sched/core: Remove unused argument from init_[rt|dl]_rq()
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
9edfbfed
PZ
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 125 return;
aa483808 126
fe44d621 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
128 if (delta < 0)
129 return;
fe44d621
PZ
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
3e51f33f
PZ
132}
133
bf5c91ba
IM
134/*
135 * Debugging: various feature bits
136 */
f00b45c1 137
f00b45c1
PZ
138#define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
bf5c91ba 141const_debug unsigned int sysctl_sched_features =
391e43da 142#include "features.h"
f00b45c1
PZ
143 0;
144
145#undef SCHED_FEAT
146
147#ifdef CONFIG_SCHED_DEBUG
148#define SCHED_FEAT(name, enabled) \
149 #name ,
150
1292531f 151static const char * const sched_feat_names[] = {
391e43da 152#include "features.h"
f00b45c1
PZ
153};
154
155#undef SCHED_FEAT
156
34f3a814 157static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 158{
f00b45c1
PZ
159 int i;
160
f8b6d1cc 161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 165 }
34f3a814 166 seq_puts(m, "\n");
f00b45c1 167
34f3a814 168 return 0;
f00b45c1
PZ
169}
170
f8b6d1cc
PZ
171#ifdef HAVE_JUMP_LABEL
172
c5905afb
IM
173#define jump_label_key__true STATIC_KEY_INIT_TRUE
174#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
175
176#define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
c5905afb 179struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
180#include "features.h"
181};
182
183#undef SCHED_FEAT
184
185static void sched_feat_disable(int i)
186{
c5905afb
IM
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190
191static void sched_feat_enable(int i)
192{
c5905afb
IM
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
195}
196#else
197static void sched_feat_disable(int i) { };
198static void sched_feat_enable(int i) { };
199#endif /* HAVE_JUMP_LABEL */
200
1a687c2e 201static int sched_feat_set(char *cmp)
f00b45c1 202{
f00b45c1 203 int i;
1a687c2e 204 int neg = 0;
f00b45c1 205
524429c3 206 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
207 neg = 1;
208 cmp += 3;
209 }
210
f8b6d1cc 211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 213 if (neg) {
f00b45c1 214 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
215 sched_feat_disable(i);
216 } else {
f00b45c1 217 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
218 sched_feat_enable(i);
219 }
f00b45c1
PZ
220 break;
221 }
222 }
223
1a687c2e
MG
224 return i;
225}
226
227static ssize_t
228sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230{
231 char buf[64];
232 char *cmp;
233 int i;
5cd08fbf 234 struct inode *inode;
1a687c2e
MG
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
5cd08fbf
JB
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
1a687c2e 248 i = sched_feat_set(cmp);
5cd08fbf 249 mutex_unlock(&inode->i_mutex);
f8b6d1cc 250 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
251 return -EINVAL;
252
42994724 253 *ppos += cnt;
f00b45c1
PZ
254
255 return cnt;
256}
257
34f3a814
LZ
258static int sched_feat_open(struct inode *inode, struct file *filp)
259{
260 return single_open(filp, sched_feat_show, NULL);
261}
262
828c0950 263static const struct file_operations sched_feat_fops = {
34f3a814
LZ
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
f00b45c1
PZ
269};
270
271static __init int sched_init_debug(void)
272{
f00b45c1
PZ
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277}
278late_initcall(sched_init_debug);
f8b6d1cc 279#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 280
b82d9fdd
PZ
281/*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
e9e9250b
PZ
287/*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
fa85ae24 295/*
9f0c1e56 296 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
297 * default: 1s
298 */
9f0c1e56 299unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 300
029632fb 301__read_mostly int scheduler_running;
6892b75e 302
9f0c1e56
PZ
303/*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307int sysctl_sched_rt_runtime = 950000;
fa85ae24 308
1da177e4 309/*
cc2a73b5 310 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 311 */
a9957449 312static struct rq *this_rq_lock(void)
1da177e4
LT
313 __acquires(rq->lock)
314{
70b97a7f 315 struct rq *rq;
1da177e4
LT
316
317 local_irq_disable();
318 rq = this_rq();
05fa785c 319 raw_spin_lock(&rq->lock);
1da177e4
LT
320
321 return rq;
322}
323
8f4d37ec
PZ
324#ifdef CONFIG_SCHED_HRTICK
325/*
326 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 327 */
8f4d37ec 328
8f4d37ec
PZ
329static void hrtick_clear(struct rq *rq)
330{
331 if (hrtimer_active(&rq->hrtick_timer))
332 hrtimer_cancel(&rq->hrtick_timer);
333}
334
8f4d37ec
PZ
335/*
336 * High-resolution timer tick.
337 * Runs from hardirq context with interrupts disabled.
338 */
339static enum hrtimer_restart hrtick(struct hrtimer *timer)
340{
341 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
342
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344
05fa785c 345 raw_spin_lock(&rq->lock);
3e51f33f 346 update_rq_clock(rq);
8f4d37ec 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 348 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
349
350 return HRTIMER_NORESTART;
351}
352
95e904c7 353#ifdef CONFIG_SMP
971ee28c
PZ
354
355static int __hrtick_restart(struct rq *rq)
356{
357 struct hrtimer *timer = &rq->hrtick_timer;
358 ktime_t time = hrtimer_get_softexpires(timer);
359
360 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
361}
362
31656519
PZ
363/*
364 * called from hardirq (IPI) context
365 */
366static void __hrtick_start(void *arg)
b328ca18 367{
31656519 368 struct rq *rq = arg;
b328ca18 369
05fa785c 370 raw_spin_lock(&rq->lock);
971ee28c 371 __hrtick_restart(rq);
31656519 372 rq->hrtick_csd_pending = 0;
05fa785c 373 raw_spin_unlock(&rq->lock);
b328ca18
PZ
374}
375
31656519
PZ
376/*
377 * Called to set the hrtick timer state.
378 *
379 * called with rq->lock held and irqs disabled
380 */
029632fb 381void hrtick_start(struct rq *rq, u64 delay)
b328ca18 382{
31656519 383 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 384 ktime_t time;
385 s64 delta;
386
387 /*
388 * Don't schedule slices shorter than 10000ns, that just
389 * doesn't make sense and can cause timer DoS.
390 */
391 delta = max_t(s64, delay, 10000LL);
392 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 393
cc584b21 394 hrtimer_set_expires(timer, time);
31656519
PZ
395
396 if (rq == this_rq()) {
971ee28c 397 __hrtick_restart(rq);
31656519 398 } else if (!rq->hrtick_csd_pending) {
c46fff2a 399 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
400 rq->hrtick_csd_pending = 1;
401 }
b328ca18
PZ
402}
403
404static int
405hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
406{
407 int cpu = (int)(long)hcpu;
408
409 switch (action) {
410 case CPU_UP_CANCELED:
411 case CPU_UP_CANCELED_FROZEN:
412 case CPU_DOWN_PREPARE:
413 case CPU_DOWN_PREPARE_FROZEN:
414 case CPU_DEAD:
415 case CPU_DEAD_FROZEN:
31656519 416 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
417 return NOTIFY_OK;
418 }
419
420 return NOTIFY_DONE;
421}
422
fa748203 423static __init void init_hrtick(void)
b328ca18
PZ
424{
425 hotcpu_notifier(hotplug_hrtick, 0);
426}
31656519
PZ
427#else
428/*
429 * Called to set the hrtick timer state.
430 *
431 * called with rq->lock held and irqs disabled
432 */
029632fb 433void hrtick_start(struct rq *rq, u64 delay)
31656519 434{
86893335
WL
435 /*
436 * Don't schedule slices shorter than 10000ns, that just
437 * doesn't make sense. Rely on vruntime for fairness.
438 */
439 delay = max_t(u64, delay, 10000LL);
7f1e2ca9 440 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 441 HRTIMER_MODE_REL_PINNED, 0);
31656519 442}
b328ca18 443
006c75f1 444static inline void init_hrtick(void)
8f4d37ec 445{
8f4d37ec 446}
31656519 447#endif /* CONFIG_SMP */
8f4d37ec 448
31656519 449static void init_rq_hrtick(struct rq *rq)
8f4d37ec 450{
31656519
PZ
451#ifdef CONFIG_SMP
452 rq->hrtick_csd_pending = 0;
8f4d37ec 453
31656519
PZ
454 rq->hrtick_csd.flags = 0;
455 rq->hrtick_csd.func = __hrtick_start;
456 rq->hrtick_csd.info = rq;
457#endif
8f4d37ec 458
31656519
PZ
459 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
460 rq->hrtick_timer.function = hrtick;
8f4d37ec 461}
006c75f1 462#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
463static inline void hrtick_clear(struct rq *rq)
464{
465}
466
8f4d37ec
PZ
467static inline void init_rq_hrtick(struct rq *rq)
468{
469}
470
b328ca18
PZ
471static inline void init_hrtick(void)
472{
473}
006c75f1 474#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 475
fd99f91a
PZ
476/*
477 * cmpxchg based fetch_or, macro so it works for different integer types
478 */
479#define fetch_or(ptr, val) \
480({ typeof(*(ptr)) __old, __val = *(ptr); \
481 for (;;) { \
482 __old = cmpxchg((ptr), __val, __val | (val)); \
483 if (__old == __val) \
484 break; \
485 __val = __old; \
486 } \
487 __old; \
488})
489
e3baac47 490#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
491/*
492 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
493 * this avoids any races wrt polling state changes and thereby avoids
494 * spurious IPIs.
495 */
496static bool set_nr_and_not_polling(struct task_struct *p)
497{
498 struct thread_info *ti = task_thread_info(p);
499 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
500}
e3baac47
PZ
501
502/*
503 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
504 *
505 * If this returns true, then the idle task promises to call
506 * sched_ttwu_pending() and reschedule soon.
507 */
508static bool set_nr_if_polling(struct task_struct *p)
509{
510 struct thread_info *ti = task_thread_info(p);
511 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
512
513 for (;;) {
514 if (!(val & _TIF_POLLING_NRFLAG))
515 return false;
516 if (val & _TIF_NEED_RESCHED)
517 return true;
518 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
519 if (old == val)
520 break;
521 val = old;
522 }
523 return true;
524}
525
fd99f91a
PZ
526#else
527static bool set_nr_and_not_polling(struct task_struct *p)
528{
529 set_tsk_need_resched(p);
530 return true;
531}
e3baac47
PZ
532
533#ifdef CONFIG_SMP
534static bool set_nr_if_polling(struct task_struct *p)
535{
536 return false;
537}
538#endif
fd99f91a
PZ
539#endif
540
c24d20db 541/*
8875125e 542 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
543 *
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
546 * the target CPU.
547 */
8875125e 548void resched_curr(struct rq *rq)
c24d20db 549{
8875125e 550 struct task_struct *curr = rq->curr;
c24d20db
IM
551 int cpu;
552
8875125e 553 lockdep_assert_held(&rq->lock);
c24d20db 554
8875125e 555 if (test_tsk_need_resched(curr))
c24d20db
IM
556 return;
557
8875125e 558 cpu = cpu_of(rq);
fd99f91a 559
f27dde8d 560 if (cpu == smp_processor_id()) {
8875125e 561 set_tsk_need_resched(curr);
f27dde8d 562 set_preempt_need_resched();
c24d20db 563 return;
f27dde8d 564 }
c24d20db 565
8875125e 566 if (set_nr_and_not_polling(curr))
c24d20db 567 smp_send_reschedule(cpu);
dfc68f29
AL
568 else
569 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
570}
571
029632fb 572void resched_cpu(int cpu)
c24d20db
IM
573{
574 struct rq *rq = cpu_rq(cpu);
575 unsigned long flags;
576
05fa785c 577 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 578 return;
8875125e 579 resched_curr(rq);
05fa785c 580 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 581}
06d8308c 582
b021fe3e 583#ifdef CONFIG_SMP
3451d024 584#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
585/*
586 * In the semi idle case, use the nearest busy cpu for migrating timers
587 * from an idle cpu. This is good for power-savings.
588 *
589 * We don't do similar optimization for completely idle system, as
590 * selecting an idle cpu will add more delays to the timers than intended
591 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
592 */
6201b4d6 593int get_nohz_timer_target(int pinned)
83cd4fe2
VP
594{
595 int cpu = smp_processor_id();
596 int i;
597 struct sched_domain *sd;
598
6201b4d6
VK
599 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
600 return cpu;
601
057f3fad 602 rcu_read_lock();
83cd4fe2 603 for_each_domain(cpu, sd) {
057f3fad
PZ
604 for_each_cpu(i, sched_domain_span(sd)) {
605 if (!idle_cpu(i)) {
606 cpu = i;
607 goto unlock;
608 }
609 }
83cd4fe2 610 }
057f3fad
PZ
611unlock:
612 rcu_read_unlock();
83cd4fe2
VP
613 return cpu;
614}
06d8308c
TG
615/*
616 * When add_timer_on() enqueues a timer into the timer wheel of an
617 * idle CPU then this timer might expire before the next timer event
618 * which is scheduled to wake up that CPU. In case of a completely
619 * idle system the next event might even be infinite time into the
620 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
621 * leaves the inner idle loop so the newly added timer is taken into
622 * account when the CPU goes back to idle and evaluates the timer
623 * wheel for the next timer event.
624 */
1c20091e 625static void wake_up_idle_cpu(int cpu)
06d8308c
TG
626{
627 struct rq *rq = cpu_rq(cpu);
628
629 if (cpu == smp_processor_id())
630 return;
631
67b9ca70 632 if (set_nr_and_not_polling(rq->idle))
06d8308c 633 smp_send_reschedule(cpu);
dfc68f29
AL
634 else
635 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
636}
637
c5bfece2 638static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 639{
53c5fa16
FW
640 /*
641 * We just need the target to call irq_exit() and re-evaluate
642 * the next tick. The nohz full kick at least implies that.
643 * If needed we can still optimize that later with an
644 * empty IRQ.
645 */
c5bfece2 646 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
647 if (cpu != smp_processor_id() ||
648 tick_nohz_tick_stopped())
53c5fa16 649 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
650 return true;
651 }
652
653 return false;
654}
655
656void wake_up_nohz_cpu(int cpu)
657{
c5bfece2 658 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
659 wake_up_idle_cpu(cpu);
660}
661
ca38062e 662static inline bool got_nohz_idle_kick(void)
45bf76df 663{
1c792db7 664 int cpu = smp_processor_id();
873b4c65
VG
665
666 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
667 return false;
668
669 if (idle_cpu(cpu) && !need_resched())
670 return true;
671
672 /*
673 * We can't run Idle Load Balance on this CPU for this time so we
674 * cancel it and clear NOHZ_BALANCE_KICK
675 */
676 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
677 return false;
45bf76df
IM
678}
679
3451d024 680#else /* CONFIG_NO_HZ_COMMON */
45bf76df 681
ca38062e 682static inline bool got_nohz_idle_kick(void)
2069dd75 683{
ca38062e 684 return false;
2069dd75
PZ
685}
686
3451d024 687#endif /* CONFIG_NO_HZ_COMMON */
d842de87 688
ce831b38
FW
689#ifdef CONFIG_NO_HZ_FULL
690bool sched_can_stop_tick(void)
691{
1e78cdbd
RR
692 /*
693 * FIFO realtime policy runs the highest priority task. Other runnable
694 * tasks are of a lower priority. The scheduler tick does nothing.
695 */
696 if (current->policy == SCHED_FIFO)
697 return true;
698
699 /*
700 * Round-robin realtime tasks time slice with other tasks at the same
701 * realtime priority. Is this task the only one at this priority?
702 */
703 if (current->policy == SCHED_RR) {
704 struct sched_rt_entity *rt_se = &current->rt;
705
706 return rt_se->run_list.prev == rt_se->run_list.next;
707 }
708
3882ec64
FW
709 /*
710 * More than one running task need preemption.
711 * nr_running update is assumed to be visible
712 * after IPI is sent from wakers.
713 */
541b8264
VK
714 if (this_rq()->nr_running > 1)
715 return false;
ce831b38 716
541b8264 717 return true;
ce831b38
FW
718}
719#endif /* CONFIG_NO_HZ_FULL */
d842de87 720
029632fb 721void sched_avg_update(struct rq *rq)
18d95a28 722{
e9e9250b
PZ
723 s64 period = sched_avg_period();
724
78becc27 725 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
726 /*
727 * Inline assembly required to prevent the compiler
728 * optimising this loop into a divmod call.
729 * See __iter_div_u64_rem() for another example of this.
730 */
731 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
732 rq->age_stamp += period;
733 rq->rt_avg /= 2;
734 }
18d95a28
PZ
735}
736
6d6bc0ad 737#endif /* CONFIG_SMP */
18d95a28 738
a790de99
PT
739#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
740 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 741/*
8277434e
PT
742 * Iterate task_group tree rooted at *from, calling @down when first entering a
743 * node and @up when leaving it for the final time.
744 *
745 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 746 */
029632fb 747int walk_tg_tree_from(struct task_group *from,
8277434e 748 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
749{
750 struct task_group *parent, *child;
eb755805 751 int ret;
c09595f6 752
8277434e
PT
753 parent = from;
754
c09595f6 755down:
eb755805
PZ
756 ret = (*down)(parent, data);
757 if (ret)
8277434e 758 goto out;
c09595f6
PZ
759 list_for_each_entry_rcu(child, &parent->children, siblings) {
760 parent = child;
761 goto down;
762
763up:
764 continue;
765 }
eb755805 766 ret = (*up)(parent, data);
8277434e
PT
767 if (ret || parent == from)
768 goto out;
c09595f6
PZ
769
770 child = parent;
771 parent = parent->parent;
772 if (parent)
773 goto up;
8277434e 774out:
eb755805 775 return ret;
c09595f6
PZ
776}
777
029632fb 778int tg_nop(struct task_group *tg, void *data)
eb755805 779{
e2b245f8 780 return 0;
eb755805 781}
18d95a28
PZ
782#endif
783
45bf76df
IM
784static void set_load_weight(struct task_struct *p)
785{
f05998d4
NR
786 int prio = p->static_prio - MAX_RT_PRIO;
787 struct load_weight *load = &p->se.load;
788
dd41f596
IM
789 /*
790 * SCHED_IDLE tasks get minimal weight:
791 */
792 if (p->policy == SCHED_IDLE) {
c8b28116 793 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 794 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
795 return;
796 }
71f8bd46 797
c8b28116 798 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 799 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
800}
801
371fd7e7 802static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 803{
a64692a3 804 update_rq_clock(rq);
43148951 805 sched_info_queued(rq, p);
371fd7e7 806 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
807}
808
371fd7e7 809static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 810{
a64692a3 811 update_rq_clock(rq);
43148951 812 sched_info_dequeued(rq, p);
371fd7e7 813 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
814}
815
029632fb 816void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
817{
818 if (task_contributes_to_load(p))
819 rq->nr_uninterruptible--;
820
371fd7e7 821 enqueue_task(rq, p, flags);
1e3c88bd
PZ
822}
823
029632fb 824void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
825{
826 if (task_contributes_to_load(p))
827 rq->nr_uninterruptible++;
828
371fd7e7 829 dequeue_task(rq, p, flags);
1e3c88bd
PZ
830}
831
fe44d621 832static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 833{
095c0aa8
GC
834/*
835 * In theory, the compile should just see 0 here, and optimize out the call
836 * to sched_rt_avg_update. But I don't trust it...
837 */
838#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
839 s64 steal = 0, irq_delta = 0;
840#endif
841#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 842 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
843
844 /*
845 * Since irq_time is only updated on {soft,}irq_exit, we might run into
846 * this case when a previous update_rq_clock() happened inside a
847 * {soft,}irq region.
848 *
849 * When this happens, we stop ->clock_task and only update the
850 * prev_irq_time stamp to account for the part that fit, so that a next
851 * update will consume the rest. This ensures ->clock_task is
852 * monotonic.
853 *
854 * It does however cause some slight miss-attribution of {soft,}irq
855 * time, a more accurate solution would be to update the irq_time using
856 * the current rq->clock timestamp, except that would require using
857 * atomic ops.
858 */
859 if (irq_delta > delta)
860 irq_delta = delta;
861
862 rq->prev_irq_time += irq_delta;
863 delta -= irq_delta;
095c0aa8
GC
864#endif
865#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 866 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
867 steal = paravirt_steal_clock(cpu_of(rq));
868 steal -= rq->prev_steal_time_rq;
869
870 if (unlikely(steal > delta))
871 steal = delta;
872
095c0aa8 873 rq->prev_steal_time_rq += steal;
095c0aa8
GC
874 delta -= steal;
875 }
876#endif
877
fe44d621
PZ
878 rq->clock_task += delta;
879
095c0aa8 880#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 881 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
882 sched_rt_avg_update(rq, irq_delta + steal);
883#endif
aa483808
VP
884}
885
34f971f6
PZ
886void sched_set_stop_task(int cpu, struct task_struct *stop)
887{
888 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
889 struct task_struct *old_stop = cpu_rq(cpu)->stop;
890
891 if (stop) {
892 /*
893 * Make it appear like a SCHED_FIFO task, its something
894 * userspace knows about and won't get confused about.
895 *
896 * Also, it will make PI more or less work without too
897 * much confusion -- but then, stop work should not
898 * rely on PI working anyway.
899 */
900 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
901
902 stop->sched_class = &stop_sched_class;
903 }
904
905 cpu_rq(cpu)->stop = stop;
906
907 if (old_stop) {
908 /*
909 * Reset it back to a normal scheduling class so that
910 * it can die in pieces.
911 */
912 old_stop->sched_class = &rt_sched_class;
913 }
914}
915
14531189 916/*
dd41f596 917 * __normal_prio - return the priority that is based on the static prio
14531189 918 */
14531189
IM
919static inline int __normal_prio(struct task_struct *p)
920{
dd41f596 921 return p->static_prio;
14531189
IM
922}
923
b29739f9
IM
924/*
925 * Calculate the expected normal priority: i.e. priority
926 * without taking RT-inheritance into account. Might be
927 * boosted by interactivity modifiers. Changes upon fork,
928 * setprio syscalls, and whenever the interactivity
929 * estimator recalculates.
930 */
36c8b586 931static inline int normal_prio(struct task_struct *p)
b29739f9
IM
932{
933 int prio;
934
aab03e05
DF
935 if (task_has_dl_policy(p))
936 prio = MAX_DL_PRIO-1;
937 else if (task_has_rt_policy(p))
b29739f9
IM
938 prio = MAX_RT_PRIO-1 - p->rt_priority;
939 else
940 prio = __normal_prio(p);
941 return prio;
942}
943
944/*
945 * Calculate the current priority, i.e. the priority
946 * taken into account by the scheduler. This value might
947 * be boosted by RT tasks, or might be boosted by
948 * interactivity modifiers. Will be RT if the task got
949 * RT-boosted. If not then it returns p->normal_prio.
950 */
36c8b586 951static int effective_prio(struct task_struct *p)
b29739f9
IM
952{
953 p->normal_prio = normal_prio(p);
954 /*
955 * If we are RT tasks or we were boosted to RT priority,
956 * keep the priority unchanged. Otherwise, update priority
957 * to the normal priority:
958 */
959 if (!rt_prio(p->prio))
960 return p->normal_prio;
961 return p->prio;
962}
963
1da177e4
LT
964/**
965 * task_curr - is this task currently executing on a CPU?
966 * @p: the task in question.
e69f6186
YB
967 *
968 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 969 */
36c8b586 970inline int task_curr(const struct task_struct *p)
1da177e4
LT
971{
972 return cpu_curr(task_cpu(p)) == p;
973}
974
67dfa1b7
KT
975/*
976 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
977 */
cb469845
SR
978static inline void check_class_changed(struct rq *rq, struct task_struct *p,
979 const struct sched_class *prev_class,
da7a735e 980 int oldprio)
cb469845
SR
981{
982 if (prev_class != p->sched_class) {
983 if (prev_class->switched_from)
da7a735e 984 prev_class->switched_from(rq, p);
67dfa1b7 985 /* Possble rq->lock 'hole'. */
da7a735e 986 p->sched_class->switched_to(rq, p);
2d3d891d 987 } else if (oldprio != p->prio || dl_task(p))
da7a735e 988 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
989}
990
029632fb 991void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
992{
993 const struct sched_class *class;
994
995 if (p->sched_class == rq->curr->sched_class) {
996 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
997 } else {
998 for_each_class(class) {
999 if (class == rq->curr->sched_class)
1000 break;
1001 if (class == p->sched_class) {
8875125e 1002 resched_curr(rq);
1e5a7405
PZ
1003 break;
1004 }
1005 }
1006 }
1007
1008 /*
1009 * A queue event has occurred, and we're going to schedule. In
1010 * this case, we can save a useless back to back clock update.
1011 */
da0c1e65 1012 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1013 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1014}
1015
1da177e4 1016#ifdef CONFIG_SMP
dd41f596 1017void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1018{
e2912009
PZ
1019#ifdef CONFIG_SCHED_DEBUG
1020 /*
1021 * We should never call set_task_cpu() on a blocked task,
1022 * ttwu() will sort out the placement.
1023 */
077614ee 1024 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1025 !p->on_rq);
0122ec5b
PZ
1026
1027#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1028 /*
1029 * The caller should hold either p->pi_lock or rq->lock, when changing
1030 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1031 *
1032 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1033 * see task_group().
6c6c54e1
PZ
1034 *
1035 * Furthermore, all task_rq users should acquire both locks, see
1036 * task_rq_lock().
1037 */
0122ec5b
PZ
1038 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1039 lockdep_is_held(&task_rq(p)->lock)));
1040#endif
e2912009
PZ
1041#endif
1042
de1d7286 1043 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1044
0c69774e 1045 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1046 if (p->sched_class->migrate_task_rq)
1047 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1048 p->se.nr_migrations++;
86038c5e 1049 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1050 }
dd41f596
IM
1051
1052 __set_task_cpu(p, new_cpu);
c65cc870
IM
1053}
1054
ac66f547
PZ
1055static void __migrate_swap_task(struct task_struct *p, int cpu)
1056{
da0c1e65 1057 if (task_on_rq_queued(p)) {
ac66f547
PZ
1058 struct rq *src_rq, *dst_rq;
1059
1060 src_rq = task_rq(p);
1061 dst_rq = cpu_rq(cpu);
1062
1063 deactivate_task(src_rq, p, 0);
1064 set_task_cpu(p, cpu);
1065 activate_task(dst_rq, p, 0);
1066 check_preempt_curr(dst_rq, p, 0);
1067 } else {
1068 /*
1069 * Task isn't running anymore; make it appear like we migrated
1070 * it before it went to sleep. This means on wakeup we make the
1071 * previous cpu our targer instead of where it really is.
1072 */
1073 p->wake_cpu = cpu;
1074 }
1075}
1076
1077struct migration_swap_arg {
1078 struct task_struct *src_task, *dst_task;
1079 int src_cpu, dst_cpu;
1080};
1081
1082static int migrate_swap_stop(void *data)
1083{
1084 struct migration_swap_arg *arg = data;
1085 struct rq *src_rq, *dst_rq;
1086 int ret = -EAGAIN;
1087
1088 src_rq = cpu_rq(arg->src_cpu);
1089 dst_rq = cpu_rq(arg->dst_cpu);
1090
74602315
PZ
1091 double_raw_lock(&arg->src_task->pi_lock,
1092 &arg->dst_task->pi_lock);
ac66f547
PZ
1093 double_rq_lock(src_rq, dst_rq);
1094 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1095 goto unlock;
1096
1097 if (task_cpu(arg->src_task) != arg->src_cpu)
1098 goto unlock;
1099
1100 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1101 goto unlock;
1102
1103 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1104 goto unlock;
1105
1106 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1107 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1108
1109 ret = 0;
1110
1111unlock:
1112 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1113 raw_spin_unlock(&arg->dst_task->pi_lock);
1114 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1115
1116 return ret;
1117}
1118
1119/*
1120 * Cross migrate two tasks
1121 */
1122int migrate_swap(struct task_struct *cur, struct task_struct *p)
1123{
1124 struct migration_swap_arg arg;
1125 int ret = -EINVAL;
1126
ac66f547
PZ
1127 arg = (struct migration_swap_arg){
1128 .src_task = cur,
1129 .src_cpu = task_cpu(cur),
1130 .dst_task = p,
1131 .dst_cpu = task_cpu(p),
1132 };
1133
1134 if (arg.src_cpu == arg.dst_cpu)
1135 goto out;
1136
6acce3ef
PZ
1137 /*
1138 * These three tests are all lockless; this is OK since all of them
1139 * will be re-checked with proper locks held further down the line.
1140 */
ac66f547
PZ
1141 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1142 goto out;
1143
1144 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1145 goto out;
1146
1147 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1148 goto out;
1149
286549dc 1150 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1151 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1152
1153out:
ac66f547
PZ
1154 return ret;
1155}
1156
969c7921 1157struct migration_arg {
36c8b586 1158 struct task_struct *task;
1da177e4 1159 int dest_cpu;
70b97a7f 1160};
1da177e4 1161
969c7921
TH
1162static int migration_cpu_stop(void *data);
1163
1da177e4
LT
1164/*
1165 * wait_task_inactive - wait for a thread to unschedule.
1166 *
85ba2d86
RM
1167 * If @match_state is nonzero, it's the @p->state value just checked and
1168 * not expected to change. If it changes, i.e. @p might have woken up,
1169 * then return zero. When we succeed in waiting for @p to be off its CPU,
1170 * we return a positive number (its total switch count). If a second call
1171 * a short while later returns the same number, the caller can be sure that
1172 * @p has remained unscheduled the whole time.
1173 *
1da177e4
LT
1174 * The caller must ensure that the task *will* unschedule sometime soon,
1175 * else this function might spin for a *long* time. This function can't
1176 * be called with interrupts off, or it may introduce deadlock with
1177 * smp_call_function() if an IPI is sent by the same process we are
1178 * waiting to become inactive.
1179 */
85ba2d86 1180unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1181{
1182 unsigned long flags;
da0c1e65 1183 int running, queued;
85ba2d86 1184 unsigned long ncsw;
70b97a7f 1185 struct rq *rq;
1da177e4 1186
3a5c359a
AK
1187 for (;;) {
1188 /*
1189 * We do the initial early heuristics without holding
1190 * any task-queue locks at all. We'll only try to get
1191 * the runqueue lock when things look like they will
1192 * work out!
1193 */
1194 rq = task_rq(p);
fa490cfd 1195
3a5c359a
AK
1196 /*
1197 * If the task is actively running on another CPU
1198 * still, just relax and busy-wait without holding
1199 * any locks.
1200 *
1201 * NOTE! Since we don't hold any locks, it's not
1202 * even sure that "rq" stays as the right runqueue!
1203 * But we don't care, since "task_running()" will
1204 * return false if the runqueue has changed and p
1205 * is actually now running somewhere else!
1206 */
85ba2d86
RM
1207 while (task_running(rq, p)) {
1208 if (match_state && unlikely(p->state != match_state))
1209 return 0;
3a5c359a 1210 cpu_relax();
85ba2d86 1211 }
fa490cfd 1212
3a5c359a
AK
1213 /*
1214 * Ok, time to look more closely! We need the rq
1215 * lock now, to be *sure*. If we're wrong, we'll
1216 * just go back and repeat.
1217 */
1218 rq = task_rq_lock(p, &flags);
27a9da65 1219 trace_sched_wait_task(p);
3a5c359a 1220 running = task_running(rq, p);
da0c1e65 1221 queued = task_on_rq_queued(p);
85ba2d86 1222 ncsw = 0;
f31e11d8 1223 if (!match_state || p->state == match_state)
93dcf55f 1224 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1225 task_rq_unlock(rq, p, &flags);
fa490cfd 1226
85ba2d86
RM
1227 /*
1228 * If it changed from the expected state, bail out now.
1229 */
1230 if (unlikely(!ncsw))
1231 break;
1232
3a5c359a
AK
1233 /*
1234 * Was it really running after all now that we
1235 * checked with the proper locks actually held?
1236 *
1237 * Oops. Go back and try again..
1238 */
1239 if (unlikely(running)) {
1240 cpu_relax();
1241 continue;
1242 }
fa490cfd 1243
3a5c359a
AK
1244 /*
1245 * It's not enough that it's not actively running,
1246 * it must be off the runqueue _entirely_, and not
1247 * preempted!
1248 *
80dd99b3 1249 * So if it was still runnable (but just not actively
3a5c359a
AK
1250 * running right now), it's preempted, and we should
1251 * yield - it could be a while.
1252 */
da0c1e65 1253 if (unlikely(queued)) {
8eb90c30
TG
1254 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1255
1256 set_current_state(TASK_UNINTERRUPTIBLE);
1257 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1258 continue;
1259 }
fa490cfd 1260
3a5c359a
AK
1261 /*
1262 * Ahh, all good. It wasn't running, and it wasn't
1263 * runnable, which means that it will never become
1264 * running in the future either. We're all done!
1265 */
1266 break;
1267 }
85ba2d86
RM
1268
1269 return ncsw;
1da177e4
LT
1270}
1271
1272/***
1273 * kick_process - kick a running thread to enter/exit the kernel
1274 * @p: the to-be-kicked thread
1275 *
1276 * Cause a process which is running on another CPU to enter
1277 * kernel-mode, without any delay. (to get signals handled.)
1278 *
25985edc 1279 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1280 * because all it wants to ensure is that the remote task enters
1281 * the kernel. If the IPI races and the task has been migrated
1282 * to another CPU then no harm is done and the purpose has been
1283 * achieved as well.
1284 */
36c8b586 1285void kick_process(struct task_struct *p)
1da177e4
LT
1286{
1287 int cpu;
1288
1289 preempt_disable();
1290 cpu = task_cpu(p);
1291 if ((cpu != smp_processor_id()) && task_curr(p))
1292 smp_send_reschedule(cpu);
1293 preempt_enable();
1294}
b43e3521 1295EXPORT_SYMBOL_GPL(kick_process);
476d139c 1296#endif /* CONFIG_SMP */
1da177e4 1297
970b13ba 1298#ifdef CONFIG_SMP
30da688e 1299/*
013fdb80 1300 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1301 */
5da9a0fb
PZ
1302static int select_fallback_rq(int cpu, struct task_struct *p)
1303{
aa00d89c
TC
1304 int nid = cpu_to_node(cpu);
1305 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1306 enum { cpuset, possible, fail } state = cpuset;
1307 int dest_cpu;
5da9a0fb 1308
aa00d89c
TC
1309 /*
1310 * If the node that the cpu is on has been offlined, cpu_to_node()
1311 * will return -1. There is no cpu on the node, and we should
1312 * select the cpu on the other node.
1313 */
1314 if (nid != -1) {
1315 nodemask = cpumask_of_node(nid);
1316
1317 /* Look for allowed, online CPU in same node. */
1318 for_each_cpu(dest_cpu, nodemask) {
1319 if (!cpu_online(dest_cpu))
1320 continue;
1321 if (!cpu_active(dest_cpu))
1322 continue;
1323 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1324 return dest_cpu;
1325 }
2baab4e9 1326 }
5da9a0fb 1327
2baab4e9
PZ
1328 for (;;) {
1329 /* Any allowed, online CPU? */
e3831edd 1330 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1331 if (!cpu_online(dest_cpu))
1332 continue;
1333 if (!cpu_active(dest_cpu))
1334 continue;
1335 goto out;
1336 }
5da9a0fb 1337
2baab4e9
PZ
1338 switch (state) {
1339 case cpuset:
1340 /* No more Mr. Nice Guy. */
1341 cpuset_cpus_allowed_fallback(p);
1342 state = possible;
1343 break;
1344
1345 case possible:
1346 do_set_cpus_allowed(p, cpu_possible_mask);
1347 state = fail;
1348 break;
1349
1350 case fail:
1351 BUG();
1352 break;
1353 }
1354 }
1355
1356out:
1357 if (state != cpuset) {
1358 /*
1359 * Don't tell them about moving exiting tasks or
1360 * kernel threads (both mm NULL), since they never
1361 * leave kernel.
1362 */
1363 if (p->mm && printk_ratelimit()) {
aac74dc4 1364 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1365 task_pid_nr(p), p->comm, cpu);
1366 }
5da9a0fb
PZ
1367 }
1368
1369 return dest_cpu;
1370}
1371
e2912009 1372/*
013fdb80 1373 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1374 */
970b13ba 1375static inline
ac66f547 1376int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1377{
6c1d9410
WL
1378 if (p->nr_cpus_allowed > 1)
1379 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1380
1381 /*
1382 * In order not to call set_task_cpu() on a blocking task we need
1383 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1384 * cpu.
1385 *
1386 * Since this is common to all placement strategies, this lives here.
1387 *
1388 * [ this allows ->select_task() to simply return task_cpu(p) and
1389 * not worry about this generic constraint ]
1390 */
fa17b507 1391 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1392 !cpu_online(cpu)))
5da9a0fb 1393 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1394
1395 return cpu;
970b13ba 1396}
09a40af5
MG
1397
1398static void update_avg(u64 *avg, u64 sample)
1399{
1400 s64 diff = sample - *avg;
1401 *avg += diff >> 3;
1402}
970b13ba
PZ
1403#endif
1404
d7c01d27 1405static void
b84cb5df 1406ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1407{
d7c01d27 1408#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1409 struct rq *rq = this_rq();
1410
d7c01d27
PZ
1411#ifdef CONFIG_SMP
1412 int this_cpu = smp_processor_id();
1413
1414 if (cpu == this_cpu) {
1415 schedstat_inc(rq, ttwu_local);
1416 schedstat_inc(p, se.statistics.nr_wakeups_local);
1417 } else {
1418 struct sched_domain *sd;
1419
1420 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1421 rcu_read_lock();
d7c01d27
PZ
1422 for_each_domain(this_cpu, sd) {
1423 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1424 schedstat_inc(sd, ttwu_wake_remote);
1425 break;
1426 }
1427 }
057f3fad 1428 rcu_read_unlock();
d7c01d27 1429 }
f339b9dc
PZ
1430
1431 if (wake_flags & WF_MIGRATED)
1432 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1433
d7c01d27
PZ
1434#endif /* CONFIG_SMP */
1435
1436 schedstat_inc(rq, ttwu_count);
9ed3811a 1437 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1438
1439 if (wake_flags & WF_SYNC)
9ed3811a 1440 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1441
d7c01d27
PZ
1442#endif /* CONFIG_SCHEDSTATS */
1443}
1444
1445static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1446{
9ed3811a 1447 activate_task(rq, p, en_flags);
da0c1e65 1448 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1449
1450 /* if a worker is waking up, notify workqueue */
1451 if (p->flags & PF_WQ_WORKER)
1452 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1453}
1454
23f41eeb
PZ
1455/*
1456 * Mark the task runnable and perform wakeup-preemption.
1457 */
89363381 1458static void
23f41eeb 1459ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1460{
9ed3811a 1461 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1462 trace_sched_wakeup(p, true);
9ed3811a
TH
1463
1464 p->state = TASK_RUNNING;
1465#ifdef CONFIG_SMP
1466 if (p->sched_class->task_woken)
1467 p->sched_class->task_woken(rq, p);
1468
e69c6341 1469 if (rq->idle_stamp) {
78becc27 1470 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1471 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1472
abfafa54
JL
1473 update_avg(&rq->avg_idle, delta);
1474
1475 if (rq->avg_idle > max)
9ed3811a 1476 rq->avg_idle = max;
abfafa54 1477
9ed3811a
TH
1478 rq->idle_stamp = 0;
1479 }
1480#endif
1481}
1482
c05fbafb
PZ
1483static void
1484ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1485{
1486#ifdef CONFIG_SMP
1487 if (p->sched_contributes_to_load)
1488 rq->nr_uninterruptible--;
1489#endif
1490
1491 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1492 ttwu_do_wakeup(rq, p, wake_flags);
1493}
1494
1495/*
1496 * Called in case the task @p isn't fully descheduled from its runqueue,
1497 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1498 * since all we need to do is flip p->state to TASK_RUNNING, since
1499 * the task is still ->on_rq.
1500 */
1501static int ttwu_remote(struct task_struct *p, int wake_flags)
1502{
1503 struct rq *rq;
1504 int ret = 0;
1505
1506 rq = __task_rq_lock(p);
da0c1e65 1507 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1508 /* check_preempt_curr() may use rq clock */
1509 update_rq_clock(rq);
c05fbafb
PZ
1510 ttwu_do_wakeup(rq, p, wake_flags);
1511 ret = 1;
1512 }
1513 __task_rq_unlock(rq);
1514
1515 return ret;
1516}
1517
317f3941 1518#ifdef CONFIG_SMP
e3baac47 1519void sched_ttwu_pending(void)
317f3941
PZ
1520{
1521 struct rq *rq = this_rq();
fa14ff4a
PZ
1522 struct llist_node *llist = llist_del_all(&rq->wake_list);
1523 struct task_struct *p;
e3baac47 1524 unsigned long flags;
317f3941 1525
e3baac47
PZ
1526 if (!llist)
1527 return;
1528
1529 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1530
fa14ff4a
PZ
1531 while (llist) {
1532 p = llist_entry(llist, struct task_struct, wake_entry);
1533 llist = llist_next(llist);
317f3941
PZ
1534 ttwu_do_activate(rq, p, 0);
1535 }
1536
e3baac47 1537 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1538}
1539
1540void scheduler_ipi(void)
1541{
f27dde8d
PZ
1542 /*
1543 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1544 * TIF_NEED_RESCHED remotely (for the first time) will also send
1545 * this IPI.
1546 */
8cb75e0c 1547 preempt_fold_need_resched();
f27dde8d 1548
fd2ac4f4 1549 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1550 return;
1551
1552 /*
1553 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1554 * traditionally all their work was done from the interrupt return
1555 * path. Now that we actually do some work, we need to make sure
1556 * we do call them.
1557 *
1558 * Some archs already do call them, luckily irq_enter/exit nest
1559 * properly.
1560 *
1561 * Arguably we should visit all archs and update all handlers,
1562 * however a fair share of IPIs are still resched only so this would
1563 * somewhat pessimize the simple resched case.
1564 */
1565 irq_enter();
fa14ff4a 1566 sched_ttwu_pending();
ca38062e
SS
1567
1568 /*
1569 * Check if someone kicked us for doing the nohz idle load balance.
1570 */
873b4c65 1571 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1572 this_rq()->idle_balance = 1;
ca38062e 1573 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1574 }
c5d753a5 1575 irq_exit();
317f3941
PZ
1576}
1577
1578static void ttwu_queue_remote(struct task_struct *p, int cpu)
1579{
e3baac47
PZ
1580 struct rq *rq = cpu_rq(cpu);
1581
1582 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1583 if (!set_nr_if_polling(rq->idle))
1584 smp_send_reschedule(cpu);
1585 else
1586 trace_sched_wake_idle_without_ipi(cpu);
1587 }
317f3941 1588}
d6aa8f85 1589
f6be8af1
CL
1590void wake_up_if_idle(int cpu)
1591{
1592 struct rq *rq = cpu_rq(cpu);
1593 unsigned long flags;
1594
fd7de1e8
AL
1595 rcu_read_lock();
1596
1597 if (!is_idle_task(rcu_dereference(rq->curr)))
1598 goto out;
f6be8af1
CL
1599
1600 if (set_nr_if_polling(rq->idle)) {
1601 trace_sched_wake_idle_without_ipi(cpu);
1602 } else {
1603 raw_spin_lock_irqsave(&rq->lock, flags);
1604 if (is_idle_task(rq->curr))
1605 smp_send_reschedule(cpu);
1606 /* Else cpu is not in idle, do nothing here */
1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1608 }
fd7de1e8
AL
1609
1610out:
1611 rcu_read_unlock();
f6be8af1
CL
1612}
1613
39be3501 1614bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1615{
1616 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1617}
d6aa8f85 1618#endif /* CONFIG_SMP */
317f3941 1619
c05fbafb
PZ
1620static void ttwu_queue(struct task_struct *p, int cpu)
1621{
1622 struct rq *rq = cpu_rq(cpu);
1623
17d9f311 1624#if defined(CONFIG_SMP)
39be3501 1625 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1626 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1627 ttwu_queue_remote(p, cpu);
1628 return;
1629 }
1630#endif
1631
c05fbafb
PZ
1632 raw_spin_lock(&rq->lock);
1633 ttwu_do_activate(rq, p, 0);
1634 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1635}
1636
1637/**
1da177e4 1638 * try_to_wake_up - wake up a thread
9ed3811a 1639 * @p: the thread to be awakened
1da177e4 1640 * @state: the mask of task states that can be woken
9ed3811a 1641 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1642 *
1643 * Put it on the run-queue if it's not already there. The "current"
1644 * thread is always on the run-queue (except when the actual
1645 * re-schedule is in progress), and as such you're allowed to do
1646 * the simpler "current->state = TASK_RUNNING" to mark yourself
1647 * runnable without the overhead of this.
1648 *
e69f6186 1649 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1650 * or @state didn't match @p's state.
1da177e4 1651 */
e4a52bcb
PZ
1652static int
1653try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1654{
1da177e4 1655 unsigned long flags;
c05fbafb 1656 int cpu, success = 0;
2398f2c6 1657
e0acd0a6
ON
1658 /*
1659 * If we are going to wake up a thread waiting for CONDITION we
1660 * need to ensure that CONDITION=1 done by the caller can not be
1661 * reordered with p->state check below. This pairs with mb() in
1662 * set_current_state() the waiting thread does.
1663 */
1664 smp_mb__before_spinlock();
013fdb80 1665 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1666 if (!(p->state & state))
1da177e4
LT
1667 goto out;
1668
c05fbafb 1669 success = 1; /* we're going to change ->state */
1da177e4 1670 cpu = task_cpu(p);
1da177e4 1671
c05fbafb
PZ
1672 if (p->on_rq && ttwu_remote(p, wake_flags))
1673 goto stat;
1da177e4 1674
1da177e4 1675#ifdef CONFIG_SMP
e9c84311 1676 /*
c05fbafb
PZ
1677 * If the owning (remote) cpu is still in the middle of schedule() with
1678 * this task as prev, wait until its done referencing the task.
e9c84311 1679 */
f3e94786 1680 while (p->on_cpu)
e4a52bcb 1681 cpu_relax();
0970d299 1682 /*
e4a52bcb 1683 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1684 */
e4a52bcb 1685 smp_rmb();
1da177e4 1686
a8e4f2ea 1687 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1688 p->state = TASK_WAKING;
e7693a36 1689
e4a52bcb 1690 if (p->sched_class->task_waking)
74f8e4b2 1691 p->sched_class->task_waking(p);
efbbd05a 1692
ac66f547 1693 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1694 if (task_cpu(p) != cpu) {
1695 wake_flags |= WF_MIGRATED;
e4a52bcb 1696 set_task_cpu(p, cpu);
f339b9dc 1697 }
1da177e4 1698#endif /* CONFIG_SMP */
1da177e4 1699
c05fbafb
PZ
1700 ttwu_queue(p, cpu);
1701stat:
b84cb5df 1702 ttwu_stat(p, cpu, wake_flags);
1da177e4 1703out:
013fdb80 1704 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1705
1706 return success;
1707}
1708
21aa9af0
TH
1709/**
1710 * try_to_wake_up_local - try to wake up a local task with rq lock held
1711 * @p: the thread to be awakened
1712 *
2acca55e 1713 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1714 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1715 * the current task.
21aa9af0
TH
1716 */
1717static void try_to_wake_up_local(struct task_struct *p)
1718{
1719 struct rq *rq = task_rq(p);
21aa9af0 1720
383efcd0
TH
1721 if (WARN_ON_ONCE(rq != this_rq()) ||
1722 WARN_ON_ONCE(p == current))
1723 return;
1724
21aa9af0
TH
1725 lockdep_assert_held(&rq->lock);
1726
2acca55e
PZ
1727 if (!raw_spin_trylock(&p->pi_lock)) {
1728 raw_spin_unlock(&rq->lock);
1729 raw_spin_lock(&p->pi_lock);
1730 raw_spin_lock(&rq->lock);
1731 }
1732
21aa9af0 1733 if (!(p->state & TASK_NORMAL))
2acca55e 1734 goto out;
21aa9af0 1735
da0c1e65 1736 if (!task_on_rq_queued(p))
d7c01d27
PZ
1737 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1738
23f41eeb 1739 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1740 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1741out:
1742 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1743}
1744
50fa610a
DH
1745/**
1746 * wake_up_process - Wake up a specific process
1747 * @p: The process to be woken up.
1748 *
1749 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1750 * processes.
1751 *
1752 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1753 *
1754 * It may be assumed that this function implies a write memory barrier before
1755 * changing the task state if and only if any tasks are woken up.
1756 */
7ad5b3a5 1757int wake_up_process(struct task_struct *p)
1da177e4 1758{
9067ac85
ON
1759 WARN_ON(task_is_stopped_or_traced(p));
1760 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1761}
1da177e4
LT
1762EXPORT_SYMBOL(wake_up_process);
1763
7ad5b3a5 1764int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1765{
1766 return try_to_wake_up(p, state, 0);
1767}
1768
a5e7be3b
JL
1769/*
1770 * This function clears the sched_dl_entity static params.
1771 */
1772void __dl_clear_params(struct task_struct *p)
1773{
1774 struct sched_dl_entity *dl_se = &p->dl;
1775
1776 dl_se->dl_runtime = 0;
1777 dl_se->dl_deadline = 0;
1778 dl_se->dl_period = 0;
1779 dl_se->flags = 0;
1780 dl_se->dl_bw = 0;
40767b0d
PZ
1781
1782 dl_se->dl_throttled = 0;
1783 dl_se->dl_new = 1;
1784 dl_se->dl_yielded = 0;
a5e7be3b
JL
1785}
1786
1da177e4
LT
1787/*
1788 * Perform scheduler related setup for a newly forked process p.
1789 * p is forked by current.
dd41f596
IM
1790 *
1791 * __sched_fork() is basic setup used by init_idle() too:
1792 */
5e1576ed 1793static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1794{
fd2f4419
PZ
1795 p->on_rq = 0;
1796
1797 p->se.on_rq = 0;
dd41f596
IM
1798 p->se.exec_start = 0;
1799 p->se.sum_exec_runtime = 0;
f6cf891c 1800 p->se.prev_sum_exec_runtime = 0;
6c594c21 1801 p->se.nr_migrations = 0;
da7a735e 1802 p->se.vruntime = 0;
bb04159d
KT
1803#ifdef CONFIG_SMP
1804 p->se.avg.decay_count = 0;
1805#endif
fd2f4419 1806 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1807
1808#ifdef CONFIG_SCHEDSTATS
41acab88 1809 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1810#endif
476d139c 1811
aab03e05 1812 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1813 init_dl_task_timer(&p->dl);
a5e7be3b 1814 __dl_clear_params(p);
aab03e05 1815
fa717060 1816 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1817
e107be36
AK
1818#ifdef CONFIG_PREEMPT_NOTIFIERS
1819 INIT_HLIST_HEAD(&p->preempt_notifiers);
1820#endif
cbee9f88
PZ
1821
1822#ifdef CONFIG_NUMA_BALANCING
1823 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1824 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1825 p->mm->numa_scan_seq = 0;
1826 }
1827
5e1576ed
RR
1828 if (clone_flags & CLONE_VM)
1829 p->numa_preferred_nid = current->numa_preferred_nid;
1830 else
1831 p->numa_preferred_nid = -1;
1832
cbee9f88
PZ
1833 p->node_stamp = 0ULL;
1834 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1835 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1836 p->numa_work.next = &p->numa_work;
44dba3d5 1837 p->numa_faults = NULL;
7e2703e6
RR
1838 p->last_task_numa_placement = 0;
1839 p->last_sum_exec_runtime = 0;
8c8a743c 1840
8c8a743c 1841 p->numa_group = NULL;
cbee9f88 1842#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1843}
1844
1a687c2e 1845#ifdef CONFIG_NUMA_BALANCING
3105b86a 1846#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1847void set_numabalancing_state(bool enabled)
1848{
1849 if (enabled)
1850 sched_feat_set("NUMA");
1851 else
1852 sched_feat_set("NO_NUMA");
1853}
3105b86a
MG
1854#else
1855__read_mostly bool numabalancing_enabled;
1856
1857void set_numabalancing_state(bool enabled)
1858{
1859 numabalancing_enabled = enabled;
dd41f596 1860}
3105b86a 1861#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1862
1863#ifdef CONFIG_PROC_SYSCTL
1864int sysctl_numa_balancing(struct ctl_table *table, int write,
1865 void __user *buffer, size_t *lenp, loff_t *ppos)
1866{
1867 struct ctl_table t;
1868 int err;
1869 int state = numabalancing_enabled;
1870
1871 if (write && !capable(CAP_SYS_ADMIN))
1872 return -EPERM;
1873
1874 t = *table;
1875 t.data = &state;
1876 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1877 if (err < 0)
1878 return err;
1879 if (write)
1880 set_numabalancing_state(state);
1881 return err;
1882}
1883#endif
1884#endif
dd41f596
IM
1885
1886/*
1887 * fork()/clone()-time setup:
1888 */
aab03e05 1889int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1890{
0122ec5b 1891 unsigned long flags;
dd41f596
IM
1892 int cpu = get_cpu();
1893
5e1576ed 1894 __sched_fork(clone_flags, p);
06b83b5f 1895 /*
0017d735 1896 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1897 * nobody will actually run it, and a signal or other external
1898 * event cannot wake it up and insert it on the runqueue either.
1899 */
0017d735 1900 p->state = TASK_RUNNING;
dd41f596 1901
c350a04e
MG
1902 /*
1903 * Make sure we do not leak PI boosting priority to the child.
1904 */
1905 p->prio = current->normal_prio;
1906
b9dc29e7
MG
1907 /*
1908 * Revert to default priority/policy on fork if requested.
1909 */
1910 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1911 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1912 p->policy = SCHED_NORMAL;
6c697bdf 1913 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1914 p->rt_priority = 0;
1915 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1916 p->static_prio = NICE_TO_PRIO(0);
1917
1918 p->prio = p->normal_prio = __normal_prio(p);
1919 set_load_weight(p);
6c697bdf 1920
b9dc29e7
MG
1921 /*
1922 * We don't need the reset flag anymore after the fork. It has
1923 * fulfilled its duty:
1924 */
1925 p->sched_reset_on_fork = 0;
1926 }
ca94c442 1927
aab03e05
DF
1928 if (dl_prio(p->prio)) {
1929 put_cpu();
1930 return -EAGAIN;
1931 } else if (rt_prio(p->prio)) {
1932 p->sched_class = &rt_sched_class;
1933 } else {
2ddbf952 1934 p->sched_class = &fair_sched_class;
aab03e05 1935 }
b29739f9 1936
cd29fe6f
PZ
1937 if (p->sched_class->task_fork)
1938 p->sched_class->task_fork(p);
1939
86951599
PZ
1940 /*
1941 * The child is not yet in the pid-hash so no cgroup attach races,
1942 * and the cgroup is pinned to this child due to cgroup_fork()
1943 * is ran before sched_fork().
1944 *
1945 * Silence PROVE_RCU.
1946 */
0122ec5b 1947 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1948 set_task_cpu(p, cpu);
0122ec5b 1949 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1950
52f17b6c 1951#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1952 if (likely(sched_info_on()))
52f17b6c 1953 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1954#endif
3ca7a440
PZ
1955#if defined(CONFIG_SMP)
1956 p->on_cpu = 0;
4866cde0 1957#endif
01028747 1958 init_task_preempt_count(p);
806c09a7 1959#ifdef CONFIG_SMP
917b627d 1960 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1961 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1962#endif
917b627d 1963
476d139c 1964 put_cpu();
aab03e05 1965 return 0;
1da177e4
LT
1966}
1967
332ac17e
DF
1968unsigned long to_ratio(u64 period, u64 runtime)
1969{
1970 if (runtime == RUNTIME_INF)
1971 return 1ULL << 20;
1972
1973 /*
1974 * Doing this here saves a lot of checks in all
1975 * the calling paths, and returning zero seems
1976 * safe for them anyway.
1977 */
1978 if (period == 0)
1979 return 0;
1980
1981 return div64_u64(runtime << 20, period);
1982}
1983
1984#ifdef CONFIG_SMP
1985inline struct dl_bw *dl_bw_of(int i)
1986{
66339c31
KT
1987 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1988 "sched RCU must be held");
332ac17e
DF
1989 return &cpu_rq(i)->rd->dl_bw;
1990}
1991
de212f18 1992static inline int dl_bw_cpus(int i)
332ac17e 1993{
de212f18
PZ
1994 struct root_domain *rd = cpu_rq(i)->rd;
1995 int cpus = 0;
1996
66339c31
KT
1997 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1998 "sched RCU must be held");
de212f18
PZ
1999 for_each_cpu_and(i, rd->span, cpu_active_mask)
2000 cpus++;
2001
2002 return cpus;
332ac17e
DF
2003}
2004#else
2005inline struct dl_bw *dl_bw_of(int i)
2006{
2007 return &cpu_rq(i)->dl.dl_bw;
2008}
2009
de212f18 2010static inline int dl_bw_cpus(int i)
332ac17e
DF
2011{
2012 return 1;
2013}
2014#endif
2015
332ac17e
DF
2016/*
2017 * We must be sure that accepting a new task (or allowing changing the
2018 * parameters of an existing one) is consistent with the bandwidth
2019 * constraints. If yes, this function also accordingly updates the currently
2020 * allocated bandwidth to reflect the new situation.
2021 *
2022 * This function is called while holding p's rq->lock.
40767b0d
PZ
2023 *
2024 * XXX we should delay bw change until the task's 0-lag point, see
2025 * __setparam_dl().
332ac17e
DF
2026 */
2027static int dl_overflow(struct task_struct *p, int policy,
2028 const struct sched_attr *attr)
2029{
2030
2031 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2032 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2033 u64 runtime = attr->sched_runtime;
2034 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2035 int cpus, err = -1;
332ac17e
DF
2036
2037 if (new_bw == p->dl.dl_bw)
2038 return 0;
2039
2040 /*
2041 * Either if a task, enters, leave, or stays -deadline but changes
2042 * its parameters, we may need to update accordingly the total
2043 * allocated bandwidth of the container.
2044 */
2045 raw_spin_lock(&dl_b->lock);
de212f18 2046 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2047 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2048 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2049 __dl_add(dl_b, new_bw);
2050 err = 0;
2051 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2052 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2053 __dl_clear(dl_b, p->dl.dl_bw);
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2057 __dl_clear(dl_b, p->dl.dl_bw);
2058 err = 0;
2059 }
2060 raw_spin_unlock(&dl_b->lock);
2061
2062 return err;
2063}
2064
2065extern void init_dl_bw(struct dl_bw *dl_b);
2066
1da177e4
LT
2067/*
2068 * wake_up_new_task - wake up a newly created task for the first time.
2069 *
2070 * This function will do some initial scheduler statistics housekeeping
2071 * that must be done for every newly created context, then puts the task
2072 * on the runqueue and wakes it.
2073 */
3e51e3ed 2074void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2075{
2076 unsigned long flags;
dd41f596 2077 struct rq *rq;
fabf318e 2078
ab2515c4 2079 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2080#ifdef CONFIG_SMP
2081 /*
2082 * Fork balancing, do it here and not earlier because:
2083 * - cpus_allowed can change in the fork path
2084 * - any previously selected cpu might disappear through hotplug
fabf318e 2085 */
ac66f547 2086 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2087#endif
2088
a75cdaa9
AS
2089 /* Initialize new task's runnable average */
2090 init_task_runnable_average(p);
ab2515c4 2091 rq = __task_rq_lock(p);
cd29fe6f 2092 activate_task(rq, p, 0);
da0c1e65 2093 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2094 trace_sched_wakeup_new(p, true);
a7558e01 2095 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2096#ifdef CONFIG_SMP
efbbd05a
PZ
2097 if (p->sched_class->task_woken)
2098 p->sched_class->task_woken(rq, p);
9a897c5a 2099#endif
0122ec5b 2100 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2101}
2102
e107be36
AK
2103#ifdef CONFIG_PREEMPT_NOTIFIERS
2104
2105/**
80dd99b3 2106 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2107 * @notifier: notifier struct to register
e107be36
AK
2108 */
2109void preempt_notifier_register(struct preempt_notifier *notifier)
2110{
2111 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2112}
2113EXPORT_SYMBOL_GPL(preempt_notifier_register);
2114
2115/**
2116 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2117 * @notifier: notifier struct to unregister
e107be36
AK
2118 *
2119 * This is safe to call from within a preemption notifier.
2120 */
2121void preempt_notifier_unregister(struct preempt_notifier *notifier)
2122{
2123 hlist_del(&notifier->link);
2124}
2125EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2126
2127static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2128{
2129 struct preempt_notifier *notifier;
e107be36 2130
b67bfe0d 2131 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2132 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2133}
2134
2135static void
2136fire_sched_out_preempt_notifiers(struct task_struct *curr,
2137 struct task_struct *next)
2138{
2139 struct preempt_notifier *notifier;
e107be36 2140
b67bfe0d 2141 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2142 notifier->ops->sched_out(notifier, next);
2143}
2144
6d6bc0ad 2145#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2146
2147static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2148{
2149}
2150
2151static void
2152fire_sched_out_preempt_notifiers(struct task_struct *curr,
2153 struct task_struct *next)
2154{
2155}
2156
6d6bc0ad 2157#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2158
4866cde0
NP
2159/**
2160 * prepare_task_switch - prepare to switch tasks
2161 * @rq: the runqueue preparing to switch
421cee29 2162 * @prev: the current task that is being switched out
4866cde0
NP
2163 * @next: the task we are going to switch to.
2164 *
2165 * This is called with the rq lock held and interrupts off. It must
2166 * be paired with a subsequent finish_task_switch after the context
2167 * switch.
2168 *
2169 * prepare_task_switch sets up locking and calls architecture specific
2170 * hooks.
2171 */
e107be36
AK
2172static inline void
2173prepare_task_switch(struct rq *rq, struct task_struct *prev,
2174 struct task_struct *next)
4866cde0 2175{
895dd92c 2176 trace_sched_switch(prev, next);
43148951 2177 sched_info_switch(rq, prev, next);
fe4b04fa 2178 perf_event_task_sched_out(prev, next);
e107be36 2179 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2180 prepare_lock_switch(rq, next);
2181 prepare_arch_switch(next);
2182}
2183
1da177e4
LT
2184/**
2185 * finish_task_switch - clean up after a task-switch
2186 * @prev: the thread we just switched away from.
2187 *
4866cde0
NP
2188 * finish_task_switch must be called after the context switch, paired
2189 * with a prepare_task_switch call before the context switch.
2190 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2191 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2192 *
2193 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2194 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2195 * with the lock held can cause deadlocks; see schedule() for
2196 * details.)
dfa50b60
ON
2197 *
2198 * The context switch have flipped the stack from under us and restored the
2199 * local variables which were saved when this task called schedule() in the
2200 * past. prev == current is still correct but we need to recalculate this_rq
2201 * because prev may have moved to another CPU.
1da177e4 2202 */
dfa50b60 2203static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2204 __releases(rq->lock)
2205{
dfa50b60 2206 struct rq *rq = this_rq();
1da177e4 2207 struct mm_struct *mm = rq->prev_mm;
55a101f8 2208 long prev_state;
1da177e4
LT
2209
2210 rq->prev_mm = NULL;
2211
2212 /*
2213 * A task struct has one reference for the use as "current".
c394cc9f 2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2215 * schedule one last time. The schedule call will never return, and
2216 * the scheduled task must drop that reference.
c394cc9f 2217 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2218 * still held, otherwise prev could be scheduled on another cpu, die
2219 * there before we look at prev->state, and then the reference would
2220 * be dropped twice.
2221 * Manfred Spraul <manfred@colorfullife.com>
2222 */
55a101f8 2223 prev_state = prev->state;
bf9fae9f 2224 vtime_task_switch(prev);
4866cde0 2225 finish_arch_switch(prev);
a8d757ef 2226 perf_event_task_sched_in(prev, current);
4866cde0 2227 finish_lock_switch(rq, prev);
01f23e16 2228 finish_arch_post_lock_switch();
e8fa1362 2229
e107be36 2230 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2231 if (mm)
2232 mmdrop(mm);
c394cc9f 2233 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2234 if (prev->sched_class->task_dead)
2235 prev->sched_class->task_dead(prev);
2236
c6fd91f0 2237 /*
2238 * Remove function-return probe instances associated with this
2239 * task and put them back on the free list.
9761eea8 2240 */
c6fd91f0 2241 kprobe_flush_task(prev);
1da177e4 2242 put_task_struct(prev);
c6fd91f0 2243 }
99e5ada9
FW
2244
2245 tick_nohz_task_switch(current);
dfa50b60 2246 return rq;
1da177e4
LT
2247}
2248
3f029d3c
GH
2249#ifdef CONFIG_SMP
2250
3f029d3c
GH
2251/* rq->lock is NOT held, but preemption is disabled */
2252static inline void post_schedule(struct rq *rq)
2253{
2254 if (rq->post_schedule) {
2255 unsigned long flags;
2256
05fa785c 2257 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2258 if (rq->curr->sched_class->post_schedule)
2259 rq->curr->sched_class->post_schedule(rq);
05fa785c 2260 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2261
2262 rq->post_schedule = 0;
2263 }
2264}
2265
2266#else
da19ab51 2267
3f029d3c
GH
2268static inline void post_schedule(struct rq *rq)
2269{
1da177e4
LT
2270}
2271
3f029d3c
GH
2272#endif
2273
1da177e4
LT
2274/**
2275 * schedule_tail - first thing a freshly forked thread must call.
2276 * @prev: the thread we just switched away from.
2277 */
722a9f92 2278asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2279 __releases(rq->lock)
2280{
1a43a14a 2281 struct rq *rq;
da19ab51 2282
1a43a14a
ON
2283 /* finish_task_switch() drops rq->lock and enables preemtion */
2284 preempt_disable();
dfa50b60 2285 rq = finish_task_switch(prev);
3f029d3c 2286 post_schedule(rq);
1a43a14a 2287 preempt_enable();
70b97a7f 2288
1da177e4 2289 if (current->set_child_tid)
b488893a 2290 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2291}
2292
2293/*
dfa50b60 2294 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2295 */
dfa50b60 2296static inline struct rq *
70b97a7f 2297context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2298 struct task_struct *next)
1da177e4 2299{
dd41f596 2300 struct mm_struct *mm, *oldmm;
1da177e4 2301
e107be36 2302 prepare_task_switch(rq, prev, next);
fe4b04fa 2303
dd41f596
IM
2304 mm = next->mm;
2305 oldmm = prev->active_mm;
9226d125
ZA
2306 /*
2307 * For paravirt, this is coupled with an exit in switch_to to
2308 * combine the page table reload and the switch backend into
2309 * one hypercall.
2310 */
224101ed 2311 arch_start_context_switch(prev);
9226d125 2312
31915ab4 2313 if (!mm) {
1da177e4
LT
2314 next->active_mm = oldmm;
2315 atomic_inc(&oldmm->mm_count);
2316 enter_lazy_tlb(oldmm, next);
2317 } else
2318 switch_mm(oldmm, mm, next);
2319
31915ab4 2320 if (!prev->mm) {
1da177e4 2321 prev->active_mm = NULL;
1da177e4
LT
2322 rq->prev_mm = oldmm;
2323 }
3a5f5e48
IM
2324 /*
2325 * Since the runqueue lock will be released by the next
2326 * task (which is an invalid locking op but in the case
2327 * of the scheduler it's an obvious special-case), so we
2328 * do an early lockdep release here:
2329 */
8a25d5de 2330 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2331
91d1aa43 2332 context_tracking_task_switch(prev, next);
1da177e4
LT
2333 /* Here we just switch the register state and the stack. */
2334 switch_to(prev, next, prev);
dd41f596 2335 barrier();
dfa50b60
ON
2336
2337 return finish_task_switch(prev);
1da177e4
LT
2338}
2339
2340/*
1c3e8264 2341 * nr_running and nr_context_switches:
1da177e4
LT
2342 *
2343 * externally visible scheduler statistics: current number of runnable
1c3e8264 2344 * threads, total number of context switches performed since bootup.
1da177e4
LT
2345 */
2346unsigned long nr_running(void)
2347{
2348 unsigned long i, sum = 0;
2349
2350 for_each_online_cpu(i)
2351 sum += cpu_rq(i)->nr_running;
2352
2353 return sum;
f711f609 2354}
1da177e4 2355
2ee507c4
TC
2356/*
2357 * Check if only the current task is running on the cpu.
2358 */
2359bool single_task_running(void)
2360{
2361 if (cpu_rq(smp_processor_id())->nr_running == 1)
2362 return true;
2363 else
2364 return false;
2365}
2366EXPORT_SYMBOL(single_task_running);
2367
1da177e4 2368unsigned long long nr_context_switches(void)
46cb4b7c 2369{
cc94abfc
SR
2370 int i;
2371 unsigned long long sum = 0;
46cb4b7c 2372
0a945022 2373 for_each_possible_cpu(i)
1da177e4 2374 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2375
1da177e4
LT
2376 return sum;
2377}
483b4ee6 2378
1da177e4
LT
2379unsigned long nr_iowait(void)
2380{
2381 unsigned long i, sum = 0;
483b4ee6 2382
0a945022 2383 for_each_possible_cpu(i)
1da177e4 2384 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2385
1da177e4
LT
2386 return sum;
2387}
483b4ee6 2388
8c215bd3 2389unsigned long nr_iowait_cpu(int cpu)
69d25870 2390{
8c215bd3 2391 struct rq *this = cpu_rq(cpu);
69d25870
AV
2392 return atomic_read(&this->nr_iowait);
2393}
46cb4b7c 2394
372ba8cb
MG
2395void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2396{
2397 struct rq *this = this_rq();
2398 *nr_waiters = atomic_read(&this->nr_iowait);
2399 *load = this->cpu_load[0];
2400}
2401
dd41f596 2402#ifdef CONFIG_SMP
8a0be9ef 2403
46cb4b7c 2404/*
38022906
PZ
2405 * sched_exec - execve() is a valuable balancing opportunity, because at
2406 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2407 */
38022906 2408void sched_exec(void)
46cb4b7c 2409{
38022906 2410 struct task_struct *p = current;
1da177e4 2411 unsigned long flags;
0017d735 2412 int dest_cpu;
46cb4b7c 2413
8f42ced9 2414 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2415 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2416 if (dest_cpu == smp_processor_id())
2417 goto unlock;
38022906 2418
8f42ced9 2419 if (likely(cpu_active(dest_cpu))) {
969c7921 2420 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2421
8f42ced9
PZ
2422 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2423 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2424 return;
2425 }
0017d735 2426unlock:
8f42ced9 2427 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2428}
dd41f596 2429
1da177e4
LT
2430#endif
2431
1da177e4 2432DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2433DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2434
2435EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2436EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2437
c5f8d995
HS
2438/*
2439 * Return accounted runtime for the task.
2440 * In case the task is currently running, return the runtime plus current's
2441 * pending runtime that have not been accounted yet.
2442 */
2443unsigned long long task_sched_runtime(struct task_struct *p)
2444{
2445 unsigned long flags;
2446 struct rq *rq;
6e998916 2447 u64 ns;
c5f8d995 2448
911b2898
PZ
2449#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2450 /*
2451 * 64-bit doesn't need locks to atomically read a 64bit value.
2452 * So we have a optimization chance when the task's delta_exec is 0.
2453 * Reading ->on_cpu is racy, but this is ok.
2454 *
2455 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2456 * If we race with it entering cpu, unaccounted time is 0. This is
2457 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2458 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2459 * been accounted, so we're correct here as well.
911b2898 2460 */
da0c1e65 2461 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2462 return p->se.sum_exec_runtime;
2463#endif
2464
c5f8d995 2465 rq = task_rq_lock(p, &flags);
6e998916
SG
2466 /*
2467 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2468 * project cycles that may never be accounted to this
2469 * thread, breaking clock_gettime().
2470 */
2471 if (task_current(rq, p) && task_on_rq_queued(p)) {
2472 update_rq_clock(rq);
2473 p->sched_class->update_curr(rq);
2474 }
2475 ns = p->se.sum_exec_runtime;
0122ec5b 2476 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2477
2478 return ns;
2479}
48f24c4d 2480
7835b98b
CL
2481/*
2482 * This function gets called by the timer code, with HZ frequency.
2483 * We call it with interrupts disabled.
7835b98b
CL
2484 */
2485void scheduler_tick(void)
2486{
7835b98b
CL
2487 int cpu = smp_processor_id();
2488 struct rq *rq = cpu_rq(cpu);
dd41f596 2489 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2490
2491 sched_clock_tick();
dd41f596 2492
05fa785c 2493 raw_spin_lock(&rq->lock);
3e51f33f 2494 update_rq_clock(rq);
fa85ae24 2495 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2496 update_cpu_load_active(rq);
05fa785c 2497 raw_spin_unlock(&rq->lock);
7835b98b 2498
e9d2b064 2499 perf_event_task_tick();
e220d2dc 2500
e418e1c2 2501#ifdef CONFIG_SMP
6eb57e0d 2502 rq->idle_balance = idle_cpu(cpu);
7caff66f 2503 trigger_load_balance(rq);
e418e1c2 2504#endif
265f22a9 2505 rq_last_tick_reset(rq);
1da177e4
LT
2506}
2507
265f22a9
FW
2508#ifdef CONFIG_NO_HZ_FULL
2509/**
2510 * scheduler_tick_max_deferment
2511 *
2512 * Keep at least one tick per second when a single
2513 * active task is running because the scheduler doesn't
2514 * yet completely support full dynticks environment.
2515 *
2516 * This makes sure that uptime, CFS vruntime, load
2517 * balancing, etc... continue to move forward, even
2518 * with a very low granularity.
e69f6186
YB
2519 *
2520 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2521 */
2522u64 scheduler_tick_max_deferment(void)
2523{
2524 struct rq *rq = this_rq();
2525 unsigned long next, now = ACCESS_ONCE(jiffies);
2526
2527 next = rq->last_sched_tick + HZ;
2528
2529 if (time_before_eq(next, now))
2530 return 0;
2531
8fe8ff09 2532 return jiffies_to_nsecs(next - now);
1da177e4 2533}
265f22a9 2534#endif
1da177e4 2535
132380a0 2536notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2537{
2538 if (in_lock_functions(addr)) {
2539 addr = CALLER_ADDR2;
2540 if (in_lock_functions(addr))
2541 addr = CALLER_ADDR3;
2542 }
2543 return addr;
2544}
1da177e4 2545
7e49fcce
SR
2546#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2547 defined(CONFIG_PREEMPT_TRACER))
2548
edafe3a5 2549void preempt_count_add(int val)
1da177e4 2550{
6cd8a4bb 2551#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2552 /*
2553 * Underflow?
2554 */
9a11b49a
IM
2555 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2556 return;
6cd8a4bb 2557#endif
bdb43806 2558 __preempt_count_add(val);
6cd8a4bb 2559#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2560 /*
2561 * Spinlock count overflowing soon?
2562 */
33859f7f
MOS
2563 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2564 PREEMPT_MASK - 10);
6cd8a4bb 2565#endif
8f47b187
TG
2566 if (preempt_count() == val) {
2567 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2568#ifdef CONFIG_DEBUG_PREEMPT
2569 current->preempt_disable_ip = ip;
2570#endif
2571 trace_preempt_off(CALLER_ADDR0, ip);
2572 }
1da177e4 2573}
bdb43806 2574EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2575NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2576
edafe3a5 2577void preempt_count_sub(int val)
1da177e4 2578{
6cd8a4bb 2579#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2580 /*
2581 * Underflow?
2582 */
01e3eb82 2583 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2584 return;
1da177e4
LT
2585 /*
2586 * Is the spinlock portion underflowing?
2587 */
9a11b49a
IM
2588 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2589 !(preempt_count() & PREEMPT_MASK)))
2590 return;
6cd8a4bb 2591#endif
9a11b49a 2592
6cd8a4bb
SR
2593 if (preempt_count() == val)
2594 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2595 __preempt_count_sub(val);
1da177e4 2596}
bdb43806 2597EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2598NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2599
2600#endif
2601
2602/*
dd41f596 2603 * Print scheduling while atomic bug:
1da177e4 2604 */
dd41f596 2605static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2606{
664dfa65
DJ
2607 if (oops_in_progress)
2608 return;
2609
3df0fc5b
PZ
2610 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2611 prev->comm, prev->pid, preempt_count());
838225b4 2612
dd41f596 2613 debug_show_held_locks(prev);
e21f5b15 2614 print_modules();
dd41f596
IM
2615 if (irqs_disabled())
2616 print_irqtrace_events(prev);
8f47b187
TG
2617#ifdef CONFIG_DEBUG_PREEMPT
2618 if (in_atomic_preempt_off()) {
2619 pr_err("Preemption disabled at:");
2620 print_ip_sym(current->preempt_disable_ip);
2621 pr_cont("\n");
2622 }
2623#endif
6135fc1e 2624 dump_stack();
373d4d09 2625 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2626}
1da177e4 2627
dd41f596
IM
2628/*
2629 * Various schedule()-time debugging checks and statistics:
2630 */
2631static inline void schedule_debug(struct task_struct *prev)
2632{
0d9e2632
AT
2633#ifdef CONFIG_SCHED_STACK_END_CHECK
2634 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2635#endif
1da177e4 2636 /*
41a2d6cf 2637 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2638 * schedule() atomically, we ignore that path. Otherwise whine
2639 * if we are scheduling when we should not.
1da177e4 2640 */
192301e7 2641 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2642 __schedule_bug(prev);
b3fbab05 2643 rcu_sleep_check();
dd41f596 2644
1da177e4
LT
2645 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2646
2d72376b 2647 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2648}
2649
2650/*
2651 * Pick up the highest-prio task:
2652 */
2653static inline struct task_struct *
606dba2e 2654pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2655{
37e117c0 2656 const struct sched_class *class = &fair_sched_class;
dd41f596 2657 struct task_struct *p;
1da177e4
LT
2658
2659 /*
dd41f596
IM
2660 * Optimization: we know that if all tasks are in
2661 * the fair class we can call that function directly:
1da177e4 2662 */
37e117c0 2663 if (likely(prev->sched_class == class &&
38033c37 2664 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2665 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2666 if (unlikely(p == RETRY_TASK))
2667 goto again;
2668
2669 /* assumes fair_sched_class->next == idle_sched_class */
2670 if (unlikely(!p))
2671 p = idle_sched_class.pick_next_task(rq, prev);
2672
2673 return p;
1da177e4
LT
2674 }
2675
37e117c0 2676again:
34f971f6 2677 for_each_class(class) {
606dba2e 2678 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2679 if (p) {
2680 if (unlikely(p == RETRY_TASK))
2681 goto again;
dd41f596 2682 return p;
37e117c0 2683 }
dd41f596 2684 }
34f971f6
PZ
2685
2686 BUG(); /* the idle class will always have a runnable task */
dd41f596 2687}
1da177e4 2688
dd41f596 2689/*
c259e01a 2690 * __schedule() is the main scheduler function.
edde96ea
PE
2691 *
2692 * The main means of driving the scheduler and thus entering this function are:
2693 *
2694 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2695 *
2696 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2697 * paths. For example, see arch/x86/entry_64.S.
2698 *
2699 * To drive preemption between tasks, the scheduler sets the flag in timer
2700 * interrupt handler scheduler_tick().
2701 *
2702 * 3. Wakeups don't really cause entry into schedule(). They add a
2703 * task to the run-queue and that's it.
2704 *
2705 * Now, if the new task added to the run-queue preempts the current
2706 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2707 * called on the nearest possible occasion:
2708 *
2709 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2710 *
2711 * - in syscall or exception context, at the next outmost
2712 * preempt_enable(). (this might be as soon as the wake_up()'s
2713 * spin_unlock()!)
2714 *
2715 * - in IRQ context, return from interrupt-handler to
2716 * preemptible context
2717 *
2718 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2719 * then at the next:
2720 *
2721 * - cond_resched() call
2722 * - explicit schedule() call
2723 * - return from syscall or exception to user-space
2724 * - return from interrupt-handler to user-space
bfd9b2b5
FW
2725 *
2726 * WARNING: all callers must re-check need_resched() afterward and reschedule
2727 * accordingly in case an event triggered the need for rescheduling (such as
2728 * an interrupt waking up a task) while preemption was disabled in __schedule().
dd41f596 2729 */
c259e01a 2730static void __sched __schedule(void)
dd41f596
IM
2731{
2732 struct task_struct *prev, *next;
67ca7bde 2733 unsigned long *switch_count;
dd41f596 2734 struct rq *rq;
31656519 2735 int cpu;
dd41f596 2736
ff743345 2737 preempt_disable();
dd41f596
IM
2738 cpu = smp_processor_id();
2739 rq = cpu_rq(cpu);
38200cf2 2740 rcu_note_context_switch();
dd41f596 2741 prev = rq->curr;
dd41f596 2742
dd41f596 2743 schedule_debug(prev);
1da177e4 2744
31656519 2745 if (sched_feat(HRTICK))
f333fdc9 2746 hrtick_clear(rq);
8f4d37ec 2747
e0acd0a6
ON
2748 /*
2749 * Make sure that signal_pending_state()->signal_pending() below
2750 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2751 * done by the caller to avoid the race with signal_wake_up().
2752 */
2753 smp_mb__before_spinlock();
05fa785c 2754 raw_spin_lock_irq(&rq->lock);
1da177e4 2755
9edfbfed
PZ
2756 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2757
246d86b5 2758 switch_count = &prev->nivcsw;
1da177e4 2759 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2760 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2761 prev->state = TASK_RUNNING;
21aa9af0 2762 } else {
2acca55e
PZ
2763 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2764 prev->on_rq = 0;
2765
21aa9af0 2766 /*
2acca55e
PZ
2767 * If a worker went to sleep, notify and ask workqueue
2768 * whether it wants to wake up a task to maintain
2769 * concurrency.
21aa9af0
TH
2770 */
2771 if (prev->flags & PF_WQ_WORKER) {
2772 struct task_struct *to_wakeup;
2773
2774 to_wakeup = wq_worker_sleeping(prev, cpu);
2775 if (to_wakeup)
2776 try_to_wake_up_local(to_wakeup);
2777 }
21aa9af0 2778 }
dd41f596 2779 switch_count = &prev->nvcsw;
1da177e4
LT
2780 }
2781
9edfbfed 2782 if (task_on_rq_queued(prev))
606dba2e
PZ
2783 update_rq_clock(rq);
2784
2785 next = pick_next_task(rq, prev);
f26f9aff 2786 clear_tsk_need_resched(prev);
f27dde8d 2787 clear_preempt_need_resched();
9edfbfed 2788 rq->clock_skip_update = 0;
1da177e4 2789
1da177e4 2790 if (likely(prev != next)) {
1da177e4
LT
2791 rq->nr_switches++;
2792 rq->curr = next;
2793 ++*switch_count;
2794
dfa50b60
ON
2795 rq = context_switch(rq, prev, next); /* unlocks the rq */
2796 cpu = cpu_of(rq);
1da177e4 2797 } else
05fa785c 2798 raw_spin_unlock_irq(&rq->lock);
1da177e4 2799
3f029d3c 2800 post_schedule(rq);
1da177e4 2801
ba74c144 2802 sched_preempt_enable_no_resched();
1da177e4 2803}
c259e01a 2804
9c40cef2
TG
2805static inline void sched_submit_work(struct task_struct *tsk)
2806{
3c7d5184 2807 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2808 return;
2809 /*
2810 * If we are going to sleep and we have plugged IO queued,
2811 * make sure to submit it to avoid deadlocks.
2812 */
2813 if (blk_needs_flush_plug(tsk))
2814 blk_schedule_flush_plug(tsk);
2815}
2816
722a9f92 2817asmlinkage __visible void __sched schedule(void)
c259e01a 2818{
9c40cef2
TG
2819 struct task_struct *tsk = current;
2820
2821 sched_submit_work(tsk);
bfd9b2b5
FW
2822 do {
2823 __schedule();
2824 } while (need_resched());
c259e01a 2825}
1da177e4
LT
2826EXPORT_SYMBOL(schedule);
2827
91d1aa43 2828#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2829asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2830{
2831 /*
2832 * If we come here after a random call to set_need_resched(),
2833 * or we have been woken up remotely but the IPI has not yet arrived,
2834 * we haven't yet exited the RCU idle mode. Do it here manually until
2835 * we find a better solution.
7cc78f8f
AL
2836 *
2837 * NB: There are buggy callers of this function. Ideally we
2838 * should warn if prev_state != IN_USER, but that will trigger
2839 * too frequently to make sense yet.
20ab65e3 2840 */
7cc78f8f 2841 enum ctx_state prev_state = exception_enter();
20ab65e3 2842 schedule();
7cc78f8f 2843 exception_exit(prev_state);
20ab65e3
FW
2844}
2845#endif
2846
c5491ea7
TG
2847/**
2848 * schedule_preempt_disabled - called with preemption disabled
2849 *
2850 * Returns with preemption disabled. Note: preempt_count must be 1
2851 */
2852void __sched schedule_preempt_disabled(void)
2853{
ba74c144 2854 sched_preempt_enable_no_resched();
c5491ea7
TG
2855 schedule();
2856 preempt_disable();
2857}
2858
06b1f808 2859static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
2860{
2861 do {
2862 __preempt_count_add(PREEMPT_ACTIVE);
2863 __schedule();
2864 __preempt_count_sub(PREEMPT_ACTIVE);
2865
2866 /*
2867 * Check again in case we missed a preemption opportunity
2868 * between schedule and now.
2869 */
2870 barrier();
2871 } while (need_resched());
2872}
2873
1da177e4
LT
2874#ifdef CONFIG_PREEMPT
2875/*
2ed6e34f 2876 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2877 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2878 * occur there and call schedule directly.
2879 */
722a9f92 2880asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2881{
1da177e4
LT
2882 /*
2883 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2884 * we do not want to preempt the current task. Just return..
1da177e4 2885 */
fbb00b56 2886 if (likely(!preemptible()))
1da177e4
LT
2887 return;
2888
a18b5d01 2889 preempt_schedule_common();
1da177e4 2890}
376e2424 2891NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2892EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2893
2894#ifdef CONFIG_CONTEXT_TRACKING
2895/**
2896 * preempt_schedule_context - preempt_schedule called by tracing
2897 *
2898 * The tracing infrastructure uses preempt_enable_notrace to prevent
2899 * recursion and tracing preempt enabling caused by the tracing
2900 * infrastructure itself. But as tracing can happen in areas coming
2901 * from userspace or just about to enter userspace, a preempt enable
2902 * can occur before user_exit() is called. This will cause the scheduler
2903 * to be called when the system is still in usermode.
2904 *
2905 * To prevent this, the preempt_enable_notrace will use this function
2906 * instead of preempt_schedule() to exit user context if needed before
2907 * calling the scheduler.
2908 */
2909asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2910{
2911 enum ctx_state prev_ctx;
2912
2913 if (likely(!preemptible()))
2914 return;
2915
2916 do {
2917 __preempt_count_add(PREEMPT_ACTIVE);
2918 /*
2919 * Needs preempt disabled in case user_exit() is traced
2920 * and the tracer calls preempt_enable_notrace() causing
2921 * an infinite recursion.
2922 */
2923 prev_ctx = exception_enter();
2924 __schedule();
2925 exception_exit(prev_ctx);
2926
2927 __preempt_count_sub(PREEMPT_ACTIVE);
2928 barrier();
2929 } while (need_resched());
2930}
2931EXPORT_SYMBOL_GPL(preempt_schedule_context);
2932#endif /* CONFIG_CONTEXT_TRACKING */
2933
32e475d7 2934#endif /* CONFIG_PREEMPT */
1da177e4
LT
2935
2936/*
2ed6e34f 2937 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2938 * off of irq context.
2939 * Note, that this is called and return with irqs disabled. This will
2940 * protect us against recursive calling from irq.
2941 */
722a9f92 2942asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2943{
b22366cd 2944 enum ctx_state prev_state;
6478d880 2945
2ed6e34f 2946 /* Catch callers which need to be fixed */
f27dde8d 2947 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2948
b22366cd
FW
2949 prev_state = exception_enter();
2950
3a5c359a 2951 do {
bdb43806 2952 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2953 local_irq_enable();
c259e01a 2954 __schedule();
3a5c359a 2955 local_irq_disable();
bdb43806 2956 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2957
3a5c359a
AK
2958 /*
2959 * Check again in case we missed a preemption opportunity
2960 * between schedule and now.
2961 */
2962 barrier();
5ed0cec0 2963 } while (need_resched());
b22366cd
FW
2964
2965 exception_exit(prev_state);
1da177e4
LT
2966}
2967
63859d4f 2968int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2969 void *key)
1da177e4 2970{
63859d4f 2971 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2972}
1da177e4
LT
2973EXPORT_SYMBOL(default_wake_function);
2974
b29739f9
IM
2975#ifdef CONFIG_RT_MUTEXES
2976
2977/*
2978 * rt_mutex_setprio - set the current priority of a task
2979 * @p: task
2980 * @prio: prio value (kernel-internal form)
2981 *
2982 * This function changes the 'effective' priority of a task. It does
2983 * not touch ->normal_prio like __setscheduler().
2984 *
c365c292
TG
2985 * Used by the rt_mutex code to implement priority inheritance
2986 * logic. Call site only calls if the priority of the task changed.
b29739f9 2987 */
36c8b586 2988void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2989{
da0c1e65 2990 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 2991 struct rq *rq;
83ab0aa0 2992 const struct sched_class *prev_class;
b29739f9 2993
aab03e05 2994 BUG_ON(prio > MAX_PRIO);
b29739f9 2995
0122ec5b 2996 rq = __task_rq_lock(p);
b29739f9 2997
1c4dd99b
TG
2998 /*
2999 * Idle task boosting is a nono in general. There is one
3000 * exception, when PREEMPT_RT and NOHZ is active:
3001 *
3002 * The idle task calls get_next_timer_interrupt() and holds
3003 * the timer wheel base->lock on the CPU and another CPU wants
3004 * to access the timer (probably to cancel it). We can safely
3005 * ignore the boosting request, as the idle CPU runs this code
3006 * with interrupts disabled and will complete the lock
3007 * protected section without being interrupted. So there is no
3008 * real need to boost.
3009 */
3010 if (unlikely(p == rq->idle)) {
3011 WARN_ON(p != rq->curr);
3012 WARN_ON(p->pi_blocked_on);
3013 goto out_unlock;
3014 }
3015
a8027073 3016 trace_sched_pi_setprio(p, prio);
d5f9f942 3017 oldprio = p->prio;
83ab0aa0 3018 prev_class = p->sched_class;
da0c1e65 3019 queued = task_on_rq_queued(p);
051a1d1a 3020 running = task_current(rq, p);
da0c1e65 3021 if (queued)
69be72c1 3022 dequeue_task(rq, p, 0);
0e1f3483 3023 if (running)
f3cd1c4e 3024 put_prev_task(rq, p);
dd41f596 3025
2d3d891d
DF
3026 /*
3027 * Boosting condition are:
3028 * 1. -rt task is running and holds mutex A
3029 * --> -dl task blocks on mutex A
3030 *
3031 * 2. -dl task is running and holds mutex A
3032 * --> -dl task blocks on mutex A and could preempt the
3033 * running task
3034 */
3035 if (dl_prio(prio)) {
466af29b
ON
3036 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3037 if (!dl_prio(p->normal_prio) ||
3038 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3039 p->dl.dl_boosted = 1;
3040 p->dl.dl_throttled = 0;
3041 enqueue_flag = ENQUEUE_REPLENISH;
3042 } else
3043 p->dl.dl_boosted = 0;
aab03e05 3044 p->sched_class = &dl_sched_class;
2d3d891d
DF
3045 } else if (rt_prio(prio)) {
3046 if (dl_prio(oldprio))
3047 p->dl.dl_boosted = 0;
3048 if (oldprio < prio)
3049 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3050 p->sched_class = &rt_sched_class;
2d3d891d
DF
3051 } else {
3052 if (dl_prio(oldprio))
3053 p->dl.dl_boosted = 0;
746db944
BS
3054 if (rt_prio(oldprio))
3055 p->rt.timeout = 0;
dd41f596 3056 p->sched_class = &fair_sched_class;
2d3d891d 3057 }
dd41f596 3058
b29739f9
IM
3059 p->prio = prio;
3060
0e1f3483
HS
3061 if (running)
3062 p->sched_class->set_curr_task(rq);
da0c1e65 3063 if (queued)
2d3d891d 3064 enqueue_task(rq, p, enqueue_flag);
cb469845 3065
da7a735e 3066 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3067out_unlock:
0122ec5b 3068 __task_rq_unlock(rq);
b29739f9 3069}
b29739f9 3070#endif
d50dde5a 3071
36c8b586 3072void set_user_nice(struct task_struct *p, long nice)
1da177e4 3073{
da0c1e65 3074 int old_prio, delta, queued;
1da177e4 3075 unsigned long flags;
70b97a7f 3076 struct rq *rq;
1da177e4 3077
75e45d51 3078 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3079 return;
3080 /*
3081 * We have to be careful, if called from sys_setpriority(),
3082 * the task might be in the middle of scheduling on another CPU.
3083 */
3084 rq = task_rq_lock(p, &flags);
3085 /*
3086 * The RT priorities are set via sched_setscheduler(), but we still
3087 * allow the 'normal' nice value to be set - but as expected
3088 * it wont have any effect on scheduling until the task is
aab03e05 3089 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3090 */
aab03e05 3091 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3092 p->static_prio = NICE_TO_PRIO(nice);
3093 goto out_unlock;
3094 }
da0c1e65
KT
3095 queued = task_on_rq_queued(p);
3096 if (queued)
69be72c1 3097 dequeue_task(rq, p, 0);
1da177e4 3098
1da177e4 3099 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3100 set_load_weight(p);
b29739f9
IM
3101 old_prio = p->prio;
3102 p->prio = effective_prio(p);
3103 delta = p->prio - old_prio;
1da177e4 3104
da0c1e65 3105 if (queued) {
371fd7e7 3106 enqueue_task(rq, p, 0);
1da177e4 3107 /*
d5f9f942
AM
3108 * If the task increased its priority or is running and
3109 * lowered its priority, then reschedule its CPU:
1da177e4 3110 */
d5f9f942 3111 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3112 resched_curr(rq);
1da177e4
LT
3113 }
3114out_unlock:
0122ec5b 3115 task_rq_unlock(rq, p, &flags);
1da177e4 3116}
1da177e4
LT
3117EXPORT_SYMBOL(set_user_nice);
3118
e43379f1
MM
3119/*
3120 * can_nice - check if a task can reduce its nice value
3121 * @p: task
3122 * @nice: nice value
3123 */
36c8b586 3124int can_nice(const struct task_struct *p, const int nice)
e43379f1 3125{
024f4747 3126 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3127 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3128
78d7d407 3129 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3130 capable(CAP_SYS_NICE));
3131}
3132
1da177e4
LT
3133#ifdef __ARCH_WANT_SYS_NICE
3134
3135/*
3136 * sys_nice - change the priority of the current process.
3137 * @increment: priority increment
3138 *
3139 * sys_setpriority is a more generic, but much slower function that
3140 * does similar things.
3141 */
5add95d4 3142SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3143{
48f24c4d 3144 long nice, retval;
1da177e4
LT
3145
3146 /*
3147 * Setpriority might change our priority at the same moment.
3148 * We don't have to worry. Conceptually one call occurs first
3149 * and we have a single winner.
3150 */
a9467fa3 3151 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3152 nice = task_nice(current) + increment;
1da177e4 3153
a9467fa3 3154 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3155 if (increment < 0 && !can_nice(current, nice))
3156 return -EPERM;
3157
1da177e4
LT
3158 retval = security_task_setnice(current, nice);
3159 if (retval)
3160 return retval;
3161
3162 set_user_nice(current, nice);
3163 return 0;
3164}
3165
3166#endif
3167
3168/**
3169 * task_prio - return the priority value of a given task.
3170 * @p: the task in question.
3171 *
e69f6186 3172 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3173 * RT tasks are offset by -200. Normal tasks are centered
3174 * around 0, value goes from -16 to +15.
3175 */
36c8b586 3176int task_prio(const struct task_struct *p)
1da177e4
LT
3177{
3178 return p->prio - MAX_RT_PRIO;
3179}
3180
1da177e4
LT
3181/**
3182 * idle_cpu - is a given cpu idle currently?
3183 * @cpu: the processor in question.
e69f6186
YB
3184 *
3185 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3186 */
3187int idle_cpu(int cpu)
3188{
908a3283
TG
3189 struct rq *rq = cpu_rq(cpu);
3190
3191 if (rq->curr != rq->idle)
3192 return 0;
3193
3194 if (rq->nr_running)
3195 return 0;
3196
3197#ifdef CONFIG_SMP
3198 if (!llist_empty(&rq->wake_list))
3199 return 0;
3200#endif
3201
3202 return 1;
1da177e4
LT
3203}
3204
1da177e4
LT
3205/**
3206 * idle_task - return the idle task for a given cpu.
3207 * @cpu: the processor in question.
e69f6186
YB
3208 *
3209 * Return: The idle task for the cpu @cpu.
1da177e4 3210 */
36c8b586 3211struct task_struct *idle_task(int cpu)
1da177e4
LT
3212{
3213 return cpu_rq(cpu)->idle;
3214}
3215
3216/**
3217 * find_process_by_pid - find a process with a matching PID value.
3218 * @pid: the pid in question.
e69f6186
YB
3219 *
3220 * The task of @pid, if found. %NULL otherwise.
1da177e4 3221 */
a9957449 3222static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3223{
228ebcbe 3224 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3225}
3226
aab03e05
DF
3227/*
3228 * This function initializes the sched_dl_entity of a newly becoming
3229 * SCHED_DEADLINE task.
3230 *
3231 * Only the static values are considered here, the actual runtime and the
3232 * absolute deadline will be properly calculated when the task is enqueued
3233 * for the first time with its new policy.
3234 */
3235static void
3236__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3237{
3238 struct sched_dl_entity *dl_se = &p->dl;
3239
aab03e05
DF
3240 dl_se->dl_runtime = attr->sched_runtime;
3241 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3242 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3243 dl_se->flags = attr->sched_flags;
332ac17e 3244 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3245
3246 /*
3247 * Changing the parameters of a task is 'tricky' and we're not doing
3248 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3249 *
3250 * What we SHOULD do is delay the bandwidth release until the 0-lag
3251 * point. This would include retaining the task_struct until that time
3252 * and change dl_overflow() to not immediately decrement the current
3253 * amount.
3254 *
3255 * Instead we retain the current runtime/deadline and let the new
3256 * parameters take effect after the current reservation period lapses.
3257 * This is safe (albeit pessimistic) because the 0-lag point is always
3258 * before the current scheduling deadline.
3259 *
3260 * We can still have temporary overloads because we do not delay the
3261 * change in bandwidth until that time; so admission control is
3262 * not on the safe side. It does however guarantee tasks will never
3263 * consume more than promised.
3264 */
aab03e05
DF
3265}
3266
c13db6b1
SR
3267/*
3268 * sched_setparam() passes in -1 for its policy, to let the functions
3269 * it calls know not to change it.
3270 */
3271#define SETPARAM_POLICY -1
3272
c365c292
TG
3273static void __setscheduler_params(struct task_struct *p,
3274 const struct sched_attr *attr)
1da177e4 3275{
d50dde5a
DF
3276 int policy = attr->sched_policy;
3277
c13db6b1 3278 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3279 policy = p->policy;
3280
1da177e4 3281 p->policy = policy;
d50dde5a 3282
aab03e05
DF
3283 if (dl_policy(policy))
3284 __setparam_dl(p, attr);
39fd8fd2 3285 else if (fair_policy(policy))
d50dde5a
DF
3286 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3287
39fd8fd2
PZ
3288 /*
3289 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3290 * !rt_policy. Always setting this ensures that things like
3291 * getparam()/getattr() don't report silly values for !rt tasks.
3292 */
3293 p->rt_priority = attr->sched_priority;
383afd09 3294 p->normal_prio = normal_prio(p);
c365c292
TG
3295 set_load_weight(p);
3296}
39fd8fd2 3297
c365c292
TG
3298/* Actually do priority change: must hold pi & rq lock. */
3299static void __setscheduler(struct rq *rq, struct task_struct *p,
3300 const struct sched_attr *attr)
3301{
3302 __setscheduler_params(p, attr);
d50dde5a 3303
383afd09
SR
3304 /*
3305 * If we get here, there was no pi waiters boosting the
3306 * task. It is safe to use the normal prio.
3307 */
3308 p->prio = normal_prio(p);
3309
aab03e05
DF
3310 if (dl_prio(p->prio))
3311 p->sched_class = &dl_sched_class;
3312 else if (rt_prio(p->prio))
ffd44db5
PZ
3313 p->sched_class = &rt_sched_class;
3314 else
3315 p->sched_class = &fair_sched_class;
1da177e4 3316}
aab03e05
DF
3317
3318static void
3319__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3320{
3321 struct sched_dl_entity *dl_se = &p->dl;
3322
3323 attr->sched_priority = p->rt_priority;
3324 attr->sched_runtime = dl_se->dl_runtime;
3325 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3326 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3327 attr->sched_flags = dl_se->flags;
3328}
3329
3330/*
3331 * This function validates the new parameters of a -deadline task.
3332 * We ask for the deadline not being zero, and greater or equal
755378a4 3333 * than the runtime, as well as the period of being zero or
332ac17e 3334 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3335 * user parameters are above the internal resolution of 1us (we
3336 * check sched_runtime only since it is always the smaller one) and
3337 * below 2^63 ns (we have to check both sched_deadline and
3338 * sched_period, as the latter can be zero).
aab03e05
DF
3339 */
3340static bool
3341__checkparam_dl(const struct sched_attr *attr)
3342{
b0827819
JL
3343 /* deadline != 0 */
3344 if (attr->sched_deadline == 0)
3345 return false;
3346
3347 /*
3348 * Since we truncate DL_SCALE bits, make sure we're at least
3349 * that big.
3350 */
3351 if (attr->sched_runtime < (1ULL << DL_SCALE))
3352 return false;
3353
3354 /*
3355 * Since we use the MSB for wrap-around and sign issues, make
3356 * sure it's not set (mind that period can be equal to zero).
3357 */
3358 if (attr->sched_deadline & (1ULL << 63) ||
3359 attr->sched_period & (1ULL << 63))
3360 return false;
3361
3362 /* runtime <= deadline <= period (if period != 0) */
3363 if ((attr->sched_period != 0 &&
3364 attr->sched_period < attr->sched_deadline) ||
3365 attr->sched_deadline < attr->sched_runtime)
3366 return false;
3367
3368 return true;
aab03e05
DF
3369}
3370
c69e8d9c
DH
3371/*
3372 * check the target process has a UID that matches the current process's
3373 */
3374static bool check_same_owner(struct task_struct *p)
3375{
3376 const struct cred *cred = current_cred(), *pcred;
3377 bool match;
3378
3379 rcu_read_lock();
3380 pcred = __task_cred(p);
9c806aa0
EB
3381 match = (uid_eq(cred->euid, pcred->euid) ||
3382 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3383 rcu_read_unlock();
3384 return match;
3385}
3386
75381608
WL
3387static bool dl_param_changed(struct task_struct *p,
3388 const struct sched_attr *attr)
3389{
3390 struct sched_dl_entity *dl_se = &p->dl;
3391
3392 if (dl_se->dl_runtime != attr->sched_runtime ||
3393 dl_se->dl_deadline != attr->sched_deadline ||
3394 dl_se->dl_period != attr->sched_period ||
3395 dl_se->flags != attr->sched_flags)
3396 return true;
3397
3398 return false;
3399}
3400
d50dde5a
DF
3401static int __sched_setscheduler(struct task_struct *p,
3402 const struct sched_attr *attr,
3403 bool user)
1da177e4 3404{
383afd09
SR
3405 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3406 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3407 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3408 int policy = attr->sched_policy;
1da177e4 3409 unsigned long flags;
83ab0aa0 3410 const struct sched_class *prev_class;
70b97a7f 3411 struct rq *rq;
ca94c442 3412 int reset_on_fork;
1da177e4 3413
66e5393a
SR
3414 /* may grab non-irq protected spin_locks */
3415 BUG_ON(in_interrupt());
1da177e4
LT
3416recheck:
3417 /* double check policy once rq lock held */
ca94c442
LP
3418 if (policy < 0) {
3419 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3420 policy = oldpolicy = p->policy;
ca94c442 3421 } else {
7479f3c9 3422 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3423
aab03e05
DF
3424 if (policy != SCHED_DEADLINE &&
3425 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3426 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3427 policy != SCHED_IDLE)
3428 return -EINVAL;
3429 }
3430
7479f3c9
PZ
3431 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3432 return -EINVAL;
3433
1da177e4
LT
3434 /*
3435 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3436 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3437 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3438 */
0bb040a4 3439 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3440 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3441 return -EINVAL;
aab03e05
DF
3442 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3443 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3444 return -EINVAL;
3445
37e4ab3f
OC
3446 /*
3447 * Allow unprivileged RT tasks to decrease priority:
3448 */
961ccddd 3449 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3450 if (fair_policy(policy)) {
d0ea0268 3451 if (attr->sched_nice < task_nice(p) &&
eaad4513 3452 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3453 return -EPERM;
3454 }
3455
e05606d3 3456 if (rt_policy(policy)) {
a44702e8
ON
3457 unsigned long rlim_rtprio =
3458 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3459
3460 /* can't set/change the rt policy */
3461 if (policy != p->policy && !rlim_rtprio)
3462 return -EPERM;
3463
3464 /* can't increase priority */
d50dde5a
DF
3465 if (attr->sched_priority > p->rt_priority &&
3466 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3467 return -EPERM;
3468 }
c02aa73b 3469
d44753b8
JL
3470 /*
3471 * Can't set/change SCHED_DEADLINE policy at all for now
3472 * (safest behavior); in the future we would like to allow
3473 * unprivileged DL tasks to increase their relative deadline
3474 * or reduce their runtime (both ways reducing utilization)
3475 */
3476 if (dl_policy(policy))
3477 return -EPERM;
3478
dd41f596 3479 /*
c02aa73b
DH
3480 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3481 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3482 */
c02aa73b 3483 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3484 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3485 return -EPERM;
3486 }
5fe1d75f 3487
37e4ab3f 3488 /* can't change other user's priorities */
c69e8d9c 3489 if (!check_same_owner(p))
37e4ab3f 3490 return -EPERM;
ca94c442
LP
3491
3492 /* Normal users shall not reset the sched_reset_on_fork flag */
3493 if (p->sched_reset_on_fork && !reset_on_fork)
3494 return -EPERM;
37e4ab3f 3495 }
1da177e4 3496
725aad24 3497 if (user) {
b0ae1981 3498 retval = security_task_setscheduler(p);
725aad24
JF
3499 if (retval)
3500 return retval;
3501 }
3502
b29739f9
IM
3503 /*
3504 * make sure no PI-waiters arrive (or leave) while we are
3505 * changing the priority of the task:
0122ec5b 3506 *
25985edc 3507 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3508 * runqueue lock must be held.
3509 */
0122ec5b 3510 rq = task_rq_lock(p, &flags);
dc61b1d6 3511
34f971f6
PZ
3512 /*
3513 * Changing the policy of the stop threads its a very bad idea
3514 */
3515 if (p == rq->stop) {
0122ec5b 3516 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3517 return -EINVAL;
3518 }
3519
a51e9198 3520 /*
d6b1e911
TG
3521 * If not changing anything there's no need to proceed further,
3522 * but store a possible modification of reset_on_fork.
a51e9198 3523 */
d50dde5a 3524 if (unlikely(policy == p->policy)) {
d0ea0268 3525 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3526 goto change;
3527 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3528 goto change;
75381608 3529 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3530 goto change;
d50dde5a 3531
d6b1e911 3532 p->sched_reset_on_fork = reset_on_fork;
45afb173 3533 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3534 return 0;
3535 }
d50dde5a 3536change:
a51e9198 3537
dc61b1d6 3538 if (user) {
332ac17e 3539#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3540 /*
3541 * Do not allow realtime tasks into groups that have no runtime
3542 * assigned.
3543 */
3544 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3545 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3546 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3547 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3548 return -EPERM;
3549 }
dc61b1d6 3550#endif
332ac17e
DF
3551#ifdef CONFIG_SMP
3552 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3553 cpumask_t *span = rq->rd->span;
332ac17e
DF
3554
3555 /*
3556 * Don't allow tasks with an affinity mask smaller than
3557 * the entire root_domain to become SCHED_DEADLINE. We
3558 * will also fail if there's no bandwidth available.
3559 */
e4099a5e
PZ
3560 if (!cpumask_subset(span, &p->cpus_allowed) ||
3561 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3562 task_rq_unlock(rq, p, &flags);
3563 return -EPERM;
3564 }
3565 }
3566#endif
3567 }
dc61b1d6 3568
1da177e4
LT
3569 /* recheck policy now with rq lock held */
3570 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3571 policy = oldpolicy = -1;
0122ec5b 3572 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3573 goto recheck;
3574 }
332ac17e
DF
3575
3576 /*
3577 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3578 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3579 * is available.
3580 */
e4099a5e 3581 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3582 task_rq_unlock(rq, p, &flags);
3583 return -EBUSY;
3584 }
3585
c365c292
TG
3586 p->sched_reset_on_fork = reset_on_fork;
3587 oldprio = p->prio;
3588
3589 /*
3590 * Special case for priority boosted tasks.
3591 *
3592 * If the new priority is lower or equal (user space view)
3593 * than the current (boosted) priority, we just store the new
3594 * normal parameters and do not touch the scheduler class and
3595 * the runqueue. This will be done when the task deboost
3596 * itself.
3597 */
3598 if (rt_mutex_check_prio(p, newprio)) {
3599 __setscheduler_params(p, attr);
3600 task_rq_unlock(rq, p, &flags);
3601 return 0;
3602 }
3603
da0c1e65 3604 queued = task_on_rq_queued(p);
051a1d1a 3605 running = task_current(rq, p);
da0c1e65 3606 if (queued)
4ca9b72b 3607 dequeue_task(rq, p, 0);
0e1f3483 3608 if (running)
f3cd1c4e 3609 put_prev_task(rq, p);
f6b53205 3610
83ab0aa0 3611 prev_class = p->sched_class;
d50dde5a 3612 __setscheduler(rq, p, attr);
f6b53205 3613
0e1f3483
HS
3614 if (running)
3615 p->sched_class->set_curr_task(rq);
da0c1e65 3616 if (queued) {
81a44c54
TG
3617 /*
3618 * We enqueue to tail when the priority of a task is
3619 * increased (user space view).
3620 */
3621 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3622 }
cb469845 3623
da7a735e 3624 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3625 task_rq_unlock(rq, p, &flags);
b29739f9 3626
95e02ca9
TG
3627 rt_mutex_adjust_pi(p);
3628
1da177e4
LT
3629 return 0;
3630}
961ccddd 3631
7479f3c9
PZ
3632static int _sched_setscheduler(struct task_struct *p, int policy,
3633 const struct sched_param *param, bool check)
3634{
3635 struct sched_attr attr = {
3636 .sched_policy = policy,
3637 .sched_priority = param->sched_priority,
3638 .sched_nice = PRIO_TO_NICE(p->static_prio),
3639 };
3640
c13db6b1
SR
3641 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3642 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3643 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3644 policy &= ~SCHED_RESET_ON_FORK;
3645 attr.sched_policy = policy;
3646 }
3647
3648 return __sched_setscheduler(p, &attr, check);
3649}
961ccddd
RR
3650/**
3651 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3652 * @p: the task in question.
3653 * @policy: new policy.
3654 * @param: structure containing the new RT priority.
3655 *
e69f6186
YB
3656 * Return: 0 on success. An error code otherwise.
3657 *
961ccddd
RR
3658 * NOTE that the task may be already dead.
3659 */
3660int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3661 const struct sched_param *param)
961ccddd 3662{
7479f3c9 3663 return _sched_setscheduler(p, policy, param, true);
961ccddd 3664}
1da177e4
LT
3665EXPORT_SYMBOL_GPL(sched_setscheduler);
3666
d50dde5a
DF
3667int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3668{
3669 return __sched_setscheduler(p, attr, true);
3670}
3671EXPORT_SYMBOL_GPL(sched_setattr);
3672
961ccddd
RR
3673/**
3674 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3675 * @p: the task in question.
3676 * @policy: new policy.
3677 * @param: structure containing the new RT priority.
3678 *
3679 * Just like sched_setscheduler, only don't bother checking if the
3680 * current context has permission. For example, this is needed in
3681 * stop_machine(): we create temporary high priority worker threads,
3682 * but our caller might not have that capability.
e69f6186
YB
3683 *
3684 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3685 */
3686int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3687 const struct sched_param *param)
961ccddd 3688{
7479f3c9 3689 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3690}
3691
95cdf3b7
IM
3692static int
3693do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3694{
1da177e4
LT
3695 struct sched_param lparam;
3696 struct task_struct *p;
36c8b586 3697 int retval;
1da177e4
LT
3698
3699 if (!param || pid < 0)
3700 return -EINVAL;
3701 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3702 return -EFAULT;
5fe1d75f
ON
3703
3704 rcu_read_lock();
3705 retval = -ESRCH;
1da177e4 3706 p = find_process_by_pid(pid);
5fe1d75f
ON
3707 if (p != NULL)
3708 retval = sched_setscheduler(p, policy, &lparam);
3709 rcu_read_unlock();
36c8b586 3710
1da177e4
LT
3711 return retval;
3712}
3713
d50dde5a
DF
3714/*
3715 * Mimics kernel/events/core.c perf_copy_attr().
3716 */
3717static int sched_copy_attr(struct sched_attr __user *uattr,
3718 struct sched_attr *attr)
3719{
3720 u32 size;
3721 int ret;
3722
3723 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3724 return -EFAULT;
3725
3726 /*
3727 * zero the full structure, so that a short copy will be nice.
3728 */
3729 memset(attr, 0, sizeof(*attr));
3730
3731 ret = get_user(size, &uattr->size);
3732 if (ret)
3733 return ret;
3734
3735 if (size > PAGE_SIZE) /* silly large */
3736 goto err_size;
3737
3738 if (!size) /* abi compat */
3739 size = SCHED_ATTR_SIZE_VER0;
3740
3741 if (size < SCHED_ATTR_SIZE_VER0)
3742 goto err_size;
3743
3744 /*
3745 * If we're handed a bigger struct than we know of,
3746 * ensure all the unknown bits are 0 - i.e. new
3747 * user-space does not rely on any kernel feature
3748 * extensions we dont know about yet.
3749 */
3750 if (size > sizeof(*attr)) {
3751 unsigned char __user *addr;
3752 unsigned char __user *end;
3753 unsigned char val;
3754
3755 addr = (void __user *)uattr + sizeof(*attr);
3756 end = (void __user *)uattr + size;
3757
3758 for (; addr < end; addr++) {
3759 ret = get_user(val, addr);
3760 if (ret)
3761 return ret;
3762 if (val)
3763 goto err_size;
3764 }
3765 size = sizeof(*attr);
3766 }
3767
3768 ret = copy_from_user(attr, uattr, size);
3769 if (ret)
3770 return -EFAULT;
3771
3772 /*
3773 * XXX: do we want to be lenient like existing syscalls; or do we want
3774 * to be strict and return an error on out-of-bounds values?
3775 */
75e45d51 3776 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3777
e78c7bca 3778 return 0;
d50dde5a
DF
3779
3780err_size:
3781 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3782 return -E2BIG;
d50dde5a
DF
3783}
3784
1da177e4
LT
3785/**
3786 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3787 * @pid: the pid in question.
3788 * @policy: new policy.
3789 * @param: structure containing the new RT priority.
e69f6186
YB
3790 *
3791 * Return: 0 on success. An error code otherwise.
1da177e4 3792 */
5add95d4
HC
3793SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3794 struct sched_param __user *, param)
1da177e4 3795{
c21761f1
JB
3796 /* negative values for policy are not valid */
3797 if (policy < 0)
3798 return -EINVAL;
3799
1da177e4
LT
3800 return do_sched_setscheduler(pid, policy, param);
3801}
3802
3803/**
3804 * sys_sched_setparam - set/change the RT priority of a thread
3805 * @pid: the pid in question.
3806 * @param: structure containing the new RT priority.
e69f6186
YB
3807 *
3808 * Return: 0 on success. An error code otherwise.
1da177e4 3809 */
5add95d4 3810SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3811{
c13db6b1 3812 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3813}
3814
d50dde5a
DF
3815/**
3816 * sys_sched_setattr - same as above, but with extended sched_attr
3817 * @pid: the pid in question.
5778fccf 3818 * @uattr: structure containing the extended parameters.
db66d756 3819 * @flags: for future extension.
d50dde5a 3820 */
6d35ab48
PZ
3821SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3822 unsigned int, flags)
d50dde5a
DF
3823{
3824 struct sched_attr attr;
3825 struct task_struct *p;
3826 int retval;
3827
6d35ab48 3828 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3829 return -EINVAL;
3830
143cf23d
MK
3831 retval = sched_copy_attr(uattr, &attr);
3832 if (retval)
3833 return retval;
d50dde5a 3834
b14ed2c2 3835 if ((int)attr.sched_policy < 0)
dbdb2275 3836 return -EINVAL;
d50dde5a
DF
3837
3838 rcu_read_lock();
3839 retval = -ESRCH;
3840 p = find_process_by_pid(pid);
3841 if (p != NULL)
3842 retval = sched_setattr(p, &attr);
3843 rcu_read_unlock();
3844
3845 return retval;
3846}
3847
1da177e4
LT
3848/**
3849 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3850 * @pid: the pid in question.
e69f6186
YB
3851 *
3852 * Return: On success, the policy of the thread. Otherwise, a negative error
3853 * code.
1da177e4 3854 */
5add95d4 3855SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3856{
36c8b586 3857 struct task_struct *p;
3a5c359a 3858 int retval;
1da177e4
LT
3859
3860 if (pid < 0)
3a5c359a 3861 return -EINVAL;
1da177e4
LT
3862
3863 retval = -ESRCH;
5fe85be0 3864 rcu_read_lock();
1da177e4
LT
3865 p = find_process_by_pid(pid);
3866 if (p) {
3867 retval = security_task_getscheduler(p);
3868 if (!retval)
ca94c442
LP
3869 retval = p->policy
3870 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3871 }
5fe85be0 3872 rcu_read_unlock();
1da177e4
LT
3873 return retval;
3874}
3875
3876/**
ca94c442 3877 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3878 * @pid: the pid in question.
3879 * @param: structure containing the RT priority.
e69f6186
YB
3880 *
3881 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3882 * code.
1da177e4 3883 */
5add95d4 3884SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3885{
ce5f7f82 3886 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3887 struct task_struct *p;
3a5c359a 3888 int retval;
1da177e4
LT
3889
3890 if (!param || pid < 0)
3a5c359a 3891 return -EINVAL;
1da177e4 3892
5fe85be0 3893 rcu_read_lock();
1da177e4
LT
3894 p = find_process_by_pid(pid);
3895 retval = -ESRCH;
3896 if (!p)
3897 goto out_unlock;
3898
3899 retval = security_task_getscheduler(p);
3900 if (retval)
3901 goto out_unlock;
3902
ce5f7f82
PZ
3903 if (task_has_rt_policy(p))
3904 lp.sched_priority = p->rt_priority;
5fe85be0 3905 rcu_read_unlock();
1da177e4
LT
3906
3907 /*
3908 * This one might sleep, we cannot do it with a spinlock held ...
3909 */
3910 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3911
1da177e4
LT
3912 return retval;
3913
3914out_unlock:
5fe85be0 3915 rcu_read_unlock();
1da177e4
LT
3916 return retval;
3917}
3918
d50dde5a
DF
3919static int sched_read_attr(struct sched_attr __user *uattr,
3920 struct sched_attr *attr,
3921 unsigned int usize)
3922{
3923 int ret;
3924
3925 if (!access_ok(VERIFY_WRITE, uattr, usize))
3926 return -EFAULT;
3927
3928 /*
3929 * If we're handed a smaller struct than we know of,
3930 * ensure all the unknown bits are 0 - i.e. old
3931 * user-space does not get uncomplete information.
3932 */
3933 if (usize < sizeof(*attr)) {
3934 unsigned char *addr;
3935 unsigned char *end;
3936
3937 addr = (void *)attr + usize;
3938 end = (void *)attr + sizeof(*attr);
3939
3940 for (; addr < end; addr++) {
3941 if (*addr)
22400674 3942 return -EFBIG;
d50dde5a
DF
3943 }
3944
3945 attr->size = usize;
3946 }
3947
4efbc454 3948 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3949 if (ret)
3950 return -EFAULT;
3951
22400674 3952 return 0;
d50dde5a
DF
3953}
3954
3955/**
aab03e05 3956 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3957 * @pid: the pid in question.
5778fccf 3958 * @uattr: structure containing the extended parameters.
d50dde5a 3959 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3960 * @flags: for future extension.
d50dde5a 3961 */
6d35ab48
PZ
3962SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3963 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3964{
3965 struct sched_attr attr = {
3966 .size = sizeof(struct sched_attr),
3967 };
3968 struct task_struct *p;
3969 int retval;
3970
3971 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3972 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3973 return -EINVAL;
3974
3975 rcu_read_lock();
3976 p = find_process_by_pid(pid);
3977 retval = -ESRCH;
3978 if (!p)
3979 goto out_unlock;
3980
3981 retval = security_task_getscheduler(p);
3982 if (retval)
3983 goto out_unlock;
3984
3985 attr.sched_policy = p->policy;
7479f3c9
PZ
3986 if (p->sched_reset_on_fork)
3987 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3988 if (task_has_dl_policy(p))
3989 __getparam_dl(p, &attr);
3990 else if (task_has_rt_policy(p))
d50dde5a
DF
3991 attr.sched_priority = p->rt_priority;
3992 else
d0ea0268 3993 attr.sched_nice = task_nice(p);
d50dde5a
DF
3994
3995 rcu_read_unlock();
3996
3997 retval = sched_read_attr(uattr, &attr, size);
3998 return retval;
3999
4000out_unlock:
4001 rcu_read_unlock();
4002 return retval;
4003}
4004
96f874e2 4005long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4006{
5a16f3d3 4007 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4008 struct task_struct *p;
4009 int retval;
1da177e4 4010
23f5d142 4011 rcu_read_lock();
1da177e4
LT
4012
4013 p = find_process_by_pid(pid);
4014 if (!p) {
23f5d142 4015 rcu_read_unlock();
1da177e4
LT
4016 return -ESRCH;
4017 }
4018
23f5d142 4019 /* Prevent p going away */
1da177e4 4020 get_task_struct(p);
23f5d142 4021 rcu_read_unlock();
1da177e4 4022
14a40ffc
TH
4023 if (p->flags & PF_NO_SETAFFINITY) {
4024 retval = -EINVAL;
4025 goto out_put_task;
4026 }
5a16f3d3
RR
4027 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4028 retval = -ENOMEM;
4029 goto out_put_task;
4030 }
4031 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4032 retval = -ENOMEM;
4033 goto out_free_cpus_allowed;
4034 }
1da177e4 4035 retval = -EPERM;
4c44aaaf
EB
4036 if (!check_same_owner(p)) {
4037 rcu_read_lock();
4038 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4039 rcu_read_unlock();
16303ab2 4040 goto out_free_new_mask;
4c44aaaf
EB
4041 }
4042 rcu_read_unlock();
4043 }
1da177e4 4044
b0ae1981 4045 retval = security_task_setscheduler(p);
e7834f8f 4046 if (retval)
16303ab2 4047 goto out_free_new_mask;
e7834f8f 4048
e4099a5e
PZ
4049
4050 cpuset_cpus_allowed(p, cpus_allowed);
4051 cpumask_and(new_mask, in_mask, cpus_allowed);
4052
332ac17e
DF
4053 /*
4054 * Since bandwidth control happens on root_domain basis,
4055 * if admission test is enabled, we only admit -deadline
4056 * tasks allowed to run on all the CPUs in the task's
4057 * root_domain.
4058 */
4059#ifdef CONFIG_SMP
f1e3a093
KT
4060 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4061 rcu_read_lock();
4062 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4063 retval = -EBUSY;
f1e3a093 4064 rcu_read_unlock();
16303ab2 4065 goto out_free_new_mask;
332ac17e 4066 }
f1e3a093 4067 rcu_read_unlock();
332ac17e
DF
4068 }
4069#endif
49246274 4070again:
5a16f3d3 4071 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4072
8707d8b8 4073 if (!retval) {
5a16f3d3
RR
4074 cpuset_cpus_allowed(p, cpus_allowed);
4075 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4076 /*
4077 * We must have raced with a concurrent cpuset
4078 * update. Just reset the cpus_allowed to the
4079 * cpuset's cpus_allowed
4080 */
5a16f3d3 4081 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4082 goto again;
4083 }
4084 }
16303ab2 4085out_free_new_mask:
5a16f3d3
RR
4086 free_cpumask_var(new_mask);
4087out_free_cpus_allowed:
4088 free_cpumask_var(cpus_allowed);
4089out_put_task:
1da177e4 4090 put_task_struct(p);
1da177e4
LT
4091 return retval;
4092}
4093
4094static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4095 struct cpumask *new_mask)
1da177e4 4096{
96f874e2
RR
4097 if (len < cpumask_size())
4098 cpumask_clear(new_mask);
4099 else if (len > cpumask_size())
4100 len = cpumask_size();
4101
1da177e4
LT
4102 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4103}
4104
4105/**
4106 * sys_sched_setaffinity - set the cpu affinity of a process
4107 * @pid: pid of the process
4108 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4109 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4110 *
4111 * Return: 0 on success. An error code otherwise.
1da177e4 4112 */
5add95d4
HC
4113SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4114 unsigned long __user *, user_mask_ptr)
1da177e4 4115{
5a16f3d3 4116 cpumask_var_t new_mask;
1da177e4
LT
4117 int retval;
4118
5a16f3d3
RR
4119 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4120 return -ENOMEM;
1da177e4 4121
5a16f3d3
RR
4122 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4123 if (retval == 0)
4124 retval = sched_setaffinity(pid, new_mask);
4125 free_cpumask_var(new_mask);
4126 return retval;
1da177e4
LT
4127}
4128
96f874e2 4129long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4130{
36c8b586 4131 struct task_struct *p;
31605683 4132 unsigned long flags;
1da177e4 4133 int retval;
1da177e4 4134
23f5d142 4135 rcu_read_lock();
1da177e4
LT
4136
4137 retval = -ESRCH;
4138 p = find_process_by_pid(pid);
4139 if (!p)
4140 goto out_unlock;
4141
e7834f8f
DQ
4142 retval = security_task_getscheduler(p);
4143 if (retval)
4144 goto out_unlock;
4145
013fdb80 4146 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4147 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4148 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4149
4150out_unlock:
23f5d142 4151 rcu_read_unlock();
1da177e4 4152
9531b62f 4153 return retval;
1da177e4
LT
4154}
4155
4156/**
4157 * sys_sched_getaffinity - get the cpu affinity of a process
4158 * @pid: pid of the process
4159 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4160 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4161 *
4162 * Return: 0 on success. An error code otherwise.
1da177e4 4163 */
5add95d4
HC
4164SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4165 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4166{
4167 int ret;
f17c8607 4168 cpumask_var_t mask;
1da177e4 4169
84fba5ec 4170 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4171 return -EINVAL;
4172 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4173 return -EINVAL;
4174
f17c8607
RR
4175 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4176 return -ENOMEM;
1da177e4 4177
f17c8607
RR
4178 ret = sched_getaffinity(pid, mask);
4179 if (ret == 0) {
8bc037fb 4180 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4181
4182 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4183 ret = -EFAULT;
4184 else
cd3d8031 4185 ret = retlen;
f17c8607
RR
4186 }
4187 free_cpumask_var(mask);
1da177e4 4188
f17c8607 4189 return ret;
1da177e4
LT
4190}
4191
4192/**
4193 * sys_sched_yield - yield the current processor to other threads.
4194 *
dd41f596
IM
4195 * This function yields the current CPU to other tasks. If there are no
4196 * other threads running on this CPU then this function will return.
e69f6186
YB
4197 *
4198 * Return: 0.
1da177e4 4199 */
5add95d4 4200SYSCALL_DEFINE0(sched_yield)
1da177e4 4201{
70b97a7f 4202 struct rq *rq = this_rq_lock();
1da177e4 4203
2d72376b 4204 schedstat_inc(rq, yld_count);
4530d7ab 4205 current->sched_class->yield_task(rq);
1da177e4
LT
4206
4207 /*
4208 * Since we are going to call schedule() anyway, there's
4209 * no need to preempt or enable interrupts:
4210 */
4211 __release(rq->lock);
8a25d5de 4212 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4213 do_raw_spin_unlock(&rq->lock);
ba74c144 4214 sched_preempt_enable_no_resched();
1da177e4
LT
4215
4216 schedule();
4217
4218 return 0;
4219}
4220
02b67cc3 4221int __sched _cond_resched(void)
1da177e4 4222{
d86ee480 4223 if (should_resched()) {
a18b5d01 4224 preempt_schedule_common();
1da177e4
LT
4225 return 1;
4226 }
4227 return 0;
4228}
02b67cc3 4229EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4230
4231/*
613afbf8 4232 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4233 * call schedule, and on return reacquire the lock.
4234 *
41a2d6cf 4235 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4236 * operations here to prevent schedule() from being called twice (once via
4237 * spin_unlock(), once by hand).
4238 */
613afbf8 4239int __cond_resched_lock(spinlock_t *lock)
1da177e4 4240{
d86ee480 4241 int resched = should_resched();
6df3cecb
JK
4242 int ret = 0;
4243
f607c668
PZ
4244 lockdep_assert_held(lock);
4245
4a81e832 4246 if (spin_needbreak(lock) || resched) {
1da177e4 4247 spin_unlock(lock);
d86ee480 4248 if (resched)
a18b5d01 4249 preempt_schedule_common();
95c354fe
NP
4250 else
4251 cpu_relax();
6df3cecb 4252 ret = 1;
1da177e4 4253 spin_lock(lock);
1da177e4 4254 }
6df3cecb 4255 return ret;
1da177e4 4256}
613afbf8 4257EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4258
613afbf8 4259int __sched __cond_resched_softirq(void)
1da177e4
LT
4260{
4261 BUG_ON(!in_softirq());
4262
d86ee480 4263 if (should_resched()) {
98d82567 4264 local_bh_enable();
a18b5d01 4265 preempt_schedule_common();
1da177e4
LT
4266 local_bh_disable();
4267 return 1;
4268 }
4269 return 0;
4270}
613afbf8 4271EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4272
1da177e4
LT
4273/**
4274 * yield - yield the current processor to other threads.
4275 *
8e3fabfd
PZ
4276 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4277 *
4278 * The scheduler is at all times free to pick the calling task as the most
4279 * eligible task to run, if removing the yield() call from your code breaks
4280 * it, its already broken.
4281 *
4282 * Typical broken usage is:
4283 *
4284 * while (!event)
4285 * yield();
4286 *
4287 * where one assumes that yield() will let 'the other' process run that will
4288 * make event true. If the current task is a SCHED_FIFO task that will never
4289 * happen. Never use yield() as a progress guarantee!!
4290 *
4291 * If you want to use yield() to wait for something, use wait_event().
4292 * If you want to use yield() to be 'nice' for others, use cond_resched().
4293 * If you still want to use yield(), do not!
1da177e4
LT
4294 */
4295void __sched yield(void)
4296{
4297 set_current_state(TASK_RUNNING);
4298 sys_sched_yield();
4299}
1da177e4
LT
4300EXPORT_SYMBOL(yield);
4301
d95f4122
MG
4302/**
4303 * yield_to - yield the current processor to another thread in
4304 * your thread group, or accelerate that thread toward the
4305 * processor it's on.
16addf95
RD
4306 * @p: target task
4307 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4308 *
4309 * It's the caller's job to ensure that the target task struct
4310 * can't go away on us before we can do any checks.
4311 *
e69f6186 4312 * Return:
7b270f60
PZ
4313 * true (>0) if we indeed boosted the target task.
4314 * false (0) if we failed to boost the target.
4315 * -ESRCH if there's no task to yield to.
d95f4122 4316 */
fa93384f 4317int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4318{
4319 struct task_struct *curr = current;
4320 struct rq *rq, *p_rq;
4321 unsigned long flags;
c3c18640 4322 int yielded = 0;
d95f4122
MG
4323
4324 local_irq_save(flags);
4325 rq = this_rq();
4326
4327again:
4328 p_rq = task_rq(p);
7b270f60
PZ
4329 /*
4330 * If we're the only runnable task on the rq and target rq also
4331 * has only one task, there's absolutely no point in yielding.
4332 */
4333 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4334 yielded = -ESRCH;
4335 goto out_irq;
4336 }
4337
d95f4122 4338 double_rq_lock(rq, p_rq);
39e24d8f 4339 if (task_rq(p) != p_rq) {
d95f4122
MG
4340 double_rq_unlock(rq, p_rq);
4341 goto again;
4342 }
4343
4344 if (!curr->sched_class->yield_to_task)
7b270f60 4345 goto out_unlock;
d95f4122
MG
4346
4347 if (curr->sched_class != p->sched_class)
7b270f60 4348 goto out_unlock;
d95f4122
MG
4349
4350 if (task_running(p_rq, p) || p->state)
7b270f60 4351 goto out_unlock;
d95f4122
MG
4352
4353 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4354 if (yielded) {
d95f4122 4355 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4356 /*
4357 * Make p's CPU reschedule; pick_next_entity takes care of
4358 * fairness.
4359 */
4360 if (preempt && rq != p_rq)
8875125e 4361 resched_curr(p_rq);
6d1cafd8 4362 }
d95f4122 4363
7b270f60 4364out_unlock:
d95f4122 4365 double_rq_unlock(rq, p_rq);
7b270f60 4366out_irq:
d95f4122
MG
4367 local_irq_restore(flags);
4368
7b270f60 4369 if (yielded > 0)
d95f4122
MG
4370 schedule();
4371
4372 return yielded;
4373}
4374EXPORT_SYMBOL_GPL(yield_to);
4375
1da177e4 4376/*
41a2d6cf 4377 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4378 * that process accounting knows that this is a task in IO wait state.
1da177e4 4379 */
1da177e4
LT
4380long __sched io_schedule_timeout(long timeout)
4381{
9cff8ade
N
4382 int old_iowait = current->in_iowait;
4383 struct rq *rq;
1da177e4
LT
4384 long ret;
4385
9cff8ade
N
4386 current->in_iowait = 1;
4387 if (old_iowait)
4388 blk_schedule_flush_plug(current);
4389 else
4390 blk_flush_plug(current);
4391
0ff92245 4392 delayacct_blkio_start();
9cff8ade 4393 rq = raw_rq();
1da177e4
LT
4394 atomic_inc(&rq->nr_iowait);
4395 ret = schedule_timeout(timeout);
9cff8ade 4396 current->in_iowait = old_iowait;
1da177e4 4397 atomic_dec(&rq->nr_iowait);
0ff92245 4398 delayacct_blkio_end();
9cff8ade 4399
1da177e4
LT
4400 return ret;
4401}
9cff8ade 4402EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4403
4404/**
4405 * sys_sched_get_priority_max - return maximum RT priority.
4406 * @policy: scheduling class.
4407 *
e69f6186
YB
4408 * Return: On success, this syscall returns the maximum
4409 * rt_priority that can be used by a given scheduling class.
4410 * On failure, a negative error code is returned.
1da177e4 4411 */
5add95d4 4412SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4413{
4414 int ret = -EINVAL;
4415
4416 switch (policy) {
4417 case SCHED_FIFO:
4418 case SCHED_RR:
4419 ret = MAX_USER_RT_PRIO-1;
4420 break;
aab03e05 4421 case SCHED_DEADLINE:
1da177e4 4422 case SCHED_NORMAL:
b0a9499c 4423 case SCHED_BATCH:
dd41f596 4424 case SCHED_IDLE:
1da177e4
LT
4425 ret = 0;
4426 break;
4427 }
4428 return ret;
4429}
4430
4431/**
4432 * sys_sched_get_priority_min - return minimum RT priority.
4433 * @policy: scheduling class.
4434 *
e69f6186
YB
4435 * Return: On success, this syscall returns the minimum
4436 * rt_priority that can be used by a given scheduling class.
4437 * On failure, a negative error code is returned.
1da177e4 4438 */
5add95d4 4439SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4440{
4441 int ret = -EINVAL;
4442
4443 switch (policy) {
4444 case SCHED_FIFO:
4445 case SCHED_RR:
4446 ret = 1;
4447 break;
aab03e05 4448 case SCHED_DEADLINE:
1da177e4 4449 case SCHED_NORMAL:
b0a9499c 4450 case SCHED_BATCH:
dd41f596 4451 case SCHED_IDLE:
1da177e4
LT
4452 ret = 0;
4453 }
4454 return ret;
4455}
4456
4457/**
4458 * sys_sched_rr_get_interval - return the default timeslice of a process.
4459 * @pid: pid of the process.
4460 * @interval: userspace pointer to the timeslice value.
4461 *
4462 * this syscall writes the default timeslice value of a given process
4463 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4464 *
4465 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4466 * an error code.
1da177e4 4467 */
17da2bd9 4468SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4469 struct timespec __user *, interval)
1da177e4 4470{
36c8b586 4471 struct task_struct *p;
a4ec24b4 4472 unsigned int time_slice;
dba091b9
TG
4473 unsigned long flags;
4474 struct rq *rq;
3a5c359a 4475 int retval;
1da177e4 4476 struct timespec t;
1da177e4
LT
4477
4478 if (pid < 0)
3a5c359a 4479 return -EINVAL;
1da177e4
LT
4480
4481 retval = -ESRCH;
1a551ae7 4482 rcu_read_lock();
1da177e4
LT
4483 p = find_process_by_pid(pid);
4484 if (!p)
4485 goto out_unlock;
4486
4487 retval = security_task_getscheduler(p);
4488 if (retval)
4489 goto out_unlock;
4490
dba091b9 4491 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4492 time_slice = 0;
4493 if (p->sched_class->get_rr_interval)
4494 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4495 task_rq_unlock(rq, p, &flags);
a4ec24b4 4496
1a551ae7 4497 rcu_read_unlock();
a4ec24b4 4498 jiffies_to_timespec(time_slice, &t);
1da177e4 4499 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4500 return retval;
3a5c359a 4501
1da177e4 4502out_unlock:
1a551ae7 4503 rcu_read_unlock();
1da177e4
LT
4504 return retval;
4505}
4506
7c731e0a 4507static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4508
82a1fcb9 4509void sched_show_task(struct task_struct *p)
1da177e4 4510{
1da177e4 4511 unsigned long free = 0;
4e79752c 4512 int ppid;
1f8a7633 4513 unsigned long state = p->state;
1da177e4 4514
1f8a7633
TH
4515 if (state)
4516 state = __ffs(state) + 1;
28d0686c 4517 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4518 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4519#if BITS_PER_LONG == 32
1da177e4 4520 if (state == TASK_RUNNING)
3df0fc5b 4521 printk(KERN_CONT " running ");
1da177e4 4522 else
3df0fc5b 4523 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4524#else
4525 if (state == TASK_RUNNING)
3df0fc5b 4526 printk(KERN_CONT " running task ");
1da177e4 4527 else
3df0fc5b 4528 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4529#endif
4530#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4531 free = stack_not_used(p);
1da177e4 4532#endif
a90e984c 4533 ppid = 0;
4e79752c 4534 rcu_read_lock();
a90e984c
ON
4535 if (pid_alive(p))
4536 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4537 rcu_read_unlock();
3df0fc5b 4538 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4539 task_pid_nr(p), ppid,
aa47b7e0 4540 (unsigned long)task_thread_info(p)->flags);
1da177e4 4541
3d1cb205 4542 print_worker_info(KERN_INFO, p);
5fb5e6de 4543 show_stack(p, NULL);
1da177e4
LT
4544}
4545
e59e2ae2 4546void show_state_filter(unsigned long state_filter)
1da177e4 4547{
36c8b586 4548 struct task_struct *g, *p;
1da177e4 4549
4bd77321 4550#if BITS_PER_LONG == 32
3df0fc5b
PZ
4551 printk(KERN_INFO
4552 " task PC stack pid father\n");
1da177e4 4553#else
3df0fc5b
PZ
4554 printk(KERN_INFO
4555 " task PC stack pid father\n");
1da177e4 4556#endif
510f5acc 4557 rcu_read_lock();
5d07f420 4558 for_each_process_thread(g, p) {
1da177e4
LT
4559 /*
4560 * reset the NMI-timeout, listing all files on a slow
25985edc 4561 * console might take a lot of time:
1da177e4
LT
4562 */
4563 touch_nmi_watchdog();
39bc89fd 4564 if (!state_filter || (p->state & state_filter))
82a1fcb9 4565 sched_show_task(p);
5d07f420 4566 }
1da177e4 4567
04c9167f
JF
4568 touch_all_softlockup_watchdogs();
4569
dd41f596
IM
4570#ifdef CONFIG_SCHED_DEBUG
4571 sysrq_sched_debug_show();
4572#endif
510f5acc 4573 rcu_read_unlock();
e59e2ae2
IM
4574 /*
4575 * Only show locks if all tasks are dumped:
4576 */
93335a21 4577 if (!state_filter)
e59e2ae2 4578 debug_show_all_locks();
1da177e4
LT
4579}
4580
0db0628d 4581void init_idle_bootup_task(struct task_struct *idle)
1df21055 4582{
dd41f596 4583 idle->sched_class = &idle_sched_class;
1df21055
IM
4584}
4585
f340c0d1
IM
4586/**
4587 * init_idle - set up an idle thread for a given CPU
4588 * @idle: task in question
4589 * @cpu: cpu the idle task belongs to
4590 *
4591 * NOTE: this function does not set the idle thread's NEED_RESCHED
4592 * flag, to make booting more robust.
4593 */
0db0628d 4594void init_idle(struct task_struct *idle, int cpu)
1da177e4 4595{
70b97a7f 4596 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4597 unsigned long flags;
4598
05fa785c 4599 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4600
5e1576ed 4601 __sched_fork(0, idle);
06b83b5f 4602 idle->state = TASK_RUNNING;
dd41f596
IM
4603 idle->se.exec_start = sched_clock();
4604
1e1b6c51 4605 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4606 /*
4607 * We're having a chicken and egg problem, even though we are
4608 * holding rq->lock, the cpu isn't yet set to this cpu so the
4609 * lockdep check in task_group() will fail.
4610 *
4611 * Similar case to sched_fork(). / Alternatively we could
4612 * use task_rq_lock() here and obtain the other rq->lock.
4613 *
4614 * Silence PROVE_RCU
4615 */
4616 rcu_read_lock();
dd41f596 4617 __set_task_cpu(idle, cpu);
6506cf6c 4618 rcu_read_unlock();
1da177e4 4619
1da177e4 4620 rq->curr = rq->idle = idle;
da0c1e65 4621 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4622#if defined(CONFIG_SMP)
4623 idle->on_cpu = 1;
4866cde0 4624#endif
05fa785c 4625 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4626
4627 /* Set the preempt count _outside_ the spinlocks! */
01028747 4628 init_idle_preempt_count(idle, cpu);
55cd5340 4629
dd41f596
IM
4630 /*
4631 * The idle tasks have their own, simple scheduling class:
4632 */
4633 idle->sched_class = &idle_sched_class;
868baf07 4634 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4635 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4636#if defined(CONFIG_SMP)
4637 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4638#endif
19978ca6
IM
4639}
4640
f82f8042
JL
4641int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4642 const struct cpumask *trial)
4643{
4644 int ret = 1, trial_cpus;
4645 struct dl_bw *cur_dl_b;
4646 unsigned long flags;
4647
bb2bc55a
MG
4648 if (!cpumask_weight(cur))
4649 return ret;
4650
75e23e49 4651 rcu_read_lock_sched();
f82f8042
JL
4652 cur_dl_b = dl_bw_of(cpumask_any(cur));
4653 trial_cpus = cpumask_weight(trial);
4654
4655 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4656 if (cur_dl_b->bw != -1 &&
4657 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4658 ret = 0;
4659 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4660 rcu_read_unlock_sched();
f82f8042
JL
4661
4662 return ret;
4663}
4664
7f51412a
JL
4665int task_can_attach(struct task_struct *p,
4666 const struct cpumask *cs_cpus_allowed)
4667{
4668 int ret = 0;
4669
4670 /*
4671 * Kthreads which disallow setaffinity shouldn't be moved
4672 * to a new cpuset; we don't want to change their cpu
4673 * affinity and isolating such threads by their set of
4674 * allowed nodes is unnecessary. Thus, cpusets are not
4675 * applicable for such threads. This prevents checking for
4676 * success of set_cpus_allowed_ptr() on all attached tasks
4677 * before cpus_allowed may be changed.
4678 */
4679 if (p->flags & PF_NO_SETAFFINITY) {
4680 ret = -EINVAL;
4681 goto out;
4682 }
4683
4684#ifdef CONFIG_SMP
4685 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4686 cs_cpus_allowed)) {
4687 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4688 cs_cpus_allowed);
75e23e49 4689 struct dl_bw *dl_b;
7f51412a
JL
4690 bool overflow;
4691 int cpus;
4692 unsigned long flags;
4693
75e23e49
JL
4694 rcu_read_lock_sched();
4695 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4696 raw_spin_lock_irqsave(&dl_b->lock, flags);
4697 cpus = dl_bw_cpus(dest_cpu);
4698 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4699 if (overflow)
4700 ret = -EBUSY;
4701 else {
4702 /*
4703 * We reserve space for this task in the destination
4704 * root_domain, as we can't fail after this point.
4705 * We will free resources in the source root_domain
4706 * later on (see set_cpus_allowed_dl()).
4707 */
4708 __dl_add(dl_b, p->dl.dl_bw);
4709 }
4710 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4711 rcu_read_unlock_sched();
7f51412a
JL
4712
4713 }
4714#endif
4715out:
4716 return ret;
4717}
4718
1da177e4 4719#ifdef CONFIG_SMP
a15b12ac
KT
4720/*
4721 * move_queued_task - move a queued task to new rq.
4722 *
4723 * Returns (locked) new rq. Old rq's lock is released.
4724 */
4725static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4726{
4727 struct rq *rq = task_rq(p);
4728
4729 lockdep_assert_held(&rq->lock);
4730
4731 dequeue_task(rq, p, 0);
4732 p->on_rq = TASK_ON_RQ_MIGRATING;
4733 set_task_cpu(p, new_cpu);
4734 raw_spin_unlock(&rq->lock);
4735
4736 rq = cpu_rq(new_cpu);
4737
4738 raw_spin_lock(&rq->lock);
4739 BUG_ON(task_cpu(p) != new_cpu);
4740 p->on_rq = TASK_ON_RQ_QUEUED;
4741 enqueue_task(rq, p, 0);
4742 check_preempt_curr(rq, p, 0);
4743
4744 return rq;
4745}
4746
1e1b6c51
KM
4747void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4748{
1b537c7d 4749 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4750 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4751
4752 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4753 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4754}
4755
1da177e4
LT
4756/*
4757 * This is how migration works:
4758 *
969c7921
TH
4759 * 1) we invoke migration_cpu_stop() on the target CPU using
4760 * stop_one_cpu().
4761 * 2) stopper starts to run (implicitly forcing the migrated thread
4762 * off the CPU)
4763 * 3) it checks whether the migrated task is still in the wrong runqueue.
4764 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4765 * it and puts it into the right queue.
969c7921
TH
4766 * 5) stopper completes and stop_one_cpu() returns and the migration
4767 * is done.
1da177e4
LT
4768 */
4769
4770/*
4771 * Change a given task's CPU affinity. Migrate the thread to a
4772 * proper CPU and schedule it away if the CPU it's executing on
4773 * is removed from the allowed bitmask.
4774 *
4775 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4776 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4777 * call is not atomic; no spinlocks may be held.
4778 */
96f874e2 4779int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4780{
4781 unsigned long flags;
70b97a7f 4782 struct rq *rq;
969c7921 4783 unsigned int dest_cpu;
48f24c4d 4784 int ret = 0;
1da177e4
LT
4785
4786 rq = task_rq_lock(p, &flags);
e2912009 4787
db44fc01
YZ
4788 if (cpumask_equal(&p->cpus_allowed, new_mask))
4789 goto out;
4790
6ad4c188 4791 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4792 ret = -EINVAL;
4793 goto out;
4794 }
4795
1e1b6c51 4796 do_set_cpus_allowed(p, new_mask);
73fe6aae 4797
1da177e4 4798 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4799 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4800 goto out;
4801
969c7921 4802 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4803 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4804 struct migration_arg arg = { p, dest_cpu };
1da177e4 4805 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4806 task_rq_unlock(rq, p, &flags);
969c7921 4807 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4808 tlb_migrate_finish(p->mm);
4809 return 0;
a15b12ac
KT
4810 } else if (task_on_rq_queued(p))
4811 rq = move_queued_task(p, dest_cpu);
1da177e4 4812out:
0122ec5b 4813 task_rq_unlock(rq, p, &flags);
48f24c4d 4814
1da177e4
LT
4815 return ret;
4816}
cd8ba7cd 4817EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4818
4819/*
41a2d6cf 4820 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4821 * this because either it can't run here any more (set_cpus_allowed()
4822 * away from this CPU, or CPU going down), or because we're
4823 * attempting to rebalance this task on exec (sched_exec).
4824 *
4825 * So we race with normal scheduler movements, but that's OK, as long
4826 * as the task is no longer on this CPU.
efc30814
KK
4827 *
4828 * Returns non-zero if task was successfully migrated.
1da177e4 4829 */
efc30814 4830static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4831{
a1e01829 4832 struct rq *rq;
e2912009 4833 int ret = 0;
1da177e4 4834
e761b772 4835 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4836 return ret;
1da177e4 4837
a1e01829 4838 rq = cpu_rq(src_cpu);
1da177e4 4839
0122ec5b 4840 raw_spin_lock(&p->pi_lock);
a1e01829 4841 raw_spin_lock(&rq->lock);
1da177e4
LT
4842 /* Already moved. */
4843 if (task_cpu(p) != src_cpu)
b1e38734 4844 goto done;
a1e01829 4845
1da177e4 4846 /* Affinity changed (again). */
fa17b507 4847 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4848 goto fail;
1da177e4 4849
e2912009
PZ
4850 /*
4851 * If we're not on a rq, the next wake-up will ensure we're
4852 * placed properly.
4853 */
a15b12ac
KT
4854 if (task_on_rq_queued(p))
4855 rq = move_queued_task(p, dest_cpu);
b1e38734 4856done:
efc30814 4857 ret = 1;
b1e38734 4858fail:
a1e01829 4859 raw_spin_unlock(&rq->lock);
0122ec5b 4860 raw_spin_unlock(&p->pi_lock);
efc30814 4861 return ret;
1da177e4
LT
4862}
4863
e6628d5b
MG
4864#ifdef CONFIG_NUMA_BALANCING
4865/* Migrate current task p to target_cpu */
4866int migrate_task_to(struct task_struct *p, int target_cpu)
4867{
4868 struct migration_arg arg = { p, target_cpu };
4869 int curr_cpu = task_cpu(p);
4870
4871 if (curr_cpu == target_cpu)
4872 return 0;
4873
4874 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4875 return -EINVAL;
4876
4877 /* TODO: This is not properly updating schedstats */
4878
286549dc 4879 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4880 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4881}
0ec8aa00
PZ
4882
4883/*
4884 * Requeue a task on a given node and accurately track the number of NUMA
4885 * tasks on the runqueues
4886 */
4887void sched_setnuma(struct task_struct *p, int nid)
4888{
4889 struct rq *rq;
4890 unsigned long flags;
da0c1e65 4891 bool queued, running;
0ec8aa00
PZ
4892
4893 rq = task_rq_lock(p, &flags);
da0c1e65 4894 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4895 running = task_current(rq, p);
4896
da0c1e65 4897 if (queued)
0ec8aa00
PZ
4898 dequeue_task(rq, p, 0);
4899 if (running)
f3cd1c4e 4900 put_prev_task(rq, p);
0ec8aa00
PZ
4901
4902 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4903
4904 if (running)
4905 p->sched_class->set_curr_task(rq);
da0c1e65 4906 if (queued)
0ec8aa00
PZ
4907 enqueue_task(rq, p, 0);
4908 task_rq_unlock(rq, p, &flags);
4909}
e6628d5b
MG
4910#endif
4911
1da177e4 4912/*
969c7921
TH
4913 * migration_cpu_stop - this will be executed by a highprio stopper thread
4914 * and performs thread migration by bumping thread off CPU then
4915 * 'pushing' onto another runqueue.
1da177e4 4916 */
969c7921 4917static int migration_cpu_stop(void *data)
1da177e4 4918{
969c7921 4919 struct migration_arg *arg = data;
f7b4cddc 4920
969c7921
TH
4921 /*
4922 * The original target cpu might have gone down and we might
4923 * be on another cpu but it doesn't matter.
4924 */
f7b4cddc 4925 local_irq_disable();
5cd038f5
LJ
4926 /*
4927 * We need to explicitly wake pending tasks before running
4928 * __migrate_task() such that we will not miss enforcing cpus_allowed
4929 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4930 */
4931 sched_ttwu_pending();
969c7921 4932 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4933 local_irq_enable();
1da177e4 4934 return 0;
f7b4cddc
ON
4935}
4936
1da177e4 4937#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4938
054b9108 4939/*
48c5ccae
PZ
4940 * Ensures that the idle task is using init_mm right before its cpu goes
4941 * offline.
054b9108 4942 */
48c5ccae 4943void idle_task_exit(void)
1da177e4 4944{
48c5ccae 4945 struct mm_struct *mm = current->active_mm;
e76bd8d9 4946
48c5ccae 4947 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4948
a53efe5f 4949 if (mm != &init_mm) {
48c5ccae 4950 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4951 finish_arch_post_lock_switch();
4952 }
48c5ccae 4953 mmdrop(mm);
1da177e4
LT
4954}
4955
4956/*
5d180232
PZ
4957 * Since this CPU is going 'away' for a while, fold any nr_active delta
4958 * we might have. Assumes we're called after migrate_tasks() so that the
4959 * nr_active count is stable.
4960 *
4961 * Also see the comment "Global load-average calculations".
1da177e4 4962 */
5d180232 4963static void calc_load_migrate(struct rq *rq)
1da177e4 4964{
5d180232
PZ
4965 long delta = calc_load_fold_active(rq);
4966 if (delta)
4967 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4968}
4969
3f1d2a31
PZ
4970static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4971{
4972}
4973
4974static const struct sched_class fake_sched_class = {
4975 .put_prev_task = put_prev_task_fake,
4976};
4977
4978static struct task_struct fake_task = {
4979 /*
4980 * Avoid pull_{rt,dl}_task()
4981 */
4982 .prio = MAX_PRIO + 1,
4983 .sched_class = &fake_sched_class,
4984};
4985
48f24c4d 4986/*
48c5ccae
PZ
4987 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4988 * try_to_wake_up()->select_task_rq().
4989 *
4990 * Called with rq->lock held even though we'er in stop_machine() and
4991 * there's no concurrency possible, we hold the required locks anyway
4992 * because of lock validation efforts.
1da177e4 4993 */
48c5ccae 4994static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4995{
70b97a7f 4996 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4997 struct task_struct *next, *stop = rq->stop;
4998 int dest_cpu;
1da177e4
LT
4999
5000 /*
48c5ccae
PZ
5001 * Fudge the rq selection such that the below task selection loop
5002 * doesn't get stuck on the currently eligible stop task.
5003 *
5004 * We're currently inside stop_machine() and the rq is either stuck
5005 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5006 * either way we should never end up calling schedule() until we're
5007 * done here.
1da177e4 5008 */
48c5ccae 5009 rq->stop = NULL;
48f24c4d 5010
77bd3970
FW
5011 /*
5012 * put_prev_task() and pick_next_task() sched
5013 * class method both need to have an up-to-date
5014 * value of rq->clock[_task]
5015 */
5016 update_rq_clock(rq);
5017
dd41f596 5018 for ( ; ; ) {
48c5ccae
PZ
5019 /*
5020 * There's this thread running, bail when that's the only
5021 * remaining thread.
5022 */
5023 if (rq->nr_running == 1)
dd41f596 5024 break;
48c5ccae 5025
3f1d2a31 5026 next = pick_next_task(rq, &fake_task);
48c5ccae 5027 BUG_ON(!next);
79c53799 5028 next->sched_class->put_prev_task(rq, next);
e692ab53 5029
48c5ccae
PZ
5030 /* Find suitable destination for @next, with force if needed. */
5031 dest_cpu = select_fallback_rq(dead_cpu, next);
5032 raw_spin_unlock(&rq->lock);
5033
5034 __migrate_task(next, dead_cpu, dest_cpu);
5035
5036 raw_spin_lock(&rq->lock);
1da177e4 5037 }
dce48a84 5038
48c5ccae 5039 rq->stop = stop;
dce48a84 5040}
48c5ccae 5041
1da177e4
LT
5042#endif /* CONFIG_HOTPLUG_CPU */
5043
e692ab53
NP
5044#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5045
5046static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5047 {
5048 .procname = "sched_domain",
c57baf1e 5049 .mode = 0555,
e0361851 5050 },
56992309 5051 {}
e692ab53
NP
5052};
5053
5054static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5055 {
5056 .procname = "kernel",
c57baf1e 5057 .mode = 0555,
e0361851
AD
5058 .child = sd_ctl_dir,
5059 },
56992309 5060 {}
e692ab53
NP
5061};
5062
5063static struct ctl_table *sd_alloc_ctl_entry(int n)
5064{
5065 struct ctl_table *entry =
5cf9f062 5066 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5067
e692ab53
NP
5068 return entry;
5069}
5070
6382bc90
MM
5071static void sd_free_ctl_entry(struct ctl_table **tablep)
5072{
cd790076 5073 struct ctl_table *entry;
6382bc90 5074
cd790076
MM
5075 /*
5076 * In the intermediate directories, both the child directory and
5077 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5078 * will always be set. In the lowest directory the names are
cd790076
MM
5079 * static strings and all have proc handlers.
5080 */
5081 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5082 if (entry->child)
5083 sd_free_ctl_entry(&entry->child);
cd790076
MM
5084 if (entry->proc_handler == NULL)
5085 kfree(entry->procname);
5086 }
6382bc90
MM
5087
5088 kfree(*tablep);
5089 *tablep = NULL;
5090}
5091
201c373e 5092static int min_load_idx = 0;
fd9b86d3 5093static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5094
e692ab53 5095static void
e0361851 5096set_table_entry(struct ctl_table *entry,
e692ab53 5097 const char *procname, void *data, int maxlen,
201c373e
NK
5098 umode_t mode, proc_handler *proc_handler,
5099 bool load_idx)
e692ab53 5100{
e692ab53
NP
5101 entry->procname = procname;
5102 entry->data = data;
5103 entry->maxlen = maxlen;
5104 entry->mode = mode;
5105 entry->proc_handler = proc_handler;
201c373e
NK
5106
5107 if (load_idx) {
5108 entry->extra1 = &min_load_idx;
5109 entry->extra2 = &max_load_idx;
5110 }
e692ab53
NP
5111}
5112
5113static struct ctl_table *
5114sd_alloc_ctl_domain_table(struct sched_domain *sd)
5115{
37e6bae8 5116 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5117
ad1cdc1d
MM
5118 if (table == NULL)
5119 return NULL;
5120
e0361851 5121 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5122 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5123 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5124 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5125 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5126 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5127 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5128 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5129 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5130 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5131 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5132 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5133 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5134 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5135 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5136 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5137 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5138 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5139 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5140 &sd->cache_nice_tries,
201c373e 5141 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5142 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5143 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5144 set_table_entry(&table[11], "max_newidle_lb_cost",
5145 &sd->max_newidle_lb_cost,
5146 sizeof(long), 0644, proc_doulongvec_minmax, false);
5147 set_table_entry(&table[12], "name", sd->name,
201c373e 5148 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5149 /* &table[13] is terminator */
e692ab53
NP
5150
5151 return table;
5152}
5153
be7002e6 5154static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5155{
5156 struct ctl_table *entry, *table;
5157 struct sched_domain *sd;
5158 int domain_num = 0, i;
5159 char buf[32];
5160
5161 for_each_domain(cpu, sd)
5162 domain_num++;
5163 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5164 if (table == NULL)
5165 return NULL;
e692ab53
NP
5166
5167 i = 0;
5168 for_each_domain(cpu, sd) {
5169 snprintf(buf, 32, "domain%d", i);
e692ab53 5170 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5171 entry->mode = 0555;
e692ab53
NP
5172 entry->child = sd_alloc_ctl_domain_table(sd);
5173 entry++;
5174 i++;
5175 }
5176 return table;
5177}
5178
5179static struct ctl_table_header *sd_sysctl_header;
6382bc90 5180static void register_sched_domain_sysctl(void)
e692ab53 5181{
6ad4c188 5182 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5183 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5184 char buf[32];
5185
7378547f
MM
5186 WARN_ON(sd_ctl_dir[0].child);
5187 sd_ctl_dir[0].child = entry;
5188
ad1cdc1d
MM
5189 if (entry == NULL)
5190 return;
5191
6ad4c188 5192 for_each_possible_cpu(i) {
e692ab53 5193 snprintf(buf, 32, "cpu%d", i);
e692ab53 5194 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5195 entry->mode = 0555;
e692ab53 5196 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5197 entry++;
e692ab53 5198 }
7378547f
MM
5199
5200 WARN_ON(sd_sysctl_header);
e692ab53
NP
5201 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5202}
6382bc90 5203
7378547f 5204/* may be called multiple times per register */
6382bc90
MM
5205static void unregister_sched_domain_sysctl(void)
5206{
7378547f
MM
5207 if (sd_sysctl_header)
5208 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5209 sd_sysctl_header = NULL;
7378547f
MM
5210 if (sd_ctl_dir[0].child)
5211 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5212}
e692ab53 5213#else
6382bc90
MM
5214static void register_sched_domain_sysctl(void)
5215{
5216}
5217static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5218{
5219}
5220#endif
5221
1f11eb6a
GH
5222static void set_rq_online(struct rq *rq)
5223{
5224 if (!rq->online) {
5225 const struct sched_class *class;
5226
c6c4927b 5227 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5228 rq->online = 1;
5229
5230 for_each_class(class) {
5231 if (class->rq_online)
5232 class->rq_online(rq);
5233 }
5234 }
5235}
5236
5237static void set_rq_offline(struct rq *rq)
5238{
5239 if (rq->online) {
5240 const struct sched_class *class;
5241
5242 for_each_class(class) {
5243 if (class->rq_offline)
5244 class->rq_offline(rq);
5245 }
5246
c6c4927b 5247 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5248 rq->online = 0;
5249 }
5250}
5251
1da177e4
LT
5252/*
5253 * migration_call - callback that gets triggered when a CPU is added.
5254 * Here we can start up the necessary migration thread for the new CPU.
5255 */
0db0628d 5256static int
48f24c4d 5257migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5258{
48f24c4d 5259 int cpu = (long)hcpu;
1da177e4 5260 unsigned long flags;
969c7921 5261 struct rq *rq = cpu_rq(cpu);
1da177e4 5262
48c5ccae 5263 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5264
1da177e4 5265 case CPU_UP_PREPARE:
a468d389 5266 rq->calc_load_update = calc_load_update;
1da177e4 5267 break;
48f24c4d 5268
1da177e4 5269 case CPU_ONLINE:
1f94ef59 5270 /* Update our root-domain */
05fa785c 5271 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5272 if (rq->rd) {
c6c4927b 5273 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5274
5275 set_rq_online(rq);
1f94ef59 5276 }
05fa785c 5277 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5278 break;
48f24c4d 5279
1da177e4 5280#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5281 case CPU_DYING:
317f3941 5282 sched_ttwu_pending();
57d885fe 5283 /* Update our root-domain */
05fa785c 5284 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5285 if (rq->rd) {
c6c4927b 5286 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5287 set_rq_offline(rq);
57d885fe 5288 }
48c5ccae
PZ
5289 migrate_tasks(cpu);
5290 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5291 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5292 break;
48c5ccae 5293
5d180232 5294 case CPU_DEAD:
f319da0c 5295 calc_load_migrate(rq);
57d885fe 5296 break;
1da177e4
LT
5297#endif
5298 }
49c022e6
PZ
5299
5300 update_max_interval();
5301
1da177e4
LT
5302 return NOTIFY_OK;
5303}
5304
f38b0820
PM
5305/*
5306 * Register at high priority so that task migration (migrate_all_tasks)
5307 * happens before everything else. This has to be lower priority than
cdd6c482 5308 * the notifier in the perf_event subsystem, though.
1da177e4 5309 */
0db0628d 5310static struct notifier_block migration_notifier = {
1da177e4 5311 .notifier_call = migration_call,
50a323b7 5312 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5313};
5314
a803f026
CM
5315static void __cpuinit set_cpu_rq_start_time(void)
5316{
5317 int cpu = smp_processor_id();
5318 struct rq *rq = cpu_rq(cpu);
5319 rq->age_stamp = sched_clock_cpu(cpu);
5320}
5321
0db0628d 5322static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5323 unsigned long action, void *hcpu)
5324{
5325 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5326 case CPU_STARTING:
5327 set_cpu_rq_start_time();
5328 return NOTIFY_OK;
3a101d05
TH
5329 case CPU_DOWN_FAILED:
5330 set_cpu_active((long)hcpu, true);
5331 return NOTIFY_OK;
5332 default:
5333 return NOTIFY_DONE;
5334 }
5335}
5336
0db0628d 5337static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5338 unsigned long action, void *hcpu)
5339{
de212f18
PZ
5340 unsigned long flags;
5341 long cpu = (long)hcpu;
f10e00f4 5342 struct dl_bw *dl_b;
de212f18 5343
3a101d05
TH
5344 switch (action & ~CPU_TASKS_FROZEN) {
5345 case CPU_DOWN_PREPARE:
de212f18
PZ
5346 set_cpu_active(cpu, false);
5347
5348 /* explicitly allow suspend */
5349 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5350 bool overflow;
5351 int cpus;
5352
f10e00f4
KT
5353 rcu_read_lock_sched();
5354 dl_b = dl_bw_of(cpu);
5355
de212f18
PZ
5356 raw_spin_lock_irqsave(&dl_b->lock, flags);
5357 cpus = dl_bw_cpus(cpu);
5358 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5359 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5360
f10e00f4
KT
5361 rcu_read_unlock_sched();
5362
de212f18
PZ
5363 if (overflow)
5364 return notifier_from_errno(-EBUSY);
5365 }
3a101d05 5366 return NOTIFY_OK;
3a101d05 5367 }
de212f18
PZ
5368
5369 return NOTIFY_DONE;
3a101d05
TH
5370}
5371
7babe8db 5372static int __init migration_init(void)
1da177e4
LT
5373{
5374 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5375 int err;
48f24c4d 5376
3a101d05 5377 /* Initialize migration for the boot CPU */
07dccf33
AM
5378 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5379 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5380 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5381 register_cpu_notifier(&migration_notifier);
7babe8db 5382
3a101d05
TH
5383 /* Register cpu active notifiers */
5384 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5385 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5386
a004cd42 5387 return 0;
1da177e4 5388}
7babe8db 5389early_initcall(migration_init);
1da177e4
LT
5390#endif
5391
5392#ifdef CONFIG_SMP
476f3534 5393
4cb98839
PZ
5394static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5395
3e9830dc 5396#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5397
d039ac60 5398static __read_mostly int sched_debug_enabled;
f6630114 5399
d039ac60 5400static int __init sched_debug_setup(char *str)
f6630114 5401{
d039ac60 5402 sched_debug_enabled = 1;
f6630114
MT
5403
5404 return 0;
5405}
d039ac60
PZ
5406early_param("sched_debug", sched_debug_setup);
5407
5408static inline bool sched_debug(void)
5409{
5410 return sched_debug_enabled;
5411}
f6630114 5412
7c16ec58 5413static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5414 struct cpumask *groupmask)
1da177e4 5415{
4dcf6aff 5416 struct sched_group *group = sd->groups;
1da177e4 5417
96f874e2 5418 cpumask_clear(groupmask);
4dcf6aff
IM
5419
5420 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5421
5422 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5423 printk("does not load-balance\n");
4dcf6aff 5424 if (sd->parent)
3df0fc5b
PZ
5425 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5426 " has parent");
4dcf6aff 5427 return -1;
41c7ce9a
NP
5428 }
5429
333470ee
TH
5430 printk(KERN_CONT "span %*pbl level %s\n",
5431 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5432
758b2cdc 5433 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5434 printk(KERN_ERR "ERROR: domain->span does not contain "
5435 "CPU%d\n", cpu);
4dcf6aff 5436 }
758b2cdc 5437 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5438 printk(KERN_ERR "ERROR: domain->groups does not contain"
5439 " CPU%d\n", cpu);
4dcf6aff 5440 }
1da177e4 5441
4dcf6aff 5442 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5443 do {
4dcf6aff 5444 if (!group) {
3df0fc5b
PZ
5445 printk("\n");
5446 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5447 break;
5448 }
5449
758b2cdc 5450 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5451 printk(KERN_CONT "\n");
5452 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5453 break;
5454 }
1da177e4 5455
cb83b629
PZ
5456 if (!(sd->flags & SD_OVERLAP) &&
5457 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5458 printk(KERN_CONT "\n");
5459 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5460 break;
5461 }
1da177e4 5462
758b2cdc 5463 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5464
333470ee
TH
5465 printk(KERN_CONT " %*pbl",
5466 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5467 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5468 printk(KERN_CONT " (cpu_capacity = %d)",
5469 group->sgc->capacity);
381512cf 5470 }
1da177e4 5471
4dcf6aff
IM
5472 group = group->next;
5473 } while (group != sd->groups);
3df0fc5b 5474 printk(KERN_CONT "\n");
1da177e4 5475
758b2cdc 5476 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5477 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5478
758b2cdc
RR
5479 if (sd->parent &&
5480 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5481 printk(KERN_ERR "ERROR: parent span is not a superset "
5482 "of domain->span\n");
4dcf6aff
IM
5483 return 0;
5484}
1da177e4 5485
4dcf6aff
IM
5486static void sched_domain_debug(struct sched_domain *sd, int cpu)
5487{
5488 int level = 0;
1da177e4 5489
d039ac60 5490 if (!sched_debug_enabled)
f6630114
MT
5491 return;
5492
4dcf6aff
IM
5493 if (!sd) {
5494 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5495 return;
5496 }
1da177e4 5497
4dcf6aff
IM
5498 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5499
5500 for (;;) {
4cb98839 5501 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5502 break;
1da177e4
LT
5503 level++;
5504 sd = sd->parent;
33859f7f 5505 if (!sd)
4dcf6aff
IM
5506 break;
5507 }
1da177e4 5508}
6d6bc0ad 5509#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5510# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5511static inline bool sched_debug(void)
5512{
5513 return false;
5514}
6d6bc0ad 5515#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5516
1a20ff27 5517static int sd_degenerate(struct sched_domain *sd)
245af2c7 5518{
758b2cdc 5519 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5520 return 1;
5521
5522 /* Following flags need at least 2 groups */
5523 if (sd->flags & (SD_LOAD_BALANCE |
5524 SD_BALANCE_NEWIDLE |
5525 SD_BALANCE_FORK |
89c4710e 5526 SD_BALANCE_EXEC |
5d4dfddd 5527 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5528 SD_SHARE_PKG_RESOURCES |
5529 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5530 if (sd->groups != sd->groups->next)
5531 return 0;
5532 }
5533
5534 /* Following flags don't use groups */
c88d5910 5535 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5536 return 0;
5537
5538 return 1;
5539}
5540
48f24c4d
IM
5541static int
5542sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5543{
5544 unsigned long cflags = sd->flags, pflags = parent->flags;
5545
5546 if (sd_degenerate(parent))
5547 return 1;
5548
758b2cdc 5549 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5550 return 0;
5551
245af2c7
SS
5552 /* Flags needing groups don't count if only 1 group in parent */
5553 if (parent->groups == parent->groups->next) {
5554 pflags &= ~(SD_LOAD_BALANCE |
5555 SD_BALANCE_NEWIDLE |
5556 SD_BALANCE_FORK |
89c4710e 5557 SD_BALANCE_EXEC |
5d4dfddd 5558 SD_SHARE_CPUCAPACITY |
10866e62 5559 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5560 SD_PREFER_SIBLING |
5561 SD_SHARE_POWERDOMAIN);
5436499e
KC
5562 if (nr_node_ids == 1)
5563 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5564 }
5565 if (~cflags & pflags)
5566 return 0;
5567
5568 return 1;
5569}
5570
dce840a0 5571static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5572{
dce840a0 5573 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5574
68e74568 5575 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5576 cpudl_cleanup(&rd->cpudl);
1baca4ce 5577 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5578 free_cpumask_var(rd->rto_mask);
5579 free_cpumask_var(rd->online);
5580 free_cpumask_var(rd->span);
5581 kfree(rd);
5582}
5583
57d885fe
GH
5584static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5585{
a0490fa3 5586 struct root_domain *old_rd = NULL;
57d885fe 5587 unsigned long flags;
57d885fe 5588
05fa785c 5589 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5590
5591 if (rq->rd) {
a0490fa3 5592 old_rd = rq->rd;
57d885fe 5593
c6c4927b 5594 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5595 set_rq_offline(rq);
57d885fe 5596
c6c4927b 5597 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5598
a0490fa3 5599 /*
0515973f 5600 * If we dont want to free the old_rd yet then
a0490fa3
IM
5601 * set old_rd to NULL to skip the freeing later
5602 * in this function:
5603 */
5604 if (!atomic_dec_and_test(&old_rd->refcount))
5605 old_rd = NULL;
57d885fe
GH
5606 }
5607
5608 atomic_inc(&rd->refcount);
5609 rq->rd = rd;
5610
c6c4927b 5611 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5612 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5613 set_rq_online(rq);
57d885fe 5614
05fa785c 5615 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5616
5617 if (old_rd)
dce840a0 5618 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5619}
5620
68c38fc3 5621static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5622{
5623 memset(rd, 0, sizeof(*rd));
5624
68c38fc3 5625 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5626 goto out;
68c38fc3 5627 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5628 goto free_span;
1baca4ce 5629 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5630 goto free_online;
1baca4ce
JL
5631 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5632 goto free_dlo_mask;
6e0534f2 5633
332ac17e 5634 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5635 if (cpudl_init(&rd->cpudl) != 0)
5636 goto free_dlo_mask;
332ac17e 5637
68c38fc3 5638 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5639 goto free_rto_mask;
c6c4927b 5640 return 0;
6e0534f2 5641
68e74568
RR
5642free_rto_mask:
5643 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5644free_dlo_mask:
5645 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5646free_online:
5647 free_cpumask_var(rd->online);
5648free_span:
5649 free_cpumask_var(rd->span);
0c910d28 5650out:
c6c4927b 5651 return -ENOMEM;
57d885fe
GH
5652}
5653
029632fb
PZ
5654/*
5655 * By default the system creates a single root-domain with all cpus as
5656 * members (mimicking the global state we have today).
5657 */
5658struct root_domain def_root_domain;
5659
57d885fe
GH
5660static void init_defrootdomain(void)
5661{
68c38fc3 5662 init_rootdomain(&def_root_domain);
c6c4927b 5663
57d885fe
GH
5664 atomic_set(&def_root_domain.refcount, 1);
5665}
5666
dc938520 5667static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5668{
5669 struct root_domain *rd;
5670
5671 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5672 if (!rd)
5673 return NULL;
5674
68c38fc3 5675 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5676 kfree(rd);
5677 return NULL;
5678 }
57d885fe
GH
5679
5680 return rd;
5681}
5682
63b2ca30 5683static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5684{
5685 struct sched_group *tmp, *first;
5686
5687 if (!sg)
5688 return;
5689
5690 first = sg;
5691 do {
5692 tmp = sg->next;
5693
63b2ca30
NP
5694 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5695 kfree(sg->sgc);
e3589f6c
PZ
5696
5697 kfree(sg);
5698 sg = tmp;
5699 } while (sg != first);
5700}
5701
dce840a0
PZ
5702static void free_sched_domain(struct rcu_head *rcu)
5703{
5704 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5705
5706 /*
5707 * If its an overlapping domain it has private groups, iterate and
5708 * nuke them all.
5709 */
5710 if (sd->flags & SD_OVERLAP) {
5711 free_sched_groups(sd->groups, 1);
5712 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5713 kfree(sd->groups->sgc);
dce840a0 5714 kfree(sd->groups);
9c3f75cb 5715 }
dce840a0
PZ
5716 kfree(sd);
5717}
5718
5719static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5720{
5721 call_rcu(&sd->rcu, free_sched_domain);
5722}
5723
5724static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5725{
5726 for (; sd; sd = sd->parent)
5727 destroy_sched_domain(sd, cpu);
5728}
5729
518cd623
PZ
5730/*
5731 * Keep a special pointer to the highest sched_domain that has
5732 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5733 * allows us to avoid some pointer chasing select_idle_sibling().
5734 *
5735 * Also keep a unique ID per domain (we use the first cpu number in
5736 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5737 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5738 */
5739DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5740DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5741DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5742DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5743DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5744DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5745
5746static void update_top_cache_domain(int cpu)
5747{
5748 struct sched_domain *sd;
5d4cf996 5749 struct sched_domain *busy_sd = NULL;
518cd623 5750 int id = cpu;
7d9ffa89 5751 int size = 1;
518cd623
PZ
5752
5753 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5754 if (sd) {
518cd623 5755 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5756 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5757 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5758 }
5d4cf996 5759 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5760
5761 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5762 per_cpu(sd_llc_size, cpu) = size;
518cd623 5763 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5764
5765 sd = lowest_flag_domain(cpu, SD_NUMA);
5766 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5767
5768 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5769 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5770}
5771
1da177e4 5772/*
0eab9146 5773 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5774 * hold the hotplug lock.
5775 */
0eab9146
IM
5776static void
5777cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5778{
70b97a7f 5779 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5780 struct sched_domain *tmp;
5781
5782 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5783 for (tmp = sd; tmp; ) {
245af2c7
SS
5784 struct sched_domain *parent = tmp->parent;
5785 if (!parent)
5786 break;
f29c9b1c 5787
1a848870 5788 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5789 tmp->parent = parent->parent;
1a848870
SS
5790 if (parent->parent)
5791 parent->parent->child = tmp;
10866e62
PZ
5792 /*
5793 * Transfer SD_PREFER_SIBLING down in case of a
5794 * degenerate parent; the spans match for this
5795 * so the property transfers.
5796 */
5797 if (parent->flags & SD_PREFER_SIBLING)
5798 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5799 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5800 } else
5801 tmp = tmp->parent;
245af2c7
SS
5802 }
5803
1a848870 5804 if (sd && sd_degenerate(sd)) {
dce840a0 5805 tmp = sd;
245af2c7 5806 sd = sd->parent;
dce840a0 5807 destroy_sched_domain(tmp, cpu);
1a848870
SS
5808 if (sd)
5809 sd->child = NULL;
5810 }
1da177e4 5811
4cb98839 5812 sched_domain_debug(sd, cpu);
1da177e4 5813
57d885fe 5814 rq_attach_root(rq, rd);
dce840a0 5815 tmp = rq->sd;
674311d5 5816 rcu_assign_pointer(rq->sd, sd);
dce840a0 5817 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5818
5819 update_top_cache_domain(cpu);
1da177e4
LT
5820}
5821
5822/* cpus with isolated domains */
dcc30a35 5823static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5824
5825/* Setup the mask of cpus configured for isolated domains */
5826static int __init isolated_cpu_setup(char *str)
5827{
bdddd296 5828 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5829 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5830 return 1;
5831}
5832
8927f494 5833__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5834
49a02c51 5835struct s_data {
21d42ccf 5836 struct sched_domain ** __percpu sd;
49a02c51
AH
5837 struct root_domain *rd;
5838};
5839
2109b99e 5840enum s_alloc {
2109b99e 5841 sa_rootdomain,
21d42ccf 5842 sa_sd,
dce840a0 5843 sa_sd_storage,
2109b99e
AH
5844 sa_none,
5845};
5846
c1174876
PZ
5847/*
5848 * Build an iteration mask that can exclude certain CPUs from the upwards
5849 * domain traversal.
5850 *
5851 * Asymmetric node setups can result in situations where the domain tree is of
5852 * unequal depth, make sure to skip domains that already cover the entire
5853 * range.
5854 *
5855 * In that case build_sched_domains() will have terminated the iteration early
5856 * and our sibling sd spans will be empty. Domains should always include the
5857 * cpu they're built on, so check that.
5858 *
5859 */
5860static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5861{
5862 const struct cpumask *span = sched_domain_span(sd);
5863 struct sd_data *sdd = sd->private;
5864 struct sched_domain *sibling;
5865 int i;
5866
5867 for_each_cpu(i, span) {
5868 sibling = *per_cpu_ptr(sdd->sd, i);
5869 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5870 continue;
5871
5872 cpumask_set_cpu(i, sched_group_mask(sg));
5873 }
5874}
5875
5876/*
5877 * Return the canonical balance cpu for this group, this is the first cpu
5878 * of this group that's also in the iteration mask.
5879 */
5880int group_balance_cpu(struct sched_group *sg)
5881{
5882 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5883}
5884
e3589f6c
PZ
5885static int
5886build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5887{
5888 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5889 const struct cpumask *span = sched_domain_span(sd);
5890 struct cpumask *covered = sched_domains_tmpmask;
5891 struct sd_data *sdd = sd->private;
aaecac4a 5892 struct sched_domain *sibling;
e3589f6c
PZ
5893 int i;
5894
5895 cpumask_clear(covered);
5896
5897 for_each_cpu(i, span) {
5898 struct cpumask *sg_span;
5899
5900 if (cpumask_test_cpu(i, covered))
5901 continue;
5902
aaecac4a 5903 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5904
5905 /* See the comment near build_group_mask(). */
aaecac4a 5906 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5907 continue;
5908
e3589f6c 5909 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5910 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5911
5912 if (!sg)
5913 goto fail;
5914
5915 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5916 if (sibling->child)
5917 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5918 else
e3589f6c
PZ
5919 cpumask_set_cpu(i, sg_span);
5920
5921 cpumask_or(covered, covered, sg_span);
5922
63b2ca30
NP
5923 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5924 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5925 build_group_mask(sd, sg);
5926
c3decf0d 5927 /*
63b2ca30 5928 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5929 * domains and no possible iteration will get us here, we won't
5930 * die on a /0 trap.
5931 */
ca8ce3d0 5932 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5933
c1174876
PZ
5934 /*
5935 * Make sure the first group of this domain contains the
5936 * canonical balance cpu. Otherwise the sched_domain iteration
5937 * breaks. See update_sg_lb_stats().
5938 */
74a5ce20 5939 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5940 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5941 groups = sg;
5942
5943 if (!first)
5944 first = sg;
5945 if (last)
5946 last->next = sg;
5947 last = sg;
5948 last->next = first;
5949 }
5950 sd->groups = groups;
5951
5952 return 0;
5953
5954fail:
5955 free_sched_groups(first, 0);
5956
5957 return -ENOMEM;
5958}
5959
dce840a0 5960static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5961{
dce840a0
PZ
5962 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5963 struct sched_domain *child = sd->child;
1da177e4 5964
dce840a0
PZ
5965 if (child)
5966 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5967
9c3f75cb 5968 if (sg) {
dce840a0 5969 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5970 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5971 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5972 }
dce840a0
PZ
5973
5974 return cpu;
1e9f28fa 5975}
1e9f28fa 5976
01a08546 5977/*
dce840a0
PZ
5978 * build_sched_groups will build a circular linked list of the groups
5979 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5980 * and ->cpu_capacity to 0.
e3589f6c
PZ
5981 *
5982 * Assumes the sched_domain tree is fully constructed
01a08546 5983 */
e3589f6c
PZ
5984static int
5985build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5986{
dce840a0
PZ
5987 struct sched_group *first = NULL, *last = NULL;
5988 struct sd_data *sdd = sd->private;
5989 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5990 struct cpumask *covered;
dce840a0 5991 int i;
9c1cfda2 5992
e3589f6c
PZ
5993 get_group(cpu, sdd, &sd->groups);
5994 atomic_inc(&sd->groups->ref);
5995
0936629f 5996 if (cpu != cpumask_first(span))
e3589f6c
PZ
5997 return 0;
5998
f96225fd
PZ
5999 lockdep_assert_held(&sched_domains_mutex);
6000 covered = sched_domains_tmpmask;
6001
dce840a0 6002 cpumask_clear(covered);
6711cab4 6003
dce840a0
PZ
6004 for_each_cpu(i, span) {
6005 struct sched_group *sg;
cd08e923 6006 int group, j;
6711cab4 6007
dce840a0
PZ
6008 if (cpumask_test_cpu(i, covered))
6009 continue;
6711cab4 6010
cd08e923 6011 group = get_group(i, sdd, &sg);
c1174876 6012 cpumask_setall(sched_group_mask(sg));
0601a88d 6013
dce840a0
PZ
6014 for_each_cpu(j, span) {
6015 if (get_group(j, sdd, NULL) != group)
6016 continue;
0601a88d 6017
dce840a0
PZ
6018 cpumask_set_cpu(j, covered);
6019 cpumask_set_cpu(j, sched_group_cpus(sg));
6020 }
0601a88d 6021
dce840a0
PZ
6022 if (!first)
6023 first = sg;
6024 if (last)
6025 last->next = sg;
6026 last = sg;
6027 }
6028 last->next = first;
e3589f6c
PZ
6029
6030 return 0;
0601a88d 6031}
51888ca2 6032
89c4710e 6033/*
63b2ca30 6034 * Initialize sched groups cpu_capacity.
89c4710e 6035 *
63b2ca30 6036 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6037 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6038 * Typically cpu_capacity for all the groups in a sched domain will be same
6039 * unless there are asymmetries in the topology. If there are asymmetries,
6040 * group having more cpu_capacity will pickup more load compared to the
6041 * group having less cpu_capacity.
89c4710e 6042 */
63b2ca30 6043static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6044{
e3589f6c 6045 struct sched_group *sg = sd->groups;
89c4710e 6046
94c95ba6 6047 WARN_ON(!sg);
e3589f6c
PZ
6048
6049 do {
6050 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6051 sg = sg->next;
6052 } while (sg != sd->groups);
89c4710e 6053
c1174876 6054 if (cpu != group_balance_cpu(sg))
e3589f6c 6055 return;
aae6d3dd 6056
63b2ca30
NP
6057 update_group_capacity(sd, cpu);
6058 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6059}
6060
7c16ec58
MT
6061/*
6062 * Initializers for schedule domains
6063 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6064 */
6065
1d3504fc 6066static int default_relax_domain_level = -1;
60495e77 6067int sched_domain_level_max;
1d3504fc
HS
6068
6069static int __init setup_relax_domain_level(char *str)
6070{
a841f8ce
DS
6071 if (kstrtoint(str, 0, &default_relax_domain_level))
6072 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6073
1d3504fc
HS
6074 return 1;
6075}
6076__setup("relax_domain_level=", setup_relax_domain_level);
6077
6078static void set_domain_attribute(struct sched_domain *sd,
6079 struct sched_domain_attr *attr)
6080{
6081 int request;
6082
6083 if (!attr || attr->relax_domain_level < 0) {
6084 if (default_relax_domain_level < 0)
6085 return;
6086 else
6087 request = default_relax_domain_level;
6088 } else
6089 request = attr->relax_domain_level;
6090 if (request < sd->level) {
6091 /* turn off idle balance on this domain */
c88d5910 6092 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6093 } else {
6094 /* turn on idle balance on this domain */
c88d5910 6095 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6096 }
6097}
6098
54ab4ff4
PZ
6099static void __sdt_free(const struct cpumask *cpu_map);
6100static int __sdt_alloc(const struct cpumask *cpu_map);
6101
2109b99e
AH
6102static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6103 const struct cpumask *cpu_map)
6104{
6105 switch (what) {
2109b99e 6106 case sa_rootdomain:
822ff793
PZ
6107 if (!atomic_read(&d->rd->refcount))
6108 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6109 case sa_sd:
6110 free_percpu(d->sd); /* fall through */
dce840a0 6111 case sa_sd_storage:
54ab4ff4 6112 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6113 case sa_none:
6114 break;
6115 }
6116}
3404c8d9 6117
2109b99e
AH
6118static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6119 const struct cpumask *cpu_map)
6120{
dce840a0
PZ
6121 memset(d, 0, sizeof(*d));
6122
54ab4ff4
PZ
6123 if (__sdt_alloc(cpu_map))
6124 return sa_sd_storage;
dce840a0
PZ
6125 d->sd = alloc_percpu(struct sched_domain *);
6126 if (!d->sd)
6127 return sa_sd_storage;
2109b99e 6128 d->rd = alloc_rootdomain();
dce840a0 6129 if (!d->rd)
21d42ccf 6130 return sa_sd;
2109b99e
AH
6131 return sa_rootdomain;
6132}
57d885fe 6133
dce840a0
PZ
6134/*
6135 * NULL the sd_data elements we've used to build the sched_domain and
6136 * sched_group structure so that the subsequent __free_domain_allocs()
6137 * will not free the data we're using.
6138 */
6139static void claim_allocations(int cpu, struct sched_domain *sd)
6140{
6141 struct sd_data *sdd = sd->private;
dce840a0
PZ
6142
6143 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6144 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6145
e3589f6c 6146 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6147 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6148
63b2ca30
NP
6149 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6150 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6151}
6152
cb83b629 6153#ifdef CONFIG_NUMA
cb83b629 6154static int sched_domains_numa_levels;
e3fe70b1 6155enum numa_topology_type sched_numa_topology_type;
cb83b629 6156static int *sched_domains_numa_distance;
9942f79b 6157int sched_max_numa_distance;
cb83b629
PZ
6158static struct cpumask ***sched_domains_numa_masks;
6159static int sched_domains_curr_level;
143e1e28 6160#endif
cb83b629 6161
143e1e28
VG
6162/*
6163 * SD_flags allowed in topology descriptions.
6164 *
5d4dfddd 6165 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6166 * SD_SHARE_PKG_RESOURCES - describes shared caches
6167 * SD_NUMA - describes NUMA topologies
d77b3ed5 6168 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6169 *
6170 * Odd one out:
6171 * SD_ASYM_PACKING - describes SMT quirks
6172 */
6173#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6174 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6175 SD_SHARE_PKG_RESOURCES | \
6176 SD_NUMA | \
d77b3ed5
VG
6177 SD_ASYM_PACKING | \
6178 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6179
6180static struct sched_domain *
143e1e28 6181sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6182{
6183 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6184 int sd_weight, sd_flags = 0;
6185
6186#ifdef CONFIG_NUMA
6187 /*
6188 * Ugly hack to pass state to sd_numa_mask()...
6189 */
6190 sched_domains_curr_level = tl->numa_level;
6191#endif
6192
6193 sd_weight = cpumask_weight(tl->mask(cpu));
6194
6195 if (tl->sd_flags)
6196 sd_flags = (*tl->sd_flags)();
6197 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6198 "wrong sd_flags in topology description\n"))
6199 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6200
6201 *sd = (struct sched_domain){
6202 .min_interval = sd_weight,
6203 .max_interval = 2*sd_weight,
6204 .busy_factor = 32,
870a0bb5 6205 .imbalance_pct = 125,
143e1e28
VG
6206
6207 .cache_nice_tries = 0,
6208 .busy_idx = 0,
6209 .idle_idx = 0,
cb83b629
PZ
6210 .newidle_idx = 0,
6211 .wake_idx = 0,
6212 .forkexec_idx = 0,
6213
6214 .flags = 1*SD_LOAD_BALANCE
6215 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6216 | 1*SD_BALANCE_EXEC
6217 | 1*SD_BALANCE_FORK
cb83b629 6218 | 0*SD_BALANCE_WAKE
143e1e28 6219 | 1*SD_WAKE_AFFINE
5d4dfddd 6220 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6221 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6222 | 0*SD_SERIALIZE
cb83b629 6223 | 0*SD_PREFER_SIBLING
143e1e28
VG
6224 | 0*SD_NUMA
6225 | sd_flags
cb83b629 6226 ,
143e1e28 6227
cb83b629
PZ
6228 .last_balance = jiffies,
6229 .balance_interval = sd_weight,
143e1e28 6230 .smt_gain = 0,
2b4cfe64
JL
6231 .max_newidle_lb_cost = 0,
6232 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6233#ifdef CONFIG_SCHED_DEBUG
6234 .name = tl->name,
6235#endif
cb83b629 6236 };
cb83b629
PZ
6237
6238 /*
143e1e28 6239 * Convert topological properties into behaviour.
cb83b629 6240 */
143e1e28 6241
5d4dfddd 6242 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6243 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6244 sd->imbalance_pct = 110;
6245 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6246
6247 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6248 sd->imbalance_pct = 117;
6249 sd->cache_nice_tries = 1;
6250 sd->busy_idx = 2;
6251
6252#ifdef CONFIG_NUMA
6253 } else if (sd->flags & SD_NUMA) {
6254 sd->cache_nice_tries = 2;
6255 sd->busy_idx = 3;
6256 sd->idle_idx = 2;
6257
6258 sd->flags |= SD_SERIALIZE;
6259 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6260 sd->flags &= ~(SD_BALANCE_EXEC |
6261 SD_BALANCE_FORK |
6262 SD_WAKE_AFFINE);
6263 }
6264
6265#endif
6266 } else {
6267 sd->flags |= SD_PREFER_SIBLING;
6268 sd->cache_nice_tries = 1;
6269 sd->busy_idx = 2;
6270 sd->idle_idx = 1;
6271 }
6272
6273 sd->private = &tl->data;
cb83b629
PZ
6274
6275 return sd;
6276}
6277
143e1e28
VG
6278/*
6279 * Topology list, bottom-up.
6280 */
6281static struct sched_domain_topology_level default_topology[] = {
6282#ifdef CONFIG_SCHED_SMT
6283 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6284#endif
6285#ifdef CONFIG_SCHED_MC
6286 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6287#endif
6288 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6289 { NULL, },
6290};
6291
6292struct sched_domain_topology_level *sched_domain_topology = default_topology;
6293
6294#define for_each_sd_topology(tl) \
6295 for (tl = sched_domain_topology; tl->mask; tl++)
6296
6297void set_sched_topology(struct sched_domain_topology_level *tl)
6298{
6299 sched_domain_topology = tl;
6300}
6301
6302#ifdef CONFIG_NUMA
6303
cb83b629
PZ
6304static const struct cpumask *sd_numa_mask(int cpu)
6305{
6306 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6307}
6308
d039ac60
PZ
6309static void sched_numa_warn(const char *str)
6310{
6311 static int done = false;
6312 int i,j;
6313
6314 if (done)
6315 return;
6316
6317 done = true;
6318
6319 printk(KERN_WARNING "ERROR: %s\n\n", str);
6320
6321 for (i = 0; i < nr_node_ids; i++) {
6322 printk(KERN_WARNING " ");
6323 for (j = 0; j < nr_node_ids; j++)
6324 printk(KERN_CONT "%02d ", node_distance(i,j));
6325 printk(KERN_CONT "\n");
6326 }
6327 printk(KERN_WARNING "\n");
6328}
6329
9942f79b 6330bool find_numa_distance(int distance)
d039ac60
PZ
6331{
6332 int i;
6333
6334 if (distance == node_distance(0, 0))
6335 return true;
6336
6337 for (i = 0; i < sched_domains_numa_levels; i++) {
6338 if (sched_domains_numa_distance[i] == distance)
6339 return true;
6340 }
6341
6342 return false;
6343}
6344
e3fe70b1
RR
6345/*
6346 * A system can have three types of NUMA topology:
6347 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6348 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6349 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6350 *
6351 * The difference between a glueless mesh topology and a backplane
6352 * topology lies in whether communication between not directly
6353 * connected nodes goes through intermediary nodes (where programs
6354 * could run), or through backplane controllers. This affects
6355 * placement of programs.
6356 *
6357 * The type of topology can be discerned with the following tests:
6358 * - If the maximum distance between any nodes is 1 hop, the system
6359 * is directly connected.
6360 * - If for two nodes A and B, located N > 1 hops away from each other,
6361 * there is an intermediary node C, which is < N hops away from both
6362 * nodes A and B, the system is a glueless mesh.
6363 */
6364static void init_numa_topology_type(void)
6365{
6366 int a, b, c, n;
6367
6368 n = sched_max_numa_distance;
6369
6370 if (n <= 1)
6371 sched_numa_topology_type = NUMA_DIRECT;
6372
6373 for_each_online_node(a) {
6374 for_each_online_node(b) {
6375 /* Find two nodes furthest removed from each other. */
6376 if (node_distance(a, b) < n)
6377 continue;
6378
6379 /* Is there an intermediary node between a and b? */
6380 for_each_online_node(c) {
6381 if (node_distance(a, c) < n &&
6382 node_distance(b, c) < n) {
6383 sched_numa_topology_type =
6384 NUMA_GLUELESS_MESH;
6385 return;
6386 }
6387 }
6388
6389 sched_numa_topology_type = NUMA_BACKPLANE;
6390 return;
6391 }
6392 }
6393}
6394
cb83b629
PZ
6395static void sched_init_numa(void)
6396{
6397 int next_distance, curr_distance = node_distance(0, 0);
6398 struct sched_domain_topology_level *tl;
6399 int level = 0;
6400 int i, j, k;
6401
cb83b629
PZ
6402 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6403 if (!sched_domains_numa_distance)
6404 return;
6405
6406 /*
6407 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6408 * unique distances in the node_distance() table.
6409 *
6410 * Assumes node_distance(0,j) includes all distances in
6411 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6412 */
6413 next_distance = curr_distance;
6414 for (i = 0; i < nr_node_ids; i++) {
6415 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6416 for (k = 0; k < nr_node_ids; k++) {
6417 int distance = node_distance(i, k);
6418
6419 if (distance > curr_distance &&
6420 (distance < next_distance ||
6421 next_distance == curr_distance))
6422 next_distance = distance;
6423
6424 /*
6425 * While not a strong assumption it would be nice to know
6426 * about cases where if node A is connected to B, B is not
6427 * equally connected to A.
6428 */
6429 if (sched_debug() && node_distance(k, i) != distance)
6430 sched_numa_warn("Node-distance not symmetric");
6431
6432 if (sched_debug() && i && !find_numa_distance(distance))
6433 sched_numa_warn("Node-0 not representative");
6434 }
6435 if (next_distance != curr_distance) {
6436 sched_domains_numa_distance[level++] = next_distance;
6437 sched_domains_numa_levels = level;
6438 curr_distance = next_distance;
6439 } else break;
cb83b629 6440 }
d039ac60
PZ
6441
6442 /*
6443 * In case of sched_debug() we verify the above assumption.
6444 */
6445 if (!sched_debug())
6446 break;
cb83b629 6447 }
c123588b
AR
6448
6449 if (!level)
6450 return;
6451
cb83b629
PZ
6452 /*
6453 * 'level' contains the number of unique distances, excluding the
6454 * identity distance node_distance(i,i).
6455 *
28b4a521 6456 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6457 * numbers.
6458 */
6459
5f7865f3
TC
6460 /*
6461 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6462 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6463 * the array will contain less then 'level' members. This could be
6464 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6465 * in other functions.
6466 *
6467 * We reset it to 'level' at the end of this function.
6468 */
6469 sched_domains_numa_levels = 0;
6470
cb83b629
PZ
6471 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6472 if (!sched_domains_numa_masks)
6473 return;
6474
6475 /*
6476 * Now for each level, construct a mask per node which contains all
6477 * cpus of nodes that are that many hops away from us.
6478 */
6479 for (i = 0; i < level; i++) {
6480 sched_domains_numa_masks[i] =
6481 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6482 if (!sched_domains_numa_masks[i])
6483 return;
6484
6485 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6486 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6487 if (!mask)
6488 return;
6489
6490 sched_domains_numa_masks[i][j] = mask;
6491
6492 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6493 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6494 continue;
6495
6496 cpumask_or(mask, mask, cpumask_of_node(k));
6497 }
6498 }
6499 }
6500
143e1e28
VG
6501 /* Compute default topology size */
6502 for (i = 0; sched_domain_topology[i].mask; i++);
6503
c515db8c 6504 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6505 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6506 if (!tl)
6507 return;
6508
6509 /*
6510 * Copy the default topology bits..
6511 */
143e1e28
VG
6512 for (i = 0; sched_domain_topology[i].mask; i++)
6513 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6514
6515 /*
6516 * .. and append 'j' levels of NUMA goodness.
6517 */
6518 for (j = 0; j < level; i++, j++) {
6519 tl[i] = (struct sched_domain_topology_level){
cb83b629 6520 .mask = sd_numa_mask,
143e1e28 6521 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6522 .flags = SDTL_OVERLAP,
6523 .numa_level = j,
143e1e28 6524 SD_INIT_NAME(NUMA)
cb83b629
PZ
6525 };
6526 }
6527
6528 sched_domain_topology = tl;
5f7865f3
TC
6529
6530 sched_domains_numa_levels = level;
9942f79b 6531 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6532
6533 init_numa_topology_type();
cb83b629 6534}
301a5cba
TC
6535
6536static void sched_domains_numa_masks_set(int cpu)
6537{
6538 int i, j;
6539 int node = cpu_to_node(cpu);
6540
6541 for (i = 0; i < sched_domains_numa_levels; i++) {
6542 for (j = 0; j < nr_node_ids; j++) {
6543 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6544 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6545 }
6546 }
6547}
6548
6549static void sched_domains_numa_masks_clear(int cpu)
6550{
6551 int i, j;
6552 for (i = 0; i < sched_domains_numa_levels; i++) {
6553 for (j = 0; j < nr_node_ids; j++)
6554 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6555 }
6556}
6557
6558/*
6559 * Update sched_domains_numa_masks[level][node] array when new cpus
6560 * are onlined.
6561 */
6562static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6563 unsigned long action,
6564 void *hcpu)
6565{
6566 int cpu = (long)hcpu;
6567
6568 switch (action & ~CPU_TASKS_FROZEN) {
6569 case CPU_ONLINE:
6570 sched_domains_numa_masks_set(cpu);
6571 break;
6572
6573 case CPU_DEAD:
6574 sched_domains_numa_masks_clear(cpu);
6575 break;
6576
6577 default:
6578 return NOTIFY_DONE;
6579 }
6580
6581 return NOTIFY_OK;
cb83b629
PZ
6582}
6583#else
6584static inline void sched_init_numa(void)
6585{
6586}
301a5cba
TC
6587
6588static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6589 unsigned long action,
6590 void *hcpu)
6591{
6592 return 0;
6593}
cb83b629
PZ
6594#endif /* CONFIG_NUMA */
6595
54ab4ff4
PZ
6596static int __sdt_alloc(const struct cpumask *cpu_map)
6597{
6598 struct sched_domain_topology_level *tl;
6599 int j;
6600
27723a68 6601 for_each_sd_topology(tl) {
54ab4ff4
PZ
6602 struct sd_data *sdd = &tl->data;
6603
6604 sdd->sd = alloc_percpu(struct sched_domain *);
6605 if (!sdd->sd)
6606 return -ENOMEM;
6607
6608 sdd->sg = alloc_percpu(struct sched_group *);
6609 if (!sdd->sg)
6610 return -ENOMEM;
6611
63b2ca30
NP
6612 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6613 if (!sdd->sgc)
9c3f75cb
PZ
6614 return -ENOMEM;
6615
54ab4ff4
PZ
6616 for_each_cpu(j, cpu_map) {
6617 struct sched_domain *sd;
6618 struct sched_group *sg;
63b2ca30 6619 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6620
6621 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6622 GFP_KERNEL, cpu_to_node(j));
6623 if (!sd)
6624 return -ENOMEM;
6625
6626 *per_cpu_ptr(sdd->sd, j) = sd;
6627
6628 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6629 GFP_KERNEL, cpu_to_node(j));
6630 if (!sg)
6631 return -ENOMEM;
6632
30b4e9eb
IM
6633 sg->next = sg;
6634
54ab4ff4 6635 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6636
63b2ca30 6637 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6638 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6639 if (!sgc)
9c3f75cb
PZ
6640 return -ENOMEM;
6641
63b2ca30 6642 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6643 }
6644 }
6645
6646 return 0;
6647}
6648
6649static void __sdt_free(const struct cpumask *cpu_map)
6650{
6651 struct sched_domain_topology_level *tl;
6652 int j;
6653
27723a68 6654 for_each_sd_topology(tl) {
54ab4ff4
PZ
6655 struct sd_data *sdd = &tl->data;
6656
6657 for_each_cpu(j, cpu_map) {
fb2cf2c6 6658 struct sched_domain *sd;
6659
6660 if (sdd->sd) {
6661 sd = *per_cpu_ptr(sdd->sd, j);
6662 if (sd && (sd->flags & SD_OVERLAP))
6663 free_sched_groups(sd->groups, 0);
6664 kfree(*per_cpu_ptr(sdd->sd, j));
6665 }
6666
6667 if (sdd->sg)
6668 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6669 if (sdd->sgc)
6670 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6671 }
6672 free_percpu(sdd->sd);
fb2cf2c6 6673 sdd->sd = NULL;
54ab4ff4 6674 free_percpu(sdd->sg);
fb2cf2c6 6675 sdd->sg = NULL;
63b2ca30
NP
6676 free_percpu(sdd->sgc);
6677 sdd->sgc = NULL;
54ab4ff4
PZ
6678 }
6679}
6680
2c402dc3 6681struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6682 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6683 struct sched_domain *child, int cpu)
2c402dc3 6684{
143e1e28 6685 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6686 if (!sd)
d069b916 6687 return child;
2c402dc3 6688
2c402dc3 6689 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6690 if (child) {
6691 sd->level = child->level + 1;
6692 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6693 child->parent = sd;
c75e0128 6694 sd->child = child;
6ae72dff
PZ
6695
6696 if (!cpumask_subset(sched_domain_span(child),
6697 sched_domain_span(sd))) {
6698 pr_err("BUG: arch topology borken\n");
6699#ifdef CONFIG_SCHED_DEBUG
6700 pr_err(" the %s domain not a subset of the %s domain\n",
6701 child->name, sd->name);
6702#endif
6703 /* Fixup, ensure @sd has at least @child cpus. */
6704 cpumask_or(sched_domain_span(sd),
6705 sched_domain_span(sd),
6706 sched_domain_span(child));
6707 }
6708
60495e77 6709 }
a841f8ce 6710 set_domain_attribute(sd, attr);
2c402dc3
PZ
6711
6712 return sd;
6713}
6714
2109b99e
AH
6715/*
6716 * Build sched domains for a given set of cpus and attach the sched domains
6717 * to the individual cpus
6718 */
dce840a0
PZ
6719static int build_sched_domains(const struct cpumask *cpu_map,
6720 struct sched_domain_attr *attr)
2109b99e 6721{
1c632169 6722 enum s_alloc alloc_state;
dce840a0 6723 struct sched_domain *sd;
2109b99e 6724 struct s_data d;
822ff793 6725 int i, ret = -ENOMEM;
9c1cfda2 6726
2109b99e
AH
6727 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6728 if (alloc_state != sa_rootdomain)
6729 goto error;
9c1cfda2 6730
dce840a0 6731 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6732 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6733 struct sched_domain_topology_level *tl;
6734
3bd65a80 6735 sd = NULL;
27723a68 6736 for_each_sd_topology(tl) {
4a850cbe 6737 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6738 if (tl == sched_domain_topology)
6739 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6740 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6741 sd->flags |= SD_OVERLAP;
d110235d
PZ
6742 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6743 break;
e3589f6c 6744 }
dce840a0
PZ
6745 }
6746
6747 /* Build the groups for the domains */
6748 for_each_cpu(i, cpu_map) {
6749 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6750 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6751 if (sd->flags & SD_OVERLAP) {
6752 if (build_overlap_sched_groups(sd, i))
6753 goto error;
6754 } else {
6755 if (build_sched_groups(sd, i))
6756 goto error;
6757 }
1cf51902 6758 }
a06dadbe 6759 }
9c1cfda2 6760
ced549fa 6761 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6762 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6763 if (!cpumask_test_cpu(i, cpu_map))
6764 continue;
9c1cfda2 6765
dce840a0
PZ
6766 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6767 claim_allocations(i, sd);
63b2ca30 6768 init_sched_groups_capacity(i, sd);
dce840a0 6769 }
f712c0c7 6770 }
9c1cfda2 6771
1da177e4 6772 /* Attach the domains */
dce840a0 6773 rcu_read_lock();
abcd083a 6774 for_each_cpu(i, cpu_map) {
21d42ccf 6775 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6776 cpu_attach_domain(sd, d.rd, i);
1da177e4 6777 }
dce840a0 6778 rcu_read_unlock();
51888ca2 6779
822ff793 6780 ret = 0;
51888ca2 6781error:
2109b99e 6782 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6783 return ret;
1da177e4 6784}
029190c5 6785
acc3f5d7 6786static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6787static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6788static struct sched_domain_attr *dattr_cur;
6789 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6790
6791/*
6792 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6793 * cpumask) fails, then fallback to a single sched domain,
6794 * as determined by the single cpumask fallback_doms.
029190c5 6795 */
4212823f 6796static cpumask_var_t fallback_doms;
029190c5 6797
ee79d1bd
HC
6798/*
6799 * arch_update_cpu_topology lets virtualized architectures update the
6800 * cpu core maps. It is supposed to return 1 if the topology changed
6801 * or 0 if it stayed the same.
6802 */
52f5684c 6803int __weak arch_update_cpu_topology(void)
22e52b07 6804{
ee79d1bd 6805 return 0;
22e52b07
HC
6806}
6807
acc3f5d7
RR
6808cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6809{
6810 int i;
6811 cpumask_var_t *doms;
6812
6813 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6814 if (!doms)
6815 return NULL;
6816 for (i = 0; i < ndoms; i++) {
6817 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6818 free_sched_domains(doms, i);
6819 return NULL;
6820 }
6821 }
6822 return doms;
6823}
6824
6825void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6826{
6827 unsigned int i;
6828 for (i = 0; i < ndoms; i++)
6829 free_cpumask_var(doms[i]);
6830 kfree(doms);
6831}
6832
1a20ff27 6833/*
41a2d6cf 6834 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6835 * For now this just excludes isolated cpus, but could be used to
6836 * exclude other special cases in the future.
1a20ff27 6837 */
c4a8849a 6838static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6839{
7378547f
MM
6840 int err;
6841
22e52b07 6842 arch_update_cpu_topology();
029190c5 6843 ndoms_cur = 1;
acc3f5d7 6844 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6845 if (!doms_cur)
acc3f5d7
RR
6846 doms_cur = &fallback_doms;
6847 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6848 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6849 register_sched_domain_sysctl();
7378547f
MM
6850
6851 return err;
1a20ff27
DG
6852}
6853
1a20ff27
DG
6854/*
6855 * Detach sched domains from a group of cpus specified in cpu_map
6856 * These cpus will now be attached to the NULL domain
6857 */
96f874e2 6858static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6859{
6860 int i;
6861
dce840a0 6862 rcu_read_lock();
abcd083a 6863 for_each_cpu(i, cpu_map)
57d885fe 6864 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6865 rcu_read_unlock();
1a20ff27
DG
6866}
6867
1d3504fc
HS
6868/* handle null as "default" */
6869static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6870 struct sched_domain_attr *new, int idx_new)
6871{
6872 struct sched_domain_attr tmp;
6873
6874 /* fast path */
6875 if (!new && !cur)
6876 return 1;
6877
6878 tmp = SD_ATTR_INIT;
6879 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6880 new ? (new + idx_new) : &tmp,
6881 sizeof(struct sched_domain_attr));
6882}
6883
029190c5
PJ
6884/*
6885 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6886 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6887 * doms_new[] to the current sched domain partitioning, doms_cur[].
6888 * It destroys each deleted domain and builds each new domain.
6889 *
acc3f5d7 6890 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6891 * The masks don't intersect (don't overlap.) We should setup one
6892 * sched domain for each mask. CPUs not in any of the cpumasks will
6893 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6894 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6895 * it as it is.
6896 *
acc3f5d7
RR
6897 * The passed in 'doms_new' should be allocated using
6898 * alloc_sched_domains. This routine takes ownership of it and will
6899 * free_sched_domains it when done with it. If the caller failed the
6900 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6901 * and partition_sched_domains() will fallback to the single partition
6902 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6903 *
96f874e2 6904 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6905 * ndoms_new == 0 is a special case for destroying existing domains,
6906 * and it will not create the default domain.
dfb512ec 6907 *
029190c5
PJ
6908 * Call with hotplug lock held
6909 */
acc3f5d7 6910void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6911 struct sched_domain_attr *dattr_new)
029190c5 6912{
dfb512ec 6913 int i, j, n;
d65bd5ec 6914 int new_topology;
029190c5 6915
712555ee 6916 mutex_lock(&sched_domains_mutex);
a1835615 6917
7378547f
MM
6918 /* always unregister in case we don't destroy any domains */
6919 unregister_sched_domain_sysctl();
6920
d65bd5ec
HC
6921 /* Let architecture update cpu core mappings. */
6922 new_topology = arch_update_cpu_topology();
6923
dfb512ec 6924 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6925
6926 /* Destroy deleted domains */
6927 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6928 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6929 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6930 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6931 goto match1;
6932 }
6933 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6934 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6935match1:
6936 ;
6937 }
6938
c8d2d47a 6939 n = ndoms_cur;
e761b772 6940 if (doms_new == NULL) {
c8d2d47a 6941 n = 0;
acc3f5d7 6942 doms_new = &fallback_doms;
6ad4c188 6943 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6944 WARN_ON_ONCE(dattr_new);
e761b772
MK
6945 }
6946
029190c5
PJ
6947 /* Build new domains */
6948 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6949 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6950 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6951 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6952 goto match2;
6953 }
6954 /* no match - add a new doms_new */
dce840a0 6955 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6956match2:
6957 ;
6958 }
6959
6960 /* Remember the new sched domains */
acc3f5d7
RR
6961 if (doms_cur != &fallback_doms)
6962 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6963 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6964 doms_cur = doms_new;
1d3504fc 6965 dattr_cur = dattr_new;
029190c5 6966 ndoms_cur = ndoms_new;
7378547f
MM
6967
6968 register_sched_domain_sysctl();
a1835615 6969
712555ee 6970 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6971}
6972
d35be8ba
SB
6973static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6974
1da177e4 6975/*
3a101d05
TH
6976 * Update cpusets according to cpu_active mask. If cpusets are
6977 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6978 * around partition_sched_domains().
d35be8ba
SB
6979 *
6980 * If we come here as part of a suspend/resume, don't touch cpusets because we
6981 * want to restore it back to its original state upon resume anyway.
1da177e4 6982 */
0b2e918a
TH
6983static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6984 void *hcpu)
e761b772 6985{
d35be8ba
SB
6986 switch (action) {
6987 case CPU_ONLINE_FROZEN:
6988 case CPU_DOWN_FAILED_FROZEN:
6989
6990 /*
6991 * num_cpus_frozen tracks how many CPUs are involved in suspend
6992 * resume sequence. As long as this is not the last online
6993 * operation in the resume sequence, just build a single sched
6994 * domain, ignoring cpusets.
6995 */
6996 num_cpus_frozen--;
6997 if (likely(num_cpus_frozen)) {
6998 partition_sched_domains(1, NULL, NULL);
6999 break;
7000 }
7001
7002 /*
7003 * This is the last CPU online operation. So fall through and
7004 * restore the original sched domains by considering the
7005 * cpuset configurations.
7006 */
7007
e761b772 7008 case CPU_ONLINE:
6ad4c188 7009 case CPU_DOWN_FAILED:
7ddf96b0 7010 cpuset_update_active_cpus(true);
d35be8ba 7011 break;
3a101d05
TH
7012 default:
7013 return NOTIFY_DONE;
7014 }
d35be8ba 7015 return NOTIFY_OK;
3a101d05 7016}
e761b772 7017
0b2e918a
TH
7018static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7019 void *hcpu)
3a101d05 7020{
d35be8ba 7021 switch (action) {
3a101d05 7022 case CPU_DOWN_PREPARE:
7ddf96b0 7023 cpuset_update_active_cpus(false);
d35be8ba
SB
7024 break;
7025 case CPU_DOWN_PREPARE_FROZEN:
7026 num_cpus_frozen++;
7027 partition_sched_domains(1, NULL, NULL);
7028 break;
e761b772
MK
7029 default:
7030 return NOTIFY_DONE;
7031 }
d35be8ba 7032 return NOTIFY_OK;
e761b772 7033}
e761b772 7034
1da177e4
LT
7035void __init sched_init_smp(void)
7036{
dcc30a35
RR
7037 cpumask_var_t non_isolated_cpus;
7038
7039 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7040 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7041
cb83b629
PZ
7042 sched_init_numa();
7043
6acce3ef
PZ
7044 /*
7045 * There's no userspace yet to cause hotplug operations; hence all the
7046 * cpu masks are stable and all blatant races in the below code cannot
7047 * happen.
7048 */
712555ee 7049 mutex_lock(&sched_domains_mutex);
c4a8849a 7050 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7051 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7052 if (cpumask_empty(non_isolated_cpus))
7053 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7054 mutex_unlock(&sched_domains_mutex);
e761b772 7055
301a5cba 7056 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7057 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7058 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7059
b328ca18 7060 init_hrtick();
5c1e1767
NP
7061
7062 /* Move init over to a non-isolated CPU */
dcc30a35 7063 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7064 BUG();
19978ca6 7065 sched_init_granularity();
dcc30a35 7066 free_cpumask_var(non_isolated_cpus);
4212823f 7067
0e3900e6 7068 init_sched_rt_class();
1baca4ce 7069 init_sched_dl_class();
1da177e4
LT
7070}
7071#else
7072void __init sched_init_smp(void)
7073{
19978ca6 7074 sched_init_granularity();
1da177e4
LT
7075}
7076#endif /* CONFIG_SMP */
7077
cd1bb94b
AB
7078const_debug unsigned int sysctl_timer_migration = 1;
7079
1da177e4
LT
7080int in_sched_functions(unsigned long addr)
7081{
1da177e4
LT
7082 return in_lock_functions(addr) ||
7083 (addr >= (unsigned long)__sched_text_start
7084 && addr < (unsigned long)__sched_text_end);
7085}
7086
029632fb 7087#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7088/*
7089 * Default task group.
7090 * Every task in system belongs to this group at bootup.
7091 */
029632fb 7092struct task_group root_task_group;
35cf4e50 7093LIST_HEAD(task_groups);
052f1dc7 7094#endif
6f505b16 7095
e6252c3e 7096DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7097
1da177e4
LT
7098void __init sched_init(void)
7099{
dd41f596 7100 int i, j;
434d53b0
MT
7101 unsigned long alloc_size = 0, ptr;
7102
7103#ifdef CONFIG_FAIR_GROUP_SCHED
7104 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7105#endif
7106#ifdef CONFIG_RT_GROUP_SCHED
7107 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7108#endif
434d53b0 7109 if (alloc_size) {
36b7b6d4 7110 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7111
7112#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7113 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7114 ptr += nr_cpu_ids * sizeof(void **);
7115
07e06b01 7116 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7117 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7118
6d6bc0ad 7119#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7120#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7121 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7122 ptr += nr_cpu_ids * sizeof(void **);
7123
07e06b01 7124 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7125 ptr += nr_cpu_ids * sizeof(void **);
7126
6d6bc0ad 7127#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7128 }
df7c8e84 7129#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7130 for_each_possible_cpu(i) {
7131 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7132 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7133 }
b74e6278 7134#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7135
332ac17e
DF
7136 init_rt_bandwidth(&def_rt_bandwidth,
7137 global_rt_period(), global_rt_runtime());
7138 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7139 global_rt_period(), global_rt_runtime());
332ac17e 7140
57d885fe
GH
7141#ifdef CONFIG_SMP
7142 init_defrootdomain();
7143#endif
7144
d0b27fa7 7145#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7146 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7147 global_rt_period(), global_rt_runtime());
6d6bc0ad 7148#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7149
7c941438 7150#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7151 list_add(&root_task_group.list, &task_groups);
7152 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7153 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7154 autogroup_init(&init_task);
54c707e9 7155
7c941438 7156#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7157
0a945022 7158 for_each_possible_cpu(i) {
70b97a7f 7159 struct rq *rq;
1da177e4
LT
7160
7161 rq = cpu_rq(i);
05fa785c 7162 raw_spin_lock_init(&rq->lock);
7897986b 7163 rq->nr_running = 0;
dce48a84
TG
7164 rq->calc_load_active = 0;
7165 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7166 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7167 init_rt_rq(&rq->rt);
7168 init_dl_rq(&rq->dl);
dd41f596 7169#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7170 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7171 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7172 /*
07e06b01 7173 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7174 *
7175 * In case of task-groups formed thr' the cgroup filesystem, it
7176 * gets 100% of the cpu resources in the system. This overall
7177 * system cpu resource is divided among the tasks of
07e06b01 7178 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7179 * based on each entity's (task or task-group's) weight
7180 * (se->load.weight).
7181 *
07e06b01 7182 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7183 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7184 * then A0's share of the cpu resource is:
7185 *
0d905bca 7186 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7187 *
07e06b01
YZ
7188 * We achieve this by letting root_task_group's tasks sit
7189 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7190 */
ab84d31e 7191 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7192 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7193#endif /* CONFIG_FAIR_GROUP_SCHED */
7194
7195 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7196#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7197 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7198#endif
1da177e4 7199
dd41f596
IM
7200 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7201 rq->cpu_load[j] = 0;
fdf3e95d
VP
7202
7203 rq->last_load_update_tick = jiffies;
7204
1da177e4 7205#ifdef CONFIG_SMP
41c7ce9a 7206 rq->sd = NULL;
57d885fe 7207 rq->rd = NULL;
ca6d75e6 7208 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
3f029d3c 7209 rq->post_schedule = 0;
1da177e4 7210 rq->active_balance = 0;
dd41f596 7211 rq->next_balance = jiffies;
1da177e4 7212 rq->push_cpu = 0;
0a2966b4 7213 rq->cpu = i;
1f11eb6a 7214 rq->online = 0;
eae0c9df
MG
7215 rq->idle_stamp = 0;
7216 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7217 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7218
7219 INIT_LIST_HEAD(&rq->cfs_tasks);
7220
dc938520 7221 rq_attach_root(rq, &def_root_domain);
3451d024 7222#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7223 rq->nohz_flags = 0;
83cd4fe2 7224#endif
265f22a9
FW
7225#ifdef CONFIG_NO_HZ_FULL
7226 rq->last_sched_tick = 0;
7227#endif
1da177e4 7228#endif
8f4d37ec 7229 init_rq_hrtick(rq);
1da177e4 7230 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7231 }
7232
2dd73a4f 7233 set_load_weight(&init_task);
b50f60ce 7234
e107be36
AK
7235#ifdef CONFIG_PREEMPT_NOTIFIERS
7236 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7237#endif
7238
1da177e4
LT
7239 /*
7240 * The boot idle thread does lazy MMU switching as well:
7241 */
7242 atomic_inc(&init_mm.mm_count);
7243 enter_lazy_tlb(&init_mm, current);
7244
1b537c7d
YD
7245 /*
7246 * During early bootup we pretend to be a normal task:
7247 */
7248 current->sched_class = &fair_sched_class;
7249
1da177e4
LT
7250 /*
7251 * Make us the idle thread. Technically, schedule() should not be
7252 * called from this thread, however somewhere below it might be,
7253 * but because we are the idle thread, we just pick up running again
7254 * when this runqueue becomes "idle".
7255 */
7256 init_idle(current, smp_processor_id());
dce48a84
TG
7257
7258 calc_load_update = jiffies + LOAD_FREQ;
7259
bf4d83f6 7260#ifdef CONFIG_SMP
4cb98839 7261 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7262 /* May be allocated at isolcpus cmdline parse time */
7263 if (cpu_isolated_map == NULL)
7264 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7265 idle_thread_set_boot_cpu();
a803f026 7266 set_cpu_rq_start_time();
029632fb
PZ
7267#endif
7268 init_sched_fair_class();
6a7b3dc3 7269
6892b75e 7270 scheduler_running = 1;
1da177e4
LT
7271}
7272
d902db1e 7273#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7274static inline int preempt_count_equals(int preempt_offset)
7275{
234da7bc 7276 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7277
4ba8216c 7278 return (nested == preempt_offset);
e4aafea2
FW
7279}
7280
d894837f 7281void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7282{
8eb23b9f
PZ
7283 /*
7284 * Blocking primitives will set (and therefore destroy) current->state,
7285 * since we will exit with TASK_RUNNING make sure we enter with it,
7286 * otherwise we will destroy state.
7287 */
00845eb9 7288 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7289 "do not call blocking ops when !TASK_RUNNING; "
7290 "state=%lx set at [<%p>] %pS\n",
7291 current->state,
7292 (void *)current->task_state_change,
00845eb9 7293 (void *)current->task_state_change);
8eb23b9f 7294
3427445a
PZ
7295 ___might_sleep(file, line, preempt_offset);
7296}
7297EXPORT_SYMBOL(__might_sleep);
7298
7299void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7300{
1da177e4
LT
7301 static unsigned long prev_jiffy; /* ratelimiting */
7302
b3fbab05 7303 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7304 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7305 !is_idle_task(current)) ||
e4aafea2 7306 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7307 return;
7308 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7309 return;
7310 prev_jiffy = jiffies;
7311
3df0fc5b
PZ
7312 printk(KERN_ERR
7313 "BUG: sleeping function called from invalid context at %s:%d\n",
7314 file, line);
7315 printk(KERN_ERR
7316 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7317 in_atomic(), irqs_disabled(),
7318 current->pid, current->comm);
aef745fc 7319
a8b686b3
ES
7320 if (task_stack_end_corrupted(current))
7321 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7322
aef745fc
IM
7323 debug_show_held_locks(current);
7324 if (irqs_disabled())
7325 print_irqtrace_events(current);
8f47b187
TG
7326#ifdef CONFIG_DEBUG_PREEMPT
7327 if (!preempt_count_equals(preempt_offset)) {
7328 pr_err("Preemption disabled at:");
7329 print_ip_sym(current->preempt_disable_ip);
7330 pr_cont("\n");
7331 }
7332#endif
aef745fc 7333 dump_stack();
1da177e4 7334}
3427445a 7335EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7336#endif
7337
7338#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7339static void normalize_task(struct rq *rq, struct task_struct *p)
7340{
da7a735e 7341 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7342 struct sched_attr attr = {
7343 .sched_policy = SCHED_NORMAL,
7344 };
da7a735e 7345 int old_prio = p->prio;
da0c1e65 7346 int queued;
3e51f33f 7347
da0c1e65
KT
7348 queued = task_on_rq_queued(p);
7349 if (queued)
4ca9b72b 7350 dequeue_task(rq, p, 0);
d50dde5a 7351 __setscheduler(rq, p, &attr);
da0c1e65 7352 if (queued) {
4ca9b72b 7353 enqueue_task(rq, p, 0);
8875125e 7354 resched_curr(rq);
3a5e4dc1 7355 }
da7a735e
PZ
7356
7357 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7358}
7359
1da177e4
LT
7360void normalize_rt_tasks(void)
7361{
a0f98a1c 7362 struct task_struct *g, *p;
1da177e4 7363 unsigned long flags;
70b97a7f 7364 struct rq *rq;
1da177e4 7365
3472eaa1 7366 read_lock(&tasklist_lock);
5d07f420 7367 for_each_process_thread(g, p) {
178be793
IM
7368 /*
7369 * Only normalize user tasks:
7370 */
3472eaa1 7371 if (p->flags & PF_KTHREAD)
178be793
IM
7372 continue;
7373
6cfb0d5d 7374 p->se.exec_start = 0;
6cfb0d5d 7375#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7376 p->se.statistics.wait_start = 0;
7377 p->se.statistics.sleep_start = 0;
7378 p->se.statistics.block_start = 0;
6cfb0d5d 7379#endif
dd41f596 7380
aab03e05 7381 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7382 /*
7383 * Renice negative nice level userspace
7384 * tasks back to 0:
7385 */
3472eaa1 7386 if (task_nice(p) < 0)
dd41f596 7387 set_user_nice(p, 0);
1da177e4 7388 continue;
dd41f596 7389 }
1da177e4 7390
3472eaa1 7391 rq = task_rq_lock(p, &flags);
178be793 7392 normalize_task(rq, p);
3472eaa1 7393 task_rq_unlock(rq, p, &flags);
5d07f420 7394 }
3472eaa1 7395 read_unlock(&tasklist_lock);
1da177e4
LT
7396}
7397
7398#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7399
67fc4e0c 7400#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7401/*
67fc4e0c 7402 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7403 *
7404 * They can only be called when the whole system has been
7405 * stopped - every CPU needs to be quiescent, and no scheduling
7406 * activity can take place. Using them for anything else would
7407 * be a serious bug, and as a result, they aren't even visible
7408 * under any other configuration.
7409 */
7410
7411/**
7412 * curr_task - return the current task for a given cpu.
7413 * @cpu: the processor in question.
7414 *
7415 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7416 *
7417 * Return: The current task for @cpu.
1df5c10a 7418 */
36c8b586 7419struct task_struct *curr_task(int cpu)
1df5c10a
LT
7420{
7421 return cpu_curr(cpu);
7422}
7423
67fc4e0c
JW
7424#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7425
7426#ifdef CONFIG_IA64
1df5c10a
LT
7427/**
7428 * set_curr_task - set the current task for a given cpu.
7429 * @cpu: the processor in question.
7430 * @p: the task pointer to set.
7431 *
7432 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7433 * are serviced on a separate stack. It allows the architecture to switch the
7434 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7435 * must be called with all CPU's synchronized, and interrupts disabled, the
7436 * and caller must save the original value of the current task (see
7437 * curr_task() above) and restore that value before reenabling interrupts and
7438 * re-starting the system.
7439 *
7440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7441 */
36c8b586 7442void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7443{
7444 cpu_curr(cpu) = p;
7445}
7446
7447#endif
29f59db3 7448
7c941438 7449#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7450/* task_group_lock serializes the addition/removal of task groups */
7451static DEFINE_SPINLOCK(task_group_lock);
7452
bccbe08a
PZ
7453static void free_sched_group(struct task_group *tg)
7454{
7455 free_fair_sched_group(tg);
7456 free_rt_sched_group(tg);
e9aa1dd1 7457 autogroup_free(tg);
bccbe08a
PZ
7458 kfree(tg);
7459}
7460
7461/* allocate runqueue etc for a new task group */
ec7dc8ac 7462struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7463{
7464 struct task_group *tg;
bccbe08a
PZ
7465
7466 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7467 if (!tg)
7468 return ERR_PTR(-ENOMEM);
7469
ec7dc8ac 7470 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7471 goto err;
7472
ec7dc8ac 7473 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7474 goto err;
7475
ace783b9
LZ
7476 return tg;
7477
7478err:
7479 free_sched_group(tg);
7480 return ERR_PTR(-ENOMEM);
7481}
7482
7483void sched_online_group(struct task_group *tg, struct task_group *parent)
7484{
7485 unsigned long flags;
7486
8ed36996 7487 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7488 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7489
7490 WARN_ON(!parent); /* root should already exist */
7491
7492 tg->parent = parent;
f473aa5e 7493 INIT_LIST_HEAD(&tg->children);
09f2724a 7494 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7495 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7496}
7497
9b5b7751 7498/* rcu callback to free various structures associated with a task group */
6f505b16 7499static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7500{
29f59db3 7501 /* now it should be safe to free those cfs_rqs */
6f505b16 7502 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7503}
7504
9b5b7751 7505/* Destroy runqueue etc associated with a task group */
4cf86d77 7506void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7507{
7508 /* wait for possible concurrent references to cfs_rqs complete */
7509 call_rcu(&tg->rcu, free_sched_group_rcu);
7510}
7511
7512void sched_offline_group(struct task_group *tg)
29f59db3 7513{
8ed36996 7514 unsigned long flags;
9b5b7751 7515 int i;
29f59db3 7516
3d4b47b4
PZ
7517 /* end participation in shares distribution */
7518 for_each_possible_cpu(i)
bccbe08a 7519 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7520
7521 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7522 list_del_rcu(&tg->list);
f473aa5e 7523 list_del_rcu(&tg->siblings);
8ed36996 7524 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7525}
7526
9b5b7751 7527/* change task's runqueue when it moves between groups.
3a252015
IM
7528 * The caller of this function should have put the task in its new group
7529 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7530 * reflect its new group.
9b5b7751
SV
7531 */
7532void sched_move_task(struct task_struct *tsk)
29f59db3 7533{
8323f26c 7534 struct task_group *tg;
da0c1e65 7535 int queued, running;
29f59db3
SV
7536 unsigned long flags;
7537 struct rq *rq;
7538
7539 rq = task_rq_lock(tsk, &flags);
7540
051a1d1a 7541 running = task_current(rq, tsk);
da0c1e65 7542 queued = task_on_rq_queued(tsk);
29f59db3 7543
da0c1e65 7544 if (queued)
29f59db3 7545 dequeue_task(rq, tsk, 0);
0e1f3483 7546 if (unlikely(running))
f3cd1c4e 7547 put_prev_task(rq, tsk);
29f59db3 7548
f7b8a47d
KT
7549 /*
7550 * All callers are synchronized by task_rq_lock(); we do not use RCU
7551 * which is pointless here. Thus, we pass "true" to task_css_check()
7552 * to prevent lockdep warnings.
7553 */
7554 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7555 struct task_group, css);
7556 tg = autogroup_task_group(tsk, tg);
7557 tsk->sched_task_group = tg;
7558
810b3817 7559#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7560 if (tsk->sched_class->task_move_group)
da0c1e65 7561 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7562 else
810b3817 7563#endif
b2b5ce02 7564 set_task_rq(tsk, task_cpu(tsk));
810b3817 7565
0e1f3483
HS
7566 if (unlikely(running))
7567 tsk->sched_class->set_curr_task(rq);
da0c1e65 7568 if (queued)
371fd7e7 7569 enqueue_task(rq, tsk, 0);
29f59db3 7570
0122ec5b 7571 task_rq_unlock(rq, tsk, &flags);
29f59db3 7572}
7c941438 7573#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7574
a790de99
PT
7575#ifdef CONFIG_RT_GROUP_SCHED
7576/*
7577 * Ensure that the real time constraints are schedulable.
7578 */
7579static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7580
9a7e0b18
PZ
7581/* Must be called with tasklist_lock held */
7582static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7583{
9a7e0b18 7584 struct task_struct *g, *p;
b40b2e8e 7585
1fe89e1b
PZ
7586 /*
7587 * Autogroups do not have RT tasks; see autogroup_create().
7588 */
7589 if (task_group_is_autogroup(tg))
7590 return 0;
7591
5d07f420 7592 for_each_process_thread(g, p) {
8651c658 7593 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7594 return 1;
5d07f420 7595 }
b40b2e8e 7596
9a7e0b18
PZ
7597 return 0;
7598}
b40b2e8e 7599
9a7e0b18
PZ
7600struct rt_schedulable_data {
7601 struct task_group *tg;
7602 u64 rt_period;
7603 u64 rt_runtime;
7604};
b40b2e8e 7605
a790de99 7606static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7607{
7608 struct rt_schedulable_data *d = data;
7609 struct task_group *child;
7610 unsigned long total, sum = 0;
7611 u64 period, runtime;
b40b2e8e 7612
9a7e0b18
PZ
7613 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7614 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7615
9a7e0b18
PZ
7616 if (tg == d->tg) {
7617 period = d->rt_period;
7618 runtime = d->rt_runtime;
b40b2e8e 7619 }
b40b2e8e 7620
4653f803
PZ
7621 /*
7622 * Cannot have more runtime than the period.
7623 */
7624 if (runtime > period && runtime != RUNTIME_INF)
7625 return -EINVAL;
6f505b16 7626
4653f803
PZ
7627 /*
7628 * Ensure we don't starve existing RT tasks.
7629 */
9a7e0b18
PZ
7630 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7631 return -EBUSY;
6f505b16 7632
9a7e0b18 7633 total = to_ratio(period, runtime);
6f505b16 7634
4653f803
PZ
7635 /*
7636 * Nobody can have more than the global setting allows.
7637 */
7638 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7639 return -EINVAL;
6f505b16 7640
4653f803
PZ
7641 /*
7642 * The sum of our children's runtime should not exceed our own.
7643 */
9a7e0b18
PZ
7644 list_for_each_entry_rcu(child, &tg->children, siblings) {
7645 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7646 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7647
9a7e0b18
PZ
7648 if (child == d->tg) {
7649 period = d->rt_period;
7650 runtime = d->rt_runtime;
7651 }
6f505b16 7652
9a7e0b18 7653 sum += to_ratio(period, runtime);
9f0c1e56 7654 }
6f505b16 7655
9a7e0b18
PZ
7656 if (sum > total)
7657 return -EINVAL;
7658
7659 return 0;
6f505b16
PZ
7660}
7661
9a7e0b18 7662static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7663{
8277434e
PT
7664 int ret;
7665
9a7e0b18
PZ
7666 struct rt_schedulable_data data = {
7667 .tg = tg,
7668 .rt_period = period,
7669 .rt_runtime = runtime,
7670 };
7671
8277434e
PT
7672 rcu_read_lock();
7673 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7674 rcu_read_unlock();
7675
7676 return ret;
521f1a24
DG
7677}
7678
ab84d31e 7679static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7680 u64 rt_period, u64 rt_runtime)
6f505b16 7681{
ac086bc2 7682 int i, err = 0;
9f0c1e56 7683
2636ed5f
PZ
7684 /*
7685 * Disallowing the root group RT runtime is BAD, it would disallow the
7686 * kernel creating (and or operating) RT threads.
7687 */
7688 if (tg == &root_task_group && rt_runtime == 0)
7689 return -EINVAL;
7690
7691 /* No period doesn't make any sense. */
7692 if (rt_period == 0)
7693 return -EINVAL;
7694
9f0c1e56 7695 mutex_lock(&rt_constraints_mutex);
521f1a24 7696 read_lock(&tasklist_lock);
9a7e0b18
PZ
7697 err = __rt_schedulable(tg, rt_period, rt_runtime);
7698 if (err)
9f0c1e56 7699 goto unlock;
ac086bc2 7700
0986b11b 7701 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7702 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7703 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7704
7705 for_each_possible_cpu(i) {
7706 struct rt_rq *rt_rq = tg->rt_rq[i];
7707
0986b11b 7708 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7709 rt_rq->rt_runtime = rt_runtime;
0986b11b 7710 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7711 }
0986b11b 7712 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7713unlock:
521f1a24 7714 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7715 mutex_unlock(&rt_constraints_mutex);
7716
7717 return err;
6f505b16
PZ
7718}
7719
25cc7da7 7720static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7721{
7722 u64 rt_runtime, rt_period;
7723
7724 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7725 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7726 if (rt_runtime_us < 0)
7727 rt_runtime = RUNTIME_INF;
7728
ab84d31e 7729 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7730}
7731
25cc7da7 7732static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7733{
7734 u64 rt_runtime_us;
7735
d0b27fa7 7736 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7737 return -1;
7738
d0b27fa7 7739 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7740 do_div(rt_runtime_us, NSEC_PER_USEC);
7741 return rt_runtime_us;
7742}
d0b27fa7 7743
25cc7da7 7744static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7745{
7746 u64 rt_runtime, rt_period;
7747
7748 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7749 rt_runtime = tg->rt_bandwidth.rt_runtime;
7750
ab84d31e 7751 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7752}
7753
25cc7da7 7754static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7755{
7756 u64 rt_period_us;
7757
7758 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7759 do_div(rt_period_us, NSEC_PER_USEC);
7760 return rt_period_us;
7761}
332ac17e 7762#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7763
332ac17e 7764#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7765static int sched_rt_global_constraints(void)
7766{
7767 int ret = 0;
7768
7769 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7770 read_lock(&tasklist_lock);
4653f803 7771 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7772 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7773 mutex_unlock(&rt_constraints_mutex);
7774
7775 return ret;
7776}
54e99124 7777
25cc7da7 7778static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7779{
7780 /* Don't accept realtime tasks when there is no way for them to run */
7781 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7782 return 0;
7783
7784 return 1;
7785}
7786
6d6bc0ad 7787#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7788static int sched_rt_global_constraints(void)
7789{
ac086bc2 7790 unsigned long flags;
332ac17e 7791 int i, ret = 0;
ec5d4989 7792
0986b11b 7793 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7794 for_each_possible_cpu(i) {
7795 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7796
0986b11b 7797 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7798 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7800 }
0986b11b 7801 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7802
332ac17e 7803 return ret;
d0b27fa7 7804}
6d6bc0ad 7805#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7806
a1963b81 7807static int sched_dl_global_validate(void)
332ac17e 7808{
1724813d
PZ
7809 u64 runtime = global_rt_runtime();
7810 u64 period = global_rt_period();
332ac17e 7811 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7812 struct dl_bw *dl_b;
1724813d 7813 int cpu, ret = 0;
49516342 7814 unsigned long flags;
332ac17e
DF
7815
7816 /*
7817 * Here we want to check the bandwidth not being set to some
7818 * value smaller than the currently allocated bandwidth in
7819 * any of the root_domains.
7820 *
7821 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7822 * cycling on root_domains... Discussion on different/better
7823 * solutions is welcome!
7824 */
1724813d 7825 for_each_possible_cpu(cpu) {
f10e00f4
KT
7826 rcu_read_lock_sched();
7827 dl_b = dl_bw_of(cpu);
332ac17e 7828
49516342 7829 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7830 if (new_bw < dl_b->total_bw)
7831 ret = -EBUSY;
49516342 7832 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7833
f10e00f4
KT
7834 rcu_read_unlock_sched();
7835
1724813d
PZ
7836 if (ret)
7837 break;
332ac17e
DF
7838 }
7839
1724813d 7840 return ret;
332ac17e
DF
7841}
7842
1724813d 7843static void sched_dl_do_global(void)
ce0dbbbb 7844{
1724813d 7845 u64 new_bw = -1;
f10e00f4 7846 struct dl_bw *dl_b;
1724813d 7847 int cpu;
49516342 7848 unsigned long flags;
ce0dbbbb 7849
1724813d
PZ
7850 def_dl_bandwidth.dl_period = global_rt_period();
7851 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7852
7853 if (global_rt_runtime() != RUNTIME_INF)
7854 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7855
7856 /*
7857 * FIXME: As above...
7858 */
7859 for_each_possible_cpu(cpu) {
f10e00f4
KT
7860 rcu_read_lock_sched();
7861 dl_b = dl_bw_of(cpu);
1724813d 7862
49516342 7863 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7864 dl_b->bw = new_bw;
49516342 7865 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7866
7867 rcu_read_unlock_sched();
ce0dbbbb 7868 }
1724813d
PZ
7869}
7870
7871static int sched_rt_global_validate(void)
7872{
7873 if (sysctl_sched_rt_period <= 0)
7874 return -EINVAL;
7875
e9e7cb38
JL
7876 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7877 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7878 return -EINVAL;
7879
7880 return 0;
7881}
7882
7883static void sched_rt_do_global(void)
7884{
7885 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7886 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7887}
7888
d0b27fa7 7889int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7890 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7891 loff_t *ppos)
7892{
d0b27fa7
PZ
7893 int old_period, old_runtime;
7894 static DEFINE_MUTEX(mutex);
1724813d 7895 int ret;
d0b27fa7
PZ
7896
7897 mutex_lock(&mutex);
7898 old_period = sysctl_sched_rt_period;
7899 old_runtime = sysctl_sched_rt_runtime;
7900
8d65af78 7901 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7902
7903 if (!ret && write) {
1724813d
PZ
7904 ret = sched_rt_global_validate();
7905 if (ret)
7906 goto undo;
7907
a1963b81 7908 ret = sched_dl_global_validate();
1724813d
PZ
7909 if (ret)
7910 goto undo;
7911
a1963b81 7912 ret = sched_rt_global_constraints();
1724813d
PZ
7913 if (ret)
7914 goto undo;
7915
7916 sched_rt_do_global();
7917 sched_dl_do_global();
7918 }
7919 if (0) {
7920undo:
7921 sysctl_sched_rt_period = old_period;
7922 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7923 }
7924 mutex_unlock(&mutex);
7925
7926 return ret;
7927}
68318b8e 7928
1724813d 7929int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7930 void __user *buffer, size_t *lenp,
7931 loff_t *ppos)
7932{
7933 int ret;
332ac17e 7934 static DEFINE_MUTEX(mutex);
332ac17e
DF
7935
7936 mutex_lock(&mutex);
332ac17e 7937 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7938 /* make sure that internally we keep jiffies */
7939 /* also, writing zero resets timeslice to default */
332ac17e 7940 if (!ret && write) {
1724813d
PZ
7941 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7942 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7943 }
7944 mutex_unlock(&mutex);
332ac17e
DF
7945 return ret;
7946}
7947
052f1dc7 7948#ifdef CONFIG_CGROUP_SCHED
68318b8e 7949
a7c6d554 7950static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7951{
a7c6d554 7952 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7953}
7954
eb95419b
TH
7955static struct cgroup_subsys_state *
7956cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7957{
eb95419b
TH
7958 struct task_group *parent = css_tg(parent_css);
7959 struct task_group *tg;
68318b8e 7960
eb95419b 7961 if (!parent) {
68318b8e 7962 /* This is early initialization for the top cgroup */
07e06b01 7963 return &root_task_group.css;
68318b8e
SV
7964 }
7965
ec7dc8ac 7966 tg = sched_create_group(parent);
68318b8e
SV
7967 if (IS_ERR(tg))
7968 return ERR_PTR(-ENOMEM);
7969
68318b8e
SV
7970 return &tg->css;
7971}
7972
eb95419b 7973static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7974{
eb95419b 7975 struct task_group *tg = css_tg(css);
5c9d535b 7976 struct task_group *parent = css_tg(css->parent);
ace783b9 7977
63876986
TH
7978 if (parent)
7979 sched_online_group(tg, parent);
ace783b9
LZ
7980 return 0;
7981}
7982
eb95419b 7983static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7984{
eb95419b 7985 struct task_group *tg = css_tg(css);
68318b8e
SV
7986
7987 sched_destroy_group(tg);
7988}
7989
eb95419b 7990static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7991{
eb95419b 7992 struct task_group *tg = css_tg(css);
ace783b9
LZ
7993
7994 sched_offline_group(tg);
7995}
7996
eeb61e53
KT
7997static void cpu_cgroup_fork(struct task_struct *task)
7998{
7999 sched_move_task(task);
8000}
8001
eb95419b 8002static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8003 struct cgroup_taskset *tset)
68318b8e 8004{
bb9d97b6
TH
8005 struct task_struct *task;
8006
924f0d9a 8007 cgroup_taskset_for_each(task, tset) {
b68aa230 8008#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8009 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8010 return -EINVAL;
b68aa230 8011#else
bb9d97b6
TH
8012 /* We don't support RT-tasks being in separate groups */
8013 if (task->sched_class != &fair_sched_class)
8014 return -EINVAL;
b68aa230 8015#endif
bb9d97b6 8016 }
be367d09
BB
8017 return 0;
8018}
68318b8e 8019
eb95419b 8020static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8021 struct cgroup_taskset *tset)
68318b8e 8022{
bb9d97b6
TH
8023 struct task_struct *task;
8024
924f0d9a 8025 cgroup_taskset_for_each(task, tset)
bb9d97b6 8026 sched_move_task(task);
68318b8e
SV
8027}
8028
eb95419b
TH
8029static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8030 struct cgroup_subsys_state *old_css,
8031 struct task_struct *task)
068c5cc5
PZ
8032{
8033 /*
8034 * cgroup_exit() is called in the copy_process() failure path.
8035 * Ignore this case since the task hasn't ran yet, this avoids
8036 * trying to poke a half freed task state from generic code.
8037 */
8038 if (!(task->flags & PF_EXITING))
8039 return;
8040
8041 sched_move_task(task);
8042}
8043
052f1dc7 8044#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8045static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8046 struct cftype *cftype, u64 shareval)
68318b8e 8047{
182446d0 8048 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8049}
8050
182446d0
TH
8051static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8052 struct cftype *cft)
68318b8e 8053{
182446d0 8054 struct task_group *tg = css_tg(css);
68318b8e 8055
c8b28116 8056 return (u64) scale_load_down(tg->shares);
68318b8e 8057}
ab84d31e
PT
8058
8059#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8060static DEFINE_MUTEX(cfs_constraints_mutex);
8061
ab84d31e
PT
8062const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8063const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8064
a790de99
PT
8065static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8066
ab84d31e
PT
8067static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8068{
56f570e5 8069 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8070 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8071
8072 if (tg == &root_task_group)
8073 return -EINVAL;
8074
8075 /*
8076 * Ensure we have at some amount of bandwidth every period. This is
8077 * to prevent reaching a state of large arrears when throttled via
8078 * entity_tick() resulting in prolonged exit starvation.
8079 */
8080 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8081 return -EINVAL;
8082
8083 /*
8084 * Likewise, bound things on the otherside by preventing insane quota
8085 * periods. This also allows us to normalize in computing quota
8086 * feasibility.
8087 */
8088 if (period > max_cfs_quota_period)
8089 return -EINVAL;
8090
0e59bdae
KT
8091 /*
8092 * Prevent race between setting of cfs_rq->runtime_enabled and
8093 * unthrottle_offline_cfs_rqs().
8094 */
8095 get_online_cpus();
a790de99
PT
8096 mutex_lock(&cfs_constraints_mutex);
8097 ret = __cfs_schedulable(tg, period, quota);
8098 if (ret)
8099 goto out_unlock;
8100
58088ad0 8101 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8102 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8103 /*
8104 * If we need to toggle cfs_bandwidth_used, off->on must occur
8105 * before making related changes, and on->off must occur afterwards
8106 */
8107 if (runtime_enabled && !runtime_was_enabled)
8108 cfs_bandwidth_usage_inc();
ab84d31e
PT
8109 raw_spin_lock_irq(&cfs_b->lock);
8110 cfs_b->period = ns_to_ktime(period);
8111 cfs_b->quota = quota;
58088ad0 8112
a9cf55b2 8113 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8114 /* restart the period timer (if active) to handle new period expiry */
8115 if (runtime_enabled && cfs_b->timer_active) {
8116 /* force a reprogram */
09dc4ab0 8117 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8118 }
ab84d31e
PT
8119 raw_spin_unlock_irq(&cfs_b->lock);
8120
0e59bdae 8121 for_each_online_cpu(i) {
ab84d31e 8122 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8123 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8124
8125 raw_spin_lock_irq(&rq->lock);
58088ad0 8126 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8127 cfs_rq->runtime_remaining = 0;
671fd9da 8128
029632fb 8129 if (cfs_rq->throttled)
671fd9da 8130 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8131 raw_spin_unlock_irq(&rq->lock);
8132 }
1ee14e6c
BS
8133 if (runtime_was_enabled && !runtime_enabled)
8134 cfs_bandwidth_usage_dec();
a790de99
PT
8135out_unlock:
8136 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8137 put_online_cpus();
ab84d31e 8138
a790de99 8139 return ret;
ab84d31e
PT
8140}
8141
8142int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8143{
8144 u64 quota, period;
8145
029632fb 8146 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8147 if (cfs_quota_us < 0)
8148 quota = RUNTIME_INF;
8149 else
8150 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8151
8152 return tg_set_cfs_bandwidth(tg, period, quota);
8153}
8154
8155long tg_get_cfs_quota(struct task_group *tg)
8156{
8157 u64 quota_us;
8158
029632fb 8159 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8160 return -1;
8161
029632fb 8162 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8163 do_div(quota_us, NSEC_PER_USEC);
8164
8165 return quota_us;
8166}
8167
8168int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8169{
8170 u64 quota, period;
8171
8172 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8173 quota = tg->cfs_bandwidth.quota;
ab84d31e 8174
ab84d31e
PT
8175 return tg_set_cfs_bandwidth(tg, period, quota);
8176}
8177
8178long tg_get_cfs_period(struct task_group *tg)
8179{
8180 u64 cfs_period_us;
8181
029632fb 8182 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8183 do_div(cfs_period_us, NSEC_PER_USEC);
8184
8185 return cfs_period_us;
8186}
8187
182446d0
TH
8188static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8189 struct cftype *cft)
ab84d31e 8190{
182446d0 8191 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8192}
8193
182446d0
TH
8194static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8195 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8196{
182446d0 8197 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8198}
8199
182446d0
TH
8200static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8201 struct cftype *cft)
ab84d31e 8202{
182446d0 8203 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8204}
8205
182446d0
TH
8206static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8207 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8208{
182446d0 8209 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8210}
8211
a790de99
PT
8212struct cfs_schedulable_data {
8213 struct task_group *tg;
8214 u64 period, quota;
8215};
8216
8217/*
8218 * normalize group quota/period to be quota/max_period
8219 * note: units are usecs
8220 */
8221static u64 normalize_cfs_quota(struct task_group *tg,
8222 struct cfs_schedulable_data *d)
8223{
8224 u64 quota, period;
8225
8226 if (tg == d->tg) {
8227 period = d->period;
8228 quota = d->quota;
8229 } else {
8230 period = tg_get_cfs_period(tg);
8231 quota = tg_get_cfs_quota(tg);
8232 }
8233
8234 /* note: these should typically be equivalent */
8235 if (quota == RUNTIME_INF || quota == -1)
8236 return RUNTIME_INF;
8237
8238 return to_ratio(period, quota);
8239}
8240
8241static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8242{
8243 struct cfs_schedulable_data *d = data;
029632fb 8244 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8245 s64 quota = 0, parent_quota = -1;
8246
8247 if (!tg->parent) {
8248 quota = RUNTIME_INF;
8249 } else {
029632fb 8250 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8251
8252 quota = normalize_cfs_quota(tg, d);
9c58c79a 8253 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8254
8255 /*
8256 * ensure max(child_quota) <= parent_quota, inherit when no
8257 * limit is set
8258 */
8259 if (quota == RUNTIME_INF)
8260 quota = parent_quota;
8261 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8262 return -EINVAL;
8263 }
9c58c79a 8264 cfs_b->hierarchical_quota = quota;
a790de99
PT
8265
8266 return 0;
8267}
8268
8269static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8270{
8277434e 8271 int ret;
a790de99
PT
8272 struct cfs_schedulable_data data = {
8273 .tg = tg,
8274 .period = period,
8275 .quota = quota,
8276 };
8277
8278 if (quota != RUNTIME_INF) {
8279 do_div(data.period, NSEC_PER_USEC);
8280 do_div(data.quota, NSEC_PER_USEC);
8281 }
8282
8277434e
PT
8283 rcu_read_lock();
8284 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8285 rcu_read_unlock();
8286
8287 return ret;
a790de99 8288}
e8da1b18 8289
2da8ca82 8290static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8291{
2da8ca82 8292 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8293 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8294
44ffc75b
TH
8295 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8296 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8297 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8298
8299 return 0;
8300}
ab84d31e 8301#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8302#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8303
052f1dc7 8304#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8305static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8306 struct cftype *cft, s64 val)
6f505b16 8307{
182446d0 8308 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8309}
8310
182446d0
TH
8311static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8312 struct cftype *cft)
6f505b16 8313{
182446d0 8314 return sched_group_rt_runtime(css_tg(css));
6f505b16 8315}
d0b27fa7 8316
182446d0
TH
8317static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8318 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8319{
182446d0 8320 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8321}
8322
182446d0
TH
8323static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8324 struct cftype *cft)
d0b27fa7 8325{
182446d0 8326 return sched_group_rt_period(css_tg(css));
d0b27fa7 8327}
6d6bc0ad 8328#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8329
fe5c7cc2 8330static struct cftype cpu_files[] = {
052f1dc7 8331#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8332 {
8333 .name = "shares",
f4c753b7
PM
8334 .read_u64 = cpu_shares_read_u64,
8335 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8336 },
052f1dc7 8337#endif
ab84d31e
PT
8338#ifdef CONFIG_CFS_BANDWIDTH
8339 {
8340 .name = "cfs_quota_us",
8341 .read_s64 = cpu_cfs_quota_read_s64,
8342 .write_s64 = cpu_cfs_quota_write_s64,
8343 },
8344 {
8345 .name = "cfs_period_us",
8346 .read_u64 = cpu_cfs_period_read_u64,
8347 .write_u64 = cpu_cfs_period_write_u64,
8348 },
e8da1b18
NR
8349 {
8350 .name = "stat",
2da8ca82 8351 .seq_show = cpu_stats_show,
e8da1b18 8352 },
ab84d31e 8353#endif
052f1dc7 8354#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8355 {
9f0c1e56 8356 .name = "rt_runtime_us",
06ecb27c
PM
8357 .read_s64 = cpu_rt_runtime_read,
8358 .write_s64 = cpu_rt_runtime_write,
6f505b16 8359 },
d0b27fa7
PZ
8360 {
8361 .name = "rt_period_us",
f4c753b7
PM
8362 .read_u64 = cpu_rt_period_read_uint,
8363 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8364 },
052f1dc7 8365#endif
4baf6e33 8366 { } /* terminate */
68318b8e
SV
8367};
8368
073219e9 8369struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8370 .css_alloc = cpu_cgroup_css_alloc,
8371 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8372 .css_online = cpu_cgroup_css_online,
8373 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8374 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8375 .can_attach = cpu_cgroup_can_attach,
8376 .attach = cpu_cgroup_attach,
068c5cc5 8377 .exit = cpu_cgroup_exit,
5577964e 8378 .legacy_cftypes = cpu_files,
68318b8e
SV
8379 .early_init = 1,
8380};
8381
052f1dc7 8382#endif /* CONFIG_CGROUP_SCHED */
d842de87 8383
b637a328
PM
8384void dump_cpu_task(int cpu)
8385{
8386 pr_info("Task dump for CPU %d:\n", cpu);
8387 sched_show_task(cpu_curr(cpu));
8388}