sched/dl: Fix race in dl_task_timer()
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621
PZ
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
3e51f33f
PZ
128}
129
bf5c91ba
IM
130/*
131 * Debugging: various feature bits
132 */
f00b45c1 133
f00b45c1
PZ
134#define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
bf5c91ba 137const_debug unsigned int sysctl_sched_features =
391e43da 138#include "features.h"
f00b45c1
PZ
139 0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled) \
145 #name ,
146
1292531f 147static const char * const sched_feat_names[] = {
391e43da 148#include "features.h"
f00b45c1
PZ
149};
150
151#undef SCHED_FEAT
152
34f3a814 153static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 154{
f00b45c1
PZ
155 int i;
156
f8b6d1cc 157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 161 }
34f3a814 162 seq_puts(m, "\n");
f00b45c1 163
34f3a814 164 return 0;
f00b45c1
PZ
165}
166
f8b6d1cc
PZ
167#ifdef HAVE_JUMP_LABEL
168
c5905afb
IM
169#define jump_label_key__true STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
171
172#define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
c5905afb 175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
c5905afb
IM
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
185}
186
187static void sched_feat_enable(int i)
188{
c5905afb
IM
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
1a687c2e 197static int sched_feat_set(char *cmp)
f00b45c1 198{
f00b45c1 199 int i;
1a687c2e 200 int neg = 0;
f00b45c1 201
524429c3 202 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
203 neg = 1;
204 cmp += 3;
205 }
206
f8b6d1cc 207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 209 if (neg) {
f00b45c1 210 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
211 sched_feat_disable(i);
212 } else {
f00b45c1 213 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
214 sched_feat_enable(i);
215 }
f00b45c1
PZ
216 break;
217 }
218 }
219
1a687c2e
MG
220 return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226{
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
f8b6d1cc 241 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
242 return -EINVAL;
243
42994724 244 *ppos += cnt;
f00b45c1
PZ
245
246 return cnt;
247}
248
34f3a814
LZ
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251 return single_open(filp, sched_feat_show, NULL);
252}
253
828c0950 254static const struct file_operations sched_feat_fops = {
34f3a814
LZ
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
f00b45c1
PZ
260};
261
262static __init int sched_init_debug(void)
263{
f00b45c1
PZ
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268}
269late_initcall(sched_init_debug);
f8b6d1cc 270#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 271
b82d9fdd
PZ
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
e9e9250b
PZ
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
fa85ae24 286/*
9f0c1e56 287 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
288 * default: 1s
289 */
9f0c1e56 290unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 291
029632fb 292__read_mostly int scheduler_running;
6892b75e 293
9f0c1e56
PZ
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
fa85ae24 299
0970d299 300/*
0122ec5b 301 * __task_rq_lock - lock the rq @p resides on.
b29739f9 302 */
70b97a7f 303static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
304 __acquires(rq->lock)
305{
0970d299
PZ
306 struct rq *rq;
307
0122ec5b
PZ
308 lockdep_assert_held(&p->pi_lock);
309
3a5c359a 310 for (;;) {
0970d299 311 rq = task_rq(p);
05fa785c 312 raw_spin_lock(&rq->lock);
65cc8e48 313 if (likely(rq == task_rq(p)))
3a5c359a 314 return rq;
05fa785c 315 raw_spin_unlock(&rq->lock);
b29739f9 316 }
b29739f9
IM
317}
318
1da177e4 319/*
0122ec5b 320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 321 */
70b97a7f 322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 323 __acquires(p->pi_lock)
1da177e4
LT
324 __acquires(rq->lock)
325{
70b97a7f 326 struct rq *rq;
1da177e4 327
3a5c359a 328 for (;;) {
0122ec5b 329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 330 rq = task_rq(p);
05fa785c 331 raw_spin_lock(&rq->lock);
65cc8e48 332 if (likely(rq == task_rq(p)))
3a5c359a 333 return rq;
0122ec5b
PZ
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 336 }
1da177e4
LT
337}
338
a9957449 339static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
340 __releases(rq->lock)
341{
05fa785c 342 raw_spin_unlock(&rq->lock);
b29739f9
IM
343}
344
0122ec5b
PZ
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 347 __releases(rq->lock)
0122ec5b 348 __releases(p->pi_lock)
1da177e4 349{
0122ec5b
PZ
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
352}
353
1da177e4 354/*
cc2a73b5 355 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 356 */
a9957449 357static struct rq *this_rq_lock(void)
1da177e4
LT
358 __acquires(rq->lock)
359{
70b97a7f 360 struct rq *rq;
1da177e4
LT
361
362 local_irq_disable();
363 rq = this_rq();
05fa785c 364 raw_spin_lock(&rq->lock);
1da177e4
LT
365
366 return rq;
367}
368
8f4d37ec
PZ
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 372 */
8f4d37ec 373
8f4d37ec
PZ
374static void hrtick_clear(struct rq *rq)
375{
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378}
379
8f4d37ec
PZ
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
05fa785c 390 raw_spin_lock(&rq->lock);
3e51f33f 391 update_rq_clock(rq);
8f4d37ec 392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 393 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
394
395 return HRTIMER_NORESTART;
396}
397
95e904c7 398#ifdef CONFIG_SMP
971ee28c
PZ
399
400static int __hrtick_restart(struct rq *rq)
401{
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
31656519
PZ
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
b328ca18 412{
31656519 413 struct rq *rq = arg;
b328ca18 414
05fa785c 415 raw_spin_lock(&rq->lock);
971ee28c 416 __hrtick_restart(rq);
31656519 417 rq->hrtick_csd_pending = 0;
05fa785c 418 raw_spin_unlock(&rq->lock);
b328ca18
PZ
419}
420
31656519
PZ
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
029632fb 426void hrtick_start(struct rq *rq, u64 delay)
b328ca18 427{
31656519
PZ
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 430
cc584b21 431 hrtimer_set_expires(timer, time);
31656519
PZ
432
433 if (rq == this_rq()) {
971ee28c 434 __hrtick_restart(rq);
31656519 435 } else if (!rq->hrtick_csd_pending) {
c46fff2a 436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
437 rq->hrtick_csd_pending = 1;
438 }
b328ca18
PZ
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
31656519 453 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458}
459
fa748203 460static __init void init_hrtick(void)
b328ca18
PZ
461{
462 hotcpu_notifier(hotplug_hrtick, 0);
463}
31656519
PZ
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
029632fb 470void hrtick_start(struct rq *rq, u64 delay)
31656519 471{
7f1e2ca9 472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 473 HRTIMER_MODE_REL_PINNED, 0);
31656519 474}
b328ca18 475
006c75f1 476static inline void init_hrtick(void)
8f4d37ec 477{
8f4d37ec 478}
31656519 479#endif /* CONFIG_SMP */
8f4d37ec 480
31656519 481static void init_rq_hrtick(struct rq *rq)
8f4d37ec 482{
31656519
PZ
483#ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
8f4d37ec 485
31656519
PZ
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489#endif
8f4d37ec 490
31656519
PZ
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
8f4d37ec 493}
006c75f1 494#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
8f4d37ec
PZ
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
b328ca18
PZ
503static inline void init_hrtick(void)
504{
505}
006c75f1 506#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 507
c24d20db
IM
508/*
509 * resched_task - mark a task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
029632fb 515void resched_task(struct task_struct *p)
c24d20db
IM
516{
517 int cpu;
518
b021fe3e 519 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 520
5ed0cec0 521 if (test_tsk_need_resched(p))
c24d20db
IM
522 return;
523
5ed0cec0 524 set_tsk_need_resched(p);
c24d20db
IM
525
526 cpu = task_cpu(p);
f27dde8d
PZ
527 if (cpu == smp_processor_id()) {
528 set_preempt_need_resched();
c24d20db 529 return;
f27dde8d 530 }
c24d20db
IM
531
532 /* NEED_RESCHED must be visible before we test polling */
533 smp_mb();
534 if (!tsk_is_polling(p))
535 smp_send_reschedule(cpu);
536}
537
029632fb 538void resched_cpu(int cpu)
c24d20db
IM
539{
540 struct rq *rq = cpu_rq(cpu);
541 unsigned long flags;
542
05fa785c 543 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
544 return;
545 resched_task(cpu_curr(cpu));
05fa785c 546 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 547}
06d8308c 548
b021fe3e 549#ifdef CONFIG_SMP
3451d024 550#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
551/*
552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu. This is good for power-savings.
554 *
555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */
6201b4d6 559int get_nohz_timer_target(int pinned)
83cd4fe2
VP
560{
561 int cpu = smp_processor_id();
562 int i;
563 struct sched_domain *sd;
564
6201b4d6
VK
565 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566 return cpu;
567
057f3fad 568 rcu_read_lock();
83cd4fe2 569 for_each_domain(cpu, sd) {
057f3fad
PZ
570 for_each_cpu(i, sched_domain_span(sd)) {
571 if (!idle_cpu(i)) {
572 cpu = i;
573 goto unlock;
574 }
575 }
83cd4fe2 576 }
057f3fad
PZ
577unlock:
578 rcu_read_unlock();
83cd4fe2
VP
579 return cpu;
580}
06d8308c
TG
581/*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
1c20091e 591static void wake_up_idle_cpu(int cpu)
06d8308c
TG
592{
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
598 /*
599 * This is safe, as this function is called with the timer
600 * wheel base lock of (cpu) held. When the CPU is on the way
601 * to idle and has not yet set rq->curr to idle then it will
602 * be serialized on the timer wheel base lock and take the new
603 * timer into account automatically.
604 */
605 if (rq->curr != rq->idle)
606 return;
45bf76df 607
45bf76df 608 /*
06d8308c
TG
609 * We can set TIF_RESCHED on the idle task of the other CPU
610 * lockless. The worst case is that the other CPU runs the
611 * idle task through an additional NOOP schedule()
45bf76df 612 */
5ed0cec0 613 set_tsk_need_resched(rq->idle);
45bf76df 614
06d8308c
TG
615 /* NEED_RESCHED must be visible before we test polling */
616 smp_mb();
617 if (!tsk_is_polling(rq->idle))
618 smp_send_reschedule(cpu);
45bf76df
IM
619}
620
c5bfece2 621static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 622{
c5bfece2 623 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
624 if (cpu != smp_processor_id() ||
625 tick_nohz_tick_stopped())
626 smp_send_reschedule(cpu);
627 return true;
628 }
629
630 return false;
631}
632
633void wake_up_nohz_cpu(int cpu)
634{
c5bfece2 635 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
636 wake_up_idle_cpu(cpu);
637}
638
ca38062e 639static inline bool got_nohz_idle_kick(void)
45bf76df 640{
1c792db7 641 int cpu = smp_processor_id();
873b4c65
VG
642
643 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644 return false;
645
646 if (idle_cpu(cpu) && !need_resched())
647 return true;
648
649 /*
650 * We can't run Idle Load Balance on this CPU for this time so we
651 * cancel it and clear NOHZ_BALANCE_KICK
652 */
653 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654 return false;
45bf76df
IM
655}
656
3451d024 657#else /* CONFIG_NO_HZ_COMMON */
45bf76df 658
ca38062e 659static inline bool got_nohz_idle_kick(void)
2069dd75 660{
ca38062e 661 return false;
2069dd75
PZ
662}
663
3451d024 664#endif /* CONFIG_NO_HZ_COMMON */
d842de87 665
ce831b38
FW
666#ifdef CONFIG_NO_HZ_FULL
667bool sched_can_stop_tick(void)
668{
669 struct rq *rq;
670
671 rq = this_rq();
672
673 /* Make sure rq->nr_running update is visible after the IPI */
674 smp_rmb();
675
676 /* More than one running task need preemption */
677 if (rq->nr_running > 1)
678 return false;
679
680 return true;
681}
682#endif /* CONFIG_NO_HZ_FULL */
d842de87 683
029632fb 684void sched_avg_update(struct rq *rq)
18d95a28 685{
e9e9250b
PZ
686 s64 period = sched_avg_period();
687
78becc27 688 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
689 /*
690 * Inline assembly required to prevent the compiler
691 * optimising this loop into a divmod call.
692 * See __iter_div_u64_rem() for another example of this.
693 */
694 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
695 rq->age_stamp += period;
696 rq->rt_avg /= 2;
697 }
18d95a28
PZ
698}
699
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
45bf76df
IM
747static void set_load_weight(struct task_struct *p)
748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
758 return;
759 }
71f8bd46 760
c8b28116 761 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 762 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
763}
764
371fd7e7 765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 766{
a64692a3 767 update_rq_clock(rq);
43148951 768 sched_info_queued(rq, p);
371fd7e7 769 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
770}
771
371fd7e7 772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 773{
a64692a3 774 update_rq_clock(rq);
43148951 775 sched_info_dequeued(rq, p);
371fd7e7 776 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
777}
778
029632fb 779void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
371fd7e7 784 enqueue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
029632fb 787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
788{
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
371fd7e7 792 dequeue_task(rq, p, flags);
1e3c88bd
PZ
793}
794
fe44d621 795static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 796{
095c0aa8
GC
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
095c0aa8
GC
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 829 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
095c0aa8 836 rq->prev_steal_time_rq += steal;
095c0aa8
GC
837 delta -= steal;
838 }
839#endif
840
fe44d621
PZ
841 rq->clock_task += delta;
842
095c0aa8
GC
843#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845 sched_rt_avg_update(rq, irq_delta + steal);
846#endif
aa483808
VP
847}
848
34f971f6
PZ
849void sched_set_stop_task(int cpu, struct task_struct *stop)
850{
851 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852 struct task_struct *old_stop = cpu_rq(cpu)->stop;
853
854 if (stop) {
855 /*
856 * Make it appear like a SCHED_FIFO task, its something
857 * userspace knows about and won't get confused about.
858 *
859 * Also, it will make PI more or less work without too
860 * much confusion -- but then, stop work should not
861 * rely on PI working anyway.
862 */
863 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
864
865 stop->sched_class = &stop_sched_class;
866 }
867
868 cpu_rq(cpu)->stop = stop;
869
870 if (old_stop) {
871 /*
872 * Reset it back to a normal scheduling class so that
873 * it can die in pieces.
874 */
875 old_stop->sched_class = &rt_sched_class;
876 }
877}
878
14531189 879/*
dd41f596 880 * __normal_prio - return the priority that is based on the static prio
14531189 881 */
14531189
IM
882static inline int __normal_prio(struct task_struct *p)
883{
dd41f596 884 return p->static_prio;
14531189
IM
885}
886
b29739f9
IM
887/*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
36c8b586 894static inline int normal_prio(struct task_struct *p)
b29739f9
IM
895{
896 int prio;
897
aab03e05
DF
898 if (task_has_dl_policy(p))
899 prio = MAX_DL_PRIO-1;
900 else if (task_has_rt_policy(p))
b29739f9
IM
901 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 else
903 prio = __normal_prio(p);
904 return prio;
905}
906
907/*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
36c8b586 914static int effective_prio(struct task_struct *p)
b29739f9
IM
915{
916 p->normal_prio = normal_prio(p);
917 /*
918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority:
921 */
922 if (!rt_prio(p->prio))
923 return p->normal_prio;
924 return p->prio;
925}
926
1da177e4
LT
927/**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
e69f6186
YB
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 932 */
36c8b586 933inline int task_curr(const struct task_struct *p)
1da177e4
LT
934{
935 return cpu_curr(task_cpu(p)) == p;
936}
937
cb469845
SR
938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 const struct sched_class *prev_class,
da7a735e 940 int oldprio)
cb469845
SR
941{
942 if (prev_class != p->sched_class) {
943 if (prev_class->switched_from)
da7a735e
PZ
944 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
2d3d891d 946 } else if (oldprio != p->prio || dl_task(p))
da7a735e 947 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
948}
949
029632fb 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_task(rq->curr);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
fd2f4419 971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
972 rq->skip_clock_update = 1;
973}
974
1da177e4 975#ifdef CONFIG_SMP
dd41f596 976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 977{
e2912009
PZ
978#ifdef CONFIG_SCHED_DEBUG
979 /*
980 * We should never call set_task_cpu() on a blocked task,
981 * ttwu() will sort out the placement.
982 */
077614ee 983 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 984 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
985
986#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
987 /*
988 * The caller should hold either p->pi_lock or rq->lock, when changing
989 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 *
991 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 992 * see task_group().
6c6c54e1
PZ
993 *
994 * Furthermore, all task_rq users should acquire both locks, see
995 * task_rq_lock().
996 */
0122ec5b
PZ
997 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998 lockdep_is_held(&task_rq(p)->lock)));
999#endif
e2912009
PZ
1000#endif
1001
de1d7286 1002 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1003
0c69774e 1004 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1005 if (p->sched_class->migrate_task_rq)
1006 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1007 p->se.nr_migrations++;
a8b0ca17 1008 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1009 }
dd41f596
IM
1010
1011 __set_task_cpu(p, new_cpu);
c65cc870
IM
1012}
1013
ac66f547
PZ
1014static void __migrate_swap_task(struct task_struct *p, int cpu)
1015{
1016 if (p->on_rq) {
1017 struct rq *src_rq, *dst_rq;
1018
1019 src_rq = task_rq(p);
1020 dst_rq = cpu_rq(cpu);
1021
1022 deactivate_task(src_rq, p, 0);
1023 set_task_cpu(p, cpu);
1024 activate_task(dst_rq, p, 0);
1025 check_preempt_curr(dst_rq, p, 0);
1026 } else {
1027 /*
1028 * Task isn't running anymore; make it appear like we migrated
1029 * it before it went to sleep. This means on wakeup we make the
1030 * previous cpu our targer instead of where it really is.
1031 */
1032 p->wake_cpu = cpu;
1033 }
1034}
1035
1036struct migration_swap_arg {
1037 struct task_struct *src_task, *dst_task;
1038 int src_cpu, dst_cpu;
1039};
1040
1041static int migrate_swap_stop(void *data)
1042{
1043 struct migration_swap_arg *arg = data;
1044 struct rq *src_rq, *dst_rq;
1045 int ret = -EAGAIN;
1046
1047 src_rq = cpu_rq(arg->src_cpu);
1048 dst_rq = cpu_rq(arg->dst_cpu);
1049
74602315
PZ
1050 double_raw_lock(&arg->src_task->pi_lock,
1051 &arg->dst_task->pi_lock);
ac66f547
PZ
1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock;
1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock;
1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock;
1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock;
1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068 ret = 0;
1069
1070unlock:
1071 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1072 raw_spin_unlock(&arg->dst_task->pi_lock);
1073 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1074
1075 return ret;
1076}
1077
1078/*
1079 * Cross migrate two tasks
1080 */
1081int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082{
1083 struct migration_swap_arg arg;
1084 int ret = -EINVAL;
1085
ac66f547
PZ
1086 arg = (struct migration_swap_arg){
1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p),
1091 };
1092
1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out;
1095
6acce3ef
PZ
1096 /*
1097 * These three tests are all lockless; this is OK since all of them
1098 * will be re-checked with proper locks held further down the line.
1099 */
ac66f547
PZ
1100 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101 goto out;
1102
1103 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104 goto out;
1105
1106 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107 goto out;
1108
286549dc 1109 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1110 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112out:
ac66f547
PZ
1113 return ret;
1114}
1115
969c7921 1116struct migration_arg {
36c8b586 1117 struct task_struct *task;
1da177e4 1118 int dest_cpu;
70b97a7f 1119};
1da177e4 1120
969c7921
TH
1121static int migration_cpu_stop(void *data);
1122
1da177e4
LT
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
85ba2d86
RM
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change. If it changes, i.e. @p might have woken up,
1128 * then return zero. When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count). If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1da177e4
LT
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
85ba2d86 1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1140{
1141 unsigned long flags;
dd41f596 1142 int running, on_rq;
85ba2d86 1143 unsigned long ncsw;
70b97a7f 1144 struct rq *rq;
1da177e4 1145
3a5c359a
AK
1146 for (;;) {
1147 /*
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1152 */
1153 rq = task_rq(p);
fa490cfd 1154
3a5c359a
AK
1155 /*
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1159 *
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1165 */
85ba2d86
RM
1166 while (task_running(rq, p)) {
1167 if (match_state && unlikely(p->state != match_state))
1168 return 0;
3a5c359a 1169 cpu_relax();
85ba2d86 1170 }
fa490cfd 1171
3a5c359a
AK
1172 /*
1173 * Ok, time to look more closely! We need the rq
1174 * lock now, to be *sure*. If we're wrong, we'll
1175 * just go back and repeat.
1176 */
1177 rq = task_rq_lock(p, &flags);
27a9da65 1178 trace_sched_wait_task(p);
3a5c359a 1179 running = task_running(rq, p);
fd2f4419 1180 on_rq = p->on_rq;
85ba2d86 1181 ncsw = 0;
f31e11d8 1182 if (!match_state || p->state == match_state)
93dcf55f 1183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1184 task_rq_unlock(rq, p, &flags);
fa490cfd 1185
85ba2d86
RM
1186 /*
1187 * If it changed from the expected state, bail out now.
1188 */
1189 if (unlikely(!ncsw))
1190 break;
1191
3a5c359a
AK
1192 /*
1193 * Was it really running after all now that we
1194 * checked with the proper locks actually held?
1195 *
1196 * Oops. Go back and try again..
1197 */
1198 if (unlikely(running)) {
1199 cpu_relax();
1200 continue;
1201 }
fa490cfd 1202
3a5c359a
AK
1203 /*
1204 * It's not enough that it's not actively running,
1205 * it must be off the runqueue _entirely_, and not
1206 * preempted!
1207 *
80dd99b3 1208 * So if it was still runnable (but just not actively
3a5c359a
AK
1209 * running right now), it's preempted, and we should
1210 * yield - it could be a while.
1211 */
1212 if (unlikely(on_rq)) {
8eb90c30
TG
1213 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215 set_current_state(TASK_UNINTERRUPTIBLE);
1216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1217 continue;
1218 }
fa490cfd 1219
3a5c359a
AK
1220 /*
1221 * Ahh, all good. It wasn't running, and it wasn't
1222 * runnable, which means that it will never become
1223 * running in the future either. We're all done!
1224 */
1225 break;
1226 }
85ba2d86
RM
1227
1228 return ncsw;
1da177e4
LT
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
25985edc 1238 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
36c8b586 1244void kick_process(struct task_struct *p)
1da177e4
LT
1245{
1246 int cpu;
1247
1248 preempt_disable();
1249 cpu = task_cpu(p);
1250 if ((cpu != smp_processor_id()) && task_curr(p))
1251 smp_send_reschedule(cpu);
1252 preempt_enable();
1253}
b43e3521 1254EXPORT_SYMBOL_GPL(kick_process);
476d139c 1255#endif /* CONFIG_SMP */
1da177e4 1256
970b13ba 1257#ifdef CONFIG_SMP
30da688e 1258/*
013fdb80 1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1260 */
5da9a0fb
PZ
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
aa00d89c
TC
1263 int nid = cpu_to_node(cpu);
1264 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1265 enum { cpuset, possible, fail } state = cpuset;
1266 int dest_cpu;
5da9a0fb 1267
aa00d89c
TC
1268 /*
1269 * If the node that the cpu is on has been offlined, cpu_to_node()
1270 * will return -1. There is no cpu on the node, and we should
1271 * select the cpu on the other node.
1272 */
1273 if (nid != -1) {
1274 nodemask = cpumask_of_node(nid);
1275
1276 /* Look for allowed, online CPU in same node. */
1277 for_each_cpu(dest_cpu, nodemask) {
1278 if (!cpu_online(dest_cpu))
1279 continue;
1280 if (!cpu_active(dest_cpu))
1281 continue;
1282 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283 return dest_cpu;
1284 }
2baab4e9 1285 }
5da9a0fb 1286
2baab4e9
PZ
1287 for (;;) {
1288 /* Any allowed, online CPU? */
e3831edd 1289 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1290 if (!cpu_online(dest_cpu))
1291 continue;
1292 if (!cpu_active(dest_cpu))
1293 continue;
1294 goto out;
1295 }
5da9a0fb 1296
2baab4e9
PZ
1297 switch (state) {
1298 case cpuset:
1299 /* No more Mr. Nice Guy. */
1300 cpuset_cpus_allowed_fallback(p);
1301 state = possible;
1302 break;
1303
1304 case possible:
1305 do_set_cpus_allowed(p, cpu_possible_mask);
1306 state = fail;
1307 break;
1308
1309 case fail:
1310 BUG();
1311 break;
1312 }
1313 }
1314
1315out:
1316 if (state != cpuset) {
1317 /*
1318 * Don't tell them about moving exiting tasks or
1319 * kernel threads (both mm NULL), since they never
1320 * leave kernel.
1321 */
1322 if (p->mm && printk_ratelimit()) {
1323 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324 task_pid_nr(p), p->comm, cpu);
1325 }
5da9a0fb
PZ
1326 }
1327
1328 return dest_cpu;
1329}
1330
e2912009 1331/*
013fdb80 1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1333 */
970b13ba 1334static inline
ac66f547 1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1336{
ac66f547 1337 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1338
1339 /*
1340 * In order not to call set_task_cpu() on a blocking task we need
1341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342 * cpu.
1343 *
1344 * Since this is common to all placement strategies, this lives here.
1345 *
1346 * [ this allows ->select_task() to simply return task_cpu(p) and
1347 * not worry about this generic constraint ]
1348 */
fa17b507 1349 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1350 !cpu_online(cpu)))
5da9a0fb 1351 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1352
1353 return cpu;
970b13ba 1354}
09a40af5
MG
1355
1356static void update_avg(u64 *avg, u64 sample)
1357{
1358 s64 diff = sample - *avg;
1359 *avg += diff >> 3;
1360}
970b13ba
PZ
1361#endif
1362
d7c01d27 1363static void
b84cb5df 1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1365{
d7c01d27 1366#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1367 struct rq *rq = this_rq();
1368
d7c01d27
PZ
1369#ifdef CONFIG_SMP
1370 int this_cpu = smp_processor_id();
1371
1372 if (cpu == this_cpu) {
1373 schedstat_inc(rq, ttwu_local);
1374 schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 } else {
1376 struct sched_domain *sd;
1377
1378 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1379 rcu_read_lock();
d7c01d27
PZ
1380 for_each_domain(this_cpu, sd) {
1381 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382 schedstat_inc(sd, ttwu_wake_remote);
1383 break;
1384 }
1385 }
057f3fad 1386 rcu_read_unlock();
d7c01d27 1387 }
f339b9dc
PZ
1388
1389 if (wake_flags & WF_MIGRATED)
1390 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
d7c01d27
PZ
1392#endif /* CONFIG_SMP */
1393
1394 schedstat_inc(rq, ttwu_count);
9ed3811a 1395 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1396
1397 if (wake_flags & WF_SYNC)
9ed3811a 1398 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1399
d7c01d27
PZ
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
9ed3811a 1405 activate_task(rq, p, en_flags);
fd2f4419 1406 p->on_rq = 1;
c2f7115e
PZ
1407
1408 /* if a worker is waking up, notify workqueue */
1409 if (p->flags & PF_WQ_WORKER)
1410 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1411}
1412
23f41eeb
PZ
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
89363381 1416static void
23f41eeb 1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1418{
9ed3811a 1419 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1420 trace_sched_wakeup(p, true);
9ed3811a
TH
1421
1422 p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424 if (p->sched_class->task_woken)
1425 p->sched_class->task_woken(rq, p);
1426
e69c6341 1427 if (rq->idle_stamp) {
78becc27 1428 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1429 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1430
abfafa54
JL
1431 update_avg(&rq->avg_idle, delta);
1432
1433 if (rq->avg_idle > max)
9ed3811a 1434 rq->avg_idle = max;
abfafa54 1435
9ed3811a
TH
1436 rq->idle_stamp = 0;
1437 }
1438#endif
1439}
1440
c05fbafb
PZ
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443{
1444#ifdef CONFIG_SMP
1445 if (p->sched_contributes_to_load)
1446 rq->nr_uninterruptible--;
1447#endif
1448
1449 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450 ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
1461 struct rq *rq;
1462 int ret = 0;
1463
1464 rq = __task_rq_lock(p);
1465 if (p->on_rq) {
1ad4ec0d
FW
1466 /* check_preempt_curr() may use rq clock */
1467 update_rq_clock(rq);
c05fbafb
PZ
1468 ttwu_do_wakeup(rq, p, wake_flags);
1469 ret = 1;
1470 }
1471 __task_rq_unlock(rq);
1472
1473 return ret;
1474}
1475
317f3941 1476#ifdef CONFIG_SMP
fa14ff4a 1477static void sched_ttwu_pending(void)
317f3941
PZ
1478{
1479 struct rq *rq = this_rq();
fa14ff4a
PZ
1480 struct llist_node *llist = llist_del_all(&rq->wake_list);
1481 struct task_struct *p;
317f3941
PZ
1482
1483 raw_spin_lock(&rq->lock);
1484
fa14ff4a
PZ
1485 while (llist) {
1486 p = llist_entry(llist, struct task_struct, wake_entry);
1487 llist = llist_next(llist);
317f3941
PZ
1488 ttwu_do_activate(rq, p, 0);
1489 }
1490
1491 raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
1495{
f27dde8d
PZ
1496 /*
1497 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499 * this IPI.
1500 */
8cb75e0c 1501 preempt_fold_need_resched();
f27dde8d 1502
873b4c65
VG
1503 if (llist_empty(&this_rq()->wake_list)
1504 && !tick_nohz_full_cpu(smp_processor_id())
1505 && !got_nohz_idle_kick())
c5d753a5
PZ
1506 return;
1507
1508 /*
1509 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510 * traditionally all their work was done from the interrupt return
1511 * path. Now that we actually do some work, we need to make sure
1512 * we do call them.
1513 *
1514 * Some archs already do call them, luckily irq_enter/exit nest
1515 * properly.
1516 *
1517 * Arguably we should visit all archs and update all handlers,
1518 * however a fair share of IPIs are still resched only so this would
1519 * somewhat pessimize the simple resched case.
1520 */
1521 irq_enter();
ff442c51 1522 tick_nohz_full_check();
fa14ff4a 1523 sched_ttwu_pending();
ca38062e
SS
1524
1525 /*
1526 * Check if someone kicked us for doing the nohz idle load balance.
1527 */
873b4c65 1528 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1529 this_rq()->idle_balance = 1;
ca38062e 1530 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1531 }
c5d753a5 1532 irq_exit();
317f3941
PZ
1533}
1534
1535static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536{
fa14ff4a 1537 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1538 smp_send_reschedule(cpu);
1539}
d6aa8f85 1540
39be3501 1541bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1542{
1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
d6aa8f85 1545#endif /* CONFIG_SMP */
317f3941 1546
c05fbafb
PZ
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549 struct rq *rq = cpu_rq(cpu);
1550
17d9f311 1551#if defined(CONFIG_SMP)
39be3501 1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1554 ttwu_queue_remote(p, cpu);
1555 return;
1556 }
1557#endif
1558
c05fbafb
PZ
1559 raw_spin_lock(&rq->lock);
1560 ttwu_do_activate(rq, p, 0);
1561 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1562}
1563
1564/**
1da177e4 1565 * try_to_wake_up - wake up a thread
9ed3811a 1566 * @p: the thread to be awakened
1da177e4 1567 * @state: the mask of task states that can be woken
9ed3811a 1568 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
e69f6186 1576 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1577 * or @state didn't match @p's state.
1da177e4 1578 */
e4a52bcb
PZ
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1581{
1da177e4 1582 unsigned long flags;
c05fbafb 1583 int cpu, success = 0;
2398f2c6 1584
e0acd0a6
ON
1585 /*
1586 * If we are going to wake up a thread waiting for CONDITION we
1587 * need to ensure that CONDITION=1 done by the caller can not be
1588 * reordered with p->state check below. This pairs with mb() in
1589 * set_current_state() the waiting thread does.
1590 */
1591 smp_mb__before_spinlock();
013fdb80 1592 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1593 if (!(p->state & state))
1da177e4
LT
1594 goto out;
1595
c05fbafb 1596 success = 1; /* we're going to change ->state */
1da177e4 1597 cpu = task_cpu(p);
1da177e4 1598
c05fbafb
PZ
1599 if (p->on_rq && ttwu_remote(p, wake_flags))
1600 goto stat;
1da177e4 1601
1da177e4 1602#ifdef CONFIG_SMP
e9c84311 1603 /*
c05fbafb
PZ
1604 * If the owning (remote) cpu is still in the middle of schedule() with
1605 * this task as prev, wait until its done referencing the task.
e9c84311 1606 */
f3e94786 1607 while (p->on_cpu)
e4a52bcb 1608 cpu_relax();
0970d299 1609 /*
e4a52bcb 1610 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1611 */
e4a52bcb 1612 smp_rmb();
1da177e4 1613
a8e4f2ea 1614 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1615 p->state = TASK_WAKING;
e7693a36 1616
e4a52bcb 1617 if (p->sched_class->task_waking)
74f8e4b2 1618 p->sched_class->task_waking(p);
efbbd05a 1619
ac66f547 1620 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1621 if (task_cpu(p) != cpu) {
1622 wake_flags |= WF_MIGRATED;
e4a52bcb 1623 set_task_cpu(p, cpu);
f339b9dc 1624 }
1da177e4 1625#endif /* CONFIG_SMP */
1da177e4 1626
c05fbafb
PZ
1627 ttwu_queue(p, cpu);
1628stat:
b84cb5df 1629 ttwu_stat(p, cpu, wake_flags);
1da177e4 1630out:
013fdb80 1631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1632
1633 return success;
1634}
1635
21aa9af0
TH
1636/**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
2acca55e 1640 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1642 * the current task.
21aa9af0
TH
1643 */
1644static void try_to_wake_up_local(struct task_struct *p)
1645{
1646 struct rq *rq = task_rq(p);
21aa9af0 1647
383efcd0
TH
1648 if (WARN_ON_ONCE(rq != this_rq()) ||
1649 WARN_ON_ONCE(p == current))
1650 return;
1651
21aa9af0
TH
1652 lockdep_assert_held(&rq->lock);
1653
2acca55e
PZ
1654 if (!raw_spin_trylock(&p->pi_lock)) {
1655 raw_spin_unlock(&rq->lock);
1656 raw_spin_lock(&p->pi_lock);
1657 raw_spin_lock(&rq->lock);
1658 }
1659
21aa9af0 1660 if (!(p->state & TASK_NORMAL))
2acca55e 1661 goto out;
21aa9af0 1662
fd2f4419 1663 if (!p->on_rq)
d7c01d27
PZ
1664 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
23f41eeb 1666 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1667 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1668out:
1669 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1670}
1671
50fa610a
DH
1672/**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
7ad5b3a5 1684int wake_up_process(struct task_struct *p)
1da177e4 1685{
9067ac85
ON
1686 WARN_ON(task_is_stopped_or_traced(p));
1687 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1688}
1da177e4
LT
1689EXPORT_SYMBOL(wake_up_process);
1690
7ad5b3a5 1691int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1692{
1693 return try_to_wake_up(p, state, 0);
1694}
1695
1da177e4
LT
1696/*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
dd41f596
IM
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
5e1576ed 1702static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1703{
fd2f4419
PZ
1704 p->on_rq = 0;
1705
1706 p->se.on_rq = 0;
dd41f596
IM
1707 p->se.exec_start = 0;
1708 p->se.sum_exec_runtime = 0;
f6cf891c 1709 p->se.prev_sum_exec_runtime = 0;
6c594c21 1710 p->se.nr_migrations = 0;
da7a735e 1711 p->se.vruntime = 0;
fd2f4419 1712 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1713
1714#ifdef CONFIG_SCHEDSTATS
41acab88 1715 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1716#endif
476d139c 1717
aab03e05
DF
1718 RB_CLEAR_NODE(&p->dl.rb_node);
1719 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720 p->dl.dl_runtime = p->dl.runtime = 0;
1721 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1722 p->dl.dl_period = 0;
aab03e05
DF
1723 p->dl.flags = 0;
1724
fa717060 1725 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1726
e107be36
AK
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728 INIT_HLIST_HEAD(&p->preempt_notifiers);
1729#endif
cbee9f88
PZ
1730
1731#ifdef CONFIG_NUMA_BALANCING
1732 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1733 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1734 p->mm->numa_scan_seq = 0;
1735 }
1736
5e1576ed
RR
1737 if (clone_flags & CLONE_VM)
1738 p->numa_preferred_nid = current->numa_preferred_nid;
1739 else
1740 p->numa_preferred_nid = -1;
1741
cbee9f88
PZ
1742 p->node_stamp = 0ULL;
1743 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1744 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1745 p->numa_work.next = &p->numa_work;
ff1df896
RR
1746 p->numa_faults_memory = NULL;
1747 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1748 p->last_task_numa_placement = 0;
1749 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
cbee9f88 1753#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1754}
1755
1a687c2e 1756#ifdef CONFIG_NUMA_BALANCING
3105b86a 1757#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1758void set_numabalancing_state(bool enabled)
1759{
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764}
3105b86a
MG
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770 numabalancing_enabled = enabled;
dd41f596 1771}
3105b86a 1772#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793}
1794#endif
1795#endif
dd41f596
IM
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
aab03e05 1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1801{
0122ec5b 1802 unsigned long flags;
dd41f596
IM
1803 int cpu = get_cpu();
1804
5e1576ed 1805 __sched_fork(clone_flags, p);
06b83b5f 1806 /*
0017d735 1807 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
0017d735 1811 p->state = TASK_RUNNING;
dd41f596 1812
c350a04e
MG
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
b9dc29e7
MG
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1823 p->policy = SCHED_NORMAL;
6c697bdf 1824 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
6c697bdf 1831
b9dc29e7
MG
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
ca94c442 1838
aab03e05
DF
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
2ddbf952 1845 p->sched_class = &fair_sched_class;
aab03e05 1846 }
b29739f9 1847
cd29fe6f
PZ
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
86951599
PZ
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
0122ec5b 1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1859 set_task_cpu(p, cpu);
0122ec5b 1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1861
52f17b6c 1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1863 if (likely(sched_info_on()))
52f17b6c 1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1865#endif
3ca7a440
PZ
1866#if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
4866cde0 1868#endif
01028747 1869 init_task_preempt_count(p);
806c09a7 1870#ifdef CONFIG_SMP
917b627d 1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1873#endif
917b627d 1874
476d139c 1875 put_cpu();
aab03e05 1876 return 0;
1da177e4
LT
1877}
1878
332ac17e
DF
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898 return &cpu_rq(i)->rd->dl_bw;
1899}
1900
de212f18 1901static inline int dl_bw_cpus(int i)
332ac17e 1902{
de212f18
PZ
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
332ac17e
DF
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914 return &cpu_rq(i)->dl.dl_bw;
1915}
1916
de212f18 1917static inline int dl_bw_cpus(int i)
332ac17e
DF
1918{
1919 return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926 dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932 dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952{
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 1955 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1958 int cpus, err = -1;
332ac17e
DF
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
de212f18 1969 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1da177e4
LT
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
3e51e3ed 1997void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1998{
1999 unsigned long flags;
dd41f596 2000 struct rq *rq;
fabf318e 2001
ab2515c4 2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2003#ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
fabf318e 2008 */
ac66f547 2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2010#endif
2011
a75cdaa9
AS
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
ab2515c4 2014 rq = __task_rq_lock(p);
cd29fe6f 2015 activate_task(rq, p, 0);
fd2f4419 2016 p->on_rq = 1;
89363381 2017 trace_sched_wakeup_new(p, true);
a7558e01 2018 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2019#ifdef CONFIG_SMP
efbbd05a
PZ
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
9a897c5a 2022#endif
0122ec5b 2023 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2024}
2025
e107be36
AK
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
80dd99b3 2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2030 * @notifier: notifier struct to register
e107be36
AK
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2040 * @notifier: notifier struct to unregister
e107be36
AK
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046 hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052 struct preempt_notifier *notifier;
e107be36 2053
b67bfe0d 2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061{
2062 struct preempt_notifier *notifier;
e107be36 2063
b67bfe0d 2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2065 notifier->ops->sched_out(notifier, next);
2066}
2067
6d6bc0ad 2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077{
2078}
2079
6d6bc0ad 2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2081
4866cde0
NP
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
421cee29 2085 * @prev: the current task that is being switched out
4866cde0
NP
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
e107be36
AK
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
4866cde0 2098{
895dd92c 2099 trace_sched_switch(prev, next);
43148951 2100 sched_info_switch(rq, prev, next);
fe4b04fa 2101 perf_event_task_sched_out(prev, next);
e107be36 2102 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105}
2106
1da177e4
LT
2107/**
2108 * finish_task_switch - clean up after a task-switch
344babaa 2109 * @rq: runqueue associated with task-switch
1da177e4
LT
2110 * @prev: the thread we just switched away from.
2111 *
4866cde0
NP
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2118 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
a9957449 2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2123 __releases(rq->lock)
2124{
1da177e4 2125 struct mm_struct *mm = rq->prev_mm;
55a101f8 2126 long prev_state;
1da177e4
LT
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
c394cc9f 2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
c394cc9f 2135 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
55a101f8 2141 prev_state = prev->state;
bf9fae9f 2142 vtime_task_switch(prev);
4866cde0 2143 finish_arch_switch(prev);
a8d757ef 2144 perf_event_task_sched_in(prev, current);
4866cde0 2145 finish_lock_switch(rq, prev);
01f23e16 2146 finish_arch_post_lock_switch();
e8fa1362 2147
e107be36 2148 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2149 if (mm)
2150 mmdrop(mm);
c394cc9f 2151 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2152 if (prev->sched_class->task_dead)
2153 prev->sched_class->task_dead(prev);
2154
c6fd91f0 2155 /*
2156 * Remove function-return probe instances associated with this
2157 * task and put them back on the free list.
9761eea8 2158 */
c6fd91f0 2159 kprobe_flush_task(prev);
1da177e4 2160 put_task_struct(prev);
c6fd91f0 2161 }
99e5ada9
FW
2162
2163 tick_nohz_task_switch(current);
1da177e4
LT
2164}
2165
3f029d3c
GH
2166#ifdef CONFIG_SMP
2167
3f029d3c
GH
2168/* rq->lock is NOT held, but preemption is disabled */
2169static inline void post_schedule(struct rq *rq)
2170{
2171 if (rq->post_schedule) {
2172 unsigned long flags;
2173
05fa785c 2174 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2175 if (rq->curr->sched_class->post_schedule)
2176 rq->curr->sched_class->post_schedule(rq);
05fa785c 2177 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2178
2179 rq->post_schedule = 0;
2180 }
2181}
2182
2183#else
da19ab51 2184
3f029d3c
GH
2185static inline void post_schedule(struct rq *rq)
2186{
1da177e4
LT
2187}
2188
3f029d3c
GH
2189#endif
2190
1da177e4
LT
2191/**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
36c8b586 2195asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2196 __releases(rq->lock)
2197{
70b97a7f
IM
2198 struct rq *rq = this_rq();
2199
4866cde0 2200 finish_task_switch(rq, prev);
da19ab51 2201
3f029d3c
GH
2202 /*
2203 * FIXME: do we need to worry about rq being invalidated by the
2204 * task_switch?
2205 */
2206 post_schedule(rq);
70b97a7f 2207
4866cde0
NP
2208#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209 /* In this case, finish_task_switch does not reenable preemption */
2210 preempt_enable();
2211#endif
1da177e4 2212 if (current->set_child_tid)
b488893a 2213 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2214}
2215
2216/*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
dd41f596 2220static inline void
70b97a7f 2221context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2222 struct task_struct *next)
1da177e4 2223{
dd41f596 2224 struct mm_struct *mm, *oldmm;
1da177e4 2225
e107be36 2226 prepare_task_switch(rq, prev, next);
fe4b04fa 2227
dd41f596
IM
2228 mm = next->mm;
2229 oldmm = prev->active_mm;
9226d125
ZA
2230 /*
2231 * For paravirt, this is coupled with an exit in switch_to to
2232 * combine the page table reload and the switch backend into
2233 * one hypercall.
2234 */
224101ed 2235 arch_start_context_switch(prev);
9226d125 2236
31915ab4 2237 if (!mm) {
1da177e4
LT
2238 next->active_mm = oldmm;
2239 atomic_inc(&oldmm->mm_count);
2240 enter_lazy_tlb(oldmm, next);
2241 } else
2242 switch_mm(oldmm, mm, next);
2243
31915ab4 2244 if (!prev->mm) {
1da177e4 2245 prev->active_mm = NULL;
1da177e4
LT
2246 rq->prev_mm = oldmm;
2247 }
3a5f5e48
IM
2248 /*
2249 * Since the runqueue lock will be released by the next
2250 * task (which is an invalid locking op but in the case
2251 * of the scheduler it's an obvious special-case), so we
2252 * do an early lockdep release here:
2253 */
2254#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2256#endif
1da177e4 2257
91d1aa43 2258 context_tracking_task_switch(prev, next);
1da177e4
LT
2259 /* Here we just switch the register state and the stack. */
2260 switch_to(prev, next, prev);
2261
dd41f596
IM
2262 barrier();
2263 /*
2264 * this_rq must be evaluated again because prev may have moved
2265 * CPUs since it called schedule(), thus the 'rq' on its stack
2266 * frame will be invalid.
2267 */
2268 finish_task_switch(this_rq(), prev);
1da177e4
LT
2269}
2270
2271/*
1c3e8264 2272 * nr_running and nr_context_switches:
1da177e4
LT
2273 *
2274 * externally visible scheduler statistics: current number of runnable
1c3e8264 2275 * threads, total number of context switches performed since bootup.
1da177e4
LT
2276 */
2277unsigned long nr_running(void)
2278{
2279 unsigned long i, sum = 0;
2280
2281 for_each_online_cpu(i)
2282 sum += cpu_rq(i)->nr_running;
2283
2284 return sum;
f711f609 2285}
1da177e4 2286
1da177e4 2287unsigned long long nr_context_switches(void)
46cb4b7c 2288{
cc94abfc
SR
2289 int i;
2290 unsigned long long sum = 0;
46cb4b7c 2291
0a945022 2292 for_each_possible_cpu(i)
1da177e4 2293 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2294
1da177e4
LT
2295 return sum;
2296}
483b4ee6 2297
1da177e4
LT
2298unsigned long nr_iowait(void)
2299{
2300 unsigned long i, sum = 0;
483b4ee6 2301
0a945022 2302 for_each_possible_cpu(i)
1da177e4 2303 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2304
1da177e4
LT
2305 return sum;
2306}
483b4ee6 2307
8c215bd3 2308unsigned long nr_iowait_cpu(int cpu)
69d25870 2309{
8c215bd3 2310 struct rq *this = cpu_rq(cpu);
69d25870
AV
2311 return atomic_read(&this->nr_iowait);
2312}
46cb4b7c 2313
dd41f596 2314#ifdef CONFIG_SMP
8a0be9ef 2315
46cb4b7c 2316/*
38022906
PZ
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2319 */
38022906 2320void sched_exec(void)
46cb4b7c 2321{
38022906 2322 struct task_struct *p = current;
1da177e4 2323 unsigned long flags;
0017d735 2324 int dest_cpu;
46cb4b7c 2325
8f42ced9 2326 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2327 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2328 if (dest_cpu == smp_processor_id())
2329 goto unlock;
38022906 2330
8f42ced9 2331 if (likely(cpu_active(dest_cpu))) {
969c7921 2332 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2333
8f42ced9
PZ
2334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2336 return;
2337 }
0017d735 2338unlock:
8f42ced9 2339 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2340}
dd41f596 2341
1da177e4
LT
2342#endif
2343
1da177e4 2344DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2345DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2346
2347EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2348EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2349
2350/*
c5f8d995 2351 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2352 * @p in case that task is currently running.
c5f8d995
HS
2353 *
2354 * Called with task_rq_lock() held on @rq.
1da177e4 2355 */
c5f8d995
HS
2356static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357{
2358 u64 ns = 0;
2359
2360 if (task_current(rq, p)) {
2361 update_rq_clock(rq);
78becc27 2362 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2363 if ((s64)ns < 0)
2364 ns = 0;
2365 }
2366
2367 return ns;
2368}
2369
bb34d92f 2370unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2371{
1da177e4 2372 unsigned long flags;
41b86e9c 2373 struct rq *rq;
bb34d92f 2374 u64 ns = 0;
48f24c4d 2375
41b86e9c 2376 rq = task_rq_lock(p, &flags);
c5f8d995 2377 ns = do_task_delta_exec(p, rq);
0122ec5b 2378 task_rq_unlock(rq, p, &flags);
1508487e 2379
c5f8d995
HS
2380 return ns;
2381}
f06febc9 2382
c5f8d995
HS
2383/*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388unsigned long long task_sched_runtime(struct task_struct *p)
2389{
2390 unsigned long flags;
2391 struct rq *rq;
2392 u64 ns = 0;
2393
911b2898
PZ
2394#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395 /*
2396 * 64-bit doesn't need locks to atomically read a 64bit value.
2397 * So we have a optimization chance when the task's delta_exec is 0.
2398 * Reading ->on_cpu is racy, but this is ok.
2399 *
2400 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401 * If we race with it entering cpu, unaccounted time is 0. This is
2402 * indistinguishable from the read occurring a few cycles earlier.
2403 */
2404 if (!p->on_cpu)
2405 return p->se.sum_exec_runtime;
2406#endif
2407
c5f8d995
HS
2408 rq = task_rq_lock(p, &flags);
2409 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2410 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2411
2412 return ns;
2413}
48f24c4d 2414
7835b98b
CL
2415/*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
7835b98b
CL
2418 */
2419void scheduler_tick(void)
2420{
7835b98b
CL
2421 int cpu = smp_processor_id();
2422 struct rq *rq = cpu_rq(cpu);
dd41f596 2423 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2424
2425 sched_clock_tick();
dd41f596 2426
05fa785c 2427 raw_spin_lock(&rq->lock);
3e51f33f 2428 update_rq_clock(rq);
fa85ae24 2429 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2430 update_cpu_load_active(rq);
05fa785c 2431 raw_spin_unlock(&rq->lock);
7835b98b 2432
e9d2b064 2433 perf_event_task_tick();
e220d2dc 2434
e418e1c2 2435#ifdef CONFIG_SMP
6eb57e0d 2436 rq->idle_balance = idle_cpu(cpu);
7caff66f 2437 trigger_load_balance(rq);
e418e1c2 2438#endif
265f22a9 2439 rq_last_tick_reset(rq);
1da177e4
LT
2440}
2441
265f22a9
FW
2442#ifdef CONFIG_NO_HZ_FULL
2443/**
2444 * scheduler_tick_max_deferment
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
e69f6186
YB
2453 *
2454 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2455 */
2456u64 scheduler_tick_max_deferment(void)
2457{
2458 struct rq *rq = this_rq();
2459 unsigned long next, now = ACCESS_ONCE(jiffies);
2460
2461 next = rq->last_sched_tick + HZ;
2462
2463 if (time_before_eq(next, now))
2464 return 0;
2465
8fe8ff09 2466 return jiffies_to_nsecs(next - now);
1da177e4 2467}
265f22a9 2468#endif
1da177e4 2469
132380a0 2470notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2471{
2472 if (in_lock_functions(addr)) {
2473 addr = CALLER_ADDR2;
2474 if (in_lock_functions(addr))
2475 addr = CALLER_ADDR3;
2476 }
2477 return addr;
2478}
1da177e4 2479
7e49fcce
SR
2480#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481 defined(CONFIG_PREEMPT_TRACER))
2482
bdb43806 2483void __kprobes preempt_count_add(int val)
1da177e4 2484{
6cd8a4bb 2485#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2486 /*
2487 * Underflow?
2488 */
9a11b49a
IM
2489 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490 return;
6cd8a4bb 2491#endif
bdb43806 2492 __preempt_count_add(val);
6cd8a4bb 2493#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2494 /*
2495 * Spinlock count overflowing soon?
2496 */
33859f7f
MOS
2497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498 PREEMPT_MASK - 10);
6cd8a4bb 2499#endif
8f47b187
TG
2500 if (preempt_count() == val) {
2501 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502#ifdef CONFIG_DEBUG_PREEMPT
2503 current->preempt_disable_ip = ip;
2504#endif
2505 trace_preempt_off(CALLER_ADDR0, ip);
2506 }
1da177e4 2507}
bdb43806 2508EXPORT_SYMBOL(preempt_count_add);
1da177e4 2509
bdb43806 2510void __kprobes preempt_count_sub(int val)
1da177e4 2511{
6cd8a4bb 2512#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2513 /*
2514 * Underflow?
2515 */
01e3eb82 2516 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2517 return;
1da177e4
LT
2518 /*
2519 * Is the spinlock portion underflowing?
2520 */
9a11b49a
IM
2521 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522 !(preempt_count() & PREEMPT_MASK)))
2523 return;
6cd8a4bb 2524#endif
9a11b49a 2525
6cd8a4bb
SR
2526 if (preempt_count() == val)
2527 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2528 __preempt_count_sub(val);
1da177e4 2529}
bdb43806 2530EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2531
2532#endif
2533
2534/*
dd41f596 2535 * Print scheduling while atomic bug:
1da177e4 2536 */
dd41f596 2537static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2538{
664dfa65
DJ
2539 if (oops_in_progress)
2540 return;
2541
3df0fc5b
PZ
2542 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543 prev->comm, prev->pid, preempt_count());
838225b4 2544
dd41f596 2545 debug_show_held_locks(prev);
e21f5b15 2546 print_modules();
dd41f596
IM
2547 if (irqs_disabled())
2548 print_irqtrace_events(prev);
8f47b187
TG
2549#ifdef CONFIG_DEBUG_PREEMPT
2550 if (in_atomic_preempt_off()) {
2551 pr_err("Preemption disabled at:");
2552 print_ip_sym(current->preempt_disable_ip);
2553 pr_cont("\n");
2554 }
2555#endif
6135fc1e 2556 dump_stack();
373d4d09 2557 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2558}
1da177e4 2559
dd41f596
IM
2560/*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563static inline void schedule_debug(struct task_struct *prev)
2564{
1da177e4 2565 /*
41a2d6cf 2566 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2567 * schedule() atomically, we ignore that path. Otherwise whine
2568 * if we are scheduling when we should not.
1da177e4 2569 */
192301e7 2570 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2571 __schedule_bug(prev);
b3fbab05 2572 rcu_sleep_check();
dd41f596 2573
1da177e4
LT
2574 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2d72376b 2576 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2577}
2578
2579/*
2580 * Pick up the highest-prio task:
2581 */
2582static inline struct task_struct *
606dba2e 2583pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2584{
37e117c0 2585 const struct sched_class *class = &fair_sched_class;
dd41f596 2586 struct task_struct *p;
1da177e4
LT
2587
2588 /*
dd41f596
IM
2589 * Optimization: we know that if all tasks are in
2590 * the fair class we can call that function directly:
1da177e4 2591 */
37e117c0 2592 if (likely(prev->sched_class == class &&
38033c37 2593 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2594 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2595 if (unlikely(p == RETRY_TASK))
2596 goto again;
2597
2598 /* assumes fair_sched_class->next == idle_sched_class */
2599 if (unlikely(!p))
2600 p = idle_sched_class.pick_next_task(rq, prev);
2601
2602 return p;
1da177e4
LT
2603 }
2604
37e117c0 2605again:
34f971f6 2606 for_each_class(class) {
606dba2e 2607 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2608 if (p) {
2609 if (unlikely(p == RETRY_TASK))
2610 goto again;
dd41f596 2611 return p;
37e117c0 2612 }
dd41f596 2613 }
34f971f6
PZ
2614
2615 BUG(); /* the idle class will always have a runnable task */
dd41f596 2616}
1da177e4 2617
dd41f596 2618/*
c259e01a 2619 * __schedule() is the main scheduler function.
edde96ea
PE
2620 *
2621 * The main means of driving the scheduler and thus entering this function are:
2622 *
2623 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2624 *
2625 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2626 * paths. For example, see arch/x86/entry_64.S.
2627 *
2628 * To drive preemption between tasks, the scheduler sets the flag in timer
2629 * interrupt handler scheduler_tick().
2630 *
2631 * 3. Wakeups don't really cause entry into schedule(). They add a
2632 * task to the run-queue and that's it.
2633 *
2634 * Now, if the new task added to the run-queue preempts the current
2635 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2636 * called on the nearest possible occasion:
2637 *
2638 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2639 *
2640 * - in syscall or exception context, at the next outmost
2641 * preempt_enable(). (this might be as soon as the wake_up()'s
2642 * spin_unlock()!)
2643 *
2644 * - in IRQ context, return from interrupt-handler to
2645 * preemptible context
2646 *
2647 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2648 * then at the next:
2649 *
2650 * - cond_resched() call
2651 * - explicit schedule() call
2652 * - return from syscall or exception to user-space
2653 * - return from interrupt-handler to user-space
dd41f596 2654 */
c259e01a 2655static void __sched __schedule(void)
dd41f596
IM
2656{
2657 struct task_struct *prev, *next;
67ca7bde 2658 unsigned long *switch_count;
dd41f596 2659 struct rq *rq;
31656519 2660 int cpu;
dd41f596 2661
ff743345
PZ
2662need_resched:
2663 preempt_disable();
dd41f596
IM
2664 cpu = smp_processor_id();
2665 rq = cpu_rq(cpu);
25502a6c 2666 rcu_note_context_switch(cpu);
dd41f596 2667 prev = rq->curr;
dd41f596 2668
dd41f596 2669 schedule_debug(prev);
1da177e4 2670
31656519 2671 if (sched_feat(HRTICK))
f333fdc9 2672 hrtick_clear(rq);
8f4d37ec 2673
e0acd0a6
ON
2674 /*
2675 * Make sure that signal_pending_state()->signal_pending() below
2676 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2677 * done by the caller to avoid the race with signal_wake_up().
2678 */
2679 smp_mb__before_spinlock();
05fa785c 2680 raw_spin_lock_irq(&rq->lock);
1da177e4 2681
246d86b5 2682 switch_count = &prev->nivcsw;
1da177e4 2683 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2684 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2685 prev->state = TASK_RUNNING;
21aa9af0 2686 } else {
2acca55e
PZ
2687 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2688 prev->on_rq = 0;
2689
21aa9af0 2690 /*
2acca55e
PZ
2691 * If a worker went to sleep, notify and ask workqueue
2692 * whether it wants to wake up a task to maintain
2693 * concurrency.
21aa9af0
TH
2694 */
2695 if (prev->flags & PF_WQ_WORKER) {
2696 struct task_struct *to_wakeup;
2697
2698 to_wakeup = wq_worker_sleeping(prev, cpu);
2699 if (to_wakeup)
2700 try_to_wake_up_local(to_wakeup);
2701 }
21aa9af0 2702 }
dd41f596 2703 switch_count = &prev->nvcsw;
1da177e4
LT
2704 }
2705
606dba2e
PZ
2706 if (prev->on_rq || rq->skip_clock_update < 0)
2707 update_rq_clock(rq);
2708
2709 next = pick_next_task(rq, prev);
f26f9aff 2710 clear_tsk_need_resched(prev);
f27dde8d 2711 clear_preempt_need_resched();
f26f9aff 2712 rq->skip_clock_update = 0;
1da177e4 2713
1da177e4 2714 if (likely(prev != next)) {
1da177e4
LT
2715 rq->nr_switches++;
2716 rq->curr = next;
2717 ++*switch_count;
2718
dd41f596 2719 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2720 /*
246d86b5
ON
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2725 */
2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu);
1da177e4 2728 } else
05fa785c 2729 raw_spin_unlock_irq(&rq->lock);
1da177e4 2730
3f029d3c 2731 post_schedule(rq);
1da177e4 2732
ba74c144 2733 sched_preempt_enable_no_resched();
ff743345 2734 if (need_resched())
1da177e4
LT
2735 goto need_resched;
2736}
c259e01a 2737
9c40cef2
TG
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
3c7d5184 2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2741 return;
2742 /*
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2745 */
2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk);
2748}
2749
6ebbe7a0 2750asmlinkage void __sched schedule(void)
c259e01a 2751{
9c40cef2
TG
2752 struct task_struct *tsk = current;
2753
2754 sched_submit_work(tsk);
c259e01a
TG
2755 __schedule();
2756}
1da177e4
LT
2757EXPORT_SYMBOL(schedule);
2758
91d1aa43 2759#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2760asmlinkage void __sched schedule_user(void)
2761{
2762 /*
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2767 */
91d1aa43 2768 user_exit();
20ab65e3 2769 schedule();
91d1aa43 2770 user_enter();
20ab65e3
FW
2771}
2772#endif
2773
c5491ea7
TG
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
ba74c144 2781 sched_preempt_enable_no_resched();
c5491ea7
TG
2782 schedule();
2783 preempt_disable();
2784}
2785
1da177e4
LT
2786#ifdef CONFIG_PREEMPT
2787/*
2ed6e34f 2788 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2789 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2790 * occur there and call schedule directly.
2791 */
d1f74e20 2792asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2793{
1da177e4
LT
2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2796 * we do not want to preempt the current task. Just return..
1da177e4 2797 */
fbb00b56 2798 if (likely(!preemptible()))
1da177e4
LT
2799 return;
2800
3a5c359a 2801 do {
bdb43806 2802 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2803 __schedule();
bdb43806 2804 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2805
3a5c359a
AK
2806 /*
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2809 */
2810 barrier();
5ed0cec0 2811 } while (need_resched());
1da177e4 2812}
1da177e4 2813EXPORT_SYMBOL(preempt_schedule);
32e475d7 2814#endif /* CONFIG_PREEMPT */
1da177e4
LT
2815
2816/*
2ed6e34f 2817 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage void __sched preempt_schedule_irq(void)
2823{
b22366cd 2824 enum ctx_state prev_state;
6478d880 2825
2ed6e34f 2826 /* Catch callers which need to be fixed */
f27dde8d 2827 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2828
b22366cd
FW
2829 prev_state = exception_enter();
2830
3a5c359a 2831 do {
bdb43806 2832 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2833 local_irq_enable();
c259e01a 2834 __schedule();
3a5c359a 2835 local_irq_disable();
bdb43806 2836 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2837
3a5c359a
AK
2838 /*
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2841 */
2842 barrier();
5ed0cec0 2843 } while (need_resched());
b22366cd
FW
2844
2845 exception_exit(prev_state);
1da177e4
LT
2846}
2847
63859d4f 2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2849 void *key)
1da177e4 2850{
63859d4f 2851 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2852}
1da177e4
LT
2853EXPORT_SYMBOL(default_wake_function);
2854
b29739f9
IM
2855#ifdef CONFIG_RT_MUTEXES
2856
2857/*
2858 * rt_mutex_setprio - set the current priority of a task
2859 * @p: task
2860 * @prio: prio value (kernel-internal form)
2861 *
2862 * This function changes the 'effective' priority of a task. It does
2863 * not touch ->normal_prio like __setscheduler().
2864 *
c365c292
TG
2865 * Used by the rt_mutex code to implement priority inheritance
2866 * logic. Call site only calls if the priority of the task changed.
b29739f9 2867 */
36c8b586 2868void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2869{
2d3d891d 2870 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2871 struct rq *rq;
83ab0aa0 2872 const struct sched_class *prev_class;
b29739f9 2873
aab03e05 2874 BUG_ON(prio > MAX_PRIO);
b29739f9 2875
0122ec5b 2876 rq = __task_rq_lock(p);
b29739f9 2877
1c4dd99b
TG
2878 /*
2879 * Idle task boosting is a nono in general. There is one
2880 * exception, when PREEMPT_RT and NOHZ is active:
2881 *
2882 * The idle task calls get_next_timer_interrupt() and holds
2883 * the timer wheel base->lock on the CPU and another CPU wants
2884 * to access the timer (probably to cancel it). We can safely
2885 * ignore the boosting request, as the idle CPU runs this code
2886 * with interrupts disabled and will complete the lock
2887 * protected section without being interrupted. So there is no
2888 * real need to boost.
2889 */
2890 if (unlikely(p == rq->idle)) {
2891 WARN_ON(p != rq->curr);
2892 WARN_ON(p->pi_blocked_on);
2893 goto out_unlock;
2894 }
2895
a8027073 2896 trace_sched_pi_setprio(p, prio);
2d3d891d 2897 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2898 oldprio = p->prio;
83ab0aa0 2899 prev_class = p->sched_class;
fd2f4419 2900 on_rq = p->on_rq;
051a1d1a 2901 running = task_current(rq, p);
0e1f3483 2902 if (on_rq)
69be72c1 2903 dequeue_task(rq, p, 0);
0e1f3483
HS
2904 if (running)
2905 p->sched_class->put_prev_task(rq, p);
dd41f596 2906
2d3d891d
DF
2907 /*
2908 * Boosting condition are:
2909 * 1. -rt task is running and holds mutex A
2910 * --> -dl task blocks on mutex A
2911 *
2912 * 2. -dl task is running and holds mutex A
2913 * --> -dl task blocks on mutex A and could preempt the
2914 * running task
2915 */
2916 if (dl_prio(prio)) {
2917 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2918 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2919 p->dl.dl_boosted = 1;
2920 p->dl.dl_throttled = 0;
2921 enqueue_flag = ENQUEUE_REPLENISH;
2922 } else
2923 p->dl.dl_boosted = 0;
aab03e05 2924 p->sched_class = &dl_sched_class;
2d3d891d
DF
2925 } else if (rt_prio(prio)) {
2926 if (dl_prio(oldprio))
2927 p->dl.dl_boosted = 0;
2928 if (oldprio < prio)
2929 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2930 p->sched_class = &rt_sched_class;
2d3d891d
DF
2931 } else {
2932 if (dl_prio(oldprio))
2933 p->dl.dl_boosted = 0;
dd41f596 2934 p->sched_class = &fair_sched_class;
2d3d891d 2935 }
dd41f596 2936
b29739f9
IM
2937 p->prio = prio;
2938
0e1f3483
HS
2939 if (running)
2940 p->sched_class->set_curr_task(rq);
da7a735e 2941 if (on_rq)
2d3d891d 2942 enqueue_task(rq, p, enqueue_flag);
cb469845 2943
da7a735e 2944 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2945out_unlock:
0122ec5b 2946 __task_rq_unlock(rq);
b29739f9 2947}
b29739f9 2948#endif
d50dde5a 2949
36c8b586 2950void set_user_nice(struct task_struct *p, long nice)
1da177e4 2951{
dd41f596 2952 int old_prio, delta, on_rq;
1da177e4 2953 unsigned long flags;
70b97a7f 2954 struct rq *rq;
1da177e4 2955
75e45d51 2956 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
2957 return;
2958 /*
2959 * We have to be careful, if called from sys_setpriority(),
2960 * the task might be in the middle of scheduling on another CPU.
2961 */
2962 rq = task_rq_lock(p, &flags);
2963 /*
2964 * The RT priorities are set via sched_setscheduler(), but we still
2965 * allow the 'normal' nice value to be set - but as expected
2966 * it wont have any effect on scheduling until the task is
aab03e05 2967 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2968 */
aab03e05 2969 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
2970 p->static_prio = NICE_TO_PRIO(nice);
2971 goto out_unlock;
2972 }
fd2f4419 2973 on_rq = p->on_rq;
c09595f6 2974 if (on_rq)
69be72c1 2975 dequeue_task(rq, p, 0);
1da177e4 2976
1da177e4 2977 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 2978 set_load_weight(p);
b29739f9
IM
2979 old_prio = p->prio;
2980 p->prio = effective_prio(p);
2981 delta = p->prio - old_prio;
1da177e4 2982
dd41f596 2983 if (on_rq) {
371fd7e7 2984 enqueue_task(rq, p, 0);
1da177e4 2985 /*
d5f9f942
AM
2986 * If the task increased its priority or is running and
2987 * lowered its priority, then reschedule its CPU:
1da177e4 2988 */
d5f9f942 2989 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
2990 resched_task(rq->curr);
2991 }
2992out_unlock:
0122ec5b 2993 task_rq_unlock(rq, p, &flags);
1da177e4 2994}
1da177e4
LT
2995EXPORT_SYMBOL(set_user_nice);
2996
e43379f1
MM
2997/*
2998 * can_nice - check if a task can reduce its nice value
2999 * @p: task
3000 * @nice: nice value
3001 */
36c8b586 3002int can_nice(const struct task_struct *p, const int nice)
e43379f1 3003{
024f4747
MM
3004 /* convert nice value [19,-20] to rlimit style value [1,40] */
3005 int nice_rlim = 20 - nice;
48f24c4d 3006
78d7d407 3007 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3008 capable(CAP_SYS_NICE));
3009}
3010
1da177e4
LT
3011#ifdef __ARCH_WANT_SYS_NICE
3012
3013/*
3014 * sys_nice - change the priority of the current process.
3015 * @increment: priority increment
3016 *
3017 * sys_setpriority is a more generic, but much slower function that
3018 * does similar things.
3019 */
5add95d4 3020SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3021{
48f24c4d 3022 long nice, retval;
1da177e4
LT
3023
3024 /*
3025 * Setpriority might change our priority at the same moment.
3026 * We don't have to worry. Conceptually one call occurs first
3027 * and we have a single winner.
3028 */
e43379f1
MM
3029 if (increment < -40)
3030 increment = -40;
1da177e4
LT
3031 if (increment > 40)
3032 increment = 40;
3033
d0ea0268 3034 nice = task_nice(current) + increment;
75e45d51
DY
3035 if (nice < MIN_NICE)
3036 nice = MIN_NICE;
3037 if (nice > MAX_NICE)
3038 nice = MAX_NICE;
1da177e4 3039
e43379f1
MM
3040 if (increment < 0 && !can_nice(current, nice))
3041 return -EPERM;
3042
1da177e4
LT
3043 retval = security_task_setnice(current, nice);
3044 if (retval)
3045 return retval;
3046
3047 set_user_nice(current, nice);
3048 return 0;
3049}
3050
3051#endif
3052
3053/**
3054 * task_prio - return the priority value of a given task.
3055 * @p: the task in question.
3056 *
e69f6186 3057 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3058 * RT tasks are offset by -200. Normal tasks are centered
3059 * around 0, value goes from -16 to +15.
3060 */
36c8b586 3061int task_prio(const struct task_struct *p)
1da177e4
LT
3062{
3063 return p->prio - MAX_RT_PRIO;
3064}
3065
1da177e4
LT
3066/**
3067 * idle_cpu - is a given cpu idle currently?
3068 * @cpu: the processor in question.
e69f6186
YB
3069 *
3070 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3071 */
3072int idle_cpu(int cpu)
3073{
908a3283
TG
3074 struct rq *rq = cpu_rq(cpu);
3075
3076 if (rq->curr != rq->idle)
3077 return 0;
3078
3079 if (rq->nr_running)
3080 return 0;
3081
3082#ifdef CONFIG_SMP
3083 if (!llist_empty(&rq->wake_list))
3084 return 0;
3085#endif
3086
3087 return 1;
1da177e4
LT
3088}
3089
1da177e4
LT
3090/**
3091 * idle_task - return the idle task for a given cpu.
3092 * @cpu: the processor in question.
e69f6186
YB
3093 *
3094 * Return: The idle task for the cpu @cpu.
1da177e4 3095 */
36c8b586 3096struct task_struct *idle_task(int cpu)
1da177e4
LT
3097{
3098 return cpu_rq(cpu)->idle;
3099}
3100
3101/**
3102 * find_process_by_pid - find a process with a matching PID value.
3103 * @pid: the pid in question.
e69f6186
YB
3104 *
3105 * The task of @pid, if found. %NULL otherwise.
1da177e4 3106 */
a9957449 3107static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3108{
228ebcbe 3109 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3110}
3111
aab03e05
DF
3112/*
3113 * This function initializes the sched_dl_entity of a newly becoming
3114 * SCHED_DEADLINE task.
3115 *
3116 * Only the static values are considered here, the actual runtime and the
3117 * absolute deadline will be properly calculated when the task is enqueued
3118 * for the first time with its new policy.
3119 */
3120static void
3121__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3122{
3123 struct sched_dl_entity *dl_se = &p->dl;
3124
3125 init_dl_task_timer(dl_se);
3126 dl_se->dl_runtime = attr->sched_runtime;
3127 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3128 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3129 dl_se->flags = attr->sched_flags;
332ac17e 3130 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3131 dl_se->dl_throttled = 0;
3132 dl_se->dl_new = 1;
5bfd126e 3133 dl_se->dl_yielded = 0;
aab03e05
DF
3134}
3135
c365c292
TG
3136static void __setscheduler_params(struct task_struct *p,
3137 const struct sched_attr *attr)
1da177e4 3138{
d50dde5a
DF
3139 int policy = attr->sched_policy;
3140
39fd8fd2
PZ
3141 if (policy == -1) /* setparam */
3142 policy = p->policy;
3143
1da177e4 3144 p->policy = policy;
d50dde5a 3145
aab03e05
DF
3146 if (dl_policy(policy))
3147 __setparam_dl(p, attr);
39fd8fd2 3148 else if (fair_policy(policy))
d50dde5a
DF
3149 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3150
39fd8fd2
PZ
3151 /*
3152 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3153 * !rt_policy. Always setting this ensures that things like
3154 * getparam()/getattr() don't report silly values for !rt tasks.
3155 */
3156 p->rt_priority = attr->sched_priority;
383afd09 3157 p->normal_prio = normal_prio(p);
c365c292
TG
3158 set_load_weight(p);
3159}
39fd8fd2 3160
c365c292
TG
3161/* Actually do priority change: must hold pi & rq lock. */
3162static void __setscheduler(struct rq *rq, struct task_struct *p,
3163 const struct sched_attr *attr)
3164{
3165 __setscheduler_params(p, attr);
d50dde5a 3166
383afd09
SR
3167 /*
3168 * If we get here, there was no pi waiters boosting the
3169 * task. It is safe to use the normal prio.
3170 */
3171 p->prio = normal_prio(p);
3172
aab03e05
DF
3173 if (dl_prio(p->prio))
3174 p->sched_class = &dl_sched_class;
3175 else if (rt_prio(p->prio))
ffd44db5
PZ
3176 p->sched_class = &rt_sched_class;
3177 else
3178 p->sched_class = &fair_sched_class;
1da177e4 3179}
aab03e05
DF
3180
3181static void
3182__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3183{
3184 struct sched_dl_entity *dl_se = &p->dl;
3185
3186 attr->sched_priority = p->rt_priority;
3187 attr->sched_runtime = dl_se->dl_runtime;
3188 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3189 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3190 attr->sched_flags = dl_se->flags;
3191}
3192
3193/*
3194 * This function validates the new parameters of a -deadline task.
3195 * We ask for the deadline not being zero, and greater or equal
755378a4 3196 * than the runtime, as well as the period of being zero or
332ac17e 3197 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3198 * user parameters are above the internal resolution of 1us (we
3199 * check sched_runtime only since it is always the smaller one) and
3200 * below 2^63 ns (we have to check both sched_deadline and
3201 * sched_period, as the latter can be zero).
aab03e05
DF
3202 */
3203static bool
3204__checkparam_dl(const struct sched_attr *attr)
3205{
b0827819
JL
3206 /* deadline != 0 */
3207 if (attr->sched_deadline == 0)
3208 return false;
3209
3210 /*
3211 * Since we truncate DL_SCALE bits, make sure we're at least
3212 * that big.
3213 */
3214 if (attr->sched_runtime < (1ULL << DL_SCALE))
3215 return false;
3216
3217 /*
3218 * Since we use the MSB for wrap-around and sign issues, make
3219 * sure it's not set (mind that period can be equal to zero).
3220 */
3221 if (attr->sched_deadline & (1ULL << 63) ||
3222 attr->sched_period & (1ULL << 63))
3223 return false;
3224
3225 /* runtime <= deadline <= period (if period != 0) */
3226 if ((attr->sched_period != 0 &&
3227 attr->sched_period < attr->sched_deadline) ||
3228 attr->sched_deadline < attr->sched_runtime)
3229 return false;
3230
3231 return true;
aab03e05
DF
3232}
3233
c69e8d9c
DH
3234/*
3235 * check the target process has a UID that matches the current process's
3236 */
3237static bool check_same_owner(struct task_struct *p)
3238{
3239 const struct cred *cred = current_cred(), *pcred;
3240 bool match;
3241
3242 rcu_read_lock();
3243 pcred = __task_cred(p);
9c806aa0
EB
3244 match = (uid_eq(cred->euid, pcred->euid) ||
3245 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3246 rcu_read_unlock();
3247 return match;
3248}
3249
d50dde5a
DF
3250static int __sched_setscheduler(struct task_struct *p,
3251 const struct sched_attr *attr,
3252 bool user)
1da177e4 3253{
383afd09
SR
3254 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3255 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3256 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3257 int policy = attr->sched_policy;
1da177e4 3258 unsigned long flags;
83ab0aa0 3259 const struct sched_class *prev_class;
70b97a7f 3260 struct rq *rq;
ca94c442 3261 int reset_on_fork;
1da177e4 3262
66e5393a
SR
3263 /* may grab non-irq protected spin_locks */
3264 BUG_ON(in_interrupt());
1da177e4
LT
3265recheck:
3266 /* double check policy once rq lock held */
ca94c442
LP
3267 if (policy < 0) {
3268 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3269 policy = oldpolicy = p->policy;
ca94c442 3270 } else {
7479f3c9 3271 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3272
aab03e05
DF
3273 if (policy != SCHED_DEADLINE &&
3274 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3275 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3276 policy != SCHED_IDLE)
3277 return -EINVAL;
3278 }
3279
7479f3c9
PZ
3280 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3281 return -EINVAL;
3282
1da177e4
LT
3283 /*
3284 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3285 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3286 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3287 */
0bb040a4 3288 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3289 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3290 return -EINVAL;
aab03e05
DF
3291 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3292 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3293 return -EINVAL;
3294
37e4ab3f
OC
3295 /*
3296 * Allow unprivileged RT tasks to decrease priority:
3297 */
961ccddd 3298 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3299 if (fair_policy(policy)) {
d0ea0268 3300 if (attr->sched_nice < task_nice(p) &&
eaad4513 3301 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3302 return -EPERM;
3303 }
3304
e05606d3 3305 if (rt_policy(policy)) {
a44702e8
ON
3306 unsigned long rlim_rtprio =
3307 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3308
3309 /* can't set/change the rt policy */
3310 if (policy != p->policy && !rlim_rtprio)
3311 return -EPERM;
3312
3313 /* can't increase priority */
d50dde5a
DF
3314 if (attr->sched_priority > p->rt_priority &&
3315 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3316 return -EPERM;
3317 }
c02aa73b 3318
d44753b8
JL
3319 /*
3320 * Can't set/change SCHED_DEADLINE policy at all for now
3321 * (safest behavior); in the future we would like to allow
3322 * unprivileged DL tasks to increase their relative deadline
3323 * or reduce their runtime (both ways reducing utilization)
3324 */
3325 if (dl_policy(policy))
3326 return -EPERM;
3327
dd41f596 3328 /*
c02aa73b
DH
3329 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3330 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3331 */
c02aa73b 3332 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3333 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3334 return -EPERM;
3335 }
5fe1d75f 3336
37e4ab3f 3337 /* can't change other user's priorities */
c69e8d9c 3338 if (!check_same_owner(p))
37e4ab3f 3339 return -EPERM;
ca94c442
LP
3340
3341 /* Normal users shall not reset the sched_reset_on_fork flag */
3342 if (p->sched_reset_on_fork && !reset_on_fork)
3343 return -EPERM;
37e4ab3f 3344 }
1da177e4 3345
725aad24 3346 if (user) {
b0ae1981 3347 retval = security_task_setscheduler(p);
725aad24
JF
3348 if (retval)
3349 return retval;
3350 }
3351
b29739f9
IM
3352 /*
3353 * make sure no PI-waiters arrive (or leave) while we are
3354 * changing the priority of the task:
0122ec5b 3355 *
25985edc 3356 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3357 * runqueue lock must be held.
3358 */
0122ec5b 3359 rq = task_rq_lock(p, &flags);
dc61b1d6 3360
34f971f6
PZ
3361 /*
3362 * Changing the policy of the stop threads its a very bad idea
3363 */
3364 if (p == rq->stop) {
0122ec5b 3365 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3366 return -EINVAL;
3367 }
3368
a51e9198 3369 /*
d6b1e911
TG
3370 * If not changing anything there's no need to proceed further,
3371 * but store a possible modification of reset_on_fork.
a51e9198 3372 */
d50dde5a 3373 if (unlikely(policy == p->policy)) {
d0ea0268 3374 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3375 goto change;
3376 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3377 goto change;
aab03e05
DF
3378 if (dl_policy(policy))
3379 goto change;
d50dde5a 3380
d6b1e911 3381 p->sched_reset_on_fork = reset_on_fork;
45afb173 3382 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3383 return 0;
3384 }
d50dde5a 3385change:
a51e9198 3386
dc61b1d6 3387 if (user) {
332ac17e 3388#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3389 /*
3390 * Do not allow realtime tasks into groups that have no runtime
3391 * assigned.
3392 */
3393 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3394 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3395 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3396 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3397 return -EPERM;
3398 }
dc61b1d6 3399#endif
332ac17e
DF
3400#ifdef CONFIG_SMP
3401 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3402 cpumask_t *span = rq->rd->span;
332ac17e
DF
3403
3404 /*
3405 * Don't allow tasks with an affinity mask smaller than
3406 * the entire root_domain to become SCHED_DEADLINE. We
3407 * will also fail if there's no bandwidth available.
3408 */
e4099a5e
PZ
3409 if (!cpumask_subset(span, &p->cpus_allowed) ||
3410 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3411 task_rq_unlock(rq, p, &flags);
3412 return -EPERM;
3413 }
3414 }
3415#endif
3416 }
dc61b1d6 3417
1da177e4
LT
3418 /* recheck policy now with rq lock held */
3419 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3420 policy = oldpolicy = -1;
0122ec5b 3421 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3422 goto recheck;
3423 }
332ac17e
DF
3424
3425 /*
3426 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3427 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3428 * is available.
3429 */
e4099a5e 3430 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3431 task_rq_unlock(rq, p, &flags);
3432 return -EBUSY;
3433 }
3434
c365c292
TG
3435 p->sched_reset_on_fork = reset_on_fork;
3436 oldprio = p->prio;
3437
3438 /*
3439 * Special case for priority boosted tasks.
3440 *
3441 * If the new priority is lower or equal (user space view)
3442 * than the current (boosted) priority, we just store the new
3443 * normal parameters and do not touch the scheduler class and
3444 * the runqueue. This will be done when the task deboost
3445 * itself.
3446 */
3447 if (rt_mutex_check_prio(p, newprio)) {
3448 __setscheduler_params(p, attr);
3449 task_rq_unlock(rq, p, &flags);
3450 return 0;
3451 }
3452
fd2f4419 3453 on_rq = p->on_rq;
051a1d1a 3454 running = task_current(rq, p);
0e1f3483 3455 if (on_rq)
4ca9b72b 3456 dequeue_task(rq, p, 0);
0e1f3483
HS
3457 if (running)
3458 p->sched_class->put_prev_task(rq, p);
f6b53205 3459
83ab0aa0 3460 prev_class = p->sched_class;
d50dde5a 3461 __setscheduler(rq, p, attr);
f6b53205 3462
0e1f3483
HS
3463 if (running)
3464 p->sched_class->set_curr_task(rq);
81a44c54
TG
3465 if (on_rq) {
3466 /*
3467 * We enqueue to tail when the priority of a task is
3468 * increased (user space view).
3469 */
3470 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3471 }
cb469845 3472
da7a735e 3473 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3474 task_rq_unlock(rq, p, &flags);
b29739f9 3475
95e02ca9
TG
3476 rt_mutex_adjust_pi(p);
3477
1da177e4
LT
3478 return 0;
3479}
961ccddd 3480
7479f3c9
PZ
3481static int _sched_setscheduler(struct task_struct *p, int policy,
3482 const struct sched_param *param, bool check)
3483{
3484 struct sched_attr attr = {
3485 .sched_policy = policy,
3486 .sched_priority = param->sched_priority,
3487 .sched_nice = PRIO_TO_NICE(p->static_prio),
3488 };
3489
3490 /*
3491 * Fixup the legacy SCHED_RESET_ON_FORK hack
3492 */
3493 if (policy & SCHED_RESET_ON_FORK) {
3494 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3495 policy &= ~SCHED_RESET_ON_FORK;
3496 attr.sched_policy = policy;
3497 }
3498
3499 return __sched_setscheduler(p, &attr, check);
3500}
961ccddd
RR
3501/**
3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
e69f6186
YB
3507 * Return: 0 on success. An error code otherwise.
3508 *
961ccddd
RR
3509 * NOTE that the task may be already dead.
3510 */
3511int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3512 const struct sched_param *param)
961ccddd 3513{
7479f3c9 3514 return _sched_setscheduler(p, policy, param, true);
961ccddd 3515}
1da177e4
LT
3516EXPORT_SYMBOL_GPL(sched_setscheduler);
3517
d50dde5a
DF
3518int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3519{
3520 return __sched_setscheduler(p, attr, true);
3521}
3522EXPORT_SYMBOL_GPL(sched_setattr);
3523
961ccddd
RR
3524/**
3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3526 * @p: the task in question.
3527 * @policy: new policy.
3528 * @param: structure containing the new RT priority.
3529 *
3530 * Just like sched_setscheduler, only don't bother checking if the
3531 * current context has permission. For example, this is needed in
3532 * stop_machine(): we create temporary high priority worker threads,
3533 * but our caller might not have that capability.
e69f6186
YB
3534 *
3535 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3536 */
3537int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3538 const struct sched_param *param)
961ccddd 3539{
7479f3c9 3540 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3541}
3542
95cdf3b7
IM
3543static int
3544do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3545{
1da177e4
LT
3546 struct sched_param lparam;
3547 struct task_struct *p;
36c8b586 3548 int retval;
1da177e4
LT
3549
3550 if (!param || pid < 0)
3551 return -EINVAL;
3552 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3553 return -EFAULT;
5fe1d75f
ON
3554
3555 rcu_read_lock();
3556 retval = -ESRCH;
1da177e4 3557 p = find_process_by_pid(pid);
5fe1d75f
ON
3558 if (p != NULL)
3559 retval = sched_setscheduler(p, policy, &lparam);
3560 rcu_read_unlock();
36c8b586 3561
1da177e4
LT
3562 return retval;
3563}
3564
d50dde5a
DF
3565/*
3566 * Mimics kernel/events/core.c perf_copy_attr().
3567 */
3568static int sched_copy_attr(struct sched_attr __user *uattr,
3569 struct sched_attr *attr)
3570{
3571 u32 size;
3572 int ret;
3573
3574 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3575 return -EFAULT;
3576
3577 /*
3578 * zero the full structure, so that a short copy will be nice.
3579 */
3580 memset(attr, 0, sizeof(*attr));
3581
3582 ret = get_user(size, &uattr->size);
3583 if (ret)
3584 return ret;
3585
3586 if (size > PAGE_SIZE) /* silly large */
3587 goto err_size;
3588
3589 if (!size) /* abi compat */
3590 size = SCHED_ATTR_SIZE_VER0;
3591
3592 if (size < SCHED_ATTR_SIZE_VER0)
3593 goto err_size;
3594
3595 /*
3596 * If we're handed a bigger struct than we know of,
3597 * ensure all the unknown bits are 0 - i.e. new
3598 * user-space does not rely on any kernel feature
3599 * extensions we dont know about yet.
3600 */
3601 if (size > sizeof(*attr)) {
3602 unsigned char __user *addr;
3603 unsigned char __user *end;
3604 unsigned char val;
3605
3606 addr = (void __user *)uattr + sizeof(*attr);
3607 end = (void __user *)uattr + size;
3608
3609 for (; addr < end; addr++) {
3610 ret = get_user(val, addr);
3611 if (ret)
3612 return ret;
3613 if (val)
3614 goto err_size;
3615 }
3616 size = sizeof(*attr);
3617 }
3618
3619 ret = copy_from_user(attr, uattr, size);
3620 if (ret)
3621 return -EFAULT;
3622
3623 /*
3624 * XXX: do we want to be lenient like existing syscalls; or do we want
3625 * to be strict and return an error on out-of-bounds values?
3626 */
75e45d51 3627 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a
DF
3628
3629out:
3630 return ret;
3631
3632err_size:
3633 put_user(sizeof(*attr), &uattr->size);
3634 ret = -E2BIG;
3635 goto out;
3636}
3637
1da177e4
LT
3638/**
3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3640 * @pid: the pid in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
e69f6186
YB
3643 *
3644 * Return: 0 on success. An error code otherwise.
1da177e4 3645 */
5add95d4
HC
3646SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3647 struct sched_param __user *, param)
1da177e4 3648{
c21761f1
JB
3649 /* negative values for policy are not valid */
3650 if (policy < 0)
3651 return -EINVAL;
3652
1da177e4
LT
3653 return do_sched_setscheduler(pid, policy, param);
3654}
3655
3656/**
3657 * sys_sched_setparam - set/change the RT priority of a thread
3658 * @pid: the pid in question.
3659 * @param: structure containing the new RT priority.
e69f6186
YB
3660 *
3661 * Return: 0 on success. An error code otherwise.
1da177e4 3662 */
5add95d4 3663SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3664{
3665 return do_sched_setscheduler(pid, -1, param);
3666}
3667
d50dde5a
DF
3668/**
3669 * sys_sched_setattr - same as above, but with extended sched_attr
3670 * @pid: the pid in question.
5778fccf 3671 * @uattr: structure containing the extended parameters.
db66d756 3672 * @flags: for future extension.
d50dde5a 3673 */
6d35ab48
PZ
3674SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3675 unsigned int, flags)
d50dde5a
DF
3676{
3677 struct sched_attr attr;
3678 struct task_struct *p;
3679 int retval;
3680
6d35ab48 3681 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3682 return -EINVAL;
3683
143cf23d
MK
3684 retval = sched_copy_attr(uattr, &attr);
3685 if (retval)
3686 return retval;
d50dde5a 3687
b14ed2c2 3688 if ((int)attr.sched_policy < 0)
dbdb2275
PZ
3689 return -EINVAL;
3690
d50dde5a
DF
3691 rcu_read_lock();
3692 retval = -ESRCH;
3693 p = find_process_by_pid(pid);
3694 if (p != NULL)
3695 retval = sched_setattr(p, &attr);
3696 rcu_read_unlock();
3697
3698 return retval;
3699}
3700
1da177e4
LT
3701/**
3702 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3703 * @pid: the pid in question.
e69f6186
YB
3704 *
3705 * Return: On success, the policy of the thread. Otherwise, a negative error
3706 * code.
1da177e4 3707 */
5add95d4 3708SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3709{
36c8b586 3710 struct task_struct *p;
3a5c359a 3711 int retval;
1da177e4
LT
3712
3713 if (pid < 0)
3a5c359a 3714 return -EINVAL;
1da177e4
LT
3715
3716 retval = -ESRCH;
5fe85be0 3717 rcu_read_lock();
1da177e4
LT
3718 p = find_process_by_pid(pid);
3719 if (p) {
3720 retval = security_task_getscheduler(p);
3721 if (!retval)
ca94c442
LP
3722 retval = p->policy
3723 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3724 }
5fe85be0 3725 rcu_read_unlock();
1da177e4
LT
3726 return retval;
3727}
3728
3729/**
ca94c442 3730 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3731 * @pid: the pid in question.
3732 * @param: structure containing the RT priority.
e69f6186
YB
3733 *
3734 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3735 * code.
1da177e4 3736 */
5add95d4 3737SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3738{
ce5f7f82 3739 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3740 struct task_struct *p;
3a5c359a 3741 int retval;
1da177e4
LT
3742
3743 if (!param || pid < 0)
3a5c359a 3744 return -EINVAL;
1da177e4 3745
5fe85be0 3746 rcu_read_lock();
1da177e4
LT
3747 p = find_process_by_pid(pid);
3748 retval = -ESRCH;
3749 if (!p)
3750 goto out_unlock;
3751
3752 retval = security_task_getscheduler(p);
3753 if (retval)
3754 goto out_unlock;
3755
ce5f7f82
PZ
3756 if (task_has_rt_policy(p))
3757 lp.sched_priority = p->rt_priority;
5fe85be0 3758 rcu_read_unlock();
1da177e4
LT
3759
3760 /*
3761 * This one might sleep, we cannot do it with a spinlock held ...
3762 */
3763 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3764
1da177e4
LT
3765 return retval;
3766
3767out_unlock:
5fe85be0 3768 rcu_read_unlock();
1da177e4
LT
3769 return retval;
3770}
3771
d50dde5a
DF
3772static int sched_read_attr(struct sched_attr __user *uattr,
3773 struct sched_attr *attr,
3774 unsigned int usize)
3775{
3776 int ret;
3777
3778 if (!access_ok(VERIFY_WRITE, uattr, usize))
3779 return -EFAULT;
3780
3781 /*
3782 * If we're handed a smaller struct than we know of,
3783 * ensure all the unknown bits are 0 - i.e. old
3784 * user-space does not get uncomplete information.
3785 */
3786 if (usize < sizeof(*attr)) {
3787 unsigned char *addr;
3788 unsigned char *end;
3789
3790 addr = (void *)attr + usize;
3791 end = (void *)attr + sizeof(*attr);
3792
3793 for (; addr < end; addr++) {
3794 if (*addr)
3795 goto err_size;
3796 }
3797
3798 attr->size = usize;
3799 }
3800
4efbc454 3801 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3802 if (ret)
3803 return -EFAULT;
3804
3805out:
3806 return ret;
3807
3808err_size:
3809 ret = -E2BIG;
3810 goto out;
3811}
3812
3813/**
aab03e05 3814 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3815 * @pid: the pid in question.
5778fccf 3816 * @uattr: structure containing the extended parameters.
d50dde5a 3817 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3818 * @flags: for future extension.
d50dde5a 3819 */
6d35ab48
PZ
3820SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3821 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3822{
3823 struct sched_attr attr = {
3824 .size = sizeof(struct sched_attr),
3825 };
3826 struct task_struct *p;
3827 int retval;
3828
3829 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3830 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3831 return -EINVAL;
3832
3833 rcu_read_lock();
3834 p = find_process_by_pid(pid);
3835 retval = -ESRCH;
3836 if (!p)
3837 goto out_unlock;
3838
3839 retval = security_task_getscheduler(p);
3840 if (retval)
3841 goto out_unlock;
3842
3843 attr.sched_policy = p->policy;
7479f3c9
PZ
3844 if (p->sched_reset_on_fork)
3845 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3846 if (task_has_dl_policy(p))
3847 __getparam_dl(p, &attr);
3848 else if (task_has_rt_policy(p))
d50dde5a
DF
3849 attr.sched_priority = p->rt_priority;
3850 else
d0ea0268 3851 attr.sched_nice = task_nice(p);
d50dde5a
DF
3852
3853 rcu_read_unlock();
3854
3855 retval = sched_read_attr(uattr, &attr, size);
3856 return retval;
3857
3858out_unlock:
3859 rcu_read_unlock();
3860 return retval;
3861}
3862
96f874e2 3863long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3864{
5a16f3d3 3865 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3866 struct task_struct *p;
3867 int retval;
1da177e4 3868
23f5d142 3869 rcu_read_lock();
1da177e4
LT
3870
3871 p = find_process_by_pid(pid);
3872 if (!p) {
23f5d142 3873 rcu_read_unlock();
1da177e4
LT
3874 return -ESRCH;
3875 }
3876
23f5d142 3877 /* Prevent p going away */
1da177e4 3878 get_task_struct(p);
23f5d142 3879 rcu_read_unlock();
1da177e4 3880
14a40ffc
TH
3881 if (p->flags & PF_NO_SETAFFINITY) {
3882 retval = -EINVAL;
3883 goto out_put_task;
3884 }
5a16f3d3
RR
3885 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3886 retval = -ENOMEM;
3887 goto out_put_task;
3888 }
3889 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3890 retval = -ENOMEM;
3891 goto out_free_cpus_allowed;
3892 }
1da177e4 3893 retval = -EPERM;
4c44aaaf
EB
3894 if (!check_same_owner(p)) {
3895 rcu_read_lock();
3896 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3897 rcu_read_unlock();
3898 goto out_unlock;
3899 }
3900 rcu_read_unlock();
3901 }
1da177e4 3902
b0ae1981 3903 retval = security_task_setscheduler(p);
e7834f8f
DQ
3904 if (retval)
3905 goto out_unlock;
3906
e4099a5e
PZ
3907
3908 cpuset_cpus_allowed(p, cpus_allowed);
3909 cpumask_and(new_mask, in_mask, cpus_allowed);
3910
332ac17e
DF
3911 /*
3912 * Since bandwidth control happens on root_domain basis,
3913 * if admission test is enabled, we only admit -deadline
3914 * tasks allowed to run on all the CPUs in the task's
3915 * root_domain.
3916 */
3917#ifdef CONFIG_SMP
3918 if (task_has_dl_policy(p)) {
3919 const struct cpumask *span = task_rq(p)->rd->span;
3920
e4099a5e 3921 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3922 retval = -EBUSY;
3923 goto out_unlock;
3924 }
3925 }
3926#endif
49246274 3927again:
5a16f3d3 3928 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3929
8707d8b8 3930 if (!retval) {
5a16f3d3
RR
3931 cpuset_cpus_allowed(p, cpus_allowed);
3932 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3933 /*
3934 * We must have raced with a concurrent cpuset
3935 * update. Just reset the cpus_allowed to the
3936 * cpuset's cpus_allowed
3937 */
5a16f3d3 3938 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3939 goto again;
3940 }
3941 }
1da177e4 3942out_unlock:
5a16f3d3
RR
3943 free_cpumask_var(new_mask);
3944out_free_cpus_allowed:
3945 free_cpumask_var(cpus_allowed);
3946out_put_task:
1da177e4 3947 put_task_struct(p);
1da177e4
LT
3948 return retval;
3949}
3950
3951static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3952 struct cpumask *new_mask)
1da177e4 3953{
96f874e2
RR
3954 if (len < cpumask_size())
3955 cpumask_clear(new_mask);
3956 else if (len > cpumask_size())
3957 len = cpumask_size();
3958
1da177e4
LT
3959 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3960}
3961
3962/**
3963 * sys_sched_setaffinity - set the cpu affinity of a process
3964 * @pid: pid of the process
3965 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3966 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3967 *
3968 * Return: 0 on success. An error code otherwise.
1da177e4 3969 */
5add95d4
HC
3970SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3971 unsigned long __user *, user_mask_ptr)
1da177e4 3972{
5a16f3d3 3973 cpumask_var_t new_mask;
1da177e4
LT
3974 int retval;
3975
5a16f3d3
RR
3976 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3977 return -ENOMEM;
1da177e4 3978
5a16f3d3
RR
3979 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3980 if (retval == 0)
3981 retval = sched_setaffinity(pid, new_mask);
3982 free_cpumask_var(new_mask);
3983 return retval;
1da177e4
LT
3984}
3985
96f874e2 3986long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3987{
36c8b586 3988 struct task_struct *p;
31605683 3989 unsigned long flags;
1da177e4 3990 int retval;
1da177e4 3991
23f5d142 3992 rcu_read_lock();
1da177e4
LT
3993
3994 retval = -ESRCH;
3995 p = find_process_by_pid(pid);
3996 if (!p)
3997 goto out_unlock;
3998
e7834f8f
DQ
3999 retval = security_task_getscheduler(p);
4000 if (retval)
4001 goto out_unlock;
4002
013fdb80 4003 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4004 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4006
4007out_unlock:
23f5d142 4008 rcu_read_unlock();
1da177e4 4009
9531b62f 4010 return retval;
1da177e4
LT
4011}
4012
4013/**
4014 * sys_sched_getaffinity - get the cpu affinity of a process
4015 * @pid: pid of the process
4016 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4017 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4018 *
4019 * Return: 0 on success. An error code otherwise.
1da177e4 4020 */
5add95d4
HC
4021SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4022 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4023{
4024 int ret;
f17c8607 4025 cpumask_var_t mask;
1da177e4 4026
84fba5ec 4027 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4028 return -EINVAL;
4029 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4030 return -EINVAL;
4031
f17c8607
RR
4032 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4033 return -ENOMEM;
1da177e4 4034
f17c8607
RR
4035 ret = sched_getaffinity(pid, mask);
4036 if (ret == 0) {
8bc037fb 4037 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4038
4039 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4040 ret = -EFAULT;
4041 else
cd3d8031 4042 ret = retlen;
f17c8607
RR
4043 }
4044 free_cpumask_var(mask);
1da177e4 4045
f17c8607 4046 return ret;
1da177e4
LT
4047}
4048
4049/**
4050 * sys_sched_yield - yield the current processor to other threads.
4051 *
dd41f596
IM
4052 * This function yields the current CPU to other tasks. If there are no
4053 * other threads running on this CPU then this function will return.
e69f6186
YB
4054 *
4055 * Return: 0.
1da177e4 4056 */
5add95d4 4057SYSCALL_DEFINE0(sched_yield)
1da177e4 4058{
70b97a7f 4059 struct rq *rq = this_rq_lock();
1da177e4 4060
2d72376b 4061 schedstat_inc(rq, yld_count);
4530d7ab 4062 current->sched_class->yield_task(rq);
1da177e4
LT
4063
4064 /*
4065 * Since we are going to call schedule() anyway, there's
4066 * no need to preempt or enable interrupts:
4067 */
4068 __release(rq->lock);
8a25d5de 4069 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4070 do_raw_spin_unlock(&rq->lock);
ba74c144 4071 sched_preempt_enable_no_resched();
1da177e4
LT
4072
4073 schedule();
4074
4075 return 0;
4076}
4077
e7b38404 4078static void __cond_resched(void)
1da177e4 4079{
bdb43806 4080 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4081 __schedule();
bdb43806 4082 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4083}
4084
02b67cc3 4085int __sched _cond_resched(void)
1da177e4 4086{
d86ee480 4087 if (should_resched()) {
1da177e4
LT
4088 __cond_resched();
4089 return 1;
4090 }
4091 return 0;
4092}
02b67cc3 4093EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4094
4095/*
613afbf8 4096 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4097 * call schedule, and on return reacquire the lock.
4098 *
41a2d6cf 4099 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4100 * operations here to prevent schedule() from being called twice (once via
4101 * spin_unlock(), once by hand).
4102 */
613afbf8 4103int __cond_resched_lock(spinlock_t *lock)
1da177e4 4104{
d86ee480 4105 int resched = should_resched();
6df3cecb
JK
4106 int ret = 0;
4107
f607c668
PZ
4108 lockdep_assert_held(lock);
4109
95c354fe 4110 if (spin_needbreak(lock) || resched) {
1da177e4 4111 spin_unlock(lock);
d86ee480 4112 if (resched)
95c354fe
NP
4113 __cond_resched();
4114 else
4115 cpu_relax();
6df3cecb 4116 ret = 1;
1da177e4 4117 spin_lock(lock);
1da177e4 4118 }
6df3cecb 4119 return ret;
1da177e4 4120}
613afbf8 4121EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4122
613afbf8 4123int __sched __cond_resched_softirq(void)
1da177e4
LT
4124{
4125 BUG_ON(!in_softirq());
4126
d86ee480 4127 if (should_resched()) {
98d82567 4128 local_bh_enable();
1da177e4
LT
4129 __cond_resched();
4130 local_bh_disable();
4131 return 1;
4132 }
4133 return 0;
4134}
613afbf8 4135EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4136
1da177e4
LT
4137/**
4138 * yield - yield the current processor to other threads.
4139 *
8e3fabfd
PZ
4140 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4141 *
4142 * The scheduler is at all times free to pick the calling task as the most
4143 * eligible task to run, if removing the yield() call from your code breaks
4144 * it, its already broken.
4145 *
4146 * Typical broken usage is:
4147 *
4148 * while (!event)
4149 * yield();
4150 *
4151 * where one assumes that yield() will let 'the other' process run that will
4152 * make event true. If the current task is a SCHED_FIFO task that will never
4153 * happen. Never use yield() as a progress guarantee!!
4154 *
4155 * If you want to use yield() to wait for something, use wait_event().
4156 * If you want to use yield() to be 'nice' for others, use cond_resched().
4157 * If you still want to use yield(), do not!
1da177e4
LT
4158 */
4159void __sched yield(void)
4160{
4161 set_current_state(TASK_RUNNING);
4162 sys_sched_yield();
4163}
1da177e4
LT
4164EXPORT_SYMBOL(yield);
4165
d95f4122
MG
4166/**
4167 * yield_to - yield the current processor to another thread in
4168 * your thread group, or accelerate that thread toward the
4169 * processor it's on.
16addf95
RD
4170 * @p: target task
4171 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4172 *
4173 * It's the caller's job to ensure that the target task struct
4174 * can't go away on us before we can do any checks.
4175 *
e69f6186 4176 * Return:
7b270f60
PZ
4177 * true (>0) if we indeed boosted the target task.
4178 * false (0) if we failed to boost the target.
4179 * -ESRCH if there's no task to yield to.
d95f4122
MG
4180 */
4181bool __sched yield_to(struct task_struct *p, bool preempt)
4182{
4183 struct task_struct *curr = current;
4184 struct rq *rq, *p_rq;
4185 unsigned long flags;
c3c18640 4186 int yielded = 0;
d95f4122
MG
4187
4188 local_irq_save(flags);
4189 rq = this_rq();
4190
4191again:
4192 p_rq = task_rq(p);
7b270f60
PZ
4193 /*
4194 * If we're the only runnable task on the rq and target rq also
4195 * has only one task, there's absolutely no point in yielding.
4196 */
4197 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4198 yielded = -ESRCH;
4199 goto out_irq;
4200 }
4201
d95f4122 4202 double_rq_lock(rq, p_rq);
39e24d8f 4203 if (task_rq(p) != p_rq) {
d95f4122
MG
4204 double_rq_unlock(rq, p_rq);
4205 goto again;
4206 }
4207
4208 if (!curr->sched_class->yield_to_task)
7b270f60 4209 goto out_unlock;
d95f4122
MG
4210
4211 if (curr->sched_class != p->sched_class)
7b270f60 4212 goto out_unlock;
d95f4122
MG
4213
4214 if (task_running(p_rq, p) || p->state)
7b270f60 4215 goto out_unlock;
d95f4122
MG
4216
4217 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4218 if (yielded) {
d95f4122 4219 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4220 /*
4221 * Make p's CPU reschedule; pick_next_entity takes care of
4222 * fairness.
4223 */
4224 if (preempt && rq != p_rq)
4225 resched_task(p_rq->curr);
4226 }
d95f4122 4227
7b270f60 4228out_unlock:
d95f4122 4229 double_rq_unlock(rq, p_rq);
7b270f60 4230out_irq:
d95f4122
MG
4231 local_irq_restore(flags);
4232
7b270f60 4233 if (yielded > 0)
d95f4122
MG
4234 schedule();
4235
4236 return yielded;
4237}
4238EXPORT_SYMBOL_GPL(yield_to);
4239
1da177e4 4240/*
41a2d6cf 4241 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4242 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4243 */
4244void __sched io_schedule(void)
4245{
54d35f29 4246 struct rq *rq = raw_rq();
1da177e4 4247
0ff92245 4248 delayacct_blkio_start();
1da177e4 4249 atomic_inc(&rq->nr_iowait);
73c10101 4250 blk_flush_plug(current);
8f0dfc34 4251 current->in_iowait = 1;
1da177e4 4252 schedule();
8f0dfc34 4253 current->in_iowait = 0;
1da177e4 4254 atomic_dec(&rq->nr_iowait);
0ff92245 4255 delayacct_blkio_end();
1da177e4 4256}
1da177e4
LT
4257EXPORT_SYMBOL(io_schedule);
4258
4259long __sched io_schedule_timeout(long timeout)
4260{
54d35f29 4261 struct rq *rq = raw_rq();
1da177e4
LT
4262 long ret;
4263
0ff92245 4264 delayacct_blkio_start();
1da177e4 4265 atomic_inc(&rq->nr_iowait);
73c10101 4266 blk_flush_plug(current);
8f0dfc34 4267 current->in_iowait = 1;
1da177e4 4268 ret = schedule_timeout(timeout);
8f0dfc34 4269 current->in_iowait = 0;
1da177e4 4270 atomic_dec(&rq->nr_iowait);
0ff92245 4271 delayacct_blkio_end();
1da177e4
LT
4272 return ret;
4273}
4274
4275/**
4276 * sys_sched_get_priority_max - return maximum RT priority.
4277 * @policy: scheduling class.
4278 *
e69f6186
YB
4279 * Return: On success, this syscall returns the maximum
4280 * rt_priority that can be used by a given scheduling class.
4281 * On failure, a negative error code is returned.
1da177e4 4282 */
5add95d4 4283SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4284{
4285 int ret = -EINVAL;
4286
4287 switch (policy) {
4288 case SCHED_FIFO:
4289 case SCHED_RR:
4290 ret = MAX_USER_RT_PRIO-1;
4291 break;
aab03e05 4292 case SCHED_DEADLINE:
1da177e4 4293 case SCHED_NORMAL:
b0a9499c 4294 case SCHED_BATCH:
dd41f596 4295 case SCHED_IDLE:
1da177e4
LT
4296 ret = 0;
4297 break;
4298 }
4299 return ret;
4300}
4301
4302/**
4303 * sys_sched_get_priority_min - return minimum RT priority.
4304 * @policy: scheduling class.
4305 *
e69f6186
YB
4306 * Return: On success, this syscall returns the minimum
4307 * rt_priority that can be used by a given scheduling class.
4308 * On failure, a negative error code is returned.
1da177e4 4309 */
5add95d4 4310SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4311{
4312 int ret = -EINVAL;
4313
4314 switch (policy) {
4315 case SCHED_FIFO:
4316 case SCHED_RR:
4317 ret = 1;
4318 break;
aab03e05 4319 case SCHED_DEADLINE:
1da177e4 4320 case SCHED_NORMAL:
b0a9499c 4321 case SCHED_BATCH:
dd41f596 4322 case SCHED_IDLE:
1da177e4
LT
4323 ret = 0;
4324 }
4325 return ret;
4326}
4327
4328/**
4329 * sys_sched_rr_get_interval - return the default timeslice of a process.
4330 * @pid: pid of the process.
4331 * @interval: userspace pointer to the timeslice value.
4332 *
4333 * this syscall writes the default timeslice value of a given process
4334 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4335 *
4336 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4337 * an error code.
1da177e4 4338 */
17da2bd9 4339SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4340 struct timespec __user *, interval)
1da177e4 4341{
36c8b586 4342 struct task_struct *p;
a4ec24b4 4343 unsigned int time_slice;
dba091b9
TG
4344 unsigned long flags;
4345 struct rq *rq;
3a5c359a 4346 int retval;
1da177e4 4347 struct timespec t;
1da177e4
LT
4348
4349 if (pid < 0)
3a5c359a 4350 return -EINVAL;
1da177e4
LT
4351
4352 retval = -ESRCH;
1a551ae7 4353 rcu_read_lock();
1da177e4
LT
4354 p = find_process_by_pid(pid);
4355 if (!p)
4356 goto out_unlock;
4357
4358 retval = security_task_getscheduler(p);
4359 if (retval)
4360 goto out_unlock;
4361
dba091b9 4362 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4363 time_slice = 0;
4364 if (p->sched_class->get_rr_interval)
4365 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4366 task_rq_unlock(rq, p, &flags);
a4ec24b4 4367
1a551ae7 4368 rcu_read_unlock();
a4ec24b4 4369 jiffies_to_timespec(time_slice, &t);
1da177e4 4370 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4371 return retval;
3a5c359a 4372
1da177e4 4373out_unlock:
1a551ae7 4374 rcu_read_unlock();
1da177e4
LT
4375 return retval;
4376}
4377
7c731e0a 4378static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4379
82a1fcb9 4380void sched_show_task(struct task_struct *p)
1da177e4 4381{
1da177e4 4382 unsigned long free = 0;
4e79752c 4383 int ppid;
36c8b586 4384 unsigned state;
1da177e4 4385
1da177e4 4386 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4387 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4388 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4389#if BITS_PER_LONG == 32
1da177e4 4390 if (state == TASK_RUNNING)
3df0fc5b 4391 printk(KERN_CONT " running ");
1da177e4 4392 else
3df0fc5b 4393 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4394#else
4395 if (state == TASK_RUNNING)
3df0fc5b 4396 printk(KERN_CONT " running task ");
1da177e4 4397 else
3df0fc5b 4398 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4399#endif
4400#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4401 free = stack_not_used(p);
1da177e4 4402#endif
4e79752c
PM
4403 rcu_read_lock();
4404 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4405 rcu_read_unlock();
3df0fc5b 4406 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4407 task_pid_nr(p), ppid,
aa47b7e0 4408 (unsigned long)task_thread_info(p)->flags);
1da177e4 4409
3d1cb205 4410 print_worker_info(KERN_INFO, p);
5fb5e6de 4411 show_stack(p, NULL);
1da177e4
LT
4412}
4413
e59e2ae2 4414void show_state_filter(unsigned long state_filter)
1da177e4 4415{
36c8b586 4416 struct task_struct *g, *p;
1da177e4 4417
4bd77321 4418#if BITS_PER_LONG == 32
3df0fc5b
PZ
4419 printk(KERN_INFO
4420 " task PC stack pid father\n");
1da177e4 4421#else
3df0fc5b
PZ
4422 printk(KERN_INFO
4423 " task PC stack pid father\n");
1da177e4 4424#endif
510f5acc 4425 rcu_read_lock();
1da177e4
LT
4426 do_each_thread(g, p) {
4427 /*
4428 * reset the NMI-timeout, listing all files on a slow
25985edc 4429 * console might take a lot of time:
1da177e4
LT
4430 */
4431 touch_nmi_watchdog();
39bc89fd 4432 if (!state_filter || (p->state & state_filter))
82a1fcb9 4433 sched_show_task(p);
1da177e4
LT
4434 } while_each_thread(g, p);
4435
04c9167f
JF
4436 touch_all_softlockup_watchdogs();
4437
dd41f596
IM
4438#ifdef CONFIG_SCHED_DEBUG
4439 sysrq_sched_debug_show();
4440#endif
510f5acc 4441 rcu_read_unlock();
e59e2ae2
IM
4442 /*
4443 * Only show locks if all tasks are dumped:
4444 */
93335a21 4445 if (!state_filter)
e59e2ae2 4446 debug_show_all_locks();
1da177e4
LT
4447}
4448
0db0628d 4449void init_idle_bootup_task(struct task_struct *idle)
1df21055 4450{
dd41f596 4451 idle->sched_class = &idle_sched_class;
1df21055
IM
4452}
4453
f340c0d1
IM
4454/**
4455 * init_idle - set up an idle thread for a given CPU
4456 * @idle: task in question
4457 * @cpu: cpu the idle task belongs to
4458 *
4459 * NOTE: this function does not set the idle thread's NEED_RESCHED
4460 * flag, to make booting more robust.
4461 */
0db0628d 4462void init_idle(struct task_struct *idle, int cpu)
1da177e4 4463{
70b97a7f 4464 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4465 unsigned long flags;
4466
05fa785c 4467 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4468
5e1576ed 4469 __sched_fork(0, idle);
06b83b5f 4470 idle->state = TASK_RUNNING;
dd41f596
IM
4471 idle->se.exec_start = sched_clock();
4472
1e1b6c51 4473 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4474 /*
4475 * We're having a chicken and egg problem, even though we are
4476 * holding rq->lock, the cpu isn't yet set to this cpu so the
4477 * lockdep check in task_group() will fail.
4478 *
4479 * Similar case to sched_fork(). / Alternatively we could
4480 * use task_rq_lock() here and obtain the other rq->lock.
4481 *
4482 * Silence PROVE_RCU
4483 */
4484 rcu_read_lock();
dd41f596 4485 __set_task_cpu(idle, cpu);
6506cf6c 4486 rcu_read_unlock();
1da177e4 4487
1da177e4 4488 rq->curr = rq->idle = idle;
77177856 4489 idle->on_rq = 1;
3ca7a440
PZ
4490#if defined(CONFIG_SMP)
4491 idle->on_cpu = 1;
4866cde0 4492#endif
05fa785c 4493 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4494
4495 /* Set the preempt count _outside_ the spinlocks! */
01028747 4496 init_idle_preempt_count(idle, cpu);
55cd5340 4497
dd41f596
IM
4498 /*
4499 * The idle tasks have their own, simple scheduling class:
4500 */
4501 idle->sched_class = &idle_sched_class;
868baf07 4502 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4503 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4504#if defined(CONFIG_SMP)
4505 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4506#endif
19978ca6
IM
4507}
4508
1da177e4 4509#ifdef CONFIG_SMP
1e1b6c51
KM
4510void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4511{
4512 if (p->sched_class && p->sched_class->set_cpus_allowed)
4513 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4514
4515 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4516 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4517}
4518
1da177e4
LT
4519/*
4520 * This is how migration works:
4521 *
969c7921
TH
4522 * 1) we invoke migration_cpu_stop() on the target CPU using
4523 * stop_one_cpu().
4524 * 2) stopper starts to run (implicitly forcing the migrated thread
4525 * off the CPU)
4526 * 3) it checks whether the migrated task is still in the wrong runqueue.
4527 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4528 * it and puts it into the right queue.
969c7921
TH
4529 * 5) stopper completes and stop_one_cpu() returns and the migration
4530 * is done.
1da177e4
LT
4531 */
4532
4533/*
4534 * Change a given task's CPU affinity. Migrate the thread to a
4535 * proper CPU and schedule it away if the CPU it's executing on
4536 * is removed from the allowed bitmask.
4537 *
4538 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4539 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4540 * call is not atomic; no spinlocks may be held.
4541 */
96f874e2 4542int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4543{
4544 unsigned long flags;
70b97a7f 4545 struct rq *rq;
969c7921 4546 unsigned int dest_cpu;
48f24c4d 4547 int ret = 0;
1da177e4
LT
4548
4549 rq = task_rq_lock(p, &flags);
e2912009 4550
db44fc01
YZ
4551 if (cpumask_equal(&p->cpus_allowed, new_mask))
4552 goto out;
4553
6ad4c188 4554 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4555 ret = -EINVAL;
4556 goto out;
4557 }
4558
1e1b6c51 4559 do_set_cpus_allowed(p, new_mask);
73fe6aae 4560
1da177e4 4561 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4562 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4563 goto out;
4564
969c7921 4565 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4566 if (p->on_rq) {
969c7921 4567 struct migration_arg arg = { p, dest_cpu };
1da177e4 4568 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4569 task_rq_unlock(rq, p, &flags);
969c7921 4570 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4571 tlb_migrate_finish(p->mm);
4572 return 0;
4573 }
4574out:
0122ec5b 4575 task_rq_unlock(rq, p, &flags);
48f24c4d 4576
1da177e4
LT
4577 return ret;
4578}
cd8ba7cd 4579EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4580
4581/*
41a2d6cf 4582 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4583 * this because either it can't run here any more (set_cpus_allowed()
4584 * away from this CPU, or CPU going down), or because we're
4585 * attempting to rebalance this task on exec (sched_exec).
4586 *
4587 * So we race with normal scheduler movements, but that's OK, as long
4588 * as the task is no longer on this CPU.
efc30814
KK
4589 *
4590 * Returns non-zero if task was successfully migrated.
1da177e4 4591 */
efc30814 4592static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4593{
70b97a7f 4594 struct rq *rq_dest, *rq_src;
e2912009 4595 int ret = 0;
1da177e4 4596
e761b772 4597 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4598 return ret;
1da177e4
LT
4599
4600 rq_src = cpu_rq(src_cpu);
4601 rq_dest = cpu_rq(dest_cpu);
4602
0122ec5b 4603 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4604 double_rq_lock(rq_src, rq_dest);
4605 /* Already moved. */
4606 if (task_cpu(p) != src_cpu)
b1e38734 4607 goto done;
1da177e4 4608 /* Affinity changed (again). */
fa17b507 4609 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4610 goto fail;
1da177e4 4611
e2912009
PZ
4612 /*
4613 * If we're not on a rq, the next wake-up will ensure we're
4614 * placed properly.
4615 */
fd2f4419 4616 if (p->on_rq) {
4ca9b72b 4617 dequeue_task(rq_src, p, 0);
e2912009 4618 set_task_cpu(p, dest_cpu);
4ca9b72b 4619 enqueue_task(rq_dest, p, 0);
15afe09b 4620 check_preempt_curr(rq_dest, p, 0);
1da177e4 4621 }
b1e38734 4622done:
efc30814 4623 ret = 1;
b1e38734 4624fail:
1da177e4 4625 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4626 raw_spin_unlock(&p->pi_lock);
efc30814 4627 return ret;
1da177e4
LT
4628}
4629
e6628d5b
MG
4630#ifdef CONFIG_NUMA_BALANCING
4631/* Migrate current task p to target_cpu */
4632int migrate_task_to(struct task_struct *p, int target_cpu)
4633{
4634 struct migration_arg arg = { p, target_cpu };
4635 int curr_cpu = task_cpu(p);
4636
4637 if (curr_cpu == target_cpu)
4638 return 0;
4639
4640 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4641 return -EINVAL;
4642
4643 /* TODO: This is not properly updating schedstats */
4644
286549dc 4645 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4646 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4647}
0ec8aa00
PZ
4648
4649/*
4650 * Requeue a task on a given node and accurately track the number of NUMA
4651 * tasks on the runqueues
4652 */
4653void sched_setnuma(struct task_struct *p, int nid)
4654{
4655 struct rq *rq;
4656 unsigned long flags;
4657 bool on_rq, running;
4658
4659 rq = task_rq_lock(p, &flags);
4660 on_rq = p->on_rq;
4661 running = task_current(rq, p);
4662
4663 if (on_rq)
4664 dequeue_task(rq, p, 0);
4665 if (running)
4666 p->sched_class->put_prev_task(rq, p);
4667
4668 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4669
4670 if (running)
4671 p->sched_class->set_curr_task(rq);
4672 if (on_rq)
4673 enqueue_task(rq, p, 0);
4674 task_rq_unlock(rq, p, &flags);
4675}
e6628d5b
MG
4676#endif
4677
1da177e4 4678/*
969c7921
TH
4679 * migration_cpu_stop - this will be executed by a highprio stopper thread
4680 * and performs thread migration by bumping thread off CPU then
4681 * 'pushing' onto another runqueue.
1da177e4 4682 */
969c7921 4683static int migration_cpu_stop(void *data)
1da177e4 4684{
969c7921 4685 struct migration_arg *arg = data;
f7b4cddc 4686
969c7921
TH
4687 /*
4688 * The original target cpu might have gone down and we might
4689 * be on another cpu but it doesn't matter.
4690 */
f7b4cddc 4691 local_irq_disable();
969c7921 4692 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4693 local_irq_enable();
1da177e4 4694 return 0;
f7b4cddc
ON
4695}
4696
1da177e4 4697#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4698
054b9108 4699/*
48c5ccae
PZ
4700 * Ensures that the idle task is using init_mm right before its cpu goes
4701 * offline.
054b9108 4702 */
48c5ccae 4703void idle_task_exit(void)
1da177e4 4704{
48c5ccae 4705 struct mm_struct *mm = current->active_mm;
e76bd8d9 4706
48c5ccae 4707 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4708
a53efe5f 4709 if (mm != &init_mm) {
48c5ccae 4710 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4711 finish_arch_post_lock_switch();
4712 }
48c5ccae 4713 mmdrop(mm);
1da177e4
LT
4714}
4715
4716/*
5d180232
PZ
4717 * Since this CPU is going 'away' for a while, fold any nr_active delta
4718 * we might have. Assumes we're called after migrate_tasks() so that the
4719 * nr_active count is stable.
4720 *
4721 * Also see the comment "Global load-average calculations".
1da177e4 4722 */
5d180232 4723static void calc_load_migrate(struct rq *rq)
1da177e4 4724{
5d180232
PZ
4725 long delta = calc_load_fold_active(rq);
4726 if (delta)
4727 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4728}
4729
3f1d2a31
PZ
4730static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4731{
4732}
4733
4734static const struct sched_class fake_sched_class = {
4735 .put_prev_task = put_prev_task_fake,
4736};
4737
4738static struct task_struct fake_task = {
4739 /*
4740 * Avoid pull_{rt,dl}_task()
4741 */
4742 .prio = MAX_PRIO + 1,
4743 .sched_class = &fake_sched_class,
4744};
4745
48f24c4d 4746/*
48c5ccae
PZ
4747 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4748 * try_to_wake_up()->select_task_rq().
4749 *
4750 * Called with rq->lock held even though we'er in stop_machine() and
4751 * there's no concurrency possible, we hold the required locks anyway
4752 * because of lock validation efforts.
1da177e4 4753 */
48c5ccae 4754static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4755{
70b97a7f 4756 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4757 struct task_struct *next, *stop = rq->stop;
4758 int dest_cpu;
1da177e4
LT
4759
4760 /*
48c5ccae
PZ
4761 * Fudge the rq selection such that the below task selection loop
4762 * doesn't get stuck on the currently eligible stop task.
4763 *
4764 * We're currently inside stop_machine() and the rq is either stuck
4765 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4766 * either way we should never end up calling schedule() until we're
4767 * done here.
1da177e4 4768 */
48c5ccae 4769 rq->stop = NULL;
48f24c4d 4770
77bd3970
FW
4771 /*
4772 * put_prev_task() and pick_next_task() sched
4773 * class method both need to have an up-to-date
4774 * value of rq->clock[_task]
4775 */
4776 update_rq_clock(rq);
4777
dd41f596 4778 for ( ; ; ) {
48c5ccae
PZ
4779 /*
4780 * There's this thread running, bail when that's the only
4781 * remaining thread.
4782 */
4783 if (rq->nr_running == 1)
dd41f596 4784 break;
48c5ccae 4785
3f1d2a31 4786 next = pick_next_task(rq, &fake_task);
48c5ccae 4787 BUG_ON(!next);
79c53799 4788 next->sched_class->put_prev_task(rq, next);
e692ab53 4789
48c5ccae
PZ
4790 /* Find suitable destination for @next, with force if needed. */
4791 dest_cpu = select_fallback_rq(dead_cpu, next);
4792 raw_spin_unlock(&rq->lock);
4793
4794 __migrate_task(next, dead_cpu, dest_cpu);
4795
4796 raw_spin_lock(&rq->lock);
1da177e4 4797 }
dce48a84 4798
48c5ccae 4799 rq->stop = stop;
dce48a84 4800}
48c5ccae 4801
1da177e4
LT
4802#endif /* CONFIG_HOTPLUG_CPU */
4803
e692ab53
NP
4804#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4805
4806static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4807 {
4808 .procname = "sched_domain",
c57baf1e 4809 .mode = 0555,
e0361851 4810 },
56992309 4811 {}
e692ab53
NP
4812};
4813
4814static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4815 {
4816 .procname = "kernel",
c57baf1e 4817 .mode = 0555,
e0361851
AD
4818 .child = sd_ctl_dir,
4819 },
56992309 4820 {}
e692ab53
NP
4821};
4822
4823static struct ctl_table *sd_alloc_ctl_entry(int n)
4824{
4825 struct ctl_table *entry =
5cf9f062 4826 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4827
e692ab53
NP
4828 return entry;
4829}
4830
6382bc90
MM
4831static void sd_free_ctl_entry(struct ctl_table **tablep)
4832{
cd790076 4833 struct ctl_table *entry;
6382bc90 4834
cd790076
MM
4835 /*
4836 * In the intermediate directories, both the child directory and
4837 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4838 * will always be set. In the lowest directory the names are
cd790076
MM
4839 * static strings and all have proc handlers.
4840 */
4841 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4842 if (entry->child)
4843 sd_free_ctl_entry(&entry->child);
cd790076
MM
4844 if (entry->proc_handler == NULL)
4845 kfree(entry->procname);
4846 }
6382bc90
MM
4847
4848 kfree(*tablep);
4849 *tablep = NULL;
4850}
4851
201c373e 4852static int min_load_idx = 0;
fd9b86d3 4853static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4854
e692ab53 4855static void
e0361851 4856set_table_entry(struct ctl_table *entry,
e692ab53 4857 const char *procname, void *data, int maxlen,
201c373e
NK
4858 umode_t mode, proc_handler *proc_handler,
4859 bool load_idx)
e692ab53 4860{
e692ab53
NP
4861 entry->procname = procname;
4862 entry->data = data;
4863 entry->maxlen = maxlen;
4864 entry->mode = mode;
4865 entry->proc_handler = proc_handler;
201c373e
NK
4866
4867 if (load_idx) {
4868 entry->extra1 = &min_load_idx;
4869 entry->extra2 = &max_load_idx;
4870 }
e692ab53
NP
4871}
4872
4873static struct ctl_table *
4874sd_alloc_ctl_domain_table(struct sched_domain *sd)
4875{
37e6bae8 4876 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4877
ad1cdc1d
MM
4878 if (table == NULL)
4879 return NULL;
4880
e0361851 4881 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4882 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4883 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4884 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4885 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4886 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4887 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4888 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4889 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4890 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4891 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4892 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4893 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4894 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4895 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4896 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4897 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4898 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4899 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4900 &sd->cache_nice_tries,
201c373e 4901 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4902 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4903 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4904 set_table_entry(&table[11], "max_newidle_lb_cost",
4905 &sd->max_newidle_lb_cost,
4906 sizeof(long), 0644, proc_doulongvec_minmax, false);
4907 set_table_entry(&table[12], "name", sd->name,
201c373e 4908 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4909 /* &table[13] is terminator */
e692ab53
NP
4910
4911 return table;
4912}
4913
be7002e6 4914static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4915{
4916 struct ctl_table *entry, *table;
4917 struct sched_domain *sd;
4918 int domain_num = 0, i;
4919 char buf[32];
4920
4921 for_each_domain(cpu, sd)
4922 domain_num++;
4923 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4924 if (table == NULL)
4925 return NULL;
e692ab53
NP
4926
4927 i = 0;
4928 for_each_domain(cpu, sd) {
4929 snprintf(buf, 32, "domain%d", i);
e692ab53 4930 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4931 entry->mode = 0555;
e692ab53
NP
4932 entry->child = sd_alloc_ctl_domain_table(sd);
4933 entry++;
4934 i++;
4935 }
4936 return table;
4937}
4938
4939static struct ctl_table_header *sd_sysctl_header;
6382bc90 4940static void register_sched_domain_sysctl(void)
e692ab53 4941{
6ad4c188 4942 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4943 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4944 char buf[32];
4945
7378547f
MM
4946 WARN_ON(sd_ctl_dir[0].child);
4947 sd_ctl_dir[0].child = entry;
4948
ad1cdc1d
MM
4949 if (entry == NULL)
4950 return;
4951
6ad4c188 4952 for_each_possible_cpu(i) {
e692ab53 4953 snprintf(buf, 32, "cpu%d", i);
e692ab53 4954 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4955 entry->mode = 0555;
e692ab53 4956 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4957 entry++;
e692ab53 4958 }
7378547f
MM
4959
4960 WARN_ON(sd_sysctl_header);
e692ab53
NP
4961 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4962}
6382bc90 4963
7378547f 4964/* may be called multiple times per register */
6382bc90
MM
4965static void unregister_sched_domain_sysctl(void)
4966{
7378547f
MM
4967 if (sd_sysctl_header)
4968 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4969 sd_sysctl_header = NULL;
7378547f
MM
4970 if (sd_ctl_dir[0].child)
4971 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4972}
e692ab53 4973#else
6382bc90
MM
4974static void register_sched_domain_sysctl(void)
4975{
4976}
4977static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4978{
4979}
4980#endif
4981
1f11eb6a
GH
4982static void set_rq_online(struct rq *rq)
4983{
4984 if (!rq->online) {
4985 const struct sched_class *class;
4986
c6c4927b 4987 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4988 rq->online = 1;
4989
4990 for_each_class(class) {
4991 if (class->rq_online)
4992 class->rq_online(rq);
4993 }
4994 }
4995}
4996
4997static void set_rq_offline(struct rq *rq)
4998{
4999 if (rq->online) {
5000 const struct sched_class *class;
5001
5002 for_each_class(class) {
5003 if (class->rq_offline)
5004 class->rq_offline(rq);
5005 }
5006
c6c4927b 5007 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5008 rq->online = 0;
5009 }
5010}
5011
1da177e4
LT
5012/*
5013 * migration_call - callback that gets triggered when a CPU is added.
5014 * Here we can start up the necessary migration thread for the new CPU.
5015 */
0db0628d 5016static int
48f24c4d 5017migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5018{
48f24c4d 5019 int cpu = (long)hcpu;
1da177e4 5020 unsigned long flags;
969c7921 5021 struct rq *rq = cpu_rq(cpu);
1da177e4 5022
48c5ccae 5023 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5024
1da177e4 5025 case CPU_UP_PREPARE:
a468d389 5026 rq->calc_load_update = calc_load_update;
1da177e4 5027 break;
48f24c4d 5028
1da177e4 5029 case CPU_ONLINE:
1f94ef59 5030 /* Update our root-domain */
05fa785c 5031 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5032 if (rq->rd) {
c6c4927b 5033 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5034
5035 set_rq_online(rq);
1f94ef59 5036 }
05fa785c 5037 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5038 break;
48f24c4d 5039
1da177e4 5040#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5041 case CPU_DYING:
317f3941 5042 sched_ttwu_pending();
57d885fe 5043 /* Update our root-domain */
05fa785c 5044 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5045 if (rq->rd) {
c6c4927b 5046 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5047 set_rq_offline(rq);
57d885fe 5048 }
48c5ccae
PZ
5049 migrate_tasks(cpu);
5050 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5051 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5052 break;
48c5ccae 5053
5d180232 5054 case CPU_DEAD:
f319da0c 5055 calc_load_migrate(rq);
57d885fe 5056 break;
1da177e4
LT
5057#endif
5058 }
49c022e6
PZ
5059
5060 update_max_interval();
5061
1da177e4
LT
5062 return NOTIFY_OK;
5063}
5064
f38b0820
PM
5065/*
5066 * Register at high priority so that task migration (migrate_all_tasks)
5067 * happens before everything else. This has to be lower priority than
cdd6c482 5068 * the notifier in the perf_event subsystem, though.
1da177e4 5069 */
0db0628d 5070static struct notifier_block migration_notifier = {
1da177e4 5071 .notifier_call = migration_call,
50a323b7 5072 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5073};
5074
0db0628d 5075static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5076 unsigned long action, void *hcpu)
5077{
5078 switch (action & ~CPU_TASKS_FROZEN) {
3a101d05
TH
5079 case CPU_DOWN_FAILED:
5080 set_cpu_active((long)hcpu, true);
5081 return NOTIFY_OK;
5082 default:
5083 return NOTIFY_DONE;
5084 }
5085}
5086
0db0628d 5087static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5088 unsigned long action, void *hcpu)
5089{
de212f18
PZ
5090 unsigned long flags;
5091 long cpu = (long)hcpu;
5092
3a101d05
TH
5093 switch (action & ~CPU_TASKS_FROZEN) {
5094 case CPU_DOWN_PREPARE:
de212f18
PZ
5095 set_cpu_active(cpu, false);
5096
5097 /* explicitly allow suspend */
5098 if (!(action & CPU_TASKS_FROZEN)) {
5099 struct dl_bw *dl_b = dl_bw_of(cpu);
5100 bool overflow;
5101 int cpus;
5102
5103 raw_spin_lock_irqsave(&dl_b->lock, flags);
5104 cpus = dl_bw_cpus(cpu);
5105 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5106 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5107
5108 if (overflow)
5109 return notifier_from_errno(-EBUSY);
5110 }
3a101d05 5111 return NOTIFY_OK;
3a101d05 5112 }
de212f18
PZ
5113
5114 return NOTIFY_DONE;
3a101d05
TH
5115}
5116
7babe8db 5117static int __init migration_init(void)
1da177e4
LT
5118{
5119 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5120 int err;
48f24c4d 5121
3a101d05 5122 /* Initialize migration for the boot CPU */
07dccf33
AM
5123 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5124 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5125 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5126 register_cpu_notifier(&migration_notifier);
7babe8db 5127
3a101d05
TH
5128 /* Register cpu active notifiers */
5129 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5130 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5131
a004cd42 5132 return 0;
1da177e4 5133}
7babe8db 5134early_initcall(migration_init);
1da177e4
LT
5135#endif
5136
5137#ifdef CONFIG_SMP
476f3534 5138
4cb98839
PZ
5139static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5140
3e9830dc 5141#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5142
d039ac60 5143static __read_mostly int sched_debug_enabled;
f6630114 5144
d039ac60 5145static int __init sched_debug_setup(char *str)
f6630114 5146{
d039ac60 5147 sched_debug_enabled = 1;
f6630114
MT
5148
5149 return 0;
5150}
d039ac60
PZ
5151early_param("sched_debug", sched_debug_setup);
5152
5153static inline bool sched_debug(void)
5154{
5155 return sched_debug_enabled;
5156}
f6630114 5157
7c16ec58 5158static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5159 struct cpumask *groupmask)
1da177e4 5160{
4dcf6aff 5161 struct sched_group *group = sd->groups;
434d53b0 5162 char str[256];
1da177e4 5163
968ea6d8 5164 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5165 cpumask_clear(groupmask);
4dcf6aff
IM
5166
5167 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5168
5169 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5170 printk("does not load-balance\n");
4dcf6aff 5171 if (sd->parent)
3df0fc5b
PZ
5172 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5173 " has parent");
4dcf6aff 5174 return -1;
41c7ce9a
NP
5175 }
5176
3df0fc5b 5177 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5178
758b2cdc 5179 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5180 printk(KERN_ERR "ERROR: domain->span does not contain "
5181 "CPU%d\n", cpu);
4dcf6aff 5182 }
758b2cdc 5183 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5184 printk(KERN_ERR "ERROR: domain->groups does not contain"
5185 " CPU%d\n", cpu);
4dcf6aff 5186 }
1da177e4 5187
4dcf6aff 5188 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5189 do {
4dcf6aff 5190 if (!group) {
3df0fc5b
PZ
5191 printk("\n");
5192 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5193 break;
5194 }
5195
c3decf0d
PZ
5196 /*
5197 * Even though we initialize ->power to something semi-sane,
5198 * we leave power_orig unset. This allows us to detect if
5199 * domain iteration is still funny without causing /0 traps.
5200 */
5201 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5202 printk(KERN_CONT "\n");
5203 printk(KERN_ERR "ERROR: domain->cpu_power not "
5204 "set\n");
4dcf6aff
IM
5205 break;
5206 }
1da177e4 5207
758b2cdc 5208 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5209 printk(KERN_CONT "\n");
5210 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5211 break;
5212 }
1da177e4 5213
cb83b629
PZ
5214 if (!(sd->flags & SD_OVERLAP) &&
5215 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5216 printk(KERN_CONT "\n");
5217 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5218 break;
5219 }
1da177e4 5220
758b2cdc 5221 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5222
968ea6d8 5223 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5224
3df0fc5b 5225 printk(KERN_CONT " %s", str);
9c3f75cb 5226 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5227 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5228 group->sgp->power);
381512cf 5229 }
1da177e4 5230
4dcf6aff
IM
5231 group = group->next;
5232 } while (group != sd->groups);
3df0fc5b 5233 printk(KERN_CONT "\n");
1da177e4 5234
758b2cdc 5235 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5236 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5237
758b2cdc
RR
5238 if (sd->parent &&
5239 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5240 printk(KERN_ERR "ERROR: parent span is not a superset "
5241 "of domain->span\n");
4dcf6aff
IM
5242 return 0;
5243}
1da177e4 5244
4dcf6aff
IM
5245static void sched_domain_debug(struct sched_domain *sd, int cpu)
5246{
5247 int level = 0;
1da177e4 5248
d039ac60 5249 if (!sched_debug_enabled)
f6630114
MT
5250 return;
5251
4dcf6aff
IM
5252 if (!sd) {
5253 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5254 return;
5255 }
1da177e4 5256
4dcf6aff
IM
5257 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5258
5259 for (;;) {
4cb98839 5260 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5261 break;
1da177e4
LT
5262 level++;
5263 sd = sd->parent;
33859f7f 5264 if (!sd)
4dcf6aff
IM
5265 break;
5266 }
1da177e4 5267}
6d6bc0ad 5268#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5269# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5270static inline bool sched_debug(void)
5271{
5272 return false;
5273}
6d6bc0ad 5274#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5275
1a20ff27 5276static int sd_degenerate(struct sched_domain *sd)
245af2c7 5277{
758b2cdc 5278 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5279 return 1;
5280
5281 /* Following flags need at least 2 groups */
5282 if (sd->flags & (SD_LOAD_BALANCE |
5283 SD_BALANCE_NEWIDLE |
5284 SD_BALANCE_FORK |
89c4710e
SS
5285 SD_BALANCE_EXEC |
5286 SD_SHARE_CPUPOWER |
5287 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5288 if (sd->groups != sd->groups->next)
5289 return 0;
5290 }
5291
5292 /* Following flags don't use groups */
c88d5910 5293 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5294 return 0;
5295
5296 return 1;
5297}
5298
48f24c4d
IM
5299static int
5300sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5301{
5302 unsigned long cflags = sd->flags, pflags = parent->flags;
5303
5304 if (sd_degenerate(parent))
5305 return 1;
5306
758b2cdc 5307 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5308 return 0;
5309
245af2c7
SS
5310 /* Flags needing groups don't count if only 1 group in parent */
5311 if (parent->groups == parent->groups->next) {
5312 pflags &= ~(SD_LOAD_BALANCE |
5313 SD_BALANCE_NEWIDLE |
5314 SD_BALANCE_FORK |
89c4710e
SS
5315 SD_BALANCE_EXEC |
5316 SD_SHARE_CPUPOWER |
10866e62
PZ
5317 SD_SHARE_PKG_RESOURCES |
5318 SD_PREFER_SIBLING);
5436499e
KC
5319 if (nr_node_ids == 1)
5320 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5321 }
5322 if (~cflags & pflags)
5323 return 0;
5324
5325 return 1;
5326}
5327
dce840a0 5328static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5329{
dce840a0 5330 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5331
68e74568 5332 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5333 cpudl_cleanup(&rd->cpudl);
1baca4ce 5334 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5335 free_cpumask_var(rd->rto_mask);
5336 free_cpumask_var(rd->online);
5337 free_cpumask_var(rd->span);
5338 kfree(rd);
5339}
5340
57d885fe
GH
5341static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5342{
a0490fa3 5343 struct root_domain *old_rd = NULL;
57d885fe 5344 unsigned long flags;
57d885fe 5345
05fa785c 5346 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5347
5348 if (rq->rd) {
a0490fa3 5349 old_rd = rq->rd;
57d885fe 5350
c6c4927b 5351 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5352 set_rq_offline(rq);
57d885fe 5353
c6c4927b 5354 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5355
a0490fa3 5356 /*
0515973f 5357 * If we dont want to free the old_rd yet then
a0490fa3
IM
5358 * set old_rd to NULL to skip the freeing later
5359 * in this function:
5360 */
5361 if (!atomic_dec_and_test(&old_rd->refcount))
5362 old_rd = NULL;
57d885fe
GH
5363 }
5364
5365 atomic_inc(&rd->refcount);
5366 rq->rd = rd;
5367
c6c4927b 5368 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5369 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5370 set_rq_online(rq);
57d885fe 5371
05fa785c 5372 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5373
5374 if (old_rd)
dce840a0 5375 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5376}
5377
68c38fc3 5378static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5379{
5380 memset(rd, 0, sizeof(*rd));
5381
68c38fc3 5382 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5383 goto out;
68c38fc3 5384 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5385 goto free_span;
1baca4ce 5386 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5387 goto free_online;
1baca4ce
JL
5388 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5389 goto free_dlo_mask;
6e0534f2 5390
332ac17e 5391 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5392 if (cpudl_init(&rd->cpudl) != 0)
5393 goto free_dlo_mask;
332ac17e 5394
68c38fc3 5395 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5396 goto free_rto_mask;
c6c4927b 5397 return 0;
6e0534f2 5398
68e74568
RR
5399free_rto_mask:
5400 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5401free_dlo_mask:
5402 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5403free_online:
5404 free_cpumask_var(rd->online);
5405free_span:
5406 free_cpumask_var(rd->span);
0c910d28 5407out:
c6c4927b 5408 return -ENOMEM;
57d885fe
GH
5409}
5410
029632fb
PZ
5411/*
5412 * By default the system creates a single root-domain with all cpus as
5413 * members (mimicking the global state we have today).
5414 */
5415struct root_domain def_root_domain;
5416
57d885fe
GH
5417static void init_defrootdomain(void)
5418{
68c38fc3 5419 init_rootdomain(&def_root_domain);
c6c4927b 5420
57d885fe
GH
5421 atomic_set(&def_root_domain.refcount, 1);
5422}
5423
dc938520 5424static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5425{
5426 struct root_domain *rd;
5427
5428 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5429 if (!rd)
5430 return NULL;
5431
68c38fc3 5432 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5433 kfree(rd);
5434 return NULL;
5435 }
57d885fe
GH
5436
5437 return rd;
5438}
5439
e3589f6c
PZ
5440static void free_sched_groups(struct sched_group *sg, int free_sgp)
5441{
5442 struct sched_group *tmp, *first;
5443
5444 if (!sg)
5445 return;
5446
5447 first = sg;
5448 do {
5449 tmp = sg->next;
5450
5451 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5452 kfree(sg->sgp);
5453
5454 kfree(sg);
5455 sg = tmp;
5456 } while (sg != first);
5457}
5458
dce840a0
PZ
5459static void free_sched_domain(struct rcu_head *rcu)
5460{
5461 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5462
5463 /*
5464 * If its an overlapping domain it has private groups, iterate and
5465 * nuke them all.
5466 */
5467 if (sd->flags & SD_OVERLAP) {
5468 free_sched_groups(sd->groups, 1);
5469 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5470 kfree(sd->groups->sgp);
dce840a0 5471 kfree(sd->groups);
9c3f75cb 5472 }
dce840a0
PZ
5473 kfree(sd);
5474}
5475
5476static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5477{
5478 call_rcu(&sd->rcu, free_sched_domain);
5479}
5480
5481static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5482{
5483 for (; sd; sd = sd->parent)
5484 destroy_sched_domain(sd, cpu);
5485}
5486
518cd623
PZ
5487/*
5488 * Keep a special pointer to the highest sched_domain that has
5489 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5490 * allows us to avoid some pointer chasing select_idle_sibling().
5491 *
5492 * Also keep a unique ID per domain (we use the first cpu number in
5493 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5494 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5495 */
5496DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5497DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5498DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5499DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5500DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5501DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5502
5503static void update_top_cache_domain(int cpu)
5504{
5505 struct sched_domain *sd;
5d4cf996 5506 struct sched_domain *busy_sd = NULL;
518cd623 5507 int id = cpu;
7d9ffa89 5508 int size = 1;
518cd623
PZ
5509
5510 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5511 if (sd) {
518cd623 5512 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5513 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5514 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5515 }
5d4cf996 5516 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5517
5518 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5519 per_cpu(sd_llc_size, cpu) = size;
518cd623 5520 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5521
5522 sd = lowest_flag_domain(cpu, SD_NUMA);
5523 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5524
5525 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5526 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5527}
5528
1da177e4 5529/*
0eab9146 5530 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5531 * hold the hotplug lock.
5532 */
0eab9146
IM
5533static void
5534cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5535{
70b97a7f 5536 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5537 struct sched_domain *tmp;
5538
5539 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5540 for (tmp = sd; tmp; ) {
245af2c7
SS
5541 struct sched_domain *parent = tmp->parent;
5542 if (!parent)
5543 break;
f29c9b1c 5544
1a848870 5545 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5546 tmp->parent = parent->parent;
1a848870
SS
5547 if (parent->parent)
5548 parent->parent->child = tmp;
10866e62
PZ
5549 /*
5550 * Transfer SD_PREFER_SIBLING down in case of a
5551 * degenerate parent; the spans match for this
5552 * so the property transfers.
5553 */
5554 if (parent->flags & SD_PREFER_SIBLING)
5555 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5556 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5557 } else
5558 tmp = tmp->parent;
245af2c7
SS
5559 }
5560
1a848870 5561 if (sd && sd_degenerate(sd)) {
dce840a0 5562 tmp = sd;
245af2c7 5563 sd = sd->parent;
dce840a0 5564 destroy_sched_domain(tmp, cpu);
1a848870
SS
5565 if (sd)
5566 sd->child = NULL;
5567 }
1da177e4 5568
4cb98839 5569 sched_domain_debug(sd, cpu);
1da177e4 5570
57d885fe 5571 rq_attach_root(rq, rd);
dce840a0 5572 tmp = rq->sd;
674311d5 5573 rcu_assign_pointer(rq->sd, sd);
dce840a0 5574 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5575
5576 update_top_cache_domain(cpu);
1da177e4
LT
5577}
5578
5579/* cpus with isolated domains */
dcc30a35 5580static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5581
5582/* Setup the mask of cpus configured for isolated domains */
5583static int __init isolated_cpu_setup(char *str)
5584{
bdddd296 5585 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5586 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5587 return 1;
5588}
5589
8927f494 5590__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5591
d3081f52
PZ
5592static const struct cpumask *cpu_cpu_mask(int cpu)
5593{
5594 return cpumask_of_node(cpu_to_node(cpu));
5595}
5596
dce840a0
PZ
5597struct sd_data {
5598 struct sched_domain **__percpu sd;
5599 struct sched_group **__percpu sg;
9c3f75cb 5600 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5601};
5602
49a02c51 5603struct s_data {
21d42ccf 5604 struct sched_domain ** __percpu sd;
49a02c51
AH
5605 struct root_domain *rd;
5606};
5607
2109b99e 5608enum s_alloc {
2109b99e 5609 sa_rootdomain,
21d42ccf 5610 sa_sd,
dce840a0 5611 sa_sd_storage,
2109b99e
AH
5612 sa_none,
5613};
5614
54ab4ff4
PZ
5615struct sched_domain_topology_level;
5616
5617typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5618typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5619
e3589f6c
PZ
5620#define SDTL_OVERLAP 0x01
5621
eb7a74e6 5622struct sched_domain_topology_level {
2c402dc3
PZ
5623 sched_domain_init_f init;
5624 sched_domain_mask_f mask;
e3589f6c 5625 int flags;
cb83b629 5626 int numa_level;
54ab4ff4 5627 struct sd_data data;
eb7a74e6
PZ
5628};
5629
c1174876
PZ
5630/*
5631 * Build an iteration mask that can exclude certain CPUs from the upwards
5632 * domain traversal.
5633 *
5634 * Asymmetric node setups can result in situations where the domain tree is of
5635 * unequal depth, make sure to skip domains that already cover the entire
5636 * range.
5637 *
5638 * In that case build_sched_domains() will have terminated the iteration early
5639 * and our sibling sd spans will be empty. Domains should always include the
5640 * cpu they're built on, so check that.
5641 *
5642 */
5643static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5644{
5645 const struct cpumask *span = sched_domain_span(sd);
5646 struct sd_data *sdd = sd->private;
5647 struct sched_domain *sibling;
5648 int i;
5649
5650 for_each_cpu(i, span) {
5651 sibling = *per_cpu_ptr(sdd->sd, i);
5652 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5653 continue;
5654
5655 cpumask_set_cpu(i, sched_group_mask(sg));
5656 }
5657}
5658
5659/*
5660 * Return the canonical balance cpu for this group, this is the first cpu
5661 * of this group that's also in the iteration mask.
5662 */
5663int group_balance_cpu(struct sched_group *sg)
5664{
5665 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5666}
5667
e3589f6c
PZ
5668static int
5669build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5670{
5671 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5672 const struct cpumask *span = sched_domain_span(sd);
5673 struct cpumask *covered = sched_domains_tmpmask;
5674 struct sd_data *sdd = sd->private;
5675 struct sched_domain *child;
5676 int i;
5677
5678 cpumask_clear(covered);
5679
5680 for_each_cpu(i, span) {
5681 struct cpumask *sg_span;
5682
5683 if (cpumask_test_cpu(i, covered))
5684 continue;
5685
c1174876
PZ
5686 child = *per_cpu_ptr(sdd->sd, i);
5687
5688 /* See the comment near build_group_mask(). */
5689 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5690 continue;
5691
e3589f6c 5692 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5693 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5694
5695 if (!sg)
5696 goto fail;
5697
5698 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5699 if (child->child) {
5700 child = child->child;
5701 cpumask_copy(sg_span, sched_domain_span(child));
5702 } else
5703 cpumask_set_cpu(i, sg_span);
5704
5705 cpumask_or(covered, covered, sg_span);
5706
74a5ce20 5707 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5708 if (atomic_inc_return(&sg->sgp->ref) == 1)
5709 build_group_mask(sd, sg);
5710
c3decf0d
PZ
5711 /*
5712 * Initialize sgp->power such that even if we mess up the
5713 * domains and no possible iteration will get us here, we won't
5714 * die on a /0 trap.
5715 */
5716 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5717 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5718
c1174876
PZ
5719 /*
5720 * Make sure the first group of this domain contains the
5721 * canonical balance cpu. Otherwise the sched_domain iteration
5722 * breaks. See update_sg_lb_stats().
5723 */
74a5ce20 5724 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5725 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5726 groups = sg;
5727
5728 if (!first)
5729 first = sg;
5730 if (last)
5731 last->next = sg;
5732 last = sg;
5733 last->next = first;
5734 }
5735 sd->groups = groups;
5736
5737 return 0;
5738
5739fail:
5740 free_sched_groups(first, 0);
5741
5742 return -ENOMEM;
5743}
5744
dce840a0 5745static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5746{
dce840a0
PZ
5747 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5748 struct sched_domain *child = sd->child;
1da177e4 5749
dce840a0
PZ
5750 if (child)
5751 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5752
9c3f75cb 5753 if (sg) {
dce840a0 5754 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5755 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5756 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5757 }
dce840a0
PZ
5758
5759 return cpu;
1e9f28fa 5760}
1e9f28fa 5761
01a08546 5762/*
dce840a0
PZ
5763 * build_sched_groups will build a circular linked list of the groups
5764 * covered by the given span, and will set each group's ->cpumask correctly,
5765 * and ->cpu_power to 0.
e3589f6c
PZ
5766 *
5767 * Assumes the sched_domain tree is fully constructed
01a08546 5768 */
e3589f6c
PZ
5769static int
5770build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5771{
dce840a0
PZ
5772 struct sched_group *first = NULL, *last = NULL;
5773 struct sd_data *sdd = sd->private;
5774 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5775 struct cpumask *covered;
dce840a0 5776 int i;
9c1cfda2 5777
e3589f6c
PZ
5778 get_group(cpu, sdd, &sd->groups);
5779 atomic_inc(&sd->groups->ref);
5780
0936629f 5781 if (cpu != cpumask_first(span))
e3589f6c
PZ
5782 return 0;
5783
f96225fd
PZ
5784 lockdep_assert_held(&sched_domains_mutex);
5785 covered = sched_domains_tmpmask;
5786
dce840a0 5787 cpumask_clear(covered);
6711cab4 5788
dce840a0
PZ
5789 for_each_cpu(i, span) {
5790 struct sched_group *sg;
cd08e923 5791 int group, j;
6711cab4 5792
dce840a0
PZ
5793 if (cpumask_test_cpu(i, covered))
5794 continue;
6711cab4 5795
cd08e923 5796 group = get_group(i, sdd, &sg);
dce840a0 5797 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5798 sg->sgp->power = 0;
c1174876 5799 cpumask_setall(sched_group_mask(sg));
0601a88d 5800
dce840a0
PZ
5801 for_each_cpu(j, span) {
5802 if (get_group(j, sdd, NULL) != group)
5803 continue;
0601a88d 5804
dce840a0
PZ
5805 cpumask_set_cpu(j, covered);
5806 cpumask_set_cpu(j, sched_group_cpus(sg));
5807 }
0601a88d 5808
dce840a0
PZ
5809 if (!first)
5810 first = sg;
5811 if (last)
5812 last->next = sg;
5813 last = sg;
5814 }
5815 last->next = first;
e3589f6c
PZ
5816
5817 return 0;
0601a88d 5818}
51888ca2 5819
89c4710e
SS
5820/*
5821 * Initialize sched groups cpu_power.
5822 *
5823 * cpu_power indicates the capacity of sched group, which is used while
5824 * distributing the load between different sched groups in a sched domain.
5825 * Typically cpu_power for all the groups in a sched domain will be same unless
5826 * there are asymmetries in the topology. If there are asymmetries, group
5827 * having more cpu_power will pickup more load compared to the group having
5828 * less cpu_power.
89c4710e
SS
5829 */
5830static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5831{
e3589f6c 5832 struct sched_group *sg = sd->groups;
89c4710e 5833
94c95ba6 5834 WARN_ON(!sg);
e3589f6c
PZ
5835
5836 do {
5837 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5838 sg = sg->next;
5839 } while (sg != sd->groups);
89c4710e 5840
c1174876 5841 if (cpu != group_balance_cpu(sg))
e3589f6c 5842 return;
aae6d3dd 5843
d274cb30 5844 update_group_power(sd, cpu);
69e1e811 5845 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5846}
5847
029632fb
PZ
5848int __weak arch_sd_sibling_asym_packing(void)
5849{
5850 return 0*SD_ASYM_PACKING;
89c4710e
SS
5851}
5852
7c16ec58
MT
5853/*
5854 * Initializers for schedule domains
5855 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5856 */
5857
a5d8c348
IM
5858#ifdef CONFIG_SCHED_DEBUG
5859# define SD_INIT_NAME(sd, type) sd->name = #type
5860#else
5861# define SD_INIT_NAME(sd, type) do { } while (0)
5862#endif
5863
54ab4ff4
PZ
5864#define SD_INIT_FUNC(type) \
5865static noinline struct sched_domain * \
5866sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5867{ \
5868 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5869 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5870 SD_INIT_NAME(sd, type); \
5871 sd->private = &tl->data; \
5872 return sd; \
7c16ec58
MT
5873}
5874
5875SD_INIT_FUNC(CPU)
7c16ec58
MT
5876#ifdef CONFIG_SCHED_SMT
5877 SD_INIT_FUNC(SIBLING)
5878#endif
5879#ifdef CONFIG_SCHED_MC
5880 SD_INIT_FUNC(MC)
5881#endif
01a08546
HC
5882#ifdef CONFIG_SCHED_BOOK
5883 SD_INIT_FUNC(BOOK)
5884#endif
7c16ec58 5885
1d3504fc 5886static int default_relax_domain_level = -1;
60495e77 5887int sched_domain_level_max;
1d3504fc
HS
5888
5889static int __init setup_relax_domain_level(char *str)
5890{
a841f8ce
DS
5891 if (kstrtoint(str, 0, &default_relax_domain_level))
5892 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5893
1d3504fc
HS
5894 return 1;
5895}
5896__setup("relax_domain_level=", setup_relax_domain_level);
5897
5898static void set_domain_attribute(struct sched_domain *sd,
5899 struct sched_domain_attr *attr)
5900{
5901 int request;
5902
5903 if (!attr || attr->relax_domain_level < 0) {
5904 if (default_relax_domain_level < 0)
5905 return;
5906 else
5907 request = default_relax_domain_level;
5908 } else
5909 request = attr->relax_domain_level;
5910 if (request < sd->level) {
5911 /* turn off idle balance on this domain */
c88d5910 5912 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5913 } else {
5914 /* turn on idle balance on this domain */
c88d5910 5915 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5916 }
5917}
5918
54ab4ff4
PZ
5919static void __sdt_free(const struct cpumask *cpu_map);
5920static int __sdt_alloc(const struct cpumask *cpu_map);
5921
2109b99e
AH
5922static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5923 const struct cpumask *cpu_map)
5924{
5925 switch (what) {
2109b99e 5926 case sa_rootdomain:
822ff793
PZ
5927 if (!atomic_read(&d->rd->refcount))
5928 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5929 case sa_sd:
5930 free_percpu(d->sd); /* fall through */
dce840a0 5931 case sa_sd_storage:
54ab4ff4 5932 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5933 case sa_none:
5934 break;
5935 }
5936}
3404c8d9 5937
2109b99e
AH
5938static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5939 const struct cpumask *cpu_map)
5940{
dce840a0
PZ
5941 memset(d, 0, sizeof(*d));
5942
54ab4ff4
PZ
5943 if (__sdt_alloc(cpu_map))
5944 return sa_sd_storage;
dce840a0
PZ
5945 d->sd = alloc_percpu(struct sched_domain *);
5946 if (!d->sd)
5947 return sa_sd_storage;
2109b99e 5948 d->rd = alloc_rootdomain();
dce840a0 5949 if (!d->rd)
21d42ccf 5950 return sa_sd;
2109b99e
AH
5951 return sa_rootdomain;
5952}
57d885fe 5953
dce840a0
PZ
5954/*
5955 * NULL the sd_data elements we've used to build the sched_domain and
5956 * sched_group structure so that the subsequent __free_domain_allocs()
5957 * will not free the data we're using.
5958 */
5959static void claim_allocations(int cpu, struct sched_domain *sd)
5960{
5961 struct sd_data *sdd = sd->private;
dce840a0
PZ
5962
5963 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5964 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5965
e3589f6c 5966 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5967 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5968
5969 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5970 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5971}
5972
2c402dc3
PZ
5973#ifdef CONFIG_SCHED_SMT
5974static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5975{
2c402dc3 5976 return topology_thread_cpumask(cpu);
3bd65a80 5977}
2c402dc3 5978#endif
7f4588f3 5979
d069b916
PZ
5980/*
5981 * Topology list, bottom-up.
5982 */
2c402dc3 5983static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5984#ifdef CONFIG_SCHED_SMT
5985 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5986#endif
1e9f28fa 5987#ifdef CONFIG_SCHED_MC
2c402dc3 5988 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5989#endif
d069b916
PZ
5990#ifdef CONFIG_SCHED_BOOK
5991 { sd_init_BOOK, cpu_book_mask, },
5992#endif
5993 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5994 { NULL, },
5995};
5996
5997static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5998
27723a68
VK
5999#define for_each_sd_topology(tl) \
6000 for (tl = sched_domain_topology; tl->init; tl++)
6001
cb83b629
PZ
6002#ifdef CONFIG_NUMA
6003
6004static int sched_domains_numa_levels;
cb83b629
PZ
6005static int *sched_domains_numa_distance;
6006static struct cpumask ***sched_domains_numa_masks;
6007static int sched_domains_curr_level;
6008
cb83b629
PZ
6009static inline int sd_local_flags(int level)
6010{
10717dcd 6011 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6012 return 0;
6013
6014 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6015}
6016
6017static struct sched_domain *
6018sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6019{
6020 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6021 int level = tl->numa_level;
6022 int sd_weight = cpumask_weight(
6023 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6024
6025 *sd = (struct sched_domain){
6026 .min_interval = sd_weight,
6027 .max_interval = 2*sd_weight,
6028 .busy_factor = 32,
870a0bb5 6029 .imbalance_pct = 125,
cb83b629
PZ
6030 .cache_nice_tries = 2,
6031 .busy_idx = 3,
6032 .idle_idx = 2,
6033 .newidle_idx = 0,
6034 .wake_idx = 0,
6035 .forkexec_idx = 0,
6036
6037 .flags = 1*SD_LOAD_BALANCE
6038 | 1*SD_BALANCE_NEWIDLE
6039 | 0*SD_BALANCE_EXEC
6040 | 0*SD_BALANCE_FORK
6041 | 0*SD_BALANCE_WAKE
6042 | 0*SD_WAKE_AFFINE
cb83b629 6043 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6044 | 0*SD_SHARE_PKG_RESOURCES
6045 | 1*SD_SERIALIZE
6046 | 0*SD_PREFER_SIBLING
3a7053b3 6047 | 1*SD_NUMA
cb83b629
PZ
6048 | sd_local_flags(level)
6049 ,
6050 .last_balance = jiffies,
6051 .balance_interval = sd_weight,
2b4cfe64
JL
6052 .max_newidle_lb_cost = 0,
6053 .next_decay_max_lb_cost = jiffies,
cb83b629
PZ
6054 };
6055 SD_INIT_NAME(sd, NUMA);
6056 sd->private = &tl->data;
6057
6058 /*
6059 * Ugly hack to pass state to sd_numa_mask()...
6060 */
6061 sched_domains_curr_level = tl->numa_level;
6062
6063 return sd;
6064}
6065
6066static const struct cpumask *sd_numa_mask(int cpu)
6067{
6068 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6069}
6070
d039ac60
PZ
6071static void sched_numa_warn(const char *str)
6072{
6073 static int done = false;
6074 int i,j;
6075
6076 if (done)
6077 return;
6078
6079 done = true;
6080
6081 printk(KERN_WARNING "ERROR: %s\n\n", str);
6082
6083 for (i = 0; i < nr_node_ids; i++) {
6084 printk(KERN_WARNING " ");
6085 for (j = 0; j < nr_node_ids; j++)
6086 printk(KERN_CONT "%02d ", node_distance(i,j));
6087 printk(KERN_CONT "\n");
6088 }
6089 printk(KERN_WARNING "\n");
6090}
6091
6092static bool find_numa_distance(int distance)
6093{
6094 int i;
6095
6096 if (distance == node_distance(0, 0))
6097 return true;
6098
6099 for (i = 0; i < sched_domains_numa_levels; i++) {
6100 if (sched_domains_numa_distance[i] == distance)
6101 return true;
6102 }
6103
6104 return false;
6105}
6106
cb83b629
PZ
6107static void sched_init_numa(void)
6108{
6109 int next_distance, curr_distance = node_distance(0, 0);
6110 struct sched_domain_topology_level *tl;
6111 int level = 0;
6112 int i, j, k;
6113
cb83b629
PZ
6114 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6115 if (!sched_domains_numa_distance)
6116 return;
6117
6118 /*
6119 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6120 * unique distances in the node_distance() table.
6121 *
6122 * Assumes node_distance(0,j) includes all distances in
6123 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6124 */
6125 next_distance = curr_distance;
6126 for (i = 0; i < nr_node_ids; i++) {
6127 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6128 for (k = 0; k < nr_node_ids; k++) {
6129 int distance = node_distance(i, k);
6130
6131 if (distance > curr_distance &&
6132 (distance < next_distance ||
6133 next_distance == curr_distance))
6134 next_distance = distance;
6135
6136 /*
6137 * While not a strong assumption it would be nice to know
6138 * about cases where if node A is connected to B, B is not
6139 * equally connected to A.
6140 */
6141 if (sched_debug() && node_distance(k, i) != distance)
6142 sched_numa_warn("Node-distance not symmetric");
6143
6144 if (sched_debug() && i && !find_numa_distance(distance))
6145 sched_numa_warn("Node-0 not representative");
6146 }
6147 if (next_distance != curr_distance) {
6148 sched_domains_numa_distance[level++] = next_distance;
6149 sched_domains_numa_levels = level;
6150 curr_distance = next_distance;
6151 } else break;
cb83b629 6152 }
d039ac60
PZ
6153
6154 /*
6155 * In case of sched_debug() we verify the above assumption.
6156 */
6157 if (!sched_debug())
6158 break;
cb83b629
PZ
6159 }
6160 /*
6161 * 'level' contains the number of unique distances, excluding the
6162 * identity distance node_distance(i,i).
6163 *
28b4a521 6164 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6165 * numbers.
6166 */
6167
5f7865f3
TC
6168 /*
6169 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6170 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6171 * the array will contain less then 'level' members. This could be
6172 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6173 * in other functions.
6174 *
6175 * We reset it to 'level' at the end of this function.
6176 */
6177 sched_domains_numa_levels = 0;
6178
cb83b629
PZ
6179 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6180 if (!sched_domains_numa_masks)
6181 return;
6182
6183 /*
6184 * Now for each level, construct a mask per node which contains all
6185 * cpus of nodes that are that many hops away from us.
6186 */
6187 for (i = 0; i < level; i++) {
6188 sched_domains_numa_masks[i] =
6189 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6190 if (!sched_domains_numa_masks[i])
6191 return;
6192
6193 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6194 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6195 if (!mask)
6196 return;
6197
6198 sched_domains_numa_masks[i][j] = mask;
6199
6200 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6201 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6202 continue;
6203
6204 cpumask_or(mask, mask, cpumask_of_node(k));
6205 }
6206 }
6207 }
6208
6209 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6210 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6211 if (!tl)
6212 return;
6213
6214 /*
6215 * Copy the default topology bits..
6216 */
6217 for (i = 0; default_topology[i].init; i++)
6218 tl[i] = default_topology[i];
6219
6220 /*
6221 * .. and append 'j' levels of NUMA goodness.
6222 */
6223 for (j = 0; j < level; i++, j++) {
6224 tl[i] = (struct sched_domain_topology_level){
6225 .init = sd_numa_init,
6226 .mask = sd_numa_mask,
6227 .flags = SDTL_OVERLAP,
6228 .numa_level = j,
6229 };
6230 }
6231
6232 sched_domain_topology = tl;
5f7865f3
TC
6233
6234 sched_domains_numa_levels = level;
cb83b629 6235}
301a5cba
TC
6236
6237static void sched_domains_numa_masks_set(int cpu)
6238{
6239 int i, j;
6240 int node = cpu_to_node(cpu);
6241
6242 for (i = 0; i < sched_domains_numa_levels; i++) {
6243 for (j = 0; j < nr_node_ids; j++) {
6244 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6245 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6246 }
6247 }
6248}
6249
6250static void sched_domains_numa_masks_clear(int cpu)
6251{
6252 int i, j;
6253 for (i = 0; i < sched_domains_numa_levels; i++) {
6254 for (j = 0; j < nr_node_ids; j++)
6255 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6256 }
6257}
6258
6259/*
6260 * Update sched_domains_numa_masks[level][node] array when new cpus
6261 * are onlined.
6262 */
6263static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6264 unsigned long action,
6265 void *hcpu)
6266{
6267 int cpu = (long)hcpu;
6268
6269 switch (action & ~CPU_TASKS_FROZEN) {
6270 case CPU_ONLINE:
6271 sched_domains_numa_masks_set(cpu);
6272 break;
6273
6274 case CPU_DEAD:
6275 sched_domains_numa_masks_clear(cpu);
6276 break;
6277
6278 default:
6279 return NOTIFY_DONE;
6280 }
6281
6282 return NOTIFY_OK;
cb83b629
PZ
6283}
6284#else
6285static inline void sched_init_numa(void)
6286{
6287}
301a5cba
TC
6288
6289static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6290 unsigned long action,
6291 void *hcpu)
6292{
6293 return 0;
6294}
cb83b629
PZ
6295#endif /* CONFIG_NUMA */
6296
54ab4ff4
PZ
6297static int __sdt_alloc(const struct cpumask *cpu_map)
6298{
6299 struct sched_domain_topology_level *tl;
6300 int j;
6301
27723a68 6302 for_each_sd_topology(tl) {
54ab4ff4
PZ
6303 struct sd_data *sdd = &tl->data;
6304
6305 sdd->sd = alloc_percpu(struct sched_domain *);
6306 if (!sdd->sd)
6307 return -ENOMEM;
6308
6309 sdd->sg = alloc_percpu(struct sched_group *);
6310 if (!sdd->sg)
6311 return -ENOMEM;
6312
9c3f75cb
PZ
6313 sdd->sgp = alloc_percpu(struct sched_group_power *);
6314 if (!sdd->sgp)
6315 return -ENOMEM;
6316
54ab4ff4
PZ
6317 for_each_cpu(j, cpu_map) {
6318 struct sched_domain *sd;
6319 struct sched_group *sg;
9c3f75cb 6320 struct sched_group_power *sgp;
54ab4ff4
PZ
6321
6322 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6323 GFP_KERNEL, cpu_to_node(j));
6324 if (!sd)
6325 return -ENOMEM;
6326
6327 *per_cpu_ptr(sdd->sd, j) = sd;
6328
6329 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6330 GFP_KERNEL, cpu_to_node(j));
6331 if (!sg)
6332 return -ENOMEM;
6333
30b4e9eb
IM
6334 sg->next = sg;
6335
54ab4ff4 6336 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6337
c1174876 6338 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6339 GFP_KERNEL, cpu_to_node(j));
6340 if (!sgp)
6341 return -ENOMEM;
6342
6343 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6344 }
6345 }
6346
6347 return 0;
6348}
6349
6350static void __sdt_free(const struct cpumask *cpu_map)
6351{
6352 struct sched_domain_topology_level *tl;
6353 int j;
6354
27723a68 6355 for_each_sd_topology(tl) {
54ab4ff4
PZ
6356 struct sd_data *sdd = &tl->data;
6357
6358 for_each_cpu(j, cpu_map) {
fb2cf2c6 6359 struct sched_domain *sd;
6360
6361 if (sdd->sd) {
6362 sd = *per_cpu_ptr(sdd->sd, j);
6363 if (sd && (sd->flags & SD_OVERLAP))
6364 free_sched_groups(sd->groups, 0);
6365 kfree(*per_cpu_ptr(sdd->sd, j));
6366 }
6367
6368 if (sdd->sg)
6369 kfree(*per_cpu_ptr(sdd->sg, j));
6370 if (sdd->sgp)
6371 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6372 }
6373 free_percpu(sdd->sd);
fb2cf2c6 6374 sdd->sd = NULL;
54ab4ff4 6375 free_percpu(sdd->sg);
fb2cf2c6 6376 sdd->sg = NULL;
9c3f75cb 6377 free_percpu(sdd->sgp);
fb2cf2c6 6378 sdd->sgp = NULL;
54ab4ff4
PZ
6379 }
6380}
6381
2c402dc3 6382struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6383 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6384 struct sched_domain *child, int cpu)
2c402dc3 6385{
54ab4ff4 6386 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6387 if (!sd)
d069b916 6388 return child;
2c402dc3 6389
2c402dc3 6390 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6391 if (child) {
6392 sd->level = child->level + 1;
6393 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6394 child->parent = sd;
c75e0128 6395 sd->child = child;
60495e77 6396 }
a841f8ce 6397 set_domain_attribute(sd, attr);
2c402dc3
PZ
6398
6399 return sd;
6400}
6401
2109b99e
AH
6402/*
6403 * Build sched domains for a given set of cpus and attach the sched domains
6404 * to the individual cpus
6405 */
dce840a0
PZ
6406static int build_sched_domains(const struct cpumask *cpu_map,
6407 struct sched_domain_attr *attr)
2109b99e 6408{
1c632169 6409 enum s_alloc alloc_state;
dce840a0 6410 struct sched_domain *sd;
2109b99e 6411 struct s_data d;
822ff793 6412 int i, ret = -ENOMEM;
9c1cfda2 6413
2109b99e
AH
6414 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6415 if (alloc_state != sa_rootdomain)
6416 goto error;
9c1cfda2 6417
dce840a0 6418 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6419 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6420 struct sched_domain_topology_level *tl;
6421
3bd65a80 6422 sd = NULL;
27723a68 6423 for_each_sd_topology(tl) {
4a850cbe 6424 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6425 if (tl == sched_domain_topology)
6426 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6427 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6428 sd->flags |= SD_OVERLAP;
d110235d
PZ
6429 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6430 break;
e3589f6c 6431 }
dce840a0
PZ
6432 }
6433
6434 /* Build the groups for the domains */
6435 for_each_cpu(i, cpu_map) {
6436 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6437 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6438 if (sd->flags & SD_OVERLAP) {
6439 if (build_overlap_sched_groups(sd, i))
6440 goto error;
6441 } else {
6442 if (build_sched_groups(sd, i))
6443 goto error;
6444 }
1cf51902 6445 }
a06dadbe 6446 }
9c1cfda2 6447
1da177e4 6448 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6449 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6450 if (!cpumask_test_cpu(i, cpu_map))
6451 continue;
9c1cfda2 6452
dce840a0
PZ
6453 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6454 claim_allocations(i, sd);
cd4ea6ae 6455 init_sched_groups_power(i, sd);
dce840a0 6456 }
f712c0c7 6457 }
9c1cfda2 6458
1da177e4 6459 /* Attach the domains */
dce840a0 6460 rcu_read_lock();
abcd083a 6461 for_each_cpu(i, cpu_map) {
21d42ccf 6462 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6463 cpu_attach_domain(sd, d.rd, i);
1da177e4 6464 }
dce840a0 6465 rcu_read_unlock();
51888ca2 6466
822ff793 6467 ret = 0;
51888ca2 6468error:
2109b99e 6469 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6470 return ret;
1da177e4 6471}
029190c5 6472
acc3f5d7 6473static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6474static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6475static struct sched_domain_attr *dattr_cur;
6476 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6477
6478/*
6479 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6480 * cpumask) fails, then fallback to a single sched domain,
6481 * as determined by the single cpumask fallback_doms.
029190c5 6482 */
4212823f 6483static cpumask_var_t fallback_doms;
029190c5 6484
ee79d1bd
HC
6485/*
6486 * arch_update_cpu_topology lets virtualized architectures update the
6487 * cpu core maps. It is supposed to return 1 if the topology changed
6488 * or 0 if it stayed the same.
6489 */
52f5684c 6490int __weak arch_update_cpu_topology(void)
22e52b07 6491{
ee79d1bd 6492 return 0;
22e52b07
HC
6493}
6494
acc3f5d7
RR
6495cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6496{
6497 int i;
6498 cpumask_var_t *doms;
6499
6500 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6501 if (!doms)
6502 return NULL;
6503 for (i = 0; i < ndoms; i++) {
6504 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6505 free_sched_domains(doms, i);
6506 return NULL;
6507 }
6508 }
6509 return doms;
6510}
6511
6512void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6513{
6514 unsigned int i;
6515 for (i = 0; i < ndoms; i++)
6516 free_cpumask_var(doms[i]);
6517 kfree(doms);
6518}
6519
1a20ff27 6520/*
41a2d6cf 6521 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6522 * For now this just excludes isolated cpus, but could be used to
6523 * exclude other special cases in the future.
1a20ff27 6524 */
c4a8849a 6525static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6526{
7378547f
MM
6527 int err;
6528
22e52b07 6529 arch_update_cpu_topology();
029190c5 6530 ndoms_cur = 1;
acc3f5d7 6531 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6532 if (!doms_cur)
acc3f5d7
RR
6533 doms_cur = &fallback_doms;
6534 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6535 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6536 register_sched_domain_sysctl();
7378547f
MM
6537
6538 return err;
1a20ff27
DG
6539}
6540
1a20ff27
DG
6541/*
6542 * Detach sched domains from a group of cpus specified in cpu_map
6543 * These cpus will now be attached to the NULL domain
6544 */
96f874e2 6545static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6546{
6547 int i;
6548
dce840a0 6549 rcu_read_lock();
abcd083a 6550 for_each_cpu(i, cpu_map)
57d885fe 6551 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6552 rcu_read_unlock();
1a20ff27
DG
6553}
6554
1d3504fc
HS
6555/* handle null as "default" */
6556static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6557 struct sched_domain_attr *new, int idx_new)
6558{
6559 struct sched_domain_attr tmp;
6560
6561 /* fast path */
6562 if (!new && !cur)
6563 return 1;
6564
6565 tmp = SD_ATTR_INIT;
6566 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6567 new ? (new + idx_new) : &tmp,
6568 sizeof(struct sched_domain_attr));
6569}
6570
029190c5
PJ
6571/*
6572 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6573 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6574 * doms_new[] to the current sched domain partitioning, doms_cur[].
6575 * It destroys each deleted domain and builds each new domain.
6576 *
acc3f5d7 6577 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6578 * The masks don't intersect (don't overlap.) We should setup one
6579 * sched domain for each mask. CPUs not in any of the cpumasks will
6580 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6581 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6582 * it as it is.
6583 *
acc3f5d7
RR
6584 * The passed in 'doms_new' should be allocated using
6585 * alloc_sched_domains. This routine takes ownership of it and will
6586 * free_sched_domains it when done with it. If the caller failed the
6587 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6588 * and partition_sched_domains() will fallback to the single partition
6589 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6590 *
96f874e2 6591 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6592 * ndoms_new == 0 is a special case for destroying existing domains,
6593 * and it will not create the default domain.
dfb512ec 6594 *
029190c5
PJ
6595 * Call with hotplug lock held
6596 */
acc3f5d7 6597void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6598 struct sched_domain_attr *dattr_new)
029190c5 6599{
dfb512ec 6600 int i, j, n;
d65bd5ec 6601 int new_topology;
029190c5 6602
712555ee 6603 mutex_lock(&sched_domains_mutex);
a1835615 6604
7378547f
MM
6605 /* always unregister in case we don't destroy any domains */
6606 unregister_sched_domain_sysctl();
6607
d65bd5ec
HC
6608 /* Let architecture update cpu core mappings. */
6609 new_topology = arch_update_cpu_topology();
6610
dfb512ec 6611 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6612
6613 /* Destroy deleted domains */
6614 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6615 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6616 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6617 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6618 goto match1;
6619 }
6620 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6621 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6622match1:
6623 ;
6624 }
6625
c8d2d47a 6626 n = ndoms_cur;
e761b772 6627 if (doms_new == NULL) {
c8d2d47a 6628 n = 0;
acc3f5d7 6629 doms_new = &fallback_doms;
6ad4c188 6630 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6631 WARN_ON_ONCE(dattr_new);
e761b772
MK
6632 }
6633
029190c5
PJ
6634 /* Build new domains */
6635 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6636 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6637 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6638 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6639 goto match2;
6640 }
6641 /* no match - add a new doms_new */
dce840a0 6642 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6643match2:
6644 ;
6645 }
6646
6647 /* Remember the new sched domains */
acc3f5d7
RR
6648 if (doms_cur != &fallback_doms)
6649 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6650 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6651 doms_cur = doms_new;
1d3504fc 6652 dattr_cur = dattr_new;
029190c5 6653 ndoms_cur = ndoms_new;
7378547f
MM
6654
6655 register_sched_domain_sysctl();
a1835615 6656
712555ee 6657 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6658}
6659
d35be8ba
SB
6660static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6661
1da177e4 6662/*
3a101d05
TH
6663 * Update cpusets according to cpu_active mask. If cpusets are
6664 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6665 * around partition_sched_domains().
d35be8ba
SB
6666 *
6667 * If we come here as part of a suspend/resume, don't touch cpusets because we
6668 * want to restore it back to its original state upon resume anyway.
1da177e4 6669 */
0b2e918a
TH
6670static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6671 void *hcpu)
e761b772 6672{
d35be8ba
SB
6673 switch (action) {
6674 case CPU_ONLINE_FROZEN:
6675 case CPU_DOWN_FAILED_FROZEN:
6676
6677 /*
6678 * num_cpus_frozen tracks how many CPUs are involved in suspend
6679 * resume sequence. As long as this is not the last online
6680 * operation in the resume sequence, just build a single sched
6681 * domain, ignoring cpusets.
6682 */
6683 num_cpus_frozen--;
6684 if (likely(num_cpus_frozen)) {
6685 partition_sched_domains(1, NULL, NULL);
6686 break;
6687 }
6688
6689 /*
6690 * This is the last CPU online operation. So fall through and
6691 * restore the original sched domains by considering the
6692 * cpuset configurations.
6693 */
6694
e761b772 6695 case CPU_ONLINE:
6ad4c188 6696 case CPU_DOWN_FAILED:
7ddf96b0 6697 cpuset_update_active_cpus(true);
d35be8ba 6698 break;
3a101d05
TH
6699 default:
6700 return NOTIFY_DONE;
6701 }
d35be8ba 6702 return NOTIFY_OK;
3a101d05 6703}
e761b772 6704
0b2e918a
TH
6705static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6706 void *hcpu)
3a101d05 6707{
d35be8ba 6708 switch (action) {
3a101d05 6709 case CPU_DOWN_PREPARE:
7ddf96b0 6710 cpuset_update_active_cpus(false);
d35be8ba
SB
6711 break;
6712 case CPU_DOWN_PREPARE_FROZEN:
6713 num_cpus_frozen++;
6714 partition_sched_domains(1, NULL, NULL);
6715 break;
e761b772
MK
6716 default:
6717 return NOTIFY_DONE;
6718 }
d35be8ba 6719 return NOTIFY_OK;
e761b772 6720}
e761b772 6721
1da177e4
LT
6722void __init sched_init_smp(void)
6723{
dcc30a35
RR
6724 cpumask_var_t non_isolated_cpus;
6725
6726 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6727 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6728
cb83b629
PZ
6729 sched_init_numa();
6730
6acce3ef
PZ
6731 /*
6732 * There's no userspace yet to cause hotplug operations; hence all the
6733 * cpu masks are stable and all blatant races in the below code cannot
6734 * happen.
6735 */
712555ee 6736 mutex_lock(&sched_domains_mutex);
c4a8849a 6737 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6738 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6739 if (cpumask_empty(non_isolated_cpus))
6740 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6741 mutex_unlock(&sched_domains_mutex);
e761b772 6742
301a5cba 6743 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6744 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6745 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6746
b328ca18 6747 init_hrtick();
5c1e1767
NP
6748
6749 /* Move init over to a non-isolated CPU */
dcc30a35 6750 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6751 BUG();
19978ca6 6752 sched_init_granularity();
dcc30a35 6753 free_cpumask_var(non_isolated_cpus);
4212823f 6754
0e3900e6 6755 init_sched_rt_class();
1baca4ce 6756 init_sched_dl_class();
1da177e4
LT
6757}
6758#else
6759void __init sched_init_smp(void)
6760{
19978ca6 6761 sched_init_granularity();
1da177e4
LT
6762}
6763#endif /* CONFIG_SMP */
6764
cd1bb94b
AB
6765const_debug unsigned int sysctl_timer_migration = 1;
6766
1da177e4
LT
6767int in_sched_functions(unsigned long addr)
6768{
1da177e4
LT
6769 return in_lock_functions(addr) ||
6770 (addr >= (unsigned long)__sched_text_start
6771 && addr < (unsigned long)__sched_text_end);
6772}
6773
029632fb 6774#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6775/*
6776 * Default task group.
6777 * Every task in system belongs to this group at bootup.
6778 */
029632fb 6779struct task_group root_task_group;
35cf4e50 6780LIST_HEAD(task_groups);
052f1dc7 6781#endif
6f505b16 6782
e6252c3e 6783DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6784
1da177e4
LT
6785void __init sched_init(void)
6786{
dd41f596 6787 int i, j;
434d53b0
MT
6788 unsigned long alloc_size = 0, ptr;
6789
6790#ifdef CONFIG_FAIR_GROUP_SCHED
6791 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6792#endif
6793#ifdef CONFIG_RT_GROUP_SCHED
6794 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6795#endif
df7c8e84 6796#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6797 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6798#endif
434d53b0 6799 if (alloc_size) {
36b7b6d4 6800 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6801
6802#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6803 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6804 ptr += nr_cpu_ids * sizeof(void **);
6805
07e06b01 6806 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6807 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6808
6d6bc0ad 6809#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6810#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6811 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6812 ptr += nr_cpu_ids * sizeof(void **);
6813
07e06b01 6814 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6815 ptr += nr_cpu_ids * sizeof(void **);
6816
6d6bc0ad 6817#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6818#ifdef CONFIG_CPUMASK_OFFSTACK
6819 for_each_possible_cpu(i) {
e6252c3e 6820 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6821 ptr += cpumask_size();
6822 }
6823#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6824 }
dd41f596 6825
332ac17e
DF
6826 init_rt_bandwidth(&def_rt_bandwidth,
6827 global_rt_period(), global_rt_runtime());
6828 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6829 global_rt_period(), global_rt_runtime());
332ac17e 6830
57d885fe
GH
6831#ifdef CONFIG_SMP
6832 init_defrootdomain();
6833#endif
6834
d0b27fa7 6835#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6836 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6837 global_rt_period(), global_rt_runtime());
6d6bc0ad 6838#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6839
7c941438 6840#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6841 list_add(&root_task_group.list, &task_groups);
6842 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6843 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6844 autogroup_init(&init_task);
54c707e9 6845
7c941438 6846#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6847
0a945022 6848 for_each_possible_cpu(i) {
70b97a7f 6849 struct rq *rq;
1da177e4
LT
6850
6851 rq = cpu_rq(i);
05fa785c 6852 raw_spin_lock_init(&rq->lock);
7897986b 6853 rq->nr_running = 0;
dce48a84
TG
6854 rq->calc_load_active = 0;
6855 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6856 init_cfs_rq(&rq->cfs);
6f505b16 6857 init_rt_rq(&rq->rt, rq);
aab03e05 6858 init_dl_rq(&rq->dl, rq);
dd41f596 6859#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6860 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6861 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6862 /*
07e06b01 6863 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6864 *
6865 * In case of task-groups formed thr' the cgroup filesystem, it
6866 * gets 100% of the cpu resources in the system. This overall
6867 * system cpu resource is divided among the tasks of
07e06b01 6868 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6869 * based on each entity's (task or task-group's) weight
6870 * (se->load.weight).
6871 *
07e06b01 6872 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6873 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6874 * then A0's share of the cpu resource is:
6875 *
0d905bca 6876 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6877 *
07e06b01
YZ
6878 * We achieve this by letting root_task_group's tasks sit
6879 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6880 */
ab84d31e 6881 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6882 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6883#endif /* CONFIG_FAIR_GROUP_SCHED */
6884
6885 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6886#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6887 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6888#endif
1da177e4 6889
dd41f596
IM
6890 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6891 rq->cpu_load[j] = 0;
fdf3e95d
VP
6892
6893 rq->last_load_update_tick = jiffies;
6894
1da177e4 6895#ifdef CONFIG_SMP
41c7ce9a 6896 rq->sd = NULL;
57d885fe 6897 rq->rd = NULL;
1399fa78 6898 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6899 rq->post_schedule = 0;
1da177e4 6900 rq->active_balance = 0;
dd41f596 6901 rq->next_balance = jiffies;
1da177e4 6902 rq->push_cpu = 0;
0a2966b4 6903 rq->cpu = i;
1f11eb6a 6904 rq->online = 0;
eae0c9df
MG
6905 rq->idle_stamp = 0;
6906 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6907 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6908
6909 INIT_LIST_HEAD(&rq->cfs_tasks);
6910
dc938520 6911 rq_attach_root(rq, &def_root_domain);
3451d024 6912#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6913 rq->nohz_flags = 0;
83cd4fe2 6914#endif
265f22a9
FW
6915#ifdef CONFIG_NO_HZ_FULL
6916 rq->last_sched_tick = 0;
6917#endif
1da177e4 6918#endif
8f4d37ec 6919 init_rq_hrtick(rq);
1da177e4 6920 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6921 }
6922
2dd73a4f 6923 set_load_weight(&init_task);
b50f60ce 6924
e107be36
AK
6925#ifdef CONFIG_PREEMPT_NOTIFIERS
6926 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6927#endif
6928
1da177e4
LT
6929 /*
6930 * The boot idle thread does lazy MMU switching as well:
6931 */
6932 atomic_inc(&init_mm.mm_count);
6933 enter_lazy_tlb(&init_mm, current);
6934
6935 /*
6936 * Make us the idle thread. Technically, schedule() should not be
6937 * called from this thread, however somewhere below it might be,
6938 * but because we are the idle thread, we just pick up running again
6939 * when this runqueue becomes "idle".
6940 */
6941 init_idle(current, smp_processor_id());
dce48a84
TG
6942
6943 calc_load_update = jiffies + LOAD_FREQ;
6944
dd41f596
IM
6945 /*
6946 * During early bootup we pretend to be a normal task:
6947 */
6948 current->sched_class = &fair_sched_class;
6892b75e 6949
bf4d83f6 6950#ifdef CONFIG_SMP
4cb98839 6951 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6952 /* May be allocated at isolcpus cmdline parse time */
6953 if (cpu_isolated_map == NULL)
6954 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6955 idle_thread_set_boot_cpu();
029632fb
PZ
6956#endif
6957 init_sched_fair_class();
6a7b3dc3 6958
6892b75e 6959 scheduler_running = 1;
1da177e4
LT
6960}
6961
d902db1e 6962#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6963static inline int preempt_count_equals(int preempt_offset)
6964{
234da7bc 6965 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6966
4ba8216c 6967 return (nested == preempt_offset);
e4aafea2
FW
6968}
6969
d894837f 6970void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6971{
1da177e4
LT
6972 static unsigned long prev_jiffy; /* ratelimiting */
6973
b3fbab05 6974 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
6975 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6976 !is_idle_task(current)) ||
e4aafea2 6977 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6978 return;
6979 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6980 return;
6981 prev_jiffy = jiffies;
6982
3df0fc5b
PZ
6983 printk(KERN_ERR
6984 "BUG: sleeping function called from invalid context at %s:%d\n",
6985 file, line);
6986 printk(KERN_ERR
6987 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6988 in_atomic(), irqs_disabled(),
6989 current->pid, current->comm);
aef745fc
IM
6990
6991 debug_show_held_locks(current);
6992 if (irqs_disabled())
6993 print_irqtrace_events(current);
8f47b187
TG
6994#ifdef CONFIG_DEBUG_PREEMPT
6995 if (!preempt_count_equals(preempt_offset)) {
6996 pr_err("Preemption disabled at:");
6997 print_ip_sym(current->preempt_disable_ip);
6998 pr_cont("\n");
6999 }
7000#endif
aef745fc 7001 dump_stack();
1da177e4
LT
7002}
7003EXPORT_SYMBOL(__might_sleep);
7004#endif
7005
7006#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7007static void normalize_task(struct rq *rq, struct task_struct *p)
7008{
da7a735e 7009 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7010 struct sched_attr attr = {
7011 .sched_policy = SCHED_NORMAL,
7012 };
da7a735e 7013 int old_prio = p->prio;
3a5e4dc1 7014 int on_rq;
3e51f33f 7015
fd2f4419 7016 on_rq = p->on_rq;
3a5e4dc1 7017 if (on_rq)
4ca9b72b 7018 dequeue_task(rq, p, 0);
d50dde5a 7019 __setscheduler(rq, p, &attr);
3a5e4dc1 7020 if (on_rq) {
4ca9b72b 7021 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7022 resched_task(rq->curr);
7023 }
da7a735e
PZ
7024
7025 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7026}
7027
1da177e4
LT
7028void normalize_rt_tasks(void)
7029{
a0f98a1c 7030 struct task_struct *g, *p;
1da177e4 7031 unsigned long flags;
70b97a7f 7032 struct rq *rq;
1da177e4 7033
4cf5d77a 7034 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7035 do_each_thread(g, p) {
178be793
IM
7036 /*
7037 * Only normalize user tasks:
7038 */
7039 if (!p->mm)
7040 continue;
7041
6cfb0d5d 7042 p->se.exec_start = 0;
6cfb0d5d 7043#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7044 p->se.statistics.wait_start = 0;
7045 p->se.statistics.sleep_start = 0;
7046 p->se.statistics.block_start = 0;
6cfb0d5d 7047#endif
dd41f596 7048
aab03e05 7049 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7050 /*
7051 * Renice negative nice level userspace
7052 * tasks back to 0:
7053 */
d0ea0268 7054 if (task_nice(p) < 0 && p->mm)
dd41f596 7055 set_user_nice(p, 0);
1da177e4 7056 continue;
dd41f596 7057 }
1da177e4 7058
1d615482 7059 raw_spin_lock(&p->pi_lock);
b29739f9 7060 rq = __task_rq_lock(p);
1da177e4 7061
178be793 7062 normalize_task(rq, p);
3a5e4dc1 7063
b29739f9 7064 __task_rq_unlock(rq);
1d615482 7065 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7066 } while_each_thread(g, p);
7067
4cf5d77a 7068 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7069}
7070
7071#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7072
67fc4e0c 7073#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7074/*
67fc4e0c 7075 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7076 *
7077 * They can only be called when the whole system has been
7078 * stopped - every CPU needs to be quiescent, and no scheduling
7079 * activity can take place. Using them for anything else would
7080 * be a serious bug, and as a result, they aren't even visible
7081 * under any other configuration.
7082 */
7083
7084/**
7085 * curr_task - return the current task for a given cpu.
7086 * @cpu: the processor in question.
7087 *
7088 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7089 *
7090 * Return: The current task for @cpu.
1df5c10a 7091 */
36c8b586 7092struct task_struct *curr_task(int cpu)
1df5c10a
LT
7093{
7094 return cpu_curr(cpu);
7095}
7096
67fc4e0c
JW
7097#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7098
7099#ifdef CONFIG_IA64
1df5c10a
LT
7100/**
7101 * set_curr_task - set the current task for a given cpu.
7102 * @cpu: the processor in question.
7103 * @p: the task pointer to set.
7104 *
7105 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7106 * are serviced on a separate stack. It allows the architecture to switch the
7107 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7108 * must be called with all CPU's synchronized, and interrupts disabled, the
7109 * and caller must save the original value of the current task (see
7110 * curr_task() above) and restore that value before reenabling interrupts and
7111 * re-starting the system.
7112 *
7113 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7114 */
36c8b586 7115void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7116{
7117 cpu_curr(cpu) = p;
7118}
7119
7120#endif
29f59db3 7121
7c941438 7122#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7123/* task_group_lock serializes the addition/removal of task groups */
7124static DEFINE_SPINLOCK(task_group_lock);
7125
bccbe08a
PZ
7126static void free_sched_group(struct task_group *tg)
7127{
7128 free_fair_sched_group(tg);
7129 free_rt_sched_group(tg);
e9aa1dd1 7130 autogroup_free(tg);
bccbe08a
PZ
7131 kfree(tg);
7132}
7133
7134/* allocate runqueue etc for a new task group */
ec7dc8ac 7135struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7136{
7137 struct task_group *tg;
bccbe08a
PZ
7138
7139 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7140 if (!tg)
7141 return ERR_PTR(-ENOMEM);
7142
ec7dc8ac 7143 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7144 goto err;
7145
ec7dc8ac 7146 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7147 goto err;
7148
ace783b9
LZ
7149 return tg;
7150
7151err:
7152 free_sched_group(tg);
7153 return ERR_PTR(-ENOMEM);
7154}
7155
7156void sched_online_group(struct task_group *tg, struct task_group *parent)
7157{
7158 unsigned long flags;
7159
8ed36996 7160 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7161 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7162
7163 WARN_ON(!parent); /* root should already exist */
7164
7165 tg->parent = parent;
f473aa5e 7166 INIT_LIST_HEAD(&tg->children);
09f2724a 7167 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7168 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7169}
7170
9b5b7751 7171/* rcu callback to free various structures associated with a task group */
6f505b16 7172static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7173{
29f59db3 7174 /* now it should be safe to free those cfs_rqs */
6f505b16 7175 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7176}
7177
9b5b7751 7178/* Destroy runqueue etc associated with a task group */
4cf86d77 7179void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7180{
7181 /* wait for possible concurrent references to cfs_rqs complete */
7182 call_rcu(&tg->rcu, free_sched_group_rcu);
7183}
7184
7185void sched_offline_group(struct task_group *tg)
29f59db3 7186{
8ed36996 7187 unsigned long flags;
9b5b7751 7188 int i;
29f59db3 7189
3d4b47b4
PZ
7190 /* end participation in shares distribution */
7191 for_each_possible_cpu(i)
bccbe08a 7192 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7193
7194 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7195 list_del_rcu(&tg->list);
f473aa5e 7196 list_del_rcu(&tg->siblings);
8ed36996 7197 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7198}
7199
9b5b7751 7200/* change task's runqueue when it moves between groups.
3a252015
IM
7201 * The caller of this function should have put the task in its new group
7202 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7203 * reflect its new group.
9b5b7751
SV
7204 */
7205void sched_move_task(struct task_struct *tsk)
29f59db3 7206{
8323f26c 7207 struct task_group *tg;
29f59db3
SV
7208 int on_rq, running;
7209 unsigned long flags;
7210 struct rq *rq;
7211
7212 rq = task_rq_lock(tsk, &flags);
7213
051a1d1a 7214 running = task_current(rq, tsk);
fd2f4419 7215 on_rq = tsk->on_rq;
29f59db3 7216
0e1f3483 7217 if (on_rq)
29f59db3 7218 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7219 if (unlikely(running))
7220 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7221
073219e9 7222 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7223 lockdep_is_held(&tsk->sighand->siglock)),
7224 struct task_group, css);
7225 tg = autogroup_task_group(tsk, tg);
7226 tsk->sched_task_group = tg;
7227
810b3817 7228#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7229 if (tsk->sched_class->task_move_group)
7230 tsk->sched_class->task_move_group(tsk, on_rq);
7231 else
810b3817 7232#endif
b2b5ce02 7233 set_task_rq(tsk, task_cpu(tsk));
810b3817 7234
0e1f3483
HS
7235 if (unlikely(running))
7236 tsk->sched_class->set_curr_task(rq);
7237 if (on_rq)
371fd7e7 7238 enqueue_task(rq, tsk, 0);
29f59db3 7239
0122ec5b 7240 task_rq_unlock(rq, tsk, &flags);
29f59db3 7241}
7c941438 7242#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7243
a790de99
PT
7244#ifdef CONFIG_RT_GROUP_SCHED
7245/*
7246 * Ensure that the real time constraints are schedulable.
7247 */
7248static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7249
9a7e0b18
PZ
7250/* Must be called with tasklist_lock held */
7251static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7252{
9a7e0b18 7253 struct task_struct *g, *p;
b40b2e8e 7254
9a7e0b18 7255 do_each_thread(g, p) {
029632fb 7256 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7257 return 1;
7258 } while_each_thread(g, p);
b40b2e8e 7259
9a7e0b18
PZ
7260 return 0;
7261}
b40b2e8e 7262
9a7e0b18
PZ
7263struct rt_schedulable_data {
7264 struct task_group *tg;
7265 u64 rt_period;
7266 u64 rt_runtime;
7267};
b40b2e8e 7268
a790de99 7269static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7270{
7271 struct rt_schedulable_data *d = data;
7272 struct task_group *child;
7273 unsigned long total, sum = 0;
7274 u64 period, runtime;
b40b2e8e 7275
9a7e0b18
PZ
7276 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7277 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7278
9a7e0b18
PZ
7279 if (tg == d->tg) {
7280 period = d->rt_period;
7281 runtime = d->rt_runtime;
b40b2e8e 7282 }
b40b2e8e 7283
4653f803
PZ
7284 /*
7285 * Cannot have more runtime than the period.
7286 */
7287 if (runtime > period && runtime != RUNTIME_INF)
7288 return -EINVAL;
6f505b16 7289
4653f803
PZ
7290 /*
7291 * Ensure we don't starve existing RT tasks.
7292 */
9a7e0b18
PZ
7293 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7294 return -EBUSY;
6f505b16 7295
9a7e0b18 7296 total = to_ratio(period, runtime);
6f505b16 7297
4653f803
PZ
7298 /*
7299 * Nobody can have more than the global setting allows.
7300 */
7301 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7302 return -EINVAL;
6f505b16 7303
4653f803
PZ
7304 /*
7305 * The sum of our children's runtime should not exceed our own.
7306 */
9a7e0b18
PZ
7307 list_for_each_entry_rcu(child, &tg->children, siblings) {
7308 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7309 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7310
9a7e0b18
PZ
7311 if (child == d->tg) {
7312 period = d->rt_period;
7313 runtime = d->rt_runtime;
7314 }
6f505b16 7315
9a7e0b18 7316 sum += to_ratio(period, runtime);
9f0c1e56 7317 }
6f505b16 7318
9a7e0b18
PZ
7319 if (sum > total)
7320 return -EINVAL;
7321
7322 return 0;
6f505b16
PZ
7323}
7324
9a7e0b18 7325static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7326{
8277434e
PT
7327 int ret;
7328
9a7e0b18
PZ
7329 struct rt_schedulable_data data = {
7330 .tg = tg,
7331 .rt_period = period,
7332 .rt_runtime = runtime,
7333 };
7334
8277434e
PT
7335 rcu_read_lock();
7336 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7337 rcu_read_unlock();
7338
7339 return ret;
521f1a24
DG
7340}
7341
ab84d31e 7342static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7343 u64 rt_period, u64 rt_runtime)
6f505b16 7344{
ac086bc2 7345 int i, err = 0;
9f0c1e56 7346
9f0c1e56 7347 mutex_lock(&rt_constraints_mutex);
521f1a24 7348 read_lock(&tasklist_lock);
9a7e0b18
PZ
7349 err = __rt_schedulable(tg, rt_period, rt_runtime);
7350 if (err)
9f0c1e56 7351 goto unlock;
ac086bc2 7352
0986b11b 7353 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7354 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7355 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7356
7357 for_each_possible_cpu(i) {
7358 struct rt_rq *rt_rq = tg->rt_rq[i];
7359
0986b11b 7360 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7361 rt_rq->rt_runtime = rt_runtime;
0986b11b 7362 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7363 }
0986b11b 7364 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7365unlock:
521f1a24 7366 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7367 mutex_unlock(&rt_constraints_mutex);
7368
7369 return err;
6f505b16
PZ
7370}
7371
25cc7da7 7372static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7373{
7374 u64 rt_runtime, rt_period;
7375
7376 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7377 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7378 if (rt_runtime_us < 0)
7379 rt_runtime = RUNTIME_INF;
7380
ab84d31e 7381 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7382}
7383
25cc7da7 7384static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7385{
7386 u64 rt_runtime_us;
7387
d0b27fa7 7388 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7389 return -1;
7390
d0b27fa7 7391 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7392 do_div(rt_runtime_us, NSEC_PER_USEC);
7393 return rt_runtime_us;
7394}
d0b27fa7 7395
25cc7da7 7396static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7397{
7398 u64 rt_runtime, rt_period;
7399
7400 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7401 rt_runtime = tg->rt_bandwidth.rt_runtime;
7402
619b0488
R
7403 if (rt_period == 0)
7404 return -EINVAL;
7405
ab84d31e 7406 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7407}
7408
25cc7da7 7409static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7410{
7411 u64 rt_period_us;
7412
7413 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7414 do_div(rt_period_us, NSEC_PER_USEC);
7415 return rt_period_us;
7416}
332ac17e 7417#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7418
332ac17e 7419#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7420static int sched_rt_global_constraints(void)
7421{
7422 int ret = 0;
7423
7424 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7425 read_lock(&tasklist_lock);
4653f803 7426 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7427 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7428 mutex_unlock(&rt_constraints_mutex);
7429
7430 return ret;
7431}
54e99124 7432
25cc7da7 7433static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7434{
7435 /* Don't accept realtime tasks when there is no way for them to run */
7436 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7437 return 0;
7438
7439 return 1;
7440}
7441
6d6bc0ad 7442#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7443static int sched_rt_global_constraints(void)
7444{
ac086bc2 7445 unsigned long flags;
332ac17e 7446 int i, ret = 0;
ec5d4989 7447
0986b11b 7448 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7449 for_each_possible_cpu(i) {
7450 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7451
0986b11b 7452 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7453 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7454 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7455 }
0986b11b 7456 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7457
332ac17e 7458 return ret;
d0b27fa7 7459}
6d6bc0ad 7460#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7461
332ac17e
DF
7462static int sched_dl_global_constraints(void)
7463{
1724813d
PZ
7464 u64 runtime = global_rt_runtime();
7465 u64 period = global_rt_period();
332ac17e 7466 u64 new_bw = to_ratio(period, runtime);
1724813d 7467 int cpu, ret = 0;
49516342 7468 unsigned long flags;
332ac17e
DF
7469
7470 /*
7471 * Here we want to check the bandwidth not being set to some
7472 * value smaller than the currently allocated bandwidth in
7473 * any of the root_domains.
7474 *
7475 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7476 * cycling on root_domains... Discussion on different/better
7477 * solutions is welcome!
7478 */
1724813d
PZ
7479 for_each_possible_cpu(cpu) {
7480 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7481
49516342 7482 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7483 if (new_bw < dl_b->total_bw)
7484 ret = -EBUSY;
49516342 7485 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7486
7487 if (ret)
7488 break;
332ac17e
DF
7489 }
7490
1724813d 7491 return ret;
332ac17e
DF
7492}
7493
1724813d 7494static void sched_dl_do_global(void)
ce0dbbbb 7495{
1724813d
PZ
7496 u64 new_bw = -1;
7497 int cpu;
49516342 7498 unsigned long flags;
ce0dbbbb 7499
1724813d
PZ
7500 def_dl_bandwidth.dl_period = global_rt_period();
7501 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7502
7503 if (global_rt_runtime() != RUNTIME_INF)
7504 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7505
7506 /*
7507 * FIXME: As above...
7508 */
7509 for_each_possible_cpu(cpu) {
7510 struct dl_bw *dl_b = dl_bw_of(cpu);
7511
49516342 7512 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7513 dl_b->bw = new_bw;
49516342 7514 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7515 }
1724813d
PZ
7516}
7517
7518static int sched_rt_global_validate(void)
7519{
7520 if (sysctl_sched_rt_period <= 0)
7521 return -EINVAL;
7522
e9e7cb38
JL
7523 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7524 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7525 return -EINVAL;
7526
7527 return 0;
7528}
7529
7530static void sched_rt_do_global(void)
7531{
7532 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7533 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7534}
7535
d0b27fa7 7536int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7537 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7538 loff_t *ppos)
7539{
d0b27fa7
PZ
7540 int old_period, old_runtime;
7541 static DEFINE_MUTEX(mutex);
1724813d 7542 int ret;
d0b27fa7
PZ
7543
7544 mutex_lock(&mutex);
7545 old_period = sysctl_sched_rt_period;
7546 old_runtime = sysctl_sched_rt_runtime;
7547
8d65af78 7548 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7549
7550 if (!ret && write) {
1724813d
PZ
7551 ret = sched_rt_global_validate();
7552 if (ret)
7553 goto undo;
7554
d0b27fa7 7555 ret = sched_rt_global_constraints();
1724813d
PZ
7556 if (ret)
7557 goto undo;
7558
7559 ret = sched_dl_global_constraints();
7560 if (ret)
7561 goto undo;
7562
7563 sched_rt_do_global();
7564 sched_dl_do_global();
7565 }
7566 if (0) {
7567undo:
7568 sysctl_sched_rt_period = old_period;
7569 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7570 }
7571 mutex_unlock(&mutex);
7572
7573 return ret;
7574}
68318b8e 7575
1724813d 7576int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7577 void __user *buffer, size_t *lenp,
7578 loff_t *ppos)
7579{
7580 int ret;
332ac17e 7581 static DEFINE_MUTEX(mutex);
332ac17e
DF
7582
7583 mutex_lock(&mutex);
332ac17e 7584 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7585 /* make sure that internally we keep jiffies */
7586 /* also, writing zero resets timeslice to default */
332ac17e 7587 if (!ret && write) {
1724813d
PZ
7588 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7589 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7590 }
7591 mutex_unlock(&mutex);
332ac17e
DF
7592 return ret;
7593}
7594
052f1dc7 7595#ifdef CONFIG_CGROUP_SCHED
68318b8e 7596
a7c6d554 7597static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7598{
a7c6d554 7599 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7600}
7601
eb95419b
TH
7602static struct cgroup_subsys_state *
7603cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7604{
eb95419b
TH
7605 struct task_group *parent = css_tg(parent_css);
7606 struct task_group *tg;
68318b8e 7607
eb95419b 7608 if (!parent) {
68318b8e 7609 /* This is early initialization for the top cgroup */
07e06b01 7610 return &root_task_group.css;
68318b8e
SV
7611 }
7612
ec7dc8ac 7613 tg = sched_create_group(parent);
68318b8e
SV
7614 if (IS_ERR(tg))
7615 return ERR_PTR(-ENOMEM);
7616
68318b8e
SV
7617 return &tg->css;
7618}
7619
eb95419b 7620static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7621{
eb95419b
TH
7622 struct task_group *tg = css_tg(css);
7623 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7624
63876986
TH
7625 if (parent)
7626 sched_online_group(tg, parent);
ace783b9
LZ
7627 return 0;
7628}
7629
eb95419b 7630static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7631{
eb95419b 7632 struct task_group *tg = css_tg(css);
68318b8e
SV
7633
7634 sched_destroy_group(tg);
7635}
7636
eb95419b 7637static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7638{
eb95419b 7639 struct task_group *tg = css_tg(css);
ace783b9
LZ
7640
7641 sched_offline_group(tg);
7642}
7643
eb95419b 7644static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7645 struct cgroup_taskset *tset)
68318b8e 7646{
bb9d97b6
TH
7647 struct task_struct *task;
7648
924f0d9a 7649 cgroup_taskset_for_each(task, tset) {
b68aa230 7650#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7651 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7652 return -EINVAL;
b68aa230 7653#else
bb9d97b6
TH
7654 /* We don't support RT-tasks being in separate groups */
7655 if (task->sched_class != &fair_sched_class)
7656 return -EINVAL;
b68aa230 7657#endif
bb9d97b6 7658 }
be367d09
BB
7659 return 0;
7660}
68318b8e 7661
eb95419b 7662static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7663 struct cgroup_taskset *tset)
68318b8e 7664{
bb9d97b6
TH
7665 struct task_struct *task;
7666
924f0d9a 7667 cgroup_taskset_for_each(task, tset)
bb9d97b6 7668 sched_move_task(task);
68318b8e
SV
7669}
7670
eb95419b
TH
7671static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7672 struct cgroup_subsys_state *old_css,
7673 struct task_struct *task)
068c5cc5
PZ
7674{
7675 /*
7676 * cgroup_exit() is called in the copy_process() failure path.
7677 * Ignore this case since the task hasn't ran yet, this avoids
7678 * trying to poke a half freed task state from generic code.
7679 */
7680 if (!(task->flags & PF_EXITING))
7681 return;
7682
7683 sched_move_task(task);
7684}
7685
052f1dc7 7686#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7687static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7688 struct cftype *cftype, u64 shareval)
68318b8e 7689{
182446d0 7690 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7691}
7692
182446d0
TH
7693static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7694 struct cftype *cft)
68318b8e 7695{
182446d0 7696 struct task_group *tg = css_tg(css);
68318b8e 7697
c8b28116 7698 return (u64) scale_load_down(tg->shares);
68318b8e 7699}
ab84d31e
PT
7700
7701#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7702static DEFINE_MUTEX(cfs_constraints_mutex);
7703
ab84d31e
PT
7704const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7705const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7706
a790de99
PT
7707static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7708
ab84d31e
PT
7709static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7710{
56f570e5 7711 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7712 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7713
7714 if (tg == &root_task_group)
7715 return -EINVAL;
7716
7717 /*
7718 * Ensure we have at some amount of bandwidth every period. This is
7719 * to prevent reaching a state of large arrears when throttled via
7720 * entity_tick() resulting in prolonged exit starvation.
7721 */
7722 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7723 return -EINVAL;
7724
7725 /*
7726 * Likewise, bound things on the otherside by preventing insane quota
7727 * periods. This also allows us to normalize in computing quota
7728 * feasibility.
7729 */
7730 if (period > max_cfs_quota_period)
7731 return -EINVAL;
7732
a790de99
PT
7733 mutex_lock(&cfs_constraints_mutex);
7734 ret = __cfs_schedulable(tg, period, quota);
7735 if (ret)
7736 goto out_unlock;
7737
58088ad0 7738 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7739 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7740 /*
7741 * If we need to toggle cfs_bandwidth_used, off->on must occur
7742 * before making related changes, and on->off must occur afterwards
7743 */
7744 if (runtime_enabled && !runtime_was_enabled)
7745 cfs_bandwidth_usage_inc();
ab84d31e
PT
7746 raw_spin_lock_irq(&cfs_b->lock);
7747 cfs_b->period = ns_to_ktime(period);
7748 cfs_b->quota = quota;
58088ad0 7749
a9cf55b2 7750 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7751 /* restart the period timer (if active) to handle new period expiry */
7752 if (runtime_enabled && cfs_b->timer_active) {
7753 /* force a reprogram */
7754 cfs_b->timer_active = 0;
7755 __start_cfs_bandwidth(cfs_b);
7756 }
ab84d31e
PT
7757 raw_spin_unlock_irq(&cfs_b->lock);
7758
7759 for_each_possible_cpu(i) {
7760 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7761 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7762
7763 raw_spin_lock_irq(&rq->lock);
58088ad0 7764 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7765 cfs_rq->runtime_remaining = 0;
671fd9da 7766
029632fb 7767 if (cfs_rq->throttled)
671fd9da 7768 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7769 raw_spin_unlock_irq(&rq->lock);
7770 }
1ee14e6c
BS
7771 if (runtime_was_enabled && !runtime_enabled)
7772 cfs_bandwidth_usage_dec();
a790de99
PT
7773out_unlock:
7774 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7775
a790de99 7776 return ret;
ab84d31e
PT
7777}
7778
7779int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7780{
7781 u64 quota, period;
7782
029632fb 7783 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7784 if (cfs_quota_us < 0)
7785 quota = RUNTIME_INF;
7786 else
7787 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7788
7789 return tg_set_cfs_bandwidth(tg, period, quota);
7790}
7791
7792long tg_get_cfs_quota(struct task_group *tg)
7793{
7794 u64 quota_us;
7795
029632fb 7796 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7797 return -1;
7798
029632fb 7799 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7800 do_div(quota_us, NSEC_PER_USEC);
7801
7802 return quota_us;
7803}
7804
7805int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7806{
7807 u64 quota, period;
7808
7809 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7810 quota = tg->cfs_bandwidth.quota;
ab84d31e 7811
ab84d31e
PT
7812 return tg_set_cfs_bandwidth(tg, period, quota);
7813}
7814
7815long tg_get_cfs_period(struct task_group *tg)
7816{
7817 u64 cfs_period_us;
7818
029632fb 7819 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7820 do_div(cfs_period_us, NSEC_PER_USEC);
7821
7822 return cfs_period_us;
7823}
7824
182446d0
TH
7825static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7826 struct cftype *cft)
ab84d31e 7827{
182446d0 7828 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7829}
7830
182446d0
TH
7831static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7832 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7833{
182446d0 7834 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7835}
7836
182446d0
TH
7837static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7838 struct cftype *cft)
ab84d31e 7839{
182446d0 7840 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7841}
7842
182446d0
TH
7843static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7844 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7845{
182446d0 7846 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7847}
7848
a790de99
PT
7849struct cfs_schedulable_data {
7850 struct task_group *tg;
7851 u64 period, quota;
7852};
7853
7854/*
7855 * normalize group quota/period to be quota/max_period
7856 * note: units are usecs
7857 */
7858static u64 normalize_cfs_quota(struct task_group *tg,
7859 struct cfs_schedulable_data *d)
7860{
7861 u64 quota, period;
7862
7863 if (tg == d->tg) {
7864 period = d->period;
7865 quota = d->quota;
7866 } else {
7867 period = tg_get_cfs_period(tg);
7868 quota = tg_get_cfs_quota(tg);
7869 }
7870
7871 /* note: these should typically be equivalent */
7872 if (quota == RUNTIME_INF || quota == -1)
7873 return RUNTIME_INF;
7874
7875 return to_ratio(period, quota);
7876}
7877
7878static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7879{
7880 struct cfs_schedulable_data *d = data;
029632fb 7881 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7882 s64 quota = 0, parent_quota = -1;
7883
7884 if (!tg->parent) {
7885 quota = RUNTIME_INF;
7886 } else {
029632fb 7887 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7888
7889 quota = normalize_cfs_quota(tg, d);
7890 parent_quota = parent_b->hierarchal_quota;
7891
7892 /*
7893 * ensure max(child_quota) <= parent_quota, inherit when no
7894 * limit is set
7895 */
7896 if (quota == RUNTIME_INF)
7897 quota = parent_quota;
7898 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7899 return -EINVAL;
7900 }
7901 cfs_b->hierarchal_quota = quota;
7902
7903 return 0;
7904}
7905
7906static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7907{
8277434e 7908 int ret;
a790de99
PT
7909 struct cfs_schedulable_data data = {
7910 .tg = tg,
7911 .period = period,
7912 .quota = quota,
7913 };
7914
7915 if (quota != RUNTIME_INF) {
7916 do_div(data.period, NSEC_PER_USEC);
7917 do_div(data.quota, NSEC_PER_USEC);
7918 }
7919
8277434e
PT
7920 rcu_read_lock();
7921 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7922 rcu_read_unlock();
7923
7924 return ret;
a790de99 7925}
e8da1b18 7926
2da8ca82 7927static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7928{
2da8ca82 7929 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7930 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7931
44ffc75b
TH
7932 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7933 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7934 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7935
7936 return 0;
7937}
ab84d31e 7938#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7939#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7940
052f1dc7 7941#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7942static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7943 struct cftype *cft, s64 val)
6f505b16 7944{
182446d0 7945 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7946}
7947
182446d0
TH
7948static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7949 struct cftype *cft)
6f505b16 7950{
182446d0 7951 return sched_group_rt_runtime(css_tg(css));
6f505b16 7952}
d0b27fa7 7953
182446d0
TH
7954static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7955 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7956{
182446d0 7957 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7958}
7959
182446d0
TH
7960static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7961 struct cftype *cft)
d0b27fa7 7962{
182446d0 7963 return sched_group_rt_period(css_tg(css));
d0b27fa7 7964}
6d6bc0ad 7965#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7966
fe5c7cc2 7967static struct cftype cpu_files[] = {
052f1dc7 7968#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7969 {
7970 .name = "shares",
f4c753b7
PM
7971 .read_u64 = cpu_shares_read_u64,
7972 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7973 },
052f1dc7 7974#endif
ab84d31e
PT
7975#ifdef CONFIG_CFS_BANDWIDTH
7976 {
7977 .name = "cfs_quota_us",
7978 .read_s64 = cpu_cfs_quota_read_s64,
7979 .write_s64 = cpu_cfs_quota_write_s64,
7980 },
7981 {
7982 .name = "cfs_period_us",
7983 .read_u64 = cpu_cfs_period_read_u64,
7984 .write_u64 = cpu_cfs_period_write_u64,
7985 },
e8da1b18
NR
7986 {
7987 .name = "stat",
2da8ca82 7988 .seq_show = cpu_stats_show,
e8da1b18 7989 },
ab84d31e 7990#endif
052f1dc7 7991#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7992 {
9f0c1e56 7993 .name = "rt_runtime_us",
06ecb27c
PM
7994 .read_s64 = cpu_rt_runtime_read,
7995 .write_s64 = cpu_rt_runtime_write,
6f505b16 7996 },
d0b27fa7
PZ
7997 {
7998 .name = "rt_period_us",
f4c753b7
PM
7999 .read_u64 = cpu_rt_period_read_uint,
8000 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8001 },
052f1dc7 8002#endif
4baf6e33 8003 { } /* terminate */
68318b8e
SV
8004};
8005
073219e9 8006struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8007 .css_alloc = cpu_cgroup_css_alloc,
8008 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8009 .css_online = cpu_cgroup_css_online,
8010 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8011 .can_attach = cpu_cgroup_can_attach,
8012 .attach = cpu_cgroup_attach,
068c5cc5 8013 .exit = cpu_cgroup_exit,
4baf6e33 8014 .base_cftypes = cpu_files,
68318b8e
SV
8015 .early_init = 1,
8016};
8017
052f1dc7 8018#endif /* CONFIG_CGROUP_SCHED */
d842de87 8019
b637a328
PM
8020void dump_cpu_task(int cpu)
8021{
8022 pr_info("Task dump for CPU %d:\n", cpu);
8023 sched_show_task(cpu_curr(cpu));
8024}