sched/core: More notrace annotations
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
9642d18e 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad 629 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
9642d18e
VH
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
20f9cd2a 820 if (idle_policy(p->policy)) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
371fd7e7 830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
43148951 833 sched_info_queued(rq, p);
371fd7e7 834 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
835}
836
371fd7e7 837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 838{
a64692a3 839 update_rq_clock(rq);
43148951 840 sched_info_dequeued(rq, p);
371fd7e7 841 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
842}
843
029632fb 844void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
371fd7e7 849 enqueue_task(rq, p, flags);
1e3c88bd
PZ
850}
851
029632fb 852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
371fd7e7 857 dequeue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
fe44d621 860static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 861{
095c0aa8
GC
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
095c0aa8
GC
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 894 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
095c0aa8 901 rq->prev_steal_time_rq += steal;
095c0aa8
GC
902 delta -= steal;
903 }
904#endif
905
fe44d621
PZ
906 rq->clock_task += delta;
907
095c0aa8 908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
aa483808
VP
912}
913
34f971f6
PZ
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
aab03e05
DF
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
b29739f9
IM
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
36c8b586 979static int effective_prio(struct task_struct *p)
b29739f9
IM
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
e69f6186
YB
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 997 */
36c8b586 998inline int task_curr(const struct task_struct *p)
1da177e4
LT
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
67dfa1b7 1003/*
4c9a4bc8
PZ
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
67dfa1b7 1009 */
cb469845
SR
1010static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
da7a735e 1012 int oldprio)
cb469845
SR
1013{
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
da7a735e 1016 prev_class->switched_from(rq, p);
4c9a4bc8 1017
da7a735e 1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1045 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
5cc389bc
PZ
1049/*
1050 * This is how migration works:
1051 *
1052 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * stop_one_cpu().
1054 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * off the CPU)
1056 * 3) it checks whether the migrated task is still in the wrong runqueue.
1057 * 4) if it's in the wrong runqueue then the migration thread removes
1058 * it and puts it into the right queue.
1059 * 5) stopper completes and stop_one_cpu() returns and the migration
1060 * is done.
1061 */
1062
1063/*
1064 * move_queued_task - move a queued task to new rq.
1065 *
1066 * Returns (locked) new rq. Old rq's lock is released.
1067 */
5e16bbc2 1068static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1069{
5cc389bc
PZ
1070 lockdep_assert_held(&rq->lock);
1071
1072 dequeue_task(rq, p, 0);
1073 p->on_rq = TASK_ON_RQ_MIGRATING;
1074 set_task_cpu(p, new_cpu);
1075 raw_spin_unlock(&rq->lock);
1076
1077 rq = cpu_rq(new_cpu);
1078
1079 raw_spin_lock(&rq->lock);
1080 BUG_ON(task_cpu(p) != new_cpu);
1081 p->on_rq = TASK_ON_RQ_QUEUED;
1082 enqueue_task(rq, p, 0);
1083 check_preempt_curr(rq, p, 0);
1084
1085 return rq;
1086}
1087
1088struct migration_arg {
1089 struct task_struct *task;
1090 int dest_cpu;
1091};
1092
1093/*
1094 * Move (not current) task off this cpu, onto dest cpu. We're doing
1095 * this because either it can't run here any more (set_cpus_allowed()
1096 * away from this CPU, or CPU going down), or because we're
1097 * attempting to rebalance this task on exec (sched_exec).
1098 *
1099 * So we race with normal scheduler movements, but that's OK, as long
1100 * as the task is no longer on this CPU.
5cc389bc 1101 */
5e16bbc2 1102static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1103{
5cc389bc 1104 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1105 return rq;
5cc389bc
PZ
1106
1107 /* Affinity changed (again). */
1108 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1109 return rq;
5cc389bc 1110
5e16bbc2
PZ
1111 rq = move_queued_task(rq, p, dest_cpu);
1112
1113 return rq;
5cc389bc
PZ
1114}
1115
1116/*
1117 * migration_cpu_stop - this will be executed by a highprio stopper thread
1118 * and performs thread migration by bumping thread off CPU then
1119 * 'pushing' onto another runqueue.
1120 */
1121static int migration_cpu_stop(void *data)
1122{
1123 struct migration_arg *arg = data;
5e16bbc2
PZ
1124 struct task_struct *p = arg->task;
1125 struct rq *rq = this_rq();
5cc389bc
PZ
1126
1127 /*
1128 * The original target cpu might have gone down and we might
1129 * be on another cpu but it doesn't matter.
1130 */
1131 local_irq_disable();
1132 /*
1133 * We need to explicitly wake pending tasks before running
1134 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 */
1137 sched_ttwu_pending();
5e16bbc2
PZ
1138
1139 raw_spin_lock(&p->pi_lock);
1140 raw_spin_lock(&rq->lock);
1141 /*
1142 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 * we're holding p->pi_lock.
1145 */
1146 if (task_rq(p) == rq && task_on_rq_queued(p))
1147 rq = __migrate_task(rq, p, arg->dest_cpu);
1148 raw_spin_unlock(&rq->lock);
1149 raw_spin_unlock(&p->pi_lock);
1150
5cc389bc
PZ
1151 local_irq_enable();
1152 return 0;
1153}
1154
c5b28038
PZ
1155/*
1156 * sched_class::set_cpus_allowed must do the below, but is not required to
1157 * actually call this function.
1158 */
1159void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1160{
5cc389bc
PZ
1161 cpumask_copy(&p->cpus_allowed, new_mask);
1162 p->nr_cpus_allowed = cpumask_weight(new_mask);
1163}
1164
c5b28038
PZ
1165void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166{
6c37067e
PZ
1167 struct rq *rq = task_rq(p);
1168 bool queued, running;
1169
c5b28038 1170 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1171
1172 queued = task_on_rq_queued(p);
1173 running = task_current(rq, p);
1174
1175 if (queued) {
1176 /*
1177 * Because __kthread_bind() calls this on blocked tasks without
1178 * holding rq->lock.
1179 */
1180 lockdep_assert_held(&rq->lock);
1181 dequeue_task(rq, p, 0);
1182 }
1183 if (running)
1184 put_prev_task(rq, p);
1185
c5b28038 1186 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1187
1188 if (running)
1189 p->sched_class->set_curr_task(rq);
1190 if (queued)
1191 enqueue_task(rq, p, 0);
c5b28038
PZ
1192}
1193
5cc389bc
PZ
1194/*
1195 * Change a given task's CPU affinity. Migrate the thread to a
1196 * proper CPU and schedule it away if the CPU it's executing on
1197 * is removed from the allowed bitmask.
1198 *
1199 * NOTE: the caller must have a valid reference to the task, the
1200 * task must not exit() & deallocate itself prematurely. The
1201 * call is not atomic; no spinlocks may be held.
1202 */
25834c73
PZ
1203static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1205{
1206 unsigned long flags;
1207 struct rq *rq;
1208 unsigned int dest_cpu;
1209 int ret = 0;
1210
1211 rq = task_rq_lock(p, &flags);
1212
25834c73
PZ
1213 /*
1214 * Must re-check here, to close a race against __kthread_bind(),
1215 * sched_setaffinity() is not guaranteed to observe the flag.
1216 */
1217 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 ret = -EINVAL;
1219 goto out;
1220 }
1221
5cc389bc
PZ
1222 if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 goto out;
1224
1225 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229
1230 do_set_cpus_allowed(p, new_mask);
1231
1232 /* Can the task run on the task's current CPU? If so, we're done */
1233 if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 goto out;
1235
1236 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 struct migration_arg arg = { p, dest_cpu };
1239 /* Need help from migration thread: drop lock and wait. */
1240 task_rq_unlock(rq, p, &flags);
1241 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 tlb_migrate_finish(p->mm);
1243 return 0;
cbce1a68
PZ
1244 } else if (task_on_rq_queued(p)) {
1245 /*
1246 * OK, since we're going to drop the lock immediately
1247 * afterwards anyway.
1248 */
1249 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1250 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1251 lockdep_pin_lock(&rq->lock);
1252 }
5cc389bc
PZ
1253out:
1254 task_rq_unlock(rq, p, &flags);
1255
1256 return ret;
1257}
25834c73
PZ
1258
1259int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260{
1261 return __set_cpus_allowed_ptr(p, new_mask, false);
1262}
5cc389bc
PZ
1263EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264
dd41f596 1265void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1266{
e2912009
PZ
1267#ifdef CONFIG_SCHED_DEBUG
1268 /*
1269 * We should never call set_task_cpu() on a blocked task,
1270 * ttwu() will sort out the placement.
1271 */
077614ee 1272 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1273 !p->on_rq);
0122ec5b
PZ
1274
1275#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1276 /*
1277 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 *
1280 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1281 * see task_group().
6c6c54e1
PZ
1282 *
1283 * Furthermore, all task_rq users should acquire both locks, see
1284 * task_rq_lock().
1285 */
0122ec5b
PZ
1286 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 lockdep_is_held(&task_rq(p)->lock)));
1288#endif
e2912009
PZ
1289#endif
1290
de1d7286 1291 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1292
0c69774e 1293 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1294 if (p->sched_class->migrate_task_rq)
1295 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1296 p->se.nr_migrations++;
ff303e66 1297 perf_event_task_migrate(p);
0c69774e 1298 }
dd41f596
IM
1299
1300 __set_task_cpu(p, new_cpu);
c65cc870
IM
1301}
1302
ac66f547
PZ
1303static void __migrate_swap_task(struct task_struct *p, int cpu)
1304{
da0c1e65 1305 if (task_on_rq_queued(p)) {
ac66f547
PZ
1306 struct rq *src_rq, *dst_rq;
1307
1308 src_rq = task_rq(p);
1309 dst_rq = cpu_rq(cpu);
1310
1311 deactivate_task(src_rq, p, 0);
1312 set_task_cpu(p, cpu);
1313 activate_task(dst_rq, p, 0);
1314 check_preempt_curr(dst_rq, p, 0);
1315 } else {
1316 /*
1317 * Task isn't running anymore; make it appear like we migrated
1318 * it before it went to sleep. This means on wakeup we make the
1319 * previous cpu our targer instead of where it really is.
1320 */
1321 p->wake_cpu = cpu;
1322 }
1323}
1324
1325struct migration_swap_arg {
1326 struct task_struct *src_task, *dst_task;
1327 int src_cpu, dst_cpu;
1328};
1329
1330static int migrate_swap_stop(void *data)
1331{
1332 struct migration_swap_arg *arg = data;
1333 struct rq *src_rq, *dst_rq;
1334 int ret = -EAGAIN;
1335
1336 src_rq = cpu_rq(arg->src_cpu);
1337 dst_rq = cpu_rq(arg->dst_cpu);
1338
74602315
PZ
1339 double_raw_lock(&arg->src_task->pi_lock,
1340 &arg->dst_task->pi_lock);
ac66f547
PZ
1341 double_rq_lock(src_rq, dst_rq);
1342 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 goto unlock;
1344
1345 if (task_cpu(arg->src_task) != arg->src_cpu)
1346 goto unlock;
1347
1348 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 goto unlock;
1350
1351 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 goto unlock;
1353
1354 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1356
1357 ret = 0;
1358
1359unlock:
1360 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1361 raw_spin_unlock(&arg->dst_task->pi_lock);
1362 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1363
1364 return ret;
1365}
1366
1367/*
1368 * Cross migrate two tasks
1369 */
1370int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371{
1372 struct migration_swap_arg arg;
1373 int ret = -EINVAL;
1374
ac66f547
PZ
1375 arg = (struct migration_swap_arg){
1376 .src_task = cur,
1377 .src_cpu = task_cpu(cur),
1378 .dst_task = p,
1379 .dst_cpu = task_cpu(p),
1380 };
1381
1382 if (arg.src_cpu == arg.dst_cpu)
1383 goto out;
1384
6acce3ef
PZ
1385 /*
1386 * These three tests are all lockless; this is OK since all of them
1387 * will be re-checked with proper locks held further down the line.
1388 */
ac66f547
PZ
1389 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 goto out;
1391
1392 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 goto out;
1394
1395 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 goto out;
1397
286549dc 1398 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1399 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400
1401out:
ac66f547
PZ
1402 return ret;
1403}
1404
1da177e4
LT
1405/*
1406 * wait_task_inactive - wait for a thread to unschedule.
1407 *
85ba2d86
RM
1408 * If @match_state is nonzero, it's the @p->state value just checked and
1409 * not expected to change. If it changes, i.e. @p might have woken up,
1410 * then return zero. When we succeed in waiting for @p to be off its CPU,
1411 * we return a positive number (its total switch count). If a second call
1412 * a short while later returns the same number, the caller can be sure that
1413 * @p has remained unscheduled the whole time.
1414 *
1da177e4
LT
1415 * The caller must ensure that the task *will* unschedule sometime soon,
1416 * else this function might spin for a *long* time. This function can't
1417 * be called with interrupts off, or it may introduce deadlock with
1418 * smp_call_function() if an IPI is sent by the same process we are
1419 * waiting to become inactive.
1420 */
85ba2d86 1421unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1422{
1423 unsigned long flags;
da0c1e65 1424 int running, queued;
85ba2d86 1425 unsigned long ncsw;
70b97a7f 1426 struct rq *rq;
1da177e4 1427
3a5c359a
AK
1428 for (;;) {
1429 /*
1430 * We do the initial early heuristics without holding
1431 * any task-queue locks at all. We'll only try to get
1432 * the runqueue lock when things look like they will
1433 * work out!
1434 */
1435 rq = task_rq(p);
fa490cfd 1436
3a5c359a
AK
1437 /*
1438 * If the task is actively running on another CPU
1439 * still, just relax and busy-wait without holding
1440 * any locks.
1441 *
1442 * NOTE! Since we don't hold any locks, it's not
1443 * even sure that "rq" stays as the right runqueue!
1444 * But we don't care, since "task_running()" will
1445 * return false if the runqueue has changed and p
1446 * is actually now running somewhere else!
1447 */
85ba2d86
RM
1448 while (task_running(rq, p)) {
1449 if (match_state && unlikely(p->state != match_state))
1450 return 0;
3a5c359a 1451 cpu_relax();
85ba2d86 1452 }
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * Ok, time to look more closely! We need the rq
1456 * lock now, to be *sure*. If we're wrong, we'll
1457 * just go back and repeat.
1458 */
1459 rq = task_rq_lock(p, &flags);
27a9da65 1460 trace_sched_wait_task(p);
3a5c359a 1461 running = task_running(rq, p);
da0c1e65 1462 queued = task_on_rq_queued(p);
85ba2d86 1463 ncsw = 0;
f31e11d8 1464 if (!match_state || p->state == match_state)
93dcf55f 1465 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1466 task_rq_unlock(rq, p, &flags);
fa490cfd 1467
85ba2d86
RM
1468 /*
1469 * If it changed from the expected state, bail out now.
1470 */
1471 if (unlikely(!ncsw))
1472 break;
1473
3a5c359a
AK
1474 /*
1475 * Was it really running after all now that we
1476 * checked with the proper locks actually held?
1477 *
1478 * Oops. Go back and try again..
1479 */
1480 if (unlikely(running)) {
1481 cpu_relax();
1482 continue;
1483 }
fa490cfd 1484
3a5c359a
AK
1485 /*
1486 * It's not enough that it's not actively running,
1487 * it must be off the runqueue _entirely_, and not
1488 * preempted!
1489 *
80dd99b3 1490 * So if it was still runnable (but just not actively
3a5c359a
AK
1491 * running right now), it's preempted, and we should
1492 * yield - it could be a while.
1493 */
da0c1e65 1494 if (unlikely(queued)) {
8eb90c30
TG
1495 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496
1497 set_current_state(TASK_UNINTERRUPTIBLE);
1498 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1499 continue;
1500 }
fa490cfd 1501
3a5c359a
AK
1502 /*
1503 * Ahh, all good. It wasn't running, and it wasn't
1504 * runnable, which means that it will never become
1505 * running in the future either. We're all done!
1506 */
1507 break;
1508 }
85ba2d86
RM
1509
1510 return ncsw;
1da177e4
LT
1511}
1512
1513/***
1514 * kick_process - kick a running thread to enter/exit the kernel
1515 * @p: the to-be-kicked thread
1516 *
1517 * Cause a process which is running on another CPU to enter
1518 * kernel-mode, without any delay. (to get signals handled.)
1519 *
25985edc 1520 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1521 * because all it wants to ensure is that the remote task enters
1522 * the kernel. If the IPI races and the task has been migrated
1523 * to another CPU then no harm is done and the purpose has been
1524 * achieved as well.
1525 */
36c8b586 1526void kick_process(struct task_struct *p)
1da177e4
LT
1527{
1528 int cpu;
1529
1530 preempt_disable();
1531 cpu = task_cpu(p);
1532 if ((cpu != smp_processor_id()) && task_curr(p))
1533 smp_send_reschedule(cpu);
1534 preempt_enable();
1535}
b43e3521 1536EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1537
30da688e 1538/*
013fdb80 1539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1540 */
5da9a0fb
PZ
1541static int select_fallback_rq(int cpu, struct task_struct *p)
1542{
aa00d89c
TC
1543 int nid = cpu_to_node(cpu);
1544 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1545 enum { cpuset, possible, fail } state = cpuset;
1546 int dest_cpu;
5da9a0fb 1547
aa00d89c
TC
1548 /*
1549 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 * will return -1. There is no cpu on the node, and we should
1551 * select the cpu on the other node.
1552 */
1553 if (nid != -1) {
1554 nodemask = cpumask_of_node(nid);
1555
1556 /* Look for allowed, online CPU in same node. */
1557 for_each_cpu(dest_cpu, nodemask) {
1558 if (!cpu_online(dest_cpu))
1559 continue;
1560 if (!cpu_active(dest_cpu))
1561 continue;
1562 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 return dest_cpu;
1564 }
2baab4e9 1565 }
5da9a0fb 1566
2baab4e9
PZ
1567 for (;;) {
1568 /* Any allowed, online CPU? */
e3831edd 1569 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1570 if (!cpu_online(dest_cpu))
1571 continue;
1572 if (!cpu_active(dest_cpu))
1573 continue;
1574 goto out;
1575 }
5da9a0fb 1576
2baab4e9
PZ
1577 switch (state) {
1578 case cpuset:
1579 /* No more Mr. Nice Guy. */
1580 cpuset_cpus_allowed_fallback(p);
1581 state = possible;
1582 break;
1583
1584 case possible:
1585 do_set_cpus_allowed(p, cpu_possible_mask);
1586 state = fail;
1587 break;
1588
1589 case fail:
1590 BUG();
1591 break;
1592 }
1593 }
1594
1595out:
1596 if (state != cpuset) {
1597 /*
1598 * Don't tell them about moving exiting tasks or
1599 * kernel threads (both mm NULL), since they never
1600 * leave kernel.
1601 */
1602 if (p->mm && printk_ratelimit()) {
aac74dc4 1603 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1604 task_pid_nr(p), p->comm, cpu);
1605 }
5da9a0fb
PZ
1606 }
1607
1608 return dest_cpu;
1609}
1610
e2912009 1611/*
013fdb80 1612 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1613 */
970b13ba 1614static inline
ac66f547 1615int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1616{
cbce1a68
PZ
1617 lockdep_assert_held(&p->pi_lock);
1618
6c1d9410
WL
1619 if (p->nr_cpus_allowed > 1)
1620 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1621
1622 /*
1623 * In order not to call set_task_cpu() on a blocking task we need
1624 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 * cpu.
1626 *
1627 * Since this is common to all placement strategies, this lives here.
1628 *
1629 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 * not worry about this generic constraint ]
1631 */
fa17b507 1632 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1633 !cpu_online(cpu)))
5da9a0fb 1634 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1635
1636 return cpu;
970b13ba 1637}
09a40af5
MG
1638
1639static void update_avg(u64 *avg, u64 sample)
1640{
1641 s64 diff = sample - *avg;
1642 *avg += diff >> 3;
1643}
25834c73
PZ
1644
1645#else
1646
1647static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 const struct cpumask *new_mask, bool check)
1649{
1650 return set_cpus_allowed_ptr(p, new_mask);
1651}
1652
5cc389bc 1653#endif /* CONFIG_SMP */
970b13ba 1654
d7c01d27 1655static void
b84cb5df 1656ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1657{
d7c01d27 1658#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1659 struct rq *rq = this_rq();
1660
d7c01d27
PZ
1661#ifdef CONFIG_SMP
1662 int this_cpu = smp_processor_id();
1663
1664 if (cpu == this_cpu) {
1665 schedstat_inc(rq, ttwu_local);
1666 schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 } else {
1668 struct sched_domain *sd;
1669
1670 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1671 rcu_read_lock();
d7c01d27
PZ
1672 for_each_domain(this_cpu, sd) {
1673 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 schedstat_inc(sd, ttwu_wake_remote);
1675 break;
1676 }
1677 }
057f3fad 1678 rcu_read_unlock();
d7c01d27 1679 }
f339b9dc
PZ
1680
1681 if (wake_flags & WF_MIGRATED)
1682 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683
d7c01d27
PZ
1684#endif /* CONFIG_SMP */
1685
1686 schedstat_inc(rq, ttwu_count);
9ed3811a 1687 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1688
1689 if (wake_flags & WF_SYNC)
9ed3811a 1690 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1691
d7c01d27
PZ
1692#endif /* CONFIG_SCHEDSTATS */
1693}
1694
1695static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696{
9ed3811a 1697 activate_task(rq, p, en_flags);
da0c1e65 1698 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1699
1700 /* if a worker is waking up, notify workqueue */
1701 if (p->flags & PF_WQ_WORKER)
1702 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1703}
1704
23f41eeb
PZ
1705/*
1706 * Mark the task runnable and perform wakeup-preemption.
1707 */
89363381 1708static void
23f41eeb 1709ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1710{
9ed3811a 1711 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1712 p->state = TASK_RUNNING;
fbd705a0
PZ
1713 trace_sched_wakeup(p);
1714
9ed3811a 1715#ifdef CONFIG_SMP
4c9a4bc8
PZ
1716 if (p->sched_class->task_woken) {
1717 /*
cbce1a68
PZ
1718 * Our task @p is fully woken up and running; so its safe to
1719 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1720 */
cbce1a68 1721 lockdep_unpin_lock(&rq->lock);
9ed3811a 1722 p->sched_class->task_woken(rq, p);
cbce1a68 1723 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1724 }
9ed3811a 1725
e69c6341 1726 if (rq->idle_stamp) {
78becc27 1727 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1728 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1729
abfafa54
JL
1730 update_avg(&rq->avg_idle, delta);
1731
1732 if (rq->avg_idle > max)
9ed3811a 1733 rq->avg_idle = max;
abfafa54 1734
9ed3811a
TH
1735 rq->idle_stamp = 0;
1736 }
1737#endif
1738}
1739
c05fbafb
PZ
1740static void
1741ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742{
cbce1a68
PZ
1743 lockdep_assert_held(&rq->lock);
1744
c05fbafb
PZ
1745#ifdef CONFIG_SMP
1746 if (p->sched_contributes_to_load)
1747 rq->nr_uninterruptible--;
1748#endif
1749
1750 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 ttwu_do_wakeup(rq, p, wake_flags);
1752}
1753
1754/*
1755 * Called in case the task @p isn't fully descheduled from its runqueue,
1756 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757 * since all we need to do is flip p->state to TASK_RUNNING, since
1758 * the task is still ->on_rq.
1759 */
1760static int ttwu_remote(struct task_struct *p, int wake_flags)
1761{
1762 struct rq *rq;
1763 int ret = 0;
1764
1765 rq = __task_rq_lock(p);
da0c1e65 1766 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1767 /* check_preempt_curr() may use rq clock */
1768 update_rq_clock(rq);
c05fbafb
PZ
1769 ttwu_do_wakeup(rq, p, wake_flags);
1770 ret = 1;
1771 }
1772 __task_rq_unlock(rq);
1773
1774 return ret;
1775}
1776
317f3941 1777#ifdef CONFIG_SMP
e3baac47 1778void sched_ttwu_pending(void)
317f3941
PZ
1779{
1780 struct rq *rq = this_rq();
fa14ff4a
PZ
1781 struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 struct task_struct *p;
e3baac47 1783 unsigned long flags;
317f3941 1784
e3baac47
PZ
1785 if (!llist)
1786 return;
1787
1788 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1789 lockdep_pin_lock(&rq->lock);
317f3941 1790
fa14ff4a
PZ
1791 while (llist) {
1792 p = llist_entry(llist, struct task_struct, wake_entry);
1793 llist = llist_next(llist);
317f3941
PZ
1794 ttwu_do_activate(rq, p, 0);
1795 }
1796
cbce1a68 1797 lockdep_unpin_lock(&rq->lock);
e3baac47 1798 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1799}
1800
1801void scheduler_ipi(void)
1802{
f27dde8d
PZ
1803 /*
1804 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 * this IPI.
1807 */
8cb75e0c 1808 preempt_fold_need_resched();
f27dde8d 1809
fd2ac4f4 1810 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1811 return;
1812
1813 /*
1814 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 * traditionally all their work was done from the interrupt return
1816 * path. Now that we actually do some work, we need to make sure
1817 * we do call them.
1818 *
1819 * Some archs already do call them, luckily irq_enter/exit nest
1820 * properly.
1821 *
1822 * Arguably we should visit all archs and update all handlers,
1823 * however a fair share of IPIs are still resched only so this would
1824 * somewhat pessimize the simple resched case.
1825 */
1826 irq_enter();
fa14ff4a 1827 sched_ttwu_pending();
ca38062e
SS
1828
1829 /*
1830 * Check if someone kicked us for doing the nohz idle load balance.
1831 */
873b4c65 1832 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1833 this_rq()->idle_balance = 1;
ca38062e 1834 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1835 }
c5d753a5 1836 irq_exit();
317f3941
PZ
1837}
1838
1839static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840{
e3baac47
PZ
1841 struct rq *rq = cpu_rq(cpu);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
317f3941 1849}
d6aa8f85 1850
f6be8af1
CL
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
fd7de1e8
AL
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
f6be8af1
CL
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
fd7de1e8
AL
1870
1871out:
1872 rcu_read_unlock();
f6be8af1
CL
1873}
1874
39be3501 1875bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
d6aa8f85 1879#endif /* CONFIG_SMP */
317f3941 1880
c05fbafb
PZ
1881static void ttwu_queue(struct task_struct *p, int cpu)
1882{
1883 struct rq *rq = cpu_rq(cpu);
1884
17d9f311 1885#if defined(CONFIG_SMP)
39be3501 1886 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1887 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1888 ttwu_queue_remote(p, cpu);
1889 return;
1890 }
1891#endif
1892
c05fbafb 1893 raw_spin_lock(&rq->lock);
cbce1a68 1894 lockdep_pin_lock(&rq->lock);
c05fbafb 1895 ttwu_do_activate(rq, p, 0);
cbce1a68 1896 lockdep_unpin_lock(&rq->lock);
c05fbafb 1897 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1898}
1899
1900/**
1da177e4 1901 * try_to_wake_up - wake up a thread
9ed3811a 1902 * @p: the thread to be awakened
1da177e4 1903 * @state: the mask of task states that can be woken
9ed3811a 1904 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1905 *
1906 * Put it on the run-queue if it's not already there. The "current"
1907 * thread is always on the run-queue (except when the actual
1908 * re-schedule is in progress), and as such you're allowed to do
1909 * the simpler "current->state = TASK_RUNNING" to mark yourself
1910 * runnable without the overhead of this.
1911 *
e69f6186 1912 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1913 * or @state didn't match @p's state.
1da177e4 1914 */
e4a52bcb
PZ
1915static int
1916try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1917{
1da177e4 1918 unsigned long flags;
c05fbafb 1919 int cpu, success = 0;
2398f2c6 1920
e0acd0a6
ON
1921 /*
1922 * If we are going to wake up a thread waiting for CONDITION we
1923 * need to ensure that CONDITION=1 done by the caller can not be
1924 * reordered with p->state check below. This pairs with mb() in
1925 * set_current_state() the waiting thread does.
1926 */
1927 smp_mb__before_spinlock();
013fdb80 1928 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1929 if (!(p->state & state))
1da177e4
LT
1930 goto out;
1931
fbd705a0
PZ
1932 trace_sched_waking(p);
1933
c05fbafb 1934 success = 1; /* we're going to change ->state */
1da177e4 1935 cpu = task_cpu(p);
1da177e4 1936
c05fbafb
PZ
1937 if (p->on_rq && ttwu_remote(p, wake_flags))
1938 goto stat;
1da177e4 1939
1da177e4 1940#ifdef CONFIG_SMP
e9c84311 1941 /*
c05fbafb
PZ
1942 * If the owning (remote) cpu is still in the middle of schedule() with
1943 * this task as prev, wait until its done referencing the task.
e9c84311 1944 */
f3e94786 1945 while (p->on_cpu)
e4a52bcb 1946 cpu_relax();
0970d299 1947 /*
e4a52bcb 1948 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1949 */
e4a52bcb 1950 smp_rmb();
1da177e4 1951
a8e4f2ea 1952 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1953 p->state = TASK_WAKING;
e7693a36 1954
e4a52bcb 1955 if (p->sched_class->task_waking)
74f8e4b2 1956 p->sched_class->task_waking(p);
efbbd05a 1957
ac66f547 1958 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1959 if (task_cpu(p) != cpu) {
1960 wake_flags |= WF_MIGRATED;
e4a52bcb 1961 set_task_cpu(p, cpu);
f339b9dc 1962 }
1da177e4 1963#endif /* CONFIG_SMP */
1da177e4 1964
c05fbafb
PZ
1965 ttwu_queue(p, cpu);
1966stat:
b84cb5df 1967 ttwu_stat(p, cpu, wake_flags);
1da177e4 1968out:
013fdb80 1969 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1970
1971 return success;
1972}
1973
21aa9af0
TH
1974/**
1975 * try_to_wake_up_local - try to wake up a local task with rq lock held
1976 * @p: the thread to be awakened
1977 *
2acca55e 1978 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1979 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1980 * the current task.
21aa9af0
TH
1981 */
1982static void try_to_wake_up_local(struct task_struct *p)
1983{
1984 struct rq *rq = task_rq(p);
21aa9af0 1985
383efcd0
TH
1986 if (WARN_ON_ONCE(rq != this_rq()) ||
1987 WARN_ON_ONCE(p == current))
1988 return;
1989
21aa9af0
TH
1990 lockdep_assert_held(&rq->lock);
1991
2acca55e 1992 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1993 /*
1994 * This is OK, because current is on_cpu, which avoids it being
1995 * picked for load-balance and preemption/IRQs are still
1996 * disabled avoiding further scheduler activity on it and we've
1997 * not yet picked a replacement task.
1998 */
1999 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2000 raw_spin_unlock(&rq->lock);
2001 raw_spin_lock(&p->pi_lock);
2002 raw_spin_lock(&rq->lock);
cbce1a68 2003 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2004 }
2005
21aa9af0 2006 if (!(p->state & TASK_NORMAL))
2acca55e 2007 goto out;
21aa9af0 2008
fbd705a0
PZ
2009 trace_sched_waking(p);
2010
da0c1e65 2011 if (!task_on_rq_queued(p))
d7c01d27
PZ
2012 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013
23f41eeb 2014 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2015 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2016out:
2017 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2018}
2019
50fa610a
DH
2020/**
2021 * wake_up_process - Wake up a specific process
2022 * @p: The process to be woken up.
2023 *
2024 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2025 * processes.
2026 *
2027 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2028 *
2029 * It may be assumed that this function implies a write memory barrier before
2030 * changing the task state if and only if any tasks are woken up.
2031 */
7ad5b3a5 2032int wake_up_process(struct task_struct *p)
1da177e4 2033{
9067ac85
ON
2034 WARN_ON(task_is_stopped_or_traced(p));
2035 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2036}
1da177e4
LT
2037EXPORT_SYMBOL(wake_up_process);
2038
7ad5b3a5 2039int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2040{
2041 return try_to_wake_up(p, state, 0);
2042}
2043
a5e7be3b
JL
2044/*
2045 * This function clears the sched_dl_entity static params.
2046 */
2047void __dl_clear_params(struct task_struct *p)
2048{
2049 struct sched_dl_entity *dl_se = &p->dl;
2050
2051 dl_se->dl_runtime = 0;
2052 dl_se->dl_deadline = 0;
2053 dl_se->dl_period = 0;
2054 dl_se->flags = 0;
2055 dl_se->dl_bw = 0;
40767b0d
PZ
2056
2057 dl_se->dl_throttled = 0;
2058 dl_se->dl_new = 1;
2059 dl_se->dl_yielded = 0;
a5e7be3b
JL
2060}
2061
1da177e4
LT
2062/*
2063 * Perform scheduler related setup for a newly forked process p.
2064 * p is forked by current.
dd41f596
IM
2065 *
2066 * __sched_fork() is basic setup used by init_idle() too:
2067 */
5e1576ed 2068static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2069{
fd2f4419
PZ
2070 p->on_rq = 0;
2071
2072 p->se.on_rq = 0;
dd41f596
IM
2073 p->se.exec_start = 0;
2074 p->se.sum_exec_runtime = 0;
f6cf891c 2075 p->se.prev_sum_exec_runtime = 0;
6c594c21 2076 p->se.nr_migrations = 0;
da7a735e 2077 p->se.vruntime = 0;
fd2f4419 2078 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2079
2080#ifdef CONFIG_SCHEDSTATS
41acab88 2081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2082#endif
476d139c 2083
aab03e05 2084 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2085 init_dl_task_timer(&p->dl);
a5e7be3b 2086 __dl_clear_params(p);
aab03e05 2087
fa717060 2088 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2089
e107be36
AK
2090#ifdef CONFIG_PREEMPT_NOTIFIERS
2091 INIT_HLIST_HEAD(&p->preempt_notifiers);
2092#endif
cbee9f88
PZ
2093
2094#ifdef CONFIG_NUMA_BALANCING
2095 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2096 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2097 p->mm->numa_scan_seq = 0;
2098 }
2099
5e1576ed
RR
2100 if (clone_flags & CLONE_VM)
2101 p->numa_preferred_nid = current->numa_preferred_nid;
2102 else
2103 p->numa_preferred_nid = -1;
2104
cbee9f88
PZ
2105 p->node_stamp = 0ULL;
2106 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2107 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2108 p->numa_work.next = &p->numa_work;
44dba3d5 2109 p->numa_faults = NULL;
7e2703e6
RR
2110 p->last_task_numa_placement = 0;
2111 p->last_sum_exec_runtime = 0;
8c8a743c 2112
8c8a743c 2113 p->numa_group = NULL;
cbee9f88 2114#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2115}
2116
2a595721
SD
2117DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2118
1a687c2e 2119#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2120
1a687c2e
MG
2121void set_numabalancing_state(bool enabled)
2122{
2a595721
SD
2123 if (enabled)
2124 static_branch_enable(&sched_numa_balancing);
2125 else
2126 static_branch_disable(&sched_numa_balancing);
c3b9bc5b 2127}
54a43d54
AK
2128
2129#ifdef CONFIG_PROC_SYSCTL
2130int sysctl_numa_balancing(struct ctl_table *table, int write,
2131 void __user *buffer, size_t *lenp, loff_t *ppos)
2132{
2133 struct ctl_table t;
2134 int err;
2a595721 2135 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2136
2137 if (write && !capable(CAP_SYS_ADMIN))
2138 return -EPERM;
2139
2140 t = *table;
2141 t.data = &state;
2142 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2143 if (err < 0)
2144 return err;
2145 if (write)
2146 set_numabalancing_state(state);
2147 return err;
2148}
2149#endif
2150#endif
dd41f596
IM
2151
2152/*
2153 * fork()/clone()-time setup:
2154 */
aab03e05 2155int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2156{
0122ec5b 2157 unsigned long flags;
dd41f596
IM
2158 int cpu = get_cpu();
2159
5e1576ed 2160 __sched_fork(clone_flags, p);
06b83b5f 2161 /*
0017d735 2162 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2163 * nobody will actually run it, and a signal or other external
2164 * event cannot wake it up and insert it on the runqueue either.
2165 */
0017d735 2166 p->state = TASK_RUNNING;
dd41f596 2167
c350a04e
MG
2168 /*
2169 * Make sure we do not leak PI boosting priority to the child.
2170 */
2171 p->prio = current->normal_prio;
2172
b9dc29e7
MG
2173 /*
2174 * Revert to default priority/policy on fork if requested.
2175 */
2176 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2177 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2178 p->policy = SCHED_NORMAL;
6c697bdf 2179 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2180 p->rt_priority = 0;
2181 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2182 p->static_prio = NICE_TO_PRIO(0);
2183
2184 p->prio = p->normal_prio = __normal_prio(p);
2185 set_load_weight(p);
6c697bdf 2186
b9dc29e7
MG
2187 /*
2188 * We don't need the reset flag anymore after the fork. It has
2189 * fulfilled its duty:
2190 */
2191 p->sched_reset_on_fork = 0;
2192 }
ca94c442 2193
aab03e05
DF
2194 if (dl_prio(p->prio)) {
2195 put_cpu();
2196 return -EAGAIN;
2197 } else if (rt_prio(p->prio)) {
2198 p->sched_class = &rt_sched_class;
2199 } else {
2ddbf952 2200 p->sched_class = &fair_sched_class;
aab03e05 2201 }
b29739f9 2202
cd29fe6f
PZ
2203 if (p->sched_class->task_fork)
2204 p->sched_class->task_fork(p);
2205
86951599
PZ
2206 /*
2207 * The child is not yet in the pid-hash so no cgroup attach races,
2208 * and the cgroup is pinned to this child due to cgroup_fork()
2209 * is ran before sched_fork().
2210 *
2211 * Silence PROVE_RCU.
2212 */
0122ec5b 2213 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2214 set_task_cpu(p, cpu);
0122ec5b 2215 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2216
f6db8347 2217#ifdef CONFIG_SCHED_INFO
dd41f596 2218 if (likely(sched_info_on()))
52f17b6c 2219 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2220#endif
3ca7a440
PZ
2221#if defined(CONFIG_SMP)
2222 p->on_cpu = 0;
4866cde0 2223#endif
01028747 2224 init_task_preempt_count(p);
806c09a7 2225#ifdef CONFIG_SMP
917b627d 2226 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2227 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2228#endif
917b627d 2229
476d139c 2230 put_cpu();
aab03e05 2231 return 0;
1da177e4
LT
2232}
2233
332ac17e
DF
2234unsigned long to_ratio(u64 period, u64 runtime)
2235{
2236 if (runtime == RUNTIME_INF)
2237 return 1ULL << 20;
2238
2239 /*
2240 * Doing this here saves a lot of checks in all
2241 * the calling paths, and returning zero seems
2242 * safe for them anyway.
2243 */
2244 if (period == 0)
2245 return 0;
2246
2247 return div64_u64(runtime << 20, period);
2248}
2249
2250#ifdef CONFIG_SMP
2251inline struct dl_bw *dl_bw_of(int i)
2252{
f78f5b90
PM
2253 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2254 "sched RCU must be held");
332ac17e
DF
2255 return &cpu_rq(i)->rd->dl_bw;
2256}
2257
de212f18 2258static inline int dl_bw_cpus(int i)
332ac17e 2259{
de212f18
PZ
2260 struct root_domain *rd = cpu_rq(i)->rd;
2261 int cpus = 0;
2262
f78f5b90
PM
2263 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2264 "sched RCU must be held");
de212f18
PZ
2265 for_each_cpu_and(i, rd->span, cpu_active_mask)
2266 cpus++;
2267
2268 return cpus;
332ac17e
DF
2269}
2270#else
2271inline struct dl_bw *dl_bw_of(int i)
2272{
2273 return &cpu_rq(i)->dl.dl_bw;
2274}
2275
de212f18 2276static inline int dl_bw_cpus(int i)
332ac17e
DF
2277{
2278 return 1;
2279}
2280#endif
2281
332ac17e
DF
2282/*
2283 * We must be sure that accepting a new task (or allowing changing the
2284 * parameters of an existing one) is consistent with the bandwidth
2285 * constraints. If yes, this function also accordingly updates the currently
2286 * allocated bandwidth to reflect the new situation.
2287 *
2288 * This function is called while holding p's rq->lock.
40767b0d
PZ
2289 *
2290 * XXX we should delay bw change until the task's 0-lag point, see
2291 * __setparam_dl().
332ac17e
DF
2292 */
2293static int dl_overflow(struct task_struct *p, int policy,
2294 const struct sched_attr *attr)
2295{
2296
2297 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2298 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2299 u64 runtime = attr->sched_runtime;
2300 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2301 int cpus, err = -1;
332ac17e
DF
2302
2303 if (new_bw == p->dl.dl_bw)
2304 return 0;
2305
2306 /*
2307 * Either if a task, enters, leave, or stays -deadline but changes
2308 * its parameters, we may need to update accordingly the total
2309 * allocated bandwidth of the container.
2310 */
2311 raw_spin_lock(&dl_b->lock);
de212f18 2312 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2313 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2314 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2315 __dl_add(dl_b, new_bw);
2316 err = 0;
2317 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2318 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2319 __dl_clear(dl_b, p->dl.dl_bw);
2320 __dl_add(dl_b, new_bw);
2321 err = 0;
2322 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2323 __dl_clear(dl_b, p->dl.dl_bw);
2324 err = 0;
2325 }
2326 raw_spin_unlock(&dl_b->lock);
2327
2328 return err;
2329}
2330
2331extern void init_dl_bw(struct dl_bw *dl_b);
2332
1da177e4
LT
2333/*
2334 * wake_up_new_task - wake up a newly created task for the first time.
2335 *
2336 * This function will do some initial scheduler statistics housekeeping
2337 * that must be done for every newly created context, then puts the task
2338 * on the runqueue and wakes it.
2339 */
3e51e3ed 2340void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2341{
2342 unsigned long flags;
dd41f596 2343 struct rq *rq;
fabf318e 2344
ab2515c4 2345 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2346 /* Initialize new task's runnable average */
2347 init_entity_runnable_average(&p->se);
fabf318e
PZ
2348#ifdef CONFIG_SMP
2349 /*
2350 * Fork balancing, do it here and not earlier because:
2351 * - cpus_allowed can change in the fork path
2352 * - any previously selected cpu might disappear through hotplug
fabf318e 2353 */
ac66f547 2354 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2355#endif
2356
ab2515c4 2357 rq = __task_rq_lock(p);
cd29fe6f 2358 activate_task(rq, p, 0);
da0c1e65 2359 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2360 trace_sched_wakeup_new(p);
a7558e01 2361 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2362#ifdef CONFIG_SMP
efbbd05a
PZ
2363 if (p->sched_class->task_woken)
2364 p->sched_class->task_woken(rq, p);
9a897c5a 2365#endif
0122ec5b 2366 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2367}
2368
e107be36
AK
2369#ifdef CONFIG_PREEMPT_NOTIFIERS
2370
1cde2930
PZ
2371static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2372
2ecd9d29
PZ
2373void preempt_notifier_inc(void)
2374{
2375 static_key_slow_inc(&preempt_notifier_key);
2376}
2377EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2378
2379void preempt_notifier_dec(void)
2380{
2381 static_key_slow_dec(&preempt_notifier_key);
2382}
2383EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2384
e107be36 2385/**
80dd99b3 2386 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2387 * @notifier: notifier struct to register
e107be36
AK
2388 */
2389void preempt_notifier_register(struct preempt_notifier *notifier)
2390{
2ecd9d29
PZ
2391 if (!static_key_false(&preempt_notifier_key))
2392 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2393
e107be36
AK
2394 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2395}
2396EXPORT_SYMBOL_GPL(preempt_notifier_register);
2397
2398/**
2399 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2400 * @notifier: notifier struct to unregister
e107be36 2401 *
d84525a8 2402 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2403 */
2404void preempt_notifier_unregister(struct preempt_notifier *notifier)
2405{
2406 hlist_del(&notifier->link);
2407}
2408EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2409
1cde2930 2410static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2411{
2412 struct preempt_notifier *notifier;
e107be36 2413
b67bfe0d 2414 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2415 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2416}
2417
1cde2930
PZ
2418static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2419{
2420 if (static_key_false(&preempt_notifier_key))
2421 __fire_sched_in_preempt_notifiers(curr);
2422}
2423
e107be36 2424static void
1cde2930
PZ
2425__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2426 struct task_struct *next)
e107be36
AK
2427{
2428 struct preempt_notifier *notifier;
e107be36 2429
b67bfe0d 2430 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2431 notifier->ops->sched_out(notifier, next);
2432}
2433
1cde2930
PZ
2434static __always_inline void
2435fire_sched_out_preempt_notifiers(struct task_struct *curr,
2436 struct task_struct *next)
2437{
2438 if (static_key_false(&preempt_notifier_key))
2439 __fire_sched_out_preempt_notifiers(curr, next);
2440}
2441
6d6bc0ad 2442#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2443
1cde2930 2444static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2445{
2446}
2447
1cde2930 2448static inline void
e107be36
AK
2449fire_sched_out_preempt_notifiers(struct task_struct *curr,
2450 struct task_struct *next)
2451{
2452}
2453
6d6bc0ad 2454#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2455
4866cde0
NP
2456/**
2457 * prepare_task_switch - prepare to switch tasks
2458 * @rq: the runqueue preparing to switch
421cee29 2459 * @prev: the current task that is being switched out
4866cde0
NP
2460 * @next: the task we are going to switch to.
2461 *
2462 * This is called with the rq lock held and interrupts off. It must
2463 * be paired with a subsequent finish_task_switch after the context
2464 * switch.
2465 *
2466 * prepare_task_switch sets up locking and calls architecture specific
2467 * hooks.
2468 */
e107be36
AK
2469static inline void
2470prepare_task_switch(struct rq *rq, struct task_struct *prev,
2471 struct task_struct *next)
4866cde0 2472{
43148951 2473 sched_info_switch(rq, prev, next);
fe4b04fa 2474 perf_event_task_sched_out(prev, next);
e107be36 2475 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2476 prepare_lock_switch(rq, next);
2477 prepare_arch_switch(next);
2478}
2479
1da177e4
LT
2480/**
2481 * finish_task_switch - clean up after a task-switch
2482 * @prev: the thread we just switched away from.
2483 *
4866cde0
NP
2484 * finish_task_switch must be called after the context switch, paired
2485 * with a prepare_task_switch call before the context switch.
2486 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2487 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2488 *
2489 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2490 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2491 * with the lock held can cause deadlocks; see schedule() for
2492 * details.)
dfa50b60
ON
2493 *
2494 * The context switch have flipped the stack from under us and restored the
2495 * local variables which were saved when this task called schedule() in the
2496 * past. prev == current is still correct but we need to recalculate this_rq
2497 * because prev may have moved to another CPU.
1da177e4 2498 */
dfa50b60 2499static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2500 __releases(rq->lock)
2501{
dfa50b60 2502 struct rq *rq = this_rq();
1da177e4 2503 struct mm_struct *mm = rq->prev_mm;
55a101f8 2504 long prev_state;
1da177e4 2505
609ca066
PZ
2506 /*
2507 * The previous task will have left us with a preempt_count of 2
2508 * because it left us after:
2509 *
2510 * schedule()
2511 * preempt_disable(); // 1
2512 * __schedule()
2513 * raw_spin_lock_irq(&rq->lock) // 2
2514 *
2515 * Also, see FORK_PREEMPT_COUNT.
2516 */
2517
1da177e4
LT
2518 rq->prev_mm = NULL;
2519
2520 /*
2521 * A task struct has one reference for the use as "current".
c394cc9f 2522 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2523 * schedule one last time. The schedule call will never return, and
2524 * the scheduled task must drop that reference.
95913d97
PZ
2525 *
2526 * We must observe prev->state before clearing prev->on_cpu (in
2527 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2528 * running on another CPU and we could rave with its RUNNING -> DEAD
2529 * transition, resulting in a double drop.
1da177e4 2530 */
55a101f8 2531 prev_state = prev->state;
bf9fae9f 2532 vtime_task_switch(prev);
a8d757ef 2533 perf_event_task_sched_in(prev, current);
4866cde0 2534 finish_lock_switch(rq, prev);
01f23e16 2535 finish_arch_post_lock_switch();
e8fa1362 2536
e107be36 2537 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2538 if (mm)
2539 mmdrop(mm);
c394cc9f 2540 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2541 if (prev->sched_class->task_dead)
2542 prev->sched_class->task_dead(prev);
2543
c6fd91f0 2544 /*
2545 * Remove function-return probe instances associated with this
2546 * task and put them back on the free list.
9761eea8 2547 */
c6fd91f0 2548 kprobe_flush_task(prev);
1da177e4 2549 put_task_struct(prev);
c6fd91f0 2550 }
99e5ada9 2551
de734f89 2552 tick_nohz_task_switch();
dfa50b60 2553 return rq;
1da177e4
LT
2554}
2555
3f029d3c
GH
2556#ifdef CONFIG_SMP
2557
3f029d3c 2558/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2559static void __balance_callback(struct rq *rq)
3f029d3c 2560{
e3fca9e7
PZ
2561 struct callback_head *head, *next;
2562 void (*func)(struct rq *rq);
2563 unsigned long flags;
3f029d3c 2564
e3fca9e7
PZ
2565 raw_spin_lock_irqsave(&rq->lock, flags);
2566 head = rq->balance_callback;
2567 rq->balance_callback = NULL;
2568 while (head) {
2569 func = (void (*)(struct rq *))head->func;
2570 next = head->next;
2571 head->next = NULL;
2572 head = next;
3f029d3c 2573
e3fca9e7 2574 func(rq);
3f029d3c 2575 }
e3fca9e7
PZ
2576 raw_spin_unlock_irqrestore(&rq->lock, flags);
2577}
2578
2579static inline void balance_callback(struct rq *rq)
2580{
2581 if (unlikely(rq->balance_callback))
2582 __balance_callback(rq);
3f029d3c
GH
2583}
2584
2585#else
da19ab51 2586
e3fca9e7 2587static inline void balance_callback(struct rq *rq)
3f029d3c 2588{
1da177e4
LT
2589}
2590
3f029d3c
GH
2591#endif
2592
1da177e4
LT
2593/**
2594 * schedule_tail - first thing a freshly forked thread must call.
2595 * @prev: the thread we just switched away from.
2596 */
722a9f92 2597asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2598 __releases(rq->lock)
2599{
1a43a14a 2600 struct rq *rq;
da19ab51 2601
609ca066
PZ
2602 /*
2603 * New tasks start with FORK_PREEMPT_COUNT, see there and
2604 * finish_task_switch() for details.
2605 *
2606 * finish_task_switch() will drop rq->lock() and lower preempt_count
2607 * and the preempt_enable() will end up enabling preemption (on
2608 * PREEMPT_COUNT kernels).
2609 */
2610
dfa50b60 2611 rq = finish_task_switch(prev);
e3fca9e7 2612 balance_callback(rq);
1a43a14a 2613 preempt_enable();
70b97a7f 2614
1da177e4 2615 if (current->set_child_tid)
b488893a 2616 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2617}
2618
2619/*
dfa50b60 2620 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2621 */
dfa50b60 2622static inline struct rq *
70b97a7f 2623context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2624 struct task_struct *next)
1da177e4 2625{
dd41f596 2626 struct mm_struct *mm, *oldmm;
1da177e4 2627
e107be36 2628 prepare_task_switch(rq, prev, next);
fe4b04fa 2629
dd41f596
IM
2630 mm = next->mm;
2631 oldmm = prev->active_mm;
9226d125
ZA
2632 /*
2633 * For paravirt, this is coupled with an exit in switch_to to
2634 * combine the page table reload and the switch backend into
2635 * one hypercall.
2636 */
224101ed 2637 arch_start_context_switch(prev);
9226d125 2638
31915ab4 2639 if (!mm) {
1da177e4
LT
2640 next->active_mm = oldmm;
2641 atomic_inc(&oldmm->mm_count);
2642 enter_lazy_tlb(oldmm, next);
2643 } else
2644 switch_mm(oldmm, mm, next);
2645
31915ab4 2646 if (!prev->mm) {
1da177e4 2647 prev->active_mm = NULL;
1da177e4
LT
2648 rq->prev_mm = oldmm;
2649 }
3a5f5e48
IM
2650 /*
2651 * Since the runqueue lock will be released by the next
2652 * task (which is an invalid locking op but in the case
2653 * of the scheduler it's an obvious special-case), so we
2654 * do an early lockdep release here:
2655 */
cbce1a68 2656 lockdep_unpin_lock(&rq->lock);
8a25d5de 2657 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2658
2659 /* Here we just switch the register state and the stack. */
2660 switch_to(prev, next, prev);
dd41f596 2661 barrier();
dfa50b60
ON
2662
2663 return finish_task_switch(prev);
1da177e4
LT
2664}
2665
2666/*
1c3e8264 2667 * nr_running and nr_context_switches:
1da177e4
LT
2668 *
2669 * externally visible scheduler statistics: current number of runnable
1c3e8264 2670 * threads, total number of context switches performed since bootup.
1da177e4
LT
2671 */
2672unsigned long nr_running(void)
2673{
2674 unsigned long i, sum = 0;
2675
2676 for_each_online_cpu(i)
2677 sum += cpu_rq(i)->nr_running;
2678
2679 return sum;
f711f609 2680}
1da177e4 2681
2ee507c4
TC
2682/*
2683 * Check if only the current task is running on the cpu.
00cc1633
DD
2684 *
2685 * Caution: this function does not check that the caller has disabled
2686 * preemption, thus the result might have a time-of-check-to-time-of-use
2687 * race. The caller is responsible to use it correctly, for example:
2688 *
2689 * - from a non-preemptable section (of course)
2690 *
2691 * - from a thread that is bound to a single CPU
2692 *
2693 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2694 */
2695bool single_task_running(void)
2696{
00cc1633 2697 return raw_rq()->nr_running == 1;
2ee507c4
TC
2698}
2699EXPORT_SYMBOL(single_task_running);
2700
1da177e4 2701unsigned long long nr_context_switches(void)
46cb4b7c 2702{
cc94abfc
SR
2703 int i;
2704 unsigned long long sum = 0;
46cb4b7c 2705
0a945022 2706 for_each_possible_cpu(i)
1da177e4 2707 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2708
1da177e4
LT
2709 return sum;
2710}
483b4ee6 2711
1da177e4
LT
2712unsigned long nr_iowait(void)
2713{
2714 unsigned long i, sum = 0;
483b4ee6 2715
0a945022 2716 for_each_possible_cpu(i)
1da177e4 2717 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2718
1da177e4
LT
2719 return sum;
2720}
483b4ee6 2721
8c215bd3 2722unsigned long nr_iowait_cpu(int cpu)
69d25870 2723{
8c215bd3 2724 struct rq *this = cpu_rq(cpu);
69d25870
AV
2725 return atomic_read(&this->nr_iowait);
2726}
46cb4b7c 2727
372ba8cb
MG
2728void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2729{
3289bdb4
PZ
2730 struct rq *rq = this_rq();
2731 *nr_waiters = atomic_read(&rq->nr_iowait);
2732 *load = rq->load.weight;
372ba8cb
MG
2733}
2734
dd41f596 2735#ifdef CONFIG_SMP
8a0be9ef 2736
46cb4b7c 2737/*
38022906
PZ
2738 * sched_exec - execve() is a valuable balancing opportunity, because at
2739 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2740 */
38022906 2741void sched_exec(void)
46cb4b7c 2742{
38022906 2743 struct task_struct *p = current;
1da177e4 2744 unsigned long flags;
0017d735 2745 int dest_cpu;
46cb4b7c 2746
8f42ced9 2747 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2748 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2749 if (dest_cpu == smp_processor_id())
2750 goto unlock;
38022906 2751
8f42ced9 2752 if (likely(cpu_active(dest_cpu))) {
969c7921 2753 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2754
8f42ced9
PZ
2755 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2756 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2757 return;
2758 }
0017d735 2759unlock:
8f42ced9 2760 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2761}
dd41f596 2762
1da177e4
LT
2763#endif
2764
1da177e4 2765DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2766DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2767
2768EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2769EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2770
c5f8d995
HS
2771/*
2772 * Return accounted runtime for the task.
2773 * In case the task is currently running, return the runtime plus current's
2774 * pending runtime that have not been accounted yet.
2775 */
2776unsigned long long task_sched_runtime(struct task_struct *p)
2777{
2778 unsigned long flags;
2779 struct rq *rq;
6e998916 2780 u64 ns;
c5f8d995 2781
911b2898
PZ
2782#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2783 /*
2784 * 64-bit doesn't need locks to atomically read a 64bit value.
2785 * So we have a optimization chance when the task's delta_exec is 0.
2786 * Reading ->on_cpu is racy, but this is ok.
2787 *
2788 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2789 * If we race with it entering cpu, unaccounted time is 0. This is
2790 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2791 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2792 * been accounted, so we're correct here as well.
911b2898 2793 */
da0c1e65 2794 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2795 return p->se.sum_exec_runtime;
2796#endif
2797
c5f8d995 2798 rq = task_rq_lock(p, &flags);
6e998916
SG
2799 /*
2800 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2801 * project cycles that may never be accounted to this
2802 * thread, breaking clock_gettime().
2803 */
2804 if (task_current(rq, p) && task_on_rq_queued(p)) {
2805 update_rq_clock(rq);
2806 p->sched_class->update_curr(rq);
2807 }
2808 ns = p->se.sum_exec_runtime;
0122ec5b 2809 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2810
2811 return ns;
2812}
48f24c4d 2813
7835b98b
CL
2814/*
2815 * This function gets called by the timer code, with HZ frequency.
2816 * We call it with interrupts disabled.
7835b98b
CL
2817 */
2818void scheduler_tick(void)
2819{
7835b98b
CL
2820 int cpu = smp_processor_id();
2821 struct rq *rq = cpu_rq(cpu);
dd41f596 2822 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2823
2824 sched_clock_tick();
dd41f596 2825
05fa785c 2826 raw_spin_lock(&rq->lock);
3e51f33f 2827 update_rq_clock(rq);
fa85ae24 2828 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2829 update_cpu_load_active(rq);
3289bdb4 2830 calc_global_load_tick(rq);
05fa785c 2831 raw_spin_unlock(&rq->lock);
7835b98b 2832
e9d2b064 2833 perf_event_task_tick();
e220d2dc 2834
e418e1c2 2835#ifdef CONFIG_SMP
6eb57e0d 2836 rq->idle_balance = idle_cpu(cpu);
7caff66f 2837 trigger_load_balance(rq);
e418e1c2 2838#endif
265f22a9 2839 rq_last_tick_reset(rq);
1da177e4
LT
2840}
2841
265f22a9
FW
2842#ifdef CONFIG_NO_HZ_FULL
2843/**
2844 * scheduler_tick_max_deferment
2845 *
2846 * Keep at least one tick per second when a single
2847 * active task is running because the scheduler doesn't
2848 * yet completely support full dynticks environment.
2849 *
2850 * This makes sure that uptime, CFS vruntime, load
2851 * balancing, etc... continue to move forward, even
2852 * with a very low granularity.
e69f6186
YB
2853 *
2854 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2855 */
2856u64 scheduler_tick_max_deferment(void)
2857{
2858 struct rq *rq = this_rq();
316c1608 2859 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2860
2861 next = rq->last_sched_tick + HZ;
2862
2863 if (time_before_eq(next, now))
2864 return 0;
2865
8fe8ff09 2866 return jiffies_to_nsecs(next - now);
1da177e4 2867}
265f22a9 2868#endif
1da177e4 2869
132380a0 2870notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2871{
2872 if (in_lock_functions(addr)) {
2873 addr = CALLER_ADDR2;
2874 if (in_lock_functions(addr))
2875 addr = CALLER_ADDR3;
2876 }
2877 return addr;
2878}
1da177e4 2879
7e49fcce
SR
2880#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2881 defined(CONFIG_PREEMPT_TRACER))
2882
edafe3a5 2883void preempt_count_add(int val)
1da177e4 2884{
6cd8a4bb 2885#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2886 /*
2887 * Underflow?
2888 */
9a11b49a
IM
2889 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2890 return;
6cd8a4bb 2891#endif
bdb43806 2892 __preempt_count_add(val);
6cd8a4bb 2893#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2894 /*
2895 * Spinlock count overflowing soon?
2896 */
33859f7f
MOS
2897 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2898 PREEMPT_MASK - 10);
6cd8a4bb 2899#endif
8f47b187
TG
2900 if (preempt_count() == val) {
2901 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2902#ifdef CONFIG_DEBUG_PREEMPT
2903 current->preempt_disable_ip = ip;
2904#endif
2905 trace_preempt_off(CALLER_ADDR0, ip);
2906 }
1da177e4 2907}
bdb43806 2908EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2909NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2910
edafe3a5 2911void preempt_count_sub(int val)
1da177e4 2912{
6cd8a4bb 2913#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2914 /*
2915 * Underflow?
2916 */
01e3eb82 2917 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2918 return;
1da177e4
LT
2919 /*
2920 * Is the spinlock portion underflowing?
2921 */
9a11b49a
IM
2922 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2923 !(preempt_count() & PREEMPT_MASK)))
2924 return;
6cd8a4bb 2925#endif
9a11b49a 2926
6cd8a4bb
SR
2927 if (preempt_count() == val)
2928 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2929 __preempt_count_sub(val);
1da177e4 2930}
bdb43806 2931EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2932NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2933
2934#endif
2935
2936/*
dd41f596 2937 * Print scheduling while atomic bug:
1da177e4 2938 */
dd41f596 2939static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2940{
664dfa65
DJ
2941 if (oops_in_progress)
2942 return;
2943
3df0fc5b
PZ
2944 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2945 prev->comm, prev->pid, preempt_count());
838225b4 2946
dd41f596 2947 debug_show_held_locks(prev);
e21f5b15 2948 print_modules();
dd41f596
IM
2949 if (irqs_disabled())
2950 print_irqtrace_events(prev);
8f47b187
TG
2951#ifdef CONFIG_DEBUG_PREEMPT
2952 if (in_atomic_preempt_off()) {
2953 pr_err("Preemption disabled at:");
2954 print_ip_sym(current->preempt_disable_ip);
2955 pr_cont("\n");
2956 }
2957#endif
6135fc1e 2958 dump_stack();
373d4d09 2959 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2960}
1da177e4 2961
dd41f596
IM
2962/*
2963 * Various schedule()-time debugging checks and statistics:
2964 */
2965static inline void schedule_debug(struct task_struct *prev)
2966{
0d9e2632
AT
2967#ifdef CONFIG_SCHED_STACK_END_CHECK
2968 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2969#endif
b99def8b 2970
1dc0fffc 2971 if (unlikely(in_atomic_preempt_off())) {
dd41f596 2972 __schedule_bug(prev);
1dc0fffc
PZ
2973 preempt_count_set(PREEMPT_DISABLED);
2974 }
b3fbab05 2975 rcu_sleep_check();
dd41f596 2976
1da177e4
LT
2977 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2978
2d72376b 2979 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2980}
2981
2982/*
2983 * Pick up the highest-prio task:
2984 */
2985static inline struct task_struct *
606dba2e 2986pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2987{
37e117c0 2988 const struct sched_class *class = &fair_sched_class;
dd41f596 2989 struct task_struct *p;
1da177e4
LT
2990
2991 /*
dd41f596
IM
2992 * Optimization: we know that if all tasks are in
2993 * the fair class we can call that function directly:
1da177e4 2994 */
37e117c0 2995 if (likely(prev->sched_class == class &&
38033c37 2996 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2997 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2998 if (unlikely(p == RETRY_TASK))
2999 goto again;
3000
3001 /* assumes fair_sched_class->next == idle_sched_class */
3002 if (unlikely(!p))
3003 p = idle_sched_class.pick_next_task(rq, prev);
3004
3005 return p;
1da177e4
LT
3006 }
3007
37e117c0 3008again:
34f971f6 3009 for_each_class(class) {
606dba2e 3010 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3011 if (p) {
3012 if (unlikely(p == RETRY_TASK))
3013 goto again;
dd41f596 3014 return p;
37e117c0 3015 }
dd41f596 3016 }
34f971f6
PZ
3017
3018 BUG(); /* the idle class will always have a runnable task */
dd41f596 3019}
1da177e4 3020
dd41f596 3021/*
c259e01a 3022 * __schedule() is the main scheduler function.
edde96ea
PE
3023 *
3024 * The main means of driving the scheduler and thus entering this function are:
3025 *
3026 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3027 *
3028 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3029 * paths. For example, see arch/x86/entry_64.S.
3030 *
3031 * To drive preemption between tasks, the scheduler sets the flag in timer
3032 * interrupt handler scheduler_tick().
3033 *
3034 * 3. Wakeups don't really cause entry into schedule(). They add a
3035 * task to the run-queue and that's it.
3036 *
3037 * Now, if the new task added to the run-queue preempts the current
3038 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3039 * called on the nearest possible occasion:
3040 *
3041 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3042 *
3043 * - in syscall or exception context, at the next outmost
3044 * preempt_enable(). (this might be as soon as the wake_up()'s
3045 * spin_unlock()!)
3046 *
3047 * - in IRQ context, return from interrupt-handler to
3048 * preemptible context
3049 *
3050 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3051 * then at the next:
3052 *
3053 * - cond_resched() call
3054 * - explicit schedule() call
3055 * - return from syscall or exception to user-space
3056 * - return from interrupt-handler to user-space
bfd9b2b5 3057 *
b30f0e3f 3058 * WARNING: must be called with preemption disabled!
dd41f596 3059 */
499d7955 3060static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3061{
3062 struct task_struct *prev, *next;
67ca7bde 3063 unsigned long *switch_count;
dd41f596 3064 struct rq *rq;
31656519 3065 int cpu;
dd41f596 3066
dd41f596
IM
3067 cpu = smp_processor_id();
3068 rq = cpu_rq(cpu);
38200cf2 3069 rcu_note_context_switch();
dd41f596 3070 prev = rq->curr;
dd41f596 3071
b99def8b
PZ
3072 /*
3073 * do_exit() calls schedule() with preemption disabled as an exception;
3074 * however we must fix that up, otherwise the next task will see an
3075 * inconsistent (higher) preempt count.
3076 *
3077 * It also avoids the below schedule_debug() test from complaining
3078 * about this.
3079 */
3080 if (unlikely(prev->state == TASK_DEAD))
3081 preempt_enable_no_resched_notrace();
3082
dd41f596 3083 schedule_debug(prev);
1da177e4 3084
31656519 3085 if (sched_feat(HRTICK))
f333fdc9 3086 hrtick_clear(rq);
8f4d37ec 3087
e0acd0a6
ON
3088 /*
3089 * Make sure that signal_pending_state()->signal_pending() below
3090 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3091 * done by the caller to avoid the race with signal_wake_up().
3092 */
3093 smp_mb__before_spinlock();
05fa785c 3094 raw_spin_lock_irq(&rq->lock);
cbce1a68 3095 lockdep_pin_lock(&rq->lock);
1da177e4 3096
9edfbfed
PZ
3097 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3098
246d86b5 3099 switch_count = &prev->nivcsw;
fc13aeba 3100 if (!preempt && prev->state) {
21aa9af0 3101 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3102 prev->state = TASK_RUNNING;
21aa9af0 3103 } else {
2acca55e
PZ
3104 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3105 prev->on_rq = 0;
3106
21aa9af0 3107 /*
2acca55e
PZ
3108 * If a worker went to sleep, notify and ask workqueue
3109 * whether it wants to wake up a task to maintain
3110 * concurrency.
21aa9af0
TH
3111 */
3112 if (prev->flags & PF_WQ_WORKER) {
3113 struct task_struct *to_wakeup;
3114
3115 to_wakeup = wq_worker_sleeping(prev, cpu);
3116 if (to_wakeup)
3117 try_to_wake_up_local(to_wakeup);
3118 }
21aa9af0 3119 }
dd41f596 3120 switch_count = &prev->nvcsw;
1da177e4
LT
3121 }
3122
9edfbfed 3123 if (task_on_rq_queued(prev))
606dba2e
PZ
3124 update_rq_clock(rq);
3125
3126 next = pick_next_task(rq, prev);
f26f9aff 3127 clear_tsk_need_resched(prev);
f27dde8d 3128 clear_preempt_need_resched();
9edfbfed 3129 rq->clock_skip_update = 0;
1da177e4 3130
1da177e4 3131 if (likely(prev != next)) {
1da177e4
LT
3132 rq->nr_switches++;
3133 rq->curr = next;
3134 ++*switch_count;
3135
c73464b1 3136 trace_sched_switch(preempt, prev, next);
dfa50b60
ON
3137 rq = context_switch(rq, prev, next); /* unlocks the rq */
3138 cpu = cpu_of(rq);
cbce1a68
PZ
3139 } else {
3140 lockdep_unpin_lock(&rq->lock);
05fa785c 3141 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3142 }
1da177e4 3143
e3fca9e7 3144 balance_callback(rq);
1da177e4 3145}
c259e01a 3146
9c40cef2
TG
3147static inline void sched_submit_work(struct task_struct *tsk)
3148{
3c7d5184 3149 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3150 return;
3151 /*
3152 * If we are going to sleep and we have plugged IO queued,
3153 * make sure to submit it to avoid deadlocks.
3154 */
3155 if (blk_needs_flush_plug(tsk))
3156 blk_schedule_flush_plug(tsk);
3157}
3158
722a9f92 3159asmlinkage __visible void __sched schedule(void)
c259e01a 3160{
9c40cef2
TG
3161 struct task_struct *tsk = current;
3162
3163 sched_submit_work(tsk);
bfd9b2b5 3164 do {
b30f0e3f 3165 preempt_disable();
fc13aeba 3166 __schedule(false);
b30f0e3f 3167 sched_preempt_enable_no_resched();
bfd9b2b5 3168 } while (need_resched());
c259e01a 3169}
1da177e4
LT
3170EXPORT_SYMBOL(schedule);
3171
91d1aa43 3172#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3173asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3174{
3175 /*
3176 * If we come here after a random call to set_need_resched(),
3177 * or we have been woken up remotely but the IPI has not yet arrived,
3178 * we haven't yet exited the RCU idle mode. Do it here manually until
3179 * we find a better solution.
7cc78f8f
AL
3180 *
3181 * NB: There are buggy callers of this function. Ideally we
c467ea76 3182 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3183 * too frequently to make sense yet.
20ab65e3 3184 */
7cc78f8f 3185 enum ctx_state prev_state = exception_enter();
20ab65e3 3186 schedule();
7cc78f8f 3187 exception_exit(prev_state);
20ab65e3
FW
3188}
3189#endif
3190
c5491ea7
TG
3191/**
3192 * schedule_preempt_disabled - called with preemption disabled
3193 *
3194 * Returns with preemption disabled. Note: preempt_count must be 1
3195 */
3196void __sched schedule_preempt_disabled(void)
3197{
ba74c144 3198 sched_preempt_enable_no_resched();
c5491ea7
TG
3199 schedule();
3200 preempt_disable();
3201}
3202
06b1f808 3203static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3204{
3205 do {
499d7955 3206 preempt_disable_notrace();
fc13aeba 3207 __schedule(true);
499d7955 3208 preempt_enable_no_resched_notrace();
a18b5d01
FW
3209
3210 /*
3211 * Check again in case we missed a preemption opportunity
3212 * between schedule and now.
3213 */
a18b5d01
FW
3214 } while (need_resched());
3215}
3216
1da177e4
LT
3217#ifdef CONFIG_PREEMPT
3218/*
2ed6e34f 3219 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3220 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3221 * occur there and call schedule directly.
3222 */
722a9f92 3223asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3224{
1da177e4
LT
3225 /*
3226 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3227 * we do not want to preempt the current task. Just return..
1da177e4 3228 */
fbb00b56 3229 if (likely(!preemptible()))
1da177e4
LT
3230 return;
3231
a18b5d01 3232 preempt_schedule_common();
1da177e4 3233}
376e2424 3234NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3235EXPORT_SYMBOL(preempt_schedule);
009f60e2 3236
009f60e2 3237/**
4eaca0a8 3238 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3239 *
3240 * The tracing infrastructure uses preempt_enable_notrace to prevent
3241 * recursion and tracing preempt enabling caused by the tracing
3242 * infrastructure itself. But as tracing can happen in areas coming
3243 * from userspace or just about to enter userspace, a preempt enable
3244 * can occur before user_exit() is called. This will cause the scheduler
3245 * to be called when the system is still in usermode.
3246 *
3247 * To prevent this, the preempt_enable_notrace will use this function
3248 * instead of preempt_schedule() to exit user context if needed before
3249 * calling the scheduler.
3250 */
4eaca0a8 3251asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3252{
3253 enum ctx_state prev_ctx;
3254
3255 if (likely(!preemptible()))
3256 return;
3257
3258 do {
3d8f74dd 3259 preempt_disable_notrace();
009f60e2
ON
3260 /*
3261 * Needs preempt disabled in case user_exit() is traced
3262 * and the tracer calls preempt_enable_notrace() causing
3263 * an infinite recursion.
3264 */
3265 prev_ctx = exception_enter();
fc13aeba 3266 __schedule(true);
009f60e2
ON
3267 exception_exit(prev_ctx);
3268
3d8f74dd 3269 preempt_enable_no_resched_notrace();
009f60e2
ON
3270 } while (need_resched());
3271}
4eaca0a8 3272EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3273
32e475d7 3274#endif /* CONFIG_PREEMPT */
1da177e4
LT
3275
3276/*
2ed6e34f 3277 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3278 * off of irq context.
3279 * Note, that this is called and return with irqs disabled. This will
3280 * protect us against recursive calling from irq.
3281 */
722a9f92 3282asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3283{
b22366cd 3284 enum ctx_state prev_state;
6478d880 3285
2ed6e34f 3286 /* Catch callers which need to be fixed */
f27dde8d 3287 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3288
b22366cd
FW
3289 prev_state = exception_enter();
3290
3a5c359a 3291 do {
3d8f74dd 3292 preempt_disable();
3a5c359a 3293 local_irq_enable();
fc13aeba 3294 __schedule(true);
3a5c359a 3295 local_irq_disable();
3d8f74dd 3296 sched_preempt_enable_no_resched();
5ed0cec0 3297 } while (need_resched());
b22366cd
FW
3298
3299 exception_exit(prev_state);
1da177e4
LT
3300}
3301
63859d4f 3302int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3303 void *key)
1da177e4 3304{
63859d4f 3305 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3306}
1da177e4
LT
3307EXPORT_SYMBOL(default_wake_function);
3308
b29739f9
IM
3309#ifdef CONFIG_RT_MUTEXES
3310
3311/*
3312 * rt_mutex_setprio - set the current priority of a task
3313 * @p: task
3314 * @prio: prio value (kernel-internal form)
3315 *
3316 * This function changes the 'effective' priority of a task. It does
3317 * not touch ->normal_prio like __setscheduler().
3318 *
c365c292
TG
3319 * Used by the rt_mutex code to implement priority inheritance
3320 * logic. Call site only calls if the priority of the task changed.
b29739f9 3321 */
36c8b586 3322void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3323{
da0c1e65 3324 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3325 struct rq *rq;
83ab0aa0 3326 const struct sched_class *prev_class;
b29739f9 3327
aab03e05 3328 BUG_ON(prio > MAX_PRIO);
b29739f9 3329
0122ec5b 3330 rq = __task_rq_lock(p);
b29739f9 3331
1c4dd99b
TG
3332 /*
3333 * Idle task boosting is a nono in general. There is one
3334 * exception, when PREEMPT_RT and NOHZ is active:
3335 *
3336 * The idle task calls get_next_timer_interrupt() and holds
3337 * the timer wheel base->lock on the CPU and another CPU wants
3338 * to access the timer (probably to cancel it). We can safely
3339 * ignore the boosting request, as the idle CPU runs this code
3340 * with interrupts disabled and will complete the lock
3341 * protected section without being interrupted. So there is no
3342 * real need to boost.
3343 */
3344 if (unlikely(p == rq->idle)) {
3345 WARN_ON(p != rq->curr);
3346 WARN_ON(p->pi_blocked_on);
3347 goto out_unlock;
3348 }
3349
a8027073 3350 trace_sched_pi_setprio(p, prio);
d5f9f942 3351 oldprio = p->prio;
83ab0aa0 3352 prev_class = p->sched_class;
da0c1e65 3353 queued = task_on_rq_queued(p);
051a1d1a 3354 running = task_current(rq, p);
da0c1e65 3355 if (queued)
69be72c1 3356 dequeue_task(rq, p, 0);
0e1f3483 3357 if (running)
f3cd1c4e 3358 put_prev_task(rq, p);
dd41f596 3359
2d3d891d
DF
3360 /*
3361 * Boosting condition are:
3362 * 1. -rt task is running and holds mutex A
3363 * --> -dl task blocks on mutex A
3364 *
3365 * 2. -dl task is running and holds mutex A
3366 * --> -dl task blocks on mutex A and could preempt the
3367 * running task
3368 */
3369 if (dl_prio(prio)) {
466af29b
ON
3370 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3371 if (!dl_prio(p->normal_prio) ||
3372 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3373 p->dl.dl_boosted = 1;
2d3d891d
DF
3374 enqueue_flag = ENQUEUE_REPLENISH;
3375 } else
3376 p->dl.dl_boosted = 0;
aab03e05 3377 p->sched_class = &dl_sched_class;
2d3d891d
DF
3378 } else if (rt_prio(prio)) {
3379 if (dl_prio(oldprio))
3380 p->dl.dl_boosted = 0;
3381 if (oldprio < prio)
3382 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3383 p->sched_class = &rt_sched_class;
2d3d891d
DF
3384 } else {
3385 if (dl_prio(oldprio))
3386 p->dl.dl_boosted = 0;
746db944
BS
3387 if (rt_prio(oldprio))
3388 p->rt.timeout = 0;
dd41f596 3389 p->sched_class = &fair_sched_class;
2d3d891d 3390 }
dd41f596 3391
b29739f9
IM
3392 p->prio = prio;
3393
0e1f3483
HS
3394 if (running)
3395 p->sched_class->set_curr_task(rq);
da0c1e65 3396 if (queued)
2d3d891d 3397 enqueue_task(rq, p, enqueue_flag);
cb469845 3398
da7a735e 3399 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3400out_unlock:
4c9a4bc8 3401 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3402 __task_rq_unlock(rq);
4c9a4bc8
PZ
3403
3404 balance_callback(rq);
3405 preempt_enable();
b29739f9 3406}
b29739f9 3407#endif
d50dde5a 3408
36c8b586 3409void set_user_nice(struct task_struct *p, long nice)
1da177e4 3410{
da0c1e65 3411 int old_prio, delta, queued;
1da177e4 3412 unsigned long flags;
70b97a7f 3413 struct rq *rq;
1da177e4 3414
75e45d51 3415 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3416 return;
3417 /*
3418 * We have to be careful, if called from sys_setpriority(),
3419 * the task might be in the middle of scheduling on another CPU.
3420 */
3421 rq = task_rq_lock(p, &flags);
3422 /*
3423 * The RT priorities are set via sched_setscheduler(), but we still
3424 * allow the 'normal' nice value to be set - but as expected
3425 * it wont have any effect on scheduling until the task is
aab03e05 3426 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3427 */
aab03e05 3428 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3429 p->static_prio = NICE_TO_PRIO(nice);
3430 goto out_unlock;
3431 }
da0c1e65
KT
3432 queued = task_on_rq_queued(p);
3433 if (queued)
69be72c1 3434 dequeue_task(rq, p, 0);
1da177e4 3435
1da177e4 3436 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3437 set_load_weight(p);
b29739f9
IM
3438 old_prio = p->prio;
3439 p->prio = effective_prio(p);
3440 delta = p->prio - old_prio;
1da177e4 3441
da0c1e65 3442 if (queued) {
371fd7e7 3443 enqueue_task(rq, p, 0);
1da177e4 3444 /*
d5f9f942
AM
3445 * If the task increased its priority or is running and
3446 * lowered its priority, then reschedule its CPU:
1da177e4 3447 */
d5f9f942 3448 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3449 resched_curr(rq);
1da177e4
LT
3450 }
3451out_unlock:
0122ec5b 3452 task_rq_unlock(rq, p, &flags);
1da177e4 3453}
1da177e4
LT
3454EXPORT_SYMBOL(set_user_nice);
3455
e43379f1
MM
3456/*
3457 * can_nice - check if a task can reduce its nice value
3458 * @p: task
3459 * @nice: nice value
3460 */
36c8b586 3461int can_nice(const struct task_struct *p, const int nice)
e43379f1 3462{
024f4747 3463 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3464 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3465
78d7d407 3466 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3467 capable(CAP_SYS_NICE));
3468}
3469
1da177e4
LT
3470#ifdef __ARCH_WANT_SYS_NICE
3471
3472/*
3473 * sys_nice - change the priority of the current process.
3474 * @increment: priority increment
3475 *
3476 * sys_setpriority is a more generic, but much slower function that
3477 * does similar things.
3478 */
5add95d4 3479SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3480{
48f24c4d 3481 long nice, retval;
1da177e4
LT
3482
3483 /*
3484 * Setpriority might change our priority at the same moment.
3485 * We don't have to worry. Conceptually one call occurs first
3486 * and we have a single winner.
3487 */
a9467fa3 3488 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3489 nice = task_nice(current) + increment;
1da177e4 3490
a9467fa3 3491 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3492 if (increment < 0 && !can_nice(current, nice))
3493 return -EPERM;
3494
1da177e4
LT
3495 retval = security_task_setnice(current, nice);
3496 if (retval)
3497 return retval;
3498
3499 set_user_nice(current, nice);
3500 return 0;
3501}
3502
3503#endif
3504
3505/**
3506 * task_prio - return the priority value of a given task.
3507 * @p: the task in question.
3508 *
e69f6186 3509 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3510 * RT tasks are offset by -200. Normal tasks are centered
3511 * around 0, value goes from -16 to +15.
3512 */
36c8b586 3513int task_prio(const struct task_struct *p)
1da177e4
LT
3514{
3515 return p->prio - MAX_RT_PRIO;
3516}
3517
1da177e4
LT
3518/**
3519 * idle_cpu - is a given cpu idle currently?
3520 * @cpu: the processor in question.
e69f6186
YB
3521 *
3522 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3523 */
3524int idle_cpu(int cpu)
3525{
908a3283
TG
3526 struct rq *rq = cpu_rq(cpu);
3527
3528 if (rq->curr != rq->idle)
3529 return 0;
3530
3531 if (rq->nr_running)
3532 return 0;
3533
3534#ifdef CONFIG_SMP
3535 if (!llist_empty(&rq->wake_list))
3536 return 0;
3537#endif
3538
3539 return 1;
1da177e4
LT
3540}
3541
1da177e4
LT
3542/**
3543 * idle_task - return the idle task for a given cpu.
3544 * @cpu: the processor in question.
e69f6186
YB
3545 *
3546 * Return: The idle task for the cpu @cpu.
1da177e4 3547 */
36c8b586 3548struct task_struct *idle_task(int cpu)
1da177e4
LT
3549{
3550 return cpu_rq(cpu)->idle;
3551}
3552
3553/**
3554 * find_process_by_pid - find a process with a matching PID value.
3555 * @pid: the pid in question.
e69f6186
YB
3556 *
3557 * The task of @pid, if found. %NULL otherwise.
1da177e4 3558 */
a9957449 3559static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3560{
228ebcbe 3561 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3562}
3563
aab03e05
DF
3564/*
3565 * This function initializes the sched_dl_entity of a newly becoming
3566 * SCHED_DEADLINE task.
3567 *
3568 * Only the static values are considered here, the actual runtime and the
3569 * absolute deadline will be properly calculated when the task is enqueued
3570 * for the first time with its new policy.
3571 */
3572static void
3573__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3574{
3575 struct sched_dl_entity *dl_se = &p->dl;
3576
aab03e05
DF
3577 dl_se->dl_runtime = attr->sched_runtime;
3578 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3579 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3580 dl_se->flags = attr->sched_flags;
332ac17e 3581 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3582
3583 /*
3584 * Changing the parameters of a task is 'tricky' and we're not doing
3585 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3586 *
3587 * What we SHOULD do is delay the bandwidth release until the 0-lag
3588 * point. This would include retaining the task_struct until that time
3589 * and change dl_overflow() to not immediately decrement the current
3590 * amount.
3591 *
3592 * Instead we retain the current runtime/deadline and let the new
3593 * parameters take effect after the current reservation period lapses.
3594 * This is safe (albeit pessimistic) because the 0-lag point is always
3595 * before the current scheduling deadline.
3596 *
3597 * We can still have temporary overloads because we do not delay the
3598 * change in bandwidth until that time; so admission control is
3599 * not on the safe side. It does however guarantee tasks will never
3600 * consume more than promised.
3601 */
aab03e05
DF
3602}
3603
c13db6b1
SR
3604/*
3605 * sched_setparam() passes in -1 for its policy, to let the functions
3606 * it calls know not to change it.
3607 */
3608#define SETPARAM_POLICY -1
3609
c365c292
TG
3610static void __setscheduler_params(struct task_struct *p,
3611 const struct sched_attr *attr)
1da177e4 3612{
d50dde5a
DF
3613 int policy = attr->sched_policy;
3614
c13db6b1 3615 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3616 policy = p->policy;
3617
1da177e4 3618 p->policy = policy;
d50dde5a 3619
aab03e05
DF
3620 if (dl_policy(policy))
3621 __setparam_dl(p, attr);
39fd8fd2 3622 else if (fair_policy(policy))
d50dde5a
DF
3623 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3624
39fd8fd2
PZ
3625 /*
3626 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3627 * !rt_policy. Always setting this ensures that things like
3628 * getparam()/getattr() don't report silly values for !rt tasks.
3629 */
3630 p->rt_priority = attr->sched_priority;
383afd09 3631 p->normal_prio = normal_prio(p);
c365c292
TG
3632 set_load_weight(p);
3633}
39fd8fd2 3634
c365c292
TG
3635/* Actually do priority change: must hold pi & rq lock. */
3636static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3637 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3638{
3639 __setscheduler_params(p, attr);
d50dde5a 3640
383afd09 3641 /*
0782e63b
TG
3642 * Keep a potential priority boosting if called from
3643 * sched_setscheduler().
383afd09 3644 */
0782e63b
TG
3645 if (keep_boost)
3646 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3647 else
3648 p->prio = normal_prio(p);
383afd09 3649
aab03e05
DF
3650 if (dl_prio(p->prio))
3651 p->sched_class = &dl_sched_class;
3652 else if (rt_prio(p->prio))
ffd44db5
PZ
3653 p->sched_class = &rt_sched_class;
3654 else
3655 p->sched_class = &fair_sched_class;
1da177e4 3656}
aab03e05
DF
3657
3658static void
3659__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3660{
3661 struct sched_dl_entity *dl_se = &p->dl;
3662
3663 attr->sched_priority = p->rt_priority;
3664 attr->sched_runtime = dl_se->dl_runtime;
3665 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3666 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3667 attr->sched_flags = dl_se->flags;
3668}
3669
3670/*
3671 * This function validates the new parameters of a -deadline task.
3672 * We ask for the deadline not being zero, and greater or equal
755378a4 3673 * than the runtime, as well as the period of being zero or
332ac17e 3674 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3675 * user parameters are above the internal resolution of 1us (we
3676 * check sched_runtime only since it is always the smaller one) and
3677 * below 2^63 ns (we have to check both sched_deadline and
3678 * sched_period, as the latter can be zero).
aab03e05
DF
3679 */
3680static bool
3681__checkparam_dl(const struct sched_attr *attr)
3682{
b0827819
JL
3683 /* deadline != 0 */
3684 if (attr->sched_deadline == 0)
3685 return false;
3686
3687 /*
3688 * Since we truncate DL_SCALE bits, make sure we're at least
3689 * that big.
3690 */
3691 if (attr->sched_runtime < (1ULL << DL_SCALE))
3692 return false;
3693
3694 /*
3695 * Since we use the MSB for wrap-around and sign issues, make
3696 * sure it's not set (mind that period can be equal to zero).
3697 */
3698 if (attr->sched_deadline & (1ULL << 63) ||
3699 attr->sched_period & (1ULL << 63))
3700 return false;
3701
3702 /* runtime <= deadline <= period (if period != 0) */
3703 if ((attr->sched_period != 0 &&
3704 attr->sched_period < attr->sched_deadline) ||
3705 attr->sched_deadline < attr->sched_runtime)
3706 return false;
3707
3708 return true;
aab03e05
DF
3709}
3710
c69e8d9c
DH
3711/*
3712 * check the target process has a UID that matches the current process's
3713 */
3714static bool check_same_owner(struct task_struct *p)
3715{
3716 const struct cred *cred = current_cred(), *pcred;
3717 bool match;
3718
3719 rcu_read_lock();
3720 pcred = __task_cred(p);
9c806aa0
EB
3721 match = (uid_eq(cred->euid, pcred->euid) ||
3722 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3723 rcu_read_unlock();
3724 return match;
3725}
3726
75381608
WL
3727static bool dl_param_changed(struct task_struct *p,
3728 const struct sched_attr *attr)
3729{
3730 struct sched_dl_entity *dl_se = &p->dl;
3731
3732 if (dl_se->dl_runtime != attr->sched_runtime ||
3733 dl_se->dl_deadline != attr->sched_deadline ||
3734 dl_se->dl_period != attr->sched_period ||
3735 dl_se->flags != attr->sched_flags)
3736 return true;
3737
3738 return false;
3739}
3740
d50dde5a
DF
3741static int __sched_setscheduler(struct task_struct *p,
3742 const struct sched_attr *attr,
dbc7f069 3743 bool user, bool pi)
1da177e4 3744{
383afd09
SR
3745 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3746 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3747 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3748 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3749 unsigned long flags;
83ab0aa0 3750 const struct sched_class *prev_class;
70b97a7f 3751 struct rq *rq;
ca94c442 3752 int reset_on_fork;
1da177e4 3753
66e5393a
SR
3754 /* may grab non-irq protected spin_locks */
3755 BUG_ON(in_interrupt());
1da177e4
LT
3756recheck:
3757 /* double check policy once rq lock held */
ca94c442
LP
3758 if (policy < 0) {
3759 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3760 policy = oldpolicy = p->policy;
ca94c442 3761 } else {
7479f3c9 3762 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3763
20f9cd2a 3764 if (!valid_policy(policy))
ca94c442
LP
3765 return -EINVAL;
3766 }
3767
7479f3c9
PZ
3768 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3769 return -EINVAL;
3770
1da177e4
LT
3771 /*
3772 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3773 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3774 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3775 */
0bb040a4 3776 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3777 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3778 return -EINVAL;
aab03e05
DF
3779 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3780 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3781 return -EINVAL;
3782
37e4ab3f
OC
3783 /*
3784 * Allow unprivileged RT tasks to decrease priority:
3785 */
961ccddd 3786 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3787 if (fair_policy(policy)) {
d0ea0268 3788 if (attr->sched_nice < task_nice(p) &&
eaad4513 3789 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3790 return -EPERM;
3791 }
3792
e05606d3 3793 if (rt_policy(policy)) {
a44702e8
ON
3794 unsigned long rlim_rtprio =
3795 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3796
3797 /* can't set/change the rt policy */
3798 if (policy != p->policy && !rlim_rtprio)
3799 return -EPERM;
3800
3801 /* can't increase priority */
d50dde5a
DF
3802 if (attr->sched_priority > p->rt_priority &&
3803 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3804 return -EPERM;
3805 }
c02aa73b 3806
d44753b8
JL
3807 /*
3808 * Can't set/change SCHED_DEADLINE policy at all for now
3809 * (safest behavior); in the future we would like to allow
3810 * unprivileged DL tasks to increase their relative deadline
3811 * or reduce their runtime (both ways reducing utilization)
3812 */
3813 if (dl_policy(policy))
3814 return -EPERM;
3815
dd41f596 3816 /*
c02aa73b
DH
3817 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3818 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3819 */
20f9cd2a 3820 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3821 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3822 return -EPERM;
3823 }
5fe1d75f 3824
37e4ab3f 3825 /* can't change other user's priorities */
c69e8d9c 3826 if (!check_same_owner(p))
37e4ab3f 3827 return -EPERM;
ca94c442
LP
3828
3829 /* Normal users shall not reset the sched_reset_on_fork flag */
3830 if (p->sched_reset_on_fork && !reset_on_fork)
3831 return -EPERM;
37e4ab3f 3832 }
1da177e4 3833
725aad24 3834 if (user) {
b0ae1981 3835 retval = security_task_setscheduler(p);
725aad24
JF
3836 if (retval)
3837 return retval;
3838 }
3839
b29739f9
IM
3840 /*
3841 * make sure no PI-waiters arrive (or leave) while we are
3842 * changing the priority of the task:
0122ec5b 3843 *
25985edc 3844 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3845 * runqueue lock must be held.
3846 */
0122ec5b 3847 rq = task_rq_lock(p, &flags);
dc61b1d6 3848
34f971f6
PZ
3849 /*
3850 * Changing the policy of the stop threads its a very bad idea
3851 */
3852 if (p == rq->stop) {
0122ec5b 3853 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3854 return -EINVAL;
3855 }
3856
a51e9198 3857 /*
d6b1e911
TG
3858 * If not changing anything there's no need to proceed further,
3859 * but store a possible modification of reset_on_fork.
a51e9198 3860 */
d50dde5a 3861 if (unlikely(policy == p->policy)) {
d0ea0268 3862 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3863 goto change;
3864 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3865 goto change;
75381608 3866 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3867 goto change;
d50dde5a 3868
d6b1e911 3869 p->sched_reset_on_fork = reset_on_fork;
45afb173 3870 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3871 return 0;
3872 }
d50dde5a 3873change:
a51e9198 3874
dc61b1d6 3875 if (user) {
332ac17e 3876#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3877 /*
3878 * Do not allow realtime tasks into groups that have no runtime
3879 * assigned.
3880 */
3881 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3882 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3883 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3884 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3885 return -EPERM;
3886 }
dc61b1d6 3887#endif
332ac17e
DF
3888#ifdef CONFIG_SMP
3889 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3890 cpumask_t *span = rq->rd->span;
332ac17e
DF
3891
3892 /*
3893 * Don't allow tasks with an affinity mask smaller than
3894 * the entire root_domain to become SCHED_DEADLINE. We
3895 * will also fail if there's no bandwidth available.
3896 */
e4099a5e
PZ
3897 if (!cpumask_subset(span, &p->cpus_allowed) ||
3898 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3899 task_rq_unlock(rq, p, &flags);
3900 return -EPERM;
3901 }
3902 }
3903#endif
3904 }
dc61b1d6 3905
1da177e4
LT
3906 /* recheck policy now with rq lock held */
3907 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3908 policy = oldpolicy = -1;
0122ec5b 3909 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3910 goto recheck;
3911 }
332ac17e
DF
3912
3913 /*
3914 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3915 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3916 * is available.
3917 */
e4099a5e 3918 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3919 task_rq_unlock(rq, p, &flags);
3920 return -EBUSY;
3921 }
3922
c365c292
TG
3923 p->sched_reset_on_fork = reset_on_fork;
3924 oldprio = p->prio;
3925
dbc7f069
PZ
3926 if (pi) {
3927 /*
3928 * Take priority boosted tasks into account. If the new
3929 * effective priority is unchanged, we just store the new
3930 * normal parameters and do not touch the scheduler class and
3931 * the runqueue. This will be done when the task deboost
3932 * itself.
3933 */
3934 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3935 if (new_effective_prio == oldprio) {
3936 __setscheduler_params(p, attr);
3937 task_rq_unlock(rq, p, &flags);
3938 return 0;
3939 }
c365c292
TG
3940 }
3941
da0c1e65 3942 queued = task_on_rq_queued(p);
051a1d1a 3943 running = task_current(rq, p);
da0c1e65 3944 if (queued)
4ca9b72b 3945 dequeue_task(rq, p, 0);
0e1f3483 3946 if (running)
f3cd1c4e 3947 put_prev_task(rq, p);
f6b53205 3948
83ab0aa0 3949 prev_class = p->sched_class;
dbc7f069 3950 __setscheduler(rq, p, attr, pi);
f6b53205 3951
0e1f3483
HS
3952 if (running)
3953 p->sched_class->set_curr_task(rq);
da0c1e65 3954 if (queued) {
81a44c54
TG
3955 /*
3956 * We enqueue to tail when the priority of a task is
3957 * increased (user space view).
3958 */
3959 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3960 }
cb469845 3961
da7a735e 3962 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3963 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3964 task_rq_unlock(rq, p, &flags);
b29739f9 3965
dbc7f069
PZ
3966 if (pi)
3967 rt_mutex_adjust_pi(p);
95e02ca9 3968
4c9a4bc8
PZ
3969 /*
3970 * Run balance callbacks after we've adjusted the PI chain.
3971 */
3972 balance_callback(rq);
3973 preempt_enable();
95e02ca9 3974
1da177e4
LT
3975 return 0;
3976}
961ccddd 3977
7479f3c9
PZ
3978static int _sched_setscheduler(struct task_struct *p, int policy,
3979 const struct sched_param *param, bool check)
3980{
3981 struct sched_attr attr = {
3982 .sched_policy = policy,
3983 .sched_priority = param->sched_priority,
3984 .sched_nice = PRIO_TO_NICE(p->static_prio),
3985 };
3986
c13db6b1
SR
3987 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3988 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3989 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3990 policy &= ~SCHED_RESET_ON_FORK;
3991 attr.sched_policy = policy;
3992 }
3993
dbc7f069 3994 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3995}
961ccddd
RR
3996/**
3997 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3998 * @p: the task in question.
3999 * @policy: new policy.
4000 * @param: structure containing the new RT priority.
4001 *
e69f6186
YB
4002 * Return: 0 on success. An error code otherwise.
4003 *
961ccddd
RR
4004 * NOTE that the task may be already dead.
4005 */
4006int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4007 const struct sched_param *param)
961ccddd 4008{
7479f3c9 4009 return _sched_setscheduler(p, policy, param, true);
961ccddd 4010}
1da177e4
LT
4011EXPORT_SYMBOL_GPL(sched_setscheduler);
4012
d50dde5a
DF
4013int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4014{
dbc7f069 4015 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4016}
4017EXPORT_SYMBOL_GPL(sched_setattr);
4018
961ccddd
RR
4019/**
4020 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4021 * @p: the task in question.
4022 * @policy: new policy.
4023 * @param: structure containing the new RT priority.
4024 *
4025 * Just like sched_setscheduler, only don't bother checking if the
4026 * current context has permission. For example, this is needed in
4027 * stop_machine(): we create temporary high priority worker threads,
4028 * but our caller might not have that capability.
e69f6186
YB
4029 *
4030 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4031 */
4032int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4033 const struct sched_param *param)
961ccddd 4034{
7479f3c9 4035 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
4036}
4037
95cdf3b7
IM
4038static int
4039do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4040{
1da177e4
LT
4041 struct sched_param lparam;
4042 struct task_struct *p;
36c8b586 4043 int retval;
1da177e4
LT
4044
4045 if (!param || pid < 0)
4046 return -EINVAL;
4047 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4048 return -EFAULT;
5fe1d75f
ON
4049
4050 rcu_read_lock();
4051 retval = -ESRCH;
1da177e4 4052 p = find_process_by_pid(pid);
5fe1d75f
ON
4053 if (p != NULL)
4054 retval = sched_setscheduler(p, policy, &lparam);
4055 rcu_read_unlock();
36c8b586 4056
1da177e4
LT
4057 return retval;
4058}
4059
d50dde5a
DF
4060/*
4061 * Mimics kernel/events/core.c perf_copy_attr().
4062 */
4063static int sched_copy_attr(struct sched_attr __user *uattr,
4064 struct sched_attr *attr)
4065{
4066 u32 size;
4067 int ret;
4068
4069 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4070 return -EFAULT;
4071
4072 /*
4073 * zero the full structure, so that a short copy will be nice.
4074 */
4075 memset(attr, 0, sizeof(*attr));
4076
4077 ret = get_user(size, &uattr->size);
4078 if (ret)
4079 return ret;
4080
4081 if (size > PAGE_SIZE) /* silly large */
4082 goto err_size;
4083
4084 if (!size) /* abi compat */
4085 size = SCHED_ATTR_SIZE_VER0;
4086
4087 if (size < SCHED_ATTR_SIZE_VER0)
4088 goto err_size;
4089
4090 /*
4091 * If we're handed a bigger struct than we know of,
4092 * ensure all the unknown bits are 0 - i.e. new
4093 * user-space does not rely on any kernel feature
4094 * extensions we dont know about yet.
4095 */
4096 if (size > sizeof(*attr)) {
4097 unsigned char __user *addr;
4098 unsigned char __user *end;
4099 unsigned char val;
4100
4101 addr = (void __user *)uattr + sizeof(*attr);
4102 end = (void __user *)uattr + size;
4103
4104 for (; addr < end; addr++) {
4105 ret = get_user(val, addr);
4106 if (ret)
4107 return ret;
4108 if (val)
4109 goto err_size;
4110 }
4111 size = sizeof(*attr);
4112 }
4113
4114 ret = copy_from_user(attr, uattr, size);
4115 if (ret)
4116 return -EFAULT;
4117
4118 /*
4119 * XXX: do we want to be lenient like existing syscalls; or do we want
4120 * to be strict and return an error on out-of-bounds values?
4121 */
75e45d51 4122 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4123
e78c7bca 4124 return 0;
d50dde5a
DF
4125
4126err_size:
4127 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4128 return -E2BIG;
d50dde5a
DF
4129}
4130
1da177e4
LT
4131/**
4132 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4133 * @pid: the pid in question.
4134 * @policy: new policy.
4135 * @param: structure containing the new RT priority.
e69f6186
YB
4136 *
4137 * Return: 0 on success. An error code otherwise.
1da177e4 4138 */
5add95d4
HC
4139SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4140 struct sched_param __user *, param)
1da177e4 4141{
c21761f1
JB
4142 /* negative values for policy are not valid */
4143 if (policy < 0)
4144 return -EINVAL;
4145
1da177e4
LT
4146 return do_sched_setscheduler(pid, policy, param);
4147}
4148
4149/**
4150 * sys_sched_setparam - set/change the RT priority of a thread
4151 * @pid: the pid in question.
4152 * @param: structure containing the new RT priority.
e69f6186
YB
4153 *
4154 * Return: 0 on success. An error code otherwise.
1da177e4 4155 */
5add95d4 4156SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4157{
c13db6b1 4158 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4159}
4160
d50dde5a
DF
4161/**
4162 * sys_sched_setattr - same as above, but with extended sched_attr
4163 * @pid: the pid in question.
5778fccf 4164 * @uattr: structure containing the extended parameters.
db66d756 4165 * @flags: for future extension.
d50dde5a 4166 */
6d35ab48
PZ
4167SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4168 unsigned int, flags)
d50dde5a
DF
4169{
4170 struct sched_attr attr;
4171 struct task_struct *p;
4172 int retval;
4173
6d35ab48 4174 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4175 return -EINVAL;
4176
143cf23d
MK
4177 retval = sched_copy_attr(uattr, &attr);
4178 if (retval)
4179 return retval;
d50dde5a 4180
b14ed2c2 4181 if ((int)attr.sched_policy < 0)
dbdb2275 4182 return -EINVAL;
d50dde5a
DF
4183
4184 rcu_read_lock();
4185 retval = -ESRCH;
4186 p = find_process_by_pid(pid);
4187 if (p != NULL)
4188 retval = sched_setattr(p, &attr);
4189 rcu_read_unlock();
4190
4191 return retval;
4192}
4193
1da177e4
LT
4194/**
4195 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4196 * @pid: the pid in question.
e69f6186
YB
4197 *
4198 * Return: On success, the policy of the thread. Otherwise, a negative error
4199 * code.
1da177e4 4200 */
5add95d4 4201SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4202{
36c8b586 4203 struct task_struct *p;
3a5c359a 4204 int retval;
1da177e4
LT
4205
4206 if (pid < 0)
3a5c359a 4207 return -EINVAL;
1da177e4
LT
4208
4209 retval = -ESRCH;
5fe85be0 4210 rcu_read_lock();
1da177e4
LT
4211 p = find_process_by_pid(pid);
4212 if (p) {
4213 retval = security_task_getscheduler(p);
4214 if (!retval)
ca94c442
LP
4215 retval = p->policy
4216 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4217 }
5fe85be0 4218 rcu_read_unlock();
1da177e4
LT
4219 return retval;
4220}
4221
4222/**
ca94c442 4223 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4224 * @pid: the pid in question.
4225 * @param: structure containing the RT priority.
e69f6186
YB
4226 *
4227 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4228 * code.
1da177e4 4229 */
5add95d4 4230SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4231{
ce5f7f82 4232 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4233 struct task_struct *p;
3a5c359a 4234 int retval;
1da177e4
LT
4235
4236 if (!param || pid < 0)
3a5c359a 4237 return -EINVAL;
1da177e4 4238
5fe85be0 4239 rcu_read_lock();
1da177e4
LT
4240 p = find_process_by_pid(pid);
4241 retval = -ESRCH;
4242 if (!p)
4243 goto out_unlock;
4244
4245 retval = security_task_getscheduler(p);
4246 if (retval)
4247 goto out_unlock;
4248
ce5f7f82
PZ
4249 if (task_has_rt_policy(p))
4250 lp.sched_priority = p->rt_priority;
5fe85be0 4251 rcu_read_unlock();
1da177e4
LT
4252
4253 /*
4254 * This one might sleep, we cannot do it with a spinlock held ...
4255 */
4256 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4257
1da177e4
LT
4258 return retval;
4259
4260out_unlock:
5fe85be0 4261 rcu_read_unlock();
1da177e4
LT
4262 return retval;
4263}
4264
d50dde5a
DF
4265static int sched_read_attr(struct sched_attr __user *uattr,
4266 struct sched_attr *attr,
4267 unsigned int usize)
4268{
4269 int ret;
4270
4271 if (!access_ok(VERIFY_WRITE, uattr, usize))
4272 return -EFAULT;
4273
4274 /*
4275 * If we're handed a smaller struct than we know of,
4276 * ensure all the unknown bits are 0 - i.e. old
4277 * user-space does not get uncomplete information.
4278 */
4279 if (usize < sizeof(*attr)) {
4280 unsigned char *addr;
4281 unsigned char *end;
4282
4283 addr = (void *)attr + usize;
4284 end = (void *)attr + sizeof(*attr);
4285
4286 for (; addr < end; addr++) {
4287 if (*addr)
22400674 4288 return -EFBIG;
d50dde5a
DF
4289 }
4290
4291 attr->size = usize;
4292 }
4293
4efbc454 4294 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4295 if (ret)
4296 return -EFAULT;
4297
22400674 4298 return 0;
d50dde5a
DF
4299}
4300
4301/**
aab03e05 4302 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4303 * @pid: the pid in question.
5778fccf 4304 * @uattr: structure containing the extended parameters.
d50dde5a 4305 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4306 * @flags: for future extension.
d50dde5a 4307 */
6d35ab48
PZ
4308SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4309 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4310{
4311 struct sched_attr attr = {
4312 .size = sizeof(struct sched_attr),
4313 };
4314 struct task_struct *p;
4315 int retval;
4316
4317 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4318 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4319 return -EINVAL;
4320
4321 rcu_read_lock();
4322 p = find_process_by_pid(pid);
4323 retval = -ESRCH;
4324 if (!p)
4325 goto out_unlock;
4326
4327 retval = security_task_getscheduler(p);
4328 if (retval)
4329 goto out_unlock;
4330
4331 attr.sched_policy = p->policy;
7479f3c9
PZ
4332 if (p->sched_reset_on_fork)
4333 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4334 if (task_has_dl_policy(p))
4335 __getparam_dl(p, &attr);
4336 else if (task_has_rt_policy(p))
d50dde5a
DF
4337 attr.sched_priority = p->rt_priority;
4338 else
d0ea0268 4339 attr.sched_nice = task_nice(p);
d50dde5a
DF
4340
4341 rcu_read_unlock();
4342
4343 retval = sched_read_attr(uattr, &attr, size);
4344 return retval;
4345
4346out_unlock:
4347 rcu_read_unlock();
4348 return retval;
4349}
4350
96f874e2 4351long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4352{
5a16f3d3 4353 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4354 struct task_struct *p;
4355 int retval;
1da177e4 4356
23f5d142 4357 rcu_read_lock();
1da177e4
LT
4358
4359 p = find_process_by_pid(pid);
4360 if (!p) {
23f5d142 4361 rcu_read_unlock();
1da177e4
LT
4362 return -ESRCH;
4363 }
4364
23f5d142 4365 /* Prevent p going away */
1da177e4 4366 get_task_struct(p);
23f5d142 4367 rcu_read_unlock();
1da177e4 4368
14a40ffc
TH
4369 if (p->flags & PF_NO_SETAFFINITY) {
4370 retval = -EINVAL;
4371 goto out_put_task;
4372 }
5a16f3d3
RR
4373 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4374 retval = -ENOMEM;
4375 goto out_put_task;
4376 }
4377 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4378 retval = -ENOMEM;
4379 goto out_free_cpus_allowed;
4380 }
1da177e4 4381 retval = -EPERM;
4c44aaaf
EB
4382 if (!check_same_owner(p)) {
4383 rcu_read_lock();
4384 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4385 rcu_read_unlock();
16303ab2 4386 goto out_free_new_mask;
4c44aaaf
EB
4387 }
4388 rcu_read_unlock();
4389 }
1da177e4 4390
b0ae1981 4391 retval = security_task_setscheduler(p);
e7834f8f 4392 if (retval)
16303ab2 4393 goto out_free_new_mask;
e7834f8f 4394
e4099a5e
PZ
4395
4396 cpuset_cpus_allowed(p, cpus_allowed);
4397 cpumask_and(new_mask, in_mask, cpus_allowed);
4398
332ac17e
DF
4399 /*
4400 * Since bandwidth control happens on root_domain basis,
4401 * if admission test is enabled, we only admit -deadline
4402 * tasks allowed to run on all the CPUs in the task's
4403 * root_domain.
4404 */
4405#ifdef CONFIG_SMP
f1e3a093
KT
4406 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4407 rcu_read_lock();
4408 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4409 retval = -EBUSY;
f1e3a093 4410 rcu_read_unlock();
16303ab2 4411 goto out_free_new_mask;
332ac17e 4412 }
f1e3a093 4413 rcu_read_unlock();
332ac17e
DF
4414 }
4415#endif
49246274 4416again:
25834c73 4417 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4418
8707d8b8 4419 if (!retval) {
5a16f3d3
RR
4420 cpuset_cpus_allowed(p, cpus_allowed);
4421 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4422 /*
4423 * We must have raced with a concurrent cpuset
4424 * update. Just reset the cpus_allowed to the
4425 * cpuset's cpus_allowed
4426 */
5a16f3d3 4427 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4428 goto again;
4429 }
4430 }
16303ab2 4431out_free_new_mask:
5a16f3d3
RR
4432 free_cpumask_var(new_mask);
4433out_free_cpus_allowed:
4434 free_cpumask_var(cpus_allowed);
4435out_put_task:
1da177e4 4436 put_task_struct(p);
1da177e4
LT
4437 return retval;
4438}
4439
4440static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4441 struct cpumask *new_mask)
1da177e4 4442{
96f874e2
RR
4443 if (len < cpumask_size())
4444 cpumask_clear(new_mask);
4445 else if (len > cpumask_size())
4446 len = cpumask_size();
4447
1da177e4
LT
4448 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4449}
4450
4451/**
4452 * sys_sched_setaffinity - set the cpu affinity of a process
4453 * @pid: pid of the process
4454 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4455 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4456 *
4457 * Return: 0 on success. An error code otherwise.
1da177e4 4458 */
5add95d4
HC
4459SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4460 unsigned long __user *, user_mask_ptr)
1da177e4 4461{
5a16f3d3 4462 cpumask_var_t new_mask;
1da177e4
LT
4463 int retval;
4464
5a16f3d3
RR
4465 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4466 return -ENOMEM;
1da177e4 4467
5a16f3d3
RR
4468 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4469 if (retval == 0)
4470 retval = sched_setaffinity(pid, new_mask);
4471 free_cpumask_var(new_mask);
4472 return retval;
1da177e4
LT
4473}
4474
96f874e2 4475long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4476{
36c8b586 4477 struct task_struct *p;
31605683 4478 unsigned long flags;
1da177e4 4479 int retval;
1da177e4 4480
23f5d142 4481 rcu_read_lock();
1da177e4
LT
4482
4483 retval = -ESRCH;
4484 p = find_process_by_pid(pid);
4485 if (!p)
4486 goto out_unlock;
4487
e7834f8f
DQ
4488 retval = security_task_getscheduler(p);
4489 if (retval)
4490 goto out_unlock;
4491
013fdb80 4492 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4493 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4494 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4495
4496out_unlock:
23f5d142 4497 rcu_read_unlock();
1da177e4 4498
9531b62f 4499 return retval;
1da177e4
LT
4500}
4501
4502/**
4503 * sys_sched_getaffinity - get the cpu affinity of a process
4504 * @pid: pid of the process
4505 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4506 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4507 *
4508 * Return: 0 on success. An error code otherwise.
1da177e4 4509 */
5add95d4
HC
4510SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4511 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4512{
4513 int ret;
f17c8607 4514 cpumask_var_t mask;
1da177e4 4515
84fba5ec 4516 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4517 return -EINVAL;
4518 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4519 return -EINVAL;
4520
f17c8607
RR
4521 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4522 return -ENOMEM;
1da177e4 4523
f17c8607
RR
4524 ret = sched_getaffinity(pid, mask);
4525 if (ret == 0) {
8bc037fb 4526 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4527
4528 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4529 ret = -EFAULT;
4530 else
cd3d8031 4531 ret = retlen;
f17c8607
RR
4532 }
4533 free_cpumask_var(mask);
1da177e4 4534
f17c8607 4535 return ret;
1da177e4
LT
4536}
4537
4538/**
4539 * sys_sched_yield - yield the current processor to other threads.
4540 *
dd41f596
IM
4541 * This function yields the current CPU to other tasks. If there are no
4542 * other threads running on this CPU then this function will return.
e69f6186
YB
4543 *
4544 * Return: 0.
1da177e4 4545 */
5add95d4 4546SYSCALL_DEFINE0(sched_yield)
1da177e4 4547{
70b97a7f 4548 struct rq *rq = this_rq_lock();
1da177e4 4549
2d72376b 4550 schedstat_inc(rq, yld_count);
4530d7ab 4551 current->sched_class->yield_task(rq);
1da177e4
LT
4552
4553 /*
4554 * Since we are going to call schedule() anyway, there's
4555 * no need to preempt or enable interrupts:
4556 */
4557 __release(rq->lock);
8a25d5de 4558 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4559 do_raw_spin_unlock(&rq->lock);
ba74c144 4560 sched_preempt_enable_no_resched();
1da177e4
LT
4561
4562 schedule();
4563
4564 return 0;
4565}
4566
02b67cc3 4567int __sched _cond_resched(void)
1da177e4 4568{
fe32d3cd 4569 if (should_resched(0)) {
a18b5d01 4570 preempt_schedule_common();
1da177e4
LT
4571 return 1;
4572 }
4573 return 0;
4574}
02b67cc3 4575EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4576
4577/*
613afbf8 4578 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4579 * call schedule, and on return reacquire the lock.
4580 *
41a2d6cf 4581 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4582 * operations here to prevent schedule() from being called twice (once via
4583 * spin_unlock(), once by hand).
4584 */
613afbf8 4585int __cond_resched_lock(spinlock_t *lock)
1da177e4 4586{
fe32d3cd 4587 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4588 int ret = 0;
4589
f607c668
PZ
4590 lockdep_assert_held(lock);
4591
4a81e832 4592 if (spin_needbreak(lock) || resched) {
1da177e4 4593 spin_unlock(lock);
d86ee480 4594 if (resched)
a18b5d01 4595 preempt_schedule_common();
95c354fe
NP
4596 else
4597 cpu_relax();
6df3cecb 4598 ret = 1;
1da177e4 4599 spin_lock(lock);
1da177e4 4600 }
6df3cecb 4601 return ret;
1da177e4 4602}
613afbf8 4603EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4604
613afbf8 4605int __sched __cond_resched_softirq(void)
1da177e4
LT
4606{
4607 BUG_ON(!in_softirq());
4608
fe32d3cd 4609 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4610 local_bh_enable();
a18b5d01 4611 preempt_schedule_common();
1da177e4
LT
4612 local_bh_disable();
4613 return 1;
4614 }
4615 return 0;
4616}
613afbf8 4617EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4618
1da177e4
LT
4619/**
4620 * yield - yield the current processor to other threads.
4621 *
8e3fabfd
PZ
4622 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4623 *
4624 * The scheduler is at all times free to pick the calling task as the most
4625 * eligible task to run, if removing the yield() call from your code breaks
4626 * it, its already broken.
4627 *
4628 * Typical broken usage is:
4629 *
4630 * while (!event)
4631 * yield();
4632 *
4633 * where one assumes that yield() will let 'the other' process run that will
4634 * make event true. If the current task is a SCHED_FIFO task that will never
4635 * happen. Never use yield() as a progress guarantee!!
4636 *
4637 * If you want to use yield() to wait for something, use wait_event().
4638 * If you want to use yield() to be 'nice' for others, use cond_resched().
4639 * If you still want to use yield(), do not!
1da177e4
LT
4640 */
4641void __sched yield(void)
4642{
4643 set_current_state(TASK_RUNNING);
4644 sys_sched_yield();
4645}
1da177e4
LT
4646EXPORT_SYMBOL(yield);
4647
d95f4122
MG
4648/**
4649 * yield_to - yield the current processor to another thread in
4650 * your thread group, or accelerate that thread toward the
4651 * processor it's on.
16addf95
RD
4652 * @p: target task
4653 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4654 *
4655 * It's the caller's job to ensure that the target task struct
4656 * can't go away on us before we can do any checks.
4657 *
e69f6186 4658 * Return:
7b270f60
PZ
4659 * true (>0) if we indeed boosted the target task.
4660 * false (0) if we failed to boost the target.
4661 * -ESRCH if there's no task to yield to.
d95f4122 4662 */
fa93384f 4663int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4664{
4665 struct task_struct *curr = current;
4666 struct rq *rq, *p_rq;
4667 unsigned long flags;
c3c18640 4668 int yielded = 0;
d95f4122
MG
4669
4670 local_irq_save(flags);
4671 rq = this_rq();
4672
4673again:
4674 p_rq = task_rq(p);
7b270f60
PZ
4675 /*
4676 * If we're the only runnable task on the rq and target rq also
4677 * has only one task, there's absolutely no point in yielding.
4678 */
4679 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4680 yielded = -ESRCH;
4681 goto out_irq;
4682 }
4683
d95f4122 4684 double_rq_lock(rq, p_rq);
39e24d8f 4685 if (task_rq(p) != p_rq) {
d95f4122
MG
4686 double_rq_unlock(rq, p_rq);
4687 goto again;
4688 }
4689
4690 if (!curr->sched_class->yield_to_task)
7b270f60 4691 goto out_unlock;
d95f4122
MG
4692
4693 if (curr->sched_class != p->sched_class)
7b270f60 4694 goto out_unlock;
d95f4122
MG
4695
4696 if (task_running(p_rq, p) || p->state)
7b270f60 4697 goto out_unlock;
d95f4122
MG
4698
4699 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4700 if (yielded) {
d95f4122 4701 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4702 /*
4703 * Make p's CPU reschedule; pick_next_entity takes care of
4704 * fairness.
4705 */
4706 if (preempt && rq != p_rq)
8875125e 4707 resched_curr(p_rq);
6d1cafd8 4708 }
d95f4122 4709
7b270f60 4710out_unlock:
d95f4122 4711 double_rq_unlock(rq, p_rq);
7b270f60 4712out_irq:
d95f4122
MG
4713 local_irq_restore(flags);
4714
7b270f60 4715 if (yielded > 0)
d95f4122
MG
4716 schedule();
4717
4718 return yielded;
4719}
4720EXPORT_SYMBOL_GPL(yield_to);
4721
1da177e4 4722/*
41a2d6cf 4723 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4724 * that process accounting knows that this is a task in IO wait state.
1da177e4 4725 */
1da177e4
LT
4726long __sched io_schedule_timeout(long timeout)
4727{
9cff8ade
N
4728 int old_iowait = current->in_iowait;
4729 struct rq *rq;
1da177e4
LT
4730 long ret;
4731
9cff8ade 4732 current->in_iowait = 1;
10d784ea 4733 blk_schedule_flush_plug(current);
9cff8ade 4734
0ff92245 4735 delayacct_blkio_start();
9cff8ade 4736 rq = raw_rq();
1da177e4
LT
4737 atomic_inc(&rq->nr_iowait);
4738 ret = schedule_timeout(timeout);
9cff8ade 4739 current->in_iowait = old_iowait;
1da177e4 4740 atomic_dec(&rq->nr_iowait);
0ff92245 4741 delayacct_blkio_end();
9cff8ade 4742
1da177e4
LT
4743 return ret;
4744}
9cff8ade 4745EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4746
4747/**
4748 * sys_sched_get_priority_max - return maximum RT priority.
4749 * @policy: scheduling class.
4750 *
e69f6186
YB
4751 * Return: On success, this syscall returns the maximum
4752 * rt_priority that can be used by a given scheduling class.
4753 * On failure, a negative error code is returned.
1da177e4 4754 */
5add95d4 4755SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4756{
4757 int ret = -EINVAL;
4758
4759 switch (policy) {
4760 case SCHED_FIFO:
4761 case SCHED_RR:
4762 ret = MAX_USER_RT_PRIO-1;
4763 break;
aab03e05 4764 case SCHED_DEADLINE:
1da177e4 4765 case SCHED_NORMAL:
b0a9499c 4766 case SCHED_BATCH:
dd41f596 4767 case SCHED_IDLE:
1da177e4
LT
4768 ret = 0;
4769 break;
4770 }
4771 return ret;
4772}
4773
4774/**
4775 * sys_sched_get_priority_min - return minimum RT priority.
4776 * @policy: scheduling class.
4777 *
e69f6186
YB
4778 * Return: On success, this syscall returns the minimum
4779 * rt_priority that can be used by a given scheduling class.
4780 * On failure, a negative error code is returned.
1da177e4 4781 */
5add95d4 4782SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4783{
4784 int ret = -EINVAL;
4785
4786 switch (policy) {
4787 case SCHED_FIFO:
4788 case SCHED_RR:
4789 ret = 1;
4790 break;
aab03e05 4791 case SCHED_DEADLINE:
1da177e4 4792 case SCHED_NORMAL:
b0a9499c 4793 case SCHED_BATCH:
dd41f596 4794 case SCHED_IDLE:
1da177e4
LT
4795 ret = 0;
4796 }
4797 return ret;
4798}
4799
4800/**
4801 * sys_sched_rr_get_interval - return the default timeslice of a process.
4802 * @pid: pid of the process.
4803 * @interval: userspace pointer to the timeslice value.
4804 *
4805 * this syscall writes the default timeslice value of a given process
4806 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4807 *
4808 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4809 * an error code.
1da177e4 4810 */
17da2bd9 4811SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4812 struct timespec __user *, interval)
1da177e4 4813{
36c8b586 4814 struct task_struct *p;
a4ec24b4 4815 unsigned int time_slice;
dba091b9
TG
4816 unsigned long flags;
4817 struct rq *rq;
3a5c359a 4818 int retval;
1da177e4 4819 struct timespec t;
1da177e4
LT
4820
4821 if (pid < 0)
3a5c359a 4822 return -EINVAL;
1da177e4
LT
4823
4824 retval = -ESRCH;
1a551ae7 4825 rcu_read_lock();
1da177e4
LT
4826 p = find_process_by_pid(pid);
4827 if (!p)
4828 goto out_unlock;
4829
4830 retval = security_task_getscheduler(p);
4831 if (retval)
4832 goto out_unlock;
4833
dba091b9 4834 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4835 time_slice = 0;
4836 if (p->sched_class->get_rr_interval)
4837 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4838 task_rq_unlock(rq, p, &flags);
a4ec24b4 4839
1a551ae7 4840 rcu_read_unlock();
a4ec24b4 4841 jiffies_to_timespec(time_slice, &t);
1da177e4 4842 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4843 return retval;
3a5c359a 4844
1da177e4 4845out_unlock:
1a551ae7 4846 rcu_read_unlock();
1da177e4
LT
4847 return retval;
4848}
4849
7c731e0a 4850static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4851
82a1fcb9 4852void sched_show_task(struct task_struct *p)
1da177e4 4853{
1da177e4 4854 unsigned long free = 0;
4e79752c 4855 int ppid;
1f8a7633 4856 unsigned long state = p->state;
1da177e4 4857
1f8a7633
TH
4858 if (state)
4859 state = __ffs(state) + 1;
28d0686c 4860 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4861 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4862#if BITS_PER_LONG == 32
1da177e4 4863 if (state == TASK_RUNNING)
3df0fc5b 4864 printk(KERN_CONT " running ");
1da177e4 4865 else
3df0fc5b 4866 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4867#else
4868 if (state == TASK_RUNNING)
3df0fc5b 4869 printk(KERN_CONT " running task ");
1da177e4 4870 else
3df0fc5b 4871 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4872#endif
4873#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4874 free = stack_not_used(p);
1da177e4 4875#endif
a90e984c 4876 ppid = 0;
4e79752c 4877 rcu_read_lock();
a90e984c
ON
4878 if (pid_alive(p))
4879 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4880 rcu_read_unlock();
3df0fc5b 4881 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4882 task_pid_nr(p), ppid,
aa47b7e0 4883 (unsigned long)task_thread_info(p)->flags);
1da177e4 4884
3d1cb205 4885 print_worker_info(KERN_INFO, p);
5fb5e6de 4886 show_stack(p, NULL);
1da177e4
LT
4887}
4888
e59e2ae2 4889void show_state_filter(unsigned long state_filter)
1da177e4 4890{
36c8b586 4891 struct task_struct *g, *p;
1da177e4 4892
4bd77321 4893#if BITS_PER_LONG == 32
3df0fc5b
PZ
4894 printk(KERN_INFO
4895 " task PC stack pid father\n");
1da177e4 4896#else
3df0fc5b
PZ
4897 printk(KERN_INFO
4898 " task PC stack pid father\n");
1da177e4 4899#endif
510f5acc 4900 rcu_read_lock();
5d07f420 4901 for_each_process_thread(g, p) {
1da177e4
LT
4902 /*
4903 * reset the NMI-timeout, listing all files on a slow
25985edc 4904 * console might take a lot of time:
1da177e4
LT
4905 */
4906 touch_nmi_watchdog();
39bc89fd 4907 if (!state_filter || (p->state & state_filter))
82a1fcb9 4908 sched_show_task(p);
5d07f420 4909 }
1da177e4 4910
04c9167f
JF
4911 touch_all_softlockup_watchdogs();
4912
dd41f596
IM
4913#ifdef CONFIG_SCHED_DEBUG
4914 sysrq_sched_debug_show();
4915#endif
510f5acc 4916 rcu_read_unlock();
e59e2ae2
IM
4917 /*
4918 * Only show locks if all tasks are dumped:
4919 */
93335a21 4920 if (!state_filter)
e59e2ae2 4921 debug_show_all_locks();
1da177e4
LT
4922}
4923
0db0628d 4924void init_idle_bootup_task(struct task_struct *idle)
1df21055 4925{
dd41f596 4926 idle->sched_class = &idle_sched_class;
1df21055
IM
4927}
4928
f340c0d1
IM
4929/**
4930 * init_idle - set up an idle thread for a given CPU
4931 * @idle: task in question
4932 * @cpu: cpu the idle task belongs to
4933 *
4934 * NOTE: this function does not set the idle thread's NEED_RESCHED
4935 * flag, to make booting more robust.
4936 */
0db0628d 4937void init_idle(struct task_struct *idle, int cpu)
1da177e4 4938{
70b97a7f 4939 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4940 unsigned long flags;
4941
25834c73
PZ
4942 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4943 raw_spin_lock(&rq->lock);
5cbd54ef 4944
5e1576ed 4945 __sched_fork(0, idle);
06b83b5f 4946 idle->state = TASK_RUNNING;
dd41f596
IM
4947 idle->se.exec_start = sched_clock();
4948
de9b8f5d
PZ
4949#ifdef CONFIG_SMP
4950 /*
4951 * Its possible that init_idle() gets called multiple times on a task,
4952 * in that case do_set_cpus_allowed() will not do the right thing.
4953 *
4954 * And since this is boot we can forgo the serialization.
4955 */
4956 set_cpus_allowed_common(idle, cpumask_of(cpu));
4957#endif
6506cf6c
PZ
4958 /*
4959 * We're having a chicken and egg problem, even though we are
4960 * holding rq->lock, the cpu isn't yet set to this cpu so the
4961 * lockdep check in task_group() will fail.
4962 *
4963 * Similar case to sched_fork(). / Alternatively we could
4964 * use task_rq_lock() here and obtain the other rq->lock.
4965 *
4966 * Silence PROVE_RCU
4967 */
4968 rcu_read_lock();
dd41f596 4969 __set_task_cpu(idle, cpu);
6506cf6c 4970 rcu_read_unlock();
1da177e4 4971
1da177e4 4972 rq->curr = rq->idle = idle;
da0c1e65 4973 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 4974#ifdef CONFIG_SMP
3ca7a440 4975 idle->on_cpu = 1;
4866cde0 4976#endif
25834c73
PZ
4977 raw_spin_unlock(&rq->lock);
4978 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4979
4980 /* Set the preempt count _outside_ the spinlocks! */
01028747 4981 init_idle_preempt_count(idle, cpu);
55cd5340 4982
dd41f596
IM
4983 /*
4984 * The idle tasks have their own, simple scheduling class:
4985 */
4986 idle->sched_class = &idle_sched_class;
868baf07 4987 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4988 vtime_init_idle(idle, cpu);
de9b8f5d 4989#ifdef CONFIG_SMP
f1c6f1a7
CE
4990 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4991#endif
19978ca6
IM
4992}
4993
f82f8042
JL
4994int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4995 const struct cpumask *trial)
4996{
4997 int ret = 1, trial_cpus;
4998 struct dl_bw *cur_dl_b;
4999 unsigned long flags;
5000
bb2bc55a
MG
5001 if (!cpumask_weight(cur))
5002 return ret;
5003
75e23e49 5004 rcu_read_lock_sched();
f82f8042
JL
5005 cur_dl_b = dl_bw_of(cpumask_any(cur));
5006 trial_cpus = cpumask_weight(trial);
5007
5008 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5009 if (cur_dl_b->bw != -1 &&
5010 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5011 ret = 0;
5012 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5013 rcu_read_unlock_sched();
f82f8042
JL
5014
5015 return ret;
5016}
5017
7f51412a
JL
5018int task_can_attach(struct task_struct *p,
5019 const struct cpumask *cs_cpus_allowed)
5020{
5021 int ret = 0;
5022
5023 /*
5024 * Kthreads which disallow setaffinity shouldn't be moved
5025 * to a new cpuset; we don't want to change their cpu
5026 * affinity and isolating such threads by their set of
5027 * allowed nodes is unnecessary. Thus, cpusets are not
5028 * applicable for such threads. This prevents checking for
5029 * success of set_cpus_allowed_ptr() on all attached tasks
5030 * before cpus_allowed may be changed.
5031 */
5032 if (p->flags & PF_NO_SETAFFINITY) {
5033 ret = -EINVAL;
5034 goto out;
5035 }
5036
5037#ifdef CONFIG_SMP
5038 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5039 cs_cpus_allowed)) {
5040 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5041 cs_cpus_allowed);
75e23e49 5042 struct dl_bw *dl_b;
7f51412a
JL
5043 bool overflow;
5044 int cpus;
5045 unsigned long flags;
5046
75e23e49
JL
5047 rcu_read_lock_sched();
5048 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5049 raw_spin_lock_irqsave(&dl_b->lock, flags);
5050 cpus = dl_bw_cpus(dest_cpu);
5051 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5052 if (overflow)
5053 ret = -EBUSY;
5054 else {
5055 /*
5056 * We reserve space for this task in the destination
5057 * root_domain, as we can't fail after this point.
5058 * We will free resources in the source root_domain
5059 * later on (see set_cpus_allowed_dl()).
5060 */
5061 __dl_add(dl_b, p->dl.dl_bw);
5062 }
5063 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5064 rcu_read_unlock_sched();
7f51412a
JL
5065
5066 }
5067#endif
5068out:
5069 return ret;
5070}
5071
1da177e4 5072#ifdef CONFIG_SMP
1da177e4 5073
e6628d5b
MG
5074#ifdef CONFIG_NUMA_BALANCING
5075/* Migrate current task p to target_cpu */
5076int migrate_task_to(struct task_struct *p, int target_cpu)
5077{
5078 struct migration_arg arg = { p, target_cpu };
5079 int curr_cpu = task_cpu(p);
5080
5081 if (curr_cpu == target_cpu)
5082 return 0;
5083
5084 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5085 return -EINVAL;
5086
5087 /* TODO: This is not properly updating schedstats */
5088
286549dc 5089 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5090 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5091}
0ec8aa00
PZ
5092
5093/*
5094 * Requeue a task on a given node and accurately track the number of NUMA
5095 * tasks on the runqueues
5096 */
5097void sched_setnuma(struct task_struct *p, int nid)
5098{
5099 struct rq *rq;
5100 unsigned long flags;
da0c1e65 5101 bool queued, running;
0ec8aa00
PZ
5102
5103 rq = task_rq_lock(p, &flags);
da0c1e65 5104 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5105 running = task_current(rq, p);
5106
da0c1e65 5107 if (queued)
0ec8aa00
PZ
5108 dequeue_task(rq, p, 0);
5109 if (running)
f3cd1c4e 5110 put_prev_task(rq, p);
0ec8aa00
PZ
5111
5112 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5113
5114 if (running)
5115 p->sched_class->set_curr_task(rq);
da0c1e65 5116 if (queued)
0ec8aa00
PZ
5117 enqueue_task(rq, p, 0);
5118 task_rq_unlock(rq, p, &flags);
5119}
5cc389bc 5120#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5121
1da177e4 5122#ifdef CONFIG_HOTPLUG_CPU
054b9108 5123/*
48c5ccae
PZ
5124 * Ensures that the idle task is using init_mm right before its cpu goes
5125 * offline.
054b9108 5126 */
48c5ccae 5127void idle_task_exit(void)
1da177e4 5128{
48c5ccae 5129 struct mm_struct *mm = current->active_mm;
e76bd8d9 5130
48c5ccae 5131 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5132
a53efe5f 5133 if (mm != &init_mm) {
48c5ccae 5134 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5135 finish_arch_post_lock_switch();
5136 }
48c5ccae 5137 mmdrop(mm);
1da177e4
LT
5138}
5139
5140/*
5d180232
PZ
5141 * Since this CPU is going 'away' for a while, fold any nr_active delta
5142 * we might have. Assumes we're called after migrate_tasks() so that the
5143 * nr_active count is stable.
5144 *
5145 * Also see the comment "Global load-average calculations".
1da177e4 5146 */
5d180232 5147static void calc_load_migrate(struct rq *rq)
1da177e4 5148{
5d180232
PZ
5149 long delta = calc_load_fold_active(rq);
5150 if (delta)
5151 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5152}
5153
3f1d2a31
PZ
5154static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5155{
5156}
5157
5158static const struct sched_class fake_sched_class = {
5159 .put_prev_task = put_prev_task_fake,
5160};
5161
5162static struct task_struct fake_task = {
5163 /*
5164 * Avoid pull_{rt,dl}_task()
5165 */
5166 .prio = MAX_PRIO + 1,
5167 .sched_class = &fake_sched_class,
5168};
5169
48f24c4d 5170/*
48c5ccae
PZ
5171 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5172 * try_to_wake_up()->select_task_rq().
5173 *
5174 * Called with rq->lock held even though we'er in stop_machine() and
5175 * there's no concurrency possible, we hold the required locks anyway
5176 * because of lock validation efforts.
1da177e4 5177 */
5e16bbc2 5178static void migrate_tasks(struct rq *dead_rq)
1da177e4 5179{
5e16bbc2 5180 struct rq *rq = dead_rq;
48c5ccae
PZ
5181 struct task_struct *next, *stop = rq->stop;
5182 int dest_cpu;
1da177e4
LT
5183
5184 /*
48c5ccae
PZ
5185 * Fudge the rq selection such that the below task selection loop
5186 * doesn't get stuck on the currently eligible stop task.
5187 *
5188 * We're currently inside stop_machine() and the rq is either stuck
5189 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5190 * either way we should never end up calling schedule() until we're
5191 * done here.
1da177e4 5192 */
48c5ccae 5193 rq->stop = NULL;
48f24c4d 5194
77bd3970
FW
5195 /*
5196 * put_prev_task() and pick_next_task() sched
5197 * class method both need to have an up-to-date
5198 * value of rq->clock[_task]
5199 */
5200 update_rq_clock(rq);
5201
5e16bbc2 5202 for (;;) {
48c5ccae
PZ
5203 /*
5204 * There's this thread running, bail when that's the only
5205 * remaining thread.
5206 */
5207 if (rq->nr_running == 1)
dd41f596 5208 break;
48c5ccae 5209
cbce1a68 5210 /*
5473e0cc 5211 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5212 */
5213 lockdep_pin_lock(&rq->lock);
3f1d2a31 5214 next = pick_next_task(rq, &fake_task);
48c5ccae 5215 BUG_ON(!next);
79c53799 5216 next->sched_class->put_prev_task(rq, next);
e692ab53 5217
5473e0cc
WL
5218 /*
5219 * Rules for changing task_struct::cpus_allowed are holding
5220 * both pi_lock and rq->lock, such that holding either
5221 * stabilizes the mask.
5222 *
5223 * Drop rq->lock is not quite as disastrous as it usually is
5224 * because !cpu_active at this point, which means load-balance
5225 * will not interfere. Also, stop-machine.
5226 */
5227 lockdep_unpin_lock(&rq->lock);
5228 raw_spin_unlock(&rq->lock);
5229 raw_spin_lock(&next->pi_lock);
5230 raw_spin_lock(&rq->lock);
5231
5232 /*
5233 * Since we're inside stop-machine, _nothing_ should have
5234 * changed the task, WARN if weird stuff happened, because in
5235 * that case the above rq->lock drop is a fail too.
5236 */
5237 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5238 raw_spin_unlock(&next->pi_lock);
5239 continue;
5240 }
5241
48c5ccae 5242 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5243 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5244
5e16bbc2
PZ
5245 rq = __migrate_task(rq, next, dest_cpu);
5246 if (rq != dead_rq) {
5247 raw_spin_unlock(&rq->lock);
5248 rq = dead_rq;
5249 raw_spin_lock(&rq->lock);
5250 }
5473e0cc 5251 raw_spin_unlock(&next->pi_lock);
1da177e4 5252 }
dce48a84 5253
48c5ccae 5254 rq->stop = stop;
dce48a84 5255}
1da177e4
LT
5256#endif /* CONFIG_HOTPLUG_CPU */
5257
e692ab53
NP
5258#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5259
5260static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5261 {
5262 .procname = "sched_domain",
c57baf1e 5263 .mode = 0555,
e0361851 5264 },
56992309 5265 {}
e692ab53
NP
5266};
5267
5268static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5269 {
5270 .procname = "kernel",
c57baf1e 5271 .mode = 0555,
e0361851
AD
5272 .child = sd_ctl_dir,
5273 },
56992309 5274 {}
e692ab53
NP
5275};
5276
5277static struct ctl_table *sd_alloc_ctl_entry(int n)
5278{
5279 struct ctl_table *entry =
5cf9f062 5280 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5281
e692ab53
NP
5282 return entry;
5283}
5284
6382bc90
MM
5285static void sd_free_ctl_entry(struct ctl_table **tablep)
5286{
cd790076 5287 struct ctl_table *entry;
6382bc90 5288
cd790076
MM
5289 /*
5290 * In the intermediate directories, both the child directory and
5291 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5292 * will always be set. In the lowest directory the names are
cd790076
MM
5293 * static strings and all have proc handlers.
5294 */
5295 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5296 if (entry->child)
5297 sd_free_ctl_entry(&entry->child);
cd790076
MM
5298 if (entry->proc_handler == NULL)
5299 kfree(entry->procname);
5300 }
6382bc90
MM
5301
5302 kfree(*tablep);
5303 *tablep = NULL;
5304}
5305
201c373e 5306static int min_load_idx = 0;
fd9b86d3 5307static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5308
e692ab53 5309static void
e0361851 5310set_table_entry(struct ctl_table *entry,
e692ab53 5311 const char *procname, void *data, int maxlen,
201c373e
NK
5312 umode_t mode, proc_handler *proc_handler,
5313 bool load_idx)
e692ab53 5314{
e692ab53
NP
5315 entry->procname = procname;
5316 entry->data = data;
5317 entry->maxlen = maxlen;
5318 entry->mode = mode;
5319 entry->proc_handler = proc_handler;
201c373e
NK
5320
5321 if (load_idx) {
5322 entry->extra1 = &min_load_idx;
5323 entry->extra2 = &max_load_idx;
5324 }
e692ab53
NP
5325}
5326
5327static struct ctl_table *
5328sd_alloc_ctl_domain_table(struct sched_domain *sd)
5329{
37e6bae8 5330 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5331
ad1cdc1d
MM
5332 if (table == NULL)
5333 return NULL;
5334
e0361851 5335 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5336 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5337 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5338 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5339 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5340 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5341 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5342 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5343 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5344 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5345 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5346 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5347 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5348 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5349 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5350 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5351 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5352 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5353 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5354 &sd->cache_nice_tries,
201c373e 5355 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5356 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5357 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5358 set_table_entry(&table[11], "max_newidle_lb_cost",
5359 &sd->max_newidle_lb_cost,
5360 sizeof(long), 0644, proc_doulongvec_minmax, false);
5361 set_table_entry(&table[12], "name", sd->name,
201c373e 5362 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5363 /* &table[13] is terminator */
e692ab53
NP
5364
5365 return table;
5366}
5367
be7002e6 5368static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5369{
5370 struct ctl_table *entry, *table;
5371 struct sched_domain *sd;
5372 int domain_num = 0, i;
5373 char buf[32];
5374
5375 for_each_domain(cpu, sd)
5376 domain_num++;
5377 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5378 if (table == NULL)
5379 return NULL;
e692ab53
NP
5380
5381 i = 0;
5382 for_each_domain(cpu, sd) {
5383 snprintf(buf, 32, "domain%d", i);
e692ab53 5384 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5385 entry->mode = 0555;
e692ab53
NP
5386 entry->child = sd_alloc_ctl_domain_table(sd);
5387 entry++;
5388 i++;
5389 }
5390 return table;
5391}
5392
5393static struct ctl_table_header *sd_sysctl_header;
6382bc90 5394static void register_sched_domain_sysctl(void)
e692ab53 5395{
6ad4c188 5396 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5397 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5398 char buf[32];
5399
7378547f
MM
5400 WARN_ON(sd_ctl_dir[0].child);
5401 sd_ctl_dir[0].child = entry;
5402
ad1cdc1d
MM
5403 if (entry == NULL)
5404 return;
5405
6ad4c188 5406 for_each_possible_cpu(i) {
e692ab53 5407 snprintf(buf, 32, "cpu%d", i);
e692ab53 5408 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5409 entry->mode = 0555;
e692ab53 5410 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5411 entry++;
e692ab53 5412 }
7378547f
MM
5413
5414 WARN_ON(sd_sysctl_header);
e692ab53
NP
5415 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5416}
6382bc90 5417
7378547f 5418/* may be called multiple times per register */
6382bc90
MM
5419static void unregister_sched_domain_sysctl(void)
5420{
781b0203 5421 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5422 sd_sysctl_header = NULL;
7378547f
MM
5423 if (sd_ctl_dir[0].child)
5424 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5425}
e692ab53 5426#else
6382bc90
MM
5427static void register_sched_domain_sysctl(void)
5428{
5429}
5430static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5431{
5432}
5cc389bc 5433#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5434
1f11eb6a
GH
5435static void set_rq_online(struct rq *rq)
5436{
5437 if (!rq->online) {
5438 const struct sched_class *class;
5439
c6c4927b 5440 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5441 rq->online = 1;
5442
5443 for_each_class(class) {
5444 if (class->rq_online)
5445 class->rq_online(rq);
5446 }
5447 }
5448}
5449
5450static void set_rq_offline(struct rq *rq)
5451{
5452 if (rq->online) {
5453 const struct sched_class *class;
5454
5455 for_each_class(class) {
5456 if (class->rq_offline)
5457 class->rq_offline(rq);
5458 }
5459
c6c4927b 5460 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5461 rq->online = 0;
5462 }
5463}
5464
1da177e4
LT
5465/*
5466 * migration_call - callback that gets triggered when a CPU is added.
5467 * Here we can start up the necessary migration thread for the new CPU.
5468 */
0db0628d 5469static int
48f24c4d 5470migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5471{
48f24c4d 5472 int cpu = (long)hcpu;
1da177e4 5473 unsigned long flags;
969c7921 5474 struct rq *rq = cpu_rq(cpu);
1da177e4 5475
48c5ccae 5476 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5477
1da177e4 5478 case CPU_UP_PREPARE:
a468d389 5479 rq->calc_load_update = calc_load_update;
1da177e4 5480 break;
48f24c4d 5481
1da177e4 5482 case CPU_ONLINE:
1f94ef59 5483 /* Update our root-domain */
05fa785c 5484 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5485 if (rq->rd) {
c6c4927b 5486 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5487
5488 set_rq_online(rq);
1f94ef59 5489 }
05fa785c 5490 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5491 break;
48f24c4d 5492
1da177e4 5493#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5494 case CPU_DYING:
317f3941 5495 sched_ttwu_pending();
57d885fe 5496 /* Update our root-domain */
05fa785c 5497 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5498 if (rq->rd) {
c6c4927b 5499 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5500 set_rq_offline(rq);
57d885fe 5501 }
5e16bbc2 5502 migrate_tasks(rq);
48c5ccae 5503 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5504 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5505 break;
48c5ccae 5506
5d180232 5507 case CPU_DEAD:
f319da0c 5508 calc_load_migrate(rq);
57d885fe 5509 break;
1da177e4
LT
5510#endif
5511 }
49c022e6
PZ
5512
5513 update_max_interval();
5514
1da177e4
LT
5515 return NOTIFY_OK;
5516}
5517
f38b0820
PM
5518/*
5519 * Register at high priority so that task migration (migrate_all_tasks)
5520 * happens before everything else. This has to be lower priority than
cdd6c482 5521 * the notifier in the perf_event subsystem, though.
1da177e4 5522 */
0db0628d 5523static struct notifier_block migration_notifier = {
1da177e4 5524 .notifier_call = migration_call,
50a323b7 5525 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5526};
5527
6a82b60d 5528static void set_cpu_rq_start_time(void)
a803f026
CM
5529{
5530 int cpu = smp_processor_id();
5531 struct rq *rq = cpu_rq(cpu);
5532 rq->age_stamp = sched_clock_cpu(cpu);
5533}
5534
0db0628d 5535static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5536 unsigned long action, void *hcpu)
5537{
5538 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5539 case CPU_STARTING:
5540 set_cpu_rq_start_time();
5541 return NOTIFY_OK;
dd9d3843
JS
5542 case CPU_ONLINE:
5543 /*
5544 * At this point a starting CPU has marked itself as online via
5545 * set_cpu_online(). But it might not yet have marked itself
5546 * as active, which is essential from here on.
5547 *
5548 * Thus, fall-through and help the starting CPU along.
5549 */
3a101d05
TH
5550 case CPU_DOWN_FAILED:
5551 set_cpu_active((long)hcpu, true);
5552 return NOTIFY_OK;
5553 default:
5554 return NOTIFY_DONE;
5555 }
5556}
5557
0db0628d 5558static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5559 unsigned long action, void *hcpu)
5560{
5561 switch (action & ~CPU_TASKS_FROZEN) {
5562 case CPU_DOWN_PREPARE:
3c18d447 5563 set_cpu_active((long)hcpu, false);
3a101d05 5564 return NOTIFY_OK;
3c18d447
JL
5565 default:
5566 return NOTIFY_DONE;
3a101d05
TH
5567 }
5568}
5569
7babe8db 5570static int __init migration_init(void)
1da177e4
LT
5571{
5572 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5573 int err;
48f24c4d 5574
3a101d05 5575 /* Initialize migration for the boot CPU */
07dccf33
AM
5576 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5577 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5578 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5579 register_cpu_notifier(&migration_notifier);
7babe8db 5580
3a101d05
TH
5581 /* Register cpu active notifiers */
5582 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5583 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5584
a004cd42 5585 return 0;
1da177e4 5586}
7babe8db 5587early_initcall(migration_init);
476f3534 5588
4cb98839
PZ
5589static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5590
3e9830dc 5591#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5592
d039ac60 5593static __read_mostly int sched_debug_enabled;
f6630114 5594
d039ac60 5595static int __init sched_debug_setup(char *str)
f6630114 5596{
d039ac60 5597 sched_debug_enabled = 1;
f6630114
MT
5598
5599 return 0;
5600}
d039ac60
PZ
5601early_param("sched_debug", sched_debug_setup);
5602
5603static inline bool sched_debug(void)
5604{
5605 return sched_debug_enabled;
5606}
f6630114 5607
7c16ec58 5608static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5609 struct cpumask *groupmask)
1da177e4 5610{
4dcf6aff 5611 struct sched_group *group = sd->groups;
1da177e4 5612
96f874e2 5613 cpumask_clear(groupmask);
4dcf6aff
IM
5614
5615 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5616
5617 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5618 printk("does not load-balance\n");
4dcf6aff 5619 if (sd->parent)
3df0fc5b
PZ
5620 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5621 " has parent");
4dcf6aff 5622 return -1;
41c7ce9a
NP
5623 }
5624
333470ee
TH
5625 printk(KERN_CONT "span %*pbl level %s\n",
5626 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5627
758b2cdc 5628 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5629 printk(KERN_ERR "ERROR: domain->span does not contain "
5630 "CPU%d\n", cpu);
4dcf6aff 5631 }
758b2cdc 5632 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5633 printk(KERN_ERR "ERROR: domain->groups does not contain"
5634 " CPU%d\n", cpu);
4dcf6aff 5635 }
1da177e4 5636
4dcf6aff 5637 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5638 do {
4dcf6aff 5639 if (!group) {
3df0fc5b
PZ
5640 printk("\n");
5641 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5642 break;
5643 }
5644
758b2cdc 5645 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5646 printk(KERN_CONT "\n");
5647 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5648 break;
5649 }
1da177e4 5650
cb83b629
PZ
5651 if (!(sd->flags & SD_OVERLAP) &&
5652 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5653 printk(KERN_CONT "\n");
5654 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5655 break;
5656 }
1da177e4 5657
758b2cdc 5658 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5659
333470ee
TH
5660 printk(KERN_CONT " %*pbl",
5661 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5662 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5663 printk(KERN_CONT " (cpu_capacity = %d)",
5664 group->sgc->capacity);
381512cf 5665 }
1da177e4 5666
4dcf6aff
IM
5667 group = group->next;
5668 } while (group != sd->groups);
3df0fc5b 5669 printk(KERN_CONT "\n");
1da177e4 5670
758b2cdc 5671 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5672 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5673
758b2cdc
RR
5674 if (sd->parent &&
5675 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5676 printk(KERN_ERR "ERROR: parent span is not a superset "
5677 "of domain->span\n");
4dcf6aff
IM
5678 return 0;
5679}
1da177e4 5680
4dcf6aff
IM
5681static void sched_domain_debug(struct sched_domain *sd, int cpu)
5682{
5683 int level = 0;
1da177e4 5684
d039ac60 5685 if (!sched_debug_enabled)
f6630114
MT
5686 return;
5687
4dcf6aff
IM
5688 if (!sd) {
5689 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5690 return;
5691 }
1da177e4 5692
4dcf6aff
IM
5693 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5694
5695 for (;;) {
4cb98839 5696 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5697 break;
1da177e4
LT
5698 level++;
5699 sd = sd->parent;
33859f7f 5700 if (!sd)
4dcf6aff
IM
5701 break;
5702 }
1da177e4 5703}
6d6bc0ad 5704#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5705# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5706static inline bool sched_debug(void)
5707{
5708 return false;
5709}
6d6bc0ad 5710#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5711
1a20ff27 5712static int sd_degenerate(struct sched_domain *sd)
245af2c7 5713{
758b2cdc 5714 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5715 return 1;
5716
5717 /* Following flags need at least 2 groups */
5718 if (sd->flags & (SD_LOAD_BALANCE |
5719 SD_BALANCE_NEWIDLE |
5720 SD_BALANCE_FORK |
89c4710e 5721 SD_BALANCE_EXEC |
5d4dfddd 5722 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5723 SD_SHARE_PKG_RESOURCES |
5724 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5725 if (sd->groups != sd->groups->next)
5726 return 0;
5727 }
5728
5729 /* Following flags don't use groups */
c88d5910 5730 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5731 return 0;
5732
5733 return 1;
5734}
5735
48f24c4d
IM
5736static int
5737sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5738{
5739 unsigned long cflags = sd->flags, pflags = parent->flags;
5740
5741 if (sd_degenerate(parent))
5742 return 1;
5743
758b2cdc 5744 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5745 return 0;
5746
245af2c7
SS
5747 /* Flags needing groups don't count if only 1 group in parent */
5748 if (parent->groups == parent->groups->next) {
5749 pflags &= ~(SD_LOAD_BALANCE |
5750 SD_BALANCE_NEWIDLE |
5751 SD_BALANCE_FORK |
89c4710e 5752 SD_BALANCE_EXEC |
5d4dfddd 5753 SD_SHARE_CPUCAPACITY |
10866e62 5754 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5755 SD_PREFER_SIBLING |
5756 SD_SHARE_POWERDOMAIN);
5436499e
KC
5757 if (nr_node_ids == 1)
5758 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5759 }
5760 if (~cflags & pflags)
5761 return 0;
5762
5763 return 1;
5764}
5765
dce840a0 5766static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5767{
dce840a0 5768 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5769
68e74568 5770 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5771 cpudl_cleanup(&rd->cpudl);
1baca4ce 5772 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5773 free_cpumask_var(rd->rto_mask);
5774 free_cpumask_var(rd->online);
5775 free_cpumask_var(rd->span);
5776 kfree(rd);
5777}
5778
57d885fe
GH
5779static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5780{
a0490fa3 5781 struct root_domain *old_rd = NULL;
57d885fe 5782 unsigned long flags;
57d885fe 5783
05fa785c 5784 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5785
5786 if (rq->rd) {
a0490fa3 5787 old_rd = rq->rd;
57d885fe 5788
c6c4927b 5789 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5790 set_rq_offline(rq);
57d885fe 5791
c6c4927b 5792 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5793
a0490fa3 5794 /*
0515973f 5795 * If we dont want to free the old_rd yet then
a0490fa3
IM
5796 * set old_rd to NULL to skip the freeing later
5797 * in this function:
5798 */
5799 if (!atomic_dec_and_test(&old_rd->refcount))
5800 old_rd = NULL;
57d885fe
GH
5801 }
5802
5803 atomic_inc(&rd->refcount);
5804 rq->rd = rd;
5805
c6c4927b 5806 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5807 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5808 set_rq_online(rq);
57d885fe 5809
05fa785c 5810 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5811
5812 if (old_rd)
dce840a0 5813 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5814}
5815
68c38fc3 5816static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5817{
5818 memset(rd, 0, sizeof(*rd));
5819
68c38fc3 5820 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5821 goto out;
68c38fc3 5822 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5823 goto free_span;
1baca4ce 5824 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5825 goto free_online;
1baca4ce
JL
5826 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5827 goto free_dlo_mask;
6e0534f2 5828
332ac17e 5829 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5830 if (cpudl_init(&rd->cpudl) != 0)
5831 goto free_dlo_mask;
332ac17e 5832
68c38fc3 5833 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5834 goto free_rto_mask;
c6c4927b 5835 return 0;
6e0534f2 5836
68e74568
RR
5837free_rto_mask:
5838 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5839free_dlo_mask:
5840 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5841free_online:
5842 free_cpumask_var(rd->online);
5843free_span:
5844 free_cpumask_var(rd->span);
0c910d28 5845out:
c6c4927b 5846 return -ENOMEM;
57d885fe
GH
5847}
5848
029632fb
PZ
5849/*
5850 * By default the system creates a single root-domain with all cpus as
5851 * members (mimicking the global state we have today).
5852 */
5853struct root_domain def_root_domain;
5854
57d885fe
GH
5855static void init_defrootdomain(void)
5856{
68c38fc3 5857 init_rootdomain(&def_root_domain);
c6c4927b 5858
57d885fe
GH
5859 atomic_set(&def_root_domain.refcount, 1);
5860}
5861
dc938520 5862static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5863{
5864 struct root_domain *rd;
5865
5866 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5867 if (!rd)
5868 return NULL;
5869
68c38fc3 5870 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5871 kfree(rd);
5872 return NULL;
5873 }
57d885fe
GH
5874
5875 return rd;
5876}
5877
63b2ca30 5878static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5879{
5880 struct sched_group *tmp, *first;
5881
5882 if (!sg)
5883 return;
5884
5885 first = sg;
5886 do {
5887 tmp = sg->next;
5888
63b2ca30
NP
5889 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5890 kfree(sg->sgc);
e3589f6c
PZ
5891
5892 kfree(sg);
5893 sg = tmp;
5894 } while (sg != first);
5895}
5896
dce840a0
PZ
5897static void free_sched_domain(struct rcu_head *rcu)
5898{
5899 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5900
5901 /*
5902 * If its an overlapping domain it has private groups, iterate and
5903 * nuke them all.
5904 */
5905 if (sd->flags & SD_OVERLAP) {
5906 free_sched_groups(sd->groups, 1);
5907 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5908 kfree(sd->groups->sgc);
dce840a0 5909 kfree(sd->groups);
9c3f75cb 5910 }
dce840a0
PZ
5911 kfree(sd);
5912}
5913
5914static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5915{
5916 call_rcu(&sd->rcu, free_sched_domain);
5917}
5918
5919static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5920{
5921 for (; sd; sd = sd->parent)
5922 destroy_sched_domain(sd, cpu);
5923}
5924
518cd623
PZ
5925/*
5926 * Keep a special pointer to the highest sched_domain that has
5927 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5928 * allows us to avoid some pointer chasing select_idle_sibling().
5929 *
5930 * Also keep a unique ID per domain (we use the first cpu number in
5931 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5932 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5933 */
5934DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5935DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5936DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5937DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5938DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5939DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5940
5941static void update_top_cache_domain(int cpu)
5942{
5943 struct sched_domain *sd;
5d4cf996 5944 struct sched_domain *busy_sd = NULL;
518cd623 5945 int id = cpu;
7d9ffa89 5946 int size = 1;
518cd623
PZ
5947
5948 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5949 if (sd) {
518cd623 5950 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5951 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5952 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5953 }
5d4cf996 5954 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5955
5956 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5957 per_cpu(sd_llc_size, cpu) = size;
518cd623 5958 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5959
5960 sd = lowest_flag_domain(cpu, SD_NUMA);
5961 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5962
5963 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5964 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5965}
5966
1da177e4 5967/*
0eab9146 5968 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5969 * hold the hotplug lock.
5970 */
0eab9146
IM
5971static void
5972cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5973{
70b97a7f 5974 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5975 struct sched_domain *tmp;
5976
5977 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5978 for (tmp = sd; tmp; ) {
245af2c7
SS
5979 struct sched_domain *parent = tmp->parent;
5980 if (!parent)
5981 break;
f29c9b1c 5982
1a848870 5983 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5984 tmp->parent = parent->parent;
1a848870
SS
5985 if (parent->parent)
5986 parent->parent->child = tmp;
10866e62
PZ
5987 /*
5988 * Transfer SD_PREFER_SIBLING down in case of a
5989 * degenerate parent; the spans match for this
5990 * so the property transfers.
5991 */
5992 if (parent->flags & SD_PREFER_SIBLING)
5993 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5994 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5995 } else
5996 tmp = tmp->parent;
245af2c7
SS
5997 }
5998
1a848870 5999 if (sd && sd_degenerate(sd)) {
dce840a0 6000 tmp = sd;
245af2c7 6001 sd = sd->parent;
dce840a0 6002 destroy_sched_domain(tmp, cpu);
1a848870
SS
6003 if (sd)
6004 sd->child = NULL;
6005 }
1da177e4 6006
4cb98839 6007 sched_domain_debug(sd, cpu);
1da177e4 6008
57d885fe 6009 rq_attach_root(rq, rd);
dce840a0 6010 tmp = rq->sd;
674311d5 6011 rcu_assign_pointer(rq->sd, sd);
dce840a0 6012 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6013
6014 update_top_cache_domain(cpu);
1da177e4
LT
6015}
6016
1da177e4
LT
6017/* Setup the mask of cpus configured for isolated domains */
6018static int __init isolated_cpu_setup(char *str)
6019{
bdddd296 6020 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6021 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6022 return 1;
6023}
6024
8927f494 6025__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6026
49a02c51 6027struct s_data {
21d42ccf 6028 struct sched_domain ** __percpu sd;
49a02c51
AH
6029 struct root_domain *rd;
6030};
6031
2109b99e 6032enum s_alloc {
2109b99e 6033 sa_rootdomain,
21d42ccf 6034 sa_sd,
dce840a0 6035 sa_sd_storage,
2109b99e
AH
6036 sa_none,
6037};
6038
c1174876
PZ
6039/*
6040 * Build an iteration mask that can exclude certain CPUs from the upwards
6041 * domain traversal.
6042 *
6043 * Asymmetric node setups can result in situations where the domain tree is of
6044 * unequal depth, make sure to skip domains that already cover the entire
6045 * range.
6046 *
6047 * In that case build_sched_domains() will have terminated the iteration early
6048 * and our sibling sd spans will be empty. Domains should always include the
6049 * cpu they're built on, so check that.
6050 *
6051 */
6052static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6053{
6054 const struct cpumask *span = sched_domain_span(sd);
6055 struct sd_data *sdd = sd->private;
6056 struct sched_domain *sibling;
6057 int i;
6058
6059 for_each_cpu(i, span) {
6060 sibling = *per_cpu_ptr(sdd->sd, i);
6061 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6062 continue;
6063
6064 cpumask_set_cpu(i, sched_group_mask(sg));
6065 }
6066}
6067
6068/*
6069 * Return the canonical balance cpu for this group, this is the first cpu
6070 * of this group that's also in the iteration mask.
6071 */
6072int group_balance_cpu(struct sched_group *sg)
6073{
6074 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6075}
6076
e3589f6c
PZ
6077static int
6078build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6079{
6080 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6081 const struct cpumask *span = sched_domain_span(sd);
6082 struct cpumask *covered = sched_domains_tmpmask;
6083 struct sd_data *sdd = sd->private;
aaecac4a 6084 struct sched_domain *sibling;
e3589f6c
PZ
6085 int i;
6086
6087 cpumask_clear(covered);
6088
6089 for_each_cpu(i, span) {
6090 struct cpumask *sg_span;
6091
6092 if (cpumask_test_cpu(i, covered))
6093 continue;
6094
aaecac4a 6095 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6096
6097 /* See the comment near build_group_mask(). */
aaecac4a 6098 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6099 continue;
6100
e3589f6c 6101 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6102 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6103
6104 if (!sg)
6105 goto fail;
6106
6107 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6108 if (sibling->child)
6109 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6110 else
e3589f6c
PZ
6111 cpumask_set_cpu(i, sg_span);
6112
6113 cpumask_or(covered, covered, sg_span);
6114
63b2ca30
NP
6115 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6116 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6117 build_group_mask(sd, sg);
6118
c3decf0d 6119 /*
63b2ca30 6120 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6121 * domains and no possible iteration will get us here, we won't
6122 * die on a /0 trap.
6123 */
ca8ce3d0 6124 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6125
c1174876
PZ
6126 /*
6127 * Make sure the first group of this domain contains the
6128 * canonical balance cpu. Otherwise the sched_domain iteration
6129 * breaks. See update_sg_lb_stats().
6130 */
74a5ce20 6131 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6132 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6133 groups = sg;
6134
6135 if (!first)
6136 first = sg;
6137 if (last)
6138 last->next = sg;
6139 last = sg;
6140 last->next = first;
6141 }
6142 sd->groups = groups;
6143
6144 return 0;
6145
6146fail:
6147 free_sched_groups(first, 0);
6148
6149 return -ENOMEM;
6150}
6151
dce840a0 6152static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6153{
dce840a0
PZ
6154 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6155 struct sched_domain *child = sd->child;
1da177e4 6156
dce840a0
PZ
6157 if (child)
6158 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6159
9c3f75cb 6160 if (sg) {
dce840a0 6161 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6162 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6163 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6164 }
dce840a0
PZ
6165
6166 return cpu;
1e9f28fa 6167}
1e9f28fa 6168
01a08546 6169/*
dce840a0
PZ
6170 * build_sched_groups will build a circular linked list of the groups
6171 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6172 * and ->cpu_capacity to 0.
e3589f6c
PZ
6173 *
6174 * Assumes the sched_domain tree is fully constructed
01a08546 6175 */
e3589f6c
PZ
6176static int
6177build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6178{
dce840a0
PZ
6179 struct sched_group *first = NULL, *last = NULL;
6180 struct sd_data *sdd = sd->private;
6181 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6182 struct cpumask *covered;
dce840a0 6183 int i;
9c1cfda2 6184
e3589f6c
PZ
6185 get_group(cpu, sdd, &sd->groups);
6186 atomic_inc(&sd->groups->ref);
6187
0936629f 6188 if (cpu != cpumask_first(span))
e3589f6c
PZ
6189 return 0;
6190
f96225fd
PZ
6191 lockdep_assert_held(&sched_domains_mutex);
6192 covered = sched_domains_tmpmask;
6193
dce840a0 6194 cpumask_clear(covered);
6711cab4 6195
dce840a0
PZ
6196 for_each_cpu(i, span) {
6197 struct sched_group *sg;
cd08e923 6198 int group, j;
6711cab4 6199
dce840a0
PZ
6200 if (cpumask_test_cpu(i, covered))
6201 continue;
6711cab4 6202
cd08e923 6203 group = get_group(i, sdd, &sg);
c1174876 6204 cpumask_setall(sched_group_mask(sg));
0601a88d 6205
dce840a0
PZ
6206 for_each_cpu(j, span) {
6207 if (get_group(j, sdd, NULL) != group)
6208 continue;
0601a88d 6209
dce840a0
PZ
6210 cpumask_set_cpu(j, covered);
6211 cpumask_set_cpu(j, sched_group_cpus(sg));
6212 }
0601a88d 6213
dce840a0
PZ
6214 if (!first)
6215 first = sg;
6216 if (last)
6217 last->next = sg;
6218 last = sg;
6219 }
6220 last->next = first;
e3589f6c
PZ
6221
6222 return 0;
0601a88d 6223}
51888ca2 6224
89c4710e 6225/*
63b2ca30 6226 * Initialize sched groups cpu_capacity.
89c4710e 6227 *
63b2ca30 6228 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6229 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6230 * Typically cpu_capacity for all the groups in a sched domain will be same
6231 * unless there are asymmetries in the topology. If there are asymmetries,
6232 * group having more cpu_capacity will pickup more load compared to the
6233 * group having less cpu_capacity.
89c4710e 6234 */
63b2ca30 6235static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6236{
e3589f6c 6237 struct sched_group *sg = sd->groups;
89c4710e 6238
94c95ba6 6239 WARN_ON(!sg);
e3589f6c
PZ
6240
6241 do {
6242 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6243 sg = sg->next;
6244 } while (sg != sd->groups);
89c4710e 6245
c1174876 6246 if (cpu != group_balance_cpu(sg))
e3589f6c 6247 return;
aae6d3dd 6248
63b2ca30
NP
6249 update_group_capacity(sd, cpu);
6250 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6251}
6252
7c16ec58
MT
6253/*
6254 * Initializers for schedule domains
6255 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6256 */
6257
1d3504fc 6258static int default_relax_domain_level = -1;
60495e77 6259int sched_domain_level_max;
1d3504fc
HS
6260
6261static int __init setup_relax_domain_level(char *str)
6262{
a841f8ce
DS
6263 if (kstrtoint(str, 0, &default_relax_domain_level))
6264 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6265
1d3504fc
HS
6266 return 1;
6267}
6268__setup("relax_domain_level=", setup_relax_domain_level);
6269
6270static void set_domain_attribute(struct sched_domain *sd,
6271 struct sched_domain_attr *attr)
6272{
6273 int request;
6274
6275 if (!attr || attr->relax_domain_level < 0) {
6276 if (default_relax_domain_level < 0)
6277 return;
6278 else
6279 request = default_relax_domain_level;
6280 } else
6281 request = attr->relax_domain_level;
6282 if (request < sd->level) {
6283 /* turn off idle balance on this domain */
c88d5910 6284 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6285 } else {
6286 /* turn on idle balance on this domain */
c88d5910 6287 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6288 }
6289}
6290
54ab4ff4
PZ
6291static void __sdt_free(const struct cpumask *cpu_map);
6292static int __sdt_alloc(const struct cpumask *cpu_map);
6293
2109b99e
AH
6294static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6295 const struct cpumask *cpu_map)
6296{
6297 switch (what) {
2109b99e 6298 case sa_rootdomain:
822ff793
PZ
6299 if (!atomic_read(&d->rd->refcount))
6300 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6301 case sa_sd:
6302 free_percpu(d->sd); /* fall through */
dce840a0 6303 case sa_sd_storage:
54ab4ff4 6304 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6305 case sa_none:
6306 break;
6307 }
6308}
3404c8d9 6309
2109b99e
AH
6310static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6311 const struct cpumask *cpu_map)
6312{
dce840a0
PZ
6313 memset(d, 0, sizeof(*d));
6314
54ab4ff4
PZ
6315 if (__sdt_alloc(cpu_map))
6316 return sa_sd_storage;
dce840a0
PZ
6317 d->sd = alloc_percpu(struct sched_domain *);
6318 if (!d->sd)
6319 return sa_sd_storage;
2109b99e 6320 d->rd = alloc_rootdomain();
dce840a0 6321 if (!d->rd)
21d42ccf 6322 return sa_sd;
2109b99e
AH
6323 return sa_rootdomain;
6324}
57d885fe 6325
dce840a0
PZ
6326/*
6327 * NULL the sd_data elements we've used to build the sched_domain and
6328 * sched_group structure so that the subsequent __free_domain_allocs()
6329 * will not free the data we're using.
6330 */
6331static void claim_allocations(int cpu, struct sched_domain *sd)
6332{
6333 struct sd_data *sdd = sd->private;
dce840a0
PZ
6334
6335 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6336 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6337
e3589f6c 6338 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6339 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6340
63b2ca30
NP
6341 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6342 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6343}
6344
cb83b629 6345#ifdef CONFIG_NUMA
cb83b629 6346static int sched_domains_numa_levels;
e3fe70b1 6347enum numa_topology_type sched_numa_topology_type;
cb83b629 6348static int *sched_domains_numa_distance;
9942f79b 6349int sched_max_numa_distance;
cb83b629
PZ
6350static struct cpumask ***sched_domains_numa_masks;
6351static int sched_domains_curr_level;
143e1e28 6352#endif
cb83b629 6353
143e1e28
VG
6354/*
6355 * SD_flags allowed in topology descriptions.
6356 *
5d4dfddd 6357 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6358 * SD_SHARE_PKG_RESOURCES - describes shared caches
6359 * SD_NUMA - describes NUMA topologies
d77b3ed5 6360 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6361 *
6362 * Odd one out:
6363 * SD_ASYM_PACKING - describes SMT quirks
6364 */
6365#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6366 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6367 SD_SHARE_PKG_RESOURCES | \
6368 SD_NUMA | \
d77b3ed5
VG
6369 SD_ASYM_PACKING | \
6370 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6371
6372static struct sched_domain *
143e1e28 6373sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6374{
6375 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6376 int sd_weight, sd_flags = 0;
6377
6378#ifdef CONFIG_NUMA
6379 /*
6380 * Ugly hack to pass state to sd_numa_mask()...
6381 */
6382 sched_domains_curr_level = tl->numa_level;
6383#endif
6384
6385 sd_weight = cpumask_weight(tl->mask(cpu));
6386
6387 if (tl->sd_flags)
6388 sd_flags = (*tl->sd_flags)();
6389 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6390 "wrong sd_flags in topology description\n"))
6391 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6392
6393 *sd = (struct sched_domain){
6394 .min_interval = sd_weight,
6395 .max_interval = 2*sd_weight,
6396 .busy_factor = 32,
870a0bb5 6397 .imbalance_pct = 125,
143e1e28
VG
6398
6399 .cache_nice_tries = 0,
6400 .busy_idx = 0,
6401 .idle_idx = 0,
cb83b629
PZ
6402 .newidle_idx = 0,
6403 .wake_idx = 0,
6404 .forkexec_idx = 0,
6405
6406 .flags = 1*SD_LOAD_BALANCE
6407 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6408 | 1*SD_BALANCE_EXEC
6409 | 1*SD_BALANCE_FORK
cb83b629 6410 | 0*SD_BALANCE_WAKE
143e1e28 6411 | 1*SD_WAKE_AFFINE
5d4dfddd 6412 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6413 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6414 | 0*SD_SERIALIZE
cb83b629 6415 | 0*SD_PREFER_SIBLING
143e1e28
VG
6416 | 0*SD_NUMA
6417 | sd_flags
cb83b629 6418 ,
143e1e28 6419
cb83b629
PZ
6420 .last_balance = jiffies,
6421 .balance_interval = sd_weight,
143e1e28 6422 .smt_gain = 0,
2b4cfe64
JL
6423 .max_newidle_lb_cost = 0,
6424 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6425#ifdef CONFIG_SCHED_DEBUG
6426 .name = tl->name,
6427#endif
cb83b629 6428 };
cb83b629
PZ
6429
6430 /*
143e1e28 6431 * Convert topological properties into behaviour.
cb83b629 6432 */
143e1e28 6433
5d4dfddd 6434 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6435 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6436 sd->imbalance_pct = 110;
6437 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6438
6439 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6440 sd->imbalance_pct = 117;
6441 sd->cache_nice_tries = 1;
6442 sd->busy_idx = 2;
6443
6444#ifdef CONFIG_NUMA
6445 } else if (sd->flags & SD_NUMA) {
6446 sd->cache_nice_tries = 2;
6447 sd->busy_idx = 3;
6448 sd->idle_idx = 2;
6449
6450 sd->flags |= SD_SERIALIZE;
6451 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6452 sd->flags &= ~(SD_BALANCE_EXEC |
6453 SD_BALANCE_FORK |
6454 SD_WAKE_AFFINE);
6455 }
6456
6457#endif
6458 } else {
6459 sd->flags |= SD_PREFER_SIBLING;
6460 sd->cache_nice_tries = 1;
6461 sd->busy_idx = 2;
6462 sd->idle_idx = 1;
6463 }
6464
6465 sd->private = &tl->data;
cb83b629
PZ
6466
6467 return sd;
6468}
6469
143e1e28
VG
6470/*
6471 * Topology list, bottom-up.
6472 */
6473static struct sched_domain_topology_level default_topology[] = {
6474#ifdef CONFIG_SCHED_SMT
6475 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6476#endif
6477#ifdef CONFIG_SCHED_MC
6478 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6479#endif
6480 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6481 { NULL, },
6482};
6483
c6e1e7b5
JG
6484static struct sched_domain_topology_level *sched_domain_topology =
6485 default_topology;
143e1e28
VG
6486
6487#define for_each_sd_topology(tl) \
6488 for (tl = sched_domain_topology; tl->mask; tl++)
6489
6490void set_sched_topology(struct sched_domain_topology_level *tl)
6491{
6492 sched_domain_topology = tl;
6493}
6494
6495#ifdef CONFIG_NUMA
6496
cb83b629
PZ
6497static const struct cpumask *sd_numa_mask(int cpu)
6498{
6499 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6500}
6501
d039ac60
PZ
6502static void sched_numa_warn(const char *str)
6503{
6504 static int done = false;
6505 int i,j;
6506
6507 if (done)
6508 return;
6509
6510 done = true;
6511
6512 printk(KERN_WARNING "ERROR: %s\n\n", str);
6513
6514 for (i = 0; i < nr_node_ids; i++) {
6515 printk(KERN_WARNING " ");
6516 for (j = 0; j < nr_node_ids; j++)
6517 printk(KERN_CONT "%02d ", node_distance(i,j));
6518 printk(KERN_CONT "\n");
6519 }
6520 printk(KERN_WARNING "\n");
6521}
6522
9942f79b 6523bool find_numa_distance(int distance)
d039ac60
PZ
6524{
6525 int i;
6526
6527 if (distance == node_distance(0, 0))
6528 return true;
6529
6530 for (i = 0; i < sched_domains_numa_levels; i++) {
6531 if (sched_domains_numa_distance[i] == distance)
6532 return true;
6533 }
6534
6535 return false;
6536}
6537
e3fe70b1
RR
6538/*
6539 * A system can have three types of NUMA topology:
6540 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6541 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6542 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6543 *
6544 * The difference between a glueless mesh topology and a backplane
6545 * topology lies in whether communication between not directly
6546 * connected nodes goes through intermediary nodes (where programs
6547 * could run), or through backplane controllers. This affects
6548 * placement of programs.
6549 *
6550 * The type of topology can be discerned with the following tests:
6551 * - If the maximum distance between any nodes is 1 hop, the system
6552 * is directly connected.
6553 * - If for two nodes A and B, located N > 1 hops away from each other,
6554 * there is an intermediary node C, which is < N hops away from both
6555 * nodes A and B, the system is a glueless mesh.
6556 */
6557static void init_numa_topology_type(void)
6558{
6559 int a, b, c, n;
6560
6561 n = sched_max_numa_distance;
6562
e237882b 6563 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6564 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6565 return;
6566 }
e3fe70b1
RR
6567
6568 for_each_online_node(a) {
6569 for_each_online_node(b) {
6570 /* Find two nodes furthest removed from each other. */
6571 if (node_distance(a, b) < n)
6572 continue;
6573
6574 /* Is there an intermediary node between a and b? */
6575 for_each_online_node(c) {
6576 if (node_distance(a, c) < n &&
6577 node_distance(b, c) < n) {
6578 sched_numa_topology_type =
6579 NUMA_GLUELESS_MESH;
6580 return;
6581 }
6582 }
6583
6584 sched_numa_topology_type = NUMA_BACKPLANE;
6585 return;
6586 }
6587 }
6588}
6589
cb83b629
PZ
6590static void sched_init_numa(void)
6591{
6592 int next_distance, curr_distance = node_distance(0, 0);
6593 struct sched_domain_topology_level *tl;
6594 int level = 0;
6595 int i, j, k;
6596
cb83b629
PZ
6597 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6598 if (!sched_domains_numa_distance)
6599 return;
6600
6601 /*
6602 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6603 * unique distances in the node_distance() table.
6604 *
6605 * Assumes node_distance(0,j) includes all distances in
6606 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6607 */
6608 next_distance = curr_distance;
6609 for (i = 0; i < nr_node_ids; i++) {
6610 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6611 for (k = 0; k < nr_node_ids; k++) {
6612 int distance = node_distance(i, k);
6613
6614 if (distance > curr_distance &&
6615 (distance < next_distance ||
6616 next_distance == curr_distance))
6617 next_distance = distance;
6618
6619 /*
6620 * While not a strong assumption it would be nice to know
6621 * about cases where if node A is connected to B, B is not
6622 * equally connected to A.
6623 */
6624 if (sched_debug() && node_distance(k, i) != distance)
6625 sched_numa_warn("Node-distance not symmetric");
6626
6627 if (sched_debug() && i && !find_numa_distance(distance))
6628 sched_numa_warn("Node-0 not representative");
6629 }
6630 if (next_distance != curr_distance) {
6631 sched_domains_numa_distance[level++] = next_distance;
6632 sched_domains_numa_levels = level;
6633 curr_distance = next_distance;
6634 } else break;
cb83b629 6635 }
d039ac60
PZ
6636
6637 /*
6638 * In case of sched_debug() we verify the above assumption.
6639 */
6640 if (!sched_debug())
6641 break;
cb83b629 6642 }
c123588b
AR
6643
6644 if (!level)
6645 return;
6646
cb83b629
PZ
6647 /*
6648 * 'level' contains the number of unique distances, excluding the
6649 * identity distance node_distance(i,i).
6650 *
28b4a521 6651 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6652 * numbers.
6653 */
6654
5f7865f3
TC
6655 /*
6656 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6657 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6658 * the array will contain less then 'level' members. This could be
6659 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6660 * in other functions.
6661 *
6662 * We reset it to 'level' at the end of this function.
6663 */
6664 sched_domains_numa_levels = 0;
6665
cb83b629
PZ
6666 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6667 if (!sched_domains_numa_masks)
6668 return;
6669
6670 /*
6671 * Now for each level, construct a mask per node which contains all
6672 * cpus of nodes that are that many hops away from us.
6673 */
6674 for (i = 0; i < level; i++) {
6675 sched_domains_numa_masks[i] =
6676 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6677 if (!sched_domains_numa_masks[i])
6678 return;
6679
6680 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6681 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6682 if (!mask)
6683 return;
6684
6685 sched_domains_numa_masks[i][j] = mask;
6686
6687 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6688 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6689 continue;
6690
6691 cpumask_or(mask, mask, cpumask_of_node(k));
6692 }
6693 }
6694 }
6695
143e1e28
VG
6696 /* Compute default topology size */
6697 for (i = 0; sched_domain_topology[i].mask; i++);
6698
c515db8c 6699 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6700 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6701 if (!tl)
6702 return;
6703
6704 /*
6705 * Copy the default topology bits..
6706 */
143e1e28
VG
6707 for (i = 0; sched_domain_topology[i].mask; i++)
6708 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6709
6710 /*
6711 * .. and append 'j' levels of NUMA goodness.
6712 */
6713 for (j = 0; j < level; i++, j++) {
6714 tl[i] = (struct sched_domain_topology_level){
cb83b629 6715 .mask = sd_numa_mask,
143e1e28 6716 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6717 .flags = SDTL_OVERLAP,
6718 .numa_level = j,
143e1e28 6719 SD_INIT_NAME(NUMA)
cb83b629
PZ
6720 };
6721 }
6722
6723 sched_domain_topology = tl;
5f7865f3
TC
6724
6725 sched_domains_numa_levels = level;
9942f79b 6726 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6727
6728 init_numa_topology_type();
cb83b629 6729}
301a5cba
TC
6730
6731static void sched_domains_numa_masks_set(int cpu)
6732{
6733 int i, j;
6734 int node = cpu_to_node(cpu);
6735
6736 for (i = 0; i < sched_domains_numa_levels; i++) {
6737 for (j = 0; j < nr_node_ids; j++) {
6738 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6739 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6740 }
6741 }
6742}
6743
6744static void sched_domains_numa_masks_clear(int cpu)
6745{
6746 int i, j;
6747 for (i = 0; i < sched_domains_numa_levels; i++) {
6748 for (j = 0; j < nr_node_ids; j++)
6749 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6750 }
6751}
6752
6753/*
6754 * Update sched_domains_numa_masks[level][node] array when new cpus
6755 * are onlined.
6756 */
6757static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6758 unsigned long action,
6759 void *hcpu)
6760{
6761 int cpu = (long)hcpu;
6762
6763 switch (action & ~CPU_TASKS_FROZEN) {
6764 case CPU_ONLINE:
6765 sched_domains_numa_masks_set(cpu);
6766 break;
6767
6768 case CPU_DEAD:
6769 sched_domains_numa_masks_clear(cpu);
6770 break;
6771
6772 default:
6773 return NOTIFY_DONE;
6774 }
6775
6776 return NOTIFY_OK;
cb83b629
PZ
6777}
6778#else
6779static inline void sched_init_numa(void)
6780{
6781}
301a5cba
TC
6782
6783static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6784 unsigned long action,
6785 void *hcpu)
6786{
6787 return 0;
6788}
cb83b629
PZ
6789#endif /* CONFIG_NUMA */
6790
54ab4ff4
PZ
6791static int __sdt_alloc(const struct cpumask *cpu_map)
6792{
6793 struct sched_domain_topology_level *tl;
6794 int j;
6795
27723a68 6796 for_each_sd_topology(tl) {
54ab4ff4
PZ
6797 struct sd_data *sdd = &tl->data;
6798
6799 sdd->sd = alloc_percpu(struct sched_domain *);
6800 if (!sdd->sd)
6801 return -ENOMEM;
6802
6803 sdd->sg = alloc_percpu(struct sched_group *);
6804 if (!sdd->sg)
6805 return -ENOMEM;
6806
63b2ca30
NP
6807 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6808 if (!sdd->sgc)
9c3f75cb
PZ
6809 return -ENOMEM;
6810
54ab4ff4
PZ
6811 for_each_cpu(j, cpu_map) {
6812 struct sched_domain *sd;
6813 struct sched_group *sg;
63b2ca30 6814 struct sched_group_capacity *sgc;
54ab4ff4 6815
5cc389bc 6816 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6817 GFP_KERNEL, cpu_to_node(j));
6818 if (!sd)
6819 return -ENOMEM;
6820
6821 *per_cpu_ptr(sdd->sd, j) = sd;
6822
6823 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6824 GFP_KERNEL, cpu_to_node(j));
6825 if (!sg)
6826 return -ENOMEM;
6827
30b4e9eb
IM
6828 sg->next = sg;
6829
54ab4ff4 6830 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6831
63b2ca30 6832 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6833 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6834 if (!sgc)
9c3f75cb
PZ
6835 return -ENOMEM;
6836
63b2ca30 6837 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6838 }
6839 }
6840
6841 return 0;
6842}
6843
6844static void __sdt_free(const struct cpumask *cpu_map)
6845{
6846 struct sched_domain_topology_level *tl;
6847 int j;
6848
27723a68 6849 for_each_sd_topology(tl) {
54ab4ff4
PZ
6850 struct sd_data *sdd = &tl->data;
6851
6852 for_each_cpu(j, cpu_map) {
fb2cf2c6 6853 struct sched_domain *sd;
6854
6855 if (sdd->sd) {
6856 sd = *per_cpu_ptr(sdd->sd, j);
6857 if (sd && (sd->flags & SD_OVERLAP))
6858 free_sched_groups(sd->groups, 0);
6859 kfree(*per_cpu_ptr(sdd->sd, j));
6860 }
6861
6862 if (sdd->sg)
6863 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6864 if (sdd->sgc)
6865 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6866 }
6867 free_percpu(sdd->sd);
fb2cf2c6 6868 sdd->sd = NULL;
54ab4ff4 6869 free_percpu(sdd->sg);
fb2cf2c6 6870 sdd->sg = NULL;
63b2ca30
NP
6871 free_percpu(sdd->sgc);
6872 sdd->sgc = NULL;
54ab4ff4
PZ
6873 }
6874}
6875
2c402dc3 6876struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6877 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6878 struct sched_domain *child, int cpu)
2c402dc3 6879{
143e1e28 6880 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6881 if (!sd)
d069b916 6882 return child;
2c402dc3 6883
2c402dc3 6884 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6885 if (child) {
6886 sd->level = child->level + 1;
6887 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6888 child->parent = sd;
c75e0128 6889 sd->child = child;
6ae72dff
PZ
6890
6891 if (!cpumask_subset(sched_domain_span(child),
6892 sched_domain_span(sd))) {
6893 pr_err("BUG: arch topology borken\n");
6894#ifdef CONFIG_SCHED_DEBUG
6895 pr_err(" the %s domain not a subset of the %s domain\n",
6896 child->name, sd->name);
6897#endif
6898 /* Fixup, ensure @sd has at least @child cpus. */
6899 cpumask_or(sched_domain_span(sd),
6900 sched_domain_span(sd),
6901 sched_domain_span(child));
6902 }
6903
60495e77 6904 }
a841f8ce 6905 set_domain_attribute(sd, attr);
2c402dc3
PZ
6906
6907 return sd;
6908}
6909
2109b99e
AH
6910/*
6911 * Build sched domains for a given set of cpus and attach the sched domains
6912 * to the individual cpus
6913 */
dce840a0
PZ
6914static int build_sched_domains(const struct cpumask *cpu_map,
6915 struct sched_domain_attr *attr)
2109b99e 6916{
1c632169 6917 enum s_alloc alloc_state;
dce840a0 6918 struct sched_domain *sd;
2109b99e 6919 struct s_data d;
822ff793 6920 int i, ret = -ENOMEM;
9c1cfda2 6921
2109b99e
AH
6922 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6923 if (alloc_state != sa_rootdomain)
6924 goto error;
9c1cfda2 6925
dce840a0 6926 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6927 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6928 struct sched_domain_topology_level *tl;
6929
3bd65a80 6930 sd = NULL;
27723a68 6931 for_each_sd_topology(tl) {
4a850cbe 6932 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6933 if (tl == sched_domain_topology)
6934 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6935 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6936 sd->flags |= SD_OVERLAP;
d110235d
PZ
6937 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6938 break;
e3589f6c 6939 }
dce840a0
PZ
6940 }
6941
6942 /* Build the groups for the domains */
6943 for_each_cpu(i, cpu_map) {
6944 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6945 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6946 if (sd->flags & SD_OVERLAP) {
6947 if (build_overlap_sched_groups(sd, i))
6948 goto error;
6949 } else {
6950 if (build_sched_groups(sd, i))
6951 goto error;
6952 }
1cf51902 6953 }
a06dadbe 6954 }
9c1cfda2 6955
ced549fa 6956 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6957 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6958 if (!cpumask_test_cpu(i, cpu_map))
6959 continue;
9c1cfda2 6960
dce840a0
PZ
6961 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6962 claim_allocations(i, sd);
63b2ca30 6963 init_sched_groups_capacity(i, sd);
dce840a0 6964 }
f712c0c7 6965 }
9c1cfda2 6966
1da177e4 6967 /* Attach the domains */
dce840a0 6968 rcu_read_lock();
abcd083a 6969 for_each_cpu(i, cpu_map) {
21d42ccf 6970 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6971 cpu_attach_domain(sd, d.rd, i);
1da177e4 6972 }
dce840a0 6973 rcu_read_unlock();
51888ca2 6974
822ff793 6975 ret = 0;
51888ca2 6976error:
2109b99e 6977 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6978 return ret;
1da177e4 6979}
029190c5 6980
acc3f5d7 6981static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6982static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6983static struct sched_domain_attr *dattr_cur;
6984 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6985
6986/*
6987 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6988 * cpumask) fails, then fallback to a single sched domain,
6989 * as determined by the single cpumask fallback_doms.
029190c5 6990 */
4212823f 6991static cpumask_var_t fallback_doms;
029190c5 6992
ee79d1bd
HC
6993/*
6994 * arch_update_cpu_topology lets virtualized architectures update the
6995 * cpu core maps. It is supposed to return 1 if the topology changed
6996 * or 0 if it stayed the same.
6997 */
52f5684c 6998int __weak arch_update_cpu_topology(void)
22e52b07 6999{
ee79d1bd 7000 return 0;
22e52b07
HC
7001}
7002
acc3f5d7
RR
7003cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7004{
7005 int i;
7006 cpumask_var_t *doms;
7007
7008 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7009 if (!doms)
7010 return NULL;
7011 for (i = 0; i < ndoms; i++) {
7012 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7013 free_sched_domains(doms, i);
7014 return NULL;
7015 }
7016 }
7017 return doms;
7018}
7019
7020void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7021{
7022 unsigned int i;
7023 for (i = 0; i < ndoms; i++)
7024 free_cpumask_var(doms[i]);
7025 kfree(doms);
7026}
7027
1a20ff27 7028/*
41a2d6cf 7029 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7030 * For now this just excludes isolated cpus, but could be used to
7031 * exclude other special cases in the future.
1a20ff27 7032 */
c4a8849a 7033static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7034{
7378547f
MM
7035 int err;
7036
22e52b07 7037 arch_update_cpu_topology();
029190c5 7038 ndoms_cur = 1;
acc3f5d7 7039 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7040 if (!doms_cur)
acc3f5d7
RR
7041 doms_cur = &fallback_doms;
7042 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7043 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7044 register_sched_domain_sysctl();
7378547f
MM
7045
7046 return err;
1a20ff27
DG
7047}
7048
1a20ff27
DG
7049/*
7050 * Detach sched domains from a group of cpus specified in cpu_map
7051 * These cpus will now be attached to the NULL domain
7052 */
96f874e2 7053static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7054{
7055 int i;
7056
dce840a0 7057 rcu_read_lock();
abcd083a 7058 for_each_cpu(i, cpu_map)
57d885fe 7059 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7060 rcu_read_unlock();
1a20ff27
DG
7061}
7062
1d3504fc
HS
7063/* handle null as "default" */
7064static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7065 struct sched_domain_attr *new, int idx_new)
7066{
7067 struct sched_domain_attr tmp;
7068
7069 /* fast path */
7070 if (!new && !cur)
7071 return 1;
7072
7073 tmp = SD_ATTR_INIT;
7074 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7075 new ? (new + idx_new) : &tmp,
7076 sizeof(struct sched_domain_attr));
7077}
7078
029190c5
PJ
7079/*
7080 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7081 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7082 * doms_new[] to the current sched domain partitioning, doms_cur[].
7083 * It destroys each deleted domain and builds each new domain.
7084 *
acc3f5d7 7085 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7086 * The masks don't intersect (don't overlap.) We should setup one
7087 * sched domain for each mask. CPUs not in any of the cpumasks will
7088 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7089 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7090 * it as it is.
7091 *
acc3f5d7
RR
7092 * The passed in 'doms_new' should be allocated using
7093 * alloc_sched_domains. This routine takes ownership of it and will
7094 * free_sched_domains it when done with it. If the caller failed the
7095 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7096 * and partition_sched_domains() will fallback to the single partition
7097 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7098 *
96f874e2 7099 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7100 * ndoms_new == 0 is a special case for destroying existing domains,
7101 * and it will not create the default domain.
dfb512ec 7102 *
029190c5
PJ
7103 * Call with hotplug lock held
7104 */
acc3f5d7 7105void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7106 struct sched_domain_attr *dattr_new)
029190c5 7107{
dfb512ec 7108 int i, j, n;
d65bd5ec 7109 int new_topology;
029190c5 7110
712555ee 7111 mutex_lock(&sched_domains_mutex);
a1835615 7112
7378547f
MM
7113 /* always unregister in case we don't destroy any domains */
7114 unregister_sched_domain_sysctl();
7115
d65bd5ec
HC
7116 /* Let architecture update cpu core mappings. */
7117 new_topology = arch_update_cpu_topology();
7118
dfb512ec 7119 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7120
7121 /* Destroy deleted domains */
7122 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7123 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7124 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7125 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7126 goto match1;
7127 }
7128 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7129 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7130match1:
7131 ;
7132 }
7133
c8d2d47a 7134 n = ndoms_cur;
e761b772 7135 if (doms_new == NULL) {
c8d2d47a 7136 n = 0;
acc3f5d7 7137 doms_new = &fallback_doms;
6ad4c188 7138 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7139 WARN_ON_ONCE(dattr_new);
e761b772
MK
7140 }
7141
029190c5
PJ
7142 /* Build new domains */
7143 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7144 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7145 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7146 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7147 goto match2;
7148 }
7149 /* no match - add a new doms_new */
dce840a0 7150 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7151match2:
7152 ;
7153 }
7154
7155 /* Remember the new sched domains */
acc3f5d7
RR
7156 if (doms_cur != &fallback_doms)
7157 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7158 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7159 doms_cur = doms_new;
1d3504fc 7160 dattr_cur = dattr_new;
029190c5 7161 ndoms_cur = ndoms_new;
7378547f
MM
7162
7163 register_sched_domain_sysctl();
a1835615 7164
712555ee 7165 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7166}
7167
d35be8ba
SB
7168static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7169
1da177e4 7170/*
3a101d05
TH
7171 * Update cpusets according to cpu_active mask. If cpusets are
7172 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7173 * around partition_sched_domains().
d35be8ba
SB
7174 *
7175 * If we come here as part of a suspend/resume, don't touch cpusets because we
7176 * want to restore it back to its original state upon resume anyway.
1da177e4 7177 */
0b2e918a
TH
7178static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7179 void *hcpu)
e761b772 7180{
d35be8ba
SB
7181 switch (action) {
7182 case CPU_ONLINE_FROZEN:
7183 case CPU_DOWN_FAILED_FROZEN:
7184
7185 /*
7186 * num_cpus_frozen tracks how many CPUs are involved in suspend
7187 * resume sequence. As long as this is not the last online
7188 * operation in the resume sequence, just build a single sched
7189 * domain, ignoring cpusets.
7190 */
7191 num_cpus_frozen--;
7192 if (likely(num_cpus_frozen)) {
7193 partition_sched_domains(1, NULL, NULL);
7194 break;
7195 }
7196
7197 /*
7198 * This is the last CPU online operation. So fall through and
7199 * restore the original sched domains by considering the
7200 * cpuset configurations.
7201 */
7202
e761b772 7203 case CPU_ONLINE:
7ddf96b0 7204 cpuset_update_active_cpus(true);
d35be8ba 7205 break;
3a101d05
TH
7206 default:
7207 return NOTIFY_DONE;
7208 }
d35be8ba 7209 return NOTIFY_OK;
3a101d05 7210}
e761b772 7211
0b2e918a
TH
7212static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7213 void *hcpu)
3a101d05 7214{
3c18d447
JL
7215 unsigned long flags;
7216 long cpu = (long)hcpu;
7217 struct dl_bw *dl_b;
533445c6
OS
7218 bool overflow;
7219 int cpus;
3c18d447 7220
533445c6 7221 switch (action) {
3a101d05 7222 case CPU_DOWN_PREPARE:
533445c6
OS
7223 rcu_read_lock_sched();
7224 dl_b = dl_bw_of(cpu);
3c18d447 7225
533445c6
OS
7226 raw_spin_lock_irqsave(&dl_b->lock, flags);
7227 cpus = dl_bw_cpus(cpu);
7228 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7229 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7230
533445c6 7231 rcu_read_unlock_sched();
3c18d447 7232
533445c6
OS
7233 if (overflow)
7234 return notifier_from_errno(-EBUSY);
7ddf96b0 7235 cpuset_update_active_cpus(false);
d35be8ba
SB
7236 break;
7237 case CPU_DOWN_PREPARE_FROZEN:
7238 num_cpus_frozen++;
7239 partition_sched_domains(1, NULL, NULL);
7240 break;
e761b772
MK
7241 default:
7242 return NOTIFY_DONE;
7243 }
d35be8ba 7244 return NOTIFY_OK;
e761b772 7245}
e761b772 7246
1da177e4
LT
7247void __init sched_init_smp(void)
7248{
dcc30a35
RR
7249 cpumask_var_t non_isolated_cpus;
7250
7251 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7252 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7253
8cb9764f
CM
7254 /* nohz_full won't take effect without isolating the cpus. */
7255 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7256
cb83b629
PZ
7257 sched_init_numa();
7258
6acce3ef
PZ
7259 /*
7260 * There's no userspace yet to cause hotplug operations; hence all the
7261 * cpu masks are stable and all blatant races in the below code cannot
7262 * happen.
7263 */
712555ee 7264 mutex_lock(&sched_domains_mutex);
c4a8849a 7265 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7266 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7267 if (cpumask_empty(non_isolated_cpus))
7268 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7269 mutex_unlock(&sched_domains_mutex);
e761b772 7270
301a5cba 7271 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7272 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7273 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7274
b328ca18 7275 init_hrtick();
5c1e1767
NP
7276
7277 /* Move init over to a non-isolated CPU */
dcc30a35 7278 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7279 BUG();
19978ca6 7280 sched_init_granularity();
dcc30a35 7281 free_cpumask_var(non_isolated_cpus);
4212823f 7282
0e3900e6 7283 init_sched_rt_class();
1baca4ce 7284 init_sched_dl_class();
1da177e4
LT
7285}
7286#else
7287void __init sched_init_smp(void)
7288{
19978ca6 7289 sched_init_granularity();
1da177e4
LT
7290}
7291#endif /* CONFIG_SMP */
7292
7293int in_sched_functions(unsigned long addr)
7294{
1da177e4
LT
7295 return in_lock_functions(addr) ||
7296 (addr >= (unsigned long)__sched_text_start
7297 && addr < (unsigned long)__sched_text_end);
7298}
7299
029632fb 7300#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7301/*
7302 * Default task group.
7303 * Every task in system belongs to this group at bootup.
7304 */
029632fb 7305struct task_group root_task_group;
35cf4e50 7306LIST_HEAD(task_groups);
052f1dc7 7307#endif
6f505b16 7308
e6252c3e 7309DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7310
1da177e4
LT
7311void __init sched_init(void)
7312{
dd41f596 7313 int i, j;
434d53b0
MT
7314 unsigned long alloc_size = 0, ptr;
7315
7316#ifdef CONFIG_FAIR_GROUP_SCHED
7317 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7318#endif
7319#ifdef CONFIG_RT_GROUP_SCHED
7320 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7321#endif
434d53b0 7322 if (alloc_size) {
36b7b6d4 7323 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7324
7325#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7326 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7327 ptr += nr_cpu_ids * sizeof(void **);
7328
07e06b01 7329 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7330 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7331
6d6bc0ad 7332#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7333#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7334 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7335 ptr += nr_cpu_ids * sizeof(void **);
7336
07e06b01 7337 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7338 ptr += nr_cpu_ids * sizeof(void **);
7339
6d6bc0ad 7340#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7341 }
df7c8e84 7342#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7343 for_each_possible_cpu(i) {
7344 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7345 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7346 }
b74e6278 7347#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7348
332ac17e
DF
7349 init_rt_bandwidth(&def_rt_bandwidth,
7350 global_rt_period(), global_rt_runtime());
7351 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7352 global_rt_period(), global_rt_runtime());
332ac17e 7353
57d885fe
GH
7354#ifdef CONFIG_SMP
7355 init_defrootdomain();
7356#endif
7357
d0b27fa7 7358#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7359 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7360 global_rt_period(), global_rt_runtime());
6d6bc0ad 7361#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7362
7c941438 7363#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7364 list_add(&root_task_group.list, &task_groups);
7365 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7366 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7367 autogroup_init(&init_task);
54c707e9 7368
7c941438 7369#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7370
0a945022 7371 for_each_possible_cpu(i) {
70b97a7f 7372 struct rq *rq;
1da177e4
LT
7373
7374 rq = cpu_rq(i);
05fa785c 7375 raw_spin_lock_init(&rq->lock);
7897986b 7376 rq->nr_running = 0;
dce48a84
TG
7377 rq->calc_load_active = 0;
7378 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7379 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7380 init_rt_rq(&rq->rt);
7381 init_dl_rq(&rq->dl);
dd41f596 7382#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7383 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7384 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7385 /*
07e06b01 7386 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7387 *
7388 * In case of task-groups formed thr' the cgroup filesystem, it
7389 * gets 100% of the cpu resources in the system. This overall
7390 * system cpu resource is divided among the tasks of
07e06b01 7391 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7392 * based on each entity's (task or task-group's) weight
7393 * (se->load.weight).
7394 *
07e06b01 7395 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7396 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7397 * then A0's share of the cpu resource is:
7398 *
0d905bca 7399 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7400 *
07e06b01
YZ
7401 * We achieve this by letting root_task_group's tasks sit
7402 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7403 */
ab84d31e 7404 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7405 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7406#endif /* CONFIG_FAIR_GROUP_SCHED */
7407
7408 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7409#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7410 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7411#endif
1da177e4 7412
dd41f596
IM
7413 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7414 rq->cpu_load[j] = 0;
fdf3e95d
VP
7415
7416 rq->last_load_update_tick = jiffies;
7417
1da177e4 7418#ifdef CONFIG_SMP
41c7ce9a 7419 rq->sd = NULL;
57d885fe 7420 rq->rd = NULL;
ca6d75e6 7421 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7422 rq->balance_callback = NULL;
1da177e4 7423 rq->active_balance = 0;
dd41f596 7424 rq->next_balance = jiffies;
1da177e4 7425 rq->push_cpu = 0;
0a2966b4 7426 rq->cpu = i;
1f11eb6a 7427 rq->online = 0;
eae0c9df
MG
7428 rq->idle_stamp = 0;
7429 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7430 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7431
7432 INIT_LIST_HEAD(&rq->cfs_tasks);
7433
dc938520 7434 rq_attach_root(rq, &def_root_domain);
3451d024 7435#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7436 rq->nohz_flags = 0;
83cd4fe2 7437#endif
265f22a9
FW
7438#ifdef CONFIG_NO_HZ_FULL
7439 rq->last_sched_tick = 0;
7440#endif
1da177e4 7441#endif
8f4d37ec 7442 init_rq_hrtick(rq);
1da177e4 7443 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7444 }
7445
2dd73a4f 7446 set_load_weight(&init_task);
b50f60ce 7447
e107be36
AK
7448#ifdef CONFIG_PREEMPT_NOTIFIERS
7449 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7450#endif
7451
1da177e4
LT
7452 /*
7453 * The boot idle thread does lazy MMU switching as well:
7454 */
7455 atomic_inc(&init_mm.mm_count);
7456 enter_lazy_tlb(&init_mm, current);
7457
1b537c7d
YD
7458 /*
7459 * During early bootup we pretend to be a normal task:
7460 */
7461 current->sched_class = &fair_sched_class;
7462
1da177e4
LT
7463 /*
7464 * Make us the idle thread. Technically, schedule() should not be
7465 * called from this thread, however somewhere below it might be,
7466 * but because we are the idle thread, we just pick up running again
7467 * when this runqueue becomes "idle".
7468 */
7469 init_idle(current, smp_processor_id());
dce48a84
TG
7470
7471 calc_load_update = jiffies + LOAD_FREQ;
7472
bf4d83f6 7473#ifdef CONFIG_SMP
4cb98839 7474 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7475 /* May be allocated at isolcpus cmdline parse time */
7476 if (cpu_isolated_map == NULL)
7477 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7478 idle_thread_set_boot_cpu();
a803f026 7479 set_cpu_rq_start_time();
029632fb
PZ
7480#endif
7481 init_sched_fair_class();
6a7b3dc3 7482
6892b75e 7483 scheduler_running = 1;
1da177e4
LT
7484}
7485
d902db1e 7486#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7487static inline int preempt_count_equals(int preempt_offset)
7488{
da7142e2 7489 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7490
4ba8216c 7491 return (nested == preempt_offset);
e4aafea2
FW
7492}
7493
d894837f 7494void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7495{
8eb23b9f
PZ
7496 /*
7497 * Blocking primitives will set (and therefore destroy) current->state,
7498 * since we will exit with TASK_RUNNING make sure we enter with it,
7499 * otherwise we will destroy state.
7500 */
00845eb9 7501 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7502 "do not call blocking ops when !TASK_RUNNING; "
7503 "state=%lx set at [<%p>] %pS\n",
7504 current->state,
7505 (void *)current->task_state_change,
00845eb9 7506 (void *)current->task_state_change);
8eb23b9f 7507
3427445a
PZ
7508 ___might_sleep(file, line, preempt_offset);
7509}
7510EXPORT_SYMBOL(__might_sleep);
7511
7512void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7513{
1da177e4
LT
7514 static unsigned long prev_jiffy; /* ratelimiting */
7515
b3fbab05 7516 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7517 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7518 !is_idle_task(current)) ||
e4aafea2 7519 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7520 return;
7521 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7522 return;
7523 prev_jiffy = jiffies;
7524
3df0fc5b
PZ
7525 printk(KERN_ERR
7526 "BUG: sleeping function called from invalid context at %s:%d\n",
7527 file, line);
7528 printk(KERN_ERR
7529 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7530 in_atomic(), irqs_disabled(),
7531 current->pid, current->comm);
aef745fc 7532
a8b686b3
ES
7533 if (task_stack_end_corrupted(current))
7534 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7535
aef745fc
IM
7536 debug_show_held_locks(current);
7537 if (irqs_disabled())
7538 print_irqtrace_events(current);
8f47b187
TG
7539#ifdef CONFIG_DEBUG_PREEMPT
7540 if (!preempt_count_equals(preempt_offset)) {
7541 pr_err("Preemption disabled at:");
7542 print_ip_sym(current->preempt_disable_ip);
7543 pr_cont("\n");
7544 }
7545#endif
aef745fc 7546 dump_stack();
1da177e4 7547}
3427445a 7548EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7549#endif
7550
7551#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7552void normalize_rt_tasks(void)
3a5e4dc1 7553{
dbc7f069 7554 struct task_struct *g, *p;
d50dde5a
DF
7555 struct sched_attr attr = {
7556 .sched_policy = SCHED_NORMAL,
7557 };
1da177e4 7558
3472eaa1 7559 read_lock(&tasklist_lock);
5d07f420 7560 for_each_process_thread(g, p) {
178be793
IM
7561 /*
7562 * Only normalize user tasks:
7563 */
3472eaa1 7564 if (p->flags & PF_KTHREAD)
178be793
IM
7565 continue;
7566
6cfb0d5d 7567 p->se.exec_start = 0;
6cfb0d5d 7568#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7569 p->se.statistics.wait_start = 0;
7570 p->se.statistics.sleep_start = 0;
7571 p->se.statistics.block_start = 0;
6cfb0d5d 7572#endif
dd41f596 7573
aab03e05 7574 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7575 /*
7576 * Renice negative nice level userspace
7577 * tasks back to 0:
7578 */
3472eaa1 7579 if (task_nice(p) < 0)
dd41f596 7580 set_user_nice(p, 0);
1da177e4 7581 continue;
dd41f596 7582 }
1da177e4 7583
dbc7f069 7584 __sched_setscheduler(p, &attr, false, false);
5d07f420 7585 }
3472eaa1 7586 read_unlock(&tasklist_lock);
1da177e4
LT
7587}
7588
7589#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7590
67fc4e0c 7591#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7592/*
67fc4e0c 7593 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7594 *
7595 * They can only be called when the whole system has been
7596 * stopped - every CPU needs to be quiescent, and no scheduling
7597 * activity can take place. Using them for anything else would
7598 * be a serious bug, and as a result, they aren't even visible
7599 * under any other configuration.
7600 */
7601
7602/**
7603 * curr_task - return the current task for a given cpu.
7604 * @cpu: the processor in question.
7605 *
7606 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7607 *
7608 * Return: The current task for @cpu.
1df5c10a 7609 */
36c8b586 7610struct task_struct *curr_task(int cpu)
1df5c10a
LT
7611{
7612 return cpu_curr(cpu);
7613}
7614
67fc4e0c
JW
7615#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7616
7617#ifdef CONFIG_IA64
1df5c10a
LT
7618/**
7619 * set_curr_task - set the current task for a given cpu.
7620 * @cpu: the processor in question.
7621 * @p: the task pointer to set.
7622 *
7623 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7624 * are serviced on a separate stack. It allows the architecture to switch the
7625 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7626 * must be called with all CPU's synchronized, and interrupts disabled, the
7627 * and caller must save the original value of the current task (see
7628 * curr_task() above) and restore that value before reenabling interrupts and
7629 * re-starting the system.
7630 *
7631 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7632 */
36c8b586 7633void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7634{
7635 cpu_curr(cpu) = p;
7636}
7637
7638#endif
29f59db3 7639
7c941438 7640#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7641/* task_group_lock serializes the addition/removal of task groups */
7642static DEFINE_SPINLOCK(task_group_lock);
7643
bccbe08a
PZ
7644static void free_sched_group(struct task_group *tg)
7645{
7646 free_fair_sched_group(tg);
7647 free_rt_sched_group(tg);
e9aa1dd1 7648 autogroup_free(tg);
bccbe08a
PZ
7649 kfree(tg);
7650}
7651
7652/* allocate runqueue etc for a new task group */
ec7dc8ac 7653struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7654{
7655 struct task_group *tg;
bccbe08a
PZ
7656
7657 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7658 if (!tg)
7659 return ERR_PTR(-ENOMEM);
7660
ec7dc8ac 7661 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7662 goto err;
7663
ec7dc8ac 7664 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7665 goto err;
7666
ace783b9
LZ
7667 return tg;
7668
7669err:
7670 free_sched_group(tg);
7671 return ERR_PTR(-ENOMEM);
7672}
7673
7674void sched_online_group(struct task_group *tg, struct task_group *parent)
7675{
7676 unsigned long flags;
7677
8ed36996 7678 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7679 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7680
7681 WARN_ON(!parent); /* root should already exist */
7682
7683 tg->parent = parent;
f473aa5e 7684 INIT_LIST_HEAD(&tg->children);
09f2724a 7685 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7686 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7687}
7688
9b5b7751 7689/* rcu callback to free various structures associated with a task group */
6f505b16 7690static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7691{
29f59db3 7692 /* now it should be safe to free those cfs_rqs */
6f505b16 7693 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7694}
7695
9b5b7751 7696/* Destroy runqueue etc associated with a task group */
4cf86d77 7697void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7698{
7699 /* wait for possible concurrent references to cfs_rqs complete */
7700 call_rcu(&tg->rcu, free_sched_group_rcu);
7701}
7702
7703void sched_offline_group(struct task_group *tg)
29f59db3 7704{
8ed36996 7705 unsigned long flags;
9b5b7751 7706 int i;
29f59db3 7707
3d4b47b4
PZ
7708 /* end participation in shares distribution */
7709 for_each_possible_cpu(i)
bccbe08a 7710 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7711
7712 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7713 list_del_rcu(&tg->list);
f473aa5e 7714 list_del_rcu(&tg->siblings);
8ed36996 7715 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7716}
7717
9b5b7751 7718/* change task's runqueue when it moves between groups.
3a252015
IM
7719 * The caller of this function should have put the task in its new group
7720 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7721 * reflect its new group.
9b5b7751
SV
7722 */
7723void sched_move_task(struct task_struct *tsk)
29f59db3 7724{
8323f26c 7725 struct task_group *tg;
da0c1e65 7726 int queued, running;
29f59db3
SV
7727 unsigned long flags;
7728 struct rq *rq;
7729
7730 rq = task_rq_lock(tsk, &flags);
7731
051a1d1a 7732 running = task_current(rq, tsk);
da0c1e65 7733 queued = task_on_rq_queued(tsk);
29f59db3 7734
da0c1e65 7735 if (queued)
29f59db3 7736 dequeue_task(rq, tsk, 0);
0e1f3483 7737 if (unlikely(running))
f3cd1c4e 7738 put_prev_task(rq, tsk);
29f59db3 7739
f7b8a47d
KT
7740 /*
7741 * All callers are synchronized by task_rq_lock(); we do not use RCU
7742 * which is pointless here. Thus, we pass "true" to task_css_check()
7743 * to prevent lockdep warnings.
7744 */
7745 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7746 struct task_group, css);
7747 tg = autogroup_task_group(tsk, tg);
7748 tsk->sched_task_group = tg;
7749
810b3817 7750#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7751 if (tsk->sched_class->task_move_group)
bc54da21 7752 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7753 else
810b3817 7754#endif
b2b5ce02 7755 set_task_rq(tsk, task_cpu(tsk));
810b3817 7756
0e1f3483
HS
7757 if (unlikely(running))
7758 tsk->sched_class->set_curr_task(rq);
da0c1e65 7759 if (queued)
371fd7e7 7760 enqueue_task(rq, tsk, 0);
29f59db3 7761
0122ec5b 7762 task_rq_unlock(rq, tsk, &flags);
29f59db3 7763}
7c941438 7764#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7765
a790de99
PT
7766#ifdef CONFIG_RT_GROUP_SCHED
7767/*
7768 * Ensure that the real time constraints are schedulable.
7769 */
7770static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7771
9a7e0b18
PZ
7772/* Must be called with tasklist_lock held */
7773static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7774{
9a7e0b18 7775 struct task_struct *g, *p;
b40b2e8e 7776
1fe89e1b
PZ
7777 /*
7778 * Autogroups do not have RT tasks; see autogroup_create().
7779 */
7780 if (task_group_is_autogroup(tg))
7781 return 0;
7782
5d07f420 7783 for_each_process_thread(g, p) {
8651c658 7784 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7785 return 1;
5d07f420 7786 }
b40b2e8e 7787
9a7e0b18
PZ
7788 return 0;
7789}
b40b2e8e 7790
9a7e0b18
PZ
7791struct rt_schedulable_data {
7792 struct task_group *tg;
7793 u64 rt_period;
7794 u64 rt_runtime;
7795};
b40b2e8e 7796
a790de99 7797static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7798{
7799 struct rt_schedulable_data *d = data;
7800 struct task_group *child;
7801 unsigned long total, sum = 0;
7802 u64 period, runtime;
b40b2e8e 7803
9a7e0b18
PZ
7804 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7805 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7806
9a7e0b18
PZ
7807 if (tg == d->tg) {
7808 period = d->rt_period;
7809 runtime = d->rt_runtime;
b40b2e8e 7810 }
b40b2e8e 7811
4653f803
PZ
7812 /*
7813 * Cannot have more runtime than the period.
7814 */
7815 if (runtime > period && runtime != RUNTIME_INF)
7816 return -EINVAL;
6f505b16 7817
4653f803
PZ
7818 /*
7819 * Ensure we don't starve existing RT tasks.
7820 */
9a7e0b18
PZ
7821 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7822 return -EBUSY;
6f505b16 7823
9a7e0b18 7824 total = to_ratio(period, runtime);
6f505b16 7825
4653f803
PZ
7826 /*
7827 * Nobody can have more than the global setting allows.
7828 */
7829 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7830 return -EINVAL;
6f505b16 7831
4653f803
PZ
7832 /*
7833 * The sum of our children's runtime should not exceed our own.
7834 */
9a7e0b18
PZ
7835 list_for_each_entry_rcu(child, &tg->children, siblings) {
7836 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7837 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7838
9a7e0b18
PZ
7839 if (child == d->tg) {
7840 period = d->rt_period;
7841 runtime = d->rt_runtime;
7842 }
6f505b16 7843
9a7e0b18 7844 sum += to_ratio(period, runtime);
9f0c1e56 7845 }
6f505b16 7846
9a7e0b18
PZ
7847 if (sum > total)
7848 return -EINVAL;
7849
7850 return 0;
6f505b16
PZ
7851}
7852
9a7e0b18 7853static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7854{
8277434e
PT
7855 int ret;
7856
9a7e0b18
PZ
7857 struct rt_schedulable_data data = {
7858 .tg = tg,
7859 .rt_period = period,
7860 .rt_runtime = runtime,
7861 };
7862
8277434e
PT
7863 rcu_read_lock();
7864 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7865 rcu_read_unlock();
7866
7867 return ret;
521f1a24
DG
7868}
7869
ab84d31e 7870static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7871 u64 rt_period, u64 rt_runtime)
6f505b16 7872{
ac086bc2 7873 int i, err = 0;
9f0c1e56 7874
2636ed5f
PZ
7875 /*
7876 * Disallowing the root group RT runtime is BAD, it would disallow the
7877 * kernel creating (and or operating) RT threads.
7878 */
7879 if (tg == &root_task_group && rt_runtime == 0)
7880 return -EINVAL;
7881
7882 /* No period doesn't make any sense. */
7883 if (rt_period == 0)
7884 return -EINVAL;
7885
9f0c1e56 7886 mutex_lock(&rt_constraints_mutex);
521f1a24 7887 read_lock(&tasklist_lock);
9a7e0b18
PZ
7888 err = __rt_schedulable(tg, rt_period, rt_runtime);
7889 if (err)
9f0c1e56 7890 goto unlock;
ac086bc2 7891
0986b11b 7892 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7893 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7894 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7895
7896 for_each_possible_cpu(i) {
7897 struct rt_rq *rt_rq = tg->rt_rq[i];
7898
0986b11b 7899 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7900 rt_rq->rt_runtime = rt_runtime;
0986b11b 7901 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7902 }
0986b11b 7903 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7904unlock:
521f1a24 7905 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7906 mutex_unlock(&rt_constraints_mutex);
7907
7908 return err;
6f505b16
PZ
7909}
7910
25cc7da7 7911static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7912{
7913 u64 rt_runtime, rt_period;
7914
7915 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7916 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7917 if (rt_runtime_us < 0)
7918 rt_runtime = RUNTIME_INF;
7919
ab84d31e 7920 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7921}
7922
25cc7da7 7923static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7924{
7925 u64 rt_runtime_us;
7926
d0b27fa7 7927 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7928 return -1;
7929
d0b27fa7 7930 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7931 do_div(rt_runtime_us, NSEC_PER_USEC);
7932 return rt_runtime_us;
7933}
d0b27fa7 7934
ce2f5fe4 7935static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7936{
7937 u64 rt_runtime, rt_period;
7938
ce2f5fe4 7939 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7940 rt_runtime = tg->rt_bandwidth.rt_runtime;
7941
ab84d31e 7942 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7943}
7944
25cc7da7 7945static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7946{
7947 u64 rt_period_us;
7948
7949 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7950 do_div(rt_period_us, NSEC_PER_USEC);
7951 return rt_period_us;
7952}
332ac17e 7953#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7954
332ac17e 7955#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7956static int sched_rt_global_constraints(void)
7957{
7958 int ret = 0;
7959
7960 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7961 read_lock(&tasklist_lock);
4653f803 7962 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7963 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7964 mutex_unlock(&rt_constraints_mutex);
7965
7966 return ret;
7967}
54e99124 7968
25cc7da7 7969static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7970{
7971 /* Don't accept realtime tasks when there is no way for them to run */
7972 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7973 return 0;
7974
7975 return 1;
7976}
7977
6d6bc0ad 7978#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7979static int sched_rt_global_constraints(void)
7980{
ac086bc2 7981 unsigned long flags;
332ac17e 7982 int i, ret = 0;
ec5d4989 7983
0986b11b 7984 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7985 for_each_possible_cpu(i) {
7986 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7987
0986b11b 7988 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7989 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7990 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7991 }
0986b11b 7992 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7993
332ac17e 7994 return ret;
d0b27fa7 7995}
6d6bc0ad 7996#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7997
a1963b81 7998static int sched_dl_global_validate(void)
332ac17e 7999{
1724813d
PZ
8000 u64 runtime = global_rt_runtime();
8001 u64 period = global_rt_period();
332ac17e 8002 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8003 struct dl_bw *dl_b;
1724813d 8004 int cpu, ret = 0;
49516342 8005 unsigned long flags;
332ac17e
DF
8006
8007 /*
8008 * Here we want to check the bandwidth not being set to some
8009 * value smaller than the currently allocated bandwidth in
8010 * any of the root_domains.
8011 *
8012 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8013 * cycling on root_domains... Discussion on different/better
8014 * solutions is welcome!
8015 */
1724813d 8016 for_each_possible_cpu(cpu) {
f10e00f4
KT
8017 rcu_read_lock_sched();
8018 dl_b = dl_bw_of(cpu);
332ac17e 8019
49516342 8020 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8021 if (new_bw < dl_b->total_bw)
8022 ret = -EBUSY;
49516342 8023 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8024
f10e00f4
KT
8025 rcu_read_unlock_sched();
8026
1724813d
PZ
8027 if (ret)
8028 break;
332ac17e
DF
8029 }
8030
1724813d 8031 return ret;
332ac17e
DF
8032}
8033
1724813d 8034static void sched_dl_do_global(void)
ce0dbbbb 8035{
1724813d 8036 u64 new_bw = -1;
f10e00f4 8037 struct dl_bw *dl_b;
1724813d 8038 int cpu;
49516342 8039 unsigned long flags;
ce0dbbbb 8040
1724813d
PZ
8041 def_dl_bandwidth.dl_period = global_rt_period();
8042 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8043
8044 if (global_rt_runtime() != RUNTIME_INF)
8045 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8046
8047 /*
8048 * FIXME: As above...
8049 */
8050 for_each_possible_cpu(cpu) {
f10e00f4
KT
8051 rcu_read_lock_sched();
8052 dl_b = dl_bw_of(cpu);
1724813d 8053
49516342 8054 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8055 dl_b->bw = new_bw;
49516342 8056 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8057
8058 rcu_read_unlock_sched();
ce0dbbbb 8059 }
1724813d
PZ
8060}
8061
8062static int sched_rt_global_validate(void)
8063{
8064 if (sysctl_sched_rt_period <= 0)
8065 return -EINVAL;
8066
e9e7cb38
JL
8067 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8068 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8069 return -EINVAL;
8070
8071 return 0;
8072}
8073
8074static void sched_rt_do_global(void)
8075{
8076 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8077 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8078}
8079
d0b27fa7 8080int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8081 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8082 loff_t *ppos)
8083{
d0b27fa7
PZ
8084 int old_period, old_runtime;
8085 static DEFINE_MUTEX(mutex);
1724813d 8086 int ret;
d0b27fa7
PZ
8087
8088 mutex_lock(&mutex);
8089 old_period = sysctl_sched_rt_period;
8090 old_runtime = sysctl_sched_rt_runtime;
8091
8d65af78 8092 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8093
8094 if (!ret && write) {
1724813d
PZ
8095 ret = sched_rt_global_validate();
8096 if (ret)
8097 goto undo;
8098
a1963b81 8099 ret = sched_dl_global_validate();
1724813d
PZ
8100 if (ret)
8101 goto undo;
8102
a1963b81 8103 ret = sched_rt_global_constraints();
1724813d
PZ
8104 if (ret)
8105 goto undo;
8106
8107 sched_rt_do_global();
8108 sched_dl_do_global();
8109 }
8110 if (0) {
8111undo:
8112 sysctl_sched_rt_period = old_period;
8113 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8114 }
8115 mutex_unlock(&mutex);
8116
8117 return ret;
8118}
68318b8e 8119
1724813d 8120int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8121 void __user *buffer, size_t *lenp,
8122 loff_t *ppos)
8123{
8124 int ret;
332ac17e 8125 static DEFINE_MUTEX(mutex);
332ac17e
DF
8126
8127 mutex_lock(&mutex);
332ac17e 8128 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8129 /* make sure that internally we keep jiffies */
8130 /* also, writing zero resets timeslice to default */
332ac17e 8131 if (!ret && write) {
1724813d
PZ
8132 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8133 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8134 }
8135 mutex_unlock(&mutex);
332ac17e
DF
8136 return ret;
8137}
8138
052f1dc7 8139#ifdef CONFIG_CGROUP_SCHED
68318b8e 8140
a7c6d554 8141static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8142{
a7c6d554 8143 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8144}
8145
eb95419b
TH
8146static struct cgroup_subsys_state *
8147cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8148{
eb95419b
TH
8149 struct task_group *parent = css_tg(parent_css);
8150 struct task_group *tg;
68318b8e 8151
eb95419b 8152 if (!parent) {
68318b8e 8153 /* This is early initialization for the top cgroup */
07e06b01 8154 return &root_task_group.css;
68318b8e
SV
8155 }
8156
ec7dc8ac 8157 tg = sched_create_group(parent);
68318b8e
SV
8158 if (IS_ERR(tg))
8159 return ERR_PTR(-ENOMEM);
8160
68318b8e
SV
8161 return &tg->css;
8162}
8163
eb95419b 8164static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8165{
eb95419b 8166 struct task_group *tg = css_tg(css);
5c9d535b 8167 struct task_group *parent = css_tg(css->parent);
ace783b9 8168
63876986
TH
8169 if (parent)
8170 sched_online_group(tg, parent);
ace783b9
LZ
8171 return 0;
8172}
8173
eb95419b 8174static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8175{
eb95419b 8176 struct task_group *tg = css_tg(css);
68318b8e
SV
8177
8178 sched_destroy_group(tg);
8179}
8180
eb95419b 8181static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8182{
eb95419b 8183 struct task_group *tg = css_tg(css);
ace783b9
LZ
8184
8185 sched_offline_group(tg);
8186}
8187
7e47682e 8188static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8189{
8190 sched_move_task(task);
8191}
8192
eb95419b 8193static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8194 struct cgroup_taskset *tset)
68318b8e 8195{
bb9d97b6
TH
8196 struct task_struct *task;
8197
924f0d9a 8198 cgroup_taskset_for_each(task, tset) {
b68aa230 8199#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8200 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8201 return -EINVAL;
b68aa230 8202#else
bb9d97b6
TH
8203 /* We don't support RT-tasks being in separate groups */
8204 if (task->sched_class != &fair_sched_class)
8205 return -EINVAL;
b68aa230 8206#endif
bb9d97b6 8207 }
be367d09
BB
8208 return 0;
8209}
68318b8e 8210
eb95419b 8211static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8212 struct cgroup_taskset *tset)
68318b8e 8213{
bb9d97b6
TH
8214 struct task_struct *task;
8215
924f0d9a 8216 cgroup_taskset_for_each(task, tset)
bb9d97b6 8217 sched_move_task(task);
68318b8e
SV
8218}
8219
eb95419b
TH
8220static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8221 struct cgroup_subsys_state *old_css,
8222 struct task_struct *task)
068c5cc5 8223{
068c5cc5
PZ
8224 sched_move_task(task);
8225}
8226
052f1dc7 8227#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8228static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8229 struct cftype *cftype, u64 shareval)
68318b8e 8230{
182446d0 8231 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8232}
8233
182446d0
TH
8234static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8235 struct cftype *cft)
68318b8e 8236{
182446d0 8237 struct task_group *tg = css_tg(css);
68318b8e 8238
c8b28116 8239 return (u64) scale_load_down(tg->shares);
68318b8e 8240}
ab84d31e
PT
8241
8242#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8243static DEFINE_MUTEX(cfs_constraints_mutex);
8244
ab84d31e
PT
8245const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8246const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8247
a790de99
PT
8248static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8249
ab84d31e
PT
8250static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8251{
56f570e5 8252 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8253 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8254
8255 if (tg == &root_task_group)
8256 return -EINVAL;
8257
8258 /*
8259 * Ensure we have at some amount of bandwidth every period. This is
8260 * to prevent reaching a state of large arrears when throttled via
8261 * entity_tick() resulting in prolonged exit starvation.
8262 */
8263 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8264 return -EINVAL;
8265
8266 /*
8267 * Likewise, bound things on the otherside by preventing insane quota
8268 * periods. This also allows us to normalize in computing quota
8269 * feasibility.
8270 */
8271 if (period > max_cfs_quota_period)
8272 return -EINVAL;
8273
0e59bdae
KT
8274 /*
8275 * Prevent race between setting of cfs_rq->runtime_enabled and
8276 * unthrottle_offline_cfs_rqs().
8277 */
8278 get_online_cpus();
a790de99
PT
8279 mutex_lock(&cfs_constraints_mutex);
8280 ret = __cfs_schedulable(tg, period, quota);
8281 if (ret)
8282 goto out_unlock;
8283
58088ad0 8284 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8285 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8286 /*
8287 * If we need to toggle cfs_bandwidth_used, off->on must occur
8288 * before making related changes, and on->off must occur afterwards
8289 */
8290 if (runtime_enabled && !runtime_was_enabled)
8291 cfs_bandwidth_usage_inc();
ab84d31e
PT
8292 raw_spin_lock_irq(&cfs_b->lock);
8293 cfs_b->period = ns_to_ktime(period);
8294 cfs_b->quota = quota;
58088ad0 8295
a9cf55b2 8296 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8297 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8298 if (runtime_enabled)
8299 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8300 raw_spin_unlock_irq(&cfs_b->lock);
8301
0e59bdae 8302 for_each_online_cpu(i) {
ab84d31e 8303 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8304 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8305
8306 raw_spin_lock_irq(&rq->lock);
58088ad0 8307 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8308 cfs_rq->runtime_remaining = 0;
671fd9da 8309
029632fb 8310 if (cfs_rq->throttled)
671fd9da 8311 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8312 raw_spin_unlock_irq(&rq->lock);
8313 }
1ee14e6c
BS
8314 if (runtime_was_enabled && !runtime_enabled)
8315 cfs_bandwidth_usage_dec();
a790de99
PT
8316out_unlock:
8317 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8318 put_online_cpus();
ab84d31e 8319
a790de99 8320 return ret;
ab84d31e
PT
8321}
8322
8323int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8324{
8325 u64 quota, period;
8326
029632fb 8327 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8328 if (cfs_quota_us < 0)
8329 quota = RUNTIME_INF;
8330 else
8331 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8332
8333 return tg_set_cfs_bandwidth(tg, period, quota);
8334}
8335
8336long tg_get_cfs_quota(struct task_group *tg)
8337{
8338 u64 quota_us;
8339
029632fb 8340 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8341 return -1;
8342
029632fb 8343 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8344 do_div(quota_us, NSEC_PER_USEC);
8345
8346 return quota_us;
8347}
8348
8349int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8350{
8351 u64 quota, period;
8352
8353 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8354 quota = tg->cfs_bandwidth.quota;
ab84d31e 8355
ab84d31e
PT
8356 return tg_set_cfs_bandwidth(tg, period, quota);
8357}
8358
8359long tg_get_cfs_period(struct task_group *tg)
8360{
8361 u64 cfs_period_us;
8362
029632fb 8363 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8364 do_div(cfs_period_us, NSEC_PER_USEC);
8365
8366 return cfs_period_us;
8367}
8368
182446d0
TH
8369static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8370 struct cftype *cft)
ab84d31e 8371{
182446d0 8372 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8373}
8374
182446d0
TH
8375static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8376 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8377{
182446d0 8378 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8379}
8380
182446d0
TH
8381static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8382 struct cftype *cft)
ab84d31e 8383{
182446d0 8384 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8385}
8386
182446d0
TH
8387static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8388 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8389{
182446d0 8390 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8391}
8392
a790de99
PT
8393struct cfs_schedulable_data {
8394 struct task_group *tg;
8395 u64 period, quota;
8396};
8397
8398/*
8399 * normalize group quota/period to be quota/max_period
8400 * note: units are usecs
8401 */
8402static u64 normalize_cfs_quota(struct task_group *tg,
8403 struct cfs_schedulable_data *d)
8404{
8405 u64 quota, period;
8406
8407 if (tg == d->tg) {
8408 period = d->period;
8409 quota = d->quota;
8410 } else {
8411 period = tg_get_cfs_period(tg);
8412 quota = tg_get_cfs_quota(tg);
8413 }
8414
8415 /* note: these should typically be equivalent */
8416 if (quota == RUNTIME_INF || quota == -1)
8417 return RUNTIME_INF;
8418
8419 return to_ratio(period, quota);
8420}
8421
8422static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8423{
8424 struct cfs_schedulable_data *d = data;
029632fb 8425 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8426 s64 quota = 0, parent_quota = -1;
8427
8428 if (!tg->parent) {
8429 quota = RUNTIME_INF;
8430 } else {
029632fb 8431 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8432
8433 quota = normalize_cfs_quota(tg, d);
9c58c79a 8434 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8435
8436 /*
8437 * ensure max(child_quota) <= parent_quota, inherit when no
8438 * limit is set
8439 */
8440 if (quota == RUNTIME_INF)
8441 quota = parent_quota;
8442 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8443 return -EINVAL;
8444 }
9c58c79a 8445 cfs_b->hierarchical_quota = quota;
a790de99
PT
8446
8447 return 0;
8448}
8449
8450static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8451{
8277434e 8452 int ret;
a790de99
PT
8453 struct cfs_schedulable_data data = {
8454 .tg = tg,
8455 .period = period,
8456 .quota = quota,
8457 };
8458
8459 if (quota != RUNTIME_INF) {
8460 do_div(data.period, NSEC_PER_USEC);
8461 do_div(data.quota, NSEC_PER_USEC);
8462 }
8463
8277434e
PT
8464 rcu_read_lock();
8465 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8466 rcu_read_unlock();
8467
8468 return ret;
a790de99 8469}
e8da1b18 8470
2da8ca82 8471static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8472{
2da8ca82 8473 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8474 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8475
44ffc75b
TH
8476 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8477 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8478 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8479
8480 return 0;
8481}
ab84d31e 8482#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8483#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8484
052f1dc7 8485#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8486static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8487 struct cftype *cft, s64 val)
6f505b16 8488{
182446d0 8489 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8490}
8491
182446d0
TH
8492static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8493 struct cftype *cft)
6f505b16 8494{
182446d0 8495 return sched_group_rt_runtime(css_tg(css));
6f505b16 8496}
d0b27fa7 8497
182446d0
TH
8498static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8499 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8500{
182446d0 8501 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8502}
8503
182446d0
TH
8504static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8505 struct cftype *cft)
d0b27fa7 8506{
182446d0 8507 return sched_group_rt_period(css_tg(css));
d0b27fa7 8508}
6d6bc0ad 8509#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8510
fe5c7cc2 8511static struct cftype cpu_files[] = {
052f1dc7 8512#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8513 {
8514 .name = "shares",
f4c753b7
PM
8515 .read_u64 = cpu_shares_read_u64,
8516 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8517 },
052f1dc7 8518#endif
ab84d31e
PT
8519#ifdef CONFIG_CFS_BANDWIDTH
8520 {
8521 .name = "cfs_quota_us",
8522 .read_s64 = cpu_cfs_quota_read_s64,
8523 .write_s64 = cpu_cfs_quota_write_s64,
8524 },
8525 {
8526 .name = "cfs_period_us",
8527 .read_u64 = cpu_cfs_period_read_u64,
8528 .write_u64 = cpu_cfs_period_write_u64,
8529 },
e8da1b18
NR
8530 {
8531 .name = "stat",
2da8ca82 8532 .seq_show = cpu_stats_show,
e8da1b18 8533 },
ab84d31e 8534#endif
052f1dc7 8535#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8536 {
9f0c1e56 8537 .name = "rt_runtime_us",
06ecb27c
PM
8538 .read_s64 = cpu_rt_runtime_read,
8539 .write_s64 = cpu_rt_runtime_write,
6f505b16 8540 },
d0b27fa7
PZ
8541 {
8542 .name = "rt_period_us",
f4c753b7
PM
8543 .read_u64 = cpu_rt_period_read_uint,
8544 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8545 },
052f1dc7 8546#endif
4baf6e33 8547 { } /* terminate */
68318b8e
SV
8548};
8549
073219e9 8550struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8551 .css_alloc = cpu_cgroup_css_alloc,
8552 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8553 .css_online = cpu_cgroup_css_online,
8554 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8555 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8556 .can_attach = cpu_cgroup_can_attach,
8557 .attach = cpu_cgroup_attach,
068c5cc5 8558 .exit = cpu_cgroup_exit,
5577964e 8559 .legacy_cftypes = cpu_files,
68318b8e
SV
8560 .early_init = 1,
8561};
8562
052f1dc7 8563#endif /* CONFIG_CGROUP_SCHED */
d842de87 8564
b637a328
PM
8565void dump_cpu_task(int cpu)
8566{
8567 pr_info("Task dump for CPU %d:\n", cpu);
8568 sched_show_task(cpu_curr(cpu));
8569}