sched/cputime: Fix cpu_timer_sample_group() double accounting
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
126 if (delta < 0)
127 return;
fe44d621
PZ
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
3e51f33f
PZ
130}
131
bf5c91ba
IM
132/*
133 * Debugging: various feature bits
134 */
f00b45c1 135
f00b45c1
PZ
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
bf5c91ba 139const_debug unsigned int sysctl_sched_features =
391e43da 140#include "features.h"
f00b45c1
PZ
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
1292531f 149static const char * const sched_feat_names[] = {
391e43da 150#include "features.h"
f00b45c1
PZ
151};
152
153#undef SCHED_FEAT
154
34f3a814 155static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 156{
f00b45c1
PZ
157 int i;
158
f8b6d1cc 159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 163 }
34f3a814 164 seq_puts(m, "\n");
f00b45c1 165
34f3a814 166 return 0;
f00b45c1
PZ
167}
168
f8b6d1cc
PZ
169#ifdef HAVE_JUMP_LABEL
170
c5905afb
IM
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
c5905afb 177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
c5905afb
IM
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
187}
188
189static void sched_feat_enable(int i)
190{
c5905afb
IM
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
1a687c2e 199static int sched_feat_set(char *cmp)
f00b45c1 200{
f00b45c1 201 int i;
1a687c2e 202 int neg = 0;
f00b45c1 203
524429c3 204 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
205 neg = 1;
206 cmp += 3;
207 }
208
f8b6d1cc 209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 211 if (neg) {
f00b45c1 212 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
213 sched_feat_disable(i);
214 } else {
f00b45c1 215 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
216 sched_feat_enable(i);
217 }
f00b45c1
PZ
218 break;
219 }
220 }
221
1a687c2e
MG
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
5cd08fbf 232 struct inode *inode;
1a687c2e
MG
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
5cd08fbf
JB
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
1a687c2e 246 i = sched_feat_set(cmp);
5cd08fbf 247 mutex_unlock(&inode->i_mutex);
f8b6d1cc 248 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
249 return -EINVAL;
250
42994724 251 *ppos += cnt;
f00b45c1
PZ
252
253 return cnt;
254}
255
34f3a814
LZ
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
828c0950 261static const struct file_operations sched_feat_fops = {
34f3a814
LZ
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
f00b45c1
PZ
267};
268
269static __init int sched_init_debug(void)
270{
f00b45c1
PZ
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
f8b6d1cc 277#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 278
b82d9fdd
PZ
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
e9e9250b
PZ
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
fa85ae24 293/*
9f0c1e56 294 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
295 * default: 1s
296 */
9f0c1e56 297unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 298
029632fb 299__read_mostly int scheduler_running;
6892b75e 300
9f0c1e56
PZ
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
fa85ae24 306
0970d299 307/*
0122ec5b 308 * __task_rq_lock - lock the rq @p resides on.
b29739f9 309 */
70b97a7f 310static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
311 __acquires(rq->lock)
312{
0970d299
PZ
313 struct rq *rq;
314
0122ec5b
PZ
315 lockdep_assert_held(&p->pi_lock);
316
3a5c359a 317 for (;;) {
0970d299 318 rq = task_rq(p);
05fa785c 319 raw_spin_lock(&rq->lock);
cca26e80 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 321 return rq;
05fa785c 322 raw_spin_unlock(&rq->lock);
cca26e80
KT
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
cca26e80 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
1da177e4 349 }
1da177e4
LT
350}
351
a9957449 352static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
353 __releases(rq->lock)
354{
05fa785c 355 raw_spin_unlock(&rq->lock);
b29739f9
IM
356}
357
0122ec5b
PZ
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 360 __releases(rq->lock)
0122ec5b 361 __releases(p->pi_lock)
1da177e4 362{
0122ec5b
PZ
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
365}
366
1da177e4 367/*
cc2a73b5 368 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 369 */
a9957449 370static struct rq *this_rq_lock(void)
1da177e4
LT
371 __acquires(rq->lock)
372{
70b97a7f 373 struct rq *rq;
1da177e4
LT
374
375 local_irq_disable();
376 rq = this_rq();
05fa785c 377 raw_spin_lock(&rq->lock);
1da177e4
LT
378
379 return rq;
380}
381
8f4d37ec
PZ
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 385 */
8f4d37ec 386
8f4d37ec
PZ
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
8f4d37ec
PZ
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
05fa785c 403 raw_spin_lock(&rq->lock);
3e51f33f 404 update_rq_clock(rq);
8f4d37ec 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 406 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
407
408 return HRTIMER_NORESTART;
409}
410
95e904c7 411#ifdef CONFIG_SMP
971ee28c
PZ
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
31656519
PZ
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
b328ca18 425{
31656519 426 struct rq *rq = arg;
b328ca18 427
05fa785c 428 raw_spin_lock(&rq->lock);
971ee28c 429 __hrtick_restart(rq);
31656519 430 rq->hrtick_csd_pending = 0;
05fa785c 431 raw_spin_unlock(&rq->lock);
b328ca18
PZ
432}
433
31656519
PZ
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
029632fb 439void hrtick_start(struct rq *rq, u64 delay)
b328ca18 440{
31656519 441 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 451
cc584b21 452 hrtimer_set_expires(timer, time);
31656519
PZ
453
454 if (rq == this_rq()) {
971ee28c 455 __hrtick_restart(rq);
31656519 456 } else if (!rq->hrtick_csd_pending) {
c46fff2a 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
458 rq->hrtick_csd_pending = 1;
459 }
b328ca18
PZ
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
31656519 474 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
fa748203 481static __init void init_hrtick(void)
b328ca18
PZ
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
31656519
PZ
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
029632fb 491void hrtick_start(struct rq *rq, u64 delay)
31656519 492{
7f1e2ca9 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 494 HRTIMER_MODE_REL_PINNED, 0);
31656519 495}
b328ca18 496
006c75f1 497static inline void init_hrtick(void)
8f4d37ec 498{
8f4d37ec 499}
31656519 500#endif /* CONFIG_SMP */
8f4d37ec 501
31656519 502static void init_rq_hrtick(struct rq *rq)
8f4d37ec 503{
31656519
PZ
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
8f4d37ec 506
31656519
PZ
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
8f4d37ec 511
31656519
PZ
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
8f4d37ec 514}
006c75f1 515#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
8f4d37ec
PZ
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
b328ca18
PZ
524static inline void init_hrtick(void)
525{
526}
006c75f1 527#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 528
fd99f91a
PZ
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
e3baac47 543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
e3baac47
PZ
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
fd99f91a
PZ
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
e3baac47
PZ
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
fd99f91a
PZ
592#endif
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
05fa785c 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 631 return;
8875125e 632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
6201b4d6 646int get_nohz_timer_target(int pinned)
83cd4fe2
VP
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
6201b4d6
VK
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
057f3fad
PZ
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
83cd4fe2 663 }
057f3fad
PZ
664unlock:
665 rcu_read_unlock();
83cd4fe2
VP
666 return cpu;
667}
06d8308c
TG
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
1c20091e 678static void wake_up_idle_cpu(int cpu)
06d8308c
TG
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
67b9ca70 685 if (set_nr_and_not_polling(rq->idle))
06d8308c 686 smp_send_reschedule(cpu);
dfc68f29
AL
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
689}
690
c5bfece2 691static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 692{
53c5fa16
FW
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
c5bfece2 699 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
53c5fa16 702 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
c5bfece2 711 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
712 wake_up_idle_cpu(cpu);
713}
714
ca38062e 715static inline bool got_nohz_idle_kick(void)
45bf76df 716{
1c792db7 717 int cpu = smp_processor_id();
873b4c65
VG
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
45bf76df
IM
731}
732
3451d024 733#else /* CONFIG_NO_HZ_COMMON */
45bf76df 734
ca38062e 735static inline bool got_nohz_idle_kick(void)
2069dd75 736{
ca38062e 737 return false;
2069dd75
PZ
738}
739
3451d024 740#endif /* CONFIG_NO_HZ_COMMON */
d842de87 741
ce831b38
FW
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
3882ec64
FW
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
541b8264
VK
750 if (this_rq()->nr_running > 1)
751 return false;
ce831b38 752
541b8264 753 return true;
ce831b38
FW
754}
755#endif /* CONFIG_NO_HZ_FULL */
d842de87 756
029632fb 757void sched_avg_update(struct rq *rq)
18d95a28 758{
e9e9250b
PZ
759 s64 period = sched_avg_period();
760
78becc27 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
18d95a28
PZ
771}
772
6d6bc0ad 773#endif /* CONFIG_SMP */
18d95a28 774
a790de99
PT
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 777/*
8277434e
PT
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 782 */
029632fb 783int walk_tg_tree_from(struct task_group *from,
8277434e 784 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
785{
786 struct task_group *parent, *child;
eb755805 787 int ret;
c09595f6 788
8277434e
PT
789 parent = from;
790
c09595f6 791down:
eb755805
PZ
792 ret = (*down)(parent, data);
793 if (ret)
8277434e 794 goto out;
c09595f6
PZ
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
eb755805 802 ret = (*up)(parent, data);
8277434e
PT
803 if (ret || parent == from)
804 goto out;
c09595f6
PZ
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
8277434e 810out:
eb755805 811 return ret;
c09595f6
PZ
812}
813
029632fb 814int tg_nop(struct task_group *tg, void *data)
eb755805 815{
e2b245f8 816 return 0;
eb755805 817}
18d95a28
PZ
818#endif
819
45bf76df
IM
820static void set_load_weight(struct task_struct *p)
821{
f05998d4
NR
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
dd41f596
IM
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
c8b28116 829 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 830 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
831 return;
832 }
71f8bd46 833
c8b28116 834 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 835 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
836}
837
371fd7e7 838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 839{
a64692a3 840 update_rq_clock(rq);
43148951 841 sched_info_queued(rq, p);
371fd7e7 842 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
843}
844
371fd7e7 845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 846{
a64692a3 847 update_rq_clock(rq);
43148951 848 sched_info_dequeued(rq, p);
371fd7e7 849 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
850}
851
029632fb 852void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
371fd7e7 857 enqueue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
029632fb 860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
371fd7e7 865 dequeue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 902 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
095c0aa8 909 rq->prev_steal_time_rq += steal;
095c0aa8
GC
910 delta -= steal;
911 }
912#endif
913
fe44d621
PZ
914 rq->clock_task += delta;
915
095c0aa8 916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
aa483808
VP
920}
921
34f971f6
PZ
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
14531189 952/*
dd41f596 953 * __normal_prio - return the priority that is based on the static prio
14531189 954 */
14531189
IM
955static inline int __normal_prio(struct task_struct *p)
956{
dd41f596 957 return p->static_prio;
14531189
IM
958}
959
b29739f9
IM
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
36c8b586 967static inline int normal_prio(struct task_struct *p)
b29739f9
IM
968{
969 int prio;
970
aab03e05
DF
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
b29739f9
IM
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
36c8b586 987static int effective_prio(struct task_struct *p)
b29739f9
IM
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1da177e4
LT
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
e69f6186
YB
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1005 */
36c8b586 1006inline int task_curr(const struct task_struct *p)
1da177e4
LT
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
cb469845
SR
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 const struct sched_class *prev_class,
da7a735e 1013 int oldprio)
cb469845
SR
1014{
1015 if (prev_class != p->sched_class) {
1016 if (prev_class->switched_from)
da7a735e
PZ
1017 prev_class->switched_from(rq, p);
1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1045 rq->skip_clock_update = 1;
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
dd41f596 1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1050{
e2912009
PZ
1051#ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
077614ee 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1057 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1058
1059#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1065 * see task_group().
6c6c54e1
PZ
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
0122ec5b
PZ
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072#endif
e2912009
PZ
1073#endif
1074
de1d7286 1075 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1076
0c69774e 1077 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1080 p->se.nr_migrations++;
a8b0ca17 1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1082 }
dd41f596
IM
1083
1084 __set_task_cpu(p, new_cpu);
c65cc870
IM
1085}
1086
ac66f547
PZ
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
da0c1e65 1089 if (task_on_rq_queued(p)) {
ac66f547
PZ
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107}
1108
1109struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
74602315
PZ
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
ac66f547
PZ
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143unlock:
1144 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1147
1148 return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
ac66f547
PZ
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
6acce3ef
PZ
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
ac66f547
PZ
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
286549dc 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
ac66f547
PZ
1186 return ret;
1187}
1188
969c7921 1189struct migration_arg {
36c8b586 1190 struct task_struct *task;
1da177e4 1191 int dest_cpu;
70b97a7f 1192};
1da177e4 1193
969c7921
TH
1194static int migration_cpu_stop(void *data);
1195
1da177e4
LT
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
85ba2d86
RM
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1da177e4
LT
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
85ba2d86 1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1213{
1214 unsigned long flags;
da0c1e65 1215 int running, queued;
85ba2d86 1216 unsigned long ncsw;
70b97a7f 1217 struct rq *rq;
1da177e4 1218
3a5c359a
AK
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
85ba2d86
RM
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
3a5c359a 1242 cpu_relax();
85ba2d86 1243 }
fa490cfd 1244
3a5c359a
AK
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
27a9da65 1251 trace_sched_wait_task(p);
3a5c359a 1252 running = task_running(rq, p);
da0c1e65 1253 queued = task_on_rq_queued(p);
85ba2d86 1254 ncsw = 0;
f31e11d8 1255 if (!match_state || p->state == match_state)
93dcf55f 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1257 task_rq_unlock(rq, p, &flags);
fa490cfd 1258
85ba2d86
RM
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
3a5c359a
AK
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
fa490cfd 1275
3a5c359a
AK
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
80dd99b3 1281 * So if it was still runnable (but just not actively
3a5c359a
AK
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
da0c1e65 1285 if (unlikely(queued)) {
8eb90c30
TG
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1290 continue;
1291 }
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
85ba2d86
RM
1300
1301 return ncsw;
1da177e4
LT
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
25985edc 1311 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
36c8b586 1317void kick_process(struct task_struct *p)
1da177e4
LT
1318{
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326}
b43e3521 1327EXPORT_SYMBOL_GPL(kick_process);
476d139c 1328#endif /* CONFIG_SMP */
1da177e4 1329
970b13ba 1330#ifdef CONFIG_SMP
30da688e 1331/*
013fdb80 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1333 */
5da9a0fb
PZ
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
aa00d89c
TC
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
5da9a0fb 1340
aa00d89c
TC
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
2baab4e9 1358 }
5da9a0fb 1359
2baab4e9
PZ
1360 for (;;) {
1361 /* Any allowed, online CPU? */
e3831edd 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
5da9a0fb 1369
2baab4e9
PZ
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
aac74dc4 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1397 task_pid_nr(p), p->comm, cpu);
1398 }
5da9a0fb
PZ
1399 }
1400
1401 return dest_cpu;
1402}
1403
e2912009 1404/*
013fdb80 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1406 */
970b13ba 1407static inline
ac66f547 1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1409{
ac66f547 1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1411
1412 /*
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 * cpu.
1416 *
1417 * Since this is common to all placement strategies, this lives here.
1418 *
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1421 */
fa17b507 1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1423 !cpu_online(cpu)))
5da9a0fb 1424 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1425
1426 return cpu;
970b13ba 1427}
09a40af5
MG
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431 s64 diff = sample - *avg;
1432 *avg += diff >> 3;
1433}
970b13ba
PZ
1434#endif
1435
d7c01d27 1436static void
b84cb5df 1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1438{
d7c01d27 1439#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1440 struct rq *rq = this_rq();
1441
d7c01d27
PZ
1442#ifdef CONFIG_SMP
1443 int this_cpu = smp_processor_id();
1444
1445 if (cpu == this_cpu) {
1446 schedstat_inc(rq, ttwu_local);
1447 schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 } else {
1449 struct sched_domain *sd;
1450
1451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1452 rcu_read_lock();
d7c01d27
PZ
1453 for_each_domain(this_cpu, sd) {
1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 break;
1457 }
1458 }
057f3fad 1459 rcu_read_unlock();
d7c01d27 1460 }
f339b9dc
PZ
1461
1462 if (wake_flags & WF_MIGRATED)
1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
d7c01d27
PZ
1465#endif /* CONFIG_SMP */
1466
1467 schedstat_inc(rq, ttwu_count);
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1469
1470 if (wake_flags & WF_SYNC)
9ed3811a 1471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1472
d7c01d27
PZ
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
9ed3811a 1478 activate_task(rq, p, en_flags);
da0c1e65 1479 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1480
1481 /* if a worker is waking up, notify workqueue */
1482 if (p->flags & PF_WQ_WORKER)
1483 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1484}
1485
23f41eeb
PZ
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
89363381 1489static void
23f41eeb 1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1491{
9ed3811a 1492 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1493 trace_sched_wakeup(p, true);
9ed3811a
TH
1494
1495 p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497 if (p->sched_class->task_woken)
1498 p->sched_class->task_woken(rq, p);
1499
e69c6341 1500 if (rq->idle_stamp) {
78becc27 1501 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1502 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1503
abfafa54
JL
1504 update_avg(&rq->avg_idle, delta);
1505
1506 if (rq->avg_idle > max)
9ed3811a 1507 rq->avg_idle = max;
abfafa54 1508
9ed3811a
TH
1509 rq->idle_stamp = 0;
1510 }
1511#endif
1512}
1513
c05fbafb
PZ
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518 if (p->sched_contributes_to_load)
1519 rq->nr_uninterruptible--;
1520#endif
1521
1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534 struct rq *rq;
1535 int ret = 0;
1536
1537 rq = __task_rq_lock(p);
da0c1e65 1538 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq);
c05fbafb
PZ
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542 ret = 1;
1543 }
1544 __task_rq_unlock(rq);
1545
1546 return ret;
1547}
1548
317f3941 1549#ifdef CONFIG_SMP
e3baac47 1550void sched_ttwu_pending(void)
317f3941
PZ
1551{
1552 struct rq *rq = this_rq();
fa14ff4a
PZ
1553 struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 struct task_struct *p;
e3baac47 1555 unsigned long flags;
317f3941 1556
e3baac47
PZ
1557 if (!llist)
1558 return;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1561
fa14ff4a
PZ
1562 while (llist) {
1563 p = llist_entry(llist, struct task_struct, wake_entry);
1564 llist = llist_next(llist);
317f3941
PZ
1565 ttwu_do_activate(rq, p, 0);
1566 }
1567
e3baac47 1568 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1569}
1570
1571void scheduler_ipi(void)
1572{
f27dde8d
PZ
1573 /*
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 * this IPI.
1577 */
8cb75e0c 1578 preempt_fold_need_resched();
f27dde8d 1579
fd2ac4f4 1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1581 return;
1582
1583 /*
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1587 * we do call them.
1588 *
1589 * Some archs already do call them, luckily irq_enter/exit nest
1590 * properly.
1591 *
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1595 */
1596 irq_enter();
fa14ff4a 1597 sched_ttwu_pending();
ca38062e
SS
1598
1599 /*
1600 * Check if someone kicked us for doing the nohz idle load balance.
1601 */
873b4c65 1602 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1603 this_rq()->idle_balance = 1;
ca38062e 1604 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1605 }
c5d753a5 1606 irq_exit();
317f3941
PZ
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
e3baac47
PZ
1611 struct rq *rq = cpu_rq(cpu);
1612
1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 if (!set_nr_if_polling(rq->idle))
1615 smp_send_reschedule(cpu);
1616 else
1617 trace_sched_wake_idle_without_ipi(cpu);
1618 }
317f3941 1619}
d6aa8f85 1620
f6be8af1
CL
1621void wake_up_if_idle(int cpu)
1622{
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long flags;
1625
1626 if (!is_idle_task(rq->curr))
1627 return;
1628
1629 if (set_nr_if_polling(rq->idle)) {
1630 trace_sched_wake_idle_without_ipi(cpu);
1631 } else {
1632 raw_spin_lock_irqsave(&rq->lock, flags);
1633 if (is_idle_task(rq->curr))
1634 smp_send_reschedule(cpu);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 }
1638}
1639
39be3501 1640bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1641{
1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
d6aa8f85 1644#endif /* CONFIG_SMP */
317f3941 1645
c05fbafb
PZ
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648 struct rq *rq = cpu_rq(cpu);
1649
17d9f311 1650#if defined(CONFIG_SMP)
39be3501 1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1653 ttwu_queue_remote(p, cpu);
1654 return;
1655 }
1656#endif
1657
c05fbafb
PZ
1658 raw_spin_lock(&rq->lock);
1659 ttwu_do_activate(rq, p, 0);
1660 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1661}
1662
1663/**
1da177e4 1664 * try_to_wake_up - wake up a thread
9ed3811a 1665 * @p: the thread to be awakened
1da177e4 1666 * @state: the mask of task states that can be woken
9ed3811a 1667 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
e69f6186 1675 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1676 * or @state didn't match @p's state.
1da177e4 1677 */
e4a52bcb
PZ
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1680{
1da177e4 1681 unsigned long flags;
c05fbafb 1682 int cpu, success = 0;
2398f2c6 1683
e0acd0a6
ON
1684 /*
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1689 */
1690 smp_mb__before_spinlock();
013fdb80 1691 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1692 if (!(p->state & state))
1da177e4
LT
1693 goto out;
1694
c05fbafb 1695 success = 1; /* we're going to change ->state */
1da177e4 1696 cpu = task_cpu(p);
1da177e4 1697
c05fbafb
PZ
1698 if (p->on_rq && ttwu_remote(p, wake_flags))
1699 goto stat;
1da177e4 1700
1da177e4 1701#ifdef CONFIG_SMP
e9c84311 1702 /*
c05fbafb
PZ
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
e9c84311 1705 */
f3e94786 1706 while (p->on_cpu)
e4a52bcb 1707 cpu_relax();
0970d299 1708 /*
e4a52bcb 1709 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1710 */
e4a52bcb 1711 smp_rmb();
1da177e4 1712
a8e4f2ea 1713 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1714 p->state = TASK_WAKING;
e7693a36 1715
e4a52bcb 1716 if (p->sched_class->task_waking)
74f8e4b2 1717 p->sched_class->task_waking(p);
efbbd05a 1718
ac66f547 1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1720 if (task_cpu(p) != cpu) {
1721 wake_flags |= WF_MIGRATED;
e4a52bcb 1722 set_task_cpu(p, cpu);
f339b9dc 1723 }
1da177e4 1724#endif /* CONFIG_SMP */
1da177e4 1725
c05fbafb
PZ
1726 ttwu_queue(p, cpu);
1727stat:
b84cb5df 1728 ttwu_stat(p, cpu, wake_flags);
1da177e4 1729out:
013fdb80 1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1731
1732 return success;
1733}
1734
21aa9af0
TH
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
2acca55e 1739 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1741 * the current task.
21aa9af0
TH
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745 struct rq *rq = task_rq(p);
21aa9af0 1746
383efcd0
TH
1747 if (WARN_ON_ONCE(rq != this_rq()) ||
1748 WARN_ON_ONCE(p == current))
1749 return;
1750
21aa9af0
TH
1751 lockdep_assert_held(&rq->lock);
1752
2acca55e
PZ
1753 if (!raw_spin_trylock(&p->pi_lock)) {
1754 raw_spin_unlock(&rq->lock);
1755 raw_spin_lock(&p->pi_lock);
1756 raw_spin_lock(&rq->lock);
1757 }
1758
21aa9af0 1759 if (!(p->state & TASK_NORMAL))
2acca55e 1760 goto out;
21aa9af0 1761
da0c1e65 1762 if (!task_on_rq_queued(p))
d7c01d27
PZ
1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
23f41eeb 1765 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1766 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1767out:
1768 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1769}
1770
50fa610a
DH
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
7ad5b3a5 1783int wake_up_process(struct task_struct *p)
1da177e4 1784{
9067ac85
ON
1785 WARN_ON(task_is_stopped_or_traced(p));
1786 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1787}
1da177e4
LT
1788EXPORT_SYMBOL(wake_up_process);
1789
7ad5b3a5 1790int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1791{
1792 return try_to_wake_up(p, state, 0);
1793}
1794
a5e7be3b
JL
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800 struct sched_dl_entity *dl_se = &p->dl;
1801
1802 dl_se->dl_runtime = 0;
1803 dl_se->dl_deadline = 0;
1804 dl_se->dl_period = 0;
1805 dl_se->flags = 0;
1806 dl_se->dl_bw = 0;
1807}
1808
1da177e4
LT
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
dd41f596
IM
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
5e1576ed 1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1816{
fd2f4419
PZ
1817 p->on_rq = 0;
1818
1819 p->se.on_rq = 0;
dd41f596
IM
1820 p->se.exec_start = 0;
1821 p->se.sum_exec_runtime = 0;
f6cf891c 1822 p->se.prev_sum_exec_runtime = 0;
6c594c21 1823 p->se.nr_migrations = 0;
da7a735e 1824 p->se.vruntime = 0;
fd2f4419 1825 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1826
1827#ifdef CONFIG_SCHEDSTATS
41acab88 1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1829#endif
476d139c 1830
aab03e05
DF
1831 RB_CLEAR_NODE(&p->dl.rb_node);
1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1833 __dl_clear_params(p);
aab03e05 1834
fa717060 1835 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1836
e107be36
AK
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
cbee9f88
PZ
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1844 p->mm->numa_scan_seq = 0;
1845 }
1846
5e1576ed
RR
1847 if (clone_flags & CLONE_VM)
1848 p->numa_preferred_nid = current->numa_preferred_nid;
1849 else
1850 p->numa_preferred_nid = -1;
1851
cbee9f88
PZ
1852 p->node_stamp = 0ULL;
1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1855 p->numa_work.next = &p->numa_work;
ff1df896
RR
1856 p->numa_faults_memory = NULL;
1857 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1858 p->last_task_numa_placement = 0;
1859 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1860
1861 INIT_LIST_HEAD(&p->numa_entry);
1862 p->numa_group = NULL;
cbee9f88 1863#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1864}
1865
1a687c2e 1866#ifdef CONFIG_NUMA_BALANCING
3105b86a 1867#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1868void set_numabalancing_state(bool enabled)
1869{
1870 if (enabled)
1871 sched_feat_set("NUMA");
1872 else
1873 sched_feat_set("NO_NUMA");
1874}
3105b86a
MG
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880 numabalancing_enabled = enabled;
dd41f596 1881}
3105b86a 1882#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888 struct ctl_table t;
1889 int err;
1890 int state = numabalancing_enabled;
1891
1892 if (write && !capable(CAP_SYS_ADMIN))
1893 return -EPERM;
1894
1895 t = *table;
1896 t.data = &state;
1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 if (err < 0)
1899 return err;
1900 if (write)
1901 set_numabalancing_state(state);
1902 return err;
1903}
1904#endif
1905#endif
dd41f596
IM
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
aab03e05 1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1911{
0122ec5b 1912 unsigned long flags;
dd41f596
IM
1913 int cpu = get_cpu();
1914
5e1576ed 1915 __sched_fork(clone_flags, p);
06b83b5f 1916 /*
0017d735 1917 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
0017d735 1921 p->state = TASK_RUNNING;
dd41f596 1922
c350a04e
MG
1923 /*
1924 * Make sure we do not leak PI boosting priority to the child.
1925 */
1926 p->prio = current->normal_prio;
1927
b9dc29e7
MG
1928 /*
1929 * Revert to default priority/policy on fork if requested.
1930 */
1931 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1933 p->policy = SCHED_NORMAL;
6c697bdf 1934 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1935 p->rt_priority = 0;
1936 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 p->static_prio = NICE_TO_PRIO(0);
1938
1939 p->prio = p->normal_prio = __normal_prio(p);
1940 set_load_weight(p);
6c697bdf 1941
b9dc29e7
MG
1942 /*
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1945 */
1946 p->sched_reset_on_fork = 0;
1947 }
ca94c442 1948
aab03e05
DF
1949 if (dl_prio(p->prio)) {
1950 put_cpu();
1951 return -EAGAIN;
1952 } else if (rt_prio(p->prio)) {
1953 p->sched_class = &rt_sched_class;
1954 } else {
2ddbf952 1955 p->sched_class = &fair_sched_class;
aab03e05 1956 }
b29739f9 1957
cd29fe6f
PZ
1958 if (p->sched_class->task_fork)
1959 p->sched_class->task_fork(p);
1960
86951599
PZ
1961 /*
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1965 *
1966 * Silence PROVE_RCU.
1967 */
0122ec5b 1968 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1969 set_task_cpu(p, cpu);
0122ec5b 1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1971
52f17b6c 1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1973 if (likely(sched_info_on()))
52f17b6c 1974 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1975#endif
3ca7a440
PZ
1976#if defined(CONFIG_SMP)
1977 p->on_cpu = 0;
4866cde0 1978#endif
01028747 1979 init_task_preempt_count(p);
806c09a7 1980#ifdef CONFIG_SMP
917b627d 1981 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1982 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1983#endif
917b627d 1984
476d139c 1985 put_cpu();
aab03e05 1986 return 0;
1da177e4
LT
1987}
1988
332ac17e
DF
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991 if (runtime == RUNTIME_INF)
1992 return 1ULL << 20;
1993
1994 /*
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
1998 */
1999 if (period == 0)
2000 return 0;
2001
2002 return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
66339c31
KT
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
332ac17e
DF
2010 return &cpu_rq(i)->rd->dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e 2014{
de212f18
PZ
2015 struct root_domain *rd = cpu_rq(i)->rd;
2016 int cpus = 0;
2017
66339c31
KT
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
de212f18
PZ
2020 for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 cpus++;
2022
2023 return cpus;
332ac17e
DF
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028 return &cpu_rq(i)->dl.dl_bw;
2029}
2030
de212f18 2031static inline int dl_bw_cpus(int i)
332ac17e
DF
2032{
2033 return 1;
2034}
2035#endif
2036
2037static inline
2038void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039{
2040 dl_b->total_bw -= tsk_bw;
2041}
2042
2043static inline
2044void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045{
2046 dl_b->total_bw += tsk_bw;
2047}
2048
2049static inline
2050bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051{
2052 return dl_b->bw != -1 &&
2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054}
2055
2056/*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064static int dl_overflow(struct task_struct *p, int policy,
2065 const struct sched_attr *attr)
2066{
2067
2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2069 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2070 u64 runtime = attr->sched_runtime;
2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2072 int cpus, err = -1;
332ac17e
DF
2073
2074 if (new_bw == p->dl.dl_bw)
2075 return 0;
2076
2077 /*
2078 * Either if a task, enters, leave, or stays -deadline but changes
2079 * its parameters, we may need to update accordingly the total
2080 * allocated bandwidth of the container.
2081 */
2082 raw_spin_lock(&dl_b->lock);
de212f18 2083 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2084 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 __dl_add(dl_b, new_bw);
2087 err = 0;
2088 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 __dl_clear(dl_b, p->dl.dl_bw);
2091 __dl_add(dl_b, new_bw);
2092 err = 0;
2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 __dl_clear(dl_b, p->dl.dl_bw);
2095 err = 0;
2096 }
2097 raw_spin_unlock(&dl_b->lock);
2098
2099 return err;
2100}
2101
2102extern void init_dl_bw(struct dl_bw *dl_b);
2103
1da177e4
LT
2104/*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
3e51e3ed 2111void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2112{
2113 unsigned long flags;
dd41f596 2114 struct rq *rq;
fabf318e 2115
ab2515c4 2116 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2117#ifdef CONFIG_SMP
2118 /*
2119 * Fork balancing, do it here and not earlier because:
2120 * - cpus_allowed can change in the fork path
2121 * - any previously selected cpu might disappear through hotplug
fabf318e 2122 */
ac66f547 2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2124#endif
2125
a75cdaa9
AS
2126 /* Initialize new task's runnable average */
2127 init_task_runnable_average(p);
ab2515c4 2128 rq = __task_rq_lock(p);
cd29fe6f 2129 activate_task(rq, p, 0);
da0c1e65 2130 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2131 trace_sched_wakeup_new(p, true);
a7558e01 2132 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2133#ifdef CONFIG_SMP
efbbd05a
PZ
2134 if (p->sched_class->task_woken)
2135 p->sched_class->task_woken(rq, p);
9a897c5a 2136#endif
0122ec5b 2137 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2138}
2139
e107be36
AK
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142/**
80dd99b3 2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2144 * @notifier: notifier struct to register
e107be36
AK
2145 */
2146void preempt_notifier_register(struct preempt_notifier *notifier)
2147{
2148 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149}
2150EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152/**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2154 * @notifier: notifier struct to unregister
e107be36
AK
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159{
2160 hlist_del(&notifier->link);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165{
2166 struct preempt_notifier *notifier;
e107be36 2167
b67bfe0d 2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2169 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170}
2171
2172static void
2173fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 struct task_struct *next)
2175{
2176 struct preempt_notifier *notifier;
e107be36 2177
b67bfe0d 2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2179 notifier->ops->sched_out(notifier, next);
2180}
2181
6d6bc0ad 2182#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2183
2184static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185{
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 struct task_struct *next)
2191{
2192}
2193
6d6bc0ad 2194#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2195
4866cde0
NP
2196/**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
421cee29 2199 * @prev: the current task that is being switched out
4866cde0
NP
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
e107be36
AK
2209static inline void
2210prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 struct task_struct *next)
4866cde0 2212{
895dd92c 2213 trace_sched_switch(prev, next);
43148951 2214 sched_info_switch(rq, prev, next);
fe4b04fa 2215 perf_event_task_sched_out(prev, next);
e107be36 2216 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2217 prepare_lock_switch(rq, next);
2218 prepare_arch_switch(next);
2219}
2220
1da177e4
LT
2221/**
2222 * finish_task_switch - clean up after a task-switch
344babaa 2223 * @rq: runqueue associated with task-switch
1da177e4
LT
2224 * @prev: the thread we just switched away from.
2225 *
4866cde0
NP
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2232 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
2235 */
a9957449 2236static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2237 __releases(rq->lock)
2238{
1da177e4 2239 struct mm_struct *mm = rq->prev_mm;
55a101f8 2240 long prev_state;
1da177e4
LT
2241
2242 rq->prev_mm = NULL;
2243
2244 /*
2245 * A task struct has one reference for the use as "current".
c394cc9f 2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2247 * schedule one last time. The schedule call will never return, and
2248 * the scheduled task must drop that reference.
c394cc9f 2249 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2250 * still held, otherwise prev could be scheduled on another cpu, die
2251 * there before we look at prev->state, and then the reference would
2252 * be dropped twice.
2253 * Manfred Spraul <manfred@colorfullife.com>
2254 */
55a101f8 2255 prev_state = prev->state;
bf9fae9f 2256 vtime_task_switch(prev);
4866cde0 2257 finish_arch_switch(prev);
a8d757ef 2258 perf_event_task_sched_in(prev, current);
4866cde0 2259 finish_lock_switch(rq, prev);
01f23e16 2260 finish_arch_post_lock_switch();
e8fa1362 2261
e107be36 2262 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2263 if (mm)
2264 mmdrop(mm);
c394cc9f 2265 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2266 if (prev->sched_class->task_dead)
2267 prev->sched_class->task_dead(prev);
2268
c6fd91f0 2269 /*
2270 * Remove function-return probe instances associated with this
2271 * task and put them back on the free list.
9761eea8 2272 */
c6fd91f0 2273 kprobe_flush_task(prev);
1da177e4 2274 put_task_struct(prev);
c6fd91f0 2275 }
99e5ada9
FW
2276
2277 tick_nohz_task_switch(current);
1da177e4
LT
2278}
2279
3f029d3c
GH
2280#ifdef CONFIG_SMP
2281
3f029d3c
GH
2282/* rq->lock is NOT held, but preemption is disabled */
2283static inline void post_schedule(struct rq *rq)
2284{
2285 if (rq->post_schedule) {
2286 unsigned long flags;
2287
05fa785c 2288 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2289 if (rq->curr->sched_class->post_schedule)
2290 rq->curr->sched_class->post_schedule(rq);
05fa785c 2291 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2292
2293 rq->post_schedule = 0;
2294 }
2295}
2296
2297#else
da19ab51 2298
3f029d3c
GH
2299static inline void post_schedule(struct rq *rq)
2300{
1da177e4
LT
2301}
2302
3f029d3c
GH
2303#endif
2304
1da177e4
LT
2305/**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
722a9f92 2309asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2310 __releases(rq->lock)
2311{
70b97a7f
IM
2312 struct rq *rq = this_rq();
2313
4866cde0 2314 finish_task_switch(rq, prev);
da19ab51 2315
3f029d3c
GH
2316 /*
2317 * FIXME: do we need to worry about rq being invalidated by the
2318 * task_switch?
2319 */
2320 post_schedule(rq);
70b97a7f 2321
1da177e4 2322 if (current->set_child_tid)
b488893a 2323 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2324}
2325
2326/*
2327 * context_switch - switch to the new MM and the new
2328 * thread's register state.
2329 */
dd41f596 2330static inline void
70b97a7f 2331context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2332 struct task_struct *next)
1da177e4 2333{
dd41f596 2334 struct mm_struct *mm, *oldmm;
1da177e4 2335
e107be36 2336 prepare_task_switch(rq, prev, next);
fe4b04fa 2337
dd41f596
IM
2338 mm = next->mm;
2339 oldmm = prev->active_mm;
9226d125
ZA
2340 /*
2341 * For paravirt, this is coupled with an exit in switch_to to
2342 * combine the page table reload and the switch backend into
2343 * one hypercall.
2344 */
224101ed 2345 arch_start_context_switch(prev);
9226d125 2346
31915ab4 2347 if (!mm) {
1da177e4
LT
2348 next->active_mm = oldmm;
2349 atomic_inc(&oldmm->mm_count);
2350 enter_lazy_tlb(oldmm, next);
2351 } else
2352 switch_mm(oldmm, mm, next);
2353
31915ab4 2354 if (!prev->mm) {
1da177e4 2355 prev->active_mm = NULL;
1da177e4
LT
2356 rq->prev_mm = oldmm;
2357 }
3a5f5e48
IM
2358 /*
2359 * Since the runqueue lock will be released by the next
2360 * task (which is an invalid locking op but in the case
2361 * of the scheduler it's an obvious special-case), so we
2362 * do an early lockdep release here:
2363 */
8a25d5de 2364 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2365
91d1aa43 2366 context_tracking_task_switch(prev, next);
1da177e4
LT
2367 /* Here we just switch the register state and the stack. */
2368 switch_to(prev, next, prev);
2369
dd41f596
IM
2370 barrier();
2371 /*
2372 * this_rq must be evaluated again because prev may have moved
2373 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 * frame will be invalid.
2375 */
2376 finish_task_switch(this_rq(), prev);
1da177e4
LT
2377}
2378
2379/*
1c3e8264 2380 * nr_running and nr_context_switches:
1da177e4
LT
2381 *
2382 * externally visible scheduler statistics: current number of runnable
1c3e8264 2383 * threads, total number of context switches performed since bootup.
1da177e4
LT
2384 */
2385unsigned long nr_running(void)
2386{
2387 unsigned long i, sum = 0;
2388
2389 for_each_online_cpu(i)
2390 sum += cpu_rq(i)->nr_running;
2391
2392 return sum;
f711f609 2393}
1da177e4 2394
2ee507c4
TC
2395/*
2396 * Check if only the current task is running on the cpu.
2397 */
2398bool single_task_running(void)
2399{
2400 if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 return true;
2402 else
2403 return false;
2404}
2405EXPORT_SYMBOL(single_task_running);
2406
1da177e4 2407unsigned long long nr_context_switches(void)
46cb4b7c 2408{
cc94abfc
SR
2409 int i;
2410 unsigned long long sum = 0;
46cb4b7c 2411
0a945022 2412 for_each_possible_cpu(i)
1da177e4 2413 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2414
1da177e4
LT
2415 return sum;
2416}
483b4ee6 2417
1da177e4
LT
2418unsigned long nr_iowait(void)
2419{
2420 unsigned long i, sum = 0;
483b4ee6 2421
0a945022 2422 for_each_possible_cpu(i)
1da177e4 2423 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2424
1da177e4
LT
2425 return sum;
2426}
483b4ee6 2427
8c215bd3 2428unsigned long nr_iowait_cpu(int cpu)
69d25870 2429{
8c215bd3 2430 struct rq *this = cpu_rq(cpu);
69d25870
AV
2431 return atomic_read(&this->nr_iowait);
2432}
46cb4b7c 2433
372ba8cb
MG
2434void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435{
2436 struct rq *this = this_rq();
2437 *nr_waiters = atomic_read(&this->nr_iowait);
2438 *load = this->cpu_load[0];
2439}
2440
dd41f596 2441#ifdef CONFIG_SMP
8a0be9ef 2442
46cb4b7c 2443/*
38022906
PZ
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2446 */
38022906 2447void sched_exec(void)
46cb4b7c 2448{
38022906 2449 struct task_struct *p = current;
1da177e4 2450 unsigned long flags;
0017d735 2451 int dest_cpu;
46cb4b7c 2452
8f42ced9 2453 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2454 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2455 if (dest_cpu == smp_processor_id())
2456 goto unlock;
38022906 2457
8f42ced9 2458 if (likely(cpu_active(dest_cpu))) {
969c7921 2459 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2460
8f42ced9
PZ
2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2463 return;
2464 }
0017d735 2465unlock:
8f42ced9 2466 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2467}
dd41f596 2468
1da177e4
LT
2469#endif
2470
1da177e4 2471DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2472DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2473
2474EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2475EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2476
2477/*
c5f8d995 2478 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2479 * @p in case that task is currently running.
c5f8d995
HS
2480 *
2481 * Called with task_rq_lock() held on @rq.
1da177e4 2482 */
c5f8d995
HS
2483static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2484{
2485 u64 ns = 0;
2486
4036ac15
MG
2487 /*
2488 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2489 * project cycles that may never be accounted to this
2490 * thread, breaking clock_gettime().
2491 */
da0c1e65 2492 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2493 update_rq_clock(rq);
78becc27 2494 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2495 if ((s64)ns < 0)
2496 ns = 0;
2497 }
2498
2499 return ns;
2500}
2501
c5f8d995
HS
2502/*
2503 * Return accounted runtime for the task.
2504 * In case the task is currently running, return the runtime plus current's
2505 * pending runtime that have not been accounted yet.
2506 */
2507unsigned long long task_sched_runtime(struct task_struct *p)
2508{
2509 unsigned long flags;
2510 struct rq *rq;
2511 u64 ns = 0;
2512
911b2898
PZ
2513#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2514 /*
2515 * 64-bit doesn't need locks to atomically read a 64bit value.
2516 * So we have a optimization chance when the task's delta_exec is 0.
2517 * Reading ->on_cpu is racy, but this is ok.
2518 *
2519 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2520 * If we race with it entering cpu, unaccounted time is 0. This is
2521 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2522 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2523 * been accounted, so we're correct here as well.
911b2898 2524 */
da0c1e65 2525 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2526 return p->se.sum_exec_runtime;
2527#endif
2528
c5f8d995
HS
2529 rq = task_rq_lock(p, &flags);
2530 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2531 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2532
2533 return ns;
2534}
48f24c4d 2535
7835b98b
CL
2536/*
2537 * This function gets called by the timer code, with HZ frequency.
2538 * We call it with interrupts disabled.
7835b98b
CL
2539 */
2540void scheduler_tick(void)
2541{
7835b98b
CL
2542 int cpu = smp_processor_id();
2543 struct rq *rq = cpu_rq(cpu);
dd41f596 2544 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2545
2546 sched_clock_tick();
dd41f596 2547
05fa785c 2548 raw_spin_lock(&rq->lock);
3e51f33f 2549 update_rq_clock(rq);
fa85ae24 2550 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2551 update_cpu_load_active(rq);
05fa785c 2552 raw_spin_unlock(&rq->lock);
7835b98b 2553
e9d2b064 2554 perf_event_task_tick();
e220d2dc 2555
e418e1c2 2556#ifdef CONFIG_SMP
6eb57e0d 2557 rq->idle_balance = idle_cpu(cpu);
7caff66f 2558 trigger_load_balance(rq);
e418e1c2 2559#endif
265f22a9 2560 rq_last_tick_reset(rq);
1da177e4
LT
2561}
2562
265f22a9
FW
2563#ifdef CONFIG_NO_HZ_FULL
2564/**
2565 * scheduler_tick_max_deferment
2566 *
2567 * Keep at least one tick per second when a single
2568 * active task is running because the scheduler doesn't
2569 * yet completely support full dynticks environment.
2570 *
2571 * This makes sure that uptime, CFS vruntime, load
2572 * balancing, etc... continue to move forward, even
2573 * with a very low granularity.
e69f6186
YB
2574 *
2575 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2576 */
2577u64 scheduler_tick_max_deferment(void)
2578{
2579 struct rq *rq = this_rq();
2580 unsigned long next, now = ACCESS_ONCE(jiffies);
2581
2582 next = rq->last_sched_tick + HZ;
2583
2584 if (time_before_eq(next, now))
2585 return 0;
2586
8fe8ff09 2587 return jiffies_to_nsecs(next - now);
1da177e4 2588}
265f22a9 2589#endif
1da177e4 2590
132380a0 2591notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2592{
2593 if (in_lock_functions(addr)) {
2594 addr = CALLER_ADDR2;
2595 if (in_lock_functions(addr))
2596 addr = CALLER_ADDR3;
2597 }
2598 return addr;
2599}
1da177e4 2600
7e49fcce
SR
2601#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2602 defined(CONFIG_PREEMPT_TRACER))
2603
edafe3a5 2604void preempt_count_add(int val)
1da177e4 2605{
6cd8a4bb 2606#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2607 /*
2608 * Underflow?
2609 */
9a11b49a
IM
2610 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2611 return;
6cd8a4bb 2612#endif
bdb43806 2613 __preempt_count_add(val);
6cd8a4bb 2614#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2615 /*
2616 * Spinlock count overflowing soon?
2617 */
33859f7f
MOS
2618 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2619 PREEMPT_MASK - 10);
6cd8a4bb 2620#endif
8f47b187
TG
2621 if (preempt_count() == val) {
2622 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2623#ifdef CONFIG_DEBUG_PREEMPT
2624 current->preempt_disable_ip = ip;
2625#endif
2626 trace_preempt_off(CALLER_ADDR0, ip);
2627 }
1da177e4 2628}
bdb43806 2629EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2630NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2631
edafe3a5 2632void preempt_count_sub(int val)
1da177e4 2633{
6cd8a4bb 2634#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2635 /*
2636 * Underflow?
2637 */
01e3eb82 2638 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2639 return;
1da177e4
LT
2640 /*
2641 * Is the spinlock portion underflowing?
2642 */
9a11b49a
IM
2643 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2644 !(preempt_count() & PREEMPT_MASK)))
2645 return;
6cd8a4bb 2646#endif
9a11b49a 2647
6cd8a4bb
SR
2648 if (preempt_count() == val)
2649 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2650 __preempt_count_sub(val);
1da177e4 2651}
bdb43806 2652EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2653NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2654
2655#endif
2656
2657/*
dd41f596 2658 * Print scheduling while atomic bug:
1da177e4 2659 */
dd41f596 2660static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2661{
664dfa65
DJ
2662 if (oops_in_progress)
2663 return;
2664
3df0fc5b
PZ
2665 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2666 prev->comm, prev->pid, preempt_count());
838225b4 2667
dd41f596 2668 debug_show_held_locks(prev);
e21f5b15 2669 print_modules();
dd41f596
IM
2670 if (irqs_disabled())
2671 print_irqtrace_events(prev);
8f47b187
TG
2672#ifdef CONFIG_DEBUG_PREEMPT
2673 if (in_atomic_preempt_off()) {
2674 pr_err("Preemption disabled at:");
2675 print_ip_sym(current->preempt_disable_ip);
2676 pr_cont("\n");
2677 }
2678#endif
6135fc1e 2679 dump_stack();
373d4d09 2680 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2681}
1da177e4 2682
dd41f596
IM
2683/*
2684 * Various schedule()-time debugging checks and statistics:
2685 */
2686static inline void schedule_debug(struct task_struct *prev)
2687{
0d9e2632
AT
2688#ifdef CONFIG_SCHED_STACK_END_CHECK
2689 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2690#endif
1da177e4 2691 /*
41a2d6cf 2692 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2693 * schedule() atomically, we ignore that path. Otherwise whine
2694 * if we are scheduling when we should not.
1da177e4 2695 */
192301e7 2696 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2697 __schedule_bug(prev);
b3fbab05 2698 rcu_sleep_check();
dd41f596 2699
1da177e4
LT
2700 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2701
2d72376b 2702 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2703}
2704
2705/*
2706 * Pick up the highest-prio task:
2707 */
2708static inline struct task_struct *
606dba2e 2709pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2710{
37e117c0 2711 const struct sched_class *class = &fair_sched_class;
dd41f596 2712 struct task_struct *p;
1da177e4
LT
2713
2714 /*
dd41f596
IM
2715 * Optimization: we know that if all tasks are in
2716 * the fair class we can call that function directly:
1da177e4 2717 */
37e117c0 2718 if (likely(prev->sched_class == class &&
38033c37 2719 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2720 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2721 if (unlikely(p == RETRY_TASK))
2722 goto again;
2723
2724 /* assumes fair_sched_class->next == idle_sched_class */
2725 if (unlikely(!p))
2726 p = idle_sched_class.pick_next_task(rq, prev);
2727
2728 return p;
1da177e4
LT
2729 }
2730
37e117c0 2731again:
34f971f6 2732 for_each_class(class) {
606dba2e 2733 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2734 if (p) {
2735 if (unlikely(p == RETRY_TASK))
2736 goto again;
dd41f596 2737 return p;
37e117c0 2738 }
dd41f596 2739 }
34f971f6
PZ
2740
2741 BUG(); /* the idle class will always have a runnable task */
dd41f596 2742}
1da177e4 2743
dd41f596 2744/*
c259e01a 2745 * __schedule() is the main scheduler function.
edde96ea
PE
2746 *
2747 * The main means of driving the scheduler and thus entering this function are:
2748 *
2749 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2750 *
2751 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2752 * paths. For example, see arch/x86/entry_64.S.
2753 *
2754 * To drive preemption between tasks, the scheduler sets the flag in timer
2755 * interrupt handler scheduler_tick().
2756 *
2757 * 3. Wakeups don't really cause entry into schedule(). They add a
2758 * task to the run-queue and that's it.
2759 *
2760 * Now, if the new task added to the run-queue preempts the current
2761 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2762 * called on the nearest possible occasion:
2763 *
2764 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2765 *
2766 * - in syscall or exception context, at the next outmost
2767 * preempt_enable(). (this might be as soon as the wake_up()'s
2768 * spin_unlock()!)
2769 *
2770 * - in IRQ context, return from interrupt-handler to
2771 * preemptible context
2772 *
2773 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2774 * then at the next:
2775 *
2776 * - cond_resched() call
2777 * - explicit schedule() call
2778 * - return from syscall or exception to user-space
2779 * - return from interrupt-handler to user-space
dd41f596 2780 */
c259e01a 2781static void __sched __schedule(void)
dd41f596
IM
2782{
2783 struct task_struct *prev, *next;
67ca7bde 2784 unsigned long *switch_count;
dd41f596 2785 struct rq *rq;
31656519 2786 int cpu;
dd41f596 2787
ff743345
PZ
2788need_resched:
2789 preempt_disable();
dd41f596
IM
2790 cpu = smp_processor_id();
2791 rq = cpu_rq(cpu);
25502a6c 2792 rcu_note_context_switch(cpu);
dd41f596 2793 prev = rq->curr;
dd41f596 2794
dd41f596 2795 schedule_debug(prev);
1da177e4 2796
31656519 2797 if (sched_feat(HRTICK))
f333fdc9 2798 hrtick_clear(rq);
8f4d37ec 2799
e0acd0a6
ON
2800 /*
2801 * Make sure that signal_pending_state()->signal_pending() below
2802 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2803 * done by the caller to avoid the race with signal_wake_up().
2804 */
2805 smp_mb__before_spinlock();
05fa785c 2806 raw_spin_lock_irq(&rq->lock);
1da177e4 2807
246d86b5 2808 switch_count = &prev->nivcsw;
1da177e4 2809 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2810 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2811 prev->state = TASK_RUNNING;
21aa9af0 2812 } else {
2acca55e
PZ
2813 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2814 prev->on_rq = 0;
2815
21aa9af0 2816 /*
2acca55e
PZ
2817 * If a worker went to sleep, notify and ask workqueue
2818 * whether it wants to wake up a task to maintain
2819 * concurrency.
21aa9af0
TH
2820 */
2821 if (prev->flags & PF_WQ_WORKER) {
2822 struct task_struct *to_wakeup;
2823
2824 to_wakeup = wq_worker_sleeping(prev, cpu);
2825 if (to_wakeup)
2826 try_to_wake_up_local(to_wakeup);
2827 }
21aa9af0 2828 }
dd41f596 2829 switch_count = &prev->nvcsw;
1da177e4
LT
2830 }
2831
da0c1e65 2832 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2833 update_rq_clock(rq);
2834
2835 next = pick_next_task(rq, prev);
f26f9aff 2836 clear_tsk_need_resched(prev);
f27dde8d 2837 clear_preempt_need_resched();
f26f9aff 2838 rq->skip_clock_update = 0;
1da177e4 2839
1da177e4 2840 if (likely(prev != next)) {
1da177e4
LT
2841 rq->nr_switches++;
2842 rq->curr = next;
2843 ++*switch_count;
2844
dd41f596 2845 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2846 /*
246d86b5
ON
2847 * The context switch have flipped the stack from under us
2848 * and restored the local variables which were saved when
2849 * this task called schedule() in the past. prev == current
2850 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2851 */
2852 cpu = smp_processor_id();
2853 rq = cpu_rq(cpu);
1da177e4 2854 } else
05fa785c 2855 raw_spin_unlock_irq(&rq->lock);
1da177e4 2856
3f029d3c 2857 post_schedule(rq);
1da177e4 2858
ba74c144 2859 sched_preempt_enable_no_resched();
ff743345 2860 if (need_resched())
1da177e4
LT
2861 goto need_resched;
2862}
c259e01a 2863
9c40cef2
TG
2864static inline void sched_submit_work(struct task_struct *tsk)
2865{
3c7d5184 2866 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2867 return;
2868 /*
2869 * If we are going to sleep and we have plugged IO queued,
2870 * make sure to submit it to avoid deadlocks.
2871 */
2872 if (blk_needs_flush_plug(tsk))
2873 blk_schedule_flush_plug(tsk);
2874}
2875
722a9f92 2876asmlinkage __visible void __sched schedule(void)
c259e01a 2877{
9c40cef2
TG
2878 struct task_struct *tsk = current;
2879
2880 sched_submit_work(tsk);
c259e01a
TG
2881 __schedule();
2882}
1da177e4
LT
2883EXPORT_SYMBOL(schedule);
2884
91d1aa43 2885#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2886asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2887{
2888 /*
2889 * If we come here after a random call to set_need_resched(),
2890 * or we have been woken up remotely but the IPI has not yet arrived,
2891 * we haven't yet exited the RCU idle mode. Do it here manually until
2892 * we find a better solution.
2893 */
91d1aa43 2894 user_exit();
20ab65e3 2895 schedule();
91d1aa43 2896 user_enter();
20ab65e3
FW
2897}
2898#endif
2899
c5491ea7
TG
2900/**
2901 * schedule_preempt_disabled - called with preemption disabled
2902 *
2903 * Returns with preemption disabled. Note: preempt_count must be 1
2904 */
2905void __sched schedule_preempt_disabled(void)
2906{
ba74c144 2907 sched_preempt_enable_no_resched();
c5491ea7
TG
2908 schedule();
2909 preempt_disable();
2910}
2911
1da177e4
LT
2912#ifdef CONFIG_PREEMPT
2913/*
2ed6e34f 2914 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2915 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2916 * occur there and call schedule directly.
2917 */
722a9f92 2918asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2919{
1da177e4
LT
2920 /*
2921 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2922 * we do not want to preempt the current task. Just return..
1da177e4 2923 */
fbb00b56 2924 if (likely(!preemptible()))
1da177e4
LT
2925 return;
2926
3a5c359a 2927 do {
bdb43806 2928 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2929 __schedule();
bdb43806 2930 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2931
3a5c359a
AK
2932 /*
2933 * Check again in case we missed a preemption opportunity
2934 * between schedule and now.
2935 */
2936 barrier();
5ed0cec0 2937 } while (need_resched());
1da177e4 2938}
376e2424 2939NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2940EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2941
2942#ifdef CONFIG_CONTEXT_TRACKING
2943/**
2944 * preempt_schedule_context - preempt_schedule called by tracing
2945 *
2946 * The tracing infrastructure uses preempt_enable_notrace to prevent
2947 * recursion and tracing preempt enabling caused by the tracing
2948 * infrastructure itself. But as tracing can happen in areas coming
2949 * from userspace or just about to enter userspace, a preempt enable
2950 * can occur before user_exit() is called. This will cause the scheduler
2951 * to be called when the system is still in usermode.
2952 *
2953 * To prevent this, the preempt_enable_notrace will use this function
2954 * instead of preempt_schedule() to exit user context if needed before
2955 * calling the scheduler.
2956 */
2957asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2958{
2959 enum ctx_state prev_ctx;
2960
2961 if (likely(!preemptible()))
2962 return;
2963
2964 do {
2965 __preempt_count_add(PREEMPT_ACTIVE);
2966 /*
2967 * Needs preempt disabled in case user_exit() is traced
2968 * and the tracer calls preempt_enable_notrace() causing
2969 * an infinite recursion.
2970 */
2971 prev_ctx = exception_enter();
2972 __schedule();
2973 exception_exit(prev_ctx);
2974
2975 __preempt_count_sub(PREEMPT_ACTIVE);
2976 barrier();
2977 } while (need_resched());
2978}
2979EXPORT_SYMBOL_GPL(preempt_schedule_context);
2980#endif /* CONFIG_CONTEXT_TRACKING */
2981
32e475d7 2982#endif /* CONFIG_PREEMPT */
1da177e4
LT
2983
2984/*
2ed6e34f 2985 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2986 * off of irq context.
2987 * Note, that this is called and return with irqs disabled. This will
2988 * protect us against recursive calling from irq.
2989 */
722a9f92 2990asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2991{
b22366cd 2992 enum ctx_state prev_state;
6478d880 2993
2ed6e34f 2994 /* Catch callers which need to be fixed */
f27dde8d 2995 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2996
b22366cd
FW
2997 prev_state = exception_enter();
2998
3a5c359a 2999 do {
bdb43806 3000 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 3001 local_irq_enable();
c259e01a 3002 __schedule();
3a5c359a 3003 local_irq_disable();
bdb43806 3004 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 3005
3a5c359a
AK
3006 /*
3007 * Check again in case we missed a preemption opportunity
3008 * between schedule and now.
3009 */
3010 barrier();
5ed0cec0 3011 } while (need_resched());
b22366cd
FW
3012
3013 exception_exit(prev_state);
1da177e4
LT
3014}
3015
63859d4f 3016int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3017 void *key)
1da177e4 3018{
63859d4f 3019 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3020}
1da177e4
LT
3021EXPORT_SYMBOL(default_wake_function);
3022
b29739f9
IM
3023#ifdef CONFIG_RT_MUTEXES
3024
3025/*
3026 * rt_mutex_setprio - set the current priority of a task
3027 * @p: task
3028 * @prio: prio value (kernel-internal form)
3029 *
3030 * This function changes the 'effective' priority of a task. It does
3031 * not touch ->normal_prio like __setscheduler().
3032 *
c365c292
TG
3033 * Used by the rt_mutex code to implement priority inheritance
3034 * logic. Call site only calls if the priority of the task changed.
b29739f9 3035 */
36c8b586 3036void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3037{
da0c1e65 3038 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3039 struct rq *rq;
83ab0aa0 3040 const struct sched_class *prev_class;
b29739f9 3041
aab03e05 3042 BUG_ON(prio > MAX_PRIO);
b29739f9 3043
0122ec5b 3044 rq = __task_rq_lock(p);
b29739f9 3045
1c4dd99b
TG
3046 /*
3047 * Idle task boosting is a nono in general. There is one
3048 * exception, when PREEMPT_RT and NOHZ is active:
3049 *
3050 * The idle task calls get_next_timer_interrupt() and holds
3051 * the timer wheel base->lock on the CPU and another CPU wants
3052 * to access the timer (probably to cancel it). We can safely
3053 * ignore the boosting request, as the idle CPU runs this code
3054 * with interrupts disabled and will complete the lock
3055 * protected section without being interrupted. So there is no
3056 * real need to boost.
3057 */
3058 if (unlikely(p == rq->idle)) {
3059 WARN_ON(p != rq->curr);
3060 WARN_ON(p->pi_blocked_on);
3061 goto out_unlock;
3062 }
3063
a8027073 3064 trace_sched_pi_setprio(p, prio);
d5f9f942 3065 oldprio = p->prio;
83ab0aa0 3066 prev_class = p->sched_class;
da0c1e65 3067 queued = task_on_rq_queued(p);
051a1d1a 3068 running = task_current(rq, p);
da0c1e65 3069 if (queued)
69be72c1 3070 dequeue_task(rq, p, 0);
0e1f3483 3071 if (running)
f3cd1c4e 3072 put_prev_task(rq, p);
dd41f596 3073
2d3d891d
DF
3074 /*
3075 * Boosting condition are:
3076 * 1. -rt task is running and holds mutex A
3077 * --> -dl task blocks on mutex A
3078 *
3079 * 2. -dl task is running and holds mutex A
3080 * --> -dl task blocks on mutex A and could preempt the
3081 * running task
3082 */
3083 if (dl_prio(prio)) {
466af29b
ON
3084 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3085 if (!dl_prio(p->normal_prio) ||
3086 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3087 p->dl.dl_boosted = 1;
3088 p->dl.dl_throttled = 0;
3089 enqueue_flag = ENQUEUE_REPLENISH;
3090 } else
3091 p->dl.dl_boosted = 0;
aab03e05 3092 p->sched_class = &dl_sched_class;
2d3d891d
DF
3093 } else if (rt_prio(prio)) {
3094 if (dl_prio(oldprio))
3095 p->dl.dl_boosted = 0;
3096 if (oldprio < prio)
3097 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3098 p->sched_class = &rt_sched_class;
2d3d891d
DF
3099 } else {
3100 if (dl_prio(oldprio))
3101 p->dl.dl_boosted = 0;
dd41f596 3102 p->sched_class = &fair_sched_class;
2d3d891d 3103 }
dd41f596 3104
b29739f9
IM
3105 p->prio = prio;
3106
0e1f3483
HS
3107 if (running)
3108 p->sched_class->set_curr_task(rq);
da0c1e65 3109 if (queued)
2d3d891d 3110 enqueue_task(rq, p, enqueue_flag);
cb469845 3111
da7a735e 3112 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3113out_unlock:
0122ec5b 3114 __task_rq_unlock(rq);
b29739f9 3115}
b29739f9 3116#endif
d50dde5a 3117
36c8b586 3118void set_user_nice(struct task_struct *p, long nice)
1da177e4 3119{
da0c1e65 3120 int old_prio, delta, queued;
1da177e4 3121 unsigned long flags;
70b97a7f 3122 struct rq *rq;
1da177e4 3123
75e45d51 3124 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3125 return;
3126 /*
3127 * We have to be careful, if called from sys_setpriority(),
3128 * the task might be in the middle of scheduling on another CPU.
3129 */
3130 rq = task_rq_lock(p, &flags);
3131 /*
3132 * The RT priorities are set via sched_setscheduler(), but we still
3133 * allow the 'normal' nice value to be set - but as expected
3134 * it wont have any effect on scheduling until the task is
aab03e05 3135 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3136 */
aab03e05 3137 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3138 p->static_prio = NICE_TO_PRIO(nice);
3139 goto out_unlock;
3140 }
da0c1e65
KT
3141 queued = task_on_rq_queued(p);
3142 if (queued)
69be72c1 3143 dequeue_task(rq, p, 0);
1da177e4 3144
1da177e4 3145 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3146 set_load_weight(p);
b29739f9
IM
3147 old_prio = p->prio;
3148 p->prio = effective_prio(p);
3149 delta = p->prio - old_prio;
1da177e4 3150
da0c1e65 3151 if (queued) {
371fd7e7 3152 enqueue_task(rq, p, 0);
1da177e4 3153 /*
d5f9f942
AM
3154 * If the task increased its priority or is running and
3155 * lowered its priority, then reschedule its CPU:
1da177e4 3156 */
d5f9f942 3157 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3158 resched_curr(rq);
1da177e4
LT
3159 }
3160out_unlock:
0122ec5b 3161 task_rq_unlock(rq, p, &flags);
1da177e4 3162}
1da177e4
LT
3163EXPORT_SYMBOL(set_user_nice);
3164
e43379f1
MM
3165/*
3166 * can_nice - check if a task can reduce its nice value
3167 * @p: task
3168 * @nice: nice value
3169 */
36c8b586 3170int can_nice(const struct task_struct *p, const int nice)
e43379f1 3171{
024f4747 3172 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3173 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3174
78d7d407 3175 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3176 capable(CAP_SYS_NICE));
3177}
3178
1da177e4
LT
3179#ifdef __ARCH_WANT_SYS_NICE
3180
3181/*
3182 * sys_nice - change the priority of the current process.
3183 * @increment: priority increment
3184 *
3185 * sys_setpriority is a more generic, but much slower function that
3186 * does similar things.
3187 */
5add95d4 3188SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3189{
48f24c4d 3190 long nice, retval;
1da177e4
LT
3191
3192 /*
3193 * Setpriority might change our priority at the same moment.
3194 * We don't have to worry. Conceptually one call occurs first
3195 * and we have a single winner.
3196 */
a9467fa3 3197 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3198 nice = task_nice(current) + increment;
1da177e4 3199
a9467fa3 3200 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3201 if (increment < 0 && !can_nice(current, nice))
3202 return -EPERM;
3203
1da177e4
LT
3204 retval = security_task_setnice(current, nice);
3205 if (retval)
3206 return retval;
3207
3208 set_user_nice(current, nice);
3209 return 0;
3210}
3211
3212#endif
3213
3214/**
3215 * task_prio - return the priority value of a given task.
3216 * @p: the task in question.
3217 *
e69f6186 3218 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3219 * RT tasks are offset by -200. Normal tasks are centered
3220 * around 0, value goes from -16 to +15.
3221 */
36c8b586 3222int task_prio(const struct task_struct *p)
1da177e4
LT
3223{
3224 return p->prio - MAX_RT_PRIO;
3225}
3226
1da177e4
LT
3227/**
3228 * idle_cpu - is a given cpu idle currently?
3229 * @cpu: the processor in question.
e69f6186
YB
3230 *
3231 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3232 */
3233int idle_cpu(int cpu)
3234{
908a3283
TG
3235 struct rq *rq = cpu_rq(cpu);
3236
3237 if (rq->curr != rq->idle)
3238 return 0;
3239
3240 if (rq->nr_running)
3241 return 0;
3242
3243#ifdef CONFIG_SMP
3244 if (!llist_empty(&rq->wake_list))
3245 return 0;
3246#endif
3247
3248 return 1;
1da177e4
LT
3249}
3250
1da177e4
LT
3251/**
3252 * idle_task - return the idle task for a given cpu.
3253 * @cpu: the processor in question.
e69f6186
YB
3254 *
3255 * Return: The idle task for the cpu @cpu.
1da177e4 3256 */
36c8b586 3257struct task_struct *idle_task(int cpu)
1da177e4
LT
3258{
3259 return cpu_rq(cpu)->idle;
3260}
3261
3262/**
3263 * find_process_by_pid - find a process with a matching PID value.
3264 * @pid: the pid in question.
e69f6186
YB
3265 *
3266 * The task of @pid, if found. %NULL otherwise.
1da177e4 3267 */
a9957449 3268static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3269{
228ebcbe 3270 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3271}
3272
aab03e05
DF
3273/*
3274 * This function initializes the sched_dl_entity of a newly becoming
3275 * SCHED_DEADLINE task.
3276 *
3277 * Only the static values are considered here, the actual runtime and the
3278 * absolute deadline will be properly calculated when the task is enqueued
3279 * for the first time with its new policy.
3280 */
3281static void
3282__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3283{
3284 struct sched_dl_entity *dl_se = &p->dl;
3285
3286 init_dl_task_timer(dl_se);
3287 dl_se->dl_runtime = attr->sched_runtime;
3288 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3289 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3290 dl_se->flags = attr->sched_flags;
332ac17e 3291 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3292 dl_se->dl_throttled = 0;
3293 dl_se->dl_new = 1;
5bfd126e 3294 dl_se->dl_yielded = 0;
aab03e05
DF
3295}
3296
c13db6b1
SR
3297/*
3298 * sched_setparam() passes in -1 for its policy, to let the functions
3299 * it calls know not to change it.
3300 */
3301#define SETPARAM_POLICY -1
3302
c365c292
TG
3303static void __setscheduler_params(struct task_struct *p,
3304 const struct sched_attr *attr)
1da177e4 3305{
d50dde5a
DF
3306 int policy = attr->sched_policy;
3307
c13db6b1 3308 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3309 policy = p->policy;
3310
1da177e4 3311 p->policy = policy;
d50dde5a 3312
aab03e05
DF
3313 if (dl_policy(policy))
3314 __setparam_dl(p, attr);
39fd8fd2 3315 else if (fair_policy(policy))
d50dde5a
DF
3316 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3317
39fd8fd2
PZ
3318 /*
3319 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3320 * !rt_policy. Always setting this ensures that things like
3321 * getparam()/getattr() don't report silly values for !rt tasks.
3322 */
3323 p->rt_priority = attr->sched_priority;
383afd09 3324 p->normal_prio = normal_prio(p);
c365c292
TG
3325 set_load_weight(p);
3326}
39fd8fd2 3327
c365c292
TG
3328/* Actually do priority change: must hold pi & rq lock. */
3329static void __setscheduler(struct rq *rq, struct task_struct *p,
3330 const struct sched_attr *attr)
3331{
3332 __setscheduler_params(p, attr);
d50dde5a 3333
383afd09
SR
3334 /*
3335 * If we get here, there was no pi waiters boosting the
3336 * task. It is safe to use the normal prio.
3337 */
3338 p->prio = normal_prio(p);
3339
aab03e05
DF
3340 if (dl_prio(p->prio))
3341 p->sched_class = &dl_sched_class;
3342 else if (rt_prio(p->prio))
ffd44db5
PZ
3343 p->sched_class = &rt_sched_class;
3344 else
3345 p->sched_class = &fair_sched_class;
1da177e4 3346}
aab03e05
DF
3347
3348static void
3349__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3350{
3351 struct sched_dl_entity *dl_se = &p->dl;
3352
3353 attr->sched_priority = p->rt_priority;
3354 attr->sched_runtime = dl_se->dl_runtime;
3355 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3356 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3357 attr->sched_flags = dl_se->flags;
3358}
3359
3360/*
3361 * This function validates the new parameters of a -deadline task.
3362 * We ask for the deadline not being zero, and greater or equal
755378a4 3363 * than the runtime, as well as the period of being zero or
332ac17e 3364 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3365 * user parameters are above the internal resolution of 1us (we
3366 * check sched_runtime only since it is always the smaller one) and
3367 * below 2^63 ns (we have to check both sched_deadline and
3368 * sched_period, as the latter can be zero).
aab03e05
DF
3369 */
3370static bool
3371__checkparam_dl(const struct sched_attr *attr)
3372{
b0827819
JL
3373 /* deadline != 0 */
3374 if (attr->sched_deadline == 0)
3375 return false;
3376
3377 /*
3378 * Since we truncate DL_SCALE bits, make sure we're at least
3379 * that big.
3380 */
3381 if (attr->sched_runtime < (1ULL << DL_SCALE))
3382 return false;
3383
3384 /*
3385 * Since we use the MSB for wrap-around and sign issues, make
3386 * sure it's not set (mind that period can be equal to zero).
3387 */
3388 if (attr->sched_deadline & (1ULL << 63) ||
3389 attr->sched_period & (1ULL << 63))
3390 return false;
3391
3392 /* runtime <= deadline <= period (if period != 0) */
3393 if ((attr->sched_period != 0 &&
3394 attr->sched_period < attr->sched_deadline) ||
3395 attr->sched_deadline < attr->sched_runtime)
3396 return false;
3397
3398 return true;
aab03e05
DF
3399}
3400
c69e8d9c
DH
3401/*
3402 * check the target process has a UID that matches the current process's
3403 */
3404static bool check_same_owner(struct task_struct *p)
3405{
3406 const struct cred *cred = current_cred(), *pcred;
3407 bool match;
3408
3409 rcu_read_lock();
3410 pcred = __task_cred(p);
9c806aa0
EB
3411 match = (uid_eq(cred->euid, pcred->euid) ||
3412 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3413 rcu_read_unlock();
3414 return match;
3415}
3416
d50dde5a
DF
3417static int __sched_setscheduler(struct task_struct *p,
3418 const struct sched_attr *attr,
3419 bool user)
1da177e4 3420{
383afd09
SR
3421 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3422 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3423 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3424 int policy = attr->sched_policy;
1da177e4 3425 unsigned long flags;
83ab0aa0 3426 const struct sched_class *prev_class;
70b97a7f 3427 struct rq *rq;
ca94c442 3428 int reset_on_fork;
1da177e4 3429
66e5393a
SR
3430 /* may grab non-irq protected spin_locks */
3431 BUG_ON(in_interrupt());
1da177e4
LT
3432recheck:
3433 /* double check policy once rq lock held */
ca94c442
LP
3434 if (policy < 0) {
3435 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3436 policy = oldpolicy = p->policy;
ca94c442 3437 } else {
7479f3c9 3438 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3439
aab03e05
DF
3440 if (policy != SCHED_DEADLINE &&
3441 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3442 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3443 policy != SCHED_IDLE)
3444 return -EINVAL;
3445 }
3446
7479f3c9
PZ
3447 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3448 return -EINVAL;
3449
1da177e4
LT
3450 /*
3451 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3452 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3453 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3454 */
0bb040a4 3455 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3456 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3457 return -EINVAL;
aab03e05
DF
3458 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3459 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3460 return -EINVAL;
3461
37e4ab3f
OC
3462 /*
3463 * Allow unprivileged RT tasks to decrease priority:
3464 */
961ccddd 3465 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3466 if (fair_policy(policy)) {
d0ea0268 3467 if (attr->sched_nice < task_nice(p) &&
eaad4513 3468 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3469 return -EPERM;
3470 }
3471
e05606d3 3472 if (rt_policy(policy)) {
a44702e8
ON
3473 unsigned long rlim_rtprio =
3474 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3475
3476 /* can't set/change the rt policy */
3477 if (policy != p->policy && !rlim_rtprio)
3478 return -EPERM;
3479
3480 /* can't increase priority */
d50dde5a
DF
3481 if (attr->sched_priority > p->rt_priority &&
3482 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3483 return -EPERM;
3484 }
c02aa73b 3485
d44753b8
JL
3486 /*
3487 * Can't set/change SCHED_DEADLINE policy at all for now
3488 * (safest behavior); in the future we would like to allow
3489 * unprivileged DL tasks to increase their relative deadline
3490 * or reduce their runtime (both ways reducing utilization)
3491 */
3492 if (dl_policy(policy))
3493 return -EPERM;
3494
dd41f596 3495 /*
c02aa73b
DH
3496 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3497 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3498 */
c02aa73b 3499 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3500 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3501 return -EPERM;
3502 }
5fe1d75f 3503
37e4ab3f 3504 /* can't change other user's priorities */
c69e8d9c 3505 if (!check_same_owner(p))
37e4ab3f 3506 return -EPERM;
ca94c442
LP
3507
3508 /* Normal users shall not reset the sched_reset_on_fork flag */
3509 if (p->sched_reset_on_fork && !reset_on_fork)
3510 return -EPERM;
37e4ab3f 3511 }
1da177e4 3512
725aad24 3513 if (user) {
b0ae1981 3514 retval = security_task_setscheduler(p);
725aad24
JF
3515 if (retval)
3516 return retval;
3517 }
3518
b29739f9
IM
3519 /*
3520 * make sure no PI-waiters arrive (or leave) while we are
3521 * changing the priority of the task:
0122ec5b 3522 *
25985edc 3523 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3524 * runqueue lock must be held.
3525 */
0122ec5b 3526 rq = task_rq_lock(p, &flags);
dc61b1d6 3527
34f971f6
PZ
3528 /*
3529 * Changing the policy of the stop threads its a very bad idea
3530 */
3531 if (p == rq->stop) {
0122ec5b 3532 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3533 return -EINVAL;
3534 }
3535
a51e9198 3536 /*
d6b1e911
TG
3537 * If not changing anything there's no need to proceed further,
3538 * but store a possible modification of reset_on_fork.
a51e9198 3539 */
d50dde5a 3540 if (unlikely(policy == p->policy)) {
d0ea0268 3541 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3542 goto change;
3543 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3544 goto change;
aab03e05
DF
3545 if (dl_policy(policy))
3546 goto change;
d50dde5a 3547
d6b1e911 3548 p->sched_reset_on_fork = reset_on_fork;
45afb173 3549 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3550 return 0;
3551 }
d50dde5a 3552change:
a51e9198 3553
dc61b1d6 3554 if (user) {
332ac17e 3555#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3556 /*
3557 * Do not allow realtime tasks into groups that have no runtime
3558 * assigned.
3559 */
3560 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3561 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3562 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3563 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3564 return -EPERM;
3565 }
dc61b1d6 3566#endif
332ac17e
DF
3567#ifdef CONFIG_SMP
3568 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3569 cpumask_t *span = rq->rd->span;
332ac17e
DF
3570
3571 /*
3572 * Don't allow tasks with an affinity mask smaller than
3573 * the entire root_domain to become SCHED_DEADLINE. We
3574 * will also fail if there's no bandwidth available.
3575 */
e4099a5e
PZ
3576 if (!cpumask_subset(span, &p->cpus_allowed) ||
3577 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3578 task_rq_unlock(rq, p, &flags);
3579 return -EPERM;
3580 }
3581 }
3582#endif
3583 }
dc61b1d6 3584
1da177e4
LT
3585 /* recheck policy now with rq lock held */
3586 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3587 policy = oldpolicy = -1;
0122ec5b 3588 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3589 goto recheck;
3590 }
332ac17e
DF
3591
3592 /*
3593 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3594 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3595 * is available.
3596 */
e4099a5e 3597 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3598 task_rq_unlock(rq, p, &flags);
3599 return -EBUSY;
3600 }
3601
c365c292
TG
3602 p->sched_reset_on_fork = reset_on_fork;
3603 oldprio = p->prio;
3604
3605 /*
3606 * Special case for priority boosted tasks.
3607 *
3608 * If the new priority is lower or equal (user space view)
3609 * than the current (boosted) priority, we just store the new
3610 * normal parameters and do not touch the scheduler class and
3611 * the runqueue. This will be done when the task deboost
3612 * itself.
3613 */
3614 if (rt_mutex_check_prio(p, newprio)) {
3615 __setscheduler_params(p, attr);
3616 task_rq_unlock(rq, p, &flags);
3617 return 0;
3618 }
3619
da0c1e65 3620 queued = task_on_rq_queued(p);
051a1d1a 3621 running = task_current(rq, p);
da0c1e65 3622 if (queued)
4ca9b72b 3623 dequeue_task(rq, p, 0);
0e1f3483 3624 if (running)
f3cd1c4e 3625 put_prev_task(rq, p);
f6b53205 3626
83ab0aa0 3627 prev_class = p->sched_class;
d50dde5a 3628 __setscheduler(rq, p, attr);
f6b53205 3629
0e1f3483
HS
3630 if (running)
3631 p->sched_class->set_curr_task(rq);
da0c1e65 3632 if (queued) {
81a44c54
TG
3633 /*
3634 * We enqueue to tail when the priority of a task is
3635 * increased (user space view).
3636 */
3637 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3638 }
cb469845 3639
da7a735e 3640 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3641 task_rq_unlock(rq, p, &flags);
b29739f9 3642
95e02ca9
TG
3643 rt_mutex_adjust_pi(p);
3644
1da177e4
LT
3645 return 0;
3646}
961ccddd 3647
7479f3c9
PZ
3648static int _sched_setscheduler(struct task_struct *p, int policy,
3649 const struct sched_param *param, bool check)
3650{
3651 struct sched_attr attr = {
3652 .sched_policy = policy,
3653 .sched_priority = param->sched_priority,
3654 .sched_nice = PRIO_TO_NICE(p->static_prio),
3655 };
3656
c13db6b1
SR
3657 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3658 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3659 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3660 policy &= ~SCHED_RESET_ON_FORK;
3661 attr.sched_policy = policy;
3662 }
3663
3664 return __sched_setscheduler(p, &attr, check);
3665}
961ccddd
RR
3666/**
3667 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3668 * @p: the task in question.
3669 * @policy: new policy.
3670 * @param: structure containing the new RT priority.
3671 *
e69f6186
YB
3672 * Return: 0 on success. An error code otherwise.
3673 *
961ccddd
RR
3674 * NOTE that the task may be already dead.
3675 */
3676int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3677 const struct sched_param *param)
961ccddd 3678{
7479f3c9 3679 return _sched_setscheduler(p, policy, param, true);
961ccddd 3680}
1da177e4
LT
3681EXPORT_SYMBOL_GPL(sched_setscheduler);
3682
d50dde5a
DF
3683int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3684{
3685 return __sched_setscheduler(p, attr, true);
3686}
3687EXPORT_SYMBOL_GPL(sched_setattr);
3688
961ccddd
RR
3689/**
3690 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3691 * @p: the task in question.
3692 * @policy: new policy.
3693 * @param: structure containing the new RT priority.
3694 *
3695 * Just like sched_setscheduler, only don't bother checking if the
3696 * current context has permission. For example, this is needed in
3697 * stop_machine(): we create temporary high priority worker threads,
3698 * but our caller might not have that capability.
e69f6186
YB
3699 *
3700 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3701 */
3702int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3703 const struct sched_param *param)
961ccddd 3704{
7479f3c9 3705 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3706}
3707
95cdf3b7
IM
3708static int
3709do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3710{
1da177e4
LT
3711 struct sched_param lparam;
3712 struct task_struct *p;
36c8b586 3713 int retval;
1da177e4
LT
3714
3715 if (!param || pid < 0)
3716 return -EINVAL;
3717 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3718 return -EFAULT;
5fe1d75f
ON
3719
3720 rcu_read_lock();
3721 retval = -ESRCH;
1da177e4 3722 p = find_process_by_pid(pid);
5fe1d75f
ON
3723 if (p != NULL)
3724 retval = sched_setscheduler(p, policy, &lparam);
3725 rcu_read_unlock();
36c8b586 3726
1da177e4
LT
3727 return retval;
3728}
3729
d50dde5a
DF
3730/*
3731 * Mimics kernel/events/core.c perf_copy_attr().
3732 */
3733static int sched_copy_attr(struct sched_attr __user *uattr,
3734 struct sched_attr *attr)
3735{
3736 u32 size;
3737 int ret;
3738
3739 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3740 return -EFAULT;
3741
3742 /*
3743 * zero the full structure, so that a short copy will be nice.
3744 */
3745 memset(attr, 0, sizeof(*attr));
3746
3747 ret = get_user(size, &uattr->size);
3748 if (ret)
3749 return ret;
3750
3751 if (size > PAGE_SIZE) /* silly large */
3752 goto err_size;
3753
3754 if (!size) /* abi compat */
3755 size = SCHED_ATTR_SIZE_VER0;
3756
3757 if (size < SCHED_ATTR_SIZE_VER0)
3758 goto err_size;
3759
3760 /*
3761 * If we're handed a bigger struct than we know of,
3762 * ensure all the unknown bits are 0 - i.e. new
3763 * user-space does not rely on any kernel feature
3764 * extensions we dont know about yet.
3765 */
3766 if (size > sizeof(*attr)) {
3767 unsigned char __user *addr;
3768 unsigned char __user *end;
3769 unsigned char val;
3770
3771 addr = (void __user *)uattr + sizeof(*attr);
3772 end = (void __user *)uattr + size;
3773
3774 for (; addr < end; addr++) {
3775 ret = get_user(val, addr);
3776 if (ret)
3777 return ret;
3778 if (val)
3779 goto err_size;
3780 }
3781 size = sizeof(*attr);
3782 }
3783
3784 ret = copy_from_user(attr, uattr, size);
3785 if (ret)
3786 return -EFAULT;
3787
3788 /*
3789 * XXX: do we want to be lenient like existing syscalls; or do we want
3790 * to be strict and return an error on out-of-bounds values?
3791 */
75e45d51 3792 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3793
e78c7bca 3794 return 0;
d50dde5a
DF
3795
3796err_size:
3797 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3798 return -E2BIG;
d50dde5a
DF
3799}
3800
1da177e4
LT
3801/**
3802 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3803 * @pid: the pid in question.
3804 * @policy: new policy.
3805 * @param: structure containing the new RT priority.
e69f6186
YB
3806 *
3807 * Return: 0 on success. An error code otherwise.
1da177e4 3808 */
5add95d4
HC
3809SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3810 struct sched_param __user *, param)
1da177e4 3811{
c21761f1
JB
3812 /* negative values for policy are not valid */
3813 if (policy < 0)
3814 return -EINVAL;
3815
1da177e4
LT
3816 return do_sched_setscheduler(pid, policy, param);
3817}
3818
3819/**
3820 * sys_sched_setparam - set/change the RT priority of a thread
3821 * @pid: the pid in question.
3822 * @param: structure containing the new RT priority.
e69f6186
YB
3823 *
3824 * Return: 0 on success. An error code otherwise.
1da177e4 3825 */
5add95d4 3826SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3827{
c13db6b1 3828 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3829}
3830
d50dde5a
DF
3831/**
3832 * sys_sched_setattr - same as above, but with extended sched_attr
3833 * @pid: the pid in question.
5778fccf 3834 * @uattr: structure containing the extended parameters.
db66d756 3835 * @flags: for future extension.
d50dde5a 3836 */
6d35ab48
PZ
3837SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3838 unsigned int, flags)
d50dde5a
DF
3839{
3840 struct sched_attr attr;
3841 struct task_struct *p;
3842 int retval;
3843
6d35ab48 3844 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3845 return -EINVAL;
3846
143cf23d
MK
3847 retval = sched_copy_attr(uattr, &attr);
3848 if (retval)
3849 return retval;
d50dde5a 3850
b14ed2c2 3851 if ((int)attr.sched_policy < 0)
dbdb2275 3852 return -EINVAL;
d50dde5a
DF
3853
3854 rcu_read_lock();
3855 retval = -ESRCH;
3856 p = find_process_by_pid(pid);
3857 if (p != NULL)
3858 retval = sched_setattr(p, &attr);
3859 rcu_read_unlock();
3860
3861 return retval;
3862}
3863
1da177e4
LT
3864/**
3865 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3866 * @pid: the pid in question.
e69f6186
YB
3867 *
3868 * Return: On success, the policy of the thread. Otherwise, a negative error
3869 * code.
1da177e4 3870 */
5add95d4 3871SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3872{
36c8b586 3873 struct task_struct *p;
3a5c359a 3874 int retval;
1da177e4
LT
3875
3876 if (pid < 0)
3a5c359a 3877 return -EINVAL;
1da177e4
LT
3878
3879 retval = -ESRCH;
5fe85be0 3880 rcu_read_lock();
1da177e4
LT
3881 p = find_process_by_pid(pid);
3882 if (p) {
3883 retval = security_task_getscheduler(p);
3884 if (!retval)
ca94c442
LP
3885 retval = p->policy
3886 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3887 }
5fe85be0 3888 rcu_read_unlock();
1da177e4
LT
3889 return retval;
3890}
3891
3892/**
ca94c442 3893 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3894 * @pid: the pid in question.
3895 * @param: structure containing the RT priority.
e69f6186
YB
3896 *
3897 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3898 * code.
1da177e4 3899 */
5add95d4 3900SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3901{
ce5f7f82 3902 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3903 struct task_struct *p;
3a5c359a 3904 int retval;
1da177e4
LT
3905
3906 if (!param || pid < 0)
3a5c359a 3907 return -EINVAL;
1da177e4 3908
5fe85be0 3909 rcu_read_lock();
1da177e4
LT
3910 p = find_process_by_pid(pid);
3911 retval = -ESRCH;
3912 if (!p)
3913 goto out_unlock;
3914
3915 retval = security_task_getscheduler(p);
3916 if (retval)
3917 goto out_unlock;
3918
ce5f7f82
PZ
3919 if (task_has_rt_policy(p))
3920 lp.sched_priority = p->rt_priority;
5fe85be0 3921 rcu_read_unlock();
1da177e4
LT
3922
3923 /*
3924 * This one might sleep, we cannot do it with a spinlock held ...
3925 */
3926 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3927
1da177e4
LT
3928 return retval;
3929
3930out_unlock:
5fe85be0 3931 rcu_read_unlock();
1da177e4
LT
3932 return retval;
3933}
3934
d50dde5a
DF
3935static int sched_read_attr(struct sched_attr __user *uattr,
3936 struct sched_attr *attr,
3937 unsigned int usize)
3938{
3939 int ret;
3940
3941 if (!access_ok(VERIFY_WRITE, uattr, usize))
3942 return -EFAULT;
3943
3944 /*
3945 * If we're handed a smaller struct than we know of,
3946 * ensure all the unknown bits are 0 - i.e. old
3947 * user-space does not get uncomplete information.
3948 */
3949 if (usize < sizeof(*attr)) {
3950 unsigned char *addr;
3951 unsigned char *end;
3952
3953 addr = (void *)attr + usize;
3954 end = (void *)attr + sizeof(*attr);
3955
3956 for (; addr < end; addr++) {
3957 if (*addr)
22400674 3958 return -EFBIG;
d50dde5a
DF
3959 }
3960
3961 attr->size = usize;
3962 }
3963
4efbc454 3964 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3965 if (ret)
3966 return -EFAULT;
3967
22400674 3968 return 0;
d50dde5a
DF
3969}
3970
3971/**
aab03e05 3972 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3973 * @pid: the pid in question.
5778fccf 3974 * @uattr: structure containing the extended parameters.
d50dde5a 3975 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3976 * @flags: for future extension.
d50dde5a 3977 */
6d35ab48
PZ
3978SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3979 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3980{
3981 struct sched_attr attr = {
3982 .size = sizeof(struct sched_attr),
3983 };
3984 struct task_struct *p;
3985 int retval;
3986
3987 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3988 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3989 return -EINVAL;
3990
3991 rcu_read_lock();
3992 p = find_process_by_pid(pid);
3993 retval = -ESRCH;
3994 if (!p)
3995 goto out_unlock;
3996
3997 retval = security_task_getscheduler(p);
3998 if (retval)
3999 goto out_unlock;
4000
4001 attr.sched_policy = p->policy;
7479f3c9
PZ
4002 if (p->sched_reset_on_fork)
4003 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4004 if (task_has_dl_policy(p))
4005 __getparam_dl(p, &attr);
4006 else if (task_has_rt_policy(p))
d50dde5a
DF
4007 attr.sched_priority = p->rt_priority;
4008 else
d0ea0268 4009 attr.sched_nice = task_nice(p);
d50dde5a
DF
4010
4011 rcu_read_unlock();
4012
4013 retval = sched_read_attr(uattr, &attr, size);
4014 return retval;
4015
4016out_unlock:
4017 rcu_read_unlock();
4018 return retval;
4019}
4020
96f874e2 4021long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4022{
5a16f3d3 4023 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4024 struct task_struct *p;
4025 int retval;
1da177e4 4026
23f5d142 4027 rcu_read_lock();
1da177e4
LT
4028
4029 p = find_process_by_pid(pid);
4030 if (!p) {
23f5d142 4031 rcu_read_unlock();
1da177e4
LT
4032 return -ESRCH;
4033 }
4034
23f5d142 4035 /* Prevent p going away */
1da177e4 4036 get_task_struct(p);
23f5d142 4037 rcu_read_unlock();
1da177e4 4038
14a40ffc
TH
4039 if (p->flags & PF_NO_SETAFFINITY) {
4040 retval = -EINVAL;
4041 goto out_put_task;
4042 }
5a16f3d3
RR
4043 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4044 retval = -ENOMEM;
4045 goto out_put_task;
4046 }
4047 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4048 retval = -ENOMEM;
4049 goto out_free_cpus_allowed;
4050 }
1da177e4 4051 retval = -EPERM;
4c44aaaf
EB
4052 if (!check_same_owner(p)) {
4053 rcu_read_lock();
4054 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4055 rcu_read_unlock();
16303ab2 4056 goto out_free_new_mask;
4c44aaaf
EB
4057 }
4058 rcu_read_unlock();
4059 }
1da177e4 4060
b0ae1981 4061 retval = security_task_setscheduler(p);
e7834f8f 4062 if (retval)
16303ab2 4063 goto out_free_new_mask;
e7834f8f 4064
e4099a5e
PZ
4065
4066 cpuset_cpus_allowed(p, cpus_allowed);
4067 cpumask_and(new_mask, in_mask, cpus_allowed);
4068
332ac17e
DF
4069 /*
4070 * Since bandwidth control happens on root_domain basis,
4071 * if admission test is enabled, we only admit -deadline
4072 * tasks allowed to run on all the CPUs in the task's
4073 * root_domain.
4074 */
4075#ifdef CONFIG_SMP
f1e3a093
KT
4076 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4077 rcu_read_lock();
4078 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4079 retval = -EBUSY;
f1e3a093 4080 rcu_read_unlock();
16303ab2 4081 goto out_free_new_mask;
332ac17e 4082 }
f1e3a093 4083 rcu_read_unlock();
332ac17e
DF
4084 }
4085#endif
49246274 4086again:
5a16f3d3 4087 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4088
8707d8b8 4089 if (!retval) {
5a16f3d3
RR
4090 cpuset_cpus_allowed(p, cpus_allowed);
4091 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4092 /*
4093 * We must have raced with a concurrent cpuset
4094 * update. Just reset the cpus_allowed to the
4095 * cpuset's cpus_allowed
4096 */
5a16f3d3 4097 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4098 goto again;
4099 }
4100 }
16303ab2 4101out_free_new_mask:
5a16f3d3
RR
4102 free_cpumask_var(new_mask);
4103out_free_cpus_allowed:
4104 free_cpumask_var(cpus_allowed);
4105out_put_task:
1da177e4 4106 put_task_struct(p);
1da177e4
LT
4107 return retval;
4108}
4109
4110static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4111 struct cpumask *new_mask)
1da177e4 4112{
96f874e2
RR
4113 if (len < cpumask_size())
4114 cpumask_clear(new_mask);
4115 else if (len > cpumask_size())
4116 len = cpumask_size();
4117
1da177e4
LT
4118 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4119}
4120
4121/**
4122 * sys_sched_setaffinity - set the cpu affinity of a process
4123 * @pid: pid of the process
4124 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4125 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4126 *
4127 * Return: 0 on success. An error code otherwise.
1da177e4 4128 */
5add95d4
HC
4129SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4130 unsigned long __user *, user_mask_ptr)
1da177e4 4131{
5a16f3d3 4132 cpumask_var_t new_mask;
1da177e4
LT
4133 int retval;
4134
5a16f3d3
RR
4135 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4136 return -ENOMEM;
1da177e4 4137
5a16f3d3
RR
4138 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4139 if (retval == 0)
4140 retval = sched_setaffinity(pid, new_mask);
4141 free_cpumask_var(new_mask);
4142 return retval;
1da177e4
LT
4143}
4144
96f874e2 4145long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4146{
36c8b586 4147 struct task_struct *p;
31605683 4148 unsigned long flags;
1da177e4 4149 int retval;
1da177e4 4150
23f5d142 4151 rcu_read_lock();
1da177e4
LT
4152
4153 retval = -ESRCH;
4154 p = find_process_by_pid(pid);
4155 if (!p)
4156 goto out_unlock;
4157
e7834f8f
DQ
4158 retval = security_task_getscheduler(p);
4159 if (retval)
4160 goto out_unlock;
4161
013fdb80 4162 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4163 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4164 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4165
4166out_unlock:
23f5d142 4167 rcu_read_unlock();
1da177e4 4168
9531b62f 4169 return retval;
1da177e4
LT
4170}
4171
4172/**
4173 * sys_sched_getaffinity - get the cpu affinity of a process
4174 * @pid: pid of the process
4175 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4176 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4177 *
4178 * Return: 0 on success. An error code otherwise.
1da177e4 4179 */
5add95d4
HC
4180SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4181 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4182{
4183 int ret;
f17c8607 4184 cpumask_var_t mask;
1da177e4 4185
84fba5ec 4186 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4187 return -EINVAL;
4188 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4189 return -EINVAL;
4190
f17c8607
RR
4191 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4192 return -ENOMEM;
1da177e4 4193
f17c8607
RR
4194 ret = sched_getaffinity(pid, mask);
4195 if (ret == 0) {
8bc037fb 4196 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4197
4198 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4199 ret = -EFAULT;
4200 else
cd3d8031 4201 ret = retlen;
f17c8607
RR
4202 }
4203 free_cpumask_var(mask);
1da177e4 4204
f17c8607 4205 return ret;
1da177e4
LT
4206}
4207
4208/**
4209 * sys_sched_yield - yield the current processor to other threads.
4210 *
dd41f596
IM
4211 * This function yields the current CPU to other tasks. If there are no
4212 * other threads running on this CPU then this function will return.
e69f6186
YB
4213 *
4214 * Return: 0.
1da177e4 4215 */
5add95d4 4216SYSCALL_DEFINE0(sched_yield)
1da177e4 4217{
70b97a7f 4218 struct rq *rq = this_rq_lock();
1da177e4 4219
2d72376b 4220 schedstat_inc(rq, yld_count);
4530d7ab 4221 current->sched_class->yield_task(rq);
1da177e4
LT
4222
4223 /*
4224 * Since we are going to call schedule() anyway, there's
4225 * no need to preempt or enable interrupts:
4226 */
4227 __release(rq->lock);
8a25d5de 4228 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4229 do_raw_spin_unlock(&rq->lock);
ba74c144 4230 sched_preempt_enable_no_resched();
1da177e4
LT
4231
4232 schedule();
4233
4234 return 0;
4235}
4236
e7b38404 4237static void __cond_resched(void)
1da177e4 4238{
bdb43806 4239 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4240 __schedule();
bdb43806 4241 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4242}
4243
02b67cc3 4244int __sched _cond_resched(void)
1da177e4 4245{
d86ee480 4246 if (should_resched()) {
1da177e4
LT
4247 __cond_resched();
4248 return 1;
4249 }
4250 return 0;
4251}
02b67cc3 4252EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4253
4254/*
613afbf8 4255 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4256 * call schedule, and on return reacquire the lock.
4257 *
41a2d6cf 4258 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4259 * operations here to prevent schedule() from being called twice (once via
4260 * spin_unlock(), once by hand).
4261 */
613afbf8 4262int __cond_resched_lock(spinlock_t *lock)
1da177e4 4263{
d86ee480 4264 int resched = should_resched();
6df3cecb
JK
4265 int ret = 0;
4266
f607c668
PZ
4267 lockdep_assert_held(lock);
4268
4a81e832 4269 if (spin_needbreak(lock) || resched) {
1da177e4 4270 spin_unlock(lock);
d86ee480 4271 if (resched)
95c354fe
NP
4272 __cond_resched();
4273 else
4274 cpu_relax();
6df3cecb 4275 ret = 1;
1da177e4 4276 spin_lock(lock);
1da177e4 4277 }
6df3cecb 4278 return ret;
1da177e4 4279}
613afbf8 4280EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4281
613afbf8 4282int __sched __cond_resched_softirq(void)
1da177e4
LT
4283{
4284 BUG_ON(!in_softirq());
4285
d86ee480 4286 if (should_resched()) {
98d82567 4287 local_bh_enable();
1da177e4
LT
4288 __cond_resched();
4289 local_bh_disable();
4290 return 1;
4291 }
4292 return 0;
4293}
613afbf8 4294EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4295
1da177e4
LT
4296/**
4297 * yield - yield the current processor to other threads.
4298 *
8e3fabfd
PZ
4299 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4300 *
4301 * The scheduler is at all times free to pick the calling task as the most
4302 * eligible task to run, if removing the yield() call from your code breaks
4303 * it, its already broken.
4304 *
4305 * Typical broken usage is:
4306 *
4307 * while (!event)
4308 * yield();
4309 *
4310 * where one assumes that yield() will let 'the other' process run that will
4311 * make event true. If the current task is a SCHED_FIFO task that will never
4312 * happen. Never use yield() as a progress guarantee!!
4313 *
4314 * If you want to use yield() to wait for something, use wait_event().
4315 * If you want to use yield() to be 'nice' for others, use cond_resched().
4316 * If you still want to use yield(), do not!
1da177e4
LT
4317 */
4318void __sched yield(void)
4319{
4320 set_current_state(TASK_RUNNING);
4321 sys_sched_yield();
4322}
1da177e4
LT
4323EXPORT_SYMBOL(yield);
4324
d95f4122
MG
4325/**
4326 * yield_to - yield the current processor to another thread in
4327 * your thread group, or accelerate that thread toward the
4328 * processor it's on.
16addf95
RD
4329 * @p: target task
4330 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4331 *
4332 * It's the caller's job to ensure that the target task struct
4333 * can't go away on us before we can do any checks.
4334 *
e69f6186 4335 * Return:
7b270f60
PZ
4336 * true (>0) if we indeed boosted the target task.
4337 * false (0) if we failed to boost the target.
4338 * -ESRCH if there's no task to yield to.
d95f4122 4339 */
fa93384f 4340int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4341{
4342 struct task_struct *curr = current;
4343 struct rq *rq, *p_rq;
4344 unsigned long flags;
c3c18640 4345 int yielded = 0;
d95f4122
MG
4346
4347 local_irq_save(flags);
4348 rq = this_rq();
4349
4350again:
4351 p_rq = task_rq(p);
7b270f60
PZ
4352 /*
4353 * If we're the only runnable task on the rq and target rq also
4354 * has only one task, there's absolutely no point in yielding.
4355 */
4356 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4357 yielded = -ESRCH;
4358 goto out_irq;
4359 }
4360
d95f4122 4361 double_rq_lock(rq, p_rq);
39e24d8f 4362 if (task_rq(p) != p_rq) {
d95f4122
MG
4363 double_rq_unlock(rq, p_rq);
4364 goto again;
4365 }
4366
4367 if (!curr->sched_class->yield_to_task)
7b270f60 4368 goto out_unlock;
d95f4122
MG
4369
4370 if (curr->sched_class != p->sched_class)
7b270f60 4371 goto out_unlock;
d95f4122
MG
4372
4373 if (task_running(p_rq, p) || p->state)
7b270f60 4374 goto out_unlock;
d95f4122
MG
4375
4376 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4377 if (yielded) {
d95f4122 4378 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4379 /*
4380 * Make p's CPU reschedule; pick_next_entity takes care of
4381 * fairness.
4382 */
4383 if (preempt && rq != p_rq)
8875125e 4384 resched_curr(p_rq);
6d1cafd8 4385 }
d95f4122 4386
7b270f60 4387out_unlock:
d95f4122 4388 double_rq_unlock(rq, p_rq);
7b270f60 4389out_irq:
d95f4122
MG
4390 local_irq_restore(flags);
4391
7b270f60 4392 if (yielded > 0)
d95f4122
MG
4393 schedule();
4394
4395 return yielded;
4396}
4397EXPORT_SYMBOL_GPL(yield_to);
4398
1da177e4 4399/*
41a2d6cf 4400 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4401 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4402 */
4403void __sched io_schedule(void)
4404{
54d35f29 4405 struct rq *rq = raw_rq();
1da177e4 4406
0ff92245 4407 delayacct_blkio_start();
1da177e4 4408 atomic_inc(&rq->nr_iowait);
73c10101 4409 blk_flush_plug(current);
8f0dfc34 4410 current->in_iowait = 1;
1da177e4 4411 schedule();
8f0dfc34 4412 current->in_iowait = 0;
1da177e4 4413 atomic_dec(&rq->nr_iowait);
0ff92245 4414 delayacct_blkio_end();
1da177e4 4415}
1da177e4
LT
4416EXPORT_SYMBOL(io_schedule);
4417
4418long __sched io_schedule_timeout(long timeout)
4419{
54d35f29 4420 struct rq *rq = raw_rq();
1da177e4
LT
4421 long ret;
4422
0ff92245 4423 delayacct_blkio_start();
1da177e4 4424 atomic_inc(&rq->nr_iowait);
73c10101 4425 blk_flush_plug(current);
8f0dfc34 4426 current->in_iowait = 1;
1da177e4 4427 ret = schedule_timeout(timeout);
8f0dfc34 4428 current->in_iowait = 0;
1da177e4 4429 atomic_dec(&rq->nr_iowait);
0ff92245 4430 delayacct_blkio_end();
1da177e4
LT
4431 return ret;
4432}
4433
4434/**
4435 * sys_sched_get_priority_max - return maximum RT priority.
4436 * @policy: scheduling class.
4437 *
e69f6186
YB
4438 * Return: On success, this syscall returns the maximum
4439 * rt_priority that can be used by a given scheduling class.
4440 * On failure, a negative error code is returned.
1da177e4 4441 */
5add95d4 4442SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4443{
4444 int ret = -EINVAL;
4445
4446 switch (policy) {
4447 case SCHED_FIFO:
4448 case SCHED_RR:
4449 ret = MAX_USER_RT_PRIO-1;
4450 break;
aab03e05 4451 case SCHED_DEADLINE:
1da177e4 4452 case SCHED_NORMAL:
b0a9499c 4453 case SCHED_BATCH:
dd41f596 4454 case SCHED_IDLE:
1da177e4
LT
4455 ret = 0;
4456 break;
4457 }
4458 return ret;
4459}
4460
4461/**
4462 * sys_sched_get_priority_min - return minimum RT priority.
4463 * @policy: scheduling class.
4464 *
e69f6186
YB
4465 * Return: On success, this syscall returns the minimum
4466 * rt_priority that can be used by a given scheduling class.
4467 * On failure, a negative error code is returned.
1da177e4 4468 */
5add95d4 4469SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4470{
4471 int ret = -EINVAL;
4472
4473 switch (policy) {
4474 case SCHED_FIFO:
4475 case SCHED_RR:
4476 ret = 1;
4477 break;
aab03e05 4478 case SCHED_DEADLINE:
1da177e4 4479 case SCHED_NORMAL:
b0a9499c 4480 case SCHED_BATCH:
dd41f596 4481 case SCHED_IDLE:
1da177e4
LT
4482 ret = 0;
4483 }
4484 return ret;
4485}
4486
4487/**
4488 * sys_sched_rr_get_interval - return the default timeslice of a process.
4489 * @pid: pid of the process.
4490 * @interval: userspace pointer to the timeslice value.
4491 *
4492 * this syscall writes the default timeslice value of a given process
4493 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4494 *
4495 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4496 * an error code.
1da177e4 4497 */
17da2bd9 4498SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4499 struct timespec __user *, interval)
1da177e4 4500{
36c8b586 4501 struct task_struct *p;
a4ec24b4 4502 unsigned int time_slice;
dba091b9
TG
4503 unsigned long flags;
4504 struct rq *rq;
3a5c359a 4505 int retval;
1da177e4 4506 struct timespec t;
1da177e4
LT
4507
4508 if (pid < 0)
3a5c359a 4509 return -EINVAL;
1da177e4
LT
4510
4511 retval = -ESRCH;
1a551ae7 4512 rcu_read_lock();
1da177e4
LT
4513 p = find_process_by_pid(pid);
4514 if (!p)
4515 goto out_unlock;
4516
4517 retval = security_task_getscheduler(p);
4518 if (retval)
4519 goto out_unlock;
4520
dba091b9 4521 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4522 time_slice = 0;
4523 if (p->sched_class->get_rr_interval)
4524 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4525 task_rq_unlock(rq, p, &flags);
a4ec24b4 4526
1a551ae7 4527 rcu_read_unlock();
a4ec24b4 4528 jiffies_to_timespec(time_slice, &t);
1da177e4 4529 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4530 return retval;
3a5c359a 4531
1da177e4 4532out_unlock:
1a551ae7 4533 rcu_read_unlock();
1da177e4
LT
4534 return retval;
4535}
4536
7c731e0a 4537static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4538
82a1fcb9 4539void sched_show_task(struct task_struct *p)
1da177e4 4540{
1da177e4 4541 unsigned long free = 0;
4e79752c 4542 int ppid;
36c8b586 4543 unsigned state;
1da177e4 4544
1da177e4 4545 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4546 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4547 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4548#if BITS_PER_LONG == 32
1da177e4 4549 if (state == TASK_RUNNING)
3df0fc5b 4550 printk(KERN_CONT " running ");
1da177e4 4551 else
3df0fc5b 4552 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4553#else
4554 if (state == TASK_RUNNING)
3df0fc5b 4555 printk(KERN_CONT " running task ");
1da177e4 4556 else
3df0fc5b 4557 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4558#endif
4559#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4560 free = stack_not_used(p);
1da177e4 4561#endif
4e79752c
PM
4562 rcu_read_lock();
4563 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4564 rcu_read_unlock();
3df0fc5b 4565 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4566 task_pid_nr(p), ppid,
aa47b7e0 4567 (unsigned long)task_thread_info(p)->flags);
1da177e4 4568
3d1cb205 4569 print_worker_info(KERN_INFO, p);
5fb5e6de 4570 show_stack(p, NULL);
1da177e4
LT
4571}
4572
e59e2ae2 4573void show_state_filter(unsigned long state_filter)
1da177e4 4574{
36c8b586 4575 struct task_struct *g, *p;
1da177e4 4576
4bd77321 4577#if BITS_PER_LONG == 32
3df0fc5b
PZ
4578 printk(KERN_INFO
4579 " task PC stack pid father\n");
1da177e4 4580#else
3df0fc5b
PZ
4581 printk(KERN_INFO
4582 " task PC stack pid father\n");
1da177e4 4583#endif
510f5acc 4584 rcu_read_lock();
5d07f420 4585 for_each_process_thread(g, p) {
1da177e4
LT
4586 /*
4587 * reset the NMI-timeout, listing all files on a slow
25985edc 4588 * console might take a lot of time:
1da177e4
LT
4589 */
4590 touch_nmi_watchdog();
39bc89fd 4591 if (!state_filter || (p->state & state_filter))
82a1fcb9 4592 sched_show_task(p);
5d07f420 4593 }
1da177e4 4594
04c9167f
JF
4595 touch_all_softlockup_watchdogs();
4596
dd41f596
IM
4597#ifdef CONFIG_SCHED_DEBUG
4598 sysrq_sched_debug_show();
4599#endif
510f5acc 4600 rcu_read_unlock();
e59e2ae2
IM
4601 /*
4602 * Only show locks if all tasks are dumped:
4603 */
93335a21 4604 if (!state_filter)
e59e2ae2 4605 debug_show_all_locks();
1da177e4
LT
4606}
4607
0db0628d 4608void init_idle_bootup_task(struct task_struct *idle)
1df21055 4609{
dd41f596 4610 idle->sched_class = &idle_sched_class;
1df21055
IM
4611}
4612
f340c0d1
IM
4613/**
4614 * init_idle - set up an idle thread for a given CPU
4615 * @idle: task in question
4616 * @cpu: cpu the idle task belongs to
4617 *
4618 * NOTE: this function does not set the idle thread's NEED_RESCHED
4619 * flag, to make booting more robust.
4620 */
0db0628d 4621void init_idle(struct task_struct *idle, int cpu)
1da177e4 4622{
70b97a7f 4623 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4624 unsigned long flags;
4625
05fa785c 4626 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4627
5e1576ed 4628 __sched_fork(0, idle);
06b83b5f 4629 idle->state = TASK_RUNNING;
dd41f596
IM
4630 idle->se.exec_start = sched_clock();
4631
1e1b6c51 4632 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4633 /*
4634 * We're having a chicken and egg problem, even though we are
4635 * holding rq->lock, the cpu isn't yet set to this cpu so the
4636 * lockdep check in task_group() will fail.
4637 *
4638 * Similar case to sched_fork(). / Alternatively we could
4639 * use task_rq_lock() here and obtain the other rq->lock.
4640 *
4641 * Silence PROVE_RCU
4642 */
4643 rcu_read_lock();
dd41f596 4644 __set_task_cpu(idle, cpu);
6506cf6c 4645 rcu_read_unlock();
1da177e4 4646
1da177e4 4647 rq->curr = rq->idle = idle;
da0c1e65 4648 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4649#if defined(CONFIG_SMP)
4650 idle->on_cpu = 1;
4866cde0 4651#endif
05fa785c 4652 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4653
4654 /* Set the preempt count _outside_ the spinlocks! */
01028747 4655 init_idle_preempt_count(idle, cpu);
55cd5340 4656
dd41f596
IM
4657 /*
4658 * The idle tasks have their own, simple scheduling class:
4659 */
4660 idle->sched_class = &idle_sched_class;
868baf07 4661 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4662 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4663#if defined(CONFIG_SMP)
4664 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4665#endif
19978ca6
IM
4666}
4667
1da177e4 4668#ifdef CONFIG_SMP
a15b12ac
KT
4669/*
4670 * move_queued_task - move a queued task to new rq.
4671 *
4672 * Returns (locked) new rq. Old rq's lock is released.
4673 */
4674static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4675{
4676 struct rq *rq = task_rq(p);
4677
4678 lockdep_assert_held(&rq->lock);
4679
4680 dequeue_task(rq, p, 0);
4681 p->on_rq = TASK_ON_RQ_MIGRATING;
4682 set_task_cpu(p, new_cpu);
4683 raw_spin_unlock(&rq->lock);
4684
4685 rq = cpu_rq(new_cpu);
4686
4687 raw_spin_lock(&rq->lock);
4688 BUG_ON(task_cpu(p) != new_cpu);
4689 p->on_rq = TASK_ON_RQ_QUEUED;
4690 enqueue_task(rq, p, 0);
4691 check_preempt_curr(rq, p, 0);
4692
4693 return rq;
4694}
4695
1e1b6c51
KM
4696void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4697{
4698 if (p->sched_class && p->sched_class->set_cpus_allowed)
4699 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4700
4701 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4702 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4703}
4704
1da177e4
LT
4705/*
4706 * This is how migration works:
4707 *
969c7921
TH
4708 * 1) we invoke migration_cpu_stop() on the target CPU using
4709 * stop_one_cpu().
4710 * 2) stopper starts to run (implicitly forcing the migrated thread
4711 * off the CPU)
4712 * 3) it checks whether the migrated task is still in the wrong runqueue.
4713 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4714 * it and puts it into the right queue.
969c7921
TH
4715 * 5) stopper completes and stop_one_cpu() returns and the migration
4716 * is done.
1da177e4
LT
4717 */
4718
4719/*
4720 * Change a given task's CPU affinity. Migrate the thread to a
4721 * proper CPU and schedule it away if the CPU it's executing on
4722 * is removed from the allowed bitmask.
4723 *
4724 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4725 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4726 * call is not atomic; no spinlocks may be held.
4727 */
96f874e2 4728int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4729{
4730 unsigned long flags;
70b97a7f 4731 struct rq *rq;
969c7921 4732 unsigned int dest_cpu;
48f24c4d 4733 int ret = 0;
1da177e4
LT
4734
4735 rq = task_rq_lock(p, &flags);
e2912009 4736
db44fc01
YZ
4737 if (cpumask_equal(&p->cpus_allowed, new_mask))
4738 goto out;
4739
6ad4c188 4740 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4741 ret = -EINVAL;
4742 goto out;
4743 }
4744
1e1b6c51 4745 do_set_cpus_allowed(p, new_mask);
73fe6aae 4746
1da177e4 4747 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4748 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4749 goto out;
4750
969c7921 4751 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4752 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4753 struct migration_arg arg = { p, dest_cpu };
1da177e4 4754 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4755 task_rq_unlock(rq, p, &flags);
969c7921 4756 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4757 tlb_migrate_finish(p->mm);
4758 return 0;
a15b12ac
KT
4759 } else if (task_on_rq_queued(p))
4760 rq = move_queued_task(p, dest_cpu);
1da177e4 4761out:
0122ec5b 4762 task_rq_unlock(rq, p, &flags);
48f24c4d 4763
1da177e4
LT
4764 return ret;
4765}
cd8ba7cd 4766EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4767
4768/*
41a2d6cf 4769 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4770 * this because either it can't run here any more (set_cpus_allowed()
4771 * away from this CPU, or CPU going down), or because we're
4772 * attempting to rebalance this task on exec (sched_exec).
4773 *
4774 * So we race with normal scheduler movements, but that's OK, as long
4775 * as the task is no longer on this CPU.
efc30814
KK
4776 *
4777 * Returns non-zero if task was successfully migrated.
1da177e4 4778 */
efc30814 4779static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4780{
a1e01829 4781 struct rq *rq;
e2912009 4782 int ret = 0;
1da177e4 4783
e761b772 4784 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4785 return ret;
1da177e4 4786
a1e01829 4787 rq = cpu_rq(src_cpu);
1da177e4 4788
0122ec5b 4789 raw_spin_lock(&p->pi_lock);
a1e01829 4790 raw_spin_lock(&rq->lock);
1da177e4
LT
4791 /* Already moved. */
4792 if (task_cpu(p) != src_cpu)
b1e38734 4793 goto done;
a1e01829 4794
1da177e4 4795 /* Affinity changed (again). */
fa17b507 4796 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4797 goto fail;
1da177e4 4798
e2912009
PZ
4799 /*
4800 * If we're not on a rq, the next wake-up will ensure we're
4801 * placed properly.
4802 */
a15b12ac
KT
4803 if (task_on_rq_queued(p))
4804 rq = move_queued_task(p, dest_cpu);
b1e38734 4805done:
efc30814 4806 ret = 1;
b1e38734 4807fail:
a1e01829 4808 raw_spin_unlock(&rq->lock);
0122ec5b 4809 raw_spin_unlock(&p->pi_lock);
efc30814 4810 return ret;
1da177e4
LT
4811}
4812
e6628d5b
MG
4813#ifdef CONFIG_NUMA_BALANCING
4814/* Migrate current task p to target_cpu */
4815int migrate_task_to(struct task_struct *p, int target_cpu)
4816{
4817 struct migration_arg arg = { p, target_cpu };
4818 int curr_cpu = task_cpu(p);
4819
4820 if (curr_cpu == target_cpu)
4821 return 0;
4822
4823 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4824 return -EINVAL;
4825
4826 /* TODO: This is not properly updating schedstats */
4827
286549dc 4828 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4829 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4830}
0ec8aa00
PZ
4831
4832/*
4833 * Requeue a task on a given node and accurately track the number of NUMA
4834 * tasks on the runqueues
4835 */
4836void sched_setnuma(struct task_struct *p, int nid)
4837{
4838 struct rq *rq;
4839 unsigned long flags;
da0c1e65 4840 bool queued, running;
0ec8aa00
PZ
4841
4842 rq = task_rq_lock(p, &flags);
da0c1e65 4843 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4844 running = task_current(rq, p);
4845
da0c1e65 4846 if (queued)
0ec8aa00
PZ
4847 dequeue_task(rq, p, 0);
4848 if (running)
f3cd1c4e 4849 put_prev_task(rq, p);
0ec8aa00
PZ
4850
4851 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4852
4853 if (running)
4854 p->sched_class->set_curr_task(rq);
da0c1e65 4855 if (queued)
0ec8aa00
PZ
4856 enqueue_task(rq, p, 0);
4857 task_rq_unlock(rq, p, &flags);
4858}
e6628d5b
MG
4859#endif
4860
1da177e4 4861/*
969c7921
TH
4862 * migration_cpu_stop - this will be executed by a highprio stopper thread
4863 * and performs thread migration by bumping thread off CPU then
4864 * 'pushing' onto another runqueue.
1da177e4 4865 */
969c7921 4866static int migration_cpu_stop(void *data)
1da177e4 4867{
969c7921 4868 struct migration_arg *arg = data;
f7b4cddc 4869
969c7921
TH
4870 /*
4871 * The original target cpu might have gone down and we might
4872 * be on another cpu but it doesn't matter.
4873 */
f7b4cddc 4874 local_irq_disable();
5cd038f5
LJ
4875 /*
4876 * We need to explicitly wake pending tasks before running
4877 * __migrate_task() such that we will not miss enforcing cpus_allowed
4878 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4879 */
4880 sched_ttwu_pending();
969c7921 4881 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4882 local_irq_enable();
1da177e4 4883 return 0;
f7b4cddc
ON
4884}
4885
1da177e4 4886#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4887
054b9108 4888/*
48c5ccae
PZ
4889 * Ensures that the idle task is using init_mm right before its cpu goes
4890 * offline.
054b9108 4891 */
48c5ccae 4892void idle_task_exit(void)
1da177e4 4893{
48c5ccae 4894 struct mm_struct *mm = current->active_mm;
e76bd8d9 4895
48c5ccae 4896 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4897
a53efe5f 4898 if (mm != &init_mm) {
48c5ccae 4899 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4900 finish_arch_post_lock_switch();
4901 }
48c5ccae 4902 mmdrop(mm);
1da177e4
LT
4903}
4904
4905/*
5d180232
PZ
4906 * Since this CPU is going 'away' for a while, fold any nr_active delta
4907 * we might have. Assumes we're called after migrate_tasks() so that the
4908 * nr_active count is stable.
4909 *
4910 * Also see the comment "Global load-average calculations".
1da177e4 4911 */
5d180232 4912static void calc_load_migrate(struct rq *rq)
1da177e4 4913{
5d180232
PZ
4914 long delta = calc_load_fold_active(rq);
4915 if (delta)
4916 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4917}
4918
3f1d2a31
PZ
4919static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4920{
4921}
4922
4923static const struct sched_class fake_sched_class = {
4924 .put_prev_task = put_prev_task_fake,
4925};
4926
4927static struct task_struct fake_task = {
4928 /*
4929 * Avoid pull_{rt,dl}_task()
4930 */
4931 .prio = MAX_PRIO + 1,
4932 .sched_class = &fake_sched_class,
4933};
4934
48f24c4d 4935/*
48c5ccae
PZ
4936 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4937 * try_to_wake_up()->select_task_rq().
4938 *
4939 * Called with rq->lock held even though we'er in stop_machine() and
4940 * there's no concurrency possible, we hold the required locks anyway
4941 * because of lock validation efforts.
1da177e4 4942 */
48c5ccae 4943static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4944{
70b97a7f 4945 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4946 struct task_struct *next, *stop = rq->stop;
4947 int dest_cpu;
1da177e4
LT
4948
4949 /*
48c5ccae
PZ
4950 * Fudge the rq selection such that the below task selection loop
4951 * doesn't get stuck on the currently eligible stop task.
4952 *
4953 * We're currently inside stop_machine() and the rq is either stuck
4954 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4955 * either way we should never end up calling schedule() until we're
4956 * done here.
1da177e4 4957 */
48c5ccae 4958 rq->stop = NULL;
48f24c4d 4959
77bd3970
FW
4960 /*
4961 * put_prev_task() and pick_next_task() sched
4962 * class method both need to have an up-to-date
4963 * value of rq->clock[_task]
4964 */
4965 update_rq_clock(rq);
4966
dd41f596 4967 for ( ; ; ) {
48c5ccae
PZ
4968 /*
4969 * There's this thread running, bail when that's the only
4970 * remaining thread.
4971 */
4972 if (rq->nr_running == 1)
dd41f596 4973 break;
48c5ccae 4974
3f1d2a31 4975 next = pick_next_task(rq, &fake_task);
48c5ccae 4976 BUG_ON(!next);
79c53799 4977 next->sched_class->put_prev_task(rq, next);
e692ab53 4978
48c5ccae
PZ
4979 /* Find suitable destination for @next, with force if needed. */
4980 dest_cpu = select_fallback_rq(dead_cpu, next);
4981 raw_spin_unlock(&rq->lock);
4982
4983 __migrate_task(next, dead_cpu, dest_cpu);
4984
4985 raw_spin_lock(&rq->lock);
1da177e4 4986 }
dce48a84 4987
48c5ccae 4988 rq->stop = stop;
dce48a84 4989}
48c5ccae 4990
1da177e4
LT
4991#endif /* CONFIG_HOTPLUG_CPU */
4992
e692ab53
NP
4993#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4994
4995static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4996 {
4997 .procname = "sched_domain",
c57baf1e 4998 .mode = 0555,
e0361851 4999 },
56992309 5000 {}
e692ab53
NP
5001};
5002
5003static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5004 {
5005 .procname = "kernel",
c57baf1e 5006 .mode = 0555,
e0361851
AD
5007 .child = sd_ctl_dir,
5008 },
56992309 5009 {}
e692ab53
NP
5010};
5011
5012static struct ctl_table *sd_alloc_ctl_entry(int n)
5013{
5014 struct ctl_table *entry =
5cf9f062 5015 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5016
e692ab53
NP
5017 return entry;
5018}
5019
6382bc90
MM
5020static void sd_free_ctl_entry(struct ctl_table **tablep)
5021{
cd790076 5022 struct ctl_table *entry;
6382bc90 5023
cd790076
MM
5024 /*
5025 * In the intermediate directories, both the child directory and
5026 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5027 * will always be set. In the lowest directory the names are
cd790076
MM
5028 * static strings and all have proc handlers.
5029 */
5030 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5031 if (entry->child)
5032 sd_free_ctl_entry(&entry->child);
cd790076
MM
5033 if (entry->proc_handler == NULL)
5034 kfree(entry->procname);
5035 }
6382bc90
MM
5036
5037 kfree(*tablep);
5038 *tablep = NULL;
5039}
5040
201c373e 5041static int min_load_idx = 0;
fd9b86d3 5042static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5043
e692ab53 5044static void
e0361851 5045set_table_entry(struct ctl_table *entry,
e692ab53 5046 const char *procname, void *data, int maxlen,
201c373e
NK
5047 umode_t mode, proc_handler *proc_handler,
5048 bool load_idx)
e692ab53 5049{
e692ab53
NP
5050 entry->procname = procname;
5051 entry->data = data;
5052 entry->maxlen = maxlen;
5053 entry->mode = mode;
5054 entry->proc_handler = proc_handler;
201c373e
NK
5055
5056 if (load_idx) {
5057 entry->extra1 = &min_load_idx;
5058 entry->extra2 = &max_load_idx;
5059 }
e692ab53
NP
5060}
5061
5062static struct ctl_table *
5063sd_alloc_ctl_domain_table(struct sched_domain *sd)
5064{
37e6bae8 5065 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5066
ad1cdc1d
MM
5067 if (table == NULL)
5068 return NULL;
5069
e0361851 5070 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5071 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5072 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5073 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5074 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5075 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5076 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5077 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5078 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5079 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5080 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5081 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5082 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5083 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5084 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5085 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5086 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5087 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5088 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5089 &sd->cache_nice_tries,
201c373e 5090 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5091 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5092 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5093 set_table_entry(&table[11], "max_newidle_lb_cost",
5094 &sd->max_newidle_lb_cost,
5095 sizeof(long), 0644, proc_doulongvec_minmax, false);
5096 set_table_entry(&table[12], "name", sd->name,
201c373e 5097 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5098 /* &table[13] is terminator */
e692ab53
NP
5099
5100 return table;
5101}
5102
be7002e6 5103static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5104{
5105 struct ctl_table *entry, *table;
5106 struct sched_domain *sd;
5107 int domain_num = 0, i;
5108 char buf[32];
5109
5110 for_each_domain(cpu, sd)
5111 domain_num++;
5112 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5113 if (table == NULL)
5114 return NULL;
e692ab53
NP
5115
5116 i = 0;
5117 for_each_domain(cpu, sd) {
5118 snprintf(buf, 32, "domain%d", i);
e692ab53 5119 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5120 entry->mode = 0555;
e692ab53
NP
5121 entry->child = sd_alloc_ctl_domain_table(sd);
5122 entry++;
5123 i++;
5124 }
5125 return table;
5126}
5127
5128static struct ctl_table_header *sd_sysctl_header;
6382bc90 5129static void register_sched_domain_sysctl(void)
e692ab53 5130{
6ad4c188 5131 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5132 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5133 char buf[32];
5134
7378547f
MM
5135 WARN_ON(sd_ctl_dir[0].child);
5136 sd_ctl_dir[0].child = entry;
5137
ad1cdc1d
MM
5138 if (entry == NULL)
5139 return;
5140
6ad4c188 5141 for_each_possible_cpu(i) {
e692ab53 5142 snprintf(buf, 32, "cpu%d", i);
e692ab53 5143 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5144 entry->mode = 0555;
e692ab53 5145 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5146 entry++;
e692ab53 5147 }
7378547f
MM
5148
5149 WARN_ON(sd_sysctl_header);
e692ab53
NP
5150 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5151}
6382bc90 5152
7378547f 5153/* may be called multiple times per register */
6382bc90
MM
5154static void unregister_sched_domain_sysctl(void)
5155{
7378547f
MM
5156 if (sd_sysctl_header)
5157 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5158 sd_sysctl_header = NULL;
7378547f
MM
5159 if (sd_ctl_dir[0].child)
5160 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5161}
e692ab53 5162#else
6382bc90
MM
5163static void register_sched_domain_sysctl(void)
5164{
5165}
5166static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5167{
5168}
5169#endif
5170
1f11eb6a
GH
5171static void set_rq_online(struct rq *rq)
5172{
5173 if (!rq->online) {
5174 const struct sched_class *class;
5175
c6c4927b 5176 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5177 rq->online = 1;
5178
5179 for_each_class(class) {
5180 if (class->rq_online)
5181 class->rq_online(rq);
5182 }
5183 }
5184}
5185
5186static void set_rq_offline(struct rq *rq)
5187{
5188 if (rq->online) {
5189 const struct sched_class *class;
5190
5191 for_each_class(class) {
5192 if (class->rq_offline)
5193 class->rq_offline(rq);
5194 }
5195
c6c4927b 5196 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5197 rq->online = 0;
5198 }
5199}
5200
1da177e4
LT
5201/*
5202 * migration_call - callback that gets triggered when a CPU is added.
5203 * Here we can start up the necessary migration thread for the new CPU.
5204 */
0db0628d 5205static int
48f24c4d 5206migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5207{
48f24c4d 5208 int cpu = (long)hcpu;
1da177e4 5209 unsigned long flags;
969c7921 5210 struct rq *rq = cpu_rq(cpu);
1da177e4 5211
48c5ccae 5212 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5213
1da177e4 5214 case CPU_UP_PREPARE:
a468d389 5215 rq->calc_load_update = calc_load_update;
1da177e4 5216 break;
48f24c4d 5217
1da177e4 5218 case CPU_ONLINE:
1f94ef59 5219 /* Update our root-domain */
05fa785c 5220 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5221 if (rq->rd) {
c6c4927b 5222 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5223
5224 set_rq_online(rq);
1f94ef59 5225 }
05fa785c 5226 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5227 break;
48f24c4d 5228
1da177e4 5229#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5230 case CPU_DYING:
317f3941 5231 sched_ttwu_pending();
57d885fe 5232 /* Update our root-domain */
05fa785c 5233 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5234 if (rq->rd) {
c6c4927b 5235 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5236 set_rq_offline(rq);
57d885fe 5237 }
48c5ccae
PZ
5238 migrate_tasks(cpu);
5239 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5240 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5241 break;
48c5ccae 5242
5d180232 5243 case CPU_DEAD:
f319da0c 5244 calc_load_migrate(rq);
57d885fe 5245 break;
1da177e4
LT
5246#endif
5247 }
49c022e6
PZ
5248
5249 update_max_interval();
5250
1da177e4
LT
5251 return NOTIFY_OK;
5252}
5253
f38b0820
PM
5254/*
5255 * Register at high priority so that task migration (migrate_all_tasks)
5256 * happens before everything else. This has to be lower priority than
cdd6c482 5257 * the notifier in the perf_event subsystem, though.
1da177e4 5258 */
0db0628d 5259static struct notifier_block migration_notifier = {
1da177e4 5260 .notifier_call = migration_call,
50a323b7 5261 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5262};
5263
a803f026
CM
5264static void __cpuinit set_cpu_rq_start_time(void)
5265{
5266 int cpu = smp_processor_id();
5267 struct rq *rq = cpu_rq(cpu);
5268 rq->age_stamp = sched_clock_cpu(cpu);
5269}
5270
0db0628d 5271static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5272 unsigned long action, void *hcpu)
5273{
5274 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5275 case CPU_STARTING:
5276 set_cpu_rq_start_time();
5277 return NOTIFY_OK;
3a101d05
TH
5278 case CPU_DOWN_FAILED:
5279 set_cpu_active((long)hcpu, true);
5280 return NOTIFY_OK;
5281 default:
5282 return NOTIFY_DONE;
5283 }
5284}
5285
0db0628d 5286static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5287 unsigned long action, void *hcpu)
5288{
de212f18
PZ
5289 unsigned long flags;
5290 long cpu = (long)hcpu;
f10e00f4 5291 struct dl_bw *dl_b;
de212f18 5292
3a101d05
TH
5293 switch (action & ~CPU_TASKS_FROZEN) {
5294 case CPU_DOWN_PREPARE:
de212f18
PZ
5295 set_cpu_active(cpu, false);
5296
5297 /* explicitly allow suspend */
5298 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5299 bool overflow;
5300 int cpus;
5301
f10e00f4
KT
5302 rcu_read_lock_sched();
5303 dl_b = dl_bw_of(cpu);
5304
de212f18
PZ
5305 raw_spin_lock_irqsave(&dl_b->lock, flags);
5306 cpus = dl_bw_cpus(cpu);
5307 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5308 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5309
f10e00f4
KT
5310 rcu_read_unlock_sched();
5311
de212f18
PZ
5312 if (overflow)
5313 return notifier_from_errno(-EBUSY);
5314 }
3a101d05 5315 return NOTIFY_OK;
3a101d05 5316 }
de212f18
PZ
5317
5318 return NOTIFY_DONE;
3a101d05
TH
5319}
5320
7babe8db 5321static int __init migration_init(void)
1da177e4
LT
5322{
5323 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5324 int err;
48f24c4d 5325
3a101d05 5326 /* Initialize migration for the boot CPU */
07dccf33
AM
5327 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5328 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5329 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5330 register_cpu_notifier(&migration_notifier);
7babe8db 5331
3a101d05
TH
5332 /* Register cpu active notifiers */
5333 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5334 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5335
a004cd42 5336 return 0;
1da177e4 5337}
7babe8db 5338early_initcall(migration_init);
1da177e4
LT
5339#endif
5340
5341#ifdef CONFIG_SMP
476f3534 5342
4cb98839
PZ
5343static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5344
3e9830dc 5345#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5346
d039ac60 5347static __read_mostly int sched_debug_enabled;
f6630114 5348
d039ac60 5349static int __init sched_debug_setup(char *str)
f6630114 5350{
d039ac60 5351 sched_debug_enabled = 1;
f6630114
MT
5352
5353 return 0;
5354}
d039ac60
PZ
5355early_param("sched_debug", sched_debug_setup);
5356
5357static inline bool sched_debug(void)
5358{
5359 return sched_debug_enabled;
5360}
f6630114 5361
7c16ec58 5362static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5363 struct cpumask *groupmask)
1da177e4 5364{
4dcf6aff 5365 struct sched_group *group = sd->groups;
434d53b0 5366 char str[256];
1da177e4 5367
968ea6d8 5368 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5369 cpumask_clear(groupmask);
4dcf6aff
IM
5370
5371 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5372
5373 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5374 printk("does not load-balance\n");
4dcf6aff 5375 if (sd->parent)
3df0fc5b
PZ
5376 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5377 " has parent");
4dcf6aff 5378 return -1;
41c7ce9a
NP
5379 }
5380
3df0fc5b 5381 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5382
758b2cdc 5383 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5384 printk(KERN_ERR "ERROR: domain->span does not contain "
5385 "CPU%d\n", cpu);
4dcf6aff 5386 }
758b2cdc 5387 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5388 printk(KERN_ERR "ERROR: domain->groups does not contain"
5389 " CPU%d\n", cpu);
4dcf6aff 5390 }
1da177e4 5391
4dcf6aff 5392 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5393 do {
4dcf6aff 5394 if (!group) {
3df0fc5b
PZ
5395 printk("\n");
5396 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5397 break;
5398 }
5399
c3decf0d 5400 /*
63b2ca30
NP
5401 * Even though we initialize ->capacity to something semi-sane,
5402 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5403 * domain iteration is still funny without causing /0 traps.
5404 */
63b2ca30 5405 if (!group->sgc->capacity_orig) {
3df0fc5b 5406 printk(KERN_CONT "\n");
63b2ca30 5407 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5408 break;
5409 }
1da177e4 5410
758b2cdc 5411 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5412 printk(KERN_CONT "\n");
5413 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5414 break;
5415 }
1da177e4 5416
cb83b629
PZ
5417 if (!(sd->flags & SD_OVERLAP) &&
5418 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5419 printk(KERN_CONT "\n");
5420 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5421 break;
5422 }
1da177e4 5423
758b2cdc 5424 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5425
968ea6d8 5426 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5427
3df0fc5b 5428 printk(KERN_CONT " %s", str);
ca8ce3d0 5429 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5430 printk(KERN_CONT " (cpu_capacity = %d)",
5431 group->sgc->capacity);
381512cf 5432 }
1da177e4 5433
4dcf6aff
IM
5434 group = group->next;
5435 } while (group != sd->groups);
3df0fc5b 5436 printk(KERN_CONT "\n");
1da177e4 5437
758b2cdc 5438 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5439 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5440
758b2cdc
RR
5441 if (sd->parent &&
5442 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5443 printk(KERN_ERR "ERROR: parent span is not a superset "
5444 "of domain->span\n");
4dcf6aff
IM
5445 return 0;
5446}
1da177e4 5447
4dcf6aff
IM
5448static void sched_domain_debug(struct sched_domain *sd, int cpu)
5449{
5450 int level = 0;
1da177e4 5451
d039ac60 5452 if (!sched_debug_enabled)
f6630114
MT
5453 return;
5454
4dcf6aff
IM
5455 if (!sd) {
5456 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5457 return;
5458 }
1da177e4 5459
4dcf6aff
IM
5460 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5461
5462 for (;;) {
4cb98839 5463 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5464 break;
1da177e4
LT
5465 level++;
5466 sd = sd->parent;
33859f7f 5467 if (!sd)
4dcf6aff
IM
5468 break;
5469 }
1da177e4 5470}
6d6bc0ad 5471#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5472# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5473static inline bool sched_debug(void)
5474{
5475 return false;
5476}
6d6bc0ad 5477#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5478
1a20ff27 5479static int sd_degenerate(struct sched_domain *sd)
245af2c7 5480{
758b2cdc 5481 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5482 return 1;
5483
5484 /* Following flags need at least 2 groups */
5485 if (sd->flags & (SD_LOAD_BALANCE |
5486 SD_BALANCE_NEWIDLE |
5487 SD_BALANCE_FORK |
89c4710e 5488 SD_BALANCE_EXEC |
5d4dfddd 5489 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5490 SD_SHARE_PKG_RESOURCES |
5491 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5492 if (sd->groups != sd->groups->next)
5493 return 0;
5494 }
5495
5496 /* Following flags don't use groups */
c88d5910 5497 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5498 return 0;
5499
5500 return 1;
5501}
5502
48f24c4d
IM
5503static int
5504sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5505{
5506 unsigned long cflags = sd->flags, pflags = parent->flags;
5507
5508 if (sd_degenerate(parent))
5509 return 1;
5510
758b2cdc 5511 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5512 return 0;
5513
245af2c7
SS
5514 /* Flags needing groups don't count if only 1 group in parent */
5515 if (parent->groups == parent->groups->next) {
5516 pflags &= ~(SD_LOAD_BALANCE |
5517 SD_BALANCE_NEWIDLE |
5518 SD_BALANCE_FORK |
89c4710e 5519 SD_BALANCE_EXEC |
5d4dfddd 5520 SD_SHARE_CPUCAPACITY |
10866e62 5521 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5522 SD_PREFER_SIBLING |
5523 SD_SHARE_POWERDOMAIN);
5436499e
KC
5524 if (nr_node_ids == 1)
5525 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5526 }
5527 if (~cflags & pflags)
5528 return 0;
5529
5530 return 1;
5531}
5532
dce840a0 5533static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5534{
dce840a0 5535 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5536
68e74568 5537 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5538 cpudl_cleanup(&rd->cpudl);
1baca4ce 5539 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5540 free_cpumask_var(rd->rto_mask);
5541 free_cpumask_var(rd->online);
5542 free_cpumask_var(rd->span);
5543 kfree(rd);
5544}
5545
57d885fe
GH
5546static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5547{
a0490fa3 5548 struct root_domain *old_rd = NULL;
57d885fe 5549 unsigned long flags;
57d885fe 5550
05fa785c 5551 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5552
5553 if (rq->rd) {
a0490fa3 5554 old_rd = rq->rd;
57d885fe 5555
c6c4927b 5556 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5557 set_rq_offline(rq);
57d885fe 5558
c6c4927b 5559 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5560
a0490fa3 5561 /*
0515973f 5562 * If we dont want to free the old_rd yet then
a0490fa3
IM
5563 * set old_rd to NULL to skip the freeing later
5564 * in this function:
5565 */
5566 if (!atomic_dec_and_test(&old_rd->refcount))
5567 old_rd = NULL;
57d885fe
GH
5568 }
5569
5570 atomic_inc(&rd->refcount);
5571 rq->rd = rd;
5572
c6c4927b 5573 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5574 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5575 set_rq_online(rq);
57d885fe 5576
05fa785c 5577 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5578
5579 if (old_rd)
dce840a0 5580 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5581}
5582
68c38fc3 5583static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5584{
5585 memset(rd, 0, sizeof(*rd));
5586
68c38fc3 5587 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5588 goto out;
68c38fc3 5589 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5590 goto free_span;
1baca4ce 5591 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5592 goto free_online;
1baca4ce
JL
5593 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5594 goto free_dlo_mask;
6e0534f2 5595
332ac17e 5596 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5597 if (cpudl_init(&rd->cpudl) != 0)
5598 goto free_dlo_mask;
332ac17e 5599
68c38fc3 5600 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5601 goto free_rto_mask;
c6c4927b 5602 return 0;
6e0534f2 5603
68e74568
RR
5604free_rto_mask:
5605 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5606free_dlo_mask:
5607 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5608free_online:
5609 free_cpumask_var(rd->online);
5610free_span:
5611 free_cpumask_var(rd->span);
0c910d28 5612out:
c6c4927b 5613 return -ENOMEM;
57d885fe
GH
5614}
5615
029632fb
PZ
5616/*
5617 * By default the system creates a single root-domain with all cpus as
5618 * members (mimicking the global state we have today).
5619 */
5620struct root_domain def_root_domain;
5621
57d885fe
GH
5622static void init_defrootdomain(void)
5623{
68c38fc3 5624 init_rootdomain(&def_root_domain);
c6c4927b 5625
57d885fe
GH
5626 atomic_set(&def_root_domain.refcount, 1);
5627}
5628
dc938520 5629static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5630{
5631 struct root_domain *rd;
5632
5633 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5634 if (!rd)
5635 return NULL;
5636
68c38fc3 5637 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5638 kfree(rd);
5639 return NULL;
5640 }
57d885fe
GH
5641
5642 return rd;
5643}
5644
63b2ca30 5645static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5646{
5647 struct sched_group *tmp, *first;
5648
5649 if (!sg)
5650 return;
5651
5652 first = sg;
5653 do {
5654 tmp = sg->next;
5655
63b2ca30
NP
5656 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5657 kfree(sg->sgc);
e3589f6c
PZ
5658
5659 kfree(sg);
5660 sg = tmp;
5661 } while (sg != first);
5662}
5663
dce840a0
PZ
5664static void free_sched_domain(struct rcu_head *rcu)
5665{
5666 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5667
5668 /*
5669 * If its an overlapping domain it has private groups, iterate and
5670 * nuke them all.
5671 */
5672 if (sd->flags & SD_OVERLAP) {
5673 free_sched_groups(sd->groups, 1);
5674 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5675 kfree(sd->groups->sgc);
dce840a0 5676 kfree(sd->groups);
9c3f75cb 5677 }
dce840a0
PZ
5678 kfree(sd);
5679}
5680
5681static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5682{
5683 call_rcu(&sd->rcu, free_sched_domain);
5684}
5685
5686static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5687{
5688 for (; sd; sd = sd->parent)
5689 destroy_sched_domain(sd, cpu);
5690}
5691
518cd623
PZ
5692/*
5693 * Keep a special pointer to the highest sched_domain that has
5694 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5695 * allows us to avoid some pointer chasing select_idle_sibling().
5696 *
5697 * Also keep a unique ID per domain (we use the first cpu number in
5698 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5699 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5700 */
5701DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5702DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5703DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5704DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5705DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5706DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5707
5708static void update_top_cache_domain(int cpu)
5709{
5710 struct sched_domain *sd;
5d4cf996 5711 struct sched_domain *busy_sd = NULL;
518cd623 5712 int id = cpu;
7d9ffa89 5713 int size = 1;
518cd623
PZ
5714
5715 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5716 if (sd) {
518cd623 5717 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5718 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5719 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5720 }
5d4cf996 5721 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5722
5723 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5724 per_cpu(sd_llc_size, cpu) = size;
518cd623 5725 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5726
5727 sd = lowest_flag_domain(cpu, SD_NUMA);
5728 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5729
5730 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5731 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5732}
5733
1da177e4 5734/*
0eab9146 5735 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5736 * hold the hotplug lock.
5737 */
0eab9146
IM
5738static void
5739cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5740{
70b97a7f 5741 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5742 struct sched_domain *tmp;
5743
5744 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5745 for (tmp = sd; tmp; ) {
245af2c7
SS
5746 struct sched_domain *parent = tmp->parent;
5747 if (!parent)
5748 break;
f29c9b1c 5749
1a848870 5750 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5751 tmp->parent = parent->parent;
1a848870
SS
5752 if (parent->parent)
5753 parent->parent->child = tmp;
10866e62
PZ
5754 /*
5755 * Transfer SD_PREFER_SIBLING down in case of a
5756 * degenerate parent; the spans match for this
5757 * so the property transfers.
5758 */
5759 if (parent->flags & SD_PREFER_SIBLING)
5760 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5761 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5762 } else
5763 tmp = tmp->parent;
245af2c7
SS
5764 }
5765
1a848870 5766 if (sd && sd_degenerate(sd)) {
dce840a0 5767 tmp = sd;
245af2c7 5768 sd = sd->parent;
dce840a0 5769 destroy_sched_domain(tmp, cpu);
1a848870
SS
5770 if (sd)
5771 sd->child = NULL;
5772 }
1da177e4 5773
4cb98839 5774 sched_domain_debug(sd, cpu);
1da177e4 5775
57d885fe 5776 rq_attach_root(rq, rd);
dce840a0 5777 tmp = rq->sd;
674311d5 5778 rcu_assign_pointer(rq->sd, sd);
dce840a0 5779 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5780
5781 update_top_cache_domain(cpu);
1da177e4
LT
5782}
5783
5784/* cpus with isolated domains */
dcc30a35 5785static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5786
5787/* Setup the mask of cpus configured for isolated domains */
5788static int __init isolated_cpu_setup(char *str)
5789{
bdddd296 5790 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5791 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5792 return 1;
5793}
5794
8927f494 5795__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5796
49a02c51 5797struct s_data {
21d42ccf 5798 struct sched_domain ** __percpu sd;
49a02c51
AH
5799 struct root_domain *rd;
5800};
5801
2109b99e 5802enum s_alloc {
2109b99e 5803 sa_rootdomain,
21d42ccf 5804 sa_sd,
dce840a0 5805 sa_sd_storage,
2109b99e
AH
5806 sa_none,
5807};
5808
c1174876
PZ
5809/*
5810 * Build an iteration mask that can exclude certain CPUs from the upwards
5811 * domain traversal.
5812 *
5813 * Asymmetric node setups can result in situations where the domain tree is of
5814 * unequal depth, make sure to skip domains that already cover the entire
5815 * range.
5816 *
5817 * In that case build_sched_domains() will have terminated the iteration early
5818 * and our sibling sd spans will be empty. Domains should always include the
5819 * cpu they're built on, so check that.
5820 *
5821 */
5822static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5823{
5824 const struct cpumask *span = sched_domain_span(sd);
5825 struct sd_data *sdd = sd->private;
5826 struct sched_domain *sibling;
5827 int i;
5828
5829 for_each_cpu(i, span) {
5830 sibling = *per_cpu_ptr(sdd->sd, i);
5831 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5832 continue;
5833
5834 cpumask_set_cpu(i, sched_group_mask(sg));
5835 }
5836}
5837
5838/*
5839 * Return the canonical balance cpu for this group, this is the first cpu
5840 * of this group that's also in the iteration mask.
5841 */
5842int group_balance_cpu(struct sched_group *sg)
5843{
5844 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5845}
5846
e3589f6c
PZ
5847static int
5848build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5849{
5850 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5851 const struct cpumask *span = sched_domain_span(sd);
5852 struct cpumask *covered = sched_domains_tmpmask;
5853 struct sd_data *sdd = sd->private;
aaecac4a 5854 struct sched_domain *sibling;
e3589f6c
PZ
5855 int i;
5856
5857 cpumask_clear(covered);
5858
5859 for_each_cpu(i, span) {
5860 struct cpumask *sg_span;
5861
5862 if (cpumask_test_cpu(i, covered))
5863 continue;
5864
aaecac4a 5865 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5866
5867 /* See the comment near build_group_mask(). */
aaecac4a 5868 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5869 continue;
5870
e3589f6c 5871 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5872 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5873
5874 if (!sg)
5875 goto fail;
5876
5877 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5878 if (sibling->child)
5879 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5880 else
e3589f6c
PZ
5881 cpumask_set_cpu(i, sg_span);
5882
5883 cpumask_or(covered, covered, sg_span);
5884
63b2ca30
NP
5885 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5886 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5887 build_group_mask(sd, sg);
5888
c3decf0d 5889 /*
63b2ca30 5890 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5891 * domains and no possible iteration will get us here, we won't
5892 * die on a /0 trap.
5893 */
ca8ce3d0 5894 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5895 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5896
c1174876
PZ
5897 /*
5898 * Make sure the first group of this domain contains the
5899 * canonical balance cpu. Otherwise the sched_domain iteration
5900 * breaks. See update_sg_lb_stats().
5901 */
74a5ce20 5902 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5903 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5904 groups = sg;
5905
5906 if (!first)
5907 first = sg;
5908 if (last)
5909 last->next = sg;
5910 last = sg;
5911 last->next = first;
5912 }
5913 sd->groups = groups;
5914
5915 return 0;
5916
5917fail:
5918 free_sched_groups(first, 0);
5919
5920 return -ENOMEM;
5921}
5922
dce840a0 5923static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5924{
dce840a0
PZ
5925 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5926 struct sched_domain *child = sd->child;
1da177e4 5927
dce840a0
PZ
5928 if (child)
5929 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5930
9c3f75cb 5931 if (sg) {
dce840a0 5932 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5933 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5934 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5935 }
dce840a0
PZ
5936
5937 return cpu;
1e9f28fa 5938}
1e9f28fa 5939
01a08546 5940/*
dce840a0
PZ
5941 * build_sched_groups will build a circular linked list of the groups
5942 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5943 * and ->cpu_capacity to 0.
e3589f6c
PZ
5944 *
5945 * Assumes the sched_domain tree is fully constructed
01a08546 5946 */
e3589f6c
PZ
5947static int
5948build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5949{
dce840a0
PZ
5950 struct sched_group *first = NULL, *last = NULL;
5951 struct sd_data *sdd = sd->private;
5952 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5953 struct cpumask *covered;
dce840a0 5954 int i;
9c1cfda2 5955
e3589f6c
PZ
5956 get_group(cpu, sdd, &sd->groups);
5957 atomic_inc(&sd->groups->ref);
5958
0936629f 5959 if (cpu != cpumask_first(span))
e3589f6c
PZ
5960 return 0;
5961
f96225fd
PZ
5962 lockdep_assert_held(&sched_domains_mutex);
5963 covered = sched_domains_tmpmask;
5964
dce840a0 5965 cpumask_clear(covered);
6711cab4 5966
dce840a0
PZ
5967 for_each_cpu(i, span) {
5968 struct sched_group *sg;
cd08e923 5969 int group, j;
6711cab4 5970
dce840a0
PZ
5971 if (cpumask_test_cpu(i, covered))
5972 continue;
6711cab4 5973
cd08e923 5974 group = get_group(i, sdd, &sg);
c1174876 5975 cpumask_setall(sched_group_mask(sg));
0601a88d 5976
dce840a0
PZ
5977 for_each_cpu(j, span) {
5978 if (get_group(j, sdd, NULL) != group)
5979 continue;
0601a88d 5980
dce840a0
PZ
5981 cpumask_set_cpu(j, covered);
5982 cpumask_set_cpu(j, sched_group_cpus(sg));
5983 }
0601a88d 5984
dce840a0
PZ
5985 if (!first)
5986 first = sg;
5987 if (last)
5988 last->next = sg;
5989 last = sg;
5990 }
5991 last->next = first;
e3589f6c
PZ
5992
5993 return 0;
0601a88d 5994}
51888ca2 5995
89c4710e 5996/*
63b2ca30 5997 * Initialize sched groups cpu_capacity.
89c4710e 5998 *
63b2ca30 5999 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6000 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6001 * Typically cpu_capacity for all the groups in a sched domain will be same
6002 * unless there are asymmetries in the topology. If there are asymmetries,
6003 * group having more cpu_capacity will pickup more load compared to the
6004 * group having less cpu_capacity.
89c4710e 6005 */
63b2ca30 6006static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6007{
e3589f6c 6008 struct sched_group *sg = sd->groups;
89c4710e 6009
94c95ba6 6010 WARN_ON(!sg);
e3589f6c
PZ
6011
6012 do {
6013 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6014 sg = sg->next;
6015 } while (sg != sd->groups);
89c4710e 6016
c1174876 6017 if (cpu != group_balance_cpu(sg))
e3589f6c 6018 return;
aae6d3dd 6019
63b2ca30
NP
6020 update_group_capacity(sd, cpu);
6021 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6022}
6023
7c16ec58
MT
6024/*
6025 * Initializers for schedule domains
6026 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6027 */
6028
1d3504fc 6029static int default_relax_domain_level = -1;
60495e77 6030int sched_domain_level_max;
1d3504fc
HS
6031
6032static int __init setup_relax_domain_level(char *str)
6033{
a841f8ce
DS
6034 if (kstrtoint(str, 0, &default_relax_domain_level))
6035 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6036
1d3504fc
HS
6037 return 1;
6038}
6039__setup("relax_domain_level=", setup_relax_domain_level);
6040
6041static void set_domain_attribute(struct sched_domain *sd,
6042 struct sched_domain_attr *attr)
6043{
6044 int request;
6045
6046 if (!attr || attr->relax_domain_level < 0) {
6047 if (default_relax_domain_level < 0)
6048 return;
6049 else
6050 request = default_relax_domain_level;
6051 } else
6052 request = attr->relax_domain_level;
6053 if (request < sd->level) {
6054 /* turn off idle balance on this domain */
c88d5910 6055 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6056 } else {
6057 /* turn on idle balance on this domain */
c88d5910 6058 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6059 }
6060}
6061
54ab4ff4
PZ
6062static void __sdt_free(const struct cpumask *cpu_map);
6063static int __sdt_alloc(const struct cpumask *cpu_map);
6064
2109b99e
AH
6065static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6066 const struct cpumask *cpu_map)
6067{
6068 switch (what) {
2109b99e 6069 case sa_rootdomain:
822ff793
PZ
6070 if (!atomic_read(&d->rd->refcount))
6071 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6072 case sa_sd:
6073 free_percpu(d->sd); /* fall through */
dce840a0 6074 case sa_sd_storage:
54ab4ff4 6075 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6076 case sa_none:
6077 break;
6078 }
6079}
3404c8d9 6080
2109b99e
AH
6081static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6082 const struct cpumask *cpu_map)
6083{
dce840a0
PZ
6084 memset(d, 0, sizeof(*d));
6085
54ab4ff4
PZ
6086 if (__sdt_alloc(cpu_map))
6087 return sa_sd_storage;
dce840a0
PZ
6088 d->sd = alloc_percpu(struct sched_domain *);
6089 if (!d->sd)
6090 return sa_sd_storage;
2109b99e 6091 d->rd = alloc_rootdomain();
dce840a0 6092 if (!d->rd)
21d42ccf 6093 return sa_sd;
2109b99e
AH
6094 return sa_rootdomain;
6095}
57d885fe 6096
dce840a0
PZ
6097/*
6098 * NULL the sd_data elements we've used to build the sched_domain and
6099 * sched_group structure so that the subsequent __free_domain_allocs()
6100 * will not free the data we're using.
6101 */
6102static void claim_allocations(int cpu, struct sched_domain *sd)
6103{
6104 struct sd_data *sdd = sd->private;
dce840a0
PZ
6105
6106 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6107 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6108
e3589f6c 6109 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6110 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6111
63b2ca30
NP
6112 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6113 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6114}
6115
cb83b629 6116#ifdef CONFIG_NUMA
cb83b629 6117static int sched_domains_numa_levels;
cb83b629
PZ
6118static int *sched_domains_numa_distance;
6119static struct cpumask ***sched_domains_numa_masks;
6120static int sched_domains_curr_level;
143e1e28 6121#endif
cb83b629 6122
143e1e28
VG
6123/*
6124 * SD_flags allowed in topology descriptions.
6125 *
5d4dfddd 6126 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6127 * SD_SHARE_PKG_RESOURCES - describes shared caches
6128 * SD_NUMA - describes NUMA topologies
d77b3ed5 6129 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6130 *
6131 * Odd one out:
6132 * SD_ASYM_PACKING - describes SMT quirks
6133 */
6134#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6135 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6136 SD_SHARE_PKG_RESOURCES | \
6137 SD_NUMA | \
d77b3ed5
VG
6138 SD_ASYM_PACKING | \
6139 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6140
6141static struct sched_domain *
143e1e28 6142sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6143{
6144 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6145 int sd_weight, sd_flags = 0;
6146
6147#ifdef CONFIG_NUMA
6148 /*
6149 * Ugly hack to pass state to sd_numa_mask()...
6150 */
6151 sched_domains_curr_level = tl->numa_level;
6152#endif
6153
6154 sd_weight = cpumask_weight(tl->mask(cpu));
6155
6156 if (tl->sd_flags)
6157 sd_flags = (*tl->sd_flags)();
6158 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6159 "wrong sd_flags in topology description\n"))
6160 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6161
6162 *sd = (struct sched_domain){
6163 .min_interval = sd_weight,
6164 .max_interval = 2*sd_weight,
6165 .busy_factor = 32,
870a0bb5 6166 .imbalance_pct = 125,
143e1e28
VG
6167
6168 .cache_nice_tries = 0,
6169 .busy_idx = 0,
6170 .idle_idx = 0,
cb83b629
PZ
6171 .newidle_idx = 0,
6172 .wake_idx = 0,
6173 .forkexec_idx = 0,
6174
6175 .flags = 1*SD_LOAD_BALANCE
6176 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6177 | 1*SD_BALANCE_EXEC
6178 | 1*SD_BALANCE_FORK
cb83b629 6179 | 0*SD_BALANCE_WAKE
143e1e28 6180 | 1*SD_WAKE_AFFINE
5d4dfddd 6181 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6182 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6183 | 0*SD_SERIALIZE
cb83b629 6184 | 0*SD_PREFER_SIBLING
143e1e28
VG
6185 | 0*SD_NUMA
6186 | sd_flags
cb83b629 6187 ,
143e1e28 6188
cb83b629
PZ
6189 .last_balance = jiffies,
6190 .balance_interval = sd_weight,
143e1e28 6191 .smt_gain = 0,
2b4cfe64
JL
6192 .max_newidle_lb_cost = 0,
6193 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6194#ifdef CONFIG_SCHED_DEBUG
6195 .name = tl->name,
6196#endif
cb83b629 6197 };
cb83b629
PZ
6198
6199 /*
143e1e28 6200 * Convert topological properties into behaviour.
cb83b629 6201 */
143e1e28 6202
5d4dfddd 6203 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6204 sd->imbalance_pct = 110;
6205 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6206
6207 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6208 sd->imbalance_pct = 117;
6209 sd->cache_nice_tries = 1;
6210 sd->busy_idx = 2;
6211
6212#ifdef CONFIG_NUMA
6213 } else if (sd->flags & SD_NUMA) {
6214 sd->cache_nice_tries = 2;
6215 sd->busy_idx = 3;
6216 sd->idle_idx = 2;
6217
6218 sd->flags |= SD_SERIALIZE;
6219 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6220 sd->flags &= ~(SD_BALANCE_EXEC |
6221 SD_BALANCE_FORK |
6222 SD_WAKE_AFFINE);
6223 }
6224
6225#endif
6226 } else {
6227 sd->flags |= SD_PREFER_SIBLING;
6228 sd->cache_nice_tries = 1;
6229 sd->busy_idx = 2;
6230 sd->idle_idx = 1;
6231 }
6232
6233 sd->private = &tl->data;
cb83b629
PZ
6234
6235 return sd;
6236}
6237
143e1e28
VG
6238/*
6239 * Topology list, bottom-up.
6240 */
6241static struct sched_domain_topology_level default_topology[] = {
6242#ifdef CONFIG_SCHED_SMT
6243 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6244#endif
6245#ifdef CONFIG_SCHED_MC
6246 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6247#endif
6248 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6249 { NULL, },
6250};
6251
6252struct sched_domain_topology_level *sched_domain_topology = default_topology;
6253
6254#define for_each_sd_topology(tl) \
6255 for (tl = sched_domain_topology; tl->mask; tl++)
6256
6257void set_sched_topology(struct sched_domain_topology_level *tl)
6258{
6259 sched_domain_topology = tl;
6260}
6261
6262#ifdef CONFIG_NUMA
6263
cb83b629
PZ
6264static const struct cpumask *sd_numa_mask(int cpu)
6265{
6266 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6267}
6268
d039ac60
PZ
6269static void sched_numa_warn(const char *str)
6270{
6271 static int done = false;
6272 int i,j;
6273
6274 if (done)
6275 return;
6276
6277 done = true;
6278
6279 printk(KERN_WARNING "ERROR: %s\n\n", str);
6280
6281 for (i = 0; i < nr_node_ids; i++) {
6282 printk(KERN_WARNING " ");
6283 for (j = 0; j < nr_node_ids; j++)
6284 printk(KERN_CONT "%02d ", node_distance(i,j));
6285 printk(KERN_CONT "\n");
6286 }
6287 printk(KERN_WARNING "\n");
6288}
6289
6290static bool find_numa_distance(int distance)
6291{
6292 int i;
6293
6294 if (distance == node_distance(0, 0))
6295 return true;
6296
6297 for (i = 0; i < sched_domains_numa_levels; i++) {
6298 if (sched_domains_numa_distance[i] == distance)
6299 return true;
6300 }
6301
6302 return false;
6303}
6304
cb83b629
PZ
6305static void sched_init_numa(void)
6306{
6307 int next_distance, curr_distance = node_distance(0, 0);
6308 struct sched_domain_topology_level *tl;
6309 int level = 0;
6310 int i, j, k;
6311
cb83b629
PZ
6312 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6313 if (!sched_domains_numa_distance)
6314 return;
6315
6316 /*
6317 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6318 * unique distances in the node_distance() table.
6319 *
6320 * Assumes node_distance(0,j) includes all distances in
6321 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6322 */
6323 next_distance = curr_distance;
6324 for (i = 0; i < nr_node_ids; i++) {
6325 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6326 for (k = 0; k < nr_node_ids; k++) {
6327 int distance = node_distance(i, k);
6328
6329 if (distance > curr_distance &&
6330 (distance < next_distance ||
6331 next_distance == curr_distance))
6332 next_distance = distance;
6333
6334 /*
6335 * While not a strong assumption it would be nice to know
6336 * about cases where if node A is connected to B, B is not
6337 * equally connected to A.
6338 */
6339 if (sched_debug() && node_distance(k, i) != distance)
6340 sched_numa_warn("Node-distance not symmetric");
6341
6342 if (sched_debug() && i && !find_numa_distance(distance))
6343 sched_numa_warn("Node-0 not representative");
6344 }
6345 if (next_distance != curr_distance) {
6346 sched_domains_numa_distance[level++] = next_distance;
6347 sched_domains_numa_levels = level;
6348 curr_distance = next_distance;
6349 } else break;
cb83b629 6350 }
d039ac60
PZ
6351
6352 /*
6353 * In case of sched_debug() we verify the above assumption.
6354 */
6355 if (!sched_debug())
6356 break;
cb83b629 6357 }
c123588b
AR
6358
6359 if (!level)
6360 return;
6361
cb83b629
PZ
6362 /*
6363 * 'level' contains the number of unique distances, excluding the
6364 * identity distance node_distance(i,i).
6365 *
28b4a521 6366 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6367 * numbers.
6368 */
6369
5f7865f3
TC
6370 /*
6371 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6372 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6373 * the array will contain less then 'level' members. This could be
6374 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6375 * in other functions.
6376 *
6377 * We reset it to 'level' at the end of this function.
6378 */
6379 sched_domains_numa_levels = 0;
6380
cb83b629
PZ
6381 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6382 if (!sched_domains_numa_masks)
6383 return;
6384
6385 /*
6386 * Now for each level, construct a mask per node which contains all
6387 * cpus of nodes that are that many hops away from us.
6388 */
6389 for (i = 0; i < level; i++) {
6390 sched_domains_numa_masks[i] =
6391 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6392 if (!sched_domains_numa_masks[i])
6393 return;
6394
6395 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6396 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6397 if (!mask)
6398 return;
6399
6400 sched_domains_numa_masks[i][j] = mask;
6401
6402 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6403 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6404 continue;
6405
6406 cpumask_or(mask, mask, cpumask_of_node(k));
6407 }
6408 }
6409 }
6410
143e1e28
VG
6411 /* Compute default topology size */
6412 for (i = 0; sched_domain_topology[i].mask; i++);
6413
c515db8c 6414 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6415 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6416 if (!tl)
6417 return;
6418
6419 /*
6420 * Copy the default topology bits..
6421 */
143e1e28
VG
6422 for (i = 0; sched_domain_topology[i].mask; i++)
6423 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6424
6425 /*
6426 * .. and append 'j' levels of NUMA goodness.
6427 */
6428 for (j = 0; j < level; i++, j++) {
6429 tl[i] = (struct sched_domain_topology_level){
cb83b629 6430 .mask = sd_numa_mask,
143e1e28 6431 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6432 .flags = SDTL_OVERLAP,
6433 .numa_level = j,
143e1e28 6434 SD_INIT_NAME(NUMA)
cb83b629
PZ
6435 };
6436 }
6437
6438 sched_domain_topology = tl;
5f7865f3
TC
6439
6440 sched_domains_numa_levels = level;
cb83b629 6441}
301a5cba
TC
6442
6443static void sched_domains_numa_masks_set(int cpu)
6444{
6445 int i, j;
6446 int node = cpu_to_node(cpu);
6447
6448 for (i = 0; i < sched_domains_numa_levels; i++) {
6449 for (j = 0; j < nr_node_ids; j++) {
6450 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6451 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6452 }
6453 }
6454}
6455
6456static void sched_domains_numa_masks_clear(int cpu)
6457{
6458 int i, j;
6459 for (i = 0; i < sched_domains_numa_levels; i++) {
6460 for (j = 0; j < nr_node_ids; j++)
6461 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6462 }
6463}
6464
6465/*
6466 * Update sched_domains_numa_masks[level][node] array when new cpus
6467 * are onlined.
6468 */
6469static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6470 unsigned long action,
6471 void *hcpu)
6472{
6473 int cpu = (long)hcpu;
6474
6475 switch (action & ~CPU_TASKS_FROZEN) {
6476 case CPU_ONLINE:
6477 sched_domains_numa_masks_set(cpu);
6478 break;
6479
6480 case CPU_DEAD:
6481 sched_domains_numa_masks_clear(cpu);
6482 break;
6483
6484 default:
6485 return NOTIFY_DONE;
6486 }
6487
6488 return NOTIFY_OK;
cb83b629
PZ
6489}
6490#else
6491static inline void sched_init_numa(void)
6492{
6493}
301a5cba
TC
6494
6495static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6496 unsigned long action,
6497 void *hcpu)
6498{
6499 return 0;
6500}
cb83b629
PZ
6501#endif /* CONFIG_NUMA */
6502
54ab4ff4
PZ
6503static int __sdt_alloc(const struct cpumask *cpu_map)
6504{
6505 struct sched_domain_topology_level *tl;
6506 int j;
6507
27723a68 6508 for_each_sd_topology(tl) {
54ab4ff4
PZ
6509 struct sd_data *sdd = &tl->data;
6510
6511 sdd->sd = alloc_percpu(struct sched_domain *);
6512 if (!sdd->sd)
6513 return -ENOMEM;
6514
6515 sdd->sg = alloc_percpu(struct sched_group *);
6516 if (!sdd->sg)
6517 return -ENOMEM;
6518
63b2ca30
NP
6519 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6520 if (!sdd->sgc)
9c3f75cb
PZ
6521 return -ENOMEM;
6522
54ab4ff4
PZ
6523 for_each_cpu(j, cpu_map) {
6524 struct sched_domain *sd;
6525 struct sched_group *sg;
63b2ca30 6526 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6527
6528 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6529 GFP_KERNEL, cpu_to_node(j));
6530 if (!sd)
6531 return -ENOMEM;
6532
6533 *per_cpu_ptr(sdd->sd, j) = sd;
6534
6535 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6536 GFP_KERNEL, cpu_to_node(j));
6537 if (!sg)
6538 return -ENOMEM;
6539
30b4e9eb
IM
6540 sg->next = sg;
6541
54ab4ff4 6542 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6543
63b2ca30 6544 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6545 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6546 if (!sgc)
9c3f75cb
PZ
6547 return -ENOMEM;
6548
63b2ca30 6549 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6550 }
6551 }
6552
6553 return 0;
6554}
6555
6556static void __sdt_free(const struct cpumask *cpu_map)
6557{
6558 struct sched_domain_topology_level *tl;
6559 int j;
6560
27723a68 6561 for_each_sd_topology(tl) {
54ab4ff4
PZ
6562 struct sd_data *sdd = &tl->data;
6563
6564 for_each_cpu(j, cpu_map) {
fb2cf2c6 6565 struct sched_domain *sd;
6566
6567 if (sdd->sd) {
6568 sd = *per_cpu_ptr(sdd->sd, j);
6569 if (sd && (sd->flags & SD_OVERLAP))
6570 free_sched_groups(sd->groups, 0);
6571 kfree(*per_cpu_ptr(sdd->sd, j));
6572 }
6573
6574 if (sdd->sg)
6575 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6576 if (sdd->sgc)
6577 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6578 }
6579 free_percpu(sdd->sd);
fb2cf2c6 6580 sdd->sd = NULL;
54ab4ff4 6581 free_percpu(sdd->sg);
fb2cf2c6 6582 sdd->sg = NULL;
63b2ca30
NP
6583 free_percpu(sdd->sgc);
6584 sdd->sgc = NULL;
54ab4ff4
PZ
6585 }
6586}
6587
2c402dc3 6588struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6589 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6590 struct sched_domain *child, int cpu)
2c402dc3 6591{
143e1e28 6592 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6593 if (!sd)
d069b916 6594 return child;
2c402dc3 6595
2c402dc3 6596 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6597 if (child) {
6598 sd->level = child->level + 1;
6599 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6600 child->parent = sd;
c75e0128 6601 sd->child = child;
6ae72dff
PZ
6602
6603 if (!cpumask_subset(sched_domain_span(child),
6604 sched_domain_span(sd))) {
6605 pr_err("BUG: arch topology borken\n");
6606#ifdef CONFIG_SCHED_DEBUG
6607 pr_err(" the %s domain not a subset of the %s domain\n",
6608 child->name, sd->name);
6609#endif
6610 /* Fixup, ensure @sd has at least @child cpus. */
6611 cpumask_or(sched_domain_span(sd),
6612 sched_domain_span(sd),
6613 sched_domain_span(child));
6614 }
6615
60495e77 6616 }
a841f8ce 6617 set_domain_attribute(sd, attr);
2c402dc3
PZ
6618
6619 return sd;
6620}
6621
2109b99e
AH
6622/*
6623 * Build sched domains for a given set of cpus and attach the sched domains
6624 * to the individual cpus
6625 */
dce840a0
PZ
6626static int build_sched_domains(const struct cpumask *cpu_map,
6627 struct sched_domain_attr *attr)
2109b99e 6628{
1c632169 6629 enum s_alloc alloc_state;
dce840a0 6630 struct sched_domain *sd;
2109b99e 6631 struct s_data d;
822ff793 6632 int i, ret = -ENOMEM;
9c1cfda2 6633
2109b99e
AH
6634 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6635 if (alloc_state != sa_rootdomain)
6636 goto error;
9c1cfda2 6637
dce840a0 6638 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6639 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6640 struct sched_domain_topology_level *tl;
6641
3bd65a80 6642 sd = NULL;
27723a68 6643 for_each_sd_topology(tl) {
4a850cbe 6644 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6645 if (tl == sched_domain_topology)
6646 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6647 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6648 sd->flags |= SD_OVERLAP;
d110235d
PZ
6649 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6650 break;
e3589f6c 6651 }
dce840a0
PZ
6652 }
6653
6654 /* Build the groups for the domains */
6655 for_each_cpu(i, cpu_map) {
6656 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6657 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6658 if (sd->flags & SD_OVERLAP) {
6659 if (build_overlap_sched_groups(sd, i))
6660 goto error;
6661 } else {
6662 if (build_sched_groups(sd, i))
6663 goto error;
6664 }
1cf51902 6665 }
a06dadbe 6666 }
9c1cfda2 6667
ced549fa 6668 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6669 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6670 if (!cpumask_test_cpu(i, cpu_map))
6671 continue;
9c1cfda2 6672
dce840a0
PZ
6673 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6674 claim_allocations(i, sd);
63b2ca30 6675 init_sched_groups_capacity(i, sd);
dce840a0 6676 }
f712c0c7 6677 }
9c1cfda2 6678
1da177e4 6679 /* Attach the domains */
dce840a0 6680 rcu_read_lock();
abcd083a 6681 for_each_cpu(i, cpu_map) {
21d42ccf 6682 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6683 cpu_attach_domain(sd, d.rd, i);
1da177e4 6684 }
dce840a0 6685 rcu_read_unlock();
51888ca2 6686
822ff793 6687 ret = 0;
51888ca2 6688error:
2109b99e 6689 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6690 return ret;
1da177e4 6691}
029190c5 6692
acc3f5d7 6693static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6694static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6695static struct sched_domain_attr *dattr_cur;
6696 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6697
6698/*
6699 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6700 * cpumask) fails, then fallback to a single sched domain,
6701 * as determined by the single cpumask fallback_doms.
029190c5 6702 */
4212823f 6703static cpumask_var_t fallback_doms;
029190c5 6704
ee79d1bd
HC
6705/*
6706 * arch_update_cpu_topology lets virtualized architectures update the
6707 * cpu core maps. It is supposed to return 1 if the topology changed
6708 * or 0 if it stayed the same.
6709 */
52f5684c 6710int __weak arch_update_cpu_topology(void)
22e52b07 6711{
ee79d1bd 6712 return 0;
22e52b07
HC
6713}
6714
acc3f5d7
RR
6715cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6716{
6717 int i;
6718 cpumask_var_t *doms;
6719
6720 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6721 if (!doms)
6722 return NULL;
6723 for (i = 0; i < ndoms; i++) {
6724 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6725 free_sched_domains(doms, i);
6726 return NULL;
6727 }
6728 }
6729 return doms;
6730}
6731
6732void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6733{
6734 unsigned int i;
6735 for (i = 0; i < ndoms; i++)
6736 free_cpumask_var(doms[i]);
6737 kfree(doms);
6738}
6739
1a20ff27 6740/*
41a2d6cf 6741 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6742 * For now this just excludes isolated cpus, but could be used to
6743 * exclude other special cases in the future.
1a20ff27 6744 */
c4a8849a 6745static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6746{
7378547f
MM
6747 int err;
6748
22e52b07 6749 arch_update_cpu_topology();
029190c5 6750 ndoms_cur = 1;
acc3f5d7 6751 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6752 if (!doms_cur)
acc3f5d7
RR
6753 doms_cur = &fallback_doms;
6754 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6755 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6756 register_sched_domain_sysctl();
7378547f
MM
6757
6758 return err;
1a20ff27
DG
6759}
6760
1a20ff27
DG
6761/*
6762 * Detach sched domains from a group of cpus specified in cpu_map
6763 * These cpus will now be attached to the NULL domain
6764 */
96f874e2 6765static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6766{
6767 int i;
6768
dce840a0 6769 rcu_read_lock();
abcd083a 6770 for_each_cpu(i, cpu_map)
57d885fe 6771 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6772 rcu_read_unlock();
1a20ff27
DG
6773}
6774
1d3504fc
HS
6775/* handle null as "default" */
6776static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6777 struct sched_domain_attr *new, int idx_new)
6778{
6779 struct sched_domain_attr tmp;
6780
6781 /* fast path */
6782 if (!new && !cur)
6783 return 1;
6784
6785 tmp = SD_ATTR_INIT;
6786 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6787 new ? (new + idx_new) : &tmp,
6788 sizeof(struct sched_domain_attr));
6789}
6790
029190c5
PJ
6791/*
6792 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6793 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6794 * doms_new[] to the current sched domain partitioning, doms_cur[].
6795 * It destroys each deleted domain and builds each new domain.
6796 *
acc3f5d7 6797 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6798 * The masks don't intersect (don't overlap.) We should setup one
6799 * sched domain for each mask. CPUs not in any of the cpumasks will
6800 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6801 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6802 * it as it is.
6803 *
acc3f5d7
RR
6804 * The passed in 'doms_new' should be allocated using
6805 * alloc_sched_domains. This routine takes ownership of it and will
6806 * free_sched_domains it when done with it. If the caller failed the
6807 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6808 * and partition_sched_domains() will fallback to the single partition
6809 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6810 *
96f874e2 6811 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6812 * ndoms_new == 0 is a special case for destroying existing domains,
6813 * and it will not create the default domain.
dfb512ec 6814 *
029190c5
PJ
6815 * Call with hotplug lock held
6816 */
acc3f5d7 6817void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6818 struct sched_domain_attr *dattr_new)
029190c5 6819{
dfb512ec 6820 int i, j, n;
d65bd5ec 6821 int new_topology;
029190c5 6822
712555ee 6823 mutex_lock(&sched_domains_mutex);
a1835615 6824
7378547f
MM
6825 /* always unregister in case we don't destroy any domains */
6826 unregister_sched_domain_sysctl();
6827
d65bd5ec
HC
6828 /* Let architecture update cpu core mappings. */
6829 new_topology = arch_update_cpu_topology();
6830
dfb512ec 6831 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6832
6833 /* Destroy deleted domains */
6834 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6835 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6836 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6837 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6838 goto match1;
6839 }
6840 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6841 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6842match1:
6843 ;
6844 }
6845
c8d2d47a 6846 n = ndoms_cur;
e761b772 6847 if (doms_new == NULL) {
c8d2d47a 6848 n = 0;
acc3f5d7 6849 doms_new = &fallback_doms;
6ad4c188 6850 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6851 WARN_ON_ONCE(dattr_new);
e761b772
MK
6852 }
6853
029190c5
PJ
6854 /* Build new domains */
6855 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6856 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6857 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6858 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6859 goto match2;
6860 }
6861 /* no match - add a new doms_new */
dce840a0 6862 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6863match2:
6864 ;
6865 }
6866
6867 /* Remember the new sched domains */
acc3f5d7
RR
6868 if (doms_cur != &fallback_doms)
6869 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6870 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6871 doms_cur = doms_new;
1d3504fc 6872 dattr_cur = dattr_new;
029190c5 6873 ndoms_cur = ndoms_new;
7378547f
MM
6874
6875 register_sched_domain_sysctl();
a1835615 6876
712555ee 6877 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6878}
6879
d35be8ba
SB
6880static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6881
1da177e4 6882/*
3a101d05
TH
6883 * Update cpusets according to cpu_active mask. If cpusets are
6884 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6885 * around partition_sched_domains().
d35be8ba
SB
6886 *
6887 * If we come here as part of a suspend/resume, don't touch cpusets because we
6888 * want to restore it back to its original state upon resume anyway.
1da177e4 6889 */
0b2e918a
TH
6890static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6891 void *hcpu)
e761b772 6892{
d35be8ba
SB
6893 switch (action) {
6894 case CPU_ONLINE_FROZEN:
6895 case CPU_DOWN_FAILED_FROZEN:
6896
6897 /*
6898 * num_cpus_frozen tracks how many CPUs are involved in suspend
6899 * resume sequence. As long as this is not the last online
6900 * operation in the resume sequence, just build a single sched
6901 * domain, ignoring cpusets.
6902 */
6903 num_cpus_frozen--;
6904 if (likely(num_cpus_frozen)) {
6905 partition_sched_domains(1, NULL, NULL);
6906 break;
6907 }
6908
6909 /*
6910 * This is the last CPU online operation. So fall through and
6911 * restore the original sched domains by considering the
6912 * cpuset configurations.
6913 */
6914
e761b772 6915 case CPU_ONLINE:
6ad4c188 6916 case CPU_DOWN_FAILED:
7ddf96b0 6917 cpuset_update_active_cpus(true);
d35be8ba 6918 break;
3a101d05
TH
6919 default:
6920 return NOTIFY_DONE;
6921 }
d35be8ba 6922 return NOTIFY_OK;
3a101d05 6923}
e761b772 6924
0b2e918a
TH
6925static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6926 void *hcpu)
3a101d05 6927{
d35be8ba 6928 switch (action) {
3a101d05 6929 case CPU_DOWN_PREPARE:
7ddf96b0 6930 cpuset_update_active_cpus(false);
d35be8ba
SB
6931 break;
6932 case CPU_DOWN_PREPARE_FROZEN:
6933 num_cpus_frozen++;
6934 partition_sched_domains(1, NULL, NULL);
6935 break;
e761b772
MK
6936 default:
6937 return NOTIFY_DONE;
6938 }
d35be8ba 6939 return NOTIFY_OK;
e761b772 6940}
e761b772 6941
1da177e4
LT
6942void __init sched_init_smp(void)
6943{
dcc30a35
RR
6944 cpumask_var_t non_isolated_cpus;
6945
6946 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6947 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6948
cb83b629
PZ
6949 sched_init_numa();
6950
6acce3ef
PZ
6951 /*
6952 * There's no userspace yet to cause hotplug operations; hence all the
6953 * cpu masks are stable and all blatant races in the below code cannot
6954 * happen.
6955 */
712555ee 6956 mutex_lock(&sched_domains_mutex);
c4a8849a 6957 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6958 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6959 if (cpumask_empty(non_isolated_cpus))
6960 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6961 mutex_unlock(&sched_domains_mutex);
e761b772 6962
301a5cba 6963 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6964 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6965 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6966
b328ca18 6967 init_hrtick();
5c1e1767
NP
6968
6969 /* Move init over to a non-isolated CPU */
dcc30a35 6970 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6971 BUG();
19978ca6 6972 sched_init_granularity();
dcc30a35 6973 free_cpumask_var(non_isolated_cpus);
4212823f 6974
0e3900e6 6975 init_sched_rt_class();
1baca4ce 6976 init_sched_dl_class();
1da177e4
LT
6977}
6978#else
6979void __init sched_init_smp(void)
6980{
19978ca6 6981 sched_init_granularity();
1da177e4
LT
6982}
6983#endif /* CONFIG_SMP */
6984
cd1bb94b
AB
6985const_debug unsigned int sysctl_timer_migration = 1;
6986
1da177e4
LT
6987int in_sched_functions(unsigned long addr)
6988{
1da177e4
LT
6989 return in_lock_functions(addr) ||
6990 (addr >= (unsigned long)__sched_text_start
6991 && addr < (unsigned long)__sched_text_end);
6992}
6993
029632fb 6994#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6995/*
6996 * Default task group.
6997 * Every task in system belongs to this group at bootup.
6998 */
029632fb 6999struct task_group root_task_group;
35cf4e50 7000LIST_HEAD(task_groups);
052f1dc7 7001#endif
6f505b16 7002
e6252c3e 7003DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7004
1da177e4
LT
7005void __init sched_init(void)
7006{
dd41f596 7007 int i, j;
434d53b0
MT
7008 unsigned long alloc_size = 0, ptr;
7009
7010#ifdef CONFIG_FAIR_GROUP_SCHED
7011 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7012#endif
7013#ifdef CONFIG_RT_GROUP_SCHED
7014 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7015#endif
df7c8e84 7016#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7017 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7018#endif
434d53b0 7019 if (alloc_size) {
36b7b6d4 7020 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7021
7022#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7023 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7024 ptr += nr_cpu_ids * sizeof(void **);
7025
07e06b01 7026 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7027 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7028
6d6bc0ad 7029#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7030#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7031 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7032 ptr += nr_cpu_ids * sizeof(void **);
7033
07e06b01 7034 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7035 ptr += nr_cpu_ids * sizeof(void **);
7036
6d6bc0ad 7037#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7038#ifdef CONFIG_CPUMASK_OFFSTACK
7039 for_each_possible_cpu(i) {
e6252c3e 7040 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7041 ptr += cpumask_size();
7042 }
7043#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7044 }
dd41f596 7045
332ac17e
DF
7046 init_rt_bandwidth(&def_rt_bandwidth,
7047 global_rt_period(), global_rt_runtime());
7048 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7049 global_rt_period(), global_rt_runtime());
332ac17e 7050
57d885fe
GH
7051#ifdef CONFIG_SMP
7052 init_defrootdomain();
7053#endif
7054
d0b27fa7 7055#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7056 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7057 global_rt_period(), global_rt_runtime());
6d6bc0ad 7058#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7059
7c941438 7060#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7061 list_add(&root_task_group.list, &task_groups);
7062 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7063 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7064 autogroup_init(&init_task);
54c707e9 7065
7c941438 7066#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7067
0a945022 7068 for_each_possible_cpu(i) {
70b97a7f 7069 struct rq *rq;
1da177e4
LT
7070
7071 rq = cpu_rq(i);
05fa785c 7072 raw_spin_lock_init(&rq->lock);
7897986b 7073 rq->nr_running = 0;
dce48a84
TG
7074 rq->calc_load_active = 0;
7075 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7076 init_cfs_rq(&rq->cfs);
6f505b16 7077 init_rt_rq(&rq->rt, rq);
aab03e05 7078 init_dl_rq(&rq->dl, rq);
dd41f596 7079#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7080 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7081 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7082 /*
07e06b01 7083 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7084 *
7085 * In case of task-groups formed thr' the cgroup filesystem, it
7086 * gets 100% of the cpu resources in the system. This overall
7087 * system cpu resource is divided among the tasks of
07e06b01 7088 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7089 * based on each entity's (task or task-group's) weight
7090 * (se->load.weight).
7091 *
07e06b01 7092 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7093 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7094 * then A0's share of the cpu resource is:
7095 *
0d905bca 7096 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7097 *
07e06b01
YZ
7098 * We achieve this by letting root_task_group's tasks sit
7099 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7100 */
ab84d31e 7101 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7102 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7103#endif /* CONFIG_FAIR_GROUP_SCHED */
7104
7105 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7106#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7107 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7108#endif
1da177e4 7109
dd41f596
IM
7110 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7111 rq->cpu_load[j] = 0;
fdf3e95d
VP
7112
7113 rq->last_load_update_tick = jiffies;
7114
1da177e4 7115#ifdef CONFIG_SMP
41c7ce9a 7116 rq->sd = NULL;
57d885fe 7117 rq->rd = NULL;
ca8ce3d0 7118 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7119 rq->post_schedule = 0;
1da177e4 7120 rq->active_balance = 0;
dd41f596 7121 rq->next_balance = jiffies;
1da177e4 7122 rq->push_cpu = 0;
0a2966b4 7123 rq->cpu = i;
1f11eb6a 7124 rq->online = 0;
eae0c9df
MG
7125 rq->idle_stamp = 0;
7126 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7127 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7128
7129 INIT_LIST_HEAD(&rq->cfs_tasks);
7130
dc938520 7131 rq_attach_root(rq, &def_root_domain);
3451d024 7132#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7133 rq->nohz_flags = 0;
83cd4fe2 7134#endif
265f22a9
FW
7135#ifdef CONFIG_NO_HZ_FULL
7136 rq->last_sched_tick = 0;
7137#endif
1da177e4 7138#endif
8f4d37ec 7139 init_rq_hrtick(rq);
1da177e4 7140 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7141 }
7142
2dd73a4f 7143 set_load_weight(&init_task);
b50f60ce 7144
e107be36
AK
7145#ifdef CONFIG_PREEMPT_NOTIFIERS
7146 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7147#endif
7148
1da177e4
LT
7149 /*
7150 * The boot idle thread does lazy MMU switching as well:
7151 */
7152 atomic_inc(&init_mm.mm_count);
7153 enter_lazy_tlb(&init_mm, current);
7154
7155 /*
7156 * Make us the idle thread. Technically, schedule() should not be
7157 * called from this thread, however somewhere below it might be,
7158 * but because we are the idle thread, we just pick up running again
7159 * when this runqueue becomes "idle".
7160 */
7161 init_idle(current, smp_processor_id());
dce48a84
TG
7162
7163 calc_load_update = jiffies + LOAD_FREQ;
7164
dd41f596
IM
7165 /*
7166 * During early bootup we pretend to be a normal task:
7167 */
7168 current->sched_class = &fair_sched_class;
6892b75e 7169
bf4d83f6 7170#ifdef CONFIG_SMP
4cb98839 7171 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7172 /* May be allocated at isolcpus cmdline parse time */
7173 if (cpu_isolated_map == NULL)
7174 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7175 idle_thread_set_boot_cpu();
a803f026 7176 set_cpu_rq_start_time();
029632fb
PZ
7177#endif
7178 init_sched_fair_class();
6a7b3dc3 7179
6892b75e 7180 scheduler_running = 1;
1da177e4
LT
7181}
7182
d902db1e 7183#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7184static inline int preempt_count_equals(int preempt_offset)
7185{
234da7bc 7186 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7187
4ba8216c 7188 return (nested == preempt_offset);
e4aafea2
FW
7189}
7190
d894837f 7191void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7192{
1da177e4
LT
7193 static unsigned long prev_jiffy; /* ratelimiting */
7194
b3fbab05 7195 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7196 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7197 !is_idle_task(current)) ||
e4aafea2 7198 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7199 return;
7200 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7201 return;
7202 prev_jiffy = jiffies;
7203
3df0fc5b
PZ
7204 printk(KERN_ERR
7205 "BUG: sleeping function called from invalid context at %s:%d\n",
7206 file, line);
7207 printk(KERN_ERR
7208 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7209 in_atomic(), irqs_disabled(),
7210 current->pid, current->comm);
aef745fc
IM
7211
7212 debug_show_held_locks(current);
7213 if (irqs_disabled())
7214 print_irqtrace_events(current);
8f47b187
TG
7215#ifdef CONFIG_DEBUG_PREEMPT
7216 if (!preempt_count_equals(preempt_offset)) {
7217 pr_err("Preemption disabled at:");
7218 print_ip_sym(current->preempt_disable_ip);
7219 pr_cont("\n");
7220 }
7221#endif
aef745fc 7222 dump_stack();
1da177e4
LT
7223}
7224EXPORT_SYMBOL(__might_sleep);
7225#endif
7226
7227#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7228static void normalize_task(struct rq *rq, struct task_struct *p)
7229{
da7a735e 7230 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7231 struct sched_attr attr = {
7232 .sched_policy = SCHED_NORMAL,
7233 };
da7a735e 7234 int old_prio = p->prio;
da0c1e65 7235 int queued;
3e51f33f 7236
da0c1e65
KT
7237 queued = task_on_rq_queued(p);
7238 if (queued)
4ca9b72b 7239 dequeue_task(rq, p, 0);
d50dde5a 7240 __setscheduler(rq, p, &attr);
da0c1e65 7241 if (queued) {
4ca9b72b 7242 enqueue_task(rq, p, 0);
8875125e 7243 resched_curr(rq);
3a5e4dc1 7244 }
da7a735e
PZ
7245
7246 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7247}
7248
1da177e4
LT
7249void normalize_rt_tasks(void)
7250{
a0f98a1c 7251 struct task_struct *g, *p;
1da177e4 7252 unsigned long flags;
70b97a7f 7253 struct rq *rq;
1da177e4 7254
3472eaa1 7255 read_lock(&tasklist_lock);
5d07f420 7256 for_each_process_thread(g, p) {
178be793
IM
7257 /*
7258 * Only normalize user tasks:
7259 */
3472eaa1 7260 if (p->flags & PF_KTHREAD)
178be793
IM
7261 continue;
7262
6cfb0d5d 7263 p->se.exec_start = 0;
6cfb0d5d 7264#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7265 p->se.statistics.wait_start = 0;
7266 p->se.statistics.sleep_start = 0;
7267 p->se.statistics.block_start = 0;
6cfb0d5d 7268#endif
dd41f596 7269
aab03e05 7270 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7271 /*
7272 * Renice negative nice level userspace
7273 * tasks back to 0:
7274 */
3472eaa1 7275 if (task_nice(p) < 0)
dd41f596 7276 set_user_nice(p, 0);
1da177e4 7277 continue;
dd41f596 7278 }
1da177e4 7279
3472eaa1 7280 rq = task_rq_lock(p, &flags);
178be793 7281 normalize_task(rq, p);
3472eaa1 7282 task_rq_unlock(rq, p, &flags);
5d07f420 7283 }
3472eaa1 7284 read_unlock(&tasklist_lock);
1da177e4
LT
7285}
7286
7287#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7288
67fc4e0c 7289#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7290/*
67fc4e0c 7291 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7292 *
7293 * They can only be called when the whole system has been
7294 * stopped - every CPU needs to be quiescent, and no scheduling
7295 * activity can take place. Using them for anything else would
7296 * be a serious bug, and as a result, they aren't even visible
7297 * under any other configuration.
7298 */
7299
7300/**
7301 * curr_task - return the current task for a given cpu.
7302 * @cpu: the processor in question.
7303 *
7304 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7305 *
7306 * Return: The current task for @cpu.
1df5c10a 7307 */
36c8b586 7308struct task_struct *curr_task(int cpu)
1df5c10a
LT
7309{
7310 return cpu_curr(cpu);
7311}
7312
67fc4e0c
JW
7313#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7314
7315#ifdef CONFIG_IA64
1df5c10a
LT
7316/**
7317 * set_curr_task - set the current task for a given cpu.
7318 * @cpu: the processor in question.
7319 * @p: the task pointer to set.
7320 *
7321 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7322 * are serviced on a separate stack. It allows the architecture to switch the
7323 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7324 * must be called with all CPU's synchronized, and interrupts disabled, the
7325 * and caller must save the original value of the current task (see
7326 * curr_task() above) and restore that value before reenabling interrupts and
7327 * re-starting the system.
7328 *
7329 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7330 */
36c8b586 7331void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7332{
7333 cpu_curr(cpu) = p;
7334}
7335
7336#endif
29f59db3 7337
7c941438 7338#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7339/* task_group_lock serializes the addition/removal of task groups */
7340static DEFINE_SPINLOCK(task_group_lock);
7341
bccbe08a
PZ
7342static void free_sched_group(struct task_group *tg)
7343{
7344 free_fair_sched_group(tg);
7345 free_rt_sched_group(tg);
e9aa1dd1 7346 autogroup_free(tg);
bccbe08a
PZ
7347 kfree(tg);
7348}
7349
7350/* allocate runqueue etc for a new task group */
ec7dc8ac 7351struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7352{
7353 struct task_group *tg;
bccbe08a
PZ
7354
7355 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7356 if (!tg)
7357 return ERR_PTR(-ENOMEM);
7358
ec7dc8ac 7359 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7360 goto err;
7361
ec7dc8ac 7362 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7363 goto err;
7364
ace783b9
LZ
7365 return tg;
7366
7367err:
7368 free_sched_group(tg);
7369 return ERR_PTR(-ENOMEM);
7370}
7371
7372void sched_online_group(struct task_group *tg, struct task_group *parent)
7373{
7374 unsigned long flags;
7375
8ed36996 7376 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7377 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7378
7379 WARN_ON(!parent); /* root should already exist */
7380
7381 tg->parent = parent;
f473aa5e 7382 INIT_LIST_HEAD(&tg->children);
09f2724a 7383 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7384 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7385}
7386
9b5b7751 7387/* rcu callback to free various structures associated with a task group */
6f505b16 7388static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7389{
29f59db3 7390 /* now it should be safe to free those cfs_rqs */
6f505b16 7391 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7392}
7393
9b5b7751 7394/* Destroy runqueue etc associated with a task group */
4cf86d77 7395void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7396{
7397 /* wait for possible concurrent references to cfs_rqs complete */
7398 call_rcu(&tg->rcu, free_sched_group_rcu);
7399}
7400
7401void sched_offline_group(struct task_group *tg)
29f59db3 7402{
8ed36996 7403 unsigned long flags;
9b5b7751 7404 int i;
29f59db3 7405
3d4b47b4
PZ
7406 /* end participation in shares distribution */
7407 for_each_possible_cpu(i)
bccbe08a 7408 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7409
7410 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7411 list_del_rcu(&tg->list);
f473aa5e 7412 list_del_rcu(&tg->siblings);
8ed36996 7413 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7414}
7415
9b5b7751 7416/* change task's runqueue when it moves between groups.
3a252015
IM
7417 * The caller of this function should have put the task in its new group
7418 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7419 * reflect its new group.
9b5b7751
SV
7420 */
7421void sched_move_task(struct task_struct *tsk)
29f59db3 7422{
8323f26c 7423 struct task_group *tg;
da0c1e65 7424 int queued, running;
29f59db3
SV
7425 unsigned long flags;
7426 struct rq *rq;
7427
7428 rq = task_rq_lock(tsk, &flags);
7429
051a1d1a 7430 running = task_current(rq, tsk);
da0c1e65 7431 queued = task_on_rq_queued(tsk);
29f59db3 7432
da0c1e65 7433 if (queued)
29f59db3 7434 dequeue_task(rq, tsk, 0);
0e1f3483 7435 if (unlikely(running))
f3cd1c4e 7436 put_prev_task(rq, tsk);
29f59db3 7437
f7b8a47d
KT
7438 /*
7439 * All callers are synchronized by task_rq_lock(); we do not use RCU
7440 * which is pointless here. Thus, we pass "true" to task_css_check()
7441 * to prevent lockdep warnings.
7442 */
7443 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7444 struct task_group, css);
7445 tg = autogroup_task_group(tsk, tg);
7446 tsk->sched_task_group = tg;
7447
810b3817 7448#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7449 if (tsk->sched_class->task_move_group)
da0c1e65 7450 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7451 else
810b3817 7452#endif
b2b5ce02 7453 set_task_rq(tsk, task_cpu(tsk));
810b3817 7454
0e1f3483
HS
7455 if (unlikely(running))
7456 tsk->sched_class->set_curr_task(rq);
da0c1e65 7457 if (queued)
371fd7e7 7458 enqueue_task(rq, tsk, 0);
29f59db3 7459
0122ec5b 7460 task_rq_unlock(rq, tsk, &flags);
29f59db3 7461}
7c941438 7462#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7463
a790de99
PT
7464#ifdef CONFIG_RT_GROUP_SCHED
7465/*
7466 * Ensure that the real time constraints are schedulable.
7467 */
7468static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7469
9a7e0b18
PZ
7470/* Must be called with tasklist_lock held */
7471static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7472{
9a7e0b18 7473 struct task_struct *g, *p;
b40b2e8e 7474
5d07f420 7475 for_each_process_thread(g, p) {
8651c658 7476 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7477 return 1;
5d07f420 7478 }
b40b2e8e 7479
9a7e0b18
PZ
7480 return 0;
7481}
b40b2e8e 7482
9a7e0b18
PZ
7483struct rt_schedulable_data {
7484 struct task_group *tg;
7485 u64 rt_period;
7486 u64 rt_runtime;
7487};
b40b2e8e 7488
a790de99 7489static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7490{
7491 struct rt_schedulable_data *d = data;
7492 struct task_group *child;
7493 unsigned long total, sum = 0;
7494 u64 period, runtime;
b40b2e8e 7495
9a7e0b18
PZ
7496 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7497 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7498
9a7e0b18
PZ
7499 if (tg == d->tg) {
7500 period = d->rt_period;
7501 runtime = d->rt_runtime;
b40b2e8e 7502 }
b40b2e8e 7503
4653f803
PZ
7504 /*
7505 * Cannot have more runtime than the period.
7506 */
7507 if (runtime > period && runtime != RUNTIME_INF)
7508 return -EINVAL;
6f505b16 7509
4653f803
PZ
7510 /*
7511 * Ensure we don't starve existing RT tasks.
7512 */
9a7e0b18
PZ
7513 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7514 return -EBUSY;
6f505b16 7515
9a7e0b18 7516 total = to_ratio(period, runtime);
6f505b16 7517
4653f803
PZ
7518 /*
7519 * Nobody can have more than the global setting allows.
7520 */
7521 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7522 return -EINVAL;
6f505b16 7523
4653f803
PZ
7524 /*
7525 * The sum of our children's runtime should not exceed our own.
7526 */
9a7e0b18
PZ
7527 list_for_each_entry_rcu(child, &tg->children, siblings) {
7528 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7529 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7530
9a7e0b18
PZ
7531 if (child == d->tg) {
7532 period = d->rt_period;
7533 runtime = d->rt_runtime;
7534 }
6f505b16 7535
9a7e0b18 7536 sum += to_ratio(period, runtime);
9f0c1e56 7537 }
6f505b16 7538
9a7e0b18
PZ
7539 if (sum > total)
7540 return -EINVAL;
7541
7542 return 0;
6f505b16
PZ
7543}
7544
9a7e0b18 7545static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7546{
8277434e
PT
7547 int ret;
7548
9a7e0b18
PZ
7549 struct rt_schedulable_data data = {
7550 .tg = tg,
7551 .rt_period = period,
7552 .rt_runtime = runtime,
7553 };
7554
8277434e
PT
7555 rcu_read_lock();
7556 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7557 rcu_read_unlock();
7558
7559 return ret;
521f1a24
DG
7560}
7561
ab84d31e 7562static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7563 u64 rt_period, u64 rt_runtime)
6f505b16 7564{
ac086bc2 7565 int i, err = 0;
9f0c1e56 7566
9f0c1e56 7567 mutex_lock(&rt_constraints_mutex);
521f1a24 7568 read_lock(&tasklist_lock);
9a7e0b18
PZ
7569 err = __rt_schedulable(tg, rt_period, rt_runtime);
7570 if (err)
9f0c1e56 7571 goto unlock;
ac086bc2 7572
0986b11b 7573 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7574 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7575 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7576
7577 for_each_possible_cpu(i) {
7578 struct rt_rq *rt_rq = tg->rt_rq[i];
7579
0986b11b 7580 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7581 rt_rq->rt_runtime = rt_runtime;
0986b11b 7582 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7583 }
0986b11b 7584 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7585unlock:
521f1a24 7586 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7587 mutex_unlock(&rt_constraints_mutex);
7588
7589 return err;
6f505b16
PZ
7590}
7591
25cc7da7 7592static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7593{
7594 u64 rt_runtime, rt_period;
7595
7596 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7597 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7598 if (rt_runtime_us < 0)
7599 rt_runtime = RUNTIME_INF;
7600
ab84d31e 7601 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7602}
7603
25cc7da7 7604static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7605{
7606 u64 rt_runtime_us;
7607
d0b27fa7 7608 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7609 return -1;
7610
d0b27fa7 7611 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7612 do_div(rt_runtime_us, NSEC_PER_USEC);
7613 return rt_runtime_us;
7614}
d0b27fa7 7615
25cc7da7 7616static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7617{
7618 u64 rt_runtime, rt_period;
7619
7620 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7621 rt_runtime = tg->rt_bandwidth.rt_runtime;
7622
619b0488
R
7623 if (rt_period == 0)
7624 return -EINVAL;
7625
ab84d31e 7626 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7627}
7628
25cc7da7 7629static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7630{
7631 u64 rt_period_us;
7632
7633 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7634 do_div(rt_period_us, NSEC_PER_USEC);
7635 return rt_period_us;
7636}
332ac17e 7637#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7638
332ac17e 7639#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7640static int sched_rt_global_constraints(void)
7641{
7642 int ret = 0;
7643
7644 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7645 read_lock(&tasklist_lock);
4653f803 7646 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7647 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7648 mutex_unlock(&rt_constraints_mutex);
7649
7650 return ret;
7651}
54e99124 7652
25cc7da7 7653static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7654{
7655 /* Don't accept realtime tasks when there is no way for them to run */
7656 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7657 return 0;
7658
7659 return 1;
7660}
7661
6d6bc0ad 7662#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7663static int sched_rt_global_constraints(void)
7664{
ac086bc2 7665 unsigned long flags;
332ac17e 7666 int i, ret = 0;
ec5d4989 7667
0986b11b 7668 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7669 for_each_possible_cpu(i) {
7670 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7671
0986b11b 7672 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7673 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7674 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7675 }
0986b11b 7676 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7677
332ac17e 7678 return ret;
d0b27fa7 7679}
6d6bc0ad 7680#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7681
332ac17e
DF
7682static int sched_dl_global_constraints(void)
7683{
1724813d
PZ
7684 u64 runtime = global_rt_runtime();
7685 u64 period = global_rt_period();
332ac17e 7686 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7687 struct dl_bw *dl_b;
1724813d 7688 int cpu, ret = 0;
49516342 7689 unsigned long flags;
332ac17e
DF
7690
7691 /*
7692 * Here we want to check the bandwidth not being set to some
7693 * value smaller than the currently allocated bandwidth in
7694 * any of the root_domains.
7695 *
7696 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7697 * cycling on root_domains... Discussion on different/better
7698 * solutions is welcome!
7699 */
1724813d 7700 for_each_possible_cpu(cpu) {
f10e00f4
KT
7701 rcu_read_lock_sched();
7702 dl_b = dl_bw_of(cpu);
332ac17e 7703
49516342 7704 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7705 if (new_bw < dl_b->total_bw)
7706 ret = -EBUSY;
49516342 7707 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7708
f10e00f4
KT
7709 rcu_read_unlock_sched();
7710
1724813d
PZ
7711 if (ret)
7712 break;
332ac17e
DF
7713 }
7714
1724813d 7715 return ret;
332ac17e
DF
7716}
7717
1724813d 7718static void sched_dl_do_global(void)
ce0dbbbb 7719{
1724813d 7720 u64 new_bw = -1;
f10e00f4 7721 struct dl_bw *dl_b;
1724813d 7722 int cpu;
49516342 7723 unsigned long flags;
ce0dbbbb 7724
1724813d
PZ
7725 def_dl_bandwidth.dl_period = global_rt_period();
7726 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7727
7728 if (global_rt_runtime() != RUNTIME_INF)
7729 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7730
7731 /*
7732 * FIXME: As above...
7733 */
7734 for_each_possible_cpu(cpu) {
f10e00f4
KT
7735 rcu_read_lock_sched();
7736 dl_b = dl_bw_of(cpu);
1724813d 7737
49516342 7738 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7739 dl_b->bw = new_bw;
49516342 7740 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7741
7742 rcu_read_unlock_sched();
ce0dbbbb 7743 }
1724813d
PZ
7744}
7745
7746static int sched_rt_global_validate(void)
7747{
7748 if (sysctl_sched_rt_period <= 0)
7749 return -EINVAL;
7750
e9e7cb38
JL
7751 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7752 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7753 return -EINVAL;
7754
7755 return 0;
7756}
7757
7758static void sched_rt_do_global(void)
7759{
7760 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7761 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7762}
7763
d0b27fa7 7764int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7765 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7766 loff_t *ppos)
7767{
d0b27fa7
PZ
7768 int old_period, old_runtime;
7769 static DEFINE_MUTEX(mutex);
1724813d 7770 int ret;
d0b27fa7
PZ
7771
7772 mutex_lock(&mutex);
7773 old_period = sysctl_sched_rt_period;
7774 old_runtime = sysctl_sched_rt_runtime;
7775
8d65af78 7776 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7777
7778 if (!ret && write) {
1724813d
PZ
7779 ret = sched_rt_global_validate();
7780 if (ret)
7781 goto undo;
7782
d0b27fa7 7783 ret = sched_rt_global_constraints();
1724813d
PZ
7784 if (ret)
7785 goto undo;
7786
7787 ret = sched_dl_global_constraints();
7788 if (ret)
7789 goto undo;
7790
7791 sched_rt_do_global();
7792 sched_dl_do_global();
7793 }
7794 if (0) {
7795undo:
7796 sysctl_sched_rt_period = old_period;
7797 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7798 }
7799 mutex_unlock(&mutex);
7800
7801 return ret;
7802}
68318b8e 7803
1724813d 7804int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7805 void __user *buffer, size_t *lenp,
7806 loff_t *ppos)
7807{
7808 int ret;
332ac17e 7809 static DEFINE_MUTEX(mutex);
332ac17e
DF
7810
7811 mutex_lock(&mutex);
332ac17e 7812 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7813 /* make sure that internally we keep jiffies */
7814 /* also, writing zero resets timeslice to default */
332ac17e 7815 if (!ret && write) {
1724813d
PZ
7816 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7817 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7818 }
7819 mutex_unlock(&mutex);
332ac17e
DF
7820 return ret;
7821}
7822
052f1dc7 7823#ifdef CONFIG_CGROUP_SCHED
68318b8e 7824
a7c6d554 7825static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7826{
a7c6d554 7827 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7828}
7829
eb95419b
TH
7830static struct cgroup_subsys_state *
7831cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7832{
eb95419b
TH
7833 struct task_group *parent = css_tg(parent_css);
7834 struct task_group *tg;
68318b8e 7835
eb95419b 7836 if (!parent) {
68318b8e 7837 /* This is early initialization for the top cgroup */
07e06b01 7838 return &root_task_group.css;
68318b8e
SV
7839 }
7840
ec7dc8ac 7841 tg = sched_create_group(parent);
68318b8e
SV
7842 if (IS_ERR(tg))
7843 return ERR_PTR(-ENOMEM);
7844
68318b8e
SV
7845 return &tg->css;
7846}
7847
eb95419b 7848static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7849{
eb95419b 7850 struct task_group *tg = css_tg(css);
5c9d535b 7851 struct task_group *parent = css_tg(css->parent);
ace783b9 7852
63876986
TH
7853 if (parent)
7854 sched_online_group(tg, parent);
ace783b9
LZ
7855 return 0;
7856}
7857
eb95419b 7858static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7859{
eb95419b 7860 struct task_group *tg = css_tg(css);
68318b8e
SV
7861
7862 sched_destroy_group(tg);
7863}
7864
eb95419b 7865static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7866{
eb95419b 7867 struct task_group *tg = css_tg(css);
ace783b9
LZ
7868
7869 sched_offline_group(tg);
7870}
7871
eeb61e53
KT
7872static void cpu_cgroup_fork(struct task_struct *task)
7873{
7874 sched_move_task(task);
7875}
7876
eb95419b 7877static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7878 struct cgroup_taskset *tset)
68318b8e 7879{
bb9d97b6
TH
7880 struct task_struct *task;
7881
924f0d9a 7882 cgroup_taskset_for_each(task, tset) {
b68aa230 7883#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7884 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7885 return -EINVAL;
b68aa230 7886#else
bb9d97b6
TH
7887 /* We don't support RT-tasks being in separate groups */
7888 if (task->sched_class != &fair_sched_class)
7889 return -EINVAL;
b68aa230 7890#endif
bb9d97b6 7891 }
be367d09
BB
7892 return 0;
7893}
68318b8e 7894
eb95419b 7895static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7896 struct cgroup_taskset *tset)
68318b8e 7897{
bb9d97b6
TH
7898 struct task_struct *task;
7899
924f0d9a 7900 cgroup_taskset_for_each(task, tset)
bb9d97b6 7901 sched_move_task(task);
68318b8e
SV
7902}
7903
eb95419b
TH
7904static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7905 struct cgroup_subsys_state *old_css,
7906 struct task_struct *task)
068c5cc5
PZ
7907{
7908 /*
7909 * cgroup_exit() is called in the copy_process() failure path.
7910 * Ignore this case since the task hasn't ran yet, this avoids
7911 * trying to poke a half freed task state from generic code.
7912 */
7913 if (!(task->flags & PF_EXITING))
7914 return;
7915
7916 sched_move_task(task);
7917}
7918
052f1dc7 7919#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7920static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7921 struct cftype *cftype, u64 shareval)
68318b8e 7922{
182446d0 7923 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7924}
7925
182446d0
TH
7926static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7927 struct cftype *cft)
68318b8e 7928{
182446d0 7929 struct task_group *tg = css_tg(css);
68318b8e 7930
c8b28116 7931 return (u64) scale_load_down(tg->shares);
68318b8e 7932}
ab84d31e
PT
7933
7934#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7935static DEFINE_MUTEX(cfs_constraints_mutex);
7936
ab84d31e
PT
7937const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7938const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7939
a790de99
PT
7940static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7941
ab84d31e
PT
7942static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7943{
56f570e5 7944 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7945 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7946
7947 if (tg == &root_task_group)
7948 return -EINVAL;
7949
7950 /*
7951 * Ensure we have at some amount of bandwidth every period. This is
7952 * to prevent reaching a state of large arrears when throttled via
7953 * entity_tick() resulting in prolonged exit starvation.
7954 */
7955 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7956 return -EINVAL;
7957
7958 /*
7959 * Likewise, bound things on the otherside by preventing insane quota
7960 * periods. This also allows us to normalize in computing quota
7961 * feasibility.
7962 */
7963 if (period > max_cfs_quota_period)
7964 return -EINVAL;
7965
0e59bdae
KT
7966 /*
7967 * Prevent race between setting of cfs_rq->runtime_enabled and
7968 * unthrottle_offline_cfs_rqs().
7969 */
7970 get_online_cpus();
a790de99
PT
7971 mutex_lock(&cfs_constraints_mutex);
7972 ret = __cfs_schedulable(tg, period, quota);
7973 if (ret)
7974 goto out_unlock;
7975
58088ad0 7976 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7977 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7978 /*
7979 * If we need to toggle cfs_bandwidth_used, off->on must occur
7980 * before making related changes, and on->off must occur afterwards
7981 */
7982 if (runtime_enabled && !runtime_was_enabled)
7983 cfs_bandwidth_usage_inc();
ab84d31e
PT
7984 raw_spin_lock_irq(&cfs_b->lock);
7985 cfs_b->period = ns_to_ktime(period);
7986 cfs_b->quota = quota;
58088ad0 7987
a9cf55b2 7988 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7989 /* restart the period timer (if active) to handle new period expiry */
7990 if (runtime_enabled && cfs_b->timer_active) {
7991 /* force a reprogram */
09dc4ab0 7992 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7993 }
ab84d31e
PT
7994 raw_spin_unlock_irq(&cfs_b->lock);
7995
0e59bdae 7996 for_each_online_cpu(i) {
ab84d31e 7997 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7998 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7999
8000 raw_spin_lock_irq(&rq->lock);
58088ad0 8001 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8002 cfs_rq->runtime_remaining = 0;
671fd9da 8003
029632fb 8004 if (cfs_rq->throttled)
671fd9da 8005 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8006 raw_spin_unlock_irq(&rq->lock);
8007 }
1ee14e6c
BS
8008 if (runtime_was_enabled && !runtime_enabled)
8009 cfs_bandwidth_usage_dec();
a790de99
PT
8010out_unlock:
8011 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8012 put_online_cpus();
ab84d31e 8013
a790de99 8014 return ret;
ab84d31e
PT
8015}
8016
8017int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8018{
8019 u64 quota, period;
8020
029632fb 8021 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8022 if (cfs_quota_us < 0)
8023 quota = RUNTIME_INF;
8024 else
8025 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8026
8027 return tg_set_cfs_bandwidth(tg, period, quota);
8028}
8029
8030long tg_get_cfs_quota(struct task_group *tg)
8031{
8032 u64 quota_us;
8033
029632fb 8034 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8035 return -1;
8036
029632fb 8037 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8038 do_div(quota_us, NSEC_PER_USEC);
8039
8040 return quota_us;
8041}
8042
8043int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8044{
8045 u64 quota, period;
8046
8047 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8048 quota = tg->cfs_bandwidth.quota;
ab84d31e 8049
ab84d31e
PT
8050 return tg_set_cfs_bandwidth(tg, period, quota);
8051}
8052
8053long tg_get_cfs_period(struct task_group *tg)
8054{
8055 u64 cfs_period_us;
8056
029632fb 8057 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8058 do_div(cfs_period_us, NSEC_PER_USEC);
8059
8060 return cfs_period_us;
8061}
8062
182446d0
TH
8063static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8064 struct cftype *cft)
ab84d31e 8065{
182446d0 8066 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8067}
8068
182446d0
TH
8069static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8070 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8071{
182446d0 8072 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8073}
8074
182446d0
TH
8075static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8076 struct cftype *cft)
ab84d31e 8077{
182446d0 8078 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8079}
8080
182446d0
TH
8081static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8082 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8083{
182446d0 8084 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8085}
8086
a790de99
PT
8087struct cfs_schedulable_data {
8088 struct task_group *tg;
8089 u64 period, quota;
8090};
8091
8092/*
8093 * normalize group quota/period to be quota/max_period
8094 * note: units are usecs
8095 */
8096static u64 normalize_cfs_quota(struct task_group *tg,
8097 struct cfs_schedulable_data *d)
8098{
8099 u64 quota, period;
8100
8101 if (tg == d->tg) {
8102 period = d->period;
8103 quota = d->quota;
8104 } else {
8105 period = tg_get_cfs_period(tg);
8106 quota = tg_get_cfs_quota(tg);
8107 }
8108
8109 /* note: these should typically be equivalent */
8110 if (quota == RUNTIME_INF || quota == -1)
8111 return RUNTIME_INF;
8112
8113 return to_ratio(period, quota);
8114}
8115
8116static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8117{
8118 struct cfs_schedulable_data *d = data;
029632fb 8119 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8120 s64 quota = 0, parent_quota = -1;
8121
8122 if (!tg->parent) {
8123 quota = RUNTIME_INF;
8124 } else {
029632fb 8125 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8126
8127 quota = normalize_cfs_quota(tg, d);
9c58c79a 8128 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8129
8130 /*
8131 * ensure max(child_quota) <= parent_quota, inherit when no
8132 * limit is set
8133 */
8134 if (quota == RUNTIME_INF)
8135 quota = parent_quota;
8136 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8137 return -EINVAL;
8138 }
9c58c79a 8139 cfs_b->hierarchical_quota = quota;
a790de99
PT
8140
8141 return 0;
8142}
8143
8144static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8145{
8277434e 8146 int ret;
a790de99
PT
8147 struct cfs_schedulable_data data = {
8148 .tg = tg,
8149 .period = period,
8150 .quota = quota,
8151 };
8152
8153 if (quota != RUNTIME_INF) {
8154 do_div(data.period, NSEC_PER_USEC);
8155 do_div(data.quota, NSEC_PER_USEC);
8156 }
8157
8277434e
PT
8158 rcu_read_lock();
8159 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8160 rcu_read_unlock();
8161
8162 return ret;
a790de99 8163}
e8da1b18 8164
2da8ca82 8165static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8166{
2da8ca82 8167 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8168 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8169
44ffc75b
TH
8170 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8171 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8172 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8173
8174 return 0;
8175}
ab84d31e 8176#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8177#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8178
052f1dc7 8179#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8180static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8181 struct cftype *cft, s64 val)
6f505b16 8182{
182446d0 8183 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8184}
8185
182446d0
TH
8186static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8187 struct cftype *cft)
6f505b16 8188{
182446d0 8189 return sched_group_rt_runtime(css_tg(css));
6f505b16 8190}
d0b27fa7 8191
182446d0
TH
8192static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8193 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8194{
182446d0 8195 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8196}
8197
182446d0
TH
8198static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8199 struct cftype *cft)
d0b27fa7 8200{
182446d0 8201 return sched_group_rt_period(css_tg(css));
d0b27fa7 8202}
6d6bc0ad 8203#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8204
fe5c7cc2 8205static struct cftype cpu_files[] = {
052f1dc7 8206#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8207 {
8208 .name = "shares",
f4c753b7
PM
8209 .read_u64 = cpu_shares_read_u64,
8210 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8211 },
052f1dc7 8212#endif
ab84d31e
PT
8213#ifdef CONFIG_CFS_BANDWIDTH
8214 {
8215 .name = "cfs_quota_us",
8216 .read_s64 = cpu_cfs_quota_read_s64,
8217 .write_s64 = cpu_cfs_quota_write_s64,
8218 },
8219 {
8220 .name = "cfs_period_us",
8221 .read_u64 = cpu_cfs_period_read_u64,
8222 .write_u64 = cpu_cfs_period_write_u64,
8223 },
e8da1b18
NR
8224 {
8225 .name = "stat",
2da8ca82 8226 .seq_show = cpu_stats_show,
e8da1b18 8227 },
ab84d31e 8228#endif
052f1dc7 8229#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8230 {
9f0c1e56 8231 .name = "rt_runtime_us",
06ecb27c
PM
8232 .read_s64 = cpu_rt_runtime_read,
8233 .write_s64 = cpu_rt_runtime_write,
6f505b16 8234 },
d0b27fa7
PZ
8235 {
8236 .name = "rt_period_us",
f4c753b7
PM
8237 .read_u64 = cpu_rt_period_read_uint,
8238 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8239 },
052f1dc7 8240#endif
4baf6e33 8241 { } /* terminate */
68318b8e
SV
8242};
8243
073219e9 8244struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8245 .css_alloc = cpu_cgroup_css_alloc,
8246 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8247 .css_online = cpu_cgroup_css_online,
8248 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8249 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8250 .can_attach = cpu_cgroup_can_attach,
8251 .attach = cpu_cgroup_attach,
068c5cc5 8252 .exit = cpu_cgroup_exit,
5577964e 8253 .legacy_cftypes = cpu_files,
68318b8e
SV
8254 .early_init = 1,
8255};
8256
052f1dc7 8257#endif /* CONFIG_CGROUP_SCHED */
d842de87 8258
b637a328
PM
8259void dump_cpu_task(int cpu)
8260{
8261 pr_info("Task dump for CPU %d:\n", cpu);
8262 sched_show_task(cpu_curr(cpu));
8263}