sched/deadline: Fix stale yield state
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
9edfbfed
PZ
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 125 return;
aa483808 126
fe44d621 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
128 if (delta < 0)
129 return;
fe44d621
PZ
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
3e51f33f
PZ
132}
133
bf5c91ba
IM
134/*
135 * Debugging: various feature bits
136 */
f00b45c1 137
f00b45c1
PZ
138#define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
bf5c91ba 141const_debug unsigned int sysctl_sched_features =
391e43da 142#include "features.h"
f00b45c1
PZ
143 0;
144
145#undef SCHED_FEAT
146
147#ifdef CONFIG_SCHED_DEBUG
148#define SCHED_FEAT(name, enabled) \
149 #name ,
150
1292531f 151static const char * const sched_feat_names[] = {
391e43da 152#include "features.h"
f00b45c1
PZ
153};
154
155#undef SCHED_FEAT
156
34f3a814 157static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 158{
f00b45c1
PZ
159 int i;
160
f8b6d1cc 161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 165 }
34f3a814 166 seq_puts(m, "\n");
f00b45c1 167
34f3a814 168 return 0;
f00b45c1
PZ
169}
170
f8b6d1cc
PZ
171#ifdef HAVE_JUMP_LABEL
172
c5905afb
IM
173#define jump_label_key__true STATIC_KEY_INIT_TRUE
174#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
175
176#define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
c5905afb 179struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
180#include "features.h"
181};
182
183#undef SCHED_FEAT
184
185static void sched_feat_disable(int i)
186{
c5905afb
IM
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190
191static void sched_feat_enable(int i)
192{
c5905afb
IM
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
195}
196#else
197static void sched_feat_disable(int i) { };
198static void sched_feat_enable(int i) { };
199#endif /* HAVE_JUMP_LABEL */
200
1a687c2e 201static int sched_feat_set(char *cmp)
f00b45c1 202{
f00b45c1 203 int i;
1a687c2e 204 int neg = 0;
f00b45c1 205
524429c3 206 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
207 neg = 1;
208 cmp += 3;
209 }
210
f8b6d1cc 211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 213 if (neg) {
f00b45c1 214 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
215 sched_feat_disable(i);
216 } else {
f00b45c1 217 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
218 sched_feat_enable(i);
219 }
f00b45c1
PZ
220 break;
221 }
222 }
223
1a687c2e
MG
224 return i;
225}
226
227static ssize_t
228sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230{
231 char buf[64];
232 char *cmp;
233 int i;
5cd08fbf 234 struct inode *inode;
1a687c2e
MG
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
5cd08fbf
JB
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
1a687c2e 248 i = sched_feat_set(cmp);
5cd08fbf 249 mutex_unlock(&inode->i_mutex);
f8b6d1cc 250 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
251 return -EINVAL;
252
42994724 253 *ppos += cnt;
f00b45c1
PZ
254
255 return cnt;
256}
257
34f3a814
LZ
258static int sched_feat_open(struct inode *inode, struct file *filp)
259{
260 return single_open(filp, sched_feat_show, NULL);
261}
262
828c0950 263static const struct file_operations sched_feat_fops = {
34f3a814
LZ
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
f00b45c1
PZ
269};
270
271static __init int sched_init_debug(void)
272{
f00b45c1
PZ
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277}
278late_initcall(sched_init_debug);
f8b6d1cc 279#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 280
b82d9fdd
PZ
281/*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
e9e9250b
PZ
287/*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
fa85ae24 295/*
9f0c1e56 296 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
297 * default: 1s
298 */
9f0c1e56 299unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 300
029632fb 301__read_mostly int scheduler_running;
6892b75e 302
9f0c1e56
PZ
303/*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307int sysctl_sched_rt_runtime = 950000;
fa85ae24 308
0970d299 309/*
0122ec5b 310 * __task_rq_lock - lock the rq @p resides on.
b29739f9 311 */
70b97a7f 312static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
313 __acquires(rq->lock)
314{
0970d299
PZ
315 struct rq *rq;
316
0122ec5b
PZ
317 lockdep_assert_held(&p->pi_lock);
318
3a5c359a 319 for (;;) {
0970d299 320 rq = task_rq(p);
05fa785c 321 raw_spin_lock(&rq->lock);
cca26e80 322 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 323 return rq;
05fa785c 324 raw_spin_unlock(&rq->lock);
cca26e80
KT
325
326 while (unlikely(task_on_rq_migrating(p)))
327 cpu_relax();
b29739f9 328 }
b29739f9
IM
329}
330
1da177e4 331/*
0122ec5b 332 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 333 */
70b97a7f 334static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 335 __acquires(p->pi_lock)
1da177e4
LT
336 __acquires(rq->lock)
337{
70b97a7f 338 struct rq *rq;
1da177e4 339
3a5c359a 340 for (;;) {
0122ec5b 341 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 342 rq = task_rq(p);
05fa785c 343 raw_spin_lock(&rq->lock);
cca26e80 344 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 345 return rq;
0122ec5b
PZ
346 raw_spin_unlock(&rq->lock);
347 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
348
349 while (unlikely(task_on_rq_migrating(p)))
350 cpu_relax();
1da177e4 351 }
1da177e4
LT
352}
353
a9957449 354static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
355 __releases(rq->lock)
356{
05fa785c 357 raw_spin_unlock(&rq->lock);
b29739f9
IM
358}
359
0122ec5b
PZ
360static inline void
361task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 362 __releases(rq->lock)
0122ec5b 363 __releases(p->pi_lock)
1da177e4 364{
0122ec5b
PZ
365 raw_spin_unlock(&rq->lock);
366 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
367}
368
1da177e4 369/*
cc2a73b5 370 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 371 */
a9957449 372static struct rq *this_rq_lock(void)
1da177e4
LT
373 __acquires(rq->lock)
374{
70b97a7f 375 struct rq *rq;
1da177e4
LT
376
377 local_irq_disable();
378 rq = this_rq();
05fa785c 379 raw_spin_lock(&rq->lock);
1da177e4
LT
380
381 return rq;
382}
383
8f4d37ec
PZ
384#ifdef CONFIG_SCHED_HRTICK
385/*
386 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 387 */
8f4d37ec 388
8f4d37ec
PZ
389static void hrtick_clear(struct rq *rq)
390{
391 if (hrtimer_active(&rq->hrtick_timer))
392 hrtimer_cancel(&rq->hrtick_timer);
393}
394
8f4d37ec
PZ
395/*
396 * High-resolution timer tick.
397 * Runs from hardirq context with interrupts disabled.
398 */
399static enum hrtimer_restart hrtick(struct hrtimer *timer)
400{
401 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
402
403 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
404
05fa785c 405 raw_spin_lock(&rq->lock);
3e51f33f 406 update_rq_clock(rq);
8f4d37ec 407 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 408 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
409
410 return HRTIMER_NORESTART;
411}
412
95e904c7 413#ifdef CONFIG_SMP
971ee28c
PZ
414
415static int __hrtick_restart(struct rq *rq)
416{
417 struct hrtimer *timer = &rq->hrtick_timer;
418 ktime_t time = hrtimer_get_softexpires(timer);
419
420 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
421}
422
31656519
PZ
423/*
424 * called from hardirq (IPI) context
425 */
426static void __hrtick_start(void *arg)
b328ca18 427{
31656519 428 struct rq *rq = arg;
b328ca18 429
05fa785c 430 raw_spin_lock(&rq->lock);
971ee28c 431 __hrtick_restart(rq);
31656519 432 rq->hrtick_csd_pending = 0;
05fa785c 433 raw_spin_unlock(&rq->lock);
b328ca18
PZ
434}
435
31656519
PZ
436/*
437 * Called to set the hrtick timer state.
438 *
439 * called with rq->lock held and irqs disabled
440 */
029632fb 441void hrtick_start(struct rq *rq, u64 delay)
b328ca18 442{
31656519 443 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 444 ktime_t time;
445 s64 delta;
446
447 /*
448 * Don't schedule slices shorter than 10000ns, that just
449 * doesn't make sense and can cause timer DoS.
450 */
451 delta = max_t(s64, delay, 10000LL);
452 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 453
cc584b21 454 hrtimer_set_expires(timer, time);
31656519
PZ
455
456 if (rq == this_rq()) {
971ee28c 457 __hrtick_restart(rq);
31656519 458 } else if (!rq->hrtick_csd_pending) {
c46fff2a 459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
460 rq->hrtick_csd_pending = 1;
461 }
b328ca18
PZ
462}
463
464static int
465hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466{
467 int cpu = (int)(long)hcpu;
468
469 switch (action) {
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
474 case CPU_DEAD:
475 case CPU_DEAD_FROZEN:
31656519 476 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
477 return NOTIFY_OK;
478 }
479
480 return NOTIFY_DONE;
481}
482
fa748203 483static __init void init_hrtick(void)
b328ca18
PZ
484{
485 hotcpu_notifier(hotplug_hrtick, 0);
486}
31656519
PZ
487#else
488/*
489 * Called to set the hrtick timer state.
490 *
491 * called with rq->lock held and irqs disabled
492 */
029632fb 493void hrtick_start(struct rq *rq, u64 delay)
31656519 494{
7f1e2ca9 495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 496 HRTIMER_MODE_REL_PINNED, 0);
31656519 497}
b328ca18 498
006c75f1 499static inline void init_hrtick(void)
8f4d37ec 500{
8f4d37ec 501}
31656519 502#endif /* CONFIG_SMP */
8f4d37ec 503
31656519 504static void init_rq_hrtick(struct rq *rq)
8f4d37ec 505{
31656519
PZ
506#ifdef CONFIG_SMP
507 rq->hrtick_csd_pending = 0;
8f4d37ec 508
31656519
PZ
509 rq->hrtick_csd.flags = 0;
510 rq->hrtick_csd.func = __hrtick_start;
511 rq->hrtick_csd.info = rq;
512#endif
8f4d37ec 513
31656519
PZ
514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 rq->hrtick_timer.function = hrtick;
8f4d37ec 516}
006c75f1 517#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
518static inline void hrtick_clear(struct rq *rq)
519{
520}
521
8f4d37ec
PZ
522static inline void init_rq_hrtick(struct rq *rq)
523{
524}
525
b328ca18
PZ
526static inline void init_hrtick(void)
527{
528}
006c75f1 529#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 530
fd99f91a
PZ
531/*
532 * cmpxchg based fetch_or, macro so it works for different integer types
533 */
534#define fetch_or(ptr, val) \
535({ typeof(*(ptr)) __old, __val = *(ptr); \
536 for (;;) { \
537 __old = cmpxchg((ptr), __val, __val | (val)); \
538 if (__old == __val) \
539 break; \
540 __val = __old; \
541 } \
542 __old; \
543})
544
e3baac47 545#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
546/*
547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548 * this avoids any races wrt polling state changes and thereby avoids
549 * spurious IPIs.
550 */
551static bool set_nr_and_not_polling(struct task_struct *p)
552{
553 struct thread_info *ti = task_thread_info(p);
554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555}
e3baac47
PZ
556
557/*
558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559 *
560 * If this returns true, then the idle task promises to call
561 * sched_ttwu_pending() and reschedule soon.
562 */
563static bool set_nr_if_polling(struct task_struct *p)
564{
565 struct thread_info *ti = task_thread_info(p);
566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567
568 for (;;) {
569 if (!(val & _TIF_POLLING_NRFLAG))
570 return false;
571 if (val & _TIF_NEED_RESCHED)
572 return true;
573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 if (old == val)
575 break;
576 val = old;
577 }
578 return true;
579}
580
fd99f91a
PZ
581#else
582static bool set_nr_and_not_polling(struct task_struct *p)
583{
584 set_tsk_need_resched(p);
585 return true;
586}
e3baac47
PZ
587
588#ifdef CONFIG_SMP
589static bool set_nr_if_polling(struct task_struct *p)
590{
591 return false;
592}
593#endif
fd99f91a
PZ
594#endif
595
c24d20db 596/*
8875125e 597 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
8875125e 603void resched_curr(struct rq *rq)
c24d20db 604{
8875125e 605 struct task_struct *curr = rq->curr;
c24d20db
IM
606 int cpu;
607
8875125e 608 lockdep_assert_held(&rq->lock);
c24d20db 609
8875125e 610 if (test_tsk_need_resched(curr))
c24d20db
IM
611 return;
612
8875125e 613 cpu = cpu_of(rq);
fd99f91a 614
f27dde8d 615 if (cpu == smp_processor_id()) {
8875125e 616 set_tsk_need_resched(curr);
f27dde8d 617 set_preempt_need_resched();
c24d20db 618 return;
f27dde8d 619 }
c24d20db 620
8875125e 621 if (set_nr_and_not_polling(curr))
c24d20db 622 smp_send_reschedule(cpu);
dfc68f29
AL
623 else
624 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
625}
626
029632fb 627void resched_cpu(int cpu)
c24d20db
IM
628{
629 struct rq *rq = cpu_rq(cpu);
630 unsigned long flags;
631
05fa785c 632 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 633 return;
8875125e 634 resched_curr(rq);
05fa785c 635 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 636}
06d8308c 637
b021fe3e 638#ifdef CONFIG_SMP
3451d024 639#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
640/*
641 * In the semi idle case, use the nearest busy cpu for migrating timers
642 * from an idle cpu. This is good for power-savings.
643 *
644 * We don't do similar optimization for completely idle system, as
645 * selecting an idle cpu will add more delays to the timers than intended
646 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647 */
6201b4d6 648int get_nohz_timer_target(int pinned)
83cd4fe2
VP
649{
650 int cpu = smp_processor_id();
651 int i;
652 struct sched_domain *sd;
653
6201b4d6
VK
654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 return cpu;
656
057f3fad 657 rcu_read_lock();
83cd4fe2 658 for_each_domain(cpu, sd) {
057f3fad
PZ
659 for_each_cpu(i, sched_domain_span(sd)) {
660 if (!idle_cpu(i)) {
661 cpu = i;
662 goto unlock;
663 }
664 }
83cd4fe2 665 }
057f3fad
PZ
666unlock:
667 rcu_read_unlock();
83cd4fe2
VP
668 return cpu;
669}
06d8308c
TG
670/*
671 * When add_timer_on() enqueues a timer into the timer wheel of an
672 * idle CPU then this timer might expire before the next timer event
673 * which is scheduled to wake up that CPU. In case of a completely
674 * idle system the next event might even be infinite time into the
675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676 * leaves the inner idle loop so the newly added timer is taken into
677 * account when the CPU goes back to idle and evaluates the timer
678 * wheel for the next timer event.
679 */
1c20091e 680static void wake_up_idle_cpu(int cpu)
06d8308c
TG
681{
682 struct rq *rq = cpu_rq(cpu);
683
684 if (cpu == smp_processor_id())
685 return;
686
67b9ca70 687 if (set_nr_and_not_polling(rq->idle))
06d8308c 688 smp_send_reschedule(cpu);
dfc68f29
AL
689 else
690 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
691}
692
c5bfece2 693static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 694{
53c5fa16
FW
695 /*
696 * We just need the target to call irq_exit() and re-evaluate
697 * the next tick. The nohz full kick at least implies that.
698 * If needed we can still optimize that later with an
699 * empty IRQ.
700 */
c5bfece2 701 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
702 if (cpu != smp_processor_id() ||
703 tick_nohz_tick_stopped())
53c5fa16 704 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
705 return true;
706 }
707
708 return false;
709}
710
711void wake_up_nohz_cpu(int cpu)
712{
c5bfece2 713 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
714 wake_up_idle_cpu(cpu);
715}
716
ca38062e 717static inline bool got_nohz_idle_kick(void)
45bf76df 718{
1c792db7 719 int cpu = smp_processor_id();
873b4c65
VG
720
721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 return false;
723
724 if (idle_cpu(cpu) && !need_resched())
725 return true;
726
727 /*
728 * We can't run Idle Load Balance on this CPU for this time so we
729 * cancel it and clear NOHZ_BALANCE_KICK
730 */
731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 return false;
45bf76df
IM
733}
734
3451d024 735#else /* CONFIG_NO_HZ_COMMON */
45bf76df 736
ca38062e 737static inline bool got_nohz_idle_kick(void)
2069dd75 738{
ca38062e 739 return false;
2069dd75
PZ
740}
741
3451d024 742#endif /* CONFIG_NO_HZ_COMMON */
d842de87 743
ce831b38
FW
744#ifdef CONFIG_NO_HZ_FULL
745bool sched_can_stop_tick(void)
746{
3882ec64
FW
747 /*
748 * More than one running task need preemption.
749 * nr_running update is assumed to be visible
750 * after IPI is sent from wakers.
751 */
541b8264
VK
752 if (this_rq()->nr_running > 1)
753 return false;
ce831b38 754
541b8264 755 return true;
ce831b38
FW
756}
757#endif /* CONFIG_NO_HZ_FULL */
d842de87 758
029632fb 759void sched_avg_update(struct rq *rq)
18d95a28 760{
e9e9250b
PZ
761 s64 period = sched_avg_period();
762
78becc27 763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
764 /*
765 * Inline assembly required to prevent the compiler
766 * optimising this loop into a divmod call.
767 * See __iter_div_u64_rem() for another example of this.
768 */
769 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
770 rq->age_stamp += period;
771 rq->rt_avg /= 2;
772 }
18d95a28
PZ
773}
774
6d6bc0ad 775#endif /* CONFIG_SMP */
18d95a28 776
a790de99
PT
777#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 779/*
8277434e
PT
780 * Iterate task_group tree rooted at *from, calling @down when first entering a
781 * node and @up when leaving it for the final time.
782 *
783 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 784 */
029632fb 785int walk_tg_tree_from(struct task_group *from,
8277434e 786 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
787{
788 struct task_group *parent, *child;
eb755805 789 int ret;
c09595f6 790
8277434e
PT
791 parent = from;
792
c09595f6 793down:
eb755805
PZ
794 ret = (*down)(parent, data);
795 if (ret)
8277434e 796 goto out;
c09595f6
PZ
797 list_for_each_entry_rcu(child, &parent->children, siblings) {
798 parent = child;
799 goto down;
800
801up:
802 continue;
803 }
eb755805 804 ret = (*up)(parent, data);
8277434e
PT
805 if (ret || parent == from)
806 goto out;
c09595f6
PZ
807
808 child = parent;
809 parent = parent->parent;
810 if (parent)
811 goto up;
8277434e 812out:
eb755805 813 return ret;
c09595f6
PZ
814}
815
029632fb 816int tg_nop(struct task_group *tg, void *data)
eb755805 817{
e2b245f8 818 return 0;
eb755805 819}
18d95a28
PZ
820#endif
821
45bf76df
IM
822static void set_load_weight(struct task_struct *p)
823{
f05998d4
NR
824 int prio = p->static_prio - MAX_RT_PRIO;
825 struct load_weight *load = &p->se.load;
826
dd41f596
IM
827 /*
828 * SCHED_IDLE tasks get minimal weight:
829 */
830 if (p->policy == SCHED_IDLE) {
c8b28116 831 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 832 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
833 return;
834 }
71f8bd46 835
c8b28116 836 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 837 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
838}
839
371fd7e7 840static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 841{
a64692a3 842 update_rq_clock(rq);
43148951 843 sched_info_queued(rq, p);
371fd7e7 844 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
845}
846
371fd7e7 847static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 848{
a64692a3 849 update_rq_clock(rq);
43148951 850 sched_info_dequeued(rq, p);
371fd7e7 851 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
852}
853
029632fb 854void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible--;
858
371fd7e7 859 enqueue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
029632fb 862void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
863{
864 if (task_contributes_to_load(p))
865 rq->nr_uninterruptible++;
866
371fd7e7 867 dequeue_task(rq, p, flags);
1e3c88bd
PZ
868}
869
fe44d621 870static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 871{
095c0aa8
GC
872/*
873 * In theory, the compile should just see 0 here, and optimize out the call
874 * to sched_rt_avg_update. But I don't trust it...
875 */
876#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 s64 steal = 0, irq_delta = 0;
878#endif
879#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
881
882 /*
883 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 * this case when a previous update_rq_clock() happened inside a
885 * {soft,}irq region.
886 *
887 * When this happens, we stop ->clock_task and only update the
888 * prev_irq_time stamp to account for the part that fit, so that a next
889 * update will consume the rest. This ensures ->clock_task is
890 * monotonic.
891 *
892 * It does however cause some slight miss-attribution of {soft,}irq
893 * time, a more accurate solution would be to update the irq_time using
894 * the current rq->clock timestamp, except that would require using
895 * atomic ops.
896 */
897 if (irq_delta > delta)
898 irq_delta = delta;
899
900 rq->prev_irq_time += irq_delta;
901 delta -= irq_delta;
095c0aa8
GC
902#endif
903#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 904 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
095c0aa8 911 rq->prev_steal_time_rq += steal;
095c0aa8
GC
912 delta -= steal;
913 }
914#endif
915
fe44d621
PZ
916 rq->clock_task += delta;
917
095c0aa8 918#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
920 sched_rt_avg_update(rq, irq_delta + steal);
921#endif
aa483808
VP
922}
923
34f971f6
PZ
924void sched_set_stop_task(int cpu, struct task_struct *stop)
925{
926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 struct task_struct *old_stop = cpu_rq(cpu)->stop;
928
929 if (stop) {
930 /*
931 * Make it appear like a SCHED_FIFO task, its something
932 * userspace knows about and won't get confused about.
933 *
934 * Also, it will make PI more or less work without too
935 * much confusion -- but then, stop work should not
936 * rely on PI working anyway.
937 */
938 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939
940 stop->sched_class = &stop_sched_class;
941 }
942
943 cpu_rq(cpu)->stop = stop;
944
945 if (old_stop) {
946 /*
947 * Reset it back to a normal scheduling class so that
948 * it can die in pieces.
949 */
950 old_stop->sched_class = &rt_sched_class;
951 }
952}
953
14531189 954/*
dd41f596 955 * __normal_prio - return the priority that is based on the static prio
14531189 956 */
14531189
IM
957static inline int __normal_prio(struct task_struct *p)
958{
dd41f596 959 return p->static_prio;
14531189
IM
960}
961
b29739f9
IM
962/*
963 * Calculate the expected normal priority: i.e. priority
964 * without taking RT-inheritance into account. Might be
965 * boosted by interactivity modifiers. Changes upon fork,
966 * setprio syscalls, and whenever the interactivity
967 * estimator recalculates.
968 */
36c8b586 969static inline int normal_prio(struct task_struct *p)
b29739f9
IM
970{
971 int prio;
972
aab03e05
DF
973 if (task_has_dl_policy(p))
974 prio = MAX_DL_PRIO-1;
975 else if (task_has_rt_policy(p))
b29739f9
IM
976 prio = MAX_RT_PRIO-1 - p->rt_priority;
977 else
978 prio = __normal_prio(p);
979 return prio;
980}
981
982/*
983 * Calculate the current priority, i.e. the priority
984 * taken into account by the scheduler. This value might
985 * be boosted by RT tasks, or might be boosted by
986 * interactivity modifiers. Will be RT if the task got
987 * RT-boosted. If not then it returns p->normal_prio.
988 */
36c8b586 989static int effective_prio(struct task_struct *p)
b29739f9
IM
990{
991 p->normal_prio = normal_prio(p);
992 /*
993 * If we are RT tasks or we were boosted to RT priority,
994 * keep the priority unchanged. Otherwise, update priority
995 * to the normal priority:
996 */
997 if (!rt_prio(p->prio))
998 return p->normal_prio;
999 return p->prio;
1000}
1001
1da177e4
LT
1002/**
1003 * task_curr - is this task currently executing on a CPU?
1004 * @p: the task in question.
e69f6186
YB
1005 *
1006 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1007 */
36c8b586 1008inline int task_curr(const struct task_struct *p)
1da177e4
LT
1009{
1010 return cpu_curr(task_cpu(p)) == p;
1011}
1012
67dfa1b7
KT
1013/*
1014 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1015 */
cb469845
SR
1016static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1017 const struct sched_class *prev_class,
da7a735e 1018 int oldprio)
cb469845
SR
1019{
1020 if (prev_class != p->sched_class) {
1021 if (prev_class->switched_from)
da7a735e 1022 prev_class->switched_from(rq, p);
67dfa1b7 1023 /* Possble rq->lock 'hole'. */
da7a735e 1024 p->sched_class->switched_to(rq, p);
2d3d891d 1025 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1026 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1027}
1028
029632fb 1029void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1030{
1031 const struct sched_class *class;
1032
1033 if (p->sched_class == rq->curr->sched_class) {
1034 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1035 } else {
1036 for_each_class(class) {
1037 if (class == rq->curr->sched_class)
1038 break;
1039 if (class == p->sched_class) {
8875125e 1040 resched_curr(rq);
1e5a7405
PZ
1041 break;
1042 }
1043 }
1044 }
1045
1046 /*
1047 * A queue event has occurred, and we're going to schedule. In
1048 * this case, we can save a useless back to back clock update.
1049 */
da0c1e65 1050 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1051 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1052}
1053
1da177e4 1054#ifdef CONFIG_SMP
dd41f596 1055void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1056{
e2912009
PZ
1057#ifdef CONFIG_SCHED_DEBUG
1058 /*
1059 * We should never call set_task_cpu() on a blocked task,
1060 * ttwu() will sort out the placement.
1061 */
077614ee 1062 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1063 !p->on_rq);
0122ec5b
PZ
1064
1065#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1066 /*
1067 * The caller should hold either p->pi_lock or rq->lock, when changing
1068 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1069 *
1070 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1071 * see task_group().
6c6c54e1
PZ
1072 *
1073 * Furthermore, all task_rq users should acquire both locks, see
1074 * task_rq_lock().
1075 */
0122ec5b
PZ
1076 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1077 lockdep_is_held(&task_rq(p)->lock)));
1078#endif
e2912009
PZ
1079#endif
1080
de1d7286 1081 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1082
0c69774e 1083 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1084 if (p->sched_class->migrate_task_rq)
1085 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1086 p->se.nr_migrations++;
a8b0ca17 1087 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1088 }
dd41f596
IM
1089
1090 __set_task_cpu(p, new_cpu);
c65cc870
IM
1091}
1092
ac66f547
PZ
1093static void __migrate_swap_task(struct task_struct *p, int cpu)
1094{
da0c1e65 1095 if (task_on_rq_queued(p)) {
ac66f547
PZ
1096 struct rq *src_rq, *dst_rq;
1097
1098 src_rq = task_rq(p);
1099 dst_rq = cpu_rq(cpu);
1100
1101 deactivate_task(src_rq, p, 0);
1102 set_task_cpu(p, cpu);
1103 activate_task(dst_rq, p, 0);
1104 check_preempt_curr(dst_rq, p, 0);
1105 } else {
1106 /*
1107 * Task isn't running anymore; make it appear like we migrated
1108 * it before it went to sleep. This means on wakeup we make the
1109 * previous cpu our targer instead of where it really is.
1110 */
1111 p->wake_cpu = cpu;
1112 }
1113}
1114
1115struct migration_swap_arg {
1116 struct task_struct *src_task, *dst_task;
1117 int src_cpu, dst_cpu;
1118};
1119
1120static int migrate_swap_stop(void *data)
1121{
1122 struct migration_swap_arg *arg = data;
1123 struct rq *src_rq, *dst_rq;
1124 int ret = -EAGAIN;
1125
1126 src_rq = cpu_rq(arg->src_cpu);
1127 dst_rq = cpu_rq(arg->dst_cpu);
1128
74602315
PZ
1129 double_raw_lock(&arg->src_task->pi_lock,
1130 &arg->dst_task->pi_lock);
ac66f547
PZ
1131 double_rq_lock(src_rq, dst_rq);
1132 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1133 goto unlock;
1134
1135 if (task_cpu(arg->src_task) != arg->src_cpu)
1136 goto unlock;
1137
1138 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1139 goto unlock;
1140
1141 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1142 goto unlock;
1143
1144 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1145 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1146
1147 ret = 0;
1148
1149unlock:
1150 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1151 raw_spin_unlock(&arg->dst_task->pi_lock);
1152 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1153
1154 return ret;
1155}
1156
1157/*
1158 * Cross migrate two tasks
1159 */
1160int migrate_swap(struct task_struct *cur, struct task_struct *p)
1161{
1162 struct migration_swap_arg arg;
1163 int ret = -EINVAL;
1164
ac66f547
PZ
1165 arg = (struct migration_swap_arg){
1166 .src_task = cur,
1167 .src_cpu = task_cpu(cur),
1168 .dst_task = p,
1169 .dst_cpu = task_cpu(p),
1170 };
1171
1172 if (arg.src_cpu == arg.dst_cpu)
1173 goto out;
1174
6acce3ef
PZ
1175 /*
1176 * These three tests are all lockless; this is OK since all of them
1177 * will be re-checked with proper locks held further down the line.
1178 */
ac66f547
PZ
1179 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1180 goto out;
1181
1182 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1183 goto out;
1184
1185 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1186 goto out;
1187
286549dc 1188 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1189 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1190
1191out:
ac66f547
PZ
1192 return ret;
1193}
1194
969c7921 1195struct migration_arg {
36c8b586 1196 struct task_struct *task;
1da177e4 1197 int dest_cpu;
70b97a7f 1198};
1da177e4 1199
969c7921
TH
1200static int migration_cpu_stop(void *data);
1201
1da177e4
LT
1202/*
1203 * wait_task_inactive - wait for a thread to unschedule.
1204 *
85ba2d86
RM
1205 * If @match_state is nonzero, it's the @p->state value just checked and
1206 * not expected to change. If it changes, i.e. @p might have woken up,
1207 * then return zero. When we succeed in waiting for @p to be off its CPU,
1208 * we return a positive number (its total switch count). If a second call
1209 * a short while later returns the same number, the caller can be sure that
1210 * @p has remained unscheduled the whole time.
1211 *
1da177e4
LT
1212 * The caller must ensure that the task *will* unschedule sometime soon,
1213 * else this function might spin for a *long* time. This function can't
1214 * be called with interrupts off, or it may introduce deadlock with
1215 * smp_call_function() if an IPI is sent by the same process we are
1216 * waiting to become inactive.
1217 */
85ba2d86 1218unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1219{
1220 unsigned long flags;
da0c1e65 1221 int running, queued;
85ba2d86 1222 unsigned long ncsw;
70b97a7f 1223 struct rq *rq;
1da177e4 1224
3a5c359a
AK
1225 for (;;) {
1226 /*
1227 * We do the initial early heuristics without holding
1228 * any task-queue locks at all. We'll only try to get
1229 * the runqueue lock when things look like they will
1230 * work out!
1231 */
1232 rq = task_rq(p);
fa490cfd 1233
3a5c359a
AK
1234 /*
1235 * If the task is actively running on another CPU
1236 * still, just relax and busy-wait without holding
1237 * any locks.
1238 *
1239 * NOTE! Since we don't hold any locks, it's not
1240 * even sure that "rq" stays as the right runqueue!
1241 * But we don't care, since "task_running()" will
1242 * return false if the runqueue has changed and p
1243 * is actually now running somewhere else!
1244 */
85ba2d86
RM
1245 while (task_running(rq, p)) {
1246 if (match_state && unlikely(p->state != match_state))
1247 return 0;
3a5c359a 1248 cpu_relax();
85ba2d86 1249 }
fa490cfd 1250
3a5c359a
AK
1251 /*
1252 * Ok, time to look more closely! We need the rq
1253 * lock now, to be *sure*. If we're wrong, we'll
1254 * just go back and repeat.
1255 */
1256 rq = task_rq_lock(p, &flags);
27a9da65 1257 trace_sched_wait_task(p);
3a5c359a 1258 running = task_running(rq, p);
da0c1e65 1259 queued = task_on_rq_queued(p);
85ba2d86 1260 ncsw = 0;
f31e11d8 1261 if (!match_state || p->state == match_state)
93dcf55f 1262 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1263 task_rq_unlock(rq, p, &flags);
fa490cfd 1264
85ba2d86
RM
1265 /*
1266 * If it changed from the expected state, bail out now.
1267 */
1268 if (unlikely(!ncsw))
1269 break;
1270
3a5c359a
AK
1271 /*
1272 * Was it really running after all now that we
1273 * checked with the proper locks actually held?
1274 *
1275 * Oops. Go back and try again..
1276 */
1277 if (unlikely(running)) {
1278 cpu_relax();
1279 continue;
1280 }
fa490cfd 1281
3a5c359a
AK
1282 /*
1283 * It's not enough that it's not actively running,
1284 * it must be off the runqueue _entirely_, and not
1285 * preempted!
1286 *
80dd99b3 1287 * So if it was still runnable (but just not actively
3a5c359a
AK
1288 * running right now), it's preempted, and we should
1289 * yield - it could be a while.
1290 */
da0c1e65 1291 if (unlikely(queued)) {
8eb90c30
TG
1292 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1293
1294 set_current_state(TASK_UNINTERRUPTIBLE);
1295 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1296 continue;
1297 }
fa490cfd 1298
3a5c359a
AK
1299 /*
1300 * Ahh, all good. It wasn't running, and it wasn't
1301 * runnable, which means that it will never become
1302 * running in the future either. We're all done!
1303 */
1304 break;
1305 }
85ba2d86
RM
1306
1307 return ncsw;
1da177e4
LT
1308}
1309
1310/***
1311 * kick_process - kick a running thread to enter/exit the kernel
1312 * @p: the to-be-kicked thread
1313 *
1314 * Cause a process which is running on another CPU to enter
1315 * kernel-mode, without any delay. (to get signals handled.)
1316 *
25985edc 1317 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1318 * because all it wants to ensure is that the remote task enters
1319 * the kernel. If the IPI races and the task has been migrated
1320 * to another CPU then no harm is done and the purpose has been
1321 * achieved as well.
1322 */
36c8b586 1323void kick_process(struct task_struct *p)
1da177e4
LT
1324{
1325 int cpu;
1326
1327 preempt_disable();
1328 cpu = task_cpu(p);
1329 if ((cpu != smp_processor_id()) && task_curr(p))
1330 smp_send_reschedule(cpu);
1331 preempt_enable();
1332}
b43e3521 1333EXPORT_SYMBOL_GPL(kick_process);
476d139c 1334#endif /* CONFIG_SMP */
1da177e4 1335
970b13ba 1336#ifdef CONFIG_SMP
30da688e 1337/*
013fdb80 1338 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1339 */
5da9a0fb
PZ
1340static int select_fallback_rq(int cpu, struct task_struct *p)
1341{
aa00d89c
TC
1342 int nid = cpu_to_node(cpu);
1343 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1344 enum { cpuset, possible, fail } state = cpuset;
1345 int dest_cpu;
5da9a0fb 1346
aa00d89c
TC
1347 /*
1348 * If the node that the cpu is on has been offlined, cpu_to_node()
1349 * will return -1. There is no cpu on the node, and we should
1350 * select the cpu on the other node.
1351 */
1352 if (nid != -1) {
1353 nodemask = cpumask_of_node(nid);
1354
1355 /* Look for allowed, online CPU in same node. */
1356 for_each_cpu(dest_cpu, nodemask) {
1357 if (!cpu_online(dest_cpu))
1358 continue;
1359 if (!cpu_active(dest_cpu))
1360 continue;
1361 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1362 return dest_cpu;
1363 }
2baab4e9 1364 }
5da9a0fb 1365
2baab4e9
PZ
1366 for (;;) {
1367 /* Any allowed, online CPU? */
e3831edd 1368 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1369 if (!cpu_online(dest_cpu))
1370 continue;
1371 if (!cpu_active(dest_cpu))
1372 continue;
1373 goto out;
1374 }
5da9a0fb 1375
2baab4e9
PZ
1376 switch (state) {
1377 case cpuset:
1378 /* No more Mr. Nice Guy. */
1379 cpuset_cpus_allowed_fallback(p);
1380 state = possible;
1381 break;
1382
1383 case possible:
1384 do_set_cpus_allowed(p, cpu_possible_mask);
1385 state = fail;
1386 break;
1387
1388 case fail:
1389 BUG();
1390 break;
1391 }
1392 }
1393
1394out:
1395 if (state != cpuset) {
1396 /*
1397 * Don't tell them about moving exiting tasks or
1398 * kernel threads (both mm NULL), since they never
1399 * leave kernel.
1400 */
1401 if (p->mm && printk_ratelimit()) {
aac74dc4 1402 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1403 task_pid_nr(p), p->comm, cpu);
1404 }
5da9a0fb
PZ
1405 }
1406
1407 return dest_cpu;
1408}
1409
e2912009 1410/*
013fdb80 1411 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1412 */
970b13ba 1413static inline
ac66f547 1414int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1415{
6c1d9410
WL
1416 if (p->nr_cpus_allowed > 1)
1417 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1418
1419 /*
1420 * In order not to call set_task_cpu() on a blocking task we need
1421 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1422 * cpu.
1423 *
1424 * Since this is common to all placement strategies, this lives here.
1425 *
1426 * [ this allows ->select_task() to simply return task_cpu(p) and
1427 * not worry about this generic constraint ]
1428 */
fa17b507 1429 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1430 !cpu_online(cpu)))
5da9a0fb 1431 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1432
1433 return cpu;
970b13ba 1434}
09a40af5
MG
1435
1436static void update_avg(u64 *avg, u64 sample)
1437{
1438 s64 diff = sample - *avg;
1439 *avg += diff >> 3;
1440}
970b13ba
PZ
1441#endif
1442
d7c01d27 1443static void
b84cb5df 1444ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1445{
d7c01d27 1446#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1447 struct rq *rq = this_rq();
1448
d7c01d27
PZ
1449#ifdef CONFIG_SMP
1450 int this_cpu = smp_processor_id();
1451
1452 if (cpu == this_cpu) {
1453 schedstat_inc(rq, ttwu_local);
1454 schedstat_inc(p, se.statistics.nr_wakeups_local);
1455 } else {
1456 struct sched_domain *sd;
1457
1458 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1459 rcu_read_lock();
d7c01d27
PZ
1460 for_each_domain(this_cpu, sd) {
1461 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1462 schedstat_inc(sd, ttwu_wake_remote);
1463 break;
1464 }
1465 }
057f3fad 1466 rcu_read_unlock();
d7c01d27 1467 }
f339b9dc
PZ
1468
1469 if (wake_flags & WF_MIGRATED)
1470 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1471
d7c01d27
PZ
1472#endif /* CONFIG_SMP */
1473
1474 schedstat_inc(rq, ttwu_count);
9ed3811a 1475 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1476
1477 if (wake_flags & WF_SYNC)
9ed3811a 1478 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1479
d7c01d27
PZ
1480#endif /* CONFIG_SCHEDSTATS */
1481}
1482
1483static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1484{
9ed3811a 1485 activate_task(rq, p, en_flags);
da0c1e65 1486 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1487
1488 /* if a worker is waking up, notify workqueue */
1489 if (p->flags & PF_WQ_WORKER)
1490 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1491}
1492
23f41eeb
PZ
1493/*
1494 * Mark the task runnable and perform wakeup-preemption.
1495 */
89363381 1496static void
23f41eeb 1497ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1498{
9ed3811a 1499 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1500 trace_sched_wakeup(p, true);
9ed3811a
TH
1501
1502 p->state = TASK_RUNNING;
1503#ifdef CONFIG_SMP
1504 if (p->sched_class->task_woken)
1505 p->sched_class->task_woken(rq, p);
1506
e69c6341 1507 if (rq->idle_stamp) {
78becc27 1508 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1509 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1510
abfafa54
JL
1511 update_avg(&rq->avg_idle, delta);
1512
1513 if (rq->avg_idle > max)
9ed3811a 1514 rq->avg_idle = max;
abfafa54 1515
9ed3811a
TH
1516 rq->idle_stamp = 0;
1517 }
1518#endif
1519}
1520
c05fbafb
PZ
1521static void
1522ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1523{
1524#ifdef CONFIG_SMP
1525 if (p->sched_contributes_to_load)
1526 rq->nr_uninterruptible--;
1527#endif
1528
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531}
1532
1533/*
1534 * Called in case the task @p isn't fully descheduled from its runqueue,
1535 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1536 * since all we need to do is flip p->state to TASK_RUNNING, since
1537 * the task is still ->on_rq.
1538 */
1539static int ttwu_remote(struct task_struct *p, int wake_flags)
1540{
1541 struct rq *rq;
1542 int ret = 0;
1543
1544 rq = __task_rq_lock(p);
da0c1e65 1545 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1546 /* check_preempt_curr() may use rq clock */
1547 update_rq_clock(rq);
c05fbafb
PZ
1548 ttwu_do_wakeup(rq, p, wake_flags);
1549 ret = 1;
1550 }
1551 __task_rq_unlock(rq);
1552
1553 return ret;
1554}
1555
317f3941 1556#ifdef CONFIG_SMP
e3baac47 1557void sched_ttwu_pending(void)
317f3941
PZ
1558{
1559 struct rq *rq = this_rq();
fa14ff4a
PZ
1560 struct llist_node *llist = llist_del_all(&rq->wake_list);
1561 struct task_struct *p;
e3baac47 1562 unsigned long flags;
317f3941 1563
e3baac47
PZ
1564 if (!llist)
1565 return;
1566
1567 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1568
fa14ff4a
PZ
1569 while (llist) {
1570 p = llist_entry(llist, struct task_struct, wake_entry);
1571 llist = llist_next(llist);
317f3941
PZ
1572 ttwu_do_activate(rq, p, 0);
1573 }
1574
e3baac47 1575 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1576}
1577
1578void scheduler_ipi(void)
1579{
f27dde8d
PZ
1580 /*
1581 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1582 * TIF_NEED_RESCHED remotely (for the first time) will also send
1583 * this IPI.
1584 */
8cb75e0c 1585 preempt_fold_need_resched();
f27dde8d 1586
fd2ac4f4 1587 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1588 return;
1589
1590 /*
1591 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1592 * traditionally all their work was done from the interrupt return
1593 * path. Now that we actually do some work, we need to make sure
1594 * we do call them.
1595 *
1596 * Some archs already do call them, luckily irq_enter/exit nest
1597 * properly.
1598 *
1599 * Arguably we should visit all archs and update all handlers,
1600 * however a fair share of IPIs are still resched only so this would
1601 * somewhat pessimize the simple resched case.
1602 */
1603 irq_enter();
fa14ff4a 1604 sched_ttwu_pending();
ca38062e
SS
1605
1606 /*
1607 * Check if someone kicked us for doing the nohz idle load balance.
1608 */
873b4c65 1609 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1610 this_rq()->idle_balance = 1;
ca38062e 1611 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1612 }
c5d753a5 1613 irq_exit();
317f3941
PZ
1614}
1615
1616static void ttwu_queue_remote(struct task_struct *p, int cpu)
1617{
e3baac47
PZ
1618 struct rq *rq = cpu_rq(cpu);
1619
1620 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1621 if (!set_nr_if_polling(rq->idle))
1622 smp_send_reschedule(cpu);
1623 else
1624 trace_sched_wake_idle_without_ipi(cpu);
1625 }
317f3941 1626}
d6aa8f85 1627
f6be8af1
CL
1628void wake_up_if_idle(int cpu)
1629{
1630 struct rq *rq = cpu_rq(cpu);
1631 unsigned long flags;
1632
fd7de1e8
AL
1633 rcu_read_lock();
1634
1635 if (!is_idle_task(rcu_dereference(rq->curr)))
1636 goto out;
f6be8af1
CL
1637
1638 if (set_nr_if_polling(rq->idle)) {
1639 trace_sched_wake_idle_without_ipi(cpu);
1640 } else {
1641 raw_spin_lock_irqsave(&rq->lock, flags);
1642 if (is_idle_task(rq->curr))
1643 smp_send_reschedule(cpu);
1644 /* Else cpu is not in idle, do nothing here */
1645 raw_spin_unlock_irqrestore(&rq->lock, flags);
1646 }
fd7de1e8
AL
1647
1648out:
1649 rcu_read_unlock();
f6be8af1
CL
1650}
1651
39be3501 1652bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1653{
1654 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1655}
d6aa8f85 1656#endif /* CONFIG_SMP */
317f3941 1657
c05fbafb
PZ
1658static void ttwu_queue(struct task_struct *p, int cpu)
1659{
1660 struct rq *rq = cpu_rq(cpu);
1661
17d9f311 1662#if defined(CONFIG_SMP)
39be3501 1663 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1664 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1665 ttwu_queue_remote(p, cpu);
1666 return;
1667 }
1668#endif
1669
c05fbafb
PZ
1670 raw_spin_lock(&rq->lock);
1671 ttwu_do_activate(rq, p, 0);
1672 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1673}
1674
1675/**
1da177e4 1676 * try_to_wake_up - wake up a thread
9ed3811a 1677 * @p: the thread to be awakened
1da177e4 1678 * @state: the mask of task states that can be woken
9ed3811a 1679 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1680 *
1681 * Put it on the run-queue if it's not already there. The "current"
1682 * thread is always on the run-queue (except when the actual
1683 * re-schedule is in progress), and as such you're allowed to do
1684 * the simpler "current->state = TASK_RUNNING" to mark yourself
1685 * runnable without the overhead of this.
1686 *
e69f6186 1687 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1688 * or @state didn't match @p's state.
1da177e4 1689 */
e4a52bcb
PZ
1690static int
1691try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1692{
1da177e4 1693 unsigned long flags;
c05fbafb 1694 int cpu, success = 0;
2398f2c6 1695
e0acd0a6
ON
1696 /*
1697 * If we are going to wake up a thread waiting for CONDITION we
1698 * need to ensure that CONDITION=1 done by the caller can not be
1699 * reordered with p->state check below. This pairs with mb() in
1700 * set_current_state() the waiting thread does.
1701 */
1702 smp_mb__before_spinlock();
013fdb80 1703 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1704 if (!(p->state & state))
1da177e4
LT
1705 goto out;
1706
c05fbafb 1707 success = 1; /* we're going to change ->state */
1da177e4 1708 cpu = task_cpu(p);
1da177e4 1709
c05fbafb
PZ
1710 if (p->on_rq && ttwu_remote(p, wake_flags))
1711 goto stat;
1da177e4 1712
1da177e4 1713#ifdef CONFIG_SMP
e9c84311 1714 /*
c05fbafb
PZ
1715 * If the owning (remote) cpu is still in the middle of schedule() with
1716 * this task as prev, wait until its done referencing the task.
e9c84311 1717 */
f3e94786 1718 while (p->on_cpu)
e4a52bcb 1719 cpu_relax();
0970d299 1720 /*
e4a52bcb 1721 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1722 */
e4a52bcb 1723 smp_rmb();
1da177e4 1724
a8e4f2ea 1725 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1726 p->state = TASK_WAKING;
e7693a36 1727
e4a52bcb 1728 if (p->sched_class->task_waking)
74f8e4b2 1729 p->sched_class->task_waking(p);
efbbd05a 1730
ac66f547 1731 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1732 if (task_cpu(p) != cpu) {
1733 wake_flags |= WF_MIGRATED;
e4a52bcb 1734 set_task_cpu(p, cpu);
f339b9dc 1735 }
1da177e4 1736#endif /* CONFIG_SMP */
1da177e4 1737
c05fbafb
PZ
1738 ttwu_queue(p, cpu);
1739stat:
b84cb5df 1740 ttwu_stat(p, cpu, wake_flags);
1da177e4 1741out:
013fdb80 1742 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1743
1744 return success;
1745}
1746
21aa9af0
TH
1747/**
1748 * try_to_wake_up_local - try to wake up a local task with rq lock held
1749 * @p: the thread to be awakened
1750 *
2acca55e 1751 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1752 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1753 * the current task.
21aa9af0
TH
1754 */
1755static void try_to_wake_up_local(struct task_struct *p)
1756{
1757 struct rq *rq = task_rq(p);
21aa9af0 1758
383efcd0
TH
1759 if (WARN_ON_ONCE(rq != this_rq()) ||
1760 WARN_ON_ONCE(p == current))
1761 return;
1762
21aa9af0
TH
1763 lockdep_assert_held(&rq->lock);
1764
2acca55e
PZ
1765 if (!raw_spin_trylock(&p->pi_lock)) {
1766 raw_spin_unlock(&rq->lock);
1767 raw_spin_lock(&p->pi_lock);
1768 raw_spin_lock(&rq->lock);
1769 }
1770
21aa9af0 1771 if (!(p->state & TASK_NORMAL))
2acca55e 1772 goto out;
21aa9af0 1773
da0c1e65 1774 if (!task_on_rq_queued(p))
d7c01d27
PZ
1775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1776
23f41eeb 1777 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1778 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1779out:
1780 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1781}
1782
50fa610a
DH
1783/**
1784 * wake_up_process - Wake up a specific process
1785 * @p: The process to be woken up.
1786 *
1787 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1788 * processes.
1789 *
1790 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1791 *
1792 * It may be assumed that this function implies a write memory barrier before
1793 * changing the task state if and only if any tasks are woken up.
1794 */
7ad5b3a5 1795int wake_up_process(struct task_struct *p)
1da177e4 1796{
9067ac85
ON
1797 WARN_ON(task_is_stopped_or_traced(p));
1798 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1799}
1da177e4
LT
1800EXPORT_SYMBOL(wake_up_process);
1801
7ad5b3a5 1802int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1803{
1804 return try_to_wake_up(p, state, 0);
1805}
1806
a5e7be3b
JL
1807/*
1808 * This function clears the sched_dl_entity static params.
1809 */
1810void __dl_clear_params(struct task_struct *p)
1811{
1812 struct sched_dl_entity *dl_se = &p->dl;
1813
1814 dl_se->dl_runtime = 0;
1815 dl_se->dl_deadline = 0;
1816 dl_se->dl_period = 0;
1817 dl_se->flags = 0;
1818 dl_se->dl_bw = 0;
40767b0d
PZ
1819
1820 dl_se->dl_throttled = 0;
1821 dl_se->dl_new = 1;
1822 dl_se->dl_yielded = 0;
a5e7be3b
JL
1823}
1824
1da177e4
LT
1825/*
1826 * Perform scheduler related setup for a newly forked process p.
1827 * p is forked by current.
dd41f596
IM
1828 *
1829 * __sched_fork() is basic setup used by init_idle() too:
1830 */
5e1576ed 1831static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1832{
fd2f4419
PZ
1833 p->on_rq = 0;
1834
1835 p->se.on_rq = 0;
dd41f596
IM
1836 p->se.exec_start = 0;
1837 p->se.sum_exec_runtime = 0;
f6cf891c 1838 p->se.prev_sum_exec_runtime = 0;
6c594c21 1839 p->se.nr_migrations = 0;
da7a735e 1840 p->se.vruntime = 0;
bb04159d
KT
1841#ifdef CONFIG_SMP
1842 p->se.avg.decay_count = 0;
1843#endif
fd2f4419 1844 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1845
1846#ifdef CONFIG_SCHEDSTATS
41acab88 1847 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1848#endif
476d139c 1849
aab03e05 1850 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1851 init_dl_task_timer(&p->dl);
a5e7be3b 1852 __dl_clear_params(p);
aab03e05 1853
fa717060 1854 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1855
e107be36
AK
1856#ifdef CONFIG_PREEMPT_NOTIFIERS
1857 INIT_HLIST_HEAD(&p->preempt_notifiers);
1858#endif
cbee9f88
PZ
1859
1860#ifdef CONFIG_NUMA_BALANCING
1861 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1862 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1863 p->mm->numa_scan_seq = 0;
1864 }
1865
5e1576ed
RR
1866 if (clone_flags & CLONE_VM)
1867 p->numa_preferred_nid = current->numa_preferred_nid;
1868 else
1869 p->numa_preferred_nid = -1;
1870
cbee9f88
PZ
1871 p->node_stamp = 0ULL;
1872 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1873 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1874 p->numa_work.next = &p->numa_work;
44dba3d5 1875 p->numa_faults = NULL;
7e2703e6
RR
1876 p->last_task_numa_placement = 0;
1877 p->last_sum_exec_runtime = 0;
8c8a743c 1878
8c8a743c 1879 p->numa_group = NULL;
cbee9f88 1880#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1881}
1882
1a687c2e 1883#ifdef CONFIG_NUMA_BALANCING
3105b86a 1884#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1885void set_numabalancing_state(bool enabled)
1886{
1887 if (enabled)
1888 sched_feat_set("NUMA");
1889 else
1890 sched_feat_set("NO_NUMA");
1891}
3105b86a
MG
1892#else
1893__read_mostly bool numabalancing_enabled;
1894
1895void set_numabalancing_state(bool enabled)
1896{
1897 numabalancing_enabled = enabled;
dd41f596 1898}
3105b86a 1899#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1900
1901#ifdef CONFIG_PROC_SYSCTL
1902int sysctl_numa_balancing(struct ctl_table *table, int write,
1903 void __user *buffer, size_t *lenp, loff_t *ppos)
1904{
1905 struct ctl_table t;
1906 int err;
1907 int state = numabalancing_enabled;
1908
1909 if (write && !capable(CAP_SYS_ADMIN))
1910 return -EPERM;
1911
1912 t = *table;
1913 t.data = &state;
1914 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1915 if (err < 0)
1916 return err;
1917 if (write)
1918 set_numabalancing_state(state);
1919 return err;
1920}
1921#endif
1922#endif
dd41f596
IM
1923
1924/*
1925 * fork()/clone()-time setup:
1926 */
aab03e05 1927int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1928{
0122ec5b 1929 unsigned long flags;
dd41f596
IM
1930 int cpu = get_cpu();
1931
5e1576ed 1932 __sched_fork(clone_flags, p);
06b83b5f 1933 /*
0017d735 1934 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1935 * nobody will actually run it, and a signal or other external
1936 * event cannot wake it up and insert it on the runqueue either.
1937 */
0017d735 1938 p->state = TASK_RUNNING;
dd41f596 1939
c350a04e
MG
1940 /*
1941 * Make sure we do not leak PI boosting priority to the child.
1942 */
1943 p->prio = current->normal_prio;
1944
b9dc29e7
MG
1945 /*
1946 * Revert to default priority/policy on fork if requested.
1947 */
1948 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1949 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1950 p->policy = SCHED_NORMAL;
6c697bdf 1951 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1952 p->rt_priority = 0;
1953 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1954 p->static_prio = NICE_TO_PRIO(0);
1955
1956 p->prio = p->normal_prio = __normal_prio(p);
1957 set_load_weight(p);
6c697bdf 1958
b9dc29e7
MG
1959 /*
1960 * We don't need the reset flag anymore after the fork. It has
1961 * fulfilled its duty:
1962 */
1963 p->sched_reset_on_fork = 0;
1964 }
ca94c442 1965
aab03e05
DF
1966 if (dl_prio(p->prio)) {
1967 put_cpu();
1968 return -EAGAIN;
1969 } else if (rt_prio(p->prio)) {
1970 p->sched_class = &rt_sched_class;
1971 } else {
2ddbf952 1972 p->sched_class = &fair_sched_class;
aab03e05 1973 }
b29739f9 1974
cd29fe6f
PZ
1975 if (p->sched_class->task_fork)
1976 p->sched_class->task_fork(p);
1977
86951599
PZ
1978 /*
1979 * The child is not yet in the pid-hash so no cgroup attach races,
1980 * and the cgroup is pinned to this child due to cgroup_fork()
1981 * is ran before sched_fork().
1982 *
1983 * Silence PROVE_RCU.
1984 */
0122ec5b 1985 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1986 set_task_cpu(p, cpu);
0122ec5b 1987 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1988
52f17b6c 1989#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1990 if (likely(sched_info_on()))
52f17b6c 1991 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1992#endif
3ca7a440
PZ
1993#if defined(CONFIG_SMP)
1994 p->on_cpu = 0;
4866cde0 1995#endif
01028747 1996 init_task_preempt_count(p);
806c09a7 1997#ifdef CONFIG_SMP
917b627d 1998 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1999 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2000#endif
917b627d 2001
476d139c 2002 put_cpu();
aab03e05 2003 return 0;
1da177e4
LT
2004}
2005
332ac17e
DF
2006unsigned long to_ratio(u64 period, u64 runtime)
2007{
2008 if (runtime == RUNTIME_INF)
2009 return 1ULL << 20;
2010
2011 /*
2012 * Doing this here saves a lot of checks in all
2013 * the calling paths, and returning zero seems
2014 * safe for them anyway.
2015 */
2016 if (period == 0)
2017 return 0;
2018
2019 return div64_u64(runtime << 20, period);
2020}
2021
2022#ifdef CONFIG_SMP
2023inline struct dl_bw *dl_bw_of(int i)
2024{
66339c31
KT
2025 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2026 "sched RCU must be held");
332ac17e
DF
2027 return &cpu_rq(i)->rd->dl_bw;
2028}
2029
de212f18 2030static inline int dl_bw_cpus(int i)
332ac17e 2031{
de212f18
PZ
2032 struct root_domain *rd = cpu_rq(i)->rd;
2033 int cpus = 0;
2034
66339c31
KT
2035 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2036 "sched RCU must be held");
de212f18
PZ
2037 for_each_cpu_and(i, rd->span, cpu_active_mask)
2038 cpus++;
2039
2040 return cpus;
332ac17e
DF
2041}
2042#else
2043inline struct dl_bw *dl_bw_of(int i)
2044{
2045 return &cpu_rq(i)->dl.dl_bw;
2046}
2047
de212f18 2048static inline int dl_bw_cpus(int i)
332ac17e
DF
2049{
2050 return 1;
2051}
2052#endif
2053
332ac17e
DF
2054/*
2055 * We must be sure that accepting a new task (or allowing changing the
2056 * parameters of an existing one) is consistent with the bandwidth
2057 * constraints. If yes, this function also accordingly updates the currently
2058 * allocated bandwidth to reflect the new situation.
2059 *
2060 * This function is called while holding p's rq->lock.
40767b0d
PZ
2061 *
2062 * XXX we should delay bw change until the task's 0-lag point, see
2063 * __setparam_dl().
332ac17e
DF
2064 */
2065static int dl_overflow(struct task_struct *p, int policy,
2066 const struct sched_attr *attr)
2067{
2068
2069 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2070 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2071 u64 runtime = attr->sched_runtime;
2072 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2073 int cpus, err = -1;
332ac17e
DF
2074
2075 if (new_bw == p->dl.dl_bw)
2076 return 0;
2077
2078 /*
2079 * Either if a task, enters, leave, or stays -deadline but changes
2080 * its parameters, we may need to update accordingly the total
2081 * allocated bandwidth of the container.
2082 */
2083 raw_spin_lock(&dl_b->lock);
de212f18 2084 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2085 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2086 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2087 __dl_add(dl_b, new_bw);
2088 err = 0;
2089 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2090 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2091 __dl_clear(dl_b, p->dl.dl_bw);
2092 __dl_add(dl_b, new_bw);
2093 err = 0;
2094 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2095 __dl_clear(dl_b, p->dl.dl_bw);
2096 err = 0;
2097 }
2098 raw_spin_unlock(&dl_b->lock);
2099
2100 return err;
2101}
2102
2103extern void init_dl_bw(struct dl_bw *dl_b);
2104
1da177e4
LT
2105/*
2106 * wake_up_new_task - wake up a newly created task for the first time.
2107 *
2108 * This function will do some initial scheduler statistics housekeeping
2109 * that must be done for every newly created context, then puts the task
2110 * on the runqueue and wakes it.
2111 */
3e51e3ed 2112void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2113{
2114 unsigned long flags;
dd41f596 2115 struct rq *rq;
fabf318e 2116
ab2515c4 2117 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2118#ifdef CONFIG_SMP
2119 /*
2120 * Fork balancing, do it here and not earlier because:
2121 * - cpus_allowed can change in the fork path
2122 * - any previously selected cpu might disappear through hotplug
fabf318e 2123 */
ac66f547 2124 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2125#endif
2126
a75cdaa9
AS
2127 /* Initialize new task's runnable average */
2128 init_task_runnable_average(p);
ab2515c4 2129 rq = __task_rq_lock(p);
cd29fe6f 2130 activate_task(rq, p, 0);
da0c1e65 2131 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2132 trace_sched_wakeup_new(p, true);
a7558e01 2133 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2134#ifdef CONFIG_SMP
efbbd05a
PZ
2135 if (p->sched_class->task_woken)
2136 p->sched_class->task_woken(rq, p);
9a897c5a 2137#endif
0122ec5b 2138 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2139}
2140
e107be36
AK
2141#ifdef CONFIG_PREEMPT_NOTIFIERS
2142
2143/**
80dd99b3 2144 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2145 * @notifier: notifier struct to register
e107be36
AK
2146 */
2147void preempt_notifier_register(struct preempt_notifier *notifier)
2148{
2149 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2150}
2151EXPORT_SYMBOL_GPL(preempt_notifier_register);
2152
2153/**
2154 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2155 * @notifier: notifier struct to unregister
e107be36
AK
2156 *
2157 * This is safe to call from within a preemption notifier.
2158 */
2159void preempt_notifier_unregister(struct preempt_notifier *notifier)
2160{
2161 hlist_del(&notifier->link);
2162}
2163EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2164
2165static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2166{
2167 struct preempt_notifier *notifier;
e107be36 2168
b67bfe0d 2169 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2170 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2171}
2172
2173static void
2174fire_sched_out_preempt_notifiers(struct task_struct *curr,
2175 struct task_struct *next)
2176{
2177 struct preempt_notifier *notifier;
e107be36 2178
b67bfe0d 2179 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2180 notifier->ops->sched_out(notifier, next);
2181}
2182
6d6bc0ad 2183#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2184
2185static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2186{
2187}
2188
2189static void
2190fire_sched_out_preempt_notifiers(struct task_struct *curr,
2191 struct task_struct *next)
2192{
2193}
2194
6d6bc0ad 2195#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2196
4866cde0
NP
2197/**
2198 * prepare_task_switch - prepare to switch tasks
2199 * @rq: the runqueue preparing to switch
421cee29 2200 * @prev: the current task that is being switched out
4866cde0
NP
2201 * @next: the task we are going to switch to.
2202 *
2203 * This is called with the rq lock held and interrupts off. It must
2204 * be paired with a subsequent finish_task_switch after the context
2205 * switch.
2206 *
2207 * prepare_task_switch sets up locking and calls architecture specific
2208 * hooks.
2209 */
e107be36
AK
2210static inline void
2211prepare_task_switch(struct rq *rq, struct task_struct *prev,
2212 struct task_struct *next)
4866cde0 2213{
895dd92c 2214 trace_sched_switch(prev, next);
43148951 2215 sched_info_switch(rq, prev, next);
fe4b04fa 2216 perf_event_task_sched_out(prev, next);
e107be36 2217 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2218 prepare_lock_switch(rq, next);
2219 prepare_arch_switch(next);
2220}
2221
1da177e4
LT
2222/**
2223 * finish_task_switch - clean up after a task-switch
2224 * @prev: the thread we just switched away from.
2225 *
4866cde0
NP
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2232 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
dfa50b60
ON
2235 *
2236 * The context switch have flipped the stack from under us and restored the
2237 * local variables which were saved when this task called schedule() in the
2238 * past. prev == current is still correct but we need to recalculate this_rq
2239 * because prev may have moved to another CPU.
1da177e4 2240 */
dfa50b60 2241static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2242 __releases(rq->lock)
2243{
dfa50b60 2244 struct rq *rq = this_rq();
1da177e4 2245 struct mm_struct *mm = rq->prev_mm;
55a101f8 2246 long prev_state;
1da177e4
LT
2247
2248 rq->prev_mm = NULL;
2249
2250 /*
2251 * A task struct has one reference for the use as "current".
c394cc9f 2252 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2253 * schedule one last time. The schedule call will never return, and
2254 * the scheduled task must drop that reference.
c394cc9f 2255 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2256 * still held, otherwise prev could be scheduled on another cpu, die
2257 * there before we look at prev->state, and then the reference would
2258 * be dropped twice.
2259 * Manfred Spraul <manfred@colorfullife.com>
2260 */
55a101f8 2261 prev_state = prev->state;
bf9fae9f 2262 vtime_task_switch(prev);
4866cde0 2263 finish_arch_switch(prev);
a8d757ef 2264 perf_event_task_sched_in(prev, current);
4866cde0 2265 finish_lock_switch(rq, prev);
01f23e16 2266 finish_arch_post_lock_switch();
e8fa1362 2267
e107be36 2268 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2269 if (mm)
2270 mmdrop(mm);
c394cc9f 2271 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2272 if (prev->sched_class->task_dead)
2273 prev->sched_class->task_dead(prev);
2274
c6fd91f0 2275 /*
2276 * Remove function-return probe instances associated with this
2277 * task and put them back on the free list.
9761eea8 2278 */
c6fd91f0 2279 kprobe_flush_task(prev);
1da177e4 2280 put_task_struct(prev);
c6fd91f0 2281 }
99e5ada9
FW
2282
2283 tick_nohz_task_switch(current);
dfa50b60 2284 return rq;
1da177e4
LT
2285}
2286
3f029d3c
GH
2287#ifdef CONFIG_SMP
2288
3f029d3c
GH
2289/* rq->lock is NOT held, but preemption is disabled */
2290static inline void post_schedule(struct rq *rq)
2291{
2292 if (rq->post_schedule) {
2293 unsigned long flags;
2294
05fa785c 2295 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2296 if (rq->curr->sched_class->post_schedule)
2297 rq->curr->sched_class->post_schedule(rq);
05fa785c 2298 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2299
2300 rq->post_schedule = 0;
2301 }
2302}
2303
2304#else
da19ab51 2305
3f029d3c
GH
2306static inline void post_schedule(struct rq *rq)
2307{
1da177e4
LT
2308}
2309
3f029d3c
GH
2310#endif
2311
1da177e4
LT
2312/**
2313 * schedule_tail - first thing a freshly forked thread must call.
2314 * @prev: the thread we just switched away from.
2315 */
722a9f92 2316asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2317 __releases(rq->lock)
2318{
1a43a14a 2319 struct rq *rq;
da19ab51 2320
1a43a14a
ON
2321 /* finish_task_switch() drops rq->lock and enables preemtion */
2322 preempt_disable();
dfa50b60 2323 rq = finish_task_switch(prev);
3f029d3c 2324 post_schedule(rq);
1a43a14a 2325 preempt_enable();
70b97a7f 2326
1da177e4 2327 if (current->set_child_tid)
b488893a 2328 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2329}
2330
2331/*
dfa50b60 2332 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2333 */
dfa50b60 2334static inline struct rq *
70b97a7f 2335context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2336 struct task_struct *next)
1da177e4 2337{
dd41f596 2338 struct mm_struct *mm, *oldmm;
1da177e4 2339
e107be36 2340 prepare_task_switch(rq, prev, next);
fe4b04fa 2341
dd41f596
IM
2342 mm = next->mm;
2343 oldmm = prev->active_mm;
9226d125
ZA
2344 /*
2345 * For paravirt, this is coupled with an exit in switch_to to
2346 * combine the page table reload and the switch backend into
2347 * one hypercall.
2348 */
224101ed 2349 arch_start_context_switch(prev);
9226d125 2350
31915ab4 2351 if (!mm) {
1da177e4
LT
2352 next->active_mm = oldmm;
2353 atomic_inc(&oldmm->mm_count);
2354 enter_lazy_tlb(oldmm, next);
2355 } else
2356 switch_mm(oldmm, mm, next);
2357
31915ab4 2358 if (!prev->mm) {
1da177e4 2359 prev->active_mm = NULL;
1da177e4
LT
2360 rq->prev_mm = oldmm;
2361 }
3a5f5e48
IM
2362 /*
2363 * Since the runqueue lock will be released by the next
2364 * task (which is an invalid locking op but in the case
2365 * of the scheduler it's an obvious special-case), so we
2366 * do an early lockdep release here:
2367 */
8a25d5de 2368 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2369
91d1aa43 2370 context_tracking_task_switch(prev, next);
1da177e4
LT
2371 /* Here we just switch the register state and the stack. */
2372 switch_to(prev, next, prev);
dd41f596 2373 barrier();
dfa50b60
ON
2374
2375 return finish_task_switch(prev);
1da177e4
LT
2376}
2377
2378/*
1c3e8264 2379 * nr_running and nr_context_switches:
1da177e4
LT
2380 *
2381 * externally visible scheduler statistics: current number of runnable
1c3e8264 2382 * threads, total number of context switches performed since bootup.
1da177e4
LT
2383 */
2384unsigned long nr_running(void)
2385{
2386 unsigned long i, sum = 0;
2387
2388 for_each_online_cpu(i)
2389 sum += cpu_rq(i)->nr_running;
2390
2391 return sum;
f711f609 2392}
1da177e4 2393
2ee507c4
TC
2394/*
2395 * Check if only the current task is running on the cpu.
2396 */
2397bool single_task_running(void)
2398{
2399 if (cpu_rq(smp_processor_id())->nr_running == 1)
2400 return true;
2401 else
2402 return false;
2403}
2404EXPORT_SYMBOL(single_task_running);
2405
1da177e4 2406unsigned long long nr_context_switches(void)
46cb4b7c 2407{
cc94abfc
SR
2408 int i;
2409 unsigned long long sum = 0;
46cb4b7c 2410
0a945022 2411 for_each_possible_cpu(i)
1da177e4 2412 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2413
1da177e4
LT
2414 return sum;
2415}
483b4ee6 2416
1da177e4
LT
2417unsigned long nr_iowait(void)
2418{
2419 unsigned long i, sum = 0;
483b4ee6 2420
0a945022 2421 for_each_possible_cpu(i)
1da177e4 2422 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2423
1da177e4
LT
2424 return sum;
2425}
483b4ee6 2426
8c215bd3 2427unsigned long nr_iowait_cpu(int cpu)
69d25870 2428{
8c215bd3 2429 struct rq *this = cpu_rq(cpu);
69d25870
AV
2430 return atomic_read(&this->nr_iowait);
2431}
46cb4b7c 2432
372ba8cb
MG
2433void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2434{
2435 struct rq *this = this_rq();
2436 *nr_waiters = atomic_read(&this->nr_iowait);
2437 *load = this->cpu_load[0];
2438}
2439
dd41f596 2440#ifdef CONFIG_SMP
8a0be9ef 2441
46cb4b7c 2442/*
38022906
PZ
2443 * sched_exec - execve() is a valuable balancing opportunity, because at
2444 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2445 */
38022906 2446void sched_exec(void)
46cb4b7c 2447{
38022906 2448 struct task_struct *p = current;
1da177e4 2449 unsigned long flags;
0017d735 2450 int dest_cpu;
46cb4b7c 2451
8f42ced9 2452 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2453 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2454 if (dest_cpu == smp_processor_id())
2455 goto unlock;
38022906 2456
8f42ced9 2457 if (likely(cpu_active(dest_cpu))) {
969c7921 2458 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2459
8f42ced9
PZ
2460 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2461 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2462 return;
2463 }
0017d735 2464unlock:
8f42ced9 2465 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2466}
dd41f596 2467
1da177e4
LT
2468#endif
2469
1da177e4 2470DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2471DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2472
2473EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2474EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2475
c5f8d995
HS
2476/*
2477 * Return accounted runtime for the task.
2478 * In case the task is currently running, return the runtime plus current's
2479 * pending runtime that have not been accounted yet.
2480 */
2481unsigned long long task_sched_runtime(struct task_struct *p)
2482{
2483 unsigned long flags;
2484 struct rq *rq;
6e998916 2485 u64 ns;
c5f8d995 2486
911b2898
PZ
2487#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2488 /*
2489 * 64-bit doesn't need locks to atomically read a 64bit value.
2490 * So we have a optimization chance when the task's delta_exec is 0.
2491 * Reading ->on_cpu is racy, but this is ok.
2492 *
2493 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2494 * If we race with it entering cpu, unaccounted time is 0. This is
2495 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2496 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2497 * been accounted, so we're correct here as well.
911b2898 2498 */
da0c1e65 2499 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2500 return p->se.sum_exec_runtime;
2501#endif
2502
c5f8d995 2503 rq = task_rq_lock(p, &flags);
6e998916
SG
2504 /*
2505 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2506 * project cycles that may never be accounted to this
2507 * thread, breaking clock_gettime().
2508 */
2509 if (task_current(rq, p) && task_on_rq_queued(p)) {
2510 update_rq_clock(rq);
2511 p->sched_class->update_curr(rq);
2512 }
2513 ns = p->se.sum_exec_runtime;
0122ec5b 2514 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2515
2516 return ns;
2517}
48f24c4d 2518
7835b98b
CL
2519/*
2520 * This function gets called by the timer code, with HZ frequency.
2521 * We call it with interrupts disabled.
7835b98b
CL
2522 */
2523void scheduler_tick(void)
2524{
7835b98b
CL
2525 int cpu = smp_processor_id();
2526 struct rq *rq = cpu_rq(cpu);
dd41f596 2527 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2528
2529 sched_clock_tick();
dd41f596 2530
05fa785c 2531 raw_spin_lock(&rq->lock);
3e51f33f 2532 update_rq_clock(rq);
fa85ae24 2533 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2534 update_cpu_load_active(rq);
05fa785c 2535 raw_spin_unlock(&rq->lock);
7835b98b 2536
e9d2b064 2537 perf_event_task_tick();
e220d2dc 2538
e418e1c2 2539#ifdef CONFIG_SMP
6eb57e0d 2540 rq->idle_balance = idle_cpu(cpu);
7caff66f 2541 trigger_load_balance(rq);
e418e1c2 2542#endif
265f22a9 2543 rq_last_tick_reset(rq);
1da177e4
LT
2544}
2545
265f22a9
FW
2546#ifdef CONFIG_NO_HZ_FULL
2547/**
2548 * scheduler_tick_max_deferment
2549 *
2550 * Keep at least one tick per second when a single
2551 * active task is running because the scheduler doesn't
2552 * yet completely support full dynticks environment.
2553 *
2554 * This makes sure that uptime, CFS vruntime, load
2555 * balancing, etc... continue to move forward, even
2556 * with a very low granularity.
e69f6186
YB
2557 *
2558 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2559 */
2560u64 scheduler_tick_max_deferment(void)
2561{
2562 struct rq *rq = this_rq();
2563 unsigned long next, now = ACCESS_ONCE(jiffies);
2564
2565 next = rq->last_sched_tick + HZ;
2566
2567 if (time_before_eq(next, now))
2568 return 0;
2569
8fe8ff09 2570 return jiffies_to_nsecs(next - now);
1da177e4 2571}
265f22a9 2572#endif
1da177e4 2573
132380a0 2574notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2575{
2576 if (in_lock_functions(addr)) {
2577 addr = CALLER_ADDR2;
2578 if (in_lock_functions(addr))
2579 addr = CALLER_ADDR3;
2580 }
2581 return addr;
2582}
1da177e4 2583
7e49fcce
SR
2584#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2585 defined(CONFIG_PREEMPT_TRACER))
2586
edafe3a5 2587void preempt_count_add(int val)
1da177e4 2588{
6cd8a4bb 2589#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2590 /*
2591 * Underflow?
2592 */
9a11b49a
IM
2593 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2594 return;
6cd8a4bb 2595#endif
bdb43806 2596 __preempt_count_add(val);
6cd8a4bb 2597#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2598 /*
2599 * Spinlock count overflowing soon?
2600 */
33859f7f
MOS
2601 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2602 PREEMPT_MASK - 10);
6cd8a4bb 2603#endif
8f47b187
TG
2604 if (preempt_count() == val) {
2605 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2606#ifdef CONFIG_DEBUG_PREEMPT
2607 current->preempt_disable_ip = ip;
2608#endif
2609 trace_preempt_off(CALLER_ADDR0, ip);
2610 }
1da177e4 2611}
bdb43806 2612EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2613NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2614
edafe3a5 2615void preempt_count_sub(int val)
1da177e4 2616{
6cd8a4bb 2617#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2618 /*
2619 * Underflow?
2620 */
01e3eb82 2621 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2622 return;
1da177e4
LT
2623 /*
2624 * Is the spinlock portion underflowing?
2625 */
9a11b49a
IM
2626 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2627 !(preempt_count() & PREEMPT_MASK)))
2628 return;
6cd8a4bb 2629#endif
9a11b49a 2630
6cd8a4bb
SR
2631 if (preempt_count() == val)
2632 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2633 __preempt_count_sub(val);
1da177e4 2634}
bdb43806 2635EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2636NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2637
2638#endif
2639
2640/*
dd41f596 2641 * Print scheduling while atomic bug:
1da177e4 2642 */
dd41f596 2643static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2644{
664dfa65
DJ
2645 if (oops_in_progress)
2646 return;
2647
3df0fc5b
PZ
2648 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2649 prev->comm, prev->pid, preempt_count());
838225b4 2650
dd41f596 2651 debug_show_held_locks(prev);
e21f5b15 2652 print_modules();
dd41f596
IM
2653 if (irqs_disabled())
2654 print_irqtrace_events(prev);
8f47b187
TG
2655#ifdef CONFIG_DEBUG_PREEMPT
2656 if (in_atomic_preempt_off()) {
2657 pr_err("Preemption disabled at:");
2658 print_ip_sym(current->preempt_disable_ip);
2659 pr_cont("\n");
2660 }
2661#endif
6135fc1e 2662 dump_stack();
373d4d09 2663 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2664}
1da177e4 2665
dd41f596
IM
2666/*
2667 * Various schedule()-time debugging checks and statistics:
2668 */
2669static inline void schedule_debug(struct task_struct *prev)
2670{
0d9e2632
AT
2671#ifdef CONFIG_SCHED_STACK_END_CHECK
2672 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2673#endif
1da177e4 2674 /*
41a2d6cf 2675 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2676 * schedule() atomically, we ignore that path. Otherwise whine
2677 * if we are scheduling when we should not.
1da177e4 2678 */
192301e7 2679 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2680 __schedule_bug(prev);
b3fbab05 2681 rcu_sleep_check();
dd41f596 2682
1da177e4
LT
2683 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2684
2d72376b 2685 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2686}
2687
2688/*
2689 * Pick up the highest-prio task:
2690 */
2691static inline struct task_struct *
606dba2e 2692pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2693{
37e117c0 2694 const struct sched_class *class = &fair_sched_class;
dd41f596 2695 struct task_struct *p;
1da177e4
LT
2696
2697 /*
dd41f596
IM
2698 * Optimization: we know that if all tasks are in
2699 * the fair class we can call that function directly:
1da177e4 2700 */
37e117c0 2701 if (likely(prev->sched_class == class &&
38033c37 2702 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2703 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2704 if (unlikely(p == RETRY_TASK))
2705 goto again;
2706
2707 /* assumes fair_sched_class->next == idle_sched_class */
2708 if (unlikely(!p))
2709 p = idle_sched_class.pick_next_task(rq, prev);
2710
2711 return p;
1da177e4
LT
2712 }
2713
37e117c0 2714again:
34f971f6 2715 for_each_class(class) {
606dba2e 2716 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2717 if (p) {
2718 if (unlikely(p == RETRY_TASK))
2719 goto again;
dd41f596 2720 return p;
37e117c0 2721 }
dd41f596 2722 }
34f971f6
PZ
2723
2724 BUG(); /* the idle class will always have a runnable task */
dd41f596 2725}
1da177e4 2726
dd41f596 2727/*
c259e01a 2728 * __schedule() is the main scheduler function.
edde96ea
PE
2729 *
2730 * The main means of driving the scheduler and thus entering this function are:
2731 *
2732 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2733 *
2734 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2735 * paths. For example, see arch/x86/entry_64.S.
2736 *
2737 * To drive preemption between tasks, the scheduler sets the flag in timer
2738 * interrupt handler scheduler_tick().
2739 *
2740 * 3. Wakeups don't really cause entry into schedule(). They add a
2741 * task to the run-queue and that's it.
2742 *
2743 * Now, if the new task added to the run-queue preempts the current
2744 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2745 * called on the nearest possible occasion:
2746 *
2747 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2748 *
2749 * - in syscall or exception context, at the next outmost
2750 * preempt_enable(). (this might be as soon as the wake_up()'s
2751 * spin_unlock()!)
2752 *
2753 * - in IRQ context, return from interrupt-handler to
2754 * preemptible context
2755 *
2756 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2757 * then at the next:
2758 *
2759 * - cond_resched() call
2760 * - explicit schedule() call
2761 * - return from syscall or exception to user-space
2762 * - return from interrupt-handler to user-space
dd41f596 2763 */
c259e01a 2764static void __sched __schedule(void)
dd41f596
IM
2765{
2766 struct task_struct *prev, *next;
67ca7bde 2767 unsigned long *switch_count;
dd41f596 2768 struct rq *rq;
31656519 2769 int cpu;
dd41f596 2770
ff743345
PZ
2771need_resched:
2772 preempt_disable();
dd41f596
IM
2773 cpu = smp_processor_id();
2774 rq = cpu_rq(cpu);
38200cf2 2775 rcu_note_context_switch();
dd41f596 2776 prev = rq->curr;
dd41f596 2777
dd41f596 2778 schedule_debug(prev);
1da177e4 2779
31656519 2780 if (sched_feat(HRTICK))
f333fdc9 2781 hrtick_clear(rq);
8f4d37ec 2782
e0acd0a6
ON
2783 /*
2784 * Make sure that signal_pending_state()->signal_pending() below
2785 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2786 * done by the caller to avoid the race with signal_wake_up().
2787 */
2788 smp_mb__before_spinlock();
05fa785c 2789 raw_spin_lock_irq(&rq->lock);
1da177e4 2790
9edfbfed
PZ
2791 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2792
246d86b5 2793 switch_count = &prev->nivcsw;
1da177e4 2794 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2795 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2796 prev->state = TASK_RUNNING;
21aa9af0 2797 } else {
2acca55e
PZ
2798 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2799 prev->on_rq = 0;
2800
21aa9af0 2801 /*
2acca55e
PZ
2802 * If a worker went to sleep, notify and ask workqueue
2803 * whether it wants to wake up a task to maintain
2804 * concurrency.
21aa9af0
TH
2805 */
2806 if (prev->flags & PF_WQ_WORKER) {
2807 struct task_struct *to_wakeup;
2808
2809 to_wakeup = wq_worker_sleeping(prev, cpu);
2810 if (to_wakeup)
2811 try_to_wake_up_local(to_wakeup);
2812 }
21aa9af0 2813 }
dd41f596 2814 switch_count = &prev->nvcsw;
1da177e4
LT
2815 }
2816
9edfbfed 2817 if (task_on_rq_queued(prev))
606dba2e
PZ
2818 update_rq_clock(rq);
2819
2820 next = pick_next_task(rq, prev);
f26f9aff 2821 clear_tsk_need_resched(prev);
f27dde8d 2822 clear_preempt_need_resched();
9edfbfed 2823 rq->clock_skip_update = 0;
1da177e4 2824
1da177e4 2825 if (likely(prev != next)) {
1da177e4
LT
2826 rq->nr_switches++;
2827 rq->curr = next;
2828 ++*switch_count;
2829
dfa50b60
ON
2830 rq = context_switch(rq, prev, next); /* unlocks the rq */
2831 cpu = cpu_of(rq);
1da177e4 2832 } else
05fa785c 2833 raw_spin_unlock_irq(&rq->lock);
1da177e4 2834
3f029d3c 2835 post_schedule(rq);
1da177e4 2836
ba74c144 2837 sched_preempt_enable_no_resched();
ff743345 2838 if (need_resched())
1da177e4
LT
2839 goto need_resched;
2840}
c259e01a 2841
9c40cef2
TG
2842static inline void sched_submit_work(struct task_struct *tsk)
2843{
3c7d5184 2844 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2845 return;
2846 /*
2847 * If we are going to sleep and we have plugged IO queued,
2848 * make sure to submit it to avoid deadlocks.
2849 */
2850 if (blk_needs_flush_plug(tsk))
2851 blk_schedule_flush_plug(tsk);
2852}
2853
722a9f92 2854asmlinkage __visible void __sched schedule(void)
c259e01a 2855{
9c40cef2
TG
2856 struct task_struct *tsk = current;
2857
2858 sched_submit_work(tsk);
c259e01a
TG
2859 __schedule();
2860}
1da177e4
LT
2861EXPORT_SYMBOL(schedule);
2862
91d1aa43 2863#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2864asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2865{
2866 /*
2867 * If we come here after a random call to set_need_resched(),
2868 * or we have been woken up remotely but the IPI has not yet arrived,
2869 * we haven't yet exited the RCU idle mode. Do it here manually until
2870 * we find a better solution.
7cc78f8f
AL
2871 *
2872 * NB: There are buggy callers of this function. Ideally we
2873 * should warn if prev_state != IN_USER, but that will trigger
2874 * too frequently to make sense yet.
20ab65e3 2875 */
7cc78f8f 2876 enum ctx_state prev_state = exception_enter();
20ab65e3 2877 schedule();
7cc78f8f 2878 exception_exit(prev_state);
20ab65e3
FW
2879}
2880#endif
2881
c5491ea7
TG
2882/**
2883 * schedule_preempt_disabled - called with preemption disabled
2884 *
2885 * Returns with preemption disabled. Note: preempt_count must be 1
2886 */
2887void __sched schedule_preempt_disabled(void)
2888{
ba74c144 2889 sched_preempt_enable_no_resched();
c5491ea7
TG
2890 schedule();
2891 preempt_disable();
2892}
2893
a18b5d01
FW
2894static void preempt_schedule_common(void)
2895{
2896 do {
2897 __preempt_count_add(PREEMPT_ACTIVE);
2898 __schedule();
2899 __preempt_count_sub(PREEMPT_ACTIVE);
2900
2901 /*
2902 * Check again in case we missed a preemption opportunity
2903 * between schedule and now.
2904 */
2905 barrier();
2906 } while (need_resched());
2907}
2908
1da177e4
LT
2909#ifdef CONFIG_PREEMPT
2910/*
2ed6e34f 2911 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2912 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2913 * occur there and call schedule directly.
2914 */
722a9f92 2915asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2916{
1da177e4
LT
2917 /*
2918 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2919 * we do not want to preempt the current task. Just return..
1da177e4 2920 */
fbb00b56 2921 if (likely(!preemptible()))
1da177e4
LT
2922 return;
2923
a18b5d01 2924 preempt_schedule_common();
1da177e4 2925}
376e2424 2926NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2927EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2928
2929#ifdef CONFIG_CONTEXT_TRACKING
2930/**
2931 * preempt_schedule_context - preempt_schedule called by tracing
2932 *
2933 * The tracing infrastructure uses preempt_enable_notrace to prevent
2934 * recursion and tracing preempt enabling caused by the tracing
2935 * infrastructure itself. But as tracing can happen in areas coming
2936 * from userspace or just about to enter userspace, a preempt enable
2937 * can occur before user_exit() is called. This will cause the scheduler
2938 * to be called when the system is still in usermode.
2939 *
2940 * To prevent this, the preempt_enable_notrace will use this function
2941 * instead of preempt_schedule() to exit user context if needed before
2942 * calling the scheduler.
2943 */
2944asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2945{
2946 enum ctx_state prev_ctx;
2947
2948 if (likely(!preemptible()))
2949 return;
2950
2951 do {
2952 __preempt_count_add(PREEMPT_ACTIVE);
2953 /*
2954 * Needs preempt disabled in case user_exit() is traced
2955 * and the tracer calls preempt_enable_notrace() causing
2956 * an infinite recursion.
2957 */
2958 prev_ctx = exception_enter();
2959 __schedule();
2960 exception_exit(prev_ctx);
2961
2962 __preempt_count_sub(PREEMPT_ACTIVE);
2963 barrier();
2964 } while (need_resched());
2965}
2966EXPORT_SYMBOL_GPL(preempt_schedule_context);
2967#endif /* CONFIG_CONTEXT_TRACKING */
2968
32e475d7 2969#endif /* CONFIG_PREEMPT */
1da177e4
LT
2970
2971/*
2ed6e34f 2972 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2973 * off of irq context.
2974 * Note, that this is called and return with irqs disabled. This will
2975 * protect us against recursive calling from irq.
2976 */
722a9f92 2977asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2978{
b22366cd 2979 enum ctx_state prev_state;
6478d880 2980
2ed6e34f 2981 /* Catch callers which need to be fixed */
f27dde8d 2982 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2983
b22366cd
FW
2984 prev_state = exception_enter();
2985
3a5c359a 2986 do {
bdb43806 2987 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2988 local_irq_enable();
c259e01a 2989 __schedule();
3a5c359a 2990 local_irq_disable();
bdb43806 2991 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2992
3a5c359a
AK
2993 /*
2994 * Check again in case we missed a preemption opportunity
2995 * between schedule and now.
2996 */
2997 barrier();
5ed0cec0 2998 } while (need_resched());
b22366cd
FW
2999
3000 exception_exit(prev_state);
1da177e4
LT
3001}
3002
63859d4f 3003int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3004 void *key)
1da177e4 3005{
63859d4f 3006 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3007}
1da177e4
LT
3008EXPORT_SYMBOL(default_wake_function);
3009
b29739f9
IM
3010#ifdef CONFIG_RT_MUTEXES
3011
3012/*
3013 * rt_mutex_setprio - set the current priority of a task
3014 * @p: task
3015 * @prio: prio value (kernel-internal form)
3016 *
3017 * This function changes the 'effective' priority of a task. It does
3018 * not touch ->normal_prio like __setscheduler().
3019 *
c365c292
TG
3020 * Used by the rt_mutex code to implement priority inheritance
3021 * logic. Call site only calls if the priority of the task changed.
b29739f9 3022 */
36c8b586 3023void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3024{
da0c1e65 3025 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3026 struct rq *rq;
83ab0aa0 3027 const struct sched_class *prev_class;
b29739f9 3028
aab03e05 3029 BUG_ON(prio > MAX_PRIO);
b29739f9 3030
0122ec5b 3031 rq = __task_rq_lock(p);
b29739f9 3032
1c4dd99b
TG
3033 /*
3034 * Idle task boosting is a nono in general. There is one
3035 * exception, when PREEMPT_RT and NOHZ is active:
3036 *
3037 * The idle task calls get_next_timer_interrupt() and holds
3038 * the timer wheel base->lock on the CPU and another CPU wants
3039 * to access the timer (probably to cancel it). We can safely
3040 * ignore the boosting request, as the idle CPU runs this code
3041 * with interrupts disabled and will complete the lock
3042 * protected section without being interrupted. So there is no
3043 * real need to boost.
3044 */
3045 if (unlikely(p == rq->idle)) {
3046 WARN_ON(p != rq->curr);
3047 WARN_ON(p->pi_blocked_on);
3048 goto out_unlock;
3049 }
3050
a8027073 3051 trace_sched_pi_setprio(p, prio);
d5f9f942 3052 oldprio = p->prio;
83ab0aa0 3053 prev_class = p->sched_class;
da0c1e65 3054 queued = task_on_rq_queued(p);
051a1d1a 3055 running = task_current(rq, p);
da0c1e65 3056 if (queued)
69be72c1 3057 dequeue_task(rq, p, 0);
0e1f3483 3058 if (running)
f3cd1c4e 3059 put_prev_task(rq, p);
dd41f596 3060
2d3d891d
DF
3061 /*
3062 * Boosting condition are:
3063 * 1. -rt task is running and holds mutex A
3064 * --> -dl task blocks on mutex A
3065 *
3066 * 2. -dl task is running and holds mutex A
3067 * --> -dl task blocks on mutex A and could preempt the
3068 * running task
3069 */
3070 if (dl_prio(prio)) {
466af29b
ON
3071 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3072 if (!dl_prio(p->normal_prio) ||
3073 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3074 p->dl.dl_boosted = 1;
3075 p->dl.dl_throttled = 0;
3076 enqueue_flag = ENQUEUE_REPLENISH;
3077 } else
3078 p->dl.dl_boosted = 0;
aab03e05 3079 p->sched_class = &dl_sched_class;
2d3d891d
DF
3080 } else if (rt_prio(prio)) {
3081 if (dl_prio(oldprio))
3082 p->dl.dl_boosted = 0;
3083 if (oldprio < prio)
3084 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3085 p->sched_class = &rt_sched_class;
2d3d891d
DF
3086 } else {
3087 if (dl_prio(oldprio))
3088 p->dl.dl_boosted = 0;
dd41f596 3089 p->sched_class = &fair_sched_class;
2d3d891d 3090 }
dd41f596 3091
b29739f9
IM
3092 p->prio = prio;
3093
0e1f3483
HS
3094 if (running)
3095 p->sched_class->set_curr_task(rq);
da0c1e65 3096 if (queued)
2d3d891d 3097 enqueue_task(rq, p, enqueue_flag);
cb469845 3098
da7a735e 3099 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3100out_unlock:
0122ec5b 3101 __task_rq_unlock(rq);
b29739f9 3102}
b29739f9 3103#endif
d50dde5a 3104
36c8b586 3105void set_user_nice(struct task_struct *p, long nice)
1da177e4 3106{
da0c1e65 3107 int old_prio, delta, queued;
1da177e4 3108 unsigned long flags;
70b97a7f 3109 struct rq *rq;
1da177e4 3110
75e45d51 3111 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3112 return;
3113 /*
3114 * We have to be careful, if called from sys_setpriority(),
3115 * the task might be in the middle of scheduling on another CPU.
3116 */
3117 rq = task_rq_lock(p, &flags);
3118 /*
3119 * The RT priorities are set via sched_setscheduler(), but we still
3120 * allow the 'normal' nice value to be set - but as expected
3121 * it wont have any effect on scheduling until the task is
aab03e05 3122 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3123 */
aab03e05 3124 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3125 p->static_prio = NICE_TO_PRIO(nice);
3126 goto out_unlock;
3127 }
da0c1e65
KT
3128 queued = task_on_rq_queued(p);
3129 if (queued)
69be72c1 3130 dequeue_task(rq, p, 0);
1da177e4 3131
1da177e4 3132 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3133 set_load_weight(p);
b29739f9
IM
3134 old_prio = p->prio;
3135 p->prio = effective_prio(p);
3136 delta = p->prio - old_prio;
1da177e4 3137
da0c1e65 3138 if (queued) {
371fd7e7 3139 enqueue_task(rq, p, 0);
1da177e4 3140 /*
d5f9f942
AM
3141 * If the task increased its priority or is running and
3142 * lowered its priority, then reschedule its CPU:
1da177e4 3143 */
d5f9f942 3144 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3145 resched_curr(rq);
1da177e4
LT
3146 }
3147out_unlock:
0122ec5b 3148 task_rq_unlock(rq, p, &flags);
1da177e4 3149}
1da177e4
LT
3150EXPORT_SYMBOL(set_user_nice);
3151
e43379f1
MM
3152/*
3153 * can_nice - check if a task can reduce its nice value
3154 * @p: task
3155 * @nice: nice value
3156 */
36c8b586 3157int can_nice(const struct task_struct *p, const int nice)
e43379f1 3158{
024f4747 3159 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3160 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3161
78d7d407 3162 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3163 capable(CAP_SYS_NICE));
3164}
3165
1da177e4
LT
3166#ifdef __ARCH_WANT_SYS_NICE
3167
3168/*
3169 * sys_nice - change the priority of the current process.
3170 * @increment: priority increment
3171 *
3172 * sys_setpriority is a more generic, but much slower function that
3173 * does similar things.
3174 */
5add95d4 3175SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3176{
48f24c4d 3177 long nice, retval;
1da177e4
LT
3178
3179 /*
3180 * Setpriority might change our priority at the same moment.
3181 * We don't have to worry. Conceptually one call occurs first
3182 * and we have a single winner.
3183 */
a9467fa3 3184 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3185 nice = task_nice(current) + increment;
1da177e4 3186
a9467fa3 3187 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3188 if (increment < 0 && !can_nice(current, nice))
3189 return -EPERM;
3190
1da177e4
LT
3191 retval = security_task_setnice(current, nice);
3192 if (retval)
3193 return retval;
3194
3195 set_user_nice(current, nice);
3196 return 0;
3197}
3198
3199#endif
3200
3201/**
3202 * task_prio - return the priority value of a given task.
3203 * @p: the task in question.
3204 *
e69f6186 3205 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3206 * RT tasks are offset by -200. Normal tasks are centered
3207 * around 0, value goes from -16 to +15.
3208 */
36c8b586 3209int task_prio(const struct task_struct *p)
1da177e4
LT
3210{
3211 return p->prio - MAX_RT_PRIO;
3212}
3213
1da177e4
LT
3214/**
3215 * idle_cpu - is a given cpu idle currently?
3216 * @cpu: the processor in question.
e69f6186
YB
3217 *
3218 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3219 */
3220int idle_cpu(int cpu)
3221{
908a3283
TG
3222 struct rq *rq = cpu_rq(cpu);
3223
3224 if (rq->curr != rq->idle)
3225 return 0;
3226
3227 if (rq->nr_running)
3228 return 0;
3229
3230#ifdef CONFIG_SMP
3231 if (!llist_empty(&rq->wake_list))
3232 return 0;
3233#endif
3234
3235 return 1;
1da177e4
LT
3236}
3237
1da177e4
LT
3238/**
3239 * idle_task - return the idle task for a given cpu.
3240 * @cpu: the processor in question.
e69f6186
YB
3241 *
3242 * Return: The idle task for the cpu @cpu.
1da177e4 3243 */
36c8b586 3244struct task_struct *idle_task(int cpu)
1da177e4
LT
3245{
3246 return cpu_rq(cpu)->idle;
3247}
3248
3249/**
3250 * find_process_by_pid - find a process with a matching PID value.
3251 * @pid: the pid in question.
e69f6186
YB
3252 *
3253 * The task of @pid, if found. %NULL otherwise.
1da177e4 3254 */
a9957449 3255static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3256{
228ebcbe 3257 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3258}
3259
aab03e05
DF
3260/*
3261 * This function initializes the sched_dl_entity of a newly becoming
3262 * SCHED_DEADLINE task.
3263 *
3264 * Only the static values are considered here, the actual runtime and the
3265 * absolute deadline will be properly calculated when the task is enqueued
3266 * for the first time with its new policy.
3267 */
3268static void
3269__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3270{
3271 struct sched_dl_entity *dl_se = &p->dl;
3272
aab03e05
DF
3273 dl_se->dl_runtime = attr->sched_runtime;
3274 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3275 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3276 dl_se->flags = attr->sched_flags;
332ac17e 3277 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3278
3279 /*
3280 * Changing the parameters of a task is 'tricky' and we're not doing
3281 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3282 *
3283 * What we SHOULD do is delay the bandwidth release until the 0-lag
3284 * point. This would include retaining the task_struct until that time
3285 * and change dl_overflow() to not immediately decrement the current
3286 * amount.
3287 *
3288 * Instead we retain the current runtime/deadline and let the new
3289 * parameters take effect after the current reservation period lapses.
3290 * This is safe (albeit pessimistic) because the 0-lag point is always
3291 * before the current scheduling deadline.
3292 *
3293 * We can still have temporary overloads because we do not delay the
3294 * change in bandwidth until that time; so admission control is
3295 * not on the safe side. It does however guarantee tasks will never
3296 * consume more than promised.
3297 */
aab03e05
DF
3298}
3299
c13db6b1
SR
3300/*
3301 * sched_setparam() passes in -1 for its policy, to let the functions
3302 * it calls know not to change it.
3303 */
3304#define SETPARAM_POLICY -1
3305
c365c292
TG
3306static void __setscheduler_params(struct task_struct *p,
3307 const struct sched_attr *attr)
1da177e4 3308{
d50dde5a
DF
3309 int policy = attr->sched_policy;
3310
c13db6b1 3311 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3312 policy = p->policy;
3313
1da177e4 3314 p->policy = policy;
d50dde5a 3315
aab03e05
DF
3316 if (dl_policy(policy))
3317 __setparam_dl(p, attr);
39fd8fd2 3318 else if (fair_policy(policy))
d50dde5a
DF
3319 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3320
39fd8fd2
PZ
3321 /*
3322 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3323 * !rt_policy. Always setting this ensures that things like
3324 * getparam()/getattr() don't report silly values for !rt tasks.
3325 */
3326 p->rt_priority = attr->sched_priority;
383afd09 3327 p->normal_prio = normal_prio(p);
c365c292
TG
3328 set_load_weight(p);
3329}
39fd8fd2 3330
c365c292
TG
3331/* Actually do priority change: must hold pi & rq lock. */
3332static void __setscheduler(struct rq *rq, struct task_struct *p,
3333 const struct sched_attr *attr)
3334{
3335 __setscheduler_params(p, attr);
d50dde5a 3336
383afd09
SR
3337 /*
3338 * If we get here, there was no pi waiters boosting the
3339 * task. It is safe to use the normal prio.
3340 */
3341 p->prio = normal_prio(p);
3342
aab03e05
DF
3343 if (dl_prio(p->prio))
3344 p->sched_class = &dl_sched_class;
3345 else if (rt_prio(p->prio))
ffd44db5
PZ
3346 p->sched_class = &rt_sched_class;
3347 else
3348 p->sched_class = &fair_sched_class;
1da177e4 3349}
aab03e05
DF
3350
3351static void
3352__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3353{
3354 struct sched_dl_entity *dl_se = &p->dl;
3355
3356 attr->sched_priority = p->rt_priority;
3357 attr->sched_runtime = dl_se->dl_runtime;
3358 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3359 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3360 attr->sched_flags = dl_se->flags;
3361}
3362
3363/*
3364 * This function validates the new parameters of a -deadline task.
3365 * We ask for the deadline not being zero, and greater or equal
755378a4 3366 * than the runtime, as well as the period of being zero or
332ac17e 3367 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3368 * user parameters are above the internal resolution of 1us (we
3369 * check sched_runtime only since it is always the smaller one) and
3370 * below 2^63 ns (we have to check both sched_deadline and
3371 * sched_period, as the latter can be zero).
aab03e05
DF
3372 */
3373static bool
3374__checkparam_dl(const struct sched_attr *attr)
3375{
b0827819
JL
3376 /* deadline != 0 */
3377 if (attr->sched_deadline == 0)
3378 return false;
3379
3380 /*
3381 * Since we truncate DL_SCALE bits, make sure we're at least
3382 * that big.
3383 */
3384 if (attr->sched_runtime < (1ULL << DL_SCALE))
3385 return false;
3386
3387 /*
3388 * Since we use the MSB for wrap-around and sign issues, make
3389 * sure it's not set (mind that period can be equal to zero).
3390 */
3391 if (attr->sched_deadline & (1ULL << 63) ||
3392 attr->sched_period & (1ULL << 63))
3393 return false;
3394
3395 /* runtime <= deadline <= period (if period != 0) */
3396 if ((attr->sched_period != 0 &&
3397 attr->sched_period < attr->sched_deadline) ||
3398 attr->sched_deadline < attr->sched_runtime)
3399 return false;
3400
3401 return true;
aab03e05
DF
3402}
3403
c69e8d9c
DH
3404/*
3405 * check the target process has a UID that matches the current process's
3406 */
3407static bool check_same_owner(struct task_struct *p)
3408{
3409 const struct cred *cred = current_cred(), *pcred;
3410 bool match;
3411
3412 rcu_read_lock();
3413 pcred = __task_cred(p);
9c806aa0
EB
3414 match = (uid_eq(cred->euid, pcred->euid) ||
3415 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3416 rcu_read_unlock();
3417 return match;
3418}
3419
d50dde5a
DF
3420static int __sched_setscheduler(struct task_struct *p,
3421 const struct sched_attr *attr,
3422 bool user)
1da177e4 3423{
383afd09
SR
3424 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3425 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3426 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3427 int policy = attr->sched_policy;
1da177e4 3428 unsigned long flags;
83ab0aa0 3429 const struct sched_class *prev_class;
70b97a7f 3430 struct rq *rq;
ca94c442 3431 int reset_on_fork;
1da177e4 3432
66e5393a
SR
3433 /* may grab non-irq protected spin_locks */
3434 BUG_ON(in_interrupt());
1da177e4
LT
3435recheck:
3436 /* double check policy once rq lock held */
ca94c442
LP
3437 if (policy < 0) {
3438 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3439 policy = oldpolicy = p->policy;
ca94c442 3440 } else {
7479f3c9 3441 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3442
aab03e05
DF
3443 if (policy != SCHED_DEADLINE &&
3444 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3445 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3446 policy != SCHED_IDLE)
3447 return -EINVAL;
3448 }
3449
7479f3c9
PZ
3450 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3451 return -EINVAL;
3452
1da177e4
LT
3453 /*
3454 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3455 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3456 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3457 */
0bb040a4 3458 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3459 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3460 return -EINVAL;
aab03e05
DF
3461 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3462 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3463 return -EINVAL;
3464
37e4ab3f
OC
3465 /*
3466 * Allow unprivileged RT tasks to decrease priority:
3467 */
961ccddd 3468 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3469 if (fair_policy(policy)) {
d0ea0268 3470 if (attr->sched_nice < task_nice(p) &&
eaad4513 3471 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3472 return -EPERM;
3473 }
3474
e05606d3 3475 if (rt_policy(policy)) {
a44702e8
ON
3476 unsigned long rlim_rtprio =
3477 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3478
3479 /* can't set/change the rt policy */
3480 if (policy != p->policy && !rlim_rtprio)
3481 return -EPERM;
3482
3483 /* can't increase priority */
d50dde5a
DF
3484 if (attr->sched_priority > p->rt_priority &&
3485 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3486 return -EPERM;
3487 }
c02aa73b 3488
d44753b8
JL
3489 /*
3490 * Can't set/change SCHED_DEADLINE policy at all for now
3491 * (safest behavior); in the future we would like to allow
3492 * unprivileged DL tasks to increase their relative deadline
3493 * or reduce their runtime (both ways reducing utilization)
3494 */
3495 if (dl_policy(policy))
3496 return -EPERM;
3497
dd41f596 3498 /*
c02aa73b
DH
3499 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3500 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3501 */
c02aa73b 3502 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3503 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3504 return -EPERM;
3505 }
5fe1d75f 3506
37e4ab3f 3507 /* can't change other user's priorities */
c69e8d9c 3508 if (!check_same_owner(p))
37e4ab3f 3509 return -EPERM;
ca94c442
LP
3510
3511 /* Normal users shall not reset the sched_reset_on_fork flag */
3512 if (p->sched_reset_on_fork && !reset_on_fork)
3513 return -EPERM;
37e4ab3f 3514 }
1da177e4 3515
725aad24 3516 if (user) {
b0ae1981 3517 retval = security_task_setscheduler(p);
725aad24
JF
3518 if (retval)
3519 return retval;
3520 }
3521
b29739f9
IM
3522 /*
3523 * make sure no PI-waiters arrive (or leave) while we are
3524 * changing the priority of the task:
0122ec5b 3525 *
25985edc 3526 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3527 * runqueue lock must be held.
3528 */
0122ec5b 3529 rq = task_rq_lock(p, &flags);
dc61b1d6 3530
34f971f6
PZ
3531 /*
3532 * Changing the policy of the stop threads its a very bad idea
3533 */
3534 if (p == rq->stop) {
0122ec5b 3535 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3536 return -EINVAL;
3537 }
3538
a51e9198 3539 /*
d6b1e911
TG
3540 * If not changing anything there's no need to proceed further,
3541 * but store a possible modification of reset_on_fork.
a51e9198 3542 */
d50dde5a 3543 if (unlikely(policy == p->policy)) {
d0ea0268 3544 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3545 goto change;
3546 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3547 goto change;
aab03e05
DF
3548 if (dl_policy(policy))
3549 goto change;
d50dde5a 3550
d6b1e911 3551 p->sched_reset_on_fork = reset_on_fork;
45afb173 3552 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3553 return 0;
3554 }
d50dde5a 3555change:
a51e9198 3556
dc61b1d6 3557 if (user) {
332ac17e 3558#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3559 /*
3560 * Do not allow realtime tasks into groups that have no runtime
3561 * assigned.
3562 */
3563 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3564 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3565 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3566 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3567 return -EPERM;
3568 }
dc61b1d6 3569#endif
332ac17e
DF
3570#ifdef CONFIG_SMP
3571 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3572 cpumask_t *span = rq->rd->span;
332ac17e
DF
3573
3574 /*
3575 * Don't allow tasks with an affinity mask smaller than
3576 * the entire root_domain to become SCHED_DEADLINE. We
3577 * will also fail if there's no bandwidth available.
3578 */
e4099a5e
PZ
3579 if (!cpumask_subset(span, &p->cpus_allowed) ||
3580 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3581 task_rq_unlock(rq, p, &flags);
3582 return -EPERM;
3583 }
3584 }
3585#endif
3586 }
dc61b1d6 3587
1da177e4
LT
3588 /* recheck policy now with rq lock held */
3589 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3590 policy = oldpolicy = -1;
0122ec5b 3591 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3592 goto recheck;
3593 }
332ac17e
DF
3594
3595 /*
3596 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3597 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3598 * is available.
3599 */
e4099a5e 3600 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3601 task_rq_unlock(rq, p, &flags);
3602 return -EBUSY;
3603 }
3604
c365c292
TG
3605 p->sched_reset_on_fork = reset_on_fork;
3606 oldprio = p->prio;
3607
3608 /*
3609 * Special case for priority boosted tasks.
3610 *
3611 * If the new priority is lower or equal (user space view)
3612 * than the current (boosted) priority, we just store the new
3613 * normal parameters and do not touch the scheduler class and
3614 * the runqueue. This will be done when the task deboost
3615 * itself.
3616 */
3617 if (rt_mutex_check_prio(p, newprio)) {
3618 __setscheduler_params(p, attr);
3619 task_rq_unlock(rq, p, &flags);
3620 return 0;
3621 }
3622
da0c1e65 3623 queued = task_on_rq_queued(p);
051a1d1a 3624 running = task_current(rq, p);
da0c1e65 3625 if (queued)
4ca9b72b 3626 dequeue_task(rq, p, 0);
0e1f3483 3627 if (running)
f3cd1c4e 3628 put_prev_task(rq, p);
f6b53205 3629
83ab0aa0 3630 prev_class = p->sched_class;
d50dde5a 3631 __setscheduler(rq, p, attr);
f6b53205 3632
0e1f3483
HS
3633 if (running)
3634 p->sched_class->set_curr_task(rq);
da0c1e65 3635 if (queued) {
81a44c54
TG
3636 /*
3637 * We enqueue to tail when the priority of a task is
3638 * increased (user space view).
3639 */
3640 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3641 }
cb469845 3642
da7a735e 3643 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3644 task_rq_unlock(rq, p, &flags);
b29739f9 3645
95e02ca9
TG
3646 rt_mutex_adjust_pi(p);
3647
1da177e4
LT
3648 return 0;
3649}
961ccddd 3650
7479f3c9
PZ
3651static int _sched_setscheduler(struct task_struct *p, int policy,
3652 const struct sched_param *param, bool check)
3653{
3654 struct sched_attr attr = {
3655 .sched_policy = policy,
3656 .sched_priority = param->sched_priority,
3657 .sched_nice = PRIO_TO_NICE(p->static_prio),
3658 };
3659
c13db6b1
SR
3660 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3661 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3662 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3663 policy &= ~SCHED_RESET_ON_FORK;
3664 attr.sched_policy = policy;
3665 }
3666
3667 return __sched_setscheduler(p, &attr, check);
3668}
961ccddd
RR
3669/**
3670 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3671 * @p: the task in question.
3672 * @policy: new policy.
3673 * @param: structure containing the new RT priority.
3674 *
e69f6186
YB
3675 * Return: 0 on success. An error code otherwise.
3676 *
961ccddd
RR
3677 * NOTE that the task may be already dead.
3678 */
3679int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3680 const struct sched_param *param)
961ccddd 3681{
7479f3c9 3682 return _sched_setscheduler(p, policy, param, true);
961ccddd 3683}
1da177e4
LT
3684EXPORT_SYMBOL_GPL(sched_setscheduler);
3685
d50dde5a
DF
3686int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3687{
3688 return __sched_setscheduler(p, attr, true);
3689}
3690EXPORT_SYMBOL_GPL(sched_setattr);
3691
961ccddd
RR
3692/**
3693 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3694 * @p: the task in question.
3695 * @policy: new policy.
3696 * @param: structure containing the new RT priority.
3697 *
3698 * Just like sched_setscheduler, only don't bother checking if the
3699 * current context has permission. For example, this is needed in
3700 * stop_machine(): we create temporary high priority worker threads,
3701 * but our caller might not have that capability.
e69f6186
YB
3702 *
3703 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3704 */
3705int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3706 const struct sched_param *param)
961ccddd 3707{
7479f3c9 3708 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3709}
3710
95cdf3b7
IM
3711static int
3712do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3713{
1da177e4
LT
3714 struct sched_param lparam;
3715 struct task_struct *p;
36c8b586 3716 int retval;
1da177e4
LT
3717
3718 if (!param || pid < 0)
3719 return -EINVAL;
3720 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3721 return -EFAULT;
5fe1d75f
ON
3722
3723 rcu_read_lock();
3724 retval = -ESRCH;
1da177e4 3725 p = find_process_by_pid(pid);
5fe1d75f
ON
3726 if (p != NULL)
3727 retval = sched_setscheduler(p, policy, &lparam);
3728 rcu_read_unlock();
36c8b586 3729
1da177e4
LT
3730 return retval;
3731}
3732
d50dde5a
DF
3733/*
3734 * Mimics kernel/events/core.c perf_copy_attr().
3735 */
3736static int sched_copy_attr(struct sched_attr __user *uattr,
3737 struct sched_attr *attr)
3738{
3739 u32 size;
3740 int ret;
3741
3742 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3743 return -EFAULT;
3744
3745 /*
3746 * zero the full structure, so that a short copy will be nice.
3747 */
3748 memset(attr, 0, sizeof(*attr));
3749
3750 ret = get_user(size, &uattr->size);
3751 if (ret)
3752 return ret;
3753
3754 if (size > PAGE_SIZE) /* silly large */
3755 goto err_size;
3756
3757 if (!size) /* abi compat */
3758 size = SCHED_ATTR_SIZE_VER0;
3759
3760 if (size < SCHED_ATTR_SIZE_VER0)
3761 goto err_size;
3762
3763 /*
3764 * If we're handed a bigger struct than we know of,
3765 * ensure all the unknown bits are 0 - i.e. new
3766 * user-space does not rely on any kernel feature
3767 * extensions we dont know about yet.
3768 */
3769 if (size > sizeof(*attr)) {
3770 unsigned char __user *addr;
3771 unsigned char __user *end;
3772 unsigned char val;
3773
3774 addr = (void __user *)uattr + sizeof(*attr);
3775 end = (void __user *)uattr + size;
3776
3777 for (; addr < end; addr++) {
3778 ret = get_user(val, addr);
3779 if (ret)
3780 return ret;
3781 if (val)
3782 goto err_size;
3783 }
3784 size = sizeof(*attr);
3785 }
3786
3787 ret = copy_from_user(attr, uattr, size);
3788 if (ret)
3789 return -EFAULT;
3790
3791 /*
3792 * XXX: do we want to be lenient like existing syscalls; or do we want
3793 * to be strict and return an error on out-of-bounds values?
3794 */
75e45d51 3795 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3796
e78c7bca 3797 return 0;
d50dde5a
DF
3798
3799err_size:
3800 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3801 return -E2BIG;
d50dde5a
DF
3802}
3803
1da177e4
LT
3804/**
3805 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3806 * @pid: the pid in question.
3807 * @policy: new policy.
3808 * @param: structure containing the new RT priority.
e69f6186
YB
3809 *
3810 * Return: 0 on success. An error code otherwise.
1da177e4 3811 */
5add95d4
HC
3812SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3813 struct sched_param __user *, param)
1da177e4 3814{
c21761f1
JB
3815 /* negative values for policy are not valid */
3816 if (policy < 0)
3817 return -EINVAL;
3818
1da177e4
LT
3819 return do_sched_setscheduler(pid, policy, param);
3820}
3821
3822/**
3823 * sys_sched_setparam - set/change the RT priority of a thread
3824 * @pid: the pid in question.
3825 * @param: structure containing the new RT priority.
e69f6186
YB
3826 *
3827 * Return: 0 on success. An error code otherwise.
1da177e4 3828 */
5add95d4 3829SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3830{
c13db6b1 3831 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3832}
3833
d50dde5a
DF
3834/**
3835 * sys_sched_setattr - same as above, but with extended sched_attr
3836 * @pid: the pid in question.
5778fccf 3837 * @uattr: structure containing the extended parameters.
db66d756 3838 * @flags: for future extension.
d50dde5a 3839 */
6d35ab48
PZ
3840SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3841 unsigned int, flags)
d50dde5a
DF
3842{
3843 struct sched_attr attr;
3844 struct task_struct *p;
3845 int retval;
3846
6d35ab48 3847 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3848 return -EINVAL;
3849
143cf23d
MK
3850 retval = sched_copy_attr(uattr, &attr);
3851 if (retval)
3852 return retval;
d50dde5a 3853
b14ed2c2 3854 if ((int)attr.sched_policy < 0)
dbdb2275 3855 return -EINVAL;
d50dde5a
DF
3856
3857 rcu_read_lock();
3858 retval = -ESRCH;
3859 p = find_process_by_pid(pid);
3860 if (p != NULL)
3861 retval = sched_setattr(p, &attr);
3862 rcu_read_unlock();
3863
3864 return retval;
3865}
3866
1da177e4
LT
3867/**
3868 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3869 * @pid: the pid in question.
e69f6186
YB
3870 *
3871 * Return: On success, the policy of the thread. Otherwise, a negative error
3872 * code.
1da177e4 3873 */
5add95d4 3874SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3875{
36c8b586 3876 struct task_struct *p;
3a5c359a 3877 int retval;
1da177e4
LT
3878
3879 if (pid < 0)
3a5c359a 3880 return -EINVAL;
1da177e4
LT
3881
3882 retval = -ESRCH;
5fe85be0 3883 rcu_read_lock();
1da177e4
LT
3884 p = find_process_by_pid(pid);
3885 if (p) {
3886 retval = security_task_getscheduler(p);
3887 if (!retval)
ca94c442
LP
3888 retval = p->policy
3889 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3890 }
5fe85be0 3891 rcu_read_unlock();
1da177e4
LT
3892 return retval;
3893}
3894
3895/**
ca94c442 3896 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3897 * @pid: the pid in question.
3898 * @param: structure containing the RT priority.
e69f6186
YB
3899 *
3900 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3901 * code.
1da177e4 3902 */
5add95d4 3903SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3904{
ce5f7f82 3905 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3906 struct task_struct *p;
3a5c359a 3907 int retval;
1da177e4
LT
3908
3909 if (!param || pid < 0)
3a5c359a 3910 return -EINVAL;
1da177e4 3911
5fe85be0 3912 rcu_read_lock();
1da177e4
LT
3913 p = find_process_by_pid(pid);
3914 retval = -ESRCH;
3915 if (!p)
3916 goto out_unlock;
3917
3918 retval = security_task_getscheduler(p);
3919 if (retval)
3920 goto out_unlock;
3921
ce5f7f82
PZ
3922 if (task_has_rt_policy(p))
3923 lp.sched_priority = p->rt_priority;
5fe85be0 3924 rcu_read_unlock();
1da177e4
LT
3925
3926 /*
3927 * This one might sleep, we cannot do it with a spinlock held ...
3928 */
3929 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3930
1da177e4
LT
3931 return retval;
3932
3933out_unlock:
5fe85be0 3934 rcu_read_unlock();
1da177e4
LT
3935 return retval;
3936}
3937
d50dde5a
DF
3938static int sched_read_attr(struct sched_attr __user *uattr,
3939 struct sched_attr *attr,
3940 unsigned int usize)
3941{
3942 int ret;
3943
3944 if (!access_ok(VERIFY_WRITE, uattr, usize))
3945 return -EFAULT;
3946
3947 /*
3948 * If we're handed a smaller struct than we know of,
3949 * ensure all the unknown bits are 0 - i.e. old
3950 * user-space does not get uncomplete information.
3951 */
3952 if (usize < sizeof(*attr)) {
3953 unsigned char *addr;
3954 unsigned char *end;
3955
3956 addr = (void *)attr + usize;
3957 end = (void *)attr + sizeof(*attr);
3958
3959 for (; addr < end; addr++) {
3960 if (*addr)
22400674 3961 return -EFBIG;
d50dde5a
DF
3962 }
3963
3964 attr->size = usize;
3965 }
3966
4efbc454 3967 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3968 if (ret)
3969 return -EFAULT;
3970
22400674 3971 return 0;
d50dde5a
DF
3972}
3973
3974/**
aab03e05 3975 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3976 * @pid: the pid in question.
5778fccf 3977 * @uattr: structure containing the extended parameters.
d50dde5a 3978 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3979 * @flags: for future extension.
d50dde5a 3980 */
6d35ab48
PZ
3981SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3982 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3983{
3984 struct sched_attr attr = {
3985 .size = sizeof(struct sched_attr),
3986 };
3987 struct task_struct *p;
3988 int retval;
3989
3990 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3991 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3992 return -EINVAL;
3993
3994 rcu_read_lock();
3995 p = find_process_by_pid(pid);
3996 retval = -ESRCH;
3997 if (!p)
3998 goto out_unlock;
3999
4000 retval = security_task_getscheduler(p);
4001 if (retval)
4002 goto out_unlock;
4003
4004 attr.sched_policy = p->policy;
7479f3c9
PZ
4005 if (p->sched_reset_on_fork)
4006 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4007 if (task_has_dl_policy(p))
4008 __getparam_dl(p, &attr);
4009 else if (task_has_rt_policy(p))
d50dde5a
DF
4010 attr.sched_priority = p->rt_priority;
4011 else
d0ea0268 4012 attr.sched_nice = task_nice(p);
d50dde5a
DF
4013
4014 rcu_read_unlock();
4015
4016 retval = sched_read_attr(uattr, &attr, size);
4017 return retval;
4018
4019out_unlock:
4020 rcu_read_unlock();
4021 return retval;
4022}
4023
96f874e2 4024long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4025{
5a16f3d3 4026 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4027 struct task_struct *p;
4028 int retval;
1da177e4 4029
23f5d142 4030 rcu_read_lock();
1da177e4
LT
4031
4032 p = find_process_by_pid(pid);
4033 if (!p) {
23f5d142 4034 rcu_read_unlock();
1da177e4
LT
4035 return -ESRCH;
4036 }
4037
23f5d142 4038 /* Prevent p going away */
1da177e4 4039 get_task_struct(p);
23f5d142 4040 rcu_read_unlock();
1da177e4 4041
14a40ffc
TH
4042 if (p->flags & PF_NO_SETAFFINITY) {
4043 retval = -EINVAL;
4044 goto out_put_task;
4045 }
5a16f3d3
RR
4046 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4047 retval = -ENOMEM;
4048 goto out_put_task;
4049 }
4050 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4051 retval = -ENOMEM;
4052 goto out_free_cpus_allowed;
4053 }
1da177e4 4054 retval = -EPERM;
4c44aaaf
EB
4055 if (!check_same_owner(p)) {
4056 rcu_read_lock();
4057 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4058 rcu_read_unlock();
16303ab2 4059 goto out_free_new_mask;
4c44aaaf
EB
4060 }
4061 rcu_read_unlock();
4062 }
1da177e4 4063
b0ae1981 4064 retval = security_task_setscheduler(p);
e7834f8f 4065 if (retval)
16303ab2 4066 goto out_free_new_mask;
e7834f8f 4067
e4099a5e
PZ
4068
4069 cpuset_cpus_allowed(p, cpus_allowed);
4070 cpumask_and(new_mask, in_mask, cpus_allowed);
4071
332ac17e
DF
4072 /*
4073 * Since bandwidth control happens on root_domain basis,
4074 * if admission test is enabled, we only admit -deadline
4075 * tasks allowed to run on all the CPUs in the task's
4076 * root_domain.
4077 */
4078#ifdef CONFIG_SMP
f1e3a093
KT
4079 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4080 rcu_read_lock();
4081 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4082 retval = -EBUSY;
f1e3a093 4083 rcu_read_unlock();
16303ab2 4084 goto out_free_new_mask;
332ac17e 4085 }
f1e3a093 4086 rcu_read_unlock();
332ac17e
DF
4087 }
4088#endif
49246274 4089again:
5a16f3d3 4090 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4091
8707d8b8 4092 if (!retval) {
5a16f3d3
RR
4093 cpuset_cpus_allowed(p, cpus_allowed);
4094 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4095 /*
4096 * We must have raced with a concurrent cpuset
4097 * update. Just reset the cpus_allowed to the
4098 * cpuset's cpus_allowed
4099 */
5a16f3d3 4100 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4101 goto again;
4102 }
4103 }
16303ab2 4104out_free_new_mask:
5a16f3d3
RR
4105 free_cpumask_var(new_mask);
4106out_free_cpus_allowed:
4107 free_cpumask_var(cpus_allowed);
4108out_put_task:
1da177e4 4109 put_task_struct(p);
1da177e4
LT
4110 return retval;
4111}
4112
4113static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4114 struct cpumask *new_mask)
1da177e4 4115{
96f874e2
RR
4116 if (len < cpumask_size())
4117 cpumask_clear(new_mask);
4118 else if (len > cpumask_size())
4119 len = cpumask_size();
4120
1da177e4
LT
4121 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4122}
4123
4124/**
4125 * sys_sched_setaffinity - set the cpu affinity of a process
4126 * @pid: pid of the process
4127 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4128 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4129 *
4130 * Return: 0 on success. An error code otherwise.
1da177e4 4131 */
5add95d4
HC
4132SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4133 unsigned long __user *, user_mask_ptr)
1da177e4 4134{
5a16f3d3 4135 cpumask_var_t new_mask;
1da177e4
LT
4136 int retval;
4137
5a16f3d3
RR
4138 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4139 return -ENOMEM;
1da177e4 4140
5a16f3d3
RR
4141 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4142 if (retval == 0)
4143 retval = sched_setaffinity(pid, new_mask);
4144 free_cpumask_var(new_mask);
4145 return retval;
1da177e4
LT
4146}
4147
96f874e2 4148long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4149{
36c8b586 4150 struct task_struct *p;
31605683 4151 unsigned long flags;
1da177e4 4152 int retval;
1da177e4 4153
23f5d142 4154 rcu_read_lock();
1da177e4
LT
4155
4156 retval = -ESRCH;
4157 p = find_process_by_pid(pid);
4158 if (!p)
4159 goto out_unlock;
4160
e7834f8f
DQ
4161 retval = security_task_getscheduler(p);
4162 if (retval)
4163 goto out_unlock;
4164
013fdb80 4165 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4166 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4167 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4168
4169out_unlock:
23f5d142 4170 rcu_read_unlock();
1da177e4 4171
9531b62f 4172 return retval;
1da177e4
LT
4173}
4174
4175/**
4176 * sys_sched_getaffinity - get the cpu affinity of a process
4177 * @pid: pid of the process
4178 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4179 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4180 *
4181 * Return: 0 on success. An error code otherwise.
1da177e4 4182 */
5add95d4
HC
4183SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4184 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4185{
4186 int ret;
f17c8607 4187 cpumask_var_t mask;
1da177e4 4188
84fba5ec 4189 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4190 return -EINVAL;
4191 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4192 return -EINVAL;
4193
f17c8607
RR
4194 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4195 return -ENOMEM;
1da177e4 4196
f17c8607
RR
4197 ret = sched_getaffinity(pid, mask);
4198 if (ret == 0) {
8bc037fb 4199 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4200
4201 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4202 ret = -EFAULT;
4203 else
cd3d8031 4204 ret = retlen;
f17c8607
RR
4205 }
4206 free_cpumask_var(mask);
1da177e4 4207
f17c8607 4208 return ret;
1da177e4
LT
4209}
4210
4211/**
4212 * sys_sched_yield - yield the current processor to other threads.
4213 *
dd41f596
IM
4214 * This function yields the current CPU to other tasks. If there are no
4215 * other threads running on this CPU then this function will return.
e69f6186
YB
4216 *
4217 * Return: 0.
1da177e4 4218 */
5add95d4 4219SYSCALL_DEFINE0(sched_yield)
1da177e4 4220{
70b97a7f 4221 struct rq *rq = this_rq_lock();
1da177e4 4222
2d72376b 4223 schedstat_inc(rq, yld_count);
4530d7ab 4224 current->sched_class->yield_task(rq);
1da177e4
LT
4225
4226 /*
4227 * Since we are going to call schedule() anyway, there's
4228 * no need to preempt or enable interrupts:
4229 */
4230 __release(rq->lock);
8a25d5de 4231 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4232 do_raw_spin_unlock(&rq->lock);
ba74c144 4233 sched_preempt_enable_no_resched();
1da177e4
LT
4234
4235 schedule();
4236
4237 return 0;
4238}
4239
02b67cc3 4240int __sched _cond_resched(void)
1da177e4 4241{
d86ee480 4242 if (should_resched()) {
a18b5d01 4243 preempt_schedule_common();
1da177e4
LT
4244 return 1;
4245 }
4246 return 0;
4247}
02b67cc3 4248EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4249
4250/*
613afbf8 4251 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4252 * call schedule, and on return reacquire the lock.
4253 *
41a2d6cf 4254 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4255 * operations here to prevent schedule() from being called twice (once via
4256 * spin_unlock(), once by hand).
4257 */
613afbf8 4258int __cond_resched_lock(spinlock_t *lock)
1da177e4 4259{
d86ee480 4260 int resched = should_resched();
6df3cecb
JK
4261 int ret = 0;
4262
f607c668
PZ
4263 lockdep_assert_held(lock);
4264
4a81e832 4265 if (spin_needbreak(lock) || resched) {
1da177e4 4266 spin_unlock(lock);
d86ee480 4267 if (resched)
a18b5d01 4268 preempt_schedule_common();
95c354fe
NP
4269 else
4270 cpu_relax();
6df3cecb 4271 ret = 1;
1da177e4 4272 spin_lock(lock);
1da177e4 4273 }
6df3cecb 4274 return ret;
1da177e4 4275}
613afbf8 4276EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4277
613afbf8 4278int __sched __cond_resched_softirq(void)
1da177e4
LT
4279{
4280 BUG_ON(!in_softirq());
4281
d86ee480 4282 if (should_resched()) {
98d82567 4283 local_bh_enable();
a18b5d01 4284 preempt_schedule_common();
1da177e4
LT
4285 local_bh_disable();
4286 return 1;
4287 }
4288 return 0;
4289}
613afbf8 4290EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4291
1da177e4
LT
4292/**
4293 * yield - yield the current processor to other threads.
4294 *
8e3fabfd
PZ
4295 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4296 *
4297 * The scheduler is at all times free to pick the calling task as the most
4298 * eligible task to run, if removing the yield() call from your code breaks
4299 * it, its already broken.
4300 *
4301 * Typical broken usage is:
4302 *
4303 * while (!event)
4304 * yield();
4305 *
4306 * where one assumes that yield() will let 'the other' process run that will
4307 * make event true. If the current task is a SCHED_FIFO task that will never
4308 * happen. Never use yield() as a progress guarantee!!
4309 *
4310 * If you want to use yield() to wait for something, use wait_event().
4311 * If you want to use yield() to be 'nice' for others, use cond_resched().
4312 * If you still want to use yield(), do not!
1da177e4
LT
4313 */
4314void __sched yield(void)
4315{
4316 set_current_state(TASK_RUNNING);
4317 sys_sched_yield();
4318}
1da177e4
LT
4319EXPORT_SYMBOL(yield);
4320
d95f4122
MG
4321/**
4322 * yield_to - yield the current processor to another thread in
4323 * your thread group, or accelerate that thread toward the
4324 * processor it's on.
16addf95
RD
4325 * @p: target task
4326 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4327 *
4328 * It's the caller's job to ensure that the target task struct
4329 * can't go away on us before we can do any checks.
4330 *
e69f6186 4331 * Return:
7b270f60
PZ
4332 * true (>0) if we indeed boosted the target task.
4333 * false (0) if we failed to boost the target.
4334 * -ESRCH if there's no task to yield to.
d95f4122 4335 */
fa93384f 4336int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4337{
4338 struct task_struct *curr = current;
4339 struct rq *rq, *p_rq;
4340 unsigned long flags;
c3c18640 4341 int yielded = 0;
d95f4122
MG
4342
4343 local_irq_save(flags);
4344 rq = this_rq();
4345
4346again:
4347 p_rq = task_rq(p);
7b270f60
PZ
4348 /*
4349 * If we're the only runnable task on the rq and target rq also
4350 * has only one task, there's absolutely no point in yielding.
4351 */
4352 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4353 yielded = -ESRCH;
4354 goto out_irq;
4355 }
4356
d95f4122 4357 double_rq_lock(rq, p_rq);
39e24d8f 4358 if (task_rq(p) != p_rq) {
d95f4122
MG
4359 double_rq_unlock(rq, p_rq);
4360 goto again;
4361 }
4362
4363 if (!curr->sched_class->yield_to_task)
7b270f60 4364 goto out_unlock;
d95f4122
MG
4365
4366 if (curr->sched_class != p->sched_class)
7b270f60 4367 goto out_unlock;
d95f4122
MG
4368
4369 if (task_running(p_rq, p) || p->state)
7b270f60 4370 goto out_unlock;
d95f4122
MG
4371
4372 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4373 if (yielded) {
d95f4122 4374 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4375 /*
4376 * Make p's CPU reschedule; pick_next_entity takes care of
4377 * fairness.
4378 */
4379 if (preempt && rq != p_rq)
8875125e 4380 resched_curr(p_rq);
6d1cafd8 4381 }
d95f4122 4382
7b270f60 4383out_unlock:
d95f4122 4384 double_rq_unlock(rq, p_rq);
7b270f60 4385out_irq:
d95f4122
MG
4386 local_irq_restore(flags);
4387
7b270f60 4388 if (yielded > 0)
d95f4122
MG
4389 schedule();
4390
4391 return yielded;
4392}
4393EXPORT_SYMBOL_GPL(yield_to);
4394
1da177e4 4395/*
41a2d6cf 4396 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4397 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4398 */
4399void __sched io_schedule(void)
4400{
54d35f29 4401 struct rq *rq = raw_rq();
1da177e4 4402
0ff92245 4403 delayacct_blkio_start();
1da177e4 4404 atomic_inc(&rq->nr_iowait);
73c10101 4405 blk_flush_plug(current);
8f0dfc34 4406 current->in_iowait = 1;
1da177e4 4407 schedule();
8f0dfc34 4408 current->in_iowait = 0;
1da177e4 4409 atomic_dec(&rq->nr_iowait);
0ff92245 4410 delayacct_blkio_end();
1da177e4 4411}
1da177e4
LT
4412EXPORT_SYMBOL(io_schedule);
4413
4414long __sched io_schedule_timeout(long timeout)
4415{
54d35f29 4416 struct rq *rq = raw_rq();
1da177e4
LT
4417 long ret;
4418
0ff92245 4419 delayacct_blkio_start();
1da177e4 4420 atomic_inc(&rq->nr_iowait);
73c10101 4421 blk_flush_plug(current);
8f0dfc34 4422 current->in_iowait = 1;
1da177e4 4423 ret = schedule_timeout(timeout);
8f0dfc34 4424 current->in_iowait = 0;
1da177e4 4425 atomic_dec(&rq->nr_iowait);
0ff92245 4426 delayacct_blkio_end();
1da177e4
LT
4427 return ret;
4428}
4429
4430/**
4431 * sys_sched_get_priority_max - return maximum RT priority.
4432 * @policy: scheduling class.
4433 *
e69f6186
YB
4434 * Return: On success, this syscall returns the maximum
4435 * rt_priority that can be used by a given scheduling class.
4436 * On failure, a negative error code is returned.
1da177e4 4437 */
5add95d4 4438SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4439{
4440 int ret = -EINVAL;
4441
4442 switch (policy) {
4443 case SCHED_FIFO:
4444 case SCHED_RR:
4445 ret = MAX_USER_RT_PRIO-1;
4446 break;
aab03e05 4447 case SCHED_DEADLINE:
1da177e4 4448 case SCHED_NORMAL:
b0a9499c 4449 case SCHED_BATCH:
dd41f596 4450 case SCHED_IDLE:
1da177e4
LT
4451 ret = 0;
4452 break;
4453 }
4454 return ret;
4455}
4456
4457/**
4458 * sys_sched_get_priority_min - return minimum RT priority.
4459 * @policy: scheduling class.
4460 *
e69f6186
YB
4461 * Return: On success, this syscall returns the minimum
4462 * rt_priority that can be used by a given scheduling class.
4463 * On failure, a negative error code is returned.
1da177e4 4464 */
5add95d4 4465SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4466{
4467 int ret = -EINVAL;
4468
4469 switch (policy) {
4470 case SCHED_FIFO:
4471 case SCHED_RR:
4472 ret = 1;
4473 break;
aab03e05 4474 case SCHED_DEADLINE:
1da177e4 4475 case SCHED_NORMAL:
b0a9499c 4476 case SCHED_BATCH:
dd41f596 4477 case SCHED_IDLE:
1da177e4
LT
4478 ret = 0;
4479 }
4480 return ret;
4481}
4482
4483/**
4484 * sys_sched_rr_get_interval - return the default timeslice of a process.
4485 * @pid: pid of the process.
4486 * @interval: userspace pointer to the timeslice value.
4487 *
4488 * this syscall writes the default timeslice value of a given process
4489 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4490 *
4491 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4492 * an error code.
1da177e4 4493 */
17da2bd9 4494SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4495 struct timespec __user *, interval)
1da177e4 4496{
36c8b586 4497 struct task_struct *p;
a4ec24b4 4498 unsigned int time_slice;
dba091b9
TG
4499 unsigned long flags;
4500 struct rq *rq;
3a5c359a 4501 int retval;
1da177e4 4502 struct timespec t;
1da177e4
LT
4503
4504 if (pid < 0)
3a5c359a 4505 return -EINVAL;
1da177e4
LT
4506
4507 retval = -ESRCH;
1a551ae7 4508 rcu_read_lock();
1da177e4
LT
4509 p = find_process_by_pid(pid);
4510 if (!p)
4511 goto out_unlock;
4512
4513 retval = security_task_getscheduler(p);
4514 if (retval)
4515 goto out_unlock;
4516
dba091b9 4517 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4518 time_slice = 0;
4519 if (p->sched_class->get_rr_interval)
4520 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4521 task_rq_unlock(rq, p, &flags);
a4ec24b4 4522
1a551ae7 4523 rcu_read_unlock();
a4ec24b4 4524 jiffies_to_timespec(time_slice, &t);
1da177e4 4525 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4526 return retval;
3a5c359a 4527
1da177e4 4528out_unlock:
1a551ae7 4529 rcu_read_unlock();
1da177e4
LT
4530 return retval;
4531}
4532
7c731e0a 4533static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4534
82a1fcb9 4535void sched_show_task(struct task_struct *p)
1da177e4 4536{
1da177e4 4537 unsigned long free = 0;
4e79752c 4538 int ppid;
1f8a7633 4539 unsigned long state = p->state;
1da177e4 4540
1f8a7633
TH
4541 if (state)
4542 state = __ffs(state) + 1;
28d0686c 4543 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4544 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4545#if BITS_PER_LONG == 32
1da177e4 4546 if (state == TASK_RUNNING)
3df0fc5b 4547 printk(KERN_CONT " running ");
1da177e4 4548 else
3df0fc5b 4549 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4550#else
4551 if (state == TASK_RUNNING)
3df0fc5b 4552 printk(KERN_CONT " running task ");
1da177e4 4553 else
3df0fc5b 4554 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4555#endif
4556#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4557 free = stack_not_used(p);
1da177e4 4558#endif
a90e984c 4559 ppid = 0;
4e79752c 4560 rcu_read_lock();
a90e984c
ON
4561 if (pid_alive(p))
4562 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4563 rcu_read_unlock();
3df0fc5b 4564 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4565 task_pid_nr(p), ppid,
aa47b7e0 4566 (unsigned long)task_thread_info(p)->flags);
1da177e4 4567
3d1cb205 4568 print_worker_info(KERN_INFO, p);
5fb5e6de 4569 show_stack(p, NULL);
1da177e4
LT
4570}
4571
e59e2ae2 4572void show_state_filter(unsigned long state_filter)
1da177e4 4573{
36c8b586 4574 struct task_struct *g, *p;
1da177e4 4575
4bd77321 4576#if BITS_PER_LONG == 32
3df0fc5b
PZ
4577 printk(KERN_INFO
4578 " task PC stack pid father\n");
1da177e4 4579#else
3df0fc5b
PZ
4580 printk(KERN_INFO
4581 " task PC stack pid father\n");
1da177e4 4582#endif
510f5acc 4583 rcu_read_lock();
5d07f420 4584 for_each_process_thread(g, p) {
1da177e4
LT
4585 /*
4586 * reset the NMI-timeout, listing all files on a slow
25985edc 4587 * console might take a lot of time:
1da177e4
LT
4588 */
4589 touch_nmi_watchdog();
39bc89fd 4590 if (!state_filter || (p->state & state_filter))
82a1fcb9 4591 sched_show_task(p);
5d07f420 4592 }
1da177e4 4593
04c9167f
JF
4594 touch_all_softlockup_watchdogs();
4595
dd41f596
IM
4596#ifdef CONFIG_SCHED_DEBUG
4597 sysrq_sched_debug_show();
4598#endif
510f5acc 4599 rcu_read_unlock();
e59e2ae2
IM
4600 /*
4601 * Only show locks if all tasks are dumped:
4602 */
93335a21 4603 if (!state_filter)
e59e2ae2 4604 debug_show_all_locks();
1da177e4
LT
4605}
4606
0db0628d 4607void init_idle_bootup_task(struct task_struct *idle)
1df21055 4608{
dd41f596 4609 idle->sched_class = &idle_sched_class;
1df21055
IM
4610}
4611
f340c0d1
IM
4612/**
4613 * init_idle - set up an idle thread for a given CPU
4614 * @idle: task in question
4615 * @cpu: cpu the idle task belongs to
4616 *
4617 * NOTE: this function does not set the idle thread's NEED_RESCHED
4618 * flag, to make booting more robust.
4619 */
0db0628d 4620void init_idle(struct task_struct *idle, int cpu)
1da177e4 4621{
70b97a7f 4622 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4623 unsigned long flags;
4624
05fa785c 4625 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4626
5e1576ed 4627 __sched_fork(0, idle);
06b83b5f 4628 idle->state = TASK_RUNNING;
dd41f596
IM
4629 idle->se.exec_start = sched_clock();
4630
1e1b6c51 4631 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4632 /*
4633 * We're having a chicken and egg problem, even though we are
4634 * holding rq->lock, the cpu isn't yet set to this cpu so the
4635 * lockdep check in task_group() will fail.
4636 *
4637 * Similar case to sched_fork(). / Alternatively we could
4638 * use task_rq_lock() here and obtain the other rq->lock.
4639 *
4640 * Silence PROVE_RCU
4641 */
4642 rcu_read_lock();
dd41f596 4643 __set_task_cpu(idle, cpu);
6506cf6c 4644 rcu_read_unlock();
1da177e4 4645
1da177e4 4646 rq->curr = rq->idle = idle;
da0c1e65 4647 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4648#if defined(CONFIG_SMP)
4649 idle->on_cpu = 1;
4866cde0 4650#endif
05fa785c 4651 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4652
4653 /* Set the preempt count _outside_ the spinlocks! */
01028747 4654 init_idle_preempt_count(idle, cpu);
55cd5340 4655
dd41f596
IM
4656 /*
4657 * The idle tasks have their own, simple scheduling class:
4658 */
4659 idle->sched_class = &idle_sched_class;
868baf07 4660 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4661 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4662#if defined(CONFIG_SMP)
4663 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4664#endif
19978ca6
IM
4665}
4666
f82f8042
JL
4667int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4668 const struct cpumask *trial)
4669{
4670 int ret = 1, trial_cpus;
4671 struct dl_bw *cur_dl_b;
4672 unsigned long flags;
4673
bb2bc55a
MG
4674 if (!cpumask_weight(cur))
4675 return ret;
4676
75e23e49 4677 rcu_read_lock_sched();
f82f8042
JL
4678 cur_dl_b = dl_bw_of(cpumask_any(cur));
4679 trial_cpus = cpumask_weight(trial);
4680
4681 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4682 if (cur_dl_b->bw != -1 &&
4683 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4684 ret = 0;
4685 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4686 rcu_read_unlock_sched();
f82f8042
JL
4687
4688 return ret;
4689}
4690
7f51412a
JL
4691int task_can_attach(struct task_struct *p,
4692 const struct cpumask *cs_cpus_allowed)
4693{
4694 int ret = 0;
4695
4696 /*
4697 * Kthreads which disallow setaffinity shouldn't be moved
4698 * to a new cpuset; we don't want to change their cpu
4699 * affinity and isolating such threads by their set of
4700 * allowed nodes is unnecessary. Thus, cpusets are not
4701 * applicable for such threads. This prevents checking for
4702 * success of set_cpus_allowed_ptr() on all attached tasks
4703 * before cpus_allowed may be changed.
4704 */
4705 if (p->flags & PF_NO_SETAFFINITY) {
4706 ret = -EINVAL;
4707 goto out;
4708 }
4709
4710#ifdef CONFIG_SMP
4711 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4712 cs_cpus_allowed)) {
4713 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4714 cs_cpus_allowed);
75e23e49 4715 struct dl_bw *dl_b;
7f51412a
JL
4716 bool overflow;
4717 int cpus;
4718 unsigned long flags;
4719
75e23e49
JL
4720 rcu_read_lock_sched();
4721 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4722 raw_spin_lock_irqsave(&dl_b->lock, flags);
4723 cpus = dl_bw_cpus(dest_cpu);
4724 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4725 if (overflow)
4726 ret = -EBUSY;
4727 else {
4728 /*
4729 * We reserve space for this task in the destination
4730 * root_domain, as we can't fail after this point.
4731 * We will free resources in the source root_domain
4732 * later on (see set_cpus_allowed_dl()).
4733 */
4734 __dl_add(dl_b, p->dl.dl_bw);
4735 }
4736 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4737 rcu_read_unlock_sched();
7f51412a
JL
4738
4739 }
4740#endif
4741out:
4742 return ret;
4743}
4744
1da177e4 4745#ifdef CONFIG_SMP
a15b12ac
KT
4746/*
4747 * move_queued_task - move a queued task to new rq.
4748 *
4749 * Returns (locked) new rq. Old rq's lock is released.
4750 */
4751static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4752{
4753 struct rq *rq = task_rq(p);
4754
4755 lockdep_assert_held(&rq->lock);
4756
4757 dequeue_task(rq, p, 0);
4758 p->on_rq = TASK_ON_RQ_MIGRATING;
4759 set_task_cpu(p, new_cpu);
4760 raw_spin_unlock(&rq->lock);
4761
4762 rq = cpu_rq(new_cpu);
4763
4764 raw_spin_lock(&rq->lock);
4765 BUG_ON(task_cpu(p) != new_cpu);
4766 p->on_rq = TASK_ON_RQ_QUEUED;
4767 enqueue_task(rq, p, 0);
4768 check_preempt_curr(rq, p, 0);
4769
4770 return rq;
4771}
4772
1e1b6c51
KM
4773void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4774{
1b537c7d 4775 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4776 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4777
4778 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4779 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4780}
4781
1da177e4
LT
4782/*
4783 * This is how migration works:
4784 *
969c7921
TH
4785 * 1) we invoke migration_cpu_stop() on the target CPU using
4786 * stop_one_cpu().
4787 * 2) stopper starts to run (implicitly forcing the migrated thread
4788 * off the CPU)
4789 * 3) it checks whether the migrated task is still in the wrong runqueue.
4790 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4791 * it and puts it into the right queue.
969c7921
TH
4792 * 5) stopper completes and stop_one_cpu() returns and the migration
4793 * is done.
1da177e4
LT
4794 */
4795
4796/*
4797 * Change a given task's CPU affinity. Migrate the thread to a
4798 * proper CPU and schedule it away if the CPU it's executing on
4799 * is removed from the allowed bitmask.
4800 *
4801 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4802 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4803 * call is not atomic; no spinlocks may be held.
4804 */
96f874e2 4805int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4806{
4807 unsigned long flags;
70b97a7f 4808 struct rq *rq;
969c7921 4809 unsigned int dest_cpu;
48f24c4d 4810 int ret = 0;
1da177e4
LT
4811
4812 rq = task_rq_lock(p, &flags);
e2912009 4813
db44fc01
YZ
4814 if (cpumask_equal(&p->cpus_allowed, new_mask))
4815 goto out;
4816
6ad4c188 4817 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4818 ret = -EINVAL;
4819 goto out;
4820 }
4821
1e1b6c51 4822 do_set_cpus_allowed(p, new_mask);
73fe6aae 4823
1da177e4 4824 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4825 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4826 goto out;
4827
969c7921 4828 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4829 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4830 struct migration_arg arg = { p, dest_cpu };
1da177e4 4831 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4832 task_rq_unlock(rq, p, &flags);
969c7921 4833 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4834 tlb_migrate_finish(p->mm);
4835 return 0;
a15b12ac
KT
4836 } else if (task_on_rq_queued(p))
4837 rq = move_queued_task(p, dest_cpu);
1da177e4 4838out:
0122ec5b 4839 task_rq_unlock(rq, p, &flags);
48f24c4d 4840
1da177e4
LT
4841 return ret;
4842}
cd8ba7cd 4843EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4844
4845/*
41a2d6cf 4846 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4847 * this because either it can't run here any more (set_cpus_allowed()
4848 * away from this CPU, or CPU going down), or because we're
4849 * attempting to rebalance this task on exec (sched_exec).
4850 *
4851 * So we race with normal scheduler movements, but that's OK, as long
4852 * as the task is no longer on this CPU.
efc30814
KK
4853 *
4854 * Returns non-zero if task was successfully migrated.
1da177e4 4855 */
efc30814 4856static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4857{
a1e01829 4858 struct rq *rq;
e2912009 4859 int ret = 0;
1da177e4 4860
e761b772 4861 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4862 return ret;
1da177e4 4863
a1e01829 4864 rq = cpu_rq(src_cpu);
1da177e4 4865
0122ec5b 4866 raw_spin_lock(&p->pi_lock);
a1e01829 4867 raw_spin_lock(&rq->lock);
1da177e4
LT
4868 /* Already moved. */
4869 if (task_cpu(p) != src_cpu)
b1e38734 4870 goto done;
a1e01829 4871
1da177e4 4872 /* Affinity changed (again). */
fa17b507 4873 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4874 goto fail;
1da177e4 4875
e2912009
PZ
4876 /*
4877 * If we're not on a rq, the next wake-up will ensure we're
4878 * placed properly.
4879 */
a15b12ac
KT
4880 if (task_on_rq_queued(p))
4881 rq = move_queued_task(p, dest_cpu);
b1e38734 4882done:
efc30814 4883 ret = 1;
b1e38734 4884fail:
a1e01829 4885 raw_spin_unlock(&rq->lock);
0122ec5b 4886 raw_spin_unlock(&p->pi_lock);
efc30814 4887 return ret;
1da177e4
LT
4888}
4889
e6628d5b
MG
4890#ifdef CONFIG_NUMA_BALANCING
4891/* Migrate current task p to target_cpu */
4892int migrate_task_to(struct task_struct *p, int target_cpu)
4893{
4894 struct migration_arg arg = { p, target_cpu };
4895 int curr_cpu = task_cpu(p);
4896
4897 if (curr_cpu == target_cpu)
4898 return 0;
4899
4900 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4901 return -EINVAL;
4902
4903 /* TODO: This is not properly updating schedstats */
4904
286549dc 4905 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4906 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4907}
0ec8aa00
PZ
4908
4909/*
4910 * Requeue a task on a given node and accurately track the number of NUMA
4911 * tasks on the runqueues
4912 */
4913void sched_setnuma(struct task_struct *p, int nid)
4914{
4915 struct rq *rq;
4916 unsigned long flags;
da0c1e65 4917 bool queued, running;
0ec8aa00
PZ
4918
4919 rq = task_rq_lock(p, &flags);
da0c1e65 4920 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4921 running = task_current(rq, p);
4922
da0c1e65 4923 if (queued)
0ec8aa00
PZ
4924 dequeue_task(rq, p, 0);
4925 if (running)
f3cd1c4e 4926 put_prev_task(rq, p);
0ec8aa00
PZ
4927
4928 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4929
4930 if (running)
4931 p->sched_class->set_curr_task(rq);
da0c1e65 4932 if (queued)
0ec8aa00
PZ
4933 enqueue_task(rq, p, 0);
4934 task_rq_unlock(rq, p, &flags);
4935}
e6628d5b
MG
4936#endif
4937
1da177e4 4938/*
969c7921
TH
4939 * migration_cpu_stop - this will be executed by a highprio stopper thread
4940 * and performs thread migration by bumping thread off CPU then
4941 * 'pushing' onto another runqueue.
1da177e4 4942 */
969c7921 4943static int migration_cpu_stop(void *data)
1da177e4 4944{
969c7921 4945 struct migration_arg *arg = data;
f7b4cddc 4946
969c7921
TH
4947 /*
4948 * The original target cpu might have gone down and we might
4949 * be on another cpu but it doesn't matter.
4950 */
f7b4cddc 4951 local_irq_disable();
5cd038f5
LJ
4952 /*
4953 * We need to explicitly wake pending tasks before running
4954 * __migrate_task() such that we will not miss enforcing cpus_allowed
4955 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4956 */
4957 sched_ttwu_pending();
969c7921 4958 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4959 local_irq_enable();
1da177e4 4960 return 0;
f7b4cddc
ON
4961}
4962
1da177e4 4963#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4964
054b9108 4965/*
48c5ccae
PZ
4966 * Ensures that the idle task is using init_mm right before its cpu goes
4967 * offline.
054b9108 4968 */
48c5ccae 4969void idle_task_exit(void)
1da177e4 4970{
48c5ccae 4971 struct mm_struct *mm = current->active_mm;
e76bd8d9 4972
48c5ccae 4973 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4974
a53efe5f 4975 if (mm != &init_mm) {
48c5ccae 4976 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4977 finish_arch_post_lock_switch();
4978 }
48c5ccae 4979 mmdrop(mm);
1da177e4
LT
4980}
4981
4982/*
5d180232
PZ
4983 * Since this CPU is going 'away' for a while, fold any nr_active delta
4984 * we might have. Assumes we're called after migrate_tasks() so that the
4985 * nr_active count is stable.
4986 *
4987 * Also see the comment "Global load-average calculations".
1da177e4 4988 */
5d180232 4989static void calc_load_migrate(struct rq *rq)
1da177e4 4990{
5d180232
PZ
4991 long delta = calc_load_fold_active(rq);
4992 if (delta)
4993 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4994}
4995
3f1d2a31
PZ
4996static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4997{
4998}
4999
5000static const struct sched_class fake_sched_class = {
5001 .put_prev_task = put_prev_task_fake,
5002};
5003
5004static struct task_struct fake_task = {
5005 /*
5006 * Avoid pull_{rt,dl}_task()
5007 */
5008 .prio = MAX_PRIO + 1,
5009 .sched_class = &fake_sched_class,
5010};
5011
48f24c4d 5012/*
48c5ccae
PZ
5013 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5014 * try_to_wake_up()->select_task_rq().
5015 *
5016 * Called with rq->lock held even though we'er in stop_machine() and
5017 * there's no concurrency possible, we hold the required locks anyway
5018 * because of lock validation efforts.
1da177e4 5019 */
48c5ccae 5020static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5021{
70b97a7f 5022 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5023 struct task_struct *next, *stop = rq->stop;
5024 int dest_cpu;
1da177e4
LT
5025
5026 /*
48c5ccae
PZ
5027 * Fudge the rq selection such that the below task selection loop
5028 * doesn't get stuck on the currently eligible stop task.
5029 *
5030 * We're currently inside stop_machine() and the rq is either stuck
5031 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5032 * either way we should never end up calling schedule() until we're
5033 * done here.
1da177e4 5034 */
48c5ccae 5035 rq->stop = NULL;
48f24c4d 5036
77bd3970
FW
5037 /*
5038 * put_prev_task() and pick_next_task() sched
5039 * class method both need to have an up-to-date
5040 * value of rq->clock[_task]
5041 */
5042 update_rq_clock(rq);
5043
dd41f596 5044 for ( ; ; ) {
48c5ccae
PZ
5045 /*
5046 * There's this thread running, bail when that's the only
5047 * remaining thread.
5048 */
5049 if (rq->nr_running == 1)
dd41f596 5050 break;
48c5ccae 5051
3f1d2a31 5052 next = pick_next_task(rq, &fake_task);
48c5ccae 5053 BUG_ON(!next);
79c53799 5054 next->sched_class->put_prev_task(rq, next);
e692ab53 5055
48c5ccae
PZ
5056 /* Find suitable destination for @next, with force if needed. */
5057 dest_cpu = select_fallback_rq(dead_cpu, next);
5058 raw_spin_unlock(&rq->lock);
5059
5060 __migrate_task(next, dead_cpu, dest_cpu);
5061
5062 raw_spin_lock(&rq->lock);
1da177e4 5063 }
dce48a84 5064
48c5ccae 5065 rq->stop = stop;
dce48a84 5066}
48c5ccae 5067
1da177e4
LT
5068#endif /* CONFIG_HOTPLUG_CPU */
5069
e692ab53
NP
5070#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5071
5072static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5073 {
5074 .procname = "sched_domain",
c57baf1e 5075 .mode = 0555,
e0361851 5076 },
56992309 5077 {}
e692ab53
NP
5078};
5079
5080static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5081 {
5082 .procname = "kernel",
c57baf1e 5083 .mode = 0555,
e0361851
AD
5084 .child = sd_ctl_dir,
5085 },
56992309 5086 {}
e692ab53
NP
5087};
5088
5089static struct ctl_table *sd_alloc_ctl_entry(int n)
5090{
5091 struct ctl_table *entry =
5cf9f062 5092 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5093
e692ab53
NP
5094 return entry;
5095}
5096
6382bc90
MM
5097static void sd_free_ctl_entry(struct ctl_table **tablep)
5098{
cd790076 5099 struct ctl_table *entry;
6382bc90 5100
cd790076
MM
5101 /*
5102 * In the intermediate directories, both the child directory and
5103 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5104 * will always be set. In the lowest directory the names are
cd790076
MM
5105 * static strings and all have proc handlers.
5106 */
5107 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5108 if (entry->child)
5109 sd_free_ctl_entry(&entry->child);
cd790076
MM
5110 if (entry->proc_handler == NULL)
5111 kfree(entry->procname);
5112 }
6382bc90
MM
5113
5114 kfree(*tablep);
5115 *tablep = NULL;
5116}
5117
201c373e 5118static int min_load_idx = 0;
fd9b86d3 5119static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5120
e692ab53 5121static void
e0361851 5122set_table_entry(struct ctl_table *entry,
e692ab53 5123 const char *procname, void *data, int maxlen,
201c373e
NK
5124 umode_t mode, proc_handler *proc_handler,
5125 bool load_idx)
e692ab53 5126{
e692ab53
NP
5127 entry->procname = procname;
5128 entry->data = data;
5129 entry->maxlen = maxlen;
5130 entry->mode = mode;
5131 entry->proc_handler = proc_handler;
201c373e
NK
5132
5133 if (load_idx) {
5134 entry->extra1 = &min_load_idx;
5135 entry->extra2 = &max_load_idx;
5136 }
e692ab53
NP
5137}
5138
5139static struct ctl_table *
5140sd_alloc_ctl_domain_table(struct sched_domain *sd)
5141{
37e6bae8 5142 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5143
ad1cdc1d
MM
5144 if (table == NULL)
5145 return NULL;
5146
e0361851 5147 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5148 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5149 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5150 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5151 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5152 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5153 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5154 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5155 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5156 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5157 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5158 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5159 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5160 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5161 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5162 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5163 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5164 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5165 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5166 &sd->cache_nice_tries,
201c373e 5167 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5168 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5169 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5170 set_table_entry(&table[11], "max_newidle_lb_cost",
5171 &sd->max_newidle_lb_cost,
5172 sizeof(long), 0644, proc_doulongvec_minmax, false);
5173 set_table_entry(&table[12], "name", sd->name,
201c373e 5174 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5175 /* &table[13] is terminator */
e692ab53
NP
5176
5177 return table;
5178}
5179
be7002e6 5180static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5181{
5182 struct ctl_table *entry, *table;
5183 struct sched_domain *sd;
5184 int domain_num = 0, i;
5185 char buf[32];
5186
5187 for_each_domain(cpu, sd)
5188 domain_num++;
5189 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5190 if (table == NULL)
5191 return NULL;
e692ab53
NP
5192
5193 i = 0;
5194 for_each_domain(cpu, sd) {
5195 snprintf(buf, 32, "domain%d", i);
e692ab53 5196 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5197 entry->mode = 0555;
e692ab53
NP
5198 entry->child = sd_alloc_ctl_domain_table(sd);
5199 entry++;
5200 i++;
5201 }
5202 return table;
5203}
5204
5205static struct ctl_table_header *sd_sysctl_header;
6382bc90 5206static void register_sched_domain_sysctl(void)
e692ab53 5207{
6ad4c188 5208 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5209 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5210 char buf[32];
5211
7378547f
MM
5212 WARN_ON(sd_ctl_dir[0].child);
5213 sd_ctl_dir[0].child = entry;
5214
ad1cdc1d
MM
5215 if (entry == NULL)
5216 return;
5217
6ad4c188 5218 for_each_possible_cpu(i) {
e692ab53 5219 snprintf(buf, 32, "cpu%d", i);
e692ab53 5220 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5221 entry->mode = 0555;
e692ab53 5222 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5223 entry++;
e692ab53 5224 }
7378547f
MM
5225
5226 WARN_ON(sd_sysctl_header);
e692ab53
NP
5227 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5228}
6382bc90 5229
7378547f 5230/* may be called multiple times per register */
6382bc90
MM
5231static void unregister_sched_domain_sysctl(void)
5232{
7378547f
MM
5233 if (sd_sysctl_header)
5234 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5235 sd_sysctl_header = NULL;
7378547f
MM
5236 if (sd_ctl_dir[0].child)
5237 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5238}
e692ab53 5239#else
6382bc90
MM
5240static void register_sched_domain_sysctl(void)
5241{
5242}
5243static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5244{
5245}
5246#endif
5247
1f11eb6a
GH
5248static void set_rq_online(struct rq *rq)
5249{
5250 if (!rq->online) {
5251 const struct sched_class *class;
5252
c6c4927b 5253 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5254 rq->online = 1;
5255
5256 for_each_class(class) {
5257 if (class->rq_online)
5258 class->rq_online(rq);
5259 }
5260 }
5261}
5262
5263static void set_rq_offline(struct rq *rq)
5264{
5265 if (rq->online) {
5266 const struct sched_class *class;
5267
5268 for_each_class(class) {
5269 if (class->rq_offline)
5270 class->rq_offline(rq);
5271 }
5272
c6c4927b 5273 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5274 rq->online = 0;
5275 }
5276}
5277
1da177e4
LT
5278/*
5279 * migration_call - callback that gets triggered when a CPU is added.
5280 * Here we can start up the necessary migration thread for the new CPU.
5281 */
0db0628d 5282static int
48f24c4d 5283migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5284{
48f24c4d 5285 int cpu = (long)hcpu;
1da177e4 5286 unsigned long flags;
969c7921 5287 struct rq *rq = cpu_rq(cpu);
1da177e4 5288
48c5ccae 5289 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5290
1da177e4 5291 case CPU_UP_PREPARE:
a468d389 5292 rq->calc_load_update = calc_load_update;
1da177e4 5293 break;
48f24c4d 5294
1da177e4 5295 case CPU_ONLINE:
1f94ef59 5296 /* Update our root-domain */
05fa785c 5297 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5298 if (rq->rd) {
c6c4927b 5299 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5300
5301 set_rq_online(rq);
1f94ef59 5302 }
05fa785c 5303 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5304 break;
48f24c4d 5305
1da177e4 5306#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5307 case CPU_DYING:
317f3941 5308 sched_ttwu_pending();
57d885fe 5309 /* Update our root-domain */
05fa785c 5310 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5311 if (rq->rd) {
c6c4927b 5312 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5313 set_rq_offline(rq);
57d885fe 5314 }
48c5ccae
PZ
5315 migrate_tasks(cpu);
5316 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5317 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5318 break;
48c5ccae 5319
5d180232 5320 case CPU_DEAD:
f319da0c 5321 calc_load_migrate(rq);
57d885fe 5322 break;
1da177e4
LT
5323#endif
5324 }
49c022e6
PZ
5325
5326 update_max_interval();
5327
1da177e4
LT
5328 return NOTIFY_OK;
5329}
5330
f38b0820
PM
5331/*
5332 * Register at high priority so that task migration (migrate_all_tasks)
5333 * happens before everything else. This has to be lower priority than
cdd6c482 5334 * the notifier in the perf_event subsystem, though.
1da177e4 5335 */
0db0628d 5336static struct notifier_block migration_notifier = {
1da177e4 5337 .notifier_call = migration_call,
50a323b7 5338 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5339};
5340
a803f026
CM
5341static void __cpuinit set_cpu_rq_start_time(void)
5342{
5343 int cpu = smp_processor_id();
5344 struct rq *rq = cpu_rq(cpu);
5345 rq->age_stamp = sched_clock_cpu(cpu);
5346}
5347
0db0628d 5348static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5349 unsigned long action, void *hcpu)
5350{
5351 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5352 case CPU_STARTING:
5353 set_cpu_rq_start_time();
5354 return NOTIFY_OK;
3a101d05
TH
5355 case CPU_DOWN_FAILED:
5356 set_cpu_active((long)hcpu, true);
5357 return NOTIFY_OK;
5358 default:
5359 return NOTIFY_DONE;
5360 }
5361}
5362
0db0628d 5363static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5364 unsigned long action, void *hcpu)
5365{
de212f18
PZ
5366 unsigned long flags;
5367 long cpu = (long)hcpu;
f10e00f4 5368 struct dl_bw *dl_b;
de212f18 5369
3a101d05
TH
5370 switch (action & ~CPU_TASKS_FROZEN) {
5371 case CPU_DOWN_PREPARE:
de212f18
PZ
5372 set_cpu_active(cpu, false);
5373
5374 /* explicitly allow suspend */
5375 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5376 bool overflow;
5377 int cpus;
5378
f10e00f4
KT
5379 rcu_read_lock_sched();
5380 dl_b = dl_bw_of(cpu);
5381
de212f18
PZ
5382 raw_spin_lock_irqsave(&dl_b->lock, flags);
5383 cpus = dl_bw_cpus(cpu);
5384 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5385 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5386
f10e00f4
KT
5387 rcu_read_unlock_sched();
5388
de212f18
PZ
5389 if (overflow)
5390 return notifier_from_errno(-EBUSY);
5391 }
3a101d05 5392 return NOTIFY_OK;
3a101d05 5393 }
de212f18
PZ
5394
5395 return NOTIFY_DONE;
3a101d05
TH
5396}
5397
7babe8db 5398static int __init migration_init(void)
1da177e4
LT
5399{
5400 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5401 int err;
48f24c4d 5402
3a101d05 5403 /* Initialize migration for the boot CPU */
07dccf33
AM
5404 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5405 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5406 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5407 register_cpu_notifier(&migration_notifier);
7babe8db 5408
3a101d05
TH
5409 /* Register cpu active notifiers */
5410 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5411 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5412
a004cd42 5413 return 0;
1da177e4 5414}
7babe8db 5415early_initcall(migration_init);
1da177e4
LT
5416#endif
5417
5418#ifdef CONFIG_SMP
476f3534 5419
4cb98839
PZ
5420static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5421
3e9830dc 5422#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5423
d039ac60 5424static __read_mostly int sched_debug_enabled;
f6630114 5425
d039ac60 5426static int __init sched_debug_setup(char *str)
f6630114 5427{
d039ac60 5428 sched_debug_enabled = 1;
f6630114
MT
5429
5430 return 0;
5431}
d039ac60
PZ
5432early_param("sched_debug", sched_debug_setup);
5433
5434static inline bool sched_debug(void)
5435{
5436 return sched_debug_enabled;
5437}
f6630114 5438
7c16ec58 5439static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5440 struct cpumask *groupmask)
1da177e4 5441{
4dcf6aff 5442 struct sched_group *group = sd->groups;
434d53b0 5443 char str[256];
1da177e4 5444
968ea6d8 5445 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5446 cpumask_clear(groupmask);
4dcf6aff
IM
5447
5448 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5449
5450 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5451 printk("does not load-balance\n");
4dcf6aff 5452 if (sd->parent)
3df0fc5b
PZ
5453 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5454 " has parent");
4dcf6aff 5455 return -1;
41c7ce9a
NP
5456 }
5457
3df0fc5b 5458 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5459
758b2cdc 5460 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5461 printk(KERN_ERR "ERROR: domain->span does not contain "
5462 "CPU%d\n", cpu);
4dcf6aff 5463 }
758b2cdc 5464 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5465 printk(KERN_ERR "ERROR: domain->groups does not contain"
5466 " CPU%d\n", cpu);
4dcf6aff 5467 }
1da177e4 5468
4dcf6aff 5469 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5470 do {
4dcf6aff 5471 if (!group) {
3df0fc5b
PZ
5472 printk("\n");
5473 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5474 break;
5475 }
5476
c3decf0d 5477 /*
63b2ca30
NP
5478 * Even though we initialize ->capacity to something semi-sane,
5479 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5480 * domain iteration is still funny without causing /0 traps.
5481 */
63b2ca30 5482 if (!group->sgc->capacity_orig) {
3df0fc5b 5483 printk(KERN_CONT "\n");
63b2ca30 5484 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5485 break;
5486 }
1da177e4 5487
758b2cdc 5488 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5489 printk(KERN_CONT "\n");
5490 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5491 break;
5492 }
1da177e4 5493
cb83b629
PZ
5494 if (!(sd->flags & SD_OVERLAP) &&
5495 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5496 printk(KERN_CONT "\n");
5497 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5498 break;
5499 }
1da177e4 5500
758b2cdc 5501 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5502
968ea6d8 5503 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5504
3df0fc5b 5505 printk(KERN_CONT " %s", str);
ca8ce3d0 5506 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5507 printk(KERN_CONT " (cpu_capacity = %d)",
5508 group->sgc->capacity);
381512cf 5509 }
1da177e4 5510
4dcf6aff
IM
5511 group = group->next;
5512 } while (group != sd->groups);
3df0fc5b 5513 printk(KERN_CONT "\n");
1da177e4 5514
758b2cdc 5515 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5516 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5517
758b2cdc
RR
5518 if (sd->parent &&
5519 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5520 printk(KERN_ERR "ERROR: parent span is not a superset "
5521 "of domain->span\n");
4dcf6aff
IM
5522 return 0;
5523}
1da177e4 5524
4dcf6aff
IM
5525static void sched_domain_debug(struct sched_domain *sd, int cpu)
5526{
5527 int level = 0;
1da177e4 5528
d039ac60 5529 if (!sched_debug_enabled)
f6630114
MT
5530 return;
5531
4dcf6aff
IM
5532 if (!sd) {
5533 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5534 return;
5535 }
1da177e4 5536
4dcf6aff
IM
5537 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5538
5539 for (;;) {
4cb98839 5540 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5541 break;
1da177e4
LT
5542 level++;
5543 sd = sd->parent;
33859f7f 5544 if (!sd)
4dcf6aff
IM
5545 break;
5546 }
1da177e4 5547}
6d6bc0ad 5548#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5549# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5550static inline bool sched_debug(void)
5551{
5552 return false;
5553}
6d6bc0ad 5554#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5555
1a20ff27 5556static int sd_degenerate(struct sched_domain *sd)
245af2c7 5557{
758b2cdc 5558 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5559 return 1;
5560
5561 /* Following flags need at least 2 groups */
5562 if (sd->flags & (SD_LOAD_BALANCE |
5563 SD_BALANCE_NEWIDLE |
5564 SD_BALANCE_FORK |
89c4710e 5565 SD_BALANCE_EXEC |
5d4dfddd 5566 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5567 SD_SHARE_PKG_RESOURCES |
5568 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5569 if (sd->groups != sd->groups->next)
5570 return 0;
5571 }
5572
5573 /* Following flags don't use groups */
c88d5910 5574 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5575 return 0;
5576
5577 return 1;
5578}
5579
48f24c4d
IM
5580static int
5581sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5582{
5583 unsigned long cflags = sd->flags, pflags = parent->flags;
5584
5585 if (sd_degenerate(parent))
5586 return 1;
5587
758b2cdc 5588 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5589 return 0;
5590
245af2c7
SS
5591 /* Flags needing groups don't count if only 1 group in parent */
5592 if (parent->groups == parent->groups->next) {
5593 pflags &= ~(SD_LOAD_BALANCE |
5594 SD_BALANCE_NEWIDLE |
5595 SD_BALANCE_FORK |
89c4710e 5596 SD_BALANCE_EXEC |
5d4dfddd 5597 SD_SHARE_CPUCAPACITY |
10866e62 5598 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5599 SD_PREFER_SIBLING |
5600 SD_SHARE_POWERDOMAIN);
5436499e
KC
5601 if (nr_node_ids == 1)
5602 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5603 }
5604 if (~cflags & pflags)
5605 return 0;
5606
5607 return 1;
5608}
5609
dce840a0 5610static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5611{
dce840a0 5612 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5613
68e74568 5614 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5615 cpudl_cleanup(&rd->cpudl);
1baca4ce 5616 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5617 free_cpumask_var(rd->rto_mask);
5618 free_cpumask_var(rd->online);
5619 free_cpumask_var(rd->span);
5620 kfree(rd);
5621}
5622
57d885fe
GH
5623static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5624{
a0490fa3 5625 struct root_domain *old_rd = NULL;
57d885fe 5626 unsigned long flags;
57d885fe 5627
05fa785c 5628 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5629
5630 if (rq->rd) {
a0490fa3 5631 old_rd = rq->rd;
57d885fe 5632
c6c4927b 5633 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5634 set_rq_offline(rq);
57d885fe 5635
c6c4927b 5636 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5637
a0490fa3 5638 /*
0515973f 5639 * If we dont want to free the old_rd yet then
a0490fa3
IM
5640 * set old_rd to NULL to skip the freeing later
5641 * in this function:
5642 */
5643 if (!atomic_dec_and_test(&old_rd->refcount))
5644 old_rd = NULL;
57d885fe
GH
5645 }
5646
5647 atomic_inc(&rd->refcount);
5648 rq->rd = rd;
5649
c6c4927b 5650 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5651 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5652 set_rq_online(rq);
57d885fe 5653
05fa785c 5654 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5655
5656 if (old_rd)
dce840a0 5657 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5658}
5659
68c38fc3 5660static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5661{
5662 memset(rd, 0, sizeof(*rd));
5663
68c38fc3 5664 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5665 goto out;
68c38fc3 5666 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5667 goto free_span;
1baca4ce 5668 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5669 goto free_online;
1baca4ce
JL
5670 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5671 goto free_dlo_mask;
6e0534f2 5672
332ac17e 5673 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5674 if (cpudl_init(&rd->cpudl) != 0)
5675 goto free_dlo_mask;
332ac17e 5676
68c38fc3 5677 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5678 goto free_rto_mask;
c6c4927b 5679 return 0;
6e0534f2 5680
68e74568
RR
5681free_rto_mask:
5682 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5683free_dlo_mask:
5684 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5685free_online:
5686 free_cpumask_var(rd->online);
5687free_span:
5688 free_cpumask_var(rd->span);
0c910d28 5689out:
c6c4927b 5690 return -ENOMEM;
57d885fe
GH
5691}
5692
029632fb
PZ
5693/*
5694 * By default the system creates a single root-domain with all cpus as
5695 * members (mimicking the global state we have today).
5696 */
5697struct root_domain def_root_domain;
5698
57d885fe
GH
5699static void init_defrootdomain(void)
5700{
68c38fc3 5701 init_rootdomain(&def_root_domain);
c6c4927b 5702
57d885fe
GH
5703 atomic_set(&def_root_domain.refcount, 1);
5704}
5705
dc938520 5706static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5707{
5708 struct root_domain *rd;
5709
5710 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5711 if (!rd)
5712 return NULL;
5713
68c38fc3 5714 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5715 kfree(rd);
5716 return NULL;
5717 }
57d885fe
GH
5718
5719 return rd;
5720}
5721
63b2ca30 5722static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5723{
5724 struct sched_group *tmp, *first;
5725
5726 if (!sg)
5727 return;
5728
5729 first = sg;
5730 do {
5731 tmp = sg->next;
5732
63b2ca30
NP
5733 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5734 kfree(sg->sgc);
e3589f6c
PZ
5735
5736 kfree(sg);
5737 sg = tmp;
5738 } while (sg != first);
5739}
5740
dce840a0
PZ
5741static void free_sched_domain(struct rcu_head *rcu)
5742{
5743 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5744
5745 /*
5746 * If its an overlapping domain it has private groups, iterate and
5747 * nuke them all.
5748 */
5749 if (sd->flags & SD_OVERLAP) {
5750 free_sched_groups(sd->groups, 1);
5751 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5752 kfree(sd->groups->sgc);
dce840a0 5753 kfree(sd->groups);
9c3f75cb 5754 }
dce840a0
PZ
5755 kfree(sd);
5756}
5757
5758static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5759{
5760 call_rcu(&sd->rcu, free_sched_domain);
5761}
5762
5763static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5764{
5765 for (; sd; sd = sd->parent)
5766 destroy_sched_domain(sd, cpu);
5767}
5768
518cd623
PZ
5769/*
5770 * Keep a special pointer to the highest sched_domain that has
5771 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5772 * allows us to avoid some pointer chasing select_idle_sibling().
5773 *
5774 * Also keep a unique ID per domain (we use the first cpu number in
5775 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5776 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5777 */
5778DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5779DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5780DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5781DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5782DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5783DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5784
5785static void update_top_cache_domain(int cpu)
5786{
5787 struct sched_domain *sd;
5d4cf996 5788 struct sched_domain *busy_sd = NULL;
518cd623 5789 int id = cpu;
7d9ffa89 5790 int size = 1;
518cd623
PZ
5791
5792 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5793 if (sd) {
518cd623 5794 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5795 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5796 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5797 }
5d4cf996 5798 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5799
5800 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5801 per_cpu(sd_llc_size, cpu) = size;
518cd623 5802 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5803
5804 sd = lowest_flag_domain(cpu, SD_NUMA);
5805 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5806
5807 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5808 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5809}
5810
1da177e4 5811/*
0eab9146 5812 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5813 * hold the hotplug lock.
5814 */
0eab9146
IM
5815static void
5816cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5817{
70b97a7f 5818 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5819 struct sched_domain *tmp;
5820
5821 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5822 for (tmp = sd; tmp; ) {
245af2c7
SS
5823 struct sched_domain *parent = tmp->parent;
5824 if (!parent)
5825 break;
f29c9b1c 5826
1a848870 5827 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5828 tmp->parent = parent->parent;
1a848870
SS
5829 if (parent->parent)
5830 parent->parent->child = tmp;
10866e62
PZ
5831 /*
5832 * Transfer SD_PREFER_SIBLING down in case of a
5833 * degenerate parent; the spans match for this
5834 * so the property transfers.
5835 */
5836 if (parent->flags & SD_PREFER_SIBLING)
5837 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5838 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5839 } else
5840 tmp = tmp->parent;
245af2c7
SS
5841 }
5842
1a848870 5843 if (sd && sd_degenerate(sd)) {
dce840a0 5844 tmp = sd;
245af2c7 5845 sd = sd->parent;
dce840a0 5846 destroy_sched_domain(tmp, cpu);
1a848870
SS
5847 if (sd)
5848 sd->child = NULL;
5849 }
1da177e4 5850
4cb98839 5851 sched_domain_debug(sd, cpu);
1da177e4 5852
57d885fe 5853 rq_attach_root(rq, rd);
dce840a0 5854 tmp = rq->sd;
674311d5 5855 rcu_assign_pointer(rq->sd, sd);
dce840a0 5856 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5857
5858 update_top_cache_domain(cpu);
1da177e4
LT
5859}
5860
5861/* cpus with isolated domains */
dcc30a35 5862static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5863
5864/* Setup the mask of cpus configured for isolated domains */
5865static int __init isolated_cpu_setup(char *str)
5866{
bdddd296 5867 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5868 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5869 return 1;
5870}
5871
8927f494 5872__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5873
49a02c51 5874struct s_data {
21d42ccf 5875 struct sched_domain ** __percpu sd;
49a02c51
AH
5876 struct root_domain *rd;
5877};
5878
2109b99e 5879enum s_alloc {
2109b99e 5880 sa_rootdomain,
21d42ccf 5881 sa_sd,
dce840a0 5882 sa_sd_storage,
2109b99e
AH
5883 sa_none,
5884};
5885
c1174876
PZ
5886/*
5887 * Build an iteration mask that can exclude certain CPUs from the upwards
5888 * domain traversal.
5889 *
5890 * Asymmetric node setups can result in situations where the domain tree is of
5891 * unequal depth, make sure to skip domains that already cover the entire
5892 * range.
5893 *
5894 * In that case build_sched_domains() will have terminated the iteration early
5895 * and our sibling sd spans will be empty. Domains should always include the
5896 * cpu they're built on, so check that.
5897 *
5898 */
5899static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5900{
5901 const struct cpumask *span = sched_domain_span(sd);
5902 struct sd_data *sdd = sd->private;
5903 struct sched_domain *sibling;
5904 int i;
5905
5906 for_each_cpu(i, span) {
5907 sibling = *per_cpu_ptr(sdd->sd, i);
5908 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5909 continue;
5910
5911 cpumask_set_cpu(i, sched_group_mask(sg));
5912 }
5913}
5914
5915/*
5916 * Return the canonical balance cpu for this group, this is the first cpu
5917 * of this group that's also in the iteration mask.
5918 */
5919int group_balance_cpu(struct sched_group *sg)
5920{
5921 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5922}
5923
e3589f6c
PZ
5924static int
5925build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5926{
5927 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5928 const struct cpumask *span = sched_domain_span(sd);
5929 struct cpumask *covered = sched_domains_tmpmask;
5930 struct sd_data *sdd = sd->private;
aaecac4a 5931 struct sched_domain *sibling;
e3589f6c
PZ
5932 int i;
5933
5934 cpumask_clear(covered);
5935
5936 for_each_cpu(i, span) {
5937 struct cpumask *sg_span;
5938
5939 if (cpumask_test_cpu(i, covered))
5940 continue;
5941
aaecac4a 5942 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5943
5944 /* See the comment near build_group_mask(). */
aaecac4a 5945 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5946 continue;
5947
e3589f6c 5948 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5949 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5950
5951 if (!sg)
5952 goto fail;
5953
5954 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5955 if (sibling->child)
5956 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5957 else
e3589f6c
PZ
5958 cpumask_set_cpu(i, sg_span);
5959
5960 cpumask_or(covered, covered, sg_span);
5961
63b2ca30
NP
5962 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5963 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5964 build_group_mask(sd, sg);
5965
c3decf0d 5966 /*
63b2ca30 5967 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5968 * domains and no possible iteration will get us here, we won't
5969 * die on a /0 trap.
5970 */
ca8ce3d0 5971 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5972 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5973
c1174876
PZ
5974 /*
5975 * Make sure the first group of this domain contains the
5976 * canonical balance cpu. Otherwise the sched_domain iteration
5977 * breaks. See update_sg_lb_stats().
5978 */
74a5ce20 5979 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5980 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5981 groups = sg;
5982
5983 if (!first)
5984 first = sg;
5985 if (last)
5986 last->next = sg;
5987 last = sg;
5988 last->next = first;
5989 }
5990 sd->groups = groups;
5991
5992 return 0;
5993
5994fail:
5995 free_sched_groups(first, 0);
5996
5997 return -ENOMEM;
5998}
5999
dce840a0 6000static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6001{
dce840a0
PZ
6002 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6003 struct sched_domain *child = sd->child;
1da177e4 6004
dce840a0
PZ
6005 if (child)
6006 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6007
9c3f75cb 6008 if (sg) {
dce840a0 6009 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6010 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6011 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6012 }
dce840a0
PZ
6013
6014 return cpu;
1e9f28fa 6015}
1e9f28fa 6016
01a08546 6017/*
dce840a0
PZ
6018 * build_sched_groups will build a circular linked list of the groups
6019 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6020 * and ->cpu_capacity to 0.
e3589f6c
PZ
6021 *
6022 * Assumes the sched_domain tree is fully constructed
01a08546 6023 */
e3589f6c
PZ
6024static int
6025build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6026{
dce840a0
PZ
6027 struct sched_group *first = NULL, *last = NULL;
6028 struct sd_data *sdd = sd->private;
6029 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6030 struct cpumask *covered;
dce840a0 6031 int i;
9c1cfda2 6032
e3589f6c
PZ
6033 get_group(cpu, sdd, &sd->groups);
6034 atomic_inc(&sd->groups->ref);
6035
0936629f 6036 if (cpu != cpumask_first(span))
e3589f6c
PZ
6037 return 0;
6038
f96225fd
PZ
6039 lockdep_assert_held(&sched_domains_mutex);
6040 covered = sched_domains_tmpmask;
6041
dce840a0 6042 cpumask_clear(covered);
6711cab4 6043
dce840a0
PZ
6044 for_each_cpu(i, span) {
6045 struct sched_group *sg;
cd08e923 6046 int group, j;
6711cab4 6047
dce840a0
PZ
6048 if (cpumask_test_cpu(i, covered))
6049 continue;
6711cab4 6050
cd08e923 6051 group = get_group(i, sdd, &sg);
c1174876 6052 cpumask_setall(sched_group_mask(sg));
0601a88d 6053
dce840a0
PZ
6054 for_each_cpu(j, span) {
6055 if (get_group(j, sdd, NULL) != group)
6056 continue;
0601a88d 6057
dce840a0
PZ
6058 cpumask_set_cpu(j, covered);
6059 cpumask_set_cpu(j, sched_group_cpus(sg));
6060 }
0601a88d 6061
dce840a0
PZ
6062 if (!first)
6063 first = sg;
6064 if (last)
6065 last->next = sg;
6066 last = sg;
6067 }
6068 last->next = first;
e3589f6c
PZ
6069
6070 return 0;
0601a88d 6071}
51888ca2 6072
89c4710e 6073/*
63b2ca30 6074 * Initialize sched groups cpu_capacity.
89c4710e 6075 *
63b2ca30 6076 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6077 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6078 * Typically cpu_capacity for all the groups in a sched domain will be same
6079 * unless there are asymmetries in the topology. If there are asymmetries,
6080 * group having more cpu_capacity will pickup more load compared to the
6081 * group having less cpu_capacity.
89c4710e 6082 */
63b2ca30 6083static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6084{
e3589f6c 6085 struct sched_group *sg = sd->groups;
89c4710e 6086
94c95ba6 6087 WARN_ON(!sg);
e3589f6c
PZ
6088
6089 do {
6090 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6091 sg = sg->next;
6092 } while (sg != sd->groups);
89c4710e 6093
c1174876 6094 if (cpu != group_balance_cpu(sg))
e3589f6c 6095 return;
aae6d3dd 6096
63b2ca30
NP
6097 update_group_capacity(sd, cpu);
6098 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6099}
6100
7c16ec58
MT
6101/*
6102 * Initializers for schedule domains
6103 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6104 */
6105
1d3504fc 6106static int default_relax_domain_level = -1;
60495e77 6107int sched_domain_level_max;
1d3504fc
HS
6108
6109static int __init setup_relax_domain_level(char *str)
6110{
a841f8ce
DS
6111 if (kstrtoint(str, 0, &default_relax_domain_level))
6112 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6113
1d3504fc
HS
6114 return 1;
6115}
6116__setup("relax_domain_level=", setup_relax_domain_level);
6117
6118static void set_domain_attribute(struct sched_domain *sd,
6119 struct sched_domain_attr *attr)
6120{
6121 int request;
6122
6123 if (!attr || attr->relax_domain_level < 0) {
6124 if (default_relax_domain_level < 0)
6125 return;
6126 else
6127 request = default_relax_domain_level;
6128 } else
6129 request = attr->relax_domain_level;
6130 if (request < sd->level) {
6131 /* turn off idle balance on this domain */
c88d5910 6132 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6133 } else {
6134 /* turn on idle balance on this domain */
c88d5910 6135 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6136 }
6137}
6138
54ab4ff4
PZ
6139static void __sdt_free(const struct cpumask *cpu_map);
6140static int __sdt_alloc(const struct cpumask *cpu_map);
6141
2109b99e
AH
6142static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6143 const struct cpumask *cpu_map)
6144{
6145 switch (what) {
2109b99e 6146 case sa_rootdomain:
822ff793
PZ
6147 if (!atomic_read(&d->rd->refcount))
6148 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6149 case sa_sd:
6150 free_percpu(d->sd); /* fall through */
dce840a0 6151 case sa_sd_storage:
54ab4ff4 6152 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6153 case sa_none:
6154 break;
6155 }
6156}
3404c8d9 6157
2109b99e
AH
6158static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6159 const struct cpumask *cpu_map)
6160{
dce840a0
PZ
6161 memset(d, 0, sizeof(*d));
6162
54ab4ff4
PZ
6163 if (__sdt_alloc(cpu_map))
6164 return sa_sd_storage;
dce840a0
PZ
6165 d->sd = alloc_percpu(struct sched_domain *);
6166 if (!d->sd)
6167 return sa_sd_storage;
2109b99e 6168 d->rd = alloc_rootdomain();
dce840a0 6169 if (!d->rd)
21d42ccf 6170 return sa_sd;
2109b99e
AH
6171 return sa_rootdomain;
6172}
57d885fe 6173
dce840a0
PZ
6174/*
6175 * NULL the sd_data elements we've used to build the sched_domain and
6176 * sched_group structure so that the subsequent __free_domain_allocs()
6177 * will not free the data we're using.
6178 */
6179static void claim_allocations(int cpu, struct sched_domain *sd)
6180{
6181 struct sd_data *sdd = sd->private;
dce840a0
PZ
6182
6183 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6184 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6185
e3589f6c 6186 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6187 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6188
63b2ca30
NP
6189 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6190 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6191}
6192
cb83b629 6193#ifdef CONFIG_NUMA
cb83b629 6194static int sched_domains_numa_levels;
e3fe70b1 6195enum numa_topology_type sched_numa_topology_type;
cb83b629 6196static int *sched_domains_numa_distance;
9942f79b 6197int sched_max_numa_distance;
cb83b629
PZ
6198static struct cpumask ***sched_domains_numa_masks;
6199static int sched_domains_curr_level;
143e1e28 6200#endif
cb83b629 6201
143e1e28
VG
6202/*
6203 * SD_flags allowed in topology descriptions.
6204 *
5d4dfddd 6205 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6206 * SD_SHARE_PKG_RESOURCES - describes shared caches
6207 * SD_NUMA - describes NUMA topologies
d77b3ed5 6208 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6209 *
6210 * Odd one out:
6211 * SD_ASYM_PACKING - describes SMT quirks
6212 */
6213#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6214 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6215 SD_SHARE_PKG_RESOURCES | \
6216 SD_NUMA | \
d77b3ed5
VG
6217 SD_ASYM_PACKING | \
6218 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6219
6220static struct sched_domain *
143e1e28 6221sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6222{
6223 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6224 int sd_weight, sd_flags = 0;
6225
6226#ifdef CONFIG_NUMA
6227 /*
6228 * Ugly hack to pass state to sd_numa_mask()...
6229 */
6230 sched_domains_curr_level = tl->numa_level;
6231#endif
6232
6233 sd_weight = cpumask_weight(tl->mask(cpu));
6234
6235 if (tl->sd_flags)
6236 sd_flags = (*tl->sd_flags)();
6237 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6238 "wrong sd_flags in topology description\n"))
6239 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6240
6241 *sd = (struct sched_domain){
6242 .min_interval = sd_weight,
6243 .max_interval = 2*sd_weight,
6244 .busy_factor = 32,
870a0bb5 6245 .imbalance_pct = 125,
143e1e28
VG
6246
6247 .cache_nice_tries = 0,
6248 .busy_idx = 0,
6249 .idle_idx = 0,
cb83b629
PZ
6250 .newidle_idx = 0,
6251 .wake_idx = 0,
6252 .forkexec_idx = 0,
6253
6254 .flags = 1*SD_LOAD_BALANCE
6255 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6256 | 1*SD_BALANCE_EXEC
6257 | 1*SD_BALANCE_FORK
cb83b629 6258 | 0*SD_BALANCE_WAKE
143e1e28 6259 | 1*SD_WAKE_AFFINE
5d4dfddd 6260 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6261 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6262 | 0*SD_SERIALIZE
cb83b629 6263 | 0*SD_PREFER_SIBLING
143e1e28
VG
6264 | 0*SD_NUMA
6265 | sd_flags
cb83b629 6266 ,
143e1e28 6267
cb83b629
PZ
6268 .last_balance = jiffies,
6269 .balance_interval = sd_weight,
143e1e28 6270 .smt_gain = 0,
2b4cfe64
JL
6271 .max_newidle_lb_cost = 0,
6272 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6273#ifdef CONFIG_SCHED_DEBUG
6274 .name = tl->name,
6275#endif
cb83b629 6276 };
cb83b629
PZ
6277
6278 /*
143e1e28 6279 * Convert topological properties into behaviour.
cb83b629 6280 */
143e1e28 6281
5d4dfddd 6282 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6283 sd->imbalance_pct = 110;
6284 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6285
6286 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6287 sd->imbalance_pct = 117;
6288 sd->cache_nice_tries = 1;
6289 sd->busy_idx = 2;
6290
6291#ifdef CONFIG_NUMA
6292 } else if (sd->flags & SD_NUMA) {
6293 sd->cache_nice_tries = 2;
6294 sd->busy_idx = 3;
6295 sd->idle_idx = 2;
6296
6297 sd->flags |= SD_SERIALIZE;
6298 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6299 sd->flags &= ~(SD_BALANCE_EXEC |
6300 SD_BALANCE_FORK |
6301 SD_WAKE_AFFINE);
6302 }
6303
6304#endif
6305 } else {
6306 sd->flags |= SD_PREFER_SIBLING;
6307 sd->cache_nice_tries = 1;
6308 sd->busy_idx = 2;
6309 sd->idle_idx = 1;
6310 }
6311
6312 sd->private = &tl->data;
cb83b629
PZ
6313
6314 return sd;
6315}
6316
143e1e28
VG
6317/*
6318 * Topology list, bottom-up.
6319 */
6320static struct sched_domain_topology_level default_topology[] = {
6321#ifdef CONFIG_SCHED_SMT
6322 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6323#endif
6324#ifdef CONFIG_SCHED_MC
6325 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6326#endif
6327 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6328 { NULL, },
6329};
6330
6331struct sched_domain_topology_level *sched_domain_topology = default_topology;
6332
6333#define for_each_sd_topology(tl) \
6334 for (tl = sched_domain_topology; tl->mask; tl++)
6335
6336void set_sched_topology(struct sched_domain_topology_level *tl)
6337{
6338 sched_domain_topology = tl;
6339}
6340
6341#ifdef CONFIG_NUMA
6342
cb83b629
PZ
6343static const struct cpumask *sd_numa_mask(int cpu)
6344{
6345 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6346}
6347
d039ac60
PZ
6348static void sched_numa_warn(const char *str)
6349{
6350 static int done = false;
6351 int i,j;
6352
6353 if (done)
6354 return;
6355
6356 done = true;
6357
6358 printk(KERN_WARNING "ERROR: %s\n\n", str);
6359
6360 for (i = 0; i < nr_node_ids; i++) {
6361 printk(KERN_WARNING " ");
6362 for (j = 0; j < nr_node_ids; j++)
6363 printk(KERN_CONT "%02d ", node_distance(i,j));
6364 printk(KERN_CONT "\n");
6365 }
6366 printk(KERN_WARNING "\n");
6367}
6368
9942f79b 6369bool find_numa_distance(int distance)
d039ac60
PZ
6370{
6371 int i;
6372
6373 if (distance == node_distance(0, 0))
6374 return true;
6375
6376 for (i = 0; i < sched_domains_numa_levels; i++) {
6377 if (sched_domains_numa_distance[i] == distance)
6378 return true;
6379 }
6380
6381 return false;
6382}
6383
e3fe70b1
RR
6384/*
6385 * A system can have three types of NUMA topology:
6386 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6387 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6388 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6389 *
6390 * The difference between a glueless mesh topology and a backplane
6391 * topology lies in whether communication between not directly
6392 * connected nodes goes through intermediary nodes (where programs
6393 * could run), or through backplane controllers. This affects
6394 * placement of programs.
6395 *
6396 * The type of topology can be discerned with the following tests:
6397 * - If the maximum distance between any nodes is 1 hop, the system
6398 * is directly connected.
6399 * - If for two nodes A and B, located N > 1 hops away from each other,
6400 * there is an intermediary node C, which is < N hops away from both
6401 * nodes A and B, the system is a glueless mesh.
6402 */
6403static void init_numa_topology_type(void)
6404{
6405 int a, b, c, n;
6406
6407 n = sched_max_numa_distance;
6408
6409 if (n <= 1)
6410 sched_numa_topology_type = NUMA_DIRECT;
6411
6412 for_each_online_node(a) {
6413 for_each_online_node(b) {
6414 /* Find two nodes furthest removed from each other. */
6415 if (node_distance(a, b) < n)
6416 continue;
6417
6418 /* Is there an intermediary node between a and b? */
6419 for_each_online_node(c) {
6420 if (node_distance(a, c) < n &&
6421 node_distance(b, c) < n) {
6422 sched_numa_topology_type =
6423 NUMA_GLUELESS_MESH;
6424 return;
6425 }
6426 }
6427
6428 sched_numa_topology_type = NUMA_BACKPLANE;
6429 return;
6430 }
6431 }
6432}
6433
cb83b629
PZ
6434static void sched_init_numa(void)
6435{
6436 int next_distance, curr_distance = node_distance(0, 0);
6437 struct sched_domain_topology_level *tl;
6438 int level = 0;
6439 int i, j, k;
6440
cb83b629
PZ
6441 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6442 if (!sched_domains_numa_distance)
6443 return;
6444
6445 /*
6446 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6447 * unique distances in the node_distance() table.
6448 *
6449 * Assumes node_distance(0,j) includes all distances in
6450 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6451 */
6452 next_distance = curr_distance;
6453 for (i = 0; i < nr_node_ids; i++) {
6454 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6455 for (k = 0; k < nr_node_ids; k++) {
6456 int distance = node_distance(i, k);
6457
6458 if (distance > curr_distance &&
6459 (distance < next_distance ||
6460 next_distance == curr_distance))
6461 next_distance = distance;
6462
6463 /*
6464 * While not a strong assumption it would be nice to know
6465 * about cases where if node A is connected to B, B is not
6466 * equally connected to A.
6467 */
6468 if (sched_debug() && node_distance(k, i) != distance)
6469 sched_numa_warn("Node-distance not symmetric");
6470
6471 if (sched_debug() && i && !find_numa_distance(distance))
6472 sched_numa_warn("Node-0 not representative");
6473 }
6474 if (next_distance != curr_distance) {
6475 sched_domains_numa_distance[level++] = next_distance;
6476 sched_domains_numa_levels = level;
6477 curr_distance = next_distance;
6478 } else break;
cb83b629 6479 }
d039ac60
PZ
6480
6481 /*
6482 * In case of sched_debug() we verify the above assumption.
6483 */
6484 if (!sched_debug())
6485 break;
cb83b629 6486 }
c123588b
AR
6487
6488 if (!level)
6489 return;
6490
cb83b629
PZ
6491 /*
6492 * 'level' contains the number of unique distances, excluding the
6493 * identity distance node_distance(i,i).
6494 *
28b4a521 6495 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6496 * numbers.
6497 */
6498
5f7865f3
TC
6499 /*
6500 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6501 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6502 * the array will contain less then 'level' members. This could be
6503 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6504 * in other functions.
6505 *
6506 * We reset it to 'level' at the end of this function.
6507 */
6508 sched_domains_numa_levels = 0;
6509
cb83b629
PZ
6510 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6511 if (!sched_domains_numa_masks)
6512 return;
6513
6514 /*
6515 * Now for each level, construct a mask per node which contains all
6516 * cpus of nodes that are that many hops away from us.
6517 */
6518 for (i = 0; i < level; i++) {
6519 sched_domains_numa_masks[i] =
6520 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6521 if (!sched_domains_numa_masks[i])
6522 return;
6523
6524 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6525 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6526 if (!mask)
6527 return;
6528
6529 sched_domains_numa_masks[i][j] = mask;
6530
6531 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6532 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6533 continue;
6534
6535 cpumask_or(mask, mask, cpumask_of_node(k));
6536 }
6537 }
6538 }
6539
143e1e28
VG
6540 /* Compute default topology size */
6541 for (i = 0; sched_domain_topology[i].mask; i++);
6542
c515db8c 6543 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6544 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6545 if (!tl)
6546 return;
6547
6548 /*
6549 * Copy the default topology bits..
6550 */
143e1e28
VG
6551 for (i = 0; sched_domain_topology[i].mask; i++)
6552 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6553
6554 /*
6555 * .. and append 'j' levels of NUMA goodness.
6556 */
6557 for (j = 0; j < level; i++, j++) {
6558 tl[i] = (struct sched_domain_topology_level){
cb83b629 6559 .mask = sd_numa_mask,
143e1e28 6560 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6561 .flags = SDTL_OVERLAP,
6562 .numa_level = j,
143e1e28 6563 SD_INIT_NAME(NUMA)
cb83b629
PZ
6564 };
6565 }
6566
6567 sched_domain_topology = tl;
5f7865f3
TC
6568
6569 sched_domains_numa_levels = level;
9942f79b 6570 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6571
6572 init_numa_topology_type();
cb83b629 6573}
301a5cba
TC
6574
6575static void sched_domains_numa_masks_set(int cpu)
6576{
6577 int i, j;
6578 int node = cpu_to_node(cpu);
6579
6580 for (i = 0; i < sched_domains_numa_levels; i++) {
6581 for (j = 0; j < nr_node_ids; j++) {
6582 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6583 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6584 }
6585 }
6586}
6587
6588static void sched_domains_numa_masks_clear(int cpu)
6589{
6590 int i, j;
6591 for (i = 0; i < sched_domains_numa_levels; i++) {
6592 for (j = 0; j < nr_node_ids; j++)
6593 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6594 }
6595}
6596
6597/*
6598 * Update sched_domains_numa_masks[level][node] array when new cpus
6599 * are onlined.
6600 */
6601static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6602 unsigned long action,
6603 void *hcpu)
6604{
6605 int cpu = (long)hcpu;
6606
6607 switch (action & ~CPU_TASKS_FROZEN) {
6608 case CPU_ONLINE:
6609 sched_domains_numa_masks_set(cpu);
6610 break;
6611
6612 case CPU_DEAD:
6613 sched_domains_numa_masks_clear(cpu);
6614 break;
6615
6616 default:
6617 return NOTIFY_DONE;
6618 }
6619
6620 return NOTIFY_OK;
cb83b629
PZ
6621}
6622#else
6623static inline void sched_init_numa(void)
6624{
6625}
301a5cba
TC
6626
6627static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6628 unsigned long action,
6629 void *hcpu)
6630{
6631 return 0;
6632}
cb83b629
PZ
6633#endif /* CONFIG_NUMA */
6634
54ab4ff4
PZ
6635static int __sdt_alloc(const struct cpumask *cpu_map)
6636{
6637 struct sched_domain_topology_level *tl;
6638 int j;
6639
27723a68 6640 for_each_sd_topology(tl) {
54ab4ff4
PZ
6641 struct sd_data *sdd = &tl->data;
6642
6643 sdd->sd = alloc_percpu(struct sched_domain *);
6644 if (!sdd->sd)
6645 return -ENOMEM;
6646
6647 sdd->sg = alloc_percpu(struct sched_group *);
6648 if (!sdd->sg)
6649 return -ENOMEM;
6650
63b2ca30
NP
6651 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6652 if (!sdd->sgc)
9c3f75cb
PZ
6653 return -ENOMEM;
6654
54ab4ff4
PZ
6655 for_each_cpu(j, cpu_map) {
6656 struct sched_domain *sd;
6657 struct sched_group *sg;
63b2ca30 6658 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6659
6660 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6661 GFP_KERNEL, cpu_to_node(j));
6662 if (!sd)
6663 return -ENOMEM;
6664
6665 *per_cpu_ptr(sdd->sd, j) = sd;
6666
6667 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6668 GFP_KERNEL, cpu_to_node(j));
6669 if (!sg)
6670 return -ENOMEM;
6671
30b4e9eb
IM
6672 sg->next = sg;
6673
54ab4ff4 6674 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6675
63b2ca30 6676 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6677 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6678 if (!sgc)
9c3f75cb
PZ
6679 return -ENOMEM;
6680
63b2ca30 6681 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6682 }
6683 }
6684
6685 return 0;
6686}
6687
6688static void __sdt_free(const struct cpumask *cpu_map)
6689{
6690 struct sched_domain_topology_level *tl;
6691 int j;
6692
27723a68 6693 for_each_sd_topology(tl) {
54ab4ff4
PZ
6694 struct sd_data *sdd = &tl->data;
6695
6696 for_each_cpu(j, cpu_map) {
fb2cf2c6 6697 struct sched_domain *sd;
6698
6699 if (sdd->sd) {
6700 sd = *per_cpu_ptr(sdd->sd, j);
6701 if (sd && (sd->flags & SD_OVERLAP))
6702 free_sched_groups(sd->groups, 0);
6703 kfree(*per_cpu_ptr(sdd->sd, j));
6704 }
6705
6706 if (sdd->sg)
6707 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6708 if (sdd->sgc)
6709 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6710 }
6711 free_percpu(sdd->sd);
fb2cf2c6 6712 sdd->sd = NULL;
54ab4ff4 6713 free_percpu(sdd->sg);
fb2cf2c6 6714 sdd->sg = NULL;
63b2ca30
NP
6715 free_percpu(sdd->sgc);
6716 sdd->sgc = NULL;
54ab4ff4
PZ
6717 }
6718}
6719
2c402dc3 6720struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6721 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6722 struct sched_domain *child, int cpu)
2c402dc3 6723{
143e1e28 6724 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6725 if (!sd)
d069b916 6726 return child;
2c402dc3 6727
2c402dc3 6728 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6729 if (child) {
6730 sd->level = child->level + 1;
6731 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6732 child->parent = sd;
c75e0128 6733 sd->child = child;
6ae72dff
PZ
6734
6735 if (!cpumask_subset(sched_domain_span(child),
6736 sched_domain_span(sd))) {
6737 pr_err("BUG: arch topology borken\n");
6738#ifdef CONFIG_SCHED_DEBUG
6739 pr_err(" the %s domain not a subset of the %s domain\n",
6740 child->name, sd->name);
6741#endif
6742 /* Fixup, ensure @sd has at least @child cpus. */
6743 cpumask_or(sched_domain_span(sd),
6744 sched_domain_span(sd),
6745 sched_domain_span(child));
6746 }
6747
60495e77 6748 }
a841f8ce 6749 set_domain_attribute(sd, attr);
2c402dc3
PZ
6750
6751 return sd;
6752}
6753
2109b99e
AH
6754/*
6755 * Build sched domains for a given set of cpus and attach the sched domains
6756 * to the individual cpus
6757 */
dce840a0
PZ
6758static int build_sched_domains(const struct cpumask *cpu_map,
6759 struct sched_domain_attr *attr)
2109b99e 6760{
1c632169 6761 enum s_alloc alloc_state;
dce840a0 6762 struct sched_domain *sd;
2109b99e 6763 struct s_data d;
822ff793 6764 int i, ret = -ENOMEM;
9c1cfda2 6765
2109b99e
AH
6766 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6767 if (alloc_state != sa_rootdomain)
6768 goto error;
9c1cfda2 6769
dce840a0 6770 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6771 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6772 struct sched_domain_topology_level *tl;
6773
3bd65a80 6774 sd = NULL;
27723a68 6775 for_each_sd_topology(tl) {
4a850cbe 6776 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6777 if (tl == sched_domain_topology)
6778 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6779 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6780 sd->flags |= SD_OVERLAP;
d110235d
PZ
6781 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6782 break;
e3589f6c 6783 }
dce840a0
PZ
6784 }
6785
6786 /* Build the groups for the domains */
6787 for_each_cpu(i, cpu_map) {
6788 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6789 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6790 if (sd->flags & SD_OVERLAP) {
6791 if (build_overlap_sched_groups(sd, i))
6792 goto error;
6793 } else {
6794 if (build_sched_groups(sd, i))
6795 goto error;
6796 }
1cf51902 6797 }
a06dadbe 6798 }
9c1cfda2 6799
ced549fa 6800 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6801 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6802 if (!cpumask_test_cpu(i, cpu_map))
6803 continue;
9c1cfda2 6804
dce840a0
PZ
6805 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6806 claim_allocations(i, sd);
63b2ca30 6807 init_sched_groups_capacity(i, sd);
dce840a0 6808 }
f712c0c7 6809 }
9c1cfda2 6810
1da177e4 6811 /* Attach the domains */
dce840a0 6812 rcu_read_lock();
abcd083a 6813 for_each_cpu(i, cpu_map) {
21d42ccf 6814 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6815 cpu_attach_domain(sd, d.rd, i);
1da177e4 6816 }
dce840a0 6817 rcu_read_unlock();
51888ca2 6818
822ff793 6819 ret = 0;
51888ca2 6820error:
2109b99e 6821 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6822 return ret;
1da177e4 6823}
029190c5 6824
acc3f5d7 6825static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6826static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6827static struct sched_domain_attr *dattr_cur;
6828 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6829
6830/*
6831 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6832 * cpumask) fails, then fallback to a single sched domain,
6833 * as determined by the single cpumask fallback_doms.
029190c5 6834 */
4212823f 6835static cpumask_var_t fallback_doms;
029190c5 6836
ee79d1bd
HC
6837/*
6838 * arch_update_cpu_topology lets virtualized architectures update the
6839 * cpu core maps. It is supposed to return 1 if the topology changed
6840 * or 0 if it stayed the same.
6841 */
52f5684c 6842int __weak arch_update_cpu_topology(void)
22e52b07 6843{
ee79d1bd 6844 return 0;
22e52b07
HC
6845}
6846
acc3f5d7
RR
6847cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6848{
6849 int i;
6850 cpumask_var_t *doms;
6851
6852 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6853 if (!doms)
6854 return NULL;
6855 for (i = 0; i < ndoms; i++) {
6856 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6857 free_sched_domains(doms, i);
6858 return NULL;
6859 }
6860 }
6861 return doms;
6862}
6863
6864void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6865{
6866 unsigned int i;
6867 for (i = 0; i < ndoms; i++)
6868 free_cpumask_var(doms[i]);
6869 kfree(doms);
6870}
6871
1a20ff27 6872/*
41a2d6cf 6873 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6874 * For now this just excludes isolated cpus, but could be used to
6875 * exclude other special cases in the future.
1a20ff27 6876 */
c4a8849a 6877static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6878{
7378547f
MM
6879 int err;
6880
22e52b07 6881 arch_update_cpu_topology();
029190c5 6882 ndoms_cur = 1;
acc3f5d7 6883 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6884 if (!doms_cur)
acc3f5d7
RR
6885 doms_cur = &fallback_doms;
6886 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6887 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6888 register_sched_domain_sysctl();
7378547f
MM
6889
6890 return err;
1a20ff27
DG
6891}
6892
1a20ff27
DG
6893/*
6894 * Detach sched domains from a group of cpus specified in cpu_map
6895 * These cpus will now be attached to the NULL domain
6896 */
96f874e2 6897static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6898{
6899 int i;
6900
dce840a0 6901 rcu_read_lock();
abcd083a 6902 for_each_cpu(i, cpu_map)
57d885fe 6903 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6904 rcu_read_unlock();
1a20ff27
DG
6905}
6906
1d3504fc
HS
6907/* handle null as "default" */
6908static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6909 struct sched_domain_attr *new, int idx_new)
6910{
6911 struct sched_domain_attr tmp;
6912
6913 /* fast path */
6914 if (!new && !cur)
6915 return 1;
6916
6917 tmp = SD_ATTR_INIT;
6918 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6919 new ? (new + idx_new) : &tmp,
6920 sizeof(struct sched_domain_attr));
6921}
6922
029190c5
PJ
6923/*
6924 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6925 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6926 * doms_new[] to the current sched domain partitioning, doms_cur[].
6927 * It destroys each deleted domain and builds each new domain.
6928 *
acc3f5d7 6929 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6930 * The masks don't intersect (don't overlap.) We should setup one
6931 * sched domain for each mask. CPUs not in any of the cpumasks will
6932 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6933 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6934 * it as it is.
6935 *
acc3f5d7
RR
6936 * The passed in 'doms_new' should be allocated using
6937 * alloc_sched_domains. This routine takes ownership of it and will
6938 * free_sched_domains it when done with it. If the caller failed the
6939 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6940 * and partition_sched_domains() will fallback to the single partition
6941 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6942 *
96f874e2 6943 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6944 * ndoms_new == 0 is a special case for destroying existing domains,
6945 * and it will not create the default domain.
dfb512ec 6946 *
029190c5
PJ
6947 * Call with hotplug lock held
6948 */
acc3f5d7 6949void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6950 struct sched_domain_attr *dattr_new)
029190c5 6951{
dfb512ec 6952 int i, j, n;
d65bd5ec 6953 int new_topology;
029190c5 6954
712555ee 6955 mutex_lock(&sched_domains_mutex);
a1835615 6956
7378547f
MM
6957 /* always unregister in case we don't destroy any domains */
6958 unregister_sched_domain_sysctl();
6959
d65bd5ec
HC
6960 /* Let architecture update cpu core mappings. */
6961 new_topology = arch_update_cpu_topology();
6962
dfb512ec 6963 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6964
6965 /* Destroy deleted domains */
6966 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6967 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6968 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6969 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6970 goto match1;
6971 }
6972 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6973 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6974match1:
6975 ;
6976 }
6977
c8d2d47a 6978 n = ndoms_cur;
e761b772 6979 if (doms_new == NULL) {
c8d2d47a 6980 n = 0;
acc3f5d7 6981 doms_new = &fallback_doms;
6ad4c188 6982 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6983 WARN_ON_ONCE(dattr_new);
e761b772
MK
6984 }
6985
029190c5
PJ
6986 /* Build new domains */
6987 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6988 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6989 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6990 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6991 goto match2;
6992 }
6993 /* no match - add a new doms_new */
dce840a0 6994 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6995match2:
6996 ;
6997 }
6998
6999 /* Remember the new sched domains */
acc3f5d7
RR
7000 if (doms_cur != &fallback_doms)
7001 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7002 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7003 doms_cur = doms_new;
1d3504fc 7004 dattr_cur = dattr_new;
029190c5 7005 ndoms_cur = ndoms_new;
7378547f
MM
7006
7007 register_sched_domain_sysctl();
a1835615 7008
712555ee 7009 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7010}
7011
d35be8ba
SB
7012static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7013
1da177e4 7014/*
3a101d05
TH
7015 * Update cpusets according to cpu_active mask. If cpusets are
7016 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7017 * around partition_sched_domains().
d35be8ba
SB
7018 *
7019 * If we come here as part of a suspend/resume, don't touch cpusets because we
7020 * want to restore it back to its original state upon resume anyway.
1da177e4 7021 */
0b2e918a
TH
7022static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7023 void *hcpu)
e761b772 7024{
d35be8ba
SB
7025 switch (action) {
7026 case CPU_ONLINE_FROZEN:
7027 case CPU_DOWN_FAILED_FROZEN:
7028
7029 /*
7030 * num_cpus_frozen tracks how many CPUs are involved in suspend
7031 * resume sequence. As long as this is not the last online
7032 * operation in the resume sequence, just build a single sched
7033 * domain, ignoring cpusets.
7034 */
7035 num_cpus_frozen--;
7036 if (likely(num_cpus_frozen)) {
7037 partition_sched_domains(1, NULL, NULL);
7038 break;
7039 }
7040
7041 /*
7042 * This is the last CPU online operation. So fall through and
7043 * restore the original sched domains by considering the
7044 * cpuset configurations.
7045 */
7046
e761b772 7047 case CPU_ONLINE:
6ad4c188 7048 case CPU_DOWN_FAILED:
7ddf96b0 7049 cpuset_update_active_cpus(true);
d35be8ba 7050 break;
3a101d05
TH
7051 default:
7052 return NOTIFY_DONE;
7053 }
d35be8ba 7054 return NOTIFY_OK;
3a101d05 7055}
e761b772 7056
0b2e918a
TH
7057static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7058 void *hcpu)
3a101d05 7059{
d35be8ba 7060 switch (action) {
3a101d05 7061 case CPU_DOWN_PREPARE:
7ddf96b0 7062 cpuset_update_active_cpus(false);
d35be8ba
SB
7063 break;
7064 case CPU_DOWN_PREPARE_FROZEN:
7065 num_cpus_frozen++;
7066 partition_sched_domains(1, NULL, NULL);
7067 break;
e761b772
MK
7068 default:
7069 return NOTIFY_DONE;
7070 }
d35be8ba 7071 return NOTIFY_OK;
e761b772 7072}
e761b772 7073
1da177e4
LT
7074void __init sched_init_smp(void)
7075{
dcc30a35
RR
7076 cpumask_var_t non_isolated_cpus;
7077
7078 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7079 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7080
cb83b629
PZ
7081 sched_init_numa();
7082
6acce3ef
PZ
7083 /*
7084 * There's no userspace yet to cause hotplug operations; hence all the
7085 * cpu masks are stable and all blatant races in the below code cannot
7086 * happen.
7087 */
712555ee 7088 mutex_lock(&sched_domains_mutex);
c4a8849a 7089 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7090 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7091 if (cpumask_empty(non_isolated_cpus))
7092 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7093 mutex_unlock(&sched_domains_mutex);
e761b772 7094
301a5cba 7095 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7096 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7097 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7098
b328ca18 7099 init_hrtick();
5c1e1767
NP
7100
7101 /* Move init over to a non-isolated CPU */
dcc30a35 7102 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7103 BUG();
19978ca6 7104 sched_init_granularity();
dcc30a35 7105 free_cpumask_var(non_isolated_cpus);
4212823f 7106
0e3900e6 7107 init_sched_rt_class();
1baca4ce 7108 init_sched_dl_class();
1da177e4
LT
7109}
7110#else
7111void __init sched_init_smp(void)
7112{
19978ca6 7113 sched_init_granularity();
1da177e4
LT
7114}
7115#endif /* CONFIG_SMP */
7116
cd1bb94b
AB
7117const_debug unsigned int sysctl_timer_migration = 1;
7118
1da177e4
LT
7119int in_sched_functions(unsigned long addr)
7120{
1da177e4
LT
7121 return in_lock_functions(addr) ||
7122 (addr >= (unsigned long)__sched_text_start
7123 && addr < (unsigned long)__sched_text_end);
7124}
7125
029632fb 7126#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7127/*
7128 * Default task group.
7129 * Every task in system belongs to this group at bootup.
7130 */
029632fb 7131struct task_group root_task_group;
35cf4e50 7132LIST_HEAD(task_groups);
052f1dc7 7133#endif
6f505b16 7134
e6252c3e 7135DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7136
1da177e4
LT
7137void __init sched_init(void)
7138{
dd41f596 7139 int i, j;
434d53b0
MT
7140 unsigned long alloc_size = 0, ptr;
7141
7142#ifdef CONFIG_FAIR_GROUP_SCHED
7143 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7144#endif
7145#ifdef CONFIG_RT_GROUP_SCHED
7146 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7147#endif
434d53b0 7148 if (alloc_size) {
36b7b6d4 7149 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7150
7151#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7152 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7153 ptr += nr_cpu_ids * sizeof(void **);
7154
07e06b01 7155 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7156 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7157
6d6bc0ad 7158#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7159#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7160 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7161 ptr += nr_cpu_ids * sizeof(void **);
7162
07e06b01 7163 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7164 ptr += nr_cpu_ids * sizeof(void **);
7165
6d6bc0ad 7166#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7167 }
df7c8e84 7168#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7169 for_each_possible_cpu(i) {
7170 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7171 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7172 }
b74e6278 7173#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7174
332ac17e
DF
7175 init_rt_bandwidth(&def_rt_bandwidth,
7176 global_rt_period(), global_rt_runtime());
7177 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7178 global_rt_period(), global_rt_runtime());
332ac17e 7179
57d885fe
GH
7180#ifdef CONFIG_SMP
7181 init_defrootdomain();
7182#endif
7183
d0b27fa7 7184#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7185 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7186 global_rt_period(), global_rt_runtime());
6d6bc0ad 7187#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7188
7c941438 7189#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7190 list_add(&root_task_group.list, &task_groups);
7191 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7192 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7193 autogroup_init(&init_task);
54c707e9 7194
7c941438 7195#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7196
0a945022 7197 for_each_possible_cpu(i) {
70b97a7f 7198 struct rq *rq;
1da177e4
LT
7199
7200 rq = cpu_rq(i);
05fa785c 7201 raw_spin_lock_init(&rq->lock);
7897986b 7202 rq->nr_running = 0;
dce48a84
TG
7203 rq->calc_load_active = 0;
7204 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7205 init_cfs_rq(&rq->cfs);
6f505b16 7206 init_rt_rq(&rq->rt, rq);
aab03e05 7207 init_dl_rq(&rq->dl, rq);
dd41f596 7208#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7209 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7210 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7211 /*
07e06b01 7212 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7213 *
7214 * In case of task-groups formed thr' the cgroup filesystem, it
7215 * gets 100% of the cpu resources in the system. This overall
7216 * system cpu resource is divided among the tasks of
07e06b01 7217 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7218 * based on each entity's (task or task-group's) weight
7219 * (se->load.weight).
7220 *
07e06b01 7221 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7222 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7223 * then A0's share of the cpu resource is:
7224 *
0d905bca 7225 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7226 *
07e06b01
YZ
7227 * We achieve this by letting root_task_group's tasks sit
7228 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7229 */
ab84d31e 7230 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7231 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7232#endif /* CONFIG_FAIR_GROUP_SCHED */
7233
7234 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7235#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7236 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7237#endif
1da177e4 7238
dd41f596
IM
7239 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7240 rq->cpu_load[j] = 0;
fdf3e95d
VP
7241
7242 rq->last_load_update_tick = jiffies;
7243
1da177e4 7244#ifdef CONFIG_SMP
41c7ce9a 7245 rq->sd = NULL;
57d885fe 7246 rq->rd = NULL;
ca8ce3d0 7247 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7248 rq->post_schedule = 0;
1da177e4 7249 rq->active_balance = 0;
dd41f596 7250 rq->next_balance = jiffies;
1da177e4 7251 rq->push_cpu = 0;
0a2966b4 7252 rq->cpu = i;
1f11eb6a 7253 rq->online = 0;
eae0c9df
MG
7254 rq->idle_stamp = 0;
7255 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7256 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7257
7258 INIT_LIST_HEAD(&rq->cfs_tasks);
7259
dc938520 7260 rq_attach_root(rq, &def_root_domain);
3451d024 7261#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7262 rq->nohz_flags = 0;
83cd4fe2 7263#endif
265f22a9
FW
7264#ifdef CONFIG_NO_HZ_FULL
7265 rq->last_sched_tick = 0;
7266#endif
1da177e4 7267#endif
8f4d37ec 7268 init_rq_hrtick(rq);
1da177e4 7269 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7270 }
7271
2dd73a4f 7272 set_load_weight(&init_task);
b50f60ce 7273
e107be36
AK
7274#ifdef CONFIG_PREEMPT_NOTIFIERS
7275 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7276#endif
7277
1da177e4
LT
7278 /*
7279 * The boot idle thread does lazy MMU switching as well:
7280 */
7281 atomic_inc(&init_mm.mm_count);
7282 enter_lazy_tlb(&init_mm, current);
7283
1b537c7d
YD
7284 /*
7285 * During early bootup we pretend to be a normal task:
7286 */
7287 current->sched_class = &fair_sched_class;
7288
1da177e4
LT
7289 /*
7290 * Make us the idle thread. Technically, schedule() should not be
7291 * called from this thread, however somewhere below it might be,
7292 * but because we are the idle thread, we just pick up running again
7293 * when this runqueue becomes "idle".
7294 */
7295 init_idle(current, smp_processor_id());
dce48a84
TG
7296
7297 calc_load_update = jiffies + LOAD_FREQ;
7298
bf4d83f6 7299#ifdef CONFIG_SMP
4cb98839 7300 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7301 /* May be allocated at isolcpus cmdline parse time */
7302 if (cpu_isolated_map == NULL)
7303 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7304 idle_thread_set_boot_cpu();
a803f026 7305 set_cpu_rq_start_time();
029632fb
PZ
7306#endif
7307 init_sched_fair_class();
6a7b3dc3 7308
6892b75e 7309 scheduler_running = 1;
1da177e4
LT
7310}
7311
d902db1e 7312#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7313static inline int preempt_count_equals(int preempt_offset)
7314{
234da7bc 7315 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7316
4ba8216c 7317 return (nested == preempt_offset);
e4aafea2
FW
7318}
7319
d894837f 7320void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7321{
8eb23b9f
PZ
7322 /*
7323 * Blocking primitives will set (and therefore destroy) current->state,
7324 * since we will exit with TASK_RUNNING make sure we enter with it,
7325 * otherwise we will destroy state.
7326 */
e7097e8b 7327 if (WARN_ONCE(current->state != TASK_RUNNING,
8eb23b9f
PZ
7328 "do not call blocking ops when !TASK_RUNNING; "
7329 "state=%lx set at [<%p>] %pS\n",
7330 current->state,
7331 (void *)current->task_state_change,
7332 (void *)current->task_state_change))
7333 __set_current_state(TASK_RUNNING);
7334
3427445a
PZ
7335 ___might_sleep(file, line, preempt_offset);
7336}
7337EXPORT_SYMBOL(__might_sleep);
7338
7339void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7340{
1da177e4
LT
7341 static unsigned long prev_jiffy; /* ratelimiting */
7342
b3fbab05 7343 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7344 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7345 !is_idle_task(current)) ||
e4aafea2 7346 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7347 return;
7348 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7349 return;
7350 prev_jiffy = jiffies;
7351
3df0fc5b
PZ
7352 printk(KERN_ERR
7353 "BUG: sleeping function called from invalid context at %s:%d\n",
7354 file, line);
7355 printk(KERN_ERR
7356 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7357 in_atomic(), irqs_disabled(),
7358 current->pid, current->comm);
aef745fc 7359
a8b686b3
ES
7360 if (task_stack_end_corrupted(current))
7361 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7362
aef745fc
IM
7363 debug_show_held_locks(current);
7364 if (irqs_disabled())
7365 print_irqtrace_events(current);
8f47b187
TG
7366#ifdef CONFIG_DEBUG_PREEMPT
7367 if (!preempt_count_equals(preempt_offset)) {
7368 pr_err("Preemption disabled at:");
7369 print_ip_sym(current->preempt_disable_ip);
7370 pr_cont("\n");
7371 }
7372#endif
aef745fc 7373 dump_stack();
1da177e4 7374}
3427445a 7375EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7376#endif
7377
7378#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7379static void normalize_task(struct rq *rq, struct task_struct *p)
7380{
da7a735e 7381 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7382 struct sched_attr attr = {
7383 .sched_policy = SCHED_NORMAL,
7384 };
da7a735e 7385 int old_prio = p->prio;
da0c1e65 7386 int queued;
3e51f33f 7387
da0c1e65
KT
7388 queued = task_on_rq_queued(p);
7389 if (queued)
4ca9b72b 7390 dequeue_task(rq, p, 0);
d50dde5a 7391 __setscheduler(rq, p, &attr);
da0c1e65 7392 if (queued) {
4ca9b72b 7393 enqueue_task(rq, p, 0);
8875125e 7394 resched_curr(rq);
3a5e4dc1 7395 }
da7a735e
PZ
7396
7397 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7398}
7399
1da177e4
LT
7400void normalize_rt_tasks(void)
7401{
a0f98a1c 7402 struct task_struct *g, *p;
1da177e4 7403 unsigned long flags;
70b97a7f 7404 struct rq *rq;
1da177e4 7405
3472eaa1 7406 read_lock(&tasklist_lock);
5d07f420 7407 for_each_process_thread(g, p) {
178be793
IM
7408 /*
7409 * Only normalize user tasks:
7410 */
3472eaa1 7411 if (p->flags & PF_KTHREAD)
178be793
IM
7412 continue;
7413
6cfb0d5d 7414 p->se.exec_start = 0;
6cfb0d5d 7415#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7416 p->se.statistics.wait_start = 0;
7417 p->se.statistics.sleep_start = 0;
7418 p->se.statistics.block_start = 0;
6cfb0d5d 7419#endif
dd41f596 7420
aab03e05 7421 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7422 /*
7423 * Renice negative nice level userspace
7424 * tasks back to 0:
7425 */
3472eaa1 7426 if (task_nice(p) < 0)
dd41f596 7427 set_user_nice(p, 0);
1da177e4 7428 continue;
dd41f596 7429 }
1da177e4 7430
3472eaa1 7431 rq = task_rq_lock(p, &flags);
178be793 7432 normalize_task(rq, p);
3472eaa1 7433 task_rq_unlock(rq, p, &flags);
5d07f420 7434 }
3472eaa1 7435 read_unlock(&tasklist_lock);
1da177e4
LT
7436}
7437
7438#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7439
67fc4e0c 7440#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7441/*
67fc4e0c 7442 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7443 *
7444 * They can only be called when the whole system has been
7445 * stopped - every CPU needs to be quiescent, and no scheduling
7446 * activity can take place. Using them for anything else would
7447 * be a serious bug, and as a result, they aren't even visible
7448 * under any other configuration.
7449 */
7450
7451/**
7452 * curr_task - return the current task for a given cpu.
7453 * @cpu: the processor in question.
7454 *
7455 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7456 *
7457 * Return: The current task for @cpu.
1df5c10a 7458 */
36c8b586 7459struct task_struct *curr_task(int cpu)
1df5c10a
LT
7460{
7461 return cpu_curr(cpu);
7462}
7463
67fc4e0c
JW
7464#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7465
7466#ifdef CONFIG_IA64
1df5c10a
LT
7467/**
7468 * set_curr_task - set the current task for a given cpu.
7469 * @cpu: the processor in question.
7470 * @p: the task pointer to set.
7471 *
7472 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7473 * are serviced on a separate stack. It allows the architecture to switch the
7474 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7475 * must be called with all CPU's synchronized, and interrupts disabled, the
7476 * and caller must save the original value of the current task (see
7477 * curr_task() above) and restore that value before reenabling interrupts and
7478 * re-starting the system.
7479 *
7480 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7481 */
36c8b586 7482void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7483{
7484 cpu_curr(cpu) = p;
7485}
7486
7487#endif
29f59db3 7488
7c941438 7489#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7490/* task_group_lock serializes the addition/removal of task groups */
7491static DEFINE_SPINLOCK(task_group_lock);
7492
bccbe08a
PZ
7493static void free_sched_group(struct task_group *tg)
7494{
7495 free_fair_sched_group(tg);
7496 free_rt_sched_group(tg);
e9aa1dd1 7497 autogroup_free(tg);
bccbe08a
PZ
7498 kfree(tg);
7499}
7500
7501/* allocate runqueue etc for a new task group */
ec7dc8ac 7502struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7503{
7504 struct task_group *tg;
bccbe08a
PZ
7505
7506 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7507 if (!tg)
7508 return ERR_PTR(-ENOMEM);
7509
ec7dc8ac 7510 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7511 goto err;
7512
ec7dc8ac 7513 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7514 goto err;
7515
ace783b9
LZ
7516 return tg;
7517
7518err:
7519 free_sched_group(tg);
7520 return ERR_PTR(-ENOMEM);
7521}
7522
7523void sched_online_group(struct task_group *tg, struct task_group *parent)
7524{
7525 unsigned long flags;
7526
8ed36996 7527 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7528 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7529
7530 WARN_ON(!parent); /* root should already exist */
7531
7532 tg->parent = parent;
f473aa5e 7533 INIT_LIST_HEAD(&tg->children);
09f2724a 7534 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7535 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7536}
7537
9b5b7751 7538/* rcu callback to free various structures associated with a task group */
6f505b16 7539static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7540{
29f59db3 7541 /* now it should be safe to free those cfs_rqs */
6f505b16 7542 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7543}
7544
9b5b7751 7545/* Destroy runqueue etc associated with a task group */
4cf86d77 7546void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7547{
7548 /* wait for possible concurrent references to cfs_rqs complete */
7549 call_rcu(&tg->rcu, free_sched_group_rcu);
7550}
7551
7552void sched_offline_group(struct task_group *tg)
29f59db3 7553{
8ed36996 7554 unsigned long flags;
9b5b7751 7555 int i;
29f59db3 7556
3d4b47b4
PZ
7557 /* end participation in shares distribution */
7558 for_each_possible_cpu(i)
bccbe08a 7559 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7560
7561 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7562 list_del_rcu(&tg->list);
f473aa5e 7563 list_del_rcu(&tg->siblings);
8ed36996 7564 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7565}
7566
9b5b7751 7567/* change task's runqueue when it moves between groups.
3a252015
IM
7568 * The caller of this function should have put the task in its new group
7569 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7570 * reflect its new group.
9b5b7751
SV
7571 */
7572void sched_move_task(struct task_struct *tsk)
29f59db3 7573{
8323f26c 7574 struct task_group *tg;
da0c1e65 7575 int queued, running;
29f59db3
SV
7576 unsigned long flags;
7577 struct rq *rq;
7578
7579 rq = task_rq_lock(tsk, &flags);
7580
051a1d1a 7581 running = task_current(rq, tsk);
da0c1e65 7582 queued = task_on_rq_queued(tsk);
29f59db3 7583
da0c1e65 7584 if (queued)
29f59db3 7585 dequeue_task(rq, tsk, 0);
0e1f3483 7586 if (unlikely(running))
f3cd1c4e 7587 put_prev_task(rq, tsk);
29f59db3 7588
f7b8a47d
KT
7589 /*
7590 * All callers are synchronized by task_rq_lock(); we do not use RCU
7591 * which is pointless here. Thus, we pass "true" to task_css_check()
7592 * to prevent lockdep warnings.
7593 */
7594 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7595 struct task_group, css);
7596 tg = autogroup_task_group(tsk, tg);
7597 tsk->sched_task_group = tg;
7598
810b3817 7599#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7600 if (tsk->sched_class->task_move_group)
da0c1e65 7601 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7602 else
810b3817 7603#endif
b2b5ce02 7604 set_task_rq(tsk, task_cpu(tsk));
810b3817 7605
0e1f3483
HS
7606 if (unlikely(running))
7607 tsk->sched_class->set_curr_task(rq);
da0c1e65 7608 if (queued)
371fd7e7 7609 enqueue_task(rq, tsk, 0);
29f59db3 7610
0122ec5b 7611 task_rq_unlock(rq, tsk, &flags);
29f59db3 7612}
7c941438 7613#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7614
a790de99
PT
7615#ifdef CONFIG_RT_GROUP_SCHED
7616/*
7617 * Ensure that the real time constraints are schedulable.
7618 */
7619static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7620
9a7e0b18
PZ
7621/* Must be called with tasklist_lock held */
7622static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7623{
9a7e0b18 7624 struct task_struct *g, *p;
b40b2e8e 7625
5d07f420 7626 for_each_process_thread(g, p) {
8651c658 7627 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7628 return 1;
5d07f420 7629 }
b40b2e8e 7630
9a7e0b18
PZ
7631 return 0;
7632}
b40b2e8e 7633
9a7e0b18
PZ
7634struct rt_schedulable_data {
7635 struct task_group *tg;
7636 u64 rt_period;
7637 u64 rt_runtime;
7638};
b40b2e8e 7639
a790de99 7640static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7641{
7642 struct rt_schedulable_data *d = data;
7643 struct task_group *child;
7644 unsigned long total, sum = 0;
7645 u64 period, runtime;
b40b2e8e 7646
9a7e0b18
PZ
7647 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7648 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7649
9a7e0b18
PZ
7650 if (tg == d->tg) {
7651 period = d->rt_period;
7652 runtime = d->rt_runtime;
b40b2e8e 7653 }
b40b2e8e 7654
4653f803
PZ
7655 /*
7656 * Cannot have more runtime than the period.
7657 */
7658 if (runtime > period && runtime != RUNTIME_INF)
7659 return -EINVAL;
6f505b16 7660
4653f803
PZ
7661 /*
7662 * Ensure we don't starve existing RT tasks.
7663 */
9a7e0b18
PZ
7664 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7665 return -EBUSY;
6f505b16 7666
9a7e0b18 7667 total = to_ratio(period, runtime);
6f505b16 7668
4653f803
PZ
7669 /*
7670 * Nobody can have more than the global setting allows.
7671 */
7672 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7673 return -EINVAL;
6f505b16 7674
4653f803
PZ
7675 /*
7676 * The sum of our children's runtime should not exceed our own.
7677 */
9a7e0b18
PZ
7678 list_for_each_entry_rcu(child, &tg->children, siblings) {
7679 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7680 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7681
9a7e0b18
PZ
7682 if (child == d->tg) {
7683 period = d->rt_period;
7684 runtime = d->rt_runtime;
7685 }
6f505b16 7686
9a7e0b18 7687 sum += to_ratio(period, runtime);
9f0c1e56 7688 }
6f505b16 7689
9a7e0b18
PZ
7690 if (sum > total)
7691 return -EINVAL;
7692
7693 return 0;
6f505b16
PZ
7694}
7695
9a7e0b18 7696static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7697{
8277434e
PT
7698 int ret;
7699
9a7e0b18
PZ
7700 struct rt_schedulable_data data = {
7701 .tg = tg,
7702 .rt_period = period,
7703 .rt_runtime = runtime,
7704 };
7705
8277434e
PT
7706 rcu_read_lock();
7707 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7708 rcu_read_unlock();
7709
7710 return ret;
521f1a24
DG
7711}
7712
ab84d31e 7713static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7714 u64 rt_period, u64 rt_runtime)
6f505b16 7715{
ac086bc2 7716 int i, err = 0;
9f0c1e56 7717
9f0c1e56 7718 mutex_lock(&rt_constraints_mutex);
521f1a24 7719 read_lock(&tasklist_lock);
9a7e0b18
PZ
7720 err = __rt_schedulable(tg, rt_period, rt_runtime);
7721 if (err)
9f0c1e56 7722 goto unlock;
ac086bc2 7723
0986b11b 7724 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7725 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7726 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7727
7728 for_each_possible_cpu(i) {
7729 struct rt_rq *rt_rq = tg->rt_rq[i];
7730
0986b11b 7731 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7732 rt_rq->rt_runtime = rt_runtime;
0986b11b 7733 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7734 }
0986b11b 7735 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7736unlock:
521f1a24 7737 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7738 mutex_unlock(&rt_constraints_mutex);
7739
7740 return err;
6f505b16
PZ
7741}
7742
25cc7da7 7743static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7744{
7745 u64 rt_runtime, rt_period;
7746
7747 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7748 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7749 if (rt_runtime_us < 0)
7750 rt_runtime = RUNTIME_INF;
7751
ab84d31e 7752 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7753}
7754
25cc7da7 7755static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7756{
7757 u64 rt_runtime_us;
7758
d0b27fa7 7759 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7760 return -1;
7761
d0b27fa7 7762 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7763 do_div(rt_runtime_us, NSEC_PER_USEC);
7764 return rt_runtime_us;
7765}
d0b27fa7 7766
25cc7da7 7767static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7768{
7769 u64 rt_runtime, rt_period;
7770
7771 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7772 rt_runtime = tg->rt_bandwidth.rt_runtime;
7773
619b0488
R
7774 if (rt_period == 0)
7775 return -EINVAL;
7776
ab84d31e 7777 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7778}
7779
25cc7da7 7780static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7781{
7782 u64 rt_period_us;
7783
7784 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7785 do_div(rt_period_us, NSEC_PER_USEC);
7786 return rt_period_us;
7787}
332ac17e 7788#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7789
332ac17e 7790#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7791static int sched_rt_global_constraints(void)
7792{
7793 int ret = 0;
7794
7795 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7796 read_lock(&tasklist_lock);
4653f803 7797 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7798 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7799 mutex_unlock(&rt_constraints_mutex);
7800
7801 return ret;
7802}
54e99124 7803
25cc7da7 7804static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7805{
7806 /* Don't accept realtime tasks when there is no way for them to run */
7807 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7808 return 0;
7809
7810 return 1;
7811}
7812
6d6bc0ad 7813#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7814static int sched_rt_global_constraints(void)
7815{
ac086bc2 7816 unsigned long flags;
332ac17e 7817 int i, ret = 0;
ec5d4989 7818
0986b11b 7819 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7820 for_each_possible_cpu(i) {
7821 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7822
0986b11b 7823 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7824 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7825 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7826 }
0986b11b 7827 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7828
332ac17e 7829 return ret;
d0b27fa7 7830}
6d6bc0ad 7831#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7832
332ac17e
DF
7833static int sched_dl_global_constraints(void)
7834{
1724813d
PZ
7835 u64 runtime = global_rt_runtime();
7836 u64 period = global_rt_period();
332ac17e 7837 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7838 struct dl_bw *dl_b;
1724813d 7839 int cpu, ret = 0;
49516342 7840 unsigned long flags;
332ac17e
DF
7841
7842 /*
7843 * Here we want to check the bandwidth not being set to some
7844 * value smaller than the currently allocated bandwidth in
7845 * any of the root_domains.
7846 *
7847 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7848 * cycling on root_domains... Discussion on different/better
7849 * solutions is welcome!
7850 */
1724813d 7851 for_each_possible_cpu(cpu) {
f10e00f4
KT
7852 rcu_read_lock_sched();
7853 dl_b = dl_bw_of(cpu);
332ac17e 7854
49516342 7855 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7856 if (new_bw < dl_b->total_bw)
7857 ret = -EBUSY;
49516342 7858 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7859
f10e00f4
KT
7860 rcu_read_unlock_sched();
7861
1724813d
PZ
7862 if (ret)
7863 break;
332ac17e
DF
7864 }
7865
1724813d 7866 return ret;
332ac17e
DF
7867}
7868
1724813d 7869static void sched_dl_do_global(void)
ce0dbbbb 7870{
1724813d 7871 u64 new_bw = -1;
f10e00f4 7872 struct dl_bw *dl_b;
1724813d 7873 int cpu;
49516342 7874 unsigned long flags;
ce0dbbbb 7875
1724813d
PZ
7876 def_dl_bandwidth.dl_period = global_rt_period();
7877 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7878
7879 if (global_rt_runtime() != RUNTIME_INF)
7880 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7881
7882 /*
7883 * FIXME: As above...
7884 */
7885 for_each_possible_cpu(cpu) {
f10e00f4
KT
7886 rcu_read_lock_sched();
7887 dl_b = dl_bw_of(cpu);
1724813d 7888
49516342 7889 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7890 dl_b->bw = new_bw;
49516342 7891 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7892
7893 rcu_read_unlock_sched();
ce0dbbbb 7894 }
1724813d
PZ
7895}
7896
7897static int sched_rt_global_validate(void)
7898{
7899 if (sysctl_sched_rt_period <= 0)
7900 return -EINVAL;
7901
e9e7cb38
JL
7902 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7903 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7904 return -EINVAL;
7905
7906 return 0;
7907}
7908
7909static void sched_rt_do_global(void)
7910{
7911 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7912 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7913}
7914
d0b27fa7 7915int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7916 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7917 loff_t *ppos)
7918{
d0b27fa7
PZ
7919 int old_period, old_runtime;
7920 static DEFINE_MUTEX(mutex);
1724813d 7921 int ret;
d0b27fa7
PZ
7922
7923 mutex_lock(&mutex);
7924 old_period = sysctl_sched_rt_period;
7925 old_runtime = sysctl_sched_rt_runtime;
7926
8d65af78 7927 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7928
7929 if (!ret && write) {
1724813d
PZ
7930 ret = sched_rt_global_validate();
7931 if (ret)
7932 goto undo;
7933
d0b27fa7 7934 ret = sched_rt_global_constraints();
1724813d
PZ
7935 if (ret)
7936 goto undo;
7937
7938 ret = sched_dl_global_constraints();
7939 if (ret)
7940 goto undo;
7941
7942 sched_rt_do_global();
7943 sched_dl_do_global();
7944 }
7945 if (0) {
7946undo:
7947 sysctl_sched_rt_period = old_period;
7948 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7949 }
7950 mutex_unlock(&mutex);
7951
7952 return ret;
7953}
68318b8e 7954
1724813d 7955int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7956 void __user *buffer, size_t *lenp,
7957 loff_t *ppos)
7958{
7959 int ret;
332ac17e 7960 static DEFINE_MUTEX(mutex);
332ac17e
DF
7961
7962 mutex_lock(&mutex);
332ac17e 7963 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7964 /* make sure that internally we keep jiffies */
7965 /* also, writing zero resets timeslice to default */
332ac17e 7966 if (!ret && write) {
1724813d
PZ
7967 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7968 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7969 }
7970 mutex_unlock(&mutex);
332ac17e
DF
7971 return ret;
7972}
7973
052f1dc7 7974#ifdef CONFIG_CGROUP_SCHED
68318b8e 7975
a7c6d554 7976static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7977{
a7c6d554 7978 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7979}
7980
eb95419b
TH
7981static struct cgroup_subsys_state *
7982cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7983{
eb95419b
TH
7984 struct task_group *parent = css_tg(parent_css);
7985 struct task_group *tg;
68318b8e 7986
eb95419b 7987 if (!parent) {
68318b8e 7988 /* This is early initialization for the top cgroup */
07e06b01 7989 return &root_task_group.css;
68318b8e
SV
7990 }
7991
ec7dc8ac 7992 tg = sched_create_group(parent);
68318b8e
SV
7993 if (IS_ERR(tg))
7994 return ERR_PTR(-ENOMEM);
7995
68318b8e
SV
7996 return &tg->css;
7997}
7998
eb95419b 7999static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8000{
eb95419b 8001 struct task_group *tg = css_tg(css);
5c9d535b 8002 struct task_group *parent = css_tg(css->parent);
ace783b9 8003
63876986
TH
8004 if (parent)
8005 sched_online_group(tg, parent);
ace783b9
LZ
8006 return 0;
8007}
8008
eb95419b 8009static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8010{
eb95419b 8011 struct task_group *tg = css_tg(css);
68318b8e
SV
8012
8013 sched_destroy_group(tg);
8014}
8015
eb95419b 8016static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8017{
eb95419b 8018 struct task_group *tg = css_tg(css);
ace783b9
LZ
8019
8020 sched_offline_group(tg);
8021}
8022
eeb61e53
KT
8023static void cpu_cgroup_fork(struct task_struct *task)
8024{
8025 sched_move_task(task);
8026}
8027
eb95419b 8028static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8029 struct cgroup_taskset *tset)
68318b8e 8030{
bb9d97b6
TH
8031 struct task_struct *task;
8032
924f0d9a 8033 cgroup_taskset_for_each(task, tset) {
b68aa230 8034#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8035 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8036 return -EINVAL;
b68aa230 8037#else
bb9d97b6
TH
8038 /* We don't support RT-tasks being in separate groups */
8039 if (task->sched_class != &fair_sched_class)
8040 return -EINVAL;
b68aa230 8041#endif
bb9d97b6 8042 }
be367d09
BB
8043 return 0;
8044}
68318b8e 8045
eb95419b 8046static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8047 struct cgroup_taskset *tset)
68318b8e 8048{
bb9d97b6
TH
8049 struct task_struct *task;
8050
924f0d9a 8051 cgroup_taskset_for_each(task, tset)
bb9d97b6 8052 sched_move_task(task);
68318b8e
SV
8053}
8054
eb95419b
TH
8055static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8056 struct cgroup_subsys_state *old_css,
8057 struct task_struct *task)
068c5cc5
PZ
8058{
8059 /*
8060 * cgroup_exit() is called in the copy_process() failure path.
8061 * Ignore this case since the task hasn't ran yet, this avoids
8062 * trying to poke a half freed task state from generic code.
8063 */
8064 if (!(task->flags & PF_EXITING))
8065 return;
8066
8067 sched_move_task(task);
8068}
8069
052f1dc7 8070#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8071static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8072 struct cftype *cftype, u64 shareval)
68318b8e 8073{
182446d0 8074 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8075}
8076
182446d0
TH
8077static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8078 struct cftype *cft)
68318b8e 8079{
182446d0 8080 struct task_group *tg = css_tg(css);
68318b8e 8081
c8b28116 8082 return (u64) scale_load_down(tg->shares);
68318b8e 8083}
ab84d31e
PT
8084
8085#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8086static DEFINE_MUTEX(cfs_constraints_mutex);
8087
ab84d31e
PT
8088const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8089const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8090
a790de99
PT
8091static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8092
ab84d31e
PT
8093static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8094{
56f570e5 8095 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8096 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8097
8098 if (tg == &root_task_group)
8099 return -EINVAL;
8100
8101 /*
8102 * Ensure we have at some amount of bandwidth every period. This is
8103 * to prevent reaching a state of large arrears when throttled via
8104 * entity_tick() resulting in prolonged exit starvation.
8105 */
8106 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8107 return -EINVAL;
8108
8109 /*
8110 * Likewise, bound things on the otherside by preventing insane quota
8111 * periods. This also allows us to normalize in computing quota
8112 * feasibility.
8113 */
8114 if (period > max_cfs_quota_period)
8115 return -EINVAL;
8116
0e59bdae
KT
8117 /*
8118 * Prevent race between setting of cfs_rq->runtime_enabled and
8119 * unthrottle_offline_cfs_rqs().
8120 */
8121 get_online_cpus();
a790de99
PT
8122 mutex_lock(&cfs_constraints_mutex);
8123 ret = __cfs_schedulable(tg, period, quota);
8124 if (ret)
8125 goto out_unlock;
8126
58088ad0 8127 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8128 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8129 /*
8130 * If we need to toggle cfs_bandwidth_used, off->on must occur
8131 * before making related changes, and on->off must occur afterwards
8132 */
8133 if (runtime_enabled && !runtime_was_enabled)
8134 cfs_bandwidth_usage_inc();
ab84d31e
PT
8135 raw_spin_lock_irq(&cfs_b->lock);
8136 cfs_b->period = ns_to_ktime(period);
8137 cfs_b->quota = quota;
58088ad0 8138
a9cf55b2 8139 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8140 /* restart the period timer (if active) to handle new period expiry */
8141 if (runtime_enabled && cfs_b->timer_active) {
8142 /* force a reprogram */
09dc4ab0 8143 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8144 }
ab84d31e
PT
8145 raw_spin_unlock_irq(&cfs_b->lock);
8146
0e59bdae 8147 for_each_online_cpu(i) {
ab84d31e 8148 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8149 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8150
8151 raw_spin_lock_irq(&rq->lock);
58088ad0 8152 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8153 cfs_rq->runtime_remaining = 0;
671fd9da 8154
029632fb 8155 if (cfs_rq->throttled)
671fd9da 8156 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8157 raw_spin_unlock_irq(&rq->lock);
8158 }
1ee14e6c
BS
8159 if (runtime_was_enabled && !runtime_enabled)
8160 cfs_bandwidth_usage_dec();
a790de99
PT
8161out_unlock:
8162 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8163 put_online_cpus();
ab84d31e 8164
a790de99 8165 return ret;
ab84d31e
PT
8166}
8167
8168int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8169{
8170 u64 quota, period;
8171
029632fb 8172 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8173 if (cfs_quota_us < 0)
8174 quota = RUNTIME_INF;
8175 else
8176 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8177
8178 return tg_set_cfs_bandwidth(tg, period, quota);
8179}
8180
8181long tg_get_cfs_quota(struct task_group *tg)
8182{
8183 u64 quota_us;
8184
029632fb 8185 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8186 return -1;
8187
029632fb 8188 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8189 do_div(quota_us, NSEC_PER_USEC);
8190
8191 return quota_us;
8192}
8193
8194int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8195{
8196 u64 quota, period;
8197
8198 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8199 quota = tg->cfs_bandwidth.quota;
ab84d31e 8200
ab84d31e
PT
8201 return tg_set_cfs_bandwidth(tg, period, quota);
8202}
8203
8204long tg_get_cfs_period(struct task_group *tg)
8205{
8206 u64 cfs_period_us;
8207
029632fb 8208 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8209 do_div(cfs_period_us, NSEC_PER_USEC);
8210
8211 return cfs_period_us;
8212}
8213
182446d0
TH
8214static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8215 struct cftype *cft)
ab84d31e 8216{
182446d0 8217 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8218}
8219
182446d0
TH
8220static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8221 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8222{
182446d0 8223 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8224}
8225
182446d0
TH
8226static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8227 struct cftype *cft)
ab84d31e 8228{
182446d0 8229 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8230}
8231
182446d0
TH
8232static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8233 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8234{
182446d0 8235 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8236}
8237
a790de99
PT
8238struct cfs_schedulable_data {
8239 struct task_group *tg;
8240 u64 period, quota;
8241};
8242
8243/*
8244 * normalize group quota/period to be quota/max_period
8245 * note: units are usecs
8246 */
8247static u64 normalize_cfs_quota(struct task_group *tg,
8248 struct cfs_schedulable_data *d)
8249{
8250 u64 quota, period;
8251
8252 if (tg == d->tg) {
8253 period = d->period;
8254 quota = d->quota;
8255 } else {
8256 period = tg_get_cfs_period(tg);
8257 quota = tg_get_cfs_quota(tg);
8258 }
8259
8260 /* note: these should typically be equivalent */
8261 if (quota == RUNTIME_INF || quota == -1)
8262 return RUNTIME_INF;
8263
8264 return to_ratio(period, quota);
8265}
8266
8267static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8268{
8269 struct cfs_schedulable_data *d = data;
029632fb 8270 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8271 s64 quota = 0, parent_quota = -1;
8272
8273 if (!tg->parent) {
8274 quota = RUNTIME_INF;
8275 } else {
029632fb 8276 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8277
8278 quota = normalize_cfs_quota(tg, d);
9c58c79a 8279 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8280
8281 /*
8282 * ensure max(child_quota) <= parent_quota, inherit when no
8283 * limit is set
8284 */
8285 if (quota == RUNTIME_INF)
8286 quota = parent_quota;
8287 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8288 return -EINVAL;
8289 }
9c58c79a 8290 cfs_b->hierarchical_quota = quota;
a790de99
PT
8291
8292 return 0;
8293}
8294
8295static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8296{
8277434e 8297 int ret;
a790de99
PT
8298 struct cfs_schedulable_data data = {
8299 .tg = tg,
8300 .period = period,
8301 .quota = quota,
8302 };
8303
8304 if (quota != RUNTIME_INF) {
8305 do_div(data.period, NSEC_PER_USEC);
8306 do_div(data.quota, NSEC_PER_USEC);
8307 }
8308
8277434e
PT
8309 rcu_read_lock();
8310 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8311 rcu_read_unlock();
8312
8313 return ret;
a790de99 8314}
e8da1b18 8315
2da8ca82 8316static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8317{
2da8ca82 8318 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8319 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8320
44ffc75b
TH
8321 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8322 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8323 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8324
8325 return 0;
8326}
ab84d31e 8327#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8328#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8329
052f1dc7 8330#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8331static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8332 struct cftype *cft, s64 val)
6f505b16 8333{
182446d0 8334 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8335}
8336
182446d0
TH
8337static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8338 struct cftype *cft)
6f505b16 8339{
182446d0 8340 return sched_group_rt_runtime(css_tg(css));
6f505b16 8341}
d0b27fa7 8342
182446d0
TH
8343static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8344 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8345{
182446d0 8346 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8347}
8348
182446d0
TH
8349static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8350 struct cftype *cft)
d0b27fa7 8351{
182446d0 8352 return sched_group_rt_period(css_tg(css));
d0b27fa7 8353}
6d6bc0ad 8354#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8355
fe5c7cc2 8356static struct cftype cpu_files[] = {
052f1dc7 8357#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8358 {
8359 .name = "shares",
f4c753b7
PM
8360 .read_u64 = cpu_shares_read_u64,
8361 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8362 },
052f1dc7 8363#endif
ab84d31e
PT
8364#ifdef CONFIG_CFS_BANDWIDTH
8365 {
8366 .name = "cfs_quota_us",
8367 .read_s64 = cpu_cfs_quota_read_s64,
8368 .write_s64 = cpu_cfs_quota_write_s64,
8369 },
8370 {
8371 .name = "cfs_period_us",
8372 .read_u64 = cpu_cfs_period_read_u64,
8373 .write_u64 = cpu_cfs_period_write_u64,
8374 },
e8da1b18
NR
8375 {
8376 .name = "stat",
2da8ca82 8377 .seq_show = cpu_stats_show,
e8da1b18 8378 },
ab84d31e 8379#endif
052f1dc7 8380#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8381 {
9f0c1e56 8382 .name = "rt_runtime_us",
06ecb27c
PM
8383 .read_s64 = cpu_rt_runtime_read,
8384 .write_s64 = cpu_rt_runtime_write,
6f505b16 8385 },
d0b27fa7
PZ
8386 {
8387 .name = "rt_period_us",
f4c753b7
PM
8388 .read_u64 = cpu_rt_period_read_uint,
8389 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8390 },
052f1dc7 8391#endif
4baf6e33 8392 { } /* terminate */
68318b8e
SV
8393};
8394
073219e9 8395struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8396 .css_alloc = cpu_cgroup_css_alloc,
8397 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8398 .css_online = cpu_cgroup_css_online,
8399 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8400 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8401 .can_attach = cpu_cgroup_can_attach,
8402 .attach = cpu_cgroup_attach,
068c5cc5 8403 .exit = cpu_cgroup_exit,
5577964e 8404 .legacy_cftypes = cpu_files,
68318b8e
SV
8405 .early_init = 1,
8406};
8407
052f1dc7 8408#endif /* CONFIG_CGROUP_SCHED */
d842de87 8409
b637a328
PM
8410void dump_cpu_task(int cpu)
8411{
8412 pr_info("Task dump for CPU %d:\n", cpu);
8413 sched_show_task(cpu_curr(cpu));
8414}