sched: cleanup: Rename 'out_unlock' to 'out_free_new_mask'
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
142 if (delta < 0)
143 return;
fe44d621
PZ
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
3e51f33f
PZ
146}
147
bf5c91ba
IM
148/*
149 * Debugging: various feature bits
150 */
f00b45c1 151
f00b45c1
PZ
152#define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
bf5c91ba 155const_debug unsigned int sysctl_sched_features =
391e43da 156#include "features.h"
f00b45c1
PZ
157 0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled) \
163 #name ,
164
1292531f 165static const char * const sched_feat_names[] = {
391e43da 166#include "features.h"
f00b45c1
PZ
167};
168
169#undef SCHED_FEAT
170
34f3a814 171static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 172{
f00b45c1
PZ
173 int i;
174
f8b6d1cc 175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 179 }
34f3a814 180 seq_puts(m, "\n");
f00b45c1 181
34f3a814 182 return 0;
f00b45c1
PZ
183}
184
f8b6d1cc
PZ
185#ifdef HAVE_JUMP_LABEL
186
c5905afb
IM
187#define jump_label_key__true STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
189
190#define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
c5905afb 193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
c5905afb
IM
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
203}
204
205static void sched_feat_enable(int i)
206{
c5905afb
IM
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
1a687c2e 215static int sched_feat_set(char *cmp)
f00b45c1 216{
f00b45c1 217 int i;
1a687c2e 218 int neg = 0;
f00b45c1 219
524429c3 220 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
221 neg = 1;
222 cmp += 3;
223 }
224
f8b6d1cc 225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 227 if (neg) {
f00b45c1 228 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
229 sched_feat_disable(i);
230 } else {
f00b45c1 231 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
232 sched_feat_enable(i);
233 }
f00b45c1
PZ
234 break;
235 }
236 }
237
1a687c2e
MG
238 return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244{
245 char buf[64];
246 char *cmp;
247 int i;
5cd08fbf 248 struct inode *inode;
1a687c2e
MG
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
5cd08fbf
JB
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
1a687c2e 262 i = sched_feat_set(cmp);
5cd08fbf 263 mutex_unlock(&inode->i_mutex);
f8b6d1cc 264 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
265 return -EINVAL;
266
42994724 267 *ppos += cnt;
f00b45c1
PZ
268
269 return cnt;
270}
271
34f3a814
LZ
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274 return single_open(filp, sched_feat_show, NULL);
275}
276
828c0950 277static const struct file_operations sched_feat_fops = {
34f3a814
LZ
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
f00b45c1
PZ
283};
284
285static __init int sched_init_debug(void)
286{
f00b45c1
PZ
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291}
292late_initcall(sched_init_debug);
f8b6d1cc 293#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 294
b82d9fdd
PZ
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
e9e9250b
PZ
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
fa85ae24 309/*
9f0c1e56 310 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
311 * default: 1s
312 */
9f0c1e56 313unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 314
029632fb 315__read_mostly int scheduler_running;
6892b75e 316
9f0c1e56
PZ
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
fa85ae24 322
0970d299 323/*
0122ec5b 324 * __task_rq_lock - lock the rq @p resides on.
b29739f9 325 */
70b97a7f 326static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
327 __acquires(rq->lock)
328{
0970d299
PZ
329 struct rq *rq;
330
0122ec5b
PZ
331 lockdep_assert_held(&p->pi_lock);
332
3a5c359a 333 for (;;) {
0970d299 334 rq = task_rq(p);
05fa785c 335 raw_spin_lock(&rq->lock);
cca26e80 336 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 337 return rq;
05fa785c 338 raw_spin_unlock(&rq->lock);
cca26e80
KT
339
340 while (unlikely(task_on_rq_migrating(p)))
341 cpu_relax();
b29739f9 342 }
b29739f9
IM
343}
344
1da177e4 345/*
0122ec5b 346 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 347 */
70b97a7f 348static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 349 __acquires(p->pi_lock)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4 353
3a5c359a 354 for (;;) {
0122ec5b 355 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 356 rq = task_rq(p);
05fa785c 357 raw_spin_lock(&rq->lock);
cca26e80 358 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 359 return rq;
0122ec5b
PZ
360 raw_spin_unlock(&rq->lock);
361 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
362
363 while (unlikely(task_on_rq_migrating(p)))
364 cpu_relax();
1da177e4 365 }
1da177e4
LT
366}
367
a9957449 368static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
369 __releases(rq->lock)
370{
05fa785c 371 raw_spin_unlock(&rq->lock);
b29739f9
IM
372}
373
0122ec5b
PZ
374static inline void
375task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 376 __releases(rq->lock)
0122ec5b 377 __releases(p->pi_lock)
1da177e4 378{
0122ec5b
PZ
379 raw_spin_unlock(&rq->lock);
380 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
381}
382
1da177e4 383/*
cc2a73b5 384 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 385 */
a9957449 386static struct rq *this_rq_lock(void)
1da177e4
LT
387 __acquires(rq->lock)
388{
70b97a7f 389 struct rq *rq;
1da177e4
LT
390
391 local_irq_disable();
392 rq = this_rq();
05fa785c 393 raw_spin_lock(&rq->lock);
1da177e4
LT
394
395 return rq;
396}
397
8f4d37ec
PZ
398#ifdef CONFIG_SCHED_HRTICK
399/*
400 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 401 */
8f4d37ec 402
8f4d37ec
PZ
403static void hrtick_clear(struct rq *rq)
404{
405 if (hrtimer_active(&rq->hrtick_timer))
406 hrtimer_cancel(&rq->hrtick_timer);
407}
408
8f4d37ec
PZ
409/*
410 * High-resolution timer tick.
411 * Runs from hardirq context with interrupts disabled.
412 */
413static enum hrtimer_restart hrtick(struct hrtimer *timer)
414{
415 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
416
417 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
418
05fa785c 419 raw_spin_lock(&rq->lock);
3e51f33f 420 update_rq_clock(rq);
8f4d37ec 421 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 422 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
423
424 return HRTIMER_NORESTART;
425}
426
95e904c7 427#ifdef CONFIG_SMP
971ee28c
PZ
428
429static int __hrtick_restart(struct rq *rq)
430{
431 struct hrtimer *timer = &rq->hrtick_timer;
432 ktime_t time = hrtimer_get_softexpires(timer);
433
434 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
435}
436
31656519
PZ
437/*
438 * called from hardirq (IPI) context
439 */
440static void __hrtick_start(void *arg)
b328ca18 441{
31656519 442 struct rq *rq = arg;
b328ca18 443
05fa785c 444 raw_spin_lock(&rq->lock);
971ee28c 445 __hrtick_restart(rq);
31656519 446 rq->hrtick_csd_pending = 0;
05fa785c 447 raw_spin_unlock(&rq->lock);
b328ca18
PZ
448}
449
31656519
PZ
450/*
451 * Called to set the hrtick timer state.
452 *
453 * called with rq->lock held and irqs disabled
454 */
029632fb 455void hrtick_start(struct rq *rq, u64 delay)
b328ca18 456{
31656519 457 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 458 ktime_t time;
459 s64 delta;
460
461 /*
462 * Don't schedule slices shorter than 10000ns, that just
463 * doesn't make sense and can cause timer DoS.
464 */
465 delta = max_t(s64, delay, 10000LL);
466 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 467
cc584b21 468 hrtimer_set_expires(timer, time);
31656519
PZ
469
470 if (rq == this_rq()) {
971ee28c 471 __hrtick_restart(rq);
31656519 472 } else if (!rq->hrtick_csd_pending) {
c46fff2a 473 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
474 rq->hrtick_csd_pending = 1;
475 }
b328ca18
PZ
476}
477
478static int
479hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
480{
481 int cpu = (int)(long)hcpu;
482
483 switch (action) {
484 case CPU_UP_CANCELED:
485 case CPU_UP_CANCELED_FROZEN:
486 case CPU_DOWN_PREPARE:
487 case CPU_DOWN_PREPARE_FROZEN:
488 case CPU_DEAD:
489 case CPU_DEAD_FROZEN:
31656519 490 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
491 return NOTIFY_OK;
492 }
493
494 return NOTIFY_DONE;
495}
496
fa748203 497static __init void init_hrtick(void)
b328ca18
PZ
498{
499 hotcpu_notifier(hotplug_hrtick, 0);
500}
31656519
PZ
501#else
502/*
503 * Called to set the hrtick timer state.
504 *
505 * called with rq->lock held and irqs disabled
506 */
029632fb 507void hrtick_start(struct rq *rq, u64 delay)
31656519 508{
7f1e2ca9 509 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 510 HRTIMER_MODE_REL_PINNED, 0);
31656519 511}
b328ca18 512
006c75f1 513static inline void init_hrtick(void)
8f4d37ec 514{
8f4d37ec 515}
31656519 516#endif /* CONFIG_SMP */
8f4d37ec 517
31656519 518static void init_rq_hrtick(struct rq *rq)
8f4d37ec 519{
31656519
PZ
520#ifdef CONFIG_SMP
521 rq->hrtick_csd_pending = 0;
8f4d37ec 522
31656519
PZ
523 rq->hrtick_csd.flags = 0;
524 rq->hrtick_csd.func = __hrtick_start;
525 rq->hrtick_csd.info = rq;
526#endif
8f4d37ec 527
31656519
PZ
528 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
529 rq->hrtick_timer.function = hrtick;
8f4d37ec 530}
006c75f1 531#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
532static inline void hrtick_clear(struct rq *rq)
533{
534}
535
8f4d37ec
PZ
536static inline void init_rq_hrtick(struct rq *rq)
537{
538}
539
b328ca18
PZ
540static inline void init_hrtick(void)
541{
542}
006c75f1 543#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 544
fd99f91a
PZ
545/*
546 * cmpxchg based fetch_or, macro so it works for different integer types
547 */
548#define fetch_or(ptr, val) \
549({ typeof(*(ptr)) __old, __val = *(ptr); \
550 for (;;) { \
551 __old = cmpxchg((ptr), __val, __val | (val)); \
552 if (__old == __val) \
553 break; \
554 __val = __old; \
555 } \
556 __old; \
557})
558
e3baac47 559#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
560/*
561 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
562 * this avoids any races wrt polling state changes and thereby avoids
563 * spurious IPIs.
564 */
565static bool set_nr_and_not_polling(struct task_struct *p)
566{
567 struct thread_info *ti = task_thread_info(p);
568 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
569}
e3baac47
PZ
570
571/*
572 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
573 *
574 * If this returns true, then the idle task promises to call
575 * sched_ttwu_pending() and reschedule soon.
576 */
577static bool set_nr_if_polling(struct task_struct *p)
578{
579 struct thread_info *ti = task_thread_info(p);
580 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
581
582 for (;;) {
583 if (!(val & _TIF_POLLING_NRFLAG))
584 return false;
585 if (val & _TIF_NEED_RESCHED)
586 return true;
587 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
588 if (old == val)
589 break;
590 val = old;
591 }
592 return true;
593}
594
fd99f91a
PZ
595#else
596static bool set_nr_and_not_polling(struct task_struct *p)
597{
598 set_tsk_need_resched(p);
599 return true;
600}
e3baac47
PZ
601
602#ifdef CONFIG_SMP
603static bool set_nr_if_polling(struct task_struct *p)
604{
605 return false;
606}
607#endif
fd99f91a
PZ
608#endif
609
c24d20db 610/*
8875125e 611 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
612 *
613 * On UP this means the setting of the need_resched flag, on SMP it
614 * might also involve a cross-CPU call to trigger the scheduler on
615 * the target CPU.
616 */
8875125e 617void resched_curr(struct rq *rq)
c24d20db 618{
8875125e 619 struct task_struct *curr = rq->curr;
c24d20db
IM
620 int cpu;
621
8875125e 622 lockdep_assert_held(&rq->lock);
c24d20db 623
8875125e 624 if (test_tsk_need_resched(curr))
c24d20db
IM
625 return;
626
8875125e 627 cpu = cpu_of(rq);
fd99f91a 628
f27dde8d 629 if (cpu == smp_processor_id()) {
8875125e 630 set_tsk_need_resched(curr);
f27dde8d 631 set_preempt_need_resched();
c24d20db 632 return;
f27dde8d 633 }
c24d20db 634
8875125e 635 if (set_nr_and_not_polling(curr))
c24d20db 636 smp_send_reschedule(cpu);
dfc68f29
AL
637 else
638 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
639}
640
029632fb 641void resched_cpu(int cpu)
c24d20db
IM
642{
643 struct rq *rq = cpu_rq(cpu);
644 unsigned long flags;
645
05fa785c 646 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 647 return;
8875125e 648 resched_curr(rq);
05fa785c 649 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 650}
06d8308c 651
b021fe3e 652#ifdef CONFIG_SMP
3451d024 653#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
654/*
655 * In the semi idle case, use the nearest busy cpu for migrating timers
656 * from an idle cpu. This is good for power-savings.
657 *
658 * We don't do similar optimization for completely idle system, as
659 * selecting an idle cpu will add more delays to the timers than intended
660 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
661 */
6201b4d6 662int get_nohz_timer_target(int pinned)
83cd4fe2
VP
663{
664 int cpu = smp_processor_id();
665 int i;
666 struct sched_domain *sd;
667
6201b4d6
VK
668 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
669 return cpu;
670
057f3fad 671 rcu_read_lock();
83cd4fe2 672 for_each_domain(cpu, sd) {
057f3fad
PZ
673 for_each_cpu(i, sched_domain_span(sd)) {
674 if (!idle_cpu(i)) {
675 cpu = i;
676 goto unlock;
677 }
678 }
83cd4fe2 679 }
057f3fad
PZ
680unlock:
681 rcu_read_unlock();
83cd4fe2
VP
682 return cpu;
683}
06d8308c
TG
684/*
685 * When add_timer_on() enqueues a timer into the timer wheel of an
686 * idle CPU then this timer might expire before the next timer event
687 * which is scheduled to wake up that CPU. In case of a completely
688 * idle system the next event might even be infinite time into the
689 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
690 * leaves the inner idle loop so the newly added timer is taken into
691 * account when the CPU goes back to idle and evaluates the timer
692 * wheel for the next timer event.
693 */
1c20091e 694static void wake_up_idle_cpu(int cpu)
06d8308c
TG
695{
696 struct rq *rq = cpu_rq(cpu);
697
698 if (cpu == smp_processor_id())
699 return;
700
67b9ca70 701 if (set_nr_and_not_polling(rq->idle))
06d8308c 702 smp_send_reschedule(cpu);
dfc68f29
AL
703 else
704 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
705}
706
c5bfece2 707static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 708{
53c5fa16
FW
709 /*
710 * We just need the target to call irq_exit() and re-evaluate
711 * the next tick. The nohz full kick at least implies that.
712 * If needed we can still optimize that later with an
713 * empty IRQ.
714 */
c5bfece2 715 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
716 if (cpu != smp_processor_id() ||
717 tick_nohz_tick_stopped())
53c5fa16 718 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
719 return true;
720 }
721
722 return false;
723}
724
725void wake_up_nohz_cpu(int cpu)
726{
c5bfece2 727 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
728 wake_up_idle_cpu(cpu);
729}
730
ca38062e 731static inline bool got_nohz_idle_kick(void)
45bf76df 732{
1c792db7 733 int cpu = smp_processor_id();
873b4c65
VG
734
735 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
736 return false;
737
738 if (idle_cpu(cpu) && !need_resched())
739 return true;
740
741 /*
742 * We can't run Idle Load Balance on this CPU for this time so we
743 * cancel it and clear NOHZ_BALANCE_KICK
744 */
745 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
746 return false;
45bf76df
IM
747}
748
3451d024 749#else /* CONFIG_NO_HZ_COMMON */
45bf76df 750
ca38062e 751static inline bool got_nohz_idle_kick(void)
2069dd75 752{
ca38062e 753 return false;
2069dd75
PZ
754}
755
3451d024 756#endif /* CONFIG_NO_HZ_COMMON */
d842de87 757
ce831b38
FW
758#ifdef CONFIG_NO_HZ_FULL
759bool sched_can_stop_tick(void)
760{
3882ec64
FW
761 /*
762 * More than one running task need preemption.
763 * nr_running update is assumed to be visible
764 * after IPI is sent from wakers.
765 */
541b8264
VK
766 if (this_rq()->nr_running > 1)
767 return false;
ce831b38 768
541b8264 769 return true;
ce831b38
FW
770}
771#endif /* CONFIG_NO_HZ_FULL */
d842de87 772
029632fb 773void sched_avg_update(struct rq *rq)
18d95a28 774{
e9e9250b
PZ
775 s64 period = sched_avg_period();
776
78becc27 777 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
778 /*
779 * Inline assembly required to prevent the compiler
780 * optimising this loop into a divmod call.
781 * See __iter_div_u64_rem() for another example of this.
782 */
783 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
784 rq->age_stamp += period;
785 rq->rt_avg /= 2;
786 }
18d95a28
PZ
787}
788
6d6bc0ad 789#endif /* CONFIG_SMP */
18d95a28 790
a790de99
PT
791#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
792 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 793/*
8277434e
PT
794 * Iterate task_group tree rooted at *from, calling @down when first entering a
795 * node and @up when leaving it for the final time.
796 *
797 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 798 */
029632fb 799int walk_tg_tree_from(struct task_group *from,
8277434e 800 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
801{
802 struct task_group *parent, *child;
eb755805 803 int ret;
c09595f6 804
8277434e
PT
805 parent = from;
806
c09595f6 807down:
eb755805
PZ
808 ret = (*down)(parent, data);
809 if (ret)
8277434e 810 goto out;
c09595f6
PZ
811 list_for_each_entry_rcu(child, &parent->children, siblings) {
812 parent = child;
813 goto down;
814
815up:
816 continue;
817 }
eb755805 818 ret = (*up)(parent, data);
8277434e
PT
819 if (ret || parent == from)
820 goto out;
c09595f6
PZ
821
822 child = parent;
823 parent = parent->parent;
824 if (parent)
825 goto up;
8277434e 826out:
eb755805 827 return ret;
c09595f6
PZ
828}
829
029632fb 830int tg_nop(struct task_group *tg, void *data)
eb755805 831{
e2b245f8 832 return 0;
eb755805 833}
18d95a28
PZ
834#endif
835
45bf76df
IM
836static void set_load_weight(struct task_struct *p)
837{
f05998d4
NR
838 int prio = p->static_prio - MAX_RT_PRIO;
839 struct load_weight *load = &p->se.load;
840
dd41f596
IM
841 /*
842 * SCHED_IDLE tasks get minimal weight:
843 */
844 if (p->policy == SCHED_IDLE) {
c8b28116 845 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 846 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
847 return;
848 }
71f8bd46 849
c8b28116 850 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 851 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
852}
853
371fd7e7 854static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 855{
a64692a3 856 update_rq_clock(rq);
43148951 857 sched_info_queued(rq, p);
371fd7e7 858 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
859}
860
371fd7e7 861static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 862{
a64692a3 863 update_rq_clock(rq);
43148951 864 sched_info_dequeued(rq, p);
371fd7e7 865 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
866}
867
029632fb 868void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
869{
870 if (task_contributes_to_load(p))
871 rq->nr_uninterruptible--;
872
371fd7e7 873 enqueue_task(rq, p, flags);
1e3c88bd
PZ
874}
875
029632fb 876void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
877{
878 if (task_contributes_to_load(p))
879 rq->nr_uninterruptible++;
880
371fd7e7 881 dequeue_task(rq, p, flags);
1e3c88bd
PZ
882}
883
fe44d621 884static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 885{
095c0aa8
GC
886/*
887 * In theory, the compile should just see 0 here, and optimize out the call
888 * to sched_rt_avg_update. But I don't trust it...
889 */
890#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
891 s64 steal = 0, irq_delta = 0;
892#endif
893#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 894 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
895
896 /*
897 * Since irq_time is only updated on {soft,}irq_exit, we might run into
898 * this case when a previous update_rq_clock() happened inside a
899 * {soft,}irq region.
900 *
901 * When this happens, we stop ->clock_task and only update the
902 * prev_irq_time stamp to account for the part that fit, so that a next
903 * update will consume the rest. This ensures ->clock_task is
904 * monotonic.
905 *
906 * It does however cause some slight miss-attribution of {soft,}irq
907 * time, a more accurate solution would be to update the irq_time using
908 * the current rq->clock timestamp, except that would require using
909 * atomic ops.
910 */
911 if (irq_delta > delta)
912 irq_delta = delta;
913
914 rq->prev_irq_time += irq_delta;
915 delta -= irq_delta;
095c0aa8
GC
916#endif
917#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 918 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
919 steal = paravirt_steal_clock(cpu_of(rq));
920 steal -= rq->prev_steal_time_rq;
921
922 if (unlikely(steal > delta))
923 steal = delta;
924
095c0aa8 925 rq->prev_steal_time_rq += steal;
095c0aa8
GC
926 delta -= steal;
927 }
928#endif
929
fe44d621
PZ
930 rq->clock_task += delta;
931
095c0aa8 932#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 933 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
934 sched_rt_avg_update(rq, irq_delta + steal);
935#endif
aa483808
VP
936}
937
34f971f6
PZ
938void sched_set_stop_task(int cpu, struct task_struct *stop)
939{
940 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
941 struct task_struct *old_stop = cpu_rq(cpu)->stop;
942
943 if (stop) {
944 /*
945 * Make it appear like a SCHED_FIFO task, its something
946 * userspace knows about and won't get confused about.
947 *
948 * Also, it will make PI more or less work without too
949 * much confusion -- but then, stop work should not
950 * rely on PI working anyway.
951 */
952 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
953
954 stop->sched_class = &stop_sched_class;
955 }
956
957 cpu_rq(cpu)->stop = stop;
958
959 if (old_stop) {
960 /*
961 * Reset it back to a normal scheduling class so that
962 * it can die in pieces.
963 */
964 old_stop->sched_class = &rt_sched_class;
965 }
966}
967
14531189 968/*
dd41f596 969 * __normal_prio - return the priority that is based on the static prio
14531189 970 */
14531189
IM
971static inline int __normal_prio(struct task_struct *p)
972{
dd41f596 973 return p->static_prio;
14531189
IM
974}
975
b29739f9
IM
976/*
977 * Calculate the expected normal priority: i.e. priority
978 * without taking RT-inheritance into account. Might be
979 * boosted by interactivity modifiers. Changes upon fork,
980 * setprio syscalls, and whenever the interactivity
981 * estimator recalculates.
982 */
36c8b586 983static inline int normal_prio(struct task_struct *p)
b29739f9
IM
984{
985 int prio;
986
aab03e05
DF
987 if (task_has_dl_policy(p))
988 prio = MAX_DL_PRIO-1;
989 else if (task_has_rt_policy(p))
b29739f9
IM
990 prio = MAX_RT_PRIO-1 - p->rt_priority;
991 else
992 prio = __normal_prio(p);
993 return prio;
994}
995
996/*
997 * Calculate the current priority, i.e. the priority
998 * taken into account by the scheduler. This value might
999 * be boosted by RT tasks, or might be boosted by
1000 * interactivity modifiers. Will be RT if the task got
1001 * RT-boosted. If not then it returns p->normal_prio.
1002 */
36c8b586 1003static int effective_prio(struct task_struct *p)
b29739f9
IM
1004{
1005 p->normal_prio = normal_prio(p);
1006 /*
1007 * If we are RT tasks or we were boosted to RT priority,
1008 * keep the priority unchanged. Otherwise, update priority
1009 * to the normal priority:
1010 */
1011 if (!rt_prio(p->prio))
1012 return p->normal_prio;
1013 return p->prio;
1014}
1015
1da177e4
LT
1016/**
1017 * task_curr - is this task currently executing on a CPU?
1018 * @p: the task in question.
e69f6186
YB
1019 *
1020 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1021 */
36c8b586 1022inline int task_curr(const struct task_struct *p)
1da177e4
LT
1023{
1024 return cpu_curr(task_cpu(p)) == p;
1025}
1026
cb469845
SR
1027static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1028 const struct sched_class *prev_class,
da7a735e 1029 int oldprio)
cb469845
SR
1030{
1031 if (prev_class != p->sched_class) {
1032 if (prev_class->switched_from)
da7a735e
PZ
1033 prev_class->switched_from(rq, p);
1034 p->sched_class->switched_to(rq, p);
2d3d891d 1035 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1036 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1037}
1038
029632fb 1039void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1040{
1041 const struct sched_class *class;
1042
1043 if (p->sched_class == rq->curr->sched_class) {
1044 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1045 } else {
1046 for_each_class(class) {
1047 if (class == rq->curr->sched_class)
1048 break;
1049 if (class == p->sched_class) {
8875125e 1050 resched_curr(rq);
1e5a7405
PZ
1051 break;
1052 }
1053 }
1054 }
1055
1056 /*
1057 * A queue event has occurred, and we're going to schedule. In
1058 * this case, we can save a useless back to back clock update.
1059 */
da0c1e65 1060 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1061 rq->skip_clock_update = 1;
1062}
1063
1da177e4 1064#ifdef CONFIG_SMP
dd41f596 1065void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1066{
e2912009
PZ
1067#ifdef CONFIG_SCHED_DEBUG
1068 /*
1069 * We should never call set_task_cpu() on a blocked task,
1070 * ttwu() will sort out the placement.
1071 */
077614ee 1072 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1073 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1074
1075#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1076 /*
1077 * The caller should hold either p->pi_lock or rq->lock, when changing
1078 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1079 *
1080 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1081 * see task_group().
6c6c54e1
PZ
1082 *
1083 * Furthermore, all task_rq users should acquire both locks, see
1084 * task_rq_lock().
1085 */
0122ec5b
PZ
1086 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1087 lockdep_is_held(&task_rq(p)->lock)));
1088#endif
e2912009
PZ
1089#endif
1090
de1d7286 1091 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1092
0c69774e 1093 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1094 if (p->sched_class->migrate_task_rq)
1095 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1096 p->se.nr_migrations++;
a8b0ca17 1097 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1098 }
dd41f596
IM
1099
1100 __set_task_cpu(p, new_cpu);
c65cc870
IM
1101}
1102
ac66f547
PZ
1103static void __migrate_swap_task(struct task_struct *p, int cpu)
1104{
da0c1e65 1105 if (task_on_rq_queued(p)) {
ac66f547
PZ
1106 struct rq *src_rq, *dst_rq;
1107
1108 src_rq = task_rq(p);
1109 dst_rq = cpu_rq(cpu);
1110
1111 deactivate_task(src_rq, p, 0);
1112 set_task_cpu(p, cpu);
1113 activate_task(dst_rq, p, 0);
1114 check_preempt_curr(dst_rq, p, 0);
1115 } else {
1116 /*
1117 * Task isn't running anymore; make it appear like we migrated
1118 * it before it went to sleep. This means on wakeup we make the
1119 * previous cpu our targer instead of where it really is.
1120 */
1121 p->wake_cpu = cpu;
1122 }
1123}
1124
1125struct migration_swap_arg {
1126 struct task_struct *src_task, *dst_task;
1127 int src_cpu, dst_cpu;
1128};
1129
1130static int migrate_swap_stop(void *data)
1131{
1132 struct migration_swap_arg *arg = data;
1133 struct rq *src_rq, *dst_rq;
1134 int ret = -EAGAIN;
1135
1136 src_rq = cpu_rq(arg->src_cpu);
1137 dst_rq = cpu_rq(arg->dst_cpu);
1138
74602315
PZ
1139 double_raw_lock(&arg->src_task->pi_lock,
1140 &arg->dst_task->pi_lock);
ac66f547
PZ
1141 double_rq_lock(src_rq, dst_rq);
1142 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1143 goto unlock;
1144
1145 if (task_cpu(arg->src_task) != arg->src_cpu)
1146 goto unlock;
1147
1148 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1149 goto unlock;
1150
1151 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1152 goto unlock;
1153
1154 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1155 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1156
1157 ret = 0;
1158
1159unlock:
1160 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1161 raw_spin_unlock(&arg->dst_task->pi_lock);
1162 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1163
1164 return ret;
1165}
1166
1167/*
1168 * Cross migrate two tasks
1169 */
1170int migrate_swap(struct task_struct *cur, struct task_struct *p)
1171{
1172 struct migration_swap_arg arg;
1173 int ret = -EINVAL;
1174
ac66f547
PZ
1175 arg = (struct migration_swap_arg){
1176 .src_task = cur,
1177 .src_cpu = task_cpu(cur),
1178 .dst_task = p,
1179 .dst_cpu = task_cpu(p),
1180 };
1181
1182 if (arg.src_cpu == arg.dst_cpu)
1183 goto out;
1184
6acce3ef
PZ
1185 /*
1186 * These three tests are all lockless; this is OK since all of them
1187 * will be re-checked with proper locks held further down the line.
1188 */
ac66f547
PZ
1189 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1190 goto out;
1191
1192 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1193 goto out;
1194
1195 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1196 goto out;
1197
286549dc 1198 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1199 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1200
1201out:
ac66f547
PZ
1202 return ret;
1203}
1204
969c7921 1205struct migration_arg {
36c8b586 1206 struct task_struct *task;
1da177e4 1207 int dest_cpu;
70b97a7f 1208};
1da177e4 1209
969c7921
TH
1210static int migration_cpu_stop(void *data);
1211
1da177e4
LT
1212/*
1213 * wait_task_inactive - wait for a thread to unschedule.
1214 *
85ba2d86
RM
1215 * If @match_state is nonzero, it's the @p->state value just checked and
1216 * not expected to change. If it changes, i.e. @p might have woken up,
1217 * then return zero. When we succeed in waiting for @p to be off its CPU,
1218 * we return a positive number (its total switch count). If a second call
1219 * a short while later returns the same number, the caller can be sure that
1220 * @p has remained unscheduled the whole time.
1221 *
1da177e4
LT
1222 * The caller must ensure that the task *will* unschedule sometime soon,
1223 * else this function might spin for a *long* time. This function can't
1224 * be called with interrupts off, or it may introduce deadlock with
1225 * smp_call_function() if an IPI is sent by the same process we are
1226 * waiting to become inactive.
1227 */
85ba2d86 1228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1229{
1230 unsigned long flags;
da0c1e65 1231 int running, queued;
85ba2d86 1232 unsigned long ncsw;
70b97a7f 1233 struct rq *rq;
1da177e4 1234
3a5c359a
AK
1235 for (;;) {
1236 /*
1237 * We do the initial early heuristics without holding
1238 * any task-queue locks at all. We'll only try to get
1239 * the runqueue lock when things look like they will
1240 * work out!
1241 */
1242 rq = task_rq(p);
fa490cfd 1243
3a5c359a
AK
1244 /*
1245 * If the task is actively running on another CPU
1246 * still, just relax and busy-wait without holding
1247 * any locks.
1248 *
1249 * NOTE! Since we don't hold any locks, it's not
1250 * even sure that "rq" stays as the right runqueue!
1251 * But we don't care, since "task_running()" will
1252 * return false if the runqueue has changed and p
1253 * is actually now running somewhere else!
1254 */
85ba2d86
RM
1255 while (task_running(rq, p)) {
1256 if (match_state && unlikely(p->state != match_state))
1257 return 0;
3a5c359a 1258 cpu_relax();
85ba2d86 1259 }
fa490cfd 1260
3a5c359a
AK
1261 /*
1262 * Ok, time to look more closely! We need the rq
1263 * lock now, to be *sure*. If we're wrong, we'll
1264 * just go back and repeat.
1265 */
1266 rq = task_rq_lock(p, &flags);
27a9da65 1267 trace_sched_wait_task(p);
3a5c359a 1268 running = task_running(rq, p);
da0c1e65 1269 queued = task_on_rq_queued(p);
85ba2d86 1270 ncsw = 0;
f31e11d8 1271 if (!match_state || p->state == match_state)
93dcf55f 1272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1273 task_rq_unlock(rq, p, &flags);
fa490cfd 1274
85ba2d86
RM
1275 /*
1276 * If it changed from the expected state, bail out now.
1277 */
1278 if (unlikely(!ncsw))
1279 break;
1280
3a5c359a
AK
1281 /*
1282 * Was it really running after all now that we
1283 * checked with the proper locks actually held?
1284 *
1285 * Oops. Go back and try again..
1286 */
1287 if (unlikely(running)) {
1288 cpu_relax();
1289 continue;
1290 }
fa490cfd 1291
3a5c359a
AK
1292 /*
1293 * It's not enough that it's not actively running,
1294 * it must be off the runqueue _entirely_, and not
1295 * preempted!
1296 *
80dd99b3 1297 * So if it was still runnable (but just not actively
3a5c359a
AK
1298 * running right now), it's preempted, and we should
1299 * yield - it could be a while.
1300 */
da0c1e65 1301 if (unlikely(queued)) {
8eb90c30
TG
1302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1303
1304 set_current_state(TASK_UNINTERRUPTIBLE);
1305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1306 continue;
1307 }
fa490cfd 1308
3a5c359a
AK
1309 /*
1310 * Ahh, all good. It wasn't running, and it wasn't
1311 * runnable, which means that it will never become
1312 * running in the future either. We're all done!
1313 */
1314 break;
1315 }
85ba2d86
RM
1316
1317 return ncsw;
1da177e4
LT
1318}
1319
1320/***
1321 * kick_process - kick a running thread to enter/exit the kernel
1322 * @p: the to-be-kicked thread
1323 *
1324 * Cause a process which is running on another CPU to enter
1325 * kernel-mode, without any delay. (to get signals handled.)
1326 *
25985edc 1327 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1328 * because all it wants to ensure is that the remote task enters
1329 * the kernel. If the IPI races and the task has been migrated
1330 * to another CPU then no harm is done and the purpose has been
1331 * achieved as well.
1332 */
36c8b586 1333void kick_process(struct task_struct *p)
1da177e4
LT
1334{
1335 int cpu;
1336
1337 preempt_disable();
1338 cpu = task_cpu(p);
1339 if ((cpu != smp_processor_id()) && task_curr(p))
1340 smp_send_reschedule(cpu);
1341 preempt_enable();
1342}
b43e3521 1343EXPORT_SYMBOL_GPL(kick_process);
476d139c 1344#endif /* CONFIG_SMP */
1da177e4 1345
970b13ba 1346#ifdef CONFIG_SMP
30da688e 1347/*
013fdb80 1348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1349 */
5da9a0fb
PZ
1350static int select_fallback_rq(int cpu, struct task_struct *p)
1351{
aa00d89c
TC
1352 int nid = cpu_to_node(cpu);
1353 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1354 enum { cpuset, possible, fail } state = cpuset;
1355 int dest_cpu;
5da9a0fb 1356
aa00d89c
TC
1357 /*
1358 * If the node that the cpu is on has been offlined, cpu_to_node()
1359 * will return -1. There is no cpu on the node, and we should
1360 * select the cpu on the other node.
1361 */
1362 if (nid != -1) {
1363 nodemask = cpumask_of_node(nid);
1364
1365 /* Look for allowed, online CPU in same node. */
1366 for_each_cpu(dest_cpu, nodemask) {
1367 if (!cpu_online(dest_cpu))
1368 continue;
1369 if (!cpu_active(dest_cpu))
1370 continue;
1371 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1372 return dest_cpu;
1373 }
2baab4e9 1374 }
5da9a0fb 1375
2baab4e9
PZ
1376 for (;;) {
1377 /* Any allowed, online CPU? */
e3831edd 1378 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1379 if (!cpu_online(dest_cpu))
1380 continue;
1381 if (!cpu_active(dest_cpu))
1382 continue;
1383 goto out;
1384 }
5da9a0fb 1385
2baab4e9
PZ
1386 switch (state) {
1387 case cpuset:
1388 /* No more Mr. Nice Guy. */
1389 cpuset_cpus_allowed_fallback(p);
1390 state = possible;
1391 break;
1392
1393 case possible:
1394 do_set_cpus_allowed(p, cpu_possible_mask);
1395 state = fail;
1396 break;
1397
1398 case fail:
1399 BUG();
1400 break;
1401 }
1402 }
1403
1404out:
1405 if (state != cpuset) {
1406 /*
1407 * Don't tell them about moving exiting tasks or
1408 * kernel threads (both mm NULL), since they never
1409 * leave kernel.
1410 */
1411 if (p->mm && printk_ratelimit()) {
aac74dc4 1412 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1413 task_pid_nr(p), p->comm, cpu);
1414 }
5da9a0fb
PZ
1415 }
1416
1417 return dest_cpu;
1418}
1419
e2912009 1420/*
013fdb80 1421 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1422 */
970b13ba 1423static inline
ac66f547 1424int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1425{
ac66f547 1426 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1427
1428 /*
1429 * In order not to call set_task_cpu() on a blocking task we need
1430 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1431 * cpu.
1432 *
1433 * Since this is common to all placement strategies, this lives here.
1434 *
1435 * [ this allows ->select_task() to simply return task_cpu(p) and
1436 * not worry about this generic constraint ]
1437 */
fa17b507 1438 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1439 !cpu_online(cpu)))
5da9a0fb 1440 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1441
1442 return cpu;
970b13ba 1443}
09a40af5
MG
1444
1445static void update_avg(u64 *avg, u64 sample)
1446{
1447 s64 diff = sample - *avg;
1448 *avg += diff >> 3;
1449}
970b13ba
PZ
1450#endif
1451
d7c01d27 1452static void
b84cb5df 1453ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1454{
d7c01d27 1455#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1456 struct rq *rq = this_rq();
1457
d7c01d27
PZ
1458#ifdef CONFIG_SMP
1459 int this_cpu = smp_processor_id();
1460
1461 if (cpu == this_cpu) {
1462 schedstat_inc(rq, ttwu_local);
1463 schedstat_inc(p, se.statistics.nr_wakeups_local);
1464 } else {
1465 struct sched_domain *sd;
1466
1467 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1468 rcu_read_lock();
d7c01d27
PZ
1469 for_each_domain(this_cpu, sd) {
1470 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1471 schedstat_inc(sd, ttwu_wake_remote);
1472 break;
1473 }
1474 }
057f3fad 1475 rcu_read_unlock();
d7c01d27 1476 }
f339b9dc
PZ
1477
1478 if (wake_flags & WF_MIGRATED)
1479 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1480
d7c01d27
PZ
1481#endif /* CONFIG_SMP */
1482
1483 schedstat_inc(rq, ttwu_count);
9ed3811a 1484 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1485
1486 if (wake_flags & WF_SYNC)
9ed3811a 1487 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1488
d7c01d27
PZ
1489#endif /* CONFIG_SCHEDSTATS */
1490}
1491
1492static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1493{
9ed3811a 1494 activate_task(rq, p, en_flags);
da0c1e65 1495 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1496
1497 /* if a worker is waking up, notify workqueue */
1498 if (p->flags & PF_WQ_WORKER)
1499 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1500}
1501
23f41eeb
PZ
1502/*
1503 * Mark the task runnable and perform wakeup-preemption.
1504 */
89363381 1505static void
23f41eeb 1506ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1507{
9ed3811a 1508 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1509 trace_sched_wakeup(p, true);
9ed3811a
TH
1510
1511 p->state = TASK_RUNNING;
1512#ifdef CONFIG_SMP
1513 if (p->sched_class->task_woken)
1514 p->sched_class->task_woken(rq, p);
1515
e69c6341 1516 if (rq->idle_stamp) {
78becc27 1517 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1518 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1519
abfafa54
JL
1520 update_avg(&rq->avg_idle, delta);
1521
1522 if (rq->avg_idle > max)
9ed3811a 1523 rq->avg_idle = max;
abfafa54 1524
9ed3811a
TH
1525 rq->idle_stamp = 0;
1526 }
1527#endif
1528}
1529
c05fbafb
PZ
1530static void
1531ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1532{
1533#ifdef CONFIG_SMP
1534 if (p->sched_contributes_to_load)
1535 rq->nr_uninterruptible--;
1536#endif
1537
1538 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1539 ttwu_do_wakeup(rq, p, wake_flags);
1540}
1541
1542/*
1543 * Called in case the task @p isn't fully descheduled from its runqueue,
1544 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1545 * since all we need to do is flip p->state to TASK_RUNNING, since
1546 * the task is still ->on_rq.
1547 */
1548static int ttwu_remote(struct task_struct *p, int wake_flags)
1549{
1550 struct rq *rq;
1551 int ret = 0;
1552
1553 rq = __task_rq_lock(p);
da0c1e65 1554 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1555 /* check_preempt_curr() may use rq clock */
1556 update_rq_clock(rq);
c05fbafb
PZ
1557 ttwu_do_wakeup(rq, p, wake_flags);
1558 ret = 1;
1559 }
1560 __task_rq_unlock(rq);
1561
1562 return ret;
1563}
1564
317f3941 1565#ifdef CONFIG_SMP
e3baac47 1566void sched_ttwu_pending(void)
317f3941
PZ
1567{
1568 struct rq *rq = this_rq();
fa14ff4a
PZ
1569 struct llist_node *llist = llist_del_all(&rq->wake_list);
1570 struct task_struct *p;
e3baac47 1571 unsigned long flags;
317f3941 1572
e3baac47
PZ
1573 if (!llist)
1574 return;
1575
1576 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1577
fa14ff4a
PZ
1578 while (llist) {
1579 p = llist_entry(llist, struct task_struct, wake_entry);
1580 llist = llist_next(llist);
317f3941
PZ
1581 ttwu_do_activate(rq, p, 0);
1582 }
1583
e3baac47 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1585}
1586
1587void scheduler_ipi(void)
1588{
f27dde8d
PZ
1589 /*
1590 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1591 * TIF_NEED_RESCHED remotely (for the first time) will also send
1592 * this IPI.
1593 */
8cb75e0c 1594 preempt_fold_need_resched();
f27dde8d 1595
fd2ac4f4 1596 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1597 return;
1598
1599 /*
1600 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1601 * traditionally all their work was done from the interrupt return
1602 * path. Now that we actually do some work, we need to make sure
1603 * we do call them.
1604 *
1605 * Some archs already do call them, luckily irq_enter/exit nest
1606 * properly.
1607 *
1608 * Arguably we should visit all archs and update all handlers,
1609 * however a fair share of IPIs are still resched only so this would
1610 * somewhat pessimize the simple resched case.
1611 */
1612 irq_enter();
fa14ff4a 1613 sched_ttwu_pending();
ca38062e
SS
1614
1615 /*
1616 * Check if someone kicked us for doing the nohz idle load balance.
1617 */
873b4c65 1618 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1619 this_rq()->idle_balance = 1;
ca38062e 1620 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1621 }
c5d753a5 1622 irq_exit();
317f3941
PZ
1623}
1624
1625static void ttwu_queue_remote(struct task_struct *p, int cpu)
1626{
e3baac47
PZ
1627 struct rq *rq = cpu_rq(cpu);
1628
1629 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1630 if (!set_nr_if_polling(rq->idle))
1631 smp_send_reschedule(cpu);
1632 else
1633 trace_sched_wake_idle_without_ipi(cpu);
1634 }
317f3941 1635}
d6aa8f85 1636
f6be8af1
CL
1637void wake_up_if_idle(int cpu)
1638{
1639 struct rq *rq = cpu_rq(cpu);
1640 unsigned long flags;
1641
1642 if (!is_idle_task(rq->curr))
1643 return;
1644
1645 if (set_nr_if_polling(rq->idle)) {
1646 trace_sched_wake_idle_without_ipi(cpu);
1647 } else {
1648 raw_spin_lock_irqsave(&rq->lock, flags);
1649 if (is_idle_task(rq->curr))
1650 smp_send_reschedule(cpu);
1651 /* Else cpu is not in idle, do nothing here */
1652 raw_spin_unlock_irqrestore(&rq->lock, flags);
1653 }
1654}
1655
39be3501 1656bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1657{
1658 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1659}
d6aa8f85 1660#endif /* CONFIG_SMP */
317f3941 1661
c05fbafb
PZ
1662static void ttwu_queue(struct task_struct *p, int cpu)
1663{
1664 struct rq *rq = cpu_rq(cpu);
1665
17d9f311 1666#if defined(CONFIG_SMP)
39be3501 1667 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1668 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1669 ttwu_queue_remote(p, cpu);
1670 return;
1671 }
1672#endif
1673
c05fbafb
PZ
1674 raw_spin_lock(&rq->lock);
1675 ttwu_do_activate(rq, p, 0);
1676 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1677}
1678
1679/**
1da177e4 1680 * try_to_wake_up - wake up a thread
9ed3811a 1681 * @p: the thread to be awakened
1da177e4 1682 * @state: the mask of task states that can be woken
9ed3811a 1683 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1684 *
1685 * Put it on the run-queue if it's not already there. The "current"
1686 * thread is always on the run-queue (except when the actual
1687 * re-schedule is in progress), and as such you're allowed to do
1688 * the simpler "current->state = TASK_RUNNING" to mark yourself
1689 * runnable without the overhead of this.
1690 *
e69f6186 1691 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1692 * or @state didn't match @p's state.
1da177e4 1693 */
e4a52bcb
PZ
1694static int
1695try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1696{
1da177e4 1697 unsigned long flags;
c05fbafb 1698 int cpu, success = 0;
2398f2c6 1699
e0acd0a6
ON
1700 /*
1701 * If we are going to wake up a thread waiting for CONDITION we
1702 * need to ensure that CONDITION=1 done by the caller can not be
1703 * reordered with p->state check below. This pairs with mb() in
1704 * set_current_state() the waiting thread does.
1705 */
1706 smp_mb__before_spinlock();
013fdb80 1707 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1708 if (!(p->state & state))
1da177e4
LT
1709 goto out;
1710
c05fbafb 1711 success = 1; /* we're going to change ->state */
1da177e4 1712 cpu = task_cpu(p);
1da177e4 1713
cca26e80 1714 if (p->on_rq && ttwu_remote(p, wake_flags))
c05fbafb 1715 goto stat;
1da177e4 1716
1da177e4 1717#ifdef CONFIG_SMP
e9c84311 1718 /*
c05fbafb
PZ
1719 * If the owning (remote) cpu is still in the middle of schedule() with
1720 * this task as prev, wait until its done referencing the task.
e9c84311 1721 */
f3e94786 1722 while (p->on_cpu)
e4a52bcb 1723 cpu_relax();
0970d299 1724 /*
e4a52bcb 1725 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1726 */
e4a52bcb 1727 smp_rmb();
1da177e4 1728
a8e4f2ea 1729 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1730 p->state = TASK_WAKING;
e7693a36 1731
e4a52bcb 1732 if (p->sched_class->task_waking)
74f8e4b2 1733 p->sched_class->task_waking(p);
efbbd05a 1734
ac66f547 1735 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1736 if (task_cpu(p) != cpu) {
1737 wake_flags |= WF_MIGRATED;
e4a52bcb 1738 set_task_cpu(p, cpu);
f339b9dc 1739 }
1da177e4 1740#endif /* CONFIG_SMP */
1da177e4 1741
c05fbafb
PZ
1742 ttwu_queue(p, cpu);
1743stat:
b84cb5df 1744 ttwu_stat(p, cpu, wake_flags);
1da177e4 1745out:
013fdb80 1746 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1747
1748 return success;
1749}
1750
21aa9af0
TH
1751/**
1752 * try_to_wake_up_local - try to wake up a local task with rq lock held
1753 * @p: the thread to be awakened
1754 *
2acca55e 1755 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1756 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1757 * the current task.
21aa9af0
TH
1758 */
1759static void try_to_wake_up_local(struct task_struct *p)
1760{
1761 struct rq *rq = task_rq(p);
21aa9af0 1762
383efcd0
TH
1763 if (WARN_ON_ONCE(rq != this_rq()) ||
1764 WARN_ON_ONCE(p == current))
1765 return;
1766
21aa9af0
TH
1767 lockdep_assert_held(&rq->lock);
1768
2acca55e
PZ
1769 if (!raw_spin_trylock(&p->pi_lock)) {
1770 raw_spin_unlock(&rq->lock);
1771 raw_spin_lock(&p->pi_lock);
1772 raw_spin_lock(&rq->lock);
1773 }
1774
21aa9af0 1775 if (!(p->state & TASK_NORMAL))
2acca55e 1776 goto out;
21aa9af0 1777
da0c1e65 1778 if (!task_on_rq_queued(p))
d7c01d27
PZ
1779 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1780
23f41eeb 1781 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1782 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1783out:
1784 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1785}
1786
50fa610a
DH
1787/**
1788 * wake_up_process - Wake up a specific process
1789 * @p: The process to be woken up.
1790 *
1791 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1792 * processes.
1793 *
1794 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1795 *
1796 * It may be assumed that this function implies a write memory barrier before
1797 * changing the task state if and only if any tasks are woken up.
1798 */
7ad5b3a5 1799int wake_up_process(struct task_struct *p)
1da177e4 1800{
9067ac85
ON
1801 WARN_ON(task_is_stopped_or_traced(p));
1802 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1803}
1da177e4
LT
1804EXPORT_SYMBOL(wake_up_process);
1805
7ad5b3a5 1806int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1807{
1808 return try_to_wake_up(p, state, 0);
1809}
1810
a5e7be3b
JL
1811/*
1812 * This function clears the sched_dl_entity static params.
1813 */
1814void __dl_clear_params(struct task_struct *p)
1815{
1816 struct sched_dl_entity *dl_se = &p->dl;
1817
1818 dl_se->dl_runtime = 0;
1819 dl_se->dl_deadline = 0;
1820 dl_se->dl_period = 0;
1821 dl_se->flags = 0;
1822 dl_se->dl_bw = 0;
1823}
1824
1da177e4
LT
1825/*
1826 * Perform scheduler related setup for a newly forked process p.
1827 * p is forked by current.
dd41f596
IM
1828 *
1829 * __sched_fork() is basic setup used by init_idle() too:
1830 */
5e1576ed 1831static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1832{
fd2f4419
PZ
1833 p->on_rq = 0;
1834
1835 p->se.on_rq = 0;
dd41f596
IM
1836 p->se.exec_start = 0;
1837 p->se.sum_exec_runtime = 0;
f6cf891c 1838 p->se.prev_sum_exec_runtime = 0;
6c594c21 1839 p->se.nr_migrations = 0;
da7a735e 1840 p->se.vruntime = 0;
fd2f4419 1841 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1842
1843#ifdef CONFIG_SCHEDSTATS
41acab88 1844 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1845#endif
476d139c 1846
aab03e05
DF
1847 RB_CLEAR_NODE(&p->dl.rb_node);
1848 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1849 __dl_clear_params(p);
aab03e05 1850
fa717060 1851 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1852
e107be36
AK
1853#ifdef CONFIG_PREEMPT_NOTIFIERS
1854 INIT_HLIST_HEAD(&p->preempt_notifiers);
1855#endif
cbee9f88
PZ
1856
1857#ifdef CONFIG_NUMA_BALANCING
1858 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1859 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1860 p->mm->numa_scan_seq = 0;
1861 }
1862
5e1576ed
RR
1863 if (clone_flags & CLONE_VM)
1864 p->numa_preferred_nid = current->numa_preferred_nid;
1865 else
1866 p->numa_preferred_nid = -1;
1867
cbee9f88
PZ
1868 p->node_stamp = 0ULL;
1869 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1870 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1871 p->numa_work.next = &p->numa_work;
ff1df896
RR
1872 p->numa_faults_memory = NULL;
1873 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1874 p->last_task_numa_placement = 0;
1875 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1876
1877 INIT_LIST_HEAD(&p->numa_entry);
1878 p->numa_group = NULL;
cbee9f88 1879#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1880}
1881
1a687c2e 1882#ifdef CONFIG_NUMA_BALANCING
3105b86a 1883#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1884void set_numabalancing_state(bool enabled)
1885{
1886 if (enabled)
1887 sched_feat_set("NUMA");
1888 else
1889 sched_feat_set("NO_NUMA");
1890}
3105b86a
MG
1891#else
1892__read_mostly bool numabalancing_enabled;
1893
1894void set_numabalancing_state(bool enabled)
1895{
1896 numabalancing_enabled = enabled;
dd41f596 1897}
3105b86a 1898#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1899
1900#ifdef CONFIG_PROC_SYSCTL
1901int sysctl_numa_balancing(struct ctl_table *table, int write,
1902 void __user *buffer, size_t *lenp, loff_t *ppos)
1903{
1904 struct ctl_table t;
1905 int err;
1906 int state = numabalancing_enabled;
1907
1908 if (write && !capable(CAP_SYS_ADMIN))
1909 return -EPERM;
1910
1911 t = *table;
1912 t.data = &state;
1913 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1914 if (err < 0)
1915 return err;
1916 if (write)
1917 set_numabalancing_state(state);
1918 return err;
1919}
1920#endif
1921#endif
dd41f596
IM
1922
1923/*
1924 * fork()/clone()-time setup:
1925 */
aab03e05 1926int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1927{
0122ec5b 1928 unsigned long flags;
dd41f596
IM
1929 int cpu = get_cpu();
1930
5e1576ed 1931 __sched_fork(clone_flags, p);
06b83b5f 1932 /*
0017d735 1933 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1934 * nobody will actually run it, and a signal or other external
1935 * event cannot wake it up and insert it on the runqueue either.
1936 */
0017d735 1937 p->state = TASK_RUNNING;
dd41f596 1938
c350a04e
MG
1939 /*
1940 * Make sure we do not leak PI boosting priority to the child.
1941 */
1942 p->prio = current->normal_prio;
1943
b9dc29e7
MG
1944 /*
1945 * Revert to default priority/policy on fork if requested.
1946 */
1947 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1948 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1949 p->policy = SCHED_NORMAL;
6c697bdf 1950 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1951 p->rt_priority = 0;
1952 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1953 p->static_prio = NICE_TO_PRIO(0);
1954
1955 p->prio = p->normal_prio = __normal_prio(p);
1956 set_load_weight(p);
6c697bdf 1957
b9dc29e7
MG
1958 /*
1959 * We don't need the reset flag anymore after the fork. It has
1960 * fulfilled its duty:
1961 */
1962 p->sched_reset_on_fork = 0;
1963 }
ca94c442 1964
aab03e05
DF
1965 if (dl_prio(p->prio)) {
1966 put_cpu();
1967 return -EAGAIN;
1968 } else if (rt_prio(p->prio)) {
1969 p->sched_class = &rt_sched_class;
1970 } else {
2ddbf952 1971 p->sched_class = &fair_sched_class;
aab03e05 1972 }
b29739f9 1973
cd29fe6f
PZ
1974 if (p->sched_class->task_fork)
1975 p->sched_class->task_fork(p);
1976
86951599
PZ
1977 /*
1978 * The child is not yet in the pid-hash so no cgroup attach races,
1979 * and the cgroup is pinned to this child due to cgroup_fork()
1980 * is ran before sched_fork().
1981 *
1982 * Silence PROVE_RCU.
1983 */
0122ec5b 1984 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1985 set_task_cpu(p, cpu);
0122ec5b 1986 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1987
52f17b6c 1988#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1989 if (likely(sched_info_on()))
52f17b6c 1990 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1991#endif
3ca7a440
PZ
1992#if defined(CONFIG_SMP)
1993 p->on_cpu = 0;
4866cde0 1994#endif
01028747 1995 init_task_preempt_count(p);
806c09a7 1996#ifdef CONFIG_SMP
917b627d 1997 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1998 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1999#endif
917b627d 2000
476d139c 2001 put_cpu();
aab03e05 2002 return 0;
1da177e4
LT
2003}
2004
332ac17e
DF
2005unsigned long to_ratio(u64 period, u64 runtime)
2006{
2007 if (runtime == RUNTIME_INF)
2008 return 1ULL << 20;
2009
2010 /*
2011 * Doing this here saves a lot of checks in all
2012 * the calling paths, and returning zero seems
2013 * safe for them anyway.
2014 */
2015 if (period == 0)
2016 return 0;
2017
2018 return div64_u64(runtime << 20, period);
2019}
2020
2021#ifdef CONFIG_SMP
2022inline struct dl_bw *dl_bw_of(int i)
2023{
66339c31
KT
2024 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2025 "sched RCU must be held");
332ac17e
DF
2026 return &cpu_rq(i)->rd->dl_bw;
2027}
2028
de212f18 2029static inline int dl_bw_cpus(int i)
332ac17e 2030{
de212f18
PZ
2031 struct root_domain *rd = cpu_rq(i)->rd;
2032 int cpus = 0;
2033
66339c31
KT
2034 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2035 "sched RCU must be held");
de212f18
PZ
2036 for_each_cpu_and(i, rd->span, cpu_active_mask)
2037 cpus++;
2038
2039 return cpus;
332ac17e
DF
2040}
2041#else
2042inline struct dl_bw *dl_bw_of(int i)
2043{
2044 return &cpu_rq(i)->dl.dl_bw;
2045}
2046
de212f18 2047static inline int dl_bw_cpus(int i)
332ac17e
DF
2048{
2049 return 1;
2050}
2051#endif
2052
2053static inline
2054void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2055{
2056 dl_b->total_bw -= tsk_bw;
2057}
2058
2059static inline
2060void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2061{
2062 dl_b->total_bw += tsk_bw;
2063}
2064
2065static inline
2066bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2067{
2068 return dl_b->bw != -1 &&
2069 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2070}
2071
2072/*
2073 * We must be sure that accepting a new task (or allowing changing the
2074 * parameters of an existing one) is consistent with the bandwidth
2075 * constraints. If yes, this function also accordingly updates the currently
2076 * allocated bandwidth to reflect the new situation.
2077 *
2078 * This function is called while holding p's rq->lock.
2079 */
2080static int dl_overflow(struct task_struct *p, int policy,
2081 const struct sched_attr *attr)
2082{
2083
2084 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2085 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2086 u64 runtime = attr->sched_runtime;
2087 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2088 int cpus, err = -1;
332ac17e
DF
2089
2090 if (new_bw == p->dl.dl_bw)
2091 return 0;
2092
2093 /*
2094 * Either if a task, enters, leave, or stays -deadline but changes
2095 * its parameters, we may need to update accordingly the total
2096 * allocated bandwidth of the container.
2097 */
2098 raw_spin_lock(&dl_b->lock);
de212f18 2099 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2100 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2101 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2102 __dl_add(dl_b, new_bw);
2103 err = 0;
2104 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2105 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2106 __dl_clear(dl_b, p->dl.dl_bw);
2107 __dl_add(dl_b, new_bw);
2108 err = 0;
2109 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2110 __dl_clear(dl_b, p->dl.dl_bw);
2111 err = 0;
2112 }
2113 raw_spin_unlock(&dl_b->lock);
2114
2115 return err;
2116}
2117
2118extern void init_dl_bw(struct dl_bw *dl_b);
2119
1da177e4
LT
2120/*
2121 * wake_up_new_task - wake up a newly created task for the first time.
2122 *
2123 * This function will do some initial scheduler statistics housekeeping
2124 * that must be done for every newly created context, then puts the task
2125 * on the runqueue and wakes it.
2126 */
3e51e3ed 2127void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2128{
2129 unsigned long flags;
dd41f596 2130 struct rq *rq;
fabf318e 2131
ab2515c4 2132 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2133#ifdef CONFIG_SMP
2134 /*
2135 * Fork balancing, do it here and not earlier because:
2136 * - cpus_allowed can change in the fork path
2137 * - any previously selected cpu might disappear through hotplug
fabf318e 2138 */
ac66f547 2139 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2140#endif
2141
a75cdaa9
AS
2142 /* Initialize new task's runnable average */
2143 init_task_runnable_average(p);
ab2515c4 2144 rq = __task_rq_lock(p);
cd29fe6f 2145 activate_task(rq, p, 0);
da0c1e65 2146 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2147 trace_sched_wakeup_new(p, true);
a7558e01 2148 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2149#ifdef CONFIG_SMP
efbbd05a
PZ
2150 if (p->sched_class->task_woken)
2151 p->sched_class->task_woken(rq, p);
9a897c5a 2152#endif
0122ec5b 2153 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2154}
2155
e107be36
AK
2156#ifdef CONFIG_PREEMPT_NOTIFIERS
2157
2158/**
80dd99b3 2159 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2160 * @notifier: notifier struct to register
e107be36
AK
2161 */
2162void preempt_notifier_register(struct preempt_notifier *notifier)
2163{
2164 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2165}
2166EXPORT_SYMBOL_GPL(preempt_notifier_register);
2167
2168/**
2169 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2170 * @notifier: notifier struct to unregister
e107be36
AK
2171 *
2172 * This is safe to call from within a preemption notifier.
2173 */
2174void preempt_notifier_unregister(struct preempt_notifier *notifier)
2175{
2176 hlist_del(&notifier->link);
2177}
2178EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2179
2180static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2181{
2182 struct preempt_notifier *notifier;
e107be36 2183
b67bfe0d 2184 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2185 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 struct task_struct *next)
2191{
2192 struct preempt_notifier *notifier;
e107be36 2193
b67bfe0d 2194 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2195 notifier->ops->sched_out(notifier, next);
2196}
2197
6d6bc0ad 2198#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2199
2200static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2201{
2202}
2203
2204static void
2205fire_sched_out_preempt_notifiers(struct task_struct *curr,
2206 struct task_struct *next)
2207{
2208}
2209
6d6bc0ad 2210#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2211
4866cde0
NP
2212/**
2213 * prepare_task_switch - prepare to switch tasks
2214 * @rq: the runqueue preparing to switch
421cee29 2215 * @prev: the current task that is being switched out
4866cde0
NP
2216 * @next: the task we are going to switch to.
2217 *
2218 * This is called with the rq lock held and interrupts off. It must
2219 * be paired with a subsequent finish_task_switch after the context
2220 * switch.
2221 *
2222 * prepare_task_switch sets up locking and calls architecture specific
2223 * hooks.
2224 */
e107be36
AK
2225static inline void
2226prepare_task_switch(struct rq *rq, struct task_struct *prev,
2227 struct task_struct *next)
4866cde0 2228{
895dd92c 2229 trace_sched_switch(prev, next);
43148951 2230 sched_info_switch(rq, prev, next);
fe4b04fa 2231 perf_event_task_sched_out(prev, next);
e107be36 2232 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2233 prepare_lock_switch(rq, next);
2234 prepare_arch_switch(next);
2235}
2236
1da177e4
LT
2237/**
2238 * finish_task_switch - clean up after a task-switch
344babaa 2239 * @rq: runqueue associated with task-switch
1da177e4
LT
2240 * @prev: the thread we just switched away from.
2241 *
4866cde0
NP
2242 * finish_task_switch must be called after the context switch, paired
2243 * with a prepare_task_switch call before the context switch.
2244 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2245 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2246 *
2247 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2248 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2249 * with the lock held can cause deadlocks; see schedule() for
2250 * details.)
2251 */
a9957449 2252static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2253 __releases(rq->lock)
2254{
1da177e4 2255 struct mm_struct *mm = rq->prev_mm;
55a101f8 2256 long prev_state;
1da177e4
LT
2257
2258 rq->prev_mm = NULL;
2259
2260 /*
2261 * A task struct has one reference for the use as "current".
c394cc9f 2262 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2263 * schedule one last time. The schedule call will never return, and
2264 * the scheduled task must drop that reference.
c394cc9f 2265 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2266 * still held, otherwise prev could be scheduled on another cpu, die
2267 * there before we look at prev->state, and then the reference would
2268 * be dropped twice.
2269 * Manfred Spraul <manfred@colorfullife.com>
2270 */
55a101f8 2271 prev_state = prev->state;
bf9fae9f 2272 vtime_task_switch(prev);
4866cde0 2273 finish_arch_switch(prev);
a8d757ef 2274 perf_event_task_sched_in(prev, current);
4866cde0 2275 finish_lock_switch(rq, prev);
01f23e16 2276 finish_arch_post_lock_switch();
e8fa1362 2277
e107be36 2278 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2279 if (mm)
2280 mmdrop(mm);
c394cc9f 2281 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2282 if (prev->sched_class->task_dead)
2283 prev->sched_class->task_dead(prev);
2284
c6fd91f0 2285 /*
2286 * Remove function-return probe instances associated with this
2287 * task and put them back on the free list.
9761eea8 2288 */
c6fd91f0 2289 kprobe_flush_task(prev);
1da177e4 2290 put_task_struct(prev);
c6fd91f0 2291 }
99e5ada9
FW
2292
2293 tick_nohz_task_switch(current);
1da177e4
LT
2294}
2295
3f029d3c
GH
2296#ifdef CONFIG_SMP
2297
3f029d3c
GH
2298/* rq->lock is NOT held, but preemption is disabled */
2299static inline void post_schedule(struct rq *rq)
2300{
2301 if (rq->post_schedule) {
2302 unsigned long flags;
2303
05fa785c 2304 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2305 if (rq->curr->sched_class->post_schedule)
2306 rq->curr->sched_class->post_schedule(rq);
05fa785c 2307 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2308
2309 rq->post_schedule = 0;
2310 }
2311}
2312
2313#else
da19ab51 2314
3f029d3c
GH
2315static inline void post_schedule(struct rq *rq)
2316{
1da177e4
LT
2317}
2318
3f029d3c
GH
2319#endif
2320
1da177e4
LT
2321/**
2322 * schedule_tail - first thing a freshly forked thread must call.
2323 * @prev: the thread we just switched away from.
2324 */
722a9f92 2325asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2326 __releases(rq->lock)
2327{
70b97a7f
IM
2328 struct rq *rq = this_rq();
2329
4866cde0 2330 finish_task_switch(rq, prev);
da19ab51 2331
3f029d3c
GH
2332 /*
2333 * FIXME: do we need to worry about rq being invalidated by the
2334 * task_switch?
2335 */
2336 post_schedule(rq);
70b97a7f 2337
1da177e4 2338 if (current->set_child_tid)
b488893a 2339 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2340}
2341
2342/*
2343 * context_switch - switch to the new MM and the new
2344 * thread's register state.
2345 */
dd41f596 2346static inline void
70b97a7f 2347context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2348 struct task_struct *next)
1da177e4 2349{
dd41f596 2350 struct mm_struct *mm, *oldmm;
1da177e4 2351
e107be36 2352 prepare_task_switch(rq, prev, next);
fe4b04fa 2353
dd41f596
IM
2354 mm = next->mm;
2355 oldmm = prev->active_mm;
9226d125
ZA
2356 /*
2357 * For paravirt, this is coupled with an exit in switch_to to
2358 * combine the page table reload and the switch backend into
2359 * one hypercall.
2360 */
224101ed 2361 arch_start_context_switch(prev);
9226d125 2362
31915ab4 2363 if (!mm) {
1da177e4
LT
2364 next->active_mm = oldmm;
2365 atomic_inc(&oldmm->mm_count);
2366 enter_lazy_tlb(oldmm, next);
2367 } else
2368 switch_mm(oldmm, mm, next);
2369
31915ab4 2370 if (!prev->mm) {
1da177e4 2371 prev->active_mm = NULL;
1da177e4
LT
2372 rq->prev_mm = oldmm;
2373 }
3a5f5e48
IM
2374 /*
2375 * Since the runqueue lock will be released by the next
2376 * task (which is an invalid locking op but in the case
2377 * of the scheduler it's an obvious special-case), so we
2378 * do an early lockdep release here:
2379 */
8a25d5de 2380 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2381
91d1aa43 2382 context_tracking_task_switch(prev, next);
1da177e4
LT
2383 /* Here we just switch the register state and the stack. */
2384 switch_to(prev, next, prev);
2385
dd41f596
IM
2386 barrier();
2387 /*
2388 * this_rq must be evaluated again because prev may have moved
2389 * CPUs since it called schedule(), thus the 'rq' on its stack
2390 * frame will be invalid.
2391 */
2392 finish_task_switch(this_rq(), prev);
1da177e4
LT
2393}
2394
2395/*
1c3e8264 2396 * nr_running and nr_context_switches:
1da177e4
LT
2397 *
2398 * externally visible scheduler statistics: current number of runnable
1c3e8264 2399 * threads, total number of context switches performed since bootup.
1da177e4
LT
2400 */
2401unsigned long nr_running(void)
2402{
2403 unsigned long i, sum = 0;
2404
2405 for_each_online_cpu(i)
2406 sum += cpu_rq(i)->nr_running;
2407
2408 return sum;
f711f609 2409}
1da177e4 2410
1da177e4 2411unsigned long long nr_context_switches(void)
46cb4b7c 2412{
cc94abfc
SR
2413 int i;
2414 unsigned long long sum = 0;
46cb4b7c 2415
0a945022 2416 for_each_possible_cpu(i)
1da177e4 2417 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2418
1da177e4
LT
2419 return sum;
2420}
483b4ee6 2421
1da177e4
LT
2422unsigned long nr_iowait(void)
2423{
2424 unsigned long i, sum = 0;
483b4ee6 2425
0a945022 2426 for_each_possible_cpu(i)
1da177e4 2427 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2428
1da177e4
LT
2429 return sum;
2430}
483b4ee6 2431
8c215bd3 2432unsigned long nr_iowait_cpu(int cpu)
69d25870 2433{
8c215bd3 2434 struct rq *this = cpu_rq(cpu);
69d25870
AV
2435 return atomic_read(&this->nr_iowait);
2436}
46cb4b7c 2437
372ba8cb
MG
2438void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2439{
2440 struct rq *this = this_rq();
2441 *nr_waiters = atomic_read(&this->nr_iowait);
2442 *load = this->cpu_load[0];
2443}
2444
dd41f596 2445#ifdef CONFIG_SMP
8a0be9ef 2446
46cb4b7c 2447/*
38022906
PZ
2448 * sched_exec - execve() is a valuable balancing opportunity, because at
2449 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2450 */
38022906 2451void sched_exec(void)
46cb4b7c 2452{
38022906 2453 struct task_struct *p = current;
1da177e4 2454 unsigned long flags;
0017d735 2455 int dest_cpu;
46cb4b7c 2456
8f42ced9 2457 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2458 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2459 if (dest_cpu == smp_processor_id())
2460 goto unlock;
38022906 2461
8f42ced9 2462 if (likely(cpu_active(dest_cpu))) {
969c7921 2463 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2464
8f42ced9
PZ
2465 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2466 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2467 return;
2468 }
0017d735 2469unlock:
8f42ced9 2470 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2471}
dd41f596 2472
1da177e4
LT
2473#endif
2474
1da177e4 2475DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2476DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2477
2478EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2479EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2480
2481/*
c5f8d995 2482 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2483 * @p in case that task is currently running.
c5f8d995
HS
2484 *
2485 * Called with task_rq_lock() held on @rq.
1da177e4 2486 */
c5f8d995
HS
2487static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2488{
2489 u64 ns = 0;
2490
4036ac15
MG
2491 /*
2492 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2493 * project cycles that may never be accounted to this
2494 * thread, breaking clock_gettime().
2495 */
da0c1e65 2496 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2497 update_rq_clock(rq);
78becc27 2498 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2499 if ((s64)ns < 0)
2500 ns = 0;
2501 }
2502
2503 return ns;
2504}
2505
bb34d92f 2506unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2507{
1da177e4 2508 unsigned long flags;
41b86e9c 2509 struct rq *rq;
bb34d92f 2510 u64 ns = 0;
48f24c4d 2511
41b86e9c 2512 rq = task_rq_lock(p, &flags);
c5f8d995 2513 ns = do_task_delta_exec(p, rq);
0122ec5b 2514 task_rq_unlock(rq, p, &flags);
1508487e 2515
c5f8d995
HS
2516 return ns;
2517}
f06febc9 2518
c5f8d995
HS
2519/*
2520 * Return accounted runtime for the task.
2521 * In case the task is currently running, return the runtime plus current's
2522 * pending runtime that have not been accounted yet.
2523 */
2524unsigned long long task_sched_runtime(struct task_struct *p)
2525{
2526 unsigned long flags;
2527 struct rq *rq;
2528 u64 ns = 0;
2529
911b2898
PZ
2530#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2531 /*
2532 * 64-bit doesn't need locks to atomically read a 64bit value.
2533 * So we have a optimization chance when the task's delta_exec is 0.
2534 * Reading ->on_cpu is racy, but this is ok.
2535 *
2536 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2537 * If we race with it entering cpu, unaccounted time is 0. This is
2538 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2539 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2540 * been accounted, so we're correct here as well.
911b2898 2541 */
da0c1e65 2542 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2543 return p->se.sum_exec_runtime;
2544#endif
2545
c5f8d995
HS
2546 rq = task_rq_lock(p, &flags);
2547 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2548 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2549
2550 return ns;
2551}
48f24c4d 2552
7835b98b
CL
2553/*
2554 * This function gets called by the timer code, with HZ frequency.
2555 * We call it with interrupts disabled.
7835b98b
CL
2556 */
2557void scheduler_tick(void)
2558{
7835b98b
CL
2559 int cpu = smp_processor_id();
2560 struct rq *rq = cpu_rq(cpu);
dd41f596 2561 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2562
2563 sched_clock_tick();
dd41f596 2564
05fa785c 2565 raw_spin_lock(&rq->lock);
3e51f33f 2566 update_rq_clock(rq);
fa85ae24 2567 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2568 update_cpu_load_active(rq);
05fa785c 2569 raw_spin_unlock(&rq->lock);
7835b98b 2570
e9d2b064 2571 perf_event_task_tick();
e220d2dc 2572
e418e1c2 2573#ifdef CONFIG_SMP
6eb57e0d 2574 rq->idle_balance = idle_cpu(cpu);
7caff66f 2575 trigger_load_balance(rq);
e418e1c2 2576#endif
265f22a9 2577 rq_last_tick_reset(rq);
1da177e4
LT
2578}
2579
265f22a9
FW
2580#ifdef CONFIG_NO_HZ_FULL
2581/**
2582 * scheduler_tick_max_deferment
2583 *
2584 * Keep at least one tick per second when a single
2585 * active task is running because the scheduler doesn't
2586 * yet completely support full dynticks environment.
2587 *
2588 * This makes sure that uptime, CFS vruntime, load
2589 * balancing, etc... continue to move forward, even
2590 * with a very low granularity.
e69f6186
YB
2591 *
2592 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2593 */
2594u64 scheduler_tick_max_deferment(void)
2595{
2596 struct rq *rq = this_rq();
2597 unsigned long next, now = ACCESS_ONCE(jiffies);
2598
2599 next = rq->last_sched_tick + HZ;
2600
2601 if (time_before_eq(next, now))
2602 return 0;
2603
8fe8ff09 2604 return jiffies_to_nsecs(next - now);
1da177e4 2605}
265f22a9 2606#endif
1da177e4 2607
132380a0 2608notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2609{
2610 if (in_lock_functions(addr)) {
2611 addr = CALLER_ADDR2;
2612 if (in_lock_functions(addr))
2613 addr = CALLER_ADDR3;
2614 }
2615 return addr;
2616}
1da177e4 2617
7e49fcce
SR
2618#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2619 defined(CONFIG_PREEMPT_TRACER))
2620
edafe3a5 2621void preempt_count_add(int val)
1da177e4 2622{
6cd8a4bb 2623#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2624 /*
2625 * Underflow?
2626 */
9a11b49a
IM
2627 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2628 return;
6cd8a4bb 2629#endif
bdb43806 2630 __preempt_count_add(val);
6cd8a4bb 2631#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2632 /*
2633 * Spinlock count overflowing soon?
2634 */
33859f7f
MOS
2635 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2636 PREEMPT_MASK - 10);
6cd8a4bb 2637#endif
8f47b187
TG
2638 if (preempt_count() == val) {
2639 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2640#ifdef CONFIG_DEBUG_PREEMPT
2641 current->preempt_disable_ip = ip;
2642#endif
2643 trace_preempt_off(CALLER_ADDR0, ip);
2644 }
1da177e4 2645}
bdb43806 2646EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2647NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2648
edafe3a5 2649void preempt_count_sub(int val)
1da177e4 2650{
6cd8a4bb 2651#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2652 /*
2653 * Underflow?
2654 */
01e3eb82 2655 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2656 return;
1da177e4
LT
2657 /*
2658 * Is the spinlock portion underflowing?
2659 */
9a11b49a
IM
2660 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2661 !(preempt_count() & PREEMPT_MASK)))
2662 return;
6cd8a4bb 2663#endif
9a11b49a 2664
6cd8a4bb
SR
2665 if (preempt_count() == val)
2666 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2667 __preempt_count_sub(val);
1da177e4 2668}
bdb43806 2669EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2670NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2671
2672#endif
2673
2674/*
dd41f596 2675 * Print scheduling while atomic bug:
1da177e4 2676 */
dd41f596 2677static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2678{
664dfa65
DJ
2679 if (oops_in_progress)
2680 return;
2681
3df0fc5b
PZ
2682 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2683 prev->comm, prev->pid, preempt_count());
838225b4 2684
dd41f596 2685 debug_show_held_locks(prev);
e21f5b15 2686 print_modules();
dd41f596
IM
2687 if (irqs_disabled())
2688 print_irqtrace_events(prev);
8f47b187
TG
2689#ifdef CONFIG_DEBUG_PREEMPT
2690 if (in_atomic_preempt_off()) {
2691 pr_err("Preemption disabled at:");
2692 print_ip_sym(current->preempt_disable_ip);
2693 pr_cont("\n");
2694 }
2695#endif
6135fc1e 2696 dump_stack();
373d4d09 2697 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2698}
1da177e4 2699
dd41f596
IM
2700/*
2701 * Various schedule()-time debugging checks and statistics:
2702 */
2703static inline void schedule_debug(struct task_struct *prev)
2704{
0d9e2632
AT
2705#ifdef CONFIG_SCHED_STACK_END_CHECK
2706 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2707#endif
1da177e4 2708 /*
41a2d6cf 2709 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2710 * schedule() atomically, we ignore that path. Otherwise whine
2711 * if we are scheduling when we should not.
1da177e4 2712 */
192301e7 2713 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2714 __schedule_bug(prev);
b3fbab05 2715 rcu_sleep_check();
dd41f596 2716
1da177e4
LT
2717 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2718
2d72376b 2719 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2720}
2721
2722/*
2723 * Pick up the highest-prio task:
2724 */
2725static inline struct task_struct *
606dba2e 2726pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2727{
37e117c0 2728 const struct sched_class *class = &fair_sched_class;
dd41f596 2729 struct task_struct *p;
1da177e4
LT
2730
2731 /*
dd41f596
IM
2732 * Optimization: we know that if all tasks are in
2733 * the fair class we can call that function directly:
1da177e4 2734 */
37e117c0 2735 if (likely(prev->sched_class == class &&
38033c37 2736 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2737 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2738 if (unlikely(p == RETRY_TASK))
2739 goto again;
2740
2741 /* assumes fair_sched_class->next == idle_sched_class */
2742 if (unlikely(!p))
2743 p = idle_sched_class.pick_next_task(rq, prev);
2744
2745 return p;
1da177e4
LT
2746 }
2747
37e117c0 2748again:
34f971f6 2749 for_each_class(class) {
606dba2e 2750 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2751 if (p) {
2752 if (unlikely(p == RETRY_TASK))
2753 goto again;
dd41f596 2754 return p;
37e117c0 2755 }
dd41f596 2756 }
34f971f6
PZ
2757
2758 BUG(); /* the idle class will always have a runnable task */
dd41f596 2759}
1da177e4 2760
dd41f596 2761/*
c259e01a 2762 * __schedule() is the main scheduler function.
edde96ea
PE
2763 *
2764 * The main means of driving the scheduler and thus entering this function are:
2765 *
2766 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2767 *
2768 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2769 * paths. For example, see arch/x86/entry_64.S.
2770 *
2771 * To drive preemption between tasks, the scheduler sets the flag in timer
2772 * interrupt handler scheduler_tick().
2773 *
2774 * 3. Wakeups don't really cause entry into schedule(). They add a
2775 * task to the run-queue and that's it.
2776 *
2777 * Now, if the new task added to the run-queue preempts the current
2778 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2779 * called on the nearest possible occasion:
2780 *
2781 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2782 *
2783 * - in syscall or exception context, at the next outmost
2784 * preempt_enable(). (this might be as soon as the wake_up()'s
2785 * spin_unlock()!)
2786 *
2787 * - in IRQ context, return from interrupt-handler to
2788 * preemptible context
2789 *
2790 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2791 * then at the next:
2792 *
2793 * - cond_resched() call
2794 * - explicit schedule() call
2795 * - return from syscall or exception to user-space
2796 * - return from interrupt-handler to user-space
dd41f596 2797 */
c259e01a 2798static void __sched __schedule(void)
dd41f596
IM
2799{
2800 struct task_struct *prev, *next;
67ca7bde 2801 unsigned long *switch_count;
dd41f596 2802 struct rq *rq;
31656519 2803 int cpu;
dd41f596 2804
ff743345
PZ
2805need_resched:
2806 preempt_disable();
dd41f596
IM
2807 cpu = smp_processor_id();
2808 rq = cpu_rq(cpu);
25502a6c 2809 rcu_note_context_switch(cpu);
dd41f596 2810 prev = rq->curr;
dd41f596 2811
dd41f596 2812 schedule_debug(prev);
1da177e4 2813
31656519 2814 if (sched_feat(HRTICK))
f333fdc9 2815 hrtick_clear(rq);
8f4d37ec 2816
e0acd0a6
ON
2817 /*
2818 * Make sure that signal_pending_state()->signal_pending() below
2819 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2820 * done by the caller to avoid the race with signal_wake_up().
2821 */
2822 smp_mb__before_spinlock();
05fa785c 2823 raw_spin_lock_irq(&rq->lock);
1da177e4 2824
246d86b5 2825 switch_count = &prev->nivcsw;
1da177e4 2826 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2827 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2828 prev->state = TASK_RUNNING;
21aa9af0 2829 } else {
2acca55e
PZ
2830 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2831 prev->on_rq = 0;
2832
21aa9af0 2833 /*
2acca55e
PZ
2834 * If a worker went to sleep, notify and ask workqueue
2835 * whether it wants to wake up a task to maintain
2836 * concurrency.
21aa9af0
TH
2837 */
2838 if (prev->flags & PF_WQ_WORKER) {
2839 struct task_struct *to_wakeup;
2840
2841 to_wakeup = wq_worker_sleeping(prev, cpu);
2842 if (to_wakeup)
2843 try_to_wake_up_local(to_wakeup);
2844 }
21aa9af0 2845 }
dd41f596 2846 switch_count = &prev->nvcsw;
1da177e4
LT
2847 }
2848
da0c1e65 2849 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2850 update_rq_clock(rq);
2851
2852 next = pick_next_task(rq, prev);
f26f9aff 2853 clear_tsk_need_resched(prev);
f27dde8d 2854 clear_preempt_need_resched();
f26f9aff 2855 rq->skip_clock_update = 0;
1da177e4 2856
1da177e4 2857 if (likely(prev != next)) {
1da177e4
LT
2858 rq->nr_switches++;
2859 rq->curr = next;
2860 ++*switch_count;
2861
dd41f596 2862 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2863 /*
246d86b5
ON
2864 * The context switch have flipped the stack from under us
2865 * and restored the local variables which were saved when
2866 * this task called schedule() in the past. prev == current
2867 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2868 */
2869 cpu = smp_processor_id();
2870 rq = cpu_rq(cpu);
1da177e4 2871 } else
05fa785c 2872 raw_spin_unlock_irq(&rq->lock);
1da177e4 2873
3f029d3c 2874 post_schedule(rq);
1da177e4 2875
ba74c144 2876 sched_preempt_enable_no_resched();
ff743345 2877 if (need_resched())
1da177e4
LT
2878 goto need_resched;
2879}
c259e01a 2880
9c40cef2
TG
2881static inline void sched_submit_work(struct task_struct *tsk)
2882{
3c7d5184 2883 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2884 return;
2885 /*
2886 * If we are going to sleep and we have plugged IO queued,
2887 * make sure to submit it to avoid deadlocks.
2888 */
2889 if (blk_needs_flush_plug(tsk))
2890 blk_schedule_flush_plug(tsk);
2891}
2892
722a9f92 2893asmlinkage __visible void __sched schedule(void)
c259e01a 2894{
9c40cef2
TG
2895 struct task_struct *tsk = current;
2896
2897 sched_submit_work(tsk);
c259e01a
TG
2898 __schedule();
2899}
1da177e4
LT
2900EXPORT_SYMBOL(schedule);
2901
91d1aa43 2902#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2903asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2904{
2905 /*
2906 * If we come here after a random call to set_need_resched(),
2907 * or we have been woken up remotely but the IPI has not yet arrived,
2908 * we haven't yet exited the RCU idle mode. Do it here manually until
2909 * we find a better solution.
2910 */
91d1aa43 2911 user_exit();
20ab65e3 2912 schedule();
91d1aa43 2913 user_enter();
20ab65e3
FW
2914}
2915#endif
2916
c5491ea7
TG
2917/**
2918 * schedule_preempt_disabled - called with preemption disabled
2919 *
2920 * Returns with preemption disabled. Note: preempt_count must be 1
2921 */
2922void __sched schedule_preempt_disabled(void)
2923{
ba74c144 2924 sched_preempt_enable_no_resched();
c5491ea7
TG
2925 schedule();
2926 preempt_disable();
2927}
2928
1da177e4
LT
2929#ifdef CONFIG_PREEMPT
2930/*
2ed6e34f 2931 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2932 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2933 * occur there and call schedule directly.
2934 */
722a9f92 2935asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2936{
1da177e4
LT
2937 /*
2938 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2939 * we do not want to preempt the current task. Just return..
1da177e4 2940 */
fbb00b56 2941 if (likely(!preemptible()))
1da177e4
LT
2942 return;
2943
3a5c359a 2944 do {
bdb43806 2945 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2946 __schedule();
bdb43806 2947 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2948
3a5c359a
AK
2949 /*
2950 * Check again in case we missed a preemption opportunity
2951 * between schedule and now.
2952 */
2953 barrier();
5ed0cec0 2954 } while (need_resched());
1da177e4 2955}
376e2424 2956NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2957EXPORT_SYMBOL(preempt_schedule);
32e475d7 2958#endif /* CONFIG_PREEMPT */
1da177e4
LT
2959
2960/*
2ed6e34f 2961 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2962 * off of irq context.
2963 * Note, that this is called and return with irqs disabled. This will
2964 * protect us against recursive calling from irq.
2965 */
722a9f92 2966asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2967{
b22366cd 2968 enum ctx_state prev_state;
6478d880 2969
2ed6e34f 2970 /* Catch callers which need to be fixed */
f27dde8d 2971 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2972
b22366cd
FW
2973 prev_state = exception_enter();
2974
3a5c359a 2975 do {
bdb43806 2976 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2977 local_irq_enable();
c259e01a 2978 __schedule();
3a5c359a 2979 local_irq_disable();
bdb43806 2980 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2981
3a5c359a
AK
2982 /*
2983 * Check again in case we missed a preemption opportunity
2984 * between schedule and now.
2985 */
2986 barrier();
5ed0cec0 2987 } while (need_resched());
b22366cd
FW
2988
2989 exception_exit(prev_state);
1da177e4
LT
2990}
2991
63859d4f 2992int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2993 void *key)
1da177e4 2994{
63859d4f 2995 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2996}
1da177e4
LT
2997EXPORT_SYMBOL(default_wake_function);
2998
b29739f9
IM
2999#ifdef CONFIG_RT_MUTEXES
3000
3001/*
3002 * rt_mutex_setprio - set the current priority of a task
3003 * @p: task
3004 * @prio: prio value (kernel-internal form)
3005 *
3006 * This function changes the 'effective' priority of a task. It does
3007 * not touch ->normal_prio like __setscheduler().
3008 *
c365c292
TG
3009 * Used by the rt_mutex code to implement priority inheritance
3010 * logic. Call site only calls if the priority of the task changed.
b29739f9 3011 */
36c8b586 3012void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3013{
da0c1e65 3014 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3015 struct rq *rq;
83ab0aa0 3016 const struct sched_class *prev_class;
b29739f9 3017
aab03e05 3018 BUG_ON(prio > MAX_PRIO);
b29739f9 3019
0122ec5b 3020 rq = __task_rq_lock(p);
b29739f9 3021
1c4dd99b
TG
3022 /*
3023 * Idle task boosting is a nono in general. There is one
3024 * exception, when PREEMPT_RT and NOHZ is active:
3025 *
3026 * The idle task calls get_next_timer_interrupt() and holds
3027 * the timer wheel base->lock on the CPU and another CPU wants
3028 * to access the timer (probably to cancel it). We can safely
3029 * ignore the boosting request, as the idle CPU runs this code
3030 * with interrupts disabled and will complete the lock
3031 * protected section without being interrupted. So there is no
3032 * real need to boost.
3033 */
3034 if (unlikely(p == rq->idle)) {
3035 WARN_ON(p != rq->curr);
3036 WARN_ON(p->pi_blocked_on);
3037 goto out_unlock;
3038 }
3039
a8027073 3040 trace_sched_pi_setprio(p, prio);
d5f9f942 3041 oldprio = p->prio;
83ab0aa0 3042 prev_class = p->sched_class;
da0c1e65 3043 queued = task_on_rq_queued(p);
051a1d1a 3044 running = task_current(rq, p);
da0c1e65 3045 if (queued)
69be72c1 3046 dequeue_task(rq, p, 0);
0e1f3483 3047 if (running)
f3cd1c4e 3048 put_prev_task(rq, p);
dd41f596 3049
2d3d891d
DF
3050 /*
3051 * Boosting condition are:
3052 * 1. -rt task is running and holds mutex A
3053 * --> -dl task blocks on mutex A
3054 *
3055 * 2. -dl task is running and holds mutex A
3056 * --> -dl task blocks on mutex A and could preempt the
3057 * running task
3058 */
3059 if (dl_prio(prio)) {
466af29b
ON
3060 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3061 if (!dl_prio(p->normal_prio) ||
3062 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3063 p->dl.dl_boosted = 1;
3064 p->dl.dl_throttled = 0;
3065 enqueue_flag = ENQUEUE_REPLENISH;
3066 } else
3067 p->dl.dl_boosted = 0;
aab03e05 3068 p->sched_class = &dl_sched_class;
2d3d891d
DF
3069 } else if (rt_prio(prio)) {
3070 if (dl_prio(oldprio))
3071 p->dl.dl_boosted = 0;
3072 if (oldprio < prio)
3073 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3074 p->sched_class = &rt_sched_class;
2d3d891d
DF
3075 } else {
3076 if (dl_prio(oldprio))
3077 p->dl.dl_boosted = 0;
dd41f596 3078 p->sched_class = &fair_sched_class;
2d3d891d 3079 }
dd41f596 3080
b29739f9
IM
3081 p->prio = prio;
3082
0e1f3483
HS
3083 if (running)
3084 p->sched_class->set_curr_task(rq);
da0c1e65 3085 if (queued)
2d3d891d 3086 enqueue_task(rq, p, enqueue_flag);
cb469845 3087
da7a735e 3088 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3089out_unlock:
0122ec5b 3090 __task_rq_unlock(rq);
b29739f9 3091}
b29739f9 3092#endif
d50dde5a 3093
36c8b586 3094void set_user_nice(struct task_struct *p, long nice)
1da177e4 3095{
da0c1e65 3096 int old_prio, delta, queued;
1da177e4 3097 unsigned long flags;
70b97a7f 3098 struct rq *rq;
1da177e4 3099
75e45d51 3100 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3101 return;
3102 /*
3103 * We have to be careful, if called from sys_setpriority(),
3104 * the task might be in the middle of scheduling on another CPU.
3105 */
3106 rq = task_rq_lock(p, &flags);
3107 /*
3108 * The RT priorities are set via sched_setscheduler(), but we still
3109 * allow the 'normal' nice value to be set - but as expected
3110 * it wont have any effect on scheduling until the task is
aab03e05 3111 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3112 */
aab03e05 3113 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3114 p->static_prio = NICE_TO_PRIO(nice);
3115 goto out_unlock;
3116 }
da0c1e65
KT
3117 queued = task_on_rq_queued(p);
3118 if (queued)
69be72c1 3119 dequeue_task(rq, p, 0);
1da177e4 3120
1da177e4 3121 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3122 set_load_weight(p);
b29739f9
IM
3123 old_prio = p->prio;
3124 p->prio = effective_prio(p);
3125 delta = p->prio - old_prio;
1da177e4 3126
da0c1e65 3127 if (queued) {
371fd7e7 3128 enqueue_task(rq, p, 0);
1da177e4 3129 /*
d5f9f942
AM
3130 * If the task increased its priority or is running and
3131 * lowered its priority, then reschedule its CPU:
1da177e4 3132 */
d5f9f942 3133 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3134 resched_curr(rq);
1da177e4
LT
3135 }
3136out_unlock:
0122ec5b 3137 task_rq_unlock(rq, p, &flags);
1da177e4 3138}
1da177e4
LT
3139EXPORT_SYMBOL(set_user_nice);
3140
e43379f1
MM
3141/*
3142 * can_nice - check if a task can reduce its nice value
3143 * @p: task
3144 * @nice: nice value
3145 */
36c8b586 3146int can_nice(const struct task_struct *p, const int nice)
e43379f1 3147{
024f4747 3148 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3149 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3150
78d7d407 3151 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3152 capable(CAP_SYS_NICE));
3153}
3154
1da177e4
LT
3155#ifdef __ARCH_WANT_SYS_NICE
3156
3157/*
3158 * sys_nice - change the priority of the current process.
3159 * @increment: priority increment
3160 *
3161 * sys_setpriority is a more generic, but much slower function that
3162 * does similar things.
3163 */
5add95d4 3164SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3165{
48f24c4d 3166 long nice, retval;
1da177e4
LT
3167
3168 /*
3169 * Setpriority might change our priority at the same moment.
3170 * We don't have to worry. Conceptually one call occurs first
3171 * and we have a single winner.
3172 */
a9467fa3 3173 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3174 nice = task_nice(current) + increment;
1da177e4 3175
a9467fa3 3176 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3177 if (increment < 0 && !can_nice(current, nice))
3178 return -EPERM;
3179
1da177e4
LT
3180 retval = security_task_setnice(current, nice);
3181 if (retval)
3182 return retval;
3183
3184 set_user_nice(current, nice);
3185 return 0;
3186}
3187
3188#endif
3189
3190/**
3191 * task_prio - return the priority value of a given task.
3192 * @p: the task in question.
3193 *
e69f6186 3194 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3195 * RT tasks are offset by -200. Normal tasks are centered
3196 * around 0, value goes from -16 to +15.
3197 */
36c8b586 3198int task_prio(const struct task_struct *p)
1da177e4
LT
3199{
3200 return p->prio - MAX_RT_PRIO;
3201}
3202
1da177e4
LT
3203/**
3204 * idle_cpu - is a given cpu idle currently?
3205 * @cpu: the processor in question.
e69f6186
YB
3206 *
3207 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3208 */
3209int idle_cpu(int cpu)
3210{
908a3283
TG
3211 struct rq *rq = cpu_rq(cpu);
3212
3213 if (rq->curr != rq->idle)
3214 return 0;
3215
3216 if (rq->nr_running)
3217 return 0;
3218
3219#ifdef CONFIG_SMP
3220 if (!llist_empty(&rq->wake_list))
3221 return 0;
3222#endif
3223
3224 return 1;
1da177e4
LT
3225}
3226
1da177e4
LT
3227/**
3228 * idle_task - return the idle task for a given cpu.
3229 * @cpu: the processor in question.
e69f6186
YB
3230 *
3231 * Return: The idle task for the cpu @cpu.
1da177e4 3232 */
36c8b586 3233struct task_struct *idle_task(int cpu)
1da177e4
LT
3234{
3235 return cpu_rq(cpu)->idle;
3236}
3237
3238/**
3239 * find_process_by_pid - find a process with a matching PID value.
3240 * @pid: the pid in question.
e69f6186
YB
3241 *
3242 * The task of @pid, if found. %NULL otherwise.
1da177e4 3243 */
a9957449 3244static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3245{
228ebcbe 3246 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3247}
3248
aab03e05
DF
3249/*
3250 * This function initializes the sched_dl_entity of a newly becoming
3251 * SCHED_DEADLINE task.
3252 *
3253 * Only the static values are considered here, the actual runtime and the
3254 * absolute deadline will be properly calculated when the task is enqueued
3255 * for the first time with its new policy.
3256 */
3257static void
3258__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3259{
3260 struct sched_dl_entity *dl_se = &p->dl;
3261
3262 init_dl_task_timer(dl_se);
3263 dl_se->dl_runtime = attr->sched_runtime;
3264 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3265 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3266 dl_se->flags = attr->sched_flags;
332ac17e 3267 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3268 dl_se->dl_throttled = 0;
3269 dl_se->dl_new = 1;
5bfd126e 3270 dl_se->dl_yielded = 0;
aab03e05
DF
3271}
3272
c13db6b1
SR
3273/*
3274 * sched_setparam() passes in -1 for its policy, to let the functions
3275 * it calls know not to change it.
3276 */
3277#define SETPARAM_POLICY -1
3278
c365c292
TG
3279static void __setscheduler_params(struct task_struct *p,
3280 const struct sched_attr *attr)
1da177e4 3281{
d50dde5a
DF
3282 int policy = attr->sched_policy;
3283
c13db6b1 3284 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3285 policy = p->policy;
3286
1da177e4 3287 p->policy = policy;
d50dde5a 3288
aab03e05
DF
3289 if (dl_policy(policy))
3290 __setparam_dl(p, attr);
39fd8fd2 3291 else if (fair_policy(policy))
d50dde5a
DF
3292 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3293
39fd8fd2
PZ
3294 /*
3295 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3296 * !rt_policy. Always setting this ensures that things like
3297 * getparam()/getattr() don't report silly values for !rt tasks.
3298 */
3299 p->rt_priority = attr->sched_priority;
383afd09 3300 p->normal_prio = normal_prio(p);
c365c292
TG
3301 set_load_weight(p);
3302}
39fd8fd2 3303
c365c292
TG
3304/* Actually do priority change: must hold pi & rq lock. */
3305static void __setscheduler(struct rq *rq, struct task_struct *p,
3306 const struct sched_attr *attr)
3307{
3308 __setscheduler_params(p, attr);
d50dde5a 3309
383afd09
SR
3310 /*
3311 * If we get here, there was no pi waiters boosting the
3312 * task. It is safe to use the normal prio.
3313 */
3314 p->prio = normal_prio(p);
3315
aab03e05
DF
3316 if (dl_prio(p->prio))
3317 p->sched_class = &dl_sched_class;
3318 else if (rt_prio(p->prio))
ffd44db5
PZ
3319 p->sched_class = &rt_sched_class;
3320 else
3321 p->sched_class = &fair_sched_class;
1da177e4 3322}
aab03e05
DF
3323
3324static void
3325__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3326{
3327 struct sched_dl_entity *dl_se = &p->dl;
3328
3329 attr->sched_priority = p->rt_priority;
3330 attr->sched_runtime = dl_se->dl_runtime;
3331 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3332 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3333 attr->sched_flags = dl_se->flags;
3334}
3335
3336/*
3337 * This function validates the new parameters of a -deadline task.
3338 * We ask for the deadline not being zero, and greater or equal
755378a4 3339 * than the runtime, as well as the period of being zero or
332ac17e 3340 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3341 * user parameters are above the internal resolution of 1us (we
3342 * check sched_runtime only since it is always the smaller one) and
3343 * below 2^63 ns (we have to check both sched_deadline and
3344 * sched_period, as the latter can be zero).
aab03e05
DF
3345 */
3346static bool
3347__checkparam_dl(const struct sched_attr *attr)
3348{
b0827819
JL
3349 /* deadline != 0 */
3350 if (attr->sched_deadline == 0)
3351 return false;
3352
3353 /*
3354 * Since we truncate DL_SCALE bits, make sure we're at least
3355 * that big.
3356 */
3357 if (attr->sched_runtime < (1ULL << DL_SCALE))
3358 return false;
3359
3360 /*
3361 * Since we use the MSB for wrap-around and sign issues, make
3362 * sure it's not set (mind that period can be equal to zero).
3363 */
3364 if (attr->sched_deadline & (1ULL << 63) ||
3365 attr->sched_period & (1ULL << 63))
3366 return false;
3367
3368 /* runtime <= deadline <= period (if period != 0) */
3369 if ((attr->sched_period != 0 &&
3370 attr->sched_period < attr->sched_deadline) ||
3371 attr->sched_deadline < attr->sched_runtime)
3372 return false;
3373
3374 return true;
aab03e05
DF
3375}
3376
c69e8d9c
DH
3377/*
3378 * check the target process has a UID that matches the current process's
3379 */
3380static bool check_same_owner(struct task_struct *p)
3381{
3382 const struct cred *cred = current_cred(), *pcred;
3383 bool match;
3384
3385 rcu_read_lock();
3386 pcred = __task_cred(p);
9c806aa0
EB
3387 match = (uid_eq(cred->euid, pcred->euid) ||
3388 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3389 rcu_read_unlock();
3390 return match;
3391}
3392
d50dde5a
DF
3393static int __sched_setscheduler(struct task_struct *p,
3394 const struct sched_attr *attr,
3395 bool user)
1da177e4 3396{
383afd09
SR
3397 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3398 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3399 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3400 int policy = attr->sched_policy;
1da177e4 3401 unsigned long flags;
83ab0aa0 3402 const struct sched_class *prev_class;
70b97a7f 3403 struct rq *rq;
ca94c442 3404 int reset_on_fork;
1da177e4 3405
66e5393a
SR
3406 /* may grab non-irq protected spin_locks */
3407 BUG_ON(in_interrupt());
1da177e4
LT
3408recheck:
3409 /* double check policy once rq lock held */
ca94c442
LP
3410 if (policy < 0) {
3411 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3412 policy = oldpolicy = p->policy;
ca94c442 3413 } else {
7479f3c9 3414 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3415
aab03e05
DF
3416 if (policy != SCHED_DEADLINE &&
3417 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3418 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3419 policy != SCHED_IDLE)
3420 return -EINVAL;
3421 }
3422
7479f3c9
PZ
3423 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3424 return -EINVAL;
3425
1da177e4
LT
3426 /*
3427 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3428 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3429 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3430 */
0bb040a4 3431 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3432 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3433 return -EINVAL;
aab03e05
DF
3434 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3435 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3436 return -EINVAL;
3437
37e4ab3f
OC
3438 /*
3439 * Allow unprivileged RT tasks to decrease priority:
3440 */
961ccddd 3441 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3442 if (fair_policy(policy)) {
d0ea0268 3443 if (attr->sched_nice < task_nice(p) &&
eaad4513 3444 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3445 return -EPERM;
3446 }
3447
e05606d3 3448 if (rt_policy(policy)) {
a44702e8
ON
3449 unsigned long rlim_rtprio =
3450 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3451
3452 /* can't set/change the rt policy */
3453 if (policy != p->policy && !rlim_rtprio)
3454 return -EPERM;
3455
3456 /* can't increase priority */
d50dde5a
DF
3457 if (attr->sched_priority > p->rt_priority &&
3458 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3459 return -EPERM;
3460 }
c02aa73b 3461
d44753b8
JL
3462 /*
3463 * Can't set/change SCHED_DEADLINE policy at all for now
3464 * (safest behavior); in the future we would like to allow
3465 * unprivileged DL tasks to increase their relative deadline
3466 * or reduce their runtime (both ways reducing utilization)
3467 */
3468 if (dl_policy(policy))
3469 return -EPERM;
3470
dd41f596 3471 /*
c02aa73b
DH
3472 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3473 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3474 */
c02aa73b 3475 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3476 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3477 return -EPERM;
3478 }
5fe1d75f 3479
37e4ab3f 3480 /* can't change other user's priorities */
c69e8d9c 3481 if (!check_same_owner(p))
37e4ab3f 3482 return -EPERM;
ca94c442
LP
3483
3484 /* Normal users shall not reset the sched_reset_on_fork flag */
3485 if (p->sched_reset_on_fork && !reset_on_fork)
3486 return -EPERM;
37e4ab3f 3487 }
1da177e4 3488
725aad24 3489 if (user) {
b0ae1981 3490 retval = security_task_setscheduler(p);
725aad24
JF
3491 if (retval)
3492 return retval;
3493 }
3494
b29739f9
IM
3495 /*
3496 * make sure no PI-waiters arrive (or leave) while we are
3497 * changing the priority of the task:
0122ec5b 3498 *
25985edc 3499 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3500 * runqueue lock must be held.
3501 */
0122ec5b 3502 rq = task_rq_lock(p, &flags);
dc61b1d6 3503
34f971f6
PZ
3504 /*
3505 * Changing the policy of the stop threads its a very bad idea
3506 */
3507 if (p == rq->stop) {
0122ec5b 3508 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3509 return -EINVAL;
3510 }
3511
a51e9198 3512 /*
d6b1e911
TG
3513 * If not changing anything there's no need to proceed further,
3514 * but store a possible modification of reset_on_fork.
a51e9198 3515 */
d50dde5a 3516 if (unlikely(policy == p->policy)) {
d0ea0268 3517 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3518 goto change;
3519 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3520 goto change;
aab03e05
DF
3521 if (dl_policy(policy))
3522 goto change;
d50dde5a 3523
d6b1e911 3524 p->sched_reset_on_fork = reset_on_fork;
45afb173 3525 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3526 return 0;
3527 }
d50dde5a 3528change:
a51e9198 3529
dc61b1d6 3530 if (user) {
332ac17e 3531#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3532 /*
3533 * Do not allow realtime tasks into groups that have no runtime
3534 * assigned.
3535 */
3536 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3537 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3538 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3539 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3540 return -EPERM;
3541 }
dc61b1d6 3542#endif
332ac17e
DF
3543#ifdef CONFIG_SMP
3544 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3545 cpumask_t *span = rq->rd->span;
332ac17e
DF
3546
3547 /*
3548 * Don't allow tasks with an affinity mask smaller than
3549 * the entire root_domain to become SCHED_DEADLINE. We
3550 * will also fail if there's no bandwidth available.
3551 */
e4099a5e
PZ
3552 if (!cpumask_subset(span, &p->cpus_allowed) ||
3553 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3554 task_rq_unlock(rq, p, &flags);
3555 return -EPERM;
3556 }
3557 }
3558#endif
3559 }
dc61b1d6 3560
1da177e4
LT
3561 /* recheck policy now with rq lock held */
3562 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3563 policy = oldpolicy = -1;
0122ec5b 3564 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3565 goto recheck;
3566 }
332ac17e
DF
3567
3568 /*
3569 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3570 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3571 * is available.
3572 */
e4099a5e 3573 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3574 task_rq_unlock(rq, p, &flags);
3575 return -EBUSY;
3576 }
3577
c365c292
TG
3578 p->sched_reset_on_fork = reset_on_fork;
3579 oldprio = p->prio;
3580
3581 /*
3582 * Special case for priority boosted tasks.
3583 *
3584 * If the new priority is lower or equal (user space view)
3585 * than the current (boosted) priority, we just store the new
3586 * normal parameters and do not touch the scheduler class and
3587 * the runqueue. This will be done when the task deboost
3588 * itself.
3589 */
3590 if (rt_mutex_check_prio(p, newprio)) {
3591 __setscheduler_params(p, attr);
3592 task_rq_unlock(rq, p, &flags);
3593 return 0;
3594 }
3595
da0c1e65 3596 queued = task_on_rq_queued(p);
051a1d1a 3597 running = task_current(rq, p);
da0c1e65 3598 if (queued)
4ca9b72b 3599 dequeue_task(rq, p, 0);
0e1f3483 3600 if (running)
f3cd1c4e 3601 put_prev_task(rq, p);
f6b53205 3602
83ab0aa0 3603 prev_class = p->sched_class;
d50dde5a 3604 __setscheduler(rq, p, attr);
f6b53205 3605
0e1f3483
HS
3606 if (running)
3607 p->sched_class->set_curr_task(rq);
da0c1e65 3608 if (queued) {
81a44c54
TG
3609 /*
3610 * We enqueue to tail when the priority of a task is
3611 * increased (user space view).
3612 */
3613 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3614 }
cb469845 3615
da7a735e 3616 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3617 task_rq_unlock(rq, p, &flags);
b29739f9 3618
95e02ca9
TG
3619 rt_mutex_adjust_pi(p);
3620
1da177e4
LT
3621 return 0;
3622}
961ccddd 3623
7479f3c9
PZ
3624static int _sched_setscheduler(struct task_struct *p, int policy,
3625 const struct sched_param *param, bool check)
3626{
3627 struct sched_attr attr = {
3628 .sched_policy = policy,
3629 .sched_priority = param->sched_priority,
3630 .sched_nice = PRIO_TO_NICE(p->static_prio),
3631 };
3632
c13db6b1
SR
3633 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3634 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3635 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3636 policy &= ~SCHED_RESET_ON_FORK;
3637 attr.sched_policy = policy;
3638 }
3639
3640 return __sched_setscheduler(p, &attr, check);
3641}
961ccddd
RR
3642/**
3643 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3644 * @p: the task in question.
3645 * @policy: new policy.
3646 * @param: structure containing the new RT priority.
3647 *
e69f6186
YB
3648 * Return: 0 on success. An error code otherwise.
3649 *
961ccddd
RR
3650 * NOTE that the task may be already dead.
3651 */
3652int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3653 const struct sched_param *param)
961ccddd 3654{
7479f3c9 3655 return _sched_setscheduler(p, policy, param, true);
961ccddd 3656}
1da177e4
LT
3657EXPORT_SYMBOL_GPL(sched_setscheduler);
3658
d50dde5a
DF
3659int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3660{
3661 return __sched_setscheduler(p, attr, true);
3662}
3663EXPORT_SYMBOL_GPL(sched_setattr);
3664
961ccddd
RR
3665/**
3666 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3667 * @p: the task in question.
3668 * @policy: new policy.
3669 * @param: structure containing the new RT priority.
3670 *
3671 * Just like sched_setscheduler, only don't bother checking if the
3672 * current context has permission. For example, this is needed in
3673 * stop_machine(): we create temporary high priority worker threads,
3674 * but our caller might not have that capability.
e69f6186
YB
3675 *
3676 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3677 */
3678int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3679 const struct sched_param *param)
961ccddd 3680{
7479f3c9 3681 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3682}
3683
95cdf3b7
IM
3684static int
3685do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3686{
1da177e4
LT
3687 struct sched_param lparam;
3688 struct task_struct *p;
36c8b586 3689 int retval;
1da177e4
LT
3690
3691 if (!param || pid < 0)
3692 return -EINVAL;
3693 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3694 return -EFAULT;
5fe1d75f
ON
3695
3696 rcu_read_lock();
3697 retval = -ESRCH;
1da177e4 3698 p = find_process_by_pid(pid);
5fe1d75f
ON
3699 if (p != NULL)
3700 retval = sched_setscheduler(p, policy, &lparam);
3701 rcu_read_unlock();
36c8b586 3702
1da177e4
LT
3703 return retval;
3704}
3705
d50dde5a
DF
3706/*
3707 * Mimics kernel/events/core.c perf_copy_attr().
3708 */
3709static int sched_copy_attr(struct sched_attr __user *uattr,
3710 struct sched_attr *attr)
3711{
3712 u32 size;
3713 int ret;
3714
3715 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3716 return -EFAULT;
3717
3718 /*
3719 * zero the full structure, so that a short copy will be nice.
3720 */
3721 memset(attr, 0, sizeof(*attr));
3722
3723 ret = get_user(size, &uattr->size);
3724 if (ret)
3725 return ret;
3726
3727 if (size > PAGE_SIZE) /* silly large */
3728 goto err_size;
3729
3730 if (!size) /* abi compat */
3731 size = SCHED_ATTR_SIZE_VER0;
3732
3733 if (size < SCHED_ATTR_SIZE_VER0)
3734 goto err_size;
3735
3736 /*
3737 * If we're handed a bigger struct than we know of,
3738 * ensure all the unknown bits are 0 - i.e. new
3739 * user-space does not rely on any kernel feature
3740 * extensions we dont know about yet.
3741 */
3742 if (size > sizeof(*attr)) {
3743 unsigned char __user *addr;
3744 unsigned char __user *end;
3745 unsigned char val;
3746
3747 addr = (void __user *)uattr + sizeof(*attr);
3748 end = (void __user *)uattr + size;
3749
3750 for (; addr < end; addr++) {
3751 ret = get_user(val, addr);
3752 if (ret)
3753 return ret;
3754 if (val)
3755 goto err_size;
3756 }
3757 size = sizeof(*attr);
3758 }
3759
3760 ret = copy_from_user(attr, uattr, size);
3761 if (ret)
3762 return -EFAULT;
3763
3764 /*
3765 * XXX: do we want to be lenient like existing syscalls; or do we want
3766 * to be strict and return an error on out-of-bounds values?
3767 */
75e45d51 3768 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3769
e78c7bca 3770 return 0;
d50dde5a
DF
3771
3772err_size:
3773 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3774 return -E2BIG;
d50dde5a
DF
3775}
3776
1da177e4
LT
3777/**
3778 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3779 * @pid: the pid in question.
3780 * @policy: new policy.
3781 * @param: structure containing the new RT priority.
e69f6186
YB
3782 *
3783 * Return: 0 on success. An error code otherwise.
1da177e4 3784 */
5add95d4
HC
3785SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3786 struct sched_param __user *, param)
1da177e4 3787{
c21761f1
JB
3788 /* negative values for policy are not valid */
3789 if (policy < 0)
3790 return -EINVAL;
3791
1da177e4
LT
3792 return do_sched_setscheduler(pid, policy, param);
3793}
3794
3795/**
3796 * sys_sched_setparam - set/change the RT priority of a thread
3797 * @pid: the pid in question.
3798 * @param: structure containing the new RT priority.
e69f6186
YB
3799 *
3800 * Return: 0 on success. An error code otherwise.
1da177e4 3801 */
5add95d4 3802SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3803{
c13db6b1 3804 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3805}
3806
d50dde5a
DF
3807/**
3808 * sys_sched_setattr - same as above, but with extended sched_attr
3809 * @pid: the pid in question.
5778fccf 3810 * @uattr: structure containing the extended parameters.
db66d756 3811 * @flags: for future extension.
d50dde5a 3812 */
6d35ab48
PZ
3813SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3814 unsigned int, flags)
d50dde5a
DF
3815{
3816 struct sched_attr attr;
3817 struct task_struct *p;
3818 int retval;
3819
6d35ab48 3820 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3821 return -EINVAL;
3822
143cf23d
MK
3823 retval = sched_copy_attr(uattr, &attr);
3824 if (retval)
3825 return retval;
d50dde5a 3826
b14ed2c2 3827 if ((int)attr.sched_policy < 0)
dbdb2275 3828 return -EINVAL;
d50dde5a
DF
3829
3830 rcu_read_lock();
3831 retval = -ESRCH;
3832 p = find_process_by_pid(pid);
3833 if (p != NULL)
3834 retval = sched_setattr(p, &attr);
3835 rcu_read_unlock();
3836
3837 return retval;
3838}
3839
1da177e4
LT
3840/**
3841 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3842 * @pid: the pid in question.
e69f6186
YB
3843 *
3844 * Return: On success, the policy of the thread. Otherwise, a negative error
3845 * code.
1da177e4 3846 */
5add95d4 3847SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3848{
36c8b586 3849 struct task_struct *p;
3a5c359a 3850 int retval;
1da177e4
LT
3851
3852 if (pid < 0)
3a5c359a 3853 return -EINVAL;
1da177e4
LT
3854
3855 retval = -ESRCH;
5fe85be0 3856 rcu_read_lock();
1da177e4
LT
3857 p = find_process_by_pid(pid);
3858 if (p) {
3859 retval = security_task_getscheduler(p);
3860 if (!retval)
ca94c442
LP
3861 retval = p->policy
3862 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3863 }
5fe85be0 3864 rcu_read_unlock();
1da177e4
LT
3865 return retval;
3866}
3867
3868/**
ca94c442 3869 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3870 * @pid: the pid in question.
3871 * @param: structure containing the RT priority.
e69f6186
YB
3872 *
3873 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3874 * code.
1da177e4 3875 */
5add95d4 3876SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3877{
ce5f7f82 3878 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3879 struct task_struct *p;
3a5c359a 3880 int retval;
1da177e4
LT
3881
3882 if (!param || pid < 0)
3a5c359a 3883 return -EINVAL;
1da177e4 3884
5fe85be0 3885 rcu_read_lock();
1da177e4
LT
3886 p = find_process_by_pid(pid);
3887 retval = -ESRCH;
3888 if (!p)
3889 goto out_unlock;
3890
3891 retval = security_task_getscheduler(p);
3892 if (retval)
3893 goto out_unlock;
3894
ce5f7f82
PZ
3895 if (task_has_rt_policy(p))
3896 lp.sched_priority = p->rt_priority;
5fe85be0 3897 rcu_read_unlock();
1da177e4
LT
3898
3899 /*
3900 * This one might sleep, we cannot do it with a spinlock held ...
3901 */
3902 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3903
1da177e4
LT
3904 return retval;
3905
3906out_unlock:
5fe85be0 3907 rcu_read_unlock();
1da177e4
LT
3908 return retval;
3909}
3910
d50dde5a
DF
3911static int sched_read_attr(struct sched_attr __user *uattr,
3912 struct sched_attr *attr,
3913 unsigned int usize)
3914{
3915 int ret;
3916
3917 if (!access_ok(VERIFY_WRITE, uattr, usize))
3918 return -EFAULT;
3919
3920 /*
3921 * If we're handed a smaller struct than we know of,
3922 * ensure all the unknown bits are 0 - i.e. old
3923 * user-space does not get uncomplete information.
3924 */
3925 if (usize < sizeof(*attr)) {
3926 unsigned char *addr;
3927 unsigned char *end;
3928
3929 addr = (void *)attr + usize;
3930 end = (void *)attr + sizeof(*attr);
3931
3932 for (; addr < end; addr++) {
3933 if (*addr)
22400674 3934 return -EFBIG;
d50dde5a
DF
3935 }
3936
3937 attr->size = usize;
3938 }
3939
4efbc454 3940 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3941 if (ret)
3942 return -EFAULT;
3943
22400674 3944 return 0;
d50dde5a
DF
3945}
3946
3947/**
aab03e05 3948 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3949 * @pid: the pid in question.
5778fccf 3950 * @uattr: structure containing the extended parameters.
d50dde5a 3951 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3952 * @flags: for future extension.
d50dde5a 3953 */
6d35ab48
PZ
3954SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3955 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3956{
3957 struct sched_attr attr = {
3958 .size = sizeof(struct sched_attr),
3959 };
3960 struct task_struct *p;
3961 int retval;
3962
3963 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3964 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3965 return -EINVAL;
3966
3967 rcu_read_lock();
3968 p = find_process_by_pid(pid);
3969 retval = -ESRCH;
3970 if (!p)
3971 goto out_unlock;
3972
3973 retval = security_task_getscheduler(p);
3974 if (retval)
3975 goto out_unlock;
3976
3977 attr.sched_policy = p->policy;
7479f3c9
PZ
3978 if (p->sched_reset_on_fork)
3979 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3980 if (task_has_dl_policy(p))
3981 __getparam_dl(p, &attr);
3982 else if (task_has_rt_policy(p))
d50dde5a
DF
3983 attr.sched_priority = p->rt_priority;
3984 else
d0ea0268 3985 attr.sched_nice = task_nice(p);
d50dde5a
DF
3986
3987 rcu_read_unlock();
3988
3989 retval = sched_read_attr(uattr, &attr, size);
3990 return retval;
3991
3992out_unlock:
3993 rcu_read_unlock();
3994 return retval;
3995}
3996
96f874e2 3997long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3998{
5a16f3d3 3999 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4000 struct task_struct *p;
4001 int retval;
1da177e4 4002
23f5d142 4003 rcu_read_lock();
1da177e4
LT
4004
4005 p = find_process_by_pid(pid);
4006 if (!p) {
23f5d142 4007 rcu_read_unlock();
1da177e4
LT
4008 return -ESRCH;
4009 }
4010
23f5d142 4011 /* Prevent p going away */
1da177e4 4012 get_task_struct(p);
23f5d142 4013 rcu_read_unlock();
1da177e4 4014
14a40ffc
TH
4015 if (p->flags & PF_NO_SETAFFINITY) {
4016 retval = -EINVAL;
4017 goto out_put_task;
4018 }
5a16f3d3
RR
4019 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4020 retval = -ENOMEM;
4021 goto out_put_task;
4022 }
4023 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4024 retval = -ENOMEM;
4025 goto out_free_cpus_allowed;
4026 }
1da177e4 4027 retval = -EPERM;
4c44aaaf
EB
4028 if (!check_same_owner(p)) {
4029 rcu_read_lock();
4030 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4031 rcu_read_unlock();
16303ab2 4032 goto out_free_new_mask;
4c44aaaf
EB
4033 }
4034 rcu_read_unlock();
4035 }
1da177e4 4036
b0ae1981 4037 retval = security_task_setscheduler(p);
e7834f8f 4038 if (retval)
16303ab2 4039 goto out_free_new_mask;
e7834f8f 4040
e4099a5e
PZ
4041
4042 cpuset_cpus_allowed(p, cpus_allowed);
4043 cpumask_and(new_mask, in_mask, cpus_allowed);
4044
332ac17e
DF
4045 /*
4046 * Since bandwidth control happens on root_domain basis,
4047 * if admission test is enabled, we only admit -deadline
4048 * tasks allowed to run on all the CPUs in the task's
4049 * root_domain.
4050 */
4051#ifdef CONFIG_SMP
4052 if (task_has_dl_policy(p)) {
4053 const struct cpumask *span = task_rq(p)->rd->span;
4054
e4099a5e 4055 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e 4056 retval = -EBUSY;
16303ab2 4057 goto out_free_new_mask;
332ac17e
DF
4058 }
4059 }
4060#endif
49246274 4061again:
5a16f3d3 4062 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4063
8707d8b8 4064 if (!retval) {
5a16f3d3
RR
4065 cpuset_cpus_allowed(p, cpus_allowed);
4066 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4067 /*
4068 * We must have raced with a concurrent cpuset
4069 * update. Just reset the cpus_allowed to the
4070 * cpuset's cpus_allowed
4071 */
5a16f3d3 4072 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4073 goto again;
4074 }
4075 }
16303ab2 4076out_free_new_mask:
5a16f3d3
RR
4077 free_cpumask_var(new_mask);
4078out_free_cpus_allowed:
4079 free_cpumask_var(cpus_allowed);
4080out_put_task:
1da177e4 4081 put_task_struct(p);
1da177e4
LT
4082 return retval;
4083}
4084
4085static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4086 struct cpumask *new_mask)
1da177e4 4087{
96f874e2
RR
4088 if (len < cpumask_size())
4089 cpumask_clear(new_mask);
4090 else if (len > cpumask_size())
4091 len = cpumask_size();
4092
1da177e4
LT
4093 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4094}
4095
4096/**
4097 * sys_sched_setaffinity - set the cpu affinity of a process
4098 * @pid: pid of the process
4099 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4100 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4101 *
4102 * Return: 0 on success. An error code otherwise.
1da177e4 4103 */
5add95d4
HC
4104SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4105 unsigned long __user *, user_mask_ptr)
1da177e4 4106{
5a16f3d3 4107 cpumask_var_t new_mask;
1da177e4
LT
4108 int retval;
4109
5a16f3d3
RR
4110 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4111 return -ENOMEM;
1da177e4 4112
5a16f3d3
RR
4113 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4114 if (retval == 0)
4115 retval = sched_setaffinity(pid, new_mask);
4116 free_cpumask_var(new_mask);
4117 return retval;
1da177e4
LT
4118}
4119
96f874e2 4120long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4121{
36c8b586 4122 struct task_struct *p;
31605683 4123 unsigned long flags;
1da177e4 4124 int retval;
1da177e4 4125
23f5d142 4126 rcu_read_lock();
1da177e4
LT
4127
4128 retval = -ESRCH;
4129 p = find_process_by_pid(pid);
4130 if (!p)
4131 goto out_unlock;
4132
e7834f8f
DQ
4133 retval = security_task_getscheduler(p);
4134 if (retval)
4135 goto out_unlock;
4136
013fdb80 4137 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4138 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4139 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4140
4141out_unlock:
23f5d142 4142 rcu_read_unlock();
1da177e4 4143
9531b62f 4144 return retval;
1da177e4
LT
4145}
4146
4147/**
4148 * sys_sched_getaffinity - get the cpu affinity of a process
4149 * @pid: pid of the process
4150 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4151 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4152 *
4153 * Return: 0 on success. An error code otherwise.
1da177e4 4154 */
5add95d4
HC
4155SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4156 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4157{
4158 int ret;
f17c8607 4159 cpumask_var_t mask;
1da177e4 4160
84fba5ec 4161 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4162 return -EINVAL;
4163 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4164 return -EINVAL;
4165
f17c8607
RR
4166 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4167 return -ENOMEM;
1da177e4 4168
f17c8607
RR
4169 ret = sched_getaffinity(pid, mask);
4170 if (ret == 0) {
8bc037fb 4171 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4172
4173 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4174 ret = -EFAULT;
4175 else
cd3d8031 4176 ret = retlen;
f17c8607
RR
4177 }
4178 free_cpumask_var(mask);
1da177e4 4179
f17c8607 4180 return ret;
1da177e4
LT
4181}
4182
4183/**
4184 * sys_sched_yield - yield the current processor to other threads.
4185 *
dd41f596
IM
4186 * This function yields the current CPU to other tasks. If there are no
4187 * other threads running on this CPU then this function will return.
e69f6186
YB
4188 *
4189 * Return: 0.
1da177e4 4190 */
5add95d4 4191SYSCALL_DEFINE0(sched_yield)
1da177e4 4192{
70b97a7f 4193 struct rq *rq = this_rq_lock();
1da177e4 4194
2d72376b 4195 schedstat_inc(rq, yld_count);
4530d7ab 4196 current->sched_class->yield_task(rq);
1da177e4
LT
4197
4198 /*
4199 * Since we are going to call schedule() anyway, there's
4200 * no need to preempt or enable interrupts:
4201 */
4202 __release(rq->lock);
8a25d5de 4203 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4204 do_raw_spin_unlock(&rq->lock);
ba74c144 4205 sched_preempt_enable_no_resched();
1da177e4
LT
4206
4207 schedule();
4208
4209 return 0;
4210}
4211
e7b38404 4212static void __cond_resched(void)
1da177e4 4213{
bdb43806 4214 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4215 __schedule();
bdb43806 4216 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4217}
4218
02b67cc3 4219int __sched _cond_resched(void)
1da177e4 4220{
d86ee480 4221 if (should_resched()) {
1da177e4
LT
4222 __cond_resched();
4223 return 1;
4224 }
4225 return 0;
4226}
02b67cc3 4227EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4228
4229/*
613afbf8 4230 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4231 * call schedule, and on return reacquire the lock.
4232 *
41a2d6cf 4233 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4234 * operations here to prevent schedule() from being called twice (once via
4235 * spin_unlock(), once by hand).
4236 */
613afbf8 4237int __cond_resched_lock(spinlock_t *lock)
1da177e4 4238{
d86ee480 4239 int resched = should_resched();
6df3cecb
JK
4240 int ret = 0;
4241
f607c668
PZ
4242 lockdep_assert_held(lock);
4243
4a81e832 4244 if (spin_needbreak(lock) || resched) {
1da177e4 4245 spin_unlock(lock);
d86ee480 4246 if (resched)
95c354fe
NP
4247 __cond_resched();
4248 else
4249 cpu_relax();
6df3cecb 4250 ret = 1;
1da177e4 4251 spin_lock(lock);
1da177e4 4252 }
6df3cecb 4253 return ret;
1da177e4 4254}
613afbf8 4255EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4256
613afbf8 4257int __sched __cond_resched_softirq(void)
1da177e4
LT
4258{
4259 BUG_ON(!in_softirq());
4260
d86ee480 4261 if (should_resched()) {
98d82567 4262 local_bh_enable();
1da177e4
LT
4263 __cond_resched();
4264 local_bh_disable();
4265 return 1;
4266 }
4267 return 0;
4268}
613afbf8 4269EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4270
1da177e4
LT
4271/**
4272 * yield - yield the current processor to other threads.
4273 *
8e3fabfd
PZ
4274 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4275 *
4276 * The scheduler is at all times free to pick the calling task as the most
4277 * eligible task to run, if removing the yield() call from your code breaks
4278 * it, its already broken.
4279 *
4280 * Typical broken usage is:
4281 *
4282 * while (!event)
4283 * yield();
4284 *
4285 * where one assumes that yield() will let 'the other' process run that will
4286 * make event true. If the current task is a SCHED_FIFO task that will never
4287 * happen. Never use yield() as a progress guarantee!!
4288 *
4289 * If you want to use yield() to wait for something, use wait_event().
4290 * If you want to use yield() to be 'nice' for others, use cond_resched().
4291 * If you still want to use yield(), do not!
1da177e4
LT
4292 */
4293void __sched yield(void)
4294{
4295 set_current_state(TASK_RUNNING);
4296 sys_sched_yield();
4297}
1da177e4
LT
4298EXPORT_SYMBOL(yield);
4299
d95f4122
MG
4300/**
4301 * yield_to - yield the current processor to another thread in
4302 * your thread group, or accelerate that thread toward the
4303 * processor it's on.
16addf95
RD
4304 * @p: target task
4305 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4306 *
4307 * It's the caller's job to ensure that the target task struct
4308 * can't go away on us before we can do any checks.
4309 *
e69f6186 4310 * Return:
7b270f60
PZ
4311 * true (>0) if we indeed boosted the target task.
4312 * false (0) if we failed to boost the target.
4313 * -ESRCH if there's no task to yield to.
d95f4122 4314 */
fa93384f 4315int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4316{
4317 struct task_struct *curr = current;
4318 struct rq *rq, *p_rq;
4319 unsigned long flags;
c3c18640 4320 int yielded = 0;
d95f4122
MG
4321
4322 local_irq_save(flags);
4323 rq = this_rq();
4324
4325again:
4326 p_rq = task_rq(p);
7b270f60
PZ
4327 /*
4328 * If we're the only runnable task on the rq and target rq also
4329 * has only one task, there's absolutely no point in yielding.
4330 */
4331 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4332 yielded = -ESRCH;
4333 goto out_irq;
4334 }
4335
d95f4122 4336 double_rq_lock(rq, p_rq);
39e24d8f 4337 if (task_rq(p) != p_rq) {
d95f4122
MG
4338 double_rq_unlock(rq, p_rq);
4339 goto again;
4340 }
4341
4342 if (!curr->sched_class->yield_to_task)
7b270f60 4343 goto out_unlock;
d95f4122
MG
4344
4345 if (curr->sched_class != p->sched_class)
7b270f60 4346 goto out_unlock;
d95f4122
MG
4347
4348 if (task_running(p_rq, p) || p->state)
7b270f60 4349 goto out_unlock;
d95f4122
MG
4350
4351 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4352 if (yielded) {
d95f4122 4353 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4354 /*
4355 * Make p's CPU reschedule; pick_next_entity takes care of
4356 * fairness.
4357 */
4358 if (preempt && rq != p_rq)
8875125e 4359 resched_curr(p_rq);
6d1cafd8 4360 }
d95f4122 4361
7b270f60 4362out_unlock:
d95f4122 4363 double_rq_unlock(rq, p_rq);
7b270f60 4364out_irq:
d95f4122
MG
4365 local_irq_restore(flags);
4366
7b270f60 4367 if (yielded > 0)
d95f4122
MG
4368 schedule();
4369
4370 return yielded;
4371}
4372EXPORT_SYMBOL_GPL(yield_to);
4373
1da177e4 4374/*
41a2d6cf 4375 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4376 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4377 */
4378void __sched io_schedule(void)
4379{
54d35f29 4380 struct rq *rq = raw_rq();
1da177e4 4381
0ff92245 4382 delayacct_blkio_start();
1da177e4 4383 atomic_inc(&rq->nr_iowait);
73c10101 4384 blk_flush_plug(current);
8f0dfc34 4385 current->in_iowait = 1;
1da177e4 4386 schedule();
8f0dfc34 4387 current->in_iowait = 0;
1da177e4 4388 atomic_dec(&rq->nr_iowait);
0ff92245 4389 delayacct_blkio_end();
1da177e4 4390}
1da177e4
LT
4391EXPORT_SYMBOL(io_schedule);
4392
4393long __sched io_schedule_timeout(long timeout)
4394{
54d35f29 4395 struct rq *rq = raw_rq();
1da177e4
LT
4396 long ret;
4397
0ff92245 4398 delayacct_blkio_start();
1da177e4 4399 atomic_inc(&rq->nr_iowait);
73c10101 4400 blk_flush_plug(current);
8f0dfc34 4401 current->in_iowait = 1;
1da177e4 4402 ret = schedule_timeout(timeout);
8f0dfc34 4403 current->in_iowait = 0;
1da177e4 4404 atomic_dec(&rq->nr_iowait);
0ff92245 4405 delayacct_blkio_end();
1da177e4
LT
4406 return ret;
4407}
4408
4409/**
4410 * sys_sched_get_priority_max - return maximum RT priority.
4411 * @policy: scheduling class.
4412 *
e69f6186
YB
4413 * Return: On success, this syscall returns the maximum
4414 * rt_priority that can be used by a given scheduling class.
4415 * On failure, a negative error code is returned.
1da177e4 4416 */
5add95d4 4417SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4418{
4419 int ret = -EINVAL;
4420
4421 switch (policy) {
4422 case SCHED_FIFO:
4423 case SCHED_RR:
4424 ret = MAX_USER_RT_PRIO-1;
4425 break;
aab03e05 4426 case SCHED_DEADLINE:
1da177e4 4427 case SCHED_NORMAL:
b0a9499c 4428 case SCHED_BATCH:
dd41f596 4429 case SCHED_IDLE:
1da177e4
LT
4430 ret = 0;
4431 break;
4432 }
4433 return ret;
4434}
4435
4436/**
4437 * sys_sched_get_priority_min - return minimum RT priority.
4438 * @policy: scheduling class.
4439 *
e69f6186
YB
4440 * Return: On success, this syscall returns the minimum
4441 * rt_priority that can be used by a given scheduling class.
4442 * On failure, a negative error code is returned.
1da177e4 4443 */
5add95d4 4444SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4445{
4446 int ret = -EINVAL;
4447
4448 switch (policy) {
4449 case SCHED_FIFO:
4450 case SCHED_RR:
4451 ret = 1;
4452 break;
aab03e05 4453 case SCHED_DEADLINE:
1da177e4 4454 case SCHED_NORMAL:
b0a9499c 4455 case SCHED_BATCH:
dd41f596 4456 case SCHED_IDLE:
1da177e4
LT
4457 ret = 0;
4458 }
4459 return ret;
4460}
4461
4462/**
4463 * sys_sched_rr_get_interval - return the default timeslice of a process.
4464 * @pid: pid of the process.
4465 * @interval: userspace pointer to the timeslice value.
4466 *
4467 * this syscall writes the default timeslice value of a given process
4468 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4469 *
4470 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4471 * an error code.
1da177e4 4472 */
17da2bd9 4473SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4474 struct timespec __user *, interval)
1da177e4 4475{
36c8b586 4476 struct task_struct *p;
a4ec24b4 4477 unsigned int time_slice;
dba091b9
TG
4478 unsigned long flags;
4479 struct rq *rq;
3a5c359a 4480 int retval;
1da177e4 4481 struct timespec t;
1da177e4
LT
4482
4483 if (pid < 0)
3a5c359a 4484 return -EINVAL;
1da177e4
LT
4485
4486 retval = -ESRCH;
1a551ae7 4487 rcu_read_lock();
1da177e4
LT
4488 p = find_process_by_pid(pid);
4489 if (!p)
4490 goto out_unlock;
4491
4492 retval = security_task_getscheduler(p);
4493 if (retval)
4494 goto out_unlock;
4495
dba091b9 4496 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4497 time_slice = 0;
4498 if (p->sched_class->get_rr_interval)
4499 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4500 task_rq_unlock(rq, p, &flags);
a4ec24b4 4501
1a551ae7 4502 rcu_read_unlock();
a4ec24b4 4503 jiffies_to_timespec(time_slice, &t);
1da177e4 4504 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4505 return retval;
3a5c359a 4506
1da177e4 4507out_unlock:
1a551ae7 4508 rcu_read_unlock();
1da177e4
LT
4509 return retval;
4510}
4511
7c731e0a 4512static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4513
82a1fcb9 4514void sched_show_task(struct task_struct *p)
1da177e4 4515{
1da177e4 4516 unsigned long free = 0;
4e79752c 4517 int ppid;
36c8b586 4518 unsigned state;
1da177e4 4519
1da177e4 4520 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4521 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4522 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4523#if BITS_PER_LONG == 32
1da177e4 4524 if (state == TASK_RUNNING)
3df0fc5b 4525 printk(KERN_CONT " running ");
1da177e4 4526 else
3df0fc5b 4527 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4528#else
4529 if (state == TASK_RUNNING)
3df0fc5b 4530 printk(KERN_CONT " running task ");
1da177e4 4531 else
3df0fc5b 4532 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4533#endif
4534#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4535 free = stack_not_used(p);
1da177e4 4536#endif
4e79752c
PM
4537 rcu_read_lock();
4538 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4539 rcu_read_unlock();
3df0fc5b 4540 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4541 task_pid_nr(p), ppid,
aa47b7e0 4542 (unsigned long)task_thread_info(p)->flags);
1da177e4 4543
3d1cb205 4544 print_worker_info(KERN_INFO, p);
5fb5e6de 4545 show_stack(p, NULL);
1da177e4
LT
4546}
4547
e59e2ae2 4548void show_state_filter(unsigned long state_filter)
1da177e4 4549{
36c8b586 4550 struct task_struct *g, *p;
1da177e4 4551
4bd77321 4552#if BITS_PER_LONG == 32
3df0fc5b
PZ
4553 printk(KERN_INFO
4554 " task PC stack pid father\n");
1da177e4 4555#else
3df0fc5b
PZ
4556 printk(KERN_INFO
4557 " task PC stack pid father\n");
1da177e4 4558#endif
510f5acc 4559 rcu_read_lock();
5d07f420 4560 for_each_process_thread(g, p) {
1da177e4
LT
4561 /*
4562 * reset the NMI-timeout, listing all files on a slow
25985edc 4563 * console might take a lot of time:
1da177e4
LT
4564 */
4565 touch_nmi_watchdog();
39bc89fd 4566 if (!state_filter || (p->state & state_filter))
82a1fcb9 4567 sched_show_task(p);
5d07f420 4568 }
1da177e4 4569
04c9167f
JF
4570 touch_all_softlockup_watchdogs();
4571
dd41f596
IM
4572#ifdef CONFIG_SCHED_DEBUG
4573 sysrq_sched_debug_show();
4574#endif
510f5acc 4575 rcu_read_unlock();
e59e2ae2
IM
4576 /*
4577 * Only show locks if all tasks are dumped:
4578 */
93335a21 4579 if (!state_filter)
e59e2ae2 4580 debug_show_all_locks();
1da177e4
LT
4581}
4582
0db0628d 4583void init_idle_bootup_task(struct task_struct *idle)
1df21055 4584{
dd41f596 4585 idle->sched_class = &idle_sched_class;
1df21055
IM
4586}
4587
f340c0d1
IM
4588/**
4589 * init_idle - set up an idle thread for a given CPU
4590 * @idle: task in question
4591 * @cpu: cpu the idle task belongs to
4592 *
4593 * NOTE: this function does not set the idle thread's NEED_RESCHED
4594 * flag, to make booting more robust.
4595 */
0db0628d 4596void init_idle(struct task_struct *idle, int cpu)
1da177e4 4597{
70b97a7f 4598 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4599 unsigned long flags;
4600
05fa785c 4601 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4602
5e1576ed 4603 __sched_fork(0, idle);
06b83b5f 4604 idle->state = TASK_RUNNING;
dd41f596
IM
4605 idle->se.exec_start = sched_clock();
4606
1e1b6c51 4607 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4608 /*
4609 * We're having a chicken and egg problem, even though we are
4610 * holding rq->lock, the cpu isn't yet set to this cpu so the
4611 * lockdep check in task_group() will fail.
4612 *
4613 * Similar case to sched_fork(). / Alternatively we could
4614 * use task_rq_lock() here and obtain the other rq->lock.
4615 *
4616 * Silence PROVE_RCU
4617 */
4618 rcu_read_lock();
dd41f596 4619 __set_task_cpu(idle, cpu);
6506cf6c 4620 rcu_read_unlock();
1da177e4 4621
1da177e4 4622 rq->curr = rq->idle = idle;
da0c1e65 4623 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4624#if defined(CONFIG_SMP)
4625 idle->on_cpu = 1;
4866cde0 4626#endif
05fa785c 4627 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4628
4629 /* Set the preempt count _outside_ the spinlocks! */
01028747 4630 init_idle_preempt_count(idle, cpu);
55cd5340 4631
dd41f596
IM
4632 /*
4633 * The idle tasks have their own, simple scheduling class:
4634 */
4635 idle->sched_class = &idle_sched_class;
868baf07 4636 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4637 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4638#if defined(CONFIG_SMP)
4639 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4640#endif
19978ca6
IM
4641}
4642
1da177e4 4643#ifdef CONFIG_SMP
a15b12ac
KT
4644/*
4645 * move_queued_task - move a queued task to new rq.
4646 *
4647 * Returns (locked) new rq. Old rq's lock is released.
4648 */
4649static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4650{
4651 struct rq *rq = task_rq(p);
4652
4653 lockdep_assert_held(&rq->lock);
4654
4655 dequeue_task(rq, p, 0);
4656 p->on_rq = TASK_ON_RQ_MIGRATING;
4657 set_task_cpu(p, new_cpu);
4658 raw_spin_unlock(&rq->lock);
4659
4660 rq = cpu_rq(new_cpu);
4661
4662 raw_spin_lock(&rq->lock);
4663 BUG_ON(task_cpu(p) != new_cpu);
4664 p->on_rq = TASK_ON_RQ_QUEUED;
4665 enqueue_task(rq, p, 0);
4666 check_preempt_curr(rq, p, 0);
4667
4668 return rq;
4669}
4670
1e1b6c51
KM
4671void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4672{
4673 if (p->sched_class && p->sched_class->set_cpus_allowed)
4674 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4675
4676 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4677 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4678}
4679
1da177e4
LT
4680/*
4681 * This is how migration works:
4682 *
969c7921
TH
4683 * 1) we invoke migration_cpu_stop() on the target CPU using
4684 * stop_one_cpu().
4685 * 2) stopper starts to run (implicitly forcing the migrated thread
4686 * off the CPU)
4687 * 3) it checks whether the migrated task is still in the wrong runqueue.
4688 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4689 * it and puts it into the right queue.
969c7921
TH
4690 * 5) stopper completes and stop_one_cpu() returns and the migration
4691 * is done.
1da177e4
LT
4692 */
4693
4694/*
4695 * Change a given task's CPU affinity. Migrate the thread to a
4696 * proper CPU and schedule it away if the CPU it's executing on
4697 * is removed from the allowed bitmask.
4698 *
4699 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4700 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4701 * call is not atomic; no spinlocks may be held.
4702 */
96f874e2 4703int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4704{
4705 unsigned long flags;
70b97a7f 4706 struct rq *rq;
969c7921 4707 unsigned int dest_cpu;
48f24c4d 4708 int ret = 0;
1da177e4
LT
4709
4710 rq = task_rq_lock(p, &flags);
e2912009 4711
db44fc01
YZ
4712 if (cpumask_equal(&p->cpus_allowed, new_mask))
4713 goto out;
4714
6ad4c188 4715 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4716 ret = -EINVAL;
4717 goto out;
4718 }
4719
1e1b6c51 4720 do_set_cpus_allowed(p, new_mask);
73fe6aae 4721
1da177e4 4722 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4723 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4724 goto out;
4725
969c7921 4726 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4727 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4728 struct migration_arg arg = { p, dest_cpu };
1da177e4 4729 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4730 task_rq_unlock(rq, p, &flags);
969c7921 4731 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4732 tlb_migrate_finish(p->mm);
4733 return 0;
a15b12ac
KT
4734 } else if (task_on_rq_queued(p))
4735 rq = move_queued_task(p, dest_cpu);
1da177e4 4736out:
0122ec5b 4737 task_rq_unlock(rq, p, &flags);
48f24c4d 4738
1da177e4
LT
4739 return ret;
4740}
cd8ba7cd 4741EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4742
4743/*
41a2d6cf 4744 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4745 * this because either it can't run here any more (set_cpus_allowed()
4746 * away from this CPU, or CPU going down), or because we're
4747 * attempting to rebalance this task on exec (sched_exec).
4748 *
4749 * So we race with normal scheduler movements, but that's OK, as long
4750 * as the task is no longer on this CPU.
efc30814
KK
4751 *
4752 * Returns non-zero if task was successfully migrated.
1da177e4 4753 */
efc30814 4754static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4755{
a1e01829 4756 struct rq *rq;
e2912009 4757 int ret = 0;
1da177e4 4758
e761b772 4759 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4760 return ret;
1da177e4 4761
a1e01829 4762 rq = cpu_rq(src_cpu);
1da177e4 4763
0122ec5b 4764 raw_spin_lock(&p->pi_lock);
a1e01829 4765 raw_spin_lock(&rq->lock);
1da177e4
LT
4766 /* Already moved. */
4767 if (task_cpu(p) != src_cpu)
b1e38734 4768 goto done;
a1e01829 4769
1da177e4 4770 /* Affinity changed (again). */
fa17b507 4771 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4772 goto fail;
1da177e4 4773
e2912009
PZ
4774 /*
4775 * If we're not on a rq, the next wake-up will ensure we're
4776 * placed properly.
4777 */
a15b12ac
KT
4778 if (task_on_rq_queued(p))
4779 rq = move_queued_task(p, dest_cpu);
b1e38734 4780done:
efc30814 4781 ret = 1;
b1e38734 4782fail:
a1e01829 4783 raw_spin_unlock(&rq->lock);
0122ec5b 4784 raw_spin_unlock(&p->pi_lock);
efc30814 4785 return ret;
1da177e4
LT
4786}
4787
e6628d5b
MG
4788#ifdef CONFIG_NUMA_BALANCING
4789/* Migrate current task p to target_cpu */
4790int migrate_task_to(struct task_struct *p, int target_cpu)
4791{
4792 struct migration_arg arg = { p, target_cpu };
4793 int curr_cpu = task_cpu(p);
4794
4795 if (curr_cpu == target_cpu)
4796 return 0;
4797
4798 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4799 return -EINVAL;
4800
4801 /* TODO: This is not properly updating schedstats */
4802
286549dc 4803 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4804 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4805}
0ec8aa00
PZ
4806
4807/*
4808 * Requeue a task on a given node and accurately track the number of NUMA
4809 * tasks on the runqueues
4810 */
4811void sched_setnuma(struct task_struct *p, int nid)
4812{
4813 struct rq *rq;
4814 unsigned long flags;
da0c1e65 4815 bool queued, running;
0ec8aa00
PZ
4816
4817 rq = task_rq_lock(p, &flags);
da0c1e65 4818 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4819 running = task_current(rq, p);
4820
da0c1e65 4821 if (queued)
0ec8aa00
PZ
4822 dequeue_task(rq, p, 0);
4823 if (running)
f3cd1c4e 4824 put_prev_task(rq, p);
0ec8aa00
PZ
4825
4826 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4827
4828 if (running)
4829 p->sched_class->set_curr_task(rq);
da0c1e65 4830 if (queued)
0ec8aa00
PZ
4831 enqueue_task(rq, p, 0);
4832 task_rq_unlock(rq, p, &flags);
4833}
e6628d5b
MG
4834#endif
4835
1da177e4 4836/*
969c7921
TH
4837 * migration_cpu_stop - this will be executed by a highprio stopper thread
4838 * and performs thread migration by bumping thread off CPU then
4839 * 'pushing' onto another runqueue.
1da177e4 4840 */
969c7921 4841static int migration_cpu_stop(void *data)
1da177e4 4842{
969c7921 4843 struct migration_arg *arg = data;
f7b4cddc 4844
969c7921
TH
4845 /*
4846 * The original target cpu might have gone down and we might
4847 * be on another cpu but it doesn't matter.
4848 */
f7b4cddc 4849 local_irq_disable();
5cd038f5
LJ
4850 /*
4851 * We need to explicitly wake pending tasks before running
4852 * __migrate_task() such that we will not miss enforcing cpus_allowed
4853 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4854 */
4855 sched_ttwu_pending();
969c7921 4856 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4857 local_irq_enable();
1da177e4 4858 return 0;
f7b4cddc
ON
4859}
4860
1da177e4 4861#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4862
054b9108 4863/*
48c5ccae
PZ
4864 * Ensures that the idle task is using init_mm right before its cpu goes
4865 * offline.
054b9108 4866 */
48c5ccae 4867void idle_task_exit(void)
1da177e4 4868{
48c5ccae 4869 struct mm_struct *mm = current->active_mm;
e76bd8d9 4870
48c5ccae 4871 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4872
a53efe5f 4873 if (mm != &init_mm) {
48c5ccae 4874 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4875 finish_arch_post_lock_switch();
4876 }
48c5ccae 4877 mmdrop(mm);
1da177e4
LT
4878}
4879
4880/*
5d180232
PZ
4881 * Since this CPU is going 'away' for a while, fold any nr_active delta
4882 * we might have. Assumes we're called after migrate_tasks() so that the
4883 * nr_active count is stable.
4884 *
4885 * Also see the comment "Global load-average calculations".
1da177e4 4886 */
5d180232 4887static void calc_load_migrate(struct rq *rq)
1da177e4 4888{
5d180232
PZ
4889 long delta = calc_load_fold_active(rq);
4890 if (delta)
4891 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4892}
4893
3f1d2a31
PZ
4894static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4895{
4896}
4897
4898static const struct sched_class fake_sched_class = {
4899 .put_prev_task = put_prev_task_fake,
4900};
4901
4902static struct task_struct fake_task = {
4903 /*
4904 * Avoid pull_{rt,dl}_task()
4905 */
4906 .prio = MAX_PRIO + 1,
4907 .sched_class = &fake_sched_class,
4908};
4909
48f24c4d 4910/*
48c5ccae
PZ
4911 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4912 * try_to_wake_up()->select_task_rq().
4913 *
4914 * Called with rq->lock held even though we'er in stop_machine() and
4915 * there's no concurrency possible, we hold the required locks anyway
4916 * because of lock validation efforts.
1da177e4 4917 */
48c5ccae 4918static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4919{
70b97a7f 4920 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4921 struct task_struct *next, *stop = rq->stop;
4922 int dest_cpu;
1da177e4
LT
4923
4924 /*
48c5ccae
PZ
4925 * Fudge the rq selection such that the below task selection loop
4926 * doesn't get stuck on the currently eligible stop task.
4927 *
4928 * We're currently inside stop_machine() and the rq is either stuck
4929 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4930 * either way we should never end up calling schedule() until we're
4931 * done here.
1da177e4 4932 */
48c5ccae 4933 rq->stop = NULL;
48f24c4d 4934
77bd3970
FW
4935 /*
4936 * put_prev_task() and pick_next_task() sched
4937 * class method both need to have an up-to-date
4938 * value of rq->clock[_task]
4939 */
4940 update_rq_clock(rq);
4941
dd41f596 4942 for ( ; ; ) {
48c5ccae
PZ
4943 /*
4944 * There's this thread running, bail when that's the only
4945 * remaining thread.
4946 */
4947 if (rq->nr_running == 1)
dd41f596 4948 break;
48c5ccae 4949
3f1d2a31 4950 next = pick_next_task(rq, &fake_task);
48c5ccae 4951 BUG_ON(!next);
79c53799 4952 next->sched_class->put_prev_task(rq, next);
e692ab53 4953
48c5ccae
PZ
4954 /* Find suitable destination for @next, with force if needed. */
4955 dest_cpu = select_fallback_rq(dead_cpu, next);
4956 raw_spin_unlock(&rq->lock);
4957
4958 __migrate_task(next, dead_cpu, dest_cpu);
4959
4960 raw_spin_lock(&rq->lock);
1da177e4 4961 }
dce48a84 4962
48c5ccae 4963 rq->stop = stop;
dce48a84 4964}
48c5ccae 4965
1da177e4
LT
4966#endif /* CONFIG_HOTPLUG_CPU */
4967
e692ab53
NP
4968#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4969
4970static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4971 {
4972 .procname = "sched_domain",
c57baf1e 4973 .mode = 0555,
e0361851 4974 },
56992309 4975 {}
e692ab53
NP
4976};
4977
4978static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4979 {
4980 .procname = "kernel",
c57baf1e 4981 .mode = 0555,
e0361851
AD
4982 .child = sd_ctl_dir,
4983 },
56992309 4984 {}
e692ab53
NP
4985};
4986
4987static struct ctl_table *sd_alloc_ctl_entry(int n)
4988{
4989 struct ctl_table *entry =
5cf9f062 4990 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4991
e692ab53
NP
4992 return entry;
4993}
4994
6382bc90
MM
4995static void sd_free_ctl_entry(struct ctl_table **tablep)
4996{
cd790076 4997 struct ctl_table *entry;
6382bc90 4998
cd790076
MM
4999 /*
5000 * In the intermediate directories, both the child directory and
5001 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5002 * will always be set. In the lowest directory the names are
cd790076
MM
5003 * static strings and all have proc handlers.
5004 */
5005 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5006 if (entry->child)
5007 sd_free_ctl_entry(&entry->child);
cd790076
MM
5008 if (entry->proc_handler == NULL)
5009 kfree(entry->procname);
5010 }
6382bc90
MM
5011
5012 kfree(*tablep);
5013 *tablep = NULL;
5014}
5015
201c373e 5016static int min_load_idx = 0;
fd9b86d3 5017static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5018
e692ab53 5019static void
e0361851 5020set_table_entry(struct ctl_table *entry,
e692ab53 5021 const char *procname, void *data, int maxlen,
201c373e
NK
5022 umode_t mode, proc_handler *proc_handler,
5023 bool load_idx)
e692ab53 5024{
e692ab53
NP
5025 entry->procname = procname;
5026 entry->data = data;
5027 entry->maxlen = maxlen;
5028 entry->mode = mode;
5029 entry->proc_handler = proc_handler;
201c373e
NK
5030
5031 if (load_idx) {
5032 entry->extra1 = &min_load_idx;
5033 entry->extra2 = &max_load_idx;
5034 }
e692ab53
NP
5035}
5036
5037static struct ctl_table *
5038sd_alloc_ctl_domain_table(struct sched_domain *sd)
5039{
37e6bae8 5040 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5041
ad1cdc1d
MM
5042 if (table == NULL)
5043 return NULL;
5044
e0361851 5045 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5046 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5047 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5048 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5049 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5050 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5051 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5052 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5053 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5054 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5055 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5056 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5057 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5058 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5059 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5060 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5061 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5062 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5063 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5064 &sd->cache_nice_tries,
201c373e 5065 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5066 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5067 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5068 set_table_entry(&table[11], "max_newidle_lb_cost",
5069 &sd->max_newidle_lb_cost,
5070 sizeof(long), 0644, proc_doulongvec_minmax, false);
5071 set_table_entry(&table[12], "name", sd->name,
201c373e 5072 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5073 /* &table[13] is terminator */
e692ab53
NP
5074
5075 return table;
5076}
5077
be7002e6 5078static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5079{
5080 struct ctl_table *entry, *table;
5081 struct sched_domain *sd;
5082 int domain_num = 0, i;
5083 char buf[32];
5084
5085 for_each_domain(cpu, sd)
5086 domain_num++;
5087 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5088 if (table == NULL)
5089 return NULL;
e692ab53
NP
5090
5091 i = 0;
5092 for_each_domain(cpu, sd) {
5093 snprintf(buf, 32, "domain%d", i);
e692ab53 5094 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5095 entry->mode = 0555;
e692ab53
NP
5096 entry->child = sd_alloc_ctl_domain_table(sd);
5097 entry++;
5098 i++;
5099 }
5100 return table;
5101}
5102
5103static struct ctl_table_header *sd_sysctl_header;
6382bc90 5104static void register_sched_domain_sysctl(void)
e692ab53 5105{
6ad4c188 5106 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5107 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5108 char buf[32];
5109
7378547f
MM
5110 WARN_ON(sd_ctl_dir[0].child);
5111 sd_ctl_dir[0].child = entry;
5112
ad1cdc1d
MM
5113 if (entry == NULL)
5114 return;
5115
6ad4c188 5116 for_each_possible_cpu(i) {
e692ab53 5117 snprintf(buf, 32, "cpu%d", i);
e692ab53 5118 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5119 entry->mode = 0555;
e692ab53 5120 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5121 entry++;
e692ab53 5122 }
7378547f
MM
5123
5124 WARN_ON(sd_sysctl_header);
e692ab53
NP
5125 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5126}
6382bc90 5127
7378547f 5128/* may be called multiple times per register */
6382bc90
MM
5129static void unregister_sched_domain_sysctl(void)
5130{
7378547f
MM
5131 if (sd_sysctl_header)
5132 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5133 sd_sysctl_header = NULL;
7378547f
MM
5134 if (sd_ctl_dir[0].child)
5135 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5136}
e692ab53 5137#else
6382bc90
MM
5138static void register_sched_domain_sysctl(void)
5139{
5140}
5141static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5142{
5143}
5144#endif
5145
1f11eb6a
GH
5146static void set_rq_online(struct rq *rq)
5147{
5148 if (!rq->online) {
5149 const struct sched_class *class;
5150
c6c4927b 5151 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5152 rq->online = 1;
5153
5154 for_each_class(class) {
5155 if (class->rq_online)
5156 class->rq_online(rq);
5157 }
5158 }
5159}
5160
5161static void set_rq_offline(struct rq *rq)
5162{
5163 if (rq->online) {
5164 const struct sched_class *class;
5165
5166 for_each_class(class) {
5167 if (class->rq_offline)
5168 class->rq_offline(rq);
5169 }
5170
c6c4927b 5171 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5172 rq->online = 0;
5173 }
5174}
5175
1da177e4
LT
5176/*
5177 * migration_call - callback that gets triggered when a CPU is added.
5178 * Here we can start up the necessary migration thread for the new CPU.
5179 */
0db0628d 5180static int
48f24c4d 5181migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5182{
48f24c4d 5183 int cpu = (long)hcpu;
1da177e4 5184 unsigned long flags;
969c7921 5185 struct rq *rq = cpu_rq(cpu);
1da177e4 5186
48c5ccae 5187 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5188
1da177e4 5189 case CPU_UP_PREPARE:
a468d389 5190 rq->calc_load_update = calc_load_update;
1da177e4 5191 break;
48f24c4d 5192
1da177e4 5193 case CPU_ONLINE:
1f94ef59 5194 /* Update our root-domain */
05fa785c 5195 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5196 if (rq->rd) {
c6c4927b 5197 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5198
5199 set_rq_online(rq);
1f94ef59 5200 }
05fa785c 5201 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5202 break;
48f24c4d 5203
1da177e4 5204#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5205 case CPU_DYING:
317f3941 5206 sched_ttwu_pending();
57d885fe 5207 /* Update our root-domain */
05fa785c 5208 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5209 if (rq->rd) {
c6c4927b 5210 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5211 set_rq_offline(rq);
57d885fe 5212 }
48c5ccae
PZ
5213 migrate_tasks(cpu);
5214 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5215 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5216 break;
48c5ccae 5217
5d180232 5218 case CPU_DEAD:
f319da0c 5219 calc_load_migrate(rq);
57d885fe 5220 break;
1da177e4
LT
5221#endif
5222 }
49c022e6
PZ
5223
5224 update_max_interval();
5225
1da177e4
LT
5226 return NOTIFY_OK;
5227}
5228
f38b0820
PM
5229/*
5230 * Register at high priority so that task migration (migrate_all_tasks)
5231 * happens before everything else. This has to be lower priority than
cdd6c482 5232 * the notifier in the perf_event subsystem, though.
1da177e4 5233 */
0db0628d 5234static struct notifier_block migration_notifier = {
1da177e4 5235 .notifier_call = migration_call,
50a323b7 5236 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5237};
5238
a803f026
CM
5239static void __cpuinit set_cpu_rq_start_time(void)
5240{
5241 int cpu = smp_processor_id();
5242 struct rq *rq = cpu_rq(cpu);
5243 rq->age_stamp = sched_clock_cpu(cpu);
5244}
5245
0db0628d 5246static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5247 unsigned long action, void *hcpu)
5248{
5249 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5250 case CPU_STARTING:
5251 set_cpu_rq_start_time();
5252 return NOTIFY_OK;
3a101d05
TH
5253 case CPU_DOWN_FAILED:
5254 set_cpu_active((long)hcpu, true);
5255 return NOTIFY_OK;
5256 default:
5257 return NOTIFY_DONE;
5258 }
5259}
5260
0db0628d 5261static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5262 unsigned long action, void *hcpu)
5263{
de212f18
PZ
5264 unsigned long flags;
5265 long cpu = (long)hcpu;
5266
3a101d05
TH
5267 switch (action & ~CPU_TASKS_FROZEN) {
5268 case CPU_DOWN_PREPARE:
de212f18
PZ
5269 set_cpu_active(cpu, false);
5270
5271 /* explicitly allow suspend */
5272 if (!(action & CPU_TASKS_FROZEN)) {
5273 struct dl_bw *dl_b = dl_bw_of(cpu);
5274 bool overflow;
5275 int cpus;
5276
5277 raw_spin_lock_irqsave(&dl_b->lock, flags);
5278 cpus = dl_bw_cpus(cpu);
5279 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5280 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5281
5282 if (overflow)
5283 return notifier_from_errno(-EBUSY);
5284 }
3a101d05 5285 return NOTIFY_OK;
3a101d05 5286 }
de212f18
PZ
5287
5288 return NOTIFY_DONE;
3a101d05
TH
5289}
5290
7babe8db 5291static int __init migration_init(void)
1da177e4
LT
5292{
5293 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5294 int err;
48f24c4d 5295
3a101d05 5296 /* Initialize migration for the boot CPU */
07dccf33
AM
5297 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5298 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5299 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5300 register_cpu_notifier(&migration_notifier);
7babe8db 5301
3a101d05
TH
5302 /* Register cpu active notifiers */
5303 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5304 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5305
a004cd42 5306 return 0;
1da177e4 5307}
7babe8db 5308early_initcall(migration_init);
1da177e4
LT
5309#endif
5310
5311#ifdef CONFIG_SMP
476f3534 5312
4cb98839
PZ
5313static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5314
3e9830dc 5315#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5316
d039ac60 5317static __read_mostly int sched_debug_enabled;
f6630114 5318
d039ac60 5319static int __init sched_debug_setup(char *str)
f6630114 5320{
d039ac60 5321 sched_debug_enabled = 1;
f6630114
MT
5322
5323 return 0;
5324}
d039ac60
PZ
5325early_param("sched_debug", sched_debug_setup);
5326
5327static inline bool sched_debug(void)
5328{
5329 return sched_debug_enabled;
5330}
f6630114 5331
7c16ec58 5332static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5333 struct cpumask *groupmask)
1da177e4 5334{
4dcf6aff 5335 struct sched_group *group = sd->groups;
434d53b0 5336 char str[256];
1da177e4 5337
968ea6d8 5338 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5339 cpumask_clear(groupmask);
4dcf6aff
IM
5340
5341 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5342
5343 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5344 printk("does not load-balance\n");
4dcf6aff 5345 if (sd->parent)
3df0fc5b
PZ
5346 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5347 " has parent");
4dcf6aff 5348 return -1;
41c7ce9a
NP
5349 }
5350
3df0fc5b 5351 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5352
758b2cdc 5353 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5354 printk(KERN_ERR "ERROR: domain->span does not contain "
5355 "CPU%d\n", cpu);
4dcf6aff 5356 }
758b2cdc 5357 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5358 printk(KERN_ERR "ERROR: domain->groups does not contain"
5359 " CPU%d\n", cpu);
4dcf6aff 5360 }
1da177e4 5361
4dcf6aff 5362 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5363 do {
4dcf6aff 5364 if (!group) {
3df0fc5b
PZ
5365 printk("\n");
5366 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5367 break;
5368 }
5369
c3decf0d 5370 /*
63b2ca30
NP
5371 * Even though we initialize ->capacity to something semi-sane,
5372 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5373 * domain iteration is still funny without causing /0 traps.
5374 */
63b2ca30 5375 if (!group->sgc->capacity_orig) {
3df0fc5b 5376 printk(KERN_CONT "\n");
63b2ca30 5377 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5378 break;
5379 }
1da177e4 5380
758b2cdc 5381 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5382 printk(KERN_CONT "\n");
5383 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5384 break;
5385 }
1da177e4 5386
cb83b629
PZ
5387 if (!(sd->flags & SD_OVERLAP) &&
5388 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5389 printk(KERN_CONT "\n");
5390 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5391 break;
5392 }
1da177e4 5393
758b2cdc 5394 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5395
968ea6d8 5396 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5397
3df0fc5b 5398 printk(KERN_CONT " %s", str);
ca8ce3d0 5399 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5400 printk(KERN_CONT " (cpu_capacity = %d)",
5401 group->sgc->capacity);
381512cf 5402 }
1da177e4 5403
4dcf6aff
IM
5404 group = group->next;
5405 } while (group != sd->groups);
3df0fc5b 5406 printk(KERN_CONT "\n");
1da177e4 5407
758b2cdc 5408 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5409 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5410
758b2cdc
RR
5411 if (sd->parent &&
5412 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5413 printk(KERN_ERR "ERROR: parent span is not a superset "
5414 "of domain->span\n");
4dcf6aff
IM
5415 return 0;
5416}
1da177e4 5417
4dcf6aff
IM
5418static void sched_domain_debug(struct sched_domain *sd, int cpu)
5419{
5420 int level = 0;
1da177e4 5421
d039ac60 5422 if (!sched_debug_enabled)
f6630114
MT
5423 return;
5424
4dcf6aff
IM
5425 if (!sd) {
5426 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5427 return;
5428 }
1da177e4 5429
4dcf6aff
IM
5430 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5431
5432 for (;;) {
4cb98839 5433 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5434 break;
1da177e4
LT
5435 level++;
5436 sd = sd->parent;
33859f7f 5437 if (!sd)
4dcf6aff
IM
5438 break;
5439 }
1da177e4 5440}
6d6bc0ad 5441#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5442# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5443static inline bool sched_debug(void)
5444{
5445 return false;
5446}
6d6bc0ad 5447#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5448
1a20ff27 5449static int sd_degenerate(struct sched_domain *sd)
245af2c7 5450{
758b2cdc 5451 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5452 return 1;
5453
5454 /* Following flags need at least 2 groups */
5455 if (sd->flags & (SD_LOAD_BALANCE |
5456 SD_BALANCE_NEWIDLE |
5457 SD_BALANCE_FORK |
89c4710e 5458 SD_BALANCE_EXEC |
5d4dfddd 5459 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5460 SD_SHARE_PKG_RESOURCES |
5461 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5462 if (sd->groups != sd->groups->next)
5463 return 0;
5464 }
5465
5466 /* Following flags don't use groups */
c88d5910 5467 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5468 return 0;
5469
5470 return 1;
5471}
5472
48f24c4d
IM
5473static int
5474sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5475{
5476 unsigned long cflags = sd->flags, pflags = parent->flags;
5477
5478 if (sd_degenerate(parent))
5479 return 1;
5480
758b2cdc 5481 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5482 return 0;
5483
245af2c7
SS
5484 /* Flags needing groups don't count if only 1 group in parent */
5485 if (parent->groups == parent->groups->next) {
5486 pflags &= ~(SD_LOAD_BALANCE |
5487 SD_BALANCE_NEWIDLE |
5488 SD_BALANCE_FORK |
89c4710e 5489 SD_BALANCE_EXEC |
5d4dfddd 5490 SD_SHARE_CPUCAPACITY |
10866e62 5491 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5492 SD_PREFER_SIBLING |
5493 SD_SHARE_POWERDOMAIN);
5436499e
KC
5494 if (nr_node_ids == 1)
5495 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5496 }
5497 if (~cflags & pflags)
5498 return 0;
5499
5500 return 1;
5501}
5502
dce840a0 5503static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5504{
dce840a0 5505 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5506
68e74568 5507 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5508 cpudl_cleanup(&rd->cpudl);
1baca4ce 5509 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5510 free_cpumask_var(rd->rto_mask);
5511 free_cpumask_var(rd->online);
5512 free_cpumask_var(rd->span);
5513 kfree(rd);
5514}
5515
57d885fe
GH
5516static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5517{
a0490fa3 5518 struct root_domain *old_rd = NULL;
57d885fe 5519 unsigned long flags;
57d885fe 5520
05fa785c 5521 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5522
5523 if (rq->rd) {
a0490fa3 5524 old_rd = rq->rd;
57d885fe 5525
c6c4927b 5526 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5527 set_rq_offline(rq);
57d885fe 5528
c6c4927b 5529 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5530
a0490fa3 5531 /*
0515973f 5532 * If we dont want to free the old_rd yet then
a0490fa3
IM
5533 * set old_rd to NULL to skip the freeing later
5534 * in this function:
5535 */
5536 if (!atomic_dec_and_test(&old_rd->refcount))
5537 old_rd = NULL;
57d885fe
GH
5538 }
5539
5540 atomic_inc(&rd->refcount);
5541 rq->rd = rd;
5542
c6c4927b 5543 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5544 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5545 set_rq_online(rq);
57d885fe 5546
05fa785c 5547 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5548
5549 if (old_rd)
dce840a0 5550 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5551}
5552
68c38fc3 5553static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5554{
5555 memset(rd, 0, sizeof(*rd));
5556
68c38fc3 5557 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5558 goto out;
68c38fc3 5559 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5560 goto free_span;
1baca4ce 5561 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5562 goto free_online;
1baca4ce
JL
5563 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5564 goto free_dlo_mask;
6e0534f2 5565
332ac17e 5566 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5567 if (cpudl_init(&rd->cpudl) != 0)
5568 goto free_dlo_mask;
332ac17e 5569
68c38fc3 5570 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5571 goto free_rto_mask;
c6c4927b 5572 return 0;
6e0534f2 5573
68e74568
RR
5574free_rto_mask:
5575 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5576free_dlo_mask:
5577 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5578free_online:
5579 free_cpumask_var(rd->online);
5580free_span:
5581 free_cpumask_var(rd->span);
0c910d28 5582out:
c6c4927b 5583 return -ENOMEM;
57d885fe
GH
5584}
5585
029632fb
PZ
5586/*
5587 * By default the system creates a single root-domain with all cpus as
5588 * members (mimicking the global state we have today).
5589 */
5590struct root_domain def_root_domain;
5591
57d885fe
GH
5592static void init_defrootdomain(void)
5593{
68c38fc3 5594 init_rootdomain(&def_root_domain);
c6c4927b 5595
57d885fe
GH
5596 atomic_set(&def_root_domain.refcount, 1);
5597}
5598
dc938520 5599static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5600{
5601 struct root_domain *rd;
5602
5603 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5604 if (!rd)
5605 return NULL;
5606
68c38fc3 5607 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5608 kfree(rd);
5609 return NULL;
5610 }
57d885fe
GH
5611
5612 return rd;
5613}
5614
63b2ca30 5615static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5616{
5617 struct sched_group *tmp, *first;
5618
5619 if (!sg)
5620 return;
5621
5622 first = sg;
5623 do {
5624 tmp = sg->next;
5625
63b2ca30
NP
5626 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5627 kfree(sg->sgc);
e3589f6c
PZ
5628
5629 kfree(sg);
5630 sg = tmp;
5631 } while (sg != first);
5632}
5633
dce840a0
PZ
5634static void free_sched_domain(struct rcu_head *rcu)
5635{
5636 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5637
5638 /*
5639 * If its an overlapping domain it has private groups, iterate and
5640 * nuke them all.
5641 */
5642 if (sd->flags & SD_OVERLAP) {
5643 free_sched_groups(sd->groups, 1);
5644 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5645 kfree(sd->groups->sgc);
dce840a0 5646 kfree(sd->groups);
9c3f75cb 5647 }
dce840a0
PZ
5648 kfree(sd);
5649}
5650
5651static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5652{
5653 call_rcu(&sd->rcu, free_sched_domain);
5654}
5655
5656static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5657{
5658 for (; sd; sd = sd->parent)
5659 destroy_sched_domain(sd, cpu);
5660}
5661
518cd623
PZ
5662/*
5663 * Keep a special pointer to the highest sched_domain that has
5664 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5665 * allows us to avoid some pointer chasing select_idle_sibling().
5666 *
5667 * Also keep a unique ID per domain (we use the first cpu number in
5668 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5669 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5670 */
5671DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5672DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5673DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5674DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5675DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5676DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5677
5678static void update_top_cache_domain(int cpu)
5679{
5680 struct sched_domain *sd;
5d4cf996 5681 struct sched_domain *busy_sd = NULL;
518cd623 5682 int id = cpu;
7d9ffa89 5683 int size = 1;
518cd623
PZ
5684
5685 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5686 if (sd) {
518cd623 5687 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5688 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5689 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5690 }
5d4cf996 5691 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5692
5693 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5694 per_cpu(sd_llc_size, cpu) = size;
518cd623 5695 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5696
5697 sd = lowest_flag_domain(cpu, SD_NUMA);
5698 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5699
5700 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5701 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5702}
5703
1da177e4 5704/*
0eab9146 5705 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5706 * hold the hotplug lock.
5707 */
0eab9146
IM
5708static void
5709cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5710{
70b97a7f 5711 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5712 struct sched_domain *tmp;
5713
5714 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5715 for (tmp = sd; tmp; ) {
245af2c7
SS
5716 struct sched_domain *parent = tmp->parent;
5717 if (!parent)
5718 break;
f29c9b1c 5719
1a848870 5720 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5721 tmp->parent = parent->parent;
1a848870
SS
5722 if (parent->parent)
5723 parent->parent->child = tmp;
10866e62
PZ
5724 /*
5725 * Transfer SD_PREFER_SIBLING down in case of a
5726 * degenerate parent; the spans match for this
5727 * so the property transfers.
5728 */
5729 if (parent->flags & SD_PREFER_SIBLING)
5730 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5731 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5732 } else
5733 tmp = tmp->parent;
245af2c7
SS
5734 }
5735
1a848870 5736 if (sd && sd_degenerate(sd)) {
dce840a0 5737 tmp = sd;
245af2c7 5738 sd = sd->parent;
dce840a0 5739 destroy_sched_domain(tmp, cpu);
1a848870
SS
5740 if (sd)
5741 sd->child = NULL;
5742 }
1da177e4 5743
4cb98839 5744 sched_domain_debug(sd, cpu);
1da177e4 5745
57d885fe 5746 rq_attach_root(rq, rd);
dce840a0 5747 tmp = rq->sd;
674311d5 5748 rcu_assign_pointer(rq->sd, sd);
dce840a0 5749 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5750
5751 update_top_cache_domain(cpu);
1da177e4
LT
5752}
5753
5754/* cpus with isolated domains */
dcc30a35 5755static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5756
5757/* Setup the mask of cpus configured for isolated domains */
5758static int __init isolated_cpu_setup(char *str)
5759{
bdddd296 5760 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5761 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5762 return 1;
5763}
5764
8927f494 5765__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5766
49a02c51 5767struct s_data {
21d42ccf 5768 struct sched_domain ** __percpu sd;
49a02c51
AH
5769 struct root_domain *rd;
5770};
5771
2109b99e 5772enum s_alloc {
2109b99e 5773 sa_rootdomain,
21d42ccf 5774 sa_sd,
dce840a0 5775 sa_sd_storage,
2109b99e
AH
5776 sa_none,
5777};
5778
c1174876
PZ
5779/*
5780 * Build an iteration mask that can exclude certain CPUs from the upwards
5781 * domain traversal.
5782 *
5783 * Asymmetric node setups can result in situations where the domain tree is of
5784 * unequal depth, make sure to skip domains that already cover the entire
5785 * range.
5786 *
5787 * In that case build_sched_domains() will have terminated the iteration early
5788 * and our sibling sd spans will be empty. Domains should always include the
5789 * cpu they're built on, so check that.
5790 *
5791 */
5792static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5793{
5794 const struct cpumask *span = sched_domain_span(sd);
5795 struct sd_data *sdd = sd->private;
5796 struct sched_domain *sibling;
5797 int i;
5798
5799 for_each_cpu(i, span) {
5800 sibling = *per_cpu_ptr(sdd->sd, i);
5801 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5802 continue;
5803
5804 cpumask_set_cpu(i, sched_group_mask(sg));
5805 }
5806}
5807
5808/*
5809 * Return the canonical balance cpu for this group, this is the first cpu
5810 * of this group that's also in the iteration mask.
5811 */
5812int group_balance_cpu(struct sched_group *sg)
5813{
5814 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5815}
5816
e3589f6c
PZ
5817static int
5818build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5819{
5820 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5821 const struct cpumask *span = sched_domain_span(sd);
5822 struct cpumask *covered = sched_domains_tmpmask;
5823 struct sd_data *sdd = sd->private;
aaecac4a 5824 struct sched_domain *sibling;
e3589f6c
PZ
5825 int i;
5826
5827 cpumask_clear(covered);
5828
5829 for_each_cpu(i, span) {
5830 struct cpumask *sg_span;
5831
5832 if (cpumask_test_cpu(i, covered))
5833 continue;
5834
aaecac4a 5835 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5836
5837 /* See the comment near build_group_mask(). */
aaecac4a 5838 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5839 continue;
5840
e3589f6c 5841 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5842 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5843
5844 if (!sg)
5845 goto fail;
5846
5847 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5848 if (sibling->child)
5849 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5850 else
e3589f6c
PZ
5851 cpumask_set_cpu(i, sg_span);
5852
5853 cpumask_or(covered, covered, sg_span);
5854
63b2ca30
NP
5855 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5856 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5857 build_group_mask(sd, sg);
5858
c3decf0d 5859 /*
63b2ca30 5860 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5861 * domains and no possible iteration will get us here, we won't
5862 * die on a /0 trap.
5863 */
ca8ce3d0 5864 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5865 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5866
c1174876
PZ
5867 /*
5868 * Make sure the first group of this domain contains the
5869 * canonical balance cpu. Otherwise the sched_domain iteration
5870 * breaks. See update_sg_lb_stats().
5871 */
74a5ce20 5872 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5873 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5874 groups = sg;
5875
5876 if (!first)
5877 first = sg;
5878 if (last)
5879 last->next = sg;
5880 last = sg;
5881 last->next = first;
5882 }
5883 sd->groups = groups;
5884
5885 return 0;
5886
5887fail:
5888 free_sched_groups(first, 0);
5889
5890 return -ENOMEM;
5891}
5892
dce840a0 5893static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5894{
dce840a0
PZ
5895 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5896 struct sched_domain *child = sd->child;
1da177e4 5897
dce840a0
PZ
5898 if (child)
5899 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5900
9c3f75cb 5901 if (sg) {
dce840a0 5902 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5903 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5904 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5905 }
dce840a0
PZ
5906
5907 return cpu;
1e9f28fa 5908}
1e9f28fa 5909
01a08546 5910/*
dce840a0
PZ
5911 * build_sched_groups will build a circular linked list of the groups
5912 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5913 * and ->cpu_capacity to 0.
e3589f6c
PZ
5914 *
5915 * Assumes the sched_domain tree is fully constructed
01a08546 5916 */
e3589f6c
PZ
5917static int
5918build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5919{
dce840a0
PZ
5920 struct sched_group *first = NULL, *last = NULL;
5921 struct sd_data *sdd = sd->private;
5922 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5923 struct cpumask *covered;
dce840a0 5924 int i;
9c1cfda2 5925
e3589f6c
PZ
5926 get_group(cpu, sdd, &sd->groups);
5927 atomic_inc(&sd->groups->ref);
5928
0936629f 5929 if (cpu != cpumask_first(span))
e3589f6c
PZ
5930 return 0;
5931
f96225fd
PZ
5932 lockdep_assert_held(&sched_domains_mutex);
5933 covered = sched_domains_tmpmask;
5934
dce840a0 5935 cpumask_clear(covered);
6711cab4 5936
dce840a0
PZ
5937 for_each_cpu(i, span) {
5938 struct sched_group *sg;
cd08e923 5939 int group, j;
6711cab4 5940
dce840a0
PZ
5941 if (cpumask_test_cpu(i, covered))
5942 continue;
6711cab4 5943
cd08e923 5944 group = get_group(i, sdd, &sg);
c1174876 5945 cpumask_setall(sched_group_mask(sg));
0601a88d 5946
dce840a0
PZ
5947 for_each_cpu(j, span) {
5948 if (get_group(j, sdd, NULL) != group)
5949 continue;
0601a88d 5950
dce840a0
PZ
5951 cpumask_set_cpu(j, covered);
5952 cpumask_set_cpu(j, sched_group_cpus(sg));
5953 }
0601a88d 5954
dce840a0
PZ
5955 if (!first)
5956 first = sg;
5957 if (last)
5958 last->next = sg;
5959 last = sg;
5960 }
5961 last->next = first;
e3589f6c
PZ
5962
5963 return 0;
0601a88d 5964}
51888ca2 5965
89c4710e 5966/*
63b2ca30 5967 * Initialize sched groups cpu_capacity.
89c4710e 5968 *
63b2ca30 5969 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5970 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5971 * Typically cpu_capacity for all the groups in a sched domain will be same
5972 * unless there are asymmetries in the topology. If there are asymmetries,
5973 * group having more cpu_capacity will pickup more load compared to the
5974 * group having less cpu_capacity.
89c4710e 5975 */
63b2ca30 5976static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5977{
e3589f6c 5978 struct sched_group *sg = sd->groups;
89c4710e 5979
94c95ba6 5980 WARN_ON(!sg);
e3589f6c
PZ
5981
5982 do {
5983 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5984 sg = sg->next;
5985 } while (sg != sd->groups);
89c4710e 5986
c1174876 5987 if (cpu != group_balance_cpu(sg))
e3589f6c 5988 return;
aae6d3dd 5989
63b2ca30
NP
5990 update_group_capacity(sd, cpu);
5991 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5992}
5993
7c16ec58
MT
5994/*
5995 * Initializers for schedule domains
5996 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5997 */
5998
1d3504fc 5999static int default_relax_domain_level = -1;
60495e77 6000int sched_domain_level_max;
1d3504fc
HS
6001
6002static int __init setup_relax_domain_level(char *str)
6003{
a841f8ce
DS
6004 if (kstrtoint(str, 0, &default_relax_domain_level))
6005 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6006
1d3504fc
HS
6007 return 1;
6008}
6009__setup("relax_domain_level=", setup_relax_domain_level);
6010
6011static void set_domain_attribute(struct sched_domain *sd,
6012 struct sched_domain_attr *attr)
6013{
6014 int request;
6015
6016 if (!attr || attr->relax_domain_level < 0) {
6017 if (default_relax_domain_level < 0)
6018 return;
6019 else
6020 request = default_relax_domain_level;
6021 } else
6022 request = attr->relax_domain_level;
6023 if (request < sd->level) {
6024 /* turn off idle balance on this domain */
c88d5910 6025 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6026 } else {
6027 /* turn on idle balance on this domain */
c88d5910 6028 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6029 }
6030}
6031
54ab4ff4
PZ
6032static void __sdt_free(const struct cpumask *cpu_map);
6033static int __sdt_alloc(const struct cpumask *cpu_map);
6034
2109b99e
AH
6035static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6036 const struct cpumask *cpu_map)
6037{
6038 switch (what) {
2109b99e 6039 case sa_rootdomain:
822ff793
PZ
6040 if (!atomic_read(&d->rd->refcount))
6041 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6042 case sa_sd:
6043 free_percpu(d->sd); /* fall through */
dce840a0 6044 case sa_sd_storage:
54ab4ff4 6045 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6046 case sa_none:
6047 break;
6048 }
6049}
3404c8d9 6050
2109b99e
AH
6051static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6052 const struct cpumask *cpu_map)
6053{
dce840a0
PZ
6054 memset(d, 0, sizeof(*d));
6055
54ab4ff4
PZ
6056 if (__sdt_alloc(cpu_map))
6057 return sa_sd_storage;
dce840a0
PZ
6058 d->sd = alloc_percpu(struct sched_domain *);
6059 if (!d->sd)
6060 return sa_sd_storage;
2109b99e 6061 d->rd = alloc_rootdomain();
dce840a0 6062 if (!d->rd)
21d42ccf 6063 return sa_sd;
2109b99e
AH
6064 return sa_rootdomain;
6065}
57d885fe 6066
dce840a0
PZ
6067/*
6068 * NULL the sd_data elements we've used to build the sched_domain and
6069 * sched_group structure so that the subsequent __free_domain_allocs()
6070 * will not free the data we're using.
6071 */
6072static void claim_allocations(int cpu, struct sched_domain *sd)
6073{
6074 struct sd_data *sdd = sd->private;
dce840a0
PZ
6075
6076 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6077 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6078
e3589f6c 6079 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6080 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6081
63b2ca30
NP
6082 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6083 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6084}
6085
cb83b629 6086#ifdef CONFIG_NUMA
cb83b629 6087static int sched_domains_numa_levels;
cb83b629
PZ
6088static int *sched_domains_numa_distance;
6089static struct cpumask ***sched_domains_numa_masks;
6090static int sched_domains_curr_level;
143e1e28 6091#endif
cb83b629 6092
143e1e28
VG
6093/*
6094 * SD_flags allowed in topology descriptions.
6095 *
5d4dfddd 6096 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6097 * SD_SHARE_PKG_RESOURCES - describes shared caches
6098 * SD_NUMA - describes NUMA topologies
d77b3ed5 6099 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6100 *
6101 * Odd one out:
6102 * SD_ASYM_PACKING - describes SMT quirks
6103 */
6104#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6105 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6106 SD_SHARE_PKG_RESOURCES | \
6107 SD_NUMA | \
d77b3ed5
VG
6108 SD_ASYM_PACKING | \
6109 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6110
6111static struct sched_domain *
143e1e28 6112sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6113{
6114 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6115 int sd_weight, sd_flags = 0;
6116
6117#ifdef CONFIG_NUMA
6118 /*
6119 * Ugly hack to pass state to sd_numa_mask()...
6120 */
6121 sched_domains_curr_level = tl->numa_level;
6122#endif
6123
6124 sd_weight = cpumask_weight(tl->mask(cpu));
6125
6126 if (tl->sd_flags)
6127 sd_flags = (*tl->sd_flags)();
6128 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6129 "wrong sd_flags in topology description\n"))
6130 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6131
6132 *sd = (struct sched_domain){
6133 .min_interval = sd_weight,
6134 .max_interval = 2*sd_weight,
6135 .busy_factor = 32,
870a0bb5 6136 .imbalance_pct = 125,
143e1e28
VG
6137
6138 .cache_nice_tries = 0,
6139 .busy_idx = 0,
6140 .idle_idx = 0,
cb83b629
PZ
6141 .newidle_idx = 0,
6142 .wake_idx = 0,
6143 .forkexec_idx = 0,
6144
6145 .flags = 1*SD_LOAD_BALANCE
6146 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6147 | 1*SD_BALANCE_EXEC
6148 | 1*SD_BALANCE_FORK
cb83b629 6149 | 0*SD_BALANCE_WAKE
143e1e28 6150 | 1*SD_WAKE_AFFINE
5d4dfddd 6151 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6152 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6153 | 0*SD_SERIALIZE
cb83b629 6154 | 0*SD_PREFER_SIBLING
143e1e28
VG
6155 | 0*SD_NUMA
6156 | sd_flags
cb83b629 6157 ,
143e1e28 6158
cb83b629
PZ
6159 .last_balance = jiffies,
6160 .balance_interval = sd_weight,
143e1e28 6161 .smt_gain = 0,
2b4cfe64
JL
6162 .max_newidle_lb_cost = 0,
6163 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6164#ifdef CONFIG_SCHED_DEBUG
6165 .name = tl->name,
6166#endif
cb83b629 6167 };
cb83b629
PZ
6168
6169 /*
143e1e28 6170 * Convert topological properties into behaviour.
cb83b629 6171 */
143e1e28 6172
5d4dfddd 6173 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6174 sd->imbalance_pct = 110;
6175 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6176
6177 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6178 sd->imbalance_pct = 117;
6179 sd->cache_nice_tries = 1;
6180 sd->busy_idx = 2;
6181
6182#ifdef CONFIG_NUMA
6183 } else if (sd->flags & SD_NUMA) {
6184 sd->cache_nice_tries = 2;
6185 sd->busy_idx = 3;
6186 sd->idle_idx = 2;
6187
6188 sd->flags |= SD_SERIALIZE;
6189 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6190 sd->flags &= ~(SD_BALANCE_EXEC |
6191 SD_BALANCE_FORK |
6192 SD_WAKE_AFFINE);
6193 }
6194
6195#endif
6196 } else {
6197 sd->flags |= SD_PREFER_SIBLING;
6198 sd->cache_nice_tries = 1;
6199 sd->busy_idx = 2;
6200 sd->idle_idx = 1;
6201 }
6202
6203 sd->private = &tl->data;
cb83b629
PZ
6204
6205 return sd;
6206}
6207
143e1e28
VG
6208/*
6209 * Topology list, bottom-up.
6210 */
6211static struct sched_domain_topology_level default_topology[] = {
6212#ifdef CONFIG_SCHED_SMT
6213 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6214#endif
6215#ifdef CONFIG_SCHED_MC
6216 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6217#endif
6218 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6219 { NULL, },
6220};
6221
6222struct sched_domain_topology_level *sched_domain_topology = default_topology;
6223
6224#define for_each_sd_topology(tl) \
6225 for (tl = sched_domain_topology; tl->mask; tl++)
6226
6227void set_sched_topology(struct sched_domain_topology_level *tl)
6228{
6229 sched_domain_topology = tl;
6230}
6231
6232#ifdef CONFIG_NUMA
6233
cb83b629
PZ
6234static const struct cpumask *sd_numa_mask(int cpu)
6235{
6236 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6237}
6238
d039ac60
PZ
6239static void sched_numa_warn(const char *str)
6240{
6241 static int done = false;
6242 int i,j;
6243
6244 if (done)
6245 return;
6246
6247 done = true;
6248
6249 printk(KERN_WARNING "ERROR: %s\n\n", str);
6250
6251 for (i = 0; i < nr_node_ids; i++) {
6252 printk(KERN_WARNING " ");
6253 for (j = 0; j < nr_node_ids; j++)
6254 printk(KERN_CONT "%02d ", node_distance(i,j));
6255 printk(KERN_CONT "\n");
6256 }
6257 printk(KERN_WARNING "\n");
6258}
6259
6260static bool find_numa_distance(int distance)
6261{
6262 int i;
6263
6264 if (distance == node_distance(0, 0))
6265 return true;
6266
6267 for (i = 0; i < sched_domains_numa_levels; i++) {
6268 if (sched_domains_numa_distance[i] == distance)
6269 return true;
6270 }
6271
6272 return false;
6273}
6274
cb83b629
PZ
6275static void sched_init_numa(void)
6276{
6277 int next_distance, curr_distance = node_distance(0, 0);
6278 struct sched_domain_topology_level *tl;
6279 int level = 0;
6280 int i, j, k;
6281
cb83b629
PZ
6282 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6283 if (!sched_domains_numa_distance)
6284 return;
6285
6286 /*
6287 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6288 * unique distances in the node_distance() table.
6289 *
6290 * Assumes node_distance(0,j) includes all distances in
6291 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6292 */
6293 next_distance = curr_distance;
6294 for (i = 0; i < nr_node_ids; i++) {
6295 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6296 for (k = 0; k < nr_node_ids; k++) {
6297 int distance = node_distance(i, k);
6298
6299 if (distance > curr_distance &&
6300 (distance < next_distance ||
6301 next_distance == curr_distance))
6302 next_distance = distance;
6303
6304 /*
6305 * While not a strong assumption it would be nice to know
6306 * about cases where if node A is connected to B, B is not
6307 * equally connected to A.
6308 */
6309 if (sched_debug() && node_distance(k, i) != distance)
6310 sched_numa_warn("Node-distance not symmetric");
6311
6312 if (sched_debug() && i && !find_numa_distance(distance))
6313 sched_numa_warn("Node-0 not representative");
6314 }
6315 if (next_distance != curr_distance) {
6316 sched_domains_numa_distance[level++] = next_distance;
6317 sched_domains_numa_levels = level;
6318 curr_distance = next_distance;
6319 } else break;
cb83b629 6320 }
d039ac60
PZ
6321
6322 /*
6323 * In case of sched_debug() we verify the above assumption.
6324 */
6325 if (!sched_debug())
6326 break;
cb83b629
PZ
6327 }
6328 /*
6329 * 'level' contains the number of unique distances, excluding the
6330 * identity distance node_distance(i,i).
6331 *
28b4a521 6332 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6333 * numbers.
6334 */
6335
5f7865f3
TC
6336 /*
6337 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6338 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6339 * the array will contain less then 'level' members. This could be
6340 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6341 * in other functions.
6342 *
6343 * We reset it to 'level' at the end of this function.
6344 */
6345 sched_domains_numa_levels = 0;
6346
cb83b629
PZ
6347 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6348 if (!sched_domains_numa_masks)
6349 return;
6350
6351 /*
6352 * Now for each level, construct a mask per node which contains all
6353 * cpus of nodes that are that many hops away from us.
6354 */
6355 for (i = 0; i < level; i++) {
6356 sched_domains_numa_masks[i] =
6357 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6358 if (!sched_domains_numa_masks[i])
6359 return;
6360
6361 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6362 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6363 if (!mask)
6364 return;
6365
6366 sched_domains_numa_masks[i][j] = mask;
6367
6368 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6369 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6370 continue;
6371
6372 cpumask_or(mask, mask, cpumask_of_node(k));
6373 }
6374 }
6375 }
6376
143e1e28
VG
6377 /* Compute default topology size */
6378 for (i = 0; sched_domain_topology[i].mask; i++);
6379
c515db8c 6380 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6381 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6382 if (!tl)
6383 return;
6384
6385 /*
6386 * Copy the default topology bits..
6387 */
143e1e28
VG
6388 for (i = 0; sched_domain_topology[i].mask; i++)
6389 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6390
6391 /*
6392 * .. and append 'j' levels of NUMA goodness.
6393 */
6394 for (j = 0; j < level; i++, j++) {
6395 tl[i] = (struct sched_domain_topology_level){
cb83b629 6396 .mask = sd_numa_mask,
143e1e28 6397 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6398 .flags = SDTL_OVERLAP,
6399 .numa_level = j,
143e1e28 6400 SD_INIT_NAME(NUMA)
cb83b629
PZ
6401 };
6402 }
6403
6404 sched_domain_topology = tl;
5f7865f3
TC
6405
6406 sched_domains_numa_levels = level;
cb83b629 6407}
301a5cba
TC
6408
6409static void sched_domains_numa_masks_set(int cpu)
6410{
6411 int i, j;
6412 int node = cpu_to_node(cpu);
6413
6414 for (i = 0; i < sched_domains_numa_levels; i++) {
6415 for (j = 0; j < nr_node_ids; j++) {
6416 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6417 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6418 }
6419 }
6420}
6421
6422static void sched_domains_numa_masks_clear(int cpu)
6423{
6424 int i, j;
6425 for (i = 0; i < sched_domains_numa_levels; i++) {
6426 for (j = 0; j < nr_node_ids; j++)
6427 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6428 }
6429}
6430
6431/*
6432 * Update sched_domains_numa_masks[level][node] array when new cpus
6433 * are onlined.
6434 */
6435static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6436 unsigned long action,
6437 void *hcpu)
6438{
6439 int cpu = (long)hcpu;
6440
6441 switch (action & ~CPU_TASKS_FROZEN) {
6442 case CPU_ONLINE:
6443 sched_domains_numa_masks_set(cpu);
6444 break;
6445
6446 case CPU_DEAD:
6447 sched_domains_numa_masks_clear(cpu);
6448 break;
6449
6450 default:
6451 return NOTIFY_DONE;
6452 }
6453
6454 return NOTIFY_OK;
cb83b629
PZ
6455}
6456#else
6457static inline void sched_init_numa(void)
6458{
6459}
301a5cba
TC
6460
6461static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6462 unsigned long action,
6463 void *hcpu)
6464{
6465 return 0;
6466}
cb83b629
PZ
6467#endif /* CONFIG_NUMA */
6468
54ab4ff4
PZ
6469static int __sdt_alloc(const struct cpumask *cpu_map)
6470{
6471 struct sched_domain_topology_level *tl;
6472 int j;
6473
27723a68 6474 for_each_sd_topology(tl) {
54ab4ff4
PZ
6475 struct sd_data *sdd = &tl->data;
6476
6477 sdd->sd = alloc_percpu(struct sched_domain *);
6478 if (!sdd->sd)
6479 return -ENOMEM;
6480
6481 sdd->sg = alloc_percpu(struct sched_group *);
6482 if (!sdd->sg)
6483 return -ENOMEM;
6484
63b2ca30
NP
6485 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6486 if (!sdd->sgc)
9c3f75cb
PZ
6487 return -ENOMEM;
6488
54ab4ff4
PZ
6489 for_each_cpu(j, cpu_map) {
6490 struct sched_domain *sd;
6491 struct sched_group *sg;
63b2ca30 6492 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6493
6494 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6495 GFP_KERNEL, cpu_to_node(j));
6496 if (!sd)
6497 return -ENOMEM;
6498
6499 *per_cpu_ptr(sdd->sd, j) = sd;
6500
6501 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6502 GFP_KERNEL, cpu_to_node(j));
6503 if (!sg)
6504 return -ENOMEM;
6505
30b4e9eb
IM
6506 sg->next = sg;
6507
54ab4ff4 6508 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6509
63b2ca30 6510 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6511 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6512 if (!sgc)
9c3f75cb
PZ
6513 return -ENOMEM;
6514
63b2ca30 6515 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6516 }
6517 }
6518
6519 return 0;
6520}
6521
6522static void __sdt_free(const struct cpumask *cpu_map)
6523{
6524 struct sched_domain_topology_level *tl;
6525 int j;
6526
27723a68 6527 for_each_sd_topology(tl) {
54ab4ff4
PZ
6528 struct sd_data *sdd = &tl->data;
6529
6530 for_each_cpu(j, cpu_map) {
fb2cf2c6 6531 struct sched_domain *sd;
6532
6533 if (sdd->sd) {
6534 sd = *per_cpu_ptr(sdd->sd, j);
6535 if (sd && (sd->flags & SD_OVERLAP))
6536 free_sched_groups(sd->groups, 0);
6537 kfree(*per_cpu_ptr(sdd->sd, j));
6538 }
6539
6540 if (sdd->sg)
6541 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6542 if (sdd->sgc)
6543 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6544 }
6545 free_percpu(sdd->sd);
fb2cf2c6 6546 sdd->sd = NULL;
54ab4ff4 6547 free_percpu(sdd->sg);
fb2cf2c6 6548 sdd->sg = NULL;
63b2ca30
NP
6549 free_percpu(sdd->sgc);
6550 sdd->sgc = NULL;
54ab4ff4
PZ
6551 }
6552}
6553
2c402dc3 6554struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6555 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6556 struct sched_domain *child, int cpu)
2c402dc3 6557{
143e1e28 6558 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6559 if (!sd)
d069b916 6560 return child;
2c402dc3 6561
2c402dc3 6562 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6563 if (child) {
6564 sd->level = child->level + 1;
6565 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6566 child->parent = sd;
c75e0128 6567 sd->child = child;
6ae72dff
PZ
6568
6569 if (!cpumask_subset(sched_domain_span(child),
6570 sched_domain_span(sd))) {
6571 pr_err("BUG: arch topology borken\n");
6572#ifdef CONFIG_SCHED_DEBUG
6573 pr_err(" the %s domain not a subset of the %s domain\n",
6574 child->name, sd->name);
6575#endif
6576 /* Fixup, ensure @sd has at least @child cpus. */
6577 cpumask_or(sched_domain_span(sd),
6578 sched_domain_span(sd),
6579 sched_domain_span(child));
6580 }
6581
60495e77 6582 }
a841f8ce 6583 set_domain_attribute(sd, attr);
2c402dc3
PZ
6584
6585 return sd;
6586}
6587
2109b99e
AH
6588/*
6589 * Build sched domains for a given set of cpus and attach the sched domains
6590 * to the individual cpus
6591 */
dce840a0
PZ
6592static int build_sched_domains(const struct cpumask *cpu_map,
6593 struct sched_domain_attr *attr)
2109b99e 6594{
1c632169 6595 enum s_alloc alloc_state;
dce840a0 6596 struct sched_domain *sd;
2109b99e 6597 struct s_data d;
822ff793 6598 int i, ret = -ENOMEM;
9c1cfda2 6599
2109b99e
AH
6600 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6601 if (alloc_state != sa_rootdomain)
6602 goto error;
9c1cfda2 6603
dce840a0 6604 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6605 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6606 struct sched_domain_topology_level *tl;
6607
3bd65a80 6608 sd = NULL;
27723a68 6609 for_each_sd_topology(tl) {
4a850cbe 6610 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6611 if (tl == sched_domain_topology)
6612 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6613 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6614 sd->flags |= SD_OVERLAP;
d110235d
PZ
6615 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6616 break;
e3589f6c 6617 }
dce840a0
PZ
6618 }
6619
6620 /* Build the groups for the domains */
6621 for_each_cpu(i, cpu_map) {
6622 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6623 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6624 if (sd->flags & SD_OVERLAP) {
6625 if (build_overlap_sched_groups(sd, i))
6626 goto error;
6627 } else {
6628 if (build_sched_groups(sd, i))
6629 goto error;
6630 }
1cf51902 6631 }
a06dadbe 6632 }
9c1cfda2 6633
ced549fa 6634 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6635 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6636 if (!cpumask_test_cpu(i, cpu_map))
6637 continue;
9c1cfda2 6638
dce840a0
PZ
6639 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6640 claim_allocations(i, sd);
63b2ca30 6641 init_sched_groups_capacity(i, sd);
dce840a0 6642 }
f712c0c7 6643 }
9c1cfda2 6644
1da177e4 6645 /* Attach the domains */
dce840a0 6646 rcu_read_lock();
abcd083a 6647 for_each_cpu(i, cpu_map) {
21d42ccf 6648 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6649 cpu_attach_domain(sd, d.rd, i);
1da177e4 6650 }
dce840a0 6651 rcu_read_unlock();
51888ca2 6652
822ff793 6653 ret = 0;
51888ca2 6654error:
2109b99e 6655 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6656 return ret;
1da177e4 6657}
029190c5 6658
acc3f5d7 6659static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6660static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6661static struct sched_domain_attr *dattr_cur;
6662 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6663
6664/*
6665 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6666 * cpumask) fails, then fallback to a single sched domain,
6667 * as determined by the single cpumask fallback_doms.
029190c5 6668 */
4212823f 6669static cpumask_var_t fallback_doms;
029190c5 6670
ee79d1bd
HC
6671/*
6672 * arch_update_cpu_topology lets virtualized architectures update the
6673 * cpu core maps. It is supposed to return 1 if the topology changed
6674 * or 0 if it stayed the same.
6675 */
52f5684c 6676int __weak arch_update_cpu_topology(void)
22e52b07 6677{
ee79d1bd 6678 return 0;
22e52b07
HC
6679}
6680
acc3f5d7
RR
6681cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6682{
6683 int i;
6684 cpumask_var_t *doms;
6685
6686 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6687 if (!doms)
6688 return NULL;
6689 for (i = 0; i < ndoms; i++) {
6690 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6691 free_sched_domains(doms, i);
6692 return NULL;
6693 }
6694 }
6695 return doms;
6696}
6697
6698void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6699{
6700 unsigned int i;
6701 for (i = 0; i < ndoms; i++)
6702 free_cpumask_var(doms[i]);
6703 kfree(doms);
6704}
6705
1a20ff27 6706/*
41a2d6cf 6707 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6708 * For now this just excludes isolated cpus, but could be used to
6709 * exclude other special cases in the future.
1a20ff27 6710 */
c4a8849a 6711static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6712{
7378547f
MM
6713 int err;
6714
22e52b07 6715 arch_update_cpu_topology();
029190c5 6716 ndoms_cur = 1;
acc3f5d7 6717 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6718 if (!doms_cur)
acc3f5d7
RR
6719 doms_cur = &fallback_doms;
6720 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6721 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6722 register_sched_domain_sysctl();
7378547f
MM
6723
6724 return err;
1a20ff27
DG
6725}
6726
1a20ff27
DG
6727/*
6728 * Detach sched domains from a group of cpus specified in cpu_map
6729 * These cpus will now be attached to the NULL domain
6730 */
96f874e2 6731static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6732{
6733 int i;
6734
dce840a0 6735 rcu_read_lock();
abcd083a 6736 for_each_cpu(i, cpu_map)
57d885fe 6737 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6738 rcu_read_unlock();
1a20ff27
DG
6739}
6740
1d3504fc
HS
6741/* handle null as "default" */
6742static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6743 struct sched_domain_attr *new, int idx_new)
6744{
6745 struct sched_domain_attr tmp;
6746
6747 /* fast path */
6748 if (!new && !cur)
6749 return 1;
6750
6751 tmp = SD_ATTR_INIT;
6752 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6753 new ? (new + idx_new) : &tmp,
6754 sizeof(struct sched_domain_attr));
6755}
6756
029190c5
PJ
6757/*
6758 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6759 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6760 * doms_new[] to the current sched domain partitioning, doms_cur[].
6761 * It destroys each deleted domain and builds each new domain.
6762 *
acc3f5d7 6763 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6764 * The masks don't intersect (don't overlap.) We should setup one
6765 * sched domain for each mask. CPUs not in any of the cpumasks will
6766 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6767 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6768 * it as it is.
6769 *
acc3f5d7
RR
6770 * The passed in 'doms_new' should be allocated using
6771 * alloc_sched_domains. This routine takes ownership of it and will
6772 * free_sched_domains it when done with it. If the caller failed the
6773 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6774 * and partition_sched_domains() will fallback to the single partition
6775 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6776 *
96f874e2 6777 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6778 * ndoms_new == 0 is a special case for destroying existing domains,
6779 * and it will not create the default domain.
dfb512ec 6780 *
029190c5
PJ
6781 * Call with hotplug lock held
6782 */
acc3f5d7 6783void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6784 struct sched_domain_attr *dattr_new)
029190c5 6785{
dfb512ec 6786 int i, j, n;
d65bd5ec 6787 int new_topology;
029190c5 6788
712555ee 6789 mutex_lock(&sched_domains_mutex);
a1835615 6790
7378547f
MM
6791 /* always unregister in case we don't destroy any domains */
6792 unregister_sched_domain_sysctl();
6793
d65bd5ec
HC
6794 /* Let architecture update cpu core mappings. */
6795 new_topology = arch_update_cpu_topology();
6796
dfb512ec 6797 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6798
6799 /* Destroy deleted domains */
6800 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6801 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6802 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6803 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6804 goto match1;
6805 }
6806 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6807 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6808match1:
6809 ;
6810 }
6811
c8d2d47a 6812 n = ndoms_cur;
e761b772 6813 if (doms_new == NULL) {
c8d2d47a 6814 n = 0;
acc3f5d7 6815 doms_new = &fallback_doms;
6ad4c188 6816 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6817 WARN_ON_ONCE(dattr_new);
e761b772
MK
6818 }
6819
029190c5
PJ
6820 /* Build new domains */
6821 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6822 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6823 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6824 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6825 goto match2;
6826 }
6827 /* no match - add a new doms_new */
dce840a0 6828 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6829match2:
6830 ;
6831 }
6832
6833 /* Remember the new sched domains */
acc3f5d7
RR
6834 if (doms_cur != &fallback_doms)
6835 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6836 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6837 doms_cur = doms_new;
1d3504fc 6838 dattr_cur = dattr_new;
029190c5 6839 ndoms_cur = ndoms_new;
7378547f
MM
6840
6841 register_sched_domain_sysctl();
a1835615 6842
712555ee 6843 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6844}
6845
d35be8ba
SB
6846static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6847
1da177e4 6848/*
3a101d05
TH
6849 * Update cpusets according to cpu_active mask. If cpusets are
6850 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6851 * around partition_sched_domains().
d35be8ba
SB
6852 *
6853 * If we come here as part of a suspend/resume, don't touch cpusets because we
6854 * want to restore it back to its original state upon resume anyway.
1da177e4 6855 */
0b2e918a
TH
6856static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6857 void *hcpu)
e761b772 6858{
d35be8ba
SB
6859 switch (action) {
6860 case CPU_ONLINE_FROZEN:
6861 case CPU_DOWN_FAILED_FROZEN:
6862
6863 /*
6864 * num_cpus_frozen tracks how many CPUs are involved in suspend
6865 * resume sequence. As long as this is not the last online
6866 * operation in the resume sequence, just build a single sched
6867 * domain, ignoring cpusets.
6868 */
6869 num_cpus_frozen--;
6870 if (likely(num_cpus_frozen)) {
6871 partition_sched_domains(1, NULL, NULL);
6872 break;
6873 }
6874
6875 /*
6876 * This is the last CPU online operation. So fall through and
6877 * restore the original sched domains by considering the
6878 * cpuset configurations.
6879 */
6880
e761b772 6881 case CPU_ONLINE:
6ad4c188 6882 case CPU_DOWN_FAILED:
7ddf96b0 6883 cpuset_update_active_cpus(true);
d35be8ba 6884 break;
3a101d05
TH
6885 default:
6886 return NOTIFY_DONE;
6887 }
d35be8ba 6888 return NOTIFY_OK;
3a101d05 6889}
e761b772 6890
0b2e918a
TH
6891static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6892 void *hcpu)
3a101d05 6893{
d35be8ba 6894 switch (action) {
3a101d05 6895 case CPU_DOWN_PREPARE:
7ddf96b0 6896 cpuset_update_active_cpus(false);
d35be8ba
SB
6897 break;
6898 case CPU_DOWN_PREPARE_FROZEN:
6899 num_cpus_frozen++;
6900 partition_sched_domains(1, NULL, NULL);
6901 break;
e761b772
MK
6902 default:
6903 return NOTIFY_DONE;
6904 }
d35be8ba 6905 return NOTIFY_OK;
e761b772 6906}
e761b772 6907
1da177e4
LT
6908void __init sched_init_smp(void)
6909{
dcc30a35
RR
6910 cpumask_var_t non_isolated_cpus;
6911
6912 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6913 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6914
cb83b629
PZ
6915 sched_init_numa();
6916
6acce3ef
PZ
6917 /*
6918 * There's no userspace yet to cause hotplug operations; hence all the
6919 * cpu masks are stable and all blatant races in the below code cannot
6920 * happen.
6921 */
712555ee 6922 mutex_lock(&sched_domains_mutex);
c4a8849a 6923 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6924 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6925 if (cpumask_empty(non_isolated_cpus))
6926 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6927 mutex_unlock(&sched_domains_mutex);
e761b772 6928
301a5cba 6929 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6930 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6931 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6932
b328ca18 6933 init_hrtick();
5c1e1767
NP
6934
6935 /* Move init over to a non-isolated CPU */
dcc30a35 6936 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6937 BUG();
19978ca6 6938 sched_init_granularity();
dcc30a35 6939 free_cpumask_var(non_isolated_cpus);
4212823f 6940
0e3900e6 6941 init_sched_rt_class();
1baca4ce 6942 init_sched_dl_class();
1da177e4
LT
6943}
6944#else
6945void __init sched_init_smp(void)
6946{
19978ca6 6947 sched_init_granularity();
1da177e4
LT
6948}
6949#endif /* CONFIG_SMP */
6950
cd1bb94b
AB
6951const_debug unsigned int sysctl_timer_migration = 1;
6952
1da177e4
LT
6953int in_sched_functions(unsigned long addr)
6954{
1da177e4
LT
6955 return in_lock_functions(addr) ||
6956 (addr >= (unsigned long)__sched_text_start
6957 && addr < (unsigned long)__sched_text_end);
6958}
6959
029632fb 6960#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6961/*
6962 * Default task group.
6963 * Every task in system belongs to this group at bootup.
6964 */
029632fb 6965struct task_group root_task_group;
35cf4e50 6966LIST_HEAD(task_groups);
052f1dc7 6967#endif
6f505b16 6968
e6252c3e 6969DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6970
1da177e4
LT
6971void __init sched_init(void)
6972{
dd41f596 6973 int i, j;
434d53b0
MT
6974 unsigned long alloc_size = 0, ptr;
6975
6976#ifdef CONFIG_FAIR_GROUP_SCHED
6977 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6978#endif
6979#ifdef CONFIG_RT_GROUP_SCHED
6980 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6981#endif
df7c8e84 6982#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6983 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6984#endif
434d53b0 6985 if (alloc_size) {
36b7b6d4 6986 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6987
6988#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6989 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6990 ptr += nr_cpu_ids * sizeof(void **);
6991
07e06b01 6992 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6993 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6994
6d6bc0ad 6995#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6996#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6997 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6998 ptr += nr_cpu_ids * sizeof(void **);
6999
07e06b01 7000 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7001 ptr += nr_cpu_ids * sizeof(void **);
7002
6d6bc0ad 7003#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7004#ifdef CONFIG_CPUMASK_OFFSTACK
7005 for_each_possible_cpu(i) {
e6252c3e 7006 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7007 ptr += cpumask_size();
7008 }
7009#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7010 }
dd41f596 7011
332ac17e
DF
7012 init_rt_bandwidth(&def_rt_bandwidth,
7013 global_rt_period(), global_rt_runtime());
7014 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7015 global_rt_period(), global_rt_runtime());
332ac17e 7016
57d885fe
GH
7017#ifdef CONFIG_SMP
7018 init_defrootdomain();
7019#endif
7020
d0b27fa7 7021#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7022 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7023 global_rt_period(), global_rt_runtime());
6d6bc0ad 7024#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7025
7c941438 7026#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7027 list_add(&root_task_group.list, &task_groups);
7028 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7029 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7030 autogroup_init(&init_task);
54c707e9 7031
7c941438 7032#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7033
0a945022 7034 for_each_possible_cpu(i) {
70b97a7f 7035 struct rq *rq;
1da177e4
LT
7036
7037 rq = cpu_rq(i);
05fa785c 7038 raw_spin_lock_init(&rq->lock);
7897986b 7039 rq->nr_running = 0;
dce48a84
TG
7040 rq->calc_load_active = 0;
7041 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7042 init_cfs_rq(&rq->cfs);
6f505b16 7043 init_rt_rq(&rq->rt, rq);
aab03e05 7044 init_dl_rq(&rq->dl, rq);
dd41f596 7045#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7046 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7047 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7048 /*
07e06b01 7049 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7050 *
7051 * In case of task-groups formed thr' the cgroup filesystem, it
7052 * gets 100% of the cpu resources in the system. This overall
7053 * system cpu resource is divided among the tasks of
07e06b01 7054 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7055 * based on each entity's (task or task-group's) weight
7056 * (se->load.weight).
7057 *
07e06b01 7058 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7059 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7060 * then A0's share of the cpu resource is:
7061 *
0d905bca 7062 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7063 *
07e06b01
YZ
7064 * We achieve this by letting root_task_group's tasks sit
7065 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7066 */
ab84d31e 7067 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7068 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7069#endif /* CONFIG_FAIR_GROUP_SCHED */
7070
7071 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7072#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7073 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7074#endif
1da177e4 7075
dd41f596
IM
7076 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7077 rq->cpu_load[j] = 0;
fdf3e95d
VP
7078
7079 rq->last_load_update_tick = jiffies;
7080
1da177e4 7081#ifdef CONFIG_SMP
41c7ce9a 7082 rq->sd = NULL;
57d885fe 7083 rq->rd = NULL;
ca8ce3d0 7084 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7085 rq->post_schedule = 0;
1da177e4 7086 rq->active_balance = 0;
dd41f596 7087 rq->next_balance = jiffies;
1da177e4 7088 rq->push_cpu = 0;
0a2966b4 7089 rq->cpu = i;
1f11eb6a 7090 rq->online = 0;
eae0c9df
MG
7091 rq->idle_stamp = 0;
7092 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7093 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7094
7095 INIT_LIST_HEAD(&rq->cfs_tasks);
7096
dc938520 7097 rq_attach_root(rq, &def_root_domain);
3451d024 7098#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7099 rq->nohz_flags = 0;
83cd4fe2 7100#endif
265f22a9
FW
7101#ifdef CONFIG_NO_HZ_FULL
7102 rq->last_sched_tick = 0;
7103#endif
1da177e4 7104#endif
8f4d37ec 7105 init_rq_hrtick(rq);
1da177e4 7106 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7107 }
7108
2dd73a4f 7109 set_load_weight(&init_task);
b50f60ce 7110
e107be36
AK
7111#ifdef CONFIG_PREEMPT_NOTIFIERS
7112 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7113#endif
7114
1da177e4
LT
7115 /*
7116 * The boot idle thread does lazy MMU switching as well:
7117 */
7118 atomic_inc(&init_mm.mm_count);
7119 enter_lazy_tlb(&init_mm, current);
7120
7121 /*
7122 * Make us the idle thread. Technically, schedule() should not be
7123 * called from this thread, however somewhere below it might be,
7124 * but because we are the idle thread, we just pick up running again
7125 * when this runqueue becomes "idle".
7126 */
7127 init_idle(current, smp_processor_id());
dce48a84
TG
7128
7129 calc_load_update = jiffies + LOAD_FREQ;
7130
dd41f596
IM
7131 /*
7132 * During early bootup we pretend to be a normal task:
7133 */
7134 current->sched_class = &fair_sched_class;
6892b75e 7135
bf4d83f6 7136#ifdef CONFIG_SMP
4cb98839 7137 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7138 /* May be allocated at isolcpus cmdline parse time */
7139 if (cpu_isolated_map == NULL)
7140 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7141 idle_thread_set_boot_cpu();
a803f026 7142 set_cpu_rq_start_time();
029632fb
PZ
7143#endif
7144 init_sched_fair_class();
6a7b3dc3 7145
6892b75e 7146 scheduler_running = 1;
1da177e4
LT
7147}
7148
d902db1e 7149#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7150static inline int preempt_count_equals(int preempt_offset)
7151{
234da7bc 7152 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7153
4ba8216c 7154 return (nested == preempt_offset);
e4aafea2
FW
7155}
7156
d894837f 7157void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7158{
1da177e4
LT
7159 static unsigned long prev_jiffy; /* ratelimiting */
7160
b3fbab05 7161 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7162 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7163 !is_idle_task(current)) ||
e4aafea2 7164 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7165 return;
7166 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7167 return;
7168 prev_jiffy = jiffies;
7169
3df0fc5b
PZ
7170 printk(KERN_ERR
7171 "BUG: sleeping function called from invalid context at %s:%d\n",
7172 file, line);
7173 printk(KERN_ERR
7174 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7175 in_atomic(), irqs_disabled(),
7176 current->pid, current->comm);
aef745fc
IM
7177
7178 debug_show_held_locks(current);
7179 if (irqs_disabled())
7180 print_irqtrace_events(current);
8f47b187
TG
7181#ifdef CONFIG_DEBUG_PREEMPT
7182 if (!preempt_count_equals(preempt_offset)) {
7183 pr_err("Preemption disabled at:");
7184 print_ip_sym(current->preempt_disable_ip);
7185 pr_cont("\n");
7186 }
7187#endif
aef745fc 7188 dump_stack();
1da177e4
LT
7189}
7190EXPORT_SYMBOL(__might_sleep);
7191#endif
7192
7193#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7194static void normalize_task(struct rq *rq, struct task_struct *p)
7195{
da7a735e 7196 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7197 struct sched_attr attr = {
7198 .sched_policy = SCHED_NORMAL,
7199 };
da7a735e 7200 int old_prio = p->prio;
da0c1e65 7201 int queued;
3e51f33f 7202
da0c1e65
KT
7203 queued = task_on_rq_queued(p);
7204 if (queued)
4ca9b72b 7205 dequeue_task(rq, p, 0);
d50dde5a 7206 __setscheduler(rq, p, &attr);
da0c1e65 7207 if (queued) {
4ca9b72b 7208 enqueue_task(rq, p, 0);
8875125e 7209 resched_curr(rq);
3a5e4dc1 7210 }
da7a735e
PZ
7211
7212 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7213}
7214
1da177e4
LT
7215void normalize_rt_tasks(void)
7216{
a0f98a1c 7217 struct task_struct *g, *p;
1da177e4 7218 unsigned long flags;
70b97a7f 7219 struct rq *rq;
1da177e4 7220
3472eaa1 7221 read_lock(&tasklist_lock);
5d07f420 7222 for_each_process_thread(g, p) {
178be793
IM
7223 /*
7224 * Only normalize user tasks:
7225 */
3472eaa1 7226 if (p->flags & PF_KTHREAD)
178be793
IM
7227 continue;
7228
6cfb0d5d 7229 p->se.exec_start = 0;
6cfb0d5d 7230#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7231 p->se.statistics.wait_start = 0;
7232 p->se.statistics.sleep_start = 0;
7233 p->se.statistics.block_start = 0;
6cfb0d5d 7234#endif
dd41f596 7235
aab03e05 7236 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7237 /*
7238 * Renice negative nice level userspace
7239 * tasks back to 0:
7240 */
3472eaa1 7241 if (task_nice(p) < 0)
dd41f596 7242 set_user_nice(p, 0);
1da177e4 7243 continue;
dd41f596 7244 }
1da177e4 7245
3472eaa1 7246 rq = task_rq_lock(p, &flags);
178be793 7247 normalize_task(rq, p);
3472eaa1 7248 task_rq_unlock(rq, p, &flags);
5d07f420 7249 }
3472eaa1 7250 read_unlock(&tasklist_lock);
1da177e4
LT
7251}
7252
7253#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7254
67fc4e0c 7255#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7256/*
67fc4e0c 7257 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7258 *
7259 * They can only be called when the whole system has been
7260 * stopped - every CPU needs to be quiescent, and no scheduling
7261 * activity can take place. Using them for anything else would
7262 * be a serious bug, and as a result, they aren't even visible
7263 * under any other configuration.
7264 */
7265
7266/**
7267 * curr_task - return the current task for a given cpu.
7268 * @cpu: the processor in question.
7269 *
7270 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7271 *
7272 * Return: The current task for @cpu.
1df5c10a 7273 */
36c8b586 7274struct task_struct *curr_task(int cpu)
1df5c10a
LT
7275{
7276 return cpu_curr(cpu);
7277}
7278
67fc4e0c
JW
7279#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7280
7281#ifdef CONFIG_IA64
1df5c10a
LT
7282/**
7283 * set_curr_task - set the current task for a given cpu.
7284 * @cpu: the processor in question.
7285 * @p: the task pointer to set.
7286 *
7287 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7288 * are serviced on a separate stack. It allows the architecture to switch the
7289 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7290 * must be called with all CPU's synchronized, and interrupts disabled, the
7291 * and caller must save the original value of the current task (see
7292 * curr_task() above) and restore that value before reenabling interrupts and
7293 * re-starting the system.
7294 *
7295 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7296 */
36c8b586 7297void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7298{
7299 cpu_curr(cpu) = p;
7300}
7301
7302#endif
29f59db3 7303
7c941438 7304#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7305/* task_group_lock serializes the addition/removal of task groups */
7306static DEFINE_SPINLOCK(task_group_lock);
7307
bccbe08a
PZ
7308static void free_sched_group(struct task_group *tg)
7309{
7310 free_fair_sched_group(tg);
7311 free_rt_sched_group(tg);
e9aa1dd1 7312 autogroup_free(tg);
bccbe08a
PZ
7313 kfree(tg);
7314}
7315
7316/* allocate runqueue etc for a new task group */
ec7dc8ac 7317struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7318{
7319 struct task_group *tg;
bccbe08a
PZ
7320
7321 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7322 if (!tg)
7323 return ERR_PTR(-ENOMEM);
7324
ec7dc8ac 7325 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7326 goto err;
7327
ec7dc8ac 7328 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7329 goto err;
7330
ace783b9
LZ
7331 return tg;
7332
7333err:
7334 free_sched_group(tg);
7335 return ERR_PTR(-ENOMEM);
7336}
7337
7338void sched_online_group(struct task_group *tg, struct task_group *parent)
7339{
7340 unsigned long flags;
7341
8ed36996 7342 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7343 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7344
7345 WARN_ON(!parent); /* root should already exist */
7346
7347 tg->parent = parent;
f473aa5e 7348 INIT_LIST_HEAD(&tg->children);
09f2724a 7349 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7350 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7351}
7352
9b5b7751 7353/* rcu callback to free various structures associated with a task group */
6f505b16 7354static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7355{
29f59db3 7356 /* now it should be safe to free those cfs_rqs */
6f505b16 7357 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7358}
7359
9b5b7751 7360/* Destroy runqueue etc associated with a task group */
4cf86d77 7361void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7362{
7363 /* wait for possible concurrent references to cfs_rqs complete */
7364 call_rcu(&tg->rcu, free_sched_group_rcu);
7365}
7366
7367void sched_offline_group(struct task_group *tg)
29f59db3 7368{
8ed36996 7369 unsigned long flags;
9b5b7751 7370 int i;
29f59db3 7371
3d4b47b4
PZ
7372 /* end participation in shares distribution */
7373 for_each_possible_cpu(i)
bccbe08a 7374 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7375
7376 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7377 list_del_rcu(&tg->list);
f473aa5e 7378 list_del_rcu(&tg->siblings);
8ed36996 7379 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7380}
7381
9b5b7751 7382/* change task's runqueue when it moves between groups.
3a252015
IM
7383 * The caller of this function should have put the task in its new group
7384 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7385 * reflect its new group.
9b5b7751
SV
7386 */
7387void sched_move_task(struct task_struct *tsk)
29f59db3 7388{
8323f26c 7389 struct task_group *tg;
da0c1e65 7390 int queued, running;
29f59db3
SV
7391 unsigned long flags;
7392 struct rq *rq;
7393
7394 rq = task_rq_lock(tsk, &flags);
7395
051a1d1a 7396 running = task_current(rq, tsk);
da0c1e65 7397 queued = task_on_rq_queued(tsk);
29f59db3 7398
da0c1e65 7399 if (queued)
29f59db3 7400 dequeue_task(rq, tsk, 0);
0e1f3483 7401 if (unlikely(running))
f3cd1c4e 7402 put_prev_task(rq, tsk);
29f59db3 7403
073219e9 7404 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7405 lockdep_is_held(&tsk->sighand->siglock)),
7406 struct task_group, css);
7407 tg = autogroup_task_group(tsk, tg);
7408 tsk->sched_task_group = tg;
7409
810b3817 7410#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7411 if (tsk->sched_class->task_move_group)
da0c1e65 7412 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7413 else
810b3817 7414#endif
b2b5ce02 7415 set_task_rq(tsk, task_cpu(tsk));
810b3817 7416
0e1f3483
HS
7417 if (unlikely(running))
7418 tsk->sched_class->set_curr_task(rq);
da0c1e65 7419 if (queued)
371fd7e7 7420 enqueue_task(rq, tsk, 0);
29f59db3 7421
0122ec5b 7422 task_rq_unlock(rq, tsk, &flags);
29f59db3 7423}
7c941438 7424#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7425
a790de99
PT
7426#ifdef CONFIG_RT_GROUP_SCHED
7427/*
7428 * Ensure that the real time constraints are schedulable.
7429 */
7430static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7431
9a7e0b18
PZ
7432/* Must be called with tasklist_lock held */
7433static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7434{
9a7e0b18 7435 struct task_struct *g, *p;
b40b2e8e 7436
5d07f420 7437 for_each_process_thread(g, p) {
8651c658 7438 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7439 return 1;
5d07f420 7440 }
b40b2e8e 7441
9a7e0b18
PZ
7442 return 0;
7443}
b40b2e8e 7444
9a7e0b18
PZ
7445struct rt_schedulable_data {
7446 struct task_group *tg;
7447 u64 rt_period;
7448 u64 rt_runtime;
7449};
b40b2e8e 7450
a790de99 7451static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7452{
7453 struct rt_schedulable_data *d = data;
7454 struct task_group *child;
7455 unsigned long total, sum = 0;
7456 u64 period, runtime;
b40b2e8e 7457
9a7e0b18
PZ
7458 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7459 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7460
9a7e0b18
PZ
7461 if (tg == d->tg) {
7462 period = d->rt_period;
7463 runtime = d->rt_runtime;
b40b2e8e 7464 }
b40b2e8e 7465
4653f803
PZ
7466 /*
7467 * Cannot have more runtime than the period.
7468 */
7469 if (runtime > period && runtime != RUNTIME_INF)
7470 return -EINVAL;
6f505b16 7471
4653f803
PZ
7472 /*
7473 * Ensure we don't starve existing RT tasks.
7474 */
9a7e0b18
PZ
7475 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7476 return -EBUSY;
6f505b16 7477
9a7e0b18 7478 total = to_ratio(period, runtime);
6f505b16 7479
4653f803
PZ
7480 /*
7481 * Nobody can have more than the global setting allows.
7482 */
7483 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7484 return -EINVAL;
6f505b16 7485
4653f803
PZ
7486 /*
7487 * The sum of our children's runtime should not exceed our own.
7488 */
9a7e0b18
PZ
7489 list_for_each_entry_rcu(child, &tg->children, siblings) {
7490 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7491 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7492
9a7e0b18
PZ
7493 if (child == d->tg) {
7494 period = d->rt_period;
7495 runtime = d->rt_runtime;
7496 }
6f505b16 7497
9a7e0b18 7498 sum += to_ratio(period, runtime);
9f0c1e56 7499 }
6f505b16 7500
9a7e0b18
PZ
7501 if (sum > total)
7502 return -EINVAL;
7503
7504 return 0;
6f505b16
PZ
7505}
7506
9a7e0b18 7507static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7508{
8277434e
PT
7509 int ret;
7510
9a7e0b18
PZ
7511 struct rt_schedulable_data data = {
7512 .tg = tg,
7513 .rt_period = period,
7514 .rt_runtime = runtime,
7515 };
7516
8277434e
PT
7517 rcu_read_lock();
7518 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7519 rcu_read_unlock();
7520
7521 return ret;
521f1a24
DG
7522}
7523
ab84d31e 7524static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7525 u64 rt_period, u64 rt_runtime)
6f505b16 7526{
ac086bc2 7527 int i, err = 0;
9f0c1e56 7528
9f0c1e56 7529 mutex_lock(&rt_constraints_mutex);
521f1a24 7530 read_lock(&tasklist_lock);
9a7e0b18
PZ
7531 err = __rt_schedulable(tg, rt_period, rt_runtime);
7532 if (err)
9f0c1e56 7533 goto unlock;
ac086bc2 7534
0986b11b 7535 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7536 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7537 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7538
7539 for_each_possible_cpu(i) {
7540 struct rt_rq *rt_rq = tg->rt_rq[i];
7541
0986b11b 7542 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7543 rt_rq->rt_runtime = rt_runtime;
0986b11b 7544 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7545 }
0986b11b 7546 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7547unlock:
521f1a24 7548 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7549 mutex_unlock(&rt_constraints_mutex);
7550
7551 return err;
6f505b16
PZ
7552}
7553
25cc7da7 7554static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7555{
7556 u64 rt_runtime, rt_period;
7557
7558 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7559 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7560 if (rt_runtime_us < 0)
7561 rt_runtime = RUNTIME_INF;
7562
ab84d31e 7563 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7564}
7565
25cc7da7 7566static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7567{
7568 u64 rt_runtime_us;
7569
d0b27fa7 7570 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7571 return -1;
7572
d0b27fa7 7573 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7574 do_div(rt_runtime_us, NSEC_PER_USEC);
7575 return rt_runtime_us;
7576}
d0b27fa7 7577
25cc7da7 7578static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7579{
7580 u64 rt_runtime, rt_period;
7581
7582 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7583 rt_runtime = tg->rt_bandwidth.rt_runtime;
7584
619b0488
R
7585 if (rt_period == 0)
7586 return -EINVAL;
7587
ab84d31e 7588 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7589}
7590
25cc7da7 7591static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7592{
7593 u64 rt_period_us;
7594
7595 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7596 do_div(rt_period_us, NSEC_PER_USEC);
7597 return rt_period_us;
7598}
332ac17e 7599#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7600
332ac17e 7601#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7602static int sched_rt_global_constraints(void)
7603{
7604 int ret = 0;
7605
7606 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7607 read_lock(&tasklist_lock);
4653f803 7608 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7609 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7610 mutex_unlock(&rt_constraints_mutex);
7611
7612 return ret;
7613}
54e99124 7614
25cc7da7 7615static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7616{
7617 /* Don't accept realtime tasks when there is no way for them to run */
7618 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7619 return 0;
7620
7621 return 1;
7622}
7623
6d6bc0ad 7624#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7625static int sched_rt_global_constraints(void)
7626{
ac086bc2 7627 unsigned long flags;
332ac17e 7628 int i, ret = 0;
ec5d4989 7629
0986b11b 7630 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7631 for_each_possible_cpu(i) {
7632 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7633
0986b11b 7634 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7635 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7636 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7637 }
0986b11b 7638 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7639
332ac17e 7640 return ret;
d0b27fa7 7641}
6d6bc0ad 7642#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7643
332ac17e
DF
7644static int sched_dl_global_constraints(void)
7645{
1724813d
PZ
7646 u64 runtime = global_rt_runtime();
7647 u64 period = global_rt_period();
332ac17e 7648 u64 new_bw = to_ratio(period, runtime);
1724813d 7649 int cpu, ret = 0;
49516342 7650 unsigned long flags;
332ac17e 7651
66339c31
KT
7652 rcu_read_lock();
7653
332ac17e
DF
7654 /*
7655 * Here we want to check the bandwidth not being set to some
7656 * value smaller than the currently allocated bandwidth in
7657 * any of the root_domains.
7658 *
7659 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7660 * cycling on root_domains... Discussion on different/better
7661 * solutions is welcome!
7662 */
1724813d
PZ
7663 for_each_possible_cpu(cpu) {
7664 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7665
49516342 7666 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7667 if (new_bw < dl_b->total_bw)
7668 ret = -EBUSY;
49516342 7669 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7670
7671 if (ret)
7672 break;
332ac17e
DF
7673 }
7674
66339c31
KT
7675 rcu_read_unlock();
7676
1724813d 7677 return ret;
332ac17e
DF
7678}
7679
1724813d 7680static void sched_dl_do_global(void)
ce0dbbbb 7681{
1724813d
PZ
7682 u64 new_bw = -1;
7683 int cpu;
49516342 7684 unsigned long flags;
ce0dbbbb 7685
1724813d
PZ
7686 def_dl_bandwidth.dl_period = global_rt_period();
7687 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7688
7689 if (global_rt_runtime() != RUNTIME_INF)
7690 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7691
66339c31 7692 rcu_read_lock();
1724813d
PZ
7693 /*
7694 * FIXME: As above...
7695 */
7696 for_each_possible_cpu(cpu) {
7697 struct dl_bw *dl_b = dl_bw_of(cpu);
7698
49516342 7699 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7700 dl_b->bw = new_bw;
49516342 7701 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7702 }
66339c31 7703 rcu_read_unlock();
1724813d
PZ
7704}
7705
7706static int sched_rt_global_validate(void)
7707{
7708 if (sysctl_sched_rt_period <= 0)
7709 return -EINVAL;
7710
e9e7cb38
JL
7711 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7712 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7713 return -EINVAL;
7714
7715 return 0;
7716}
7717
7718static void sched_rt_do_global(void)
7719{
7720 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7721 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7722}
7723
d0b27fa7 7724int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7725 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7726 loff_t *ppos)
7727{
d0b27fa7
PZ
7728 int old_period, old_runtime;
7729 static DEFINE_MUTEX(mutex);
1724813d 7730 int ret;
d0b27fa7
PZ
7731
7732 mutex_lock(&mutex);
7733 old_period = sysctl_sched_rt_period;
7734 old_runtime = sysctl_sched_rt_runtime;
7735
8d65af78 7736 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7737
7738 if (!ret && write) {
1724813d
PZ
7739 ret = sched_rt_global_validate();
7740 if (ret)
7741 goto undo;
7742
d0b27fa7 7743 ret = sched_rt_global_constraints();
1724813d
PZ
7744 if (ret)
7745 goto undo;
7746
7747 ret = sched_dl_global_constraints();
7748 if (ret)
7749 goto undo;
7750
7751 sched_rt_do_global();
7752 sched_dl_do_global();
7753 }
7754 if (0) {
7755undo:
7756 sysctl_sched_rt_period = old_period;
7757 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7758 }
7759 mutex_unlock(&mutex);
7760
7761 return ret;
7762}
68318b8e 7763
1724813d 7764int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7765 void __user *buffer, size_t *lenp,
7766 loff_t *ppos)
7767{
7768 int ret;
332ac17e 7769 static DEFINE_MUTEX(mutex);
332ac17e
DF
7770
7771 mutex_lock(&mutex);
332ac17e 7772 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7773 /* make sure that internally we keep jiffies */
7774 /* also, writing zero resets timeslice to default */
332ac17e 7775 if (!ret && write) {
1724813d
PZ
7776 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7777 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7778 }
7779 mutex_unlock(&mutex);
332ac17e
DF
7780 return ret;
7781}
7782
052f1dc7 7783#ifdef CONFIG_CGROUP_SCHED
68318b8e 7784
a7c6d554 7785static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7786{
a7c6d554 7787 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7788}
7789
eb95419b
TH
7790static struct cgroup_subsys_state *
7791cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7792{
eb95419b
TH
7793 struct task_group *parent = css_tg(parent_css);
7794 struct task_group *tg;
68318b8e 7795
eb95419b 7796 if (!parent) {
68318b8e 7797 /* This is early initialization for the top cgroup */
07e06b01 7798 return &root_task_group.css;
68318b8e
SV
7799 }
7800
ec7dc8ac 7801 tg = sched_create_group(parent);
68318b8e
SV
7802 if (IS_ERR(tg))
7803 return ERR_PTR(-ENOMEM);
7804
68318b8e
SV
7805 return &tg->css;
7806}
7807
eb95419b 7808static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7809{
eb95419b 7810 struct task_group *tg = css_tg(css);
5c9d535b 7811 struct task_group *parent = css_tg(css->parent);
ace783b9 7812
63876986
TH
7813 if (parent)
7814 sched_online_group(tg, parent);
ace783b9
LZ
7815 return 0;
7816}
7817
eb95419b 7818static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7819{
eb95419b 7820 struct task_group *tg = css_tg(css);
68318b8e
SV
7821
7822 sched_destroy_group(tg);
7823}
7824
eb95419b 7825static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7826{
eb95419b 7827 struct task_group *tg = css_tg(css);
ace783b9
LZ
7828
7829 sched_offline_group(tg);
7830}
7831
eb95419b 7832static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7833 struct cgroup_taskset *tset)
68318b8e 7834{
bb9d97b6
TH
7835 struct task_struct *task;
7836
924f0d9a 7837 cgroup_taskset_for_each(task, tset) {
b68aa230 7838#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7839 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7840 return -EINVAL;
b68aa230 7841#else
bb9d97b6
TH
7842 /* We don't support RT-tasks being in separate groups */
7843 if (task->sched_class != &fair_sched_class)
7844 return -EINVAL;
b68aa230 7845#endif
bb9d97b6 7846 }
be367d09
BB
7847 return 0;
7848}
68318b8e 7849
eb95419b 7850static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7851 struct cgroup_taskset *tset)
68318b8e 7852{
bb9d97b6
TH
7853 struct task_struct *task;
7854
924f0d9a 7855 cgroup_taskset_for_each(task, tset)
bb9d97b6 7856 sched_move_task(task);
68318b8e
SV
7857}
7858
eb95419b
TH
7859static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7860 struct cgroup_subsys_state *old_css,
7861 struct task_struct *task)
068c5cc5
PZ
7862{
7863 /*
7864 * cgroup_exit() is called in the copy_process() failure path.
7865 * Ignore this case since the task hasn't ran yet, this avoids
7866 * trying to poke a half freed task state from generic code.
7867 */
7868 if (!(task->flags & PF_EXITING))
7869 return;
7870
7871 sched_move_task(task);
7872}
7873
052f1dc7 7874#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7875static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7876 struct cftype *cftype, u64 shareval)
68318b8e 7877{
182446d0 7878 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7879}
7880
182446d0
TH
7881static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7882 struct cftype *cft)
68318b8e 7883{
182446d0 7884 struct task_group *tg = css_tg(css);
68318b8e 7885
c8b28116 7886 return (u64) scale_load_down(tg->shares);
68318b8e 7887}
ab84d31e
PT
7888
7889#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7890static DEFINE_MUTEX(cfs_constraints_mutex);
7891
ab84d31e
PT
7892const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7893const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7894
a790de99
PT
7895static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7896
ab84d31e
PT
7897static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7898{
56f570e5 7899 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7900 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7901
7902 if (tg == &root_task_group)
7903 return -EINVAL;
7904
7905 /*
7906 * Ensure we have at some amount of bandwidth every period. This is
7907 * to prevent reaching a state of large arrears when throttled via
7908 * entity_tick() resulting in prolonged exit starvation.
7909 */
7910 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7911 return -EINVAL;
7912
7913 /*
7914 * Likewise, bound things on the otherside by preventing insane quota
7915 * periods. This also allows us to normalize in computing quota
7916 * feasibility.
7917 */
7918 if (period > max_cfs_quota_period)
7919 return -EINVAL;
7920
0e59bdae
KT
7921 /*
7922 * Prevent race between setting of cfs_rq->runtime_enabled and
7923 * unthrottle_offline_cfs_rqs().
7924 */
7925 get_online_cpus();
a790de99
PT
7926 mutex_lock(&cfs_constraints_mutex);
7927 ret = __cfs_schedulable(tg, period, quota);
7928 if (ret)
7929 goto out_unlock;
7930
58088ad0 7931 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7932 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7933 /*
7934 * If we need to toggle cfs_bandwidth_used, off->on must occur
7935 * before making related changes, and on->off must occur afterwards
7936 */
7937 if (runtime_enabled && !runtime_was_enabled)
7938 cfs_bandwidth_usage_inc();
ab84d31e
PT
7939 raw_spin_lock_irq(&cfs_b->lock);
7940 cfs_b->period = ns_to_ktime(period);
7941 cfs_b->quota = quota;
58088ad0 7942
a9cf55b2 7943 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7944 /* restart the period timer (if active) to handle new period expiry */
7945 if (runtime_enabled && cfs_b->timer_active) {
7946 /* force a reprogram */
09dc4ab0 7947 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7948 }
ab84d31e
PT
7949 raw_spin_unlock_irq(&cfs_b->lock);
7950
0e59bdae 7951 for_each_online_cpu(i) {
ab84d31e 7952 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7953 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7954
7955 raw_spin_lock_irq(&rq->lock);
58088ad0 7956 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7957 cfs_rq->runtime_remaining = 0;
671fd9da 7958
029632fb 7959 if (cfs_rq->throttled)
671fd9da 7960 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7961 raw_spin_unlock_irq(&rq->lock);
7962 }
1ee14e6c
BS
7963 if (runtime_was_enabled && !runtime_enabled)
7964 cfs_bandwidth_usage_dec();
a790de99
PT
7965out_unlock:
7966 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7967 put_online_cpus();
ab84d31e 7968
a790de99 7969 return ret;
ab84d31e
PT
7970}
7971
7972int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7973{
7974 u64 quota, period;
7975
029632fb 7976 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7977 if (cfs_quota_us < 0)
7978 quota = RUNTIME_INF;
7979 else
7980 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7981
7982 return tg_set_cfs_bandwidth(tg, period, quota);
7983}
7984
7985long tg_get_cfs_quota(struct task_group *tg)
7986{
7987 u64 quota_us;
7988
029632fb 7989 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7990 return -1;
7991
029632fb 7992 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7993 do_div(quota_us, NSEC_PER_USEC);
7994
7995 return quota_us;
7996}
7997
7998int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7999{
8000 u64 quota, period;
8001
8002 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8003 quota = tg->cfs_bandwidth.quota;
ab84d31e 8004
ab84d31e
PT
8005 return tg_set_cfs_bandwidth(tg, period, quota);
8006}
8007
8008long tg_get_cfs_period(struct task_group *tg)
8009{
8010 u64 cfs_period_us;
8011
029632fb 8012 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8013 do_div(cfs_period_us, NSEC_PER_USEC);
8014
8015 return cfs_period_us;
8016}
8017
182446d0
TH
8018static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8019 struct cftype *cft)
ab84d31e 8020{
182446d0 8021 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8022}
8023
182446d0
TH
8024static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8025 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8026{
182446d0 8027 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8028}
8029
182446d0
TH
8030static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8031 struct cftype *cft)
ab84d31e 8032{
182446d0 8033 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8034}
8035
182446d0
TH
8036static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8037 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8038{
182446d0 8039 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8040}
8041
a790de99
PT
8042struct cfs_schedulable_data {
8043 struct task_group *tg;
8044 u64 period, quota;
8045};
8046
8047/*
8048 * normalize group quota/period to be quota/max_period
8049 * note: units are usecs
8050 */
8051static u64 normalize_cfs_quota(struct task_group *tg,
8052 struct cfs_schedulable_data *d)
8053{
8054 u64 quota, period;
8055
8056 if (tg == d->tg) {
8057 period = d->period;
8058 quota = d->quota;
8059 } else {
8060 period = tg_get_cfs_period(tg);
8061 quota = tg_get_cfs_quota(tg);
8062 }
8063
8064 /* note: these should typically be equivalent */
8065 if (quota == RUNTIME_INF || quota == -1)
8066 return RUNTIME_INF;
8067
8068 return to_ratio(period, quota);
8069}
8070
8071static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8072{
8073 struct cfs_schedulable_data *d = data;
029632fb 8074 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8075 s64 quota = 0, parent_quota = -1;
8076
8077 if (!tg->parent) {
8078 quota = RUNTIME_INF;
8079 } else {
029632fb 8080 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8081
8082 quota = normalize_cfs_quota(tg, d);
9c58c79a 8083 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8084
8085 /*
8086 * ensure max(child_quota) <= parent_quota, inherit when no
8087 * limit is set
8088 */
8089 if (quota == RUNTIME_INF)
8090 quota = parent_quota;
8091 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8092 return -EINVAL;
8093 }
9c58c79a 8094 cfs_b->hierarchical_quota = quota;
a790de99
PT
8095
8096 return 0;
8097}
8098
8099static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8100{
8277434e 8101 int ret;
a790de99
PT
8102 struct cfs_schedulable_data data = {
8103 .tg = tg,
8104 .period = period,
8105 .quota = quota,
8106 };
8107
8108 if (quota != RUNTIME_INF) {
8109 do_div(data.period, NSEC_PER_USEC);
8110 do_div(data.quota, NSEC_PER_USEC);
8111 }
8112
8277434e
PT
8113 rcu_read_lock();
8114 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8115 rcu_read_unlock();
8116
8117 return ret;
a790de99 8118}
e8da1b18 8119
2da8ca82 8120static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8121{
2da8ca82 8122 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8123 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8124
44ffc75b
TH
8125 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8126 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8127 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8128
8129 return 0;
8130}
ab84d31e 8131#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8132#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8133
052f1dc7 8134#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8135static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8136 struct cftype *cft, s64 val)
6f505b16 8137{
182446d0 8138 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8139}
8140
182446d0
TH
8141static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8142 struct cftype *cft)
6f505b16 8143{
182446d0 8144 return sched_group_rt_runtime(css_tg(css));
6f505b16 8145}
d0b27fa7 8146
182446d0
TH
8147static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8148 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8149{
182446d0 8150 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8151}
8152
182446d0
TH
8153static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8154 struct cftype *cft)
d0b27fa7 8155{
182446d0 8156 return sched_group_rt_period(css_tg(css));
d0b27fa7 8157}
6d6bc0ad 8158#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8159
fe5c7cc2 8160static struct cftype cpu_files[] = {
052f1dc7 8161#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8162 {
8163 .name = "shares",
f4c753b7
PM
8164 .read_u64 = cpu_shares_read_u64,
8165 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8166 },
052f1dc7 8167#endif
ab84d31e
PT
8168#ifdef CONFIG_CFS_BANDWIDTH
8169 {
8170 .name = "cfs_quota_us",
8171 .read_s64 = cpu_cfs_quota_read_s64,
8172 .write_s64 = cpu_cfs_quota_write_s64,
8173 },
8174 {
8175 .name = "cfs_period_us",
8176 .read_u64 = cpu_cfs_period_read_u64,
8177 .write_u64 = cpu_cfs_period_write_u64,
8178 },
e8da1b18
NR
8179 {
8180 .name = "stat",
2da8ca82 8181 .seq_show = cpu_stats_show,
e8da1b18 8182 },
ab84d31e 8183#endif
052f1dc7 8184#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8185 {
9f0c1e56 8186 .name = "rt_runtime_us",
06ecb27c
PM
8187 .read_s64 = cpu_rt_runtime_read,
8188 .write_s64 = cpu_rt_runtime_write,
6f505b16 8189 },
d0b27fa7
PZ
8190 {
8191 .name = "rt_period_us",
f4c753b7
PM
8192 .read_u64 = cpu_rt_period_read_uint,
8193 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8194 },
052f1dc7 8195#endif
4baf6e33 8196 { } /* terminate */
68318b8e
SV
8197};
8198
073219e9 8199struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8200 .css_alloc = cpu_cgroup_css_alloc,
8201 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8202 .css_online = cpu_cgroup_css_online,
8203 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8204 .can_attach = cpu_cgroup_can_attach,
8205 .attach = cpu_cgroup_attach,
068c5cc5 8206 .exit = cpu_cgroup_exit,
5577964e 8207 .legacy_cftypes = cpu_files,
68318b8e
SV
8208 .early_init = 1,
8209};
8210
052f1dc7 8211#endif /* CONFIG_CGROUP_SCHED */
d842de87 8212
b637a328
PM
8213void dump_cpu_task(int cpu)
8214{
8215 pr_info("Task dump for CPU %d:\n", cpu);
8216 sched_show_task(cpu_curr(cpu));
8217}