sched: Fix up scheduler syscall LTP fails
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
0970d299 299/*
0122ec5b 300 * __task_rq_lock - lock the rq @p resides on.
b29739f9 301 */
70b97a7f 302static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
303 __acquires(rq->lock)
304{
0970d299
PZ
305 struct rq *rq;
306
0122ec5b
PZ
307 lockdep_assert_held(&p->pi_lock);
308
3a5c359a 309 for (;;) {
0970d299 310 rq = task_rq(p);
05fa785c 311 raw_spin_lock(&rq->lock);
65cc8e48 312 if (likely(rq == task_rq(p)))
3a5c359a 313 return rq;
05fa785c 314 raw_spin_unlock(&rq->lock);
b29739f9 315 }
b29739f9
IM
316}
317
1da177e4 318/*
0122ec5b 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 320 */
70b97a7f 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 322 __acquires(p->pi_lock)
1da177e4
LT
323 __acquires(rq->lock)
324{
70b97a7f 325 struct rq *rq;
1da177e4 326
3a5c359a 327 for (;;) {
0122ec5b 328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
0122ec5b
PZ
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 335 }
1da177e4
LT
336}
337
a9957449 338static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
339 __releases(rq->lock)
340{
05fa785c 341 raw_spin_unlock(&rq->lock);
b29739f9
IM
342}
343
0122ec5b
PZ
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 346 __releases(rq->lock)
0122ec5b 347 __releases(p->pi_lock)
1da177e4 348{
0122ec5b
PZ
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
351}
352
1da177e4 353/*
cc2a73b5 354 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 355 */
a9957449 356static struct rq *this_rq_lock(void)
1da177e4
LT
357 __acquires(rq->lock)
358{
70b97a7f 359 struct rq *rq;
1da177e4
LT
360
361 local_irq_disable();
362 rq = this_rq();
05fa785c 363 raw_spin_lock(&rq->lock);
1da177e4
LT
364
365 return rq;
366}
367
8f4d37ec
PZ
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
971ee28c
PZ
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
971ee28c 415 __hrtick_restart(rq);
31656519 416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
971ee28c 433 __hrtick_restart(rq);
31656519 434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
029632fb 514void resched_task(struct task_struct *p)
c24d20db
IM
515{
516 int cpu;
517
b021fe3e 518 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 519
5ed0cec0 520 if (test_tsk_need_resched(p))
c24d20db
IM
521 return;
522
5ed0cec0 523 set_tsk_need_resched(p);
c24d20db
IM
524
525 cpu = task_cpu(p);
f27dde8d
PZ
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
c24d20db 528 return;
f27dde8d 529 }
c24d20db
IM
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#endif /* CONFIG_SMP */
18d95a28 697
a790de99
PT
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 700/*
8277434e
PT
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 705 */
029632fb 706int walk_tg_tree_from(struct task_group *from,
8277434e 707 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
708{
709 struct task_group *parent, *child;
eb755805 710 int ret;
c09595f6 711
8277434e
PT
712 parent = from;
713
c09595f6 714down:
eb755805
PZ
715 ret = (*down)(parent, data);
716 if (ret)
8277434e 717 goto out;
c09595f6
PZ
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
eb755805 725 ret = (*up)(parent, data);
8277434e
PT
726 if (ret || parent == from)
727 goto out;
c09595f6
PZ
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
8277434e 733out:
eb755805 734 return ret;
c09595f6
PZ
735}
736
029632fb 737int tg_nop(struct task_group *tg, void *data)
eb755805 738{
e2b245f8 739 return 0;
eb755805 740}
18d95a28
PZ
741#endif
742
45bf76df
IM
743static void set_load_weight(struct task_struct *p)
744{
f05998d4
NR
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
dd41f596
IM
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
c8b28116 752 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 753 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
754 return;
755 }
71f8bd46 756
c8b28116 757 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 758 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
759}
760
371fd7e7 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 762{
a64692a3 763 update_rq_clock(rq);
43148951 764 sched_info_queued(rq, p);
371fd7e7 765 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
766}
767
371fd7e7 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 769{
a64692a3 770 update_rq_clock(rq);
43148951 771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
fe44d621 791static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 792{
095c0aa8
GC
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
095c0aa8
GC
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 825 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
fe44d621
PZ
843 rq->clock_task += delta;
844
095c0aa8
GC
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
aa483808
VP
849}
850
34f971f6
PZ
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
14531189 881/*
dd41f596 882 * __normal_prio - return the priority that is based on the static prio
14531189 883 */
14531189
IM
884static inline int __normal_prio(struct task_struct *p)
885{
dd41f596 886 return p->static_prio;
14531189
IM
887}
888
b29739f9
IM
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
36c8b586 896static inline int normal_prio(struct task_struct *p)
b29739f9
IM
897{
898 int prio;
899
aab03e05
DF
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
2d3d891d 948 } else if (oldprio != p->prio || dl_task(p))
da7a735e 949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
1111 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1112
1113out:
ac66f547
PZ
1114 return ret;
1115}
1116
969c7921 1117struct migration_arg {
36c8b586 1118 struct task_struct *task;
1da177e4 1119 int dest_cpu;
70b97a7f 1120};
1da177e4 1121
969c7921
TH
1122static int migration_cpu_stop(void *data);
1123
1da177e4
LT
1124/*
1125 * wait_task_inactive - wait for a thread to unschedule.
1126 *
85ba2d86
RM
1127 * If @match_state is nonzero, it's the @p->state value just checked and
1128 * not expected to change. If it changes, i.e. @p might have woken up,
1129 * then return zero. When we succeed in waiting for @p to be off its CPU,
1130 * we return a positive number (its total switch count). If a second call
1131 * a short while later returns the same number, the caller can be sure that
1132 * @p has remained unscheduled the whole time.
1133 *
1da177e4
LT
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1139 */
85ba2d86 1140unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1141{
1142 unsigned long flags;
dd41f596 1143 int running, on_rq;
85ba2d86 1144 unsigned long ncsw;
70b97a7f 1145 struct rq *rq;
1da177e4 1146
3a5c359a
AK
1147 for (;;) {
1148 /*
1149 * We do the initial early heuristics without holding
1150 * any task-queue locks at all. We'll only try to get
1151 * the runqueue lock when things look like they will
1152 * work out!
1153 */
1154 rq = task_rq(p);
fa490cfd 1155
3a5c359a
AK
1156 /*
1157 * If the task is actively running on another CPU
1158 * still, just relax and busy-wait without holding
1159 * any locks.
1160 *
1161 * NOTE! Since we don't hold any locks, it's not
1162 * even sure that "rq" stays as the right runqueue!
1163 * But we don't care, since "task_running()" will
1164 * return false if the runqueue has changed and p
1165 * is actually now running somewhere else!
1166 */
85ba2d86
RM
1167 while (task_running(rq, p)) {
1168 if (match_state && unlikely(p->state != match_state))
1169 return 0;
3a5c359a 1170 cpu_relax();
85ba2d86 1171 }
fa490cfd 1172
3a5c359a
AK
1173 /*
1174 * Ok, time to look more closely! We need the rq
1175 * lock now, to be *sure*. If we're wrong, we'll
1176 * just go back and repeat.
1177 */
1178 rq = task_rq_lock(p, &flags);
27a9da65 1179 trace_sched_wait_task(p);
3a5c359a 1180 running = task_running(rq, p);
fd2f4419 1181 on_rq = p->on_rq;
85ba2d86 1182 ncsw = 0;
f31e11d8 1183 if (!match_state || p->state == match_state)
93dcf55f 1184 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1185 task_rq_unlock(rq, p, &flags);
fa490cfd 1186
85ba2d86
RM
1187 /*
1188 * If it changed from the expected state, bail out now.
1189 */
1190 if (unlikely(!ncsw))
1191 break;
1192
3a5c359a
AK
1193 /*
1194 * Was it really running after all now that we
1195 * checked with the proper locks actually held?
1196 *
1197 * Oops. Go back and try again..
1198 */
1199 if (unlikely(running)) {
1200 cpu_relax();
1201 continue;
1202 }
fa490cfd 1203
3a5c359a
AK
1204 /*
1205 * It's not enough that it's not actively running,
1206 * it must be off the runqueue _entirely_, and not
1207 * preempted!
1208 *
80dd99b3 1209 * So if it was still runnable (but just not actively
3a5c359a
AK
1210 * running right now), it's preempted, and we should
1211 * yield - it could be a while.
1212 */
1213 if (unlikely(on_rq)) {
8eb90c30
TG
1214 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1215
1216 set_current_state(TASK_UNINTERRUPTIBLE);
1217 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1218 continue;
1219 }
fa490cfd 1220
3a5c359a
AK
1221 /*
1222 * Ahh, all good. It wasn't running, and it wasn't
1223 * runnable, which means that it will never become
1224 * running in the future either. We're all done!
1225 */
1226 break;
1227 }
85ba2d86
RM
1228
1229 return ncsw;
1da177e4
LT
1230}
1231
1232/***
1233 * kick_process - kick a running thread to enter/exit the kernel
1234 * @p: the to-be-kicked thread
1235 *
1236 * Cause a process which is running on another CPU to enter
1237 * kernel-mode, without any delay. (to get signals handled.)
1238 *
25985edc 1239 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1240 * because all it wants to ensure is that the remote task enters
1241 * the kernel. If the IPI races and the task has been migrated
1242 * to another CPU then no harm is done and the purpose has been
1243 * achieved as well.
1244 */
36c8b586 1245void kick_process(struct task_struct *p)
1da177e4
LT
1246{
1247 int cpu;
1248
1249 preempt_disable();
1250 cpu = task_cpu(p);
1251 if ((cpu != smp_processor_id()) && task_curr(p))
1252 smp_send_reschedule(cpu);
1253 preempt_enable();
1254}
b43e3521 1255EXPORT_SYMBOL_GPL(kick_process);
476d139c 1256#endif /* CONFIG_SMP */
1da177e4 1257
970b13ba 1258#ifdef CONFIG_SMP
30da688e 1259/*
013fdb80 1260 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1261 */
5da9a0fb
PZ
1262static int select_fallback_rq(int cpu, struct task_struct *p)
1263{
aa00d89c
TC
1264 int nid = cpu_to_node(cpu);
1265 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1266 enum { cpuset, possible, fail } state = cpuset;
1267 int dest_cpu;
5da9a0fb 1268
aa00d89c
TC
1269 /*
1270 * If the node that the cpu is on has been offlined, cpu_to_node()
1271 * will return -1. There is no cpu on the node, and we should
1272 * select the cpu on the other node.
1273 */
1274 if (nid != -1) {
1275 nodemask = cpumask_of_node(nid);
1276
1277 /* Look for allowed, online CPU in same node. */
1278 for_each_cpu(dest_cpu, nodemask) {
1279 if (!cpu_online(dest_cpu))
1280 continue;
1281 if (!cpu_active(dest_cpu))
1282 continue;
1283 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1284 return dest_cpu;
1285 }
2baab4e9 1286 }
5da9a0fb 1287
2baab4e9
PZ
1288 for (;;) {
1289 /* Any allowed, online CPU? */
e3831edd 1290 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1291 if (!cpu_online(dest_cpu))
1292 continue;
1293 if (!cpu_active(dest_cpu))
1294 continue;
1295 goto out;
1296 }
5da9a0fb 1297
2baab4e9
PZ
1298 switch (state) {
1299 case cpuset:
1300 /* No more Mr. Nice Guy. */
1301 cpuset_cpus_allowed_fallback(p);
1302 state = possible;
1303 break;
1304
1305 case possible:
1306 do_set_cpus_allowed(p, cpu_possible_mask);
1307 state = fail;
1308 break;
1309
1310 case fail:
1311 BUG();
1312 break;
1313 }
1314 }
1315
1316out:
1317 if (state != cpuset) {
1318 /*
1319 * Don't tell them about moving exiting tasks or
1320 * kernel threads (both mm NULL), since they never
1321 * leave kernel.
1322 */
1323 if (p->mm && printk_ratelimit()) {
1324 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1325 task_pid_nr(p), p->comm, cpu);
1326 }
5da9a0fb
PZ
1327 }
1328
1329 return dest_cpu;
1330}
1331
e2912009 1332/*
013fdb80 1333 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1334 */
970b13ba 1335static inline
ac66f547 1336int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1337{
ac66f547 1338 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1339
1340 /*
1341 * In order not to call set_task_cpu() on a blocking task we need
1342 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343 * cpu.
1344 *
1345 * Since this is common to all placement strategies, this lives here.
1346 *
1347 * [ this allows ->select_task() to simply return task_cpu(p) and
1348 * not worry about this generic constraint ]
1349 */
fa17b507 1350 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1351 !cpu_online(cpu)))
5da9a0fb 1352 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1353
1354 return cpu;
970b13ba 1355}
09a40af5
MG
1356
1357static void update_avg(u64 *avg, u64 sample)
1358{
1359 s64 diff = sample - *avg;
1360 *avg += diff >> 3;
1361}
970b13ba
PZ
1362#endif
1363
d7c01d27 1364static void
b84cb5df 1365ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1366{
d7c01d27 1367#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1368 struct rq *rq = this_rq();
1369
d7c01d27
PZ
1370#ifdef CONFIG_SMP
1371 int this_cpu = smp_processor_id();
1372
1373 if (cpu == this_cpu) {
1374 schedstat_inc(rq, ttwu_local);
1375 schedstat_inc(p, se.statistics.nr_wakeups_local);
1376 } else {
1377 struct sched_domain *sd;
1378
1379 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1380 rcu_read_lock();
d7c01d27
PZ
1381 for_each_domain(this_cpu, sd) {
1382 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1383 schedstat_inc(sd, ttwu_wake_remote);
1384 break;
1385 }
1386 }
057f3fad 1387 rcu_read_unlock();
d7c01d27 1388 }
f339b9dc
PZ
1389
1390 if (wake_flags & WF_MIGRATED)
1391 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1392
d7c01d27
PZ
1393#endif /* CONFIG_SMP */
1394
1395 schedstat_inc(rq, ttwu_count);
9ed3811a 1396 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1397
1398 if (wake_flags & WF_SYNC)
9ed3811a 1399 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1400
d7c01d27
PZ
1401#endif /* CONFIG_SCHEDSTATS */
1402}
1403
1404static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1405{
9ed3811a 1406 activate_task(rq, p, en_flags);
fd2f4419 1407 p->on_rq = 1;
c2f7115e
PZ
1408
1409 /* if a worker is waking up, notify workqueue */
1410 if (p->flags & PF_WQ_WORKER)
1411 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1412}
1413
23f41eeb
PZ
1414/*
1415 * Mark the task runnable and perform wakeup-preemption.
1416 */
89363381 1417static void
23f41eeb 1418ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1419{
9ed3811a 1420 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1421 trace_sched_wakeup(p, true);
9ed3811a
TH
1422
1423 p->state = TASK_RUNNING;
1424#ifdef CONFIG_SMP
1425 if (p->sched_class->task_woken)
1426 p->sched_class->task_woken(rq, p);
1427
e69c6341 1428 if (rq->idle_stamp) {
78becc27 1429 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1430 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1431
abfafa54
JL
1432 update_avg(&rq->avg_idle, delta);
1433
1434 if (rq->avg_idle > max)
9ed3811a 1435 rq->avg_idle = max;
abfafa54 1436
9ed3811a
TH
1437 rq->idle_stamp = 0;
1438 }
1439#endif
1440}
1441
c05fbafb
PZ
1442static void
1443ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444{
1445#ifdef CONFIG_SMP
1446 if (p->sched_contributes_to_load)
1447 rq->nr_uninterruptible--;
1448#endif
1449
1450 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1451 ttwu_do_wakeup(rq, p, wake_flags);
1452}
1453
1454/*
1455 * Called in case the task @p isn't fully descheduled from its runqueue,
1456 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1457 * since all we need to do is flip p->state to TASK_RUNNING, since
1458 * the task is still ->on_rq.
1459 */
1460static int ttwu_remote(struct task_struct *p, int wake_flags)
1461{
1462 struct rq *rq;
1463 int ret = 0;
1464
1465 rq = __task_rq_lock(p);
1466 if (p->on_rq) {
1ad4ec0d
FW
1467 /* check_preempt_curr() may use rq clock */
1468 update_rq_clock(rq);
c05fbafb
PZ
1469 ttwu_do_wakeup(rq, p, wake_flags);
1470 ret = 1;
1471 }
1472 __task_rq_unlock(rq);
1473
1474 return ret;
1475}
1476
317f3941 1477#ifdef CONFIG_SMP
fa14ff4a 1478static void sched_ttwu_pending(void)
317f3941
PZ
1479{
1480 struct rq *rq = this_rq();
fa14ff4a
PZ
1481 struct llist_node *llist = llist_del_all(&rq->wake_list);
1482 struct task_struct *p;
317f3941
PZ
1483
1484 raw_spin_lock(&rq->lock);
1485
fa14ff4a
PZ
1486 while (llist) {
1487 p = llist_entry(llist, struct task_struct, wake_entry);
1488 llist = llist_next(llist);
317f3941
PZ
1489 ttwu_do_activate(rq, p, 0);
1490 }
1491
1492 raw_spin_unlock(&rq->lock);
1493}
1494
1495void scheduler_ipi(void)
1496{
f27dde8d
PZ
1497 /*
1498 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1499 * TIF_NEED_RESCHED remotely (for the first time) will also send
1500 * this IPI.
1501 */
8cb75e0c 1502 preempt_fold_need_resched();
f27dde8d 1503
873b4c65
VG
1504 if (llist_empty(&this_rq()->wake_list)
1505 && !tick_nohz_full_cpu(smp_processor_id())
1506 && !got_nohz_idle_kick())
c5d753a5
PZ
1507 return;
1508
1509 /*
1510 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1511 * traditionally all their work was done from the interrupt return
1512 * path. Now that we actually do some work, we need to make sure
1513 * we do call them.
1514 *
1515 * Some archs already do call them, luckily irq_enter/exit nest
1516 * properly.
1517 *
1518 * Arguably we should visit all archs and update all handlers,
1519 * however a fair share of IPIs are still resched only so this would
1520 * somewhat pessimize the simple resched case.
1521 */
1522 irq_enter();
ff442c51 1523 tick_nohz_full_check();
fa14ff4a 1524 sched_ttwu_pending();
ca38062e
SS
1525
1526 /*
1527 * Check if someone kicked us for doing the nohz idle load balance.
1528 */
873b4c65 1529 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1530 this_rq()->idle_balance = 1;
ca38062e 1531 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1532 }
c5d753a5 1533 irq_exit();
317f3941
PZ
1534}
1535
1536static void ttwu_queue_remote(struct task_struct *p, int cpu)
1537{
fa14ff4a 1538 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1539 smp_send_reschedule(cpu);
1540}
d6aa8f85 1541
39be3501 1542bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1543{
1544 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545}
d6aa8f85 1546#endif /* CONFIG_SMP */
317f3941 1547
c05fbafb
PZ
1548static void ttwu_queue(struct task_struct *p, int cpu)
1549{
1550 struct rq *rq = cpu_rq(cpu);
1551
17d9f311 1552#if defined(CONFIG_SMP)
39be3501 1553 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1554 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1555 ttwu_queue_remote(p, cpu);
1556 return;
1557 }
1558#endif
1559
c05fbafb
PZ
1560 raw_spin_lock(&rq->lock);
1561 ttwu_do_activate(rq, p, 0);
1562 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1563}
1564
1565/**
1da177e4 1566 * try_to_wake_up - wake up a thread
9ed3811a 1567 * @p: the thread to be awakened
1da177e4 1568 * @state: the mask of task states that can be woken
9ed3811a 1569 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1570 *
1571 * Put it on the run-queue if it's not already there. The "current"
1572 * thread is always on the run-queue (except when the actual
1573 * re-schedule is in progress), and as such you're allowed to do
1574 * the simpler "current->state = TASK_RUNNING" to mark yourself
1575 * runnable without the overhead of this.
1576 *
e69f6186 1577 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1578 * or @state didn't match @p's state.
1da177e4 1579 */
e4a52bcb
PZ
1580static int
1581try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1582{
1da177e4 1583 unsigned long flags;
c05fbafb 1584 int cpu, success = 0;
2398f2c6 1585
e0acd0a6
ON
1586 /*
1587 * If we are going to wake up a thread waiting for CONDITION we
1588 * need to ensure that CONDITION=1 done by the caller can not be
1589 * reordered with p->state check below. This pairs with mb() in
1590 * set_current_state() the waiting thread does.
1591 */
1592 smp_mb__before_spinlock();
013fdb80 1593 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1594 if (!(p->state & state))
1da177e4
LT
1595 goto out;
1596
c05fbafb 1597 success = 1; /* we're going to change ->state */
1da177e4 1598 cpu = task_cpu(p);
1da177e4 1599
c05fbafb
PZ
1600 if (p->on_rq && ttwu_remote(p, wake_flags))
1601 goto stat;
1da177e4 1602
1da177e4 1603#ifdef CONFIG_SMP
e9c84311 1604 /*
c05fbafb
PZ
1605 * If the owning (remote) cpu is still in the middle of schedule() with
1606 * this task as prev, wait until its done referencing the task.
e9c84311 1607 */
f3e94786 1608 while (p->on_cpu)
e4a52bcb 1609 cpu_relax();
0970d299 1610 /*
e4a52bcb 1611 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1612 */
e4a52bcb 1613 smp_rmb();
1da177e4 1614
a8e4f2ea 1615 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1616 p->state = TASK_WAKING;
e7693a36 1617
e4a52bcb 1618 if (p->sched_class->task_waking)
74f8e4b2 1619 p->sched_class->task_waking(p);
efbbd05a 1620
ac66f547 1621 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1622 if (task_cpu(p) != cpu) {
1623 wake_flags |= WF_MIGRATED;
e4a52bcb 1624 set_task_cpu(p, cpu);
f339b9dc 1625 }
1da177e4 1626#endif /* CONFIG_SMP */
1da177e4 1627
c05fbafb
PZ
1628 ttwu_queue(p, cpu);
1629stat:
b84cb5df 1630 ttwu_stat(p, cpu, wake_flags);
1da177e4 1631out:
013fdb80 1632 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1633
1634 return success;
1635}
1636
21aa9af0
TH
1637/**
1638 * try_to_wake_up_local - try to wake up a local task with rq lock held
1639 * @p: the thread to be awakened
1640 *
2acca55e 1641 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1642 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1643 * the current task.
21aa9af0
TH
1644 */
1645static void try_to_wake_up_local(struct task_struct *p)
1646{
1647 struct rq *rq = task_rq(p);
21aa9af0 1648
383efcd0
TH
1649 if (WARN_ON_ONCE(rq != this_rq()) ||
1650 WARN_ON_ONCE(p == current))
1651 return;
1652
21aa9af0
TH
1653 lockdep_assert_held(&rq->lock);
1654
2acca55e
PZ
1655 if (!raw_spin_trylock(&p->pi_lock)) {
1656 raw_spin_unlock(&rq->lock);
1657 raw_spin_lock(&p->pi_lock);
1658 raw_spin_lock(&rq->lock);
1659 }
1660
21aa9af0 1661 if (!(p->state & TASK_NORMAL))
2acca55e 1662 goto out;
21aa9af0 1663
fd2f4419 1664 if (!p->on_rq)
d7c01d27
PZ
1665 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1666
23f41eeb 1667 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1668 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1669out:
1670 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1671}
1672
50fa610a
DH
1673/**
1674 * wake_up_process - Wake up a specific process
1675 * @p: The process to be woken up.
1676 *
1677 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1678 * processes.
1679 *
1680 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1681 *
1682 * It may be assumed that this function implies a write memory barrier before
1683 * changing the task state if and only if any tasks are woken up.
1684 */
7ad5b3a5 1685int wake_up_process(struct task_struct *p)
1da177e4 1686{
9067ac85
ON
1687 WARN_ON(task_is_stopped_or_traced(p));
1688 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1689}
1da177e4
LT
1690EXPORT_SYMBOL(wake_up_process);
1691
7ad5b3a5 1692int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1693{
1694 return try_to_wake_up(p, state, 0);
1695}
1696
1da177e4
LT
1697/*
1698 * Perform scheduler related setup for a newly forked process p.
1699 * p is forked by current.
dd41f596
IM
1700 *
1701 * __sched_fork() is basic setup used by init_idle() too:
1702 */
5e1576ed 1703static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1704{
fd2f4419
PZ
1705 p->on_rq = 0;
1706
1707 p->se.on_rq = 0;
dd41f596
IM
1708 p->se.exec_start = 0;
1709 p->se.sum_exec_runtime = 0;
f6cf891c 1710 p->se.prev_sum_exec_runtime = 0;
6c594c21 1711 p->se.nr_migrations = 0;
da7a735e 1712 p->se.vruntime = 0;
fd2f4419 1713 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1714
1715#ifdef CONFIG_SCHEDSTATS
41acab88 1716 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1717#endif
476d139c 1718
aab03e05
DF
1719 RB_CLEAR_NODE(&p->dl.rb_node);
1720 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1721 p->dl.dl_runtime = p->dl.runtime = 0;
1722 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1723 p->dl.dl_period = 0;
aab03e05
DF
1724 p->dl.flags = 0;
1725
fa717060 1726 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1727
e107be36
AK
1728#ifdef CONFIG_PREEMPT_NOTIFIERS
1729 INIT_HLIST_HEAD(&p->preempt_notifiers);
1730#endif
cbee9f88
PZ
1731
1732#ifdef CONFIG_NUMA_BALANCING
1733 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1734 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1735 p->mm->numa_scan_seq = 0;
1736 }
1737
5e1576ed
RR
1738 if (clone_flags & CLONE_VM)
1739 p->numa_preferred_nid = current->numa_preferred_nid;
1740 else
1741 p->numa_preferred_nid = -1;
1742
cbee9f88
PZ
1743 p->node_stamp = 0ULL;
1744 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1745 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1746 p->numa_work.next = &p->numa_work;
f809ca9a 1747 p->numa_faults = NULL;
745d6147 1748 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1749
1750 INIT_LIST_HEAD(&p->numa_entry);
1751 p->numa_group = NULL;
cbee9f88 1752#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1753}
1754
1a687c2e 1755#ifdef CONFIG_NUMA_BALANCING
3105b86a 1756#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1757void set_numabalancing_state(bool enabled)
1758{
1759 if (enabled)
1760 sched_feat_set("NUMA");
1761 else
1762 sched_feat_set("NO_NUMA");
1763}
3105b86a
MG
1764#else
1765__read_mostly bool numabalancing_enabled;
1766
1767void set_numabalancing_state(bool enabled)
1768{
1769 numabalancing_enabled = enabled;
dd41f596 1770}
3105b86a 1771#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1772#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1773
1774/*
1775 * fork()/clone()-time setup:
1776 */
aab03e05 1777int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1778{
0122ec5b 1779 unsigned long flags;
dd41f596
IM
1780 int cpu = get_cpu();
1781
5e1576ed 1782 __sched_fork(clone_flags, p);
06b83b5f 1783 /*
0017d735 1784 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1785 * nobody will actually run it, and a signal or other external
1786 * event cannot wake it up and insert it on the runqueue either.
1787 */
0017d735 1788 p->state = TASK_RUNNING;
dd41f596 1789
c350a04e
MG
1790 /*
1791 * Make sure we do not leak PI boosting priority to the child.
1792 */
1793 p->prio = current->normal_prio;
1794
b9dc29e7
MG
1795 /*
1796 * Revert to default priority/policy on fork if requested.
1797 */
1798 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1799 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1800 p->policy = SCHED_NORMAL;
6c697bdf 1801 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1802 p->rt_priority = 0;
1803 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1804 p->static_prio = NICE_TO_PRIO(0);
1805
1806 p->prio = p->normal_prio = __normal_prio(p);
1807 set_load_weight(p);
6c697bdf 1808
b9dc29e7
MG
1809 /*
1810 * We don't need the reset flag anymore after the fork. It has
1811 * fulfilled its duty:
1812 */
1813 p->sched_reset_on_fork = 0;
1814 }
ca94c442 1815
aab03e05
DF
1816 if (dl_prio(p->prio)) {
1817 put_cpu();
1818 return -EAGAIN;
1819 } else if (rt_prio(p->prio)) {
1820 p->sched_class = &rt_sched_class;
1821 } else {
2ddbf952 1822 p->sched_class = &fair_sched_class;
aab03e05 1823 }
b29739f9 1824
cd29fe6f
PZ
1825 if (p->sched_class->task_fork)
1826 p->sched_class->task_fork(p);
1827
86951599
PZ
1828 /*
1829 * The child is not yet in the pid-hash so no cgroup attach races,
1830 * and the cgroup is pinned to this child due to cgroup_fork()
1831 * is ran before sched_fork().
1832 *
1833 * Silence PROVE_RCU.
1834 */
0122ec5b 1835 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1836 set_task_cpu(p, cpu);
0122ec5b 1837 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1838
52f17b6c 1839#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1840 if (likely(sched_info_on()))
52f17b6c 1841 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1842#endif
3ca7a440
PZ
1843#if defined(CONFIG_SMP)
1844 p->on_cpu = 0;
4866cde0 1845#endif
01028747 1846 init_task_preempt_count(p);
806c09a7 1847#ifdef CONFIG_SMP
917b627d 1848 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1849 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1850#endif
917b627d 1851
476d139c 1852 put_cpu();
aab03e05 1853 return 0;
1da177e4
LT
1854}
1855
332ac17e
DF
1856unsigned long to_ratio(u64 period, u64 runtime)
1857{
1858 if (runtime == RUNTIME_INF)
1859 return 1ULL << 20;
1860
1861 /*
1862 * Doing this here saves a lot of checks in all
1863 * the calling paths, and returning zero seems
1864 * safe for them anyway.
1865 */
1866 if (period == 0)
1867 return 0;
1868
1869 return div64_u64(runtime << 20, period);
1870}
1871
1872#ifdef CONFIG_SMP
1873inline struct dl_bw *dl_bw_of(int i)
1874{
1875 return &cpu_rq(i)->rd->dl_bw;
1876}
1877
de212f18 1878static inline int dl_bw_cpus(int i)
332ac17e 1879{
de212f18
PZ
1880 struct root_domain *rd = cpu_rq(i)->rd;
1881 int cpus = 0;
1882
1883 for_each_cpu_and(i, rd->span, cpu_active_mask)
1884 cpus++;
1885
1886 return cpus;
332ac17e
DF
1887}
1888#else
1889inline struct dl_bw *dl_bw_of(int i)
1890{
1891 return &cpu_rq(i)->dl.dl_bw;
1892}
1893
de212f18 1894static inline int dl_bw_cpus(int i)
332ac17e
DF
1895{
1896 return 1;
1897}
1898#endif
1899
1900static inline
1901void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1902{
1903 dl_b->total_bw -= tsk_bw;
1904}
1905
1906static inline
1907void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1908{
1909 dl_b->total_bw += tsk_bw;
1910}
1911
1912static inline
1913bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1914{
1915 return dl_b->bw != -1 &&
1916 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1917}
1918
1919/*
1920 * We must be sure that accepting a new task (or allowing changing the
1921 * parameters of an existing one) is consistent with the bandwidth
1922 * constraints. If yes, this function also accordingly updates the currently
1923 * allocated bandwidth to reflect the new situation.
1924 *
1925 * This function is called while holding p's rq->lock.
1926 */
1927static int dl_overflow(struct task_struct *p, int policy,
1928 const struct sched_attr *attr)
1929{
1930
1931 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1932 u64 period = attr->sched_period;
1933 u64 runtime = attr->sched_runtime;
1934 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1935 int cpus, err = -1;
332ac17e
DF
1936
1937 if (new_bw == p->dl.dl_bw)
1938 return 0;
1939
1940 /*
1941 * Either if a task, enters, leave, or stays -deadline but changes
1942 * its parameters, we may need to update accordingly the total
1943 * allocated bandwidth of the container.
1944 */
1945 raw_spin_lock(&dl_b->lock);
de212f18 1946 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1947 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1948 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1949 __dl_add(dl_b, new_bw);
1950 err = 0;
1951 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1952 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1953 __dl_clear(dl_b, p->dl.dl_bw);
1954 __dl_add(dl_b, new_bw);
1955 err = 0;
1956 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1957 __dl_clear(dl_b, p->dl.dl_bw);
1958 err = 0;
1959 }
1960 raw_spin_unlock(&dl_b->lock);
1961
1962 return err;
1963}
1964
1965extern void init_dl_bw(struct dl_bw *dl_b);
1966
1da177e4
LT
1967/*
1968 * wake_up_new_task - wake up a newly created task for the first time.
1969 *
1970 * This function will do some initial scheduler statistics housekeeping
1971 * that must be done for every newly created context, then puts the task
1972 * on the runqueue and wakes it.
1973 */
3e51e3ed 1974void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1975{
1976 unsigned long flags;
dd41f596 1977 struct rq *rq;
fabf318e 1978
ab2515c4 1979 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1980#ifdef CONFIG_SMP
1981 /*
1982 * Fork balancing, do it here and not earlier because:
1983 * - cpus_allowed can change in the fork path
1984 * - any previously selected cpu might disappear through hotplug
fabf318e 1985 */
ac66f547 1986 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1987#endif
1988
a75cdaa9
AS
1989 /* Initialize new task's runnable average */
1990 init_task_runnable_average(p);
ab2515c4 1991 rq = __task_rq_lock(p);
cd29fe6f 1992 activate_task(rq, p, 0);
fd2f4419 1993 p->on_rq = 1;
89363381 1994 trace_sched_wakeup_new(p, true);
a7558e01 1995 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1996#ifdef CONFIG_SMP
efbbd05a
PZ
1997 if (p->sched_class->task_woken)
1998 p->sched_class->task_woken(rq, p);
9a897c5a 1999#endif
0122ec5b 2000 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2001}
2002
e107be36
AK
2003#ifdef CONFIG_PREEMPT_NOTIFIERS
2004
2005/**
80dd99b3 2006 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2007 * @notifier: notifier struct to register
e107be36
AK
2008 */
2009void preempt_notifier_register(struct preempt_notifier *notifier)
2010{
2011 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2012}
2013EXPORT_SYMBOL_GPL(preempt_notifier_register);
2014
2015/**
2016 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2017 * @notifier: notifier struct to unregister
e107be36
AK
2018 *
2019 * This is safe to call from within a preemption notifier.
2020 */
2021void preempt_notifier_unregister(struct preempt_notifier *notifier)
2022{
2023 hlist_del(&notifier->link);
2024}
2025EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2026
2027static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2028{
2029 struct preempt_notifier *notifier;
e107be36 2030
b67bfe0d 2031 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2032 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2033}
2034
2035static void
2036fire_sched_out_preempt_notifiers(struct task_struct *curr,
2037 struct task_struct *next)
2038{
2039 struct preempt_notifier *notifier;
e107be36 2040
b67bfe0d 2041 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2042 notifier->ops->sched_out(notifier, next);
2043}
2044
6d6bc0ad 2045#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2046
2047static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2048{
2049}
2050
2051static void
2052fire_sched_out_preempt_notifiers(struct task_struct *curr,
2053 struct task_struct *next)
2054{
2055}
2056
6d6bc0ad 2057#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2058
4866cde0
NP
2059/**
2060 * prepare_task_switch - prepare to switch tasks
2061 * @rq: the runqueue preparing to switch
421cee29 2062 * @prev: the current task that is being switched out
4866cde0
NP
2063 * @next: the task we are going to switch to.
2064 *
2065 * This is called with the rq lock held and interrupts off. It must
2066 * be paired with a subsequent finish_task_switch after the context
2067 * switch.
2068 *
2069 * prepare_task_switch sets up locking and calls architecture specific
2070 * hooks.
2071 */
e107be36
AK
2072static inline void
2073prepare_task_switch(struct rq *rq, struct task_struct *prev,
2074 struct task_struct *next)
4866cde0 2075{
895dd92c 2076 trace_sched_switch(prev, next);
43148951 2077 sched_info_switch(rq, prev, next);
fe4b04fa 2078 perf_event_task_sched_out(prev, next);
e107be36 2079 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2080 prepare_lock_switch(rq, next);
2081 prepare_arch_switch(next);
2082}
2083
1da177e4
LT
2084/**
2085 * finish_task_switch - clean up after a task-switch
344babaa 2086 * @rq: runqueue associated with task-switch
1da177e4
LT
2087 * @prev: the thread we just switched away from.
2088 *
4866cde0
NP
2089 * finish_task_switch must be called after the context switch, paired
2090 * with a prepare_task_switch call before the context switch.
2091 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2092 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2093 *
2094 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2095 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2096 * with the lock held can cause deadlocks; see schedule() for
2097 * details.)
2098 */
a9957449 2099static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2100 __releases(rq->lock)
2101{
1da177e4 2102 struct mm_struct *mm = rq->prev_mm;
55a101f8 2103 long prev_state;
1da177e4
LT
2104
2105 rq->prev_mm = NULL;
2106
2107 /*
2108 * A task struct has one reference for the use as "current".
c394cc9f 2109 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2110 * schedule one last time. The schedule call will never return, and
2111 * the scheduled task must drop that reference.
c394cc9f 2112 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2113 * still held, otherwise prev could be scheduled on another cpu, die
2114 * there before we look at prev->state, and then the reference would
2115 * be dropped twice.
2116 * Manfred Spraul <manfred@colorfullife.com>
2117 */
55a101f8 2118 prev_state = prev->state;
bf9fae9f 2119 vtime_task_switch(prev);
4866cde0 2120 finish_arch_switch(prev);
a8d757ef 2121 perf_event_task_sched_in(prev, current);
4866cde0 2122 finish_lock_switch(rq, prev);
01f23e16 2123 finish_arch_post_lock_switch();
e8fa1362 2124
e107be36 2125 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2126 if (mm)
2127 mmdrop(mm);
c394cc9f 2128 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2129 task_numa_free(prev);
2130
e6c390f2
DF
2131 if (prev->sched_class->task_dead)
2132 prev->sched_class->task_dead(prev);
2133
c6fd91f0 2134 /*
2135 * Remove function-return probe instances associated with this
2136 * task and put them back on the free list.
9761eea8 2137 */
c6fd91f0 2138 kprobe_flush_task(prev);
1da177e4 2139 put_task_struct(prev);
c6fd91f0 2140 }
99e5ada9
FW
2141
2142 tick_nohz_task_switch(current);
1da177e4
LT
2143}
2144
3f029d3c
GH
2145#ifdef CONFIG_SMP
2146
2147/* assumes rq->lock is held */
2148static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2149{
2150 if (prev->sched_class->pre_schedule)
2151 prev->sched_class->pre_schedule(rq, prev);
2152}
2153
2154/* rq->lock is NOT held, but preemption is disabled */
2155static inline void post_schedule(struct rq *rq)
2156{
2157 if (rq->post_schedule) {
2158 unsigned long flags;
2159
05fa785c 2160 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2161 if (rq->curr->sched_class->post_schedule)
2162 rq->curr->sched_class->post_schedule(rq);
05fa785c 2163 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2164
2165 rq->post_schedule = 0;
2166 }
2167}
2168
2169#else
da19ab51 2170
3f029d3c
GH
2171static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2172{
2173}
2174
2175static inline void post_schedule(struct rq *rq)
2176{
1da177e4
LT
2177}
2178
3f029d3c
GH
2179#endif
2180
1da177e4
LT
2181/**
2182 * schedule_tail - first thing a freshly forked thread must call.
2183 * @prev: the thread we just switched away from.
2184 */
36c8b586 2185asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2186 __releases(rq->lock)
2187{
70b97a7f
IM
2188 struct rq *rq = this_rq();
2189
4866cde0 2190 finish_task_switch(rq, prev);
da19ab51 2191
3f029d3c
GH
2192 /*
2193 * FIXME: do we need to worry about rq being invalidated by the
2194 * task_switch?
2195 */
2196 post_schedule(rq);
70b97a7f 2197
4866cde0
NP
2198#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2199 /* In this case, finish_task_switch does not reenable preemption */
2200 preempt_enable();
2201#endif
1da177e4 2202 if (current->set_child_tid)
b488893a 2203 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2204}
2205
2206/*
2207 * context_switch - switch to the new MM and the new
2208 * thread's register state.
2209 */
dd41f596 2210static inline void
70b97a7f 2211context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2212 struct task_struct *next)
1da177e4 2213{
dd41f596 2214 struct mm_struct *mm, *oldmm;
1da177e4 2215
e107be36 2216 prepare_task_switch(rq, prev, next);
fe4b04fa 2217
dd41f596
IM
2218 mm = next->mm;
2219 oldmm = prev->active_mm;
9226d125
ZA
2220 /*
2221 * For paravirt, this is coupled with an exit in switch_to to
2222 * combine the page table reload and the switch backend into
2223 * one hypercall.
2224 */
224101ed 2225 arch_start_context_switch(prev);
9226d125 2226
31915ab4 2227 if (!mm) {
1da177e4
LT
2228 next->active_mm = oldmm;
2229 atomic_inc(&oldmm->mm_count);
2230 enter_lazy_tlb(oldmm, next);
2231 } else
2232 switch_mm(oldmm, mm, next);
2233
31915ab4 2234 if (!prev->mm) {
1da177e4 2235 prev->active_mm = NULL;
1da177e4
LT
2236 rq->prev_mm = oldmm;
2237 }
3a5f5e48
IM
2238 /*
2239 * Since the runqueue lock will be released by the next
2240 * task (which is an invalid locking op but in the case
2241 * of the scheduler it's an obvious special-case), so we
2242 * do an early lockdep release here:
2243 */
2244#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2245 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2246#endif
1da177e4 2247
91d1aa43 2248 context_tracking_task_switch(prev, next);
1da177e4
LT
2249 /* Here we just switch the register state and the stack. */
2250 switch_to(prev, next, prev);
2251
dd41f596
IM
2252 barrier();
2253 /*
2254 * this_rq must be evaluated again because prev may have moved
2255 * CPUs since it called schedule(), thus the 'rq' on its stack
2256 * frame will be invalid.
2257 */
2258 finish_task_switch(this_rq(), prev);
1da177e4
LT
2259}
2260
2261/*
1c3e8264 2262 * nr_running and nr_context_switches:
1da177e4
LT
2263 *
2264 * externally visible scheduler statistics: current number of runnable
1c3e8264 2265 * threads, total number of context switches performed since bootup.
1da177e4
LT
2266 */
2267unsigned long nr_running(void)
2268{
2269 unsigned long i, sum = 0;
2270
2271 for_each_online_cpu(i)
2272 sum += cpu_rq(i)->nr_running;
2273
2274 return sum;
f711f609 2275}
1da177e4 2276
1da177e4 2277unsigned long long nr_context_switches(void)
46cb4b7c 2278{
cc94abfc
SR
2279 int i;
2280 unsigned long long sum = 0;
46cb4b7c 2281
0a945022 2282 for_each_possible_cpu(i)
1da177e4 2283 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2284
1da177e4
LT
2285 return sum;
2286}
483b4ee6 2287
1da177e4
LT
2288unsigned long nr_iowait(void)
2289{
2290 unsigned long i, sum = 0;
483b4ee6 2291
0a945022 2292 for_each_possible_cpu(i)
1da177e4 2293 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2294
1da177e4
LT
2295 return sum;
2296}
483b4ee6 2297
8c215bd3 2298unsigned long nr_iowait_cpu(int cpu)
69d25870 2299{
8c215bd3 2300 struct rq *this = cpu_rq(cpu);
69d25870
AV
2301 return atomic_read(&this->nr_iowait);
2302}
46cb4b7c 2303
dd41f596 2304#ifdef CONFIG_SMP
8a0be9ef 2305
46cb4b7c 2306/*
38022906
PZ
2307 * sched_exec - execve() is a valuable balancing opportunity, because at
2308 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2309 */
38022906 2310void sched_exec(void)
46cb4b7c 2311{
38022906 2312 struct task_struct *p = current;
1da177e4 2313 unsigned long flags;
0017d735 2314 int dest_cpu;
46cb4b7c 2315
8f42ced9 2316 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2317 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2318 if (dest_cpu == smp_processor_id())
2319 goto unlock;
38022906 2320
8f42ced9 2321 if (likely(cpu_active(dest_cpu))) {
969c7921 2322 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2323
8f42ced9
PZ
2324 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2325 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2326 return;
2327 }
0017d735 2328unlock:
8f42ced9 2329 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2330}
dd41f596 2331
1da177e4
LT
2332#endif
2333
1da177e4 2334DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2335DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2336
2337EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2338EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2339
2340/*
c5f8d995 2341 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2342 * @p in case that task is currently running.
c5f8d995
HS
2343 *
2344 * Called with task_rq_lock() held on @rq.
1da177e4 2345 */
c5f8d995
HS
2346static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2347{
2348 u64 ns = 0;
2349
2350 if (task_current(rq, p)) {
2351 update_rq_clock(rq);
78becc27 2352 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2353 if ((s64)ns < 0)
2354 ns = 0;
2355 }
2356
2357 return ns;
2358}
2359
bb34d92f 2360unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2361{
1da177e4 2362 unsigned long flags;
41b86e9c 2363 struct rq *rq;
bb34d92f 2364 u64 ns = 0;
48f24c4d 2365
41b86e9c 2366 rq = task_rq_lock(p, &flags);
c5f8d995 2367 ns = do_task_delta_exec(p, rq);
0122ec5b 2368 task_rq_unlock(rq, p, &flags);
1508487e 2369
c5f8d995
HS
2370 return ns;
2371}
f06febc9 2372
c5f8d995
HS
2373/*
2374 * Return accounted runtime for the task.
2375 * In case the task is currently running, return the runtime plus current's
2376 * pending runtime that have not been accounted yet.
2377 */
2378unsigned long long task_sched_runtime(struct task_struct *p)
2379{
2380 unsigned long flags;
2381 struct rq *rq;
2382 u64 ns = 0;
2383
911b2898
PZ
2384#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2385 /*
2386 * 64-bit doesn't need locks to atomically read a 64bit value.
2387 * So we have a optimization chance when the task's delta_exec is 0.
2388 * Reading ->on_cpu is racy, but this is ok.
2389 *
2390 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2391 * If we race with it entering cpu, unaccounted time is 0. This is
2392 * indistinguishable from the read occurring a few cycles earlier.
2393 */
2394 if (!p->on_cpu)
2395 return p->se.sum_exec_runtime;
2396#endif
2397
c5f8d995
HS
2398 rq = task_rq_lock(p, &flags);
2399 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2400 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2401
2402 return ns;
2403}
48f24c4d 2404
7835b98b
CL
2405/*
2406 * This function gets called by the timer code, with HZ frequency.
2407 * We call it with interrupts disabled.
7835b98b
CL
2408 */
2409void scheduler_tick(void)
2410{
7835b98b
CL
2411 int cpu = smp_processor_id();
2412 struct rq *rq = cpu_rq(cpu);
dd41f596 2413 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2414
2415 sched_clock_tick();
dd41f596 2416
05fa785c 2417 raw_spin_lock(&rq->lock);
3e51f33f 2418 update_rq_clock(rq);
fa85ae24 2419 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2420 update_cpu_load_active(rq);
05fa785c 2421 raw_spin_unlock(&rq->lock);
7835b98b 2422
e9d2b064 2423 perf_event_task_tick();
e220d2dc 2424
e418e1c2 2425#ifdef CONFIG_SMP
6eb57e0d 2426 rq->idle_balance = idle_cpu(cpu);
7caff66f 2427 trigger_load_balance(rq);
e418e1c2 2428#endif
265f22a9 2429 rq_last_tick_reset(rq);
1da177e4
LT
2430}
2431
265f22a9
FW
2432#ifdef CONFIG_NO_HZ_FULL
2433/**
2434 * scheduler_tick_max_deferment
2435 *
2436 * Keep at least one tick per second when a single
2437 * active task is running because the scheduler doesn't
2438 * yet completely support full dynticks environment.
2439 *
2440 * This makes sure that uptime, CFS vruntime, load
2441 * balancing, etc... continue to move forward, even
2442 * with a very low granularity.
e69f6186
YB
2443 *
2444 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2445 */
2446u64 scheduler_tick_max_deferment(void)
2447{
2448 struct rq *rq = this_rq();
2449 unsigned long next, now = ACCESS_ONCE(jiffies);
2450
2451 next = rq->last_sched_tick + HZ;
2452
2453 if (time_before_eq(next, now))
2454 return 0;
2455
2456 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2457}
265f22a9 2458#endif
1da177e4 2459
132380a0 2460notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2461{
2462 if (in_lock_functions(addr)) {
2463 addr = CALLER_ADDR2;
2464 if (in_lock_functions(addr))
2465 addr = CALLER_ADDR3;
2466 }
2467 return addr;
2468}
1da177e4 2469
7e49fcce
SR
2470#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2471 defined(CONFIG_PREEMPT_TRACER))
2472
bdb43806 2473void __kprobes preempt_count_add(int val)
1da177e4 2474{
6cd8a4bb 2475#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2476 /*
2477 * Underflow?
2478 */
9a11b49a
IM
2479 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2480 return;
6cd8a4bb 2481#endif
bdb43806 2482 __preempt_count_add(val);
6cd8a4bb 2483#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2484 /*
2485 * Spinlock count overflowing soon?
2486 */
33859f7f
MOS
2487 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2488 PREEMPT_MASK - 10);
6cd8a4bb
SR
2489#endif
2490 if (preempt_count() == val)
2491 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2492}
bdb43806 2493EXPORT_SYMBOL(preempt_count_add);
1da177e4 2494
bdb43806 2495void __kprobes preempt_count_sub(int val)
1da177e4 2496{
6cd8a4bb 2497#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2498 /*
2499 * Underflow?
2500 */
01e3eb82 2501 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2502 return;
1da177e4
LT
2503 /*
2504 * Is the spinlock portion underflowing?
2505 */
9a11b49a
IM
2506 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2507 !(preempt_count() & PREEMPT_MASK)))
2508 return;
6cd8a4bb 2509#endif
9a11b49a 2510
6cd8a4bb
SR
2511 if (preempt_count() == val)
2512 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2513 __preempt_count_sub(val);
1da177e4 2514}
bdb43806 2515EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2516
2517#endif
2518
2519/*
dd41f596 2520 * Print scheduling while atomic bug:
1da177e4 2521 */
dd41f596 2522static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2523{
664dfa65
DJ
2524 if (oops_in_progress)
2525 return;
2526
3df0fc5b
PZ
2527 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2528 prev->comm, prev->pid, preempt_count());
838225b4 2529
dd41f596 2530 debug_show_held_locks(prev);
e21f5b15 2531 print_modules();
dd41f596
IM
2532 if (irqs_disabled())
2533 print_irqtrace_events(prev);
6135fc1e 2534 dump_stack();
373d4d09 2535 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2536}
1da177e4 2537
dd41f596
IM
2538/*
2539 * Various schedule()-time debugging checks and statistics:
2540 */
2541static inline void schedule_debug(struct task_struct *prev)
2542{
1da177e4 2543 /*
41a2d6cf 2544 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2545 * schedule() atomically, we ignore that path. Otherwise whine
2546 * if we are scheduling when we should not.
1da177e4 2547 */
192301e7 2548 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2549 __schedule_bug(prev);
b3fbab05 2550 rcu_sleep_check();
dd41f596 2551
1da177e4
LT
2552 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2553
2d72376b 2554 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2555}
2556
6cecd084 2557static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2558{
61eadef6 2559 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2560 update_rq_clock(rq);
6cecd084 2561 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2562}
2563
dd41f596
IM
2564/*
2565 * Pick up the highest-prio task:
2566 */
2567static inline struct task_struct *
b67802ea 2568pick_next_task(struct rq *rq)
dd41f596 2569{
5522d5d5 2570 const struct sched_class *class;
dd41f596 2571 struct task_struct *p;
1da177e4
LT
2572
2573 /*
dd41f596
IM
2574 * Optimization: we know that if all tasks are in
2575 * the fair class we can call that function directly:
1da177e4 2576 */
953bfcd1 2577 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2578 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2579 if (likely(p))
2580 return p;
1da177e4
LT
2581 }
2582
34f971f6 2583 for_each_class(class) {
fb8d4724 2584 p = class->pick_next_task(rq);
dd41f596
IM
2585 if (p)
2586 return p;
dd41f596 2587 }
34f971f6
PZ
2588
2589 BUG(); /* the idle class will always have a runnable task */
dd41f596 2590}
1da177e4 2591
dd41f596 2592/*
c259e01a 2593 * __schedule() is the main scheduler function.
edde96ea
PE
2594 *
2595 * The main means of driving the scheduler and thus entering this function are:
2596 *
2597 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2598 *
2599 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2600 * paths. For example, see arch/x86/entry_64.S.
2601 *
2602 * To drive preemption between tasks, the scheduler sets the flag in timer
2603 * interrupt handler scheduler_tick().
2604 *
2605 * 3. Wakeups don't really cause entry into schedule(). They add a
2606 * task to the run-queue and that's it.
2607 *
2608 * Now, if the new task added to the run-queue preempts the current
2609 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2610 * called on the nearest possible occasion:
2611 *
2612 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2613 *
2614 * - in syscall or exception context, at the next outmost
2615 * preempt_enable(). (this might be as soon as the wake_up()'s
2616 * spin_unlock()!)
2617 *
2618 * - in IRQ context, return from interrupt-handler to
2619 * preemptible context
2620 *
2621 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2622 * then at the next:
2623 *
2624 * - cond_resched() call
2625 * - explicit schedule() call
2626 * - return from syscall or exception to user-space
2627 * - return from interrupt-handler to user-space
dd41f596 2628 */
c259e01a 2629static void __sched __schedule(void)
dd41f596
IM
2630{
2631 struct task_struct *prev, *next;
67ca7bde 2632 unsigned long *switch_count;
dd41f596 2633 struct rq *rq;
31656519 2634 int cpu;
dd41f596 2635
ff743345
PZ
2636need_resched:
2637 preempt_disable();
dd41f596
IM
2638 cpu = smp_processor_id();
2639 rq = cpu_rq(cpu);
25502a6c 2640 rcu_note_context_switch(cpu);
dd41f596 2641 prev = rq->curr;
dd41f596 2642
dd41f596 2643 schedule_debug(prev);
1da177e4 2644
31656519 2645 if (sched_feat(HRTICK))
f333fdc9 2646 hrtick_clear(rq);
8f4d37ec 2647
e0acd0a6
ON
2648 /*
2649 * Make sure that signal_pending_state()->signal_pending() below
2650 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2651 * done by the caller to avoid the race with signal_wake_up().
2652 */
2653 smp_mb__before_spinlock();
05fa785c 2654 raw_spin_lock_irq(&rq->lock);
1da177e4 2655
246d86b5 2656 switch_count = &prev->nivcsw;
1da177e4 2657 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2658 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2659 prev->state = TASK_RUNNING;
21aa9af0 2660 } else {
2acca55e
PZ
2661 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2662 prev->on_rq = 0;
2663
21aa9af0 2664 /*
2acca55e
PZ
2665 * If a worker went to sleep, notify and ask workqueue
2666 * whether it wants to wake up a task to maintain
2667 * concurrency.
21aa9af0
TH
2668 */
2669 if (prev->flags & PF_WQ_WORKER) {
2670 struct task_struct *to_wakeup;
2671
2672 to_wakeup = wq_worker_sleeping(prev, cpu);
2673 if (to_wakeup)
2674 try_to_wake_up_local(to_wakeup);
2675 }
21aa9af0 2676 }
dd41f596 2677 switch_count = &prev->nvcsw;
1da177e4
LT
2678 }
2679
3f029d3c 2680 pre_schedule(rq, prev);
f65eda4f 2681
dd41f596 2682 if (unlikely(!rq->nr_running))
1da177e4 2683 idle_balance(cpu, rq);
1da177e4 2684
df1c99d4 2685 put_prev_task(rq, prev);
b67802ea 2686 next = pick_next_task(rq);
f26f9aff 2687 clear_tsk_need_resched(prev);
f27dde8d 2688 clear_preempt_need_resched();
f26f9aff 2689 rq->skip_clock_update = 0;
1da177e4 2690
1da177e4 2691 if (likely(prev != next)) {
1da177e4
LT
2692 rq->nr_switches++;
2693 rq->curr = next;
2694 ++*switch_count;
2695
dd41f596 2696 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2697 /*
246d86b5
ON
2698 * The context switch have flipped the stack from under us
2699 * and restored the local variables which were saved when
2700 * this task called schedule() in the past. prev == current
2701 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2702 */
2703 cpu = smp_processor_id();
2704 rq = cpu_rq(cpu);
1da177e4 2705 } else
05fa785c 2706 raw_spin_unlock_irq(&rq->lock);
1da177e4 2707
3f029d3c 2708 post_schedule(rq);
1da177e4 2709
ba74c144 2710 sched_preempt_enable_no_resched();
ff743345 2711 if (need_resched())
1da177e4
LT
2712 goto need_resched;
2713}
c259e01a 2714
9c40cef2
TG
2715static inline void sched_submit_work(struct task_struct *tsk)
2716{
3c7d5184 2717 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2718 return;
2719 /*
2720 * If we are going to sleep and we have plugged IO queued,
2721 * make sure to submit it to avoid deadlocks.
2722 */
2723 if (blk_needs_flush_plug(tsk))
2724 blk_schedule_flush_plug(tsk);
2725}
2726
6ebbe7a0 2727asmlinkage void __sched schedule(void)
c259e01a 2728{
9c40cef2
TG
2729 struct task_struct *tsk = current;
2730
2731 sched_submit_work(tsk);
c259e01a
TG
2732 __schedule();
2733}
1da177e4
LT
2734EXPORT_SYMBOL(schedule);
2735
91d1aa43 2736#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2737asmlinkage void __sched schedule_user(void)
2738{
2739 /*
2740 * If we come here after a random call to set_need_resched(),
2741 * or we have been woken up remotely but the IPI has not yet arrived,
2742 * we haven't yet exited the RCU idle mode. Do it here manually until
2743 * we find a better solution.
2744 */
91d1aa43 2745 user_exit();
20ab65e3 2746 schedule();
91d1aa43 2747 user_enter();
20ab65e3
FW
2748}
2749#endif
2750
c5491ea7
TG
2751/**
2752 * schedule_preempt_disabled - called with preemption disabled
2753 *
2754 * Returns with preemption disabled. Note: preempt_count must be 1
2755 */
2756void __sched schedule_preempt_disabled(void)
2757{
ba74c144 2758 sched_preempt_enable_no_resched();
c5491ea7
TG
2759 schedule();
2760 preempt_disable();
2761}
2762
1da177e4
LT
2763#ifdef CONFIG_PREEMPT
2764/*
2ed6e34f 2765 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2766 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2767 * occur there and call schedule directly.
2768 */
d1f74e20 2769asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2770{
1da177e4
LT
2771 /*
2772 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2773 * we do not want to preempt the current task. Just return..
1da177e4 2774 */
fbb00b56 2775 if (likely(!preemptible()))
1da177e4
LT
2776 return;
2777
3a5c359a 2778 do {
bdb43806 2779 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2780 __schedule();
bdb43806 2781 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2782
3a5c359a
AK
2783 /*
2784 * Check again in case we missed a preemption opportunity
2785 * between schedule and now.
2786 */
2787 barrier();
5ed0cec0 2788 } while (need_resched());
1da177e4 2789}
1da177e4 2790EXPORT_SYMBOL(preempt_schedule);
32e475d7 2791#endif /* CONFIG_PREEMPT */
1da177e4
LT
2792
2793/*
2ed6e34f 2794 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2795 * off of irq context.
2796 * Note, that this is called and return with irqs disabled. This will
2797 * protect us against recursive calling from irq.
2798 */
2799asmlinkage void __sched preempt_schedule_irq(void)
2800{
b22366cd 2801 enum ctx_state prev_state;
6478d880 2802
2ed6e34f 2803 /* Catch callers which need to be fixed */
f27dde8d 2804 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2805
b22366cd
FW
2806 prev_state = exception_enter();
2807
3a5c359a 2808 do {
bdb43806 2809 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2810 local_irq_enable();
c259e01a 2811 __schedule();
3a5c359a 2812 local_irq_disable();
bdb43806 2813 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2814
3a5c359a
AK
2815 /*
2816 * Check again in case we missed a preemption opportunity
2817 * between schedule and now.
2818 */
2819 barrier();
5ed0cec0 2820 } while (need_resched());
b22366cd
FW
2821
2822 exception_exit(prev_state);
1da177e4
LT
2823}
2824
63859d4f 2825int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2826 void *key)
1da177e4 2827{
63859d4f 2828 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2829}
1da177e4
LT
2830EXPORT_SYMBOL(default_wake_function);
2831
8cbbe86d
AK
2832static long __sched
2833sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2834{
0fec171c
IM
2835 unsigned long flags;
2836 wait_queue_t wait;
2837
2838 init_waitqueue_entry(&wait, current);
1da177e4 2839
8cbbe86d 2840 __set_current_state(state);
1da177e4 2841
8cbbe86d
AK
2842 spin_lock_irqsave(&q->lock, flags);
2843 __add_wait_queue(q, &wait);
2844 spin_unlock(&q->lock);
2845 timeout = schedule_timeout(timeout);
2846 spin_lock_irq(&q->lock);
2847 __remove_wait_queue(q, &wait);
2848 spin_unlock_irqrestore(&q->lock, flags);
2849
2850 return timeout;
2851}
2852
2853void __sched interruptible_sleep_on(wait_queue_head_t *q)
2854{
2855 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2856}
1da177e4
LT
2857EXPORT_SYMBOL(interruptible_sleep_on);
2858
0fec171c 2859long __sched
95cdf3b7 2860interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2861{
8cbbe86d 2862 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2863}
1da177e4
LT
2864EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2865
0fec171c 2866void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2867{
8cbbe86d 2868 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2869}
1da177e4
LT
2870EXPORT_SYMBOL(sleep_on);
2871
0fec171c 2872long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2873{
8cbbe86d 2874 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2875}
1da177e4
LT
2876EXPORT_SYMBOL(sleep_on_timeout);
2877
b29739f9
IM
2878#ifdef CONFIG_RT_MUTEXES
2879
2880/*
2881 * rt_mutex_setprio - set the current priority of a task
2882 * @p: task
2883 * @prio: prio value (kernel-internal form)
2884 *
2885 * This function changes the 'effective' priority of a task. It does
2886 * not touch ->normal_prio like __setscheduler().
2887 *
2888 * Used by the rt_mutex code to implement priority inheritance logic.
2889 */
36c8b586 2890void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2891{
2d3d891d 2892 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2893 struct rq *rq;
83ab0aa0 2894 const struct sched_class *prev_class;
b29739f9 2895
aab03e05 2896 BUG_ON(prio > MAX_PRIO);
b29739f9 2897
0122ec5b 2898 rq = __task_rq_lock(p);
b29739f9 2899
1c4dd99b
TG
2900 /*
2901 * Idle task boosting is a nono in general. There is one
2902 * exception, when PREEMPT_RT and NOHZ is active:
2903 *
2904 * The idle task calls get_next_timer_interrupt() and holds
2905 * the timer wheel base->lock on the CPU and another CPU wants
2906 * to access the timer (probably to cancel it). We can safely
2907 * ignore the boosting request, as the idle CPU runs this code
2908 * with interrupts disabled and will complete the lock
2909 * protected section without being interrupted. So there is no
2910 * real need to boost.
2911 */
2912 if (unlikely(p == rq->idle)) {
2913 WARN_ON(p != rq->curr);
2914 WARN_ON(p->pi_blocked_on);
2915 goto out_unlock;
2916 }
2917
a8027073 2918 trace_sched_pi_setprio(p, prio);
2d3d891d 2919 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2920 oldprio = p->prio;
83ab0aa0 2921 prev_class = p->sched_class;
fd2f4419 2922 on_rq = p->on_rq;
051a1d1a 2923 running = task_current(rq, p);
0e1f3483 2924 if (on_rq)
69be72c1 2925 dequeue_task(rq, p, 0);
0e1f3483
HS
2926 if (running)
2927 p->sched_class->put_prev_task(rq, p);
dd41f596 2928
2d3d891d
DF
2929 /*
2930 * Boosting condition are:
2931 * 1. -rt task is running and holds mutex A
2932 * --> -dl task blocks on mutex A
2933 *
2934 * 2. -dl task is running and holds mutex A
2935 * --> -dl task blocks on mutex A and could preempt the
2936 * running task
2937 */
2938 if (dl_prio(prio)) {
2939 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2940 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2941 p->dl.dl_boosted = 1;
2942 p->dl.dl_throttled = 0;
2943 enqueue_flag = ENQUEUE_REPLENISH;
2944 } else
2945 p->dl.dl_boosted = 0;
aab03e05 2946 p->sched_class = &dl_sched_class;
2d3d891d
DF
2947 } else if (rt_prio(prio)) {
2948 if (dl_prio(oldprio))
2949 p->dl.dl_boosted = 0;
2950 if (oldprio < prio)
2951 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2952 p->sched_class = &rt_sched_class;
2d3d891d
DF
2953 } else {
2954 if (dl_prio(oldprio))
2955 p->dl.dl_boosted = 0;
dd41f596 2956 p->sched_class = &fair_sched_class;
2d3d891d 2957 }
dd41f596 2958
b29739f9
IM
2959 p->prio = prio;
2960
0e1f3483
HS
2961 if (running)
2962 p->sched_class->set_curr_task(rq);
da7a735e 2963 if (on_rq)
2d3d891d 2964 enqueue_task(rq, p, enqueue_flag);
cb469845 2965
da7a735e 2966 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2967out_unlock:
0122ec5b 2968 __task_rq_unlock(rq);
b29739f9 2969}
b29739f9 2970#endif
d50dde5a 2971
36c8b586 2972void set_user_nice(struct task_struct *p, long nice)
1da177e4 2973{
dd41f596 2974 int old_prio, delta, on_rq;
1da177e4 2975 unsigned long flags;
70b97a7f 2976 struct rq *rq;
1da177e4
LT
2977
2978 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2979 return;
2980 /*
2981 * We have to be careful, if called from sys_setpriority(),
2982 * the task might be in the middle of scheduling on another CPU.
2983 */
2984 rq = task_rq_lock(p, &flags);
2985 /*
2986 * The RT priorities are set via sched_setscheduler(), but we still
2987 * allow the 'normal' nice value to be set - but as expected
2988 * it wont have any effect on scheduling until the task is
aab03e05 2989 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2990 */
aab03e05 2991 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
2992 p->static_prio = NICE_TO_PRIO(nice);
2993 goto out_unlock;
2994 }
fd2f4419 2995 on_rq = p->on_rq;
c09595f6 2996 if (on_rq)
69be72c1 2997 dequeue_task(rq, p, 0);
1da177e4 2998
1da177e4 2999 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3000 set_load_weight(p);
b29739f9
IM
3001 old_prio = p->prio;
3002 p->prio = effective_prio(p);
3003 delta = p->prio - old_prio;
1da177e4 3004
dd41f596 3005 if (on_rq) {
371fd7e7 3006 enqueue_task(rq, p, 0);
1da177e4 3007 /*
d5f9f942
AM
3008 * If the task increased its priority or is running and
3009 * lowered its priority, then reschedule its CPU:
1da177e4 3010 */
d5f9f942 3011 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3012 resched_task(rq->curr);
3013 }
3014out_unlock:
0122ec5b 3015 task_rq_unlock(rq, p, &flags);
1da177e4 3016}
1da177e4
LT
3017EXPORT_SYMBOL(set_user_nice);
3018
e43379f1
MM
3019/*
3020 * can_nice - check if a task can reduce its nice value
3021 * @p: task
3022 * @nice: nice value
3023 */
36c8b586 3024int can_nice(const struct task_struct *p, const int nice)
e43379f1 3025{
024f4747
MM
3026 /* convert nice value [19,-20] to rlimit style value [1,40] */
3027 int nice_rlim = 20 - nice;
48f24c4d 3028
78d7d407 3029 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3030 capable(CAP_SYS_NICE));
3031}
3032
1da177e4
LT
3033#ifdef __ARCH_WANT_SYS_NICE
3034
3035/*
3036 * sys_nice - change the priority of the current process.
3037 * @increment: priority increment
3038 *
3039 * sys_setpriority is a more generic, but much slower function that
3040 * does similar things.
3041 */
5add95d4 3042SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3043{
48f24c4d 3044 long nice, retval;
1da177e4
LT
3045
3046 /*
3047 * Setpriority might change our priority at the same moment.
3048 * We don't have to worry. Conceptually one call occurs first
3049 * and we have a single winner.
3050 */
e43379f1
MM
3051 if (increment < -40)
3052 increment = -40;
1da177e4
LT
3053 if (increment > 40)
3054 increment = 40;
3055
2b8f836f 3056 nice = TASK_NICE(current) + increment;
1da177e4
LT
3057 if (nice < -20)
3058 nice = -20;
3059 if (nice > 19)
3060 nice = 19;
3061
e43379f1
MM
3062 if (increment < 0 && !can_nice(current, nice))
3063 return -EPERM;
3064
1da177e4
LT
3065 retval = security_task_setnice(current, nice);
3066 if (retval)
3067 return retval;
3068
3069 set_user_nice(current, nice);
3070 return 0;
3071}
3072
3073#endif
3074
3075/**
3076 * task_prio - return the priority value of a given task.
3077 * @p: the task in question.
3078 *
e69f6186 3079 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3080 * RT tasks are offset by -200. Normal tasks are centered
3081 * around 0, value goes from -16 to +15.
3082 */
36c8b586 3083int task_prio(const struct task_struct *p)
1da177e4
LT
3084{
3085 return p->prio - MAX_RT_PRIO;
3086}
3087
3088/**
3089 * task_nice - return the nice value of a given task.
3090 * @p: the task in question.
e69f6186
YB
3091 *
3092 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3093 */
36c8b586 3094int task_nice(const struct task_struct *p)
1da177e4
LT
3095{
3096 return TASK_NICE(p);
3097}
150d8bed 3098EXPORT_SYMBOL(task_nice);
1da177e4
LT
3099
3100/**
3101 * idle_cpu - is a given cpu idle currently?
3102 * @cpu: the processor in question.
e69f6186
YB
3103 *
3104 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3105 */
3106int idle_cpu(int cpu)
3107{
908a3283
TG
3108 struct rq *rq = cpu_rq(cpu);
3109
3110 if (rq->curr != rq->idle)
3111 return 0;
3112
3113 if (rq->nr_running)
3114 return 0;
3115
3116#ifdef CONFIG_SMP
3117 if (!llist_empty(&rq->wake_list))
3118 return 0;
3119#endif
3120
3121 return 1;
1da177e4
LT
3122}
3123
1da177e4
LT
3124/**
3125 * idle_task - return the idle task for a given cpu.
3126 * @cpu: the processor in question.
e69f6186
YB
3127 *
3128 * Return: The idle task for the cpu @cpu.
1da177e4 3129 */
36c8b586 3130struct task_struct *idle_task(int cpu)
1da177e4
LT
3131{
3132 return cpu_rq(cpu)->idle;
3133}
3134
3135/**
3136 * find_process_by_pid - find a process with a matching PID value.
3137 * @pid: the pid in question.
e69f6186
YB
3138 *
3139 * The task of @pid, if found. %NULL otherwise.
1da177e4 3140 */
a9957449 3141static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3142{
228ebcbe 3143 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3144}
3145
aab03e05
DF
3146/*
3147 * This function initializes the sched_dl_entity of a newly becoming
3148 * SCHED_DEADLINE task.
3149 *
3150 * Only the static values are considered here, the actual runtime and the
3151 * absolute deadline will be properly calculated when the task is enqueued
3152 * for the first time with its new policy.
3153 */
3154static void
3155__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3156{
3157 struct sched_dl_entity *dl_se = &p->dl;
3158
3159 init_dl_task_timer(dl_se);
3160 dl_se->dl_runtime = attr->sched_runtime;
3161 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3162 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3163 dl_se->flags = attr->sched_flags;
332ac17e 3164 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3165 dl_se->dl_throttled = 0;
3166 dl_se->dl_new = 1;
3167}
3168
d50dde5a
DF
3169/* Actually do priority change: must hold pi & rq lock. */
3170static void __setscheduler(struct rq *rq, struct task_struct *p,
3171 const struct sched_attr *attr)
1da177e4 3172{
d50dde5a
DF
3173 int policy = attr->sched_policy;
3174
39fd8fd2
PZ
3175 if (policy == -1) /* setparam */
3176 policy = p->policy;
3177
1da177e4 3178 p->policy = policy;
d50dde5a 3179
aab03e05
DF
3180 if (dl_policy(policy))
3181 __setparam_dl(p, attr);
39fd8fd2 3182 else if (fair_policy(policy))
d50dde5a
DF
3183 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3184
39fd8fd2
PZ
3185 /*
3186 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3187 * !rt_policy. Always setting this ensures that things like
3188 * getparam()/getattr() don't report silly values for !rt tasks.
3189 */
3190 p->rt_priority = attr->sched_priority;
3191
b29739f9 3192 p->normal_prio = normal_prio(p);
b29739f9 3193 p->prio = rt_mutex_getprio(p);
d50dde5a 3194
aab03e05
DF
3195 if (dl_prio(p->prio))
3196 p->sched_class = &dl_sched_class;
3197 else if (rt_prio(p->prio))
ffd44db5
PZ
3198 p->sched_class = &rt_sched_class;
3199 else
3200 p->sched_class = &fair_sched_class;
d50dde5a 3201
2dd73a4f 3202 set_load_weight(p);
1da177e4 3203}
aab03e05
DF
3204
3205static void
3206__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3207{
3208 struct sched_dl_entity *dl_se = &p->dl;
3209
3210 attr->sched_priority = p->rt_priority;
3211 attr->sched_runtime = dl_se->dl_runtime;
3212 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3213 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3214 attr->sched_flags = dl_se->flags;
3215}
3216
3217/*
3218 * This function validates the new parameters of a -deadline task.
3219 * We ask for the deadline not being zero, and greater or equal
755378a4 3220 * than the runtime, as well as the period of being zero or
332ac17e
DF
3221 * greater than deadline. Furthermore, we have to be sure that
3222 * user parameters are above the internal resolution (1us); we
3223 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3224 */
3225static bool
3226__checkparam_dl(const struct sched_attr *attr)
3227{
3228 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3229 (attr->sched_period == 0 ||
3230 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3231 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3232 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3233}
3234
c69e8d9c
DH
3235/*
3236 * check the target process has a UID that matches the current process's
3237 */
3238static bool check_same_owner(struct task_struct *p)
3239{
3240 const struct cred *cred = current_cred(), *pcred;
3241 bool match;
3242
3243 rcu_read_lock();
3244 pcred = __task_cred(p);
9c806aa0
EB
3245 match = (uid_eq(cred->euid, pcred->euid) ||
3246 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3247 rcu_read_unlock();
3248 return match;
3249}
3250
d50dde5a
DF
3251static int __sched_setscheduler(struct task_struct *p,
3252 const struct sched_attr *attr,
3253 bool user)
1da177e4 3254{
83b699ed 3255 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3256 int policy = attr->sched_policy;
1da177e4 3257 unsigned long flags;
83ab0aa0 3258 const struct sched_class *prev_class;
70b97a7f 3259 struct rq *rq;
ca94c442 3260 int reset_on_fork;
1da177e4 3261
66e5393a
SR
3262 /* may grab non-irq protected spin_locks */
3263 BUG_ON(in_interrupt());
1da177e4
LT
3264recheck:
3265 /* double check policy once rq lock held */
ca94c442
LP
3266 if (policy < 0) {
3267 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3268 policy = oldpolicy = p->policy;
ca94c442
LP
3269 } else {
3270 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3271 policy &= ~SCHED_RESET_ON_FORK;
3272
aab03e05
DF
3273 if (policy != SCHED_DEADLINE &&
3274 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3275 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3276 policy != SCHED_IDLE)
3277 return -EINVAL;
3278 }
3279
1da177e4
LT
3280 /*
3281 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3282 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3283 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3284 */
d50dde5a
DF
3285 if (attr->sched_priority < 0 ||
3286 (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3287 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3288 return -EINVAL;
aab03e05
DF
3289 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3290 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3291 return -EINVAL;
3292
37e4ab3f
OC
3293 /*
3294 * Allow unprivileged RT tasks to decrease priority:
3295 */
961ccddd 3296 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a
DF
3297 if (fair_policy(policy)) {
3298 if (!can_nice(p, attr->sched_nice))
3299 return -EPERM;
3300 }
3301
e05606d3 3302 if (rt_policy(policy)) {
a44702e8
ON
3303 unsigned long rlim_rtprio =
3304 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3305
3306 /* can't set/change the rt policy */
3307 if (policy != p->policy && !rlim_rtprio)
3308 return -EPERM;
3309
3310 /* can't increase priority */
d50dde5a
DF
3311 if (attr->sched_priority > p->rt_priority &&
3312 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3313 return -EPERM;
3314 }
c02aa73b 3315
dd41f596 3316 /*
c02aa73b
DH
3317 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3318 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3319 */
c02aa73b
DH
3320 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3321 if (!can_nice(p, TASK_NICE(p)))
3322 return -EPERM;
3323 }
5fe1d75f 3324
37e4ab3f 3325 /* can't change other user's priorities */
c69e8d9c 3326 if (!check_same_owner(p))
37e4ab3f 3327 return -EPERM;
ca94c442
LP
3328
3329 /* Normal users shall not reset the sched_reset_on_fork flag */
3330 if (p->sched_reset_on_fork && !reset_on_fork)
3331 return -EPERM;
37e4ab3f 3332 }
1da177e4 3333
725aad24 3334 if (user) {
b0ae1981 3335 retval = security_task_setscheduler(p);
725aad24
JF
3336 if (retval)
3337 return retval;
3338 }
3339
b29739f9
IM
3340 /*
3341 * make sure no PI-waiters arrive (or leave) while we are
3342 * changing the priority of the task:
0122ec5b 3343 *
25985edc 3344 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3345 * runqueue lock must be held.
3346 */
0122ec5b 3347 rq = task_rq_lock(p, &flags);
dc61b1d6 3348
34f971f6
PZ
3349 /*
3350 * Changing the policy of the stop threads its a very bad idea
3351 */
3352 if (p == rq->stop) {
0122ec5b 3353 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3354 return -EINVAL;
3355 }
3356
a51e9198
DF
3357 /*
3358 * If not changing anything there's no need to proceed further:
3359 */
d50dde5a
DF
3360 if (unlikely(policy == p->policy)) {
3361 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3362 goto change;
3363 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3364 goto change;
aab03e05
DF
3365 if (dl_policy(policy))
3366 goto change;
d50dde5a 3367
45afb173 3368 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3369 return 0;
3370 }
d50dde5a 3371change:
a51e9198 3372
dc61b1d6 3373 if (user) {
332ac17e 3374#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3375 /*
3376 * Do not allow realtime tasks into groups that have no runtime
3377 * assigned.
3378 */
3379 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3380 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3381 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3382 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3383 return -EPERM;
3384 }
dc61b1d6 3385#endif
332ac17e
DF
3386#ifdef CONFIG_SMP
3387 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3388 cpumask_t *span = rq->rd->span;
332ac17e
DF
3389
3390 /*
3391 * Don't allow tasks with an affinity mask smaller than
3392 * the entire root_domain to become SCHED_DEADLINE. We
3393 * will also fail if there's no bandwidth available.
3394 */
e4099a5e
PZ
3395 if (!cpumask_subset(span, &p->cpus_allowed) ||
3396 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3397 task_rq_unlock(rq, p, &flags);
3398 return -EPERM;
3399 }
3400 }
3401#endif
3402 }
dc61b1d6 3403
1da177e4
LT
3404 /* recheck policy now with rq lock held */
3405 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3406 policy = oldpolicy = -1;
0122ec5b 3407 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3408 goto recheck;
3409 }
332ac17e
DF
3410
3411 /*
3412 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3413 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3414 * is available.
3415 */
e4099a5e 3416 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3417 task_rq_unlock(rq, p, &flags);
3418 return -EBUSY;
3419 }
3420
fd2f4419 3421 on_rq = p->on_rq;
051a1d1a 3422 running = task_current(rq, p);
0e1f3483 3423 if (on_rq)
4ca9b72b 3424 dequeue_task(rq, p, 0);
0e1f3483
HS
3425 if (running)
3426 p->sched_class->put_prev_task(rq, p);
f6b53205 3427
ca94c442
LP
3428 p->sched_reset_on_fork = reset_on_fork;
3429
1da177e4 3430 oldprio = p->prio;
83ab0aa0 3431 prev_class = p->sched_class;
d50dde5a 3432 __setscheduler(rq, p, attr);
f6b53205 3433
0e1f3483
HS
3434 if (running)
3435 p->sched_class->set_curr_task(rq);
da7a735e 3436 if (on_rq)
4ca9b72b 3437 enqueue_task(rq, p, 0);
cb469845 3438
da7a735e 3439 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3440 task_rq_unlock(rq, p, &flags);
b29739f9 3441
95e02ca9
TG
3442 rt_mutex_adjust_pi(p);
3443
1da177e4
LT
3444 return 0;
3445}
961ccddd
RR
3446
3447/**
3448 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3449 * @p: the task in question.
3450 * @policy: new policy.
3451 * @param: structure containing the new RT priority.
3452 *
e69f6186
YB
3453 * Return: 0 on success. An error code otherwise.
3454 *
961ccddd
RR
3455 * NOTE that the task may be already dead.
3456 */
3457int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3458 const struct sched_param *param)
961ccddd 3459{
d50dde5a
DF
3460 struct sched_attr attr = {
3461 .sched_policy = policy,
e3de300d
PZ
3462 .sched_priority = param->sched_priority,
3463 .sched_nice = PRIO_TO_NICE(p->static_prio),
d50dde5a
DF
3464 };
3465 return __sched_setscheduler(p, &attr, true);
961ccddd 3466}
1da177e4
LT
3467EXPORT_SYMBOL_GPL(sched_setscheduler);
3468
d50dde5a
DF
3469int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3470{
3471 return __sched_setscheduler(p, attr, true);
3472}
3473EXPORT_SYMBOL_GPL(sched_setattr);
3474
961ccddd
RR
3475/**
3476 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3477 * @p: the task in question.
3478 * @policy: new policy.
3479 * @param: structure containing the new RT priority.
3480 *
3481 * Just like sched_setscheduler, only don't bother checking if the
3482 * current context has permission. For example, this is needed in
3483 * stop_machine(): we create temporary high priority worker threads,
3484 * but our caller might not have that capability.
e69f6186
YB
3485 *
3486 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3487 */
3488int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3489 const struct sched_param *param)
961ccddd 3490{
d50dde5a
DF
3491 struct sched_attr attr = {
3492 .sched_policy = policy,
e3de300d
PZ
3493 .sched_priority = param->sched_priority,
3494 .sched_nice = PRIO_TO_NICE(p->static_prio),
d50dde5a
DF
3495 };
3496 return __sched_setscheduler(p, &attr, false);
961ccddd
RR
3497}
3498
95cdf3b7
IM
3499static int
3500do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3501{
1da177e4
LT
3502 struct sched_param lparam;
3503 struct task_struct *p;
36c8b586 3504 int retval;
1da177e4
LT
3505
3506 if (!param || pid < 0)
3507 return -EINVAL;
3508 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3509 return -EFAULT;
5fe1d75f
ON
3510
3511 rcu_read_lock();
3512 retval = -ESRCH;
1da177e4 3513 p = find_process_by_pid(pid);
5fe1d75f
ON
3514 if (p != NULL)
3515 retval = sched_setscheduler(p, policy, &lparam);
3516 rcu_read_unlock();
36c8b586 3517
1da177e4
LT
3518 return retval;
3519}
3520
d50dde5a
DF
3521/*
3522 * Mimics kernel/events/core.c perf_copy_attr().
3523 */
3524static int sched_copy_attr(struct sched_attr __user *uattr,
3525 struct sched_attr *attr)
3526{
3527 u32 size;
3528 int ret;
3529
3530 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3531 return -EFAULT;
3532
3533 /*
3534 * zero the full structure, so that a short copy will be nice.
3535 */
3536 memset(attr, 0, sizeof(*attr));
3537
3538 ret = get_user(size, &uattr->size);
3539 if (ret)
3540 return ret;
3541
3542 if (size > PAGE_SIZE) /* silly large */
3543 goto err_size;
3544
3545 if (!size) /* abi compat */
3546 size = SCHED_ATTR_SIZE_VER0;
3547
3548 if (size < SCHED_ATTR_SIZE_VER0)
3549 goto err_size;
3550
3551 /*
3552 * If we're handed a bigger struct than we know of,
3553 * ensure all the unknown bits are 0 - i.e. new
3554 * user-space does not rely on any kernel feature
3555 * extensions we dont know about yet.
3556 */
3557 if (size > sizeof(*attr)) {
3558 unsigned char __user *addr;
3559 unsigned char __user *end;
3560 unsigned char val;
3561
3562 addr = (void __user *)uattr + sizeof(*attr);
3563 end = (void __user *)uattr + size;
3564
3565 for (; addr < end; addr++) {
3566 ret = get_user(val, addr);
3567 if (ret)
3568 return ret;
3569 if (val)
3570 goto err_size;
3571 }
3572 size = sizeof(*attr);
3573 }
3574
3575 ret = copy_from_user(attr, uattr, size);
3576 if (ret)
3577 return -EFAULT;
3578
3579 /*
3580 * XXX: do we want to be lenient like existing syscalls; or do we want
3581 * to be strict and return an error on out-of-bounds values?
3582 */
3583 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3584
3585out:
3586 return ret;
3587
3588err_size:
3589 put_user(sizeof(*attr), &uattr->size);
3590 ret = -E2BIG;
3591 goto out;
3592}
3593
1da177e4
LT
3594/**
3595 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3596 * @pid: the pid in question.
3597 * @policy: new policy.
3598 * @param: structure containing the new RT priority.
e69f6186
YB
3599 *
3600 * Return: 0 on success. An error code otherwise.
1da177e4 3601 */
5add95d4
HC
3602SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3603 struct sched_param __user *, param)
1da177e4 3604{
c21761f1
JB
3605 /* negative values for policy are not valid */
3606 if (policy < 0)
3607 return -EINVAL;
3608
1da177e4
LT
3609 return do_sched_setscheduler(pid, policy, param);
3610}
3611
3612/**
3613 * sys_sched_setparam - set/change the RT priority of a thread
3614 * @pid: the pid in question.
3615 * @param: structure containing the new RT priority.
e69f6186
YB
3616 *
3617 * Return: 0 on success. An error code otherwise.
1da177e4 3618 */
5add95d4 3619SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3620{
3621 return do_sched_setscheduler(pid, -1, param);
3622}
3623
d50dde5a
DF
3624/**
3625 * sys_sched_setattr - same as above, but with extended sched_attr
3626 * @pid: the pid in question.
5778fccf 3627 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3628 */
3629SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3630{
3631 struct sched_attr attr;
3632 struct task_struct *p;
3633 int retval;
3634
3635 if (!uattr || pid < 0)
3636 return -EINVAL;
3637
3638 if (sched_copy_attr(uattr, &attr))
3639 return -EFAULT;
3640
3641 rcu_read_lock();
3642 retval = -ESRCH;
3643 p = find_process_by_pid(pid);
3644 if (p != NULL)
3645 retval = sched_setattr(p, &attr);
3646 rcu_read_unlock();
3647
3648 return retval;
3649}
3650
1da177e4
LT
3651/**
3652 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3653 * @pid: the pid in question.
e69f6186
YB
3654 *
3655 * Return: On success, the policy of the thread. Otherwise, a negative error
3656 * code.
1da177e4 3657 */
5add95d4 3658SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3659{
36c8b586 3660 struct task_struct *p;
3a5c359a 3661 int retval;
1da177e4
LT
3662
3663 if (pid < 0)
3a5c359a 3664 return -EINVAL;
1da177e4
LT
3665
3666 retval = -ESRCH;
5fe85be0 3667 rcu_read_lock();
1da177e4
LT
3668 p = find_process_by_pid(pid);
3669 if (p) {
3670 retval = security_task_getscheduler(p);
3671 if (!retval)
ca94c442
LP
3672 retval = p->policy
3673 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3674 }
5fe85be0 3675 rcu_read_unlock();
1da177e4
LT
3676 return retval;
3677}
3678
3679/**
ca94c442 3680 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3681 * @pid: the pid in question.
3682 * @param: structure containing the RT priority.
e69f6186
YB
3683 *
3684 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3685 * code.
1da177e4 3686 */
5add95d4 3687SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3688{
3689 struct sched_param lp;
36c8b586 3690 struct task_struct *p;
3a5c359a 3691 int retval;
1da177e4
LT
3692
3693 if (!param || pid < 0)
3a5c359a 3694 return -EINVAL;
1da177e4 3695
5fe85be0 3696 rcu_read_lock();
1da177e4
LT
3697 p = find_process_by_pid(pid);
3698 retval = -ESRCH;
3699 if (!p)
3700 goto out_unlock;
3701
3702 retval = security_task_getscheduler(p);
3703 if (retval)
3704 goto out_unlock;
3705
aab03e05
DF
3706 if (task_has_dl_policy(p)) {
3707 retval = -EINVAL;
3708 goto out_unlock;
3709 }
1da177e4 3710 lp.sched_priority = p->rt_priority;
5fe85be0 3711 rcu_read_unlock();
1da177e4
LT
3712
3713 /*
3714 * This one might sleep, we cannot do it with a spinlock held ...
3715 */
3716 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3717
1da177e4
LT
3718 return retval;
3719
3720out_unlock:
5fe85be0 3721 rcu_read_unlock();
1da177e4
LT
3722 return retval;
3723}
3724
d50dde5a
DF
3725static int sched_read_attr(struct sched_attr __user *uattr,
3726 struct sched_attr *attr,
3727 unsigned int usize)
3728{
3729 int ret;
3730
3731 if (!access_ok(VERIFY_WRITE, uattr, usize))
3732 return -EFAULT;
3733
3734 /*
3735 * If we're handed a smaller struct than we know of,
3736 * ensure all the unknown bits are 0 - i.e. old
3737 * user-space does not get uncomplete information.
3738 */
3739 if (usize < sizeof(*attr)) {
3740 unsigned char *addr;
3741 unsigned char *end;
3742
3743 addr = (void *)attr + usize;
3744 end = (void *)attr + sizeof(*attr);
3745
3746 for (; addr < end; addr++) {
3747 if (*addr)
3748 goto err_size;
3749 }
3750
3751 attr->size = usize;
3752 }
3753
3754 ret = copy_to_user(uattr, attr, usize);
3755 if (ret)
3756 return -EFAULT;
3757
3758out:
3759 return ret;
3760
3761err_size:
3762 ret = -E2BIG;
3763 goto out;
3764}
3765
3766/**
aab03e05 3767 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3768 * @pid: the pid in question.
5778fccf 3769 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3770 * @size: sizeof(attr) for fwd/bwd comp.
3771 */
3772SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3773 unsigned int, size)
3774{
3775 struct sched_attr attr = {
3776 .size = sizeof(struct sched_attr),
3777 };
3778 struct task_struct *p;
3779 int retval;
3780
3781 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3782 size < SCHED_ATTR_SIZE_VER0)
3783 return -EINVAL;
3784
3785 rcu_read_lock();
3786 p = find_process_by_pid(pid);
3787 retval = -ESRCH;
3788 if (!p)
3789 goto out_unlock;
3790
3791 retval = security_task_getscheduler(p);
3792 if (retval)
3793 goto out_unlock;
3794
3795 attr.sched_policy = p->policy;
aab03e05
DF
3796 if (task_has_dl_policy(p))
3797 __getparam_dl(p, &attr);
3798 else if (task_has_rt_policy(p))
d50dde5a
DF
3799 attr.sched_priority = p->rt_priority;
3800 else
3801 attr.sched_nice = TASK_NICE(p);
3802
3803 rcu_read_unlock();
3804
3805 retval = sched_read_attr(uattr, &attr, size);
3806 return retval;
3807
3808out_unlock:
3809 rcu_read_unlock();
3810 return retval;
3811}
3812
96f874e2 3813long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3814{
5a16f3d3 3815 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3816 struct task_struct *p;
3817 int retval;
1da177e4 3818
23f5d142 3819 rcu_read_lock();
1da177e4
LT
3820
3821 p = find_process_by_pid(pid);
3822 if (!p) {
23f5d142 3823 rcu_read_unlock();
1da177e4
LT
3824 return -ESRCH;
3825 }
3826
23f5d142 3827 /* Prevent p going away */
1da177e4 3828 get_task_struct(p);
23f5d142 3829 rcu_read_unlock();
1da177e4 3830
14a40ffc
TH
3831 if (p->flags & PF_NO_SETAFFINITY) {
3832 retval = -EINVAL;
3833 goto out_put_task;
3834 }
5a16f3d3
RR
3835 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3836 retval = -ENOMEM;
3837 goto out_put_task;
3838 }
3839 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3840 retval = -ENOMEM;
3841 goto out_free_cpus_allowed;
3842 }
1da177e4 3843 retval = -EPERM;
4c44aaaf
EB
3844 if (!check_same_owner(p)) {
3845 rcu_read_lock();
3846 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3847 rcu_read_unlock();
3848 goto out_unlock;
3849 }
3850 rcu_read_unlock();
3851 }
1da177e4 3852
b0ae1981 3853 retval = security_task_setscheduler(p);
e7834f8f
DQ
3854 if (retval)
3855 goto out_unlock;
3856
e4099a5e
PZ
3857
3858 cpuset_cpus_allowed(p, cpus_allowed);
3859 cpumask_and(new_mask, in_mask, cpus_allowed);
3860
332ac17e
DF
3861 /*
3862 * Since bandwidth control happens on root_domain basis,
3863 * if admission test is enabled, we only admit -deadline
3864 * tasks allowed to run on all the CPUs in the task's
3865 * root_domain.
3866 */
3867#ifdef CONFIG_SMP
3868 if (task_has_dl_policy(p)) {
3869 const struct cpumask *span = task_rq(p)->rd->span;
3870
e4099a5e 3871 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3872 retval = -EBUSY;
3873 goto out_unlock;
3874 }
3875 }
3876#endif
49246274 3877again:
5a16f3d3 3878 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3879
8707d8b8 3880 if (!retval) {
5a16f3d3
RR
3881 cpuset_cpus_allowed(p, cpus_allowed);
3882 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3883 /*
3884 * We must have raced with a concurrent cpuset
3885 * update. Just reset the cpus_allowed to the
3886 * cpuset's cpus_allowed
3887 */
5a16f3d3 3888 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3889 goto again;
3890 }
3891 }
1da177e4 3892out_unlock:
5a16f3d3
RR
3893 free_cpumask_var(new_mask);
3894out_free_cpus_allowed:
3895 free_cpumask_var(cpus_allowed);
3896out_put_task:
1da177e4 3897 put_task_struct(p);
1da177e4
LT
3898 return retval;
3899}
3900
3901static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3902 struct cpumask *new_mask)
1da177e4 3903{
96f874e2
RR
3904 if (len < cpumask_size())
3905 cpumask_clear(new_mask);
3906 else if (len > cpumask_size())
3907 len = cpumask_size();
3908
1da177e4
LT
3909 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3910}
3911
3912/**
3913 * sys_sched_setaffinity - set the cpu affinity of a process
3914 * @pid: pid of the process
3915 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3916 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3917 *
3918 * Return: 0 on success. An error code otherwise.
1da177e4 3919 */
5add95d4
HC
3920SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3921 unsigned long __user *, user_mask_ptr)
1da177e4 3922{
5a16f3d3 3923 cpumask_var_t new_mask;
1da177e4
LT
3924 int retval;
3925
5a16f3d3
RR
3926 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3927 return -ENOMEM;
1da177e4 3928
5a16f3d3
RR
3929 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3930 if (retval == 0)
3931 retval = sched_setaffinity(pid, new_mask);
3932 free_cpumask_var(new_mask);
3933 return retval;
1da177e4
LT
3934}
3935
96f874e2 3936long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3937{
36c8b586 3938 struct task_struct *p;
31605683 3939 unsigned long flags;
1da177e4 3940 int retval;
1da177e4 3941
23f5d142 3942 rcu_read_lock();
1da177e4
LT
3943
3944 retval = -ESRCH;
3945 p = find_process_by_pid(pid);
3946 if (!p)
3947 goto out_unlock;
3948
e7834f8f
DQ
3949 retval = security_task_getscheduler(p);
3950 if (retval)
3951 goto out_unlock;
3952
013fdb80 3953 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3954 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3955 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3956
3957out_unlock:
23f5d142 3958 rcu_read_unlock();
1da177e4 3959
9531b62f 3960 return retval;
1da177e4
LT
3961}
3962
3963/**
3964 * sys_sched_getaffinity - get the cpu affinity of a process
3965 * @pid: pid of the process
3966 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3967 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3968 *
3969 * Return: 0 on success. An error code otherwise.
1da177e4 3970 */
5add95d4
HC
3971SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3972 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3973{
3974 int ret;
f17c8607 3975 cpumask_var_t mask;
1da177e4 3976
84fba5ec 3977 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3978 return -EINVAL;
3979 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3980 return -EINVAL;
3981
f17c8607
RR
3982 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3983 return -ENOMEM;
1da177e4 3984
f17c8607
RR
3985 ret = sched_getaffinity(pid, mask);
3986 if (ret == 0) {
8bc037fb 3987 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3988
3989 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3990 ret = -EFAULT;
3991 else
cd3d8031 3992 ret = retlen;
f17c8607
RR
3993 }
3994 free_cpumask_var(mask);
1da177e4 3995
f17c8607 3996 return ret;
1da177e4
LT
3997}
3998
3999/**
4000 * sys_sched_yield - yield the current processor to other threads.
4001 *
dd41f596
IM
4002 * This function yields the current CPU to other tasks. If there are no
4003 * other threads running on this CPU then this function will return.
e69f6186
YB
4004 *
4005 * Return: 0.
1da177e4 4006 */
5add95d4 4007SYSCALL_DEFINE0(sched_yield)
1da177e4 4008{
70b97a7f 4009 struct rq *rq = this_rq_lock();
1da177e4 4010
2d72376b 4011 schedstat_inc(rq, yld_count);
4530d7ab 4012 current->sched_class->yield_task(rq);
1da177e4
LT
4013
4014 /*
4015 * Since we are going to call schedule() anyway, there's
4016 * no need to preempt or enable interrupts:
4017 */
4018 __release(rq->lock);
8a25d5de 4019 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4020 do_raw_spin_unlock(&rq->lock);
ba74c144 4021 sched_preempt_enable_no_resched();
1da177e4
LT
4022
4023 schedule();
4024
4025 return 0;
4026}
4027
e7b38404 4028static void __cond_resched(void)
1da177e4 4029{
bdb43806 4030 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4031 __schedule();
bdb43806 4032 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4033}
4034
02b67cc3 4035int __sched _cond_resched(void)
1da177e4 4036{
d86ee480 4037 if (should_resched()) {
1da177e4
LT
4038 __cond_resched();
4039 return 1;
4040 }
4041 return 0;
4042}
02b67cc3 4043EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4044
4045/*
613afbf8 4046 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4047 * call schedule, and on return reacquire the lock.
4048 *
41a2d6cf 4049 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4050 * operations here to prevent schedule() from being called twice (once via
4051 * spin_unlock(), once by hand).
4052 */
613afbf8 4053int __cond_resched_lock(spinlock_t *lock)
1da177e4 4054{
d86ee480 4055 int resched = should_resched();
6df3cecb
JK
4056 int ret = 0;
4057
f607c668
PZ
4058 lockdep_assert_held(lock);
4059
95c354fe 4060 if (spin_needbreak(lock) || resched) {
1da177e4 4061 spin_unlock(lock);
d86ee480 4062 if (resched)
95c354fe
NP
4063 __cond_resched();
4064 else
4065 cpu_relax();
6df3cecb 4066 ret = 1;
1da177e4 4067 spin_lock(lock);
1da177e4 4068 }
6df3cecb 4069 return ret;
1da177e4 4070}
613afbf8 4071EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4072
613afbf8 4073int __sched __cond_resched_softirq(void)
1da177e4
LT
4074{
4075 BUG_ON(!in_softirq());
4076
d86ee480 4077 if (should_resched()) {
98d82567 4078 local_bh_enable();
1da177e4
LT
4079 __cond_resched();
4080 local_bh_disable();
4081 return 1;
4082 }
4083 return 0;
4084}
613afbf8 4085EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4086
1da177e4
LT
4087/**
4088 * yield - yield the current processor to other threads.
4089 *
8e3fabfd
PZ
4090 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4091 *
4092 * The scheduler is at all times free to pick the calling task as the most
4093 * eligible task to run, if removing the yield() call from your code breaks
4094 * it, its already broken.
4095 *
4096 * Typical broken usage is:
4097 *
4098 * while (!event)
4099 * yield();
4100 *
4101 * where one assumes that yield() will let 'the other' process run that will
4102 * make event true. If the current task is a SCHED_FIFO task that will never
4103 * happen. Never use yield() as a progress guarantee!!
4104 *
4105 * If you want to use yield() to wait for something, use wait_event().
4106 * If you want to use yield() to be 'nice' for others, use cond_resched().
4107 * If you still want to use yield(), do not!
1da177e4
LT
4108 */
4109void __sched yield(void)
4110{
4111 set_current_state(TASK_RUNNING);
4112 sys_sched_yield();
4113}
1da177e4
LT
4114EXPORT_SYMBOL(yield);
4115
d95f4122
MG
4116/**
4117 * yield_to - yield the current processor to another thread in
4118 * your thread group, or accelerate that thread toward the
4119 * processor it's on.
16addf95
RD
4120 * @p: target task
4121 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4122 *
4123 * It's the caller's job to ensure that the target task struct
4124 * can't go away on us before we can do any checks.
4125 *
e69f6186 4126 * Return:
7b270f60
PZ
4127 * true (>0) if we indeed boosted the target task.
4128 * false (0) if we failed to boost the target.
4129 * -ESRCH if there's no task to yield to.
d95f4122
MG
4130 */
4131bool __sched yield_to(struct task_struct *p, bool preempt)
4132{
4133 struct task_struct *curr = current;
4134 struct rq *rq, *p_rq;
4135 unsigned long flags;
c3c18640 4136 int yielded = 0;
d95f4122
MG
4137
4138 local_irq_save(flags);
4139 rq = this_rq();
4140
4141again:
4142 p_rq = task_rq(p);
7b270f60
PZ
4143 /*
4144 * If we're the only runnable task on the rq and target rq also
4145 * has only one task, there's absolutely no point in yielding.
4146 */
4147 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4148 yielded = -ESRCH;
4149 goto out_irq;
4150 }
4151
d95f4122 4152 double_rq_lock(rq, p_rq);
39e24d8f 4153 if (task_rq(p) != p_rq) {
d95f4122
MG
4154 double_rq_unlock(rq, p_rq);
4155 goto again;
4156 }
4157
4158 if (!curr->sched_class->yield_to_task)
7b270f60 4159 goto out_unlock;
d95f4122
MG
4160
4161 if (curr->sched_class != p->sched_class)
7b270f60 4162 goto out_unlock;
d95f4122
MG
4163
4164 if (task_running(p_rq, p) || p->state)
7b270f60 4165 goto out_unlock;
d95f4122
MG
4166
4167 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4168 if (yielded) {
d95f4122 4169 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4170 /*
4171 * Make p's CPU reschedule; pick_next_entity takes care of
4172 * fairness.
4173 */
4174 if (preempt && rq != p_rq)
4175 resched_task(p_rq->curr);
4176 }
d95f4122 4177
7b270f60 4178out_unlock:
d95f4122 4179 double_rq_unlock(rq, p_rq);
7b270f60 4180out_irq:
d95f4122
MG
4181 local_irq_restore(flags);
4182
7b270f60 4183 if (yielded > 0)
d95f4122
MG
4184 schedule();
4185
4186 return yielded;
4187}
4188EXPORT_SYMBOL_GPL(yield_to);
4189
1da177e4 4190/*
41a2d6cf 4191 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4192 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4193 */
4194void __sched io_schedule(void)
4195{
54d35f29 4196 struct rq *rq = raw_rq();
1da177e4 4197
0ff92245 4198 delayacct_blkio_start();
1da177e4 4199 atomic_inc(&rq->nr_iowait);
73c10101 4200 blk_flush_plug(current);
8f0dfc34 4201 current->in_iowait = 1;
1da177e4 4202 schedule();
8f0dfc34 4203 current->in_iowait = 0;
1da177e4 4204 atomic_dec(&rq->nr_iowait);
0ff92245 4205 delayacct_blkio_end();
1da177e4 4206}
1da177e4
LT
4207EXPORT_SYMBOL(io_schedule);
4208
4209long __sched io_schedule_timeout(long timeout)
4210{
54d35f29 4211 struct rq *rq = raw_rq();
1da177e4
LT
4212 long ret;
4213
0ff92245 4214 delayacct_blkio_start();
1da177e4 4215 atomic_inc(&rq->nr_iowait);
73c10101 4216 blk_flush_plug(current);
8f0dfc34 4217 current->in_iowait = 1;
1da177e4 4218 ret = schedule_timeout(timeout);
8f0dfc34 4219 current->in_iowait = 0;
1da177e4 4220 atomic_dec(&rq->nr_iowait);
0ff92245 4221 delayacct_blkio_end();
1da177e4
LT
4222 return ret;
4223}
4224
4225/**
4226 * sys_sched_get_priority_max - return maximum RT priority.
4227 * @policy: scheduling class.
4228 *
e69f6186
YB
4229 * Return: On success, this syscall returns the maximum
4230 * rt_priority that can be used by a given scheduling class.
4231 * On failure, a negative error code is returned.
1da177e4 4232 */
5add95d4 4233SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4234{
4235 int ret = -EINVAL;
4236
4237 switch (policy) {
4238 case SCHED_FIFO:
4239 case SCHED_RR:
4240 ret = MAX_USER_RT_PRIO-1;
4241 break;
aab03e05 4242 case SCHED_DEADLINE:
1da177e4 4243 case SCHED_NORMAL:
b0a9499c 4244 case SCHED_BATCH:
dd41f596 4245 case SCHED_IDLE:
1da177e4
LT
4246 ret = 0;
4247 break;
4248 }
4249 return ret;
4250}
4251
4252/**
4253 * sys_sched_get_priority_min - return minimum RT priority.
4254 * @policy: scheduling class.
4255 *
e69f6186
YB
4256 * Return: On success, this syscall returns the minimum
4257 * rt_priority that can be used by a given scheduling class.
4258 * On failure, a negative error code is returned.
1da177e4 4259 */
5add95d4 4260SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4261{
4262 int ret = -EINVAL;
4263
4264 switch (policy) {
4265 case SCHED_FIFO:
4266 case SCHED_RR:
4267 ret = 1;
4268 break;
aab03e05 4269 case SCHED_DEADLINE:
1da177e4 4270 case SCHED_NORMAL:
b0a9499c 4271 case SCHED_BATCH:
dd41f596 4272 case SCHED_IDLE:
1da177e4
LT
4273 ret = 0;
4274 }
4275 return ret;
4276}
4277
4278/**
4279 * sys_sched_rr_get_interval - return the default timeslice of a process.
4280 * @pid: pid of the process.
4281 * @interval: userspace pointer to the timeslice value.
4282 *
4283 * this syscall writes the default timeslice value of a given process
4284 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4285 *
4286 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4287 * an error code.
1da177e4 4288 */
17da2bd9 4289SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4290 struct timespec __user *, interval)
1da177e4 4291{
36c8b586 4292 struct task_struct *p;
a4ec24b4 4293 unsigned int time_slice;
dba091b9
TG
4294 unsigned long flags;
4295 struct rq *rq;
3a5c359a 4296 int retval;
1da177e4 4297 struct timespec t;
1da177e4
LT
4298
4299 if (pid < 0)
3a5c359a 4300 return -EINVAL;
1da177e4
LT
4301
4302 retval = -ESRCH;
1a551ae7 4303 rcu_read_lock();
1da177e4
LT
4304 p = find_process_by_pid(pid);
4305 if (!p)
4306 goto out_unlock;
4307
4308 retval = security_task_getscheduler(p);
4309 if (retval)
4310 goto out_unlock;
4311
dba091b9
TG
4312 rq = task_rq_lock(p, &flags);
4313 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4314 task_rq_unlock(rq, p, &flags);
a4ec24b4 4315
1a551ae7 4316 rcu_read_unlock();
a4ec24b4 4317 jiffies_to_timespec(time_slice, &t);
1da177e4 4318 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4319 return retval;
3a5c359a 4320
1da177e4 4321out_unlock:
1a551ae7 4322 rcu_read_unlock();
1da177e4
LT
4323 return retval;
4324}
4325
7c731e0a 4326static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4327
82a1fcb9 4328void sched_show_task(struct task_struct *p)
1da177e4 4329{
1da177e4 4330 unsigned long free = 0;
4e79752c 4331 int ppid;
36c8b586 4332 unsigned state;
1da177e4 4333
1da177e4 4334 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4335 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4336 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4337#if BITS_PER_LONG == 32
1da177e4 4338 if (state == TASK_RUNNING)
3df0fc5b 4339 printk(KERN_CONT " running ");
1da177e4 4340 else
3df0fc5b 4341 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4342#else
4343 if (state == TASK_RUNNING)
3df0fc5b 4344 printk(KERN_CONT " running task ");
1da177e4 4345 else
3df0fc5b 4346 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4347#endif
4348#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4349 free = stack_not_used(p);
1da177e4 4350#endif
4e79752c
PM
4351 rcu_read_lock();
4352 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4353 rcu_read_unlock();
3df0fc5b 4354 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4355 task_pid_nr(p), ppid,
aa47b7e0 4356 (unsigned long)task_thread_info(p)->flags);
1da177e4 4357
3d1cb205 4358 print_worker_info(KERN_INFO, p);
5fb5e6de 4359 show_stack(p, NULL);
1da177e4
LT
4360}
4361
e59e2ae2 4362void show_state_filter(unsigned long state_filter)
1da177e4 4363{
36c8b586 4364 struct task_struct *g, *p;
1da177e4 4365
4bd77321 4366#if BITS_PER_LONG == 32
3df0fc5b
PZ
4367 printk(KERN_INFO
4368 " task PC stack pid father\n");
1da177e4 4369#else
3df0fc5b
PZ
4370 printk(KERN_INFO
4371 " task PC stack pid father\n");
1da177e4 4372#endif
510f5acc 4373 rcu_read_lock();
1da177e4
LT
4374 do_each_thread(g, p) {
4375 /*
4376 * reset the NMI-timeout, listing all files on a slow
25985edc 4377 * console might take a lot of time:
1da177e4
LT
4378 */
4379 touch_nmi_watchdog();
39bc89fd 4380 if (!state_filter || (p->state & state_filter))
82a1fcb9 4381 sched_show_task(p);
1da177e4
LT
4382 } while_each_thread(g, p);
4383
04c9167f
JF
4384 touch_all_softlockup_watchdogs();
4385
dd41f596
IM
4386#ifdef CONFIG_SCHED_DEBUG
4387 sysrq_sched_debug_show();
4388#endif
510f5acc 4389 rcu_read_unlock();
e59e2ae2
IM
4390 /*
4391 * Only show locks if all tasks are dumped:
4392 */
93335a21 4393 if (!state_filter)
e59e2ae2 4394 debug_show_all_locks();
1da177e4
LT
4395}
4396
0db0628d 4397void init_idle_bootup_task(struct task_struct *idle)
1df21055 4398{
dd41f596 4399 idle->sched_class = &idle_sched_class;
1df21055
IM
4400}
4401
f340c0d1
IM
4402/**
4403 * init_idle - set up an idle thread for a given CPU
4404 * @idle: task in question
4405 * @cpu: cpu the idle task belongs to
4406 *
4407 * NOTE: this function does not set the idle thread's NEED_RESCHED
4408 * flag, to make booting more robust.
4409 */
0db0628d 4410void init_idle(struct task_struct *idle, int cpu)
1da177e4 4411{
70b97a7f 4412 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4413 unsigned long flags;
4414
05fa785c 4415 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4416
5e1576ed 4417 __sched_fork(0, idle);
06b83b5f 4418 idle->state = TASK_RUNNING;
dd41f596
IM
4419 idle->se.exec_start = sched_clock();
4420
1e1b6c51 4421 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4422 /*
4423 * We're having a chicken and egg problem, even though we are
4424 * holding rq->lock, the cpu isn't yet set to this cpu so the
4425 * lockdep check in task_group() will fail.
4426 *
4427 * Similar case to sched_fork(). / Alternatively we could
4428 * use task_rq_lock() here and obtain the other rq->lock.
4429 *
4430 * Silence PROVE_RCU
4431 */
4432 rcu_read_lock();
dd41f596 4433 __set_task_cpu(idle, cpu);
6506cf6c 4434 rcu_read_unlock();
1da177e4 4435
1da177e4 4436 rq->curr = rq->idle = idle;
3ca7a440
PZ
4437#if defined(CONFIG_SMP)
4438 idle->on_cpu = 1;
4866cde0 4439#endif
05fa785c 4440 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4441
4442 /* Set the preempt count _outside_ the spinlocks! */
01028747 4443 init_idle_preempt_count(idle, cpu);
55cd5340 4444
dd41f596
IM
4445 /*
4446 * The idle tasks have their own, simple scheduling class:
4447 */
4448 idle->sched_class = &idle_sched_class;
868baf07 4449 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4450 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4451#if defined(CONFIG_SMP)
4452 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4453#endif
19978ca6
IM
4454}
4455
1da177e4 4456#ifdef CONFIG_SMP
1e1b6c51
KM
4457void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4458{
4459 if (p->sched_class && p->sched_class->set_cpus_allowed)
4460 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4461
4462 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4463 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4464}
4465
1da177e4
LT
4466/*
4467 * This is how migration works:
4468 *
969c7921
TH
4469 * 1) we invoke migration_cpu_stop() on the target CPU using
4470 * stop_one_cpu().
4471 * 2) stopper starts to run (implicitly forcing the migrated thread
4472 * off the CPU)
4473 * 3) it checks whether the migrated task is still in the wrong runqueue.
4474 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4475 * it and puts it into the right queue.
969c7921
TH
4476 * 5) stopper completes and stop_one_cpu() returns and the migration
4477 * is done.
1da177e4
LT
4478 */
4479
4480/*
4481 * Change a given task's CPU affinity. Migrate the thread to a
4482 * proper CPU and schedule it away if the CPU it's executing on
4483 * is removed from the allowed bitmask.
4484 *
4485 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4486 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4487 * call is not atomic; no spinlocks may be held.
4488 */
96f874e2 4489int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4490{
4491 unsigned long flags;
70b97a7f 4492 struct rq *rq;
969c7921 4493 unsigned int dest_cpu;
48f24c4d 4494 int ret = 0;
1da177e4
LT
4495
4496 rq = task_rq_lock(p, &flags);
e2912009 4497
db44fc01
YZ
4498 if (cpumask_equal(&p->cpus_allowed, new_mask))
4499 goto out;
4500
6ad4c188 4501 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4502 ret = -EINVAL;
4503 goto out;
4504 }
4505
1e1b6c51 4506 do_set_cpus_allowed(p, new_mask);
73fe6aae 4507
1da177e4 4508 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4509 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4510 goto out;
4511
969c7921 4512 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4513 if (p->on_rq) {
969c7921 4514 struct migration_arg arg = { p, dest_cpu };
1da177e4 4515 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4516 task_rq_unlock(rq, p, &flags);
969c7921 4517 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4518 tlb_migrate_finish(p->mm);
4519 return 0;
4520 }
4521out:
0122ec5b 4522 task_rq_unlock(rq, p, &flags);
48f24c4d 4523
1da177e4
LT
4524 return ret;
4525}
cd8ba7cd 4526EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4527
4528/*
41a2d6cf 4529 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4530 * this because either it can't run here any more (set_cpus_allowed()
4531 * away from this CPU, or CPU going down), or because we're
4532 * attempting to rebalance this task on exec (sched_exec).
4533 *
4534 * So we race with normal scheduler movements, but that's OK, as long
4535 * as the task is no longer on this CPU.
efc30814
KK
4536 *
4537 * Returns non-zero if task was successfully migrated.
1da177e4 4538 */
efc30814 4539static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4540{
70b97a7f 4541 struct rq *rq_dest, *rq_src;
e2912009 4542 int ret = 0;
1da177e4 4543
e761b772 4544 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4545 return ret;
1da177e4
LT
4546
4547 rq_src = cpu_rq(src_cpu);
4548 rq_dest = cpu_rq(dest_cpu);
4549
0122ec5b 4550 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4551 double_rq_lock(rq_src, rq_dest);
4552 /* Already moved. */
4553 if (task_cpu(p) != src_cpu)
b1e38734 4554 goto done;
1da177e4 4555 /* Affinity changed (again). */
fa17b507 4556 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4557 goto fail;
1da177e4 4558
e2912009
PZ
4559 /*
4560 * If we're not on a rq, the next wake-up will ensure we're
4561 * placed properly.
4562 */
fd2f4419 4563 if (p->on_rq) {
4ca9b72b 4564 dequeue_task(rq_src, p, 0);
e2912009 4565 set_task_cpu(p, dest_cpu);
4ca9b72b 4566 enqueue_task(rq_dest, p, 0);
15afe09b 4567 check_preempt_curr(rq_dest, p, 0);
1da177e4 4568 }
b1e38734 4569done:
efc30814 4570 ret = 1;
b1e38734 4571fail:
1da177e4 4572 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4573 raw_spin_unlock(&p->pi_lock);
efc30814 4574 return ret;
1da177e4
LT
4575}
4576
e6628d5b
MG
4577#ifdef CONFIG_NUMA_BALANCING
4578/* Migrate current task p to target_cpu */
4579int migrate_task_to(struct task_struct *p, int target_cpu)
4580{
4581 struct migration_arg arg = { p, target_cpu };
4582 int curr_cpu = task_cpu(p);
4583
4584 if (curr_cpu == target_cpu)
4585 return 0;
4586
4587 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4588 return -EINVAL;
4589
4590 /* TODO: This is not properly updating schedstats */
4591
4592 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4593}
0ec8aa00
PZ
4594
4595/*
4596 * Requeue a task on a given node and accurately track the number of NUMA
4597 * tasks on the runqueues
4598 */
4599void sched_setnuma(struct task_struct *p, int nid)
4600{
4601 struct rq *rq;
4602 unsigned long flags;
4603 bool on_rq, running;
4604
4605 rq = task_rq_lock(p, &flags);
4606 on_rq = p->on_rq;
4607 running = task_current(rq, p);
4608
4609 if (on_rq)
4610 dequeue_task(rq, p, 0);
4611 if (running)
4612 p->sched_class->put_prev_task(rq, p);
4613
4614 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4615
4616 if (running)
4617 p->sched_class->set_curr_task(rq);
4618 if (on_rq)
4619 enqueue_task(rq, p, 0);
4620 task_rq_unlock(rq, p, &flags);
4621}
e6628d5b
MG
4622#endif
4623
1da177e4 4624/*
969c7921
TH
4625 * migration_cpu_stop - this will be executed by a highprio stopper thread
4626 * and performs thread migration by bumping thread off CPU then
4627 * 'pushing' onto another runqueue.
1da177e4 4628 */
969c7921 4629static int migration_cpu_stop(void *data)
1da177e4 4630{
969c7921 4631 struct migration_arg *arg = data;
f7b4cddc 4632
969c7921
TH
4633 /*
4634 * The original target cpu might have gone down and we might
4635 * be on another cpu but it doesn't matter.
4636 */
f7b4cddc 4637 local_irq_disable();
969c7921 4638 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4639 local_irq_enable();
1da177e4 4640 return 0;
f7b4cddc
ON
4641}
4642
1da177e4 4643#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4644
054b9108 4645/*
48c5ccae
PZ
4646 * Ensures that the idle task is using init_mm right before its cpu goes
4647 * offline.
054b9108 4648 */
48c5ccae 4649void idle_task_exit(void)
1da177e4 4650{
48c5ccae 4651 struct mm_struct *mm = current->active_mm;
e76bd8d9 4652
48c5ccae 4653 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4654
48c5ccae
PZ
4655 if (mm != &init_mm)
4656 switch_mm(mm, &init_mm, current);
4657 mmdrop(mm);
1da177e4
LT
4658}
4659
4660/*
5d180232
PZ
4661 * Since this CPU is going 'away' for a while, fold any nr_active delta
4662 * we might have. Assumes we're called after migrate_tasks() so that the
4663 * nr_active count is stable.
4664 *
4665 * Also see the comment "Global load-average calculations".
1da177e4 4666 */
5d180232 4667static void calc_load_migrate(struct rq *rq)
1da177e4 4668{
5d180232
PZ
4669 long delta = calc_load_fold_active(rq);
4670 if (delta)
4671 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4672}
4673
48f24c4d 4674/*
48c5ccae
PZ
4675 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4676 * try_to_wake_up()->select_task_rq().
4677 *
4678 * Called with rq->lock held even though we'er in stop_machine() and
4679 * there's no concurrency possible, we hold the required locks anyway
4680 * because of lock validation efforts.
1da177e4 4681 */
48c5ccae 4682static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4683{
70b97a7f 4684 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4685 struct task_struct *next, *stop = rq->stop;
4686 int dest_cpu;
1da177e4
LT
4687
4688 /*
48c5ccae
PZ
4689 * Fudge the rq selection such that the below task selection loop
4690 * doesn't get stuck on the currently eligible stop task.
4691 *
4692 * We're currently inside stop_machine() and the rq is either stuck
4693 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4694 * either way we should never end up calling schedule() until we're
4695 * done here.
1da177e4 4696 */
48c5ccae 4697 rq->stop = NULL;
48f24c4d 4698
77bd3970
FW
4699 /*
4700 * put_prev_task() and pick_next_task() sched
4701 * class method both need to have an up-to-date
4702 * value of rq->clock[_task]
4703 */
4704 update_rq_clock(rq);
4705
dd41f596 4706 for ( ; ; ) {
48c5ccae
PZ
4707 /*
4708 * There's this thread running, bail when that's the only
4709 * remaining thread.
4710 */
4711 if (rq->nr_running == 1)
dd41f596 4712 break;
48c5ccae 4713
b67802ea 4714 next = pick_next_task(rq);
48c5ccae 4715 BUG_ON(!next);
79c53799 4716 next->sched_class->put_prev_task(rq, next);
e692ab53 4717
48c5ccae
PZ
4718 /* Find suitable destination for @next, with force if needed. */
4719 dest_cpu = select_fallback_rq(dead_cpu, next);
4720 raw_spin_unlock(&rq->lock);
4721
4722 __migrate_task(next, dead_cpu, dest_cpu);
4723
4724 raw_spin_lock(&rq->lock);
1da177e4 4725 }
dce48a84 4726
48c5ccae 4727 rq->stop = stop;
dce48a84 4728}
48c5ccae 4729
1da177e4
LT
4730#endif /* CONFIG_HOTPLUG_CPU */
4731
e692ab53
NP
4732#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4733
4734static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4735 {
4736 .procname = "sched_domain",
c57baf1e 4737 .mode = 0555,
e0361851 4738 },
56992309 4739 {}
e692ab53
NP
4740};
4741
4742static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4743 {
4744 .procname = "kernel",
c57baf1e 4745 .mode = 0555,
e0361851
AD
4746 .child = sd_ctl_dir,
4747 },
56992309 4748 {}
e692ab53
NP
4749};
4750
4751static struct ctl_table *sd_alloc_ctl_entry(int n)
4752{
4753 struct ctl_table *entry =
5cf9f062 4754 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4755
e692ab53
NP
4756 return entry;
4757}
4758
6382bc90
MM
4759static void sd_free_ctl_entry(struct ctl_table **tablep)
4760{
cd790076 4761 struct ctl_table *entry;
6382bc90 4762
cd790076
MM
4763 /*
4764 * In the intermediate directories, both the child directory and
4765 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4766 * will always be set. In the lowest directory the names are
cd790076
MM
4767 * static strings and all have proc handlers.
4768 */
4769 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4770 if (entry->child)
4771 sd_free_ctl_entry(&entry->child);
cd790076
MM
4772 if (entry->proc_handler == NULL)
4773 kfree(entry->procname);
4774 }
6382bc90
MM
4775
4776 kfree(*tablep);
4777 *tablep = NULL;
4778}
4779
201c373e 4780static int min_load_idx = 0;
fd9b86d3 4781static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4782
e692ab53 4783static void
e0361851 4784set_table_entry(struct ctl_table *entry,
e692ab53 4785 const char *procname, void *data, int maxlen,
201c373e
NK
4786 umode_t mode, proc_handler *proc_handler,
4787 bool load_idx)
e692ab53 4788{
e692ab53
NP
4789 entry->procname = procname;
4790 entry->data = data;
4791 entry->maxlen = maxlen;
4792 entry->mode = mode;
4793 entry->proc_handler = proc_handler;
201c373e
NK
4794
4795 if (load_idx) {
4796 entry->extra1 = &min_load_idx;
4797 entry->extra2 = &max_load_idx;
4798 }
e692ab53
NP
4799}
4800
4801static struct ctl_table *
4802sd_alloc_ctl_domain_table(struct sched_domain *sd)
4803{
a5d8c348 4804 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4805
ad1cdc1d
MM
4806 if (table == NULL)
4807 return NULL;
4808
e0361851 4809 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4810 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4811 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4812 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4813 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4814 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4815 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4816 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4817 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4818 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4819 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4820 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4821 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4822 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4823 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4824 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4825 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4826 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4827 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4828 &sd->cache_nice_tries,
201c373e 4829 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4830 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4831 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4832 set_table_entry(&table[11], "name", sd->name,
201c373e 4833 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4834 /* &table[12] is terminator */
e692ab53
NP
4835
4836 return table;
4837}
4838
be7002e6 4839static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4840{
4841 struct ctl_table *entry, *table;
4842 struct sched_domain *sd;
4843 int domain_num = 0, i;
4844 char buf[32];
4845
4846 for_each_domain(cpu, sd)
4847 domain_num++;
4848 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4849 if (table == NULL)
4850 return NULL;
e692ab53
NP
4851
4852 i = 0;
4853 for_each_domain(cpu, sd) {
4854 snprintf(buf, 32, "domain%d", i);
e692ab53 4855 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4856 entry->mode = 0555;
e692ab53
NP
4857 entry->child = sd_alloc_ctl_domain_table(sd);
4858 entry++;
4859 i++;
4860 }
4861 return table;
4862}
4863
4864static struct ctl_table_header *sd_sysctl_header;
6382bc90 4865static void register_sched_domain_sysctl(void)
e692ab53 4866{
6ad4c188 4867 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4868 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4869 char buf[32];
4870
7378547f
MM
4871 WARN_ON(sd_ctl_dir[0].child);
4872 sd_ctl_dir[0].child = entry;
4873
ad1cdc1d
MM
4874 if (entry == NULL)
4875 return;
4876
6ad4c188 4877 for_each_possible_cpu(i) {
e692ab53 4878 snprintf(buf, 32, "cpu%d", i);
e692ab53 4879 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4880 entry->mode = 0555;
e692ab53 4881 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4882 entry++;
e692ab53 4883 }
7378547f
MM
4884
4885 WARN_ON(sd_sysctl_header);
e692ab53
NP
4886 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4887}
6382bc90 4888
7378547f 4889/* may be called multiple times per register */
6382bc90
MM
4890static void unregister_sched_domain_sysctl(void)
4891{
7378547f
MM
4892 if (sd_sysctl_header)
4893 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4894 sd_sysctl_header = NULL;
7378547f
MM
4895 if (sd_ctl_dir[0].child)
4896 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4897}
e692ab53 4898#else
6382bc90
MM
4899static void register_sched_domain_sysctl(void)
4900{
4901}
4902static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4903{
4904}
4905#endif
4906
1f11eb6a
GH
4907static void set_rq_online(struct rq *rq)
4908{
4909 if (!rq->online) {
4910 const struct sched_class *class;
4911
c6c4927b 4912 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4913 rq->online = 1;
4914
4915 for_each_class(class) {
4916 if (class->rq_online)
4917 class->rq_online(rq);
4918 }
4919 }
4920}
4921
4922static void set_rq_offline(struct rq *rq)
4923{
4924 if (rq->online) {
4925 const struct sched_class *class;
4926
4927 for_each_class(class) {
4928 if (class->rq_offline)
4929 class->rq_offline(rq);
4930 }
4931
c6c4927b 4932 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4933 rq->online = 0;
4934 }
4935}
4936
1da177e4
LT
4937/*
4938 * migration_call - callback that gets triggered when a CPU is added.
4939 * Here we can start up the necessary migration thread for the new CPU.
4940 */
0db0628d 4941static int
48f24c4d 4942migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4943{
48f24c4d 4944 int cpu = (long)hcpu;
1da177e4 4945 unsigned long flags;
969c7921 4946 struct rq *rq = cpu_rq(cpu);
1da177e4 4947
48c5ccae 4948 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4949
1da177e4 4950 case CPU_UP_PREPARE:
a468d389 4951 rq->calc_load_update = calc_load_update;
1da177e4 4952 break;
48f24c4d 4953
1da177e4 4954 case CPU_ONLINE:
1f94ef59 4955 /* Update our root-domain */
05fa785c 4956 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4957 if (rq->rd) {
c6c4927b 4958 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4959
4960 set_rq_online(rq);
1f94ef59 4961 }
05fa785c 4962 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4963 break;
48f24c4d 4964
1da177e4 4965#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4966 case CPU_DYING:
317f3941 4967 sched_ttwu_pending();
57d885fe 4968 /* Update our root-domain */
05fa785c 4969 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4970 if (rq->rd) {
c6c4927b 4971 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4972 set_rq_offline(rq);
57d885fe 4973 }
48c5ccae
PZ
4974 migrate_tasks(cpu);
4975 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4976 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4977 break;
48c5ccae 4978
5d180232 4979 case CPU_DEAD:
f319da0c 4980 calc_load_migrate(rq);
57d885fe 4981 break;
1da177e4
LT
4982#endif
4983 }
49c022e6
PZ
4984
4985 update_max_interval();
4986
1da177e4
LT
4987 return NOTIFY_OK;
4988}
4989
f38b0820
PM
4990/*
4991 * Register at high priority so that task migration (migrate_all_tasks)
4992 * happens before everything else. This has to be lower priority than
cdd6c482 4993 * the notifier in the perf_event subsystem, though.
1da177e4 4994 */
0db0628d 4995static struct notifier_block migration_notifier = {
1da177e4 4996 .notifier_call = migration_call,
50a323b7 4997 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4998};
4999
0db0628d 5000static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5001 unsigned long action, void *hcpu)
5002{
5003 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5004 case CPU_STARTING:
3a101d05
TH
5005 case CPU_DOWN_FAILED:
5006 set_cpu_active((long)hcpu, true);
5007 return NOTIFY_OK;
5008 default:
5009 return NOTIFY_DONE;
5010 }
5011}
5012
0db0628d 5013static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5014 unsigned long action, void *hcpu)
5015{
de212f18
PZ
5016 unsigned long flags;
5017 long cpu = (long)hcpu;
5018
3a101d05
TH
5019 switch (action & ~CPU_TASKS_FROZEN) {
5020 case CPU_DOWN_PREPARE:
de212f18
PZ
5021 set_cpu_active(cpu, false);
5022
5023 /* explicitly allow suspend */
5024 if (!(action & CPU_TASKS_FROZEN)) {
5025 struct dl_bw *dl_b = dl_bw_of(cpu);
5026 bool overflow;
5027 int cpus;
5028
5029 raw_spin_lock_irqsave(&dl_b->lock, flags);
5030 cpus = dl_bw_cpus(cpu);
5031 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5032 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5033
5034 if (overflow)
5035 return notifier_from_errno(-EBUSY);
5036 }
3a101d05 5037 return NOTIFY_OK;
3a101d05 5038 }
de212f18
PZ
5039
5040 return NOTIFY_DONE;
3a101d05
TH
5041}
5042
7babe8db 5043static int __init migration_init(void)
1da177e4
LT
5044{
5045 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5046 int err;
48f24c4d 5047
3a101d05 5048 /* Initialize migration for the boot CPU */
07dccf33
AM
5049 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5050 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5051 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5052 register_cpu_notifier(&migration_notifier);
7babe8db 5053
3a101d05
TH
5054 /* Register cpu active notifiers */
5055 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5056 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5057
a004cd42 5058 return 0;
1da177e4 5059}
7babe8db 5060early_initcall(migration_init);
1da177e4
LT
5061#endif
5062
5063#ifdef CONFIG_SMP
476f3534 5064
4cb98839
PZ
5065static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5066
3e9830dc 5067#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5068
d039ac60 5069static __read_mostly int sched_debug_enabled;
f6630114 5070
d039ac60 5071static int __init sched_debug_setup(char *str)
f6630114 5072{
d039ac60 5073 sched_debug_enabled = 1;
f6630114
MT
5074
5075 return 0;
5076}
d039ac60
PZ
5077early_param("sched_debug", sched_debug_setup);
5078
5079static inline bool sched_debug(void)
5080{
5081 return sched_debug_enabled;
5082}
f6630114 5083
7c16ec58 5084static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5085 struct cpumask *groupmask)
1da177e4 5086{
4dcf6aff 5087 struct sched_group *group = sd->groups;
434d53b0 5088 char str[256];
1da177e4 5089
968ea6d8 5090 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5091 cpumask_clear(groupmask);
4dcf6aff
IM
5092
5093 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5094
5095 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5096 printk("does not load-balance\n");
4dcf6aff 5097 if (sd->parent)
3df0fc5b
PZ
5098 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5099 " has parent");
4dcf6aff 5100 return -1;
41c7ce9a
NP
5101 }
5102
3df0fc5b 5103 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5104
758b2cdc 5105 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5106 printk(KERN_ERR "ERROR: domain->span does not contain "
5107 "CPU%d\n", cpu);
4dcf6aff 5108 }
758b2cdc 5109 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5110 printk(KERN_ERR "ERROR: domain->groups does not contain"
5111 " CPU%d\n", cpu);
4dcf6aff 5112 }
1da177e4 5113
4dcf6aff 5114 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5115 do {
4dcf6aff 5116 if (!group) {
3df0fc5b
PZ
5117 printk("\n");
5118 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5119 break;
5120 }
5121
c3decf0d
PZ
5122 /*
5123 * Even though we initialize ->power to something semi-sane,
5124 * we leave power_orig unset. This allows us to detect if
5125 * domain iteration is still funny without causing /0 traps.
5126 */
5127 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5128 printk(KERN_CONT "\n");
5129 printk(KERN_ERR "ERROR: domain->cpu_power not "
5130 "set\n");
4dcf6aff
IM
5131 break;
5132 }
1da177e4 5133
758b2cdc 5134 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5135 printk(KERN_CONT "\n");
5136 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5137 break;
5138 }
1da177e4 5139
cb83b629
PZ
5140 if (!(sd->flags & SD_OVERLAP) &&
5141 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5142 printk(KERN_CONT "\n");
5143 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5144 break;
5145 }
1da177e4 5146
758b2cdc 5147 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5148
968ea6d8 5149 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5150
3df0fc5b 5151 printk(KERN_CONT " %s", str);
9c3f75cb 5152 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5153 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5154 group->sgp->power);
381512cf 5155 }
1da177e4 5156
4dcf6aff
IM
5157 group = group->next;
5158 } while (group != sd->groups);
3df0fc5b 5159 printk(KERN_CONT "\n");
1da177e4 5160
758b2cdc 5161 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5162 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5163
758b2cdc
RR
5164 if (sd->parent &&
5165 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5166 printk(KERN_ERR "ERROR: parent span is not a superset "
5167 "of domain->span\n");
4dcf6aff
IM
5168 return 0;
5169}
1da177e4 5170
4dcf6aff
IM
5171static void sched_domain_debug(struct sched_domain *sd, int cpu)
5172{
5173 int level = 0;
1da177e4 5174
d039ac60 5175 if (!sched_debug_enabled)
f6630114
MT
5176 return;
5177
4dcf6aff
IM
5178 if (!sd) {
5179 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5180 return;
5181 }
1da177e4 5182
4dcf6aff
IM
5183 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5184
5185 for (;;) {
4cb98839 5186 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5187 break;
1da177e4
LT
5188 level++;
5189 sd = sd->parent;
33859f7f 5190 if (!sd)
4dcf6aff
IM
5191 break;
5192 }
1da177e4 5193}
6d6bc0ad 5194#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5195# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5196static inline bool sched_debug(void)
5197{
5198 return false;
5199}
6d6bc0ad 5200#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5201
1a20ff27 5202static int sd_degenerate(struct sched_domain *sd)
245af2c7 5203{
758b2cdc 5204 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5205 return 1;
5206
5207 /* Following flags need at least 2 groups */
5208 if (sd->flags & (SD_LOAD_BALANCE |
5209 SD_BALANCE_NEWIDLE |
5210 SD_BALANCE_FORK |
89c4710e
SS
5211 SD_BALANCE_EXEC |
5212 SD_SHARE_CPUPOWER |
5213 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5214 if (sd->groups != sd->groups->next)
5215 return 0;
5216 }
5217
5218 /* Following flags don't use groups */
c88d5910 5219 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5220 return 0;
5221
5222 return 1;
5223}
5224
48f24c4d
IM
5225static int
5226sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5227{
5228 unsigned long cflags = sd->flags, pflags = parent->flags;
5229
5230 if (sd_degenerate(parent))
5231 return 1;
5232
758b2cdc 5233 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5234 return 0;
5235
245af2c7
SS
5236 /* Flags needing groups don't count if only 1 group in parent */
5237 if (parent->groups == parent->groups->next) {
5238 pflags &= ~(SD_LOAD_BALANCE |
5239 SD_BALANCE_NEWIDLE |
5240 SD_BALANCE_FORK |
89c4710e
SS
5241 SD_BALANCE_EXEC |
5242 SD_SHARE_CPUPOWER |
10866e62
PZ
5243 SD_SHARE_PKG_RESOURCES |
5244 SD_PREFER_SIBLING);
5436499e
KC
5245 if (nr_node_ids == 1)
5246 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5247 }
5248 if (~cflags & pflags)
5249 return 0;
5250
5251 return 1;
5252}
5253
dce840a0 5254static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5255{
dce840a0 5256 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5257
68e74568 5258 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5259 cpudl_cleanup(&rd->cpudl);
1baca4ce 5260 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5261 free_cpumask_var(rd->rto_mask);
5262 free_cpumask_var(rd->online);
5263 free_cpumask_var(rd->span);
5264 kfree(rd);
5265}
5266
57d885fe
GH
5267static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5268{
a0490fa3 5269 struct root_domain *old_rd = NULL;
57d885fe 5270 unsigned long flags;
57d885fe 5271
05fa785c 5272 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5273
5274 if (rq->rd) {
a0490fa3 5275 old_rd = rq->rd;
57d885fe 5276
c6c4927b 5277 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5278 set_rq_offline(rq);
57d885fe 5279
c6c4927b 5280 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5281
a0490fa3 5282 /*
0515973f 5283 * If we dont want to free the old_rd yet then
a0490fa3
IM
5284 * set old_rd to NULL to skip the freeing later
5285 * in this function:
5286 */
5287 if (!atomic_dec_and_test(&old_rd->refcount))
5288 old_rd = NULL;
57d885fe
GH
5289 }
5290
5291 atomic_inc(&rd->refcount);
5292 rq->rd = rd;
5293
c6c4927b 5294 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5295 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5296 set_rq_online(rq);
57d885fe 5297
05fa785c 5298 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5299
5300 if (old_rd)
dce840a0 5301 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5302}
5303
68c38fc3 5304static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5305{
5306 memset(rd, 0, sizeof(*rd));
5307
68c38fc3 5308 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5309 goto out;
68c38fc3 5310 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5311 goto free_span;
1baca4ce 5312 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5313 goto free_online;
1baca4ce
JL
5314 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5315 goto free_dlo_mask;
6e0534f2 5316
332ac17e 5317 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5318 if (cpudl_init(&rd->cpudl) != 0)
5319 goto free_dlo_mask;
332ac17e 5320
68c38fc3 5321 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5322 goto free_rto_mask;
c6c4927b 5323 return 0;
6e0534f2 5324
68e74568
RR
5325free_rto_mask:
5326 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5327free_dlo_mask:
5328 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5329free_online:
5330 free_cpumask_var(rd->online);
5331free_span:
5332 free_cpumask_var(rd->span);
0c910d28 5333out:
c6c4927b 5334 return -ENOMEM;
57d885fe
GH
5335}
5336
029632fb
PZ
5337/*
5338 * By default the system creates a single root-domain with all cpus as
5339 * members (mimicking the global state we have today).
5340 */
5341struct root_domain def_root_domain;
5342
57d885fe
GH
5343static void init_defrootdomain(void)
5344{
68c38fc3 5345 init_rootdomain(&def_root_domain);
c6c4927b 5346
57d885fe
GH
5347 atomic_set(&def_root_domain.refcount, 1);
5348}
5349
dc938520 5350static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5351{
5352 struct root_domain *rd;
5353
5354 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5355 if (!rd)
5356 return NULL;
5357
68c38fc3 5358 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5359 kfree(rd);
5360 return NULL;
5361 }
57d885fe
GH
5362
5363 return rd;
5364}
5365
e3589f6c
PZ
5366static void free_sched_groups(struct sched_group *sg, int free_sgp)
5367{
5368 struct sched_group *tmp, *first;
5369
5370 if (!sg)
5371 return;
5372
5373 first = sg;
5374 do {
5375 tmp = sg->next;
5376
5377 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5378 kfree(sg->sgp);
5379
5380 kfree(sg);
5381 sg = tmp;
5382 } while (sg != first);
5383}
5384
dce840a0
PZ
5385static void free_sched_domain(struct rcu_head *rcu)
5386{
5387 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5388
5389 /*
5390 * If its an overlapping domain it has private groups, iterate and
5391 * nuke them all.
5392 */
5393 if (sd->flags & SD_OVERLAP) {
5394 free_sched_groups(sd->groups, 1);
5395 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5396 kfree(sd->groups->sgp);
dce840a0 5397 kfree(sd->groups);
9c3f75cb 5398 }
dce840a0
PZ
5399 kfree(sd);
5400}
5401
5402static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5403{
5404 call_rcu(&sd->rcu, free_sched_domain);
5405}
5406
5407static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5408{
5409 for (; sd; sd = sd->parent)
5410 destroy_sched_domain(sd, cpu);
5411}
5412
518cd623
PZ
5413/*
5414 * Keep a special pointer to the highest sched_domain that has
5415 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5416 * allows us to avoid some pointer chasing select_idle_sibling().
5417 *
5418 * Also keep a unique ID per domain (we use the first cpu number in
5419 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5420 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5421 */
5422DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5423DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5424DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5425DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5426DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5427DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5428
5429static void update_top_cache_domain(int cpu)
5430{
5431 struct sched_domain *sd;
5d4cf996 5432 struct sched_domain *busy_sd = NULL;
518cd623 5433 int id = cpu;
7d9ffa89 5434 int size = 1;
518cd623
PZ
5435
5436 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5437 if (sd) {
518cd623 5438 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5439 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5440 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5441 }
5d4cf996 5442 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5443
5444 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5445 per_cpu(sd_llc_size, cpu) = size;
518cd623 5446 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5447
5448 sd = lowest_flag_domain(cpu, SD_NUMA);
5449 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5450
5451 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5452 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5453}
5454
1da177e4 5455/*
0eab9146 5456 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5457 * hold the hotplug lock.
5458 */
0eab9146
IM
5459static void
5460cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5461{
70b97a7f 5462 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5463 struct sched_domain *tmp;
5464
5465 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5466 for (tmp = sd; tmp; ) {
245af2c7
SS
5467 struct sched_domain *parent = tmp->parent;
5468 if (!parent)
5469 break;
f29c9b1c 5470
1a848870 5471 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5472 tmp->parent = parent->parent;
1a848870
SS
5473 if (parent->parent)
5474 parent->parent->child = tmp;
10866e62
PZ
5475 /*
5476 * Transfer SD_PREFER_SIBLING down in case of a
5477 * degenerate parent; the spans match for this
5478 * so the property transfers.
5479 */
5480 if (parent->flags & SD_PREFER_SIBLING)
5481 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5482 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5483 } else
5484 tmp = tmp->parent;
245af2c7
SS
5485 }
5486
1a848870 5487 if (sd && sd_degenerate(sd)) {
dce840a0 5488 tmp = sd;
245af2c7 5489 sd = sd->parent;
dce840a0 5490 destroy_sched_domain(tmp, cpu);
1a848870
SS
5491 if (sd)
5492 sd->child = NULL;
5493 }
1da177e4 5494
4cb98839 5495 sched_domain_debug(sd, cpu);
1da177e4 5496
57d885fe 5497 rq_attach_root(rq, rd);
dce840a0 5498 tmp = rq->sd;
674311d5 5499 rcu_assign_pointer(rq->sd, sd);
dce840a0 5500 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5501
5502 update_top_cache_domain(cpu);
1da177e4
LT
5503}
5504
5505/* cpus with isolated domains */
dcc30a35 5506static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5507
5508/* Setup the mask of cpus configured for isolated domains */
5509static int __init isolated_cpu_setup(char *str)
5510{
bdddd296 5511 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5512 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5513 return 1;
5514}
5515
8927f494 5516__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5517
d3081f52
PZ
5518static const struct cpumask *cpu_cpu_mask(int cpu)
5519{
5520 return cpumask_of_node(cpu_to_node(cpu));
5521}
5522
dce840a0
PZ
5523struct sd_data {
5524 struct sched_domain **__percpu sd;
5525 struct sched_group **__percpu sg;
9c3f75cb 5526 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5527};
5528
49a02c51 5529struct s_data {
21d42ccf 5530 struct sched_domain ** __percpu sd;
49a02c51
AH
5531 struct root_domain *rd;
5532};
5533
2109b99e 5534enum s_alloc {
2109b99e 5535 sa_rootdomain,
21d42ccf 5536 sa_sd,
dce840a0 5537 sa_sd_storage,
2109b99e
AH
5538 sa_none,
5539};
5540
54ab4ff4
PZ
5541struct sched_domain_topology_level;
5542
5543typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5544typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5545
e3589f6c
PZ
5546#define SDTL_OVERLAP 0x01
5547
eb7a74e6 5548struct sched_domain_topology_level {
2c402dc3
PZ
5549 sched_domain_init_f init;
5550 sched_domain_mask_f mask;
e3589f6c 5551 int flags;
cb83b629 5552 int numa_level;
54ab4ff4 5553 struct sd_data data;
eb7a74e6
PZ
5554};
5555
c1174876
PZ
5556/*
5557 * Build an iteration mask that can exclude certain CPUs from the upwards
5558 * domain traversal.
5559 *
5560 * Asymmetric node setups can result in situations where the domain tree is of
5561 * unequal depth, make sure to skip domains that already cover the entire
5562 * range.
5563 *
5564 * In that case build_sched_domains() will have terminated the iteration early
5565 * and our sibling sd spans will be empty. Domains should always include the
5566 * cpu they're built on, so check that.
5567 *
5568 */
5569static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5570{
5571 const struct cpumask *span = sched_domain_span(sd);
5572 struct sd_data *sdd = sd->private;
5573 struct sched_domain *sibling;
5574 int i;
5575
5576 for_each_cpu(i, span) {
5577 sibling = *per_cpu_ptr(sdd->sd, i);
5578 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5579 continue;
5580
5581 cpumask_set_cpu(i, sched_group_mask(sg));
5582 }
5583}
5584
5585/*
5586 * Return the canonical balance cpu for this group, this is the first cpu
5587 * of this group that's also in the iteration mask.
5588 */
5589int group_balance_cpu(struct sched_group *sg)
5590{
5591 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5592}
5593
e3589f6c
PZ
5594static int
5595build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5596{
5597 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5598 const struct cpumask *span = sched_domain_span(sd);
5599 struct cpumask *covered = sched_domains_tmpmask;
5600 struct sd_data *sdd = sd->private;
5601 struct sched_domain *child;
5602 int i;
5603
5604 cpumask_clear(covered);
5605
5606 for_each_cpu(i, span) {
5607 struct cpumask *sg_span;
5608
5609 if (cpumask_test_cpu(i, covered))
5610 continue;
5611
c1174876
PZ
5612 child = *per_cpu_ptr(sdd->sd, i);
5613
5614 /* See the comment near build_group_mask(). */
5615 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5616 continue;
5617
e3589f6c 5618 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5619 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5620
5621 if (!sg)
5622 goto fail;
5623
5624 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5625 if (child->child) {
5626 child = child->child;
5627 cpumask_copy(sg_span, sched_domain_span(child));
5628 } else
5629 cpumask_set_cpu(i, sg_span);
5630
5631 cpumask_or(covered, covered, sg_span);
5632
74a5ce20 5633 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5634 if (atomic_inc_return(&sg->sgp->ref) == 1)
5635 build_group_mask(sd, sg);
5636
c3decf0d
PZ
5637 /*
5638 * Initialize sgp->power such that even if we mess up the
5639 * domains and no possible iteration will get us here, we won't
5640 * die on a /0 trap.
5641 */
5642 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5643 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5644
c1174876
PZ
5645 /*
5646 * Make sure the first group of this domain contains the
5647 * canonical balance cpu. Otherwise the sched_domain iteration
5648 * breaks. See update_sg_lb_stats().
5649 */
74a5ce20 5650 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5651 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5652 groups = sg;
5653
5654 if (!first)
5655 first = sg;
5656 if (last)
5657 last->next = sg;
5658 last = sg;
5659 last->next = first;
5660 }
5661 sd->groups = groups;
5662
5663 return 0;
5664
5665fail:
5666 free_sched_groups(first, 0);
5667
5668 return -ENOMEM;
5669}
5670
dce840a0 5671static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5672{
dce840a0
PZ
5673 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5674 struct sched_domain *child = sd->child;
1da177e4 5675
dce840a0
PZ
5676 if (child)
5677 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5678
9c3f75cb 5679 if (sg) {
dce840a0 5680 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5681 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5682 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5683 }
dce840a0
PZ
5684
5685 return cpu;
1e9f28fa 5686}
1e9f28fa 5687
01a08546 5688/*
dce840a0
PZ
5689 * build_sched_groups will build a circular linked list of the groups
5690 * covered by the given span, and will set each group's ->cpumask correctly,
5691 * and ->cpu_power to 0.
e3589f6c
PZ
5692 *
5693 * Assumes the sched_domain tree is fully constructed
01a08546 5694 */
e3589f6c
PZ
5695static int
5696build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5697{
dce840a0
PZ
5698 struct sched_group *first = NULL, *last = NULL;
5699 struct sd_data *sdd = sd->private;
5700 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5701 struct cpumask *covered;
dce840a0 5702 int i;
9c1cfda2 5703
e3589f6c
PZ
5704 get_group(cpu, sdd, &sd->groups);
5705 atomic_inc(&sd->groups->ref);
5706
0936629f 5707 if (cpu != cpumask_first(span))
e3589f6c
PZ
5708 return 0;
5709
f96225fd
PZ
5710 lockdep_assert_held(&sched_domains_mutex);
5711 covered = sched_domains_tmpmask;
5712
dce840a0 5713 cpumask_clear(covered);
6711cab4 5714
dce840a0
PZ
5715 for_each_cpu(i, span) {
5716 struct sched_group *sg;
cd08e923 5717 int group, j;
6711cab4 5718
dce840a0
PZ
5719 if (cpumask_test_cpu(i, covered))
5720 continue;
6711cab4 5721
cd08e923 5722 group = get_group(i, sdd, &sg);
dce840a0 5723 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5724 sg->sgp->power = 0;
c1174876 5725 cpumask_setall(sched_group_mask(sg));
0601a88d 5726
dce840a0
PZ
5727 for_each_cpu(j, span) {
5728 if (get_group(j, sdd, NULL) != group)
5729 continue;
0601a88d 5730
dce840a0
PZ
5731 cpumask_set_cpu(j, covered);
5732 cpumask_set_cpu(j, sched_group_cpus(sg));
5733 }
0601a88d 5734
dce840a0
PZ
5735 if (!first)
5736 first = sg;
5737 if (last)
5738 last->next = sg;
5739 last = sg;
5740 }
5741 last->next = first;
e3589f6c
PZ
5742
5743 return 0;
0601a88d 5744}
51888ca2 5745
89c4710e
SS
5746/*
5747 * Initialize sched groups cpu_power.
5748 *
5749 * cpu_power indicates the capacity of sched group, which is used while
5750 * distributing the load between different sched groups in a sched domain.
5751 * Typically cpu_power for all the groups in a sched domain will be same unless
5752 * there are asymmetries in the topology. If there are asymmetries, group
5753 * having more cpu_power will pickup more load compared to the group having
5754 * less cpu_power.
89c4710e
SS
5755 */
5756static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5757{
e3589f6c 5758 struct sched_group *sg = sd->groups;
89c4710e 5759
94c95ba6 5760 WARN_ON(!sg);
e3589f6c
PZ
5761
5762 do {
5763 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5764 sg = sg->next;
5765 } while (sg != sd->groups);
89c4710e 5766
c1174876 5767 if (cpu != group_balance_cpu(sg))
e3589f6c 5768 return;
aae6d3dd 5769
d274cb30 5770 update_group_power(sd, cpu);
69e1e811 5771 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5772}
5773
029632fb
PZ
5774int __weak arch_sd_sibling_asym_packing(void)
5775{
5776 return 0*SD_ASYM_PACKING;
89c4710e
SS
5777}
5778
7c16ec58
MT
5779/*
5780 * Initializers for schedule domains
5781 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5782 */
5783
a5d8c348
IM
5784#ifdef CONFIG_SCHED_DEBUG
5785# define SD_INIT_NAME(sd, type) sd->name = #type
5786#else
5787# define SD_INIT_NAME(sd, type) do { } while (0)
5788#endif
5789
54ab4ff4
PZ
5790#define SD_INIT_FUNC(type) \
5791static noinline struct sched_domain * \
5792sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5793{ \
5794 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5795 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5796 SD_INIT_NAME(sd, type); \
5797 sd->private = &tl->data; \
5798 return sd; \
7c16ec58
MT
5799}
5800
5801SD_INIT_FUNC(CPU)
7c16ec58
MT
5802#ifdef CONFIG_SCHED_SMT
5803 SD_INIT_FUNC(SIBLING)
5804#endif
5805#ifdef CONFIG_SCHED_MC
5806 SD_INIT_FUNC(MC)
5807#endif
01a08546
HC
5808#ifdef CONFIG_SCHED_BOOK
5809 SD_INIT_FUNC(BOOK)
5810#endif
7c16ec58 5811
1d3504fc 5812static int default_relax_domain_level = -1;
60495e77 5813int sched_domain_level_max;
1d3504fc
HS
5814
5815static int __init setup_relax_domain_level(char *str)
5816{
a841f8ce
DS
5817 if (kstrtoint(str, 0, &default_relax_domain_level))
5818 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5819
1d3504fc
HS
5820 return 1;
5821}
5822__setup("relax_domain_level=", setup_relax_domain_level);
5823
5824static void set_domain_attribute(struct sched_domain *sd,
5825 struct sched_domain_attr *attr)
5826{
5827 int request;
5828
5829 if (!attr || attr->relax_domain_level < 0) {
5830 if (default_relax_domain_level < 0)
5831 return;
5832 else
5833 request = default_relax_domain_level;
5834 } else
5835 request = attr->relax_domain_level;
5836 if (request < sd->level) {
5837 /* turn off idle balance on this domain */
c88d5910 5838 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5839 } else {
5840 /* turn on idle balance on this domain */
c88d5910 5841 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5842 }
5843}
5844
54ab4ff4
PZ
5845static void __sdt_free(const struct cpumask *cpu_map);
5846static int __sdt_alloc(const struct cpumask *cpu_map);
5847
2109b99e
AH
5848static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5849 const struct cpumask *cpu_map)
5850{
5851 switch (what) {
2109b99e 5852 case sa_rootdomain:
822ff793
PZ
5853 if (!atomic_read(&d->rd->refcount))
5854 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5855 case sa_sd:
5856 free_percpu(d->sd); /* fall through */
dce840a0 5857 case sa_sd_storage:
54ab4ff4 5858 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5859 case sa_none:
5860 break;
5861 }
5862}
3404c8d9 5863
2109b99e
AH
5864static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5865 const struct cpumask *cpu_map)
5866{
dce840a0
PZ
5867 memset(d, 0, sizeof(*d));
5868
54ab4ff4
PZ
5869 if (__sdt_alloc(cpu_map))
5870 return sa_sd_storage;
dce840a0
PZ
5871 d->sd = alloc_percpu(struct sched_domain *);
5872 if (!d->sd)
5873 return sa_sd_storage;
2109b99e 5874 d->rd = alloc_rootdomain();
dce840a0 5875 if (!d->rd)
21d42ccf 5876 return sa_sd;
2109b99e
AH
5877 return sa_rootdomain;
5878}
57d885fe 5879
dce840a0
PZ
5880/*
5881 * NULL the sd_data elements we've used to build the sched_domain and
5882 * sched_group structure so that the subsequent __free_domain_allocs()
5883 * will not free the data we're using.
5884 */
5885static void claim_allocations(int cpu, struct sched_domain *sd)
5886{
5887 struct sd_data *sdd = sd->private;
dce840a0
PZ
5888
5889 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5890 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5891
e3589f6c 5892 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5893 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5894
5895 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5896 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5897}
5898
2c402dc3
PZ
5899#ifdef CONFIG_SCHED_SMT
5900static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5901{
2c402dc3 5902 return topology_thread_cpumask(cpu);
3bd65a80 5903}
2c402dc3 5904#endif
7f4588f3 5905
d069b916
PZ
5906/*
5907 * Topology list, bottom-up.
5908 */
2c402dc3 5909static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5910#ifdef CONFIG_SCHED_SMT
5911 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5912#endif
1e9f28fa 5913#ifdef CONFIG_SCHED_MC
2c402dc3 5914 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5915#endif
d069b916
PZ
5916#ifdef CONFIG_SCHED_BOOK
5917 { sd_init_BOOK, cpu_book_mask, },
5918#endif
5919 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5920 { NULL, },
5921};
5922
5923static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5924
27723a68
VK
5925#define for_each_sd_topology(tl) \
5926 for (tl = sched_domain_topology; tl->init; tl++)
5927
cb83b629
PZ
5928#ifdef CONFIG_NUMA
5929
5930static int sched_domains_numa_levels;
cb83b629
PZ
5931static int *sched_domains_numa_distance;
5932static struct cpumask ***sched_domains_numa_masks;
5933static int sched_domains_curr_level;
5934
cb83b629
PZ
5935static inline int sd_local_flags(int level)
5936{
10717dcd 5937 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5938 return 0;
5939
5940 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5941}
5942
5943static struct sched_domain *
5944sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5945{
5946 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5947 int level = tl->numa_level;
5948 int sd_weight = cpumask_weight(
5949 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5950
5951 *sd = (struct sched_domain){
5952 .min_interval = sd_weight,
5953 .max_interval = 2*sd_weight,
5954 .busy_factor = 32,
870a0bb5 5955 .imbalance_pct = 125,
cb83b629
PZ
5956 .cache_nice_tries = 2,
5957 .busy_idx = 3,
5958 .idle_idx = 2,
5959 .newidle_idx = 0,
5960 .wake_idx = 0,
5961 .forkexec_idx = 0,
5962
5963 .flags = 1*SD_LOAD_BALANCE
5964 | 1*SD_BALANCE_NEWIDLE
5965 | 0*SD_BALANCE_EXEC
5966 | 0*SD_BALANCE_FORK
5967 | 0*SD_BALANCE_WAKE
5968 | 0*SD_WAKE_AFFINE
cb83b629 5969 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5970 | 0*SD_SHARE_PKG_RESOURCES
5971 | 1*SD_SERIALIZE
5972 | 0*SD_PREFER_SIBLING
3a7053b3 5973 | 1*SD_NUMA
cb83b629
PZ
5974 | sd_local_flags(level)
5975 ,
5976 .last_balance = jiffies,
5977 .balance_interval = sd_weight,
5978 };
5979 SD_INIT_NAME(sd, NUMA);
5980 sd->private = &tl->data;
5981
5982 /*
5983 * Ugly hack to pass state to sd_numa_mask()...
5984 */
5985 sched_domains_curr_level = tl->numa_level;
5986
5987 return sd;
5988}
5989
5990static const struct cpumask *sd_numa_mask(int cpu)
5991{
5992 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5993}
5994
d039ac60
PZ
5995static void sched_numa_warn(const char *str)
5996{
5997 static int done = false;
5998 int i,j;
5999
6000 if (done)
6001 return;
6002
6003 done = true;
6004
6005 printk(KERN_WARNING "ERROR: %s\n\n", str);
6006
6007 for (i = 0; i < nr_node_ids; i++) {
6008 printk(KERN_WARNING " ");
6009 for (j = 0; j < nr_node_ids; j++)
6010 printk(KERN_CONT "%02d ", node_distance(i,j));
6011 printk(KERN_CONT "\n");
6012 }
6013 printk(KERN_WARNING "\n");
6014}
6015
6016static bool find_numa_distance(int distance)
6017{
6018 int i;
6019
6020 if (distance == node_distance(0, 0))
6021 return true;
6022
6023 for (i = 0; i < sched_domains_numa_levels; i++) {
6024 if (sched_domains_numa_distance[i] == distance)
6025 return true;
6026 }
6027
6028 return false;
6029}
6030
cb83b629
PZ
6031static void sched_init_numa(void)
6032{
6033 int next_distance, curr_distance = node_distance(0, 0);
6034 struct sched_domain_topology_level *tl;
6035 int level = 0;
6036 int i, j, k;
6037
cb83b629
PZ
6038 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6039 if (!sched_domains_numa_distance)
6040 return;
6041
6042 /*
6043 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6044 * unique distances in the node_distance() table.
6045 *
6046 * Assumes node_distance(0,j) includes all distances in
6047 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6048 */
6049 next_distance = curr_distance;
6050 for (i = 0; i < nr_node_ids; i++) {
6051 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6052 for (k = 0; k < nr_node_ids; k++) {
6053 int distance = node_distance(i, k);
6054
6055 if (distance > curr_distance &&
6056 (distance < next_distance ||
6057 next_distance == curr_distance))
6058 next_distance = distance;
6059
6060 /*
6061 * While not a strong assumption it would be nice to know
6062 * about cases where if node A is connected to B, B is not
6063 * equally connected to A.
6064 */
6065 if (sched_debug() && node_distance(k, i) != distance)
6066 sched_numa_warn("Node-distance not symmetric");
6067
6068 if (sched_debug() && i && !find_numa_distance(distance))
6069 sched_numa_warn("Node-0 not representative");
6070 }
6071 if (next_distance != curr_distance) {
6072 sched_domains_numa_distance[level++] = next_distance;
6073 sched_domains_numa_levels = level;
6074 curr_distance = next_distance;
6075 } else break;
cb83b629 6076 }
d039ac60
PZ
6077
6078 /*
6079 * In case of sched_debug() we verify the above assumption.
6080 */
6081 if (!sched_debug())
6082 break;
cb83b629
PZ
6083 }
6084 /*
6085 * 'level' contains the number of unique distances, excluding the
6086 * identity distance node_distance(i,i).
6087 *
28b4a521 6088 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6089 * numbers.
6090 */
6091
5f7865f3
TC
6092 /*
6093 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6094 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6095 * the array will contain less then 'level' members. This could be
6096 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6097 * in other functions.
6098 *
6099 * We reset it to 'level' at the end of this function.
6100 */
6101 sched_domains_numa_levels = 0;
6102
cb83b629
PZ
6103 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6104 if (!sched_domains_numa_masks)
6105 return;
6106
6107 /*
6108 * Now for each level, construct a mask per node which contains all
6109 * cpus of nodes that are that many hops away from us.
6110 */
6111 for (i = 0; i < level; i++) {
6112 sched_domains_numa_masks[i] =
6113 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6114 if (!sched_domains_numa_masks[i])
6115 return;
6116
6117 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6118 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6119 if (!mask)
6120 return;
6121
6122 sched_domains_numa_masks[i][j] = mask;
6123
6124 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6125 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6126 continue;
6127
6128 cpumask_or(mask, mask, cpumask_of_node(k));
6129 }
6130 }
6131 }
6132
6133 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6134 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6135 if (!tl)
6136 return;
6137
6138 /*
6139 * Copy the default topology bits..
6140 */
6141 for (i = 0; default_topology[i].init; i++)
6142 tl[i] = default_topology[i];
6143
6144 /*
6145 * .. and append 'j' levels of NUMA goodness.
6146 */
6147 for (j = 0; j < level; i++, j++) {
6148 tl[i] = (struct sched_domain_topology_level){
6149 .init = sd_numa_init,
6150 .mask = sd_numa_mask,
6151 .flags = SDTL_OVERLAP,
6152 .numa_level = j,
6153 };
6154 }
6155
6156 sched_domain_topology = tl;
5f7865f3
TC
6157
6158 sched_domains_numa_levels = level;
cb83b629 6159}
301a5cba
TC
6160
6161static void sched_domains_numa_masks_set(int cpu)
6162{
6163 int i, j;
6164 int node = cpu_to_node(cpu);
6165
6166 for (i = 0; i < sched_domains_numa_levels; i++) {
6167 for (j = 0; j < nr_node_ids; j++) {
6168 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6169 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6170 }
6171 }
6172}
6173
6174static void sched_domains_numa_masks_clear(int cpu)
6175{
6176 int i, j;
6177 for (i = 0; i < sched_domains_numa_levels; i++) {
6178 for (j = 0; j < nr_node_ids; j++)
6179 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6180 }
6181}
6182
6183/*
6184 * Update sched_domains_numa_masks[level][node] array when new cpus
6185 * are onlined.
6186 */
6187static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6188 unsigned long action,
6189 void *hcpu)
6190{
6191 int cpu = (long)hcpu;
6192
6193 switch (action & ~CPU_TASKS_FROZEN) {
6194 case CPU_ONLINE:
6195 sched_domains_numa_masks_set(cpu);
6196 break;
6197
6198 case CPU_DEAD:
6199 sched_domains_numa_masks_clear(cpu);
6200 break;
6201
6202 default:
6203 return NOTIFY_DONE;
6204 }
6205
6206 return NOTIFY_OK;
cb83b629
PZ
6207}
6208#else
6209static inline void sched_init_numa(void)
6210{
6211}
301a5cba
TC
6212
6213static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6214 unsigned long action,
6215 void *hcpu)
6216{
6217 return 0;
6218}
cb83b629
PZ
6219#endif /* CONFIG_NUMA */
6220
54ab4ff4
PZ
6221static int __sdt_alloc(const struct cpumask *cpu_map)
6222{
6223 struct sched_domain_topology_level *tl;
6224 int j;
6225
27723a68 6226 for_each_sd_topology(tl) {
54ab4ff4
PZ
6227 struct sd_data *sdd = &tl->data;
6228
6229 sdd->sd = alloc_percpu(struct sched_domain *);
6230 if (!sdd->sd)
6231 return -ENOMEM;
6232
6233 sdd->sg = alloc_percpu(struct sched_group *);
6234 if (!sdd->sg)
6235 return -ENOMEM;
6236
9c3f75cb
PZ
6237 sdd->sgp = alloc_percpu(struct sched_group_power *);
6238 if (!sdd->sgp)
6239 return -ENOMEM;
6240
54ab4ff4
PZ
6241 for_each_cpu(j, cpu_map) {
6242 struct sched_domain *sd;
6243 struct sched_group *sg;
9c3f75cb 6244 struct sched_group_power *sgp;
54ab4ff4
PZ
6245
6246 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6247 GFP_KERNEL, cpu_to_node(j));
6248 if (!sd)
6249 return -ENOMEM;
6250
6251 *per_cpu_ptr(sdd->sd, j) = sd;
6252
6253 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6254 GFP_KERNEL, cpu_to_node(j));
6255 if (!sg)
6256 return -ENOMEM;
6257
30b4e9eb
IM
6258 sg->next = sg;
6259
54ab4ff4 6260 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6261
c1174876 6262 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6263 GFP_KERNEL, cpu_to_node(j));
6264 if (!sgp)
6265 return -ENOMEM;
6266
6267 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6268 }
6269 }
6270
6271 return 0;
6272}
6273
6274static void __sdt_free(const struct cpumask *cpu_map)
6275{
6276 struct sched_domain_topology_level *tl;
6277 int j;
6278
27723a68 6279 for_each_sd_topology(tl) {
54ab4ff4
PZ
6280 struct sd_data *sdd = &tl->data;
6281
6282 for_each_cpu(j, cpu_map) {
fb2cf2c6 6283 struct sched_domain *sd;
6284
6285 if (sdd->sd) {
6286 sd = *per_cpu_ptr(sdd->sd, j);
6287 if (sd && (sd->flags & SD_OVERLAP))
6288 free_sched_groups(sd->groups, 0);
6289 kfree(*per_cpu_ptr(sdd->sd, j));
6290 }
6291
6292 if (sdd->sg)
6293 kfree(*per_cpu_ptr(sdd->sg, j));
6294 if (sdd->sgp)
6295 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6296 }
6297 free_percpu(sdd->sd);
fb2cf2c6 6298 sdd->sd = NULL;
54ab4ff4 6299 free_percpu(sdd->sg);
fb2cf2c6 6300 sdd->sg = NULL;
9c3f75cb 6301 free_percpu(sdd->sgp);
fb2cf2c6 6302 sdd->sgp = NULL;
54ab4ff4
PZ
6303 }
6304}
6305
2c402dc3 6306struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6307 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6308 struct sched_domain *child, int cpu)
2c402dc3 6309{
54ab4ff4 6310 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6311 if (!sd)
d069b916 6312 return child;
2c402dc3 6313
2c402dc3 6314 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6315 if (child) {
6316 sd->level = child->level + 1;
6317 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6318 child->parent = sd;
c75e0128 6319 sd->child = child;
60495e77 6320 }
a841f8ce 6321 set_domain_attribute(sd, attr);
2c402dc3
PZ
6322
6323 return sd;
6324}
6325
2109b99e
AH
6326/*
6327 * Build sched domains for a given set of cpus and attach the sched domains
6328 * to the individual cpus
6329 */
dce840a0
PZ
6330static int build_sched_domains(const struct cpumask *cpu_map,
6331 struct sched_domain_attr *attr)
2109b99e 6332{
1c632169 6333 enum s_alloc alloc_state;
dce840a0 6334 struct sched_domain *sd;
2109b99e 6335 struct s_data d;
822ff793 6336 int i, ret = -ENOMEM;
9c1cfda2 6337
2109b99e
AH
6338 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6339 if (alloc_state != sa_rootdomain)
6340 goto error;
9c1cfda2 6341
dce840a0 6342 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6343 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6344 struct sched_domain_topology_level *tl;
6345
3bd65a80 6346 sd = NULL;
27723a68 6347 for_each_sd_topology(tl) {
4a850cbe 6348 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6349 if (tl == sched_domain_topology)
6350 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6351 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6352 sd->flags |= SD_OVERLAP;
d110235d
PZ
6353 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6354 break;
e3589f6c 6355 }
dce840a0
PZ
6356 }
6357
6358 /* Build the groups for the domains */
6359 for_each_cpu(i, cpu_map) {
6360 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6361 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6362 if (sd->flags & SD_OVERLAP) {
6363 if (build_overlap_sched_groups(sd, i))
6364 goto error;
6365 } else {
6366 if (build_sched_groups(sd, i))
6367 goto error;
6368 }
1cf51902 6369 }
a06dadbe 6370 }
9c1cfda2 6371
1da177e4 6372 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6373 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6374 if (!cpumask_test_cpu(i, cpu_map))
6375 continue;
9c1cfda2 6376
dce840a0
PZ
6377 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6378 claim_allocations(i, sd);
cd4ea6ae 6379 init_sched_groups_power(i, sd);
dce840a0 6380 }
f712c0c7 6381 }
9c1cfda2 6382
1da177e4 6383 /* Attach the domains */
dce840a0 6384 rcu_read_lock();
abcd083a 6385 for_each_cpu(i, cpu_map) {
21d42ccf 6386 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6387 cpu_attach_domain(sd, d.rd, i);
1da177e4 6388 }
dce840a0 6389 rcu_read_unlock();
51888ca2 6390
822ff793 6391 ret = 0;
51888ca2 6392error:
2109b99e 6393 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6394 return ret;
1da177e4 6395}
029190c5 6396
acc3f5d7 6397static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6398static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6399static struct sched_domain_attr *dattr_cur;
6400 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6401
6402/*
6403 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6404 * cpumask) fails, then fallback to a single sched domain,
6405 * as determined by the single cpumask fallback_doms.
029190c5 6406 */
4212823f 6407static cpumask_var_t fallback_doms;
029190c5 6408
ee79d1bd
HC
6409/*
6410 * arch_update_cpu_topology lets virtualized architectures update the
6411 * cpu core maps. It is supposed to return 1 if the topology changed
6412 * or 0 if it stayed the same.
6413 */
6414int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6415{
ee79d1bd 6416 return 0;
22e52b07
HC
6417}
6418
acc3f5d7
RR
6419cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6420{
6421 int i;
6422 cpumask_var_t *doms;
6423
6424 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6425 if (!doms)
6426 return NULL;
6427 for (i = 0; i < ndoms; i++) {
6428 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6429 free_sched_domains(doms, i);
6430 return NULL;
6431 }
6432 }
6433 return doms;
6434}
6435
6436void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6437{
6438 unsigned int i;
6439 for (i = 0; i < ndoms; i++)
6440 free_cpumask_var(doms[i]);
6441 kfree(doms);
6442}
6443
1a20ff27 6444/*
41a2d6cf 6445 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6446 * For now this just excludes isolated cpus, but could be used to
6447 * exclude other special cases in the future.
1a20ff27 6448 */
c4a8849a 6449static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6450{
7378547f
MM
6451 int err;
6452
22e52b07 6453 arch_update_cpu_topology();
029190c5 6454 ndoms_cur = 1;
acc3f5d7 6455 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6456 if (!doms_cur)
acc3f5d7
RR
6457 doms_cur = &fallback_doms;
6458 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6459 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6460 register_sched_domain_sysctl();
7378547f
MM
6461
6462 return err;
1a20ff27
DG
6463}
6464
1a20ff27
DG
6465/*
6466 * Detach sched domains from a group of cpus specified in cpu_map
6467 * These cpus will now be attached to the NULL domain
6468 */
96f874e2 6469static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6470{
6471 int i;
6472
dce840a0 6473 rcu_read_lock();
abcd083a 6474 for_each_cpu(i, cpu_map)
57d885fe 6475 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6476 rcu_read_unlock();
1a20ff27
DG
6477}
6478
1d3504fc
HS
6479/* handle null as "default" */
6480static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6481 struct sched_domain_attr *new, int idx_new)
6482{
6483 struct sched_domain_attr tmp;
6484
6485 /* fast path */
6486 if (!new && !cur)
6487 return 1;
6488
6489 tmp = SD_ATTR_INIT;
6490 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6491 new ? (new + idx_new) : &tmp,
6492 sizeof(struct sched_domain_attr));
6493}
6494
029190c5
PJ
6495/*
6496 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6497 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6498 * doms_new[] to the current sched domain partitioning, doms_cur[].
6499 * It destroys each deleted domain and builds each new domain.
6500 *
acc3f5d7 6501 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6502 * The masks don't intersect (don't overlap.) We should setup one
6503 * sched domain for each mask. CPUs not in any of the cpumasks will
6504 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6505 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6506 * it as it is.
6507 *
acc3f5d7
RR
6508 * The passed in 'doms_new' should be allocated using
6509 * alloc_sched_domains. This routine takes ownership of it and will
6510 * free_sched_domains it when done with it. If the caller failed the
6511 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6512 * and partition_sched_domains() will fallback to the single partition
6513 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6514 *
96f874e2 6515 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6516 * ndoms_new == 0 is a special case for destroying existing domains,
6517 * and it will not create the default domain.
dfb512ec 6518 *
029190c5
PJ
6519 * Call with hotplug lock held
6520 */
acc3f5d7 6521void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6522 struct sched_domain_attr *dattr_new)
029190c5 6523{
dfb512ec 6524 int i, j, n;
d65bd5ec 6525 int new_topology;
029190c5 6526
712555ee 6527 mutex_lock(&sched_domains_mutex);
a1835615 6528
7378547f
MM
6529 /* always unregister in case we don't destroy any domains */
6530 unregister_sched_domain_sysctl();
6531
d65bd5ec
HC
6532 /* Let architecture update cpu core mappings. */
6533 new_topology = arch_update_cpu_topology();
6534
dfb512ec 6535 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6536
6537 /* Destroy deleted domains */
6538 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6539 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6540 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6541 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6542 goto match1;
6543 }
6544 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6545 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6546match1:
6547 ;
6548 }
6549
c8d2d47a 6550 n = ndoms_cur;
e761b772 6551 if (doms_new == NULL) {
c8d2d47a 6552 n = 0;
acc3f5d7 6553 doms_new = &fallback_doms;
6ad4c188 6554 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6555 WARN_ON_ONCE(dattr_new);
e761b772
MK
6556 }
6557
029190c5
PJ
6558 /* Build new domains */
6559 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6560 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6561 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6562 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6563 goto match2;
6564 }
6565 /* no match - add a new doms_new */
dce840a0 6566 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6567match2:
6568 ;
6569 }
6570
6571 /* Remember the new sched domains */
acc3f5d7
RR
6572 if (doms_cur != &fallback_doms)
6573 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6574 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6575 doms_cur = doms_new;
1d3504fc 6576 dattr_cur = dattr_new;
029190c5 6577 ndoms_cur = ndoms_new;
7378547f
MM
6578
6579 register_sched_domain_sysctl();
a1835615 6580
712555ee 6581 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6582}
6583
d35be8ba
SB
6584static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6585
1da177e4 6586/*
3a101d05
TH
6587 * Update cpusets according to cpu_active mask. If cpusets are
6588 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6589 * around partition_sched_domains().
d35be8ba
SB
6590 *
6591 * If we come here as part of a suspend/resume, don't touch cpusets because we
6592 * want to restore it back to its original state upon resume anyway.
1da177e4 6593 */
0b2e918a
TH
6594static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6595 void *hcpu)
e761b772 6596{
d35be8ba
SB
6597 switch (action) {
6598 case CPU_ONLINE_FROZEN:
6599 case CPU_DOWN_FAILED_FROZEN:
6600
6601 /*
6602 * num_cpus_frozen tracks how many CPUs are involved in suspend
6603 * resume sequence. As long as this is not the last online
6604 * operation in the resume sequence, just build a single sched
6605 * domain, ignoring cpusets.
6606 */
6607 num_cpus_frozen--;
6608 if (likely(num_cpus_frozen)) {
6609 partition_sched_domains(1, NULL, NULL);
6610 break;
6611 }
6612
6613 /*
6614 * This is the last CPU online operation. So fall through and
6615 * restore the original sched domains by considering the
6616 * cpuset configurations.
6617 */
6618
e761b772 6619 case CPU_ONLINE:
6ad4c188 6620 case CPU_DOWN_FAILED:
7ddf96b0 6621 cpuset_update_active_cpus(true);
d35be8ba 6622 break;
3a101d05
TH
6623 default:
6624 return NOTIFY_DONE;
6625 }
d35be8ba 6626 return NOTIFY_OK;
3a101d05 6627}
e761b772 6628
0b2e918a
TH
6629static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6630 void *hcpu)
3a101d05 6631{
d35be8ba 6632 switch (action) {
3a101d05 6633 case CPU_DOWN_PREPARE:
7ddf96b0 6634 cpuset_update_active_cpus(false);
d35be8ba
SB
6635 break;
6636 case CPU_DOWN_PREPARE_FROZEN:
6637 num_cpus_frozen++;
6638 partition_sched_domains(1, NULL, NULL);
6639 break;
e761b772
MK
6640 default:
6641 return NOTIFY_DONE;
6642 }
d35be8ba 6643 return NOTIFY_OK;
e761b772 6644}
e761b772 6645
1da177e4
LT
6646void __init sched_init_smp(void)
6647{
dcc30a35
RR
6648 cpumask_var_t non_isolated_cpus;
6649
6650 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6651 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6652
cb83b629
PZ
6653 sched_init_numa();
6654
6acce3ef
PZ
6655 /*
6656 * There's no userspace yet to cause hotplug operations; hence all the
6657 * cpu masks are stable and all blatant races in the below code cannot
6658 * happen.
6659 */
712555ee 6660 mutex_lock(&sched_domains_mutex);
c4a8849a 6661 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6662 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6663 if (cpumask_empty(non_isolated_cpus))
6664 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6665 mutex_unlock(&sched_domains_mutex);
e761b772 6666
301a5cba 6667 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6668 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6669 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6670
b328ca18 6671 init_hrtick();
5c1e1767
NP
6672
6673 /* Move init over to a non-isolated CPU */
dcc30a35 6674 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6675 BUG();
19978ca6 6676 sched_init_granularity();
dcc30a35 6677 free_cpumask_var(non_isolated_cpus);
4212823f 6678
0e3900e6 6679 init_sched_rt_class();
1baca4ce 6680 init_sched_dl_class();
1da177e4
LT
6681}
6682#else
6683void __init sched_init_smp(void)
6684{
19978ca6 6685 sched_init_granularity();
1da177e4
LT
6686}
6687#endif /* CONFIG_SMP */
6688
cd1bb94b
AB
6689const_debug unsigned int sysctl_timer_migration = 1;
6690
1da177e4
LT
6691int in_sched_functions(unsigned long addr)
6692{
1da177e4
LT
6693 return in_lock_functions(addr) ||
6694 (addr >= (unsigned long)__sched_text_start
6695 && addr < (unsigned long)__sched_text_end);
6696}
6697
029632fb 6698#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6699/*
6700 * Default task group.
6701 * Every task in system belongs to this group at bootup.
6702 */
029632fb 6703struct task_group root_task_group;
35cf4e50 6704LIST_HEAD(task_groups);
052f1dc7 6705#endif
6f505b16 6706
e6252c3e 6707DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6708
1da177e4
LT
6709void __init sched_init(void)
6710{
dd41f596 6711 int i, j;
434d53b0
MT
6712 unsigned long alloc_size = 0, ptr;
6713
6714#ifdef CONFIG_FAIR_GROUP_SCHED
6715 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6716#endif
6717#ifdef CONFIG_RT_GROUP_SCHED
6718 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6719#endif
df7c8e84 6720#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6721 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6722#endif
434d53b0 6723 if (alloc_size) {
36b7b6d4 6724 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6725
6726#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6727 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6728 ptr += nr_cpu_ids * sizeof(void **);
6729
07e06b01 6730 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6731 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6732
6d6bc0ad 6733#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6734#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6735 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6736 ptr += nr_cpu_ids * sizeof(void **);
6737
07e06b01 6738 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6739 ptr += nr_cpu_ids * sizeof(void **);
6740
6d6bc0ad 6741#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6742#ifdef CONFIG_CPUMASK_OFFSTACK
6743 for_each_possible_cpu(i) {
e6252c3e 6744 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6745 ptr += cpumask_size();
6746 }
6747#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6748 }
dd41f596 6749
332ac17e
DF
6750 init_rt_bandwidth(&def_rt_bandwidth,
6751 global_rt_period(), global_rt_runtime());
6752 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6753 global_rt_period(), global_rt_runtime());
332ac17e 6754
57d885fe
GH
6755#ifdef CONFIG_SMP
6756 init_defrootdomain();
6757#endif
6758
d0b27fa7 6759#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6760 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6761 global_rt_period(), global_rt_runtime());
6d6bc0ad 6762#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6763
7c941438 6764#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6765 list_add(&root_task_group.list, &task_groups);
6766 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6767 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6768 autogroup_init(&init_task);
54c707e9 6769
7c941438 6770#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6771
0a945022 6772 for_each_possible_cpu(i) {
70b97a7f 6773 struct rq *rq;
1da177e4
LT
6774
6775 rq = cpu_rq(i);
05fa785c 6776 raw_spin_lock_init(&rq->lock);
7897986b 6777 rq->nr_running = 0;
dce48a84
TG
6778 rq->calc_load_active = 0;
6779 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6780 init_cfs_rq(&rq->cfs);
6f505b16 6781 init_rt_rq(&rq->rt, rq);
aab03e05 6782 init_dl_rq(&rq->dl, rq);
dd41f596 6783#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6784 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6785 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6786 /*
07e06b01 6787 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6788 *
6789 * In case of task-groups formed thr' the cgroup filesystem, it
6790 * gets 100% of the cpu resources in the system. This overall
6791 * system cpu resource is divided among the tasks of
07e06b01 6792 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6793 * based on each entity's (task or task-group's) weight
6794 * (se->load.weight).
6795 *
07e06b01 6796 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6797 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6798 * then A0's share of the cpu resource is:
6799 *
0d905bca 6800 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6801 *
07e06b01
YZ
6802 * We achieve this by letting root_task_group's tasks sit
6803 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6804 */
ab84d31e 6805 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6806 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6807#endif /* CONFIG_FAIR_GROUP_SCHED */
6808
6809 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6810#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6811 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6812 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6813#endif
1da177e4 6814
dd41f596
IM
6815 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6816 rq->cpu_load[j] = 0;
fdf3e95d
VP
6817
6818 rq->last_load_update_tick = jiffies;
6819
1da177e4 6820#ifdef CONFIG_SMP
41c7ce9a 6821 rq->sd = NULL;
57d885fe 6822 rq->rd = NULL;
1399fa78 6823 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6824 rq->post_schedule = 0;
1da177e4 6825 rq->active_balance = 0;
dd41f596 6826 rq->next_balance = jiffies;
1da177e4 6827 rq->push_cpu = 0;
0a2966b4 6828 rq->cpu = i;
1f11eb6a 6829 rq->online = 0;
eae0c9df
MG
6830 rq->idle_stamp = 0;
6831 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6832 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6833
6834 INIT_LIST_HEAD(&rq->cfs_tasks);
6835
dc938520 6836 rq_attach_root(rq, &def_root_domain);
3451d024 6837#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6838 rq->nohz_flags = 0;
83cd4fe2 6839#endif
265f22a9
FW
6840#ifdef CONFIG_NO_HZ_FULL
6841 rq->last_sched_tick = 0;
6842#endif
1da177e4 6843#endif
8f4d37ec 6844 init_rq_hrtick(rq);
1da177e4 6845 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6846 }
6847
2dd73a4f 6848 set_load_weight(&init_task);
b50f60ce 6849
e107be36
AK
6850#ifdef CONFIG_PREEMPT_NOTIFIERS
6851 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6852#endif
6853
1da177e4
LT
6854 /*
6855 * The boot idle thread does lazy MMU switching as well:
6856 */
6857 atomic_inc(&init_mm.mm_count);
6858 enter_lazy_tlb(&init_mm, current);
6859
6860 /*
6861 * Make us the idle thread. Technically, schedule() should not be
6862 * called from this thread, however somewhere below it might be,
6863 * but because we are the idle thread, we just pick up running again
6864 * when this runqueue becomes "idle".
6865 */
6866 init_idle(current, smp_processor_id());
dce48a84
TG
6867
6868 calc_load_update = jiffies + LOAD_FREQ;
6869
dd41f596
IM
6870 /*
6871 * During early bootup we pretend to be a normal task:
6872 */
6873 current->sched_class = &fair_sched_class;
6892b75e 6874
bf4d83f6 6875#ifdef CONFIG_SMP
4cb98839 6876 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6877 /* May be allocated at isolcpus cmdline parse time */
6878 if (cpu_isolated_map == NULL)
6879 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6880 idle_thread_set_boot_cpu();
029632fb
PZ
6881#endif
6882 init_sched_fair_class();
6a7b3dc3 6883
6892b75e 6884 scheduler_running = 1;
1da177e4
LT
6885}
6886
d902db1e 6887#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6888static inline int preempt_count_equals(int preempt_offset)
6889{
234da7bc 6890 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6891
4ba8216c 6892 return (nested == preempt_offset);
e4aafea2
FW
6893}
6894
d894837f 6895void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6896{
1da177e4
LT
6897 static unsigned long prev_jiffy; /* ratelimiting */
6898
b3fbab05 6899 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6900 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6901 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6902 return;
6903 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6904 return;
6905 prev_jiffy = jiffies;
6906
3df0fc5b
PZ
6907 printk(KERN_ERR
6908 "BUG: sleeping function called from invalid context at %s:%d\n",
6909 file, line);
6910 printk(KERN_ERR
6911 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6912 in_atomic(), irqs_disabled(),
6913 current->pid, current->comm);
aef745fc
IM
6914
6915 debug_show_held_locks(current);
6916 if (irqs_disabled())
6917 print_irqtrace_events(current);
6918 dump_stack();
1da177e4
LT
6919}
6920EXPORT_SYMBOL(__might_sleep);
6921#endif
6922
6923#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6924static void normalize_task(struct rq *rq, struct task_struct *p)
6925{
da7a735e 6926 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6927 struct sched_attr attr = {
6928 .sched_policy = SCHED_NORMAL,
6929 };
da7a735e 6930 int old_prio = p->prio;
3a5e4dc1 6931 int on_rq;
3e51f33f 6932
fd2f4419 6933 on_rq = p->on_rq;
3a5e4dc1 6934 if (on_rq)
4ca9b72b 6935 dequeue_task(rq, p, 0);
d50dde5a 6936 __setscheduler(rq, p, &attr);
3a5e4dc1 6937 if (on_rq) {
4ca9b72b 6938 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6939 resched_task(rq->curr);
6940 }
da7a735e
PZ
6941
6942 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6943}
6944
1da177e4
LT
6945void normalize_rt_tasks(void)
6946{
a0f98a1c 6947 struct task_struct *g, *p;
1da177e4 6948 unsigned long flags;
70b97a7f 6949 struct rq *rq;
1da177e4 6950
4cf5d77a 6951 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6952 do_each_thread(g, p) {
178be793
IM
6953 /*
6954 * Only normalize user tasks:
6955 */
6956 if (!p->mm)
6957 continue;
6958
6cfb0d5d 6959 p->se.exec_start = 0;
6cfb0d5d 6960#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6961 p->se.statistics.wait_start = 0;
6962 p->se.statistics.sleep_start = 0;
6963 p->se.statistics.block_start = 0;
6cfb0d5d 6964#endif
dd41f596 6965
aab03e05 6966 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6967 /*
6968 * Renice negative nice level userspace
6969 * tasks back to 0:
6970 */
6971 if (TASK_NICE(p) < 0 && p->mm)
6972 set_user_nice(p, 0);
1da177e4 6973 continue;
dd41f596 6974 }
1da177e4 6975
1d615482 6976 raw_spin_lock(&p->pi_lock);
b29739f9 6977 rq = __task_rq_lock(p);
1da177e4 6978
178be793 6979 normalize_task(rq, p);
3a5e4dc1 6980
b29739f9 6981 __task_rq_unlock(rq);
1d615482 6982 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6983 } while_each_thread(g, p);
6984
4cf5d77a 6985 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6986}
6987
6988#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6989
67fc4e0c 6990#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6991/*
67fc4e0c 6992 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6993 *
6994 * They can only be called when the whole system has been
6995 * stopped - every CPU needs to be quiescent, and no scheduling
6996 * activity can take place. Using them for anything else would
6997 * be a serious bug, and as a result, they aren't even visible
6998 * under any other configuration.
6999 */
7000
7001/**
7002 * curr_task - return the current task for a given cpu.
7003 * @cpu: the processor in question.
7004 *
7005 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7006 *
7007 * Return: The current task for @cpu.
1df5c10a 7008 */
36c8b586 7009struct task_struct *curr_task(int cpu)
1df5c10a
LT
7010{
7011 return cpu_curr(cpu);
7012}
7013
67fc4e0c
JW
7014#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7015
7016#ifdef CONFIG_IA64
1df5c10a
LT
7017/**
7018 * set_curr_task - set the current task for a given cpu.
7019 * @cpu: the processor in question.
7020 * @p: the task pointer to set.
7021 *
7022 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7023 * are serviced on a separate stack. It allows the architecture to switch the
7024 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7025 * must be called with all CPU's synchronized, and interrupts disabled, the
7026 * and caller must save the original value of the current task (see
7027 * curr_task() above) and restore that value before reenabling interrupts and
7028 * re-starting the system.
7029 *
7030 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7031 */
36c8b586 7032void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7033{
7034 cpu_curr(cpu) = p;
7035}
7036
7037#endif
29f59db3 7038
7c941438 7039#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7040/* task_group_lock serializes the addition/removal of task groups */
7041static DEFINE_SPINLOCK(task_group_lock);
7042
bccbe08a
PZ
7043static void free_sched_group(struct task_group *tg)
7044{
7045 free_fair_sched_group(tg);
7046 free_rt_sched_group(tg);
e9aa1dd1 7047 autogroup_free(tg);
bccbe08a
PZ
7048 kfree(tg);
7049}
7050
7051/* allocate runqueue etc for a new task group */
ec7dc8ac 7052struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7053{
7054 struct task_group *tg;
bccbe08a
PZ
7055
7056 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7057 if (!tg)
7058 return ERR_PTR(-ENOMEM);
7059
ec7dc8ac 7060 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7061 goto err;
7062
ec7dc8ac 7063 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7064 goto err;
7065
ace783b9
LZ
7066 return tg;
7067
7068err:
7069 free_sched_group(tg);
7070 return ERR_PTR(-ENOMEM);
7071}
7072
7073void sched_online_group(struct task_group *tg, struct task_group *parent)
7074{
7075 unsigned long flags;
7076
8ed36996 7077 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7078 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7079
7080 WARN_ON(!parent); /* root should already exist */
7081
7082 tg->parent = parent;
f473aa5e 7083 INIT_LIST_HEAD(&tg->children);
09f2724a 7084 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7085 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7086}
7087
9b5b7751 7088/* rcu callback to free various structures associated with a task group */
6f505b16 7089static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7090{
29f59db3 7091 /* now it should be safe to free those cfs_rqs */
6f505b16 7092 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7093}
7094
9b5b7751 7095/* Destroy runqueue etc associated with a task group */
4cf86d77 7096void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7097{
7098 /* wait for possible concurrent references to cfs_rqs complete */
7099 call_rcu(&tg->rcu, free_sched_group_rcu);
7100}
7101
7102void sched_offline_group(struct task_group *tg)
29f59db3 7103{
8ed36996 7104 unsigned long flags;
9b5b7751 7105 int i;
29f59db3 7106
3d4b47b4
PZ
7107 /* end participation in shares distribution */
7108 for_each_possible_cpu(i)
bccbe08a 7109 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7110
7111 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7112 list_del_rcu(&tg->list);
f473aa5e 7113 list_del_rcu(&tg->siblings);
8ed36996 7114 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7115}
7116
9b5b7751 7117/* change task's runqueue when it moves between groups.
3a252015
IM
7118 * The caller of this function should have put the task in its new group
7119 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7120 * reflect its new group.
9b5b7751
SV
7121 */
7122void sched_move_task(struct task_struct *tsk)
29f59db3 7123{
8323f26c 7124 struct task_group *tg;
29f59db3
SV
7125 int on_rq, running;
7126 unsigned long flags;
7127 struct rq *rq;
7128
7129 rq = task_rq_lock(tsk, &flags);
7130
051a1d1a 7131 running = task_current(rq, tsk);
fd2f4419 7132 on_rq = tsk->on_rq;
29f59db3 7133
0e1f3483 7134 if (on_rq)
29f59db3 7135 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7136 if (unlikely(running))
7137 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7138
8af01f56 7139 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7140 lockdep_is_held(&tsk->sighand->siglock)),
7141 struct task_group, css);
7142 tg = autogroup_task_group(tsk, tg);
7143 tsk->sched_task_group = tg;
7144
810b3817 7145#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7146 if (tsk->sched_class->task_move_group)
7147 tsk->sched_class->task_move_group(tsk, on_rq);
7148 else
810b3817 7149#endif
b2b5ce02 7150 set_task_rq(tsk, task_cpu(tsk));
810b3817 7151
0e1f3483
HS
7152 if (unlikely(running))
7153 tsk->sched_class->set_curr_task(rq);
7154 if (on_rq)
371fd7e7 7155 enqueue_task(rq, tsk, 0);
29f59db3 7156
0122ec5b 7157 task_rq_unlock(rq, tsk, &flags);
29f59db3 7158}
7c941438 7159#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7160
a790de99
PT
7161#ifdef CONFIG_RT_GROUP_SCHED
7162/*
7163 * Ensure that the real time constraints are schedulable.
7164 */
7165static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7166
9a7e0b18
PZ
7167/* Must be called with tasklist_lock held */
7168static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7169{
9a7e0b18 7170 struct task_struct *g, *p;
b40b2e8e 7171
9a7e0b18 7172 do_each_thread(g, p) {
029632fb 7173 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7174 return 1;
7175 } while_each_thread(g, p);
b40b2e8e 7176
9a7e0b18
PZ
7177 return 0;
7178}
b40b2e8e 7179
9a7e0b18
PZ
7180struct rt_schedulable_data {
7181 struct task_group *tg;
7182 u64 rt_period;
7183 u64 rt_runtime;
7184};
b40b2e8e 7185
a790de99 7186static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7187{
7188 struct rt_schedulable_data *d = data;
7189 struct task_group *child;
7190 unsigned long total, sum = 0;
7191 u64 period, runtime;
b40b2e8e 7192
9a7e0b18
PZ
7193 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7194 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7195
9a7e0b18
PZ
7196 if (tg == d->tg) {
7197 period = d->rt_period;
7198 runtime = d->rt_runtime;
b40b2e8e 7199 }
b40b2e8e 7200
4653f803
PZ
7201 /*
7202 * Cannot have more runtime than the period.
7203 */
7204 if (runtime > period && runtime != RUNTIME_INF)
7205 return -EINVAL;
6f505b16 7206
4653f803
PZ
7207 /*
7208 * Ensure we don't starve existing RT tasks.
7209 */
9a7e0b18
PZ
7210 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7211 return -EBUSY;
6f505b16 7212
9a7e0b18 7213 total = to_ratio(period, runtime);
6f505b16 7214
4653f803
PZ
7215 /*
7216 * Nobody can have more than the global setting allows.
7217 */
7218 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7219 return -EINVAL;
6f505b16 7220
4653f803
PZ
7221 /*
7222 * The sum of our children's runtime should not exceed our own.
7223 */
9a7e0b18
PZ
7224 list_for_each_entry_rcu(child, &tg->children, siblings) {
7225 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7226 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7227
9a7e0b18
PZ
7228 if (child == d->tg) {
7229 period = d->rt_period;
7230 runtime = d->rt_runtime;
7231 }
6f505b16 7232
9a7e0b18 7233 sum += to_ratio(period, runtime);
9f0c1e56 7234 }
6f505b16 7235
9a7e0b18
PZ
7236 if (sum > total)
7237 return -EINVAL;
7238
7239 return 0;
6f505b16
PZ
7240}
7241
9a7e0b18 7242static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7243{
8277434e
PT
7244 int ret;
7245
9a7e0b18
PZ
7246 struct rt_schedulable_data data = {
7247 .tg = tg,
7248 .rt_period = period,
7249 .rt_runtime = runtime,
7250 };
7251
8277434e
PT
7252 rcu_read_lock();
7253 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7254 rcu_read_unlock();
7255
7256 return ret;
521f1a24
DG
7257}
7258
ab84d31e 7259static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7260 u64 rt_period, u64 rt_runtime)
6f505b16 7261{
ac086bc2 7262 int i, err = 0;
9f0c1e56 7263
9f0c1e56 7264 mutex_lock(&rt_constraints_mutex);
521f1a24 7265 read_lock(&tasklist_lock);
9a7e0b18
PZ
7266 err = __rt_schedulable(tg, rt_period, rt_runtime);
7267 if (err)
9f0c1e56 7268 goto unlock;
ac086bc2 7269
0986b11b 7270 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7271 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7272 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7273
7274 for_each_possible_cpu(i) {
7275 struct rt_rq *rt_rq = tg->rt_rq[i];
7276
0986b11b 7277 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7278 rt_rq->rt_runtime = rt_runtime;
0986b11b 7279 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7280 }
0986b11b 7281 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7282unlock:
521f1a24 7283 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7284 mutex_unlock(&rt_constraints_mutex);
7285
7286 return err;
6f505b16
PZ
7287}
7288
25cc7da7 7289static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7290{
7291 u64 rt_runtime, rt_period;
7292
7293 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7294 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7295 if (rt_runtime_us < 0)
7296 rt_runtime = RUNTIME_INF;
7297
ab84d31e 7298 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7299}
7300
25cc7da7 7301static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7302{
7303 u64 rt_runtime_us;
7304
d0b27fa7 7305 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7306 return -1;
7307
d0b27fa7 7308 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7309 do_div(rt_runtime_us, NSEC_PER_USEC);
7310 return rt_runtime_us;
7311}
d0b27fa7 7312
25cc7da7 7313static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7314{
7315 u64 rt_runtime, rt_period;
7316
7317 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7318 rt_runtime = tg->rt_bandwidth.rt_runtime;
7319
619b0488
R
7320 if (rt_period == 0)
7321 return -EINVAL;
7322
ab84d31e 7323 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7324}
7325
25cc7da7 7326static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7327{
7328 u64 rt_period_us;
7329
7330 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7331 do_div(rt_period_us, NSEC_PER_USEC);
7332 return rt_period_us;
7333}
332ac17e 7334#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7335
332ac17e 7336#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7337static int sched_rt_global_constraints(void)
7338{
7339 int ret = 0;
7340
7341 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7342 read_lock(&tasklist_lock);
4653f803 7343 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7344 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7345 mutex_unlock(&rt_constraints_mutex);
7346
7347 return ret;
7348}
54e99124 7349
25cc7da7 7350static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7351{
7352 /* Don't accept realtime tasks when there is no way for them to run */
7353 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7354 return 0;
7355
7356 return 1;
7357}
7358
6d6bc0ad 7359#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7360static int sched_rt_global_constraints(void)
7361{
ac086bc2 7362 unsigned long flags;
332ac17e 7363 int i, ret = 0;
ec5d4989 7364
0986b11b 7365 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7366 for_each_possible_cpu(i) {
7367 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7368
0986b11b 7369 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7370 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7371 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7372 }
0986b11b 7373 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7374
332ac17e 7375 return ret;
d0b27fa7 7376}
6d6bc0ad 7377#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7378
332ac17e
DF
7379static int sched_dl_global_constraints(void)
7380{
1724813d
PZ
7381 u64 runtime = global_rt_runtime();
7382 u64 period = global_rt_period();
332ac17e 7383 u64 new_bw = to_ratio(period, runtime);
1724813d 7384 int cpu, ret = 0;
332ac17e
DF
7385
7386 /*
7387 * Here we want to check the bandwidth not being set to some
7388 * value smaller than the currently allocated bandwidth in
7389 * any of the root_domains.
7390 *
7391 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7392 * cycling on root_domains... Discussion on different/better
7393 * solutions is welcome!
7394 */
1724813d
PZ
7395 for_each_possible_cpu(cpu) {
7396 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e
DF
7397
7398 raw_spin_lock(&dl_b->lock);
1724813d
PZ
7399 if (new_bw < dl_b->total_bw)
7400 ret = -EBUSY;
332ac17e 7401 raw_spin_unlock(&dl_b->lock);
1724813d
PZ
7402
7403 if (ret)
7404 break;
332ac17e
DF
7405 }
7406
1724813d 7407 return ret;
332ac17e
DF
7408}
7409
1724813d 7410static void sched_dl_do_global(void)
ce0dbbbb 7411{
1724813d
PZ
7412 u64 new_bw = -1;
7413 int cpu;
ce0dbbbb 7414
1724813d
PZ
7415 def_dl_bandwidth.dl_period = global_rt_period();
7416 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7417
7418 if (global_rt_runtime() != RUNTIME_INF)
7419 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7420
7421 /*
7422 * FIXME: As above...
7423 */
7424 for_each_possible_cpu(cpu) {
7425 struct dl_bw *dl_b = dl_bw_of(cpu);
7426
7427 raw_spin_lock(&dl_b->lock);
7428 dl_b->bw = new_bw;
7429 raw_spin_unlock(&dl_b->lock);
ce0dbbbb 7430 }
1724813d
PZ
7431}
7432
7433static int sched_rt_global_validate(void)
7434{
7435 if (sysctl_sched_rt_period <= 0)
7436 return -EINVAL;
7437
7438 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7439 return -EINVAL;
7440
7441 return 0;
7442}
7443
7444static void sched_rt_do_global(void)
7445{
7446 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7447 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7448}
7449
d0b27fa7 7450int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7451 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7452 loff_t *ppos)
7453{
d0b27fa7
PZ
7454 int old_period, old_runtime;
7455 static DEFINE_MUTEX(mutex);
1724813d 7456 int ret;
d0b27fa7
PZ
7457
7458 mutex_lock(&mutex);
7459 old_period = sysctl_sched_rt_period;
7460 old_runtime = sysctl_sched_rt_runtime;
7461
8d65af78 7462 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7463
7464 if (!ret && write) {
1724813d
PZ
7465 ret = sched_rt_global_validate();
7466 if (ret)
7467 goto undo;
7468
d0b27fa7 7469 ret = sched_rt_global_constraints();
1724813d
PZ
7470 if (ret)
7471 goto undo;
7472
7473 ret = sched_dl_global_constraints();
7474 if (ret)
7475 goto undo;
7476
7477 sched_rt_do_global();
7478 sched_dl_do_global();
7479 }
7480 if (0) {
7481undo:
7482 sysctl_sched_rt_period = old_period;
7483 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7484 }
7485 mutex_unlock(&mutex);
7486
7487 return ret;
7488}
68318b8e 7489
1724813d 7490int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7491 void __user *buffer, size_t *lenp,
7492 loff_t *ppos)
7493{
7494 int ret;
332ac17e 7495 static DEFINE_MUTEX(mutex);
332ac17e
DF
7496
7497 mutex_lock(&mutex);
332ac17e 7498 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7499 /* make sure that internally we keep jiffies */
7500 /* also, writing zero resets timeslice to default */
332ac17e 7501 if (!ret && write) {
1724813d
PZ
7502 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7503 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7504 }
7505 mutex_unlock(&mutex);
332ac17e
DF
7506 return ret;
7507}
7508
052f1dc7 7509#ifdef CONFIG_CGROUP_SCHED
68318b8e 7510
a7c6d554 7511static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7512{
a7c6d554 7513 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7514}
7515
eb95419b
TH
7516static struct cgroup_subsys_state *
7517cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7518{
eb95419b
TH
7519 struct task_group *parent = css_tg(parent_css);
7520 struct task_group *tg;
68318b8e 7521
eb95419b 7522 if (!parent) {
68318b8e 7523 /* This is early initialization for the top cgroup */
07e06b01 7524 return &root_task_group.css;
68318b8e
SV
7525 }
7526
ec7dc8ac 7527 tg = sched_create_group(parent);
68318b8e
SV
7528 if (IS_ERR(tg))
7529 return ERR_PTR(-ENOMEM);
7530
68318b8e
SV
7531 return &tg->css;
7532}
7533
eb95419b 7534static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7535{
eb95419b
TH
7536 struct task_group *tg = css_tg(css);
7537 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7538
63876986
TH
7539 if (parent)
7540 sched_online_group(tg, parent);
ace783b9
LZ
7541 return 0;
7542}
7543
eb95419b 7544static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7545{
eb95419b 7546 struct task_group *tg = css_tg(css);
68318b8e
SV
7547
7548 sched_destroy_group(tg);
7549}
7550
eb95419b 7551static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7552{
eb95419b 7553 struct task_group *tg = css_tg(css);
ace783b9
LZ
7554
7555 sched_offline_group(tg);
7556}
7557
eb95419b 7558static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7559 struct cgroup_taskset *tset)
68318b8e 7560{
bb9d97b6
TH
7561 struct task_struct *task;
7562
d99c8727 7563 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7564#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7565 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7566 return -EINVAL;
b68aa230 7567#else
bb9d97b6
TH
7568 /* We don't support RT-tasks being in separate groups */
7569 if (task->sched_class != &fair_sched_class)
7570 return -EINVAL;
b68aa230 7571#endif
bb9d97b6 7572 }
be367d09
BB
7573 return 0;
7574}
68318b8e 7575
eb95419b 7576static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7577 struct cgroup_taskset *tset)
68318b8e 7578{
bb9d97b6
TH
7579 struct task_struct *task;
7580
d99c8727 7581 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7582 sched_move_task(task);
68318b8e
SV
7583}
7584
eb95419b
TH
7585static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7586 struct cgroup_subsys_state *old_css,
7587 struct task_struct *task)
068c5cc5
PZ
7588{
7589 /*
7590 * cgroup_exit() is called in the copy_process() failure path.
7591 * Ignore this case since the task hasn't ran yet, this avoids
7592 * trying to poke a half freed task state from generic code.
7593 */
7594 if (!(task->flags & PF_EXITING))
7595 return;
7596
7597 sched_move_task(task);
7598}
7599
052f1dc7 7600#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7601static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7602 struct cftype *cftype, u64 shareval)
68318b8e 7603{
182446d0 7604 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7605}
7606
182446d0
TH
7607static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7608 struct cftype *cft)
68318b8e 7609{
182446d0 7610 struct task_group *tg = css_tg(css);
68318b8e 7611
c8b28116 7612 return (u64) scale_load_down(tg->shares);
68318b8e 7613}
ab84d31e
PT
7614
7615#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7616static DEFINE_MUTEX(cfs_constraints_mutex);
7617
ab84d31e
PT
7618const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7619const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7620
a790de99
PT
7621static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7622
ab84d31e
PT
7623static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7624{
56f570e5 7625 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7626 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7627
7628 if (tg == &root_task_group)
7629 return -EINVAL;
7630
7631 /*
7632 * Ensure we have at some amount of bandwidth every period. This is
7633 * to prevent reaching a state of large arrears when throttled via
7634 * entity_tick() resulting in prolonged exit starvation.
7635 */
7636 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7637 return -EINVAL;
7638
7639 /*
7640 * Likewise, bound things on the otherside by preventing insane quota
7641 * periods. This also allows us to normalize in computing quota
7642 * feasibility.
7643 */
7644 if (period > max_cfs_quota_period)
7645 return -EINVAL;
7646
a790de99
PT
7647 mutex_lock(&cfs_constraints_mutex);
7648 ret = __cfs_schedulable(tg, period, quota);
7649 if (ret)
7650 goto out_unlock;
7651
58088ad0 7652 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7653 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7654 /*
7655 * If we need to toggle cfs_bandwidth_used, off->on must occur
7656 * before making related changes, and on->off must occur afterwards
7657 */
7658 if (runtime_enabled && !runtime_was_enabled)
7659 cfs_bandwidth_usage_inc();
ab84d31e
PT
7660 raw_spin_lock_irq(&cfs_b->lock);
7661 cfs_b->period = ns_to_ktime(period);
7662 cfs_b->quota = quota;
58088ad0 7663
a9cf55b2 7664 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7665 /* restart the period timer (if active) to handle new period expiry */
7666 if (runtime_enabled && cfs_b->timer_active) {
7667 /* force a reprogram */
7668 cfs_b->timer_active = 0;
7669 __start_cfs_bandwidth(cfs_b);
7670 }
ab84d31e
PT
7671 raw_spin_unlock_irq(&cfs_b->lock);
7672
7673 for_each_possible_cpu(i) {
7674 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7675 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7676
7677 raw_spin_lock_irq(&rq->lock);
58088ad0 7678 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7679 cfs_rq->runtime_remaining = 0;
671fd9da 7680
029632fb 7681 if (cfs_rq->throttled)
671fd9da 7682 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7683 raw_spin_unlock_irq(&rq->lock);
7684 }
1ee14e6c
BS
7685 if (runtime_was_enabled && !runtime_enabled)
7686 cfs_bandwidth_usage_dec();
a790de99
PT
7687out_unlock:
7688 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7689
a790de99 7690 return ret;
ab84d31e
PT
7691}
7692
7693int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7694{
7695 u64 quota, period;
7696
029632fb 7697 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7698 if (cfs_quota_us < 0)
7699 quota = RUNTIME_INF;
7700 else
7701 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7702
7703 return tg_set_cfs_bandwidth(tg, period, quota);
7704}
7705
7706long tg_get_cfs_quota(struct task_group *tg)
7707{
7708 u64 quota_us;
7709
029632fb 7710 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7711 return -1;
7712
029632fb 7713 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7714 do_div(quota_us, NSEC_PER_USEC);
7715
7716 return quota_us;
7717}
7718
7719int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7720{
7721 u64 quota, period;
7722
7723 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7724 quota = tg->cfs_bandwidth.quota;
ab84d31e 7725
ab84d31e
PT
7726 return tg_set_cfs_bandwidth(tg, period, quota);
7727}
7728
7729long tg_get_cfs_period(struct task_group *tg)
7730{
7731 u64 cfs_period_us;
7732
029632fb 7733 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7734 do_div(cfs_period_us, NSEC_PER_USEC);
7735
7736 return cfs_period_us;
7737}
7738
182446d0
TH
7739static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7740 struct cftype *cft)
ab84d31e 7741{
182446d0 7742 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7743}
7744
182446d0
TH
7745static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7746 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7747{
182446d0 7748 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7749}
7750
182446d0
TH
7751static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7752 struct cftype *cft)
ab84d31e 7753{
182446d0 7754 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7755}
7756
182446d0
TH
7757static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7758 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7759{
182446d0 7760 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7761}
7762
a790de99
PT
7763struct cfs_schedulable_data {
7764 struct task_group *tg;
7765 u64 period, quota;
7766};
7767
7768/*
7769 * normalize group quota/period to be quota/max_period
7770 * note: units are usecs
7771 */
7772static u64 normalize_cfs_quota(struct task_group *tg,
7773 struct cfs_schedulable_data *d)
7774{
7775 u64 quota, period;
7776
7777 if (tg == d->tg) {
7778 period = d->period;
7779 quota = d->quota;
7780 } else {
7781 period = tg_get_cfs_period(tg);
7782 quota = tg_get_cfs_quota(tg);
7783 }
7784
7785 /* note: these should typically be equivalent */
7786 if (quota == RUNTIME_INF || quota == -1)
7787 return RUNTIME_INF;
7788
7789 return to_ratio(period, quota);
7790}
7791
7792static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7793{
7794 struct cfs_schedulable_data *d = data;
029632fb 7795 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7796 s64 quota = 0, parent_quota = -1;
7797
7798 if (!tg->parent) {
7799 quota = RUNTIME_INF;
7800 } else {
029632fb 7801 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7802
7803 quota = normalize_cfs_quota(tg, d);
7804 parent_quota = parent_b->hierarchal_quota;
7805
7806 /*
7807 * ensure max(child_quota) <= parent_quota, inherit when no
7808 * limit is set
7809 */
7810 if (quota == RUNTIME_INF)
7811 quota = parent_quota;
7812 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7813 return -EINVAL;
7814 }
7815 cfs_b->hierarchal_quota = quota;
7816
7817 return 0;
7818}
7819
7820static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7821{
8277434e 7822 int ret;
a790de99
PT
7823 struct cfs_schedulable_data data = {
7824 .tg = tg,
7825 .period = period,
7826 .quota = quota,
7827 };
7828
7829 if (quota != RUNTIME_INF) {
7830 do_div(data.period, NSEC_PER_USEC);
7831 do_div(data.quota, NSEC_PER_USEC);
7832 }
7833
8277434e
PT
7834 rcu_read_lock();
7835 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7836 rcu_read_unlock();
7837
7838 return ret;
a790de99 7839}
e8da1b18 7840
182446d0 7841static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7842 struct cgroup_map_cb *cb)
7843{
182446d0 7844 struct task_group *tg = css_tg(css);
029632fb 7845 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7846
7847 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7848 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7849 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7850
7851 return 0;
7852}
ab84d31e 7853#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7854#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7855
052f1dc7 7856#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7857static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7858 struct cftype *cft, s64 val)
6f505b16 7859{
182446d0 7860 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7861}
7862
182446d0
TH
7863static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7864 struct cftype *cft)
6f505b16 7865{
182446d0 7866 return sched_group_rt_runtime(css_tg(css));
6f505b16 7867}
d0b27fa7 7868
182446d0
TH
7869static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7870 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7871{
182446d0 7872 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7873}
7874
182446d0
TH
7875static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7876 struct cftype *cft)
d0b27fa7 7877{
182446d0 7878 return sched_group_rt_period(css_tg(css));
d0b27fa7 7879}
6d6bc0ad 7880#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7881
fe5c7cc2 7882static struct cftype cpu_files[] = {
052f1dc7 7883#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7884 {
7885 .name = "shares",
f4c753b7
PM
7886 .read_u64 = cpu_shares_read_u64,
7887 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7888 },
052f1dc7 7889#endif
ab84d31e
PT
7890#ifdef CONFIG_CFS_BANDWIDTH
7891 {
7892 .name = "cfs_quota_us",
7893 .read_s64 = cpu_cfs_quota_read_s64,
7894 .write_s64 = cpu_cfs_quota_write_s64,
7895 },
7896 {
7897 .name = "cfs_period_us",
7898 .read_u64 = cpu_cfs_period_read_u64,
7899 .write_u64 = cpu_cfs_period_write_u64,
7900 },
e8da1b18
NR
7901 {
7902 .name = "stat",
7903 .read_map = cpu_stats_show,
7904 },
ab84d31e 7905#endif
052f1dc7 7906#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7907 {
9f0c1e56 7908 .name = "rt_runtime_us",
06ecb27c
PM
7909 .read_s64 = cpu_rt_runtime_read,
7910 .write_s64 = cpu_rt_runtime_write,
6f505b16 7911 },
d0b27fa7
PZ
7912 {
7913 .name = "rt_period_us",
f4c753b7
PM
7914 .read_u64 = cpu_rt_period_read_uint,
7915 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7916 },
052f1dc7 7917#endif
4baf6e33 7918 { } /* terminate */
68318b8e
SV
7919};
7920
68318b8e 7921struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7922 .name = "cpu",
92fb9748
TH
7923 .css_alloc = cpu_cgroup_css_alloc,
7924 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7925 .css_online = cpu_cgroup_css_online,
7926 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7927 .can_attach = cpu_cgroup_can_attach,
7928 .attach = cpu_cgroup_attach,
068c5cc5 7929 .exit = cpu_cgroup_exit,
38605cae 7930 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7931 .base_cftypes = cpu_files,
68318b8e
SV
7932 .early_init = 1,
7933};
7934
052f1dc7 7935#endif /* CONFIG_CGROUP_SCHED */
d842de87 7936
b637a328
PM
7937void dump_cpu_task(int cpu)
7938{
7939 pr_info("Task dump for CPU %d:\n", cpu);
7940 sched_show_task(cpu_curr(cpu));
7941}