sched/rt: Prevent idle task boosting
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
db7e527d 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
029632fb 82#include "sched.h"
391e43da 83#include "../workqueue_sched.h"
6e0534f2 84
a8d154b0 85#define CREATE_TRACE_POINTS
ad8d75ff 86#include <trace/events/sched.h>
a8d154b0 87
029632fb 88void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 89{
58088ad0
PT
90 unsigned long delta;
91 ktime_t soft, hard, now;
d0b27fa7 92
58088ad0
PT
93 for (;;) {
94 if (hrtimer_active(period_timer))
95 break;
96
97 now = hrtimer_cb_get_time(period_timer);
98 hrtimer_forward(period_timer, now, period);
d0b27fa7 99
58088ad0
PT
100 soft = hrtimer_get_softexpires(period_timer);
101 hard = hrtimer_get_expires(period_timer);
102 delta = ktime_to_ns(ktime_sub(hard, soft));
103 __hrtimer_start_range_ns(period_timer, soft, delta,
104 HRTIMER_MODE_ABS_PINNED, 0);
105 }
106}
107
029632fb
PZ
108DEFINE_MUTEX(sched_domains_mutex);
109DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 110
fe44d621 111static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 112
029632fb 113void update_rq_clock(struct rq *rq)
3e51f33f 114{
fe44d621 115 s64 delta;
305e6835 116
61eadef6 117 if (rq->skip_clock_update > 0)
f26f9aff 118 return;
aa483808 119
fe44d621
PZ
120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 rq->clock += delta;
122 update_rq_clock_task(rq, delta);
3e51f33f
PZ
123}
124
bf5c91ba
IM
125/*
126 * Debugging: various feature bits
127 */
f00b45c1 128
f00b45c1
PZ
129#define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
131
bf5c91ba 132const_debug unsigned int sysctl_sched_features =
391e43da 133#include "features.h"
f00b45c1
PZ
134 0;
135
136#undef SCHED_FEAT
137
138#ifdef CONFIG_SCHED_DEBUG
139#define SCHED_FEAT(name, enabled) \
140 #name ,
141
983ed7a6 142static __read_mostly char *sched_feat_names[] = {
391e43da 143#include "features.h"
f00b45c1
PZ
144 NULL
145};
146
147#undef SCHED_FEAT
148
34f3a814 149static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 150{
f00b45c1
PZ
151 int i;
152
f8b6d1cc 153 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
154 if (!(sysctl_sched_features & (1UL << i)))
155 seq_puts(m, "NO_");
156 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 157 }
34f3a814 158 seq_puts(m, "\n");
f00b45c1 159
34f3a814 160 return 0;
f00b45c1
PZ
161}
162
f8b6d1cc
PZ
163#ifdef HAVE_JUMP_LABEL
164
165#define jump_label_key__true jump_label_key_enabled
166#define jump_label_key__false jump_label_key_disabled
167
168#define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
170
171struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172#include "features.h"
173};
174
175#undef SCHED_FEAT
176
177static void sched_feat_disable(int i)
178{
179 if (jump_label_enabled(&sched_feat_keys[i]))
180 jump_label_dec(&sched_feat_keys[i]);
181}
182
183static void sched_feat_enable(int i)
184{
185 if (!jump_label_enabled(&sched_feat_keys[i]))
186 jump_label_inc(&sched_feat_keys[i]);
187}
188#else
189static void sched_feat_disable(int i) { };
190static void sched_feat_enable(int i) { };
191#endif /* HAVE_JUMP_LABEL */
192
f00b45c1
PZ
193static ssize_t
194sched_feat_write(struct file *filp, const char __user *ubuf,
195 size_t cnt, loff_t *ppos)
196{
197 char buf[64];
7740191c 198 char *cmp;
f00b45c1
PZ
199 int neg = 0;
200 int i;
201
202 if (cnt > 63)
203 cnt = 63;
204
205 if (copy_from_user(&buf, ubuf, cnt))
206 return -EFAULT;
207
208 buf[cnt] = 0;
7740191c 209 cmp = strstrip(buf);
f00b45c1 210
524429c3 211 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
212 neg = 1;
213 cmp += 3;
214 }
215
f8b6d1cc 216 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 217 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 218 if (neg) {
f00b45c1 219 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
220 sched_feat_disable(i);
221 } else {
f00b45c1 222 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
223 sched_feat_enable(i);
224 }
f00b45c1
PZ
225 break;
226 }
227 }
228
f8b6d1cc 229 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
230 return -EINVAL;
231
42994724 232 *ppos += cnt;
f00b45c1
PZ
233
234 return cnt;
235}
236
34f3a814
LZ
237static int sched_feat_open(struct inode *inode, struct file *filp)
238{
239 return single_open(filp, sched_feat_show, NULL);
240}
241
828c0950 242static const struct file_operations sched_feat_fops = {
34f3a814
LZ
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
f00b45c1
PZ
248};
249
250static __init int sched_init_debug(void)
251{
f00b45c1
PZ
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
254
255 return 0;
256}
257late_initcall(sched_init_debug);
f8b6d1cc 258#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 259
b82d9fdd
PZ
260/*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
e9e9250b
PZ
266/*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
fa85ae24 274/*
9f0c1e56 275 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
276 * default: 1s
277 */
9f0c1e56 278unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 279
029632fb 280__read_mostly int scheduler_running;
6892b75e 281
9f0c1e56
PZ
282/*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286int sysctl_sched_rt_runtime = 950000;
fa85ae24 287
fa85ae24 288
1da177e4 289
0970d299 290/*
0122ec5b 291 * __task_rq_lock - lock the rq @p resides on.
b29739f9 292 */
70b97a7f 293static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
294 __acquires(rq->lock)
295{
0970d299
PZ
296 struct rq *rq;
297
0122ec5b
PZ
298 lockdep_assert_held(&p->pi_lock);
299
3a5c359a 300 for (;;) {
0970d299 301 rq = task_rq(p);
05fa785c 302 raw_spin_lock(&rq->lock);
65cc8e48 303 if (likely(rq == task_rq(p)))
3a5c359a 304 return rq;
05fa785c 305 raw_spin_unlock(&rq->lock);
b29739f9 306 }
b29739f9
IM
307}
308
1da177e4 309/*
0122ec5b 310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 311 */
70b97a7f 312static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 313 __acquires(p->pi_lock)
1da177e4
LT
314 __acquires(rq->lock)
315{
70b97a7f 316 struct rq *rq;
1da177e4 317
3a5c359a 318 for (;;) {
0122ec5b 319 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 320 rq = task_rq(p);
05fa785c 321 raw_spin_lock(&rq->lock);
65cc8e48 322 if (likely(rq == task_rq(p)))
3a5c359a 323 return rq;
0122ec5b
PZ
324 raw_spin_unlock(&rq->lock);
325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 326 }
1da177e4
LT
327}
328
a9957449 329static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
330 __releases(rq->lock)
331{
05fa785c 332 raw_spin_unlock(&rq->lock);
b29739f9
IM
333}
334
0122ec5b
PZ
335static inline void
336task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 337 __releases(rq->lock)
0122ec5b 338 __releases(p->pi_lock)
1da177e4 339{
0122ec5b
PZ
340 raw_spin_unlock(&rq->lock);
341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
342}
343
1da177e4 344/*
cc2a73b5 345 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 346 */
a9957449 347static struct rq *this_rq_lock(void)
1da177e4
LT
348 __acquires(rq->lock)
349{
70b97a7f 350 struct rq *rq;
1da177e4
LT
351
352 local_irq_disable();
353 rq = this_rq();
05fa785c 354 raw_spin_lock(&rq->lock);
1da177e4
LT
355
356 return rq;
357}
358
8f4d37ec
PZ
359#ifdef CONFIG_SCHED_HRTICK
360/*
361 * Use HR-timers to deliver accurate preemption points.
362 *
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
366 *
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
369 */
8f4d37ec 370
8f4d37ec
PZ
371static void hrtick_clear(struct rq *rq)
372{
373 if (hrtimer_active(&rq->hrtick_timer))
374 hrtimer_cancel(&rq->hrtick_timer);
375}
376
8f4d37ec
PZ
377/*
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
380 */
381static enum hrtimer_restart hrtick(struct hrtimer *timer)
382{
383 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384
385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386
05fa785c 387 raw_spin_lock(&rq->lock);
3e51f33f 388 update_rq_clock(rq);
8f4d37ec 389 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 390 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
391
392 return HRTIMER_NORESTART;
393}
394
95e904c7 395#ifdef CONFIG_SMP
31656519
PZ
396/*
397 * called from hardirq (IPI) context
398 */
399static void __hrtick_start(void *arg)
b328ca18 400{
31656519 401 struct rq *rq = arg;
b328ca18 402
05fa785c 403 raw_spin_lock(&rq->lock);
31656519
PZ
404 hrtimer_restart(&rq->hrtick_timer);
405 rq->hrtick_csd_pending = 0;
05fa785c 406 raw_spin_unlock(&rq->lock);
b328ca18
PZ
407}
408
31656519
PZ
409/*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
029632fb 414void hrtick_start(struct rq *rq, u64 delay)
b328ca18 415{
31656519
PZ
416 struct hrtimer *timer = &rq->hrtick_timer;
417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 418
cc584b21 419 hrtimer_set_expires(timer, time);
31656519
PZ
420
421 if (rq == this_rq()) {
422 hrtimer_restart(timer);
423 } else if (!rq->hrtick_csd_pending) {
6e275637 424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
425 rq->hrtick_csd_pending = 1;
426 }
b328ca18
PZ
427}
428
429static int
430hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431{
432 int cpu = (int)(long)hcpu;
433
434 switch (action) {
435 case CPU_UP_CANCELED:
436 case CPU_UP_CANCELED_FROZEN:
437 case CPU_DOWN_PREPARE:
438 case CPU_DOWN_PREPARE_FROZEN:
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
31656519 441 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
442 return NOTIFY_OK;
443 }
444
445 return NOTIFY_DONE;
446}
447
fa748203 448static __init void init_hrtick(void)
b328ca18
PZ
449{
450 hotcpu_notifier(hotplug_hrtick, 0);
451}
31656519
PZ
452#else
453/*
454 * Called to set the hrtick timer state.
455 *
456 * called with rq->lock held and irqs disabled
457 */
029632fb 458void hrtick_start(struct rq *rq, u64 delay)
31656519 459{
7f1e2ca9 460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 461 HRTIMER_MODE_REL_PINNED, 0);
31656519 462}
b328ca18 463
006c75f1 464static inline void init_hrtick(void)
8f4d37ec 465{
8f4d37ec 466}
31656519 467#endif /* CONFIG_SMP */
8f4d37ec 468
31656519 469static void init_rq_hrtick(struct rq *rq)
8f4d37ec 470{
31656519
PZ
471#ifdef CONFIG_SMP
472 rq->hrtick_csd_pending = 0;
8f4d37ec 473
31656519
PZ
474 rq->hrtick_csd.flags = 0;
475 rq->hrtick_csd.func = __hrtick_start;
476 rq->hrtick_csd.info = rq;
477#endif
8f4d37ec 478
31656519
PZ
479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 rq->hrtick_timer.function = hrtick;
8f4d37ec 481}
006c75f1 482#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
483static inline void hrtick_clear(struct rq *rq)
484{
485}
486
8f4d37ec
PZ
487static inline void init_rq_hrtick(struct rq *rq)
488{
489}
490
b328ca18
PZ
491static inline void init_hrtick(void)
492{
493}
006c75f1 494#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 495
c24d20db
IM
496/*
497 * resched_task - mark a task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503#ifdef CONFIG_SMP
504
505#ifndef tsk_is_polling
506#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507#endif
508
029632fb 509void resched_task(struct task_struct *p)
c24d20db
IM
510{
511 int cpu;
512
05fa785c 513 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 514
5ed0cec0 515 if (test_tsk_need_resched(p))
c24d20db
IM
516 return;
517
5ed0cec0 518 set_tsk_need_resched(p);
c24d20db
IM
519
520 cpu = task_cpu(p);
521 if (cpu == smp_processor_id())
522 return;
523
524 /* NEED_RESCHED must be visible before we test polling */
525 smp_mb();
526 if (!tsk_is_polling(p))
527 smp_send_reschedule(cpu);
528}
529
029632fb 530void resched_cpu(int cpu)
c24d20db
IM
531{
532 struct rq *rq = cpu_rq(cpu);
533 unsigned long flags;
534
05fa785c 535 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
536 return;
537 resched_task(cpu_curr(cpu));
05fa785c 538 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 539}
06d8308c
TG
540
541#ifdef CONFIG_NO_HZ
83cd4fe2
VP
542/*
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
545 *
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549 */
550int get_nohz_timer_target(void)
551{
552 int cpu = smp_processor_id();
553 int i;
554 struct sched_domain *sd;
555
057f3fad 556 rcu_read_lock();
83cd4fe2 557 for_each_domain(cpu, sd) {
057f3fad
PZ
558 for_each_cpu(i, sched_domain_span(sd)) {
559 if (!idle_cpu(i)) {
560 cpu = i;
561 goto unlock;
562 }
563 }
83cd4fe2 564 }
057f3fad
PZ
565unlock:
566 rcu_read_unlock();
83cd4fe2
VP
567 return cpu;
568}
06d8308c
TG
569/*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
579void wake_up_idle_cpu(int cpu)
580{
581 struct rq *rq = cpu_rq(cpu);
582
583 if (cpu == smp_processor_id())
584 return;
585
586 /*
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
592 */
593 if (rq->curr != rq->idle)
594 return;
45bf76df 595
45bf76df 596 /*
06d8308c
TG
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
45bf76df 600 */
5ed0cec0 601 set_tsk_need_resched(rq->idle);
45bf76df 602
06d8308c
TG
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(rq->idle))
606 smp_send_reschedule(cpu);
45bf76df
IM
607}
608
ca38062e 609static inline bool got_nohz_idle_kick(void)
45bf76df 610{
1c792db7
SS
611 int cpu = smp_processor_id();
612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
613}
614
ca38062e 615#else /* CONFIG_NO_HZ */
45bf76df 616
ca38062e 617static inline bool got_nohz_idle_kick(void)
2069dd75 618{
ca38062e 619 return false;
2069dd75
PZ
620}
621
6d6bc0ad 622#endif /* CONFIG_NO_HZ */
d842de87 623
029632fb 624void sched_avg_update(struct rq *rq)
18d95a28 625{
e9e9250b
PZ
626 s64 period = sched_avg_period();
627
628 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
629 /*
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
633 */
634 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
635 rq->age_stamp += period;
636 rq->rt_avg /= 2;
637 }
18d95a28
PZ
638}
639
6d6bc0ad 640#else /* !CONFIG_SMP */
029632fb 641void resched_task(struct task_struct *p)
18d95a28 642{
05fa785c 643 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 644 set_tsk_need_resched(p);
18d95a28 645}
6d6bc0ad 646#endif /* CONFIG_SMP */
18d95a28 647
a790de99
PT
648#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 650/*
8277434e
PT
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 655 */
029632fb 656int walk_tg_tree_from(struct task_group *from,
8277434e 657 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
658{
659 struct task_group *parent, *child;
eb755805 660 int ret;
c09595f6 661
8277434e
PT
662 parent = from;
663
c09595f6 664down:
eb755805
PZ
665 ret = (*down)(parent, data);
666 if (ret)
8277434e 667 goto out;
c09595f6
PZ
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672up:
673 continue;
674 }
eb755805 675 ret = (*up)(parent, data);
8277434e
PT
676 if (ret || parent == from)
677 goto out;
c09595f6
PZ
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
8277434e 683out:
eb755805 684 return ret;
c09595f6
PZ
685}
686
029632fb 687int tg_nop(struct task_group *tg, void *data)
eb755805 688{
e2b245f8 689 return 0;
eb755805 690}
18d95a28
PZ
691#endif
692
029632fb 693void update_cpu_load(struct rq *this_rq);
9c217245 694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266 int dest_cpu;
1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268
1269 /* Look for allowed, online CPU in same node. */
1270 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
fa17b507 1271 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb
PZ
1272 return dest_cpu;
1273
1274 /* Any allowed, online CPU? */
fa17b507 1275 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
5da9a0fb
PZ
1276 if (dest_cpu < nr_cpu_ids)
1277 return dest_cpu;
1278
1279 /* No more Mr. Nice Guy. */
48c5ccae
PZ
1280 dest_cpu = cpuset_cpus_allowed_fallback(p);
1281 /*
1282 * Don't tell them about moving exiting tasks or
1283 * kernel threads (both mm NULL), since they never
1284 * leave kernel.
1285 */
1286 if (p->mm && printk_ratelimit()) {
1287 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1288 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
1289 }
1290
1291 return dest_cpu;
1292}
1293
e2912009 1294/*
013fdb80 1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1296 */
970b13ba 1297static inline
7608dec2 1298int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1299{
7608dec2 1300 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1301
1302 /*
1303 * In order not to call set_task_cpu() on a blocking task we need
1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305 * cpu.
1306 *
1307 * Since this is common to all placement strategies, this lives here.
1308 *
1309 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 * not worry about this generic constraint ]
1311 */
fa17b507 1312 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1313 !cpu_online(cpu)))
5da9a0fb 1314 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1315
1316 return cpu;
970b13ba 1317}
09a40af5
MG
1318
1319static void update_avg(u64 *avg, u64 sample)
1320{
1321 s64 diff = sample - *avg;
1322 *avg += diff >> 3;
1323}
970b13ba
PZ
1324#endif
1325
d7c01d27 1326static void
b84cb5df 1327ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1328{
d7c01d27 1329#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1330 struct rq *rq = this_rq();
1331
d7c01d27
PZ
1332#ifdef CONFIG_SMP
1333 int this_cpu = smp_processor_id();
1334
1335 if (cpu == this_cpu) {
1336 schedstat_inc(rq, ttwu_local);
1337 schedstat_inc(p, se.statistics.nr_wakeups_local);
1338 } else {
1339 struct sched_domain *sd;
1340
1341 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1342 rcu_read_lock();
d7c01d27
PZ
1343 for_each_domain(this_cpu, sd) {
1344 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345 schedstat_inc(sd, ttwu_wake_remote);
1346 break;
1347 }
1348 }
057f3fad 1349 rcu_read_unlock();
d7c01d27 1350 }
f339b9dc
PZ
1351
1352 if (wake_flags & WF_MIGRATED)
1353 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1354
d7c01d27
PZ
1355#endif /* CONFIG_SMP */
1356
1357 schedstat_inc(rq, ttwu_count);
9ed3811a 1358 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1359
1360 if (wake_flags & WF_SYNC)
9ed3811a 1361 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1362
d7c01d27
PZ
1363#endif /* CONFIG_SCHEDSTATS */
1364}
1365
1366static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1367{
9ed3811a 1368 activate_task(rq, p, en_flags);
fd2f4419 1369 p->on_rq = 1;
c2f7115e
PZ
1370
1371 /* if a worker is waking up, notify workqueue */
1372 if (p->flags & PF_WQ_WORKER)
1373 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1374}
1375
23f41eeb
PZ
1376/*
1377 * Mark the task runnable and perform wakeup-preemption.
1378 */
89363381 1379static void
23f41eeb 1380ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1381{
89363381 1382 trace_sched_wakeup(p, true);
9ed3811a
TH
1383 check_preempt_curr(rq, p, wake_flags);
1384
1385 p->state = TASK_RUNNING;
1386#ifdef CONFIG_SMP
1387 if (p->sched_class->task_woken)
1388 p->sched_class->task_woken(rq, p);
1389
e69c6341 1390 if (rq->idle_stamp) {
9ed3811a
TH
1391 u64 delta = rq->clock - rq->idle_stamp;
1392 u64 max = 2*sysctl_sched_migration_cost;
1393
1394 if (delta > max)
1395 rq->avg_idle = max;
1396 else
1397 update_avg(&rq->avg_idle, delta);
1398 rq->idle_stamp = 0;
1399 }
1400#endif
1401}
1402
c05fbafb
PZ
1403static void
1404ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1405{
1406#ifdef CONFIG_SMP
1407 if (p->sched_contributes_to_load)
1408 rq->nr_uninterruptible--;
1409#endif
1410
1411 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412 ttwu_do_wakeup(rq, p, wake_flags);
1413}
1414
1415/*
1416 * Called in case the task @p isn't fully descheduled from its runqueue,
1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418 * since all we need to do is flip p->state to TASK_RUNNING, since
1419 * the task is still ->on_rq.
1420 */
1421static int ttwu_remote(struct task_struct *p, int wake_flags)
1422{
1423 struct rq *rq;
1424 int ret = 0;
1425
1426 rq = __task_rq_lock(p);
1427 if (p->on_rq) {
1428 ttwu_do_wakeup(rq, p, wake_flags);
1429 ret = 1;
1430 }
1431 __task_rq_unlock(rq);
1432
1433 return ret;
1434}
1435
317f3941 1436#ifdef CONFIG_SMP
fa14ff4a 1437static void sched_ttwu_pending(void)
317f3941
PZ
1438{
1439 struct rq *rq = this_rq();
fa14ff4a
PZ
1440 struct llist_node *llist = llist_del_all(&rq->wake_list);
1441 struct task_struct *p;
317f3941
PZ
1442
1443 raw_spin_lock(&rq->lock);
1444
fa14ff4a
PZ
1445 while (llist) {
1446 p = llist_entry(llist, struct task_struct, wake_entry);
1447 llist = llist_next(llist);
317f3941
PZ
1448 ttwu_do_activate(rq, p, 0);
1449 }
1450
1451 raw_spin_unlock(&rq->lock);
1452}
1453
1454void scheduler_ipi(void)
1455{
ca38062e 1456 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1457 return;
1458
1459 /*
1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 * traditionally all their work was done from the interrupt return
1462 * path. Now that we actually do some work, we need to make sure
1463 * we do call them.
1464 *
1465 * Some archs already do call them, luckily irq_enter/exit nest
1466 * properly.
1467 *
1468 * Arguably we should visit all archs and update all handlers,
1469 * however a fair share of IPIs are still resched only so this would
1470 * somewhat pessimize the simple resched case.
1471 */
1472 irq_enter();
fa14ff4a 1473 sched_ttwu_pending();
ca38062e
SS
1474
1475 /*
1476 * Check if someone kicked us for doing the nohz idle load balance.
1477 */
6eb57e0d
SS
1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 this_rq()->idle_balance = 1;
ca38062e 1480 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1481 }
c5d753a5 1482 irq_exit();
317f3941
PZ
1483}
1484
1485static void ttwu_queue_remote(struct task_struct *p, int cpu)
1486{
fa14ff4a 1487 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1488 smp_send_reschedule(cpu);
1489}
d6aa8f85
PZ
1490
1491#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1493{
1494 struct rq *rq;
1495 int ret = 0;
1496
1497 rq = __task_rq_lock(p);
1498 if (p->on_cpu) {
1499 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500 ttwu_do_wakeup(rq, p, wake_flags);
1501 ret = 1;
1502 }
1503 __task_rq_unlock(rq);
1504
1505 return ret;
1506
1507}
1508#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1509
39be3501 1510bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1511{
1512 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1513}
d6aa8f85 1514#endif /* CONFIG_SMP */
317f3941 1515
c05fbafb
PZ
1516static void ttwu_queue(struct task_struct *p, int cpu)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519
17d9f311 1520#if defined(CONFIG_SMP)
39be3501 1521 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1523 ttwu_queue_remote(p, cpu);
1524 return;
1525 }
1526#endif
1527
c05fbafb
PZ
1528 raw_spin_lock(&rq->lock);
1529 ttwu_do_activate(rq, p, 0);
1530 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1531}
1532
1533/**
1da177e4 1534 * try_to_wake_up - wake up a thread
9ed3811a 1535 * @p: the thread to be awakened
1da177e4 1536 * @state: the mask of task states that can be woken
9ed3811a 1537 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1538 *
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1544 *
9ed3811a
TH
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1da177e4 1547 */
e4a52bcb
PZ
1548static int
1549try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1550{
1da177e4 1551 unsigned long flags;
c05fbafb 1552 int cpu, success = 0;
2398f2c6 1553
04e2f174 1554 smp_wmb();
013fdb80 1555 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1556 if (!(p->state & state))
1da177e4
LT
1557 goto out;
1558
c05fbafb 1559 success = 1; /* we're going to change ->state */
1da177e4 1560 cpu = task_cpu(p);
1da177e4 1561
c05fbafb
PZ
1562 if (p->on_rq && ttwu_remote(p, wake_flags))
1563 goto stat;
1da177e4 1564
1da177e4 1565#ifdef CONFIG_SMP
e9c84311 1566 /*
c05fbafb
PZ
1567 * If the owning (remote) cpu is still in the middle of schedule() with
1568 * this task as prev, wait until its done referencing the task.
e9c84311 1569 */
e4a52bcb
PZ
1570 while (p->on_cpu) {
1571#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572 /*
d6aa8f85
PZ
1573 * In case the architecture enables interrupts in
1574 * context_switch(), we cannot busy wait, since that
1575 * would lead to deadlocks when an interrupt hits and
1576 * tries to wake up @prev. So bail and do a complete
1577 * remote wakeup.
e4a52bcb 1578 */
d6aa8f85 1579 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1580 goto stat;
d6aa8f85 1581#else
e4a52bcb 1582 cpu_relax();
d6aa8f85 1583#endif
371fd7e7 1584 }
0970d299 1585 /*
e4a52bcb 1586 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1587 */
e4a52bcb 1588 smp_rmb();
1da177e4 1589
a8e4f2ea 1590 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1591 p->state = TASK_WAKING;
e7693a36 1592
e4a52bcb 1593 if (p->sched_class->task_waking)
74f8e4b2 1594 p->sched_class->task_waking(p);
efbbd05a 1595
7608dec2 1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1597 if (task_cpu(p) != cpu) {
1598 wake_flags |= WF_MIGRATED;
e4a52bcb 1599 set_task_cpu(p, cpu);
f339b9dc 1600 }
1da177e4 1601#endif /* CONFIG_SMP */
1da177e4 1602
c05fbafb
PZ
1603 ttwu_queue(p, cpu);
1604stat:
b84cb5df 1605 ttwu_stat(p, cpu, wake_flags);
1da177e4 1606out:
013fdb80 1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1608
1609 return success;
1610}
1611
21aa9af0
TH
1612/**
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1615 *
2acca55e 1616 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1618 * the current task.
21aa9af0
TH
1619 */
1620static void try_to_wake_up_local(struct task_struct *p)
1621{
1622 struct rq *rq = task_rq(p);
21aa9af0
TH
1623
1624 BUG_ON(rq != this_rq());
1625 BUG_ON(p == current);
1626 lockdep_assert_held(&rq->lock);
1627
2acca55e
PZ
1628 if (!raw_spin_trylock(&p->pi_lock)) {
1629 raw_spin_unlock(&rq->lock);
1630 raw_spin_lock(&p->pi_lock);
1631 raw_spin_lock(&rq->lock);
1632 }
1633
21aa9af0 1634 if (!(p->state & TASK_NORMAL))
2acca55e 1635 goto out;
21aa9af0 1636
fd2f4419 1637 if (!p->on_rq)
d7c01d27
PZ
1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639
23f41eeb 1640 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1641 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1642out:
1643 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1644}
1645
50fa610a
DH
1646/**
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1649 *
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes. Returns 1 if the process was woken up, 0 if it was already
1652 * running.
1653 *
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1656 */
7ad5b3a5 1657int wake_up_process(struct task_struct *p)
1da177e4 1658{
d9514f6c 1659 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1660}
1da177e4
LT
1661EXPORT_SYMBOL(wake_up_process);
1662
7ad5b3a5 1663int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1664{
1665 return try_to_wake_up(p, state, 0);
1666}
1667
1da177e4
LT
1668/*
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
dd41f596
IM
1671 *
1672 * __sched_fork() is basic setup used by init_idle() too:
1673 */
1674static void __sched_fork(struct task_struct *p)
1675{
fd2f4419
PZ
1676 p->on_rq = 0;
1677
1678 p->se.on_rq = 0;
dd41f596
IM
1679 p->se.exec_start = 0;
1680 p->se.sum_exec_runtime = 0;
f6cf891c 1681 p->se.prev_sum_exec_runtime = 0;
6c594c21 1682 p->se.nr_migrations = 0;
da7a735e 1683 p->se.vruntime = 0;
fd2f4419 1684 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1685
1686#ifdef CONFIG_SCHEDSTATS
41acab88 1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1688#endif
476d139c 1689
fa717060 1690 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1691
e107be36
AK
1692#ifdef CONFIG_PREEMPT_NOTIFIERS
1693 INIT_HLIST_HEAD(&p->preempt_notifiers);
1694#endif
dd41f596
IM
1695}
1696
1697/*
1698 * fork()/clone()-time setup:
1699 */
3e51e3ed 1700void sched_fork(struct task_struct *p)
dd41f596 1701{
0122ec5b 1702 unsigned long flags;
dd41f596
IM
1703 int cpu = get_cpu();
1704
1705 __sched_fork(p);
06b83b5f 1706 /*
0017d735 1707 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1708 * nobody will actually run it, and a signal or other external
1709 * event cannot wake it up and insert it on the runqueue either.
1710 */
0017d735 1711 p->state = TASK_RUNNING;
dd41f596 1712
c350a04e
MG
1713 /*
1714 * Make sure we do not leak PI boosting priority to the child.
1715 */
1716 p->prio = current->normal_prio;
1717
b9dc29e7
MG
1718 /*
1719 * Revert to default priority/policy on fork if requested.
1720 */
1721 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1722 if (task_has_rt_policy(p)) {
b9dc29e7 1723 p->policy = SCHED_NORMAL;
6c697bdf 1724 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1725 p->rt_priority = 0;
1726 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 p->static_prio = NICE_TO_PRIO(0);
1728
1729 p->prio = p->normal_prio = __normal_prio(p);
1730 set_load_weight(p);
6c697bdf 1731
b9dc29e7
MG
1732 /*
1733 * We don't need the reset flag anymore after the fork. It has
1734 * fulfilled its duty:
1735 */
1736 p->sched_reset_on_fork = 0;
1737 }
ca94c442 1738
2ddbf952
HS
1739 if (!rt_prio(p->prio))
1740 p->sched_class = &fair_sched_class;
b29739f9 1741
cd29fe6f
PZ
1742 if (p->sched_class->task_fork)
1743 p->sched_class->task_fork(p);
1744
86951599
PZ
1745 /*
1746 * The child is not yet in the pid-hash so no cgroup attach races,
1747 * and the cgroup is pinned to this child due to cgroup_fork()
1748 * is ran before sched_fork().
1749 *
1750 * Silence PROVE_RCU.
1751 */
0122ec5b 1752 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1753 set_task_cpu(p, cpu);
0122ec5b 1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1755
52f17b6c 1756#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1757 if (likely(sched_info_on()))
52f17b6c 1758 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1759#endif
3ca7a440
PZ
1760#if defined(CONFIG_SMP)
1761 p->on_cpu = 0;
4866cde0 1762#endif
bdd4e85d 1763#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1764 /* Want to start with kernel preemption disabled. */
a1261f54 1765 task_thread_info(p)->preempt_count = 1;
1da177e4 1766#endif
806c09a7 1767#ifdef CONFIG_SMP
917b627d 1768 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1769#endif
917b627d 1770
476d139c 1771 put_cpu();
1da177e4
LT
1772}
1773
1774/*
1775 * wake_up_new_task - wake up a newly created task for the first time.
1776 *
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1780 */
3e51e3ed 1781void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1782{
1783 unsigned long flags;
dd41f596 1784 struct rq *rq;
fabf318e 1785
ab2515c4 1786 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1787#ifdef CONFIG_SMP
1788 /*
1789 * Fork balancing, do it here and not earlier because:
1790 * - cpus_allowed can change in the fork path
1791 * - any previously selected cpu might disappear through hotplug
fabf318e 1792 */
ab2515c4 1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1794#endif
1795
ab2515c4 1796 rq = __task_rq_lock(p);
cd29fe6f 1797 activate_task(rq, p, 0);
fd2f4419 1798 p->on_rq = 1;
89363381 1799 trace_sched_wakeup_new(p, true);
a7558e01 1800 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1801#ifdef CONFIG_SMP
efbbd05a
PZ
1802 if (p->sched_class->task_woken)
1803 p->sched_class->task_woken(rq, p);
9a897c5a 1804#endif
0122ec5b 1805 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1806}
1807
e107be36
AK
1808#ifdef CONFIG_PREEMPT_NOTIFIERS
1809
1810/**
80dd99b3 1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1812 * @notifier: notifier struct to register
e107be36
AK
1813 */
1814void preempt_notifier_register(struct preempt_notifier *notifier)
1815{
1816 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817}
1818EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819
1820/**
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1822 * @notifier: notifier struct to unregister
e107be36
AK
1823 *
1824 * This is safe to call from within a preemption notifier.
1825 */
1826void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827{
1828 hlist_del(&notifier->link);
1829}
1830EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831
1832static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833{
1834 struct preempt_notifier *notifier;
1835 struct hlist_node *node;
1836
1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839}
1840
1841static void
1842fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 struct task_struct *next)
1844{
1845 struct preempt_notifier *notifier;
1846 struct hlist_node *node;
1847
1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 notifier->ops->sched_out(notifier, next);
1850}
1851
6d6bc0ad 1852#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1853
1854static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855{
1856}
1857
1858static void
1859fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 struct task_struct *next)
1861{
1862}
1863
6d6bc0ad 1864#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1865
4866cde0
NP
1866/**
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
421cee29 1869 * @prev: the current task that is being switched out
4866cde0
NP
1870 * @next: the task we are going to switch to.
1871 *
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1874 * switch.
1875 *
1876 * prepare_task_switch sets up locking and calls architecture specific
1877 * hooks.
1878 */
e107be36
AK
1879static inline void
1880prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 struct task_struct *next)
4866cde0 1882{
fe4b04fa
PZ
1883 sched_info_switch(prev, next);
1884 perf_event_task_sched_out(prev, next);
e107be36 1885 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1886 prepare_lock_switch(rq, next);
1887 prepare_arch_switch(next);
fe4b04fa 1888 trace_sched_switch(prev, next);
4866cde0
NP
1889}
1890
1da177e4
LT
1891/**
1892 * finish_task_switch - clean up after a task-switch
344babaa 1893 * @rq: runqueue associated with task-switch
1da177e4
LT
1894 * @prev: the thread we just switched away from.
1895 *
4866cde0
NP
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1900 *
1901 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1902 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1903 * with the lock held can cause deadlocks; see schedule() for
1904 * details.)
1905 */
a9957449 1906static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1907 __releases(rq->lock)
1908{
1da177e4 1909 struct mm_struct *mm = rq->prev_mm;
55a101f8 1910 long prev_state;
1da177e4
LT
1911
1912 rq->prev_mm = NULL;
1913
1914 /*
1915 * A task struct has one reference for the use as "current".
c394cc9f 1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1917 * schedule one last time. The schedule call will never return, and
1918 * the scheduled task must drop that reference.
c394cc9f 1919 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1920 * still held, otherwise prev could be scheduled on another cpu, die
1921 * there before we look at prev->state, and then the reference would
1922 * be dropped twice.
1923 * Manfred Spraul <manfred@colorfullife.com>
1924 */
55a101f8 1925 prev_state = prev->state;
4866cde0 1926 finish_arch_switch(prev);
8381f65d
JI
1927#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 local_irq_disable();
1929#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1930 perf_event_task_sched_in(prev, current);
8381f65d
JI
1931#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 local_irq_enable();
1933#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1934 finish_lock_switch(rq, prev);
e8fa1362 1935
e107be36 1936 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1937 if (mm)
1938 mmdrop(mm);
c394cc9f 1939 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1940 /*
1941 * Remove function-return probe instances associated with this
1942 * task and put them back on the free list.
9761eea8 1943 */
c6fd91f0 1944 kprobe_flush_task(prev);
1da177e4 1945 put_task_struct(prev);
c6fd91f0 1946 }
1da177e4
LT
1947}
1948
3f029d3c
GH
1949#ifdef CONFIG_SMP
1950
1951/* assumes rq->lock is held */
1952static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1953{
1954 if (prev->sched_class->pre_schedule)
1955 prev->sched_class->pre_schedule(rq, prev);
1956}
1957
1958/* rq->lock is NOT held, but preemption is disabled */
1959static inline void post_schedule(struct rq *rq)
1960{
1961 if (rq->post_schedule) {
1962 unsigned long flags;
1963
05fa785c 1964 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1965 if (rq->curr->sched_class->post_schedule)
1966 rq->curr->sched_class->post_schedule(rq);
05fa785c 1967 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1968
1969 rq->post_schedule = 0;
1970 }
1971}
1972
1973#else
da19ab51 1974
3f029d3c
GH
1975static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1976{
1977}
1978
1979static inline void post_schedule(struct rq *rq)
1980{
1da177e4
LT
1981}
1982
3f029d3c
GH
1983#endif
1984
1da177e4
LT
1985/**
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1988 */
36c8b586 1989asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1990 __releases(rq->lock)
1991{
70b97a7f
IM
1992 struct rq *rq = this_rq();
1993
4866cde0 1994 finish_task_switch(rq, prev);
da19ab51 1995
3f029d3c
GH
1996 /*
1997 * FIXME: do we need to worry about rq being invalidated by the
1998 * task_switch?
1999 */
2000 post_schedule(rq);
70b97a7f 2001
4866cde0
NP
2002#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003 /* In this case, finish_task_switch does not reenable preemption */
2004 preempt_enable();
2005#endif
1da177e4 2006 if (current->set_child_tid)
b488893a 2007 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2008}
2009
2010/*
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2013 */
dd41f596 2014static inline void
70b97a7f 2015context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2016 struct task_struct *next)
1da177e4 2017{
dd41f596 2018 struct mm_struct *mm, *oldmm;
1da177e4 2019
e107be36 2020 prepare_task_switch(rq, prev, next);
fe4b04fa 2021
dd41f596
IM
2022 mm = next->mm;
2023 oldmm = prev->active_mm;
9226d125
ZA
2024 /*
2025 * For paravirt, this is coupled with an exit in switch_to to
2026 * combine the page table reload and the switch backend into
2027 * one hypercall.
2028 */
224101ed 2029 arch_start_context_switch(prev);
9226d125 2030
31915ab4 2031 if (!mm) {
1da177e4
LT
2032 next->active_mm = oldmm;
2033 atomic_inc(&oldmm->mm_count);
2034 enter_lazy_tlb(oldmm, next);
2035 } else
2036 switch_mm(oldmm, mm, next);
2037
31915ab4 2038 if (!prev->mm) {
1da177e4 2039 prev->active_mm = NULL;
1da177e4
LT
2040 rq->prev_mm = oldmm;
2041 }
3a5f5e48
IM
2042 /*
2043 * Since the runqueue lock will be released by the next
2044 * task (which is an invalid locking op but in the case
2045 * of the scheduler it's an obvious special-case), so we
2046 * do an early lockdep release here:
2047 */
2048#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2049 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2050#endif
1da177e4
LT
2051
2052 /* Here we just switch the register state and the stack. */
2053 switch_to(prev, next, prev);
2054
dd41f596
IM
2055 barrier();
2056 /*
2057 * this_rq must be evaluated again because prev may have moved
2058 * CPUs since it called schedule(), thus the 'rq' on its stack
2059 * frame will be invalid.
2060 */
2061 finish_task_switch(this_rq(), prev);
1da177e4
LT
2062}
2063
2064/*
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2066 *
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2070 */
2071unsigned long nr_running(void)
2072{
2073 unsigned long i, sum = 0;
2074
2075 for_each_online_cpu(i)
2076 sum += cpu_rq(i)->nr_running;
2077
2078 return sum;
f711f609 2079}
1da177e4
LT
2080
2081unsigned long nr_uninterruptible(void)
f711f609 2082{
1da177e4 2083 unsigned long i, sum = 0;
f711f609 2084
0a945022 2085 for_each_possible_cpu(i)
1da177e4 2086 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2087
2088 /*
1da177e4
LT
2089 * Since we read the counters lockless, it might be slightly
2090 * inaccurate. Do not allow it to go below zero though:
f711f609 2091 */
1da177e4
LT
2092 if (unlikely((long)sum < 0))
2093 sum = 0;
f711f609 2094
1da177e4 2095 return sum;
f711f609 2096}
f711f609 2097
1da177e4 2098unsigned long long nr_context_switches(void)
46cb4b7c 2099{
cc94abfc
SR
2100 int i;
2101 unsigned long long sum = 0;
46cb4b7c 2102
0a945022 2103 for_each_possible_cpu(i)
1da177e4 2104 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2105
1da177e4
LT
2106 return sum;
2107}
483b4ee6 2108
1da177e4
LT
2109unsigned long nr_iowait(void)
2110{
2111 unsigned long i, sum = 0;
483b4ee6 2112
0a945022 2113 for_each_possible_cpu(i)
1da177e4 2114 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2115
1da177e4
LT
2116 return sum;
2117}
483b4ee6 2118
8c215bd3 2119unsigned long nr_iowait_cpu(int cpu)
69d25870 2120{
8c215bd3 2121 struct rq *this = cpu_rq(cpu);
69d25870
AV
2122 return atomic_read(&this->nr_iowait);
2123}
46cb4b7c 2124
69d25870
AV
2125unsigned long this_cpu_load(void)
2126{
2127 struct rq *this = this_rq();
2128 return this->cpu_load[0];
2129}
e790fb0b 2130
46cb4b7c 2131
dce48a84
TG
2132/* Variables and functions for calc_load */
2133static atomic_long_t calc_load_tasks;
2134static unsigned long calc_load_update;
2135unsigned long avenrun[3];
2136EXPORT_SYMBOL(avenrun);
46cb4b7c 2137
74f5187a
PZ
2138static long calc_load_fold_active(struct rq *this_rq)
2139{
2140 long nr_active, delta = 0;
2141
2142 nr_active = this_rq->nr_running;
2143 nr_active += (long) this_rq->nr_uninterruptible;
2144
2145 if (nr_active != this_rq->calc_load_active) {
2146 delta = nr_active - this_rq->calc_load_active;
2147 this_rq->calc_load_active = nr_active;
2148 }
2149
2150 return delta;
2151}
2152
0f004f5a
PZ
2153static unsigned long
2154calc_load(unsigned long load, unsigned long exp, unsigned long active)
2155{
2156 load *= exp;
2157 load += active * (FIXED_1 - exp);
2158 load += 1UL << (FSHIFT - 1);
2159 return load >> FSHIFT;
2160}
2161
74f5187a
PZ
2162#ifdef CONFIG_NO_HZ
2163/*
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2165 *
2166 * When making the ILB scale, we should try to pull this in as well.
2167 */
2168static atomic_long_t calc_load_tasks_idle;
2169
029632fb 2170void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2171{
2172 long delta;
2173
2174 delta = calc_load_fold_active(this_rq);
2175 if (delta)
2176 atomic_long_add(delta, &calc_load_tasks_idle);
2177}
2178
2179static long calc_load_fold_idle(void)
2180{
2181 long delta = 0;
2182
2183 /*
2184 * Its got a race, we don't care...
2185 */
2186 if (atomic_long_read(&calc_load_tasks_idle))
2187 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2188
2189 return delta;
2190}
0f004f5a
PZ
2191
2192/**
2193 * fixed_power_int - compute: x^n, in O(log n) time
2194 *
2195 * @x: base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n: power to raise @x to.
2198 *
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2205 * vector.
2206 */
2207static unsigned long
2208fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2209{
2210 unsigned long result = 1UL << frac_bits;
2211
2212 if (n) for (;;) {
2213 if (n & 1) {
2214 result *= x;
2215 result += 1UL << (frac_bits - 1);
2216 result >>= frac_bits;
2217 }
2218 n >>= 1;
2219 if (!n)
2220 break;
2221 x *= x;
2222 x += 1UL << (frac_bits - 1);
2223 x >>= frac_bits;
2224 }
2225
2226 return result;
2227}
2228
2229/*
2230 * a1 = a0 * e + a * (1 - e)
2231 *
2232 * a2 = a1 * e + a * (1 - e)
2233 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 * = a0 * e^2 + a * (1 - e) * (1 + e)
2235 *
2236 * a3 = a2 * e + a * (1 - e)
2237 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2239 *
2240 * ...
2241 *
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 * = a0 * e^n + a * (1 - e^n)
2245 *
2246 * [1] application of the geometric series:
2247 *
2248 * n 1 - x^(n+1)
2249 * S_n := \Sum x^i = -------------
2250 * i=0 1 - x
2251 */
2252static unsigned long
2253calc_load_n(unsigned long load, unsigned long exp,
2254 unsigned long active, unsigned int n)
2255{
2256
2257 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2258}
2259
2260/*
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2265 *
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2268 */
2269static void calc_global_nohz(unsigned long ticks)
2270{
2271 long delta, active, n;
2272
2273 if (time_before(jiffies, calc_load_update))
2274 return;
2275
2276 /*
2277 * If we crossed a calc_load_update boundary, make sure to fold
2278 * any pending idle changes, the respective CPUs might have
2279 * missed the tick driven calc_load_account_active() update
2280 * due to NO_HZ.
2281 */
2282 delta = calc_load_fold_idle();
2283 if (delta)
2284 atomic_long_add(delta, &calc_load_tasks);
2285
2286 /*
2287 * If we were idle for multiple load cycles, apply them.
2288 */
2289 if (ticks >= LOAD_FREQ) {
2290 n = ticks / LOAD_FREQ;
2291
2292 active = atomic_long_read(&calc_load_tasks);
2293 active = active > 0 ? active * FIXED_1 : 0;
2294
2295 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2296 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2297 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2298
2299 calc_load_update += n * LOAD_FREQ;
2300 }
2301
2302 /*
2303 * Its possible the remainder of the above division also crosses
2304 * a LOAD_FREQ period, the regular check in calc_global_load()
2305 * which comes after this will take care of that.
2306 *
2307 * Consider us being 11 ticks before a cycle completion, and us
2308 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2309 * age us 4 cycles, and the test in calc_global_load() will
2310 * pick up the final one.
2311 */
2312}
74f5187a 2313#else
029632fb 2314void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2315{
2316}
2317
2318static inline long calc_load_fold_idle(void)
2319{
2320 return 0;
2321}
0f004f5a
PZ
2322
2323static void calc_global_nohz(unsigned long ticks)
2324{
2325}
74f5187a
PZ
2326#endif
2327
2d02494f
TG
2328/**
2329 * get_avenrun - get the load average array
2330 * @loads: pointer to dest load array
2331 * @offset: offset to add
2332 * @shift: shift count to shift the result left
2333 *
2334 * These values are estimates at best, so no need for locking.
2335 */
2336void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2337{
2338 loads[0] = (avenrun[0] + offset) << shift;
2339 loads[1] = (avenrun[1] + offset) << shift;
2340 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2341}
46cb4b7c 2342
46cb4b7c 2343/*
dce48a84
TG
2344 * calc_load - update the avenrun load estimates 10 ticks after the
2345 * CPUs have updated calc_load_tasks.
7835b98b 2346 */
0f004f5a 2347void calc_global_load(unsigned long ticks)
7835b98b 2348{
dce48a84 2349 long active;
1da177e4 2350
0f004f5a
PZ
2351 calc_global_nohz(ticks);
2352
2353 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2354 return;
1da177e4 2355
dce48a84
TG
2356 active = atomic_long_read(&calc_load_tasks);
2357 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2358
dce48a84
TG
2359 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2360 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2361 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2362
dce48a84
TG
2363 calc_load_update += LOAD_FREQ;
2364}
1da177e4 2365
dce48a84 2366/*
74f5187a
PZ
2367 * Called from update_cpu_load() to periodically update this CPU's
2368 * active count.
dce48a84
TG
2369 */
2370static void calc_load_account_active(struct rq *this_rq)
2371{
74f5187a 2372 long delta;
08c183f3 2373
74f5187a
PZ
2374 if (time_before(jiffies, this_rq->calc_load_update))
2375 return;
783609c6 2376
74f5187a
PZ
2377 delta = calc_load_fold_active(this_rq);
2378 delta += calc_load_fold_idle();
2379 if (delta)
dce48a84 2380 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2381
2382 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2383}
2384
fdf3e95d
VP
2385/*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412#define DEGRADE_SHIFT 7
2413static const unsigned char
2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415static const unsigned char
2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417 {0, 0, 0, 0, 0, 0, 0, 0},
2418 {64, 32, 8, 0, 0, 0, 0, 0},
2419 {96, 72, 40, 12, 1, 0, 0},
2420 {112, 98, 75, 43, 15, 1, 0},
2421 {120, 112, 98, 76, 45, 16, 2} };
2422
2423/*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428static unsigned long
2429decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430{
2431 int j = 0;
2432
2433 if (!missed_updates)
2434 return load;
2435
2436 if (missed_updates >= degrade_zero_ticks[idx])
2437 return 0;
2438
2439 if (idx == 1)
2440 return load >> missed_updates;
2441
2442 while (missed_updates) {
2443 if (missed_updates % 2)
2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446 missed_updates >>= 1;
2447 j++;
2448 }
2449 return load;
2450}
2451
46cb4b7c 2452/*
dd41f596 2453 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
46cb4b7c 2456 */
029632fb 2457void update_cpu_load(struct rq *this_rq)
46cb4b7c 2458{
495eca49 2459 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2460 unsigned long curr_jiffies = jiffies;
2461 unsigned long pending_updates;
dd41f596 2462 int i, scale;
46cb4b7c 2463
dd41f596 2464 this_rq->nr_load_updates++;
46cb4b7c 2465
fdf3e95d
VP
2466 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2467 if (curr_jiffies == this_rq->last_load_update_tick)
2468 return;
2469
2470 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2471 this_rq->last_load_update_tick = curr_jiffies;
2472
dd41f596 2473 /* Update our load: */
fdf3e95d
VP
2474 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2475 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2476 unsigned long old_load, new_load;
7d1e6a9b 2477
dd41f596 2478 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2479
dd41f596 2480 old_load = this_rq->cpu_load[i];
fdf3e95d 2481 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2482 new_load = this_load;
a25707f3
IM
2483 /*
2484 * Round up the averaging division if load is increasing. This
2485 * prevents us from getting stuck on 9 if the load is 10, for
2486 * example.
2487 */
2488 if (new_load > old_load)
fdf3e95d
VP
2489 new_load += scale - 1;
2490
2491 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2492 }
da2b71ed
SS
2493
2494 sched_avg_update(this_rq);
fdf3e95d
VP
2495}
2496
2497static void update_cpu_load_active(struct rq *this_rq)
2498{
2499 update_cpu_load(this_rq);
46cb4b7c 2500
74f5187a 2501 calc_load_account_active(this_rq);
46cb4b7c
SS
2502}
2503
dd41f596 2504#ifdef CONFIG_SMP
8a0be9ef 2505
46cb4b7c 2506/*
38022906
PZ
2507 * sched_exec - execve() is a valuable balancing opportunity, because at
2508 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2509 */
38022906 2510void sched_exec(void)
46cb4b7c 2511{
38022906 2512 struct task_struct *p = current;
1da177e4 2513 unsigned long flags;
0017d735 2514 int dest_cpu;
46cb4b7c 2515
8f42ced9 2516 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2517 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2518 if (dest_cpu == smp_processor_id())
2519 goto unlock;
38022906 2520
8f42ced9 2521 if (likely(cpu_active(dest_cpu))) {
969c7921 2522 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2523
8f42ced9
PZ
2524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2525 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2526 return;
2527 }
0017d735 2528unlock:
8f42ced9 2529 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2530}
dd41f596 2531
1da177e4
LT
2532#endif
2533
1da177e4 2534DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2535DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2536
2537EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2538EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2539
2540/*
c5f8d995 2541 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2542 * @p in case that task is currently running.
c5f8d995
HS
2543 *
2544 * Called with task_rq_lock() held on @rq.
1da177e4 2545 */
c5f8d995
HS
2546static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2547{
2548 u64 ns = 0;
2549
2550 if (task_current(rq, p)) {
2551 update_rq_clock(rq);
305e6835 2552 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2553 if ((s64)ns < 0)
2554 ns = 0;
2555 }
2556
2557 return ns;
2558}
2559
bb34d92f 2560unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2561{
1da177e4 2562 unsigned long flags;
41b86e9c 2563 struct rq *rq;
bb34d92f 2564 u64 ns = 0;
48f24c4d 2565
41b86e9c 2566 rq = task_rq_lock(p, &flags);
c5f8d995 2567 ns = do_task_delta_exec(p, rq);
0122ec5b 2568 task_rq_unlock(rq, p, &flags);
1508487e 2569
c5f8d995
HS
2570 return ns;
2571}
f06febc9 2572
c5f8d995
HS
2573/*
2574 * Return accounted runtime for the task.
2575 * In case the task is currently running, return the runtime plus current's
2576 * pending runtime that have not been accounted yet.
2577 */
2578unsigned long long task_sched_runtime(struct task_struct *p)
2579{
2580 unsigned long flags;
2581 struct rq *rq;
2582 u64 ns = 0;
2583
2584 rq = task_rq_lock(p, &flags);
2585 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2586 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2587
2588 return ns;
2589}
48f24c4d 2590
54c707e9
GC
2591#ifdef CONFIG_CGROUP_CPUACCT
2592struct cgroup_subsys cpuacct_subsys;
2593struct cpuacct root_cpuacct;
2594#endif
2595
be726ffd
GC
2596static inline void task_group_account_field(struct task_struct *p, int index,
2597 u64 tmp)
54c707e9
GC
2598{
2599#ifdef CONFIG_CGROUP_CPUACCT
2600 struct kernel_cpustat *kcpustat;
2601 struct cpuacct *ca;
2602#endif
2603 /*
2604 * Since all updates are sure to touch the root cgroup, we
2605 * get ourselves ahead and touch it first. If the root cgroup
2606 * is the only cgroup, then nothing else should be necessary.
2607 *
2608 */
2609 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2610
2611#ifdef CONFIG_CGROUP_CPUACCT
2612 if (unlikely(!cpuacct_subsys.active))
2613 return;
2614
2615 rcu_read_lock();
2616 ca = task_ca(p);
2617 while (ca && (ca != &root_cpuacct)) {
2618 kcpustat = this_cpu_ptr(ca->cpustat);
2619 kcpustat->cpustat[index] += tmp;
2620 ca = parent_ca(ca);
2621 }
2622 rcu_read_unlock();
2623#endif
2624}
2625
2626
1da177e4
LT
2627/*
2628 * Account user cpu time to a process.
2629 * @p: the process that the cpu time gets accounted to
1da177e4 2630 * @cputime: the cpu time spent in user space since the last update
457533a7 2631 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2632 */
457533a7
MS
2633void account_user_time(struct task_struct *p, cputime_t cputime,
2634 cputime_t cputime_scaled)
1da177e4 2635{
3292beb3 2636 int index;
1da177e4 2637
457533a7 2638 /* Add user time to process. */
64861634
MS
2639 p->utime += cputime;
2640 p->utimescaled += cputime_scaled;
f06febc9 2641 account_group_user_time(p, cputime);
1da177e4 2642
3292beb3 2643 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2644
1da177e4 2645 /* Add user time to cpustat. */
612ef28a 2646 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2647
49b5cf34
JL
2648 /* Account for user time used */
2649 acct_update_integrals(p);
1da177e4
LT
2650}
2651
94886b84
LV
2652/*
2653 * Account guest cpu time to a process.
2654 * @p: the process that the cpu time gets accounted to
2655 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2656 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2657 */
457533a7
MS
2658static void account_guest_time(struct task_struct *p, cputime_t cputime,
2659 cputime_t cputime_scaled)
94886b84 2660{
3292beb3 2661 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2662
457533a7 2663 /* Add guest time to process. */
64861634
MS
2664 p->utime += cputime;
2665 p->utimescaled += cputime_scaled;
f06febc9 2666 account_group_user_time(p, cputime);
64861634 2667 p->gtime += cputime;
94886b84 2668
457533a7 2669 /* Add guest time to cpustat. */
ce0e7b28 2670 if (TASK_NICE(p) > 0) {
612ef28a
MS
2671 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2672 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2673 } else {
612ef28a
MS
2674 cpustat[CPUTIME_USER] += (__force u64) cputime;
2675 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2676 }
94886b84
LV
2677}
2678
70a89a66
VP
2679/*
2680 * Account system cpu time to a process and desired cpustat field
2681 * @p: the process that the cpu time gets accounted to
2682 * @cputime: the cpu time spent in kernel space since the last update
2683 * @cputime_scaled: cputime scaled by cpu frequency
2684 * @target_cputime64: pointer to cpustat field that has to be updated
2685 */
2686static inline
2687void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2688 cputime_t cputime_scaled, int index)
70a89a66 2689{
70a89a66 2690 /* Add system time to process. */
64861634
MS
2691 p->stime += cputime;
2692 p->stimescaled += cputime_scaled;
70a89a66
VP
2693 account_group_system_time(p, cputime);
2694
2695 /* Add system time to cpustat. */
612ef28a 2696 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2697
2698 /* Account for system time used */
2699 acct_update_integrals(p);
2700}
2701
1da177e4
LT
2702/*
2703 * Account system cpu time to a process.
2704 * @p: the process that the cpu time gets accounted to
2705 * @hardirq_offset: the offset to subtract from hardirq_count()
2706 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2707 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2708 */
2709void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2710 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2711{
3292beb3 2712 int index;
1da177e4 2713
983ed7a6 2714 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2715 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2716 return;
2717 }
94886b84 2718
1da177e4 2719 if (hardirq_count() - hardirq_offset)
3292beb3 2720 index = CPUTIME_IRQ;
75e1056f 2721 else if (in_serving_softirq())
3292beb3 2722 index = CPUTIME_SOFTIRQ;
1da177e4 2723 else
3292beb3 2724 index = CPUTIME_SYSTEM;
ef12fefa 2725
3292beb3 2726 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2727}
2728
c66f08be 2729/*
1da177e4 2730 * Account for involuntary wait time.
544b4a1f 2731 * @cputime: the cpu time spent in involuntary wait
c66f08be 2732 */
79741dd3 2733void account_steal_time(cputime_t cputime)
c66f08be 2734{
3292beb3 2735 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2736
612ef28a 2737 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2738}
2739
1da177e4 2740/*
79741dd3
MS
2741 * Account for idle time.
2742 * @cputime: the cpu time spent in idle wait
1da177e4 2743 */
79741dd3 2744void account_idle_time(cputime_t cputime)
1da177e4 2745{
3292beb3 2746 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2747 struct rq *rq = this_rq();
1da177e4 2748
79741dd3 2749 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2750 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2751 else
612ef28a 2752 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2753}
2754
e6e6685a
GC
2755static __always_inline bool steal_account_process_tick(void)
2756{
2757#ifdef CONFIG_PARAVIRT
2758 if (static_branch(&paravirt_steal_enabled)) {
2759 u64 steal, st = 0;
2760
2761 steal = paravirt_steal_clock(smp_processor_id());
2762 steal -= this_rq()->prev_steal_time;
2763
2764 st = steal_ticks(steal);
2765 this_rq()->prev_steal_time += st * TICK_NSEC;
2766
2767 account_steal_time(st);
2768 return st;
2769 }
2770#endif
2771 return false;
2772}
2773
79741dd3
MS
2774#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775
abb74cef
VP
2776#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777/*
2778 * Account a tick to a process and cpustat
2779 * @p: the process that the cpu time gets accounted to
2780 * @user_tick: is the tick from userspace
2781 * @rq: the pointer to rq
2782 *
2783 * Tick demultiplexing follows the order
2784 * - pending hardirq update
2785 * - pending softirq update
2786 * - user_time
2787 * - idle_time
2788 * - system time
2789 * - check for guest_time
2790 * - else account as system_time
2791 *
2792 * Check for hardirq is done both for system and user time as there is
2793 * no timer going off while we are on hardirq and hence we may never get an
2794 * opportunity to update it solely in system time.
2795 * p->stime and friends are only updated on system time and not on irq
2796 * softirq as those do not count in task exec_runtime any more.
2797 */
2798static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2799 struct rq *rq)
2800{
2801 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2802 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2803
e6e6685a
GC
2804 if (steal_account_process_tick())
2805 return;
2806
abb74cef 2807 if (irqtime_account_hi_update()) {
612ef28a 2808 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2809 } else if (irqtime_account_si_update()) {
612ef28a 2810 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2811 } else if (this_cpu_ksoftirqd() == p) {
2812 /*
2813 * ksoftirqd time do not get accounted in cpu_softirq_time.
2814 * So, we have to handle it separately here.
2815 * Also, p->stime needs to be updated for ksoftirqd.
2816 */
2817 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2818 CPUTIME_SOFTIRQ);
abb74cef
VP
2819 } else if (user_tick) {
2820 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2821 } else if (p == rq->idle) {
2822 account_idle_time(cputime_one_jiffy);
2823 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2824 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2825 } else {
2826 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2827 CPUTIME_SYSTEM);
abb74cef
VP
2828 }
2829}
2830
2831static void irqtime_account_idle_ticks(int ticks)
2832{
2833 int i;
2834 struct rq *rq = this_rq();
2835
2836 for (i = 0; i < ticks; i++)
2837 irqtime_account_process_tick(current, 0, rq);
2838}
544b4a1f 2839#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2840static void irqtime_account_idle_ticks(int ticks) {}
2841static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2842 struct rq *rq) {}
544b4a1f 2843#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2844
2845/*
2846 * Account a single tick of cpu time.
2847 * @p: the process that the cpu time gets accounted to
2848 * @user_tick: indicates if the tick is a user or a system tick
2849 */
2850void account_process_tick(struct task_struct *p, int user_tick)
2851{
a42548a1 2852 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2853 struct rq *rq = this_rq();
2854
abb74cef
VP
2855 if (sched_clock_irqtime) {
2856 irqtime_account_process_tick(p, user_tick, rq);
2857 return;
2858 }
2859
e6e6685a
GC
2860 if (steal_account_process_tick())
2861 return;
2862
79741dd3 2863 if (user_tick)
a42548a1 2864 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2865 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2866 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2867 one_jiffy_scaled);
2868 else
a42548a1 2869 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2870}
2871
2872/*
2873 * Account multiple ticks of steal time.
2874 * @p: the process from which the cpu time has been stolen
2875 * @ticks: number of stolen ticks
2876 */
2877void account_steal_ticks(unsigned long ticks)
2878{
2879 account_steal_time(jiffies_to_cputime(ticks));
2880}
2881
2882/*
2883 * Account multiple ticks of idle time.
2884 * @ticks: number of stolen ticks
2885 */
2886void account_idle_ticks(unsigned long ticks)
2887{
abb74cef
VP
2888
2889 if (sched_clock_irqtime) {
2890 irqtime_account_idle_ticks(ticks);
2891 return;
2892 }
2893
79741dd3 2894 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2895}
2896
79741dd3
MS
2897#endif
2898
49048622
BS
2899/*
2900 * Use precise platform statistics if available:
2901 */
2902#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2903void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2904{
d99ca3b9
HS
2905 *ut = p->utime;
2906 *st = p->stime;
49048622
BS
2907}
2908
0cf55e1e 2909void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2910{
0cf55e1e
HS
2911 struct task_cputime cputime;
2912
2913 thread_group_cputime(p, &cputime);
2914
2915 *ut = cputime.utime;
2916 *st = cputime.stime;
49048622
BS
2917}
2918#else
761b1d26
HS
2919
2920#ifndef nsecs_to_cputime
b7b20df9 2921# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2922#endif
2923
d180c5bc 2924void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2925{
64861634 2926 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2927
2928 /*
2929 * Use CFS's precise accounting:
2930 */
d180c5bc 2931 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2932
2933 if (total) {
64861634 2934 u64 temp = (__force u64) rtime;
d180c5bc 2935
64861634
MS
2936 temp *= (__force u64) utime;
2937 do_div(temp, (__force u32) total);
2938 utime = (__force cputime_t) temp;
d180c5bc
HS
2939 } else
2940 utime = rtime;
49048622 2941
d180c5bc
HS
2942 /*
2943 * Compare with previous values, to keep monotonicity:
2944 */
761b1d26 2945 p->prev_utime = max(p->prev_utime, utime);
64861634 2946 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2947
d99ca3b9
HS
2948 *ut = p->prev_utime;
2949 *st = p->prev_stime;
49048622
BS
2950}
2951
0cf55e1e
HS
2952/*
2953 * Must be called with siglock held.
2954 */
2955void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2956{
0cf55e1e
HS
2957 struct signal_struct *sig = p->signal;
2958 struct task_cputime cputime;
2959 cputime_t rtime, utime, total;
49048622 2960
0cf55e1e 2961 thread_group_cputime(p, &cputime);
49048622 2962
64861634 2963 total = cputime.utime + cputime.stime;
0cf55e1e 2964 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2965
0cf55e1e 2966 if (total) {
64861634 2967 u64 temp = (__force u64) rtime;
49048622 2968
64861634
MS
2969 temp *= (__force u64) cputime.utime;
2970 do_div(temp, (__force u32) total);
2971 utime = (__force cputime_t) temp;
0cf55e1e
HS
2972 } else
2973 utime = rtime;
2974
2975 sig->prev_utime = max(sig->prev_utime, utime);
64861634 2976 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
2977
2978 *ut = sig->prev_utime;
2979 *st = sig->prev_stime;
49048622 2980}
49048622 2981#endif
49048622 2982
7835b98b
CL
2983/*
2984 * This function gets called by the timer code, with HZ frequency.
2985 * We call it with interrupts disabled.
7835b98b
CL
2986 */
2987void scheduler_tick(void)
2988{
7835b98b
CL
2989 int cpu = smp_processor_id();
2990 struct rq *rq = cpu_rq(cpu);
dd41f596 2991 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2992
2993 sched_clock_tick();
dd41f596 2994
05fa785c 2995 raw_spin_lock(&rq->lock);
3e51f33f 2996 update_rq_clock(rq);
fdf3e95d 2997 update_cpu_load_active(rq);
fa85ae24 2998 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2999 raw_spin_unlock(&rq->lock);
7835b98b 3000
e9d2b064 3001 perf_event_task_tick();
e220d2dc 3002
e418e1c2 3003#ifdef CONFIG_SMP
6eb57e0d 3004 rq->idle_balance = idle_cpu(cpu);
dd41f596 3005 trigger_load_balance(rq, cpu);
e418e1c2 3006#endif
1da177e4
LT
3007}
3008
132380a0 3009notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3010{
3011 if (in_lock_functions(addr)) {
3012 addr = CALLER_ADDR2;
3013 if (in_lock_functions(addr))
3014 addr = CALLER_ADDR3;
3015 }
3016 return addr;
3017}
1da177e4 3018
7e49fcce
SR
3019#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3020 defined(CONFIG_PREEMPT_TRACER))
3021
43627582 3022void __kprobes add_preempt_count(int val)
1da177e4 3023{
6cd8a4bb 3024#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3025 /*
3026 * Underflow?
3027 */
9a11b49a
IM
3028 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3029 return;
6cd8a4bb 3030#endif
1da177e4 3031 preempt_count() += val;
6cd8a4bb 3032#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3033 /*
3034 * Spinlock count overflowing soon?
3035 */
33859f7f
MOS
3036 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3037 PREEMPT_MASK - 10);
6cd8a4bb
SR
3038#endif
3039 if (preempt_count() == val)
3040 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3041}
3042EXPORT_SYMBOL(add_preempt_count);
3043
43627582 3044void __kprobes sub_preempt_count(int val)
1da177e4 3045{
6cd8a4bb 3046#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3047 /*
3048 * Underflow?
3049 */
01e3eb82 3050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3051 return;
1da177e4
LT
3052 /*
3053 * Is the spinlock portion underflowing?
3054 */
9a11b49a
IM
3055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3056 !(preempt_count() & PREEMPT_MASK)))
3057 return;
6cd8a4bb 3058#endif
9a11b49a 3059
6cd8a4bb
SR
3060 if (preempt_count() == val)
3061 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3062 preempt_count() -= val;
3063}
3064EXPORT_SYMBOL(sub_preempt_count);
3065
3066#endif
3067
3068/*
dd41f596 3069 * Print scheduling while atomic bug:
1da177e4 3070 */
dd41f596 3071static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3072{
838225b4
SS
3073 struct pt_regs *regs = get_irq_regs();
3074
664dfa65
DJ
3075 if (oops_in_progress)
3076 return;
3077
3df0fc5b
PZ
3078 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3079 prev->comm, prev->pid, preempt_count());
838225b4 3080
dd41f596 3081 debug_show_held_locks(prev);
e21f5b15 3082 print_modules();
dd41f596
IM
3083 if (irqs_disabled())
3084 print_irqtrace_events(prev);
838225b4
SS
3085
3086 if (regs)
3087 show_regs(regs);
3088 else
3089 dump_stack();
dd41f596 3090}
1da177e4 3091
dd41f596
IM
3092/*
3093 * Various schedule()-time debugging checks and statistics:
3094 */
3095static inline void schedule_debug(struct task_struct *prev)
3096{
1da177e4 3097 /*
41a2d6cf 3098 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3099 * schedule() atomically, we ignore that path for now.
3100 * Otherwise, whine if we are scheduling when we should not be.
3101 */
3f33a7ce 3102 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3103 __schedule_bug(prev);
b3fbab05 3104 rcu_sleep_check();
dd41f596 3105
1da177e4
LT
3106 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3107
2d72376b 3108 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3109}
3110
6cecd084 3111static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3112{
61eadef6 3113 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3114 update_rq_clock(rq);
6cecd084 3115 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3116}
3117
dd41f596
IM
3118/*
3119 * Pick up the highest-prio task:
3120 */
3121static inline struct task_struct *
b67802ea 3122pick_next_task(struct rq *rq)
dd41f596 3123{
5522d5d5 3124 const struct sched_class *class;
dd41f596 3125 struct task_struct *p;
1da177e4
LT
3126
3127 /*
dd41f596
IM
3128 * Optimization: we know that if all tasks are in
3129 * the fair class we can call that function directly:
1da177e4 3130 */
953bfcd1 3131 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3132 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3133 if (likely(p))
3134 return p;
1da177e4
LT
3135 }
3136
34f971f6 3137 for_each_class(class) {
fb8d4724 3138 p = class->pick_next_task(rq);
dd41f596
IM
3139 if (p)
3140 return p;
dd41f596 3141 }
34f971f6
PZ
3142
3143 BUG(); /* the idle class will always have a runnable task */
dd41f596 3144}
1da177e4 3145
dd41f596 3146/*
c259e01a 3147 * __schedule() is the main scheduler function.
dd41f596 3148 */
c259e01a 3149static void __sched __schedule(void)
dd41f596
IM
3150{
3151 struct task_struct *prev, *next;
67ca7bde 3152 unsigned long *switch_count;
dd41f596 3153 struct rq *rq;
31656519 3154 int cpu;
dd41f596 3155
ff743345
PZ
3156need_resched:
3157 preempt_disable();
dd41f596
IM
3158 cpu = smp_processor_id();
3159 rq = cpu_rq(cpu);
25502a6c 3160 rcu_note_context_switch(cpu);
dd41f596 3161 prev = rq->curr;
dd41f596 3162
dd41f596 3163 schedule_debug(prev);
1da177e4 3164
31656519 3165 if (sched_feat(HRTICK))
f333fdc9 3166 hrtick_clear(rq);
8f4d37ec 3167
05fa785c 3168 raw_spin_lock_irq(&rq->lock);
1da177e4 3169
246d86b5 3170 switch_count = &prev->nivcsw;
1da177e4 3171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3172 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3173 prev->state = TASK_RUNNING;
21aa9af0 3174 } else {
2acca55e
PZ
3175 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3176 prev->on_rq = 0;
3177
21aa9af0 3178 /*
2acca55e
PZ
3179 * If a worker went to sleep, notify and ask workqueue
3180 * whether it wants to wake up a task to maintain
3181 * concurrency.
21aa9af0
TH
3182 */
3183 if (prev->flags & PF_WQ_WORKER) {
3184 struct task_struct *to_wakeup;
3185
3186 to_wakeup = wq_worker_sleeping(prev, cpu);
3187 if (to_wakeup)
3188 try_to_wake_up_local(to_wakeup);
3189 }
21aa9af0 3190 }
dd41f596 3191 switch_count = &prev->nvcsw;
1da177e4
LT
3192 }
3193
3f029d3c 3194 pre_schedule(rq, prev);
f65eda4f 3195
dd41f596 3196 if (unlikely(!rq->nr_running))
1da177e4 3197 idle_balance(cpu, rq);
1da177e4 3198
df1c99d4 3199 put_prev_task(rq, prev);
b67802ea 3200 next = pick_next_task(rq);
f26f9aff
MG
3201 clear_tsk_need_resched(prev);
3202 rq->skip_clock_update = 0;
1da177e4 3203
1da177e4 3204 if (likely(prev != next)) {
1da177e4
LT
3205 rq->nr_switches++;
3206 rq->curr = next;
3207 ++*switch_count;
3208
dd41f596 3209 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3210 /*
246d86b5
ON
3211 * The context switch have flipped the stack from under us
3212 * and restored the local variables which were saved when
3213 * this task called schedule() in the past. prev == current
3214 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3215 */
3216 cpu = smp_processor_id();
3217 rq = cpu_rq(cpu);
1da177e4 3218 } else
05fa785c 3219 raw_spin_unlock_irq(&rq->lock);
1da177e4 3220
3f029d3c 3221 post_schedule(rq);
1da177e4 3222
ba74c144 3223 sched_preempt_enable_no_resched();
ff743345 3224 if (need_resched())
1da177e4
LT
3225 goto need_resched;
3226}
c259e01a 3227
9c40cef2
TG
3228static inline void sched_submit_work(struct task_struct *tsk)
3229{
3230 if (!tsk->state)
3231 return;
3232 /*
3233 * If we are going to sleep and we have plugged IO queued,
3234 * make sure to submit it to avoid deadlocks.
3235 */
3236 if (blk_needs_flush_plug(tsk))
3237 blk_schedule_flush_plug(tsk);
3238}
3239
6ebbe7a0 3240asmlinkage void __sched schedule(void)
c259e01a 3241{
9c40cef2
TG
3242 struct task_struct *tsk = current;
3243
3244 sched_submit_work(tsk);
c259e01a
TG
3245 __schedule();
3246}
1da177e4
LT
3247EXPORT_SYMBOL(schedule);
3248
c5491ea7
TG
3249/**
3250 * schedule_preempt_disabled - called with preemption disabled
3251 *
3252 * Returns with preemption disabled. Note: preempt_count must be 1
3253 */
3254void __sched schedule_preempt_disabled(void)
3255{
ba74c144 3256 sched_preempt_enable_no_resched();
c5491ea7
TG
3257 schedule();
3258 preempt_disable();
3259}
3260
c08f7829 3261#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3262
c6eb3dda
PZ
3263static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3264{
c6eb3dda 3265 if (lock->owner != owner)
307bf980 3266 return false;
0d66bf6d
PZ
3267
3268 /*
c6eb3dda
PZ
3269 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3270 * lock->owner still matches owner, if that fails, owner might
3271 * point to free()d memory, if it still matches, the rcu_read_lock()
3272 * ensures the memory stays valid.
0d66bf6d 3273 */
c6eb3dda 3274 barrier();
0d66bf6d 3275
307bf980 3276 return owner->on_cpu;
c6eb3dda 3277}
0d66bf6d 3278
c6eb3dda
PZ
3279/*
3280 * Look out! "owner" is an entirely speculative pointer
3281 * access and not reliable.
3282 */
3283int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3284{
3285 if (!sched_feat(OWNER_SPIN))
3286 return 0;
0d66bf6d 3287
307bf980 3288 rcu_read_lock();
c6eb3dda
PZ
3289 while (owner_running(lock, owner)) {
3290 if (need_resched())
307bf980 3291 break;
0d66bf6d 3292
335d7afb 3293 arch_mutex_cpu_relax();
0d66bf6d 3294 }
307bf980 3295 rcu_read_unlock();
4b402210 3296
c6eb3dda 3297 /*
307bf980
TG
3298 * We break out the loop above on need_resched() and when the
3299 * owner changed, which is a sign for heavy contention. Return
3300 * success only when lock->owner is NULL.
c6eb3dda 3301 */
307bf980 3302 return lock->owner == NULL;
0d66bf6d
PZ
3303}
3304#endif
3305
1da177e4
LT
3306#ifdef CONFIG_PREEMPT
3307/*
2ed6e34f 3308 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3309 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3310 * occur there and call schedule directly.
3311 */
d1f74e20 3312asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3313{
3314 struct thread_info *ti = current_thread_info();
6478d880 3315
1da177e4
LT
3316 /*
3317 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3318 * we do not want to preempt the current task. Just return..
1da177e4 3319 */
beed33a8 3320 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3321 return;
3322
3a5c359a 3323 do {
d1f74e20 3324 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3325 __schedule();
d1f74e20 3326 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3327
3a5c359a
AK
3328 /*
3329 * Check again in case we missed a preemption opportunity
3330 * between schedule and now.
3331 */
3332 barrier();
5ed0cec0 3333 } while (need_resched());
1da177e4 3334}
1da177e4
LT
3335EXPORT_SYMBOL(preempt_schedule);
3336
3337/*
2ed6e34f 3338 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3339 * off of irq context.
3340 * Note, that this is called and return with irqs disabled. This will
3341 * protect us against recursive calling from irq.
3342 */
3343asmlinkage void __sched preempt_schedule_irq(void)
3344{
3345 struct thread_info *ti = current_thread_info();
6478d880 3346
2ed6e34f 3347 /* Catch callers which need to be fixed */
1da177e4
LT
3348 BUG_ON(ti->preempt_count || !irqs_disabled());
3349
3a5c359a
AK
3350 do {
3351 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3352 local_irq_enable();
c259e01a 3353 __schedule();
3a5c359a 3354 local_irq_disable();
3a5c359a 3355 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3356
3a5c359a
AK
3357 /*
3358 * Check again in case we missed a preemption opportunity
3359 * between schedule and now.
3360 */
3361 barrier();
5ed0cec0 3362 } while (need_resched());
1da177e4
LT
3363}
3364
3365#endif /* CONFIG_PREEMPT */
3366
63859d4f 3367int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3368 void *key)
1da177e4 3369{
63859d4f 3370 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3371}
1da177e4
LT
3372EXPORT_SYMBOL(default_wake_function);
3373
3374/*
41a2d6cf
IM
3375 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3376 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3377 * number) then we wake all the non-exclusive tasks and one exclusive task.
3378 *
3379 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3380 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3381 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3382 */
78ddb08f 3383static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3384 int nr_exclusive, int wake_flags, void *key)
1da177e4 3385{
2e45874c 3386 wait_queue_t *curr, *next;
1da177e4 3387
2e45874c 3388 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3389 unsigned flags = curr->flags;
3390
63859d4f 3391 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3392 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3393 break;
3394 }
3395}
3396
3397/**
3398 * __wake_up - wake up threads blocked on a waitqueue.
3399 * @q: the waitqueue
3400 * @mode: which threads
3401 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3402 * @key: is directly passed to the wakeup function
50fa610a
DH
3403 *
3404 * It may be assumed that this function implies a write memory barrier before
3405 * changing the task state if and only if any tasks are woken up.
1da177e4 3406 */
7ad5b3a5 3407void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3408 int nr_exclusive, void *key)
1da177e4
LT
3409{
3410 unsigned long flags;
3411
3412 spin_lock_irqsave(&q->lock, flags);
3413 __wake_up_common(q, mode, nr_exclusive, 0, key);
3414 spin_unlock_irqrestore(&q->lock, flags);
3415}
1da177e4
LT
3416EXPORT_SYMBOL(__wake_up);
3417
3418/*
3419 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3420 */
63b20011 3421void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3422{
63b20011 3423 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3424}
22c43c81 3425EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3426
4ede816a
DL
3427void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3428{
3429 __wake_up_common(q, mode, 1, 0, key);
3430}
bf294b41 3431EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3432
1da177e4 3433/**
4ede816a 3434 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3435 * @q: the waitqueue
3436 * @mode: which threads
3437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3438 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3439 *
3440 * The sync wakeup differs that the waker knows that it will schedule
3441 * away soon, so while the target thread will be woken up, it will not
3442 * be migrated to another CPU - ie. the two threads are 'synchronized'
3443 * with each other. This can prevent needless bouncing between CPUs.
3444 *
3445 * On UP it can prevent extra preemption.
50fa610a
DH
3446 *
3447 * It may be assumed that this function implies a write memory barrier before
3448 * changing the task state if and only if any tasks are woken up.
1da177e4 3449 */
4ede816a
DL
3450void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3451 int nr_exclusive, void *key)
1da177e4
LT
3452{
3453 unsigned long flags;
7d478721 3454 int wake_flags = WF_SYNC;
1da177e4
LT
3455
3456 if (unlikely(!q))
3457 return;
3458
3459 if (unlikely(!nr_exclusive))
7d478721 3460 wake_flags = 0;
1da177e4
LT
3461
3462 spin_lock_irqsave(&q->lock, flags);
7d478721 3463 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3464 spin_unlock_irqrestore(&q->lock, flags);
3465}
4ede816a
DL
3466EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3467
3468/*
3469 * __wake_up_sync - see __wake_up_sync_key()
3470 */
3471void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3472{
3473 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3474}
1da177e4
LT
3475EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3476
65eb3dc6
KD
3477/**
3478 * complete: - signals a single thread waiting on this completion
3479 * @x: holds the state of this particular completion
3480 *
3481 * This will wake up a single thread waiting on this completion. Threads will be
3482 * awakened in the same order in which they were queued.
3483 *
3484 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3485 *
3486 * It may be assumed that this function implies a write memory barrier before
3487 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3488 */
b15136e9 3489void complete(struct completion *x)
1da177e4
LT
3490{
3491 unsigned long flags;
3492
3493 spin_lock_irqsave(&x->wait.lock, flags);
3494 x->done++;
d9514f6c 3495 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3496 spin_unlock_irqrestore(&x->wait.lock, flags);
3497}
3498EXPORT_SYMBOL(complete);
3499
65eb3dc6
KD
3500/**
3501 * complete_all: - signals all threads waiting on this completion
3502 * @x: holds the state of this particular completion
3503 *
3504 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3505 *
3506 * It may be assumed that this function implies a write memory barrier before
3507 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3508 */
b15136e9 3509void complete_all(struct completion *x)
1da177e4
LT
3510{
3511 unsigned long flags;
3512
3513 spin_lock_irqsave(&x->wait.lock, flags);
3514 x->done += UINT_MAX/2;
d9514f6c 3515 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3516 spin_unlock_irqrestore(&x->wait.lock, flags);
3517}
3518EXPORT_SYMBOL(complete_all);
3519
8cbbe86d
AK
3520static inline long __sched
3521do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3522{
1da177e4
LT
3523 if (!x->done) {
3524 DECLARE_WAITQUEUE(wait, current);
3525
a93d2f17 3526 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3527 do {
94d3d824 3528 if (signal_pending_state(state, current)) {
ea71a546
ON
3529 timeout = -ERESTARTSYS;
3530 break;
8cbbe86d
AK
3531 }
3532 __set_current_state(state);
1da177e4
LT
3533 spin_unlock_irq(&x->wait.lock);
3534 timeout = schedule_timeout(timeout);
3535 spin_lock_irq(&x->wait.lock);
ea71a546 3536 } while (!x->done && timeout);
1da177e4 3537 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3538 if (!x->done)
3539 return timeout;
1da177e4
LT
3540 }
3541 x->done--;
ea71a546 3542 return timeout ?: 1;
1da177e4 3543}
1da177e4 3544
8cbbe86d
AK
3545static long __sched
3546wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3547{
1da177e4
LT
3548 might_sleep();
3549
3550 spin_lock_irq(&x->wait.lock);
8cbbe86d 3551 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3552 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3553 return timeout;
3554}
1da177e4 3555
65eb3dc6
KD
3556/**
3557 * wait_for_completion: - waits for completion of a task
3558 * @x: holds the state of this particular completion
3559 *
3560 * This waits to be signaled for completion of a specific task. It is NOT
3561 * interruptible and there is no timeout.
3562 *
3563 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3564 * and interrupt capability. Also see complete().
3565 */
b15136e9 3566void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3567{
3568 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3569}
8cbbe86d 3570EXPORT_SYMBOL(wait_for_completion);
1da177e4 3571
65eb3dc6
KD
3572/**
3573 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3574 * @x: holds the state of this particular completion
3575 * @timeout: timeout value in jiffies
3576 *
3577 * This waits for either a completion of a specific task to be signaled or for a
3578 * specified timeout to expire. The timeout is in jiffies. It is not
3579 * interruptible.
c6dc7f05
BF
3580 *
3581 * The return value is 0 if timed out, and positive (at least 1, or number of
3582 * jiffies left till timeout) if completed.
65eb3dc6 3583 */
b15136e9 3584unsigned long __sched
8cbbe86d 3585wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3586{
8cbbe86d 3587 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3588}
8cbbe86d 3589EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3590
65eb3dc6
KD
3591/**
3592 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3593 * @x: holds the state of this particular completion
3594 *
3595 * This waits for completion of a specific task to be signaled. It is
3596 * interruptible.
c6dc7f05
BF
3597 *
3598 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3599 */
8cbbe86d 3600int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3601{
51e97990
AK
3602 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3603 if (t == -ERESTARTSYS)
3604 return t;
3605 return 0;
0fec171c 3606}
8cbbe86d 3607EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3608
65eb3dc6
KD
3609/**
3610 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3611 * @x: holds the state of this particular completion
3612 * @timeout: timeout value in jiffies
3613 *
3614 * This waits for either a completion of a specific task to be signaled or for a
3615 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3616 *
3617 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3618 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3619 */
6bf41237 3620long __sched
8cbbe86d
AK
3621wait_for_completion_interruptible_timeout(struct completion *x,
3622 unsigned long timeout)
0fec171c 3623{
8cbbe86d 3624 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3625}
8cbbe86d 3626EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3627
65eb3dc6
KD
3628/**
3629 * wait_for_completion_killable: - waits for completion of a task (killable)
3630 * @x: holds the state of this particular completion
3631 *
3632 * This waits to be signaled for completion of a specific task. It can be
3633 * interrupted by a kill signal.
c6dc7f05
BF
3634 *
3635 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3636 */
009e577e
MW
3637int __sched wait_for_completion_killable(struct completion *x)
3638{
3639 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3640 if (t == -ERESTARTSYS)
3641 return t;
3642 return 0;
3643}
3644EXPORT_SYMBOL(wait_for_completion_killable);
3645
0aa12fb4
SW
3646/**
3647 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3648 * @x: holds the state of this particular completion
3649 * @timeout: timeout value in jiffies
3650 *
3651 * This waits for either a completion of a specific task to be
3652 * signaled or for a specified timeout to expire. It can be
3653 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3654 *
3655 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3656 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3657 */
6bf41237 3658long __sched
0aa12fb4
SW
3659wait_for_completion_killable_timeout(struct completion *x,
3660 unsigned long timeout)
3661{
3662 return wait_for_common(x, timeout, TASK_KILLABLE);
3663}
3664EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3665
be4de352
DC
3666/**
3667 * try_wait_for_completion - try to decrement a completion without blocking
3668 * @x: completion structure
3669 *
3670 * Returns: 0 if a decrement cannot be done without blocking
3671 * 1 if a decrement succeeded.
3672 *
3673 * If a completion is being used as a counting completion,
3674 * attempt to decrement the counter without blocking. This
3675 * enables us to avoid waiting if the resource the completion
3676 * is protecting is not available.
3677 */
3678bool try_wait_for_completion(struct completion *x)
3679{
7539a3b3 3680 unsigned long flags;
be4de352
DC
3681 int ret = 1;
3682
7539a3b3 3683 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3684 if (!x->done)
3685 ret = 0;
3686 else
3687 x->done--;
7539a3b3 3688 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3689 return ret;
3690}
3691EXPORT_SYMBOL(try_wait_for_completion);
3692
3693/**
3694 * completion_done - Test to see if a completion has any waiters
3695 * @x: completion structure
3696 *
3697 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3698 * 1 if there are no waiters.
3699 *
3700 */
3701bool completion_done(struct completion *x)
3702{
7539a3b3 3703 unsigned long flags;
be4de352
DC
3704 int ret = 1;
3705
7539a3b3 3706 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3707 if (!x->done)
3708 ret = 0;
7539a3b3 3709 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3710 return ret;
3711}
3712EXPORT_SYMBOL(completion_done);
3713
8cbbe86d
AK
3714static long __sched
3715sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3716{
0fec171c
IM
3717 unsigned long flags;
3718 wait_queue_t wait;
3719
3720 init_waitqueue_entry(&wait, current);
1da177e4 3721
8cbbe86d 3722 __set_current_state(state);
1da177e4 3723
8cbbe86d
AK
3724 spin_lock_irqsave(&q->lock, flags);
3725 __add_wait_queue(q, &wait);
3726 spin_unlock(&q->lock);
3727 timeout = schedule_timeout(timeout);
3728 spin_lock_irq(&q->lock);
3729 __remove_wait_queue(q, &wait);
3730 spin_unlock_irqrestore(&q->lock, flags);
3731
3732 return timeout;
3733}
3734
3735void __sched interruptible_sleep_on(wait_queue_head_t *q)
3736{
3737 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3738}
1da177e4
LT
3739EXPORT_SYMBOL(interruptible_sleep_on);
3740
0fec171c 3741long __sched
95cdf3b7 3742interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3743{
8cbbe86d 3744 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3745}
1da177e4
LT
3746EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3747
0fec171c 3748void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3749{
8cbbe86d 3750 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3751}
1da177e4
LT
3752EXPORT_SYMBOL(sleep_on);
3753
0fec171c 3754long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3755{
8cbbe86d 3756 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3757}
1da177e4
LT
3758EXPORT_SYMBOL(sleep_on_timeout);
3759
b29739f9
IM
3760#ifdef CONFIG_RT_MUTEXES
3761
3762/*
3763 * rt_mutex_setprio - set the current priority of a task
3764 * @p: task
3765 * @prio: prio value (kernel-internal form)
3766 *
3767 * This function changes the 'effective' priority of a task. It does
3768 * not touch ->normal_prio like __setscheduler().
3769 *
3770 * Used by the rt_mutex code to implement priority inheritance logic.
3771 */
36c8b586 3772void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3773{
83b699ed 3774 int oldprio, on_rq, running;
70b97a7f 3775 struct rq *rq;
83ab0aa0 3776 const struct sched_class *prev_class;
b29739f9
IM
3777
3778 BUG_ON(prio < 0 || prio > MAX_PRIO);
3779
0122ec5b 3780 rq = __task_rq_lock(p);
b29739f9 3781
1c4dd99b
TG
3782 /*
3783 * Idle task boosting is a nono in general. There is one
3784 * exception, when PREEMPT_RT and NOHZ is active:
3785 *
3786 * The idle task calls get_next_timer_interrupt() and holds
3787 * the timer wheel base->lock on the CPU and another CPU wants
3788 * to access the timer (probably to cancel it). We can safely
3789 * ignore the boosting request, as the idle CPU runs this code
3790 * with interrupts disabled and will complete the lock
3791 * protected section without being interrupted. So there is no
3792 * real need to boost.
3793 */
3794 if (unlikely(p == rq->idle)) {
3795 WARN_ON(p != rq->curr);
3796 WARN_ON(p->pi_blocked_on);
3797 goto out_unlock;
3798 }
3799
a8027073 3800 trace_sched_pi_setprio(p, prio);
d5f9f942 3801 oldprio = p->prio;
83ab0aa0 3802 prev_class = p->sched_class;
fd2f4419 3803 on_rq = p->on_rq;
051a1d1a 3804 running = task_current(rq, p);
0e1f3483 3805 if (on_rq)
69be72c1 3806 dequeue_task(rq, p, 0);
0e1f3483
HS
3807 if (running)
3808 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3809
3810 if (rt_prio(prio))
3811 p->sched_class = &rt_sched_class;
3812 else
3813 p->sched_class = &fair_sched_class;
3814
b29739f9
IM
3815 p->prio = prio;
3816
0e1f3483
HS
3817 if (running)
3818 p->sched_class->set_curr_task(rq);
da7a735e 3819 if (on_rq)
371fd7e7 3820 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3821
da7a735e 3822 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3823out_unlock:
0122ec5b 3824 __task_rq_unlock(rq);
b29739f9 3825}
b29739f9 3826#endif
36c8b586 3827void set_user_nice(struct task_struct *p, long nice)
1da177e4 3828{
dd41f596 3829 int old_prio, delta, on_rq;
1da177e4 3830 unsigned long flags;
70b97a7f 3831 struct rq *rq;
1da177e4
LT
3832
3833 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3834 return;
3835 /*
3836 * We have to be careful, if called from sys_setpriority(),
3837 * the task might be in the middle of scheduling on another CPU.
3838 */
3839 rq = task_rq_lock(p, &flags);
3840 /*
3841 * The RT priorities are set via sched_setscheduler(), but we still
3842 * allow the 'normal' nice value to be set - but as expected
3843 * it wont have any effect on scheduling until the task is
dd41f596 3844 * SCHED_FIFO/SCHED_RR:
1da177e4 3845 */
e05606d3 3846 if (task_has_rt_policy(p)) {
1da177e4
LT
3847 p->static_prio = NICE_TO_PRIO(nice);
3848 goto out_unlock;
3849 }
fd2f4419 3850 on_rq = p->on_rq;
c09595f6 3851 if (on_rq)
69be72c1 3852 dequeue_task(rq, p, 0);
1da177e4 3853
1da177e4 3854 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3855 set_load_weight(p);
b29739f9
IM
3856 old_prio = p->prio;
3857 p->prio = effective_prio(p);
3858 delta = p->prio - old_prio;
1da177e4 3859
dd41f596 3860 if (on_rq) {
371fd7e7 3861 enqueue_task(rq, p, 0);
1da177e4 3862 /*
d5f9f942
AM
3863 * If the task increased its priority or is running and
3864 * lowered its priority, then reschedule its CPU:
1da177e4 3865 */
d5f9f942 3866 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3867 resched_task(rq->curr);
3868 }
3869out_unlock:
0122ec5b 3870 task_rq_unlock(rq, p, &flags);
1da177e4 3871}
1da177e4
LT
3872EXPORT_SYMBOL(set_user_nice);
3873
e43379f1
MM
3874/*
3875 * can_nice - check if a task can reduce its nice value
3876 * @p: task
3877 * @nice: nice value
3878 */
36c8b586 3879int can_nice(const struct task_struct *p, const int nice)
e43379f1 3880{
024f4747
MM
3881 /* convert nice value [19,-20] to rlimit style value [1,40] */
3882 int nice_rlim = 20 - nice;
48f24c4d 3883
78d7d407 3884 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3885 capable(CAP_SYS_NICE));
3886}
3887
1da177e4
LT
3888#ifdef __ARCH_WANT_SYS_NICE
3889
3890/*
3891 * sys_nice - change the priority of the current process.
3892 * @increment: priority increment
3893 *
3894 * sys_setpriority is a more generic, but much slower function that
3895 * does similar things.
3896 */
5add95d4 3897SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3898{
48f24c4d 3899 long nice, retval;
1da177e4
LT
3900
3901 /*
3902 * Setpriority might change our priority at the same moment.
3903 * We don't have to worry. Conceptually one call occurs first
3904 * and we have a single winner.
3905 */
e43379f1
MM
3906 if (increment < -40)
3907 increment = -40;
1da177e4
LT
3908 if (increment > 40)
3909 increment = 40;
3910
2b8f836f 3911 nice = TASK_NICE(current) + increment;
1da177e4
LT
3912 if (nice < -20)
3913 nice = -20;
3914 if (nice > 19)
3915 nice = 19;
3916
e43379f1
MM
3917 if (increment < 0 && !can_nice(current, nice))
3918 return -EPERM;
3919
1da177e4
LT
3920 retval = security_task_setnice(current, nice);
3921 if (retval)
3922 return retval;
3923
3924 set_user_nice(current, nice);
3925 return 0;
3926}
3927
3928#endif
3929
3930/**
3931 * task_prio - return the priority value of a given task.
3932 * @p: the task in question.
3933 *
3934 * This is the priority value as seen by users in /proc.
3935 * RT tasks are offset by -200. Normal tasks are centered
3936 * around 0, value goes from -16 to +15.
3937 */
36c8b586 3938int task_prio(const struct task_struct *p)
1da177e4
LT
3939{
3940 return p->prio - MAX_RT_PRIO;
3941}
3942
3943/**
3944 * task_nice - return the nice value of a given task.
3945 * @p: the task in question.
3946 */
36c8b586 3947int task_nice(const struct task_struct *p)
1da177e4
LT
3948{
3949 return TASK_NICE(p);
3950}
150d8bed 3951EXPORT_SYMBOL(task_nice);
1da177e4
LT
3952
3953/**
3954 * idle_cpu - is a given cpu idle currently?
3955 * @cpu: the processor in question.
3956 */
3957int idle_cpu(int cpu)
3958{
908a3283
TG
3959 struct rq *rq = cpu_rq(cpu);
3960
3961 if (rq->curr != rq->idle)
3962 return 0;
3963
3964 if (rq->nr_running)
3965 return 0;
3966
3967#ifdef CONFIG_SMP
3968 if (!llist_empty(&rq->wake_list))
3969 return 0;
3970#endif
3971
3972 return 1;
1da177e4
LT
3973}
3974
1da177e4
LT
3975/**
3976 * idle_task - return the idle task for a given cpu.
3977 * @cpu: the processor in question.
3978 */
36c8b586 3979struct task_struct *idle_task(int cpu)
1da177e4
LT
3980{
3981 return cpu_rq(cpu)->idle;
3982}
3983
3984/**
3985 * find_process_by_pid - find a process with a matching PID value.
3986 * @pid: the pid in question.
3987 */
a9957449 3988static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3989{
228ebcbe 3990 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3991}
3992
3993/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3994static void
3995__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3996{
1da177e4
LT
3997 p->policy = policy;
3998 p->rt_priority = prio;
b29739f9
IM
3999 p->normal_prio = normal_prio(p);
4000 /* we are holding p->pi_lock already */
4001 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4002 if (rt_prio(p->prio))
4003 p->sched_class = &rt_sched_class;
4004 else
4005 p->sched_class = &fair_sched_class;
2dd73a4f 4006 set_load_weight(p);
1da177e4
LT
4007}
4008
c69e8d9c
DH
4009/*
4010 * check the target process has a UID that matches the current process's
4011 */
4012static bool check_same_owner(struct task_struct *p)
4013{
4014 const struct cred *cred = current_cred(), *pcred;
4015 bool match;
4016
4017 rcu_read_lock();
4018 pcred = __task_cred(p);
b0e77598
SH
4019 if (cred->user->user_ns == pcred->user->user_ns)
4020 match = (cred->euid == pcred->euid ||
4021 cred->euid == pcred->uid);
4022 else
4023 match = false;
c69e8d9c
DH
4024 rcu_read_unlock();
4025 return match;
4026}
4027
961ccddd 4028static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4029 const struct sched_param *param, bool user)
1da177e4 4030{
83b699ed 4031 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4032 unsigned long flags;
83ab0aa0 4033 const struct sched_class *prev_class;
70b97a7f 4034 struct rq *rq;
ca94c442 4035 int reset_on_fork;
1da177e4 4036
66e5393a
SR
4037 /* may grab non-irq protected spin_locks */
4038 BUG_ON(in_interrupt());
1da177e4
LT
4039recheck:
4040 /* double check policy once rq lock held */
ca94c442
LP
4041 if (policy < 0) {
4042 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4043 policy = oldpolicy = p->policy;
ca94c442
LP
4044 } else {
4045 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4046 policy &= ~SCHED_RESET_ON_FORK;
4047
4048 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4049 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4050 policy != SCHED_IDLE)
4051 return -EINVAL;
4052 }
4053
1da177e4
LT
4054 /*
4055 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4056 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4057 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4058 */
4059 if (param->sched_priority < 0 ||
95cdf3b7 4060 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4061 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4062 return -EINVAL;
e05606d3 4063 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4064 return -EINVAL;
4065
37e4ab3f
OC
4066 /*
4067 * Allow unprivileged RT tasks to decrease priority:
4068 */
961ccddd 4069 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4070 if (rt_policy(policy)) {
a44702e8
ON
4071 unsigned long rlim_rtprio =
4072 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4073
4074 /* can't set/change the rt policy */
4075 if (policy != p->policy && !rlim_rtprio)
4076 return -EPERM;
4077
4078 /* can't increase priority */
4079 if (param->sched_priority > p->rt_priority &&
4080 param->sched_priority > rlim_rtprio)
4081 return -EPERM;
4082 }
c02aa73b 4083
dd41f596 4084 /*
c02aa73b
DH
4085 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4086 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4087 */
c02aa73b
DH
4088 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4089 if (!can_nice(p, TASK_NICE(p)))
4090 return -EPERM;
4091 }
5fe1d75f 4092
37e4ab3f 4093 /* can't change other user's priorities */
c69e8d9c 4094 if (!check_same_owner(p))
37e4ab3f 4095 return -EPERM;
ca94c442
LP
4096
4097 /* Normal users shall not reset the sched_reset_on_fork flag */
4098 if (p->sched_reset_on_fork && !reset_on_fork)
4099 return -EPERM;
37e4ab3f 4100 }
1da177e4 4101
725aad24 4102 if (user) {
b0ae1981 4103 retval = security_task_setscheduler(p);
725aad24
JF
4104 if (retval)
4105 return retval;
4106 }
4107
b29739f9
IM
4108 /*
4109 * make sure no PI-waiters arrive (or leave) while we are
4110 * changing the priority of the task:
0122ec5b 4111 *
25985edc 4112 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4113 * runqueue lock must be held.
4114 */
0122ec5b 4115 rq = task_rq_lock(p, &flags);
dc61b1d6 4116
34f971f6
PZ
4117 /*
4118 * Changing the policy of the stop threads its a very bad idea
4119 */
4120 if (p == rq->stop) {
0122ec5b 4121 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4122 return -EINVAL;
4123 }
4124
a51e9198
DF
4125 /*
4126 * If not changing anything there's no need to proceed further:
4127 */
4128 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4129 param->sched_priority == p->rt_priority))) {
4130
4131 __task_rq_unlock(rq);
4132 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4133 return 0;
4134 }
4135
dc61b1d6
PZ
4136#ifdef CONFIG_RT_GROUP_SCHED
4137 if (user) {
4138 /*
4139 * Do not allow realtime tasks into groups that have no runtime
4140 * assigned.
4141 */
4142 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4143 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4144 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4145 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4146 return -EPERM;
4147 }
4148 }
4149#endif
4150
1da177e4
LT
4151 /* recheck policy now with rq lock held */
4152 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4153 policy = oldpolicy = -1;
0122ec5b 4154 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4155 goto recheck;
4156 }
fd2f4419 4157 on_rq = p->on_rq;
051a1d1a 4158 running = task_current(rq, p);
0e1f3483 4159 if (on_rq)
4ca9b72b 4160 dequeue_task(rq, p, 0);
0e1f3483
HS
4161 if (running)
4162 p->sched_class->put_prev_task(rq, p);
f6b53205 4163
ca94c442
LP
4164 p->sched_reset_on_fork = reset_on_fork;
4165
1da177e4 4166 oldprio = p->prio;
83ab0aa0 4167 prev_class = p->sched_class;
dd41f596 4168 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4169
0e1f3483
HS
4170 if (running)
4171 p->sched_class->set_curr_task(rq);
da7a735e 4172 if (on_rq)
4ca9b72b 4173 enqueue_task(rq, p, 0);
cb469845 4174
da7a735e 4175 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4176 task_rq_unlock(rq, p, &flags);
b29739f9 4177
95e02ca9
TG
4178 rt_mutex_adjust_pi(p);
4179
1da177e4
LT
4180 return 0;
4181}
961ccddd
RR
4182
4183/**
4184 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4185 * @p: the task in question.
4186 * @policy: new policy.
4187 * @param: structure containing the new RT priority.
4188 *
4189 * NOTE that the task may be already dead.
4190 */
4191int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4192 const struct sched_param *param)
961ccddd
RR
4193{
4194 return __sched_setscheduler(p, policy, param, true);
4195}
1da177e4
LT
4196EXPORT_SYMBOL_GPL(sched_setscheduler);
4197
961ccddd
RR
4198/**
4199 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4200 * @p: the task in question.
4201 * @policy: new policy.
4202 * @param: structure containing the new RT priority.
4203 *
4204 * Just like sched_setscheduler, only don't bother checking if the
4205 * current context has permission. For example, this is needed in
4206 * stop_machine(): we create temporary high priority worker threads,
4207 * but our caller might not have that capability.
4208 */
4209int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4210 const struct sched_param *param)
961ccddd
RR
4211{
4212 return __sched_setscheduler(p, policy, param, false);
4213}
4214
95cdf3b7
IM
4215static int
4216do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4217{
1da177e4
LT
4218 struct sched_param lparam;
4219 struct task_struct *p;
36c8b586 4220 int retval;
1da177e4
LT
4221
4222 if (!param || pid < 0)
4223 return -EINVAL;
4224 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4225 return -EFAULT;
5fe1d75f
ON
4226
4227 rcu_read_lock();
4228 retval = -ESRCH;
1da177e4 4229 p = find_process_by_pid(pid);
5fe1d75f
ON
4230 if (p != NULL)
4231 retval = sched_setscheduler(p, policy, &lparam);
4232 rcu_read_unlock();
36c8b586 4233
1da177e4
LT
4234 return retval;
4235}
4236
4237/**
4238 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4239 * @pid: the pid in question.
4240 * @policy: new policy.
4241 * @param: structure containing the new RT priority.
4242 */
5add95d4
HC
4243SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4244 struct sched_param __user *, param)
1da177e4 4245{
c21761f1
JB
4246 /* negative values for policy are not valid */
4247 if (policy < 0)
4248 return -EINVAL;
4249
1da177e4
LT
4250 return do_sched_setscheduler(pid, policy, param);
4251}
4252
4253/**
4254 * sys_sched_setparam - set/change the RT priority of a thread
4255 * @pid: the pid in question.
4256 * @param: structure containing the new RT priority.
4257 */
5add95d4 4258SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4259{
4260 return do_sched_setscheduler(pid, -1, param);
4261}
4262
4263/**
4264 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4265 * @pid: the pid in question.
4266 */
5add95d4 4267SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4268{
36c8b586 4269 struct task_struct *p;
3a5c359a 4270 int retval;
1da177e4
LT
4271
4272 if (pid < 0)
3a5c359a 4273 return -EINVAL;
1da177e4
LT
4274
4275 retval = -ESRCH;
5fe85be0 4276 rcu_read_lock();
1da177e4
LT
4277 p = find_process_by_pid(pid);
4278 if (p) {
4279 retval = security_task_getscheduler(p);
4280 if (!retval)
ca94c442
LP
4281 retval = p->policy
4282 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4283 }
5fe85be0 4284 rcu_read_unlock();
1da177e4
LT
4285 return retval;
4286}
4287
4288/**
ca94c442 4289 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4290 * @pid: the pid in question.
4291 * @param: structure containing the RT priority.
4292 */
5add95d4 4293SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4294{
4295 struct sched_param lp;
36c8b586 4296 struct task_struct *p;
3a5c359a 4297 int retval;
1da177e4
LT
4298
4299 if (!param || pid < 0)
3a5c359a 4300 return -EINVAL;
1da177e4 4301
5fe85be0 4302 rcu_read_lock();
1da177e4
LT
4303 p = find_process_by_pid(pid);
4304 retval = -ESRCH;
4305 if (!p)
4306 goto out_unlock;
4307
4308 retval = security_task_getscheduler(p);
4309 if (retval)
4310 goto out_unlock;
4311
4312 lp.sched_priority = p->rt_priority;
5fe85be0 4313 rcu_read_unlock();
1da177e4
LT
4314
4315 /*
4316 * This one might sleep, we cannot do it with a spinlock held ...
4317 */
4318 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4319
1da177e4
LT
4320 return retval;
4321
4322out_unlock:
5fe85be0 4323 rcu_read_unlock();
1da177e4
LT
4324 return retval;
4325}
4326
96f874e2 4327long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4328{
5a16f3d3 4329 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4330 struct task_struct *p;
4331 int retval;
1da177e4 4332
95402b38 4333 get_online_cpus();
23f5d142 4334 rcu_read_lock();
1da177e4
LT
4335
4336 p = find_process_by_pid(pid);
4337 if (!p) {
23f5d142 4338 rcu_read_unlock();
95402b38 4339 put_online_cpus();
1da177e4
LT
4340 return -ESRCH;
4341 }
4342
23f5d142 4343 /* Prevent p going away */
1da177e4 4344 get_task_struct(p);
23f5d142 4345 rcu_read_unlock();
1da177e4 4346
5a16f3d3
RR
4347 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4348 retval = -ENOMEM;
4349 goto out_put_task;
4350 }
4351 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4352 retval = -ENOMEM;
4353 goto out_free_cpus_allowed;
4354 }
1da177e4 4355 retval = -EPERM;
f1c84dae 4356 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4357 goto out_unlock;
4358
b0ae1981 4359 retval = security_task_setscheduler(p);
e7834f8f
DQ
4360 if (retval)
4361 goto out_unlock;
4362
5a16f3d3
RR
4363 cpuset_cpus_allowed(p, cpus_allowed);
4364 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4365again:
5a16f3d3 4366 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4367
8707d8b8 4368 if (!retval) {
5a16f3d3
RR
4369 cpuset_cpus_allowed(p, cpus_allowed);
4370 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4371 /*
4372 * We must have raced with a concurrent cpuset
4373 * update. Just reset the cpus_allowed to the
4374 * cpuset's cpus_allowed
4375 */
5a16f3d3 4376 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4377 goto again;
4378 }
4379 }
1da177e4 4380out_unlock:
5a16f3d3
RR
4381 free_cpumask_var(new_mask);
4382out_free_cpus_allowed:
4383 free_cpumask_var(cpus_allowed);
4384out_put_task:
1da177e4 4385 put_task_struct(p);
95402b38 4386 put_online_cpus();
1da177e4
LT
4387 return retval;
4388}
4389
4390static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4391 struct cpumask *new_mask)
1da177e4 4392{
96f874e2
RR
4393 if (len < cpumask_size())
4394 cpumask_clear(new_mask);
4395 else if (len > cpumask_size())
4396 len = cpumask_size();
4397
1da177e4
LT
4398 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4399}
4400
4401/**
4402 * sys_sched_setaffinity - set the cpu affinity of a process
4403 * @pid: pid of the process
4404 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4405 * @user_mask_ptr: user-space pointer to the new cpu mask
4406 */
5add95d4
HC
4407SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4408 unsigned long __user *, user_mask_ptr)
1da177e4 4409{
5a16f3d3 4410 cpumask_var_t new_mask;
1da177e4
LT
4411 int retval;
4412
5a16f3d3
RR
4413 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4414 return -ENOMEM;
1da177e4 4415
5a16f3d3
RR
4416 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4417 if (retval == 0)
4418 retval = sched_setaffinity(pid, new_mask);
4419 free_cpumask_var(new_mask);
4420 return retval;
1da177e4
LT
4421}
4422
96f874e2 4423long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4424{
36c8b586 4425 struct task_struct *p;
31605683 4426 unsigned long flags;
1da177e4 4427 int retval;
1da177e4 4428
95402b38 4429 get_online_cpus();
23f5d142 4430 rcu_read_lock();
1da177e4
LT
4431
4432 retval = -ESRCH;
4433 p = find_process_by_pid(pid);
4434 if (!p)
4435 goto out_unlock;
4436
e7834f8f
DQ
4437 retval = security_task_getscheduler(p);
4438 if (retval)
4439 goto out_unlock;
4440
013fdb80 4441 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4442 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4443 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4444
4445out_unlock:
23f5d142 4446 rcu_read_unlock();
95402b38 4447 put_online_cpus();
1da177e4 4448
9531b62f 4449 return retval;
1da177e4
LT
4450}
4451
4452/**
4453 * sys_sched_getaffinity - get the cpu affinity of a process
4454 * @pid: pid of the process
4455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4456 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4457 */
5add95d4
HC
4458SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4459 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4460{
4461 int ret;
f17c8607 4462 cpumask_var_t mask;
1da177e4 4463
84fba5ec 4464 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4465 return -EINVAL;
4466 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4467 return -EINVAL;
4468
f17c8607
RR
4469 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4470 return -ENOMEM;
1da177e4 4471
f17c8607
RR
4472 ret = sched_getaffinity(pid, mask);
4473 if (ret == 0) {
8bc037fb 4474 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4475
4476 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4477 ret = -EFAULT;
4478 else
cd3d8031 4479 ret = retlen;
f17c8607
RR
4480 }
4481 free_cpumask_var(mask);
1da177e4 4482
f17c8607 4483 return ret;
1da177e4
LT
4484}
4485
4486/**
4487 * sys_sched_yield - yield the current processor to other threads.
4488 *
dd41f596
IM
4489 * This function yields the current CPU to other tasks. If there are no
4490 * other threads running on this CPU then this function will return.
1da177e4 4491 */
5add95d4 4492SYSCALL_DEFINE0(sched_yield)
1da177e4 4493{
70b97a7f 4494 struct rq *rq = this_rq_lock();
1da177e4 4495
2d72376b 4496 schedstat_inc(rq, yld_count);
4530d7ab 4497 current->sched_class->yield_task(rq);
1da177e4
LT
4498
4499 /*
4500 * Since we are going to call schedule() anyway, there's
4501 * no need to preempt or enable interrupts:
4502 */
4503 __release(rq->lock);
8a25d5de 4504 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4505 do_raw_spin_unlock(&rq->lock);
ba74c144 4506 sched_preempt_enable_no_resched();
1da177e4
LT
4507
4508 schedule();
4509
4510 return 0;
4511}
4512
d86ee480
PZ
4513static inline int should_resched(void)
4514{
4515 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4516}
4517
e7b38404 4518static void __cond_resched(void)
1da177e4 4519{
e7aaaa69 4520 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4521 __schedule();
e7aaaa69 4522 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4523}
4524
02b67cc3 4525int __sched _cond_resched(void)
1da177e4 4526{
d86ee480 4527 if (should_resched()) {
1da177e4
LT
4528 __cond_resched();
4529 return 1;
4530 }
4531 return 0;
4532}
02b67cc3 4533EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4534
4535/*
613afbf8 4536 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4537 * call schedule, and on return reacquire the lock.
4538 *
41a2d6cf 4539 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4540 * operations here to prevent schedule() from being called twice (once via
4541 * spin_unlock(), once by hand).
4542 */
613afbf8 4543int __cond_resched_lock(spinlock_t *lock)
1da177e4 4544{
d86ee480 4545 int resched = should_resched();
6df3cecb
JK
4546 int ret = 0;
4547
f607c668
PZ
4548 lockdep_assert_held(lock);
4549
95c354fe 4550 if (spin_needbreak(lock) || resched) {
1da177e4 4551 spin_unlock(lock);
d86ee480 4552 if (resched)
95c354fe
NP
4553 __cond_resched();
4554 else
4555 cpu_relax();
6df3cecb 4556 ret = 1;
1da177e4 4557 spin_lock(lock);
1da177e4 4558 }
6df3cecb 4559 return ret;
1da177e4 4560}
613afbf8 4561EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4562
613afbf8 4563int __sched __cond_resched_softirq(void)
1da177e4
LT
4564{
4565 BUG_ON(!in_softirq());
4566
d86ee480 4567 if (should_resched()) {
98d82567 4568 local_bh_enable();
1da177e4
LT
4569 __cond_resched();
4570 local_bh_disable();
4571 return 1;
4572 }
4573 return 0;
4574}
613afbf8 4575EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4576
1da177e4
LT
4577/**
4578 * yield - yield the current processor to other threads.
4579 *
72fd4a35 4580 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4581 * thread runnable and calls sys_sched_yield().
4582 */
4583void __sched yield(void)
4584{
4585 set_current_state(TASK_RUNNING);
4586 sys_sched_yield();
4587}
1da177e4
LT
4588EXPORT_SYMBOL(yield);
4589
d95f4122
MG
4590/**
4591 * yield_to - yield the current processor to another thread in
4592 * your thread group, or accelerate that thread toward the
4593 * processor it's on.
16addf95
RD
4594 * @p: target task
4595 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4596 *
4597 * It's the caller's job to ensure that the target task struct
4598 * can't go away on us before we can do any checks.
4599 *
4600 * Returns true if we indeed boosted the target task.
4601 */
4602bool __sched yield_to(struct task_struct *p, bool preempt)
4603{
4604 struct task_struct *curr = current;
4605 struct rq *rq, *p_rq;
4606 unsigned long flags;
4607 bool yielded = 0;
4608
4609 local_irq_save(flags);
4610 rq = this_rq();
4611
4612again:
4613 p_rq = task_rq(p);
4614 double_rq_lock(rq, p_rq);
4615 while (task_rq(p) != p_rq) {
4616 double_rq_unlock(rq, p_rq);
4617 goto again;
4618 }
4619
4620 if (!curr->sched_class->yield_to_task)
4621 goto out;
4622
4623 if (curr->sched_class != p->sched_class)
4624 goto out;
4625
4626 if (task_running(p_rq, p) || p->state)
4627 goto out;
4628
4629 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4630 if (yielded) {
d95f4122 4631 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4632 /*
4633 * Make p's CPU reschedule; pick_next_entity takes care of
4634 * fairness.
4635 */
4636 if (preempt && rq != p_rq)
4637 resched_task(p_rq->curr);
916671c0
MG
4638 } else {
4639 /*
4640 * We might have set it in task_yield_fair(), but are
4641 * not going to schedule(), so don't want to skip
4642 * the next update.
4643 */
4644 rq->skip_clock_update = 0;
6d1cafd8 4645 }
d95f4122
MG
4646
4647out:
4648 double_rq_unlock(rq, p_rq);
4649 local_irq_restore(flags);
4650
4651 if (yielded)
4652 schedule();
4653
4654 return yielded;
4655}
4656EXPORT_SYMBOL_GPL(yield_to);
4657
1da177e4 4658/*
41a2d6cf 4659 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4660 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4661 */
4662void __sched io_schedule(void)
4663{
54d35f29 4664 struct rq *rq = raw_rq();
1da177e4 4665
0ff92245 4666 delayacct_blkio_start();
1da177e4 4667 atomic_inc(&rq->nr_iowait);
73c10101 4668 blk_flush_plug(current);
8f0dfc34 4669 current->in_iowait = 1;
1da177e4 4670 schedule();
8f0dfc34 4671 current->in_iowait = 0;
1da177e4 4672 atomic_dec(&rq->nr_iowait);
0ff92245 4673 delayacct_blkio_end();
1da177e4 4674}
1da177e4
LT
4675EXPORT_SYMBOL(io_schedule);
4676
4677long __sched io_schedule_timeout(long timeout)
4678{
54d35f29 4679 struct rq *rq = raw_rq();
1da177e4
LT
4680 long ret;
4681
0ff92245 4682 delayacct_blkio_start();
1da177e4 4683 atomic_inc(&rq->nr_iowait);
73c10101 4684 blk_flush_plug(current);
8f0dfc34 4685 current->in_iowait = 1;
1da177e4 4686 ret = schedule_timeout(timeout);
8f0dfc34 4687 current->in_iowait = 0;
1da177e4 4688 atomic_dec(&rq->nr_iowait);
0ff92245 4689 delayacct_blkio_end();
1da177e4
LT
4690 return ret;
4691}
4692
4693/**
4694 * sys_sched_get_priority_max - return maximum RT priority.
4695 * @policy: scheduling class.
4696 *
4697 * this syscall returns the maximum rt_priority that can be used
4698 * by a given scheduling class.
4699 */
5add95d4 4700SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4701{
4702 int ret = -EINVAL;
4703
4704 switch (policy) {
4705 case SCHED_FIFO:
4706 case SCHED_RR:
4707 ret = MAX_USER_RT_PRIO-1;
4708 break;
4709 case SCHED_NORMAL:
b0a9499c 4710 case SCHED_BATCH:
dd41f596 4711 case SCHED_IDLE:
1da177e4
LT
4712 ret = 0;
4713 break;
4714 }
4715 return ret;
4716}
4717
4718/**
4719 * sys_sched_get_priority_min - return minimum RT priority.
4720 * @policy: scheduling class.
4721 *
4722 * this syscall returns the minimum rt_priority that can be used
4723 * by a given scheduling class.
4724 */
5add95d4 4725SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4726{
4727 int ret = -EINVAL;
4728
4729 switch (policy) {
4730 case SCHED_FIFO:
4731 case SCHED_RR:
4732 ret = 1;
4733 break;
4734 case SCHED_NORMAL:
b0a9499c 4735 case SCHED_BATCH:
dd41f596 4736 case SCHED_IDLE:
1da177e4
LT
4737 ret = 0;
4738 }
4739 return ret;
4740}
4741
4742/**
4743 * sys_sched_rr_get_interval - return the default timeslice of a process.
4744 * @pid: pid of the process.
4745 * @interval: userspace pointer to the timeslice value.
4746 *
4747 * this syscall writes the default timeslice value of a given process
4748 * into the user-space timespec buffer. A value of '0' means infinity.
4749 */
17da2bd9 4750SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4751 struct timespec __user *, interval)
1da177e4 4752{
36c8b586 4753 struct task_struct *p;
a4ec24b4 4754 unsigned int time_slice;
dba091b9
TG
4755 unsigned long flags;
4756 struct rq *rq;
3a5c359a 4757 int retval;
1da177e4 4758 struct timespec t;
1da177e4
LT
4759
4760 if (pid < 0)
3a5c359a 4761 return -EINVAL;
1da177e4
LT
4762
4763 retval = -ESRCH;
1a551ae7 4764 rcu_read_lock();
1da177e4
LT
4765 p = find_process_by_pid(pid);
4766 if (!p)
4767 goto out_unlock;
4768
4769 retval = security_task_getscheduler(p);
4770 if (retval)
4771 goto out_unlock;
4772
dba091b9
TG
4773 rq = task_rq_lock(p, &flags);
4774 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4775 task_rq_unlock(rq, p, &flags);
a4ec24b4 4776
1a551ae7 4777 rcu_read_unlock();
a4ec24b4 4778 jiffies_to_timespec(time_slice, &t);
1da177e4 4779 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4780 return retval;
3a5c359a 4781
1da177e4 4782out_unlock:
1a551ae7 4783 rcu_read_unlock();
1da177e4
LT
4784 return retval;
4785}
4786
7c731e0a 4787static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4788
82a1fcb9 4789void sched_show_task(struct task_struct *p)
1da177e4 4790{
1da177e4 4791 unsigned long free = 0;
36c8b586 4792 unsigned state;
1da177e4 4793
1da177e4 4794 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4795 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4796 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4797#if BITS_PER_LONG == 32
1da177e4 4798 if (state == TASK_RUNNING)
3df0fc5b 4799 printk(KERN_CONT " running ");
1da177e4 4800 else
3df0fc5b 4801 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4802#else
4803 if (state == TASK_RUNNING)
3df0fc5b 4804 printk(KERN_CONT " running task ");
1da177e4 4805 else
3df0fc5b 4806 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4807#endif
4808#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4809 free = stack_not_used(p);
1da177e4 4810#endif
3df0fc5b 4811 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4812 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4813 (unsigned long)task_thread_info(p)->flags);
1da177e4 4814
5fb5e6de 4815 show_stack(p, NULL);
1da177e4
LT
4816}
4817
e59e2ae2 4818void show_state_filter(unsigned long state_filter)
1da177e4 4819{
36c8b586 4820 struct task_struct *g, *p;
1da177e4 4821
4bd77321 4822#if BITS_PER_LONG == 32
3df0fc5b
PZ
4823 printk(KERN_INFO
4824 " task PC stack pid father\n");
1da177e4 4825#else
3df0fc5b
PZ
4826 printk(KERN_INFO
4827 " task PC stack pid father\n");
1da177e4 4828#endif
510f5acc 4829 rcu_read_lock();
1da177e4
LT
4830 do_each_thread(g, p) {
4831 /*
4832 * reset the NMI-timeout, listing all files on a slow
25985edc 4833 * console might take a lot of time:
1da177e4
LT
4834 */
4835 touch_nmi_watchdog();
39bc89fd 4836 if (!state_filter || (p->state & state_filter))
82a1fcb9 4837 sched_show_task(p);
1da177e4
LT
4838 } while_each_thread(g, p);
4839
04c9167f
JF
4840 touch_all_softlockup_watchdogs();
4841
dd41f596
IM
4842#ifdef CONFIG_SCHED_DEBUG
4843 sysrq_sched_debug_show();
4844#endif
510f5acc 4845 rcu_read_unlock();
e59e2ae2
IM
4846 /*
4847 * Only show locks if all tasks are dumped:
4848 */
93335a21 4849 if (!state_filter)
e59e2ae2 4850 debug_show_all_locks();
1da177e4
LT
4851}
4852
1df21055
IM
4853void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4854{
dd41f596 4855 idle->sched_class = &idle_sched_class;
1df21055
IM
4856}
4857
f340c0d1
IM
4858/**
4859 * init_idle - set up an idle thread for a given CPU
4860 * @idle: task in question
4861 * @cpu: cpu the idle task belongs to
4862 *
4863 * NOTE: this function does not set the idle thread's NEED_RESCHED
4864 * flag, to make booting more robust.
4865 */
5c1e1767 4866void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4867{
70b97a7f 4868 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4869 unsigned long flags;
4870
05fa785c 4871 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4872
dd41f596 4873 __sched_fork(idle);
06b83b5f 4874 idle->state = TASK_RUNNING;
dd41f596
IM
4875 idle->se.exec_start = sched_clock();
4876
1e1b6c51 4877 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4878 /*
4879 * We're having a chicken and egg problem, even though we are
4880 * holding rq->lock, the cpu isn't yet set to this cpu so the
4881 * lockdep check in task_group() will fail.
4882 *
4883 * Similar case to sched_fork(). / Alternatively we could
4884 * use task_rq_lock() here and obtain the other rq->lock.
4885 *
4886 * Silence PROVE_RCU
4887 */
4888 rcu_read_lock();
dd41f596 4889 __set_task_cpu(idle, cpu);
6506cf6c 4890 rcu_read_unlock();
1da177e4 4891
1da177e4 4892 rq->curr = rq->idle = idle;
3ca7a440
PZ
4893#if defined(CONFIG_SMP)
4894 idle->on_cpu = 1;
4866cde0 4895#endif
05fa785c 4896 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4897
4898 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4899 task_thread_info(idle)->preempt_count = 0;
55cd5340 4900
dd41f596
IM
4901 /*
4902 * The idle tasks have their own, simple scheduling class:
4903 */
4904 idle->sched_class = &idle_sched_class;
868baf07 4905 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4906#if defined(CONFIG_SMP)
4907 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4908#endif
19978ca6
IM
4909}
4910
1da177e4 4911#ifdef CONFIG_SMP
1e1b6c51
KM
4912void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4913{
4914 if (p->sched_class && p->sched_class->set_cpus_allowed)
4915 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4916
4917 cpumask_copy(&p->cpus_allowed, new_mask);
4918 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4919}
4920
1da177e4
LT
4921/*
4922 * This is how migration works:
4923 *
969c7921
TH
4924 * 1) we invoke migration_cpu_stop() on the target CPU using
4925 * stop_one_cpu().
4926 * 2) stopper starts to run (implicitly forcing the migrated thread
4927 * off the CPU)
4928 * 3) it checks whether the migrated task is still in the wrong runqueue.
4929 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4930 * it and puts it into the right queue.
969c7921
TH
4931 * 5) stopper completes and stop_one_cpu() returns and the migration
4932 * is done.
1da177e4
LT
4933 */
4934
4935/*
4936 * Change a given task's CPU affinity. Migrate the thread to a
4937 * proper CPU and schedule it away if the CPU it's executing on
4938 * is removed from the allowed bitmask.
4939 *
4940 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4941 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4942 * call is not atomic; no spinlocks may be held.
4943 */
96f874e2 4944int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4945{
4946 unsigned long flags;
70b97a7f 4947 struct rq *rq;
969c7921 4948 unsigned int dest_cpu;
48f24c4d 4949 int ret = 0;
1da177e4
LT
4950
4951 rq = task_rq_lock(p, &flags);
e2912009 4952
db44fc01
YZ
4953 if (cpumask_equal(&p->cpus_allowed, new_mask))
4954 goto out;
4955
6ad4c188 4956 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4957 ret = -EINVAL;
4958 goto out;
4959 }
4960
db44fc01 4961 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4962 ret = -EINVAL;
4963 goto out;
4964 }
4965
1e1b6c51 4966 do_set_cpus_allowed(p, new_mask);
73fe6aae 4967
1da177e4 4968 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4969 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4970 goto out;
4971
969c7921 4972 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4973 if (p->on_rq) {
969c7921 4974 struct migration_arg arg = { p, dest_cpu };
1da177e4 4975 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4976 task_rq_unlock(rq, p, &flags);
969c7921 4977 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4978 tlb_migrate_finish(p->mm);
4979 return 0;
4980 }
4981out:
0122ec5b 4982 task_rq_unlock(rq, p, &flags);
48f24c4d 4983
1da177e4
LT
4984 return ret;
4985}
cd8ba7cd 4986EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4987
4988/*
41a2d6cf 4989 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4990 * this because either it can't run here any more (set_cpus_allowed()
4991 * away from this CPU, or CPU going down), or because we're
4992 * attempting to rebalance this task on exec (sched_exec).
4993 *
4994 * So we race with normal scheduler movements, but that's OK, as long
4995 * as the task is no longer on this CPU.
efc30814
KK
4996 *
4997 * Returns non-zero if task was successfully migrated.
1da177e4 4998 */
efc30814 4999static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5000{
70b97a7f 5001 struct rq *rq_dest, *rq_src;
e2912009 5002 int ret = 0;
1da177e4 5003
e761b772 5004 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5005 return ret;
1da177e4
LT
5006
5007 rq_src = cpu_rq(src_cpu);
5008 rq_dest = cpu_rq(dest_cpu);
5009
0122ec5b 5010 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5011 double_rq_lock(rq_src, rq_dest);
5012 /* Already moved. */
5013 if (task_cpu(p) != src_cpu)
b1e38734 5014 goto done;
1da177e4 5015 /* Affinity changed (again). */
fa17b507 5016 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5017 goto fail;
1da177e4 5018
e2912009
PZ
5019 /*
5020 * If we're not on a rq, the next wake-up will ensure we're
5021 * placed properly.
5022 */
fd2f4419 5023 if (p->on_rq) {
4ca9b72b 5024 dequeue_task(rq_src, p, 0);
e2912009 5025 set_task_cpu(p, dest_cpu);
4ca9b72b 5026 enqueue_task(rq_dest, p, 0);
15afe09b 5027 check_preempt_curr(rq_dest, p, 0);
1da177e4 5028 }
b1e38734 5029done:
efc30814 5030 ret = 1;
b1e38734 5031fail:
1da177e4 5032 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5033 raw_spin_unlock(&p->pi_lock);
efc30814 5034 return ret;
1da177e4
LT
5035}
5036
5037/*
969c7921
TH
5038 * migration_cpu_stop - this will be executed by a highprio stopper thread
5039 * and performs thread migration by bumping thread off CPU then
5040 * 'pushing' onto another runqueue.
1da177e4 5041 */
969c7921 5042static int migration_cpu_stop(void *data)
1da177e4 5043{
969c7921 5044 struct migration_arg *arg = data;
f7b4cddc 5045
969c7921
TH
5046 /*
5047 * The original target cpu might have gone down and we might
5048 * be on another cpu but it doesn't matter.
5049 */
f7b4cddc 5050 local_irq_disable();
969c7921 5051 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5052 local_irq_enable();
1da177e4 5053 return 0;
f7b4cddc
ON
5054}
5055
1da177e4 5056#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5057
054b9108 5058/*
48c5ccae
PZ
5059 * Ensures that the idle task is using init_mm right before its cpu goes
5060 * offline.
054b9108 5061 */
48c5ccae 5062void idle_task_exit(void)
1da177e4 5063{
48c5ccae 5064 struct mm_struct *mm = current->active_mm;
e76bd8d9 5065
48c5ccae 5066 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5067
48c5ccae
PZ
5068 if (mm != &init_mm)
5069 switch_mm(mm, &init_mm, current);
5070 mmdrop(mm);
1da177e4
LT
5071}
5072
5073/*
5074 * While a dead CPU has no uninterruptible tasks queued at this point,
5075 * it might still have a nonzero ->nr_uninterruptible counter, because
5076 * for performance reasons the counter is not stricly tracking tasks to
5077 * their home CPUs. So we just add the counter to another CPU's counter,
5078 * to keep the global sum constant after CPU-down:
5079 */
70b97a7f 5080static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5081{
6ad4c188 5082 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5083
1da177e4
LT
5084 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5085 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5086}
5087
dd41f596 5088/*
48c5ccae 5089 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5090 */
48c5ccae 5091static void calc_global_load_remove(struct rq *rq)
1da177e4 5092{
48c5ccae
PZ
5093 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5094 rq->calc_load_active = 0;
1da177e4
LT
5095}
5096
48f24c4d 5097/*
48c5ccae
PZ
5098 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5099 * try_to_wake_up()->select_task_rq().
5100 *
5101 * Called with rq->lock held even though we'er in stop_machine() and
5102 * there's no concurrency possible, we hold the required locks anyway
5103 * because of lock validation efforts.
1da177e4 5104 */
48c5ccae 5105static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5106{
70b97a7f 5107 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5108 struct task_struct *next, *stop = rq->stop;
5109 int dest_cpu;
1da177e4
LT
5110
5111 /*
48c5ccae
PZ
5112 * Fudge the rq selection such that the below task selection loop
5113 * doesn't get stuck on the currently eligible stop task.
5114 *
5115 * We're currently inside stop_machine() and the rq is either stuck
5116 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5117 * either way we should never end up calling schedule() until we're
5118 * done here.
1da177e4 5119 */
48c5ccae 5120 rq->stop = NULL;
48f24c4d 5121
8cb120d3
PT
5122 /* Ensure any throttled groups are reachable by pick_next_task */
5123 unthrottle_offline_cfs_rqs(rq);
5124
dd41f596 5125 for ( ; ; ) {
48c5ccae
PZ
5126 /*
5127 * There's this thread running, bail when that's the only
5128 * remaining thread.
5129 */
5130 if (rq->nr_running == 1)
dd41f596 5131 break;
48c5ccae 5132
b67802ea 5133 next = pick_next_task(rq);
48c5ccae 5134 BUG_ON(!next);
79c53799 5135 next->sched_class->put_prev_task(rq, next);
e692ab53 5136
48c5ccae
PZ
5137 /* Find suitable destination for @next, with force if needed. */
5138 dest_cpu = select_fallback_rq(dead_cpu, next);
5139 raw_spin_unlock(&rq->lock);
5140
5141 __migrate_task(next, dead_cpu, dest_cpu);
5142
5143 raw_spin_lock(&rq->lock);
1da177e4 5144 }
dce48a84 5145
48c5ccae 5146 rq->stop = stop;
dce48a84 5147}
48c5ccae 5148
1da177e4
LT
5149#endif /* CONFIG_HOTPLUG_CPU */
5150
e692ab53
NP
5151#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5152
5153static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5154 {
5155 .procname = "sched_domain",
c57baf1e 5156 .mode = 0555,
e0361851 5157 },
56992309 5158 {}
e692ab53
NP
5159};
5160
5161static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5162 {
5163 .procname = "kernel",
c57baf1e 5164 .mode = 0555,
e0361851
AD
5165 .child = sd_ctl_dir,
5166 },
56992309 5167 {}
e692ab53
NP
5168};
5169
5170static struct ctl_table *sd_alloc_ctl_entry(int n)
5171{
5172 struct ctl_table *entry =
5cf9f062 5173 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5174
e692ab53
NP
5175 return entry;
5176}
5177
6382bc90
MM
5178static void sd_free_ctl_entry(struct ctl_table **tablep)
5179{
cd790076 5180 struct ctl_table *entry;
6382bc90 5181
cd790076
MM
5182 /*
5183 * In the intermediate directories, both the child directory and
5184 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5185 * will always be set. In the lowest directory the names are
cd790076
MM
5186 * static strings and all have proc handlers.
5187 */
5188 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5189 if (entry->child)
5190 sd_free_ctl_entry(&entry->child);
cd790076
MM
5191 if (entry->proc_handler == NULL)
5192 kfree(entry->procname);
5193 }
6382bc90
MM
5194
5195 kfree(*tablep);
5196 *tablep = NULL;
5197}
5198
e692ab53 5199static void
e0361851 5200set_table_entry(struct ctl_table *entry,
e692ab53 5201 const char *procname, void *data, int maxlen,
36fcb589 5202 umode_t mode, proc_handler *proc_handler)
e692ab53 5203{
e692ab53
NP
5204 entry->procname = procname;
5205 entry->data = data;
5206 entry->maxlen = maxlen;
5207 entry->mode = mode;
5208 entry->proc_handler = proc_handler;
5209}
5210
5211static struct ctl_table *
5212sd_alloc_ctl_domain_table(struct sched_domain *sd)
5213{
a5d8c348 5214 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5215
ad1cdc1d
MM
5216 if (table == NULL)
5217 return NULL;
5218
e0361851 5219 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5220 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5221 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5222 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5223 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5224 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5225 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5226 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5227 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5228 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5229 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5230 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5231 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5232 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5233 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5234 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5235 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5236 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5237 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5238 &sd->cache_nice_tries,
5239 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5240 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5241 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5242 set_table_entry(&table[11], "name", sd->name,
5243 CORENAME_MAX_SIZE, 0444, proc_dostring);
5244 /* &table[12] is terminator */
e692ab53
NP
5245
5246 return table;
5247}
5248
9a4e7159 5249static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5250{
5251 struct ctl_table *entry, *table;
5252 struct sched_domain *sd;
5253 int domain_num = 0, i;
5254 char buf[32];
5255
5256 for_each_domain(cpu, sd)
5257 domain_num++;
5258 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5259 if (table == NULL)
5260 return NULL;
e692ab53
NP
5261
5262 i = 0;
5263 for_each_domain(cpu, sd) {
5264 snprintf(buf, 32, "domain%d", i);
e692ab53 5265 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5266 entry->mode = 0555;
e692ab53
NP
5267 entry->child = sd_alloc_ctl_domain_table(sd);
5268 entry++;
5269 i++;
5270 }
5271 return table;
5272}
5273
5274static struct ctl_table_header *sd_sysctl_header;
6382bc90 5275static void register_sched_domain_sysctl(void)
e692ab53 5276{
6ad4c188 5277 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5278 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5279 char buf[32];
5280
7378547f
MM
5281 WARN_ON(sd_ctl_dir[0].child);
5282 sd_ctl_dir[0].child = entry;
5283
ad1cdc1d
MM
5284 if (entry == NULL)
5285 return;
5286
6ad4c188 5287 for_each_possible_cpu(i) {
e692ab53 5288 snprintf(buf, 32, "cpu%d", i);
e692ab53 5289 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5290 entry->mode = 0555;
e692ab53 5291 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5292 entry++;
e692ab53 5293 }
7378547f
MM
5294
5295 WARN_ON(sd_sysctl_header);
e692ab53
NP
5296 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5297}
6382bc90 5298
7378547f 5299/* may be called multiple times per register */
6382bc90
MM
5300static void unregister_sched_domain_sysctl(void)
5301{
7378547f
MM
5302 if (sd_sysctl_header)
5303 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5304 sd_sysctl_header = NULL;
7378547f
MM
5305 if (sd_ctl_dir[0].child)
5306 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5307}
e692ab53 5308#else
6382bc90
MM
5309static void register_sched_domain_sysctl(void)
5310{
5311}
5312static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5313{
5314}
5315#endif
5316
1f11eb6a
GH
5317static void set_rq_online(struct rq *rq)
5318{
5319 if (!rq->online) {
5320 const struct sched_class *class;
5321
c6c4927b 5322 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5323 rq->online = 1;
5324
5325 for_each_class(class) {
5326 if (class->rq_online)
5327 class->rq_online(rq);
5328 }
5329 }
5330}
5331
5332static void set_rq_offline(struct rq *rq)
5333{
5334 if (rq->online) {
5335 const struct sched_class *class;
5336
5337 for_each_class(class) {
5338 if (class->rq_offline)
5339 class->rq_offline(rq);
5340 }
5341
c6c4927b 5342 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5343 rq->online = 0;
5344 }
5345}
5346
1da177e4
LT
5347/*
5348 * migration_call - callback that gets triggered when a CPU is added.
5349 * Here we can start up the necessary migration thread for the new CPU.
5350 */
48f24c4d
IM
5351static int __cpuinit
5352migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5353{
48f24c4d 5354 int cpu = (long)hcpu;
1da177e4 5355 unsigned long flags;
969c7921 5356 struct rq *rq = cpu_rq(cpu);
1da177e4 5357
48c5ccae 5358 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5359
1da177e4 5360 case CPU_UP_PREPARE:
a468d389 5361 rq->calc_load_update = calc_load_update;
1da177e4 5362 break;
48f24c4d 5363
1da177e4 5364 case CPU_ONLINE:
1f94ef59 5365 /* Update our root-domain */
05fa785c 5366 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5367 if (rq->rd) {
c6c4927b 5368 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5369
5370 set_rq_online(rq);
1f94ef59 5371 }
05fa785c 5372 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5373 break;
48f24c4d 5374
1da177e4 5375#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5376 case CPU_DYING:
317f3941 5377 sched_ttwu_pending();
57d885fe 5378 /* Update our root-domain */
05fa785c 5379 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5380 if (rq->rd) {
c6c4927b 5381 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5382 set_rq_offline(rq);
57d885fe 5383 }
48c5ccae
PZ
5384 migrate_tasks(cpu);
5385 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5386 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5387
5388 migrate_nr_uninterruptible(rq);
5389 calc_global_load_remove(rq);
57d885fe 5390 break;
1da177e4
LT
5391#endif
5392 }
49c022e6
PZ
5393
5394 update_max_interval();
5395
1da177e4
LT
5396 return NOTIFY_OK;
5397}
5398
f38b0820
PM
5399/*
5400 * Register at high priority so that task migration (migrate_all_tasks)
5401 * happens before everything else. This has to be lower priority than
cdd6c482 5402 * the notifier in the perf_event subsystem, though.
1da177e4 5403 */
26c2143b 5404static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5405 .notifier_call = migration_call,
50a323b7 5406 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5407};
5408
3a101d05
TH
5409static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5410 unsigned long action, void *hcpu)
5411{
5412 switch (action & ~CPU_TASKS_FROZEN) {
5413 case CPU_ONLINE:
5414 case CPU_DOWN_FAILED:
5415 set_cpu_active((long)hcpu, true);
5416 return NOTIFY_OK;
5417 default:
5418 return NOTIFY_DONE;
5419 }
5420}
5421
5422static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5423 unsigned long action, void *hcpu)
5424{
5425 switch (action & ~CPU_TASKS_FROZEN) {
5426 case CPU_DOWN_PREPARE:
5427 set_cpu_active((long)hcpu, false);
5428 return NOTIFY_OK;
5429 default:
5430 return NOTIFY_DONE;
5431 }
5432}
5433
7babe8db 5434static int __init migration_init(void)
1da177e4
LT
5435{
5436 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5437 int err;
48f24c4d 5438
3a101d05 5439 /* Initialize migration for the boot CPU */
07dccf33
AM
5440 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5441 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5442 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5443 register_cpu_notifier(&migration_notifier);
7babe8db 5444
3a101d05
TH
5445 /* Register cpu active notifiers */
5446 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5447 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5448
a004cd42 5449 return 0;
1da177e4 5450}
7babe8db 5451early_initcall(migration_init);
1da177e4
LT
5452#endif
5453
5454#ifdef CONFIG_SMP
476f3534 5455
4cb98839
PZ
5456static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5457
3e9830dc 5458#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5459
f6630114
MT
5460static __read_mostly int sched_domain_debug_enabled;
5461
5462static int __init sched_domain_debug_setup(char *str)
5463{
5464 sched_domain_debug_enabled = 1;
5465
5466 return 0;
5467}
5468early_param("sched_debug", sched_domain_debug_setup);
5469
7c16ec58 5470static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5471 struct cpumask *groupmask)
1da177e4 5472{
4dcf6aff 5473 struct sched_group *group = sd->groups;
434d53b0 5474 char str[256];
1da177e4 5475
968ea6d8 5476 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5477 cpumask_clear(groupmask);
4dcf6aff
IM
5478
5479 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5480
5481 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5482 printk("does not load-balance\n");
4dcf6aff 5483 if (sd->parent)
3df0fc5b
PZ
5484 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5485 " has parent");
4dcf6aff 5486 return -1;
41c7ce9a
NP
5487 }
5488
3df0fc5b 5489 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5490
758b2cdc 5491 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5492 printk(KERN_ERR "ERROR: domain->span does not contain "
5493 "CPU%d\n", cpu);
4dcf6aff 5494 }
758b2cdc 5495 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5496 printk(KERN_ERR "ERROR: domain->groups does not contain"
5497 " CPU%d\n", cpu);
4dcf6aff 5498 }
1da177e4 5499
4dcf6aff 5500 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5501 do {
4dcf6aff 5502 if (!group) {
3df0fc5b
PZ
5503 printk("\n");
5504 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5505 break;
5506 }
5507
9c3f75cb 5508 if (!group->sgp->power) {
3df0fc5b
PZ
5509 printk(KERN_CONT "\n");
5510 printk(KERN_ERR "ERROR: domain->cpu_power not "
5511 "set\n");
4dcf6aff
IM
5512 break;
5513 }
1da177e4 5514
758b2cdc 5515 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5516 printk(KERN_CONT "\n");
5517 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5518 break;
5519 }
1da177e4 5520
758b2cdc 5521 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5522 printk(KERN_CONT "\n");
5523 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5524 break;
5525 }
1da177e4 5526
758b2cdc 5527 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5528
968ea6d8 5529 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5530
3df0fc5b 5531 printk(KERN_CONT " %s", str);
9c3f75cb 5532 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5533 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5534 group->sgp->power);
381512cf 5535 }
1da177e4 5536
4dcf6aff
IM
5537 group = group->next;
5538 } while (group != sd->groups);
3df0fc5b 5539 printk(KERN_CONT "\n");
1da177e4 5540
758b2cdc 5541 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5542 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5543
758b2cdc
RR
5544 if (sd->parent &&
5545 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5546 printk(KERN_ERR "ERROR: parent span is not a superset "
5547 "of domain->span\n");
4dcf6aff
IM
5548 return 0;
5549}
1da177e4 5550
4dcf6aff
IM
5551static void sched_domain_debug(struct sched_domain *sd, int cpu)
5552{
5553 int level = 0;
1da177e4 5554
f6630114
MT
5555 if (!sched_domain_debug_enabled)
5556 return;
5557
4dcf6aff
IM
5558 if (!sd) {
5559 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5560 return;
5561 }
1da177e4 5562
4dcf6aff
IM
5563 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5564
5565 for (;;) {
4cb98839 5566 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5567 break;
1da177e4
LT
5568 level++;
5569 sd = sd->parent;
33859f7f 5570 if (!sd)
4dcf6aff
IM
5571 break;
5572 }
1da177e4 5573}
6d6bc0ad 5574#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5575# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5576#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5577
1a20ff27 5578static int sd_degenerate(struct sched_domain *sd)
245af2c7 5579{
758b2cdc 5580 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5581 return 1;
5582
5583 /* Following flags need at least 2 groups */
5584 if (sd->flags & (SD_LOAD_BALANCE |
5585 SD_BALANCE_NEWIDLE |
5586 SD_BALANCE_FORK |
89c4710e
SS
5587 SD_BALANCE_EXEC |
5588 SD_SHARE_CPUPOWER |
5589 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5590 if (sd->groups != sd->groups->next)
5591 return 0;
5592 }
5593
5594 /* Following flags don't use groups */
c88d5910 5595 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5596 return 0;
5597
5598 return 1;
5599}
5600
48f24c4d
IM
5601static int
5602sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5603{
5604 unsigned long cflags = sd->flags, pflags = parent->flags;
5605
5606 if (sd_degenerate(parent))
5607 return 1;
5608
758b2cdc 5609 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5610 return 0;
5611
245af2c7
SS
5612 /* Flags needing groups don't count if only 1 group in parent */
5613 if (parent->groups == parent->groups->next) {
5614 pflags &= ~(SD_LOAD_BALANCE |
5615 SD_BALANCE_NEWIDLE |
5616 SD_BALANCE_FORK |
89c4710e
SS
5617 SD_BALANCE_EXEC |
5618 SD_SHARE_CPUPOWER |
5619 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5620 if (nr_node_ids == 1)
5621 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5622 }
5623 if (~cflags & pflags)
5624 return 0;
5625
5626 return 1;
5627}
5628
dce840a0 5629static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5630{
dce840a0 5631 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5632
68e74568 5633 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5634 free_cpumask_var(rd->rto_mask);
5635 free_cpumask_var(rd->online);
5636 free_cpumask_var(rd->span);
5637 kfree(rd);
5638}
5639
57d885fe
GH
5640static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5641{
a0490fa3 5642 struct root_domain *old_rd = NULL;
57d885fe 5643 unsigned long flags;
57d885fe 5644
05fa785c 5645 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5646
5647 if (rq->rd) {
a0490fa3 5648 old_rd = rq->rd;
57d885fe 5649
c6c4927b 5650 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5651 set_rq_offline(rq);
57d885fe 5652
c6c4927b 5653 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5654
a0490fa3
IM
5655 /*
5656 * If we dont want to free the old_rt yet then
5657 * set old_rd to NULL to skip the freeing later
5658 * in this function:
5659 */
5660 if (!atomic_dec_and_test(&old_rd->refcount))
5661 old_rd = NULL;
57d885fe
GH
5662 }
5663
5664 atomic_inc(&rd->refcount);
5665 rq->rd = rd;
5666
c6c4927b 5667 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5668 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5669 set_rq_online(rq);
57d885fe 5670
05fa785c 5671 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5672
5673 if (old_rd)
dce840a0 5674 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5675}
5676
68c38fc3 5677static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5678{
5679 memset(rd, 0, sizeof(*rd));
5680
68c38fc3 5681 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5682 goto out;
68c38fc3 5683 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5684 goto free_span;
68c38fc3 5685 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5686 goto free_online;
6e0534f2 5687
68c38fc3 5688 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5689 goto free_rto_mask;
c6c4927b 5690 return 0;
6e0534f2 5691
68e74568
RR
5692free_rto_mask:
5693 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5694free_online:
5695 free_cpumask_var(rd->online);
5696free_span:
5697 free_cpumask_var(rd->span);
0c910d28 5698out:
c6c4927b 5699 return -ENOMEM;
57d885fe
GH
5700}
5701
029632fb
PZ
5702/*
5703 * By default the system creates a single root-domain with all cpus as
5704 * members (mimicking the global state we have today).
5705 */
5706struct root_domain def_root_domain;
5707
57d885fe
GH
5708static void init_defrootdomain(void)
5709{
68c38fc3 5710 init_rootdomain(&def_root_domain);
c6c4927b 5711
57d885fe
GH
5712 atomic_set(&def_root_domain.refcount, 1);
5713}
5714
dc938520 5715static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5716{
5717 struct root_domain *rd;
5718
5719 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5720 if (!rd)
5721 return NULL;
5722
68c38fc3 5723 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5724 kfree(rd);
5725 return NULL;
5726 }
57d885fe
GH
5727
5728 return rd;
5729}
5730
e3589f6c
PZ
5731static void free_sched_groups(struct sched_group *sg, int free_sgp)
5732{
5733 struct sched_group *tmp, *first;
5734
5735 if (!sg)
5736 return;
5737
5738 first = sg;
5739 do {
5740 tmp = sg->next;
5741
5742 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5743 kfree(sg->sgp);
5744
5745 kfree(sg);
5746 sg = tmp;
5747 } while (sg != first);
5748}
5749
dce840a0
PZ
5750static void free_sched_domain(struct rcu_head *rcu)
5751{
5752 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5753
5754 /*
5755 * If its an overlapping domain it has private groups, iterate and
5756 * nuke them all.
5757 */
5758 if (sd->flags & SD_OVERLAP) {
5759 free_sched_groups(sd->groups, 1);
5760 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5761 kfree(sd->groups->sgp);
dce840a0 5762 kfree(sd->groups);
9c3f75cb 5763 }
dce840a0
PZ
5764 kfree(sd);
5765}
5766
5767static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5768{
5769 call_rcu(&sd->rcu, free_sched_domain);
5770}
5771
5772static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5773{
5774 for (; sd; sd = sd->parent)
5775 destroy_sched_domain(sd, cpu);
5776}
5777
518cd623
PZ
5778/*
5779 * Keep a special pointer to the highest sched_domain that has
5780 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5781 * allows us to avoid some pointer chasing select_idle_sibling().
5782 *
5783 * Also keep a unique ID per domain (we use the first cpu number in
5784 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5785 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5786 */
5787DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5788DEFINE_PER_CPU(int, sd_llc_id);
5789
5790static void update_top_cache_domain(int cpu)
5791{
5792 struct sched_domain *sd;
5793 int id = cpu;
5794
5795 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5796 if (sd)
5797 id = cpumask_first(sched_domain_span(sd));
5798
5799 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5800 per_cpu(sd_llc_id, cpu) = id;
5801}
5802
1da177e4 5803/*
0eab9146 5804 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5805 * hold the hotplug lock.
5806 */
0eab9146
IM
5807static void
5808cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5809{
70b97a7f 5810 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5811 struct sched_domain *tmp;
5812
5813 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5814 for (tmp = sd; tmp; ) {
245af2c7
SS
5815 struct sched_domain *parent = tmp->parent;
5816 if (!parent)
5817 break;
f29c9b1c 5818
1a848870 5819 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5820 tmp->parent = parent->parent;
1a848870
SS
5821 if (parent->parent)
5822 parent->parent->child = tmp;
dce840a0 5823 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5824 } else
5825 tmp = tmp->parent;
245af2c7
SS
5826 }
5827
1a848870 5828 if (sd && sd_degenerate(sd)) {
dce840a0 5829 tmp = sd;
245af2c7 5830 sd = sd->parent;
dce840a0 5831 destroy_sched_domain(tmp, cpu);
1a848870
SS
5832 if (sd)
5833 sd->child = NULL;
5834 }
1da177e4 5835
4cb98839 5836 sched_domain_debug(sd, cpu);
1da177e4 5837
57d885fe 5838 rq_attach_root(rq, rd);
dce840a0 5839 tmp = rq->sd;
674311d5 5840 rcu_assign_pointer(rq->sd, sd);
dce840a0 5841 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5842
5843 update_top_cache_domain(cpu);
1da177e4
LT
5844}
5845
5846/* cpus with isolated domains */
dcc30a35 5847static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5848
5849/* Setup the mask of cpus configured for isolated domains */
5850static int __init isolated_cpu_setup(char *str)
5851{
bdddd296 5852 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5853 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5854 return 1;
5855}
5856
8927f494 5857__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5858
9c1cfda2 5859#ifdef CONFIG_NUMA
198e2f18 5860
9c1cfda2
JH
5861/**
5862 * find_next_best_node - find the next node to include in a sched_domain
5863 * @node: node whose sched_domain we're building
5864 * @used_nodes: nodes already in the sched_domain
5865 *
41a2d6cf 5866 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5867 * finds the closest node not already in the @used_nodes map.
5868 *
5869 * Should use nodemask_t.
5870 */
c5f59f08 5871static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5872{
7142d17e 5873 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5874
5875 min_val = INT_MAX;
5876
076ac2af 5877 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5878 /* Start at @node */
076ac2af 5879 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5880
5881 if (!nr_cpus_node(n))
5882 continue;
5883
5884 /* Skip already used nodes */
c5f59f08 5885 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5886 continue;
5887
5888 /* Simple min distance search */
5889 val = node_distance(node, n);
5890
5891 if (val < min_val) {
5892 min_val = val;
5893 best_node = n;
5894 }
5895 }
5896
7142d17e
HD
5897 if (best_node != -1)
5898 node_set(best_node, *used_nodes);
9c1cfda2
JH
5899 return best_node;
5900}
5901
5902/**
5903 * sched_domain_node_span - get a cpumask for a node's sched_domain
5904 * @node: node whose cpumask we're constructing
73486722 5905 * @span: resulting cpumask
9c1cfda2 5906 *
41a2d6cf 5907 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5908 * should be one that prevents unnecessary balancing, but also spreads tasks
5909 * out optimally.
5910 */
96f874e2 5911static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5912{
c5f59f08 5913 nodemask_t used_nodes;
48f24c4d 5914 int i;
9c1cfda2 5915
6ca09dfc 5916 cpumask_clear(span);
c5f59f08 5917 nodes_clear(used_nodes);
9c1cfda2 5918
6ca09dfc 5919 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5920 node_set(node, used_nodes);
9c1cfda2
JH
5921
5922 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5923 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5924 if (next_node < 0)
5925 break;
6ca09dfc 5926 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5927 }
9c1cfda2 5928}
d3081f52
PZ
5929
5930static const struct cpumask *cpu_node_mask(int cpu)
5931{
5932 lockdep_assert_held(&sched_domains_mutex);
5933
5934 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5935
5936 return sched_domains_tmpmask;
5937}
2c402dc3
PZ
5938
5939static const struct cpumask *cpu_allnodes_mask(int cpu)
5940{
5941 return cpu_possible_mask;
5942}
6d6bc0ad 5943#endif /* CONFIG_NUMA */
9c1cfda2 5944
d3081f52
PZ
5945static const struct cpumask *cpu_cpu_mask(int cpu)
5946{
5947 return cpumask_of_node(cpu_to_node(cpu));
5948}
5949
5c45bf27 5950int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5951
dce840a0
PZ
5952struct sd_data {
5953 struct sched_domain **__percpu sd;
5954 struct sched_group **__percpu sg;
9c3f75cb 5955 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5956};
5957
49a02c51 5958struct s_data {
21d42ccf 5959 struct sched_domain ** __percpu sd;
49a02c51
AH
5960 struct root_domain *rd;
5961};
5962
2109b99e 5963enum s_alloc {
2109b99e 5964 sa_rootdomain,
21d42ccf 5965 sa_sd,
dce840a0 5966 sa_sd_storage,
2109b99e
AH
5967 sa_none,
5968};
5969
54ab4ff4
PZ
5970struct sched_domain_topology_level;
5971
5972typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5973typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5974
e3589f6c
PZ
5975#define SDTL_OVERLAP 0x01
5976
eb7a74e6 5977struct sched_domain_topology_level {
2c402dc3
PZ
5978 sched_domain_init_f init;
5979 sched_domain_mask_f mask;
e3589f6c 5980 int flags;
54ab4ff4 5981 struct sd_data data;
eb7a74e6
PZ
5982};
5983
e3589f6c
PZ
5984static int
5985build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5986{
5987 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5988 const struct cpumask *span = sched_domain_span(sd);
5989 struct cpumask *covered = sched_domains_tmpmask;
5990 struct sd_data *sdd = sd->private;
5991 struct sched_domain *child;
5992 int i;
5993
5994 cpumask_clear(covered);
5995
5996 for_each_cpu(i, span) {
5997 struct cpumask *sg_span;
5998
5999 if (cpumask_test_cpu(i, covered))
6000 continue;
6001
6002 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6003 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6004
6005 if (!sg)
6006 goto fail;
6007
6008 sg_span = sched_group_cpus(sg);
6009
6010 child = *per_cpu_ptr(sdd->sd, i);
6011 if (child->child) {
6012 child = child->child;
6013 cpumask_copy(sg_span, sched_domain_span(child));
6014 } else
6015 cpumask_set_cpu(i, sg_span);
6016
6017 cpumask_or(covered, covered, sg_span);
6018
6019 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6020 atomic_inc(&sg->sgp->ref);
6021
6022 if (cpumask_test_cpu(cpu, sg_span))
6023 groups = sg;
6024
6025 if (!first)
6026 first = sg;
6027 if (last)
6028 last->next = sg;
6029 last = sg;
6030 last->next = first;
6031 }
6032 sd->groups = groups;
6033
6034 return 0;
6035
6036fail:
6037 free_sched_groups(first, 0);
6038
6039 return -ENOMEM;
6040}
6041
dce840a0 6042static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6043{
dce840a0
PZ
6044 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6045 struct sched_domain *child = sd->child;
1da177e4 6046
dce840a0
PZ
6047 if (child)
6048 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6049
9c3f75cb 6050 if (sg) {
dce840a0 6051 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6052 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6053 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6054 }
dce840a0
PZ
6055
6056 return cpu;
1e9f28fa 6057}
1e9f28fa 6058
01a08546 6059/*
dce840a0
PZ
6060 * build_sched_groups will build a circular linked list of the groups
6061 * covered by the given span, and will set each group's ->cpumask correctly,
6062 * and ->cpu_power to 0.
e3589f6c
PZ
6063 *
6064 * Assumes the sched_domain tree is fully constructed
01a08546 6065 */
e3589f6c
PZ
6066static int
6067build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6068{
dce840a0
PZ
6069 struct sched_group *first = NULL, *last = NULL;
6070 struct sd_data *sdd = sd->private;
6071 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6072 struct cpumask *covered;
dce840a0 6073 int i;
9c1cfda2 6074
e3589f6c
PZ
6075 get_group(cpu, sdd, &sd->groups);
6076 atomic_inc(&sd->groups->ref);
6077
6078 if (cpu != cpumask_first(sched_domain_span(sd)))
6079 return 0;
6080
f96225fd
PZ
6081 lockdep_assert_held(&sched_domains_mutex);
6082 covered = sched_domains_tmpmask;
6083
dce840a0 6084 cpumask_clear(covered);
6711cab4 6085
dce840a0
PZ
6086 for_each_cpu(i, span) {
6087 struct sched_group *sg;
6088 int group = get_group(i, sdd, &sg);
6089 int j;
6711cab4 6090
dce840a0
PZ
6091 if (cpumask_test_cpu(i, covered))
6092 continue;
6711cab4 6093
dce840a0 6094 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6095 sg->sgp->power = 0;
0601a88d 6096
dce840a0
PZ
6097 for_each_cpu(j, span) {
6098 if (get_group(j, sdd, NULL) != group)
6099 continue;
0601a88d 6100
dce840a0
PZ
6101 cpumask_set_cpu(j, covered);
6102 cpumask_set_cpu(j, sched_group_cpus(sg));
6103 }
0601a88d 6104
dce840a0
PZ
6105 if (!first)
6106 first = sg;
6107 if (last)
6108 last->next = sg;
6109 last = sg;
6110 }
6111 last->next = first;
e3589f6c
PZ
6112
6113 return 0;
0601a88d 6114}
51888ca2 6115
89c4710e
SS
6116/*
6117 * Initialize sched groups cpu_power.
6118 *
6119 * cpu_power indicates the capacity of sched group, which is used while
6120 * distributing the load between different sched groups in a sched domain.
6121 * Typically cpu_power for all the groups in a sched domain will be same unless
6122 * there are asymmetries in the topology. If there are asymmetries, group
6123 * having more cpu_power will pickup more load compared to the group having
6124 * less cpu_power.
89c4710e
SS
6125 */
6126static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6127{
e3589f6c 6128 struct sched_group *sg = sd->groups;
89c4710e 6129
e3589f6c
PZ
6130 WARN_ON(!sd || !sg);
6131
6132 do {
6133 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6134 sg = sg->next;
6135 } while (sg != sd->groups);
89c4710e 6136
e3589f6c
PZ
6137 if (cpu != group_first_cpu(sg))
6138 return;
aae6d3dd 6139
d274cb30 6140 update_group_power(sd, cpu);
69e1e811 6141 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6142}
6143
029632fb
PZ
6144int __weak arch_sd_sibling_asym_packing(void)
6145{
6146 return 0*SD_ASYM_PACKING;
89c4710e
SS
6147}
6148
7c16ec58
MT
6149/*
6150 * Initializers for schedule domains
6151 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6152 */
6153
a5d8c348
IM
6154#ifdef CONFIG_SCHED_DEBUG
6155# define SD_INIT_NAME(sd, type) sd->name = #type
6156#else
6157# define SD_INIT_NAME(sd, type) do { } while (0)
6158#endif
6159
54ab4ff4
PZ
6160#define SD_INIT_FUNC(type) \
6161static noinline struct sched_domain * \
6162sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6163{ \
6164 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6165 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6166 SD_INIT_NAME(sd, type); \
6167 sd->private = &tl->data; \
6168 return sd; \
7c16ec58
MT
6169}
6170
6171SD_INIT_FUNC(CPU)
6172#ifdef CONFIG_NUMA
6173 SD_INIT_FUNC(ALLNODES)
6174 SD_INIT_FUNC(NODE)
6175#endif
6176#ifdef CONFIG_SCHED_SMT
6177 SD_INIT_FUNC(SIBLING)
6178#endif
6179#ifdef CONFIG_SCHED_MC
6180 SD_INIT_FUNC(MC)
6181#endif
01a08546
HC
6182#ifdef CONFIG_SCHED_BOOK
6183 SD_INIT_FUNC(BOOK)
6184#endif
7c16ec58 6185
1d3504fc 6186static int default_relax_domain_level = -1;
60495e77 6187int sched_domain_level_max;
1d3504fc
HS
6188
6189static int __init setup_relax_domain_level(char *str)
6190{
30e0e178
LZ
6191 unsigned long val;
6192
6193 val = simple_strtoul(str, NULL, 0);
60495e77 6194 if (val < sched_domain_level_max)
30e0e178
LZ
6195 default_relax_domain_level = val;
6196
1d3504fc
HS
6197 return 1;
6198}
6199__setup("relax_domain_level=", setup_relax_domain_level);
6200
6201static void set_domain_attribute(struct sched_domain *sd,
6202 struct sched_domain_attr *attr)
6203{
6204 int request;
6205
6206 if (!attr || attr->relax_domain_level < 0) {
6207 if (default_relax_domain_level < 0)
6208 return;
6209 else
6210 request = default_relax_domain_level;
6211 } else
6212 request = attr->relax_domain_level;
6213 if (request < sd->level) {
6214 /* turn off idle balance on this domain */
c88d5910 6215 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6216 } else {
6217 /* turn on idle balance on this domain */
c88d5910 6218 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6219 }
6220}
6221
54ab4ff4
PZ
6222static void __sdt_free(const struct cpumask *cpu_map);
6223static int __sdt_alloc(const struct cpumask *cpu_map);
6224
2109b99e
AH
6225static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6226 const struct cpumask *cpu_map)
6227{
6228 switch (what) {
2109b99e 6229 case sa_rootdomain:
822ff793
PZ
6230 if (!atomic_read(&d->rd->refcount))
6231 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6232 case sa_sd:
6233 free_percpu(d->sd); /* fall through */
dce840a0 6234 case sa_sd_storage:
54ab4ff4 6235 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6236 case sa_none:
6237 break;
6238 }
6239}
3404c8d9 6240
2109b99e
AH
6241static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6242 const struct cpumask *cpu_map)
6243{
dce840a0
PZ
6244 memset(d, 0, sizeof(*d));
6245
54ab4ff4
PZ
6246 if (__sdt_alloc(cpu_map))
6247 return sa_sd_storage;
dce840a0
PZ
6248 d->sd = alloc_percpu(struct sched_domain *);
6249 if (!d->sd)
6250 return sa_sd_storage;
2109b99e 6251 d->rd = alloc_rootdomain();
dce840a0 6252 if (!d->rd)
21d42ccf 6253 return sa_sd;
2109b99e
AH
6254 return sa_rootdomain;
6255}
57d885fe 6256
dce840a0
PZ
6257/*
6258 * NULL the sd_data elements we've used to build the sched_domain and
6259 * sched_group structure so that the subsequent __free_domain_allocs()
6260 * will not free the data we're using.
6261 */
6262static void claim_allocations(int cpu, struct sched_domain *sd)
6263{
6264 struct sd_data *sdd = sd->private;
dce840a0
PZ
6265
6266 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6267 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6268
e3589f6c 6269 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6270 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6271
6272 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6273 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6274}
6275
2c402dc3
PZ
6276#ifdef CONFIG_SCHED_SMT
6277static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6278{
2c402dc3 6279 return topology_thread_cpumask(cpu);
3bd65a80 6280}
2c402dc3 6281#endif
7f4588f3 6282
d069b916
PZ
6283/*
6284 * Topology list, bottom-up.
6285 */
2c402dc3 6286static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6287#ifdef CONFIG_SCHED_SMT
6288 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6289#endif
1e9f28fa 6290#ifdef CONFIG_SCHED_MC
2c402dc3 6291 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6292#endif
d069b916
PZ
6293#ifdef CONFIG_SCHED_BOOK
6294 { sd_init_BOOK, cpu_book_mask, },
6295#endif
6296 { sd_init_CPU, cpu_cpu_mask, },
6297#ifdef CONFIG_NUMA
e3589f6c 6298 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6299 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6300#endif
eb7a74e6
PZ
6301 { NULL, },
6302};
6303
6304static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6305
54ab4ff4
PZ
6306static int __sdt_alloc(const struct cpumask *cpu_map)
6307{
6308 struct sched_domain_topology_level *tl;
6309 int j;
6310
6311 for (tl = sched_domain_topology; tl->init; tl++) {
6312 struct sd_data *sdd = &tl->data;
6313
6314 sdd->sd = alloc_percpu(struct sched_domain *);
6315 if (!sdd->sd)
6316 return -ENOMEM;
6317
6318 sdd->sg = alloc_percpu(struct sched_group *);
6319 if (!sdd->sg)
6320 return -ENOMEM;
6321
9c3f75cb
PZ
6322 sdd->sgp = alloc_percpu(struct sched_group_power *);
6323 if (!sdd->sgp)
6324 return -ENOMEM;
6325
54ab4ff4
PZ
6326 for_each_cpu(j, cpu_map) {
6327 struct sched_domain *sd;
6328 struct sched_group *sg;
9c3f75cb 6329 struct sched_group_power *sgp;
54ab4ff4
PZ
6330
6331 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6332 GFP_KERNEL, cpu_to_node(j));
6333 if (!sd)
6334 return -ENOMEM;
6335
6336 *per_cpu_ptr(sdd->sd, j) = sd;
6337
6338 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6339 GFP_KERNEL, cpu_to_node(j));
6340 if (!sg)
6341 return -ENOMEM;
6342
6343 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6344
6345 sgp = kzalloc_node(sizeof(struct sched_group_power),
6346 GFP_KERNEL, cpu_to_node(j));
6347 if (!sgp)
6348 return -ENOMEM;
6349
6350 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6351 }
6352 }
6353
6354 return 0;
6355}
6356
6357static void __sdt_free(const struct cpumask *cpu_map)
6358{
6359 struct sched_domain_topology_level *tl;
6360 int j;
6361
6362 for (tl = sched_domain_topology; tl->init; tl++) {
6363 struct sd_data *sdd = &tl->data;
6364
6365 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6366 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6367 if (sd && (sd->flags & SD_OVERLAP))
6368 free_sched_groups(sd->groups, 0);
feff8fa0 6369 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6370 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6371 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6372 }
6373 free_percpu(sdd->sd);
6374 free_percpu(sdd->sg);
9c3f75cb 6375 free_percpu(sdd->sgp);
54ab4ff4
PZ
6376 }
6377}
6378
2c402dc3
PZ
6379struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6380 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6381 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6382 int cpu)
6383{
54ab4ff4 6384 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6385 if (!sd)
d069b916 6386 return child;
2c402dc3
PZ
6387
6388 set_domain_attribute(sd, attr);
6389 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6390 if (child) {
6391 sd->level = child->level + 1;
6392 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6393 child->parent = sd;
60495e77 6394 }
d069b916 6395 sd->child = child;
2c402dc3
PZ
6396
6397 return sd;
6398}
6399
2109b99e
AH
6400/*
6401 * Build sched domains for a given set of cpus and attach the sched domains
6402 * to the individual cpus
6403 */
dce840a0
PZ
6404static int build_sched_domains(const struct cpumask *cpu_map,
6405 struct sched_domain_attr *attr)
2109b99e
AH
6406{
6407 enum s_alloc alloc_state = sa_none;
dce840a0 6408 struct sched_domain *sd;
2109b99e 6409 struct s_data d;
822ff793 6410 int i, ret = -ENOMEM;
9c1cfda2 6411
2109b99e
AH
6412 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6413 if (alloc_state != sa_rootdomain)
6414 goto error;
9c1cfda2 6415
dce840a0 6416 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6417 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6418 struct sched_domain_topology_level *tl;
6419
3bd65a80 6420 sd = NULL;
e3589f6c 6421 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6422 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6423 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6424 sd->flags |= SD_OVERLAP;
d110235d
PZ
6425 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6426 break;
e3589f6c 6427 }
d274cb30 6428
d069b916
PZ
6429 while (sd->child)
6430 sd = sd->child;
6431
21d42ccf 6432 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6433 }
6434
6435 /* Build the groups for the domains */
6436 for_each_cpu(i, cpu_map) {
6437 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6438 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6439 if (sd->flags & SD_OVERLAP) {
6440 if (build_overlap_sched_groups(sd, i))
6441 goto error;
6442 } else {
6443 if (build_sched_groups(sd, i))
6444 goto error;
6445 }
1cf51902 6446 }
a06dadbe 6447 }
9c1cfda2 6448
1da177e4 6449 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6450 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6451 if (!cpumask_test_cpu(i, cpu_map))
6452 continue;
9c1cfda2 6453
dce840a0
PZ
6454 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6455 claim_allocations(i, sd);
cd4ea6ae 6456 init_sched_groups_power(i, sd);
dce840a0 6457 }
f712c0c7 6458 }
9c1cfda2 6459
1da177e4 6460 /* Attach the domains */
dce840a0 6461 rcu_read_lock();
abcd083a 6462 for_each_cpu(i, cpu_map) {
21d42ccf 6463 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6464 cpu_attach_domain(sd, d.rd, i);
1da177e4 6465 }
dce840a0 6466 rcu_read_unlock();
51888ca2 6467
822ff793 6468 ret = 0;
51888ca2 6469error:
2109b99e 6470 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6471 return ret;
1da177e4 6472}
029190c5 6473
acc3f5d7 6474static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6475static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6476static struct sched_domain_attr *dattr_cur;
6477 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6478
6479/*
6480 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6481 * cpumask) fails, then fallback to a single sched domain,
6482 * as determined by the single cpumask fallback_doms.
029190c5 6483 */
4212823f 6484static cpumask_var_t fallback_doms;
029190c5 6485
ee79d1bd
HC
6486/*
6487 * arch_update_cpu_topology lets virtualized architectures update the
6488 * cpu core maps. It is supposed to return 1 if the topology changed
6489 * or 0 if it stayed the same.
6490 */
6491int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6492{
ee79d1bd 6493 return 0;
22e52b07
HC
6494}
6495
acc3f5d7
RR
6496cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6497{
6498 int i;
6499 cpumask_var_t *doms;
6500
6501 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6502 if (!doms)
6503 return NULL;
6504 for (i = 0; i < ndoms; i++) {
6505 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6506 free_sched_domains(doms, i);
6507 return NULL;
6508 }
6509 }
6510 return doms;
6511}
6512
6513void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6514{
6515 unsigned int i;
6516 for (i = 0; i < ndoms; i++)
6517 free_cpumask_var(doms[i]);
6518 kfree(doms);
6519}
6520
1a20ff27 6521/*
41a2d6cf 6522 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6523 * For now this just excludes isolated cpus, but could be used to
6524 * exclude other special cases in the future.
1a20ff27 6525 */
c4a8849a 6526static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6527{
7378547f
MM
6528 int err;
6529
22e52b07 6530 arch_update_cpu_topology();
029190c5 6531 ndoms_cur = 1;
acc3f5d7 6532 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6533 if (!doms_cur)
acc3f5d7
RR
6534 doms_cur = &fallback_doms;
6535 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6536 dattr_cur = NULL;
dce840a0 6537 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6538 register_sched_domain_sysctl();
7378547f
MM
6539
6540 return err;
1a20ff27
DG
6541}
6542
1a20ff27
DG
6543/*
6544 * Detach sched domains from a group of cpus specified in cpu_map
6545 * These cpus will now be attached to the NULL domain
6546 */
96f874e2 6547static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6548{
6549 int i;
6550
dce840a0 6551 rcu_read_lock();
abcd083a 6552 for_each_cpu(i, cpu_map)
57d885fe 6553 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6554 rcu_read_unlock();
1a20ff27
DG
6555}
6556
1d3504fc
HS
6557/* handle null as "default" */
6558static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6559 struct sched_domain_attr *new, int idx_new)
6560{
6561 struct sched_domain_attr tmp;
6562
6563 /* fast path */
6564 if (!new && !cur)
6565 return 1;
6566
6567 tmp = SD_ATTR_INIT;
6568 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6569 new ? (new + idx_new) : &tmp,
6570 sizeof(struct sched_domain_attr));
6571}
6572
029190c5
PJ
6573/*
6574 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6575 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6576 * doms_new[] to the current sched domain partitioning, doms_cur[].
6577 * It destroys each deleted domain and builds each new domain.
6578 *
acc3f5d7 6579 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6580 * The masks don't intersect (don't overlap.) We should setup one
6581 * sched domain for each mask. CPUs not in any of the cpumasks will
6582 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6583 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6584 * it as it is.
6585 *
acc3f5d7
RR
6586 * The passed in 'doms_new' should be allocated using
6587 * alloc_sched_domains. This routine takes ownership of it and will
6588 * free_sched_domains it when done with it. If the caller failed the
6589 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6590 * and partition_sched_domains() will fallback to the single partition
6591 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6592 *
96f874e2 6593 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6594 * ndoms_new == 0 is a special case for destroying existing domains,
6595 * and it will not create the default domain.
dfb512ec 6596 *
029190c5
PJ
6597 * Call with hotplug lock held
6598 */
acc3f5d7 6599void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6600 struct sched_domain_attr *dattr_new)
029190c5 6601{
dfb512ec 6602 int i, j, n;
d65bd5ec 6603 int new_topology;
029190c5 6604
712555ee 6605 mutex_lock(&sched_domains_mutex);
a1835615 6606
7378547f
MM
6607 /* always unregister in case we don't destroy any domains */
6608 unregister_sched_domain_sysctl();
6609
d65bd5ec
HC
6610 /* Let architecture update cpu core mappings. */
6611 new_topology = arch_update_cpu_topology();
6612
dfb512ec 6613 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6614
6615 /* Destroy deleted domains */
6616 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6617 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6618 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6619 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6620 goto match1;
6621 }
6622 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6623 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6624match1:
6625 ;
6626 }
6627
e761b772
MK
6628 if (doms_new == NULL) {
6629 ndoms_cur = 0;
acc3f5d7 6630 doms_new = &fallback_doms;
6ad4c188 6631 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6632 WARN_ON_ONCE(dattr_new);
e761b772
MK
6633 }
6634
029190c5
PJ
6635 /* Build new domains */
6636 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6637 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6638 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6639 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6640 goto match2;
6641 }
6642 /* no match - add a new doms_new */
dce840a0 6643 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6644match2:
6645 ;
6646 }
6647
6648 /* Remember the new sched domains */
acc3f5d7
RR
6649 if (doms_cur != &fallback_doms)
6650 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6651 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6652 doms_cur = doms_new;
1d3504fc 6653 dattr_cur = dattr_new;
029190c5 6654 ndoms_cur = ndoms_new;
7378547f
MM
6655
6656 register_sched_domain_sysctl();
a1835615 6657
712555ee 6658 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6659}
6660
5c45bf27 6661#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6662static void reinit_sched_domains(void)
5c45bf27 6663{
95402b38 6664 get_online_cpus();
dfb512ec
MK
6665
6666 /* Destroy domains first to force the rebuild */
6667 partition_sched_domains(0, NULL, NULL);
6668
e761b772 6669 rebuild_sched_domains();
95402b38 6670 put_online_cpus();
5c45bf27
SS
6671}
6672
6673static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6674{
afb8a9b7 6675 unsigned int level = 0;
5c45bf27 6676
afb8a9b7
GS
6677 if (sscanf(buf, "%u", &level) != 1)
6678 return -EINVAL;
6679
6680 /*
6681 * level is always be positive so don't check for
6682 * level < POWERSAVINGS_BALANCE_NONE which is 0
6683 * What happens on 0 or 1 byte write,
6684 * need to check for count as well?
6685 */
6686
6687 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6688 return -EINVAL;
6689
6690 if (smt)
afb8a9b7 6691 sched_smt_power_savings = level;
5c45bf27 6692 else
afb8a9b7 6693 sched_mc_power_savings = level;
5c45bf27 6694
c4a8849a 6695 reinit_sched_domains();
5c45bf27 6696
c70f22d2 6697 return count;
5c45bf27
SS
6698}
6699
5c45bf27 6700#ifdef CONFIG_SCHED_MC
8a25a2fd
KS
6701static ssize_t sched_mc_power_savings_show(struct device *dev,
6702 struct device_attribute *attr,
6703 char *buf)
5c45bf27 6704{
8a25a2fd 6705 return sprintf(buf, "%u\n", sched_mc_power_savings);
5c45bf27 6706}
8a25a2fd
KS
6707static ssize_t sched_mc_power_savings_store(struct device *dev,
6708 struct device_attribute *attr,
48f24c4d 6709 const char *buf, size_t count)
5c45bf27
SS
6710{
6711 return sched_power_savings_store(buf, count, 0);
6712}
8a25a2fd
KS
6713static DEVICE_ATTR(sched_mc_power_savings, 0644,
6714 sched_mc_power_savings_show,
6715 sched_mc_power_savings_store);
5c45bf27
SS
6716#endif
6717
6718#ifdef CONFIG_SCHED_SMT
8a25a2fd
KS
6719static ssize_t sched_smt_power_savings_show(struct device *dev,
6720 struct device_attribute *attr,
6721 char *buf)
5c45bf27 6722{
8a25a2fd 6723 return sprintf(buf, "%u\n", sched_smt_power_savings);
5c45bf27 6724}
8a25a2fd
KS
6725static ssize_t sched_smt_power_savings_store(struct device *dev,
6726 struct device_attribute *attr,
48f24c4d 6727 const char *buf, size_t count)
5c45bf27
SS
6728{
6729 return sched_power_savings_store(buf, count, 1);
6730}
8a25a2fd 6731static DEVICE_ATTR(sched_smt_power_savings, 0644,
f718cd4a 6732 sched_smt_power_savings_show,
6707de00
AB
6733 sched_smt_power_savings_store);
6734#endif
6735
8a25a2fd 6736int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6707de00
AB
6737{
6738 int err = 0;
6739
6740#ifdef CONFIG_SCHED_SMT
6741 if (smt_capable())
8a25a2fd 6742 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6707de00
AB
6743#endif
6744#ifdef CONFIG_SCHED_MC
6745 if (!err && mc_capable())
8a25a2fd 6746 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6707de00
AB
6747#endif
6748 return err;
6749}
6d6bc0ad 6750#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6751
1da177e4 6752/*
3a101d05
TH
6753 * Update cpusets according to cpu_active mask. If cpusets are
6754 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6755 * around partition_sched_domains().
1da177e4 6756 */
0b2e918a
TH
6757static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6758 void *hcpu)
e761b772 6759{
3a101d05 6760 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6761 case CPU_ONLINE:
6ad4c188 6762 case CPU_DOWN_FAILED:
3a101d05 6763 cpuset_update_active_cpus();
e761b772 6764 return NOTIFY_OK;
3a101d05
TH
6765 default:
6766 return NOTIFY_DONE;
6767 }
6768}
e761b772 6769
0b2e918a
TH
6770static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6771 void *hcpu)
3a101d05
TH
6772{
6773 switch (action & ~CPU_TASKS_FROZEN) {
6774 case CPU_DOWN_PREPARE:
6775 cpuset_update_active_cpus();
6776 return NOTIFY_OK;
e761b772
MK
6777 default:
6778 return NOTIFY_DONE;
6779 }
6780}
e761b772 6781
1da177e4
LT
6782void __init sched_init_smp(void)
6783{
dcc30a35
RR
6784 cpumask_var_t non_isolated_cpus;
6785
6786 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6787 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6788
95402b38 6789 get_online_cpus();
712555ee 6790 mutex_lock(&sched_domains_mutex);
c4a8849a 6791 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6792 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6793 if (cpumask_empty(non_isolated_cpus))
6794 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6795 mutex_unlock(&sched_domains_mutex);
95402b38 6796 put_online_cpus();
e761b772 6797
3a101d05
TH
6798 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6799 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6800
6801 /* RT runtime code needs to handle some hotplug events */
6802 hotcpu_notifier(update_runtime, 0);
6803
b328ca18 6804 init_hrtick();
5c1e1767
NP
6805
6806 /* Move init over to a non-isolated CPU */
dcc30a35 6807 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6808 BUG();
19978ca6 6809 sched_init_granularity();
dcc30a35 6810 free_cpumask_var(non_isolated_cpus);
4212823f 6811
0e3900e6 6812 init_sched_rt_class();
1da177e4
LT
6813}
6814#else
6815void __init sched_init_smp(void)
6816{
19978ca6 6817 sched_init_granularity();
1da177e4
LT
6818}
6819#endif /* CONFIG_SMP */
6820
cd1bb94b
AB
6821const_debug unsigned int sysctl_timer_migration = 1;
6822
1da177e4
LT
6823int in_sched_functions(unsigned long addr)
6824{
1da177e4
LT
6825 return in_lock_functions(addr) ||
6826 (addr >= (unsigned long)__sched_text_start
6827 && addr < (unsigned long)__sched_text_end);
6828}
6829
029632fb
PZ
6830#ifdef CONFIG_CGROUP_SCHED
6831struct task_group root_task_group;
052f1dc7 6832#endif
6f505b16 6833
029632fb 6834DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6835
1da177e4
LT
6836void __init sched_init(void)
6837{
dd41f596 6838 int i, j;
434d53b0
MT
6839 unsigned long alloc_size = 0, ptr;
6840
6841#ifdef CONFIG_FAIR_GROUP_SCHED
6842 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6843#endif
6844#ifdef CONFIG_RT_GROUP_SCHED
6845 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6846#endif
df7c8e84 6847#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6848 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6849#endif
434d53b0 6850 if (alloc_size) {
36b7b6d4 6851 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6852
6853#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6854 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6855 ptr += nr_cpu_ids * sizeof(void **);
6856
07e06b01 6857 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6858 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6859
6d6bc0ad 6860#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6861#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6862 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6863 ptr += nr_cpu_ids * sizeof(void **);
6864
07e06b01 6865 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6866 ptr += nr_cpu_ids * sizeof(void **);
6867
6d6bc0ad 6868#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6869#ifdef CONFIG_CPUMASK_OFFSTACK
6870 for_each_possible_cpu(i) {
6871 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6872 ptr += cpumask_size();
6873 }
6874#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6875 }
dd41f596 6876
57d885fe
GH
6877#ifdef CONFIG_SMP
6878 init_defrootdomain();
6879#endif
6880
d0b27fa7
PZ
6881 init_rt_bandwidth(&def_rt_bandwidth,
6882 global_rt_period(), global_rt_runtime());
6883
6884#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6885 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6886 global_rt_period(), global_rt_runtime());
6d6bc0ad 6887#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6888
7c941438 6889#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6890 list_add(&root_task_group.list, &task_groups);
6891 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6892 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6893 autogroup_init(&init_task);
54c707e9 6894
7c941438 6895#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6896
54c707e9
GC
6897#ifdef CONFIG_CGROUP_CPUACCT
6898 root_cpuacct.cpustat = &kernel_cpustat;
6899 root_cpuacct.cpuusage = alloc_percpu(u64);
6900 /* Too early, not expected to fail */
6901 BUG_ON(!root_cpuacct.cpuusage);
6902#endif
0a945022 6903 for_each_possible_cpu(i) {
70b97a7f 6904 struct rq *rq;
1da177e4
LT
6905
6906 rq = cpu_rq(i);
05fa785c 6907 raw_spin_lock_init(&rq->lock);
7897986b 6908 rq->nr_running = 0;
dce48a84
TG
6909 rq->calc_load_active = 0;
6910 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6911 init_cfs_rq(&rq->cfs);
6f505b16 6912 init_rt_rq(&rq->rt, rq);
dd41f596 6913#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6914 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6915 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6916 /*
07e06b01 6917 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6918 *
6919 * In case of task-groups formed thr' the cgroup filesystem, it
6920 * gets 100% of the cpu resources in the system. This overall
6921 * system cpu resource is divided among the tasks of
07e06b01 6922 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6923 * based on each entity's (task or task-group's) weight
6924 * (se->load.weight).
6925 *
07e06b01 6926 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6927 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6928 * then A0's share of the cpu resource is:
6929 *
0d905bca 6930 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6931 *
07e06b01
YZ
6932 * We achieve this by letting root_task_group's tasks sit
6933 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6934 */
ab84d31e 6935 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6936 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6937#endif /* CONFIG_FAIR_GROUP_SCHED */
6938
6939 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6940#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6941 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6942 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6943#endif
1da177e4 6944
dd41f596
IM
6945 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6946 rq->cpu_load[j] = 0;
fdf3e95d
VP
6947
6948 rq->last_load_update_tick = jiffies;
6949
1da177e4 6950#ifdef CONFIG_SMP
41c7ce9a 6951 rq->sd = NULL;
57d885fe 6952 rq->rd = NULL;
1399fa78 6953 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6954 rq->post_schedule = 0;
1da177e4 6955 rq->active_balance = 0;
dd41f596 6956 rq->next_balance = jiffies;
1da177e4 6957 rq->push_cpu = 0;
0a2966b4 6958 rq->cpu = i;
1f11eb6a 6959 rq->online = 0;
eae0c9df
MG
6960 rq->idle_stamp = 0;
6961 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 6962 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6963#ifdef CONFIG_NO_HZ
1c792db7 6964 rq->nohz_flags = 0;
83cd4fe2 6965#endif
1da177e4 6966#endif
8f4d37ec 6967 init_rq_hrtick(rq);
1da177e4 6968 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6969 }
6970
2dd73a4f 6971 set_load_weight(&init_task);
b50f60ce 6972
e107be36
AK
6973#ifdef CONFIG_PREEMPT_NOTIFIERS
6974 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6975#endif
6976
b50f60ce 6977#ifdef CONFIG_RT_MUTEXES
732375c6 6978 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6979#endif
6980
1da177e4
LT
6981 /*
6982 * The boot idle thread does lazy MMU switching as well:
6983 */
6984 atomic_inc(&init_mm.mm_count);
6985 enter_lazy_tlb(&init_mm, current);
6986
6987 /*
6988 * Make us the idle thread. Technically, schedule() should not be
6989 * called from this thread, however somewhere below it might be,
6990 * but because we are the idle thread, we just pick up running again
6991 * when this runqueue becomes "idle".
6992 */
6993 init_idle(current, smp_processor_id());
dce48a84
TG
6994
6995 calc_load_update = jiffies + LOAD_FREQ;
6996
dd41f596
IM
6997 /*
6998 * During early bootup we pretend to be a normal task:
6999 */
7000 current->sched_class = &fair_sched_class;
6892b75e 7001
bf4d83f6 7002#ifdef CONFIG_SMP
4cb98839 7003 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7004 /* May be allocated at isolcpus cmdline parse time */
7005 if (cpu_isolated_map == NULL)
7006 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
7007#endif
7008 init_sched_fair_class();
6a7b3dc3 7009
6892b75e 7010 scheduler_running = 1;
1da177e4
LT
7011}
7012
d902db1e 7013#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7014static inline int preempt_count_equals(int preempt_offset)
7015{
234da7bc 7016 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7017
4ba8216c 7018 return (nested == preempt_offset);
e4aafea2
FW
7019}
7020
d894837f 7021void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7022{
1da177e4
LT
7023 static unsigned long prev_jiffy; /* ratelimiting */
7024
b3fbab05 7025 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7026 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7027 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7028 return;
7029 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7030 return;
7031 prev_jiffy = jiffies;
7032
3df0fc5b
PZ
7033 printk(KERN_ERR
7034 "BUG: sleeping function called from invalid context at %s:%d\n",
7035 file, line);
7036 printk(KERN_ERR
7037 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7038 in_atomic(), irqs_disabled(),
7039 current->pid, current->comm);
aef745fc
IM
7040
7041 debug_show_held_locks(current);
7042 if (irqs_disabled())
7043 print_irqtrace_events(current);
7044 dump_stack();
1da177e4
LT
7045}
7046EXPORT_SYMBOL(__might_sleep);
7047#endif
7048
7049#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7050static void normalize_task(struct rq *rq, struct task_struct *p)
7051{
da7a735e
PZ
7052 const struct sched_class *prev_class = p->sched_class;
7053 int old_prio = p->prio;
3a5e4dc1 7054 int on_rq;
3e51f33f 7055
fd2f4419 7056 on_rq = p->on_rq;
3a5e4dc1 7057 if (on_rq)
4ca9b72b 7058 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7059 __setscheduler(rq, p, SCHED_NORMAL, 0);
7060 if (on_rq) {
4ca9b72b 7061 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7062 resched_task(rq->curr);
7063 }
da7a735e
PZ
7064
7065 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7066}
7067
1da177e4
LT
7068void normalize_rt_tasks(void)
7069{
a0f98a1c 7070 struct task_struct *g, *p;
1da177e4 7071 unsigned long flags;
70b97a7f 7072 struct rq *rq;
1da177e4 7073
4cf5d77a 7074 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7075 do_each_thread(g, p) {
178be793
IM
7076 /*
7077 * Only normalize user tasks:
7078 */
7079 if (!p->mm)
7080 continue;
7081
6cfb0d5d 7082 p->se.exec_start = 0;
6cfb0d5d 7083#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7084 p->se.statistics.wait_start = 0;
7085 p->se.statistics.sleep_start = 0;
7086 p->se.statistics.block_start = 0;
6cfb0d5d 7087#endif
dd41f596
IM
7088
7089 if (!rt_task(p)) {
7090 /*
7091 * Renice negative nice level userspace
7092 * tasks back to 0:
7093 */
7094 if (TASK_NICE(p) < 0 && p->mm)
7095 set_user_nice(p, 0);
1da177e4 7096 continue;
dd41f596 7097 }
1da177e4 7098
1d615482 7099 raw_spin_lock(&p->pi_lock);
b29739f9 7100 rq = __task_rq_lock(p);
1da177e4 7101
178be793 7102 normalize_task(rq, p);
3a5e4dc1 7103
b29739f9 7104 __task_rq_unlock(rq);
1d615482 7105 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7106 } while_each_thread(g, p);
7107
4cf5d77a 7108 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7109}
7110
7111#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7112
67fc4e0c 7113#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7114/*
67fc4e0c 7115 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7116 *
7117 * They can only be called when the whole system has been
7118 * stopped - every CPU needs to be quiescent, and no scheduling
7119 * activity can take place. Using them for anything else would
7120 * be a serious bug, and as a result, they aren't even visible
7121 * under any other configuration.
7122 */
7123
7124/**
7125 * curr_task - return the current task for a given cpu.
7126 * @cpu: the processor in question.
7127 *
7128 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7129 */
36c8b586 7130struct task_struct *curr_task(int cpu)
1df5c10a
LT
7131{
7132 return cpu_curr(cpu);
7133}
7134
67fc4e0c
JW
7135#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7136
7137#ifdef CONFIG_IA64
1df5c10a
LT
7138/**
7139 * set_curr_task - set the current task for a given cpu.
7140 * @cpu: the processor in question.
7141 * @p: the task pointer to set.
7142 *
7143 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7144 * are serviced on a separate stack. It allows the architecture to switch the
7145 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7146 * must be called with all CPU's synchronized, and interrupts disabled, the
7147 * and caller must save the original value of the current task (see
7148 * curr_task() above) and restore that value before reenabling interrupts and
7149 * re-starting the system.
7150 *
7151 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7152 */
36c8b586 7153void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7154{
7155 cpu_curr(cpu) = p;
7156}
7157
7158#endif
29f59db3 7159
7c941438 7160#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7161/* task_group_lock serializes the addition/removal of task groups */
7162static DEFINE_SPINLOCK(task_group_lock);
7163
bccbe08a
PZ
7164static void free_sched_group(struct task_group *tg)
7165{
7166 free_fair_sched_group(tg);
7167 free_rt_sched_group(tg);
e9aa1dd1 7168 autogroup_free(tg);
bccbe08a
PZ
7169 kfree(tg);
7170}
7171
7172/* allocate runqueue etc for a new task group */
ec7dc8ac 7173struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7174{
7175 struct task_group *tg;
7176 unsigned long flags;
bccbe08a
PZ
7177
7178 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7179 if (!tg)
7180 return ERR_PTR(-ENOMEM);
7181
ec7dc8ac 7182 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7183 goto err;
7184
ec7dc8ac 7185 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7186 goto err;
7187
8ed36996 7188 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7189 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7190
7191 WARN_ON(!parent); /* root should already exist */
7192
7193 tg->parent = parent;
f473aa5e 7194 INIT_LIST_HEAD(&tg->children);
09f2724a 7195 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7196 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7197
9b5b7751 7198 return tg;
29f59db3
SV
7199
7200err:
6f505b16 7201 free_sched_group(tg);
29f59db3
SV
7202 return ERR_PTR(-ENOMEM);
7203}
7204
9b5b7751 7205/* rcu callback to free various structures associated with a task group */
6f505b16 7206static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7207{
29f59db3 7208 /* now it should be safe to free those cfs_rqs */
6f505b16 7209 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7210}
7211
9b5b7751 7212/* Destroy runqueue etc associated with a task group */
4cf86d77 7213void sched_destroy_group(struct task_group *tg)
29f59db3 7214{
8ed36996 7215 unsigned long flags;
9b5b7751 7216 int i;
29f59db3 7217
3d4b47b4
PZ
7218 /* end participation in shares distribution */
7219 for_each_possible_cpu(i)
bccbe08a 7220 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7221
7222 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7223 list_del_rcu(&tg->list);
f473aa5e 7224 list_del_rcu(&tg->siblings);
8ed36996 7225 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7226
9b5b7751 7227 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7228 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7229}
7230
9b5b7751 7231/* change task's runqueue when it moves between groups.
3a252015
IM
7232 * The caller of this function should have put the task in its new group
7233 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7234 * reflect its new group.
9b5b7751
SV
7235 */
7236void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7237{
7238 int on_rq, running;
7239 unsigned long flags;
7240 struct rq *rq;
7241
7242 rq = task_rq_lock(tsk, &flags);
7243
051a1d1a 7244 running = task_current(rq, tsk);
fd2f4419 7245 on_rq = tsk->on_rq;
29f59db3 7246
0e1f3483 7247 if (on_rq)
29f59db3 7248 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7249 if (unlikely(running))
7250 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7251
810b3817 7252#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7253 if (tsk->sched_class->task_move_group)
7254 tsk->sched_class->task_move_group(tsk, on_rq);
7255 else
810b3817 7256#endif
b2b5ce02 7257 set_task_rq(tsk, task_cpu(tsk));
810b3817 7258
0e1f3483
HS
7259 if (unlikely(running))
7260 tsk->sched_class->set_curr_task(rq);
7261 if (on_rq)
371fd7e7 7262 enqueue_task(rq, tsk, 0);
29f59db3 7263
0122ec5b 7264 task_rq_unlock(rq, tsk, &flags);
29f59db3 7265}
7c941438 7266#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7267
a790de99 7268#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7269static unsigned long to_ratio(u64 period, u64 runtime)
7270{
7271 if (runtime == RUNTIME_INF)
9a7e0b18 7272 return 1ULL << 20;
9f0c1e56 7273
9a7e0b18 7274 return div64_u64(runtime << 20, period);
9f0c1e56 7275}
a790de99
PT
7276#endif
7277
7278#ifdef CONFIG_RT_GROUP_SCHED
7279/*
7280 * Ensure that the real time constraints are schedulable.
7281 */
7282static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7283
9a7e0b18
PZ
7284/* Must be called with tasklist_lock held */
7285static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7286{
9a7e0b18 7287 struct task_struct *g, *p;
b40b2e8e 7288
9a7e0b18 7289 do_each_thread(g, p) {
029632fb 7290 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7291 return 1;
7292 } while_each_thread(g, p);
b40b2e8e 7293
9a7e0b18
PZ
7294 return 0;
7295}
b40b2e8e 7296
9a7e0b18
PZ
7297struct rt_schedulable_data {
7298 struct task_group *tg;
7299 u64 rt_period;
7300 u64 rt_runtime;
7301};
b40b2e8e 7302
a790de99 7303static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7304{
7305 struct rt_schedulable_data *d = data;
7306 struct task_group *child;
7307 unsigned long total, sum = 0;
7308 u64 period, runtime;
b40b2e8e 7309
9a7e0b18
PZ
7310 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7311 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7312
9a7e0b18
PZ
7313 if (tg == d->tg) {
7314 period = d->rt_period;
7315 runtime = d->rt_runtime;
b40b2e8e 7316 }
b40b2e8e 7317
4653f803
PZ
7318 /*
7319 * Cannot have more runtime than the period.
7320 */
7321 if (runtime > period && runtime != RUNTIME_INF)
7322 return -EINVAL;
6f505b16 7323
4653f803
PZ
7324 /*
7325 * Ensure we don't starve existing RT tasks.
7326 */
9a7e0b18
PZ
7327 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7328 return -EBUSY;
6f505b16 7329
9a7e0b18 7330 total = to_ratio(period, runtime);
6f505b16 7331
4653f803
PZ
7332 /*
7333 * Nobody can have more than the global setting allows.
7334 */
7335 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7336 return -EINVAL;
6f505b16 7337
4653f803
PZ
7338 /*
7339 * The sum of our children's runtime should not exceed our own.
7340 */
9a7e0b18
PZ
7341 list_for_each_entry_rcu(child, &tg->children, siblings) {
7342 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7343 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7344
9a7e0b18
PZ
7345 if (child == d->tg) {
7346 period = d->rt_period;
7347 runtime = d->rt_runtime;
7348 }
6f505b16 7349
9a7e0b18 7350 sum += to_ratio(period, runtime);
9f0c1e56 7351 }
6f505b16 7352
9a7e0b18
PZ
7353 if (sum > total)
7354 return -EINVAL;
7355
7356 return 0;
6f505b16
PZ
7357}
7358
9a7e0b18 7359static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7360{
8277434e
PT
7361 int ret;
7362
9a7e0b18
PZ
7363 struct rt_schedulable_data data = {
7364 .tg = tg,
7365 .rt_period = period,
7366 .rt_runtime = runtime,
7367 };
7368
8277434e
PT
7369 rcu_read_lock();
7370 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7371 rcu_read_unlock();
7372
7373 return ret;
521f1a24
DG
7374}
7375
ab84d31e 7376static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7377 u64 rt_period, u64 rt_runtime)
6f505b16 7378{
ac086bc2 7379 int i, err = 0;
9f0c1e56 7380
9f0c1e56 7381 mutex_lock(&rt_constraints_mutex);
521f1a24 7382 read_lock(&tasklist_lock);
9a7e0b18
PZ
7383 err = __rt_schedulable(tg, rt_period, rt_runtime);
7384 if (err)
9f0c1e56 7385 goto unlock;
ac086bc2 7386
0986b11b 7387 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7388 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7389 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7390
7391 for_each_possible_cpu(i) {
7392 struct rt_rq *rt_rq = tg->rt_rq[i];
7393
0986b11b 7394 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7395 rt_rq->rt_runtime = rt_runtime;
0986b11b 7396 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7397 }
0986b11b 7398 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7399unlock:
521f1a24 7400 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7401 mutex_unlock(&rt_constraints_mutex);
7402
7403 return err;
6f505b16
PZ
7404}
7405
d0b27fa7
PZ
7406int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7407{
7408 u64 rt_runtime, rt_period;
7409
7410 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7411 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7412 if (rt_runtime_us < 0)
7413 rt_runtime = RUNTIME_INF;
7414
ab84d31e 7415 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7416}
7417
9f0c1e56
PZ
7418long sched_group_rt_runtime(struct task_group *tg)
7419{
7420 u64 rt_runtime_us;
7421
d0b27fa7 7422 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7423 return -1;
7424
d0b27fa7 7425 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7426 do_div(rt_runtime_us, NSEC_PER_USEC);
7427 return rt_runtime_us;
7428}
d0b27fa7
PZ
7429
7430int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7431{
7432 u64 rt_runtime, rt_period;
7433
7434 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7435 rt_runtime = tg->rt_bandwidth.rt_runtime;
7436
619b0488
R
7437 if (rt_period == 0)
7438 return -EINVAL;
7439
ab84d31e 7440 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7441}
7442
7443long sched_group_rt_period(struct task_group *tg)
7444{
7445 u64 rt_period_us;
7446
7447 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7448 do_div(rt_period_us, NSEC_PER_USEC);
7449 return rt_period_us;
7450}
7451
7452static int sched_rt_global_constraints(void)
7453{
4653f803 7454 u64 runtime, period;
d0b27fa7
PZ
7455 int ret = 0;
7456
ec5d4989
HS
7457 if (sysctl_sched_rt_period <= 0)
7458 return -EINVAL;
7459
4653f803
PZ
7460 runtime = global_rt_runtime();
7461 period = global_rt_period();
7462
7463 /*
7464 * Sanity check on the sysctl variables.
7465 */
7466 if (runtime > period && runtime != RUNTIME_INF)
7467 return -EINVAL;
10b612f4 7468
d0b27fa7 7469 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7470 read_lock(&tasklist_lock);
4653f803 7471 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7472 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7473 mutex_unlock(&rt_constraints_mutex);
7474
7475 return ret;
7476}
54e99124
DG
7477
7478int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7479{
7480 /* Don't accept realtime tasks when there is no way for them to run */
7481 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7482 return 0;
7483
7484 return 1;
7485}
7486
6d6bc0ad 7487#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7488static int sched_rt_global_constraints(void)
7489{
ac086bc2
PZ
7490 unsigned long flags;
7491 int i;
7492
ec5d4989
HS
7493 if (sysctl_sched_rt_period <= 0)
7494 return -EINVAL;
7495
60aa605d
PZ
7496 /*
7497 * There's always some RT tasks in the root group
7498 * -- migration, kstopmachine etc..
7499 */
7500 if (sysctl_sched_rt_runtime == 0)
7501 return -EBUSY;
7502
0986b11b 7503 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7504 for_each_possible_cpu(i) {
7505 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7506
0986b11b 7507 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7508 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7509 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7510 }
0986b11b 7511 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7512
d0b27fa7
PZ
7513 return 0;
7514}
6d6bc0ad 7515#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7516
7517int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7518 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7519 loff_t *ppos)
7520{
7521 int ret;
7522 int old_period, old_runtime;
7523 static DEFINE_MUTEX(mutex);
7524
7525 mutex_lock(&mutex);
7526 old_period = sysctl_sched_rt_period;
7527 old_runtime = sysctl_sched_rt_runtime;
7528
8d65af78 7529 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7530
7531 if (!ret && write) {
7532 ret = sched_rt_global_constraints();
7533 if (ret) {
7534 sysctl_sched_rt_period = old_period;
7535 sysctl_sched_rt_runtime = old_runtime;
7536 } else {
7537 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7538 def_rt_bandwidth.rt_period =
7539 ns_to_ktime(global_rt_period());
7540 }
7541 }
7542 mutex_unlock(&mutex);
7543
7544 return ret;
7545}
68318b8e 7546
052f1dc7 7547#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7548
7549/* return corresponding task_group object of a cgroup */
2b01dfe3 7550static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7551{
2b01dfe3
PM
7552 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7553 struct task_group, css);
68318b8e
SV
7554}
7555
7556static struct cgroup_subsys_state *
2b01dfe3 7557cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7558{
ec7dc8ac 7559 struct task_group *tg, *parent;
68318b8e 7560
2b01dfe3 7561 if (!cgrp->parent) {
68318b8e 7562 /* This is early initialization for the top cgroup */
07e06b01 7563 return &root_task_group.css;
68318b8e
SV
7564 }
7565
ec7dc8ac
DG
7566 parent = cgroup_tg(cgrp->parent);
7567 tg = sched_create_group(parent);
68318b8e
SV
7568 if (IS_ERR(tg))
7569 return ERR_PTR(-ENOMEM);
7570
68318b8e
SV
7571 return &tg->css;
7572}
7573
41a2d6cf
IM
7574static void
7575cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7576{
2b01dfe3 7577 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7578
7579 sched_destroy_group(tg);
7580}
7581
bb9d97b6
TH
7582static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7583 struct cgroup_taskset *tset)
68318b8e 7584{
bb9d97b6
TH
7585 struct task_struct *task;
7586
7587 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7588#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7589 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7590 return -EINVAL;
b68aa230 7591#else
bb9d97b6
TH
7592 /* We don't support RT-tasks being in separate groups */
7593 if (task->sched_class != &fair_sched_class)
7594 return -EINVAL;
b68aa230 7595#endif
bb9d97b6 7596 }
be367d09
BB
7597 return 0;
7598}
68318b8e 7599
bb9d97b6
TH
7600static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7601 struct cgroup_taskset *tset)
68318b8e 7602{
bb9d97b6
TH
7603 struct task_struct *task;
7604
7605 cgroup_taskset_for_each(task, cgrp, tset)
7606 sched_move_task(task);
68318b8e
SV
7607}
7608
068c5cc5 7609static void
d41d5a01
PZ
7610cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7611 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7612{
7613 /*
7614 * cgroup_exit() is called in the copy_process() failure path.
7615 * Ignore this case since the task hasn't ran yet, this avoids
7616 * trying to poke a half freed task state from generic code.
7617 */
7618 if (!(task->flags & PF_EXITING))
7619 return;
7620
7621 sched_move_task(task);
7622}
7623
052f1dc7 7624#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7625static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7626 u64 shareval)
68318b8e 7627{
c8b28116 7628 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7629}
7630
f4c753b7 7631static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7632{
2b01dfe3 7633 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7634
c8b28116 7635 return (u64) scale_load_down(tg->shares);
68318b8e 7636}
ab84d31e
PT
7637
7638#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7639static DEFINE_MUTEX(cfs_constraints_mutex);
7640
ab84d31e
PT
7641const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7642const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7643
a790de99
PT
7644static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7645
ab84d31e
PT
7646static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7647{
56f570e5 7648 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7649 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7650
7651 if (tg == &root_task_group)
7652 return -EINVAL;
7653
7654 /*
7655 * Ensure we have at some amount of bandwidth every period. This is
7656 * to prevent reaching a state of large arrears when throttled via
7657 * entity_tick() resulting in prolonged exit starvation.
7658 */
7659 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7660 return -EINVAL;
7661
7662 /*
7663 * Likewise, bound things on the otherside by preventing insane quota
7664 * periods. This also allows us to normalize in computing quota
7665 * feasibility.
7666 */
7667 if (period > max_cfs_quota_period)
7668 return -EINVAL;
7669
a790de99
PT
7670 mutex_lock(&cfs_constraints_mutex);
7671 ret = __cfs_schedulable(tg, period, quota);
7672 if (ret)
7673 goto out_unlock;
7674
58088ad0 7675 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7676 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7677 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7678 raw_spin_lock_irq(&cfs_b->lock);
7679 cfs_b->period = ns_to_ktime(period);
7680 cfs_b->quota = quota;
58088ad0 7681
a9cf55b2 7682 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7683 /* restart the period timer (if active) to handle new period expiry */
7684 if (runtime_enabled && cfs_b->timer_active) {
7685 /* force a reprogram */
7686 cfs_b->timer_active = 0;
7687 __start_cfs_bandwidth(cfs_b);
7688 }
ab84d31e
PT
7689 raw_spin_unlock_irq(&cfs_b->lock);
7690
7691 for_each_possible_cpu(i) {
7692 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7693 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7694
7695 raw_spin_lock_irq(&rq->lock);
58088ad0 7696 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7697 cfs_rq->runtime_remaining = 0;
671fd9da 7698
029632fb 7699 if (cfs_rq->throttled)
671fd9da 7700 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7701 raw_spin_unlock_irq(&rq->lock);
7702 }
a790de99
PT
7703out_unlock:
7704 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7705
a790de99 7706 return ret;
ab84d31e
PT
7707}
7708
7709int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7710{
7711 u64 quota, period;
7712
029632fb 7713 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7714 if (cfs_quota_us < 0)
7715 quota = RUNTIME_INF;
7716 else
7717 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7718
7719 return tg_set_cfs_bandwidth(tg, period, quota);
7720}
7721
7722long tg_get_cfs_quota(struct task_group *tg)
7723{
7724 u64 quota_us;
7725
029632fb 7726 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7727 return -1;
7728
029632fb 7729 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7730 do_div(quota_us, NSEC_PER_USEC);
7731
7732 return quota_us;
7733}
7734
7735int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7736{
7737 u64 quota, period;
7738
7739 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7740 quota = tg->cfs_bandwidth.quota;
ab84d31e 7741
ab84d31e
PT
7742 return tg_set_cfs_bandwidth(tg, period, quota);
7743}
7744
7745long tg_get_cfs_period(struct task_group *tg)
7746{
7747 u64 cfs_period_us;
7748
029632fb 7749 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7750 do_div(cfs_period_us, NSEC_PER_USEC);
7751
7752 return cfs_period_us;
7753}
7754
7755static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7756{
7757 return tg_get_cfs_quota(cgroup_tg(cgrp));
7758}
7759
7760static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7761 s64 cfs_quota_us)
7762{
7763 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7764}
7765
7766static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7767{
7768 return tg_get_cfs_period(cgroup_tg(cgrp));
7769}
7770
7771static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7772 u64 cfs_period_us)
7773{
7774 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7775}
7776
a790de99
PT
7777struct cfs_schedulable_data {
7778 struct task_group *tg;
7779 u64 period, quota;
7780};
7781
7782/*
7783 * normalize group quota/period to be quota/max_period
7784 * note: units are usecs
7785 */
7786static u64 normalize_cfs_quota(struct task_group *tg,
7787 struct cfs_schedulable_data *d)
7788{
7789 u64 quota, period;
7790
7791 if (tg == d->tg) {
7792 period = d->period;
7793 quota = d->quota;
7794 } else {
7795 period = tg_get_cfs_period(tg);
7796 quota = tg_get_cfs_quota(tg);
7797 }
7798
7799 /* note: these should typically be equivalent */
7800 if (quota == RUNTIME_INF || quota == -1)
7801 return RUNTIME_INF;
7802
7803 return to_ratio(period, quota);
7804}
7805
7806static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7807{
7808 struct cfs_schedulable_data *d = data;
029632fb 7809 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7810 s64 quota = 0, parent_quota = -1;
7811
7812 if (!tg->parent) {
7813 quota = RUNTIME_INF;
7814 } else {
029632fb 7815 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7816
7817 quota = normalize_cfs_quota(tg, d);
7818 parent_quota = parent_b->hierarchal_quota;
7819
7820 /*
7821 * ensure max(child_quota) <= parent_quota, inherit when no
7822 * limit is set
7823 */
7824 if (quota == RUNTIME_INF)
7825 quota = parent_quota;
7826 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7827 return -EINVAL;
7828 }
7829 cfs_b->hierarchal_quota = quota;
7830
7831 return 0;
7832}
7833
7834static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7835{
8277434e 7836 int ret;
a790de99
PT
7837 struct cfs_schedulable_data data = {
7838 .tg = tg,
7839 .period = period,
7840 .quota = quota,
7841 };
7842
7843 if (quota != RUNTIME_INF) {
7844 do_div(data.period, NSEC_PER_USEC);
7845 do_div(data.quota, NSEC_PER_USEC);
7846 }
7847
8277434e
PT
7848 rcu_read_lock();
7849 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7850 rcu_read_unlock();
7851
7852 return ret;
a790de99 7853}
e8da1b18
NR
7854
7855static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7856 struct cgroup_map_cb *cb)
7857{
7858 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7859 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7860
7861 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7862 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7863 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7864
7865 return 0;
7866}
ab84d31e 7867#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7868#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7869
052f1dc7 7870#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7871static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7872 s64 val)
6f505b16 7873{
06ecb27c 7874 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7875}
7876
06ecb27c 7877static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7878{
06ecb27c 7879 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7880}
d0b27fa7
PZ
7881
7882static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7883 u64 rt_period_us)
7884{
7885 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7886}
7887
7888static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7889{
7890 return sched_group_rt_period(cgroup_tg(cgrp));
7891}
6d6bc0ad 7892#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7893
fe5c7cc2 7894static struct cftype cpu_files[] = {
052f1dc7 7895#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7896 {
7897 .name = "shares",
f4c753b7
PM
7898 .read_u64 = cpu_shares_read_u64,
7899 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7900 },
052f1dc7 7901#endif
ab84d31e
PT
7902#ifdef CONFIG_CFS_BANDWIDTH
7903 {
7904 .name = "cfs_quota_us",
7905 .read_s64 = cpu_cfs_quota_read_s64,
7906 .write_s64 = cpu_cfs_quota_write_s64,
7907 },
7908 {
7909 .name = "cfs_period_us",
7910 .read_u64 = cpu_cfs_period_read_u64,
7911 .write_u64 = cpu_cfs_period_write_u64,
7912 },
e8da1b18
NR
7913 {
7914 .name = "stat",
7915 .read_map = cpu_stats_show,
7916 },
ab84d31e 7917#endif
052f1dc7 7918#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7919 {
9f0c1e56 7920 .name = "rt_runtime_us",
06ecb27c
PM
7921 .read_s64 = cpu_rt_runtime_read,
7922 .write_s64 = cpu_rt_runtime_write,
6f505b16 7923 },
d0b27fa7
PZ
7924 {
7925 .name = "rt_period_us",
f4c753b7
PM
7926 .read_u64 = cpu_rt_period_read_uint,
7927 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7928 },
052f1dc7 7929#endif
68318b8e
SV
7930};
7931
7932static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7933{
fe5c7cc2 7934 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7935}
7936
7937struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7938 .name = "cpu",
7939 .create = cpu_cgroup_create,
7940 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7941 .can_attach = cpu_cgroup_can_attach,
7942 .attach = cpu_cgroup_attach,
068c5cc5 7943 .exit = cpu_cgroup_exit,
38605cae
IM
7944 .populate = cpu_cgroup_populate,
7945 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7946 .early_init = 1,
7947};
7948
052f1dc7 7949#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7950
7951#ifdef CONFIG_CGROUP_CPUACCT
7952
7953/*
7954 * CPU accounting code for task groups.
7955 *
7956 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7957 * (balbir@in.ibm.com).
7958 */
7959
d842de87
SV
7960/* create a new cpu accounting group */
7961static struct cgroup_subsys_state *cpuacct_create(
32cd756a 7962 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7963{
54c707e9 7964 struct cpuacct *ca;
d842de87 7965
54c707e9
GC
7966 if (!cgrp->parent)
7967 return &root_cpuacct.css;
7968
7969 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7970 if (!ca)
ef12fefa 7971 goto out;
d842de87
SV
7972
7973 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7974 if (!ca->cpuusage)
7975 goto out_free_ca;
7976
54c707e9
GC
7977 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7978 if (!ca->cpustat)
7979 goto out_free_cpuusage;
934352f2 7980
d842de87 7981 return &ca->css;
ef12fefa 7982
54c707e9 7983out_free_cpuusage:
ef12fefa
BR
7984 free_percpu(ca->cpuusage);
7985out_free_ca:
7986 kfree(ca);
7987out:
7988 return ERR_PTR(-ENOMEM);
d842de87
SV
7989}
7990
7991/* destroy an existing cpu accounting group */
41a2d6cf 7992static void
32cd756a 7993cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7994{
32cd756a 7995 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7996
54c707e9 7997 free_percpu(ca->cpustat);
d842de87
SV
7998 free_percpu(ca->cpuusage);
7999 kfree(ca);
8000}
8001
720f5498
KC
8002static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8003{
b36128c8 8004 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8005 u64 data;
8006
8007#ifndef CONFIG_64BIT
8008 /*
8009 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8010 */
05fa785c 8011 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8012 data = *cpuusage;
05fa785c 8013 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8014#else
8015 data = *cpuusage;
8016#endif
8017
8018 return data;
8019}
8020
8021static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8022{
b36128c8 8023 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8024
8025#ifndef CONFIG_64BIT
8026 /*
8027 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8028 */
05fa785c 8029 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8030 *cpuusage = val;
05fa785c 8031 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8032#else
8033 *cpuusage = val;
8034#endif
8035}
8036
d842de87 8037/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8038static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8039{
32cd756a 8040 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8041 u64 totalcpuusage = 0;
8042 int i;
8043
720f5498
KC
8044 for_each_present_cpu(i)
8045 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8046
8047 return totalcpuusage;
8048}
8049
0297b803
DG
8050static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8051 u64 reset)
8052{
8053 struct cpuacct *ca = cgroup_ca(cgrp);
8054 int err = 0;
8055 int i;
8056
8057 if (reset) {
8058 err = -EINVAL;
8059 goto out;
8060 }
8061
720f5498
KC
8062 for_each_present_cpu(i)
8063 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8064
0297b803
DG
8065out:
8066 return err;
8067}
8068
e9515c3c
KC
8069static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8070 struct seq_file *m)
8071{
8072 struct cpuacct *ca = cgroup_ca(cgroup);
8073 u64 percpu;
8074 int i;
8075
8076 for_each_present_cpu(i) {
8077 percpu = cpuacct_cpuusage_read(ca, i);
8078 seq_printf(m, "%llu ", (unsigned long long) percpu);
8079 }
8080 seq_printf(m, "\n");
8081 return 0;
8082}
8083
ef12fefa
BR
8084static const char *cpuacct_stat_desc[] = {
8085 [CPUACCT_STAT_USER] = "user",
8086 [CPUACCT_STAT_SYSTEM] = "system",
8087};
8088
8089static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8090 struct cgroup_map_cb *cb)
ef12fefa
BR
8091{
8092 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8093 int cpu;
8094 s64 val = 0;
ef12fefa 8095
54c707e9
GC
8096 for_each_online_cpu(cpu) {
8097 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8098 val += kcpustat->cpustat[CPUTIME_USER];
8099 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8100 }
54c707e9
GC
8101 val = cputime64_to_clock_t(val);
8102 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8103
54c707e9
GC
8104 val = 0;
8105 for_each_online_cpu(cpu) {
8106 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8107 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8108 val += kcpustat->cpustat[CPUTIME_IRQ];
8109 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8110 }
54c707e9
GC
8111
8112 val = cputime64_to_clock_t(val);
8113 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8114
ef12fefa
BR
8115 return 0;
8116}
8117
d842de87
SV
8118static struct cftype files[] = {
8119 {
8120 .name = "usage",
f4c753b7
PM
8121 .read_u64 = cpuusage_read,
8122 .write_u64 = cpuusage_write,
d842de87 8123 },
e9515c3c
KC
8124 {
8125 .name = "usage_percpu",
8126 .read_seq_string = cpuacct_percpu_seq_read,
8127 },
ef12fefa
BR
8128 {
8129 .name = "stat",
8130 .read_map = cpuacct_stats_show,
8131 },
d842de87
SV
8132};
8133
32cd756a 8134static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8135{
32cd756a 8136 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8137}
8138
8139/*
8140 * charge this task's execution time to its accounting group.
8141 *
8142 * called with rq->lock held.
8143 */
029632fb 8144void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8145{
8146 struct cpuacct *ca;
934352f2 8147 int cpu;
d842de87 8148
c40c6f85 8149 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8150 return;
8151
934352f2 8152 cpu = task_cpu(tsk);
a18b83b7
BR
8153
8154 rcu_read_lock();
8155
d842de87 8156 ca = task_ca(tsk);
d842de87 8157
44252e42 8158 for (; ca; ca = parent_ca(ca)) {
b36128c8 8159 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8160 *cpuusage += cputime;
8161 }
a18b83b7
BR
8162
8163 rcu_read_unlock();
d842de87
SV
8164}
8165
8166struct cgroup_subsys cpuacct_subsys = {
8167 .name = "cpuacct",
8168 .create = cpuacct_create,
8169 .destroy = cpuacct_destroy,
8170 .populate = cpuacct_populate,
8171 .subsys_id = cpuacct_subsys_id,
8172};
8173#endif /* CONFIG_CGROUP_CPUACCT */