nohz: Fix old dynticks idle Kconfig backward compatibility
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
16a80163 517#define tsk_is_polling(t) 0
c24d20db
IM
518#endif
519
029632fb 520void resched_task(struct task_struct *p)
c24d20db
IM
521{
522 int cpu;
523
05fa785c 524 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 525
5ed0cec0 526 if (test_tsk_need_resched(p))
c24d20db
IM
527 return;
528
5ed0cec0 529 set_tsk_need_resched(p);
c24d20db
IM
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539}
540
029632fb 541void resched_cpu(int cpu)
c24d20db
IM
542{
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
05fa785c 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
547 return;
548 resched_task(cpu_curr(cpu));
05fa785c 549 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 550}
06d8308c 551
3451d024 552#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
057f3fad 567 rcu_read_lock();
83cd4fe2 568 for_each_domain(cpu, sd) {
057f3fad
PZ
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
83cd4fe2 575 }
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
1c20091e 590static void wake_up_idle_cpu(int cpu)
06d8308c
TG
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
45bf76df 606
45bf76df 607 /*
06d8308c
TG
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
45bf76df 611 */
5ed0cec0 612 set_tsk_need_resched(rq->idle);
45bf76df 613
06d8308c
TG
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
45bf76df
IM
618}
619
1c20091e
FW
620static bool wake_up_extended_nohz_cpu(int cpu)
621{
622 if (tick_nohz_extended_cpu(cpu)) {
623 if (cpu != smp_processor_id() ||
624 tick_nohz_tick_stopped())
625 smp_send_reschedule(cpu);
626 return true;
627 }
628
629 return false;
630}
631
632void wake_up_nohz_cpu(int cpu)
633{
634 if (!wake_up_extended_nohz_cpu(cpu))
635 wake_up_idle_cpu(cpu);
636}
637
ca38062e 638static inline bool got_nohz_idle_kick(void)
45bf76df 639{
1c792db7
SS
640 int cpu = smp_processor_id();
641 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
642}
643
3451d024 644#else /* CONFIG_NO_HZ_COMMON */
45bf76df 645
ca38062e 646static inline bool got_nohz_idle_kick(void)
2069dd75 647{
ca38062e 648 return false;
2069dd75
PZ
649}
650
3451d024 651#endif /* CONFIG_NO_HZ_COMMON */
d842de87 652
029632fb 653void sched_avg_update(struct rq *rq)
18d95a28 654{
e9e9250b
PZ
655 s64 period = sched_avg_period();
656
657 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
658 /*
659 * Inline assembly required to prevent the compiler
660 * optimising this loop into a divmod call.
661 * See __iter_div_u64_rem() for another example of this.
662 */
663 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
664 rq->age_stamp += period;
665 rq->rt_avg /= 2;
666 }
18d95a28
PZ
667}
668
6d6bc0ad 669#else /* !CONFIG_SMP */
029632fb 670void resched_task(struct task_struct *p)
18d95a28 671{
05fa785c 672 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 673 set_tsk_need_resched(p);
18d95a28 674}
6d6bc0ad 675#endif /* CONFIG_SMP */
18d95a28 676
a790de99
PT
677#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
678 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 679/*
8277434e
PT
680 * Iterate task_group tree rooted at *from, calling @down when first entering a
681 * node and @up when leaving it for the final time.
682 *
683 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 684 */
029632fb 685int walk_tg_tree_from(struct task_group *from,
8277434e 686 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
687{
688 struct task_group *parent, *child;
eb755805 689 int ret;
c09595f6 690
8277434e
PT
691 parent = from;
692
c09595f6 693down:
eb755805
PZ
694 ret = (*down)(parent, data);
695 if (ret)
8277434e 696 goto out;
c09595f6
PZ
697 list_for_each_entry_rcu(child, &parent->children, siblings) {
698 parent = child;
699 goto down;
700
701up:
702 continue;
703 }
eb755805 704 ret = (*up)(parent, data);
8277434e
PT
705 if (ret || parent == from)
706 goto out;
c09595f6
PZ
707
708 child = parent;
709 parent = parent->parent;
710 if (parent)
711 goto up;
8277434e 712out:
eb755805 713 return ret;
c09595f6
PZ
714}
715
029632fb 716int tg_nop(struct task_group *tg, void *data)
eb755805 717{
e2b245f8 718 return 0;
eb755805 719}
18d95a28
PZ
720#endif
721
45bf76df
IM
722static void set_load_weight(struct task_struct *p)
723{
f05998d4
NR
724 int prio = p->static_prio - MAX_RT_PRIO;
725 struct load_weight *load = &p->se.load;
726
dd41f596
IM
727 /*
728 * SCHED_IDLE tasks get minimal weight:
729 */
730 if (p->policy == SCHED_IDLE) {
c8b28116 731 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 732 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
733 return;
734 }
71f8bd46 735
c8b28116 736 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 737 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
738}
739
371fd7e7 740static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 741{
a64692a3 742 update_rq_clock(rq);
dd41f596 743 sched_info_queued(p);
371fd7e7 744 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
745}
746
371fd7e7 747static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 748{
a64692a3 749 update_rq_clock(rq);
46ac22ba 750 sched_info_dequeued(p);
371fd7e7 751 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
752}
753
029632fb 754void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
755{
756 if (task_contributes_to_load(p))
757 rq->nr_uninterruptible--;
758
371fd7e7 759 enqueue_task(rq, p, flags);
1e3c88bd
PZ
760}
761
029632fb 762void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
763{
764 if (task_contributes_to_load(p))
765 rq->nr_uninterruptible++;
766
371fd7e7 767 dequeue_task(rq, p, flags);
1e3c88bd
PZ
768}
769
fe44d621 770static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 771{
095c0aa8
GC
772/*
773 * In theory, the compile should just see 0 here, and optimize out the call
774 * to sched_rt_avg_update. But I don't trust it...
775 */
776#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
777 s64 steal = 0, irq_delta = 0;
778#endif
779#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 780 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
781
782 /*
783 * Since irq_time is only updated on {soft,}irq_exit, we might run into
784 * this case when a previous update_rq_clock() happened inside a
785 * {soft,}irq region.
786 *
787 * When this happens, we stop ->clock_task and only update the
788 * prev_irq_time stamp to account for the part that fit, so that a next
789 * update will consume the rest. This ensures ->clock_task is
790 * monotonic.
791 *
792 * It does however cause some slight miss-attribution of {soft,}irq
793 * time, a more accurate solution would be to update the irq_time using
794 * the current rq->clock timestamp, except that would require using
795 * atomic ops.
796 */
797 if (irq_delta > delta)
798 irq_delta = delta;
799
800 rq->prev_irq_time += irq_delta;
801 delta -= irq_delta;
095c0aa8
GC
802#endif
803#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 804 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
805 u64 st;
806
807 steal = paravirt_steal_clock(cpu_of(rq));
808 steal -= rq->prev_steal_time_rq;
809
810 if (unlikely(steal > delta))
811 steal = delta;
812
813 st = steal_ticks(steal);
814 steal = st * TICK_NSEC;
815
816 rq->prev_steal_time_rq += steal;
817
818 delta -= steal;
819 }
820#endif
821
fe44d621
PZ
822 rq->clock_task += delta;
823
095c0aa8
GC
824#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
825 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
826 sched_rt_avg_update(rq, irq_delta + steal);
827#endif
aa483808
VP
828}
829
34f971f6
PZ
830void sched_set_stop_task(int cpu, struct task_struct *stop)
831{
832 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
833 struct task_struct *old_stop = cpu_rq(cpu)->stop;
834
835 if (stop) {
836 /*
837 * Make it appear like a SCHED_FIFO task, its something
838 * userspace knows about and won't get confused about.
839 *
840 * Also, it will make PI more or less work without too
841 * much confusion -- but then, stop work should not
842 * rely on PI working anyway.
843 */
844 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
845
846 stop->sched_class = &stop_sched_class;
847 }
848
849 cpu_rq(cpu)->stop = stop;
850
851 if (old_stop) {
852 /*
853 * Reset it back to a normal scheduling class so that
854 * it can die in pieces.
855 */
856 old_stop->sched_class = &rt_sched_class;
857 }
858}
859
14531189 860/*
dd41f596 861 * __normal_prio - return the priority that is based on the static prio
14531189 862 */
14531189
IM
863static inline int __normal_prio(struct task_struct *p)
864{
dd41f596 865 return p->static_prio;
14531189
IM
866}
867
b29739f9
IM
868/*
869 * Calculate the expected normal priority: i.e. priority
870 * without taking RT-inheritance into account. Might be
871 * boosted by interactivity modifiers. Changes upon fork,
872 * setprio syscalls, and whenever the interactivity
873 * estimator recalculates.
874 */
36c8b586 875static inline int normal_prio(struct task_struct *p)
b29739f9
IM
876{
877 int prio;
878
e05606d3 879 if (task_has_rt_policy(p))
b29739f9
IM
880 prio = MAX_RT_PRIO-1 - p->rt_priority;
881 else
882 prio = __normal_prio(p);
883 return prio;
884}
885
886/*
887 * Calculate the current priority, i.e. the priority
888 * taken into account by the scheduler. This value might
889 * be boosted by RT tasks, or might be boosted by
890 * interactivity modifiers. Will be RT if the task got
891 * RT-boosted. If not then it returns p->normal_prio.
892 */
36c8b586 893static int effective_prio(struct task_struct *p)
b29739f9
IM
894{
895 p->normal_prio = normal_prio(p);
896 /*
897 * If we are RT tasks or we were boosted to RT priority,
898 * keep the priority unchanged. Otherwise, update priority
899 * to the normal priority:
900 */
901 if (!rt_prio(p->prio))
902 return p->normal_prio;
903 return p->prio;
904}
905
1da177e4
LT
906/**
907 * task_curr - is this task currently executing on a CPU?
908 * @p: the task in question.
909 */
36c8b586 910inline int task_curr(const struct task_struct *p)
1da177e4
LT
911{
912 return cpu_curr(task_cpu(p)) == p;
913}
914
cb469845
SR
915static inline void check_class_changed(struct rq *rq, struct task_struct *p,
916 const struct sched_class *prev_class,
da7a735e 917 int oldprio)
cb469845
SR
918{
919 if (prev_class != p->sched_class) {
920 if (prev_class->switched_from)
da7a735e
PZ
921 prev_class->switched_from(rq, p);
922 p->sched_class->switched_to(rq, p);
923 } else if (oldprio != p->prio)
924 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
925}
926
029632fb 927void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
928{
929 const struct sched_class *class;
930
931 if (p->sched_class == rq->curr->sched_class) {
932 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
933 } else {
934 for_each_class(class) {
935 if (class == rq->curr->sched_class)
936 break;
937 if (class == p->sched_class) {
938 resched_task(rq->curr);
939 break;
940 }
941 }
942 }
943
944 /*
945 * A queue event has occurred, and we're going to schedule. In
946 * this case, we can save a useless back to back clock update.
947 */
fd2f4419 948 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
949 rq->skip_clock_update = 1;
950}
951
582b336e
MT
952static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
953
954void register_task_migration_notifier(struct notifier_block *n)
955{
956 atomic_notifier_chain_register(&task_migration_notifier, n);
957}
958
1da177e4 959#ifdef CONFIG_SMP
dd41f596 960void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 961{
e2912009
PZ
962#ifdef CONFIG_SCHED_DEBUG
963 /*
964 * We should never call set_task_cpu() on a blocked task,
965 * ttwu() will sort out the placement.
966 */
077614ee
PZ
967 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
968 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
969
970#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
971 /*
972 * The caller should hold either p->pi_lock or rq->lock, when changing
973 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
974 *
975 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 976 * see task_group().
6c6c54e1
PZ
977 *
978 * Furthermore, all task_rq users should acquire both locks, see
979 * task_rq_lock().
980 */
0122ec5b
PZ
981 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
982 lockdep_is_held(&task_rq(p)->lock)));
983#endif
e2912009
PZ
984#endif
985
de1d7286 986 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 987
0c69774e 988 if (task_cpu(p) != new_cpu) {
582b336e
MT
989 struct task_migration_notifier tmn;
990
0a74bef8
PT
991 if (p->sched_class->migrate_task_rq)
992 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 993 p->se.nr_migrations++;
a8b0ca17 994 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
995
996 tmn.task = p;
997 tmn.from_cpu = task_cpu(p);
998 tmn.to_cpu = new_cpu;
999
1000 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 1001 }
dd41f596
IM
1002
1003 __set_task_cpu(p, new_cpu);
c65cc870
IM
1004}
1005
969c7921 1006struct migration_arg {
36c8b586 1007 struct task_struct *task;
1da177e4 1008 int dest_cpu;
70b97a7f 1009};
1da177e4 1010
969c7921
TH
1011static int migration_cpu_stop(void *data);
1012
1da177e4
LT
1013/*
1014 * wait_task_inactive - wait for a thread to unschedule.
1015 *
85ba2d86
RM
1016 * If @match_state is nonzero, it's the @p->state value just checked and
1017 * not expected to change. If it changes, i.e. @p might have woken up,
1018 * then return zero. When we succeed in waiting for @p to be off its CPU,
1019 * we return a positive number (its total switch count). If a second call
1020 * a short while later returns the same number, the caller can be sure that
1021 * @p has remained unscheduled the whole time.
1022 *
1da177e4
LT
1023 * The caller must ensure that the task *will* unschedule sometime soon,
1024 * else this function might spin for a *long* time. This function can't
1025 * be called with interrupts off, or it may introduce deadlock with
1026 * smp_call_function() if an IPI is sent by the same process we are
1027 * waiting to become inactive.
1028 */
85ba2d86 1029unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1030{
1031 unsigned long flags;
dd41f596 1032 int running, on_rq;
85ba2d86 1033 unsigned long ncsw;
70b97a7f 1034 struct rq *rq;
1da177e4 1035
3a5c359a
AK
1036 for (;;) {
1037 /*
1038 * We do the initial early heuristics without holding
1039 * any task-queue locks at all. We'll only try to get
1040 * the runqueue lock when things look like they will
1041 * work out!
1042 */
1043 rq = task_rq(p);
fa490cfd 1044
3a5c359a
AK
1045 /*
1046 * If the task is actively running on another CPU
1047 * still, just relax and busy-wait without holding
1048 * any locks.
1049 *
1050 * NOTE! Since we don't hold any locks, it's not
1051 * even sure that "rq" stays as the right runqueue!
1052 * But we don't care, since "task_running()" will
1053 * return false if the runqueue has changed and p
1054 * is actually now running somewhere else!
1055 */
85ba2d86
RM
1056 while (task_running(rq, p)) {
1057 if (match_state && unlikely(p->state != match_state))
1058 return 0;
3a5c359a 1059 cpu_relax();
85ba2d86 1060 }
fa490cfd 1061
3a5c359a
AK
1062 /*
1063 * Ok, time to look more closely! We need the rq
1064 * lock now, to be *sure*. If we're wrong, we'll
1065 * just go back and repeat.
1066 */
1067 rq = task_rq_lock(p, &flags);
27a9da65 1068 trace_sched_wait_task(p);
3a5c359a 1069 running = task_running(rq, p);
fd2f4419 1070 on_rq = p->on_rq;
85ba2d86 1071 ncsw = 0;
f31e11d8 1072 if (!match_state || p->state == match_state)
93dcf55f 1073 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1074 task_rq_unlock(rq, p, &flags);
fa490cfd 1075
85ba2d86
RM
1076 /*
1077 * If it changed from the expected state, bail out now.
1078 */
1079 if (unlikely(!ncsw))
1080 break;
1081
3a5c359a
AK
1082 /*
1083 * Was it really running after all now that we
1084 * checked with the proper locks actually held?
1085 *
1086 * Oops. Go back and try again..
1087 */
1088 if (unlikely(running)) {
1089 cpu_relax();
1090 continue;
1091 }
fa490cfd 1092
3a5c359a
AK
1093 /*
1094 * It's not enough that it's not actively running,
1095 * it must be off the runqueue _entirely_, and not
1096 * preempted!
1097 *
80dd99b3 1098 * So if it was still runnable (but just not actively
3a5c359a
AK
1099 * running right now), it's preempted, and we should
1100 * yield - it could be a while.
1101 */
1102 if (unlikely(on_rq)) {
8eb90c30
TG
1103 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1104
1105 set_current_state(TASK_UNINTERRUPTIBLE);
1106 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1107 continue;
1108 }
fa490cfd 1109
3a5c359a
AK
1110 /*
1111 * Ahh, all good. It wasn't running, and it wasn't
1112 * runnable, which means that it will never become
1113 * running in the future either. We're all done!
1114 */
1115 break;
1116 }
85ba2d86
RM
1117
1118 return ncsw;
1da177e4
LT
1119}
1120
1121/***
1122 * kick_process - kick a running thread to enter/exit the kernel
1123 * @p: the to-be-kicked thread
1124 *
1125 * Cause a process which is running on another CPU to enter
1126 * kernel-mode, without any delay. (to get signals handled.)
1127 *
25985edc 1128 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1129 * because all it wants to ensure is that the remote task enters
1130 * the kernel. If the IPI races and the task has been migrated
1131 * to another CPU then no harm is done and the purpose has been
1132 * achieved as well.
1133 */
36c8b586 1134void kick_process(struct task_struct *p)
1da177e4
LT
1135{
1136 int cpu;
1137
1138 preempt_disable();
1139 cpu = task_cpu(p);
1140 if ((cpu != smp_processor_id()) && task_curr(p))
1141 smp_send_reschedule(cpu);
1142 preempt_enable();
1143}
b43e3521 1144EXPORT_SYMBOL_GPL(kick_process);
476d139c 1145#endif /* CONFIG_SMP */
1da177e4 1146
970b13ba 1147#ifdef CONFIG_SMP
30da688e 1148/*
013fdb80 1149 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1150 */
5da9a0fb
PZ
1151static int select_fallback_rq(int cpu, struct task_struct *p)
1152{
aa00d89c
TC
1153 int nid = cpu_to_node(cpu);
1154 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1155 enum { cpuset, possible, fail } state = cpuset;
1156 int dest_cpu;
5da9a0fb 1157
aa00d89c
TC
1158 /*
1159 * If the node that the cpu is on has been offlined, cpu_to_node()
1160 * will return -1. There is no cpu on the node, and we should
1161 * select the cpu on the other node.
1162 */
1163 if (nid != -1) {
1164 nodemask = cpumask_of_node(nid);
1165
1166 /* Look for allowed, online CPU in same node. */
1167 for_each_cpu(dest_cpu, nodemask) {
1168 if (!cpu_online(dest_cpu))
1169 continue;
1170 if (!cpu_active(dest_cpu))
1171 continue;
1172 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1173 return dest_cpu;
1174 }
2baab4e9 1175 }
5da9a0fb 1176
2baab4e9
PZ
1177 for (;;) {
1178 /* Any allowed, online CPU? */
e3831edd 1179 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1180 if (!cpu_online(dest_cpu))
1181 continue;
1182 if (!cpu_active(dest_cpu))
1183 continue;
1184 goto out;
1185 }
5da9a0fb 1186
2baab4e9
PZ
1187 switch (state) {
1188 case cpuset:
1189 /* No more Mr. Nice Guy. */
1190 cpuset_cpus_allowed_fallback(p);
1191 state = possible;
1192 break;
1193
1194 case possible:
1195 do_set_cpus_allowed(p, cpu_possible_mask);
1196 state = fail;
1197 break;
1198
1199 case fail:
1200 BUG();
1201 break;
1202 }
1203 }
1204
1205out:
1206 if (state != cpuset) {
1207 /*
1208 * Don't tell them about moving exiting tasks or
1209 * kernel threads (both mm NULL), since they never
1210 * leave kernel.
1211 */
1212 if (p->mm && printk_ratelimit()) {
1213 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1214 task_pid_nr(p), p->comm, cpu);
1215 }
5da9a0fb
PZ
1216 }
1217
1218 return dest_cpu;
1219}
1220
e2912009 1221/*
013fdb80 1222 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1223 */
970b13ba 1224static inline
7608dec2 1225int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1226{
7608dec2 1227 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1228
1229 /*
1230 * In order not to call set_task_cpu() on a blocking task we need
1231 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1232 * cpu.
1233 *
1234 * Since this is common to all placement strategies, this lives here.
1235 *
1236 * [ this allows ->select_task() to simply return task_cpu(p) and
1237 * not worry about this generic constraint ]
1238 */
fa17b507 1239 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1240 !cpu_online(cpu)))
5da9a0fb 1241 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1242
1243 return cpu;
970b13ba 1244}
09a40af5
MG
1245
1246static void update_avg(u64 *avg, u64 sample)
1247{
1248 s64 diff = sample - *avg;
1249 *avg += diff >> 3;
1250}
970b13ba
PZ
1251#endif
1252
d7c01d27 1253static void
b84cb5df 1254ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1255{
d7c01d27 1256#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1257 struct rq *rq = this_rq();
1258
d7c01d27
PZ
1259#ifdef CONFIG_SMP
1260 int this_cpu = smp_processor_id();
1261
1262 if (cpu == this_cpu) {
1263 schedstat_inc(rq, ttwu_local);
1264 schedstat_inc(p, se.statistics.nr_wakeups_local);
1265 } else {
1266 struct sched_domain *sd;
1267
1268 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1269 rcu_read_lock();
d7c01d27
PZ
1270 for_each_domain(this_cpu, sd) {
1271 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1272 schedstat_inc(sd, ttwu_wake_remote);
1273 break;
1274 }
1275 }
057f3fad 1276 rcu_read_unlock();
d7c01d27 1277 }
f339b9dc
PZ
1278
1279 if (wake_flags & WF_MIGRATED)
1280 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1281
d7c01d27
PZ
1282#endif /* CONFIG_SMP */
1283
1284 schedstat_inc(rq, ttwu_count);
9ed3811a 1285 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1286
1287 if (wake_flags & WF_SYNC)
9ed3811a 1288 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1289
d7c01d27
PZ
1290#endif /* CONFIG_SCHEDSTATS */
1291}
1292
1293static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1294{
9ed3811a 1295 activate_task(rq, p, en_flags);
fd2f4419 1296 p->on_rq = 1;
c2f7115e
PZ
1297
1298 /* if a worker is waking up, notify workqueue */
1299 if (p->flags & PF_WQ_WORKER)
1300 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1301}
1302
23f41eeb
PZ
1303/*
1304 * Mark the task runnable and perform wakeup-preemption.
1305 */
89363381 1306static void
23f41eeb 1307ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1308{
9ed3811a 1309 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1310 trace_sched_wakeup(p, true);
9ed3811a
TH
1311
1312 p->state = TASK_RUNNING;
1313#ifdef CONFIG_SMP
1314 if (p->sched_class->task_woken)
1315 p->sched_class->task_woken(rq, p);
1316
e69c6341 1317 if (rq->idle_stamp) {
9ed3811a
TH
1318 u64 delta = rq->clock - rq->idle_stamp;
1319 u64 max = 2*sysctl_sched_migration_cost;
1320
1321 if (delta > max)
1322 rq->avg_idle = max;
1323 else
1324 update_avg(&rq->avg_idle, delta);
1325 rq->idle_stamp = 0;
1326 }
1327#endif
1328}
1329
c05fbafb
PZ
1330static void
1331ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1332{
1333#ifdef CONFIG_SMP
1334 if (p->sched_contributes_to_load)
1335 rq->nr_uninterruptible--;
1336#endif
1337
1338 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1339 ttwu_do_wakeup(rq, p, wake_flags);
1340}
1341
1342/*
1343 * Called in case the task @p isn't fully descheduled from its runqueue,
1344 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1345 * since all we need to do is flip p->state to TASK_RUNNING, since
1346 * the task is still ->on_rq.
1347 */
1348static int ttwu_remote(struct task_struct *p, int wake_flags)
1349{
1350 struct rq *rq;
1351 int ret = 0;
1352
1353 rq = __task_rq_lock(p);
1354 if (p->on_rq) {
1355 ttwu_do_wakeup(rq, p, wake_flags);
1356 ret = 1;
1357 }
1358 __task_rq_unlock(rq);
1359
1360 return ret;
1361}
1362
317f3941 1363#ifdef CONFIG_SMP
fa14ff4a 1364static void sched_ttwu_pending(void)
317f3941
PZ
1365{
1366 struct rq *rq = this_rq();
fa14ff4a
PZ
1367 struct llist_node *llist = llist_del_all(&rq->wake_list);
1368 struct task_struct *p;
317f3941
PZ
1369
1370 raw_spin_lock(&rq->lock);
1371
fa14ff4a
PZ
1372 while (llist) {
1373 p = llist_entry(llist, struct task_struct, wake_entry);
1374 llist = llist_next(llist);
317f3941
PZ
1375 ttwu_do_activate(rq, p, 0);
1376 }
1377
1378 raw_spin_unlock(&rq->lock);
1379}
1380
1381void scheduler_ipi(void)
1382{
ca38062e 1383 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1384 return;
1385
1386 /*
1387 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1388 * traditionally all their work was done from the interrupt return
1389 * path. Now that we actually do some work, we need to make sure
1390 * we do call them.
1391 *
1392 * Some archs already do call them, luckily irq_enter/exit nest
1393 * properly.
1394 *
1395 * Arguably we should visit all archs and update all handlers,
1396 * however a fair share of IPIs are still resched only so this would
1397 * somewhat pessimize the simple resched case.
1398 */
1399 irq_enter();
fa14ff4a 1400 sched_ttwu_pending();
ca38062e
SS
1401
1402 /*
1403 * Check if someone kicked us for doing the nohz idle load balance.
1404 */
6eb57e0d
SS
1405 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1406 this_rq()->idle_balance = 1;
ca38062e 1407 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1408 }
c5d753a5 1409 irq_exit();
317f3941
PZ
1410}
1411
1412static void ttwu_queue_remote(struct task_struct *p, int cpu)
1413{
fa14ff4a 1414 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1415 smp_send_reschedule(cpu);
1416}
d6aa8f85 1417
39be3501 1418bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1419{
1420 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1421}
d6aa8f85 1422#endif /* CONFIG_SMP */
317f3941 1423
c05fbafb
PZ
1424static void ttwu_queue(struct task_struct *p, int cpu)
1425{
1426 struct rq *rq = cpu_rq(cpu);
1427
17d9f311 1428#if defined(CONFIG_SMP)
39be3501 1429 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1430 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1431 ttwu_queue_remote(p, cpu);
1432 return;
1433 }
1434#endif
1435
c05fbafb
PZ
1436 raw_spin_lock(&rq->lock);
1437 ttwu_do_activate(rq, p, 0);
1438 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1439}
1440
1441/**
1da177e4 1442 * try_to_wake_up - wake up a thread
9ed3811a 1443 * @p: the thread to be awakened
1da177e4 1444 * @state: the mask of task states that can be woken
9ed3811a 1445 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1446 *
1447 * Put it on the run-queue if it's not already there. The "current"
1448 * thread is always on the run-queue (except when the actual
1449 * re-schedule is in progress), and as such you're allowed to do
1450 * the simpler "current->state = TASK_RUNNING" to mark yourself
1451 * runnable without the overhead of this.
1452 *
9ed3811a
TH
1453 * Returns %true if @p was woken up, %false if it was already running
1454 * or @state didn't match @p's state.
1da177e4 1455 */
e4a52bcb
PZ
1456static int
1457try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1458{
1da177e4 1459 unsigned long flags;
c05fbafb 1460 int cpu, success = 0;
2398f2c6 1461
04e2f174 1462 smp_wmb();
013fdb80 1463 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1464 if (!(p->state & state))
1da177e4
LT
1465 goto out;
1466
c05fbafb 1467 success = 1; /* we're going to change ->state */
1da177e4 1468 cpu = task_cpu(p);
1da177e4 1469
c05fbafb
PZ
1470 if (p->on_rq && ttwu_remote(p, wake_flags))
1471 goto stat;
1da177e4 1472
1da177e4 1473#ifdef CONFIG_SMP
e9c84311 1474 /*
c05fbafb
PZ
1475 * If the owning (remote) cpu is still in the middle of schedule() with
1476 * this task as prev, wait until its done referencing the task.
e9c84311 1477 */
f3e94786 1478 while (p->on_cpu)
e4a52bcb 1479 cpu_relax();
0970d299 1480 /*
e4a52bcb 1481 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1482 */
e4a52bcb 1483 smp_rmb();
1da177e4 1484
a8e4f2ea 1485 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1486 p->state = TASK_WAKING;
e7693a36 1487
e4a52bcb 1488 if (p->sched_class->task_waking)
74f8e4b2 1489 p->sched_class->task_waking(p);
efbbd05a 1490
7608dec2 1491 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1492 if (task_cpu(p) != cpu) {
1493 wake_flags |= WF_MIGRATED;
e4a52bcb 1494 set_task_cpu(p, cpu);
f339b9dc 1495 }
1da177e4 1496#endif /* CONFIG_SMP */
1da177e4 1497
c05fbafb
PZ
1498 ttwu_queue(p, cpu);
1499stat:
b84cb5df 1500 ttwu_stat(p, cpu, wake_flags);
1da177e4 1501out:
013fdb80 1502 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1503
1504 return success;
1505}
1506
21aa9af0
TH
1507/**
1508 * try_to_wake_up_local - try to wake up a local task with rq lock held
1509 * @p: the thread to be awakened
1510 *
2acca55e 1511 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1512 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1513 * the current task.
21aa9af0
TH
1514 */
1515static void try_to_wake_up_local(struct task_struct *p)
1516{
1517 struct rq *rq = task_rq(p);
21aa9af0
TH
1518
1519 BUG_ON(rq != this_rq());
1520 BUG_ON(p == current);
1521 lockdep_assert_held(&rq->lock);
1522
2acca55e
PZ
1523 if (!raw_spin_trylock(&p->pi_lock)) {
1524 raw_spin_unlock(&rq->lock);
1525 raw_spin_lock(&p->pi_lock);
1526 raw_spin_lock(&rq->lock);
1527 }
1528
21aa9af0 1529 if (!(p->state & TASK_NORMAL))
2acca55e 1530 goto out;
21aa9af0 1531
fd2f4419 1532 if (!p->on_rq)
d7c01d27
PZ
1533 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1534
23f41eeb 1535 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1536 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1537out:
1538 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1539}
1540
50fa610a
DH
1541/**
1542 * wake_up_process - Wake up a specific process
1543 * @p: The process to be woken up.
1544 *
1545 * Attempt to wake up the nominated process and move it to the set of runnable
1546 * processes. Returns 1 if the process was woken up, 0 if it was already
1547 * running.
1548 *
1549 * It may be assumed that this function implies a write memory barrier before
1550 * changing the task state if and only if any tasks are woken up.
1551 */
7ad5b3a5 1552int wake_up_process(struct task_struct *p)
1da177e4 1553{
9067ac85
ON
1554 WARN_ON(task_is_stopped_or_traced(p));
1555 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1556}
1da177e4
LT
1557EXPORT_SYMBOL(wake_up_process);
1558
7ad5b3a5 1559int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1560{
1561 return try_to_wake_up(p, state, 0);
1562}
1563
1da177e4
LT
1564/*
1565 * Perform scheduler related setup for a newly forked process p.
1566 * p is forked by current.
dd41f596
IM
1567 *
1568 * __sched_fork() is basic setup used by init_idle() too:
1569 */
1570static void __sched_fork(struct task_struct *p)
1571{
fd2f4419
PZ
1572 p->on_rq = 0;
1573
1574 p->se.on_rq = 0;
dd41f596
IM
1575 p->se.exec_start = 0;
1576 p->se.sum_exec_runtime = 0;
f6cf891c 1577 p->se.prev_sum_exec_runtime = 0;
6c594c21 1578 p->se.nr_migrations = 0;
da7a735e 1579 p->se.vruntime = 0;
fd2f4419 1580 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1581
f4e26b12
PT
1582/*
1583 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1584 * removed when useful for applications beyond shares distribution (e.g.
1585 * load-balance).
1586 */
1587#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1588 p->se.avg.runnable_avg_period = 0;
1589 p->se.avg.runnable_avg_sum = 0;
1590#endif
6cfb0d5d 1591#ifdef CONFIG_SCHEDSTATS
41acab88 1592 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1593#endif
476d139c 1594
fa717060 1595 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1596
e107be36
AK
1597#ifdef CONFIG_PREEMPT_NOTIFIERS
1598 INIT_HLIST_HEAD(&p->preempt_notifiers);
1599#endif
cbee9f88
PZ
1600
1601#ifdef CONFIG_NUMA_BALANCING
1602 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1603 p->mm->numa_next_scan = jiffies;
b8593bfd 1604 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1605 p->mm->numa_scan_seq = 0;
1606 }
1607
1608 p->node_stamp = 0ULL;
1609 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1610 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1611 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1612 p->numa_work.next = &p->numa_work;
1613#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1614}
1615
1a687c2e 1616#ifdef CONFIG_NUMA_BALANCING
3105b86a 1617#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1618void set_numabalancing_state(bool enabled)
1619{
1620 if (enabled)
1621 sched_feat_set("NUMA");
1622 else
1623 sched_feat_set("NO_NUMA");
1624}
3105b86a
MG
1625#else
1626__read_mostly bool numabalancing_enabled;
1627
1628void set_numabalancing_state(bool enabled)
1629{
1630 numabalancing_enabled = enabled;
dd41f596 1631}
3105b86a 1632#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1633#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1634
1635/*
1636 * fork()/clone()-time setup:
1637 */
3e51e3ed 1638void sched_fork(struct task_struct *p)
dd41f596 1639{
0122ec5b 1640 unsigned long flags;
dd41f596
IM
1641 int cpu = get_cpu();
1642
1643 __sched_fork(p);
06b83b5f 1644 /*
0017d735 1645 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1646 * nobody will actually run it, and a signal or other external
1647 * event cannot wake it up and insert it on the runqueue either.
1648 */
0017d735 1649 p->state = TASK_RUNNING;
dd41f596 1650
c350a04e
MG
1651 /*
1652 * Make sure we do not leak PI boosting priority to the child.
1653 */
1654 p->prio = current->normal_prio;
1655
b9dc29e7
MG
1656 /*
1657 * Revert to default priority/policy on fork if requested.
1658 */
1659 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1660 if (task_has_rt_policy(p)) {
b9dc29e7 1661 p->policy = SCHED_NORMAL;
6c697bdf 1662 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1663 p->rt_priority = 0;
1664 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1665 p->static_prio = NICE_TO_PRIO(0);
1666
1667 p->prio = p->normal_prio = __normal_prio(p);
1668 set_load_weight(p);
6c697bdf 1669
b9dc29e7
MG
1670 /*
1671 * We don't need the reset flag anymore after the fork. It has
1672 * fulfilled its duty:
1673 */
1674 p->sched_reset_on_fork = 0;
1675 }
ca94c442 1676
2ddbf952
HS
1677 if (!rt_prio(p->prio))
1678 p->sched_class = &fair_sched_class;
b29739f9 1679
cd29fe6f
PZ
1680 if (p->sched_class->task_fork)
1681 p->sched_class->task_fork(p);
1682
86951599
PZ
1683 /*
1684 * The child is not yet in the pid-hash so no cgroup attach races,
1685 * and the cgroup is pinned to this child due to cgroup_fork()
1686 * is ran before sched_fork().
1687 *
1688 * Silence PROVE_RCU.
1689 */
0122ec5b 1690 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1691 set_task_cpu(p, cpu);
0122ec5b 1692 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1693
52f17b6c 1694#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1695 if (likely(sched_info_on()))
52f17b6c 1696 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1697#endif
3ca7a440
PZ
1698#if defined(CONFIG_SMP)
1699 p->on_cpu = 0;
4866cde0 1700#endif
bdd4e85d 1701#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1702 /* Want to start with kernel preemption disabled. */
a1261f54 1703 task_thread_info(p)->preempt_count = 1;
1da177e4 1704#endif
806c09a7 1705#ifdef CONFIG_SMP
917b627d 1706 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1707#endif
917b627d 1708
476d139c 1709 put_cpu();
1da177e4
LT
1710}
1711
1712/*
1713 * wake_up_new_task - wake up a newly created task for the first time.
1714 *
1715 * This function will do some initial scheduler statistics housekeeping
1716 * that must be done for every newly created context, then puts the task
1717 * on the runqueue and wakes it.
1718 */
3e51e3ed 1719void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1720{
1721 unsigned long flags;
dd41f596 1722 struct rq *rq;
fabf318e 1723
ab2515c4 1724 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1725#ifdef CONFIG_SMP
1726 /*
1727 * Fork balancing, do it here and not earlier because:
1728 * - cpus_allowed can change in the fork path
1729 * - any previously selected cpu might disappear through hotplug
fabf318e 1730 */
ab2515c4 1731 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1732#endif
1733
ab2515c4 1734 rq = __task_rq_lock(p);
cd29fe6f 1735 activate_task(rq, p, 0);
fd2f4419 1736 p->on_rq = 1;
89363381 1737 trace_sched_wakeup_new(p, true);
a7558e01 1738 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1739#ifdef CONFIG_SMP
efbbd05a
PZ
1740 if (p->sched_class->task_woken)
1741 p->sched_class->task_woken(rq, p);
9a897c5a 1742#endif
0122ec5b 1743 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1744}
1745
e107be36
AK
1746#ifdef CONFIG_PREEMPT_NOTIFIERS
1747
1748/**
80dd99b3 1749 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1750 * @notifier: notifier struct to register
e107be36
AK
1751 */
1752void preempt_notifier_register(struct preempt_notifier *notifier)
1753{
1754 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1755}
1756EXPORT_SYMBOL_GPL(preempt_notifier_register);
1757
1758/**
1759 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1760 * @notifier: notifier struct to unregister
e107be36
AK
1761 *
1762 * This is safe to call from within a preemption notifier.
1763 */
1764void preempt_notifier_unregister(struct preempt_notifier *notifier)
1765{
1766 hlist_del(&notifier->link);
1767}
1768EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1769
1770static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1771{
1772 struct preempt_notifier *notifier;
e107be36 1773
b67bfe0d 1774 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1775 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1776}
1777
1778static void
1779fire_sched_out_preempt_notifiers(struct task_struct *curr,
1780 struct task_struct *next)
1781{
1782 struct preempt_notifier *notifier;
e107be36 1783
b67bfe0d 1784 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1785 notifier->ops->sched_out(notifier, next);
1786}
1787
6d6bc0ad 1788#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1789
1790static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1791{
1792}
1793
1794static void
1795fire_sched_out_preempt_notifiers(struct task_struct *curr,
1796 struct task_struct *next)
1797{
1798}
1799
6d6bc0ad 1800#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1801
4866cde0
NP
1802/**
1803 * prepare_task_switch - prepare to switch tasks
1804 * @rq: the runqueue preparing to switch
421cee29 1805 * @prev: the current task that is being switched out
4866cde0
NP
1806 * @next: the task we are going to switch to.
1807 *
1808 * This is called with the rq lock held and interrupts off. It must
1809 * be paired with a subsequent finish_task_switch after the context
1810 * switch.
1811 *
1812 * prepare_task_switch sets up locking and calls architecture specific
1813 * hooks.
1814 */
e107be36
AK
1815static inline void
1816prepare_task_switch(struct rq *rq, struct task_struct *prev,
1817 struct task_struct *next)
4866cde0 1818{
895dd92c 1819 trace_sched_switch(prev, next);
fe4b04fa
PZ
1820 sched_info_switch(prev, next);
1821 perf_event_task_sched_out(prev, next);
e107be36 1822 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1823 prepare_lock_switch(rq, next);
1824 prepare_arch_switch(next);
1825}
1826
1da177e4
LT
1827/**
1828 * finish_task_switch - clean up after a task-switch
344babaa 1829 * @rq: runqueue associated with task-switch
1da177e4
LT
1830 * @prev: the thread we just switched away from.
1831 *
4866cde0
NP
1832 * finish_task_switch must be called after the context switch, paired
1833 * with a prepare_task_switch call before the context switch.
1834 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1835 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1836 *
1837 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1838 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1839 * with the lock held can cause deadlocks; see schedule() for
1840 * details.)
1841 */
a9957449 1842static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1843 __releases(rq->lock)
1844{
1da177e4 1845 struct mm_struct *mm = rq->prev_mm;
55a101f8 1846 long prev_state;
1da177e4
LT
1847
1848 rq->prev_mm = NULL;
1849
1850 /*
1851 * A task struct has one reference for the use as "current".
c394cc9f 1852 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1853 * schedule one last time. The schedule call will never return, and
1854 * the scheduled task must drop that reference.
c394cc9f 1855 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1856 * still held, otherwise prev could be scheduled on another cpu, die
1857 * there before we look at prev->state, and then the reference would
1858 * be dropped twice.
1859 * Manfred Spraul <manfred@colorfullife.com>
1860 */
55a101f8 1861 prev_state = prev->state;
bf9fae9f 1862 vtime_task_switch(prev);
4866cde0 1863 finish_arch_switch(prev);
a8d757ef 1864 perf_event_task_sched_in(prev, current);
4866cde0 1865 finish_lock_switch(rq, prev);
01f23e16 1866 finish_arch_post_lock_switch();
e8fa1362 1867
e107be36 1868 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1869 if (mm)
1870 mmdrop(mm);
c394cc9f 1871 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1872 /*
1873 * Remove function-return probe instances associated with this
1874 * task and put them back on the free list.
9761eea8 1875 */
c6fd91f0 1876 kprobe_flush_task(prev);
1da177e4 1877 put_task_struct(prev);
c6fd91f0 1878 }
1da177e4
LT
1879}
1880
3f029d3c
GH
1881#ifdef CONFIG_SMP
1882
1883/* assumes rq->lock is held */
1884static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1885{
1886 if (prev->sched_class->pre_schedule)
1887 prev->sched_class->pre_schedule(rq, prev);
1888}
1889
1890/* rq->lock is NOT held, but preemption is disabled */
1891static inline void post_schedule(struct rq *rq)
1892{
1893 if (rq->post_schedule) {
1894 unsigned long flags;
1895
05fa785c 1896 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1897 if (rq->curr->sched_class->post_schedule)
1898 rq->curr->sched_class->post_schedule(rq);
05fa785c 1899 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1900
1901 rq->post_schedule = 0;
1902 }
1903}
1904
1905#else
da19ab51 1906
3f029d3c
GH
1907static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1908{
1909}
1910
1911static inline void post_schedule(struct rq *rq)
1912{
1da177e4
LT
1913}
1914
3f029d3c
GH
1915#endif
1916
1da177e4
LT
1917/**
1918 * schedule_tail - first thing a freshly forked thread must call.
1919 * @prev: the thread we just switched away from.
1920 */
36c8b586 1921asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1922 __releases(rq->lock)
1923{
70b97a7f
IM
1924 struct rq *rq = this_rq();
1925
4866cde0 1926 finish_task_switch(rq, prev);
da19ab51 1927
3f029d3c
GH
1928 /*
1929 * FIXME: do we need to worry about rq being invalidated by the
1930 * task_switch?
1931 */
1932 post_schedule(rq);
70b97a7f 1933
4866cde0
NP
1934#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1935 /* In this case, finish_task_switch does not reenable preemption */
1936 preempt_enable();
1937#endif
1da177e4 1938 if (current->set_child_tid)
b488893a 1939 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1940}
1941
1942/*
1943 * context_switch - switch to the new MM and the new
1944 * thread's register state.
1945 */
dd41f596 1946static inline void
70b97a7f 1947context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1948 struct task_struct *next)
1da177e4 1949{
dd41f596 1950 struct mm_struct *mm, *oldmm;
1da177e4 1951
e107be36 1952 prepare_task_switch(rq, prev, next);
fe4b04fa 1953
dd41f596
IM
1954 mm = next->mm;
1955 oldmm = prev->active_mm;
9226d125
ZA
1956 /*
1957 * For paravirt, this is coupled with an exit in switch_to to
1958 * combine the page table reload and the switch backend into
1959 * one hypercall.
1960 */
224101ed 1961 arch_start_context_switch(prev);
9226d125 1962
31915ab4 1963 if (!mm) {
1da177e4
LT
1964 next->active_mm = oldmm;
1965 atomic_inc(&oldmm->mm_count);
1966 enter_lazy_tlb(oldmm, next);
1967 } else
1968 switch_mm(oldmm, mm, next);
1969
31915ab4 1970 if (!prev->mm) {
1da177e4 1971 prev->active_mm = NULL;
1da177e4
LT
1972 rq->prev_mm = oldmm;
1973 }
3a5f5e48
IM
1974 /*
1975 * Since the runqueue lock will be released by the next
1976 * task (which is an invalid locking op but in the case
1977 * of the scheduler it's an obvious special-case), so we
1978 * do an early lockdep release here:
1979 */
1980#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1981 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1982#endif
1da177e4 1983
91d1aa43 1984 context_tracking_task_switch(prev, next);
1da177e4
LT
1985 /* Here we just switch the register state and the stack. */
1986 switch_to(prev, next, prev);
1987
dd41f596
IM
1988 barrier();
1989 /*
1990 * this_rq must be evaluated again because prev may have moved
1991 * CPUs since it called schedule(), thus the 'rq' on its stack
1992 * frame will be invalid.
1993 */
1994 finish_task_switch(this_rq(), prev);
1da177e4
LT
1995}
1996
1997/*
1c3e8264 1998 * nr_running and nr_context_switches:
1da177e4
LT
1999 *
2000 * externally visible scheduler statistics: current number of runnable
1c3e8264 2001 * threads, total number of context switches performed since bootup.
1da177e4
LT
2002 */
2003unsigned long nr_running(void)
2004{
2005 unsigned long i, sum = 0;
2006
2007 for_each_online_cpu(i)
2008 sum += cpu_rq(i)->nr_running;
2009
2010 return sum;
f711f609 2011}
1da177e4 2012
1da177e4 2013unsigned long long nr_context_switches(void)
46cb4b7c 2014{
cc94abfc
SR
2015 int i;
2016 unsigned long long sum = 0;
46cb4b7c 2017
0a945022 2018 for_each_possible_cpu(i)
1da177e4 2019 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2020
1da177e4
LT
2021 return sum;
2022}
483b4ee6 2023
1da177e4
LT
2024unsigned long nr_iowait(void)
2025{
2026 unsigned long i, sum = 0;
483b4ee6 2027
0a945022 2028 for_each_possible_cpu(i)
1da177e4 2029 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2030
1da177e4
LT
2031 return sum;
2032}
483b4ee6 2033
8c215bd3 2034unsigned long nr_iowait_cpu(int cpu)
69d25870 2035{
8c215bd3 2036 struct rq *this = cpu_rq(cpu);
69d25870
AV
2037 return atomic_read(&this->nr_iowait);
2038}
46cb4b7c 2039
69d25870
AV
2040unsigned long this_cpu_load(void)
2041{
2042 struct rq *this = this_rq();
2043 return this->cpu_load[0];
2044}
e790fb0b 2045
46cb4b7c 2046
5167e8d5
PZ
2047/*
2048 * Global load-average calculations
2049 *
2050 * We take a distributed and async approach to calculating the global load-avg
2051 * in order to minimize overhead.
2052 *
2053 * The global load average is an exponentially decaying average of nr_running +
2054 * nr_uninterruptible.
2055 *
2056 * Once every LOAD_FREQ:
2057 *
2058 * nr_active = 0;
2059 * for_each_possible_cpu(cpu)
2060 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2061 *
2062 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2063 *
2064 * Due to a number of reasons the above turns in the mess below:
2065 *
2066 * - for_each_possible_cpu() is prohibitively expensive on machines with
2067 * serious number of cpus, therefore we need to take a distributed approach
2068 * to calculating nr_active.
2069 *
2070 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2071 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2072 *
2073 * So assuming nr_active := 0 when we start out -- true per definition, we
2074 * can simply take per-cpu deltas and fold those into a global accumulate
2075 * to obtain the same result. See calc_load_fold_active().
2076 *
2077 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2078 * across the machine, we assume 10 ticks is sufficient time for every
2079 * cpu to have completed this task.
2080 *
2081 * This places an upper-bound on the IRQ-off latency of the machine. Then
2082 * again, being late doesn't loose the delta, just wrecks the sample.
2083 *
2084 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2085 * this would add another cross-cpu cacheline miss and atomic operation
2086 * to the wakeup path. Instead we increment on whatever cpu the task ran
2087 * when it went into uninterruptible state and decrement on whatever cpu
2088 * did the wakeup. This means that only the sum of nr_uninterruptible over
2089 * all cpus yields the correct result.
2090 *
2091 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2092 */
2093
dce48a84
TG
2094/* Variables and functions for calc_load */
2095static atomic_long_t calc_load_tasks;
2096static unsigned long calc_load_update;
2097unsigned long avenrun[3];
5167e8d5
PZ
2098EXPORT_SYMBOL(avenrun); /* should be removed */
2099
2100/**
2101 * get_avenrun - get the load average array
2102 * @loads: pointer to dest load array
2103 * @offset: offset to add
2104 * @shift: shift count to shift the result left
2105 *
2106 * These values are estimates at best, so no need for locking.
2107 */
2108void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2109{
2110 loads[0] = (avenrun[0] + offset) << shift;
2111 loads[1] = (avenrun[1] + offset) << shift;
2112 loads[2] = (avenrun[2] + offset) << shift;
2113}
46cb4b7c 2114
74f5187a
PZ
2115static long calc_load_fold_active(struct rq *this_rq)
2116{
2117 long nr_active, delta = 0;
2118
2119 nr_active = this_rq->nr_running;
2120 nr_active += (long) this_rq->nr_uninterruptible;
2121
2122 if (nr_active != this_rq->calc_load_active) {
2123 delta = nr_active - this_rq->calc_load_active;
2124 this_rq->calc_load_active = nr_active;
2125 }
2126
2127 return delta;
2128}
2129
5167e8d5
PZ
2130/*
2131 * a1 = a0 * e + a * (1 - e)
2132 */
0f004f5a
PZ
2133static unsigned long
2134calc_load(unsigned long load, unsigned long exp, unsigned long active)
2135{
2136 load *= exp;
2137 load += active * (FIXED_1 - exp);
2138 load += 1UL << (FSHIFT - 1);
2139 return load >> FSHIFT;
2140}
2141
3451d024 2142#ifdef CONFIG_NO_HZ_COMMON
74f5187a 2143/*
5167e8d5
PZ
2144 * Handle NO_HZ for the global load-average.
2145 *
2146 * Since the above described distributed algorithm to compute the global
2147 * load-average relies on per-cpu sampling from the tick, it is affected by
2148 * NO_HZ.
2149 *
2150 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2151 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2152 * when we read the global state.
2153 *
2154 * Obviously reality has to ruin such a delightfully simple scheme:
2155 *
2156 * - When we go NO_HZ idle during the window, we can negate our sample
2157 * contribution, causing under-accounting.
2158 *
2159 * We avoid this by keeping two idle-delta counters and flipping them
2160 * when the window starts, thus separating old and new NO_HZ load.
2161 *
2162 * The only trick is the slight shift in index flip for read vs write.
2163 *
2164 * 0s 5s 10s 15s
2165 * +10 +10 +10 +10
2166 * |-|-----------|-|-----------|-|-----------|-|
2167 * r:0 0 1 1 0 0 1 1 0
2168 * w:0 1 1 0 0 1 1 0 0
2169 *
2170 * This ensures we'll fold the old idle contribution in this window while
2171 * accumlating the new one.
2172 *
2173 * - When we wake up from NO_HZ idle during the window, we push up our
2174 * contribution, since we effectively move our sample point to a known
2175 * busy state.
2176 *
2177 * This is solved by pushing the window forward, and thus skipping the
2178 * sample, for this cpu (effectively using the idle-delta for this cpu which
2179 * was in effect at the time the window opened). This also solves the issue
2180 * of having to deal with a cpu having been in NOHZ idle for multiple
2181 * LOAD_FREQ intervals.
74f5187a
PZ
2182 *
2183 * When making the ILB scale, we should try to pull this in as well.
2184 */
5167e8d5
PZ
2185static atomic_long_t calc_load_idle[2];
2186static int calc_load_idx;
74f5187a 2187
5167e8d5 2188static inline int calc_load_write_idx(void)
74f5187a 2189{
5167e8d5
PZ
2190 int idx = calc_load_idx;
2191
2192 /*
2193 * See calc_global_nohz(), if we observe the new index, we also
2194 * need to observe the new update time.
2195 */
2196 smp_rmb();
2197
2198 /*
2199 * If the folding window started, make sure we start writing in the
2200 * next idle-delta.
2201 */
2202 if (!time_before(jiffies, calc_load_update))
2203 idx++;
2204
2205 return idx & 1;
2206}
2207
2208static inline int calc_load_read_idx(void)
2209{
2210 return calc_load_idx & 1;
2211}
2212
2213void calc_load_enter_idle(void)
2214{
2215 struct rq *this_rq = this_rq();
74f5187a
PZ
2216 long delta;
2217
5167e8d5
PZ
2218 /*
2219 * We're going into NOHZ mode, if there's any pending delta, fold it
2220 * into the pending idle delta.
2221 */
74f5187a 2222 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2223 if (delta) {
2224 int idx = calc_load_write_idx();
2225 atomic_long_add(delta, &calc_load_idle[idx]);
2226 }
74f5187a
PZ
2227}
2228
5167e8d5 2229void calc_load_exit_idle(void)
74f5187a 2230{
5167e8d5
PZ
2231 struct rq *this_rq = this_rq();
2232
2233 /*
2234 * If we're still before the sample window, we're done.
2235 */
2236 if (time_before(jiffies, this_rq->calc_load_update))
2237 return;
74f5187a
PZ
2238
2239 /*
5167e8d5
PZ
2240 * We woke inside or after the sample window, this means we're already
2241 * accounted through the nohz accounting, so skip the entire deal and
2242 * sync up for the next window.
74f5187a 2243 */
5167e8d5
PZ
2244 this_rq->calc_load_update = calc_load_update;
2245 if (time_before(jiffies, this_rq->calc_load_update + 10))
2246 this_rq->calc_load_update += LOAD_FREQ;
2247}
2248
2249static long calc_load_fold_idle(void)
2250{
2251 int idx = calc_load_read_idx();
2252 long delta = 0;
2253
2254 if (atomic_long_read(&calc_load_idle[idx]))
2255 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2256
2257 return delta;
2258}
0f004f5a
PZ
2259
2260/**
2261 * fixed_power_int - compute: x^n, in O(log n) time
2262 *
2263 * @x: base of the power
2264 * @frac_bits: fractional bits of @x
2265 * @n: power to raise @x to.
2266 *
2267 * By exploiting the relation between the definition of the natural power
2268 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2269 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2270 * (where: n_i \elem {0, 1}, the binary vector representing n),
2271 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2272 * of course trivially computable in O(log_2 n), the length of our binary
2273 * vector.
2274 */
2275static unsigned long
2276fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2277{
2278 unsigned long result = 1UL << frac_bits;
2279
2280 if (n) for (;;) {
2281 if (n & 1) {
2282 result *= x;
2283 result += 1UL << (frac_bits - 1);
2284 result >>= frac_bits;
2285 }
2286 n >>= 1;
2287 if (!n)
2288 break;
2289 x *= x;
2290 x += 1UL << (frac_bits - 1);
2291 x >>= frac_bits;
2292 }
2293
2294 return result;
2295}
2296
2297/*
2298 * a1 = a0 * e + a * (1 - e)
2299 *
2300 * a2 = a1 * e + a * (1 - e)
2301 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2302 * = a0 * e^2 + a * (1 - e) * (1 + e)
2303 *
2304 * a3 = a2 * e + a * (1 - e)
2305 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2306 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2307 *
2308 * ...
2309 *
2310 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2311 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2312 * = a0 * e^n + a * (1 - e^n)
2313 *
2314 * [1] application of the geometric series:
2315 *
2316 * n 1 - x^(n+1)
2317 * S_n := \Sum x^i = -------------
2318 * i=0 1 - x
2319 */
2320static unsigned long
2321calc_load_n(unsigned long load, unsigned long exp,
2322 unsigned long active, unsigned int n)
2323{
2324
2325 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2326}
2327
2328/*
2329 * NO_HZ can leave us missing all per-cpu ticks calling
2330 * calc_load_account_active(), but since an idle CPU folds its delta into
2331 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2332 * in the pending idle delta if our idle period crossed a load cycle boundary.
2333 *
2334 * Once we've updated the global active value, we need to apply the exponential
2335 * weights adjusted to the number of cycles missed.
2336 */
c308b56b 2337static void calc_global_nohz(void)
0f004f5a
PZ
2338{
2339 long delta, active, n;
2340
5167e8d5
PZ
2341 if (!time_before(jiffies, calc_load_update + 10)) {
2342 /*
2343 * Catch-up, fold however many we are behind still
2344 */
2345 delta = jiffies - calc_load_update - 10;
2346 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2347
5167e8d5
PZ
2348 active = atomic_long_read(&calc_load_tasks);
2349 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2350
5167e8d5
PZ
2351 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2352 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2353 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2354
5167e8d5
PZ
2355 calc_load_update += n * LOAD_FREQ;
2356 }
74f5187a 2357
5167e8d5
PZ
2358 /*
2359 * Flip the idle index...
2360 *
2361 * Make sure we first write the new time then flip the index, so that
2362 * calc_load_write_idx() will see the new time when it reads the new
2363 * index, this avoids a double flip messing things up.
2364 */
2365 smp_wmb();
2366 calc_load_idx++;
74f5187a 2367}
3451d024 2368#else /* !CONFIG_NO_HZ_COMMON */
0f004f5a 2369
5167e8d5
PZ
2370static inline long calc_load_fold_idle(void) { return 0; }
2371static inline void calc_global_nohz(void) { }
74f5187a 2372
3451d024 2373#endif /* CONFIG_NO_HZ_COMMON */
46cb4b7c 2374
46cb4b7c 2375/*
dce48a84
TG
2376 * calc_load - update the avenrun load estimates 10 ticks after the
2377 * CPUs have updated calc_load_tasks.
7835b98b 2378 */
0f004f5a 2379void calc_global_load(unsigned long ticks)
7835b98b 2380{
5167e8d5 2381 long active, delta;
1da177e4 2382
0f004f5a 2383 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2384 return;
1da177e4 2385
5167e8d5
PZ
2386 /*
2387 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2388 */
2389 delta = calc_load_fold_idle();
2390 if (delta)
2391 atomic_long_add(delta, &calc_load_tasks);
2392
dce48a84
TG
2393 active = atomic_long_read(&calc_load_tasks);
2394 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2395
dce48a84
TG
2396 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2397 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2398 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2399
dce48a84 2400 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2401
2402 /*
5167e8d5 2403 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2404 */
2405 calc_global_nohz();
dce48a84 2406}
1da177e4 2407
dce48a84 2408/*
74f5187a
PZ
2409 * Called from update_cpu_load() to periodically update this CPU's
2410 * active count.
dce48a84
TG
2411 */
2412static void calc_load_account_active(struct rq *this_rq)
2413{
74f5187a 2414 long delta;
08c183f3 2415
74f5187a
PZ
2416 if (time_before(jiffies, this_rq->calc_load_update))
2417 return;
783609c6 2418
74f5187a 2419 delta = calc_load_fold_active(this_rq);
74f5187a 2420 if (delta)
dce48a84 2421 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2422
2423 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2424}
2425
5167e8d5
PZ
2426/*
2427 * End of global load-average stuff
2428 */
2429
fdf3e95d
VP
2430/*
2431 * The exact cpuload at various idx values, calculated at every tick would be
2432 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2433 *
2434 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2435 * on nth tick when cpu may be busy, then we have:
2436 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2437 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2438 *
2439 * decay_load_missed() below does efficient calculation of
2440 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2441 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2442 *
2443 * The calculation is approximated on a 128 point scale.
2444 * degrade_zero_ticks is the number of ticks after which load at any
2445 * particular idx is approximated to be zero.
2446 * degrade_factor is a precomputed table, a row for each load idx.
2447 * Each column corresponds to degradation factor for a power of two ticks,
2448 * based on 128 point scale.
2449 * Example:
2450 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2451 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2452 *
2453 * With this power of 2 load factors, we can degrade the load n times
2454 * by looking at 1 bits in n and doing as many mult/shift instead of
2455 * n mult/shifts needed by the exact degradation.
2456 */
2457#define DEGRADE_SHIFT 7
2458static const unsigned char
2459 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2460static const unsigned char
2461 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2462 {0, 0, 0, 0, 0, 0, 0, 0},
2463 {64, 32, 8, 0, 0, 0, 0, 0},
2464 {96, 72, 40, 12, 1, 0, 0},
2465 {112, 98, 75, 43, 15, 1, 0},
2466 {120, 112, 98, 76, 45, 16, 2} };
2467
2468/*
2469 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2470 * would be when CPU is idle and so we just decay the old load without
2471 * adding any new load.
2472 */
2473static unsigned long
2474decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2475{
2476 int j = 0;
2477
2478 if (!missed_updates)
2479 return load;
2480
2481 if (missed_updates >= degrade_zero_ticks[idx])
2482 return 0;
2483
2484 if (idx == 1)
2485 return load >> missed_updates;
2486
2487 while (missed_updates) {
2488 if (missed_updates % 2)
2489 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2490
2491 missed_updates >>= 1;
2492 j++;
2493 }
2494 return load;
2495}
2496
46cb4b7c 2497/*
dd41f596 2498 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2499 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2500 * every tick. We fix it up based on jiffies.
46cb4b7c 2501 */
556061b0
PZ
2502static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2503 unsigned long pending_updates)
46cb4b7c 2504{
dd41f596 2505 int i, scale;
46cb4b7c 2506
dd41f596 2507 this_rq->nr_load_updates++;
46cb4b7c 2508
dd41f596 2509 /* Update our load: */
fdf3e95d
VP
2510 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2511 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2512 unsigned long old_load, new_load;
7d1e6a9b 2513
dd41f596 2514 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2515
dd41f596 2516 old_load = this_rq->cpu_load[i];
fdf3e95d 2517 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2518 new_load = this_load;
a25707f3
IM
2519 /*
2520 * Round up the averaging division if load is increasing. This
2521 * prevents us from getting stuck on 9 if the load is 10, for
2522 * example.
2523 */
2524 if (new_load > old_load)
fdf3e95d
VP
2525 new_load += scale - 1;
2526
2527 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2528 }
da2b71ed
SS
2529
2530 sched_avg_update(this_rq);
fdf3e95d
VP
2531}
2532
3451d024 2533#ifdef CONFIG_NO_HZ_COMMON
5aaa0b7a
PZ
2534/*
2535 * There is no sane way to deal with nohz on smp when using jiffies because the
2536 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2537 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2538 *
2539 * Therefore we cannot use the delta approach from the regular tick since that
2540 * would seriously skew the load calculation. However we'll make do for those
2541 * updates happening while idle (nohz_idle_balance) or coming out of idle
2542 * (tick_nohz_idle_exit).
2543 *
2544 * This means we might still be one tick off for nohz periods.
2545 */
2546
556061b0
PZ
2547/*
2548 * Called from nohz_idle_balance() to update the load ratings before doing the
2549 * idle balance.
2550 */
2551void update_idle_cpu_load(struct rq *this_rq)
2552{
5aaa0b7a 2553 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2554 unsigned long load = this_rq->load.weight;
2555 unsigned long pending_updates;
2556
2557 /*
5aaa0b7a 2558 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2559 */
2560 if (load || curr_jiffies == this_rq->last_load_update_tick)
2561 return;
2562
2563 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2564 this_rq->last_load_update_tick = curr_jiffies;
2565
2566 __update_cpu_load(this_rq, load, pending_updates);
2567}
2568
5aaa0b7a
PZ
2569/*
2570 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2571 */
2572void update_cpu_load_nohz(void)
2573{
2574 struct rq *this_rq = this_rq();
2575 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2576 unsigned long pending_updates;
2577
2578 if (curr_jiffies == this_rq->last_load_update_tick)
2579 return;
2580
2581 raw_spin_lock(&this_rq->lock);
2582 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2583 if (pending_updates) {
2584 this_rq->last_load_update_tick = curr_jiffies;
2585 /*
2586 * We were idle, this means load 0, the current load might be
2587 * !0 due to remote wakeups and the sort.
2588 */
2589 __update_cpu_load(this_rq, 0, pending_updates);
2590 }
2591 raw_spin_unlock(&this_rq->lock);
2592}
3451d024 2593#endif /* CONFIG_NO_HZ_COMMON */
5aaa0b7a 2594
556061b0
PZ
2595/*
2596 * Called from scheduler_tick()
2597 */
fdf3e95d
VP
2598static void update_cpu_load_active(struct rq *this_rq)
2599{
556061b0 2600 /*
5aaa0b7a 2601 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2602 */
2603 this_rq->last_load_update_tick = jiffies;
2604 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2605
74f5187a 2606 calc_load_account_active(this_rq);
46cb4b7c
SS
2607}
2608
dd41f596 2609#ifdef CONFIG_SMP
8a0be9ef 2610
46cb4b7c 2611/*
38022906
PZ
2612 * sched_exec - execve() is a valuable balancing opportunity, because at
2613 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2614 */
38022906 2615void sched_exec(void)
46cb4b7c 2616{
38022906 2617 struct task_struct *p = current;
1da177e4 2618 unsigned long flags;
0017d735 2619 int dest_cpu;
46cb4b7c 2620
8f42ced9 2621 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2622 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2623 if (dest_cpu == smp_processor_id())
2624 goto unlock;
38022906 2625
8f42ced9 2626 if (likely(cpu_active(dest_cpu))) {
969c7921 2627 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2628
8f42ced9
PZ
2629 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2630 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2631 return;
2632 }
0017d735 2633unlock:
8f42ced9 2634 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2635}
dd41f596 2636
1da177e4
LT
2637#endif
2638
1da177e4 2639DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2640DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2641
2642EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2643EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2644
2645/*
c5f8d995 2646 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2647 * @p in case that task is currently running.
c5f8d995
HS
2648 *
2649 * Called with task_rq_lock() held on @rq.
1da177e4 2650 */
c5f8d995
HS
2651static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2652{
2653 u64 ns = 0;
2654
2655 if (task_current(rq, p)) {
2656 update_rq_clock(rq);
305e6835 2657 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2658 if ((s64)ns < 0)
2659 ns = 0;
2660 }
2661
2662 return ns;
2663}
2664
bb34d92f 2665unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2666{
1da177e4 2667 unsigned long flags;
41b86e9c 2668 struct rq *rq;
bb34d92f 2669 u64 ns = 0;
48f24c4d 2670
41b86e9c 2671 rq = task_rq_lock(p, &flags);
c5f8d995 2672 ns = do_task_delta_exec(p, rq);
0122ec5b 2673 task_rq_unlock(rq, p, &flags);
1508487e 2674
c5f8d995
HS
2675 return ns;
2676}
f06febc9 2677
c5f8d995
HS
2678/*
2679 * Return accounted runtime for the task.
2680 * In case the task is currently running, return the runtime plus current's
2681 * pending runtime that have not been accounted yet.
2682 */
2683unsigned long long task_sched_runtime(struct task_struct *p)
2684{
2685 unsigned long flags;
2686 struct rq *rq;
2687 u64 ns = 0;
2688
2689 rq = task_rq_lock(p, &flags);
2690 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2691 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2692
2693 return ns;
2694}
48f24c4d 2695
7835b98b
CL
2696/*
2697 * This function gets called by the timer code, with HZ frequency.
2698 * We call it with interrupts disabled.
7835b98b
CL
2699 */
2700void scheduler_tick(void)
2701{
7835b98b
CL
2702 int cpu = smp_processor_id();
2703 struct rq *rq = cpu_rq(cpu);
dd41f596 2704 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2705
2706 sched_clock_tick();
dd41f596 2707
05fa785c 2708 raw_spin_lock(&rq->lock);
3e51f33f 2709 update_rq_clock(rq);
fdf3e95d 2710 update_cpu_load_active(rq);
fa85ae24 2711 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2712 raw_spin_unlock(&rq->lock);
7835b98b 2713
e9d2b064 2714 perf_event_task_tick();
e220d2dc 2715
e418e1c2 2716#ifdef CONFIG_SMP
6eb57e0d 2717 rq->idle_balance = idle_cpu(cpu);
dd41f596 2718 trigger_load_balance(rq, cpu);
e418e1c2 2719#endif
1da177e4
LT
2720}
2721
132380a0 2722notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2723{
2724 if (in_lock_functions(addr)) {
2725 addr = CALLER_ADDR2;
2726 if (in_lock_functions(addr))
2727 addr = CALLER_ADDR3;
2728 }
2729 return addr;
2730}
1da177e4 2731
7e49fcce
SR
2732#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2733 defined(CONFIG_PREEMPT_TRACER))
2734
43627582 2735void __kprobes add_preempt_count(int val)
1da177e4 2736{
6cd8a4bb 2737#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2738 /*
2739 * Underflow?
2740 */
9a11b49a
IM
2741 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2742 return;
6cd8a4bb 2743#endif
1da177e4 2744 preempt_count() += val;
6cd8a4bb 2745#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2746 /*
2747 * Spinlock count overflowing soon?
2748 */
33859f7f
MOS
2749 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2750 PREEMPT_MASK - 10);
6cd8a4bb
SR
2751#endif
2752 if (preempt_count() == val)
2753 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2754}
2755EXPORT_SYMBOL(add_preempt_count);
2756
43627582 2757void __kprobes sub_preempt_count(int val)
1da177e4 2758{
6cd8a4bb 2759#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2760 /*
2761 * Underflow?
2762 */
01e3eb82 2763 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2764 return;
1da177e4
LT
2765 /*
2766 * Is the spinlock portion underflowing?
2767 */
9a11b49a
IM
2768 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2769 !(preempt_count() & PREEMPT_MASK)))
2770 return;
6cd8a4bb 2771#endif
9a11b49a 2772
6cd8a4bb
SR
2773 if (preempt_count() == val)
2774 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2775 preempt_count() -= val;
2776}
2777EXPORT_SYMBOL(sub_preempt_count);
2778
2779#endif
2780
2781/*
dd41f596 2782 * Print scheduling while atomic bug:
1da177e4 2783 */
dd41f596 2784static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2785{
664dfa65
DJ
2786 if (oops_in_progress)
2787 return;
2788
3df0fc5b
PZ
2789 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2790 prev->comm, prev->pid, preempt_count());
838225b4 2791
dd41f596 2792 debug_show_held_locks(prev);
e21f5b15 2793 print_modules();
dd41f596
IM
2794 if (irqs_disabled())
2795 print_irqtrace_events(prev);
6135fc1e 2796 dump_stack();
373d4d09 2797 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2798}
1da177e4 2799
dd41f596
IM
2800/*
2801 * Various schedule()-time debugging checks and statistics:
2802 */
2803static inline void schedule_debug(struct task_struct *prev)
2804{
1da177e4 2805 /*
41a2d6cf 2806 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2807 * schedule() atomically, we ignore that path for now.
2808 * Otherwise, whine if we are scheduling when we should not be.
2809 */
3f33a7ce 2810 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2811 __schedule_bug(prev);
b3fbab05 2812 rcu_sleep_check();
dd41f596 2813
1da177e4
LT
2814 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2815
2d72376b 2816 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2817}
2818
6cecd084 2819static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2820{
61eadef6 2821 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2822 update_rq_clock(rq);
6cecd084 2823 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2824}
2825
dd41f596
IM
2826/*
2827 * Pick up the highest-prio task:
2828 */
2829static inline struct task_struct *
b67802ea 2830pick_next_task(struct rq *rq)
dd41f596 2831{
5522d5d5 2832 const struct sched_class *class;
dd41f596 2833 struct task_struct *p;
1da177e4
LT
2834
2835 /*
dd41f596
IM
2836 * Optimization: we know that if all tasks are in
2837 * the fair class we can call that function directly:
1da177e4 2838 */
953bfcd1 2839 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2840 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2841 if (likely(p))
2842 return p;
1da177e4
LT
2843 }
2844
34f971f6 2845 for_each_class(class) {
fb8d4724 2846 p = class->pick_next_task(rq);
dd41f596
IM
2847 if (p)
2848 return p;
dd41f596 2849 }
34f971f6
PZ
2850
2851 BUG(); /* the idle class will always have a runnable task */
dd41f596 2852}
1da177e4 2853
dd41f596 2854/*
c259e01a 2855 * __schedule() is the main scheduler function.
edde96ea
PE
2856 *
2857 * The main means of driving the scheduler and thus entering this function are:
2858 *
2859 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2860 *
2861 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2862 * paths. For example, see arch/x86/entry_64.S.
2863 *
2864 * To drive preemption between tasks, the scheduler sets the flag in timer
2865 * interrupt handler scheduler_tick().
2866 *
2867 * 3. Wakeups don't really cause entry into schedule(). They add a
2868 * task to the run-queue and that's it.
2869 *
2870 * Now, if the new task added to the run-queue preempts the current
2871 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2872 * called on the nearest possible occasion:
2873 *
2874 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2875 *
2876 * - in syscall or exception context, at the next outmost
2877 * preempt_enable(). (this might be as soon as the wake_up()'s
2878 * spin_unlock()!)
2879 *
2880 * - in IRQ context, return from interrupt-handler to
2881 * preemptible context
2882 *
2883 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2884 * then at the next:
2885 *
2886 * - cond_resched() call
2887 * - explicit schedule() call
2888 * - return from syscall or exception to user-space
2889 * - return from interrupt-handler to user-space
dd41f596 2890 */
c259e01a 2891static void __sched __schedule(void)
dd41f596
IM
2892{
2893 struct task_struct *prev, *next;
67ca7bde 2894 unsigned long *switch_count;
dd41f596 2895 struct rq *rq;
31656519 2896 int cpu;
dd41f596 2897
ff743345
PZ
2898need_resched:
2899 preempt_disable();
dd41f596
IM
2900 cpu = smp_processor_id();
2901 rq = cpu_rq(cpu);
25502a6c 2902 rcu_note_context_switch(cpu);
dd41f596 2903 prev = rq->curr;
dd41f596 2904
dd41f596 2905 schedule_debug(prev);
1da177e4 2906
31656519 2907 if (sched_feat(HRTICK))
f333fdc9 2908 hrtick_clear(rq);
8f4d37ec 2909
05fa785c 2910 raw_spin_lock_irq(&rq->lock);
1da177e4 2911
246d86b5 2912 switch_count = &prev->nivcsw;
1da177e4 2913 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2914 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2915 prev->state = TASK_RUNNING;
21aa9af0 2916 } else {
2acca55e
PZ
2917 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2918 prev->on_rq = 0;
2919
21aa9af0 2920 /*
2acca55e
PZ
2921 * If a worker went to sleep, notify and ask workqueue
2922 * whether it wants to wake up a task to maintain
2923 * concurrency.
21aa9af0
TH
2924 */
2925 if (prev->flags & PF_WQ_WORKER) {
2926 struct task_struct *to_wakeup;
2927
2928 to_wakeup = wq_worker_sleeping(prev, cpu);
2929 if (to_wakeup)
2930 try_to_wake_up_local(to_wakeup);
2931 }
21aa9af0 2932 }
dd41f596 2933 switch_count = &prev->nvcsw;
1da177e4
LT
2934 }
2935
3f029d3c 2936 pre_schedule(rq, prev);
f65eda4f 2937
dd41f596 2938 if (unlikely(!rq->nr_running))
1da177e4 2939 idle_balance(cpu, rq);
1da177e4 2940
df1c99d4 2941 put_prev_task(rq, prev);
b67802ea 2942 next = pick_next_task(rq);
f26f9aff
MG
2943 clear_tsk_need_resched(prev);
2944 rq->skip_clock_update = 0;
1da177e4 2945
1da177e4 2946 if (likely(prev != next)) {
1da177e4
LT
2947 rq->nr_switches++;
2948 rq->curr = next;
2949 ++*switch_count;
2950
dd41f596 2951 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2952 /*
246d86b5
ON
2953 * The context switch have flipped the stack from under us
2954 * and restored the local variables which were saved when
2955 * this task called schedule() in the past. prev == current
2956 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2957 */
2958 cpu = smp_processor_id();
2959 rq = cpu_rq(cpu);
1da177e4 2960 } else
05fa785c 2961 raw_spin_unlock_irq(&rq->lock);
1da177e4 2962
3f029d3c 2963 post_schedule(rq);
1da177e4 2964
ba74c144 2965 sched_preempt_enable_no_resched();
ff743345 2966 if (need_resched())
1da177e4
LT
2967 goto need_resched;
2968}
c259e01a 2969
9c40cef2
TG
2970static inline void sched_submit_work(struct task_struct *tsk)
2971{
3c7d5184 2972 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2973 return;
2974 /*
2975 * If we are going to sleep and we have plugged IO queued,
2976 * make sure to submit it to avoid deadlocks.
2977 */
2978 if (blk_needs_flush_plug(tsk))
2979 blk_schedule_flush_plug(tsk);
2980}
2981
6ebbe7a0 2982asmlinkage void __sched schedule(void)
c259e01a 2983{
9c40cef2
TG
2984 struct task_struct *tsk = current;
2985
2986 sched_submit_work(tsk);
c259e01a
TG
2987 __schedule();
2988}
1da177e4
LT
2989EXPORT_SYMBOL(schedule);
2990
91d1aa43 2991#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2992asmlinkage void __sched schedule_user(void)
2993{
2994 /*
2995 * If we come here after a random call to set_need_resched(),
2996 * or we have been woken up remotely but the IPI has not yet arrived,
2997 * we haven't yet exited the RCU idle mode. Do it here manually until
2998 * we find a better solution.
2999 */
91d1aa43 3000 user_exit();
20ab65e3 3001 schedule();
91d1aa43 3002 user_enter();
20ab65e3
FW
3003}
3004#endif
3005
c5491ea7
TG
3006/**
3007 * schedule_preempt_disabled - called with preemption disabled
3008 *
3009 * Returns with preemption disabled. Note: preempt_count must be 1
3010 */
3011void __sched schedule_preempt_disabled(void)
3012{
ba74c144 3013 sched_preempt_enable_no_resched();
c5491ea7
TG
3014 schedule();
3015 preempt_disable();
3016}
3017
c08f7829 3018#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3019
c6eb3dda
PZ
3020static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3021{
c6eb3dda 3022 if (lock->owner != owner)
307bf980 3023 return false;
0d66bf6d
PZ
3024
3025 /*
c6eb3dda
PZ
3026 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3027 * lock->owner still matches owner, if that fails, owner might
3028 * point to free()d memory, if it still matches, the rcu_read_lock()
3029 * ensures the memory stays valid.
0d66bf6d 3030 */
c6eb3dda 3031 barrier();
0d66bf6d 3032
307bf980 3033 return owner->on_cpu;
c6eb3dda 3034}
0d66bf6d 3035
c6eb3dda
PZ
3036/*
3037 * Look out! "owner" is an entirely speculative pointer
3038 * access and not reliable.
3039 */
3040int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3041{
3042 if (!sched_feat(OWNER_SPIN))
3043 return 0;
0d66bf6d 3044
307bf980 3045 rcu_read_lock();
c6eb3dda
PZ
3046 while (owner_running(lock, owner)) {
3047 if (need_resched())
307bf980 3048 break;
0d66bf6d 3049
335d7afb 3050 arch_mutex_cpu_relax();
0d66bf6d 3051 }
307bf980 3052 rcu_read_unlock();
4b402210 3053
c6eb3dda 3054 /*
307bf980
TG
3055 * We break out the loop above on need_resched() and when the
3056 * owner changed, which is a sign for heavy contention. Return
3057 * success only when lock->owner is NULL.
c6eb3dda 3058 */
307bf980 3059 return lock->owner == NULL;
0d66bf6d
PZ
3060}
3061#endif
3062
1da177e4
LT
3063#ifdef CONFIG_PREEMPT
3064/*
2ed6e34f 3065 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3066 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3067 * occur there and call schedule directly.
3068 */
d1f74e20 3069asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3070{
3071 struct thread_info *ti = current_thread_info();
6478d880 3072
1da177e4
LT
3073 /*
3074 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3075 * we do not want to preempt the current task. Just return..
1da177e4 3076 */
beed33a8 3077 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3078 return;
3079
3a5c359a 3080 do {
d1f74e20 3081 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3082 __schedule();
d1f74e20 3083 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3084
3a5c359a
AK
3085 /*
3086 * Check again in case we missed a preemption opportunity
3087 * between schedule and now.
3088 */
3089 barrier();
5ed0cec0 3090 } while (need_resched());
1da177e4 3091}
1da177e4
LT
3092EXPORT_SYMBOL(preempt_schedule);
3093
3094/*
2ed6e34f 3095 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3096 * off of irq context.
3097 * Note, that this is called and return with irqs disabled. This will
3098 * protect us against recursive calling from irq.
3099 */
3100asmlinkage void __sched preempt_schedule_irq(void)
3101{
3102 struct thread_info *ti = current_thread_info();
b22366cd 3103 enum ctx_state prev_state;
6478d880 3104
2ed6e34f 3105 /* Catch callers which need to be fixed */
1da177e4
LT
3106 BUG_ON(ti->preempt_count || !irqs_disabled());
3107
b22366cd
FW
3108 prev_state = exception_enter();
3109
3a5c359a
AK
3110 do {
3111 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3112 local_irq_enable();
c259e01a 3113 __schedule();
3a5c359a 3114 local_irq_disable();
3a5c359a 3115 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3116
3a5c359a
AK
3117 /*
3118 * Check again in case we missed a preemption opportunity
3119 * between schedule and now.
3120 */
3121 barrier();
5ed0cec0 3122 } while (need_resched());
b22366cd
FW
3123
3124 exception_exit(prev_state);
1da177e4
LT
3125}
3126
3127#endif /* CONFIG_PREEMPT */
3128
63859d4f 3129int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3130 void *key)
1da177e4 3131{
63859d4f 3132 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3133}
1da177e4
LT
3134EXPORT_SYMBOL(default_wake_function);
3135
3136/*
41a2d6cf
IM
3137 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3138 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3139 * number) then we wake all the non-exclusive tasks and one exclusive task.
3140 *
3141 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3142 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3143 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3144 */
78ddb08f 3145static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3146 int nr_exclusive, int wake_flags, void *key)
1da177e4 3147{
2e45874c 3148 wait_queue_t *curr, *next;
1da177e4 3149
2e45874c 3150 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3151 unsigned flags = curr->flags;
3152
63859d4f 3153 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3154 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3155 break;
3156 }
3157}
3158
3159/**
3160 * __wake_up - wake up threads blocked on a waitqueue.
3161 * @q: the waitqueue
3162 * @mode: which threads
3163 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3164 * @key: is directly passed to the wakeup function
50fa610a
DH
3165 *
3166 * It may be assumed that this function implies a write memory barrier before
3167 * changing the task state if and only if any tasks are woken up.
1da177e4 3168 */
7ad5b3a5 3169void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3170 int nr_exclusive, void *key)
1da177e4
LT
3171{
3172 unsigned long flags;
3173
3174 spin_lock_irqsave(&q->lock, flags);
3175 __wake_up_common(q, mode, nr_exclusive, 0, key);
3176 spin_unlock_irqrestore(&q->lock, flags);
3177}
1da177e4
LT
3178EXPORT_SYMBOL(__wake_up);
3179
3180/*
3181 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3182 */
63b20011 3183void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3184{
63b20011 3185 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3186}
22c43c81 3187EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3188
4ede816a
DL
3189void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3190{
3191 __wake_up_common(q, mode, 1, 0, key);
3192}
bf294b41 3193EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3194
1da177e4 3195/**
4ede816a 3196 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3197 * @q: the waitqueue
3198 * @mode: which threads
3199 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3200 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3201 *
3202 * The sync wakeup differs that the waker knows that it will schedule
3203 * away soon, so while the target thread will be woken up, it will not
3204 * be migrated to another CPU - ie. the two threads are 'synchronized'
3205 * with each other. This can prevent needless bouncing between CPUs.
3206 *
3207 * On UP it can prevent extra preemption.
50fa610a
DH
3208 *
3209 * It may be assumed that this function implies a write memory barrier before
3210 * changing the task state if and only if any tasks are woken up.
1da177e4 3211 */
4ede816a
DL
3212void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3213 int nr_exclusive, void *key)
1da177e4
LT
3214{
3215 unsigned long flags;
7d478721 3216 int wake_flags = WF_SYNC;
1da177e4
LT
3217
3218 if (unlikely(!q))
3219 return;
3220
3221 if (unlikely(!nr_exclusive))
7d478721 3222 wake_flags = 0;
1da177e4
LT
3223
3224 spin_lock_irqsave(&q->lock, flags);
7d478721 3225 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3226 spin_unlock_irqrestore(&q->lock, flags);
3227}
4ede816a
DL
3228EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3229
3230/*
3231 * __wake_up_sync - see __wake_up_sync_key()
3232 */
3233void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3234{
3235 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3236}
1da177e4
LT
3237EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3238
65eb3dc6
KD
3239/**
3240 * complete: - signals a single thread waiting on this completion
3241 * @x: holds the state of this particular completion
3242 *
3243 * This will wake up a single thread waiting on this completion. Threads will be
3244 * awakened in the same order in which they were queued.
3245 *
3246 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3247 *
3248 * It may be assumed that this function implies a write memory barrier before
3249 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3250 */
b15136e9 3251void complete(struct completion *x)
1da177e4
LT
3252{
3253 unsigned long flags;
3254
3255 spin_lock_irqsave(&x->wait.lock, flags);
3256 x->done++;
d9514f6c 3257 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3258 spin_unlock_irqrestore(&x->wait.lock, flags);
3259}
3260EXPORT_SYMBOL(complete);
3261
65eb3dc6
KD
3262/**
3263 * complete_all: - signals all threads waiting on this completion
3264 * @x: holds the state of this particular completion
3265 *
3266 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3267 *
3268 * It may be assumed that this function implies a write memory barrier before
3269 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3270 */
b15136e9 3271void complete_all(struct completion *x)
1da177e4
LT
3272{
3273 unsigned long flags;
3274
3275 spin_lock_irqsave(&x->wait.lock, flags);
3276 x->done += UINT_MAX/2;
d9514f6c 3277 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3278 spin_unlock_irqrestore(&x->wait.lock, flags);
3279}
3280EXPORT_SYMBOL(complete_all);
3281
8cbbe86d 3282static inline long __sched
686855f5
VD
3283do_wait_for_common(struct completion *x,
3284 long (*action)(long), long timeout, int state)
1da177e4 3285{
1da177e4
LT
3286 if (!x->done) {
3287 DECLARE_WAITQUEUE(wait, current);
3288
a93d2f17 3289 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3290 do {
94d3d824 3291 if (signal_pending_state(state, current)) {
ea71a546
ON
3292 timeout = -ERESTARTSYS;
3293 break;
8cbbe86d
AK
3294 }
3295 __set_current_state(state);
1da177e4 3296 spin_unlock_irq(&x->wait.lock);
686855f5 3297 timeout = action(timeout);
1da177e4 3298 spin_lock_irq(&x->wait.lock);
ea71a546 3299 } while (!x->done && timeout);
1da177e4 3300 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3301 if (!x->done)
3302 return timeout;
1da177e4
LT
3303 }
3304 x->done--;
ea71a546 3305 return timeout ?: 1;
1da177e4 3306}
1da177e4 3307
686855f5
VD
3308static inline long __sched
3309__wait_for_common(struct completion *x,
3310 long (*action)(long), long timeout, int state)
1da177e4 3311{
1da177e4
LT
3312 might_sleep();
3313
3314 spin_lock_irq(&x->wait.lock);
686855f5 3315 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 3316 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3317 return timeout;
3318}
1da177e4 3319
686855f5
VD
3320static long __sched
3321wait_for_common(struct completion *x, long timeout, int state)
3322{
3323 return __wait_for_common(x, schedule_timeout, timeout, state);
3324}
3325
3326static long __sched
3327wait_for_common_io(struct completion *x, long timeout, int state)
3328{
3329 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3330}
3331
65eb3dc6
KD
3332/**
3333 * wait_for_completion: - waits for completion of a task
3334 * @x: holds the state of this particular completion
3335 *
3336 * This waits to be signaled for completion of a specific task. It is NOT
3337 * interruptible and there is no timeout.
3338 *
3339 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3340 * and interrupt capability. Also see complete().
3341 */
b15136e9 3342void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3343{
3344 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3345}
8cbbe86d 3346EXPORT_SYMBOL(wait_for_completion);
1da177e4 3347
65eb3dc6
KD
3348/**
3349 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3350 * @x: holds the state of this particular completion
3351 * @timeout: timeout value in jiffies
3352 *
3353 * This waits for either a completion of a specific task to be signaled or for a
3354 * specified timeout to expire. The timeout is in jiffies. It is not
3355 * interruptible.
c6dc7f05
BF
3356 *
3357 * The return value is 0 if timed out, and positive (at least 1, or number of
3358 * jiffies left till timeout) if completed.
65eb3dc6 3359 */
b15136e9 3360unsigned long __sched
8cbbe86d 3361wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3362{
8cbbe86d 3363 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3364}
8cbbe86d 3365EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3366
686855f5
VD
3367/**
3368 * wait_for_completion_io: - waits for completion of a task
3369 * @x: holds the state of this particular completion
3370 *
3371 * This waits to be signaled for completion of a specific task. It is NOT
3372 * interruptible and there is no timeout. The caller is accounted as waiting
3373 * for IO.
3374 */
3375void __sched wait_for_completion_io(struct completion *x)
3376{
3377 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3378}
3379EXPORT_SYMBOL(wait_for_completion_io);
3380
3381/**
3382 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3383 * @x: holds the state of this particular completion
3384 * @timeout: timeout value in jiffies
3385 *
3386 * This waits for either a completion of a specific task to be signaled or for a
3387 * specified timeout to expire. The timeout is in jiffies. It is not
3388 * interruptible. The caller is accounted as waiting for IO.
3389 *
3390 * The return value is 0 if timed out, and positive (at least 1, or number of
3391 * jiffies left till timeout) if completed.
3392 */
3393unsigned long __sched
3394wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3395{
3396 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3397}
3398EXPORT_SYMBOL(wait_for_completion_io_timeout);
3399
65eb3dc6
KD
3400/**
3401 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3402 * @x: holds the state of this particular completion
3403 *
3404 * This waits for completion of a specific task to be signaled. It is
3405 * interruptible.
c6dc7f05
BF
3406 *
3407 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3408 */
8cbbe86d 3409int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3410{
51e97990
AK
3411 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3412 if (t == -ERESTARTSYS)
3413 return t;
3414 return 0;
0fec171c 3415}
8cbbe86d 3416EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3417
65eb3dc6
KD
3418/**
3419 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3420 * @x: holds the state of this particular completion
3421 * @timeout: timeout value in jiffies
3422 *
3423 * This waits for either a completion of a specific task to be signaled or for a
3424 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3425 *
3426 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3427 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3428 */
6bf41237 3429long __sched
8cbbe86d
AK
3430wait_for_completion_interruptible_timeout(struct completion *x,
3431 unsigned long timeout)
0fec171c 3432{
8cbbe86d 3433 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3434}
8cbbe86d 3435EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3436
65eb3dc6
KD
3437/**
3438 * wait_for_completion_killable: - waits for completion of a task (killable)
3439 * @x: holds the state of this particular completion
3440 *
3441 * This waits to be signaled for completion of a specific task. It can be
3442 * interrupted by a kill signal.
c6dc7f05
BF
3443 *
3444 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3445 */
009e577e
MW
3446int __sched wait_for_completion_killable(struct completion *x)
3447{
3448 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3449 if (t == -ERESTARTSYS)
3450 return t;
3451 return 0;
3452}
3453EXPORT_SYMBOL(wait_for_completion_killable);
3454
0aa12fb4
SW
3455/**
3456 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3457 * @x: holds the state of this particular completion
3458 * @timeout: timeout value in jiffies
3459 *
3460 * This waits for either a completion of a specific task to be
3461 * signaled or for a specified timeout to expire. It can be
3462 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3463 *
3464 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3465 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3466 */
6bf41237 3467long __sched
0aa12fb4
SW
3468wait_for_completion_killable_timeout(struct completion *x,
3469 unsigned long timeout)
3470{
3471 return wait_for_common(x, timeout, TASK_KILLABLE);
3472}
3473EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3474
be4de352
DC
3475/**
3476 * try_wait_for_completion - try to decrement a completion without blocking
3477 * @x: completion structure
3478 *
3479 * Returns: 0 if a decrement cannot be done without blocking
3480 * 1 if a decrement succeeded.
3481 *
3482 * If a completion is being used as a counting completion,
3483 * attempt to decrement the counter without blocking. This
3484 * enables us to avoid waiting if the resource the completion
3485 * is protecting is not available.
3486 */
3487bool try_wait_for_completion(struct completion *x)
3488{
7539a3b3 3489 unsigned long flags;
be4de352
DC
3490 int ret = 1;
3491
7539a3b3 3492 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3493 if (!x->done)
3494 ret = 0;
3495 else
3496 x->done--;
7539a3b3 3497 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3498 return ret;
3499}
3500EXPORT_SYMBOL(try_wait_for_completion);
3501
3502/**
3503 * completion_done - Test to see if a completion has any waiters
3504 * @x: completion structure
3505 *
3506 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3507 * 1 if there are no waiters.
3508 *
3509 */
3510bool completion_done(struct completion *x)
3511{
7539a3b3 3512 unsigned long flags;
be4de352
DC
3513 int ret = 1;
3514
7539a3b3 3515 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3516 if (!x->done)
3517 ret = 0;
7539a3b3 3518 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3519 return ret;
3520}
3521EXPORT_SYMBOL(completion_done);
3522
8cbbe86d
AK
3523static long __sched
3524sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3525{
0fec171c
IM
3526 unsigned long flags;
3527 wait_queue_t wait;
3528
3529 init_waitqueue_entry(&wait, current);
1da177e4 3530
8cbbe86d 3531 __set_current_state(state);
1da177e4 3532
8cbbe86d
AK
3533 spin_lock_irqsave(&q->lock, flags);
3534 __add_wait_queue(q, &wait);
3535 spin_unlock(&q->lock);
3536 timeout = schedule_timeout(timeout);
3537 spin_lock_irq(&q->lock);
3538 __remove_wait_queue(q, &wait);
3539 spin_unlock_irqrestore(&q->lock, flags);
3540
3541 return timeout;
3542}
3543
3544void __sched interruptible_sleep_on(wait_queue_head_t *q)
3545{
3546 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3547}
1da177e4
LT
3548EXPORT_SYMBOL(interruptible_sleep_on);
3549
0fec171c 3550long __sched
95cdf3b7 3551interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3552{
8cbbe86d 3553 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3554}
1da177e4
LT
3555EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3556
0fec171c 3557void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3558{
8cbbe86d 3559 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3560}
1da177e4
LT
3561EXPORT_SYMBOL(sleep_on);
3562
0fec171c 3563long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3564{
8cbbe86d 3565 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3566}
1da177e4
LT
3567EXPORT_SYMBOL(sleep_on_timeout);
3568
b29739f9
IM
3569#ifdef CONFIG_RT_MUTEXES
3570
3571/*
3572 * rt_mutex_setprio - set the current priority of a task
3573 * @p: task
3574 * @prio: prio value (kernel-internal form)
3575 *
3576 * This function changes the 'effective' priority of a task. It does
3577 * not touch ->normal_prio like __setscheduler().
3578 *
3579 * Used by the rt_mutex code to implement priority inheritance logic.
3580 */
36c8b586 3581void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3582{
83b699ed 3583 int oldprio, on_rq, running;
70b97a7f 3584 struct rq *rq;
83ab0aa0 3585 const struct sched_class *prev_class;
b29739f9
IM
3586
3587 BUG_ON(prio < 0 || prio > MAX_PRIO);
3588
0122ec5b 3589 rq = __task_rq_lock(p);
b29739f9 3590
1c4dd99b
TG
3591 /*
3592 * Idle task boosting is a nono in general. There is one
3593 * exception, when PREEMPT_RT and NOHZ is active:
3594 *
3595 * The idle task calls get_next_timer_interrupt() and holds
3596 * the timer wheel base->lock on the CPU and another CPU wants
3597 * to access the timer (probably to cancel it). We can safely
3598 * ignore the boosting request, as the idle CPU runs this code
3599 * with interrupts disabled and will complete the lock
3600 * protected section without being interrupted. So there is no
3601 * real need to boost.
3602 */
3603 if (unlikely(p == rq->idle)) {
3604 WARN_ON(p != rq->curr);
3605 WARN_ON(p->pi_blocked_on);
3606 goto out_unlock;
3607 }
3608
a8027073 3609 trace_sched_pi_setprio(p, prio);
d5f9f942 3610 oldprio = p->prio;
83ab0aa0 3611 prev_class = p->sched_class;
fd2f4419 3612 on_rq = p->on_rq;
051a1d1a 3613 running = task_current(rq, p);
0e1f3483 3614 if (on_rq)
69be72c1 3615 dequeue_task(rq, p, 0);
0e1f3483
HS
3616 if (running)
3617 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3618
3619 if (rt_prio(prio))
3620 p->sched_class = &rt_sched_class;
3621 else
3622 p->sched_class = &fair_sched_class;
3623
b29739f9
IM
3624 p->prio = prio;
3625
0e1f3483
HS
3626 if (running)
3627 p->sched_class->set_curr_task(rq);
da7a735e 3628 if (on_rq)
371fd7e7 3629 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3630
da7a735e 3631 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3632out_unlock:
0122ec5b 3633 __task_rq_unlock(rq);
b29739f9 3634}
b29739f9 3635#endif
36c8b586 3636void set_user_nice(struct task_struct *p, long nice)
1da177e4 3637{
dd41f596 3638 int old_prio, delta, on_rq;
1da177e4 3639 unsigned long flags;
70b97a7f 3640 struct rq *rq;
1da177e4
LT
3641
3642 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3643 return;
3644 /*
3645 * We have to be careful, if called from sys_setpriority(),
3646 * the task might be in the middle of scheduling on another CPU.
3647 */
3648 rq = task_rq_lock(p, &flags);
3649 /*
3650 * The RT priorities are set via sched_setscheduler(), but we still
3651 * allow the 'normal' nice value to be set - but as expected
3652 * it wont have any effect on scheduling until the task is
dd41f596 3653 * SCHED_FIFO/SCHED_RR:
1da177e4 3654 */
e05606d3 3655 if (task_has_rt_policy(p)) {
1da177e4
LT
3656 p->static_prio = NICE_TO_PRIO(nice);
3657 goto out_unlock;
3658 }
fd2f4419 3659 on_rq = p->on_rq;
c09595f6 3660 if (on_rq)
69be72c1 3661 dequeue_task(rq, p, 0);
1da177e4 3662
1da177e4 3663 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3664 set_load_weight(p);
b29739f9
IM
3665 old_prio = p->prio;
3666 p->prio = effective_prio(p);
3667 delta = p->prio - old_prio;
1da177e4 3668
dd41f596 3669 if (on_rq) {
371fd7e7 3670 enqueue_task(rq, p, 0);
1da177e4 3671 /*
d5f9f942
AM
3672 * If the task increased its priority or is running and
3673 * lowered its priority, then reschedule its CPU:
1da177e4 3674 */
d5f9f942 3675 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3676 resched_task(rq->curr);
3677 }
3678out_unlock:
0122ec5b 3679 task_rq_unlock(rq, p, &flags);
1da177e4 3680}
1da177e4
LT
3681EXPORT_SYMBOL(set_user_nice);
3682
e43379f1
MM
3683/*
3684 * can_nice - check if a task can reduce its nice value
3685 * @p: task
3686 * @nice: nice value
3687 */
36c8b586 3688int can_nice(const struct task_struct *p, const int nice)
e43379f1 3689{
024f4747
MM
3690 /* convert nice value [19,-20] to rlimit style value [1,40] */
3691 int nice_rlim = 20 - nice;
48f24c4d 3692
78d7d407 3693 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3694 capable(CAP_SYS_NICE));
3695}
3696
1da177e4
LT
3697#ifdef __ARCH_WANT_SYS_NICE
3698
3699/*
3700 * sys_nice - change the priority of the current process.
3701 * @increment: priority increment
3702 *
3703 * sys_setpriority is a more generic, but much slower function that
3704 * does similar things.
3705 */
5add95d4 3706SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3707{
48f24c4d 3708 long nice, retval;
1da177e4
LT
3709
3710 /*
3711 * Setpriority might change our priority at the same moment.
3712 * We don't have to worry. Conceptually one call occurs first
3713 * and we have a single winner.
3714 */
e43379f1
MM
3715 if (increment < -40)
3716 increment = -40;
1da177e4
LT
3717 if (increment > 40)
3718 increment = 40;
3719
2b8f836f 3720 nice = TASK_NICE(current) + increment;
1da177e4
LT
3721 if (nice < -20)
3722 nice = -20;
3723 if (nice > 19)
3724 nice = 19;
3725
e43379f1
MM
3726 if (increment < 0 && !can_nice(current, nice))
3727 return -EPERM;
3728
1da177e4
LT
3729 retval = security_task_setnice(current, nice);
3730 if (retval)
3731 return retval;
3732
3733 set_user_nice(current, nice);
3734 return 0;
3735}
3736
3737#endif
3738
3739/**
3740 * task_prio - return the priority value of a given task.
3741 * @p: the task in question.
3742 *
3743 * This is the priority value as seen by users in /proc.
3744 * RT tasks are offset by -200. Normal tasks are centered
3745 * around 0, value goes from -16 to +15.
3746 */
36c8b586 3747int task_prio(const struct task_struct *p)
1da177e4
LT
3748{
3749 return p->prio - MAX_RT_PRIO;
3750}
3751
3752/**
3753 * task_nice - return the nice value of a given task.
3754 * @p: the task in question.
3755 */
36c8b586 3756int task_nice(const struct task_struct *p)
1da177e4
LT
3757{
3758 return TASK_NICE(p);
3759}
150d8bed 3760EXPORT_SYMBOL(task_nice);
1da177e4
LT
3761
3762/**
3763 * idle_cpu - is a given cpu idle currently?
3764 * @cpu: the processor in question.
3765 */
3766int idle_cpu(int cpu)
3767{
908a3283
TG
3768 struct rq *rq = cpu_rq(cpu);
3769
3770 if (rq->curr != rq->idle)
3771 return 0;
3772
3773 if (rq->nr_running)
3774 return 0;
3775
3776#ifdef CONFIG_SMP
3777 if (!llist_empty(&rq->wake_list))
3778 return 0;
3779#endif
3780
3781 return 1;
1da177e4
LT
3782}
3783
1da177e4
LT
3784/**
3785 * idle_task - return the idle task for a given cpu.
3786 * @cpu: the processor in question.
3787 */
36c8b586 3788struct task_struct *idle_task(int cpu)
1da177e4
LT
3789{
3790 return cpu_rq(cpu)->idle;
3791}
3792
3793/**
3794 * find_process_by_pid - find a process with a matching PID value.
3795 * @pid: the pid in question.
3796 */
a9957449 3797static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3798{
228ebcbe 3799 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3800}
3801
3802/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3803static void
3804__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3805{
1da177e4
LT
3806 p->policy = policy;
3807 p->rt_priority = prio;
b29739f9
IM
3808 p->normal_prio = normal_prio(p);
3809 /* we are holding p->pi_lock already */
3810 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3811 if (rt_prio(p->prio))
3812 p->sched_class = &rt_sched_class;
3813 else
3814 p->sched_class = &fair_sched_class;
2dd73a4f 3815 set_load_weight(p);
1da177e4
LT
3816}
3817
c69e8d9c
DH
3818/*
3819 * check the target process has a UID that matches the current process's
3820 */
3821static bool check_same_owner(struct task_struct *p)
3822{
3823 const struct cred *cred = current_cred(), *pcred;
3824 bool match;
3825
3826 rcu_read_lock();
3827 pcred = __task_cred(p);
9c806aa0
EB
3828 match = (uid_eq(cred->euid, pcred->euid) ||
3829 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3830 rcu_read_unlock();
3831 return match;
3832}
3833
961ccddd 3834static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3835 const struct sched_param *param, bool user)
1da177e4 3836{
83b699ed 3837 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3838 unsigned long flags;
83ab0aa0 3839 const struct sched_class *prev_class;
70b97a7f 3840 struct rq *rq;
ca94c442 3841 int reset_on_fork;
1da177e4 3842
66e5393a
SR
3843 /* may grab non-irq protected spin_locks */
3844 BUG_ON(in_interrupt());
1da177e4
LT
3845recheck:
3846 /* double check policy once rq lock held */
ca94c442
LP
3847 if (policy < 0) {
3848 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3849 policy = oldpolicy = p->policy;
ca94c442
LP
3850 } else {
3851 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3852 policy &= ~SCHED_RESET_ON_FORK;
3853
3854 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3855 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3856 policy != SCHED_IDLE)
3857 return -EINVAL;
3858 }
3859
1da177e4
LT
3860 /*
3861 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3862 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3863 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3864 */
3865 if (param->sched_priority < 0 ||
95cdf3b7 3866 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3867 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3868 return -EINVAL;
e05606d3 3869 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3870 return -EINVAL;
3871
37e4ab3f
OC
3872 /*
3873 * Allow unprivileged RT tasks to decrease priority:
3874 */
961ccddd 3875 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3876 if (rt_policy(policy)) {
a44702e8
ON
3877 unsigned long rlim_rtprio =
3878 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3879
3880 /* can't set/change the rt policy */
3881 if (policy != p->policy && !rlim_rtprio)
3882 return -EPERM;
3883
3884 /* can't increase priority */
3885 if (param->sched_priority > p->rt_priority &&
3886 param->sched_priority > rlim_rtprio)
3887 return -EPERM;
3888 }
c02aa73b 3889
dd41f596 3890 /*
c02aa73b
DH
3891 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3892 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3893 */
c02aa73b
DH
3894 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3895 if (!can_nice(p, TASK_NICE(p)))
3896 return -EPERM;
3897 }
5fe1d75f 3898
37e4ab3f 3899 /* can't change other user's priorities */
c69e8d9c 3900 if (!check_same_owner(p))
37e4ab3f 3901 return -EPERM;
ca94c442
LP
3902
3903 /* Normal users shall not reset the sched_reset_on_fork flag */
3904 if (p->sched_reset_on_fork && !reset_on_fork)
3905 return -EPERM;
37e4ab3f 3906 }
1da177e4 3907
725aad24 3908 if (user) {
b0ae1981 3909 retval = security_task_setscheduler(p);
725aad24
JF
3910 if (retval)
3911 return retval;
3912 }
3913
b29739f9
IM
3914 /*
3915 * make sure no PI-waiters arrive (or leave) while we are
3916 * changing the priority of the task:
0122ec5b 3917 *
25985edc 3918 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3919 * runqueue lock must be held.
3920 */
0122ec5b 3921 rq = task_rq_lock(p, &flags);
dc61b1d6 3922
34f971f6
PZ
3923 /*
3924 * Changing the policy of the stop threads its a very bad idea
3925 */
3926 if (p == rq->stop) {
0122ec5b 3927 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3928 return -EINVAL;
3929 }
3930
a51e9198
DF
3931 /*
3932 * If not changing anything there's no need to proceed further:
3933 */
3934 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3935 param->sched_priority == p->rt_priority))) {
45afb173 3936 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3937 return 0;
3938 }
3939
dc61b1d6
PZ
3940#ifdef CONFIG_RT_GROUP_SCHED
3941 if (user) {
3942 /*
3943 * Do not allow realtime tasks into groups that have no runtime
3944 * assigned.
3945 */
3946 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3947 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3948 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3949 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3950 return -EPERM;
3951 }
3952 }
3953#endif
3954
1da177e4
LT
3955 /* recheck policy now with rq lock held */
3956 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3957 policy = oldpolicy = -1;
0122ec5b 3958 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3959 goto recheck;
3960 }
fd2f4419 3961 on_rq = p->on_rq;
051a1d1a 3962 running = task_current(rq, p);
0e1f3483 3963 if (on_rq)
4ca9b72b 3964 dequeue_task(rq, p, 0);
0e1f3483
HS
3965 if (running)
3966 p->sched_class->put_prev_task(rq, p);
f6b53205 3967
ca94c442
LP
3968 p->sched_reset_on_fork = reset_on_fork;
3969
1da177e4 3970 oldprio = p->prio;
83ab0aa0 3971 prev_class = p->sched_class;
dd41f596 3972 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3973
0e1f3483
HS
3974 if (running)
3975 p->sched_class->set_curr_task(rq);
da7a735e 3976 if (on_rq)
4ca9b72b 3977 enqueue_task(rq, p, 0);
cb469845 3978
da7a735e 3979 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3980 task_rq_unlock(rq, p, &flags);
b29739f9 3981
95e02ca9
TG
3982 rt_mutex_adjust_pi(p);
3983
1da177e4
LT
3984 return 0;
3985}
961ccddd
RR
3986
3987/**
3988 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3989 * @p: the task in question.
3990 * @policy: new policy.
3991 * @param: structure containing the new RT priority.
3992 *
3993 * NOTE that the task may be already dead.
3994 */
3995int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3996 const struct sched_param *param)
961ccddd
RR
3997{
3998 return __sched_setscheduler(p, policy, param, true);
3999}
1da177e4
LT
4000EXPORT_SYMBOL_GPL(sched_setscheduler);
4001
961ccddd
RR
4002/**
4003 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4004 * @p: the task in question.
4005 * @policy: new policy.
4006 * @param: structure containing the new RT priority.
4007 *
4008 * Just like sched_setscheduler, only don't bother checking if the
4009 * current context has permission. For example, this is needed in
4010 * stop_machine(): we create temporary high priority worker threads,
4011 * but our caller might not have that capability.
4012 */
4013int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4014 const struct sched_param *param)
961ccddd
RR
4015{
4016 return __sched_setscheduler(p, policy, param, false);
4017}
4018
95cdf3b7
IM
4019static int
4020do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4021{
1da177e4
LT
4022 struct sched_param lparam;
4023 struct task_struct *p;
36c8b586 4024 int retval;
1da177e4
LT
4025
4026 if (!param || pid < 0)
4027 return -EINVAL;
4028 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4029 return -EFAULT;
5fe1d75f
ON
4030
4031 rcu_read_lock();
4032 retval = -ESRCH;
1da177e4 4033 p = find_process_by_pid(pid);
5fe1d75f
ON
4034 if (p != NULL)
4035 retval = sched_setscheduler(p, policy, &lparam);
4036 rcu_read_unlock();
36c8b586 4037
1da177e4
LT
4038 return retval;
4039}
4040
4041/**
4042 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4043 * @pid: the pid in question.
4044 * @policy: new policy.
4045 * @param: structure containing the new RT priority.
4046 */
5add95d4
HC
4047SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4048 struct sched_param __user *, param)
1da177e4 4049{
c21761f1
JB
4050 /* negative values for policy are not valid */
4051 if (policy < 0)
4052 return -EINVAL;
4053
1da177e4
LT
4054 return do_sched_setscheduler(pid, policy, param);
4055}
4056
4057/**
4058 * sys_sched_setparam - set/change the RT priority of a thread
4059 * @pid: the pid in question.
4060 * @param: structure containing the new RT priority.
4061 */
5add95d4 4062SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4063{
4064 return do_sched_setscheduler(pid, -1, param);
4065}
4066
4067/**
4068 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4069 * @pid: the pid in question.
4070 */
5add95d4 4071SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4072{
36c8b586 4073 struct task_struct *p;
3a5c359a 4074 int retval;
1da177e4
LT
4075
4076 if (pid < 0)
3a5c359a 4077 return -EINVAL;
1da177e4
LT
4078
4079 retval = -ESRCH;
5fe85be0 4080 rcu_read_lock();
1da177e4
LT
4081 p = find_process_by_pid(pid);
4082 if (p) {
4083 retval = security_task_getscheduler(p);
4084 if (!retval)
ca94c442
LP
4085 retval = p->policy
4086 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4087 }
5fe85be0 4088 rcu_read_unlock();
1da177e4
LT
4089 return retval;
4090}
4091
4092/**
ca94c442 4093 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4094 * @pid: the pid in question.
4095 * @param: structure containing the RT priority.
4096 */
5add95d4 4097SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4098{
4099 struct sched_param lp;
36c8b586 4100 struct task_struct *p;
3a5c359a 4101 int retval;
1da177e4
LT
4102
4103 if (!param || pid < 0)
3a5c359a 4104 return -EINVAL;
1da177e4 4105
5fe85be0 4106 rcu_read_lock();
1da177e4
LT
4107 p = find_process_by_pid(pid);
4108 retval = -ESRCH;
4109 if (!p)
4110 goto out_unlock;
4111
4112 retval = security_task_getscheduler(p);
4113 if (retval)
4114 goto out_unlock;
4115
4116 lp.sched_priority = p->rt_priority;
5fe85be0 4117 rcu_read_unlock();
1da177e4
LT
4118
4119 /*
4120 * This one might sleep, we cannot do it with a spinlock held ...
4121 */
4122 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4123
1da177e4
LT
4124 return retval;
4125
4126out_unlock:
5fe85be0 4127 rcu_read_unlock();
1da177e4
LT
4128 return retval;
4129}
4130
96f874e2 4131long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4132{
5a16f3d3 4133 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4134 struct task_struct *p;
4135 int retval;
1da177e4 4136
95402b38 4137 get_online_cpus();
23f5d142 4138 rcu_read_lock();
1da177e4
LT
4139
4140 p = find_process_by_pid(pid);
4141 if (!p) {
23f5d142 4142 rcu_read_unlock();
95402b38 4143 put_online_cpus();
1da177e4
LT
4144 return -ESRCH;
4145 }
4146
23f5d142 4147 /* Prevent p going away */
1da177e4 4148 get_task_struct(p);
23f5d142 4149 rcu_read_unlock();
1da177e4 4150
5a16f3d3
RR
4151 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4152 retval = -ENOMEM;
4153 goto out_put_task;
4154 }
4155 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4156 retval = -ENOMEM;
4157 goto out_free_cpus_allowed;
4158 }
1da177e4 4159 retval = -EPERM;
4c44aaaf
EB
4160 if (!check_same_owner(p)) {
4161 rcu_read_lock();
4162 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4163 rcu_read_unlock();
4164 goto out_unlock;
4165 }
4166 rcu_read_unlock();
4167 }
1da177e4 4168
b0ae1981 4169 retval = security_task_setscheduler(p);
e7834f8f
DQ
4170 if (retval)
4171 goto out_unlock;
4172
5a16f3d3
RR
4173 cpuset_cpus_allowed(p, cpus_allowed);
4174 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4175again:
5a16f3d3 4176 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4177
8707d8b8 4178 if (!retval) {
5a16f3d3
RR
4179 cpuset_cpus_allowed(p, cpus_allowed);
4180 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4181 /*
4182 * We must have raced with a concurrent cpuset
4183 * update. Just reset the cpus_allowed to the
4184 * cpuset's cpus_allowed
4185 */
5a16f3d3 4186 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4187 goto again;
4188 }
4189 }
1da177e4 4190out_unlock:
5a16f3d3
RR
4191 free_cpumask_var(new_mask);
4192out_free_cpus_allowed:
4193 free_cpumask_var(cpus_allowed);
4194out_put_task:
1da177e4 4195 put_task_struct(p);
95402b38 4196 put_online_cpus();
1da177e4
LT
4197 return retval;
4198}
4199
4200static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4201 struct cpumask *new_mask)
1da177e4 4202{
96f874e2
RR
4203 if (len < cpumask_size())
4204 cpumask_clear(new_mask);
4205 else if (len > cpumask_size())
4206 len = cpumask_size();
4207
1da177e4
LT
4208 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4209}
4210
4211/**
4212 * sys_sched_setaffinity - set the cpu affinity of a process
4213 * @pid: pid of the process
4214 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4215 * @user_mask_ptr: user-space pointer to the new cpu mask
4216 */
5add95d4
HC
4217SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4218 unsigned long __user *, user_mask_ptr)
1da177e4 4219{
5a16f3d3 4220 cpumask_var_t new_mask;
1da177e4
LT
4221 int retval;
4222
5a16f3d3
RR
4223 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4224 return -ENOMEM;
1da177e4 4225
5a16f3d3
RR
4226 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4227 if (retval == 0)
4228 retval = sched_setaffinity(pid, new_mask);
4229 free_cpumask_var(new_mask);
4230 return retval;
1da177e4
LT
4231}
4232
96f874e2 4233long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4234{
36c8b586 4235 struct task_struct *p;
31605683 4236 unsigned long flags;
1da177e4 4237 int retval;
1da177e4 4238
95402b38 4239 get_online_cpus();
23f5d142 4240 rcu_read_lock();
1da177e4
LT
4241
4242 retval = -ESRCH;
4243 p = find_process_by_pid(pid);
4244 if (!p)
4245 goto out_unlock;
4246
e7834f8f
DQ
4247 retval = security_task_getscheduler(p);
4248 if (retval)
4249 goto out_unlock;
4250
013fdb80 4251 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4252 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4253 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4254
4255out_unlock:
23f5d142 4256 rcu_read_unlock();
95402b38 4257 put_online_cpus();
1da177e4 4258
9531b62f 4259 return retval;
1da177e4
LT
4260}
4261
4262/**
4263 * sys_sched_getaffinity - get the cpu affinity of a process
4264 * @pid: pid of the process
4265 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4266 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4267 */
5add95d4
HC
4268SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4269 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4270{
4271 int ret;
f17c8607 4272 cpumask_var_t mask;
1da177e4 4273
84fba5ec 4274 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4275 return -EINVAL;
4276 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4277 return -EINVAL;
4278
f17c8607
RR
4279 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4280 return -ENOMEM;
1da177e4 4281
f17c8607
RR
4282 ret = sched_getaffinity(pid, mask);
4283 if (ret == 0) {
8bc037fb 4284 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4285
4286 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4287 ret = -EFAULT;
4288 else
cd3d8031 4289 ret = retlen;
f17c8607
RR
4290 }
4291 free_cpumask_var(mask);
1da177e4 4292
f17c8607 4293 return ret;
1da177e4
LT
4294}
4295
4296/**
4297 * sys_sched_yield - yield the current processor to other threads.
4298 *
dd41f596
IM
4299 * This function yields the current CPU to other tasks. If there are no
4300 * other threads running on this CPU then this function will return.
1da177e4 4301 */
5add95d4 4302SYSCALL_DEFINE0(sched_yield)
1da177e4 4303{
70b97a7f 4304 struct rq *rq = this_rq_lock();
1da177e4 4305
2d72376b 4306 schedstat_inc(rq, yld_count);
4530d7ab 4307 current->sched_class->yield_task(rq);
1da177e4
LT
4308
4309 /*
4310 * Since we are going to call schedule() anyway, there's
4311 * no need to preempt or enable interrupts:
4312 */
4313 __release(rq->lock);
8a25d5de 4314 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4315 do_raw_spin_unlock(&rq->lock);
ba74c144 4316 sched_preempt_enable_no_resched();
1da177e4
LT
4317
4318 schedule();
4319
4320 return 0;
4321}
4322
d86ee480
PZ
4323static inline int should_resched(void)
4324{
4325 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4326}
4327
e7b38404 4328static void __cond_resched(void)
1da177e4 4329{
e7aaaa69 4330 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4331 __schedule();
e7aaaa69 4332 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4333}
4334
02b67cc3 4335int __sched _cond_resched(void)
1da177e4 4336{
d86ee480 4337 if (should_resched()) {
1da177e4
LT
4338 __cond_resched();
4339 return 1;
4340 }
4341 return 0;
4342}
02b67cc3 4343EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4344
4345/*
613afbf8 4346 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4347 * call schedule, and on return reacquire the lock.
4348 *
41a2d6cf 4349 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4350 * operations here to prevent schedule() from being called twice (once via
4351 * spin_unlock(), once by hand).
4352 */
613afbf8 4353int __cond_resched_lock(spinlock_t *lock)
1da177e4 4354{
d86ee480 4355 int resched = should_resched();
6df3cecb
JK
4356 int ret = 0;
4357
f607c668
PZ
4358 lockdep_assert_held(lock);
4359
95c354fe 4360 if (spin_needbreak(lock) || resched) {
1da177e4 4361 spin_unlock(lock);
d86ee480 4362 if (resched)
95c354fe
NP
4363 __cond_resched();
4364 else
4365 cpu_relax();
6df3cecb 4366 ret = 1;
1da177e4 4367 spin_lock(lock);
1da177e4 4368 }
6df3cecb 4369 return ret;
1da177e4 4370}
613afbf8 4371EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4372
613afbf8 4373int __sched __cond_resched_softirq(void)
1da177e4
LT
4374{
4375 BUG_ON(!in_softirq());
4376
d86ee480 4377 if (should_resched()) {
98d82567 4378 local_bh_enable();
1da177e4
LT
4379 __cond_resched();
4380 local_bh_disable();
4381 return 1;
4382 }
4383 return 0;
4384}
613afbf8 4385EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4386
1da177e4
LT
4387/**
4388 * yield - yield the current processor to other threads.
4389 *
8e3fabfd
PZ
4390 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4391 *
4392 * The scheduler is at all times free to pick the calling task as the most
4393 * eligible task to run, if removing the yield() call from your code breaks
4394 * it, its already broken.
4395 *
4396 * Typical broken usage is:
4397 *
4398 * while (!event)
4399 * yield();
4400 *
4401 * where one assumes that yield() will let 'the other' process run that will
4402 * make event true. If the current task is a SCHED_FIFO task that will never
4403 * happen. Never use yield() as a progress guarantee!!
4404 *
4405 * If you want to use yield() to wait for something, use wait_event().
4406 * If you want to use yield() to be 'nice' for others, use cond_resched().
4407 * If you still want to use yield(), do not!
1da177e4
LT
4408 */
4409void __sched yield(void)
4410{
4411 set_current_state(TASK_RUNNING);
4412 sys_sched_yield();
4413}
1da177e4
LT
4414EXPORT_SYMBOL(yield);
4415
d95f4122
MG
4416/**
4417 * yield_to - yield the current processor to another thread in
4418 * your thread group, or accelerate that thread toward the
4419 * processor it's on.
16addf95
RD
4420 * @p: target task
4421 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4422 *
4423 * It's the caller's job to ensure that the target task struct
4424 * can't go away on us before we can do any checks.
4425 *
7b270f60
PZ
4426 * Returns:
4427 * true (>0) if we indeed boosted the target task.
4428 * false (0) if we failed to boost the target.
4429 * -ESRCH if there's no task to yield to.
d95f4122
MG
4430 */
4431bool __sched yield_to(struct task_struct *p, bool preempt)
4432{
4433 struct task_struct *curr = current;
4434 struct rq *rq, *p_rq;
4435 unsigned long flags;
c3c18640 4436 int yielded = 0;
d95f4122
MG
4437
4438 local_irq_save(flags);
4439 rq = this_rq();
4440
4441again:
4442 p_rq = task_rq(p);
7b270f60
PZ
4443 /*
4444 * If we're the only runnable task on the rq and target rq also
4445 * has only one task, there's absolutely no point in yielding.
4446 */
4447 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4448 yielded = -ESRCH;
4449 goto out_irq;
4450 }
4451
d95f4122
MG
4452 double_rq_lock(rq, p_rq);
4453 while (task_rq(p) != p_rq) {
4454 double_rq_unlock(rq, p_rq);
4455 goto again;
4456 }
4457
4458 if (!curr->sched_class->yield_to_task)
7b270f60 4459 goto out_unlock;
d95f4122
MG
4460
4461 if (curr->sched_class != p->sched_class)
7b270f60 4462 goto out_unlock;
d95f4122
MG
4463
4464 if (task_running(p_rq, p) || p->state)
7b270f60 4465 goto out_unlock;
d95f4122
MG
4466
4467 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4468 if (yielded) {
d95f4122 4469 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4470 /*
4471 * Make p's CPU reschedule; pick_next_entity takes care of
4472 * fairness.
4473 */
4474 if (preempt && rq != p_rq)
4475 resched_task(p_rq->curr);
4476 }
d95f4122 4477
7b270f60 4478out_unlock:
d95f4122 4479 double_rq_unlock(rq, p_rq);
7b270f60 4480out_irq:
d95f4122
MG
4481 local_irq_restore(flags);
4482
7b270f60 4483 if (yielded > 0)
d95f4122
MG
4484 schedule();
4485
4486 return yielded;
4487}
4488EXPORT_SYMBOL_GPL(yield_to);
4489
1da177e4 4490/*
41a2d6cf 4491 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4492 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4493 */
4494void __sched io_schedule(void)
4495{
54d35f29 4496 struct rq *rq = raw_rq();
1da177e4 4497
0ff92245 4498 delayacct_blkio_start();
1da177e4 4499 atomic_inc(&rq->nr_iowait);
73c10101 4500 blk_flush_plug(current);
8f0dfc34 4501 current->in_iowait = 1;
1da177e4 4502 schedule();
8f0dfc34 4503 current->in_iowait = 0;
1da177e4 4504 atomic_dec(&rq->nr_iowait);
0ff92245 4505 delayacct_blkio_end();
1da177e4 4506}
1da177e4
LT
4507EXPORT_SYMBOL(io_schedule);
4508
4509long __sched io_schedule_timeout(long timeout)
4510{
54d35f29 4511 struct rq *rq = raw_rq();
1da177e4
LT
4512 long ret;
4513
0ff92245 4514 delayacct_blkio_start();
1da177e4 4515 atomic_inc(&rq->nr_iowait);
73c10101 4516 blk_flush_plug(current);
8f0dfc34 4517 current->in_iowait = 1;
1da177e4 4518 ret = schedule_timeout(timeout);
8f0dfc34 4519 current->in_iowait = 0;
1da177e4 4520 atomic_dec(&rq->nr_iowait);
0ff92245 4521 delayacct_blkio_end();
1da177e4
LT
4522 return ret;
4523}
4524
4525/**
4526 * sys_sched_get_priority_max - return maximum RT priority.
4527 * @policy: scheduling class.
4528 *
4529 * this syscall returns the maximum rt_priority that can be used
4530 * by a given scheduling class.
4531 */
5add95d4 4532SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4533{
4534 int ret = -EINVAL;
4535
4536 switch (policy) {
4537 case SCHED_FIFO:
4538 case SCHED_RR:
4539 ret = MAX_USER_RT_PRIO-1;
4540 break;
4541 case SCHED_NORMAL:
b0a9499c 4542 case SCHED_BATCH:
dd41f596 4543 case SCHED_IDLE:
1da177e4
LT
4544 ret = 0;
4545 break;
4546 }
4547 return ret;
4548}
4549
4550/**
4551 * sys_sched_get_priority_min - return minimum RT priority.
4552 * @policy: scheduling class.
4553 *
4554 * this syscall returns the minimum rt_priority that can be used
4555 * by a given scheduling class.
4556 */
5add95d4 4557SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4558{
4559 int ret = -EINVAL;
4560
4561 switch (policy) {
4562 case SCHED_FIFO:
4563 case SCHED_RR:
4564 ret = 1;
4565 break;
4566 case SCHED_NORMAL:
b0a9499c 4567 case SCHED_BATCH:
dd41f596 4568 case SCHED_IDLE:
1da177e4
LT
4569 ret = 0;
4570 }
4571 return ret;
4572}
4573
4574/**
4575 * sys_sched_rr_get_interval - return the default timeslice of a process.
4576 * @pid: pid of the process.
4577 * @interval: userspace pointer to the timeslice value.
4578 *
4579 * this syscall writes the default timeslice value of a given process
4580 * into the user-space timespec buffer. A value of '0' means infinity.
4581 */
17da2bd9 4582SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4583 struct timespec __user *, interval)
1da177e4 4584{
36c8b586 4585 struct task_struct *p;
a4ec24b4 4586 unsigned int time_slice;
dba091b9
TG
4587 unsigned long flags;
4588 struct rq *rq;
3a5c359a 4589 int retval;
1da177e4 4590 struct timespec t;
1da177e4
LT
4591
4592 if (pid < 0)
3a5c359a 4593 return -EINVAL;
1da177e4
LT
4594
4595 retval = -ESRCH;
1a551ae7 4596 rcu_read_lock();
1da177e4
LT
4597 p = find_process_by_pid(pid);
4598 if (!p)
4599 goto out_unlock;
4600
4601 retval = security_task_getscheduler(p);
4602 if (retval)
4603 goto out_unlock;
4604
dba091b9
TG
4605 rq = task_rq_lock(p, &flags);
4606 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4607 task_rq_unlock(rq, p, &flags);
a4ec24b4 4608
1a551ae7 4609 rcu_read_unlock();
a4ec24b4 4610 jiffies_to_timespec(time_slice, &t);
1da177e4 4611 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4612 return retval;
3a5c359a 4613
1da177e4 4614out_unlock:
1a551ae7 4615 rcu_read_unlock();
1da177e4
LT
4616 return retval;
4617}
4618
7c731e0a 4619static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4620
82a1fcb9 4621void sched_show_task(struct task_struct *p)
1da177e4 4622{
1da177e4 4623 unsigned long free = 0;
4e79752c 4624 int ppid;
36c8b586 4625 unsigned state;
1da177e4 4626
1da177e4 4627 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4628 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4629 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4630#if BITS_PER_LONG == 32
1da177e4 4631 if (state == TASK_RUNNING)
3df0fc5b 4632 printk(KERN_CONT " running ");
1da177e4 4633 else
3df0fc5b 4634 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4635#else
4636 if (state == TASK_RUNNING)
3df0fc5b 4637 printk(KERN_CONT " running task ");
1da177e4 4638 else
3df0fc5b 4639 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4640#endif
4641#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4642 free = stack_not_used(p);
1da177e4 4643#endif
4e79752c
PM
4644 rcu_read_lock();
4645 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4646 rcu_read_unlock();
3df0fc5b 4647 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4648 task_pid_nr(p), ppid,
aa47b7e0 4649 (unsigned long)task_thread_info(p)->flags);
1da177e4 4650
5fb5e6de 4651 show_stack(p, NULL);
1da177e4
LT
4652}
4653
e59e2ae2 4654void show_state_filter(unsigned long state_filter)
1da177e4 4655{
36c8b586 4656 struct task_struct *g, *p;
1da177e4 4657
4bd77321 4658#if BITS_PER_LONG == 32
3df0fc5b
PZ
4659 printk(KERN_INFO
4660 " task PC stack pid father\n");
1da177e4 4661#else
3df0fc5b
PZ
4662 printk(KERN_INFO
4663 " task PC stack pid father\n");
1da177e4 4664#endif
510f5acc 4665 rcu_read_lock();
1da177e4
LT
4666 do_each_thread(g, p) {
4667 /*
4668 * reset the NMI-timeout, listing all files on a slow
25985edc 4669 * console might take a lot of time:
1da177e4
LT
4670 */
4671 touch_nmi_watchdog();
39bc89fd 4672 if (!state_filter || (p->state & state_filter))
82a1fcb9 4673 sched_show_task(p);
1da177e4
LT
4674 } while_each_thread(g, p);
4675
04c9167f
JF
4676 touch_all_softlockup_watchdogs();
4677
dd41f596
IM
4678#ifdef CONFIG_SCHED_DEBUG
4679 sysrq_sched_debug_show();
4680#endif
510f5acc 4681 rcu_read_unlock();
e59e2ae2
IM
4682 /*
4683 * Only show locks if all tasks are dumped:
4684 */
93335a21 4685 if (!state_filter)
e59e2ae2 4686 debug_show_all_locks();
1da177e4
LT
4687}
4688
1df21055
IM
4689void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4690{
dd41f596 4691 idle->sched_class = &idle_sched_class;
1df21055
IM
4692}
4693
f340c0d1
IM
4694/**
4695 * init_idle - set up an idle thread for a given CPU
4696 * @idle: task in question
4697 * @cpu: cpu the idle task belongs to
4698 *
4699 * NOTE: this function does not set the idle thread's NEED_RESCHED
4700 * flag, to make booting more robust.
4701 */
5c1e1767 4702void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4703{
70b97a7f 4704 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4705 unsigned long flags;
4706
05fa785c 4707 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4708
dd41f596 4709 __sched_fork(idle);
06b83b5f 4710 idle->state = TASK_RUNNING;
dd41f596
IM
4711 idle->se.exec_start = sched_clock();
4712
1e1b6c51 4713 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4714 /*
4715 * We're having a chicken and egg problem, even though we are
4716 * holding rq->lock, the cpu isn't yet set to this cpu so the
4717 * lockdep check in task_group() will fail.
4718 *
4719 * Similar case to sched_fork(). / Alternatively we could
4720 * use task_rq_lock() here and obtain the other rq->lock.
4721 *
4722 * Silence PROVE_RCU
4723 */
4724 rcu_read_lock();
dd41f596 4725 __set_task_cpu(idle, cpu);
6506cf6c 4726 rcu_read_unlock();
1da177e4 4727
1da177e4 4728 rq->curr = rq->idle = idle;
3ca7a440
PZ
4729#if defined(CONFIG_SMP)
4730 idle->on_cpu = 1;
4866cde0 4731#endif
05fa785c 4732 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4733
4734 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4735 task_thread_info(idle)->preempt_count = 0;
55cd5340 4736
dd41f596
IM
4737 /*
4738 * The idle tasks have their own, simple scheduling class:
4739 */
4740 idle->sched_class = &idle_sched_class;
868baf07 4741 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4742 vtime_init_idle(idle);
f1c6f1a7
CE
4743#if defined(CONFIG_SMP)
4744 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4745#endif
19978ca6
IM
4746}
4747
1da177e4 4748#ifdef CONFIG_SMP
1e1b6c51
KM
4749void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4750{
4751 if (p->sched_class && p->sched_class->set_cpus_allowed)
4752 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4753
4754 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4755 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4756}
4757
1da177e4
LT
4758/*
4759 * This is how migration works:
4760 *
969c7921
TH
4761 * 1) we invoke migration_cpu_stop() on the target CPU using
4762 * stop_one_cpu().
4763 * 2) stopper starts to run (implicitly forcing the migrated thread
4764 * off the CPU)
4765 * 3) it checks whether the migrated task is still in the wrong runqueue.
4766 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4767 * it and puts it into the right queue.
969c7921
TH
4768 * 5) stopper completes and stop_one_cpu() returns and the migration
4769 * is done.
1da177e4
LT
4770 */
4771
4772/*
4773 * Change a given task's CPU affinity. Migrate the thread to a
4774 * proper CPU and schedule it away if the CPU it's executing on
4775 * is removed from the allowed bitmask.
4776 *
4777 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4778 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4779 * call is not atomic; no spinlocks may be held.
4780 */
96f874e2 4781int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4782{
4783 unsigned long flags;
70b97a7f 4784 struct rq *rq;
969c7921 4785 unsigned int dest_cpu;
48f24c4d 4786 int ret = 0;
1da177e4
LT
4787
4788 rq = task_rq_lock(p, &flags);
e2912009 4789
db44fc01
YZ
4790 if (cpumask_equal(&p->cpus_allowed, new_mask))
4791 goto out;
4792
6ad4c188 4793 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4794 ret = -EINVAL;
4795 goto out;
4796 }
4797
db44fc01 4798 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4799 ret = -EINVAL;
4800 goto out;
4801 }
4802
1e1b6c51 4803 do_set_cpus_allowed(p, new_mask);
73fe6aae 4804
1da177e4 4805 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4806 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4807 goto out;
4808
969c7921 4809 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4810 if (p->on_rq) {
969c7921 4811 struct migration_arg arg = { p, dest_cpu };
1da177e4 4812 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4813 task_rq_unlock(rq, p, &flags);
969c7921 4814 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4815 tlb_migrate_finish(p->mm);
4816 return 0;
4817 }
4818out:
0122ec5b 4819 task_rq_unlock(rq, p, &flags);
48f24c4d 4820
1da177e4
LT
4821 return ret;
4822}
cd8ba7cd 4823EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4824
4825/*
41a2d6cf 4826 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4827 * this because either it can't run here any more (set_cpus_allowed()
4828 * away from this CPU, or CPU going down), or because we're
4829 * attempting to rebalance this task on exec (sched_exec).
4830 *
4831 * So we race with normal scheduler movements, but that's OK, as long
4832 * as the task is no longer on this CPU.
efc30814
KK
4833 *
4834 * Returns non-zero if task was successfully migrated.
1da177e4 4835 */
efc30814 4836static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4837{
70b97a7f 4838 struct rq *rq_dest, *rq_src;
e2912009 4839 int ret = 0;
1da177e4 4840
e761b772 4841 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4842 return ret;
1da177e4
LT
4843
4844 rq_src = cpu_rq(src_cpu);
4845 rq_dest = cpu_rq(dest_cpu);
4846
0122ec5b 4847 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4848 double_rq_lock(rq_src, rq_dest);
4849 /* Already moved. */
4850 if (task_cpu(p) != src_cpu)
b1e38734 4851 goto done;
1da177e4 4852 /* Affinity changed (again). */
fa17b507 4853 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4854 goto fail;
1da177e4 4855
e2912009
PZ
4856 /*
4857 * If we're not on a rq, the next wake-up will ensure we're
4858 * placed properly.
4859 */
fd2f4419 4860 if (p->on_rq) {
4ca9b72b 4861 dequeue_task(rq_src, p, 0);
e2912009 4862 set_task_cpu(p, dest_cpu);
4ca9b72b 4863 enqueue_task(rq_dest, p, 0);
15afe09b 4864 check_preempt_curr(rq_dest, p, 0);
1da177e4 4865 }
b1e38734 4866done:
efc30814 4867 ret = 1;
b1e38734 4868fail:
1da177e4 4869 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4870 raw_spin_unlock(&p->pi_lock);
efc30814 4871 return ret;
1da177e4
LT
4872}
4873
4874/*
969c7921
TH
4875 * migration_cpu_stop - this will be executed by a highprio stopper thread
4876 * and performs thread migration by bumping thread off CPU then
4877 * 'pushing' onto another runqueue.
1da177e4 4878 */
969c7921 4879static int migration_cpu_stop(void *data)
1da177e4 4880{
969c7921 4881 struct migration_arg *arg = data;
f7b4cddc 4882
969c7921
TH
4883 /*
4884 * The original target cpu might have gone down and we might
4885 * be on another cpu but it doesn't matter.
4886 */
f7b4cddc 4887 local_irq_disable();
969c7921 4888 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4889 local_irq_enable();
1da177e4 4890 return 0;
f7b4cddc
ON
4891}
4892
1da177e4 4893#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4894
054b9108 4895/*
48c5ccae
PZ
4896 * Ensures that the idle task is using init_mm right before its cpu goes
4897 * offline.
054b9108 4898 */
48c5ccae 4899void idle_task_exit(void)
1da177e4 4900{
48c5ccae 4901 struct mm_struct *mm = current->active_mm;
e76bd8d9 4902
48c5ccae 4903 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4904
48c5ccae
PZ
4905 if (mm != &init_mm)
4906 switch_mm(mm, &init_mm, current);
4907 mmdrop(mm);
1da177e4
LT
4908}
4909
4910/*
5d180232
PZ
4911 * Since this CPU is going 'away' for a while, fold any nr_active delta
4912 * we might have. Assumes we're called after migrate_tasks() so that the
4913 * nr_active count is stable.
4914 *
4915 * Also see the comment "Global load-average calculations".
1da177e4 4916 */
5d180232 4917static void calc_load_migrate(struct rq *rq)
1da177e4 4918{
5d180232
PZ
4919 long delta = calc_load_fold_active(rq);
4920 if (delta)
4921 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4922}
4923
48f24c4d 4924/*
48c5ccae
PZ
4925 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4926 * try_to_wake_up()->select_task_rq().
4927 *
4928 * Called with rq->lock held even though we'er in stop_machine() and
4929 * there's no concurrency possible, we hold the required locks anyway
4930 * because of lock validation efforts.
1da177e4 4931 */
48c5ccae 4932static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4933{
70b97a7f 4934 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4935 struct task_struct *next, *stop = rq->stop;
4936 int dest_cpu;
1da177e4
LT
4937
4938 /*
48c5ccae
PZ
4939 * Fudge the rq selection such that the below task selection loop
4940 * doesn't get stuck on the currently eligible stop task.
4941 *
4942 * We're currently inside stop_machine() and the rq is either stuck
4943 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4944 * either way we should never end up calling schedule() until we're
4945 * done here.
1da177e4 4946 */
48c5ccae 4947 rq->stop = NULL;
48f24c4d 4948
dd41f596 4949 for ( ; ; ) {
48c5ccae
PZ
4950 /*
4951 * There's this thread running, bail when that's the only
4952 * remaining thread.
4953 */
4954 if (rq->nr_running == 1)
dd41f596 4955 break;
48c5ccae 4956
b67802ea 4957 next = pick_next_task(rq);
48c5ccae 4958 BUG_ON(!next);
79c53799 4959 next->sched_class->put_prev_task(rq, next);
e692ab53 4960
48c5ccae
PZ
4961 /* Find suitable destination for @next, with force if needed. */
4962 dest_cpu = select_fallback_rq(dead_cpu, next);
4963 raw_spin_unlock(&rq->lock);
4964
4965 __migrate_task(next, dead_cpu, dest_cpu);
4966
4967 raw_spin_lock(&rq->lock);
1da177e4 4968 }
dce48a84 4969
48c5ccae 4970 rq->stop = stop;
dce48a84 4971}
48c5ccae 4972
1da177e4
LT
4973#endif /* CONFIG_HOTPLUG_CPU */
4974
e692ab53
NP
4975#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4976
4977static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4978 {
4979 .procname = "sched_domain",
c57baf1e 4980 .mode = 0555,
e0361851 4981 },
56992309 4982 {}
e692ab53
NP
4983};
4984
4985static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4986 {
4987 .procname = "kernel",
c57baf1e 4988 .mode = 0555,
e0361851
AD
4989 .child = sd_ctl_dir,
4990 },
56992309 4991 {}
e692ab53
NP
4992};
4993
4994static struct ctl_table *sd_alloc_ctl_entry(int n)
4995{
4996 struct ctl_table *entry =
5cf9f062 4997 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4998
e692ab53
NP
4999 return entry;
5000}
5001
6382bc90
MM
5002static void sd_free_ctl_entry(struct ctl_table **tablep)
5003{
cd790076 5004 struct ctl_table *entry;
6382bc90 5005
cd790076
MM
5006 /*
5007 * In the intermediate directories, both the child directory and
5008 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5009 * will always be set. In the lowest directory the names are
cd790076
MM
5010 * static strings and all have proc handlers.
5011 */
5012 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5013 if (entry->child)
5014 sd_free_ctl_entry(&entry->child);
cd790076
MM
5015 if (entry->proc_handler == NULL)
5016 kfree(entry->procname);
5017 }
6382bc90
MM
5018
5019 kfree(*tablep);
5020 *tablep = NULL;
5021}
5022
201c373e
NK
5023static int min_load_idx = 0;
5024static int max_load_idx = CPU_LOAD_IDX_MAX;
5025
e692ab53 5026static void
e0361851 5027set_table_entry(struct ctl_table *entry,
e692ab53 5028 const char *procname, void *data, int maxlen,
201c373e
NK
5029 umode_t mode, proc_handler *proc_handler,
5030 bool load_idx)
e692ab53 5031{
e692ab53
NP
5032 entry->procname = procname;
5033 entry->data = data;
5034 entry->maxlen = maxlen;
5035 entry->mode = mode;
5036 entry->proc_handler = proc_handler;
201c373e
NK
5037
5038 if (load_idx) {
5039 entry->extra1 = &min_load_idx;
5040 entry->extra2 = &max_load_idx;
5041 }
e692ab53
NP
5042}
5043
5044static struct ctl_table *
5045sd_alloc_ctl_domain_table(struct sched_domain *sd)
5046{
a5d8c348 5047 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5048
ad1cdc1d
MM
5049 if (table == NULL)
5050 return NULL;
5051
e0361851 5052 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5053 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5054 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5055 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5056 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5057 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5058 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5059 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5060 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5061 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5062 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5063 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5064 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5065 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5066 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5067 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5068 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5069 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5070 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5071 &sd->cache_nice_tries,
201c373e 5072 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5073 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5074 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 5075 set_table_entry(&table[11], "name", sd->name,
201c373e 5076 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 5077 /* &table[12] is terminator */
e692ab53
NP
5078
5079 return table;
5080}
5081
9a4e7159 5082static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5083{
5084 struct ctl_table *entry, *table;
5085 struct sched_domain *sd;
5086 int domain_num = 0, i;
5087 char buf[32];
5088
5089 for_each_domain(cpu, sd)
5090 domain_num++;
5091 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5092 if (table == NULL)
5093 return NULL;
e692ab53
NP
5094
5095 i = 0;
5096 for_each_domain(cpu, sd) {
5097 snprintf(buf, 32, "domain%d", i);
e692ab53 5098 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5099 entry->mode = 0555;
e692ab53
NP
5100 entry->child = sd_alloc_ctl_domain_table(sd);
5101 entry++;
5102 i++;
5103 }
5104 return table;
5105}
5106
5107static struct ctl_table_header *sd_sysctl_header;
6382bc90 5108static void register_sched_domain_sysctl(void)
e692ab53 5109{
6ad4c188 5110 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5111 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5112 char buf[32];
5113
7378547f
MM
5114 WARN_ON(sd_ctl_dir[0].child);
5115 sd_ctl_dir[0].child = entry;
5116
ad1cdc1d
MM
5117 if (entry == NULL)
5118 return;
5119
6ad4c188 5120 for_each_possible_cpu(i) {
e692ab53 5121 snprintf(buf, 32, "cpu%d", i);
e692ab53 5122 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5123 entry->mode = 0555;
e692ab53 5124 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5125 entry++;
e692ab53 5126 }
7378547f
MM
5127
5128 WARN_ON(sd_sysctl_header);
e692ab53
NP
5129 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5130}
6382bc90 5131
7378547f 5132/* may be called multiple times per register */
6382bc90
MM
5133static void unregister_sched_domain_sysctl(void)
5134{
7378547f
MM
5135 if (sd_sysctl_header)
5136 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5137 sd_sysctl_header = NULL;
7378547f
MM
5138 if (sd_ctl_dir[0].child)
5139 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5140}
e692ab53 5141#else
6382bc90
MM
5142static void register_sched_domain_sysctl(void)
5143{
5144}
5145static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5146{
5147}
5148#endif
5149
1f11eb6a
GH
5150static void set_rq_online(struct rq *rq)
5151{
5152 if (!rq->online) {
5153 const struct sched_class *class;
5154
c6c4927b 5155 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5156 rq->online = 1;
5157
5158 for_each_class(class) {
5159 if (class->rq_online)
5160 class->rq_online(rq);
5161 }
5162 }
5163}
5164
5165static void set_rq_offline(struct rq *rq)
5166{
5167 if (rq->online) {
5168 const struct sched_class *class;
5169
5170 for_each_class(class) {
5171 if (class->rq_offline)
5172 class->rq_offline(rq);
5173 }
5174
c6c4927b 5175 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5176 rq->online = 0;
5177 }
5178}
5179
1da177e4
LT
5180/*
5181 * migration_call - callback that gets triggered when a CPU is added.
5182 * Here we can start up the necessary migration thread for the new CPU.
5183 */
48f24c4d
IM
5184static int __cpuinit
5185migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5186{
48f24c4d 5187 int cpu = (long)hcpu;
1da177e4 5188 unsigned long flags;
969c7921 5189 struct rq *rq = cpu_rq(cpu);
1da177e4 5190
48c5ccae 5191 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5192
1da177e4 5193 case CPU_UP_PREPARE:
a468d389 5194 rq->calc_load_update = calc_load_update;
1da177e4 5195 break;
48f24c4d 5196
1da177e4 5197 case CPU_ONLINE:
1f94ef59 5198 /* Update our root-domain */
05fa785c 5199 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5200 if (rq->rd) {
c6c4927b 5201 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5202
5203 set_rq_online(rq);
1f94ef59 5204 }
05fa785c 5205 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5206 break;
48f24c4d 5207
1da177e4 5208#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5209 case CPU_DYING:
317f3941 5210 sched_ttwu_pending();
57d885fe 5211 /* Update our root-domain */
05fa785c 5212 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5213 if (rq->rd) {
c6c4927b 5214 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5215 set_rq_offline(rq);
57d885fe 5216 }
48c5ccae
PZ
5217 migrate_tasks(cpu);
5218 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5219 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5220 break;
48c5ccae 5221
5d180232 5222 case CPU_DEAD:
f319da0c 5223 calc_load_migrate(rq);
57d885fe 5224 break;
1da177e4
LT
5225#endif
5226 }
49c022e6
PZ
5227
5228 update_max_interval();
5229
1da177e4
LT
5230 return NOTIFY_OK;
5231}
5232
f38b0820
PM
5233/*
5234 * Register at high priority so that task migration (migrate_all_tasks)
5235 * happens before everything else. This has to be lower priority than
cdd6c482 5236 * the notifier in the perf_event subsystem, though.
1da177e4 5237 */
26c2143b 5238static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5239 .notifier_call = migration_call,
50a323b7 5240 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5241};
5242
3a101d05
TH
5243static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5244 unsigned long action, void *hcpu)
5245{
5246 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5247 case CPU_STARTING:
3a101d05
TH
5248 case CPU_DOWN_FAILED:
5249 set_cpu_active((long)hcpu, true);
5250 return NOTIFY_OK;
5251 default:
5252 return NOTIFY_DONE;
5253 }
5254}
5255
5256static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5257 unsigned long action, void *hcpu)
5258{
5259 switch (action & ~CPU_TASKS_FROZEN) {
5260 case CPU_DOWN_PREPARE:
5261 set_cpu_active((long)hcpu, false);
5262 return NOTIFY_OK;
5263 default:
5264 return NOTIFY_DONE;
5265 }
5266}
5267
7babe8db 5268static int __init migration_init(void)
1da177e4
LT
5269{
5270 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5271 int err;
48f24c4d 5272
3a101d05 5273 /* Initialize migration for the boot CPU */
07dccf33
AM
5274 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5275 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5276 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5277 register_cpu_notifier(&migration_notifier);
7babe8db 5278
3a101d05
TH
5279 /* Register cpu active notifiers */
5280 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5281 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5282
a004cd42 5283 return 0;
1da177e4 5284}
7babe8db 5285early_initcall(migration_init);
1da177e4
LT
5286#endif
5287
5288#ifdef CONFIG_SMP
476f3534 5289
4cb98839
PZ
5290static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5291
3e9830dc 5292#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5293
d039ac60 5294static __read_mostly int sched_debug_enabled;
f6630114 5295
d039ac60 5296static int __init sched_debug_setup(char *str)
f6630114 5297{
d039ac60 5298 sched_debug_enabled = 1;
f6630114
MT
5299
5300 return 0;
5301}
d039ac60
PZ
5302early_param("sched_debug", sched_debug_setup);
5303
5304static inline bool sched_debug(void)
5305{
5306 return sched_debug_enabled;
5307}
f6630114 5308
7c16ec58 5309static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5310 struct cpumask *groupmask)
1da177e4 5311{
4dcf6aff 5312 struct sched_group *group = sd->groups;
434d53b0 5313 char str[256];
1da177e4 5314
968ea6d8 5315 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5316 cpumask_clear(groupmask);
4dcf6aff
IM
5317
5318 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5319
5320 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5321 printk("does not load-balance\n");
4dcf6aff 5322 if (sd->parent)
3df0fc5b
PZ
5323 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5324 " has parent");
4dcf6aff 5325 return -1;
41c7ce9a
NP
5326 }
5327
3df0fc5b 5328 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5329
758b2cdc 5330 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5331 printk(KERN_ERR "ERROR: domain->span does not contain "
5332 "CPU%d\n", cpu);
4dcf6aff 5333 }
758b2cdc 5334 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5335 printk(KERN_ERR "ERROR: domain->groups does not contain"
5336 " CPU%d\n", cpu);
4dcf6aff 5337 }
1da177e4 5338
4dcf6aff 5339 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5340 do {
4dcf6aff 5341 if (!group) {
3df0fc5b
PZ
5342 printk("\n");
5343 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5344 break;
5345 }
5346
c3decf0d
PZ
5347 /*
5348 * Even though we initialize ->power to something semi-sane,
5349 * we leave power_orig unset. This allows us to detect if
5350 * domain iteration is still funny without causing /0 traps.
5351 */
5352 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5353 printk(KERN_CONT "\n");
5354 printk(KERN_ERR "ERROR: domain->cpu_power not "
5355 "set\n");
4dcf6aff
IM
5356 break;
5357 }
1da177e4 5358
758b2cdc 5359 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5360 printk(KERN_CONT "\n");
5361 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5362 break;
5363 }
1da177e4 5364
cb83b629
PZ
5365 if (!(sd->flags & SD_OVERLAP) &&
5366 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5367 printk(KERN_CONT "\n");
5368 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5369 break;
5370 }
1da177e4 5371
758b2cdc 5372 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5373
968ea6d8 5374 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5375
3df0fc5b 5376 printk(KERN_CONT " %s", str);
9c3f75cb 5377 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5378 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5379 group->sgp->power);
381512cf 5380 }
1da177e4 5381
4dcf6aff
IM
5382 group = group->next;
5383 } while (group != sd->groups);
3df0fc5b 5384 printk(KERN_CONT "\n");
1da177e4 5385
758b2cdc 5386 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5387 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5388
758b2cdc
RR
5389 if (sd->parent &&
5390 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5391 printk(KERN_ERR "ERROR: parent span is not a superset "
5392 "of domain->span\n");
4dcf6aff
IM
5393 return 0;
5394}
1da177e4 5395
4dcf6aff
IM
5396static void sched_domain_debug(struct sched_domain *sd, int cpu)
5397{
5398 int level = 0;
1da177e4 5399
d039ac60 5400 if (!sched_debug_enabled)
f6630114
MT
5401 return;
5402
4dcf6aff
IM
5403 if (!sd) {
5404 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5405 return;
5406 }
1da177e4 5407
4dcf6aff
IM
5408 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5409
5410 for (;;) {
4cb98839 5411 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5412 break;
1da177e4
LT
5413 level++;
5414 sd = sd->parent;
33859f7f 5415 if (!sd)
4dcf6aff
IM
5416 break;
5417 }
1da177e4 5418}
6d6bc0ad 5419#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5420# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5421static inline bool sched_debug(void)
5422{
5423 return false;
5424}
6d6bc0ad 5425#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5426
1a20ff27 5427static int sd_degenerate(struct sched_domain *sd)
245af2c7 5428{
758b2cdc 5429 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5430 return 1;
5431
5432 /* Following flags need at least 2 groups */
5433 if (sd->flags & (SD_LOAD_BALANCE |
5434 SD_BALANCE_NEWIDLE |
5435 SD_BALANCE_FORK |
89c4710e
SS
5436 SD_BALANCE_EXEC |
5437 SD_SHARE_CPUPOWER |
5438 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5439 if (sd->groups != sd->groups->next)
5440 return 0;
5441 }
5442
5443 /* Following flags don't use groups */
c88d5910 5444 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5445 return 0;
5446
5447 return 1;
5448}
5449
48f24c4d
IM
5450static int
5451sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5452{
5453 unsigned long cflags = sd->flags, pflags = parent->flags;
5454
5455 if (sd_degenerate(parent))
5456 return 1;
5457
758b2cdc 5458 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5459 return 0;
5460
245af2c7
SS
5461 /* Flags needing groups don't count if only 1 group in parent */
5462 if (parent->groups == parent->groups->next) {
5463 pflags &= ~(SD_LOAD_BALANCE |
5464 SD_BALANCE_NEWIDLE |
5465 SD_BALANCE_FORK |
89c4710e
SS
5466 SD_BALANCE_EXEC |
5467 SD_SHARE_CPUPOWER |
5468 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5469 if (nr_node_ids == 1)
5470 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5471 }
5472 if (~cflags & pflags)
5473 return 0;
5474
5475 return 1;
5476}
5477
dce840a0 5478static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5479{
dce840a0 5480 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5481
68e74568 5482 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5483 free_cpumask_var(rd->rto_mask);
5484 free_cpumask_var(rd->online);
5485 free_cpumask_var(rd->span);
5486 kfree(rd);
5487}
5488
57d885fe
GH
5489static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5490{
a0490fa3 5491 struct root_domain *old_rd = NULL;
57d885fe 5492 unsigned long flags;
57d885fe 5493
05fa785c 5494 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5495
5496 if (rq->rd) {
a0490fa3 5497 old_rd = rq->rd;
57d885fe 5498
c6c4927b 5499 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5500 set_rq_offline(rq);
57d885fe 5501
c6c4927b 5502 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5503
a0490fa3
IM
5504 /*
5505 * If we dont want to free the old_rt yet then
5506 * set old_rd to NULL to skip the freeing later
5507 * in this function:
5508 */
5509 if (!atomic_dec_and_test(&old_rd->refcount))
5510 old_rd = NULL;
57d885fe
GH
5511 }
5512
5513 atomic_inc(&rd->refcount);
5514 rq->rd = rd;
5515
c6c4927b 5516 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5517 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5518 set_rq_online(rq);
57d885fe 5519
05fa785c 5520 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5521
5522 if (old_rd)
dce840a0 5523 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5524}
5525
68c38fc3 5526static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5527{
5528 memset(rd, 0, sizeof(*rd));
5529
68c38fc3 5530 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5531 goto out;
68c38fc3 5532 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5533 goto free_span;
68c38fc3 5534 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5535 goto free_online;
6e0534f2 5536
68c38fc3 5537 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5538 goto free_rto_mask;
c6c4927b 5539 return 0;
6e0534f2 5540
68e74568
RR
5541free_rto_mask:
5542 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5543free_online:
5544 free_cpumask_var(rd->online);
5545free_span:
5546 free_cpumask_var(rd->span);
0c910d28 5547out:
c6c4927b 5548 return -ENOMEM;
57d885fe
GH
5549}
5550
029632fb
PZ
5551/*
5552 * By default the system creates a single root-domain with all cpus as
5553 * members (mimicking the global state we have today).
5554 */
5555struct root_domain def_root_domain;
5556
57d885fe
GH
5557static void init_defrootdomain(void)
5558{
68c38fc3 5559 init_rootdomain(&def_root_domain);
c6c4927b 5560
57d885fe
GH
5561 atomic_set(&def_root_domain.refcount, 1);
5562}
5563
dc938520 5564static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5565{
5566 struct root_domain *rd;
5567
5568 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5569 if (!rd)
5570 return NULL;
5571
68c38fc3 5572 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5573 kfree(rd);
5574 return NULL;
5575 }
57d885fe
GH
5576
5577 return rd;
5578}
5579
e3589f6c
PZ
5580static void free_sched_groups(struct sched_group *sg, int free_sgp)
5581{
5582 struct sched_group *tmp, *first;
5583
5584 if (!sg)
5585 return;
5586
5587 first = sg;
5588 do {
5589 tmp = sg->next;
5590
5591 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5592 kfree(sg->sgp);
5593
5594 kfree(sg);
5595 sg = tmp;
5596 } while (sg != first);
5597}
5598
dce840a0
PZ
5599static void free_sched_domain(struct rcu_head *rcu)
5600{
5601 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5602
5603 /*
5604 * If its an overlapping domain it has private groups, iterate and
5605 * nuke them all.
5606 */
5607 if (sd->flags & SD_OVERLAP) {
5608 free_sched_groups(sd->groups, 1);
5609 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5610 kfree(sd->groups->sgp);
dce840a0 5611 kfree(sd->groups);
9c3f75cb 5612 }
dce840a0
PZ
5613 kfree(sd);
5614}
5615
5616static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5617{
5618 call_rcu(&sd->rcu, free_sched_domain);
5619}
5620
5621static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5622{
5623 for (; sd; sd = sd->parent)
5624 destroy_sched_domain(sd, cpu);
5625}
5626
518cd623
PZ
5627/*
5628 * Keep a special pointer to the highest sched_domain that has
5629 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5630 * allows us to avoid some pointer chasing select_idle_sibling().
5631 *
5632 * Also keep a unique ID per domain (we use the first cpu number in
5633 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5634 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5635 */
5636DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5637DEFINE_PER_CPU(int, sd_llc_id);
5638
5639static void update_top_cache_domain(int cpu)
5640{
5641 struct sched_domain *sd;
5642 int id = cpu;
5643
5644 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5645 if (sd)
518cd623
PZ
5646 id = cpumask_first(sched_domain_span(sd));
5647
5648 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5649 per_cpu(sd_llc_id, cpu) = id;
5650}
5651
1da177e4 5652/*
0eab9146 5653 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5654 * hold the hotplug lock.
5655 */
0eab9146
IM
5656static void
5657cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5658{
70b97a7f 5659 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5660 struct sched_domain *tmp;
5661
5662 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5663 for (tmp = sd; tmp; ) {
245af2c7
SS
5664 struct sched_domain *parent = tmp->parent;
5665 if (!parent)
5666 break;
f29c9b1c 5667
1a848870 5668 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5669 tmp->parent = parent->parent;
1a848870
SS
5670 if (parent->parent)
5671 parent->parent->child = tmp;
dce840a0 5672 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5673 } else
5674 tmp = tmp->parent;
245af2c7
SS
5675 }
5676
1a848870 5677 if (sd && sd_degenerate(sd)) {
dce840a0 5678 tmp = sd;
245af2c7 5679 sd = sd->parent;
dce840a0 5680 destroy_sched_domain(tmp, cpu);
1a848870
SS
5681 if (sd)
5682 sd->child = NULL;
5683 }
1da177e4 5684
4cb98839 5685 sched_domain_debug(sd, cpu);
1da177e4 5686
57d885fe 5687 rq_attach_root(rq, rd);
dce840a0 5688 tmp = rq->sd;
674311d5 5689 rcu_assign_pointer(rq->sd, sd);
dce840a0 5690 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5691
5692 update_top_cache_domain(cpu);
1da177e4
LT
5693}
5694
5695/* cpus with isolated domains */
dcc30a35 5696static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5697
5698/* Setup the mask of cpus configured for isolated domains */
5699static int __init isolated_cpu_setup(char *str)
5700{
bdddd296 5701 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5702 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5703 return 1;
5704}
5705
8927f494 5706__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5707
d3081f52
PZ
5708static const struct cpumask *cpu_cpu_mask(int cpu)
5709{
5710 return cpumask_of_node(cpu_to_node(cpu));
5711}
5712
dce840a0
PZ
5713struct sd_data {
5714 struct sched_domain **__percpu sd;
5715 struct sched_group **__percpu sg;
9c3f75cb 5716 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5717};
5718
49a02c51 5719struct s_data {
21d42ccf 5720 struct sched_domain ** __percpu sd;
49a02c51
AH
5721 struct root_domain *rd;
5722};
5723
2109b99e 5724enum s_alloc {
2109b99e 5725 sa_rootdomain,
21d42ccf 5726 sa_sd,
dce840a0 5727 sa_sd_storage,
2109b99e
AH
5728 sa_none,
5729};
5730
54ab4ff4
PZ
5731struct sched_domain_topology_level;
5732
5733typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5734typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5735
e3589f6c
PZ
5736#define SDTL_OVERLAP 0x01
5737
eb7a74e6 5738struct sched_domain_topology_level {
2c402dc3
PZ
5739 sched_domain_init_f init;
5740 sched_domain_mask_f mask;
e3589f6c 5741 int flags;
cb83b629 5742 int numa_level;
54ab4ff4 5743 struct sd_data data;
eb7a74e6
PZ
5744};
5745
c1174876
PZ
5746/*
5747 * Build an iteration mask that can exclude certain CPUs from the upwards
5748 * domain traversal.
5749 *
5750 * Asymmetric node setups can result in situations where the domain tree is of
5751 * unequal depth, make sure to skip domains that already cover the entire
5752 * range.
5753 *
5754 * In that case build_sched_domains() will have terminated the iteration early
5755 * and our sibling sd spans will be empty. Domains should always include the
5756 * cpu they're built on, so check that.
5757 *
5758 */
5759static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5760{
5761 const struct cpumask *span = sched_domain_span(sd);
5762 struct sd_data *sdd = sd->private;
5763 struct sched_domain *sibling;
5764 int i;
5765
5766 for_each_cpu(i, span) {
5767 sibling = *per_cpu_ptr(sdd->sd, i);
5768 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5769 continue;
5770
5771 cpumask_set_cpu(i, sched_group_mask(sg));
5772 }
5773}
5774
5775/*
5776 * Return the canonical balance cpu for this group, this is the first cpu
5777 * of this group that's also in the iteration mask.
5778 */
5779int group_balance_cpu(struct sched_group *sg)
5780{
5781 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5782}
5783
e3589f6c
PZ
5784static int
5785build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5786{
5787 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5788 const struct cpumask *span = sched_domain_span(sd);
5789 struct cpumask *covered = sched_domains_tmpmask;
5790 struct sd_data *sdd = sd->private;
5791 struct sched_domain *child;
5792 int i;
5793
5794 cpumask_clear(covered);
5795
5796 for_each_cpu(i, span) {
5797 struct cpumask *sg_span;
5798
5799 if (cpumask_test_cpu(i, covered))
5800 continue;
5801
c1174876
PZ
5802 child = *per_cpu_ptr(sdd->sd, i);
5803
5804 /* See the comment near build_group_mask(). */
5805 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5806 continue;
5807
e3589f6c 5808 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5809 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5810
5811 if (!sg)
5812 goto fail;
5813
5814 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5815 if (child->child) {
5816 child = child->child;
5817 cpumask_copy(sg_span, sched_domain_span(child));
5818 } else
5819 cpumask_set_cpu(i, sg_span);
5820
5821 cpumask_or(covered, covered, sg_span);
5822
74a5ce20 5823 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5824 if (atomic_inc_return(&sg->sgp->ref) == 1)
5825 build_group_mask(sd, sg);
5826
c3decf0d
PZ
5827 /*
5828 * Initialize sgp->power such that even if we mess up the
5829 * domains and no possible iteration will get us here, we won't
5830 * die on a /0 trap.
5831 */
5832 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5833
c1174876
PZ
5834 /*
5835 * Make sure the first group of this domain contains the
5836 * canonical balance cpu. Otherwise the sched_domain iteration
5837 * breaks. See update_sg_lb_stats().
5838 */
74a5ce20 5839 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5840 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5841 groups = sg;
5842
5843 if (!first)
5844 first = sg;
5845 if (last)
5846 last->next = sg;
5847 last = sg;
5848 last->next = first;
5849 }
5850 sd->groups = groups;
5851
5852 return 0;
5853
5854fail:
5855 free_sched_groups(first, 0);
5856
5857 return -ENOMEM;
5858}
5859
dce840a0 5860static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5861{
dce840a0
PZ
5862 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5863 struct sched_domain *child = sd->child;
1da177e4 5864
dce840a0
PZ
5865 if (child)
5866 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5867
9c3f75cb 5868 if (sg) {
dce840a0 5869 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5870 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5871 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5872 }
dce840a0
PZ
5873
5874 return cpu;
1e9f28fa 5875}
1e9f28fa 5876
01a08546 5877/*
dce840a0
PZ
5878 * build_sched_groups will build a circular linked list of the groups
5879 * covered by the given span, and will set each group's ->cpumask correctly,
5880 * and ->cpu_power to 0.
e3589f6c
PZ
5881 *
5882 * Assumes the sched_domain tree is fully constructed
01a08546 5883 */
e3589f6c
PZ
5884static int
5885build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5886{
dce840a0
PZ
5887 struct sched_group *first = NULL, *last = NULL;
5888 struct sd_data *sdd = sd->private;
5889 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5890 struct cpumask *covered;
dce840a0 5891 int i;
9c1cfda2 5892
e3589f6c
PZ
5893 get_group(cpu, sdd, &sd->groups);
5894 atomic_inc(&sd->groups->ref);
5895
5896 if (cpu != cpumask_first(sched_domain_span(sd)))
5897 return 0;
5898
f96225fd
PZ
5899 lockdep_assert_held(&sched_domains_mutex);
5900 covered = sched_domains_tmpmask;
5901
dce840a0 5902 cpumask_clear(covered);
6711cab4 5903
dce840a0
PZ
5904 for_each_cpu(i, span) {
5905 struct sched_group *sg;
5906 int group = get_group(i, sdd, &sg);
5907 int j;
6711cab4 5908
dce840a0
PZ
5909 if (cpumask_test_cpu(i, covered))
5910 continue;
6711cab4 5911
dce840a0 5912 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5913 sg->sgp->power = 0;
c1174876 5914 cpumask_setall(sched_group_mask(sg));
0601a88d 5915
dce840a0
PZ
5916 for_each_cpu(j, span) {
5917 if (get_group(j, sdd, NULL) != group)
5918 continue;
0601a88d 5919
dce840a0
PZ
5920 cpumask_set_cpu(j, covered);
5921 cpumask_set_cpu(j, sched_group_cpus(sg));
5922 }
0601a88d 5923
dce840a0
PZ
5924 if (!first)
5925 first = sg;
5926 if (last)
5927 last->next = sg;
5928 last = sg;
5929 }
5930 last->next = first;
e3589f6c
PZ
5931
5932 return 0;
0601a88d 5933}
51888ca2 5934
89c4710e
SS
5935/*
5936 * Initialize sched groups cpu_power.
5937 *
5938 * cpu_power indicates the capacity of sched group, which is used while
5939 * distributing the load between different sched groups in a sched domain.
5940 * Typically cpu_power for all the groups in a sched domain will be same unless
5941 * there are asymmetries in the topology. If there are asymmetries, group
5942 * having more cpu_power will pickup more load compared to the group having
5943 * less cpu_power.
89c4710e
SS
5944 */
5945static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5946{
e3589f6c 5947 struct sched_group *sg = sd->groups;
89c4710e 5948
e3589f6c
PZ
5949 WARN_ON(!sd || !sg);
5950
5951 do {
5952 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5953 sg = sg->next;
5954 } while (sg != sd->groups);
89c4710e 5955
c1174876 5956 if (cpu != group_balance_cpu(sg))
e3589f6c 5957 return;
aae6d3dd 5958
d274cb30 5959 update_group_power(sd, cpu);
69e1e811 5960 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5961}
5962
029632fb
PZ
5963int __weak arch_sd_sibling_asym_packing(void)
5964{
5965 return 0*SD_ASYM_PACKING;
89c4710e
SS
5966}
5967
7c16ec58
MT
5968/*
5969 * Initializers for schedule domains
5970 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5971 */
5972
a5d8c348
IM
5973#ifdef CONFIG_SCHED_DEBUG
5974# define SD_INIT_NAME(sd, type) sd->name = #type
5975#else
5976# define SD_INIT_NAME(sd, type) do { } while (0)
5977#endif
5978
54ab4ff4
PZ
5979#define SD_INIT_FUNC(type) \
5980static noinline struct sched_domain * \
5981sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5982{ \
5983 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5984 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5985 SD_INIT_NAME(sd, type); \
5986 sd->private = &tl->data; \
5987 return sd; \
7c16ec58
MT
5988}
5989
5990SD_INIT_FUNC(CPU)
7c16ec58
MT
5991#ifdef CONFIG_SCHED_SMT
5992 SD_INIT_FUNC(SIBLING)
5993#endif
5994#ifdef CONFIG_SCHED_MC
5995 SD_INIT_FUNC(MC)
5996#endif
01a08546
HC
5997#ifdef CONFIG_SCHED_BOOK
5998 SD_INIT_FUNC(BOOK)
5999#endif
7c16ec58 6000
1d3504fc 6001static int default_relax_domain_level = -1;
60495e77 6002int sched_domain_level_max;
1d3504fc
HS
6003
6004static int __init setup_relax_domain_level(char *str)
6005{
a841f8ce
DS
6006 if (kstrtoint(str, 0, &default_relax_domain_level))
6007 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6008
1d3504fc
HS
6009 return 1;
6010}
6011__setup("relax_domain_level=", setup_relax_domain_level);
6012
6013static void set_domain_attribute(struct sched_domain *sd,
6014 struct sched_domain_attr *attr)
6015{
6016 int request;
6017
6018 if (!attr || attr->relax_domain_level < 0) {
6019 if (default_relax_domain_level < 0)
6020 return;
6021 else
6022 request = default_relax_domain_level;
6023 } else
6024 request = attr->relax_domain_level;
6025 if (request < sd->level) {
6026 /* turn off idle balance on this domain */
c88d5910 6027 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6028 } else {
6029 /* turn on idle balance on this domain */
c88d5910 6030 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6031 }
6032}
6033
54ab4ff4
PZ
6034static void __sdt_free(const struct cpumask *cpu_map);
6035static int __sdt_alloc(const struct cpumask *cpu_map);
6036
2109b99e
AH
6037static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6038 const struct cpumask *cpu_map)
6039{
6040 switch (what) {
2109b99e 6041 case sa_rootdomain:
822ff793
PZ
6042 if (!atomic_read(&d->rd->refcount))
6043 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6044 case sa_sd:
6045 free_percpu(d->sd); /* fall through */
dce840a0 6046 case sa_sd_storage:
54ab4ff4 6047 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6048 case sa_none:
6049 break;
6050 }
6051}
3404c8d9 6052
2109b99e
AH
6053static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6054 const struct cpumask *cpu_map)
6055{
dce840a0
PZ
6056 memset(d, 0, sizeof(*d));
6057
54ab4ff4
PZ
6058 if (__sdt_alloc(cpu_map))
6059 return sa_sd_storage;
dce840a0
PZ
6060 d->sd = alloc_percpu(struct sched_domain *);
6061 if (!d->sd)
6062 return sa_sd_storage;
2109b99e 6063 d->rd = alloc_rootdomain();
dce840a0 6064 if (!d->rd)
21d42ccf 6065 return sa_sd;
2109b99e
AH
6066 return sa_rootdomain;
6067}
57d885fe 6068
dce840a0
PZ
6069/*
6070 * NULL the sd_data elements we've used to build the sched_domain and
6071 * sched_group structure so that the subsequent __free_domain_allocs()
6072 * will not free the data we're using.
6073 */
6074static void claim_allocations(int cpu, struct sched_domain *sd)
6075{
6076 struct sd_data *sdd = sd->private;
dce840a0
PZ
6077
6078 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6079 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6080
e3589f6c 6081 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6082 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6083
6084 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6085 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6086}
6087
2c402dc3
PZ
6088#ifdef CONFIG_SCHED_SMT
6089static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6090{
2c402dc3 6091 return topology_thread_cpumask(cpu);
3bd65a80 6092}
2c402dc3 6093#endif
7f4588f3 6094
d069b916
PZ
6095/*
6096 * Topology list, bottom-up.
6097 */
2c402dc3 6098static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6099#ifdef CONFIG_SCHED_SMT
6100 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6101#endif
1e9f28fa 6102#ifdef CONFIG_SCHED_MC
2c402dc3 6103 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6104#endif
d069b916
PZ
6105#ifdef CONFIG_SCHED_BOOK
6106 { sd_init_BOOK, cpu_book_mask, },
6107#endif
6108 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6109 { NULL, },
6110};
6111
6112static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6113
cb83b629
PZ
6114#ifdef CONFIG_NUMA
6115
6116static int sched_domains_numa_levels;
cb83b629
PZ
6117static int *sched_domains_numa_distance;
6118static struct cpumask ***sched_domains_numa_masks;
6119static int sched_domains_curr_level;
6120
cb83b629
PZ
6121static inline int sd_local_flags(int level)
6122{
10717dcd 6123 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6124 return 0;
6125
6126 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6127}
6128
6129static struct sched_domain *
6130sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6131{
6132 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6133 int level = tl->numa_level;
6134 int sd_weight = cpumask_weight(
6135 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6136
6137 *sd = (struct sched_domain){
6138 .min_interval = sd_weight,
6139 .max_interval = 2*sd_weight,
6140 .busy_factor = 32,
870a0bb5 6141 .imbalance_pct = 125,
cb83b629
PZ
6142 .cache_nice_tries = 2,
6143 .busy_idx = 3,
6144 .idle_idx = 2,
6145 .newidle_idx = 0,
6146 .wake_idx = 0,
6147 .forkexec_idx = 0,
6148
6149 .flags = 1*SD_LOAD_BALANCE
6150 | 1*SD_BALANCE_NEWIDLE
6151 | 0*SD_BALANCE_EXEC
6152 | 0*SD_BALANCE_FORK
6153 | 0*SD_BALANCE_WAKE
6154 | 0*SD_WAKE_AFFINE
cb83b629 6155 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6156 | 0*SD_SHARE_PKG_RESOURCES
6157 | 1*SD_SERIALIZE
6158 | 0*SD_PREFER_SIBLING
6159 | sd_local_flags(level)
6160 ,
6161 .last_balance = jiffies,
6162 .balance_interval = sd_weight,
6163 };
6164 SD_INIT_NAME(sd, NUMA);
6165 sd->private = &tl->data;
6166
6167 /*
6168 * Ugly hack to pass state to sd_numa_mask()...
6169 */
6170 sched_domains_curr_level = tl->numa_level;
6171
6172 return sd;
6173}
6174
6175static const struct cpumask *sd_numa_mask(int cpu)
6176{
6177 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6178}
6179
d039ac60
PZ
6180static void sched_numa_warn(const char *str)
6181{
6182 static int done = false;
6183 int i,j;
6184
6185 if (done)
6186 return;
6187
6188 done = true;
6189
6190 printk(KERN_WARNING "ERROR: %s\n\n", str);
6191
6192 for (i = 0; i < nr_node_ids; i++) {
6193 printk(KERN_WARNING " ");
6194 for (j = 0; j < nr_node_ids; j++)
6195 printk(KERN_CONT "%02d ", node_distance(i,j));
6196 printk(KERN_CONT "\n");
6197 }
6198 printk(KERN_WARNING "\n");
6199}
6200
6201static bool find_numa_distance(int distance)
6202{
6203 int i;
6204
6205 if (distance == node_distance(0, 0))
6206 return true;
6207
6208 for (i = 0; i < sched_domains_numa_levels; i++) {
6209 if (sched_domains_numa_distance[i] == distance)
6210 return true;
6211 }
6212
6213 return false;
6214}
6215
cb83b629
PZ
6216static void sched_init_numa(void)
6217{
6218 int next_distance, curr_distance = node_distance(0, 0);
6219 struct sched_domain_topology_level *tl;
6220 int level = 0;
6221 int i, j, k;
6222
cb83b629
PZ
6223 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6224 if (!sched_domains_numa_distance)
6225 return;
6226
6227 /*
6228 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6229 * unique distances in the node_distance() table.
6230 *
6231 * Assumes node_distance(0,j) includes all distances in
6232 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6233 */
6234 next_distance = curr_distance;
6235 for (i = 0; i < nr_node_ids; i++) {
6236 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6237 for (k = 0; k < nr_node_ids; k++) {
6238 int distance = node_distance(i, k);
6239
6240 if (distance > curr_distance &&
6241 (distance < next_distance ||
6242 next_distance == curr_distance))
6243 next_distance = distance;
6244
6245 /*
6246 * While not a strong assumption it would be nice to know
6247 * about cases where if node A is connected to B, B is not
6248 * equally connected to A.
6249 */
6250 if (sched_debug() && node_distance(k, i) != distance)
6251 sched_numa_warn("Node-distance not symmetric");
6252
6253 if (sched_debug() && i && !find_numa_distance(distance))
6254 sched_numa_warn("Node-0 not representative");
6255 }
6256 if (next_distance != curr_distance) {
6257 sched_domains_numa_distance[level++] = next_distance;
6258 sched_domains_numa_levels = level;
6259 curr_distance = next_distance;
6260 } else break;
cb83b629 6261 }
d039ac60
PZ
6262
6263 /*
6264 * In case of sched_debug() we verify the above assumption.
6265 */
6266 if (!sched_debug())
6267 break;
cb83b629
PZ
6268 }
6269 /*
6270 * 'level' contains the number of unique distances, excluding the
6271 * identity distance node_distance(i,i).
6272 *
6273 * The sched_domains_nume_distance[] array includes the actual distance
6274 * numbers.
6275 */
6276
5f7865f3
TC
6277 /*
6278 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6279 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6280 * the array will contain less then 'level' members. This could be
6281 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6282 * in other functions.
6283 *
6284 * We reset it to 'level' at the end of this function.
6285 */
6286 sched_domains_numa_levels = 0;
6287
cb83b629
PZ
6288 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6289 if (!sched_domains_numa_masks)
6290 return;
6291
6292 /*
6293 * Now for each level, construct a mask per node which contains all
6294 * cpus of nodes that are that many hops away from us.
6295 */
6296 for (i = 0; i < level; i++) {
6297 sched_domains_numa_masks[i] =
6298 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6299 if (!sched_domains_numa_masks[i])
6300 return;
6301
6302 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6303 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6304 if (!mask)
6305 return;
6306
6307 sched_domains_numa_masks[i][j] = mask;
6308
6309 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6310 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6311 continue;
6312
6313 cpumask_or(mask, mask, cpumask_of_node(k));
6314 }
6315 }
6316 }
6317
6318 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6319 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6320 if (!tl)
6321 return;
6322
6323 /*
6324 * Copy the default topology bits..
6325 */
6326 for (i = 0; default_topology[i].init; i++)
6327 tl[i] = default_topology[i];
6328
6329 /*
6330 * .. and append 'j' levels of NUMA goodness.
6331 */
6332 for (j = 0; j < level; i++, j++) {
6333 tl[i] = (struct sched_domain_topology_level){
6334 .init = sd_numa_init,
6335 .mask = sd_numa_mask,
6336 .flags = SDTL_OVERLAP,
6337 .numa_level = j,
6338 };
6339 }
6340
6341 sched_domain_topology = tl;
5f7865f3
TC
6342
6343 sched_domains_numa_levels = level;
cb83b629 6344}
301a5cba
TC
6345
6346static void sched_domains_numa_masks_set(int cpu)
6347{
6348 int i, j;
6349 int node = cpu_to_node(cpu);
6350
6351 for (i = 0; i < sched_domains_numa_levels; i++) {
6352 for (j = 0; j < nr_node_ids; j++) {
6353 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6354 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6355 }
6356 }
6357}
6358
6359static void sched_domains_numa_masks_clear(int cpu)
6360{
6361 int i, j;
6362 for (i = 0; i < sched_domains_numa_levels; i++) {
6363 for (j = 0; j < nr_node_ids; j++)
6364 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6365 }
6366}
6367
6368/*
6369 * Update sched_domains_numa_masks[level][node] array when new cpus
6370 * are onlined.
6371 */
6372static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6373 unsigned long action,
6374 void *hcpu)
6375{
6376 int cpu = (long)hcpu;
6377
6378 switch (action & ~CPU_TASKS_FROZEN) {
6379 case CPU_ONLINE:
6380 sched_domains_numa_masks_set(cpu);
6381 break;
6382
6383 case CPU_DEAD:
6384 sched_domains_numa_masks_clear(cpu);
6385 break;
6386
6387 default:
6388 return NOTIFY_DONE;
6389 }
6390
6391 return NOTIFY_OK;
cb83b629
PZ
6392}
6393#else
6394static inline void sched_init_numa(void)
6395{
6396}
301a5cba
TC
6397
6398static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6399 unsigned long action,
6400 void *hcpu)
6401{
6402 return 0;
6403}
cb83b629
PZ
6404#endif /* CONFIG_NUMA */
6405
54ab4ff4
PZ
6406static int __sdt_alloc(const struct cpumask *cpu_map)
6407{
6408 struct sched_domain_topology_level *tl;
6409 int j;
6410
6411 for (tl = sched_domain_topology; tl->init; tl++) {
6412 struct sd_data *sdd = &tl->data;
6413
6414 sdd->sd = alloc_percpu(struct sched_domain *);
6415 if (!sdd->sd)
6416 return -ENOMEM;
6417
6418 sdd->sg = alloc_percpu(struct sched_group *);
6419 if (!sdd->sg)
6420 return -ENOMEM;
6421
9c3f75cb
PZ
6422 sdd->sgp = alloc_percpu(struct sched_group_power *);
6423 if (!sdd->sgp)
6424 return -ENOMEM;
6425
54ab4ff4
PZ
6426 for_each_cpu(j, cpu_map) {
6427 struct sched_domain *sd;
6428 struct sched_group *sg;
9c3f75cb 6429 struct sched_group_power *sgp;
54ab4ff4
PZ
6430
6431 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6432 GFP_KERNEL, cpu_to_node(j));
6433 if (!sd)
6434 return -ENOMEM;
6435
6436 *per_cpu_ptr(sdd->sd, j) = sd;
6437
6438 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6439 GFP_KERNEL, cpu_to_node(j));
6440 if (!sg)
6441 return -ENOMEM;
6442
30b4e9eb
IM
6443 sg->next = sg;
6444
54ab4ff4 6445 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6446
c1174876 6447 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6448 GFP_KERNEL, cpu_to_node(j));
6449 if (!sgp)
6450 return -ENOMEM;
6451
6452 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6453 }
6454 }
6455
6456 return 0;
6457}
6458
6459static void __sdt_free(const struct cpumask *cpu_map)
6460{
6461 struct sched_domain_topology_level *tl;
6462 int j;
6463
6464 for (tl = sched_domain_topology; tl->init; tl++) {
6465 struct sd_data *sdd = &tl->data;
6466
6467 for_each_cpu(j, cpu_map) {
fb2cf2c6 6468 struct sched_domain *sd;
6469
6470 if (sdd->sd) {
6471 sd = *per_cpu_ptr(sdd->sd, j);
6472 if (sd && (sd->flags & SD_OVERLAP))
6473 free_sched_groups(sd->groups, 0);
6474 kfree(*per_cpu_ptr(sdd->sd, j));
6475 }
6476
6477 if (sdd->sg)
6478 kfree(*per_cpu_ptr(sdd->sg, j));
6479 if (sdd->sgp)
6480 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6481 }
6482 free_percpu(sdd->sd);
fb2cf2c6 6483 sdd->sd = NULL;
54ab4ff4 6484 free_percpu(sdd->sg);
fb2cf2c6 6485 sdd->sg = NULL;
9c3f75cb 6486 free_percpu(sdd->sgp);
fb2cf2c6 6487 sdd->sgp = NULL;
54ab4ff4
PZ
6488 }
6489}
6490
2c402dc3
PZ
6491struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6492 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6493 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6494 int cpu)
6495{
54ab4ff4 6496 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6497 if (!sd)
d069b916 6498 return child;
2c402dc3 6499
2c402dc3 6500 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6501 if (child) {
6502 sd->level = child->level + 1;
6503 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6504 child->parent = sd;
60495e77 6505 }
d069b916 6506 sd->child = child;
a841f8ce 6507 set_domain_attribute(sd, attr);
2c402dc3
PZ
6508
6509 return sd;
6510}
6511
2109b99e
AH
6512/*
6513 * Build sched domains for a given set of cpus and attach the sched domains
6514 * to the individual cpus
6515 */
dce840a0
PZ
6516static int build_sched_domains(const struct cpumask *cpu_map,
6517 struct sched_domain_attr *attr)
2109b99e
AH
6518{
6519 enum s_alloc alloc_state = sa_none;
dce840a0 6520 struct sched_domain *sd;
2109b99e 6521 struct s_data d;
822ff793 6522 int i, ret = -ENOMEM;
9c1cfda2 6523
2109b99e
AH
6524 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6525 if (alloc_state != sa_rootdomain)
6526 goto error;
9c1cfda2 6527
dce840a0 6528 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6529 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6530 struct sched_domain_topology_level *tl;
6531
3bd65a80 6532 sd = NULL;
e3589f6c 6533 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6534 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6535 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6536 sd->flags |= SD_OVERLAP;
d110235d
PZ
6537 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6538 break;
e3589f6c 6539 }
d274cb30 6540
d069b916
PZ
6541 while (sd->child)
6542 sd = sd->child;
6543
21d42ccf 6544 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6545 }
6546
6547 /* Build the groups for the domains */
6548 for_each_cpu(i, cpu_map) {
6549 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6550 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6551 if (sd->flags & SD_OVERLAP) {
6552 if (build_overlap_sched_groups(sd, i))
6553 goto error;
6554 } else {
6555 if (build_sched_groups(sd, i))
6556 goto error;
6557 }
1cf51902 6558 }
a06dadbe 6559 }
9c1cfda2 6560
1da177e4 6561 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6562 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6563 if (!cpumask_test_cpu(i, cpu_map))
6564 continue;
9c1cfda2 6565
dce840a0
PZ
6566 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6567 claim_allocations(i, sd);
cd4ea6ae 6568 init_sched_groups_power(i, sd);
dce840a0 6569 }
f712c0c7 6570 }
9c1cfda2 6571
1da177e4 6572 /* Attach the domains */
dce840a0 6573 rcu_read_lock();
abcd083a 6574 for_each_cpu(i, cpu_map) {
21d42ccf 6575 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6576 cpu_attach_domain(sd, d.rd, i);
1da177e4 6577 }
dce840a0 6578 rcu_read_unlock();
51888ca2 6579
822ff793 6580 ret = 0;
51888ca2 6581error:
2109b99e 6582 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6583 return ret;
1da177e4 6584}
029190c5 6585
acc3f5d7 6586static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6587static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6588static struct sched_domain_attr *dattr_cur;
6589 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6590
6591/*
6592 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6593 * cpumask) fails, then fallback to a single sched domain,
6594 * as determined by the single cpumask fallback_doms.
029190c5 6595 */
4212823f 6596static cpumask_var_t fallback_doms;
029190c5 6597
ee79d1bd
HC
6598/*
6599 * arch_update_cpu_topology lets virtualized architectures update the
6600 * cpu core maps. It is supposed to return 1 if the topology changed
6601 * or 0 if it stayed the same.
6602 */
6603int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6604{
ee79d1bd 6605 return 0;
22e52b07
HC
6606}
6607
acc3f5d7
RR
6608cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6609{
6610 int i;
6611 cpumask_var_t *doms;
6612
6613 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6614 if (!doms)
6615 return NULL;
6616 for (i = 0; i < ndoms; i++) {
6617 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6618 free_sched_domains(doms, i);
6619 return NULL;
6620 }
6621 }
6622 return doms;
6623}
6624
6625void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6626{
6627 unsigned int i;
6628 for (i = 0; i < ndoms; i++)
6629 free_cpumask_var(doms[i]);
6630 kfree(doms);
6631}
6632
1a20ff27 6633/*
41a2d6cf 6634 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6635 * For now this just excludes isolated cpus, but could be used to
6636 * exclude other special cases in the future.
1a20ff27 6637 */
c4a8849a 6638static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6639{
7378547f
MM
6640 int err;
6641
22e52b07 6642 arch_update_cpu_topology();
029190c5 6643 ndoms_cur = 1;
acc3f5d7 6644 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6645 if (!doms_cur)
acc3f5d7
RR
6646 doms_cur = &fallback_doms;
6647 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6648 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6649 register_sched_domain_sysctl();
7378547f
MM
6650
6651 return err;
1a20ff27
DG
6652}
6653
1a20ff27
DG
6654/*
6655 * Detach sched domains from a group of cpus specified in cpu_map
6656 * These cpus will now be attached to the NULL domain
6657 */
96f874e2 6658static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6659{
6660 int i;
6661
dce840a0 6662 rcu_read_lock();
abcd083a 6663 for_each_cpu(i, cpu_map)
57d885fe 6664 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6665 rcu_read_unlock();
1a20ff27
DG
6666}
6667
1d3504fc
HS
6668/* handle null as "default" */
6669static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6670 struct sched_domain_attr *new, int idx_new)
6671{
6672 struct sched_domain_attr tmp;
6673
6674 /* fast path */
6675 if (!new && !cur)
6676 return 1;
6677
6678 tmp = SD_ATTR_INIT;
6679 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6680 new ? (new + idx_new) : &tmp,
6681 sizeof(struct sched_domain_attr));
6682}
6683
029190c5
PJ
6684/*
6685 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6686 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6687 * doms_new[] to the current sched domain partitioning, doms_cur[].
6688 * It destroys each deleted domain and builds each new domain.
6689 *
acc3f5d7 6690 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6691 * The masks don't intersect (don't overlap.) We should setup one
6692 * sched domain for each mask. CPUs not in any of the cpumasks will
6693 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6694 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6695 * it as it is.
6696 *
acc3f5d7
RR
6697 * The passed in 'doms_new' should be allocated using
6698 * alloc_sched_domains. This routine takes ownership of it and will
6699 * free_sched_domains it when done with it. If the caller failed the
6700 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6701 * and partition_sched_domains() will fallback to the single partition
6702 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6703 *
96f874e2 6704 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6705 * ndoms_new == 0 is a special case for destroying existing domains,
6706 * and it will not create the default domain.
dfb512ec 6707 *
029190c5
PJ
6708 * Call with hotplug lock held
6709 */
acc3f5d7 6710void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6711 struct sched_domain_attr *dattr_new)
029190c5 6712{
dfb512ec 6713 int i, j, n;
d65bd5ec 6714 int new_topology;
029190c5 6715
712555ee 6716 mutex_lock(&sched_domains_mutex);
a1835615 6717
7378547f
MM
6718 /* always unregister in case we don't destroy any domains */
6719 unregister_sched_domain_sysctl();
6720
d65bd5ec
HC
6721 /* Let architecture update cpu core mappings. */
6722 new_topology = arch_update_cpu_topology();
6723
dfb512ec 6724 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6725
6726 /* Destroy deleted domains */
6727 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6728 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6729 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6730 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6731 goto match1;
6732 }
6733 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6734 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6735match1:
6736 ;
6737 }
6738
e761b772
MK
6739 if (doms_new == NULL) {
6740 ndoms_cur = 0;
acc3f5d7 6741 doms_new = &fallback_doms;
6ad4c188 6742 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6743 WARN_ON_ONCE(dattr_new);
e761b772
MK
6744 }
6745
029190c5
PJ
6746 /* Build new domains */
6747 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6748 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6749 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6750 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6751 goto match2;
6752 }
6753 /* no match - add a new doms_new */
dce840a0 6754 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6755match2:
6756 ;
6757 }
6758
6759 /* Remember the new sched domains */
acc3f5d7
RR
6760 if (doms_cur != &fallback_doms)
6761 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6762 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6763 doms_cur = doms_new;
1d3504fc 6764 dattr_cur = dattr_new;
029190c5 6765 ndoms_cur = ndoms_new;
7378547f
MM
6766
6767 register_sched_domain_sysctl();
a1835615 6768
712555ee 6769 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6770}
6771
d35be8ba
SB
6772static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6773
1da177e4 6774/*
3a101d05
TH
6775 * Update cpusets according to cpu_active mask. If cpusets are
6776 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6777 * around partition_sched_domains().
d35be8ba
SB
6778 *
6779 * If we come here as part of a suspend/resume, don't touch cpusets because we
6780 * want to restore it back to its original state upon resume anyway.
1da177e4 6781 */
0b2e918a
TH
6782static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6783 void *hcpu)
e761b772 6784{
d35be8ba
SB
6785 switch (action) {
6786 case CPU_ONLINE_FROZEN:
6787 case CPU_DOWN_FAILED_FROZEN:
6788
6789 /*
6790 * num_cpus_frozen tracks how many CPUs are involved in suspend
6791 * resume sequence. As long as this is not the last online
6792 * operation in the resume sequence, just build a single sched
6793 * domain, ignoring cpusets.
6794 */
6795 num_cpus_frozen--;
6796 if (likely(num_cpus_frozen)) {
6797 partition_sched_domains(1, NULL, NULL);
6798 break;
6799 }
6800
6801 /*
6802 * This is the last CPU online operation. So fall through and
6803 * restore the original sched domains by considering the
6804 * cpuset configurations.
6805 */
6806
e761b772 6807 case CPU_ONLINE:
6ad4c188 6808 case CPU_DOWN_FAILED:
7ddf96b0 6809 cpuset_update_active_cpus(true);
d35be8ba 6810 break;
3a101d05
TH
6811 default:
6812 return NOTIFY_DONE;
6813 }
d35be8ba 6814 return NOTIFY_OK;
3a101d05 6815}
e761b772 6816
0b2e918a
TH
6817static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6818 void *hcpu)
3a101d05 6819{
d35be8ba 6820 switch (action) {
3a101d05 6821 case CPU_DOWN_PREPARE:
7ddf96b0 6822 cpuset_update_active_cpus(false);
d35be8ba
SB
6823 break;
6824 case CPU_DOWN_PREPARE_FROZEN:
6825 num_cpus_frozen++;
6826 partition_sched_domains(1, NULL, NULL);
6827 break;
e761b772
MK
6828 default:
6829 return NOTIFY_DONE;
6830 }
d35be8ba 6831 return NOTIFY_OK;
e761b772 6832}
e761b772 6833
1da177e4
LT
6834void __init sched_init_smp(void)
6835{
dcc30a35
RR
6836 cpumask_var_t non_isolated_cpus;
6837
6838 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6839 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6840
cb83b629
PZ
6841 sched_init_numa();
6842
95402b38 6843 get_online_cpus();
712555ee 6844 mutex_lock(&sched_domains_mutex);
c4a8849a 6845 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6846 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6847 if (cpumask_empty(non_isolated_cpus))
6848 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6849 mutex_unlock(&sched_domains_mutex);
95402b38 6850 put_online_cpus();
e761b772 6851
301a5cba 6852 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6853 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6854 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6855
6856 /* RT runtime code needs to handle some hotplug events */
6857 hotcpu_notifier(update_runtime, 0);
6858
b328ca18 6859 init_hrtick();
5c1e1767
NP
6860
6861 /* Move init over to a non-isolated CPU */
dcc30a35 6862 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6863 BUG();
19978ca6 6864 sched_init_granularity();
dcc30a35 6865 free_cpumask_var(non_isolated_cpus);
4212823f 6866
0e3900e6 6867 init_sched_rt_class();
1da177e4
LT
6868}
6869#else
6870void __init sched_init_smp(void)
6871{
19978ca6 6872 sched_init_granularity();
1da177e4
LT
6873}
6874#endif /* CONFIG_SMP */
6875
cd1bb94b
AB
6876const_debug unsigned int sysctl_timer_migration = 1;
6877
1da177e4
LT
6878int in_sched_functions(unsigned long addr)
6879{
1da177e4
LT
6880 return in_lock_functions(addr) ||
6881 (addr >= (unsigned long)__sched_text_start
6882 && addr < (unsigned long)__sched_text_end);
6883}
6884
029632fb 6885#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6886/*
6887 * Default task group.
6888 * Every task in system belongs to this group at bootup.
6889 */
029632fb 6890struct task_group root_task_group;
35cf4e50 6891LIST_HEAD(task_groups);
052f1dc7 6892#endif
6f505b16 6893
029632fb 6894DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6895
1da177e4
LT
6896void __init sched_init(void)
6897{
dd41f596 6898 int i, j;
434d53b0
MT
6899 unsigned long alloc_size = 0, ptr;
6900
6901#ifdef CONFIG_FAIR_GROUP_SCHED
6902 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6903#endif
6904#ifdef CONFIG_RT_GROUP_SCHED
6905 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6906#endif
df7c8e84 6907#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6908 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6909#endif
434d53b0 6910 if (alloc_size) {
36b7b6d4 6911 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6912
6913#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6914 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6915 ptr += nr_cpu_ids * sizeof(void **);
6916
07e06b01 6917 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6918 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6919
6d6bc0ad 6920#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6921#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6922 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6923 ptr += nr_cpu_ids * sizeof(void **);
6924
07e06b01 6925 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6926 ptr += nr_cpu_ids * sizeof(void **);
6927
6d6bc0ad 6928#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6929#ifdef CONFIG_CPUMASK_OFFSTACK
6930 for_each_possible_cpu(i) {
6931 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6932 ptr += cpumask_size();
6933 }
6934#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6935 }
dd41f596 6936
57d885fe
GH
6937#ifdef CONFIG_SMP
6938 init_defrootdomain();
6939#endif
6940
d0b27fa7
PZ
6941 init_rt_bandwidth(&def_rt_bandwidth,
6942 global_rt_period(), global_rt_runtime());
6943
6944#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6945 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6946 global_rt_period(), global_rt_runtime());
6d6bc0ad 6947#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6948
7c941438 6949#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6950 list_add(&root_task_group.list, &task_groups);
6951 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6952 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6953 autogroup_init(&init_task);
54c707e9 6954
7c941438 6955#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6956
54c707e9
GC
6957#ifdef CONFIG_CGROUP_CPUACCT
6958 root_cpuacct.cpustat = &kernel_cpustat;
6959 root_cpuacct.cpuusage = alloc_percpu(u64);
6960 /* Too early, not expected to fail */
6961 BUG_ON(!root_cpuacct.cpuusage);
6962#endif
0a945022 6963 for_each_possible_cpu(i) {
70b97a7f 6964 struct rq *rq;
1da177e4
LT
6965
6966 rq = cpu_rq(i);
05fa785c 6967 raw_spin_lock_init(&rq->lock);
7897986b 6968 rq->nr_running = 0;
dce48a84
TG
6969 rq->calc_load_active = 0;
6970 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6971 init_cfs_rq(&rq->cfs);
6f505b16 6972 init_rt_rq(&rq->rt, rq);
dd41f596 6973#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6974 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6975 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6976 /*
07e06b01 6977 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6978 *
6979 * In case of task-groups formed thr' the cgroup filesystem, it
6980 * gets 100% of the cpu resources in the system. This overall
6981 * system cpu resource is divided among the tasks of
07e06b01 6982 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6983 * based on each entity's (task or task-group's) weight
6984 * (se->load.weight).
6985 *
07e06b01 6986 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6987 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6988 * then A0's share of the cpu resource is:
6989 *
0d905bca 6990 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6991 *
07e06b01
YZ
6992 * We achieve this by letting root_task_group's tasks sit
6993 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6994 */
ab84d31e 6995 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6996 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6997#endif /* CONFIG_FAIR_GROUP_SCHED */
6998
6999 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7000#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7001 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7002 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7003#endif
1da177e4 7004
dd41f596
IM
7005 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7006 rq->cpu_load[j] = 0;
fdf3e95d
VP
7007
7008 rq->last_load_update_tick = jiffies;
7009
1da177e4 7010#ifdef CONFIG_SMP
41c7ce9a 7011 rq->sd = NULL;
57d885fe 7012 rq->rd = NULL;
1399fa78 7013 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 7014 rq->post_schedule = 0;
1da177e4 7015 rq->active_balance = 0;
dd41f596 7016 rq->next_balance = jiffies;
1da177e4 7017 rq->push_cpu = 0;
0a2966b4 7018 rq->cpu = i;
1f11eb6a 7019 rq->online = 0;
eae0c9df
MG
7020 rq->idle_stamp = 0;
7021 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7022
7023 INIT_LIST_HEAD(&rq->cfs_tasks);
7024
dc938520 7025 rq_attach_root(rq, &def_root_domain);
3451d024 7026#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7027 rq->nohz_flags = 0;
83cd4fe2 7028#endif
1da177e4 7029#endif
8f4d37ec 7030 init_rq_hrtick(rq);
1da177e4 7031 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7032 }
7033
2dd73a4f 7034 set_load_weight(&init_task);
b50f60ce 7035
e107be36
AK
7036#ifdef CONFIG_PREEMPT_NOTIFIERS
7037 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7038#endif
7039
b50f60ce 7040#ifdef CONFIG_RT_MUTEXES
732375c6 7041 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7042#endif
7043
1da177e4
LT
7044 /*
7045 * The boot idle thread does lazy MMU switching as well:
7046 */
7047 atomic_inc(&init_mm.mm_count);
7048 enter_lazy_tlb(&init_mm, current);
7049
7050 /*
7051 * Make us the idle thread. Technically, schedule() should not be
7052 * called from this thread, however somewhere below it might be,
7053 * but because we are the idle thread, we just pick up running again
7054 * when this runqueue becomes "idle".
7055 */
7056 init_idle(current, smp_processor_id());
dce48a84
TG
7057
7058 calc_load_update = jiffies + LOAD_FREQ;
7059
dd41f596
IM
7060 /*
7061 * During early bootup we pretend to be a normal task:
7062 */
7063 current->sched_class = &fair_sched_class;
6892b75e 7064
bf4d83f6 7065#ifdef CONFIG_SMP
4cb98839 7066 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7067 /* May be allocated at isolcpus cmdline parse time */
7068 if (cpu_isolated_map == NULL)
7069 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7070 idle_thread_set_boot_cpu();
029632fb
PZ
7071#endif
7072 init_sched_fair_class();
6a7b3dc3 7073
6892b75e 7074 scheduler_running = 1;
1da177e4
LT
7075}
7076
d902db1e 7077#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7078static inline int preempt_count_equals(int preempt_offset)
7079{
234da7bc 7080 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7081
4ba8216c 7082 return (nested == preempt_offset);
e4aafea2
FW
7083}
7084
d894837f 7085void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7086{
1da177e4
LT
7087 static unsigned long prev_jiffy; /* ratelimiting */
7088
b3fbab05 7089 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7090 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7091 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7092 return;
7093 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7094 return;
7095 prev_jiffy = jiffies;
7096
3df0fc5b
PZ
7097 printk(KERN_ERR
7098 "BUG: sleeping function called from invalid context at %s:%d\n",
7099 file, line);
7100 printk(KERN_ERR
7101 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7102 in_atomic(), irqs_disabled(),
7103 current->pid, current->comm);
aef745fc
IM
7104
7105 debug_show_held_locks(current);
7106 if (irqs_disabled())
7107 print_irqtrace_events(current);
7108 dump_stack();
1da177e4
LT
7109}
7110EXPORT_SYMBOL(__might_sleep);
7111#endif
7112
7113#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7114static void normalize_task(struct rq *rq, struct task_struct *p)
7115{
da7a735e
PZ
7116 const struct sched_class *prev_class = p->sched_class;
7117 int old_prio = p->prio;
3a5e4dc1 7118 int on_rq;
3e51f33f 7119
fd2f4419 7120 on_rq = p->on_rq;
3a5e4dc1 7121 if (on_rq)
4ca9b72b 7122 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7123 __setscheduler(rq, p, SCHED_NORMAL, 0);
7124 if (on_rq) {
4ca9b72b 7125 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7126 resched_task(rq->curr);
7127 }
da7a735e
PZ
7128
7129 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7130}
7131
1da177e4
LT
7132void normalize_rt_tasks(void)
7133{
a0f98a1c 7134 struct task_struct *g, *p;
1da177e4 7135 unsigned long flags;
70b97a7f 7136 struct rq *rq;
1da177e4 7137
4cf5d77a 7138 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7139 do_each_thread(g, p) {
178be793
IM
7140 /*
7141 * Only normalize user tasks:
7142 */
7143 if (!p->mm)
7144 continue;
7145
6cfb0d5d 7146 p->se.exec_start = 0;
6cfb0d5d 7147#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7148 p->se.statistics.wait_start = 0;
7149 p->se.statistics.sleep_start = 0;
7150 p->se.statistics.block_start = 0;
6cfb0d5d 7151#endif
dd41f596
IM
7152
7153 if (!rt_task(p)) {
7154 /*
7155 * Renice negative nice level userspace
7156 * tasks back to 0:
7157 */
7158 if (TASK_NICE(p) < 0 && p->mm)
7159 set_user_nice(p, 0);
1da177e4 7160 continue;
dd41f596 7161 }
1da177e4 7162
1d615482 7163 raw_spin_lock(&p->pi_lock);
b29739f9 7164 rq = __task_rq_lock(p);
1da177e4 7165
178be793 7166 normalize_task(rq, p);
3a5e4dc1 7167
b29739f9 7168 __task_rq_unlock(rq);
1d615482 7169 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7170 } while_each_thread(g, p);
7171
4cf5d77a 7172 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7173}
7174
7175#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7176
67fc4e0c 7177#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7178/*
67fc4e0c 7179 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7180 *
7181 * They can only be called when the whole system has been
7182 * stopped - every CPU needs to be quiescent, and no scheduling
7183 * activity can take place. Using them for anything else would
7184 * be a serious bug, and as a result, they aren't even visible
7185 * under any other configuration.
7186 */
7187
7188/**
7189 * curr_task - return the current task for a given cpu.
7190 * @cpu: the processor in question.
7191 *
7192 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7193 */
36c8b586 7194struct task_struct *curr_task(int cpu)
1df5c10a
LT
7195{
7196 return cpu_curr(cpu);
7197}
7198
67fc4e0c
JW
7199#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7200
7201#ifdef CONFIG_IA64
1df5c10a
LT
7202/**
7203 * set_curr_task - set the current task for a given cpu.
7204 * @cpu: the processor in question.
7205 * @p: the task pointer to set.
7206 *
7207 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7208 * are serviced on a separate stack. It allows the architecture to switch the
7209 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7210 * must be called with all CPU's synchronized, and interrupts disabled, the
7211 * and caller must save the original value of the current task (see
7212 * curr_task() above) and restore that value before reenabling interrupts and
7213 * re-starting the system.
7214 *
7215 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7216 */
36c8b586 7217void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7218{
7219 cpu_curr(cpu) = p;
7220}
7221
7222#endif
29f59db3 7223
7c941438 7224#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7225/* task_group_lock serializes the addition/removal of task groups */
7226static DEFINE_SPINLOCK(task_group_lock);
7227
bccbe08a
PZ
7228static void free_sched_group(struct task_group *tg)
7229{
7230 free_fair_sched_group(tg);
7231 free_rt_sched_group(tg);
e9aa1dd1 7232 autogroup_free(tg);
bccbe08a
PZ
7233 kfree(tg);
7234}
7235
7236/* allocate runqueue etc for a new task group */
ec7dc8ac 7237struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7238{
7239 struct task_group *tg;
bccbe08a
PZ
7240
7241 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7242 if (!tg)
7243 return ERR_PTR(-ENOMEM);
7244
ec7dc8ac 7245 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7246 goto err;
7247
ec7dc8ac 7248 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7249 goto err;
7250
ace783b9
LZ
7251 return tg;
7252
7253err:
7254 free_sched_group(tg);
7255 return ERR_PTR(-ENOMEM);
7256}
7257
7258void sched_online_group(struct task_group *tg, struct task_group *parent)
7259{
7260 unsigned long flags;
7261
8ed36996 7262 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7263 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7264
7265 WARN_ON(!parent); /* root should already exist */
7266
7267 tg->parent = parent;
f473aa5e 7268 INIT_LIST_HEAD(&tg->children);
09f2724a 7269 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7270 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7271}
7272
9b5b7751 7273/* rcu callback to free various structures associated with a task group */
6f505b16 7274static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7275{
29f59db3 7276 /* now it should be safe to free those cfs_rqs */
6f505b16 7277 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7278}
7279
9b5b7751 7280/* Destroy runqueue etc associated with a task group */
4cf86d77 7281void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7282{
7283 /* wait for possible concurrent references to cfs_rqs complete */
7284 call_rcu(&tg->rcu, free_sched_group_rcu);
7285}
7286
7287void sched_offline_group(struct task_group *tg)
29f59db3 7288{
8ed36996 7289 unsigned long flags;
9b5b7751 7290 int i;
29f59db3 7291
3d4b47b4
PZ
7292 /* end participation in shares distribution */
7293 for_each_possible_cpu(i)
bccbe08a 7294 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7295
7296 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7297 list_del_rcu(&tg->list);
f473aa5e 7298 list_del_rcu(&tg->siblings);
8ed36996 7299 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7300}
7301
9b5b7751 7302/* change task's runqueue when it moves between groups.
3a252015
IM
7303 * The caller of this function should have put the task in its new group
7304 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7305 * reflect its new group.
9b5b7751
SV
7306 */
7307void sched_move_task(struct task_struct *tsk)
29f59db3 7308{
8323f26c 7309 struct task_group *tg;
29f59db3
SV
7310 int on_rq, running;
7311 unsigned long flags;
7312 struct rq *rq;
7313
7314 rq = task_rq_lock(tsk, &flags);
7315
051a1d1a 7316 running = task_current(rq, tsk);
fd2f4419 7317 on_rq = tsk->on_rq;
29f59db3 7318
0e1f3483 7319 if (on_rq)
29f59db3 7320 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7321 if (unlikely(running))
7322 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7323
8323f26c
PZ
7324 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7325 lockdep_is_held(&tsk->sighand->siglock)),
7326 struct task_group, css);
7327 tg = autogroup_task_group(tsk, tg);
7328 tsk->sched_task_group = tg;
7329
810b3817 7330#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7331 if (tsk->sched_class->task_move_group)
7332 tsk->sched_class->task_move_group(tsk, on_rq);
7333 else
810b3817 7334#endif
b2b5ce02 7335 set_task_rq(tsk, task_cpu(tsk));
810b3817 7336
0e1f3483
HS
7337 if (unlikely(running))
7338 tsk->sched_class->set_curr_task(rq);
7339 if (on_rq)
371fd7e7 7340 enqueue_task(rq, tsk, 0);
29f59db3 7341
0122ec5b 7342 task_rq_unlock(rq, tsk, &flags);
29f59db3 7343}
7c941438 7344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7345
a790de99 7346#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7347static unsigned long to_ratio(u64 period, u64 runtime)
7348{
7349 if (runtime == RUNTIME_INF)
9a7e0b18 7350 return 1ULL << 20;
9f0c1e56 7351
9a7e0b18 7352 return div64_u64(runtime << 20, period);
9f0c1e56 7353}
a790de99
PT
7354#endif
7355
7356#ifdef CONFIG_RT_GROUP_SCHED
7357/*
7358 * Ensure that the real time constraints are schedulable.
7359 */
7360static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7361
9a7e0b18
PZ
7362/* Must be called with tasklist_lock held */
7363static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7364{
9a7e0b18 7365 struct task_struct *g, *p;
b40b2e8e 7366
9a7e0b18 7367 do_each_thread(g, p) {
029632fb 7368 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7369 return 1;
7370 } while_each_thread(g, p);
b40b2e8e 7371
9a7e0b18
PZ
7372 return 0;
7373}
b40b2e8e 7374
9a7e0b18
PZ
7375struct rt_schedulable_data {
7376 struct task_group *tg;
7377 u64 rt_period;
7378 u64 rt_runtime;
7379};
b40b2e8e 7380
a790de99 7381static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7382{
7383 struct rt_schedulable_data *d = data;
7384 struct task_group *child;
7385 unsigned long total, sum = 0;
7386 u64 period, runtime;
b40b2e8e 7387
9a7e0b18
PZ
7388 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7389 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7390
9a7e0b18
PZ
7391 if (tg == d->tg) {
7392 period = d->rt_period;
7393 runtime = d->rt_runtime;
b40b2e8e 7394 }
b40b2e8e 7395
4653f803
PZ
7396 /*
7397 * Cannot have more runtime than the period.
7398 */
7399 if (runtime > period && runtime != RUNTIME_INF)
7400 return -EINVAL;
6f505b16 7401
4653f803
PZ
7402 /*
7403 * Ensure we don't starve existing RT tasks.
7404 */
9a7e0b18
PZ
7405 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7406 return -EBUSY;
6f505b16 7407
9a7e0b18 7408 total = to_ratio(period, runtime);
6f505b16 7409
4653f803
PZ
7410 /*
7411 * Nobody can have more than the global setting allows.
7412 */
7413 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7414 return -EINVAL;
6f505b16 7415
4653f803
PZ
7416 /*
7417 * The sum of our children's runtime should not exceed our own.
7418 */
9a7e0b18
PZ
7419 list_for_each_entry_rcu(child, &tg->children, siblings) {
7420 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7421 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7422
9a7e0b18
PZ
7423 if (child == d->tg) {
7424 period = d->rt_period;
7425 runtime = d->rt_runtime;
7426 }
6f505b16 7427
9a7e0b18 7428 sum += to_ratio(period, runtime);
9f0c1e56 7429 }
6f505b16 7430
9a7e0b18
PZ
7431 if (sum > total)
7432 return -EINVAL;
7433
7434 return 0;
6f505b16
PZ
7435}
7436
9a7e0b18 7437static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7438{
8277434e
PT
7439 int ret;
7440
9a7e0b18
PZ
7441 struct rt_schedulable_data data = {
7442 .tg = tg,
7443 .rt_period = period,
7444 .rt_runtime = runtime,
7445 };
7446
8277434e
PT
7447 rcu_read_lock();
7448 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7449 rcu_read_unlock();
7450
7451 return ret;
521f1a24
DG
7452}
7453
ab84d31e 7454static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7455 u64 rt_period, u64 rt_runtime)
6f505b16 7456{
ac086bc2 7457 int i, err = 0;
9f0c1e56 7458
9f0c1e56 7459 mutex_lock(&rt_constraints_mutex);
521f1a24 7460 read_lock(&tasklist_lock);
9a7e0b18
PZ
7461 err = __rt_schedulable(tg, rt_period, rt_runtime);
7462 if (err)
9f0c1e56 7463 goto unlock;
ac086bc2 7464
0986b11b 7465 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7466 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7467 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7468
7469 for_each_possible_cpu(i) {
7470 struct rt_rq *rt_rq = tg->rt_rq[i];
7471
0986b11b 7472 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7473 rt_rq->rt_runtime = rt_runtime;
0986b11b 7474 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7475 }
0986b11b 7476 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7477unlock:
521f1a24 7478 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7479 mutex_unlock(&rt_constraints_mutex);
7480
7481 return err;
6f505b16
PZ
7482}
7483
25cc7da7 7484static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7485{
7486 u64 rt_runtime, rt_period;
7487
7488 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7489 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7490 if (rt_runtime_us < 0)
7491 rt_runtime = RUNTIME_INF;
7492
ab84d31e 7493 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7494}
7495
25cc7da7 7496static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7497{
7498 u64 rt_runtime_us;
7499
d0b27fa7 7500 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7501 return -1;
7502
d0b27fa7 7503 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7504 do_div(rt_runtime_us, NSEC_PER_USEC);
7505 return rt_runtime_us;
7506}
d0b27fa7 7507
25cc7da7 7508static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7509{
7510 u64 rt_runtime, rt_period;
7511
7512 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7513 rt_runtime = tg->rt_bandwidth.rt_runtime;
7514
619b0488
R
7515 if (rt_period == 0)
7516 return -EINVAL;
7517
ab84d31e 7518 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7519}
7520
25cc7da7 7521static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7522{
7523 u64 rt_period_us;
7524
7525 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7526 do_div(rt_period_us, NSEC_PER_USEC);
7527 return rt_period_us;
7528}
7529
7530static int sched_rt_global_constraints(void)
7531{
4653f803 7532 u64 runtime, period;
d0b27fa7
PZ
7533 int ret = 0;
7534
ec5d4989
HS
7535 if (sysctl_sched_rt_period <= 0)
7536 return -EINVAL;
7537
4653f803
PZ
7538 runtime = global_rt_runtime();
7539 period = global_rt_period();
7540
7541 /*
7542 * Sanity check on the sysctl variables.
7543 */
7544 if (runtime > period && runtime != RUNTIME_INF)
7545 return -EINVAL;
10b612f4 7546
d0b27fa7 7547 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7548 read_lock(&tasklist_lock);
4653f803 7549 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7550 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7551 mutex_unlock(&rt_constraints_mutex);
7552
7553 return ret;
7554}
54e99124 7555
25cc7da7 7556static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7557{
7558 /* Don't accept realtime tasks when there is no way for them to run */
7559 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7560 return 0;
7561
7562 return 1;
7563}
7564
6d6bc0ad 7565#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7566static int sched_rt_global_constraints(void)
7567{
ac086bc2
PZ
7568 unsigned long flags;
7569 int i;
7570
ec5d4989
HS
7571 if (sysctl_sched_rt_period <= 0)
7572 return -EINVAL;
7573
60aa605d
PZ
7574 /*
7575 * There's always some RT tasks in the root group
7576 * -- migration, kstopmachine etc..
7577 */
7578 if (sysctl_sched_rt_runtime == 0)
7579 return -EBUSY;
7580
0986b11b 7581 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7582 for_each_possible_cpu(i) {
7583 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7584
0986b11b 7585 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7586 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7587 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7588 }
0986b11b 7589 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7590
d0b27fa7
PZ
7591 return 0;
7592}
6d6bc0ad 7593#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7594
ce0dbbbb
CW
7595int sched_rr_handler(struct ctl_table *table, int write,
7596 void __user *buffer, size_t *lenp,
7597 loff_t *ppos)
7598{
7599 int ret;
7600 static DEFINE_MUTEX(mutex);
7601
7602 mutex_lock(&mutex);
7603 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7604 /* make sure that internally we keep jiffies */
7605 /* also, writing zero resets timeslice to default */
7606 if (!ret && write) {
7607 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7608 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7609 }
7610 mutex_unlock(&mutex);
7611 return ret;
7612}
7613
d0b27fa7 7614int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7615 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7616 loff_t *ppos)
7617{
7618 int ret;
7619 int old_period, old_runtime;
7620 static DEFINE_MUTEX(mutex);
7621
7622 mutex_lock(&mutex);
7623 old_period = sysctl_sched_rt_period;
7624 old_runtime = sysctl_sched_rt_runtime;
7625
8d65af78 7626 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7627
7628 if (!ret && write) {
7629 ret = sched_rt_global_constraints();
7630 if (ret) {
7631 sysctl_sched_rt_period = old_period;
7632 sysctl_sched_rt_runtime = old_runtime;
7633 } else {
7634 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7635 def_rt_bandwidth.rt_period =
7636 ns_to_ktime(global_rt_period());
7637 }
7638 }
7639 mutex_unlock(&mutex);
7640
7641 return ret;
7642}
68318b8e 7643
052f1dc7 7644#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7645
7646/* return corresponding task_group object of a cgroup */
2b01dfe3 7647static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7648{
2b01dfe3
PM
7649 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7650 struct task_group, css);
68318b8e
SV
7651}
7652
92fb9748 7653static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7654{
ec7dc8ac 7655 struct task_group *tg, *parent;
68318b8e 7656
2b01dfe3 7657 if (!cgrp->parent) {
68318b8e 7658 /* This is early initialization for the top cgroup */
07e06b01 7659 return &root_task_group.css;
68318b8e
SV
7660 }
7661
ec7dc8ac
DG
7662 parent = cgroup_tg(cgrp->parent);
7663 tg = sched_create_group(parent);
68318b8e
SV
7664 if (IS_ERR(tg))
7665 return ERR_PTR(-ENOMEM);
7666
68318b8e
SV
7667 return &tg->css;
7668}
7669
ace783b9
LZ
7670static int cpu_cgroup_css_online(struct cgroup *cgrp)
7671{
7672 struct task_group *tg = cgroup_tg(cgrp);
7673 struct task_group *parent;
7674
7675 if (!cgrp->parent)
7676 return 0;
7677
7678 parent = cgroup_tg(cgrp->parent);
7679 sched_online_group(tg, parent);
7680 return 0;
7681}
7682
92fb9748 7683static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7684{
2b01dfe3 7685 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7686
7687 sched_destroy_group(tg);
7688}
7689
ace783b9
LZ
7690static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7691{
7692 struct task_group *tg = cgroup_tg(cgrp);
7693
7694 sched_offline_group(tg);
7695}
7696
761b3ef5 7697static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7698 struct cgroup_taskset *tset)
68318b8e 7699{
bb9d97b6
TH
7700 struct task_struct *task;
7701
7702 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7703#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7704 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7705 return -EINVAL;
b68aa230 7706#else
bb9d97b6
TH
7707 /* We don't support RT-tasks being in separate groups */
7708 if (task->sched_class != &fair_sched_class)
7709 return -EINVAL;
b68aa230 7710#endif
bb9d97b6 7711 }
be367d09
BB
7712 return 0;
7713}
68318b8e 7714
761b3ef5 7715static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7716 struct cgroup_taskset *tset)
68318b8e 7717{
bb9d97b6
TH
7718 struct task_struct *task;
7719
7720 cgroup_taskset_for_each(task, cgrp, tset)
7721 sched_move_task(task);
68318b8e
SV
7722}
7723
068c5cc5 7724static void
761b3ef5
LZ
7725cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7726 struct task_struct *task)
068c5cc5
PZ
7727{
7728 /*
7729 * cgroup_exit() is called in the copy_process() failure path.
7730 * Ignore this case since the task hasn't ran yet, this avoids
7731 * trying to poke a half freed task state from generic code.
7732 */
7733 if (!(task->flags & PF_EXITING))
7734 return;
7735
7736 sched_move_task(task);
7737}
7738
052f1dc7 7739#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7740static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7741 u64 shareval)
68318b8e 7742{
c8b28116 7743 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7744}
7745
f4c753b7 7746static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7747{
2b01dfe3 7748 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7749
c8b28116 7750 return (u64) scale_load_down(tg->shares);
68318b8e 7751}
ab84d31e
PT
7752
7753#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7754static DEFINE_MUTEX(cfs_constraints_mutex);
7755
ab84d31e
PT
7756const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7757const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7758
a790de99
PT
7759static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7760
ab84d31e
PT
7761static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7762{
56f570e5 7763 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7764 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7765
7766 if (tg == &root_task_group)
7767 return -EINVAL;
7768
7769 /*
7770 * Ensure we have at some amount of bandwidth every period. This is
7771 * to prevent reaching a state of large arrears when throttled via
7772 * entity_tick() resulting in prolonged exit starvation.
7773 */
7774 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7775 return -EINVAL;
7776
7777 /*
7778 * Likewise, bound things on the otherside by preventing insane quota
7779 * periods. This also allows us to normalize in computing quota
7780 * feasibility.
7781 */
7782 if (period > max_cfs_quota_period)
7783 return -EINVAL;
7784
a790de99
PT
7785 mutex_lock(&cfs_constraints_mutex);
7786 ret = __cfs_schedulable(tg, period, quota);
7787 if (ret)
7788 goto out_unlock;
7789
58088ad0 7790 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7791 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7792 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7793 raw_spin_lock_irq(&cfs_b->lock);
7794 cfs_b->period = ns_to_ktime(period);
7795 cfs_b->quota = quota;
58088ad0 7796
a9cf55b2 7797 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7798 /* restart the period timer (if active) to handle new period expiry */
7799 if (runtime_enabled && cfs_b->timer_active) {
7800 /* force a reprogram */
7801 cfs_b->timer_active = 0;
7802 __start_cfs_bandwidth(cfs_b);
7803 }
ab84d31e
PT
7804 raw_spin_unlock_irq(&cfs_b->lock);
7805
7806 for_each_possible_cpu(i) {
7807 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7808 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7809
7810 raw_spin_lock_irq(&rq->lock);
58088ad0 7811 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7812 cfs_rq->runtime_remaining = 0;
671fd9da 7813
029632fb 7814 if (cfs_rq->throttled)
671fd9da 7815 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7816 raw_spin_unlock_irq(&rq->lock);
7817 }
a790de99
PT
7818out_unlock:
7819 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7820
a790de99 7821 return ret;
ab84d31e
PT
7822}
7823
7824int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7825{
7826 u64 quota, period;
7827
029632fb 7828 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7829 if (cfs_quota_us < 0)
7830 quota = RUNTIME_INF;
7831 else
7832 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7833
7834 return tg_set_cfs_bandwidth(tg, period, quota);
7835}
7836
7837long tg_get_cfs_quota(struct task_group *tg)
7838{
7839 u64 quota_us;
7840
029632fb 7841 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7842 return -1;
7843
029632fb 7844 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7845 do_div(quota_us, NSEC_PER_USEC);
7846
7847 return quota_us;
7848}
7849
7850int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7851{
7852 u64 quota, period;
7853
7854 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7855 quota = tg->cfs_bandwidth.quota;
ab84d31e 7856
ab84d31e
PT
7857 return tg_set_cfs_bandwidth(tg, period, quota);
7858}
7859
7860long tg_get_cfs_period(struct task_group *tg)
7861{
7862 u64 cfs_period_us;
7863
029632fb 7864 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7865 do_div(cfs_period_us, NSEC_PER_USEC);
7866
7867 return cfs_period_us;
7868}
7869
7870static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7871{
7872 return tg_get_cfs_quota(cgroup_tg(cgrp));
7873}
7874
7875static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7876 s64 cfs_quota_us)
7877{
7878 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7879}
7880
7881static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7882{
7883 return tg_get_cfs_period(cgroup_tg(cgrp));
7884}
7885
7886static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7887 u64 cfs_period_us)
7888{
7889 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7890}
7891
a790de99
PT
7892struct cfs_schedulable_data {
7893 struct task_group *tg;
7894 u64 period, quota;
7895};
7896
7897/*
7898 * normalize group quota/period to be quota/max_period
7899 * note: units are usecs
7900 */
7901static u64 normalize_cfs_quota(struct task_group *tg,
7902 struct cfs_schedulable_data *d)
7903{
7904 u64 quota, period;
7905
7906 if (tg == d->tg) {
7907 period = d->period;
7908 quota = d->quota;
7909 } else {
7910 period = tg_get_cfs_period(tg);
7911 quota = tg_get_cfs_quota(tg);
7912 }
7913
7914 /* note: these should typically be equivalent */
7915 if (quota == RUNTIME_INF || quota == -1)
7916 return RUNTIME_INF;
7917
7918 return to_ratio(period, quota);
7919}
7920
7921static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7922{
7923 struct cfs_schedulable_data *d = data;
029632fb 7924 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7925 s64 quota = 0, parent_quota = -1;
7926
7927 if (!tg->parent) {
7928 quota = RUNTIME_INF;
7929 } else {
029632fb 7930 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7931
7932 quota = normalize_cfs_quota(tg, d);
7933 parent_quota = parent_b->hierarchal_quota;
7934
7935 /*
7936 * ensure max(child_quota) <= parent_quota, inherit when no
7937 * limit is set
7938 */
7939 if (quota == RUNTIME_INF)
7940 quota = parent_quota;
7941 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7942 return -EINVAL;
7943 }
7944 cfs_b->hierarchal_quota = quota;
7945
7946 return 0;
7947}
7948
7949static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7950{
8277434e 7951 int ret;
a790de99
PT
7952 struct cfs_schedulable_data data = {
7953 .tg = tg,
7954 .period = period,
7955 .quota = quota,
7956 };
7957
7958 if (quota != RUNTIME_INF) {
7959 do_div(data.period, NSEC_PER_USEC);
7960 do_div(data.quota, NSEC_PER_USEC);
7961 }
7962
8277434e
PT
7963 rcu_read_lock();
7964 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7965 rcu_read_unlock();
7966
7967 return ret;
a790de99 7968}
e8da1b18
NR
7969
7970static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7971 struct cgroup_map_cb *cb)
7972{
7973 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7974 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7975
7976 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7977 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7978 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7979
7980 return 0;
7981}
ab84d31e 7982#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7983#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7984
052f1dc7 7985#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7986static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7987 s64 val)
6f505b16 7988{
06ecb27c 7989 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7990}
7991
06ecb27c 7992static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7993{
06ecb27c 7994 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7995}
d0b27fa7
PZ
7996
7997static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7998 u64 rt_period_us)
7999{
8000 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8001}
8002
8003static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8004{
8005 return sched_group_rt_period(cgroup_tg(cgrp));
8006}
6d6bc0ad 8007#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8008
fe5c7cc2 8009static struct cftype cpu_files[] = {
052f1dc7 8010#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8011 {
8012 .name = "shares",
f4c753b7
PM
8013 .read_u64 = cpu_shares_read_u64,
8014 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8015 },
052f1dc7 8016#endif
ab84d31e
PT
8017#ifdef CONFIG_CFS_BANDWIDTH
8018 {
8019 .name = "cfs_quota_us",
8020 .read_s64 = cpu_cfs_quota_read_s64,
8021 .write_s64 = cpu_cfs_quota_write_s64,
8022 },
8023 {
8024 .name = "cfs_period_us",
8025 .read_u64 = cpu_cfs_period_read_u64,
8026 .write_u64 = cpu_cfs_period_write_u64,
8027 },
e8da1b18
NR
8028 {
8029 .name = "stat",
8030 .read_map = cpu_stats_show,
8031 },
ab84d31e 8032#endif
052f1dc7 8033#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8034 {
9f0c1e56 8035 .name = "rt_runtime_us",
06ecb27c
PM
8036 .read_s64 = cpu_rt_runtime_read,
8037 .write_s64 = cpu_rt_runtime_write,
6f505b16 8038 },
d0b27fa7
PZ
8039 {
8040 .name = "rt_period_us",
f4c753b7
PM
8041 .read_u64 = cpu_rt_period_read_uint,
8042 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8043 },
052f1dc7 8044#endif
4baf6e33 8045 { } /* terminate */
68318b8e
SV
8046};
8047
68318b8e 8048struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 8049 .name = "cpu",
92fb9748
TH
8050 .css_alloc = cpu_cgroup_css_alloc,
8051 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8052 .css_online = cpu_cgroup_css_online,
8053 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8054 .can_attach = cpu_cgroup_can_attach,
8055 .attach = cpu_cgroup_attach,
068c5cc5 8056 .exit = cpu_cgroup_exit,
38605cae 8057 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8058 .base_cftypes = cpu_files,
68318b8e
SV
8059 .early_init = 1,
8060};
8061
052f1dc7 8062#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8063
8064#ifdef CONFIG_CGROUP_CPUACCT
8065
8066/*
8067 * CPU accounting code for task groups.
8068 *
8069 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8070 * (balbir@in.ibm.com).
8071 */
8072
73fbec60
FW
8073struct cpuacct root_cpuacct;
8074
d842de87 8075/* create a new cpu accounting group */
92fb9748 8076static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
d842de87 8077{
54c707e9 8078 struct cpuacct *ca;
d842de87 8079
54c707e9
GC
8080 if (!cgrp->parent)
8081 return &root_cpuacct.css;
8082
8083 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8084 if (!ca)
ef12fefa 8085 goto out;
d842de87
SV
8086
8087 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8088 if (!ca->cpuusage)
8089 goto out_free_ca;
8090
54c707e9
GC
8091 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8092 if (!ca->cpustat)
8093 goto out_free_cpuusage;
934352f2 8094
d842de87 8095 return &ca->css;
ef12fefa 8096
54c707e9 8097out_free_cpuusage:
ef12fefa
BR
8098 free_percpu(ca->cpuusage);
8099out_free_ca:
8100 kfree(ca);
8101out:
8102 return ERR_PTR(-ENOMEM);
d842de87
SV
8103}
8104
8105/* destroy an existing cpu accounting group */
92fb9748 8106static void cpuacct_css_free(struct cgroup *cgrp)
d842de87 8107{
32cd756a 8108 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8109
54c707e9 8110 free_percpu(ca->cpustat);
d842de87
SV
8111 free_percpu(ca->cpuusage);
8112 kfree(ca);
8113}
8114
720f5498
KC
8115static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8116{
b36128c8 8117 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8118 u64 data;
8119
8120#ifndef CONFIG_64BIT
8121 /*
8122 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8123 */
05fa785c 8124 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8125 data = *cpuusage;
05fa785c 8126 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8127#else
8128 data = *cpuusage;
8129#endif
8130
8131 return data;
8132}
8133
8134static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8135{
b36128c8 8136 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8137
8138#ifndef CONFIG_64BIT
8139 /*
8140 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8141 */
05fa785c 8142 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8143 *cpuusage = val;
05fa785c 8144 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8145#else
8146 *cpuusage = val;
8147#endif
8148}
8149
d842de87 8150/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8151static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8152{
32cd756a 8153 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8154 u64 totalcpuusage = 0;
8155 int i;
8156
720f5498
KC
8157 for_each_present_cpu(i)
8158 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8159
8160 return totalcpuusage;
8161}
8162
0297b803
DG
8163static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8164 u64 reset)
8165{
8166 struct cpuacct *ca = cgroup_ca(cgrp);
8167 int err = 0;
8168 int i;
8169
8170 if (reset) {
8171 err = -EINVAL;
8172 goto out;
8173 }
8174
720f5498
KC
8175 for_each_present_cpu(i)
8176 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8177
0297b803
DG
8178out:
8179 return err;
8180}
8181
e9515c3c
KC
8182static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8183 struct seq_file *m)
8184{
8185 struct cpuacct *ca = cgroup_ca(cgroup);
8186 u64 percpu;
8187 int i;
8188
8189 for_each_present_cpu(i) {
8190 percpu = cpuacct_cpuusage_read(ca, i);
8191 seq_printf(m, "%llu ", (unsigned long long) percpu);
8192 }
8193 seq_printf(m, "\n");
8194 return 0;
8195}
8196
ef12fefa
BR
8197static const char *cpuacct_stat_desc[] = {
8198 [CPUACCT_STAT_USER] = "user",
8199 [CPUACCT_STAT_SYSTEM] = "system",
8200};
8201
8202static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8203 struct cgroup_map_cb *cb)
ef12fefa
BR
8204{
8205 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8206 int cpu;
8207 s64 val = 0;
ef12fefa 8208
54c707e9
GC
8209 for_each_online_cpu(cpu) {
8210 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8211 val += kcpustat->cpustat[CPUTIME_USER];
8212 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8213 }
54c707e9
GC
8214 val = cputime64_to_clock_t(val);
8215 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8216
54c707e9
GC
8217 val = 0;
8218 for_each_online_cpu(cpu) {
8219 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8220 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8221 val += kcpustat->cpustat[CPUTIME_IRQ];
8222 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8223 }
54c707e9
GC
8224
8225 val = cputime64_to_clock_t(val);
8226 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8227
ef12fefa
BR
8228 return 0;
8229}
8230
d842de87
SV
8231static struct cftype files[] = {
8232 {
8233 .name = "usage",
f4c753b7
PM
8234 .read_u64 = cpuusage_read,
8235 .write_u64 = cpuusage_write,
d842de87 8236 },
e9515c3c
KC
8237 {
8238 .name = "usage_percpu",
8239 .read_seq_string = cpuacct_percpu_seq_read,
8240 },
ef12fefa
BR
8241 {
8242 .name = "stat",
8243 .read_map = cpuacct_stats_show,
8244 },
4baf6e33 8245 { } /* terminate */
d842de87
SV
8246};
8247
d842de87
SV
8248/*
8249 * charge this task's execution time to its accounting group.
8250 *
8251 * called with rq->lock held.
8252 */
029632fb 8253void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8254{
8255 struct cpuacct *ca;
934352f2 8256 int cpu;
d842de87 8257
c40c6f85 8258 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8259 return;
8260
934352f2 8261 cpu = task_cpu(tsk);
a18b83b7
BR
8262
8263 rcu_read_lock();
8264
d842de87 8265 ca = task_ca(tsk);
d842de87 8266
44252e42 8267 for (; ca; ca = parent_ca(ca)) {
b36128c8 8268 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8269 *cpuusage += cputime;
8270 }
a18b83b7
BR
8271
8272 rcu_read_unlock();
d842de87
SV
8273}
8274
8275struct cgroup_subsys cpuacct_subsys = {
8276 .name = "cpuacct",
92fb9748
TH
8277 .css_alloc = cpuacct_css_alloc,
8278 .css_free = cpuacct_css_free,
d842de87 8279 .subsys_id = cpuacct_subsys_id,
4baf6e33 8280 .base_cftypes = files,
d842de87
SV
8281};
8282#endif /* CONFIG_CGROUP_CPUACCT */
b637a328
PM
8283
8284void dump_cpu_task(int cpu)
8285{
8286 pr_info("Task dump for CPU %d:\n", cpu);
8287 sched_show_task(cpu_curr(cpu));
8288}