() in the past. prev == current
2879 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2880 */
2881 cpu = smp_processor_id();
2882 rq = cpu_rq(cpu);
1da177e4 2883 } else
05fa785c 2884 raw_spin_unlock_irq(&rq->lock);
1da177e4 2885
3f029d3c 2886 post_schedule(rq);
1da177e4 2887
ba74c144 2888 sched_preempt_enable_no_resched();
ff743345 2889 if (need_resched())
1da177e4
LT
2890 goto need_resched;
2891}
c259e01a 2892
9c40cef2
TG
2893static inline void sched_submit_work(struct task_struct *tsk)
2894{
3c7d5184 2895 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2896 return;
2897 /*
2898 * If we are going to sleep and we have plugged IO queued,
2899 * make sure to submit it to avoid deadlocks.
2900 */
2901 if (blk_needs_flush_plug(tsk))
2902 blk_schedule_flush_plug(tsk);
2903}
2904
6ebbe7a0 2905asmlinkage void __sched schedule(void)
c259e01a 2906{
9c40cef2
TG
2907 struct task_struct *tsk = current;
2908
2909 sched_submit_work(tsk);
c259e01a
TG
2910 __schedule();
2911}
1da177e4
LT
2912EXPORT_SYMBOL(schedule);
2913
20ab65e3
FW
2914#ifdef CONFIG_RCU_USER_QS
2915asmlinkage void __sched schedule_user(void)
2916{
2917 /*
2918 * If we come here after a random call to set_need_resched(),
2919 * or we have been woken up remotely but the IPI has not yet arrived,
2920 * we haven't yet exited the RCU idle mode. Do it here manually until
2921 * we find a better solution.
2922 */
2923 rcu_user_exit();
2924 schedule();
2925 rcu_user_enter();
2926}
2927#endif
2928
c5491ea7
TG
2929/**
2930 * schedule_preempt_disabled - called with preemption disabled
2931 *
2932 * Returns with preemption disabled. Note: preempt_count must be 1
2933 */
2934void __sched schedule_preempt_disabled(void)
2935{
ba74c144 2936 sched_preempt_enable_no_resched();
c5491ea7
TG
2937 schedule();
2938 preempt_disable();
2939}
2940
c08f7829 2941#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 2942
c6eb3dda
PZ
2943static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2944{
c6eb3dda 2945 if (lock->owner != owner)
307bf980 2946 return false;
0d66bf6d
PZ
2947
2948 /*
c6eb3dda
PZ
2949 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2950 * lock->owner still matches owner, if that fails, owner might
2951 * point to free()d memory, if it still matches, the rcu_read_lock()
2952 * ensures the memory stays valid.
0d66bf6d 2953 */
c6eb3dda 2954 barrier();
0d66bf6d 2955
307bf980 2956 return owner->on_cpu;
c6eb3dda 2957}
0d66bf6d 2958
c6eb3dda
PZ
2959/*
2960 * Look out! "owner" is an entirely speculative pointer
2961 * access and not reliable.
2962 */
2963int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2964{
2965 if (!sched_feat(OWNER_SPIN))
2966 return 0;
0d66bf6d 2967
307bf980 2968 rcu_read_lock();
c6eb3dda
PZ
2969 while (owner_running(lock, owner)) {
2970 if (need_resched())
307bf980 2971 break;
0d66bf6d 2972
335d7afb 2973 arch_mutex_cpu_relax();
0d66bf6d 2974 }
307bf980 2975 rcu_read_unlock();
4b402210 2976
c6eb3dda 2977 /*
307bf980
TG
2978 * We break out the loop above on need_resched() and when the
2979 * owner changed, which is a sign for heavy contention. Return
2980 * success only when lock->owner is NULL.
c6eb3dda 2981 */
307bf980 2982 return lock->owner == NULL;
0d66bf6d
PZ
2983}
2984#endif
2985
1da177e4
LT
2986#ifdef CONFIG_PREEMPT
2987/*
2ed6e34f 2988 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2989 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2990 * occur there and call schedule directly.
2991 */
d1f74e20 2992asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
2993{
2994 struct thread_info *ti = current_thread_info();
6478d880 2995
1da177e4
LT
2996 /*
2997 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2998 * we do not want to preempt the current task. Just return..
1da177e4 2999 */
beed33a8 3000 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3001 return;
3002
3a5c359a 3003 do {
d1f74e20 3004 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3005 __schedule();
d1f74e20 3006 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3007
3a5c359a
AK
3008 /*
3009 * Check again in case we missed a preemption opportunity
3010 * between schedule and now.
3011 */
3012 barrier();
5ed0cec0 3013 } while (need_resched());
1da177e4 3014}
1da177e4
LT
3015EXPORT_SYMBOL(preempt_schedule);
3016
3017/*
2ed6e34f 3018 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3019 * off of irq context.
3020 * Note, that this is called and return with irqs disabled. This will
3021 * protect us against recursive calling from irq.
3022 */
3023asmlinkage void __sched preempt_schedule_irq(void)
3024{
3025 struct thread_info *ti = current_thread_info();
6478d880 3026
2ed6e34f 3027 /* Catch callers which need to be fixed */
1da177e4
LT
3028 BUG_ON(ti->preempt_count || !irqs_disabled());
3029
90a340ed 3030 rcu_user_exit();
3a5c359a
AK
3031 do {
3032 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3033 local_irq_enable();
c259e01a 3034 __schedule();
3a5c359a 3035 local_irq_disable();
3a5c359a 3036 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3037
3a5c359a
AK
3038 /*
3039 * Check again in case we missed a preemption opportunity
3040 * between schedule and now.
3041 */
3042 barrier();
5ed0cec0 3043 } while (need_resched());
1da177e4
LT
3044}
3045
3046#endif /* CONFIG_PREEMPT */
3047
63859d4f 3048int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3049 void *key)
1da177e4 3050{
63859d4f 3051 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3052}
1da177e4
LT
3053EXPORT_SYMBOL(default_wake_function);
3054
3055/*
41a2d6cf
IM
3056 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3057 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3058 * number) then we wake all the non-exclusive tasks and one exclusive task.
3059 *
3060 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3061 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3062 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3063 */
78ddb08f 3064static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3065 int nr_exclusive, int wake_flags, void *key)
1da177e4 3066{
2e45874c 3067 wait_queue_t *curr, *next;
1da177e4 3068
2e45874c 3069 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3070 unsigned flags = curr->flags;
3071
63859d4f 3072 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3073 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3074 break;
3075 }
3076}
3077
3078/**
3079 * __wake_up - wake up threads blocked on a waitqueue.
3080 * @q: the waitqueue
3081 * @mode: which threads
3082 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3083 * @key: is directly passed to the wakeup function
50fa610a
DH
3084 *
3085 * It may be assumed that this function implies a write memory barrier before
3086 * changing the task state if and only if any tasks are woken up.
1da177e4 3087 */
7ad5b3a5 3088void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3089 int nr_exclusive, void *key)
1da177e4
LT
3090{
3091 unsigned long flags;
3092
3093 spin_lock_irqsave(&q->lock, flags);
3094 __wake_up_common(q, mode, nr_exclusive, 0, key);
3095 spin_unlock_irqrestore(&q->lock, flags);
3096}
1da177e4
LT
3097EXPORT_SYMBOL(__wake_up);
3098
3099/*
3100 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3101 */
63b20011 3102void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3103{
63b20011 3104 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3105}
22c43c81 3106EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3107
4ede816a
DL
3108void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3109{
3110 __wake_up_common(q, mode, 1, 0, key);
3111}
bf294b41 3112EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3113
1da177e4 3114/**
4ede816a 3115 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3116 * @q: the waitqueue
3117 * @mode: which threads
3118 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3119 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3120 *
3121 * The sync wakeup differs that the waker knows that it will schedule
3122 * away soon, so while the target thread will be woken up, it will not
3123 * be migrated to another CPU - ie. the two threads are 'synchronized'
3124 * with each other. This can prevent needless bouncing between CPUs.
3125 *
3126 * On UP it can prevent extra preemption.
50fa610a
DH
3127 *
3128 * It may be assumed that this function implies a write memory barrier before
3129 * changing the task state if and only if any tasks are woken up.
1da177e4 3130 */
4ede816a
DL
3131void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3132 int nr_exclusive, void *key)
1da177e4
LT
3133{
3134 unsigned long flags;
7d478721 3135 int wake_flags = WF_SYNC;
1da177e4
LT
3136
3137 if (unlikely(!q))
3138 return;
3139
3140 if (unlikely(!nr_exclusive))
7d478721 3141 wake_flags = 0;
1da177e4
LT
3142
3143 spin_lock_irqsave(&q->lock, flags);
7d478721 3144 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3145 spin_unlock_irqrestore(&q->lock, flags);
3146}
4ede816a
DL
3147EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3148
3149/*
3150 * __wake_up_sync - see __wake_up_sync_key()
3151 */
3152void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3153{
3154 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3155}
1da177e4
LT
3156EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3157
65eb3dc6
KD
3158/**
3159 * complete: - signals a single thread waiting on this completion
3160 * @x: holds the state of this particular completion
3161 *
3162 * This will wake up a single thread waiting on this completion. Threads will be
3163 * awakened in the same order in which they were queued.
3164 *
3165 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3166 *
3167 * It may be assumed that this function implies a write memory barrier before
3168 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3169 */
b15136e9 3170void complete(struct completion *x)
1da177e4
LT
3171{
3172 unsigned long flags;
3173
3174 spin_lock_irqsave(&x->wait.lock, flags);
3175 x->done++;
d9514f6c 3176 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3177 spin_unlock_irqrestore(&x->wait.lock, flags);
3178}
3179EXPORT_SYMBOL(complete);
3180
65eb3dc6
KD
3181/**
3182 * complete_all: - signals all threads waiting on this completion
3183 * @x: holds the state of this particular completion
3184 *
3185 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3186 *
3187 * It may be assumed that this function implies a write memory barrier before
3188 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3189 */
b15136e9 3190void complete_all(struct completion *x)
1da177e4
LT
3191{
3192 unsigned long flags;
3193
3194 spin_lock_irqsave(&x->wait.lock, flags);
3195 x->done += UINT_MAX/2;
d9514f6c 3196 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3197 spin_unlock_irqrestore(&x->wait.lock, flags);
3198}
3199EXPORT_SYMBOL(complete_all);
3200
8cbbe86d
AK
3201static inline long __sched
3202do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3203{
1da177e4
LT
3204 if (!x->done) {
3205 DECLARE_WAITQUEUE(wait, current);
3206
a93d2f17 3207 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3208 do {
94d3d824 3209 if (signal_pending_state(state, current)) {
ea71a546
ON
3210 timeout = -ERESTARTSYS;
3211 break;
8cbbe86d
AK
3212 }
3213 __set_current_state(state);
1da177e4
LT
3214 spin_unlock_irq(&x->wait.lock);
3215 timeout = schedule_timeout(timeout);
3216 spin_lock_irq(&x->wait.lock);
ea71a546 3217 } while (!x->done && timeout);
1da177e4 3218 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3219 if (!x->done)
3220 return timeout;
1da177e4
LT
3221 }
3222 x->done--;
ea71a546 3223 return timeout ?: 1;
1da177e4 3224}
1da177e4 3225
8cbbe86d
AK
3226static long __sched
3227wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3228{
1da177e4
LT
3229 might_sleep();
3230
3231 spin_lock_irq(&x->wait.lock);
8cbbe86d 3232 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3233 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3234 return timeout;
3235}
1da177e4 3236
65eb3dc6
KD
3237/**
3238 * wait_for_completion: - waits for completion of a task
3239 * @x: holds the state of this particular completion
3240 *
3241 * This waits to be signaled for completion of a specific task. It is NOT
3242 * interruptible and there is no timeout.
3243 *
3244 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3245 * and interrupt capability. Also see complete().
3246 */
b15136e9 3247void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3248{
3249 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3250}
8cbbe86d 3251EXPORT_SYMBOL(wait_for_completion);
1da177e4 3252
65eb3dc6
KD
3253/**
3254 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3255 * @x: holds the state of this particular completion
3256 * @timeout: timeout value in jiffies
3257 *
3258 * This waits for either a completion of a specific task to be signaled or for a
3259 * specified timeout to expire. The timeout is in jiffies. It is not
3260 * interruptible.
c6dc7f05
BF
3261 *
3262 * The return value is 0 if timed out, and positive (at least 1, or number of
3263 * jiffies left till timeout) if completed.
65eb3dc6 3264 */
b15136e9 3265unsigned long __sched
8cbbe86d 3266wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3267{
8cbbe86d 3268 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3269}
8cbbe86d 3270EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3271
65eb3dc6
KD
3272/**
3273 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3274 * @x: holds the state of this particular completion
3275 *
3276 * This waits for completion of a specific task to be signaled. It is
3277 * interruptible.
c6dc7f05
BF
3278 *
3279 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3280 */
8cbbe86d 3281int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3282{
51e97990
AK
3283 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3284 if (t == -ERESTARTSYS)
3285 return t;
3286 return 0;
0fec171c 3287}
8cbbe86d 3288EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3289
65eb3dc6
KD
3290/**
3291 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3292 * @x: holds the state of this particular completion
3293 * @timeout: timeout value in jiffies
3294 *
3295 * This waits for either a completion of a specific task to be signaled or for a
3296 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3297 *
3298 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3299 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3300 */
6bf41237 3301long __sched
8cbbe86d
AK
3302wait_for_completion_interruptible_timeout(struct completion *x,
3303 unsigned long timeout)
0fec171c 3304{
8cbbe86d 3305 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3306}
8cbbe86d 3307EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3308
65eb3dc6
KD
3309/**
3310 * wait_for_completion_killable: - waits for completion of a task (killable)
3311 * @x: holds the state of this particular completion
3312 *
3313 * This waits to be signaled for completion of a specific task. It can be
3314 * interrupted by a kill signal.
c6dc7f05
BF
3315 *
3316 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3317 */
009e577e
MW
3318int __sched wait_for_completion_killable(struct completion *x)
3319{
3320 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3321 if (t == -ERESTARTSYS)
3322 return t;
3323 return 0;
3324}
3325EXPORT_SYMBOL(wait_for_completion_killable);
3326
0aa12fb4
SW
3327/**
3328 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3329 * @x: holds the state of this particular completion
3330 * @timeout: timeout value in jiffies
3331 *
3332 * This waits for either a completion of a specific task to be
3333 * signaled or for a specified timeout to expire. It can be
3334 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3335 *
3336 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3337 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3338 */
6bf41237 3339long __sched
0aa12fb4
SW
3340wait_for_completion_killable_timeout(struct completion *x,
3341 unsigned long timeout)
3342{
3343 return wait_for_common(x, timeout, TASK_KILLABLE);
3344}
3345EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3346
be4de352
DC
3347/**
3348 * try_wait_for_completion - try to decrement a completion without blocking
3349 * @x: completion structure
3350 *
3351 * Returns: 0 if a decrement cannot be done without blocking
3352 * 1 if a decrement succeeded.
3353 *
3354 * If a completion is being used as a counting completion,
3355 * attempt to decrement the counter without blocking. This
3356 * enables us to avoid waiting if the resource the completion
3357 * is protecting is not available.
3358 */
3359bool try_wait_for_completion(struct completion *x)
3360{
7539a3b3 3361 unsigned long flags;
be4de352
DC
3362 int ret = 1;
3363
7539a3b3 3364 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3365 if (!x->done)
3366 ret = 0;
3367 else
3368 x->done--;
7539a3b3 3369 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3370 return ret;
3371}
3372EXPORT_SYMBOL(try_wait_for_completion);
3373
3374/**
3375 * completion_done - Test to see if a completion has any waiters
3376 * @x: completion structure
3377 *
3378 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3379 * 1 if there are no waiters.
3380 *
3381 */
3382bool completion_done(struct completion *x)
3383{
7539a3b3 3384 unsigned long flags;
be4de352
DC
3385 int ret = 1;
3386
7539a3b3 3387 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3388 if (!x->done)
3389 ret = 0;
7539a3b3 3390 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3391 return ret;
3392}
3393EXPORT_SYMBOL(completion_done);
3394
8cbbe86d
AK
3395static long __sched
3396sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3397{
0fec171c
IM
3398 unsigned long flags;
3399 wait_queue_t wait;
3400
3401 init_waitqueue_entry(&wait, current);
1da177e4 3402
8cbbe86d 3403 __set_current_state(state);
1da177e4 3404
8cbbe86d
AK
3405 spin_lock_irqsave(&q->lock, flags);
3406 __add_wait_queue(q, &wait);
3407 spin_unlock(&q->lock);
3408 timeout = schedule_timeout(timeout);
3409 spin_lock_irq(&q->lock);
3410 __remove_wait_queue(q, &wait);
3411 spin_unlock_irqrestore(&q->lock, flags);
3412
3413 return timeout;
3414}
3415
3416void __sched interruptible_sleep_on(wait_queue_head_t *q)
3417{
3418 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3419}
1da177e4
LT
3420EXPORT_SYMBOL(interruptible_sleep_on);
3421
0fec171c 3422long __sched
95cdf3b7 3423interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3424{
8cbbe86d 3425 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3426}
1da177e4
LT
3427EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3428
0fec171c 3429void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3430{
8cbbe86d 3431 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3432}
1da177e4
LT
3433EXPORT_SYMBOL(sleep_on);
3434
0fec171c 3435long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3436{
8cbbe86d 3437 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3438}
1da177e4
LT
3439EXPORT_SYMBOL(sleep_on_timeout);
3440
b29739f9
IM
3441#ifdef CONFIG_RT_MUTEXES
3442
3443/*
3444 * rt_mutex_setprio - set the current priority of a task
3445 * @p: task
3446 * @prio: prio value (kernel-internal form)
3447 *
3448 * This function changes the 'effective' priority of a task. It does
3449 * not touch ->normal_prio like __setscheduler().
3450 *
3451 * Used by the rt_mutex code to implement priority inheritance logic.
3452 */
36c8b586 3453void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3454{
83b699ed 3455 int oldprio, on_rq, running;
70b97a7f 3456 struct rq *rq;
83ab0aa0 3457 const struct sched_class *prev_class;
b29739f9
IM
3458
3459 BUG_ON(prio < 0 || prio > MAX_PRIO);
3460
0122ec5b 3461 rq = __task_rq_lock(p);
b29739f9 3462
1c4dd99b
TG
3463 /*
3464 * Idle task boosting is a nono in general. There is one
3465 * exception, when PREEMPT_RT and NOHZ is active:
3466 *
3467 * The idle task calls get_next_timer_interrupt() and holds
3468 * the timer wheel base->lock on the CPU and another CPU wants
3469 * to access the timer (probably to cancel it). We can safely
3470 * ignore the boosting request, as the idle CPU runs this code
3471 * with interrupts disabled and will complete the lock
3472 * protected section without being interrupted. So there is no
3473 * real need to boost.
3474 */
3475 if (unlikely(p == rq->idle)) {
3476 WARN_ON(p != rq->curr);
3477 WARN_ON(p->pi_blocked_on);
3478 goto out_unlock;
3479 }
3480
a8027073 3481 trace_sched_pi_setprio(p, prio);
d5f9f942 3482 oldprio = p->prio;
83ab0aa0 3483 prev_class = p->sched_class;
fd2f4419 3484 on_rq = p->on_rq;
051a1d1a 3485 running = task_current(rq, p);
0e1f3483 3486 if (on_rq)
69be72c1 3487 dequeue_task(rq, p, 0);
0e1f3483
HS
3488 if (running)
3489 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3490
3491 if (rt_prio(prio))
3492 p->sched_class = &rt_sched_class;
3493 else
3494 p->sched_class = &fair_sched_class;
3495
b29739f9
IM
3496 p->prio = prio;
3497
0e1f3483
HS
3498 if (running)
3499 p->sched_class->set_curr_task(rq);
da7a735e 3500 if (on_rq)
371fd7e7 3501 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3502
da7a735e 3503 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3504out_unlock:
0122ec5b 3505 __task_rq_unlock(rq);
b29739f9 3506}
b29739f9 3507#endif
36c8b586 3508void set_user_nice(struct task_struct *p, long nice)
1da177e4 3509{
dd41f596 3510 int old_prio, delta, on_rq;
1da177e4 3511 unsigned long flags;
70b97a7f 3512 struct rq *rq;
1da177e4
LT
3513
3514 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3515 return;
3516 /*
3517 * We have to be careful, if called from sys_setpriority(),
3518 * the task might be in the middle of scheduling on another CPU.
3519 */
3520 rq = task_rq_lock(p, &flags);
3521 /*
3522 * The RT priorities are set via sched_setscheduler(), but we still
3523 * allow the 'normal' nice value to be set - but as expected
3524 * it wont have any effect on scheduling until the task is
dd41f596 3525 * SCHED_FIFO/SCHED_RR:
1da177e4 3526 */
e05606d3 3527 if (task_has_rt_policy(p)) {
1da177e4
LT
3528 p->static_prio = NICE_TO_PRIO(nice);
3529 goto out_unlock;
3530 }
fd2f4419 3531 on_rq = p->on_rq;
c09595f6 3532 if (on_rq)
69be72c1 3533 dequeue_task(rq, p, 0);
1da177e4 3534
1da177e4 3535 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3536 set_load_weight(p);
b29739f9
IM
3537 old_prio = p->prio;
3538 p->prio = effective_prio(p);
3539 delta = p->prio - old_prio;
1da177e4 3540
dd41f596 3541 if (on_rq) {
371fd7e7 3542 enqueue_task(rq, p, 0);
1da177e4 3543 /*
d5f9f942
AM
3544 * If the task increased its priority or is running and
3545 * lowered its priority, then reschedule its CPU:
1da177e4 3546 */
d5f9f942 3547 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3548 resched_task(rq->curr);
3549 }
3550out_unlock:
0122ec5b 3551 task_rq_unlock(rq, p, &flags);
1da177e4 3552}
1da177e4
LT
3553EXPORT_SYMBOL(set_user_nice);
3554
e43379f1
MM
3555/*
3556 * can_nice - check if a task can reduce its nice value
3557 * @p: task
3558 * @nice: nice value
3559 */
36c8b586 3560int can_nice(const struct task_struct *p, const int nice)
e43379f1 3561{
024f4747
MM
3562 /* convert nice value [19,-20] to rlimit style value [1,40] */
3563 int nice_rlim = 20 - nice;
48f24c4d 3564
78d7d407 3565 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3566 capable(CAP_SYS_NICE));
3567}
3568
1da177e4
LT
3569#ifdef __ARCH_WANT_SYS_NICE
3570
3571/*
3572 * sys_nice - change the priority of the current process.
3573 * @increment: priority increment
3574 *
3575 * sys_setpriority is a more generic, but much slower function that
3576 * does similar things.
3577 */
5add95d4 3578SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3579{
48f24c4d 3580 long nice, retval;
1da177e4
LT
3581
3582 /*
3583 * Setpriority might change our priority at the same moment.
3584 * We don't have to worry. Conceptually one call occurs first
3585 * and we have a single winner.
3586 */
e43379f1
MM
3587 if (increment < -40)
3588 increment = -40;
1da177e4
LT
3589 if (increment > 40)
3590 increment = 40;
3591
2b8f836f 3592 nice = TASK_NICE(current) + increment;
1da177e4
LT
3593 if (nice < -20)
3594 nice = -20;
3595 if (nice > 19)
3596 nice = 19;
3597
e43379f1
MM
3598 if (increment < 0 && !can_nice(current, nice))
3599 return -EPERM;
3600
1da177e4
LT
3601 retval = security_task_setnice(current, nice);
3602 if (retval)
3603 return retval;
3604
3605 set_user_nice(current, nice);
3606 return 0;
3607}
3608
3609#endif
3610
3611/**
3612 * task_prio - return the priority value of a given task.
3613 * @p: the task in question.
3614 *
3615 * This is the priority value as seen by users in /proc.
3616 * RT tasks are offset by -200. Normal tasks are centered
3617 * around 0, value goes from -16 to +15.
3618 */
36c8b586 3619int task_prio(const struct task_struct *p)
1da177e4
LT
3620{
3621 return p->prio - MAX_RT_PRIO;
3622}
3623
3624/**
3625 * task_nice - return the nice value of a given task.
3626 * @p: the task in question.
3627 */
36c8b586 3628int task_nice(const struct task_struct *p)
1da177e4
LT
3629{
3630 return TASK_NICE(p);
3631}
150d8bed 3632EXPORT_SYMBOL(task_nice);
1da177e4
LT
3633
3634/**
3635 * idle_cpu - is a given cpu idle currently?
3636 * @cpu: the processor in question.
3637 */
3638int idle_cpu(int cpu)
3639{
908a3283
TG
3640 struct rq *rq = cpu_rq(cpu);
3641
3642 if (rq->curr != rq->idle)
3643 return 0;
3644
3645 if (rq->nr_running)
3646 return 0;
3647
3648#ifdef CONFIG_SMP
3649 if (!llist_empty(&rq->wake_list))
3650 return 0;
3651#endif
3652
3653 return 1;
1da177e4
LT
3654}
3655
1da177e4
LT
3656/**
3657 * idle_task - return the idle task for a given cpu.
3658 * @cpu: the processor in question.
3659 */
36c8b586 3660struct task_struct *idle_task(int cpu)
1da177e4
LT
3661{
3662 return cpu_rq(cpu)->idle;
3663}
3664
3665/**
3666 * find_process_by_pid - find a process with a matching PID value.
3667 * @pid: the pid in question.
3668 */
a9957449 3669static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3670{
228ebcbe 3671 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3672}
3673
3674/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3675static void
3676__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3677{
1da177e4
LT
3678 p->policy = policy;
3679 p->rt_priority = prio;
b29739f9
IM
3680 p->normal_prio = normal_prio(p);
3681 /* we are holding p->pi_lock already */
3682 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3683 if (rt_prio(p->prio))
3684 p->sched_class = &rt_sched_class;
3685 else
3686 p->sched_class = &fair_sched_class;
2dd73a4f 3687 set_load_weight(p);
1da177e4
LT
3688}
3689
c69e8d9c
DH
3690/*
3691 * check the target process has a UID that matches the current process's
3692 */
3693static bool check_same_owner(struct task_struct *p)
3694{
3695 const struct cred *cred = current_cred(), *pcred;
3696 bool match;
3697
3698 rcu_read_lock();
3699 pcred = __task_cred(p);
9c806aa0
EB
3700 match = (uid_eq(cred->euid, pcred->euid) ||
3701 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3702 rcu_read_unlock();
3703 return match;
3704}
3705
961ccddd 3706static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3707 const struct sched_param *param, bool user)
1da177e4 3708{
83b699ed 3709 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3710 unsigned long flags;
83ab0aa0 3711 const struct sched_class *prev_class;
70b97a7f 3712 struct rq *rq;
ca94c442 3713 int reset_on_fork;
1da177e4 3714
66e5393a
SR
3715 /* may grab non-irq protected spin_locks */
3716 BUG_ON(in_interrupt());
1da177e4
LT
3717recheck:
3718 /* double check policy once rq lock held */
ca94c442
LP
3719 if (policy < 0) {
3720 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3721 policy = oldpolicy = p->policy;
ca94c442
LP
3722 } else {
3723 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3724 policy &= ~SCHED_RESET_ON_FORK;
3725
3726 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3727 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3728 policy != SCHED_IDLE)
3729 return -EINVAL;
3730 }
3731
1da177e4
LT
3732 /*
3733 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3734 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3735 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3736 */
3737 if (param->sched_priority < 0 ||
95cdf3b7 3738 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3739 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3740 return -EINVAL;
e05606d3 3741 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3742 return -EINVAL;
3743
37e4ab3f
OC
3744 /*
3745 * Allow unprivileged RT tasks to decrease priority:
3746 */
961ccddd 3747 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3748 if (rt_policy(policy)) {
a44702e8
ON
3749 unsigned long rlim_rtprio =
3750 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3751
3752 /* can't set/change the rt policy */
3753 if (policy != p->policy && !rlim_rtprio)
3754 return -EPERM;
3755
3756 /* can't increase priority */
3757 if (param->sched_priority > p->rt_priority &&
3758 param->sched_priority > rlim_rtprio)
3759 return -EPERM;
3760 }
c02aa73b 3761
dd41f596 3762 /*
c02aa73b
DH
3763 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3764 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3765 */
c02aa73b
DH
3766 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3767 if (!can_nice(p, TASK_NICE(p)))
3768 return -EPERM;
3769 }
5fe1d75f 3770
37e4ab3f 3771 /* can't change other user's priorities */
c69e8d9c 3772 if (!check_same_owner(p))
37e4ab3f 3773 return -EPERM;
ca94c442
LP
3774
3775 /* Normal users shall not reset the sched_reset_on_fork flag */
3776 if (p->sched_reset_on_fork && !reset_on_fork)
3777 return -EPERM;
37e4ab3f 3778 }
1da177e4 3779
725aad24 3780 if (user) {
b0ae1981 3781 retval = security_task_setscheduler(p);
725aad24
JF
3782 if (retval)
3783 return retval;
3784 }
3785
b29739f9
IM
3786 /*
3787 * make sure no PI-waiters arrive (or leave) while we are
3788 * changing the priority of the task:
0122ec5b 3789 *
25985edc 3790 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3791 * runqueue lock must be held.
3792 */
0122ec5b 3793 rq = task_rq_lock(p, &flags);
dc61b1d6 3794
34f971f6
PZ
3795 /*
3796 * Changing the policy of the stop threads its a very bad idea
3797 */
3798 if (p == rq->stop) {
0122ec5b 3799 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3800 return -EINVAL;
3801 }
3802
a51e9198
DF
3803 /*
3804 * If not changing anything there's no need to proceed further:
3805 */
3806 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3807 param->sched_priority == p->rt_priority))) {
45afb173 3808 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3809 return 0;
3810 }
3811
dc61b1d6
PZ
3812#ifdef CONFIG_RT_GROUP_SCHED
3813 if (user) {
3814 /*
3815 * Do not allow realtime tasks into groups that have no runtime
3816 * assigned.
3817 */
3818 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3819 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3820 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3821 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3822 return -EPERM;
3823 }
3824 }
3825#endif
3826
1da177e4
LT
3827 /* recheck policy now with rq lock held */
3828 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3829 policy = oldpolicy = -1;
0122ec5b 3830 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3831 goto recheck;
3832 }
fd2f4419 3833 on_rq = p->on_rq;
051a1d1a 3834 running = task_current(rq, p);
0e1f3483 3835 if (on_rq)
4ca9b72b 3836 dequeue_task(rq, p, 0);
0e1f3483
HS
3837 if (running)
3838 p->sched_class->put_prev_task(rq, p);
f6b53205 3839
ca94c442
LP
3840 p->sched_reset_on_fork = reset_on_fork;
3841
1da177e4 3842 oldprio = p->prio;
83ab0aa0 3843 prev_class = p->sched_class;
dd41f596 3844 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3845
0e1f3483
HS
3846 if (running)
3847 p->sched_class->set_curr_task(rq);
da7a735e 3848 if (on_rq)
4ca9b72b 3849 enqueue_task(rq, p, 0);
cb469845 3850
da7a735e 3851 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3852 task_rq_unlock(rq, p, &flags);
b29739f9 3853
95e02ca9
TG
3854 rt_mutex_adjust_pi(p);
3855
1da177e4
LT
3856 return 0;
3857}
961ccddd
RR
3858
3859/**
3860 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3861 * @p: the task in question.
3862 * @policy: new policy.
3863 * @param: structure containing the new RT priority.
3864 *
3865 * NOTE that the task may be already dead.
3866 */
3867int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3868 const struct sched_param *param)
961ccddd
RR
3869{
3870 return __sched_setscheduler(p, policy, param, true);
3871}
1da177e4
LT
3872EXPORT_SYMBOL_GPL(sched_setscheduler);
3873
961ccddd
RR
3874/**
3875 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3876 * @p: the task in question.
3877 * @policy: new policy.
3878 * @param: structure containing the new RT priority.
3879 *
3880 * Just like sched_setscheduler, only don't bother checking if the
3881 * current context has permission. For example, this is needed in
3882 * stop_machine(): we create temporary high priority worker threads,
3883 * but our caller might not have that capability.
3884 */
3885int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3886 const struct sched_param *param)
961ccddd
RR
3887{
3888 return __sched_setscheduler(p, policy, param, false);
3889}
3890
95cdf3b7
IM
3891static int
3892do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3893{
1da177e4
LT
3894 struct sched_param lparam;
3895 struct task_struct *p;
36c8b586 3896 int retval;
1da177e4
LT
3897
3898 if (!param || pid < 0)
3899 return -EINVAL;
3900 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3901 return -EFAULT;
5fe1d75f
ON
3902
3903 rcu_read_lock();
3904 retval = -ESRCH;
1da177e4 3905 p = find_process_by_pid(pid);
5fe1d75f
ON
3906 if (p != NULL)
3907 retval = sched_setscheduler(p, policy, &lparam);
3908 rcu_read_unlock();
36c8b586 3909
1da177e4
LT
3910 return retval;
3911}
3912
3913/**
3914 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3915 * @pid: the pid in question.
3916 * @policy: new policy.
3917 * @param: structure containing the new RT priority.
3918 */
5add95d4
HC
3919SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3920 struct sched_param __user *, param)
1da177e4 3921{
c21761f1
JB
3922 /* negative values for policy are not valid */
3923 if (policy < 0)
3924 return -EINVAL;
3925
1da177e4
LT
3926 return do_sched_setscheduler(pid, policy, param);
3927}
3928
3929/**
3930 * sys_sched_setparam - set/change the RT priority of a thread
3931 * @pid: the pid in question.
3932 * @param: structure containing the new RT priority.
3933 */
5add95d4 3934SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3935{
3936 return do_sched_setscheduler(pid, -1, param);
3937}
3938
3939/**
3940 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3941 * @pid: the pid in question.
3942 */
5add95d4 3943SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3944{
36c8b586 3945 struct task_struct *p;
3a5c359a 3946 int retval;
1da177e4
LT
3947
3948 if (pid < 0)
3a5c359a 3949 return -EINVAL;
1da177e4
LT
3950
3951 retval = -ESRCH;
5fe85be0 3952 rcu_read_lock();
1da177e4
LT
3953 p = find_process_by_pid(pid);
3954 if (p) {
3955 retval = security_task_getscheduler(p);
3956 if (!retval)
ca94c442
LP
3957 retval = p->policy
3958 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3959 }
5fe85be0 3960 rcu_read_unlock();
1da177e4
LT
3961 return retval;
3962}
3963
3964/**
ca94c442 3965 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3966 * @pid: the pid in question.
3967 * @param: structure containing the RT priority.
3968 */
5add95d4 3969SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3970{
3971 struct sched_param lp;
36c8b586 3972 struct task_struct *p;
3a5c359a 3973 int retval;
1da177e4
LT
3974
3975 if (!param || pid < 0)
3a5c359a 3976 return -EINVAL;
1da177e4 3977
5fe85be0 3978 rcu_read_lock();
1da177e4
LT
3979 p = find_process_by_pid(pid);
3980 retval = -ESRCH;
3981 if (!p)
3982 goto out_unlock;
3983
3984 retval = security_task_getscheduler(p);
3985 if (retval)
3986 goto out_unlock;
3987
3988 lp.sched_priority = p->rt_priority;
5fe85be0 3989 rcu_read_unlock();
1da177e4
LT
3990
3991 /*
3992 * This one might sleep, we cannot do it with a spinlock held ...
3993 */
3994 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3995
1da177e4
LT
3996 return retval;
3997
3998out_unlock:
5fe85be0 3999 rcu_read_unlock();
1da177e4
LT
4000 return retval;
4001}
4002
96f874e2 4003long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4004{
5a16f3d3 4005 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4006 struct task_struct *p;
4007 int retval;
1da177e4 4008
95402b38 4009 get_online_cpus();
23f5d142 4010 rcu_read_lock();
1da177e4
LT
4011
4012 p = find_process_by_pid(pid);
4013 if (!p) {
23f5d142 4014 rcu_read_unlock();
95402b38 4015 put_online_cpus();
1da177e4
LT
4016 return -ESRCH;
4017 }
4018
23f5d142 4019 /* Prevent p going away */
1da177e4 4020 get_task_struct(p);
23f5d142 4021 rcu_read_unlock();
1da177e4 4022
5a16f3d3
RR
4023 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4024 retval = -ENOMEM;
4025 goto out_put_task;
4026 }
4027 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4028 retval = -ENOMEM;
4029 goto out_free_cpus_allowed;
4030 }
1da177e4 4031 retval = -EPERM;
f1c84dae 4032 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4033 goto out_unlock;
4034
b0ae1981 4035 retval = security_task_setscheduler(p);
e7834f8f
DQ
4036 if (retval)
4037 goto out_unlock;
4038
5a16f3d3
RR
4039 cpuset_cpus_allowed(p, cpus_allowed);
4040 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4041again:
5a16f3d3 4042 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4043
8707d8b8 4044 if (!retval) {
5a16f3d3
RR
4045 cpuset_cpus_allowed(p, cpus_allowed);
4046 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4047 /*
4048 * We must have raced with a concurrent cpuset
4049 * update. Just reset the cpus_allowed to the
4050 * cpuset's cpus_allowed
4051 */
5a16f3d3 4052 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4053 goto again;
4054 }
4055 }
1da177e4 4056out_unlock:
5a16f3d3
RR
4057 free_cpumask_var(new_mask);
4058out_free_cpus_allowed:
4059 free_cpumask_var(cpus_allowed);
4060out_put_task:
1da177e4 4061 put_task_struct(p);
95402b38 4062 put_online_cpus();
1da177e4
LT
4063 return retval;
4064}
4065
4066static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4067 struct cpumask *new_mask)
1da177e4 4068{
96f874e2
RR
4069 if (len < cpumask_size())
4070 cpumask_clear(new_mask);
4071 else if (len > cpumask_size())
4072 len = cpumask_size();
4073
1da177e4
LT
4074 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4075}
4076
4077/**
4078 * sys_sched_setaffinity - set the cpu affinity of a process
4079 * @pid: pid of the process
4080 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4081 * @user_mask_ptr: user-space pointer to the new cpu mask
4082 */
5add95d4
HC
4083SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4084 unsigned long __user *, user_mask_ptr)
1da177e4 4085{
5a16f3d3 4086 cpumask_var_t new_mask;
1da177e4
LT
4087 int retval;
4088
5a16f3d3
RR
4089 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4090 return -ENOMEM;
1da177e4 4091
5a16f3d3
RR
4092 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4093 if (retval == 0)
4094 retval = sched_setaffinity(pid, new_mask);
4095 free_cpumask_var(new_mask);
4096 return retval;
1da177e4
LT
4097}
4098
96f874e2 4099long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4100{
36c8b586 4101 struct task_struct *p;
31605683 4102 unsigned long flags;
1da177e4 4103 int retval;
1da177e4 4104
95402b38 4105 get_online_cpus();
23f5d142 4106 rcu_read_lock();
1da177e4
LT
4107
4108 retval = -ESRCH;
4109 p = find_process_by_pid(pid);
4110 if (!p)
4111 goto out_unlock;
4112
e7834f8f
DQ
4113 retval = security_task_getscheduler(p);
4114 if (retval)
4115 goto out_unlock;
4116
013fdb80 4117 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4118 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4119 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4120
4121out_unlock:
23f5d142 4122 rcu_read_unlock();
95402b38 4123 put_online_cpus();
1da177e4 4124
9531b62f 4125 return retval;
1da177e4
LT
4126}
4127
4128/**
4129 * sys_sched_getaffinity - get the cpu affinity of a process
4130 * @pid: pid of the process
4131 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4132 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4133 */
5add95d4
HC
4134SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4135 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4136{
4137 int ret;
f17c8607 4138 cpumask_var_t mask;
1da177e4 4139
84fba5ec 4140 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4141 return -EINVAL;
4142 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4143 return -EINVAL;
4144
f17c8607
RR
4145 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4146 return -ENOMEM;
1da177e4 4147
f17c8607
RR
4148 ret = sched_getaffinity(pid, mask);
4149 if (ret == 0) {
8bc037fb 4150 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4151
4152 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4153 ret = -EFAULT;
4154 else
cd3d8031 4155 ret = retlen;
f17c8607
RR
4156 }
4157 free_cpumask_var(mask);
1da177e4 4158
f17c8607 4159 return ret;
1da177e4
LT
4160}
4161
4162/**
4163 * sys_sched_yield - yield the current processor to other threads.
4164 *
dd41f596
IM
4165 * This function yields the current CPU to other tasks. If there are no
4166 * other threads running on this CPU then this function will return.
1da177e4 4167 */
5add95d4 4168SYSCALL_DEFINE0(sched_yield)
1da177e4 4169{
70b97a7f 4170 struct rq *rq = this_rq_lock();
1da177e4 4171
2d72376b 4172 schedstat_inc(rq, yld_count);
4530d7ab 4173 current->sched_class->yield_task(rq);
1da177e4
LT
4174
4175 /*
4176 * Since we are going to call schedule() anyway, there's
4177 * no need to preempt or enable interrupts:
4178 */
4179 __release(rq->lock);
8a25d5de 4180 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4181 do_raw_spin_unlock(&rq->lock);
ba74c144 4182 sched_preempt_enable_no_resched();
1da177e4
LT
4183
4184 schedule();
4185
4186 return 0;
4187}
4188
d86ee480
PZ
4189static inline int should_resched(void)
4190{
4191 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4192}
4193
e7b38404 4194static void __cond_resched(void)
1da177e4 4195{
e7aaaa69 4196 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4197 __schedule();
e7aaaa69 4198 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4199}
4200
02b67cc3 4201int __sched _cond_resched(void)
1da177e4 4202{
d86ee480 4203 if (should_resched()) {
1da177e4
LT
4204 __cond_resched();
4205 return 1;
4206 }
4207 return 0;
4208}
02b67cc3 4209EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4210
4211/*
613afbf8 4212 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4213 * call schedule, and on return reacquire the lock.
4214 *
41a2d6cf 4215 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4216 * operations here to prevent schedule() from being called twice (once via
4217 * spin_unlock(), once by hand).
4218 */
613afbf8 4219int __cond_resched_lock(spinlock_t *lock)
1da177e4 4220{
d86ee480 4221 int resched = should_resched();
6df3cecb
JK
4222 int ret = 0;
4223
f607c668
PZ
4224 lockdep_assert_held(lock);
4225
95c354fe 4226 if (spin_needbreak(lock) || resched) {
1da177e4 4227 spin_unlock(lock);
d86ee480 4228 if (resched)
95c354fe
NP
4229 __cond_resched();
4230 else
4231 cpu_relax();
6df3cecb 4232 ret = 1;
1da177e4 4233 spin_lock(lock);
1da177e4 4234 }
6df3cecb 4235 return ret;
1da177e4 4236}
613afbf8 4237EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4238
613afbf8 4239int __sched __cond_resched_softirq(void)
1da177e4
LT
4240{
4241 BUG_ON(!in_softirq());
4242
d86ee480 4243 if (should_resched()) {
98d82567 4244 local_bh_enable();
1da177e4
LT
4245 __cond_resched();
4246 local_bh_disable();
4247 return 1;
4248 }
4249 return 0;
4250}
613afbf8 4251EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4252
1da177e4
LT
4253/**
4254 * yield - yield the current processor to other threads.
4255 *
8e3fabfd
PZ
4256 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4257 *
4258 * The scheduler is at all times free to pick the calling task as the most
4259 * eligible task to run, if removing the yield() call from your code breaks
4260 * it, its already broken.
4261 *
4262 * Typical broken usage is:
4263 *
4264 * while (!event)
4265 * yield();
4266 *
4267 * where one assumes that yield() will let 'the other' process run that will
4268 * make event true. If the current task is a SCHED_FIFO task that will never
4269 * happen. Never use yield() as a progress guarantee!!
4270 *
4271 * If you want to use yield() to wait for something, use wait_event().
4272 * If you want to use yield() to be 'nice' for others, use cond_resched().
4273 * If you still want to use yield(), do not!
1da177e4
LT
4274 */
4275void __sched yield(void)
4276{
4277 set_current_state(TASK_RUNNING);
4278 sys_sched_yield();
4279}
1da177e4
LT
4280EXPORT_SYMBOL(yield);
4281
d95f4122
MG
4282/**
4283 * yield_to - yield the current processor to another thread in
4284 * your thread group, or accelerate that thread toward the
4285 * processor it's on.
16addf95
RD
4286 * @p: target task
4287 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4288 *
4289 * It's the caller's job to ensure that the target task struct
4290 * can't go away on us before we can do any checks.
4291 *
4292 * Returns true if we indeed boosted the target task.
4293 */
4294bool __sched yield_to(struct task_struct *p, bool preempt)
4295{
4296 struct task_struct *curr = current;
4297 struct rq *rq, *p_rq;
4298 unsigned long flags;
4299 bool yielded = 0;
4300
4301 local_irq_save(flags);
4302 rq = this_rq();
4303
4304again:
4305 p_rq = task_rq(p);
4306 double_rq_lock(rq, p_rq);
4307 while (task_rq(p) != p_rq) {
4308 double_rq_unlock(rq, p_rq);
4309 goto again;
4310 }
4311
4312 if (!curr->sched_class->yield_to_task)
4313 goto out;
4314
4315 if (curr->sched_class != p->sched_class)
4316 goto out;
4317
4318 if (task_running(p_rq, p) || p->state)
4319 goto out;
4320
4321 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4322 if (yielded) {
d95f4122 4323 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4324 /*
4325 * Make p's CPU reschedule; pick_next_entity takes care of
4326 * fairness.
4327 */
4328 if (preempt && rq != p_rq)
4329 resched_task(p_rq->curr);
4330 }
d95f4122
MG
4331
4332out:
4333 double_rq_unlock(rq, p_rq);
4334 local_irq_restore(flags);
4335
4336 if (yielded)
4337 schedule();
4338
4339 return yielded;
4340}
4341EXPORT_SYMBOL_GPL(yield_to);
4342
1da177e4 4343/*
41a2d6cf 4344 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4345 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4346 */
4347void __sched io_schedule(void)
4348{
54d35f29 4349 struct rq *rq = raw_rq();
1da177e4 4350
0ff92245 4351 delayacct_blkio_start();
1da177e4 4352 atomic_inc(&rq->nr_iowait);
73c10101 4353 blk_flush_plug(current);
8f0dfc34 4354 current->in_iowait = 1;
1da177e4 4355 schedule();
8f0dfc34 4356 current->in_iowait = 0;
1da177e4 4357 atomic_dec(&rq->nr_iowait);
0ff92245 4358 delayacct_blkio_end();
1da177e4 4359}
1da177e4
LT
4360EXPORT_SYMBOL(io_schedule);
4361
4362long __sched io_schedule_timeout(long timeout)
4363{
54d35f29 4364 struct rq *rq = raw_rq();
1da177e4
LT
4365 long ret;
4366
0ff92245 4367 delayacct_blkio_start();
1da177e4 4368 atomic_inc(&rq->nr_iowait);
73c10101 4369 blk_flush_plug(current);
8f0dfc34 4370 current->in_iowait = 1;
1da177e4 4371 ret = schedule_timeout(timeout);
8f0dfc34 4372 current->in_iowait = 0;
1da177e4 4373 atomic_dec(&rq->nr_iowait);
0ff92245 4374 delayacct_blkio_end();
1da177e4
LT
4375 return ret;
4376}
4377
4378/**
4379 * sys_sched_get_priority_max - return maximum RT priority.
4380 * @policy: scheduling class.
4381 *
4382 * this syscall returns the maximum rt_priority that can be used
4383 * by a given scheduling class.
4384 */
5add95d4 4385SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4386{
4387 int ret = -EINVAL;
4388
4389 switch (policy) {
4390 case SCHED_FIFO:
4391 case SCHED_RR:
4392 ret = MAX_USER_RT_PRIO-1;
4393 break;
4394 case SCHED_NORMAL:
b0a9499c 4395 case SCHED_BATCH:
dd41f596 4396 case SCHED_IDLE:
1da177e4
LT
4397 ret = 0;
4398 break;
4399 }
4400 return ret;
4401}
4402
4403/**
4404 * sys_sched_get_priority_min - return minimum RT priority.
4405 * @policy: scheduling class.
4406 *
4407 * this syscall returns the minimum rt_priority that can be used
4408 * by a given scheduling class.
4409 */
5add95d4 4410SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4411{
4412 int ret = -EINVAL;
4413
4414 switch (policy) {
4415 case SCHED_FIFO:
4416 case SCHED_RR:
4417 ret = 1;
4418 break;
4419 case SCHED_NORMAL:
b0a9499c 4420 case SCHED_BATCH:
dd41f596 4421 case SCHED_IDLE:
1da177e4
LT
4422 ret = 0;
4423 }
4424 return ret;
4425}
4426
4427/**
4428 * sys_sched_rr_get_interval - return the default timeslice of a process.
4429 * @pid: pid of the process.
4430 * @interval: userspace pointer to the timeslice value.
4431 *
4432 * this syscall writes the default timeslice value of a given process
4433 * into the user-space timespec buffer. A value of '0' means infinity.
4434 */
17da2bd9 4435SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4436 struct timespec __user *, interval)
1da177e4 4437{
36c8b586 4438 struct task_struct *p;
a4ec24b4 4439 unsigned int time_slice;
dba091b9
TG
4440 unsigned long flags;
4441 struct rq *rq;
3a5c359a 4442 int retval;
1da177e4 4443 struct timespec t;
1da177e4
LT
4444
4445 if (pid < 0)
3a5c359a 4446 return -EINVAL;
1da177e4
LT
4447
4448 retval = -ESRCH;
1a551ae7 4449 rcu_read_lock();
1da177e4
LT
4450 p = find_process_by_pid(pid);
4451 if (!p)
4452 goto out_unlock;
4453
4454 retval = security_task_getscheduler(p);
4455 if (retval)
4456 goto out_unlock;
4457
dba091b9
TG
4458 rq = task_rq_lock(p, &flags);
4459 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4460 task_rq_unlock(rq, p, &flags);
a4ec24b4 4461
1a551ae7 4462 rcu_read_unlock();
a4ec24b4 4463 jiffies_to_timespec(time_slice, &t);
1da177e4 4464 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4465 return retval;
3a5c359a 4466
1da177e4 4467out_unlock:
1a551ae7 4468 rcu_read_unlock();
1da177e4
LT
4469 return retval;
4470}
4471
7c731e0a 4472static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4473
82a1fcb9 4474void sched_show_task(struct task_struct *p)
1da177e4 4475{
1da177e4 4476 unsigned long free = 0;
4e79752c 4477 int ppid;
36c8b586 4478 unsigned state;
1da177e4 4479
1da177e4 4480 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4481 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4482 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4483#if BITS_PER_LONG == 32
1da177e4 4484 if (state == TASK_RUNNING)
3df0fc5b 4485 printk(KERN_CONT " running ");
1da177e4 4486 else
3df0fc5b 4487 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4488#else
4489 if (state == TASK_RUNNING)
3df0fc5b 4490 printk(KERN_CONT " running task ");
1da177e4 4491 else
3df0fc5b 4492 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4493#endif
4494#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4495 free = stack_not_used(p);
1da177e4 4496#endif
4e79752c
PM
4497 rcu_read_lock();
4498 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4499 rcu_read_unlock();
3df0fc5b 4500 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4501 task_pid_nr(p), ppid,
aa47b7e0 4502 (unsigned long)task_thread_info(p)->flags);
1da177e4 4503
5fb5e6de 4504 show_stack(p, NULL);
1da177e4
LT
4505}
4506
e59e2ae2 4507void show_state_filter(unsigned long state_filter)
1da177e4 4508{
36c8b586 4509 struct task_struct *g, *p;
1da177e4 4510
4bd77321 4511#if BITS_PER_LONG == 32
3df0fc5b
PZ
4512 printk(KERN_INFO
4513 " task PC stack pid father\n");
1da177e4 4514#else
3df0fc5b
PZ
4515 printk(KERN_INFO
4516 " task PC stack pid father\n");
1da177e4 4517#endif
510f5acc 4518 rcu_read_lock();
1da177e4
LT
4519 do_each_thread(g, p) {
4520 /*
4521 * reset the NMI-timeout, listing all files on a slow
25985edc 4522 * console might take a lot of time:
1da177e4
LT
4523 */
4524 touch_nmi_watchdog();
39bc89fd 4525 if (!state_filter || (p->state & state_filter))
82a1fcb9 4526 sched_show_task(p);
1da177e4
LT
4527 } while_each_thread(g, p);
4528
04c9167f
JF
4529 touch_all_softlockup_watchdogs();
4530
dd41f596
IM
4531#ifdef CONFIG_SCHED_DEBUG
4532 sysrq_sched_debug_show();
4533#endif
510f5acc 4534 rcu_read_unlock();
e59e2ae2
IM
4535 /*
4536 * Only show locks if all tasks are dumped:
4537 */
93335a21 4538 if (!state_filter)
e59e2ae2 4539 debug_show_all_locks();
1da177e4
LT
4540}
4541
1df21055
IM
4542void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4543{
dd41f596 4544 idle->sched_class = &idle_sched_class;
1df21055
IM
4545}
4546
f340c0d1
IM
4547/**
4548 * init_idle - set up an idle thread for a given CPU
4549 * @idle: task in question
4550 * @cpu: cpu the idle task belongs to
4551 *
4552 * NOTE: this function does not set the idle thread's NEED_RESCHED
4553 * flag, to make booting more robust.
4554 */
5c1e1767 4555void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4556{
70b97a7f 4557 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4558 unsigned long flags;
4559
05fa785c 4560 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4561
dd41f596 4562 __sched_fork(idle);
06b83b5f 4563 idle->state = TASK_RUNNING;
dd41f596
IM
4564 idle->se.exec_start = sched_clock();
4565
1e1b6c51 4566 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4567 /*
4568 * We're having a chicken and egg problem, even though we are
4569 * holding rq->lock, the cpu isn't yet set to this cpu so the
4570 * lockdep check in task_group() will fail.
4571 *
4572 * Similar case to sched_fork(). / Alternatively we could
4573 * use task_rq_lock() here and obtain the other rq->lock.
4574 *
4575 * Silence PROVE_RCU
4576 */
4577 rcu_read_lock();
dd41f596 4578 __set_task_cpu(idle, cpu);
6506cf6c 4579 rcu_read_unlock();
1da177e4 4580
1da177e4 4581 rq->curr = rq->idle = idle;
3ca7a440
PZ
4582#if defined(CONFIG_SMP)
4583 idle->on_cpu = 1;
4866cde0 4584#endif
05fa785c 4585 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4586
4587 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4588 task_thread_info(idle)->preempt_count = 0;
55cd5340 4589
dd41f596
IM
4590 /*
4591 * The idle tasks have their own, simple scheduling class:
4592 */
4593 idle->sched_class = &idle_sched_class;
868baf07 4594 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4595#if defined(CONFIG_SMP)
4596 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4597#endif
19978ca6
IM
4598}
4599
1da177e4 4600#ifdef CONFIG_SMP
1e1b6c51
KM
4601void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4602{
4603 if (p->sched_class && p->sched_class->set_cpus_allowed)
4604 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4605
4606 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4607 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4608}
4609
1da177e4
LT
4610/*
4611 * This is how migration works:
4612 *
969c7921
TH
4613 * 1) we invoke migration_cpu_stop() on the target CPU using
4614 * stop_one_cpu().
4615 * 2) stopper starts to run (implicitly forcing the migrated thread
4616 * off the CPU)
4617 * 3) it checks whether the migrated task is still in the wrong runqueue.
4618 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4619 * it and puts it into the right queue.
969c7921
TH
4620 * 5) stopper completes and stop_one_cpu() returns and the migration
4621 * is done.
1da177e4
LT
4622 */
4623
4624/*
4625 * Change a given task's CPU affinity. Migrate the thread to a
4626 * proper CPU and schedule it away if the CPU it's executing on
4627 * is removed from the allowed bitmask.
4628 *
4629 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4630 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4631 * call is not atomic; no spinlocks may be held.
4632 */
96f874e2 4633int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4634{
4635 unsigned long flags;
70b97a7f 4636 struct rq *rq;
969c7921 4637 unsigned int dest_cpu;
48f24c4d 4638 int ret = 0;
1da177e4
LT
4639
4640 rq = task_rq_lock(p, &flags);
e2912009 4641
db44fc01
YZ
4642 if (cpumask_equal(&p->cpus_allowed, new_mask))
4643 goto out;
4644
6ad4c188 4645 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4646 ret = -EINVAL;
4647 goto out;
4648 }
4649
db44fc01 4650 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4651 ret = -EINVAL;
4652 goto out;
4653 }
4654
1e1b6c51 4655 do_set_cpus_allowed(p, new_mask);
73fe6aae 4656
1da177e4 4657 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4658 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4659 goto out;
4660
969c7921 4661 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4662 if (p->on_rq) {
969c7921 4663 struct migration_arg arg = { p, dest_cpu };
1da177e4 4664 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4665 task_rq_unlock(rq, p, &flags);
969c7921 4666 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4667 tlb_migrate_finish(p->mm);
4668 return 0;
4669 }
4670out:
0122ec5b 4671 task_rq_unlock(rq, p, &flags);
48f24c4d 4672
1da177e4
LT
4673 return ret;
4674}
cd8ba7cd 4675EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4676
4677/*
41a2d6cf 4678 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4679 * this because either it can't run here any more (set_cpus_allowed()
4680 * away from this CPU, or CPU going down), or because we're
4681 * attempting to rebalance this task on exec (sched_exec).
4682 *
4683 * So we race with normal scheduler movements, but that's OK, as long
4684 * as the task is no longer on this CPU.
efc30814
KK
4685 *
4686 * Returns non-zero if task was successfully migrated.
1da177e4 4687 */
efc30814 4688static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4689{
70b97a7f 4690 struct rq *rq_dest, *rq_src;
e2912009 4691 int ret = 0;
1da177e4 4692
e761b772 4693 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4694 return ret;
1da177e4
LT
4695
4696 rq_src = cpu_rq(src_cpu);
4697 rq_dest = cpu_rq(dest_cpu);
4698
0122ec5b 4699 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4700 double_rq_lock(rq_src, rq_dest);
4701 /* Already moved. */
4702 if (task_cpu(p) != src_cpu)
b1e38734 4703 goto done;
1da177e4 4704 /* Affinity changed (again). */
fa17b507 4705 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4706 goto fail;
1da177e4 4707
e2912009
PZ
4708 /*
4709 * If we're not on a rq, the next wake-up will ensure we're
4710 * placed properly.
4711 */
fd2f4419 4712 if (p->on_rq) {
4ca9b72b 4713 dequeue_task(rq_src, p, 0);
e2912009 4714 set_task_cpu(p, dest_cpu);
4ca9b72b 4715 enqueue_task(rq_dest, p, 0);
15afe09b 4716 check_preempt_curr(rq_dest, p, 0);
1da177e4 4717 }
b1e38734 4718done:
efc30814 4719 ret = 1;
b1e38734 4720fail:
1da177e4 4721 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4722 raw_spin_unlock(&p->pi_lock);
efc30814 4723 return ret;
1da177e4
LT
4724}
4725
4726/*
969c7921
TH
4727 * migration_cpu_stop - this will be executed by a highprio stopper thread
4728 * and performs thread migration by bumping thread off CPU then
4729 * 'pushing' onto another runqueue.
1da177e4 4730 */
969c7921 4731static int migration_cpu_stop(void *data)
1da177e4 4732{
969c7921 4733 struct migration_arg *arg = data;
f7b4cddc 4734
969c7921
TH
4735 /*
4736 * The original target cpu might have gone down and we might
4737 * be on another cpu but it doesn't matter.
4738 */
f7b4cddc 4739 local_irq_disable();
969c7921 4740 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4741 local_irq_enable();
1da177e4 4742 return 0;
f7b4cddc
ON
4743}
4744
1da177e4 4745#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4746
054b9108 4747/*
48c5ccae
PZ
4748 * Ensures that the idle task is using init_mm right before its cpu goes
4749 * offline.
054b9108 4750 */
48c5ccae 4751void idle_task_exit(void)
1da177e4 4752{
48c5ccae 4753 struct mm_struct *mm = current->active_mm;
e76bd8d9 4754
48c5ccae 4755 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4756
48c5ccae
PZ
4757 if (mm != &init_mm)
4758 switch_mm(mm, &init_mm, current);
4759 mmdrop(mm);
1da177e4
LT
4760}
4761
4762/*
5d180232
PZ
4763 * Since this CPU is going 'away' for a while, fold any nr_active delta
4764 * we might have. Assumes we're called after migrate_tasks() so that the
4765 * nr_active count is stable.
4766 *
4767 * Also see the comment "Global load-average calculations".
1da177e4 4768 */
5d180232 4769static void calc_load_migrate(struct rq *rq)
1da177e4 4770{
5d180232
PZ
4771 long delta = calc_load_fold_active(rq);
4772 if (delta)
4773 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4774}
4775
48f24c4d 4776/*
48c5ccae
PZ
4777 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4778 * try_to_wake_up()->select_task_rq().
4779 *
4780 * Called with rq->lock held even though we'er in stop_machine() and
4781 * there's no concurrency possible, we hold the required locks anyway
4782 * because of lock validation efforts.
1da177e4 4783 */
48c5ccae 4784static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4785{
70b97a7f 4786 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4787 struct task_struct *next, *stop = rq->stop;
4788 int dest_cpu;
1da177e4
LT
4789
4790 /*
48c5ccae
PZ
4791 * Fudge the rq selection such that the below task selection loop
4792 * doesn't get stuck on the currently eligible stop task.
4793 *
4794 * We're currently inside stop_machine() and the rq is either stuck
4795 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4796 * either way we should never end up calling schedule() until we're
4797 * done here.
1da177e4 4798 */
48c5ccae 4799 rq->stop = NULL;
48f24c4d 4800
dd41f596 4801 for ( ; ; ) {
48c5ccae
PZ
4802 /*
4803 * There's this thread running, bail when that's the only
4804 * remaining thread.
4805 */
4806 if (rq->nr_running == 1)
dd41f596 4807 break;
48c5ccae 4808
b67802ea 4809 next = pick_next_task(rq);
48c5ccae 4810 BUG_ON(!next);
79c53799 4811 next->sched_class->put_prev_task(rq, next);
e692ab53 4812
48c5ccae
PZ
4813 /* Find suitable destination for @next, with force if needed. */
4814 dest_cpu = select_fallback_rq(dead_cpu, next);
4815 raw_spin_unlock(&rq->lock);
4816
4817 __migrate_task(next, dead_cpu, dest_cpu);
4818
4819 raw_spin_lock(&rq->lock);
1da177e4 4820 }
dce48a84 4821
48c5ccae 4822 rq->stop = stop;
dce48a84 4823}
48c5ccae 4824
1da177e4
LT
4825#endif /* CONFIG_HOTPLUG_CPU */
4826
e692ab53
NP
4827#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4828
4829static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4830 {
4831 .procname = "sched_domain",
c57baf1e 4832 .mode = 0555,
e0361851 4833 },
56992309 4834 {}
e692ab53
NP
4835};
4836
4837static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4838 {
4839 .procname = "kernel",
c57baf1e 4840 .mode = 0555,
e0361851
AD
4841 .child = sd_ctl_dir,
4842 },
56992309 4843 {}
e692ab53
NP
4844};
4845
4846static struct ctl_table *sd_alloc_ctl_entry(int n)
4847{
4848 struct ctl_table *entry =
5cf9f062 4849 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4850
e692ab53
NP
4851 return entry;
4852}
4853
6382bc90
MM
4854static void sd_free_ctl_entry(struct ctl_table **tablep)
4855{
cd790076 4856 struct ctl_table *entry;
6382bc90 4857
cd790076
MM
4858 /*
4859 * In the intermediate directories, both the child directory and
4860 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4861 * will always be set. In the lowest directory the names are
cd790076
MM
4862 * static strings and all have proc handlers.
4863 */
4864 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4865 if (entry->child)
4866 sd_free_ctl_entry(&entry->child);
cd790076
MM
4867 if (entry->proc_handler == NULL)
4868 kfree(entry->procname);
4869 }
6382bc90
MM
4870
4871 kfree(*tablep);
4872 *tablep = NULL;
4873}
4874
201c373e
NK
4875static int min_load_idx = 0;
4876static int max_load_idx = CPU_LOAD_IDX_MAX;
4877
e692ab53 4878static void
e0361851 4879set_table_entry(struct ctl_table *entry,
e692ab53 4880 const char *procname, void *data, int maxlen,
201c373e
NK
4881 umode_t mode, proc_handler *proc_handler,
4882 bool load_idx)
e692ab53 4883{
e692ab53
NP
4884 entry->procname = procname;
4885 entry->data = data;
4886 entry->maxlen = maxlen;
4887 entry->mode = mode;
4888 entry->proc_handler = proc_handler;
201c373e
NK
4889
4890 if (load_idx) {
4891 entry->extra1 = &min_load_idx;
4892 entry->extra2 = &max_load_idx;
4893 }
e692ab53
NP
4894}
4895
4896static struct ctl_table *
4897sd_alloc_ctl_domain_table(struct sched_domain *sd)
4898{
a5d8c348 4899 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4900
ad1cdc1d
MM
4901 if (table == NULL)
4902 return NULL;
4903
e0361851 4904 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4905 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4906 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4907 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4908 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4909 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4910 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4911 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4912 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4913 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4914 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4915 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4916 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4917 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4918 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4919 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4920 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4921 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4922 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4923 &sd->cache_nice_tries,
201c373e 4924 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4925 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4926 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4927 set_table_entry(&table[11], "name", sd->name,
201c373e 4928 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4929 /* &table[12] is terminator */
e692ab53
NP
4930
4931 return table;
4932}
4933
9a4e7159 4934static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4935{
4936 struct ctl_table *entry, *table;
4937 struct sched_domain *sd;
4938 int domain_num = 0, i;
4939 char buf[32];
4940
4941 for_each_domain(cpu, sd)
4942 domain_num++;
4943 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4944 if (table == NULL)
4945 return NULL;
e692ab53
NP
4946
4947 i = 0;
4948 for_each_domain(cpu, sd) {
4949 snprintf(buf, 32, "domain%d", i);
e692ab53 4950 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4951 entry->mode = 0555;
e692ab53
NP
4952 entry->child = sd_alloc_ctl_domain_table(sd);
4953 entry++;
4954 i++;
4955 }
4956 return table;
4957}
4958
4959static struct ctl_table_header *sd_sysctl_header;
6382bc90 4960static void register_sched_domain_sysctl(void)
e692ab53 4961{
6ad4c188 4962 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4963 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4964 char buf[32];
4965
7378547f
MM
4966 WARN_ON(sd_ctl_dir[0].child);
4967 sd_ctl_dir[0].child = entry;
4968
ad1cdc1d
MM
4969 if (entry == NULL)
4970 return;
4971
6ad4c188 4972 for_each_possible_cpu(i) {
e692ab53 4973 snprintf(buf, 32, "cpu%d", i);
e692ab53 4974 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4975 entry->mode = 0555;
e692ab53 4976 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4977 entry++;
e692ab53 4978 }
7378547f
MM
4979
4980 WARN_ON(sd_sysctl_header);
e692ab53
NP
4981 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4982}
6382bc90 4983
7378547f 4984/* may be called multiple times per register */
6382bc90
MM
4985static void unregister_sched_domain_sysctl(void)
4986{
7378547f
MM
4987 if (sd_sysctl_header)
4988 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4989 sd_sysctl_header = NULL;
7378547f
MM
4990 if (sd_ctl_dir[0].child)
4991 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4992}
e692ab53 4993#else
6382bc90
MM
4994static void register_sched_domain_sysctl(void)
4995{
4996}
4997static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4998{
4999}
5000#endif
5001
1f11eb6a
GH
5002static void set_rq_online(struct rq *rq)
5003{
5004 if (!rq->online) {
5005 const struct sched_class *class;
5006
c6c4927b 5007 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5008 rq->online = 1;
5009
5010 for_each_class(class) {
5011 if (class->rq_online)
5012 class->rq_online(rq);
5013 }
5014 }
5015}
5016
5017static void set_rq_offline(struct rq *rq)
5018{
5019 if (rq->online) {
5020 const struct sched_class *class;
5021
5022 for_each_class(class) {
5023 if (class->rq_offline)
5024 class->rq_offline(rq);
5025 }
5026
c6c4927b 5027 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5028 rq->online = 0;
5029 }
5030}
5031
1da177e4
LT
5032/*
5033 * migration_call - callback that gets triggered when a CPU is added.
5034 * Here we can start up the necessary migration thread for the new CPU.
5035 */
48f24c4d
IM
5036static int __cpuinit
5037migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5038{
48f24c4d 5039 int cpu = (long)hcpu;
1da177e4 5040 unsigned long flags;
969c7921 5041 struct rq *rq = cpu_rq(cpu);
1da177e4 5042
48c5ccae 5043 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5044
1da177e4 5045 case CPU_UP_PREPARE:
a468d389 5046 rq->calc_load_update = calc_load_update;
1da177e4 5047 break;
48f24c4d 5048
1da177e4 5049 case CPU_ONLINE:
1f94ef59 5050 /* Update our root-domain */
05fa785c 5051 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5052 if (rq->rd) {
c6c4927b 5053 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5054
5055 set_rq_online(rq);
1f94ef59 5056 }
05fa785c 5057 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5058 break;
48f24c4d 5059
1da177e4 5060#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5061 case CPU_DYING:
317f3941 5062 sched_ttwu_pending();
57d885fe 5063 /* Update our root-domain */
05fa785c 5064 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5065 if (rq->rd) {
c6c4927b 5066 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5067 set_rq_offline(rq);
57d885fe 5068 }
48c5ccae
PZ
5069 migrate_tasks(cpu);
5070 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5071 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5072 break;
48c5ccae 5073
5d180232 5074 case CPU_DEAD:
f319da0c 5075 calc_load_migrate(rq);
57d885fe 5076 break;
1da177e4
LT
5077#endif
5078 }
49c022e6
PZ
5079
5080 update_max_interval();
5081
1da177e4
LT
5082 return NOTIFY_OK;
5083}
5084
f38b0820
PM
5085/*
5086 * Register at high priority so that task migration (migrate_all_tasks)
5087 * happens before everything else. This has to be lower priority than
cdd6c482 5088 * the notifier in the perf_event subsystem, though.
1da177e4 5089 */
26c2143b 5090static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5091 .notifier_call = migration_call,
50a323b7 5092 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5093};
5094
3a101d05
TH
5095static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5096 unsigned long action, void *hcpu)
5097{
5098 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5099 case CPU_STARTING:
3a101d05
TH
5100 case CPU_DOWN_FAILED:
5101 set_cpu_active((long)hcpu, true);
5102 return NOTIFY_OK;
5103 default:
5104 return NOTIFY_DONE;
5105 }
5106}
5107
5108static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5109 unsigned long action, void *hcpu)
5110{
5111 switch (action & ~CPU_TASKS_FROZEN) {
5112 case CPU_DOWN_PREPARE:
5113 set_cpu_active((long)hcpu, false);
5114 return NOTIFY_OK;
5115 default:
5116 return NOTIFY_DONE;
5117 }
5118}
5119
7babe8db 5120static int __init migration_init(void)
1da177e4
LT
5121{
5122 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5123 int err;
48f24c4d 5124
3a101d05 5125 /* Initialize migration for the boot CPU */
07dccf33
AM
5126 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5127 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5128 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5129 register_cpu_notifier(&migration_notifier);
7babe8db 5130
3a101d05
TH
5131 /* Register cpu active notifiers */
5132 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5133 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5134
a004cd42 5135 return 0;
1da177e4 5136}
7babe8db 5137early_initcall(migration_init);
1da177e4
LT
5138#endif
5139
5140#ifdef CONFIG_SMP
476f3534 5141
4cb98839
PZ
5142static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5143
3e9830dc 5144#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5145
d039ac60 5146static __read_mostly int sched_debug_enabled;
f6630114 5147
d039ac60 5148static int __init sched_debug_setup(char *str)
f6630114 5149{
d039ac60 5150 sched_debug_enabled = 1;
f6630114
MT
5151
5152 return 0;
5153}
d039ac60
PZ
5154early_param("sched_debug", sched_debug_setup);
5155
5156static inline bool sched_debug(void)
5157{
5158 return sched_debug_enabled;
5159}
f6630114 5160
7c16ec58 5161static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5162 struct cpumask *groupmask)
1da177e4 5163{
4dcf6aff 5164 struct sched_group *group = sd->groups;
434d53b0 5165 char str[256];
1da177e4 5166
968ea6d8 5167 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5168 cpumask_clear(groupmask);
4dcf6aff
IM
5169
5170 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5171
5172 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5173 printk("does not load-balance\n");
4dcf6aff 5174 if (sd->parent)
3df0fc5b
PZ
5175 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5176 " has parent");
4dcf6aff 5177 return -1;
41c7ce9a
NP
5178 }
5179
3df0fc5b 5180 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5181
758b2cdc 5182 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5183 printk(KERN_ERR "ERROR: domain->span does not contain "
5184 "CPU%d\n", cpu);
4dcf6aff 5185 }
758b2cdc 5186 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5187 printk(KERN_ERR "ERROR: domain->groups does not contain"
5188 " CPU%d\n", cpu);
4dcf6aff 5189 }
1da177e4 5190
4dcf6aff 5191 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5192 do {
4dcf6aff 5193 if (!group) {
3df0fc5b
PZ
5194 printk("\n");
5195 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5196 break;
5197 }
5198
c3decf0d
PZ
5199 /*
5200 * Even though we initialize ->power to something semi-sane,
5201 * we leave power_orig unset. This allows us to detect if
5202 * domain iteration is still funny without causing /0 traps.
5203 */
5204 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5205 printk(KERN_CONT "\n");
5206 printk(KERN_ERR "ERROR: domain->cpu_power not "
5207 "set\n");
4dcf6aff
IM
5208 break;
5209 }
1da177e4 5210
758b2cdc 5211 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5212 printk(KERN_CONT "\n");
5213 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5214 break;
5215 }
1da177e4 5216
cb83b629
PZ
5217 if (!(sd->flags & SD_OVERLAP) &&
5218 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5219 printk(KERN_CONT "\n");
5220 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5221 break;
5222 }
1da177e4 5223
758b2cdc 5224 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5225
968ea6d8 5226 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5227
3df0fc5b 5228 printk(KERN_CONT " %s", str);
9c3f75cb 5229 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5230 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5231 group->sgp->power);
381512cf 5232 }
1da177e4 5233
4dcf6aff
IM
5234 group = group->next;
5235 } while (group != sd->groups);
3df0fc5b 5236 printk(KERN_CONT "\n");
1da177e4 5237
758b2cdc 5238 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5239 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5240
758b2cdc
RR
5241 if (sd->parent &&
5242 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5243 printk(KERN_ERR "ERROR: parent span is not a superset "
5244 "of domain->span\n");
4dcf6aff
IM
5245 return 0;
5246}
1da177e4 5247
4dcf6aff
IM
5248static void sched_domain_debug(struct sched_domain *sd, int cpu)
5249{
5250 int level = 0;
1da177e4 5251
d039ac60 5252 if (!sched_debug_enabled)
f6630114
MT
5253 return;
5254
4dcf6aff
IM
5255 if (!sd) {
5256 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5257 return;
5258 }
1da177e4 5259
4dcf6aff
IM
5260 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5261
5262 for (;;) {
4cb98839 5263 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5264 break;
1da177e4
LT
5265 level++;
5266 sd = sd->parent;
33859f7f 5267 if (!sd)
4dcf6aff
IM
5268 break;
5269 }
1da177e4 5270}
6d6bc0ad 5271#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5272# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5273static inline bool sched_debug(void)
5274{
5275 return false;
5276}
6d6bc0ad 5277#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5278
1a20ff27 5279static int sd_degenerate(struct sched_domain *sd)
245af2c7 5280{
758b2cdc 5281 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5282 return 1;
5283
5284 /* Following flags need at least 2 groups */
5285 if (sd->flags & (SD_LOAD_BALANCE |
5286 SD_BALANCE_NEWIDLE |
5287 SD_BALANCE_FORK |
89c4710e
SS
5288 SD_BALANCE_EXEC |
5289 SD_SHARE_CPUPOWER |
5290 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5291 if (sd->groups != sd->groups->next)
5292 return 0;
5293 }
5294
5295 /* Following flags don't use groups */
c88d5910 5296 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5297 return 0;
5298
5299 return 1;
5300}
5301
48f24c4d
IM
5302static int
5303sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5304{
5305 unsigned long cflags = sd->flags, pflags = parent->flags;
5306
5307 if (sd_degenerate(parent))
5308 return 1;
5309
758b2cdc 5310 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5311 return 0;
5312
245af2c7
SS
5313 /* Flags needing groups don't count if only 1 group in parent */
5314 if (parent->groups == parent->groups->next) {
5315 pflags &= ~(SD_LOAD_BALANCE |
5316 SD_BALANCE_NEWIDLE |
5317 SD_BALANCE_FORK |
89c4710e
SS
5318 SD_BALANCE_EXEC |
5319 SD_SHARE_CPUPOWER |
5320 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5321 if (nr_node_ids == 1)
5322 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5323 }
5324 if (~cflags & pflags)
5325 return 0;
5326
5327 return 1;
5328}
5329
dce840a0 5330static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5331{
dce840a0 5332 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5333
68e74568 5334 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5335 free_cpumask_var(rd->rto_mask);
5336 free_cpumask_var(rd->online);
5337 free_cpumask_var(rd->span);
5338 kfree(rd);
5339}
5340
57d885fe
GH
5341static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5342{
a0490fa3 5343 struct root_domain *old_rd = NULL;
57d885fe 5344 unsigned long flags;
57d885fe 5345
05fa785c 5346 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5347
5348 if (rq->rd) {
a0490fa3 5349 old_rd = rq->rd;
57d885fe 5350
c6c4927b 5351 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5352 set_rq_offline(rq);
57d885fe 5353
c6c4927b 5354 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5355
a0490fa3
IM
5356 /*
5357 * If we dont want to free the old_rt yet then
5358 * set old_rd to NULL to skip the freeing later
5359 * in this function:
5360 */
5361 if (!atomic_dec_and_test(&old_rd->refcount))
5362 old_rd = NULL;
57d885fe
GH
5363 }
5364
5365 atomic_inc(&rd->refcount);
5366 rq->rd = rd;
5367
c6c4927b 5368 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5369 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5370 set_rq_online(rq);
57d885fe 5371
05fa785c 5372 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5373
5374 if (old_rd)
dce840a0 5375 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5376}
5377
68c38fc3 5378static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5379{
5380 memset(rd, 0, sizeof(*rd));
5381
68c38fc3 5382 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5383 goto out;
68c38fc3 5384 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5385 goto free_span;
68c38fc3 5386 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5387 goto free_online;
6e0534f2 5388
68c38fc3 5389 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5390 goto free_rto_mask;
c6c4927b 5391 return 0;
6e0534f2 5392
68e74568
RR
5393free_rto_mask:
5394 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5395free_online:
5396 free_cpumask_var(rd->online);
5397free_span:
5398 free_cpumask_var(rd->span);
0c910d28 5399out:
c6c4927b 5400 return -ENOMEM;
57d885fe
GH
5401}
5402
029632fb
PZ
5403/*
5404 * By default the system creates a single root-domain with all cpus as
5405 * members (mimicking the global state we have today).
5406 */
5407struct root_domain def_root_domain;
5408
57d885fe
GH
5409static void init_defrootdomain(void)
5410{
68c38fc3 5411 init_rootdomain(&def_root_domain);
c6c4927b 5412
57d885fe
GH
5413 atomic_set(&def_root_domain.refcount, 1);
5414}
5415
dc938520 5416static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5417{
5418 struct root_domain *rd;
5419
5420 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5421 if (!rd)
5422 return NULL;
5423
68c38fc3 5424 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5425 kfree(rd);
5426 return NULL;
5427 }
57d885fe
GH
5428
5429 return rd;
5430}
5431
e3589f6c
PZ
5432static void free_sched_groups(struct sched_group *sg, int free_sgp)
5433{
5434 struct sched_group *tmp, *first;
5435
5436 if (!sg)
5437 return;
5438
5439 first = sg;
5440 do {
5441 tmp = sg->next;
5442
5443 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5444 kfree(sg->sgp);
5445
5446 kfree(sg);
5447 sg = tmp;
5448 } while (sg != first);
5449}
5450
dce840a0
PZ
5451static void free_sched_domain(struct rcu_head *rcu)
5452{
5453 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5454
5455 /*
5456 * If its an overlapping domain it has private groups, iterate and
5457 * nuke them all.
5458 */
5459 if (sd->flags & SD_OVERLAP) {
5460 free_sched_groups(sd->groups, 1);
5461 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5462 kfree(sd->groups->sgp);
dce840a0 5463 kfree(sd->groups);
9c3f75cb 5464 }
dce840a0
PZ
5465 kfree(sd);
5466}
5467
5468static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5469{
5470 call_rcu(&sd->rcu, free_sched_domain);
5471}
5472
5473static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5474{
5475 for (; sd; sd = sd->parent)
5476 destroy_sched_domain(sd, cpu);
5477}
5478
518cd623
PZ
5479/*
5480 * Keep a special pointer to the highest sched_domain that has
5481 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5482 * allows us to avoid some pointer chasing select_idle_sibling().
5483 *
5484 * Also keep a unique ID per domain (we use the first cpu number in
5485 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5486 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5487 */
5488DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5489DEFINE_PER_CPU(int, sd_llc_id);
5490
5491static void update_top_cache_domain(int cpu)
5492{
5493 struct sched_domain *sd;
5494 int id = cpu;
5495
5496 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5497 if (sd)
518cd623
PZ
5498 id = cpumask_first(sched_domain_span(sd));
5499
5500 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5501 per_cpu(sd_llc_id, cpu) = id;
5502}
5503
1da177e4 5504/*
0eab9146 5505 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5506 * hold the hotplug lock.
5507 */
0eab9146
IM
5508static void
5509cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5510{
70b97a7f 5511 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5512 struct sched_domain *tmp;
5513
5514 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5515 for (tmp = sd; tmp; ) {
245af2c7
SS
5516 struct sched_domain *parent = tmp->parent;
5517 if (!parent)
5518 break;
f29c9b1c 5519
1a848870 5520 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5521 tmp->parent = parent->parent;
1a848870
SS
5522 if (parent->parent)
5523 parent->parent->child = tmp;
dce840a0 5524 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5525 } else
5526 tmp = tmp->parent;
245af2c7
SS
5527 }
5528
1a848870 5529 if (sd && sd_degenerate(sd)) {
dce840a0 5530 tmp = sd;
245af2c7 5531 sd = sd->parent;
dce840a0 5532 destroy_sched_domain(tmp, cpu);
1a848870
SS
5533 if (sd)
5534 sd->child = NULL;
5535 }
1da177e4 5536
4cb98839 5537 sched_domain_debug(sd, cpu);
1da177e4 5538
57d885fe 5539 rq_attach_root(rq, rd);
dce840a0 5540 tmp = rq->sd;
674311d5 5541 rcu_assign_pointer(rq->sd, sd);
dce840a0 5542 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5543
5544 update_top_cache_domain(cpu);
1da177e4
LT
5545}
5546
5547/* cpus with isolated domains */
dcc30a35 5548static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5549
5550/* Setup the mask of cpus configured for isolated domains */
5551static int __init isolated_cpu_setup(char *str)
5552{
bdddd296 5553 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5554 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5555 return 1;
5556}
5557
8927f494 5558__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5559
d3081f52
PZ
5560static const struct cpumask *cpu_cpu_mask(int cpu)
5561{
5562 return cpumask_of_node(cpu_to_node(cpu));
5563}
5564
dce840a0
PZ
5565struct sd_data {
5566 struct sched_domain **__percpu sd;
5567 struct sched_group **__percpu sg;
9c3f75cb 5568 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5569};
5570
49a02c51 5571struct s_data {
21d42ccf 5572 struct sched_domain ** __percpu sd;
49a02c51
AH
5573 struct root_domain *rd;
5574};
5575
2109b99e 5576enum s_alloc {
2109b99e 5577 sa_rootdomain,
21d42ccf 5578 sa_sd,
dce840a0 5579 sa_sd_storage,
2109b99e
AH
5580 sa_none,
5581};
5582
54ab4ff4
PZ
5583struct sched_domain_topology_level;
5584
5585typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5586typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5587
e3589f6c
PZ
5588#define SDTL_OVERLAP 0x01
5589
eb7a74e6 5590struct sched_domain_topology_level {
2c402dc3
PZ
5591 sched_domain_init_f init;
5592 sched_domain_mask_f mask;
e3589f6c 5593 int flags;
cb83b629 5594 int numa_level;
54ab4ff4 5595 struct sd_data data;
eb7a74e6
PZ
5596};
5597
c1174876
PZ
5598/*
5599 * Build an iteration mask that can exclude certain CPUs from the upwards
5600 * domain traversal.
5601 *
5602 * Asymmetric node setups can result in situations where the domain tree is of
5603 * unequal depth, make sure to skip domains that already cover the entire
5604 * range.
5605 *
5606 * In that case build_sched_domains() will have terminated the iteration early
5607 * and our sibling sd spans will be empty. Domains should always include the
5608 * cpu they're built on, so check that.
5609 *
5610 */
5611static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5612{
5613 const struct cpumask *span = sched_domain_span(sd);
5614 struct sd_data *sdd = sd->private;
5615 struct sched_domain *sibling;
5616 int i;
5617
5618 for_each_cpu(i, span) {
5619 sibling = *per_cpu_ptr(sdd->sd, i);
5620 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5621 continue;
5622
5623 cpumask_set_cpu(i, sched_group_mask(sg));
5624 }
5625}
5626
5627/*
5628 * Return the canonical balance cpu for this group, this is the first cpu
5629 * of this group that's also in the iteration mask.
5630 */
5631int group_balance_cpu(struct sched_group *sg)
5632{
5633 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5634}
5635
e3589f6c
PZ
5636static int
5637build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5638{
5639 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5640 const struct cpumask *span = sched_domain_span(sd);
5641 struct cpumask *covered = sched_domains_tmpmask;
5642 struct sd_data *sdd = sd->private;
5643 struct sched_domain *child;
5644 int i;
5645
5646 cpumask_clear(covered);
5647
5648 for_each_cpu(i, span) {
5649 struct cpumask *sg_span;
5650
5651 if (cpumask_test_cpu(i, covered))
5652 continue;
5653
c1174876
PZ
5654 child = *per_cpu_ptr(sdd->sd, i);
5655
5656 /* See the comment near build_group_mask(). */
5657 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5658 continue;
5659
e3589f6c 5660 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5661 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5662
5663 if (!sg)
5664 goto fail;
5665
5666 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5667 if (child->child) {
5668 child = child->child;
5669 cpumask_copy(sg_span, sched_domain_span(child));
5670 } else
5671 cpumask_set_cpu(i, sg_span);
5672
5673 cpumask_or(covered, covered, sg_span);
5674
74a5ce20 5675 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5676 if (atomic_inc_return(&sg->sgp->ref) == 1)
5677 build_group_mask(sd, sg);
5678
c3decf0d
PZ
5679 /*
5680 * Initialize sgp->power such that even if we mess up the
5681 * domains and no possible iteration will get us here, we won't
5682 * die on a /0 trap.
5683 */
5684 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5685
c1174876
PZ
5686 /*
5687 * Make sure the first group of this domain contains the
5688 * canonical balance cpu. Otherwise the sched_domain iteration
5689 * breaks. See update_sg_lb_stats().
5690 */
74a5ce20 5691 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5692 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5693 groups = sg;
5694
5695 if (!first)
5696 first = sg;
5697 if (last)
5698 last->next = sg;
5699 last = sg;
5700 last->next = first;
5701 }
5702 sd->groups = groups;
5703
5704 return 0;
5705
5706fail:
5707 free_sched_groups(first, 0);
5708
5709 return -ENOMEM;
5710}
5711
dce840a0 5712static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5713{
dce840a0
PZ
5714 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5715 struct sched_domain *child = sd->child;
1da177e4 5716
dce840a0
PZ
5717 if (child)
5718 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5719
9c3f75cb 5720 if (sg) {
dce840a0 5721 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5722 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5723 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5724 }
dce840a0
PZ
5725
5726 return cpu;
1e9f28fa 5727}
1e9f28fa 5728
01a08546 5729/*
dce840a0
PZ
5730 * build_sched_groups will build a circular linked list of the groups
5731 * covered by the given span, and will set each group's ->cpumask correctly,
5732 * and ->cpu_power to 0.
e3589f6c
PZ
5733 *
5734 * Assumes the sched_domain tree is fully constructed
01a08546 5735 */
e3589f6c
PZ
5736static int
5737build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5738{
dce840a0
PZ
5739 struct sched_group *first = NULL, *last = NULL;
5740 struct sd_data *sdd = sd->private;
5741 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5742 struct cpumask *covered;
dce840a0 5743 int i;
9c1cfda2 5744
e3589f6c
PZ
5745 get_group(cpu, sdd, &sd->groups);
5746 atomic_inc(&sd->groups->ref);
5747
5748 if (cpu != cpumask_first(sched_domain_span(sd)))
5749 return 0;
5750
f96225fd
PZ
5751 lockdep_assert_held(&sched_domains_mutex);
5752 covered = sched_domains_tmpmask;
5753
dce840a0 5754 cpumask_clear(covered);
6711cab4 5755
dce840a0
PZ
5756 for_each_cpu(i, span) {
5757 struct sched_group *sg;
5758 int group = get_group(i, sdd, &sg);
5759 int j;
6711cab4 5760
dce840a0
PZ
5761 if (cpumask_test_cpu(i, covered))
5762 continue;
6711cab4 5763
dce840a0 5764 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5765 sg->sgp->power = 0;
c1174876 5766 cpumask_setall(sched_group_mask(sg));
0601a88d 5767
dce840a0
PZ
5768 for_each_cpu(j, span) {
5769 if (get_group(j, sdd, NULL) != group)
5770 continue;
0601a88d 5771
dce840a0
PZ
5772 cpumask_set_cpu(j, covered);
5773 cpumask_set_cpu(j, sched_group_cpus(sg));
5774 }
0601a88d 5775
dce840a0
PZ
5776 if (!first)
5777 first = sg;
5778 if (last)
5779 last->next = sg;
5780 last = sg;
5781 }
5782 last->next = first;
e3589f6c
PZ
5783
5784 return 0;
0601a88d 5785}
51888ca2 5786
89c4710e
SS
5787/*
5788 * Initialize sched groups cpu_power.
5789 *
5790 * cpu_power indicates the capacity of sched group, which is used while
5791 * distributing the load between different sched groups in a sched domain.
5792 * Typically cpu_power for all the groups in a sched domain will be same unless
5793 * there are asymmetries in the topology. If there are asymmetries, group
5794 * having more cpu_power will pickup more load compared to the group having
5795 * less cpu_power.
89c4710e
SS
5796 */
5797static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5798{
e3589f6c 5799 struct sched_group *sg = sd->groups;
89c4710e 5800
e3589f6c
PZ
5801 WARN_ON(!sd || !sg);
5802
5803 do {
5804 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5805 sg = sg->next;
5806 } while (sg != sd->groups);
89c4710e 5807
c1174876 5808 if (cpu != group_balance_cpu(sg))
e3589f6c 5809 return;
aae6d3dd 5810
d274cb30 5811 update_group_power(sd, cpu);
69e1e811 5812 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5813}
5814
029632fb
PZ
5815int __weak arch_sd_sibling_asym_packing(void)
5816{
5817 return 0*SD_ASYM_PACKING;
89c4710e
SS
5818}
5819
7c16ec58
MT
5820/*
5821 * Initializers for schedule domains
5822 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5823 */
5824
a5d8c348
IM
5825#ifdef CONFIG_SCHED_DEBUG
5826# define SD_INIT_NAME(sd, type) sd->name = #type
5827#else
5828# define SD_INIT_NAME(sd, type) do { } while (0)
5829#endif
5830
54ab4ff4
PZ
5831#define SD_INIT_FUNC(type) \
5832static noinline struct sched_domain * \
5833sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5834{ \
5835 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5836 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5837 SD_INIT_NAME(sd, type); \
5838 sd->private = &tl->data; \
5839 return sd; \
7c16ec58
MT
5840}
5841
5842SD_INIT_FUNC(CPU)
7c16ec58
MT
5843#ifdef CONFIG_SCHED_SMT
5844 SD_INIT_FUNC(SIBLING)
5845#endif
5846#ifdef CONFIG_SCHED_MC
5847 SD_INIT_FUNC(MC)
5848#endif
01a08546
HC
5849#ifdef CONFIG_SCHED_BOOK
5850 SD_INIT_FUNC(BOOK)
5851#endif
7c16ec58 5852
1d3504fc 5853static int default_relax_domain_level = -1;
60495e77 5854int sched_domain_level_max;
1d3504fc
HS
5855
5856static int __init setup_relax_domain_level(char *str)
5857{
a841f8ce
DS
5858 if (kstrtoint(str, 0, &default_relax_domain_level))
5859 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5860
1d3504fc
HS
5861 return 1;
5862}
5863__setup("relax_domain_level=", setup_relax_domain_level);
5864
5865static void set_domain_attribute(struct sched_domain *sd,
5866 struct sched_domain_attr *attr)
5867{
5868 int request;
5869
5870 if (!attr || attr->relax_domain_level < 0) {
5871 if (default_relax_domain_level < 0)
5872 return;
5873 else
5874 request = default_relax_domain_level;
5875 } else
5876 request = attr->relax_domain_level;
5877 if (request < sd->level) {
5878 /* turn off idle balance on this domain */
c88d5910 5879 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5880 } else {
5881 /* turn on idle balance on this domain */
c88d5910 5882 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5883 }
5884}
5885
54ab4ff4
PZ
5886static void __sdt_free(const struct cpumask *cpu_map);
5887static int __sdt_alloc(const struct cpumask *cpu_map);
5888
2109b99e
AH
5889static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5890 const struct cpumask *cpu_map)
5891{
5892 switch (what) {
2109b99e 5893 case sa_rootdomain:
822ff793
PZ
5894 if (!atomic_read(&d->rd->refcount))
5895 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5896 case sa_sd:
5897 free_percpu(d->sd); /* fall through */
dce840a0 5898 case sa_sd_storage:
54ab4ff4 5899 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5900 case sa_none:
5901 break;
5902 }
5903}
3404c8d9 5904
2109b99e
AH
5905static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5906 const struct cpumask *cpu_map)
5907{
dce840a0
PZ
5908 memset(d, 0, sizeof(*d));
5909
54ab4ff4
PZ
5910 if (__sdt_alloc(cpu_map))
5911 return sa_sd_storage;
dce840a0
PZ
5912 d->sd = alloc_percpu(struct sched_domain *);
5913 if (!d->sd)
5914 return sa_sd_storage;
2109b99e 5915 d->rd = alloc_rootdomain();
dce840a0 5916 if (!d->rd)
21d42ccf 5917 return sa_sd;
2109b99e
AH
5918 return sa_rootdomain;
5919}
57d885fe 5920
dce840a0
PZ
5921/*
5922 * NULL the sd_data elements we've used to build the sched_domain and
5923 * sched_group structure so that the subsequent __free_domain_allocs()
5924 * will not free the data we're using.
5925 */
5926static void claim_allocations(int cpu, struct sched_domain *sd)
5927{
5928 struct sd_data *sdd = sd->private;
dce840a0
PZ
5929
5930 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5931 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5932
e3589f6c 5933 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5934 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5935
5936 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5937 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5938}
5939
2c402dc3
PZ
5940#ifdef CONFIG_SCHED_SMT
5941static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5942{
2c402dc3 5943 return topology_thread_cpumask(cpu);
3bd65a80 5944}
2c402dc3 5945#endif
7f4588f3 5946
d069b916
PZ
5947/*
5948 * Topology list, bottom-up.
5949 */
2c402dc3 5950static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5951#ifdef CONFIG_SCHED_SMT
5952 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5953#endif
1e9f28fa 5954#ifdef CONFIG_SCHED_MC
2c402dc3 5955 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5956#endif
d069b916
PZ
5957#ifdef CONFIG_SCHED_BOOK
5958 { sd_init_BOOK, cpu_book_mask, },
5959#endif
5960 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5961 { NULL, },
5962};
5963
5964static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5965
cb83b629
PZ
5966#ifdef CONFIG_NUMA
5967
5968static int sched_domains_numa_levels;
cb83b629
PZ
5969static int *sched_domains_numa_distance;
5970static struct cpumask ***sched_domains_numa_masks;
5971static int sched_domains_curr_level;
5972
cb83b629
PZ
5973static inline int sd_local_flags(int level)
5974{
10717dcd 5975 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5976 return 0;
5977
5978 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5979}
5980
5981static struct sched_domain *
5982sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5983{
5984 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5985 int level = tl->numa_level;
5986 int sd_weight = cpumask_weight(
5987 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5988
5989 *sd = (struct sched_domain){
5990 .min_interval = sd_weight,
5991 .max_interval = 2*sd_weight,
5992 .busy_factor = 32,
870a0bb5 5993 .imbalance_pct = 125,
cb83b629
PZ
5994 .cache_nice_tries = 2,
5995 .busy_idx = 3,
5996 .idle_idx = 2,
5997 .newidle_idx = 0,
5998 .wake_idx = 0,
5999 .forkexec_idx = 0,
6000
6001 .flags = 1*SD_LOAD_BALANCE
6002 | 1*SD_BALANCE_NEWIDLE
6003 | 0*SD_BALANCE_EXEC
6004 | 0*SD_BALANCE_FORK
6005 | 0*SD_BALANCE_WAKE
6006 | 0*SD_WAKE_AFFINE
cb83b629 6007 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6008 | 0*SD_SHARE_PKG_RESOURCES
6009 | 1*SD_SERIALIZE
6010 | 0*SD_PREFER_SIBLING
6011 | sd_local_flags(level)
6012 ,
6013 .last_balance = jiffies,
6014 .balance_interval = sd_weight,
6015 };
6016 SD_INIT_NAME(sd, NUMA);
6017 sd->private = &tl->data;
6018
6019 /*
6020 * Ugly hack to pass state to sd_numa_mask()...
6021 */
6022 sched_domains_curr_level = tl->numa_level;
6023
6024 return sd;
6025}
6026
6027static const struct cpumask *sd_numa_mask(int cpu)
6028{
6029 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6030}
6031
d039ac60
PZ
6032static void sched_numa_warn(const char *str)
6033{
6034 static int done = false;
6035 int i,j;
6036
6037 if (done)
6038 return;
6039
6040 done = true;
6041
6042 printk(KERN_WARNING "ERROR: %s\n\n", str);
6043
6044 for (i = 0; i < nr_node_ids; i++) {
6045 printk(KERN_WARNING " ");
6046 for (j = 0; j < nr_node_ids; j++)
6047 printk(KERN_CONT "%02d ", node_distance(i,j));
6048 printk(KERN_CONT "\n");
6049 }
6050 printk(KERN_WARNING "\n");
6051}
6052
6053static bool find_numa_distance(int distance)
6054{
6055 int i;
6056
6057 if (distance == node_distance(0, 0))
6058 return true;
6059
6060 for (i = 0; i < sched_domains_numa_levels; i++) {
6061 if (sched_domains_numa_distance[i] == distance)
6062 return true;
6063 }
6064
6065 return false;
6066}
6067
cb83b629
PZ
6068static void sched_init_numa(void)
6069{
6070 int next_distance, curr_distance = node_distance(0, 0);
6071 struct sched_domain_topology_level *tl;
6072 int level = 0;
6073 int i, j, k;
6074
cb83b629
PZ
6075 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6076 if (!sched_domains_numa_distance)
6077 return;
6078
6079 /*
6080 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6081 * unique distances in the node_distance() table.
6082 *
6083 * Assumes node_distance(0,j) includes all distances in
6084 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6085 */
6086 next_distance = curr_distance;
6087 for (i = 0; i < nr_node_ids; i++) {
6088 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6089 for (k = 0; k < nr_node_ids; k++) {
6090 int distance = node_distance(i, k);
6091
6092 if (distance > curr_distance &&
6093 (distance < next_distance ||
6094 next_distance == curr_distance))
6095 next_distance = distance;
6096
6097 /*
6098 * While not a strong assumption it would be nice to know
6099 * about cases where if node A is connected to B, B is not
6100 * equally connected to A.
6101 */
6102 if (sched_debug() && node_distance(k, i) != distance)
6103 sched_numa_warn("Node-distance not symmetric");
6104
6105 if (sched_debug() && i && !find_numa_distance(distance))
6106 sched_numa_warn("Node-0 not representative");
6107 }
6108 if (next_distance != curr_distance) {
6109 sched_domains_numa_distance[level++] = next_distance;
6110 sched_domains_numa_levels = level;
6111 curr_distance = next_distance;
6112 } else break;
cb83b629 6113 }
d039ac60
PZ
6114
6115 /*
6116 * In case of sched_debug() we verify the above assumption.
6117 */
6118 if (!sched_debug())
6119 break;
cb83b629
PZ
6120 }
6121 /*
6122 * 'level' contains the number of unique distances, excluding the
6123 * identity distance node_distance(i,i).
6124 *
6125 * The sched_domains_nume_distance[] array includes the actual distance
6126 * numbers.
6127 */
6128
5f7865f3
TC
6129 /*
6130 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6131 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6132 * the array will contain less then 'level' members. This could be
6133 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6134 * in other functions.
6135 *
6136 * We reset it to 'level' at the end of this function.
6137 */
6138 sched_domains_numa_levels = 0;
6139
cb83b629
PZ
6140 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6141 if (!sched_domains_numa_masks)
6142 return;
6143
6144 /*
6145 * Now for each level, construct a mask per node which contains all
6146 * cpus of nodes that are that many hops away from us.
6147 */
6148 for (i = 0; i < level; i++) {
6149 sched_domains_numa_masks[i] =
6150 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6151 if (!sched_domains_numa_masks[i])
6152 return;
6153
6154 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6155 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6156 if (!mask)
6157 return;
6158
6159 sched_domains_numa_masks[i][j] = mask;
6160
6161 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6162 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6163 continue;
6164
6165 cpumask_or(mask, mask, cpumask_of_node(k));
6166 }
6167 }
6168 }
6169
6170 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6171 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6172 if (!tl)
6173 return;
6174
6175 /*
6176 * Copy the default topology bits..
6177 */
6178 for (i = 0; default_topology[i].init; i++)
6179 tl[i] = default_topology[i];
6180
6181 /*
6182 * .. and append 'j' levels of NUMA goodness.
6183 */
6184 for (j = 0; j < level; i++, j++) {
6185 tl[i] = (struct sched_domain_topology_level){
6186 .init = sd_numa_init,
6187 .mask = sd_numa_mask,
6188 .flags = SDTL_OVERLAP,
6189 .numa_level = j,
6190 };
6191 }
6192
6193 sched_domain_topology = tl;
5f7865f3
TC
6194
6195 sched_domains_numa_levels = level;
cb83b629 6196}
301a5cba
TC
6197
6198static void sched_domains_numa_masks_set(int cpu)
6199{
6200 int i, j;
6201 int node = cpu_to_node(cpu);
6202
6203 for (i = 0; i < sched_domains_numa_levels; i++) {
6204 for (j = 0; j < nr_node_ids; j++) {
6205 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6206 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6207 }
6208 }
6209}
6210
6211static void sched_domains_numa_masks_clear(int cpu)
6212{
6213 int i, j;
6214 for (i = 0; i < sched_domains_numa_levels; i++) {
6215 for (j = 0; j < nr_node_ids; j++)
6216 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6217 }
6218}
6219
6220/*
6221 * Update sched_domains_numa_masks[level][node] array when new cpus
6222 * are onlined.
6223 */
6224static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6225 unsigned long action,
6226 void *hcpu)
6227{
6228 int cpu = (long)hcpu;
6229
6230 switch (action & ~CPU_TASKS_FROZEN) {
6231 case CPU_ONLINE:
6232 sched_domains_numa_masks_set(cpu);
6233 break;
6234
6235 case CPU_DEAD:
6236 sched_domains_numa_masks_clear(cpu);
6237 break;
6238
6239 default:
6240 return NOTIFY_DONE;
6241 }
6242
6243 return NOTIFY_OK;
cb83b629
PZ
6244}
6245#else
6246static inline void sched_init_numa(void)
6247{
6248}
301a5cba
TC
6249
6250static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6251 unsigned long action,
6252 void *hcpu)
6253{
6254 return 0;
6255}
cb83b629
PZ
6256#endif /* CONFIG_NUMA */
6257
54ab4ff4
PZ
6258static int __sdt_alloc(const struct cpumask *cpu_map)
6259{
6260 struct sched_domain_topology_level *tl;
6261 int j;
6262
6263 for (tl = sched_domain_topology; tl->init; tl++) {
6264 struct sd_data *sdd = &tl->data;
6265
6266 sdd->sd = alloc_percpu(struct sched_domain *);
6267 if (!sdd->sd)
6268 return -ENOMEM;
6269
6270 sdd->sg = alloc_percpu(struct sched_group *);
6271 if (!sdd->sg)
6272 return -ENOMEM;
6273
9c3f75cb
PZ
6274 sdd->sgp = alloc_percpu(struct sched_group_power *);
6275 if (!sdd->sgp)
6276 return -ENOMEM;
6277
54ab4ff4
PZ
6278 for_each_cpu(j, cpu_map) {
6279 struct sched_domain *sd;
6280 struct sched_group *sg;
9c3f75cb 6281 struct sched_group_power *sgp;
54ab4ff4
PZ
6282
6283 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6284 GFP_KERNEL, cpu_to_node(j));
6285 if (!sd)
6286 return -ENOMEM;
6287
6288 *per_cpu_ptr(sdd->sd, j) = sd;
6289
6290 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6291 GFP_KERNEL, cpu_to_node(j));
6292 if (!sg)
6293 return -ENOMEM;
6294
30b4e9eb
IM
6295 sg->next = sg;
6296
54ab4ff4 6297 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6298
c1174876 6299 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6300 GFP_KERNEL, cpu_to_node(j));
6301 if (!sgp)
6302 return -ENOMEM;
6303
6304 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6305 }
6306 }
6307
6308 return 0;
6309}
6310
6311static void __sdt_free(const struct cpumask *cpu_map)
6312{
6313 struct sched_domain_topology_level *tl;
6314 int j;
6315
6316 for (tl = sched_domain_topology; tl->init; tl++) {
6317 struct sd_data *sdd = &tl->data;
6318
6319 for_each_cpu(j, cpu_map) {
fb2cf2c6 6320 struct sched_domain *sd;
6321
6322 if (sdd->sd) {
6323 sd = *per_cpu_ptr(sdd->sd, j);
6324 if (sd && (sd->flags & SD_OVERLAP))
6325 free_sched_groups(sd->groups, 0);
6326 kfree(*per_cpu_ptr(sdd->sd, j));
6327 }
6328
6329 if (sdd->sg)
6330 kfree(*per_cpu_ptr(sdd->sg, j));
6331 if (sdd->sgp)
6332 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6333 }
6334 free_percpu(sdd->sd);
fb2cf2c6 6335 sdd->sd = NULL;
54ab4ff4 6336 free_percpu(sdd->sg);
fb2cf2c6 6337 sdd->sg = NULL;
9c3f75cb 6338 free_percpu(sdd->sgp);
fb2cf2c6 6339 sdd->sgp = NULL;
54ab4ff4
PZ
6340 }
6341}
6342
2c402dc3
PZ
6343struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6344 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6345 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6346 int cpu)
6347{
54ab4ff4 6348 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6349 if (!sd)
d069b916 6350 return child;
2c402dc3 6351
2c402dc3 6352 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6353 if (child) {
6354 sd->level = child->level + 1;
6355 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6356 child->parent = sd;
60495e77 6357 }
d069b916 6358 sd->child = child;
a841f8ce 6359 set_domain_attribute(sd, attr);
2c402dc3
PZ
6360
6361 return sd;
6362}
6363
2109b99e
AH
6364/*
6365 * Build sched domains for a given set of cpus and attach the sched domains
6366 * to the individual cpus
6367 */
dce840a0
PZ
6368static int build_sched_domains(const struct cpumask *cpu_map,
6369 struct sched_domain_attr *attr)
2109b99e
AH
6370{
6371 enum s_alloc alloc_state = sa_none;
dce840a0 6372 struct sched_domain *sd;
2109b99e 6373 struct s_data d;
822ff793 6374 int i, ret = -ENOMEM;
9c1cfda2 6375
2109b99e
AH
6376 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6377 if (alloc_state != sa_rootdomain)
6378 goto error;
9c1cfda2 6379
dce840a0 6380 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6381 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6382 struct sched_domain_topology_level *tl;
6383
3bd65a80 6384 sd = NULL;
e3589f6c 6385 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6386 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6387 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6388 sd->flags |= SD_OVERLAP;
d110235d
PZ
6389 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6390 break;
e3589f6c 6391 }
d274cb30 6392
d069b916
PZ
6393 while (sd->child)
6394 sd = sd->child;
6395
21d42ccf 6396 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6397 }
6398
6399 /* Build the groups for the domains */
6400 for_each_cpu(i, cpu_map) {
6401 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6402 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6403 if (sd->flags & SD_OVERLAP) {
6404 if (build_overlap_sched_groups(sd, i))
6405 goto error;
6406 } else {
6407 if (build_sched_groups(sd, i))
6408 goto error;
6409 }
1cf51902 6410 }
a06dadbe 6411 }
9c1cfda2 6412
1da177e4 6413 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6414 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6415 if (!cpumask_test_cpu(i, cpu_map))
6416 continue;
9c1cfda2 6417
dce840a0
PZ
6418 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6419 claim_allocations(i, sd);
cd4ea6ae 6420 init_sched_groups_power(i, sd);
dce840a0 6421 }
f712c0c7 6422 }
9c1cfda2 6423
1da177e4 6424 /* Attach the domains */
dce840a0 6425 rcu_read_lock();
abcd083a 6426 for_each_cpu(i, cpu_map) {
21d42ccf 6427 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6428 cpu_attach_domain(sd, d.rd, i);
1da177e4 6429 }
dce840a0 6430 rcu_read_unlock();
51888ca2 6431
822ff793 6432 ret = 0;
51888ca2 6433error:
2109b99e 6434 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6435 return ret;
1da177e4 6436}
029190c5 6437
acc3f5d7 6438static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6439static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6440static struct sched_domain_attr *dattr_cur;
6441 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6442
6443/*
6444 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6445 * cpumask) fails, then fallback to a single sched domain,
6446 * as determined by the single cpumask fallback_doms.
029190c5 6447 */
4212823f 6448static cpumask_var_t fallback_doms;
029190c5 6449
ee79d1bd
HC
6450/*
6451 * arch_update_cpu_topology lets virtualized architectures update the
6452 * cpu core maps. It is supposed to return 1 if the topology changed
6453 * or 0 if it stayed the same.
6454 */
6455int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6456{
ee79d1bd 6457 return 0;
22e52b07
HC
6458}
6459
acc3f5d7
RR
6460cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6461{
6462 int i;
6463 cpumask_var_t *doms;
6464
6465 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6466 if (!doms)
6467 return NULL;
6468 for (i = 0; i < ndoms; i++) {
6469 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6470 free_sched_domains(doms, i);
6471 return NULL;
6472 }
6473 }
6474 return doms;
6475}
6476
6477void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6478{
6479 unsigned int i;
6480 for (i = 0; i < ndoms; i++)
6481 free_cpumask_var(doms[i]);
6482 kfree(doms);
6483}
6484
1a20ff27 6485/*
41a2d6cf 6486 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6487 * For now this just excludes isolated cpus, but could be used to
6488 * exclude other special cases in the future.
1a20ff27 6489 */
c4a8849a 6490static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6491{
7378547f
MM
6492 int err;
6493
22e52b07 6494 arch_update_cpu_topology();
029190c5 6495 ndoms_cur = 1;
acc3f5d7 6496 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6497 if (!doms_cur)
acc3f5d7
RR
6498 doms_cur = &fallback_doms;
6499 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6500 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6501 register_sched_domain_sysctl();
7378547f
MM
6502
6503 return err;
1a20ff27
DG
6504}
6505
1a20ff27
DG
6506/*
6507 * Detach sched domains from a group of cpus specified in cpu_map
6508 * These cpus will now be attached to the NULL domain
6509 */
96f874e2 6510static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6511{
6512 int i;
6513
dce840a0 6514 rcu_read_lock();
abcd083a 6515 for_each_cpu(i, cpu_map)
57d885fe 6516 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6517 rcu_read_unlock();
1a20ff27
DG
6518}
6519
1d3504fc
HS
6520/* handle null as "default" */
6521static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6522 struct sched_domain_attr *new, int idx_new)
6523{
6524 struct sched_domain_attr tmp;
6525
6526 /* fast path */
6527 if (!new && !cur)
6528 return 1;
6529
6530 tmp = SD_ATTR_INIT;
6531 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6532 new ? (new + idx_new) : &tmp,
6533 sizeof(struct sched_domain_attr));
6534}
6535
029190c5
PJ
6536/*
6537 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6538 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6539 * doms_new[] to the current sched domain partitioning, doms_cur[].
6540 * It destroys each deleted domain and builds each new domain.
6541 *
acc3f5d7 6542 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6543 * The masks don't intersect (don't overlap.) We should setup one
6544 * sched domain for each mask. CPUs not in any of the cpumasks will
6545 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6546 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6547 * it as it is.
6548 *
acc3f5d7
RR
6549 * The passed in 'doms_new' should be allocated using
6550 * alloc_sched_domains. This routine takes ownership of it and will
6551 * free_sched_domains it when done with it. If the caller failed the
6552 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6553 * and partition_sched_domains() will fallback to the single partition
6554 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6555 *
96f874e2 6556 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6557 * ndoms_new == 0 is a special case for destroying existing domains,
6558 * and it will not create the default domain.
dfb512ec 6559 *
029190c5
PJ
6560 * Call with hotplug lock held
6561 */
acc3f5d7 6562void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6563 struct sched_domain_attr *dattr_new)
029190c5 6564{
dfb512ec 6565 int i, j, n;
d65bd5ec 6566 int new_topology;
029190c5 6567
712555ee 6568 mutex_lock(&sched_domains_mutex);
a1835615 6569
7378547f
MM
6570 /* always unregister in case we don't destroy any domains */
6571 unregister_sched_domain_sysctl();
6572
d65bd5ec
HC
6573 /* Let architecture update cpu core mappings. */
6574 new_topology = arch_update_cpu_topology();
6575
dfb512ec 6576 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6577
6578 /* Destroy deleted domains */
6579 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6580 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6581 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6582 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6583 goto match1;
6584 }
6585 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6586 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6587match1:
6588 ;
6589 }
6590
e761b772
MK
6591 if (doms_new == NULL) {
6592 ndoms_cur = 0;
acc3f5d7 6593 doms_new = &fallback_doms;
6ad4c188 6594 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6595 WARN_ON_ONCE(dattr_new);
e761b772
MK
6596 }
6597
029190c5
PJ
6598 /* Build new domains */
6599 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6600 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6601 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6602 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6603 goto match2;
6604 }
6605 /* no match - add a new doms_new */
dce840a0 6606 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6607match2:
6608 ;
6609 }
6610
6611 /* Remember the new sched domains */
acc3f5d7
RR
6612 if (doms_cur != &fallback_doms)
6613 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6614 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6615 doms_cur = doms_new;
1d3504fc 6616 dattr_cur = dattr_new;
029190c5 6617 ndoms_cur = ndoms_new;
7378547f
MM
6618
6619 register_sched_domain_sysctl();
a1835615 6620
712555ee 6621 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6622}
6623
d35be8ba
SB
6624static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6625
1da177e4 6626/*
3a101d05
TH
6627 * Update cpusets according to cpu_active mask. If cpusets are
6628 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6629 * around partition_sched_domains().
d35be8ba
SB
6630 *
6631 * If we come here as part of a suspend/resume, don't touch cpusets because we
6632 * want to restore it back to its original state upon resume anyway.
1da177e4 6633 */
0b2e918a
TH
6634static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6635 void *hcpu)
e761b772 6636{
d35be8ba
SB
6637 switch (action) {
6638 case CPU_ONLINE_FROZEN:
6639 case CPU_DOWN_FAILED_FROZEN:
6640
6641 /*
6642 * num_cpus_frozen tracks how many CPUs are involved in suspend
6643 * resume sequence. As long as this is not the last online
6644 * operation in the resume sequence, just build a single sched
6645 * domain, ignoring cpusets.
6646 */
6647 num_cpus_frozen--;
6648 if (likely(num_cpus_frozen)) {
6649 partition_sched_domains(1, NULL, NULL);
6650 break;
6651 }
6652
6653 /*
6654 * This is the last CPU online operation. So fall through and
6655 * restore the original sched domains by considering the
6656 * cpuset configurations.
6657 */
6658
e761b772 6659 case CPU_ONLINE:
6ad4c188 6660 case CPU_DOWN_FAILED:
7ddf96b0 6661 cpuset_update_active_cpus(true);
d35be8ba 6662 break;
3a101d05
TH
6663 default:
6664 return NOTIFY_DONE;
6665 }
d35be8ba 6666 return NOTIFY_OK;
3a101d05 6667}
e761b772 6668
0b2e918a
TH
6669static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6670 void *hcpu)
3a101d05 6671{
d35be8ba 6672 switch (action) {
3a101d05 6673 case CPU_DOWN_PREPARE:
7ddf96b0 6674 cpuset_update_active_cpus(false);
d35be8ba
SB
6675 break;
6676 case CPU_DOWN_PREPARE_FROZEN:
6677 num_cpus_frozen++;
6678 partition_sched_domains(1, NULL, NULL);
6679 break;
e761b772
MK
6680 default:
6681 return NOTIFY_DONE;
6682 }
d35be8ba 6683 return NOTIFY_OK;
e761b772 6684}
e761b772 6685
1da177e4
LT
6686void __init sched_init_smp(void)
6687{
dcc30a35
RR
6688 cpumask_var_t non_isolated_cpus;
6689
6690 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6691 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6692
cb83b629
PZ
6693 sched_init_numa();
6694
95402b38 6695 get_online_cpus();
712555ee 6696 mutex_lock(&sched_domains_mutex);
c4a8849a 6697 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6698 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6699 if (cpumask_empty(non_isolated_cpus))
6700 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6701 mutex_unlock(&sched_domains_mutex);
95402b38 6702 put_online_cpus();
e761b772 6703
301a5cba 6704 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6705 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6706 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6707
6708 /* RT runtime code needs to handle some hotplug events */
6709 hotcpu_notifier(update_runtime, 0);
6710
b328ca18 6711 init_hrtick();
5c1e1767
NP
6712
6713 /* Move init over to a non-isolated CPU */
dcc30a35 6714 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6715 BUG();
19978ca6 6716 sched_init_granularity();
dcc30a35 6717 free_cpumask_var(non_isolated_cpus);
4212823f 6718
0e3900e6 6719 init_sched_rt_class();
1da177e4
LT
6720}
6721#else
6722void __init sched_init_smp(void)
6723{
19978ca6 6724 sched_init_granularity();
1da177e4
LT
6725}
6726#endif /* CONFIG_SMP */
6727
cd1bb94b
AB
6728const_debug unsigned int sysctl_timer_migration = 1;
6729
1da177e4
LT
6730int in_sched_functions(unsigned long addr)
6731{
1da177e4
LT
6732 return in_lock_functions(addr) ||
6733 (addr >= (unsigned long)__sched_text_start
6734 && addr < (unsigned long)__sched_text_end);
6735}
6736
029632fb
PZ
6737#ifdef CONFIG_CGROUP_SCHED
6738struct task_group root_task_group;
35cf4e50 6739LIST_HEAD(task_groups);
052f1dc7 6740#endif
6f505b16 6741
029632fb 6742DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6743
1da177e4
LT
6744void __init sched_init(void)
6745{
dd41f596 6746 int i, j;
434d53b0
MT
6747 unsigned long alloc_size = 0, ptr;
6748
6749#ifdef CONFIG_FAIR_GROUP_SCHED
6750 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6751#endif
6752#ifdef CONFIG_RT_GROUP_SCHED
6753 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6754#endif
df7c8e84 6755#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6756 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6757#endif
434d53b0 6758 if (alloc_size) {
36b7b6d4 6759 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6760
6761#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6762 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6763 ptr += nr_cpu_ids * sizeof(void **);
6764
07e06b01 6765 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6766 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6767
6d6bc0ad 6768#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6769#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6770 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6771 ptr += nr_cpu_ids * sizeof(void **);
6772
07e06b01 6773 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6774 ptr += nr_cpu_ids * sizeof(void **);
6775
6d6bc0ad 6776#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6777#ifdef CONFIG_CPUMASK_OFFSTACK
6778 for_each_possible_cpu(i) {
6779 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6780 ptr += cpumask_size();
6781 }
6782#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6783 }
dd41f596 6784
57d885fe
GH
6785#ifdef CONFIG_SMP
6786 init_defrootdomain();
6787#endif
6788
d0b27fa7
PZ
6789 init_rt_bandwidth(&def_rt_bandwidth,
6790 global_rt_period(), global_rt_runtime());
6791
6792#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6793 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6794 global_rt_period(), global_rt_runtime());
6d6bc0ad 6795#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6796
7c941438 6797#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6798 list_add(&root_task_group.list, &task_groups);
6799 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6800 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6801 autogroup_init(&init_task);
54c707e9 6802
7c941438 6803#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6804
54c707e9
GC
6805#ifdef CONFIG_CGROUP_CPUACCT
6806 root_cpuacct.cpustat = &kernel_cpustat;
6807 root_cpuacct.cpuusage = alloc_percpu(u64);
6808 /* Too early, not expected to fail */
6809 BUG_ON(!root_cpuacct.cpuusage);
6810#endif
0a945022 6811 for_each_possible_cpu(i) {
70b97a7f 6812 struct rq *rq;
1da177e4
LT
6813
6814 rq = cpu_rq(i);
05fa785c 6815 raw_spin_lock_init(&rq->lock);
7897986b 6816 rq->nr_running = 0;
dce48a84
TG
6817 rq->calc_load_active = 0;
6818 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6819 init_cfs_rq(&rq->cfs);
6f505b16 6820 init_rt_rq(&rq->rt, rq);
dd41f596 6821#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6822 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6823 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6824 /*
07e06b01 6825 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6826 *
6827 * In case of task-groups formed thr' the cgroup filesystem, it
6828 * gets 100% of the cpu resources in the system. This overall
6829 * system cpu resource is divided among the tasks of
07e06b01 6830 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6831 * based on each entity's (task or task-group's) weight
6832 * (se->load.weight).
6833 *
07e06b01 6834 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6835 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6836 * then A0's share of the cpu resource is:
6837 *
0d905bca 6838 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6839 *
07e06b01
YZ
6840 * We achieve this by letting root_task_group's tasks sit
6841 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6842 */
ab84d31e 6843 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6844 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6845#endif /* CONFIG_FAIR_GROUP_SCHED */
6846
6847 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6848#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6849 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6850 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6851#endif
1da177e4 6852
dd41f596
IM
6853 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6854 rq->cpu_load[j] = 0;
fdf3e95d
VP
6855
6856 rq->last_load_update_tick = jiffies;
6857
1da177e4 6858#ifdef CONFIG_SMP
41c7ce9a 6859 rq->sd = NULL;
57d885fe 6860 rq->rd = NULL;
1399fa78 6861 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6862 rq->post_schedule = 0;
1da177e4 6863 rq->active_balance = 0;
dd41f596 6864 rq->next_balance = jiffies;
1da177e4 6865 rq->push_cpu = 0;
0a2966b4 6866 rq->cpu = i;
1f11eb6a 6867 rq->online = 0;
eae0c9df
MG
6868 rq->idle_stamp = 0;
6869 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6870
6871 INIT_LIST_HEAD(&rq->cfs_tasks);
6872
dc938520 6873 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6874#ifdef CONFIG_NO_HZ
1c792db7 6875 rq->nohz_flags = 0;
83cd4fe2 6876#endif
1da177e4 6877#endif
8f4d37ec 6878 init_rq_hrtick(rq);
1da177e4 6879 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6880 }
6881
2dd73a4f 6882 set_load_weight(&init_task);
b50f60ce 6883
e107be36
AK
6884#ifdef CONFIG_PREEMPT_NOTIFIERS
6885 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6886#endif
6887
b50f60ce 6888#ifdef CONFIG_RT_MUTEXES
732375c6 6889 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6890#endif
6891
1da177e4
LT
6892 /*
6893 * The boot idle thread does lazy MMU switching as well:
6894 */
6895 atomic_inc(&init_mm.mm_count);
6896 enter_lazy_tlb(&init_mm, current);
6897
6898 /*
6899 * Make us the idle thread. Technically, schedule() should not be
6900 * called from this thread, however somewhere below it might be,
6901 * but because we are the idle thread, we just pick up running again
6902 * when this runqueue becomes "idle".
6903 */
6904 init_idle(current, smp_processor_id());
dce48a84
TG
6905
6906 calc_load_update = jiffies + LOAD_FREQ;
6907
dd41f596
IM
6908 /*
6909 * During early bootup we pretend to be a normal task:
6910 */
6911 current->sched_class = &fair_sched_class;
6892b75e 6912
bf4d83f6 6913#ifdef CONFIG_SMP
4cb98839 6914 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6915 /* May be allocated at isolcpus cmdline parse time */
6916 if (cpu_isolated_map == NULL)
6917 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6918 idle_thread_set_boot_cpu();
029632fb
PZ
6919#endif
6920 init_sched_fair_class();
6a7b3dc3 6921
6892b75e 6922 scheduler_running = 1;
1da177e4
LT
6923}
6924
d902db1e 6925#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6926static inline int preempt_count_equals(int preempt_offset)
6927{
234da7bc 6928 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6929
4ba8216c 6930 return (nested == preempt_offset);
e4aafea2
FW
6931}
6932
d894837f 6933void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6934{
1da177e4
LT
6935 static unsigned long prev_jiffy; /* ratelimiting */
6936
b3fbab05 6937 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6938 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6939 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6940 return;
6941 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6942 return;
6943 prev_jiffy = jiffies;
6944
3df0fc5b
PZ
6945 printk(KERN_ERR
6946 "BUG: sleeping function called from invalid context at %s:%d\n",
6947 file, line);
6948 printk(KERN_ERR
6949 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6950 in_atomic(), irqs_disabled(),
6951 current->pid, current->comm);
aef745fc
IM
6952
6953 debug_show_held_locks(current);
6954 if (irqs_disabled())
6955 print_irqtrace_events(current);
6956 dump_stack();
1da177e4
LT
6957}
6958EXPORT_SYMBOL(__might_sleep);
6959#endif
6960
6961#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6962static void normalize_task(struct rq *rq, struct task_struct *p)
6963{
da7a735e
PZ
6964 const struct sched_class *prev_class = p->sched_class;
6965 int old_prio = p->prio;
3a5e4dc1 6966 int on_rq;
3e51f33f 6967
fd2f4419 6968 on_rq = p->on_rq;
3a5e4dc1 6969 if (on_rq)
4ca9b72b 6970 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6971 __setscheduler(rq, p, SCHED_NORMAL, 0);
6972 if (on_rq) {
4ca9b72b 6973 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6974 resched_task(rq->curr);
6975 }
da7a735e
PZ
6976
6977 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6978}
6979
1da177e4
LT
6980void normalize_rt_tasks(void)
6981{
a0f98a1c 6982 struct task_struct *g, *p;
1da177e4 6983 unsigned long flags;
70b97a7f 6984 struct rq *rq;
1da177e4 6985
4cf5d77a 6986 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6987 do_each_thread(g, p) {
178be793
IM
6988 /*
6989 * Only normalize user tasks:
6990 */
6991 if (!p->mm)
6992 continue;
6993
6cfb0d5d 6994 p->se.exec_start = 0;
6cfb0d5d 6995#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6996 p->se.statistics.wait_start = 0;
6997 p->se.statistics.sleep_start = 0;
6998 p->se.statistics.block_start = 0;
6cfb0d5d 6999#endif
dd41f596
IM
7000
7001 if (!rt_task(p)) {
7002 /*
7003 * Renice negative nice level userspace
7004 * tasks back to 0:
7005 */
7006 if (TASK_NICE(p) < 0 && p->mm)
7007 set_user_nice(p, 0);
1da177e4 7008 continue;
dd41f596 7009 }
1da177e4 7010
1d615482 7011 raw_spin_lock(&p->pi_lock);
b29739f9 7012 rq = __task_rq_lock(p);
1da177e4 7013
178be793 7014 normalize_task(rq, p);
3a5e4dc1 7015
b29739f9 7016 __task_rq_unlock(rq);
1d615482 7017 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7018 } while_each_thread(g, p);
7019
4cf5d77a 7020 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7021}
7022
7023#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7024
67fc4e0c 7025#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7026/*
67fc4e0c 7027 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7028 *
7029 * They can only be called when the whole system has been
7030 * stopped - every CPU needs to be quiescent, and no scheduling
7031 * activity can take place. Using them for anything else would
7032 * be a serious bug, and as a result, they aren't even visible
7033 * under any other configuration.
7034 */
7035
7036/**
7037 * curr_task - return the current task for a given cpu.
7038 * @cpu: the processor in question.
7039 *
7040 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7041 */
36c8b586 7042struct task_struct *curr_task(int cpu)
1df5c10a
LT
7043{
7044 return cpu_curr(cpu);
7045}
7046
67fc4e0c
JW
7047#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7048
7049#ifdef CONFIG_IA64
1df5c10a
LT
7050/**
7051 * set_curr_task - set the current task for a given cpu.
7052 * @cpu: the processor in question.
7053 * @p: the task pointer to set.
7054 *
7055 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7056 * are serviced on a separate stack. It allows the architecture to switch the
7057 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7058 * must be called with all CPU's synchronized, and interrupts disabled, the
7059 * and caller must save the original value of the current task (see
7060 * curr_task() above) and restore that value before reenabling interrupts and
7061 * re-starting the system.
7062 *
7063 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7064 */
36c8b586 7065void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7066{
7067 cpu_curr(cpu) = p;
7068}
7069
7070#endif
29f59db3 7071
7c941438 7072#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7073/* task_group_lock serializes the addition/removal of task groups */
7074static DEFINE_SPINLOCK(task_group_lock);
7075
bccbe08a
PZ
7076static void free_sched_group(struct task_group *tg)
7077{
7078 free_fair_sched_group(tg);
7079 free_rt_sched_group(tg);
e9aa1dd1 7080 autogroup_free(tg);
bccbe08a
PZ
7081 kfree(tg);
7082}
7083
7084/* allocate runqueue etc for a new task group */
ec7dc8ac 7085struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7086{
7087 struct task_group *tg;
7088 unsigned long flags;
bccbe08a
PZ
7089
7090 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7091 if (!tg)
7092 return ERR_PTR(-ENOMEM);
7093
ec7dc8ac 7094 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7095 goto err;
7096
ec7dc8ac 7097 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7098 goto err;
7099
8ed36996 7100 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7101 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7102
7103 WARN_ON(!parent); /* root should already exist */
7104
7105 tg->parent = parent;
f473aa5e 7106 INIT_LIST_HEAD(&tg->children);
09f2724a 7107 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7108 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7109
9b5b7751 7110 return tg;
29f59db3
SV
7111
7112err:
6f505b16 7113 free_sched_group(tg);
29f59db3
SV
7114 return ERR_PTR(-ENOMEM);
7115}
7116
9b5b7751 7117/* rcu callback to free various structures associated with a task group */
6f505b16 7118static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7119{
29f59db3 7120 /* now it should be safe to free those cfs_rqs */
6f505b16 7121 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7122}
7123
9b5b7751 7124/* Destroy runqueue etc associated with a task group */
4cf86d77 7125void sched_destroy_group(struct task_group *tg)
29f59db3 7126{
8ed36996 7127 unsigned long flags;
9b5b7751 7128 int i;
29f59db3 7129
3d4b47b4
PZ
7130 /* end participation in shares distribution */
7131 for_each_possible_cpu(i)
bccbe08a 7132 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7133
7134 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7135 list_del_rcu(&tg->list);
f473aa5e 7136 list_del_rcu(&tg->siblings);
8ed36996 7137 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7138
9b5b7751 7139 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7140 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7141}
7142
9b5b7751 7143/* change task's runqueue when it moves between groups.
3a252015
IM
7144 * The caller of this function should have put the task in its new group
7145 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7146 * reflect its new group.
9b5b7751
SV
7147 */
7148void sched_move_task(struct task_struct *tsk)
29f59db3 7149{
8323f26c 7150 struct task_group *tg;
29f59db3
SV
7151 int on_rq, running;
7152 unsigned long flags;
7153 struct rq *rq;
7154
7155 rq = task_rq_lock(tsk, &flags);
7156
051a1d1a 7157 running = task_current(rq, tsk);
fd2f4419 7158 on_rq = tsk->on_rq;
29f59db3 7159
0e1f3483 7160 if (on_rq)
29f59db3 7161 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7162 if (unlikely(running))
7163 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7164
8323f26c
PZ
7165 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7166 lockdep_is_held(&tsk->sighand->siglock)),
7167 struct task_group, css);
7168 tg = autogroup_task_group(tsk, tg);
7169 tsk->sched_task_group = tg;
7170
810b3817 7171#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7172 if (tsk->sched_class->task_move_group)
7173 tsk->sched_class->task_move_group(tsk, on_rq);
7174 else
810b3817 7175#endif
b2b5ce02 7176 set_task_rq(tsk, task_cpu(tsk));
810b3817 7177
0e1f3483
HS
7178 if (unlikely(running))
7179 tsk->sched_class->set_curr_task(rq);
7180 if (on_rq)
371fd7e7 7181 enqueue_task(rq, tsk, 0);
29f59db3 7182
0122ec5b 7183 task_rq_unlock(rq, tsk, &flags);
29f59db3 7184}
7c941438 7185#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7186
a790de99 7187#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7188static unsigned long to_ratio(u64 period, u64 runtime)
7189{
7190 if (runtime == RUNTIME_INF)
9a7e0b18 7191 return 1ULL << 20;
9f0c1e56 7192
9a7e0b18 7193 return div64_u64(runtime << 20, period);
9f0c1e56 7194}
a790de99
PT
7195#endif
7196
7197#ifdef CONFIG_RT_GROUP_SCHED
7198/*
7199 * Ensure that the real time constraints are schedulable.
7200 */
7201static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7202
9a7e0b18
PZ
7203/* Must be called with tasklist_lock held */
7204static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7205{
9a7e0b18 7206 struct task_struct *g, *p;
b40b2e8e 7207
9a7e0b18 7208 do_each_thread(g, p) {
029632fb 7209 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7210 return 1;
7211 } while_each_thread(g, p);
b40b2e8e 7212
9a7e0b18
PZ
7213 return 0;
7214}
b40b2e8e 7215
9a7e0b18
PZ
7216struct rt_schedulable_data {
7217 struct task_group *tg;
7218 u64 rt_period;
7219 u64 rt_runtime;
7220};
b40b2e8e 7221
a790de99 7222static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7223{
7224 struct rt_schedulable_data *d = data;
7225 struct task_group *child;
7226 unsigned long total, sum = 0;
7227 u64 period, runtime;
b40b2e8e 7228
9a7e0b18
PZ
7229 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7230 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7231
9a7e0b18
PZ
7232 if (tg == d->tg) {
7233 period = d->rt_period;
7234 runtime = d->rt_runtime;
b40b2e8e 7235 }
b40b2e8e 7236
4653f803
PZ
7237 /*
7238 * Cannot have more runtime than the period.
7239 */
7240 if (runtime > period && runtime != RUNTIME_INF)
7241 return -EINVAL;
6f505b16 7242
4653f803
PZ
7243 /*
7244 * Ensure we don't starve existing RT tasks.
7245 */
9a7e0b18
PZ
7246 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7247 return -EBUSY;
6f505b16 7248
9a7e0b18 7249 total = to_ratio(period, runtime);
6f505b16 7250
4653f803
PZ
7251 /*
7252 * Nobody can have more than the global setting allows.
7253 */
7254 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7255 return -EINVAL;
6f505b16 7256
4653f803
PZ
7257 /*
7258 * The sum of our children's runtime should not exceed our own.
7259 */
9a7e0b18
PZ
7260 list_for_each_entry_rcu(child, &tg->children, siblings) {
7261 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7262 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7263
9a7e0b18
PZ
7264 if (child == d->tg) {
7265 period = d->rt_period;
7266 runtime = d->rt_runtime;
7267 }
6f505b16 7268
9a7e0b18 7269 sum += to_ratio(period, runtime);
9f0c1e56 7270 }
6f505b16 7271
9a7e0b18
PZ
7272 if (sum > total)
7273 return -EINVAL;
7274
7275 return 0;
6f505b16
PZ
7276}
7277
9a7e0b18 7278static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7279{
8277434e
PT
7280 int ret;
7281
9a7e0b18
PZ
7282 struct rt_schedulable_data data = {
7283 .tg = tg,
7284 .rt_period = period,
7285 .rt_runtime = runtime,
7286 };
7287
8277434e
PT
7288 rcu_read_lock();
7289 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7290 rcu_read_unlock();
7291
7292 return ret;
521f1a24
DG
7293}
7294
ab84d31e 7295static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7296 u64 rt_period, u64 rt_runtime)
6f505b16 7297{
ac086bc2 7298 int i, err = 0;
9f0c1e56 7299
9f0c1e56 7300 mutex_lock(&rt_constraints_mutex);
521f1a24 7301 read_lock(&tasklist_lock);
9a7e0b18
PZ
7302 err = __rt_schedulable(tg, rt_period, rt_runtime);
7303 if (err)
9f0c1e56 7304 goto unlock;
ac086bc2 7305
0986b11b 7306 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7307 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7308 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7309
7310 for_each_possible_cpu(i) {
7311 struct rt_rq *rt_rq = tg->rt_rq[i];
7312
0986b11b 7313 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7314 rt_rq->rt_runtime = rt_runtime;
0986b11b 7315 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7316 }
0986b11b 7317 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7318unlock:
521f1a24 7319 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7320 mutex_unlock(&rt_constraints_mutex);
7321
7322 return err;
6f505b16
PZ
7323}
7324
d0b27fa7
PZ
7325int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7326{
7327 u64 rt_runtime, rt_period;
7328
7329 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7330 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7331 if (rt_runtime_us < 0)
7332 rt_runtime = RUNTIME_INF;
7333
ab84d31e 7334 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7335}
7336
9f0c1e56
PZ
7337long sched_group_rt_runtime(struct task_group *tg)
7338{
7339 u64 rt_runtime_us;
7340
d0b27fa7 7341 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7342 return -1;
7343
d0b27fa7 7344 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7345 do_div(rt_runtime_us, NSEC_PER_USEC);
7346 return rt_runtime_us;
7347}
d0b27fa7
PZ
7348
7349int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7350{
7351 u64 rt_runtime, rt_period;
7352
7353 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7354 rt_runtime = tg->rt_bandwidth.rt_runtime;
7355
619b0488
R
7356 if (rt_period == 0)
7357 return -EINVAL;
7358
ab84d31e 7359 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7360}
7361
7362long sched_group_rt_period(struct task_group *tg)
7363{
7364 u64 rt_period_us;
7365
7366 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7367 do_div(rt_period_us, NSEC_PER_USEC);
7368 return rt_period_us;
7369}
7370
7371static int sched_rt_global_constraints(void)
7372{
4653f803 7373 u64 runtime, period;
d0b27fa7
PZ
7374 int ret = 0;
7375
ec5d4989
HS
7376 if (sysctl_sched_rt_period <= 0)
7377 return -EINVAL;
7378
4653f803
PZ
7379 runtime = global_rt_runtime();
7380 period = global_rt_period();
7381
7382 /*
7383 * Sanity check on the sysctl variables.
7384 */
7385 if (runtime > period && runtime != RUNTIME_INF)
7386 return -EINVAL;
10b612f4 7387
d0b27fa7 7388 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7389 read_lock(&tasklist_lock);
4653f803 7390 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7391 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7392 mutex_unlock(&rt_constraints_mutex);
7393
7394 return ret;
7395}
54e99124
DG
7396
7397int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7398{
7399 /* Don't accept realtime tasks when there is no way for them to run */
7400 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7401 return 0;
7402
7403 return 1;
7404}
7405
6d6bc0ad 7406#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7407static int sched_rt_global_constraints(void)
7408{
ac086bc2
PZ
7409 unsigned long flags;
7410 int i;
7411
ec5d4989
HS
7412 if (sysctl_sched_rt_period <= 0)
7413 return -EINVAL;
7414
60aa605d
PZ
7415 /*
7416 * There's always some RT tasks in the root group
7417 * -- migration, kstopmachine etc..
7418 */
7419 if (sysctl_sched_rt_runtime == 0)
7420 return -EBUSY;
7421
0986b11b 7422 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7423 for_each_possible_cpu(i) {
7424 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7425
0986b11b 7426 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7427 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7428 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7429 }
0986b11b 7430 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7431
d0b27fa7
PZ
7432 return 0;
7433}
6d6bc0ad 7434#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7435
7436int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7437 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7438 loff_t *ppos)
7439{
7440 int ret;
7441 int old_period, old_runtime;
7442 static DEFINE_MUTEX(mutex);
7443
7444 mutex_lock(&mutex);
7445 old_period = sysctl_sched_rt_period;
7446 old_runtime = sysctl_sched_rt_runtime;
7447
8d65af78 7448 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7449
7450 if (!ret && write) {
7451 ret = sched_rt_global_constraints();
7452 if (ret) {
7453 sysctl_sched_rt_period = old_period;
7454 sysctl_sched_rt_runtime = old_runtime;
7455 } else {
7456 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7457 def_rt_bandwidth.rt_period =
7458 ns_to_ktime(global_rt_period());
7459 }
7460 }
7461 mutex_unlock(&mutex);
7462
7463 return ret;
7464}
68318b8e 7465
052f1dc7 7466#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7467
7468/* return corresponding task_group object of a cgroup */
2b01dfe3 7469static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7470{
2b01dfe3
PM
7471 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7472 struct task_group, css);
68318b8e
SV
7473}
7474
761b3ef5 7475static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7476{
ec7dc8ac 7477 struct task_group *tg, *parent;
68318b8e 7478
2b01dfe3 7479 if (!cgrp->parent) {
68318b8e 7480 /* This is early initialization for the top cgroup */
07e06b01 7481 return &root_task_group.css;
68318b8e
SV
7482 }
7483
ec7dc8ac
DG
7484 parent = cgroup_tg(cgrp->parent);
7485 tg = sched_create_group(parent);
68318b8e
SV
7486 if (IS_ERR(tg))
7487 return ERR_PTR(-ENOMEM);
7488
68318b8e
SV
7489 return &tg->css;
7490}
7491
761b3ef5 7492static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7493{
2b01dfe3 7494 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7495
7496 sched_destroy_group(tg);
7497}
7498
761b3ef5 7499static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7500 struct cgroup_taskset *tset)
68318b8e 7501{
bb9d97b6
TH
7502 struct task_struct *task;
7503
7504 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7505#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7506 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7507 return -EINVAL;
b68aa230 7508#else
bb9d97b6
TH
7509 /* We don't support RT-tasks being in separate groups */
7510 if (task->sched_class != &fair_sched_class)
7511 return -EINVAL;
b68aa230 7512#endif
bb9d97b6 7513 }
be367d09
BB
7514 return 0;
7515}
68318b8e 7516
761b3ef5 7517static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7518 struct cgroup_taskset *tset)
68318b8e 7519{
bb9d97b6
TH
7520 struct task_struct *task;
7521
7522 cgroup_taskset_for_each(task, cgrp, tset)
7523 sched_move_task(task);
68318b8e
SV
7524}
7525
068c5cc5 7526static void
761b3ef5
LZ
7527cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7528 struct task_struct *task)
068c5cc5
PZ
7529{
7530 /*
7531 * cgroup_exit() is called in the copy_process() failure path.
7532 * Ignore this case since the task hasn't ran yet, this avoids
7533 * trying to poke a half freed task state from generic code.
7534 */
7535 if (!(task->flags & PF_EXITING))
7536 return;
7537
7538 sched_move_task(task);
7539}
7540
052f1dc7 7541#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7542static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7543 u64 shareval)
68318b8e 7544{
c8b28116 7545 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7546}
7547
f4c753b7 7548static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7549{
2b01dfe3 7550 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7551
c8b28116 7552 return (u64) scale_load_down(tg->shares);
68318b8e 7553}
ab84d31e
PT
7554
7555#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7556static DEFINE_MUTEX(cfs_constraints_mutex);
7557
ab84d31e
PT
7558const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7559const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7560
a790de99
PT
7561static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7562
ab84d31e
PT
7563static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7564{
56f570e5 7565 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7566 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7567
7568 if (tg == &root_task_group)
7569 return -EINVAL;
7570
7571 /*
7572 * Ensure we have at some amount of bandwidth every period. This is
7573 * to prevent reaching a state of large arrears when throttled via
7574 * entity_tick() resulting in prolonged exit starvation.
7575 */
7576 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7577 return -EINVAL;
7578
7579 /*
7580 * Likewise, bound things on the otherside by preventing insane quota
7581 * periods. This also allows us to normalize in computing quota
7582 * feasibility.
7583 */
7584 if (period > max_cfs_quota_period)
7585 return -EINVAL;
7586
a790de99
PT
7587 mutex_lock(&cfs_constraints_mutex);
7588 ret = __cfs_schedulable(tg, period, quota);
7589 if (ret)
7590 goto out_unlock;
7591
58088ad0 7592 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7593 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7594 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7595 raw_spin_lock_irq(&cfs_b->lock);
7596 cfs_b->period = ns_to_ktime(period);
7597 cfs_b->quota = quota;
58088ad0 7598
a9cf55b2 7599 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7600 /* restart the period timer (if active) to handle new period expiry */
7601 if (runtime_enabled && cfs_b->timer_active) {
7602 /* force a reprogram */
7603 cfs_b->timer_active = 0;
7604 __start_cfs_bandwidth(cfs_b);
7605 }
ab84d31e
PT
7606 raw_spin_unlock_irq(&cfs_b->lock);
7607
7608 for_each_possible_cpu(i) {
7609 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7610 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7611
7612 raw_spin_lock_irq(&rq->lock);
58088ad0 7613 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7614 cfs_rq->runtime_remaining = 0;
671fd9da 7615
029632fb 7616 if (cfs_rq->throttled)
671fd9da 7617 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7618 raw_spin_unlock_irq(&rq->lock);
7619 }
a790de99
PT
7620out_unlock:
7621 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7622
a790de99 7623 return ret;
ab84d31e
PT
7624}
7625
7626int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7627{
7628 u64 quota, period;
7629
029632fb 7630 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7631 if (cfs_quota_us < 0)
7632 quota = RUNTIME_INF;
7633 else
7634 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7635
7636 return tg_set_cfs_bandwidth(tg, period, quota);
7637}
7638
7639long tg_get_cfs_quota(struct task_group *tg)
7640{
7641 u64 quota_us;
7642
029632fb 7643 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7644 return -1;
7645
029632fb 7646 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7647 do_div(quota_us, NSEC_PER_USEC);
7648
7649 return quota_us;
7650}
7651
7652int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7653{
7654 u64 quota, period;
7655
7656 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7657 quota = tg->cfs_bandwidth.quota;
ab84d31e 7658
ab84d31e
PT
7659 return tg_set_cfs_bandwidth(tg, period, quota);
7660}
7661
7662long tg_get_cfs_period(struct task_group *tg)
7663{
7664 u64 cfs_period_us;
7665
029632fb 7666 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7667 do_div(cfs_period_us, NSEC_PER_USEC);
7668
7669 return cfs_period_us;
7670}
7671
7672static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7673{
7674 return tg_get_cfs_quota(cgroup_tg(cgrp));
7675}
7676
7677static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7678 s64 cfs_quota_us)
7679{
7680 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7681}
7682
7683static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7684{
7685 return tg_get_cfs_period(cgroup_tg(cgrp));
7686}
7687
7688static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7689 u64 cfs_period_us)
7690{
7691 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7692}
7693
a790de99
PT
7694struct cfs_schedulable_data {
7695 struct task_group *tg;
7696 u64 period, quota;
7697};
7698
7699/*
7700 * normalize group quota/period to be quota/max_period
7701 * note: units are usecs
7702 */
7703static u64 normalize_cfs_quota(struct task_group *tg,
7704 struct cfs_schedulable_data *d)
7705{
7706 u64 quota, period;
7707
7708 if (tg == d->tg) {
7709 period = d->period;
7710 quota = d->quota;
7711 } else {
7712 period = tg_get_cfs_period(tg);
7713 quota = tg_get_cfs_quota(tg);
7714 }
7715
7716 /* note: these should typically be equivalent */
7717 if (quota == RUNTIME_INF || quota == -1)
7718 return RUNTIME_INF;
7719
7720 return to_ratio(period, quota);
7721}
7722
7723static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7724{
7725 struct cfs_schedulable_data *d = data;
029632fb 7726 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7727 s64 quota = 0, parent_quota = -1;
7728
7729 if (!tg->parent) {
7730 quota = RUNTIME_INF;
7731 } else {
029632fb 7732 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7733
7734 quota = normalize_cfs_quota(tg, d);
7735 parent_quota = parent_b->hierarchal_quota;
7736
7737 /*
7738 * ensure max(child_quota) <= parent_quota, inherit when no
7739 * limit is set
7740 */
7741 if (quota == RUNTIME_INF)
7742 quota = parent_quota;
7743 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7744 return -EINVAL;
7745 }
7746 cfs_b->hierarchal_quota = quota;
7747
7748 return 0;
7749}
7750
7751static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7752{
8277434e 7753 int ret;
a790de99
PT
7754 struct cfs_schedulable_data data = {
7755 .tg = tg,
7756 .period = period,
7757 .quota = quota,
7758 };
7759
7760 if (quota != RUNTIME_INF) {
7761 do_div(data.period, NSEC_PER_USEC);
7762 do_div(data.quota, NSEC_PER_USEC);
7763 }
7764
8277434e
PT
7765 rcu_read_lock();
7766 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7767 rcu_read_unlock();
7768
7769 return ret;
a790de99 7770}
e8da1b18
NR
7771
7772static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7773 struct cgroup_map_cb *cb)
7774{
7775 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7776 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7777
7778 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7779 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7780 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7781
7782 return 0;
7783}
ab84d31e 7784#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7785#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7786
052f1dc7 7787#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7788static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7789 s64 val)
6f505b16 7790{
06ecb27c 7791 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7792}
7793
06ecb27c 7794static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7795{
06ecb27c 7796 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7797}
d0b27fa7
PZ
7798
7799static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7800 u64 rt_period_us)
7801{
7802 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7803}
7804
7805static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7806{
7807 return sched_group_rt_period(cgroup_tg(cgrp));
7808}
6d6bc0ad 7809#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7810
fe5c7cc2 7811static struct cftype cpu_files[] = {
052f1dc7 7812#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7813 {
7814 .name = "shares",
f4c753b7
PM
7815 .read_u64 = cpu_shares_read_u64,
7816 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7817 },
052f1dc7 7818#endif
ab84d31e
PT
7819#ifdef CONFIG_CFS_BANDWIDTH
7820 {
7821 .name = "cfs_quota_us",
7822 .read_s64 = cpu_cfs_quota_read_s64,
7823 .write_s64 = cpu_cfs_quota_write_s64,
7824 },
7825 {
7826 .name = "cfs_period_us",
7827 .read_u64 = cpu_cfs_period_read_u64,
7828 .write_u64 = cpu_cfs_period_write_u64,
7829 },
e8da1b18
NR
7830 {
7831 .name = "stat",
7832 .read_map = cpu_stats_show,
7833 },
ab84d31e 7834#endif
052f1dc7 7835#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7836 {
9f0c1e56 7837 .name = "rt_runtime_us",
06ecb27c
PM
7838 .read_s64 = cpu_rt_runtime_read,
7839 .write_s64 = cpu_rt_runtime_write,
6f505b16 7840 },
d0b27fa7
PZ
7841 {
7842 .name = "rt_period_us",
f4c753b7
PM
7843 .read_u64 = cpu_rt_period_read_uint,
7844 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7845 },
052f1dc7 7846#endif
4baf6e33 7847 { } /* terminate */
68318b8e
SV
7848};
7849
68318b8e 7850struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7851 .name = "cpu",
7852 .create = cpu_cgroup_create,
7853 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7854 .can_attach = cpu_cgroup_can_attach,
7855 .attach = cpu_cgroup_attach,
068c5cc5 7856 .exit = cpu_cgroup_exit,
38605cae 7857 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7858 .base_cftypes = cpu_files,
68318b8e
SV
7859 .early_init = 1,
7860};
7861
052f1dc7 7862#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7863
7864#ifdef CONFIG_CGROUP_CPUACCT
7865
7866/*
7867 * CPU accounting code for task groups.
7868 *
7869 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7870 * (balbir@in.ibm.com).
7871 */
7872
73fbec60
FW
7873struct cpuacct root_cpuacct;
7874
d842de87 7875/* create a new cpu accounting group */
761b3ef5 7876static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 7877{
54c707e9 7878 struct cpuacct *ca;
d842de87 7879
54c707e9
GC
7880 if (!cgrp->parent)
7881 return &root_cpuacct.css;
7882
7883 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7884 if (!ca)
ef12fefa 7885 goto out;
d842de87
SV
7886
7887 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7888 if (!ca->cpuusage)
7889 goto out_free_ca;
7890
54c707e9
GC
7891 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7892 if (!ca->cpustat)
7893 goto out_free_cpuusage;
934352f2 7894
d842de87 7895 return &ca->css;
ef12fefa 7896
54c707e9 7897out_free_cpuusage:
ef12fefa
BR
7898 free_percpu(ca->cpuusage);
7899out_free_ca:
7900 kfree(ca);
7901out:
7902 return ERR_PTR(-ENOMEM);
d842de87
SV
7903}
7904
7905/* destroy an existing cpu accounting group */
761b3ef5 7906static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 7907{
32cd756a 7908 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7909
54c707e9 7910 free_percpu(ca->cpustat);
d842de87
SV
7911 free_percpu(ca->cpuusage);
7912 kfree(ca);
7913}
7914
720f5498
KC
7915static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7916{
b36128c8 7917 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7918 u64 data;
7919
7920#ifndef CONFIG_64BIT
7921 /*
7922 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7923 */
05fa785c 7924 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7925 data = *cpuusage;
05fa785c 7926 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7927#else
7928 data = *cpuusage;
7929#endif
7930
7931 return data;
7932}
7933
7934static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7935{
b36128c8 7936 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7937
7938#ifndef CONFIG_64BIT
7939 /*
7940 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7941 */
05fa785c 7942 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7943 *cpuusage = val;
05fa785c 7944 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7945#else
7946 *cpuusage = val;
7947#endif
7948}
7949
d842de87 7950/* return total cpu usage (in nanoseconds) of a group */
32cd756a 7951static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 7952{
32cd756a 7953 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
7954 u64 totalcpuusage = 0;
7955 int i;
7956
720f5498
KC
7957 for_each_present_cpu(i)
7958 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
7959
7960 return totalcpuusage;
7961}
7962
0297b803
DG
7963static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7964 u64 reset)
7965{
7966 struct cpuacct *ca = cgroup_ca(cgrp);
7967 int err = 0;
7968 int i;
7969
7970 if (reset) {
7971 err = -EINVAL;
7972 goto out;
7973 }
7974
720f5498
KC
7975 for_each_present_cpu(i)
7976 cpuacct_cpuusage_write(ca, i, 0);
0297b803 7977
0297b803
DG
7978out:
7979 return err;
7980}
7981
e9515c3c
KC
7982static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7983 struct seq_file *m)
7984{
7985 struct cpuacct *ca = cgroup_ca(cgroup);
7986 u64 percpu;
7987 int i;
7988
7989 for_each_present_cpu(i) {
7990 percpu = cpuacct_cpuusage_read(ca, i);
7991 seq_printf(m, "%llu ", (unsigned long long) percpu);
7992 }
7993 seq_printf(m, "\n");
7994 return 0;
7995}
7996
ef12fefa
BR
7997static const char *cpuacct_stat_desc[] = {
7998 [CPUACCT_STAT_USER] = "user",
7999 [CPUACCT_STAT_SYSTEM] = "system",
8000};
8001
8002static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8003 struct cgroup_map_cb *cb)
ef12fefa
BR
8004{
8005 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8006 int cpu;
8007 s64 val = 0;
ef12fefa 8008
54c707e9
GC
8009 for_each_online_cpu(cpu) {
8010 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8011 val += kcpustat->cpustat[CPUTIME_USER];
8012 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8013 }
54c707e9
GC
8014 val = cputime64_to_clock_t(val);
8015 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8016
54c707e9
GC
8017 val = 0;
8018 for_each_online_cpu(cpu) {
8019 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8020 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8021 val += kcpustat->cpustat[CPUTIME_IRQ];
8022 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8023 }
54c707e9
GC
8024
8025 val = cputime64_to_clock_t(val);
8026 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8027
ef12fefa
BR
8028 return 0;
8029}
8030
d842de87
SV
8031static struct cftype files[] = {
8032 {
8033 .name = "usage",
f4c753b7
PM
8034 .read_u64 = cpuusage_read,
8035 .write_u64 = cpuusage_write,
d842de87 8036 },
e9515c3c
KC
8037 {
8038 .name = "usage_percpu",
8039 .read_seq_string = cpuacct_percpu_seq_read,
8040 },
ef12fefa
BR
8041 {
8042 .name = "stat",
8043 .read_map = cpuacct_stats_show,
8044 },
4baf6e33 8045 { } /* terminate */
d842de87
SV
8046};
8047
d842de87
SV
8048/*
8049 * charge this task's execution time to its accounting group.
8050 *
8051 * called with rq->lock held.
8052 */
029632fb 8053void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8054{
8055 struct cpuacct *ca;
934352f2 8056 int cpu;
d842de87 8057
c40c6f85 8058 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8059 return;
8060
934352f2 8061 cpu = task_cpu(tsk);
a18b83b7
BR
8062
8063 rcu_read_lock();
8064
d842de87 8065 ca = task_ca(tsk);
d842de87 8066
44252e42 8067 for (; ca; ca = parent_ca(ca)) {
b36128c8 8068 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8069 *cpuusage += cputime;
8070 }
a18b83b7
BR
8071
8072 rcu_read_unlock();
d842de87
SV
8073}
8074
8075struct cgroup_subsys cpuacct_subsys = {
8076 .name = "cpuacct",
8077 .create = cpuacct_create,
8078 .destroy = cpuacct_destroy,
d842de87 8079 .subsys_id = cpuacct_subsys_id,
4baf6e33 8080 .base_cftypes = files,
d842de87
SV
8081};
8082#endif /* CONFIG_CGROUP_CPUACCT */
b637a328
PM
8083
8084void dump_cpu_task(int cpu)
8085{
8086 pr_info("Task dump for CPU %d:\n", cpu);
8087 sched_show_task(cpu_curr(cpu));
8088}